WorldWideScience

Sample records for satellite analysis program

  1. SPICE Module for the Satellite Orbit Analysis Program (SOAP)

    Science.gov (United States)

    Coggi, John; Carnright, Robert; Hildebrand, Claude

    2008-01-01

    A SPICE module for the Satellite Orbit Analysis Program (SOAP) precisely represents complex motion and maneuvers in an interactive, 3D animated environment with support for user-defined quantitative outputs. (SPICE stands for Spacecraft, Planet, Instrument, Camera-matrix, and Events). This module enables the SOAP software to exploit NASA mission ephemeris represented in the JPL Ancillary Information Facility (NAIF) SPICE formats. Ephemeris types supported include position, velocity, and orientation for spacecraft and planetary bodies including the Sun, planets, natural satellites, comets, and asteroids. Entire missions can now be imported into SOAP for 3D visualization, playback, and analysis. The SOAP analysis and display features can now leverage detailed mission files to offer the analyst both a numerically correct and aesthetically pleasing combination of results that can be varied to study many hypothetical scenarios. The software provides a modeling and simulation environment that can encompass a broad variety of problems using orbital prediction. For example, ground coverage analysis, communications analysis, power and thermal analysis, and 3D visualization that provide the user with insight into complex geometric relations are included. The SOAP SPICE module allows distributed science and engineering teams to share common mission models of known pedigree, which greatly reduces duplication of effort and the potential for error. The use of the software spans all phases of the space system lifecycle, from the study of future concepts to operations and anomaly analysis. It allows SOAP software to correctly position and orient all of the principal bodies of the Solar System within a single simulation session along with multiple spacecraft trajectories and the orientation of mission payloads. In addition to the 3D visualization, the user can define numeric variables and x-y plots to quantitatively assess metrics of interest.

  2. Expressions Module for the Satellite Orbit Analysis Program

    Science.gov (United States)

    Edmonds, Karina

    2008-01-01

    The Expressions Module is a software module that has been incorporated into the Satellite Orbit Analysis Program (SOAP). The module includes an expressions- parser submodule built on top of an analytical system, enabling the user to define logical and numerical variables and constants. The variables can capture output from SOAP orbital-prediction and geometric-engine computations. The module can combine variables and constants with built-in logical operators (such as Boolean AND, OR, and NOT), relational operators (such as >, functions and operations, including logarithms, trigonometric functions, Bessel functions, minimum/ maximum operations, and floating- point-to-integer conversions. The module supports combinations of time, distance, and angular units and has a dimensional- analysis component that checks for correct usage of units. A parser based on the Flex language and the Bison program looks for and indicates errors in syntax. SOAP expressions can be built using other expressions as arguments, thus enabling the user to build analytical trees. A graphical user interface facilitates use.

  3. Scripting Module for the Satellite Orbit Analysis Program (SOAP)

    Science.gov (United States)

    Carnright, Robert; Paget, Jim; Coggi, John; Stodden, David

    2008-01-01

    This add-on module to the SOAP software can perform changes to simulation objects based on the occurrence of specific conditions. This allows the software to encompass simulation response of scheduled or physical events. Users can manipulate objects in the simulation environment under programmatic control. Inputs to the scripting module are Actions, Conditions, and the Script. Actions are arbitrary modifications to constructs such as Platform Objects (i.e. satellites), Sensor Objects (representing instruments or communication links), or Analysis Objects (user-defined logical or numeric variables). Examples of actions include changes to a satellite orbit ( v), changing a sensor-pointing direction, and the manipulation of a numerical expression. Conditions represent the circumstances under which Actions are performed and can be couched in If-Then-Else logic, like performing v at specific times or adding to the spacecraft power only when it is being illuminated by the Sun. The SOAP script represents the entire set of conditions being considered over a specific time interval. The output of the scripting module is a series of events, which are changes to objects at specific times. As the SOAP simulation clock runs forward, the scheduled events are performed. If the user sets the clock back in time, the events within that interval are automatically undone. This script offers an interface for defining scripts where the user does not have to remember the vocabulary of various keywords. Actions can be captured by employing the same user interface that is used to define the objects themselves. Conditions can be set to invoke Actions by selecting them from pull-down lists. Users define the script by selecting from the pool of defined conditions. Many space systems have to react to arbitrary events that can occur from scheduling or from the environment. For example, an instrument may cease to draw power when the area that it is tasked to observe is not in view. The contingency

  4. Design on an Enhanced Interactive Satellite Communications System Analysis Program

    Science.gov (United States)

    1991-09-01

    Wangsness [Ref. 2]. This algorithm allows the program to plot the ground track of the orbit on a world map. The world map in question resides on the...transformation is required. The algorithm for this process was adapted from the work of Dennis Wangsness [Ref. 2]. The scripts for this process are

  5. TCP/IP Interface for the Satellite Orbit Analysis Program (SOAP)

    Science.gov (United States)

    Carnright, Robert; Stodden, David; Coggi, John

    2009-01-01

    The Transmission Control Protocol/ Internet protocol (TCP/IP) interface for the Satellite Orbit Analysis Program (SOAP) provides the means for the software to establish real-time interfaces with other software. Such interfaces can operate between two programs, either on the same computer or on different computers joined by a network. The SOAP TCP/IP module employs a client/server interface where SOAP is the server and other applications can be clients. Real-time interfaces between software offer a number of advantages over embedding all of the common functionality within a single program. One advantage is that they allow each program to divide the computation labor between processors or computers running the separate applications. Secondly, each program can be allowed to provide its own expertise domain with other programs able to use this expertise.

  6. Defense Meteorological Satellite Program (DMSP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) satellites collect visible and infrared cloud imagery as well as monitoring the atmospheric, oceanographic,...

  7. A Comparative Analysis of the Effects of TV Programs and Satellite Channels on Students\\\\\\' Social Capital

    Directory of Open Access Journals (Sweden)

    Gholamabbas Tavassoli

    2014-11-01

    The testing of the first hypothesis reveals that the ordinary viewers of TV programs do have a higher degree of social capital compared with the high-consumption group of viewers. The reason for this might be originated from people’s detachment from the realities within a society that are happening in a daily fashion and can be effective in forming one’s thoughts, opinions, and socials activities. The high-consumption viewers loose themselves in the world of visual media and movies and other programs. So become unable to demonstrate a whole picture of the realities of a society and because of their limitations, are only able to picture a part of social realities that are objective and can be pictures. With regard to satellite channels, since the majority of the viewers watch Persian-language programs and the managers of those channels have their own underlying political aims, by which they only portrait a part of realities in Iranian society on various social, cultural, and political aspects that are in line with their own goals, thus the viewers are integrated into a world that is made up for them and become detached from the realities of their own social environment, alienated from their surrounding society. Those who make use of several media such as the Internet, satellite, and newspapers put a low trust in news that is broadcasted from domestic television while those who use domestic television and radio agree more with that. The reason for people to watch the programs of satellite TV might be due to a compensatory approach and complementing their information and knowledge in the combination of the programs in domestic TV with the programs of satellite channels. When audiences face the programs of other media, their attitudes and mentality becomes influenced, too. Maybe this is the reason for the lower trust of the users of the Internet, newspapers, and satellite in the perspectives that are presented on domestic TV on various issues.

  8. Direct Broadcast Satellite: Radio Program

    Science.gov (United States)

    Hollansworth, James E.

    1992-01-01

    NASA is committed to providing technology development that leads to the introduction of new commercial applications for communications satellites. The Direct Broadcast Satellite-Radio (DBS-R) Program is a joint effort between The National Aeronautics and Space Administration (NASA) and The United States Information Agency/Voice of America (USIA/VOA) directed at this objective. The purpose of this program is to define the service and develop the technology for a direct-to-listener satellite sound broadcasting system. The DBS-R Program, as structured by NASA and VOA, is now a three-phase program designed to help the U.S. commercial communications satellite and receiver industry bring about this new communications service. Major efforts are being directed towards frequency planning hardware and service development, service demonstration, and experimentation with new satellite and receiver technology.

  9. Proposal of a Methodology of Stakeholder Analysis for the Brazilian Satellite Space Program

    Directory of Open Access Journals (Sweden)

    Mônica Elizabeth Rocha de Oliveira

    2012-03-01

    Full Text Available To ensure the continuity and growth of space activities in Brazil, it is fundamental to persuade the Brazilian society and its representatives in Government about the importance of investments in space activities. Also, it is important to convince talented professionals to place space activities as an object of their interest; the best schools should also be convinced to offer courses related to the space sector; finally, innovative companies should be convinced to take part in space sector activities, looking to returns, mainly in terms of market differentiation and qualification, as a path to take part in high-technology and high-complexity projects. On the one hand, this process of convincing or, more importantly, committing these actors to space activities, implies a thorough understanding of their expectations and needs, in order to plan how the system/organization can meet them. On the other hand, if stakeholders understand how much they can benefit from this relationship, their consequent commitment will very much strengthen the action of the system/organization. With this framework in perspective, this paper proposes a methodology of stakeholder analysis for the Brazilian satellite space program. In the exercise developed in the article, stakeholders have been identified from a study of the legal framework of the Brazilian space program. Subsequently, the proposed methodology has been applied to the planning of actions by a public organization.

  10. Satellite power systems (SPS) concept definition study. Volume 7: SPS program plan and economic analysis, appendixes

    Science.gov (United States)

    Hanley, G.

    1978-01-01

    Three appendixes in support of Volume 7 are contained in this document. The three appendixes are: (1) Satellite Power System Work Breakdown Structure Dictionary; (2) SPS cost Estimating Relationships; and (3) Financial and Operational Concept. Other volumes of the final report that provide additional detail are: Executive Summary; SPS Systems Requirements; SPS Concept Evolution; SPS Point Design Definition; Transportation and Operations Analysis; and SPS Technology Requirements and Verification.

  11. Small-Body Extensions for the Satellite Orbit Analysis Program (SOAP)

    Science.gov (United States)

    Carnright, Robert; Stodden, David; Coggi, John

    2008-01-01

    An extension to the SOAP software allows users to work with tri-axial ellipsoid-based representations of planetary bodies, primarily for working with small, natural satellites, asteroids, and comets. SOAP is a widely used tool for the visualization and analysis of space missions. The small body extension provides the same visualization and analysis constructs for use with small bodies. These constructs allow the user to characterize satellite path and instrument cover information for small bodies in both 3D display and numerical output formats. Tri-axial ellipsoids are geometric shapes the diameters of which are different in each of three principal x, y, and z dimensions. This construct provides a better approximation than using spheres or oblate spheroids (ellipsoids comprising two common equatorial diameters as a distinct polar diameter). However, the tri-axial ellipsoid is considerably more difficult to work with from a modeling perspective. In addition, the SOAP small-body extensions allow the user to actually employ a plate model for highly irregular surfaces. Both tri-axial ellipsoids and plate models can be assigned to coordinate frames, thus allowing for the modeling of arbitrary changes to body orientation. A variety of features have been extended to support tri-axial ellipsoids, including the computation and display of the spacecraft sub-orbital point, ground trace, instrument footprints, and swathes. Displays of 3D instrument volumes can be shown interacting with the ellipsoids. Longitude/latitude grids, contour plots, and texture maps can be displayed on the ellipsoids using a variety of projections. The distance along an arbitrary line of sight can be computed between the spacecraft and the ellipsoid, and the coordinates of that intersection can be plotted as a function of time. The small-body extension supports the same visual and analytical constructs that are supported for spheres and oblate spheroids in SOAP making the implementation of the more

  12. Basic research and data analysis for the National Geodetic Satellite program and for the Earth Surveys program

    Science.gov (United States)

    1972-01-01

    Current research is reported on precise and accurate descriptions of the earth's surface and gravitational field and on time variations of geophysical parameters. A new computer program was written in connection with the adjustment of the BC-4 worldwide geometric satellite triangulation net. The possibility that an increment to accuracy could be transferred from a super-control net to the basic geodetic (first-order triangulation) was investigated. Coordinates of the NA9 solution were computed and were transformed to the NAD datum, based on GEOS 1 observations. Normal equations from observational data of several different systems and constraint equations were added and a single solution was obtained for the combined systems. Transformation parameters with constraints were determined, and the impact of computers on surveying and mapping is discussed.

  13. An Analysis of Satellite, Radiosonde, and Lidar Observations of Upper Tropospheric Water Vapor from the Atmospheric Radiation Measurement Program

    Energy Technology Data Exchange (ETDEWEB)

    Soden, Brian J.; Turner, David D.; Lesht, B. M.; Miloshevich, Larry M.

    2004-02-25

    To improve our understanding of the distribution and radiative effects of water vapor, the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program has conducted a series of coordinated water vapor Intensive Observational Periods (IOPs). This study uses observations collected from four ARM IOPs to accomplish two goals: first, we compare radiosonde and Raman lidar observations of upper tropospheric water vapor with co-located geostationary satellite radiances at 6.7 micrometers. During all four IOPs, we find excellent agreement between the satellite and Raman lidar observations of upper tropospheric humidity with systematic differences of ~10%. In contrast, radiosondes equipped with Vaisala sensors are shown to be systematically drier in the upper troposphere by ~40% relative to both the lidar and satellite measurements. Second, we assess the performance of various "correction" strategies designed to rectify known deficiencies in the radiosonde measurements. It is shown that existing methods for correcting the radiosonde dry bias, while effective in the lower troposphere, offer little improvement in the upper troposphere. An alternative method based on variational assimilation of satellite radiances is presented and, when applied to the radiosonde measurements, is shown to significantly improve their agreement with coincident Raman lidar observations. It is suggested that a similar strategy could be used to improve the quality of the global historical record of radiosonde water vapor observations during the satellite era.

  14. Computer-Aided Communication Satellite System Analysis and Optimization.

    Science.gov (United States)

    Stagl, Thomas W.; And Others

    Various published computer programs for fixed/broadcast communication satellite system synthesis and optimization are discussed. The rationale for selecting General Dynamics/Convair's Satellite Telecommunication Analysis and Modeling Program (STAMP) in modified form to aid in the system costing and sensitivity analysis work in the Program on…

  15. Defense Meteorological Satellite Program (DMSP) Film

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The United States Air Force Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) is a polar orbiting meteorological sensor with two...

  16. U.S. begins merging satellite programs

    Science.gov (United States)

    Showstack, Randy

    The U.S. government has moved closer to merging and streamlining two separate environmental satellite programs operated by the Department of Defense (DOD) and the National Oceanic and Atmospheric Administration (NOAA).Earlier this month, the government installed the Integrated Polar Acquisition and Control Subsystem in a Commerce Department facility in Suitland, Maryland. Beginning next summer, the system will operate the two environmental satellites in DOD's Defense Meteorological Satellite Program. Under merger plans, NOAA will be responsible for operating the DOD satellite system as well as its own. The elimination of separate systems could save $678 million through fiscal year 1999, according to James Mannen, Director of the federal government's Integrated Program Office

  17. Building technological capability within satellite programs in developing countries

    Science.gov (United States)

    Wood, Danielle; Weigel, Annalisa

    2011-12-01

    This paper explores the process of building technological capability in government-led satellite programs within developing countries. The key message is that these satellite programs can learn useful lessons from literature in the international development community. These lessons are relevant to emerging satellite programs that leverage international partnerships in order to establish local capability to design, build and operate satellites. Countries with such programs include Algeria, Nigeria, Turkey, Malaysia and the United Arab Emirates. The paper first provides background knowledge about space activity in developing countries, and then explores the nuances of the lessons coming from the international development literature. Developing countries are concerned with satellite technology because satellites provide useful services in the areas of earth observation, communication, navigation and science. Most developing countries access satellite services through indirect means such as sharing data with foreign organizations. More countries, however, are seeking opportunities to develop satellite technology locally. There are objective, technically driven motivations for developing countries to invest in satellite technology, despite rich debate on this topic. The paper provides a framework to understand technical motivations for investment in satellite services, hardware, expertise and infrastructure in both short and long term. If a country decides to pursue such investments they face a common set of strategic decisions at the levels of their satellite program, their national context and their international relationships. Analysis of past projects shows that countries have chosen diverse strategies to address these strategic decisions and grow in technological capability. What is similar about the historical examples is that many countries choose to leverage international partnerships as part of their growth process. There are also historical examples from

  18. NRL Satellite Support for DYNAMO Field Program

    Science.gov (United States)

    2012-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NRL Satellite Support for DYNAMO Field Program Jeffrey...Jeff.Hawkins@nrlmry.navy.mil Document Number: N0001412WX20870 LONG-TERM GOALS To provide the ONR-sponsored DYNAMO field program with a...the Indian Ocean. OBJECTIVES Develop a NRL-MRY near real-time web page that enables DYNAMO field program participants to view the evolving

  19. Architectures of small satellite programs in developing countries

    Science.gov (United States)

    Wood, Danielle; Weigel, Annalisa

    2014-04-01

    Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are building local capability in space through technological learning. This paper analyzes implementation approaches in small satellite programs within developing countries. The study addresses diverse examples of approaches used to master, adapt, diffuse and apply satellite technology in emerging countries. The work focuses on government programs that represent the nation and deliver services that provide public goods such as environmental monitoring. An original framework developed by the authors examines implementation approaches and contextual factors using the concept of Systems Architecture. The Systems Architecture analysis defines the satellite programs as systems within a context which execute functions via forms in order to achieve stakeholder objectives. These Systems Architecture definitions are applied to case studies of six satellite projects executed by countries in Africa and Asia. The architectural models used by these countries in various projects reveal patterns in the areas of training, technical specifications and partnership style. Based on these patterns, three Archetypal Project Architectures are defined which link the contextual factors to the implementation approaches. The three Archetypal Project Architectures lead to distinct opportunities for training, capability building and end user services.

  20. IMPGSS - International Medical Program Global Satellite System

    Science.gov (United States)

    2004-02-01

    additional comments regarding the significance of working with Tachyon and NASK under this Contract). 5.2.5 Requirements - Country/Region Assessments...services on a tentative exploratory basis by Tachyon ]. 5.2.7 Program Development Deliverable A 007 This is currently summarized in the Program Content...based satellite transmissions and transmission pricing based on segmented, limited use data volumes via Tachyon . " A more involved use of evaluation

  1. Building Technological Capability within Satellite Programs in Developing Countries

    Science.gov (United States)

    Wood, Danielle Renee

    Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are building local capability in space through technological learning. They sometimes pursue this via collaborative satellite development projects with foreign firms that provide training. This phenomenon of collaborative satellite development projects is poorly understood by researchers of technological learning and technology transfer. The approach has potential to facilitate learning, but there are also challenges due to misaligned incentives and the tacit nature of the technology. Perspectives from literature on Technological Learning, Technology Transfer, Complex Product Systems and Product Delivery provide useful but incomplete insight for decision makers in such projects. This work seeks a deeper understanding of capability building through collaborative technology projects by conceiving of the projects as complex, socio-technical systems with architectures. The architecture of a system is the assignment of form to execute a function along a series of dimensions. The research questions explore the architecture of collaborative satellite projects, the nature of capability building during such projects, and the relationship between architecture and capability building. The research design uses inductive, exploratory case studies to investigate six collaborative satellite development projects. Data collection harnesses international field work driven by interviews, observation, and documents. The data analysis develops structured narratives, architectural comparison and capability building assessment. The architectural comparison reveals substantial variation in project implementation, especially in the areas of project initiation, technical specifications of the satellite, training approaches and the supplier selection process. The individual

  2. Program on application of communications satellites to educational development

    Science.gov (United States)

    Morgan, R. P.; Singh, J. P.

    1971-01-01

    Interdisciplinary research in needs analysis, communications technology studies, and systems synthesis is reported. Existing and planned educational telecommunications services are studied and library utilization of telecommunications is described. Preliminary estimates are presented of ranges of utilization of educational telecommunications services for 1975 and 1985; instructional and public television, computer-aided instruction, computing resources, and information resource sharing for various educational levels and purposes. Communications technology studies include transmission schemes for still-picture television, use of Gunn effect devices, and TV receiver front ends for direct satellite reception at 12 GHz. Two major studies in the systems synthesis project concern (1) organizational and administrative aspects of a large-scale instructional satellite system to be used with schools and (2) an analysis of future development of instructional television, with emphasis on the use of video tape recorders and cable television. A communications satellite system synthesis program developed for NASA is now operational on the university IBM 360-50 computer.

  3. The Communications Technology Satellite /CTS/ Program

    Science.gov (United States)

    Evans, W. M.; Davies, N. G.; Hawersaat, W. H.

    1976-01-01

    The purposes of the joint Canadian-U.S. Communications Technology Satellite (CTS) Program are (1) to conduct satellite communication systems experiments using the 12- and 14-GHz bands and low-cost transportable ground terminals, (2) to develop and flight test a power amplifier tube having a greater than 50% efficiency with a saturated power output of 200 W at 12 GHz, (3) to develop and flight test a lightweight extendible solar array with an initial power output greater than 1 kW, and (4) to develop and flight test a 3-axis stabilization system to maintain accurate antenna boresight positioning on a spacecraft with flexible appendages. Brief descriptions of these experiments and of the ground facilities are provided.

  4. 47 CFR 76.123 - Satellite syndicated program exclusivity.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Satellite syndicated program exclusivity. 76... Exclusivity and Sports Blackout § 76.123 Satellite syndicated program exclusivity. (a) Upon receiving notification pursuant to paragraph (d) of this section, a satellite carrier shall not deliver, to...

  5. Defense Meteorological Satellite Program (DMSP) - Space Weather Sensors

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) maintains a constellation of sun-synchronous, near-polar orbiting satellites. The orbital period is 101 minutes...

  6. Beyond Factionalism? Cultural and Children's Programs on Palestinian Satellite TV

    NARCIS (Netherlands)

    M.O. AlMoghayer (Mohammed)

    2016-01-01

    markdownabstractThis study examines the production of Palestinian satellite television in the contemporary era. The focus is on cultural and children’s programs of two key stations, the Hamas-based Al Aqsa Satellite Channel (ASC) and the Fatah-based Palestine Satellite Channel (PSC). The study inter

  7. RFP for CNES micro satellite program

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Jørgensen, Finn E; Betto, Maurizio

    1999-01-01

    This document descibes the ASC STAR TRACKER (performance, functionality, requirements etc.) to the Centre National d'Etudes Spatiales (CNES) for their micro Satellites.......This document descibes the ASC STAR TRACKER (performance, functionality, requirements etc.) to the Centre National d'Etudes Spatiales (CNES) for their micro Satellites....

  8. Application of Communications Satellite to Educational Development; An Overview of the Washington University Program.

    Science.gov (United States)

    Morgan, Robert P.; And Others

    Selected aspects and results of an interdisciplinary research and education program to examine the potential and problems associated with the use of communication satellites to help meet educational needs in the United States are summarized. The progress of the program to date in four major areas is described: needs analysis, communications…

  9. NASA's mobile satellite communications program; ground and space segment technologies

    Science.gov (United States)

    Naderi, F.; Weber, W. J.; Knouse, G. H.

    1984-10-01

    This paper describes the Mobile Satellite Communications Program of the United States National Aeronautics and Space Administration (NASA). The program's objectives are to facilitate the deployment of the first generation commercial mobile satellite by the private sector, and to technologically enable future generations by developing advanced and high risk ground and space segment technologies. These technologies are aimed at mitigating severe shortages of spectrum, orbital slot, and spacecraft EIRP which are expected to plague the high capacity mobile satellite systems of the future. After a brief introduction of the concept of mobile satellite systems and their expected evolution, this paper outlines the critical ground and space segment technologies. Next, the Mobile Satellite Experiment (MSAT-X) is described. MSAT-X is the framework through which NASA will develop advanced ground segment technologies. An approach is outlined for the development of conformal vehicle antennas, spectrum and power-efficient speech codecs, and modulation techniques for use in the non-linear faded channels and efficient multiple access schemes. Finally, the paper concludes with a description of the current and planned NASA activities aimed at developing complex large multibeam spacecraft antennas needed for future generation mobile satellite systems.

  10. NASA's mobile satellite communications program; ground and space segment technologies

    Science.gov (United States)

    Naderi, F.; Weber, W. J.; Knouse, G. H.

    1984-01-01

    This paper describes the Mobile Satellite Communications Program of the United States National Aeronautics and Space Administration (NASA). The program's objectives are to facilitate the deployment of the first generation commercial mobile satellite by the private sector, and to technologically enable future generations by developing advanced and high risk ground and space segment technologies. These technologies are aimed at mitigating severe shortages of spectrum, orbital slot, and spacecraft EIRP which are expected to plague the high capacity mobile satellite systems of the future. After a brief introduction of the concept of mobile satellite systems and their expected evolution, this paper outlines the critical ground and space segment technologies. Next, the Mobile Satellite Experiment (MSAT-X) is described. MSAT-X is the framework through which NASA will develop advanced ground segment technologies. An approach is outlined for the development of conformal vehicle antennas, spectrum and power-efficient speech codecs, and modulation techniques for use in the non-linear faded channels and efficient multiple access schemes. Finally, the paper concludes with a description of the current and planned NASA activities aimed at developing complex large multibeam spacecraft antennas needed for future generation mobile satellite systems.

  11. An easy to use ArcMap based texture analysis program for extraction of flooded areas from TerraSAR-X satellite image

    Science.gov (United States)

    Pradhan, Biswajeet; Hagemann, Ulrike; Shafapour Tehrany, Mahyat; Prechtel, Nikolas

    2014-02-01

    Extraction of the flooded areas from synthetic aperture radar (SAR) and especially TerraSAR-X data is one of the most challenging tasks in the flood management and planning. SAR data due to its high spatial resolution and its capability of all weather conditions makes a proper choice for tropical countries. Texture is considered as an effective factor in distinguishing the classes especially in SAR imagery which records the backscatters that carry information of kind, direction, heterogeneity and relationship of the features. This paper put forward a computer program for texture analysis for high resolution radar data. Texture analysis program is introduced and discussed using the gray-level co-occurrence matrix (GLCM). To demonstrate the ability and correctness of this program, a test subset of TerraSAR-X imagery from Terengganu area, Malaysia was analyzed and pixel-based and object-based classification were attempted. The thematic maps derived by pixel-based method could not achieve acceptable visual interpretation and for that reason no accuracy assessment was performed on them. The overall accuracy achieved by object-based method was 83.63% with kappa coefficient of 0.8. Results on image texture classification showed that the proposed program is capable for texture analysis in TerraSAR-X image and the obtained textural analysis resulted in high classification accuracy. The proposed texture analysis program can be used in many applications such as land use/cover (LULC) mapping, hazard studies and many other applications.

  12. Analysis of Maritime Mobile Satellite Communication Systems

    Science.gov (United States)

    1988-12-01

    Communications and Surveil- lance, IEE, Conference publication n.95, 13-15 Mar. 1973. 2. Y. Karasawa and T. Shiokawa , Characteristics of L-Band Multipath Fading... Shiokawa . Analysis of M-ultipath Fading due to Sea Suface Scattering in Maritime Satellite Communication, Technical Group on Antennas and Propagation. IECE

  13. Satellite data sets for the atmospheric radiation measurement (ARM) program

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Bernstein, R.L. [SeaSpace Corp., San Diego, CA (United States)

    1996-04-01

    This abstract describes the type of data obtained from satellite measurements in the Atmospheric Radiation Measurement (ARM) program. The data sets have been widely used by the ARM team to derive cloud-top altitude, cloud cover, snow and ice cover, surface temperature, water vapor, and wind, vertical profiles of temperature, and continuoous observations of weather needed to track and predict severe weather.

  14. Effectiveness of a Satellite Educational Television Program for Ethiopian Secondary Education

    Science.gov (United States)

    Kim, Sung-Wan

    2015-01-01

    This study examined the actual practice and effectiveness of a satellite educational TV program in Ethiopian secondary schools. Participants in the survey were 228 students and 63 teachers from secondary schools. The results of the data analysis indicate that Ethiopian students and teachers scored highly in the evaluation areas. Levels of…

  15. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 2

    Science.gov (United States)

    Greenburg, J. S.; Kaplan, M.; Fishman, J.; Hopkins, C.

    1985-01-01

    The computational procedures used in the evaluation of spacecraft technology programs that impact upon commercial communication satellite operations are discussed. Computer programs and data bases are described.

  16. Integrated Adaptive Analysis and Visualization of Satellite Network Data Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a system that enables integrated and adaptive analysis and visualization of satellite network management data. Integrated analysis and...

  17. Conformal coating value/risk assessment for Sandia satellite programs.

    Energy Technology Data Exchange (ETDEWEB)

    Russick, Edward Mark; Thayer, Gayle Echo

    2008-03-01

    Conformal coatings are used in space applications on printed circuit board (PCB) assemblies primarily as a protective barrier against environmental contaminants. Such coatings have been used at Sandia for decades in satellite applications including the GPS satellite program. Recently, the value of conformal coating has been questioned because it is time consuming (requiring a 5-6 week schedule allowance) and delays due to difficulty of repairs and rework performed afterward are troublesome. In an effort to find opportunities where assembly time can be reduced, a review of the literature as well as discussions with satellite engineers both within and external to Sandia regarding the value of conformal coating was performed. Several sources on the value of conformal coating, the functions it performs, and on whether coatings are necessary and should be used at all were found, though nearly all were based on anecdotal information. The first section of this report, titled 'Conformal Coating for Space Applications', summarizes the results of an initial risk-value assessment of the conformal coating process for Sandia satellite programs based on information gathered. In the process of collecting information to perform the assessment, it was necessary to obtain a comprehensive understanding of the entire satellite box assembly process. A production time-line was constructed and is presented in the second section of this report, titled 'Satellite Box Assembly', specifically to identify potential sources of time delays, manufacturing issues, and component failures related to the conformal coating process in relation to the box assembly. The time-line also allows for identification of production issues that were anecdotally attributed to the conformal coating but actually were associated with other production steps in the box assembly process. It was constructed largely in consultation with GPS program engineers with empirical knowledge of times required

  18. The NASA Earth Science Program and Small Satellites

    Science.gov (United States)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  19. Radiometric Analysis of Daytime Satellite Detection

    Science.gov (United States)

    2006-03-01

    detector m No 300 km – 1500 km 400 km Cos(θs) cosine of satellite orientation angle unitless No 0-1 0.5 Δf noise-equivalent bandwidth Hz No...Dependence Asat area of satellite m2 9 m2 linear Rsat-det distance from satellite to detector m 400 km 2 1 x Cos(θs) cosine of satellite orientation angle

  20. Satellite registration program: a decentralized system to meet customer needs.

    Science.gov (United States)

    Hutchins, J

    1991-01-01

    In summary, if you want to meet your patient, physician and ancillary service needs, then consider registration as a necessary transitional activity and then go about making it secondary to the reason the patient came for healthcare service. The complexities of data collection are for us to be concerned with, not the patient! Also, the physicians will appreciate your efforts on behalf of their patients. You, too, can have an effective Satellite Registration Program if you remember that flexibility, creativity and administrative support are essential to success! Good Luck!

  1. Satellite Power System (SPS) FY 79 Program Summary

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Satellite Power System (SPS) program is a joint effort of the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). It is managed by the SPS Project Office within DOE's Office of Energy Research. SPS project organization is shown in Figure 1. The SPS Project Office was established in 1978 and is responsible for the planning, management and integration of SPS research in four areas: systems definition, environmental assessment, societal assessment, and comparative assessment. In fulfilling its responsibilities, the SPS Project Office directs research and assessment efforts to determine the feasibility of the SPS concept, funds organizations supporting the program, and disseminates information developed from project research and assessments. The objective of the SPS program is to develop an initial understanding of the technical feasibility, the economic practicality, and the social and environmental acceptability of the SPS concept. This is being accomplished through implementation of the Concept Development and Evaluation Program Plan which is scheduled for completion by the end of FY 1980. The SPS Project Office annually issues a Program Summary which describes the research undertaken during the preceding fiscal year. This Program Summary covers FY 1979. It includes work completed in FY 1977 and FY 1978 in order to give a comprehensive picture of the DOE involvement in the SPS concept development and evaluation process.

  2. Satellite communications network design and analysis

    CERN Document Server

    Jo, Kenneth Y

    2011-01-01

    This authoritative book provides a thorough understanding of the fundamental concepts of satellite communications (SATCOM) network design and performance assessments. You find discussions on a wide class of SATCOM networks using satellites as core components, as well as coverage key applications in the field. This in-depth resource presents a broad range of critical topics, from geosynchronous Earth orbiting (GEO) satellites and direct broadcast satellite systems, to low Earth orbiting (LEO) satellites, radio standards and protocols.This invaluable reference explains the many specific uses of

  3. Co-ordination of satellite and data programs: The committee on earth observation satellites' approach

    Science.gov (United States)

    Embleton, B. J. J.; Kingwell, J.

    1997-01-01

    Every year, an average of eight new civilian remote sensing satellite missions are launched. Cumulatively, over 250 such missions, each with a cost equivalent in current value to between US 100 million to US 1000 million, have been sponsored by space agencies in perhaps two dozen countries. These missions produce data and information products which are vital for informed decision making all over the world, on matters relating to natural resource exploitation, health and safety, sustainable national development, infrastructure planning, and a host of other applications. By contributing to better scientific understanding of global changes in the atmosphere, land surface, oceans and ice caps, these silently orbiting sentinels in the sky make it possible for governments and industries to make wiser environmental policy decisions and support the economic development needs of humanity. The international Committee on Earth Observation Satellites (CEOS) is the premier world body for co-ordinating and planning civilian satellite missions for Earth observation. Through its technical working groups and special task teams, it endeavours to: • maximise the international benefits from Earth observation satellites; and • harmonise practice in calibration, validation, data management and information systems for Earth observation. CEOS encompasses not only space agencies (data providers), but also the great international scientific and operational programs which rely on Earth science data from space. The user organisations affiliated with CEOS, together with the mission operators, attempt to reconcile user needs with the complex set of considerations — including national interests, cost, schedule — which affect the undertaking of space missions. Without such an internationally co-ordinated consensual approach, there is a much greater risk of waste through duplication, and of missed opportunity, or through the absence of measurements of some vital physical or biological

  4. Design and analysis of the satellite laser communications network

    Science.gov (United States)

    Ren, Pei-an; Qian, Fengchen; Liu, Qiang; Jin, Linlin

    2015-02-01

    A satellite laser communications network structure with two layers and multiple domains has been proposed, which performance has been simulated by OPENT. To simulation, we design several OPNET models of the network's components based on a satellite constellation with two layers and multiple domains, as network model, node model, MAC layer protocol and optical antenna model. The network model consists of core layer and access layer. The core network consists of four geostationary orbit (GEO) satellites which are uniformly distributed in the geostationary orbit. The access network consists of 6 low Earth orbit (LEO) satellites which is the walker delta (walk-δ) constellation with three orbit planes. In access layer, each plane has two satellites, and the constellation is stably. The satellite constellation presented for space laser network can meet the demand of coverage in the middle and low latitude by a few satellites. Also several terminal device models such as the space laser transmitter, receiver, protocol layer module and optical antenna have been designed according to the inter-satellite links in different orbits t from GEO to LEO or GEO to ground. The influence to network of different transmitting throughput, receiving throughput, network protocol and average time delay are simulated. Simulation results of network coverage, connectivity and traffic load performance in different scenes show that the satellite laser network presented by the paper can be fit for high-speed satellite communications. Such analysis can provide effective reference for the research of satellite laser networking and communication protocol.

  5. Small Satellites and the DARPA/Air Force Falcon Program

    Science.gov (United States)

    Weeks, David J.; Walker, Steven H.; Sackheim, Robert L.

    2004-01-01

    The FALCON ((Force Application and Launch from CONUS) program is a technology demonstration effort with three major components: a Small Launch Vehicle (SLV), a Common Aero Vehicle (CAV), and a Hypersonic Cruise Vehicle (HCV). Sponsored by DARPA and executed jointly by the United States Air Force and DARPA with NASA participation, the objectives are to develop and demonstrate technologies that will enable both near-term and far-term capability to execute time-critical, global reach missions. The focus of this paper is on the SLV as it relates to small satellites and the implications of lower cost to orbit for small satellites. The target recurring cost for placing 1000 pounds payloads into a circular reference orbit of 28.5 degrees at 100 nautical miles is $5,000,000 per launch. This includes range costs but not the payload or payload integration costs. In addition to the nominal 1000 pounds to LEO, FALCON is seeking delivery of a range of orbital payloads from 220 pounds to 2200 pounds to the reference orbit. Once placed on alert status, the SLV must be capable of launch within 24 hours.

  6. An Analysis of Marine Corps Beyond Line of Sight Wideband Satellite Communications Requirements

    Science.gov (United States)

    2010-09-01

    Network (SWAN) ............................................40 9. Tropo /Satellite Support Radio (TSSR) ............................................42...Service Tactical Communications Program TROPO ...tropospheric scatter TSSR..................................................tropospheric scatter ( TROPO )-satellite support radio TSST

  7. AMOS Galaxy 15 Satellite Observations and Analysis

    Science.gov (United States)

    Hall, D.

    2011-09-01

    In early April 2010, the Galaxy 15 geosynchronous satellite experienced an on-orbit anomaly. Even though the satellite's transmitters and articulating solar panel were still functioning, ground controllers lost the ability to command and maneuver the satellite. With its orbital position no longer maintained, Galaxy 15 began to drift eastward. This forced several other satellites to make collision avoidance maneuvers during the following months. Soon after the initial anomaly, Galaxy 15's operators predicted that the satellite’s reaction wheels would eventually become saturated, causing a loss of both spacecraft attitude and proper sunward orientation of the solar panels. This "off-pointing" event finally occurred in late December, ultimately leading to a depletion of Galaxy 15's batteries. This near-death experience had a fortunate side effect, however, in that it forced the satellite’s command unit to reboot and once again be able to both receive and execute ground commands. The satellite operators have since recovered control of the satellite. AMOS conducted non-resolved photometric observations of Galaxy 15 before, during and after these events. Similar observations were conducted of Galaxy 12, the nearly-identical replacement satellite. This presentation presents and discusses these temporal brightness signatures in detail, comparing the changing patterns in the observations to the known sequence of events.

  8. Formal correctness, safety, dependability, and performance analysis of a satellite

    NARCIS (Netherlands)

    Esteve, M.-A.; Katoen, J.P.; Nguyen, V.Y.; Postma, B.; Yushstein, Y.

    2012-01-01

    This paper reports on the usage of a broad palette of formal modeling and analysis techniques on a regular industrial-size design of an ultra-modern satellite platform. These efforts were carried out in parallel with the conventional software development of the satellite platform. The model itself i

  9. Reliability Growth Analysis of Satellite Systems

    Science.gov (United States)

    2012-09-01

    obtained. In addition, the Cumulative Intensity Function ( CIF ) of a family of satellite systems was analyzed to assess its similarity to that of a...parameters are obtained. In addition, the Cumulative Intensity Function ( CIF ) of a family of satellite systems was analyzed to assess its similarity to that...System Figures 7a through 7i display the real CIF for a variety of GOES missions. These cumulative intensity functions have shapes similar to the

  10. Satellite power system. Concept development and evaluation program

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    The Reference System description emphasizes technical and operational information required in support of environmental, socioeconomic, and comparative assessment studies. Supporting information has been developed according to a guideline of implementing two 5 GW SPS systems per year for 30 years beginning with an initial operational data of 2000 and with SPS's being added at the rate of two per year (10 GW/year) until 2030. The Reference System concept, which features gallium--aluminum--arsenide (GaAlAs) and silicon solar cell options, is described in detail. The concept utilizes a planar solar array (about 55 km/sup 2/) built on a graphite fiber reinforced thermoplastic structure. The silicon array uses a concentration ratio of one (no concentration), whereas the GaAlAs array uses a concentration ratio of two. A one-kilometer diameter phased array microwave antenna is mounted on one end. The antenna uses klystrons as power amplifiers with slotted waveguides as radiating elements. The satellite is constructed in geosynchronous orbit in a six-month period. The ground receiving stations (rectenna) are completed during the same time period. The other two major components of an SPS program are (1) the construction bases in space and launch and mission control bases on earth and (2) fleets of various transportation vehicles that support the construction and maintenance operations of the satellites. These transportation vehicles include Heavy Lift Launch Vehicles (HLLV), Personnel Launch Vehicles (PLV), Cargo Orbit Transfer Vehicles (COTV), and Personnel Orbit Transfer Vehicles (POTV). The earth launch site chosen is the Kennedy Space Center, pending further study.

  11. Quad-Tree Visual-Calculus Analysis of Satellite Coverage

    Science.gov (United States)

    Lo, Martin W.; Hockney, George; Kwan, Bruce

    2003-01-01

    An improved method of analysis of coverage of areas of the Earth by a constellation of radio-communication or scientific-observation satellites has been developed. This method is intended to supplant an older method in which the global-coverage-analysis problem is solved from a ground-to-satellite perspective. The present method provides for rapid and efficient analysis. This method is derived from a satellite-to-ground perspective and involves a unique combination of two techniques for multiresolution representation of map features on the surface of a sphere.

  12. Zenith Pass Problem of Inter-satellite Linkage Antenna Based on Program Guidance Method

    Institute of Scientific and Technical Information of China (English)

    Zhai Kun; Yang Di

    2008-01-01

    While adopting an elevation-over-azimuth architecture by an inter-satellite linkage antenna of a user satellite, a zenith pass problem always occurs when the antenna is tracing the tracking and data relay satellite (TDRS). This paper deals with this problem by way of,firstly, introducing movement laws of the inter-satellite linkage to predict the movement of the user satellite antenna followed by analyzing the potential pass moment and the actual one of the zenith pass in detail. A number of specific orbit altitudes for the user satellite that can remove the blindness zone are obtained. Finally, on the base of the predicted results from the movement laws of the inter-satellite linkage, the zenith pass tracing strategies for the user satellite antenna are designed under the program guidance using a trajectory preprocessor. Simulations have confirmed the reasonability and feasibility of the strategies in dealing with the zenith pass problem.

  13. LULU analysis program

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, H.J.; Lindstrom, P.J.

    1983-06-01

    Our analysis program LULU has proven very useful in all stages of experiment analysis, from prerun detector debugging through final data reduction. It has solved our problem of having arbitrary word length events and is easy enough to use that many separate experimenters are now analyzing with LULU. The ability to use the same software for all stages of experiment analysis greatly eases the programming burden. We may even get around to making the graphics elegant someday.

  14. Satellite B-ISDN traffic analysis

    Science.gov (United States)

    Shyy, Dong-Jye; Inukai, Thomas

    1991-01-01

    The impact of asynchronous transfer mode (ATM) traffic on the advanced satellite broadband integrated services digital network (B-ISDN) with onboard processing is reported. Simulation models were built to analyze the cell transfer performance through the statistical multiplexer at the earth station and the fast packet switch at the satellite. The effectiveness of ground ATM cell preprocessing was established, as well as the performance of several schemes for improving the down-link beam utilization when the space segment employs a fast packet switch.

  15. NOAA/NESDIS Satellite Derived Surface Oil Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NESDIS Experimental Marine Pollution Surveillance Report (EMPSR) and the Daily Composite product are new products of the NOAA Satellite Analysis Branch and...

  16. JPSS Preparations at the Satellite Proving Ground for Marine, Precipitation, and Satellite Analysis

    Science.gov (United States)

    Folmer, M. J.; Berndt, E.; Clark, J.; Orrison, A.; Kibler, J.; Sienkiewicz, J. M.; Nelson, J. A., Jr.; Goldberg, M.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Satellite Proving Ground (PG) for Marine, Precipitation, and Satellite Analysis (MPS) has been demonstrating and evaluating Suomi National Polar-orbiting Partnership (S-NPP) products along with other polar-orbiting satellite platforms in preparation for the Joint Polar Satellite System - 1 (JPSS-1) launch in March 2017. The first S-NPP imagery was made available to the MPS PG during the evolution of Hurricane Sandy in October 2012 and has since been popular in operations. Since this event the MPS PG Satellite Liaison has been working with forecasters on ways to integrate single-channel and multispectral imagery from the Visible Infrared Imaging Radiometer Suite (VIIRS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Advanced Very High Resolution Radiometer (AVHRR)into operations to complement numerical weather prediction and geostationary satellite savvy National Weather Service (NWS) National Centers. Additional unique products have been introduced to operations to address specific forecast challenges, including the Cooperative Institute for Research in the Atmosphere (CIRA) Layered Precipitable Water, the National Environmental Satellite, Data, and Information Service (NESDIS) Snowfall Rate product, NOAA Unique Combined Atmospheric Processing System (NUCAPS) Soundings, ozone products from the Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder/Advanced Technology Microwave Sounder (CrIS/ATMS), and Infrared Atmospheric Sounding Interferometer (IASI). In addition, new satellite domains have been created to provide forecasters at the NWS Ocean Prediction Center and Weather Prediction Center with better quality imagery at high latitudes. This has led to research projects that are addressing forecast challenges such as tropical to extratropical transition and explosive cyclogenesis. This presentation will provide examples of how the MPS PG has been introducing and integrating

  17. Analysis of Specular Reflections Off Geostationary Satellites

    Science.gov (United States)

    Jolley, A.

    2016-09-01

    Many photometric studies of artificial satellites have attempted to define procedures that minimise the size of datasets required to infer information about satellites. However, it is unclear whether deliberately limiting the size of datasets significantly reduces the potential for information to be derived from them. In 2013 an experiment was conducted using a 14 inch Celestron CG-14 telescope to gain multiple night-long, high temporal resolution datasets of six geostationary satellites [1]. This experiment produced evidence of complex variations in the spectral energy distribution (SED) of reflections off satellite surface materials, particularly during specular reflections. Importantly, specific features relating to the SED variations could only be detected with high temporal resolution data. An update is provided regarding the nature of SED and colour variations during specular reflections, including how some of the variables involved contribute to these variations. Results show that care must be taken when comparing observed spectra to a spectral library for the purpose of material identification; a spectral library that uses wavelength as the only variable will be unable to capture changes that occur to a material's reflected spectra with changing illumination and observation geometry. Conversely, colour variations with changing illumination and observation geometry might provide an alternative means of determining material types.

  18. Quantitative Cloud Analysis using Meteorological Satellites

    NARCIS (Netherlands)

    Feijt, A.J.

    2000-01-01

    This thesis is about observations of clouds from satellite and ground based instruments. The aim is to reconstruct the three dimensional cloud distributions. This information is used both in climate research and operational meteorological applications. In climate research, cloud observations provide

  19. Voucher Programs. Policy Analysis

    Science.gov (United States)

    Wixom, Micah Ann

    2017-01-01

    This education Policy Analysis provides a comprehensive look at eligibility requirements, accountability and funding for voucher programs across the states, and includes research findings and legal challenges for this private school choice option.

  20. Network Configuration Analysis for Formation Flying Satellites

    Science.gov (United States)

    Knoblock, Eric J.; Wallett, Thomas M.; Konangi, Vijay K.; Bhasin, Kul B.

    2001-01-01

    The performance of two networks to support autonomous multi-spacecraft formation flying systems is presented. Both systems are comprised of a ten-satellite formation, with one of the satellites designated as the central or 'mother ship.' All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/EP over ATM protocol architecture within the formation, and the second system uses the IEEE 802.11 protocol architecture within the formation. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IP queuing delay, IP queue size and IP processing delay at the mother ship as well as end-to-end delay for both systems. In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.

  1. Analysis of Visual Interpretation of Satellite Data

    Science.gov (United States)

    Svatonova, H.

    2016-06-01

    Millions of people of all ages and expertise are using satellite and aerial data as an important input for their work in many different fields. Satellite data are also gradually finding a new place in education, especially in the fields of geography and in environmental issues. The article presents the results of an extensive research in the area of visual interpretation of image data carried out in the years 2013 - 2015 in the Czech Republic. The research was aimed at comparing the success rate of the interpretation of satellite data in relation to a) the substrates (to the selected colourfulness, the type of depicted landscape or special elements in the landscape) and b) to selected characteristics of users (expertise, gender, age). The results of the research showed that (1) false colour images have a slightly higher percentage of successful interpretation than natural colour images, (2) colourfulness of an element expected or rehearsed by the user (regardless of the real natural colour) increases the success rate of identifying the element (3) experts are faster in interpreting visual data than non-experts, with the same degree of accuracy of solving the task, and (4) men and women are equally successful in the interpretation of visual image data.

  2. Implementation of space satellite remote sensing programs in developing countries (Ecuador)

    Science.gov (United States)

    Segovia, A.

    1982-01-01

    The current state of space satellite remote sensing programs in developing countries is discussed. Sensors being utilized and results obtained are described. Requirements are presented for the research of resources in developing countries. It is recommended that a work procedure be developed for the use of satellite remote sensing data tailored to the necessities of the different countries.

  3. Architecture analysis of the simplified libration point satellite navigation system

    Science.gov (United States)

    Zhang, Lei; Xu, Bo

    2016-10-01

    The libration point satellite navigation system is a novel navigation architecture that consists of satellites located in periodic orbits around the Earth-Moon libration points. Superiorities of the proposed system lie in its autonomy and extended navigation capability, which have been proved in our previous works. Based on the candidate architectures obtained before, a detailed analysis of the simplified libration point satellite navigation system, i.e. the Earth-Moon L1,2 two-satellite constellation, is conducted in this work. Firstly, relation between orbits amplitude is derived for the candidate two-satellite constellations to ensure continuous crosslink measurements between libration point satellites. Then, with the use of a reference lunar exploration mission scenario, navigation performances of different constellation configurations are evaluated by Monte-Carlo simulations. The simulation results indicate that the amplitude and initial phase combinations of libration point orbits have direct effect on the performance of the two-satellite constellations. By using a cooperative evolutionary algorithm for configuration parameter optimization, some optimal constellations are finally obtained for the simplified navigation architecture. The results obtained in this paper may be a reference for future system design.

  4. 47 CFR 76.1507 - Competitive access to satellite cable programming.

    Science.gov (United States)

    2010-10-01

    ... programming. 76.1507 Section 76.1507 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST... access to satellite cable programming. (a) Any provision that applies to a cable operator under §§ 76... provides video programming on its open video system, except as limited by paragraph (a) (1)-(3) of...

  5. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 1

    Science.gov (United States)

    Greenburg, J. S.; Gaelick, C.; Kaplan, M.; Fishman, J.; Hopkins, C.

    1985-01-01

    Commercial organizations as well as government agencies invest in spacecraft (S/C) technology programs that are aimed at increasing the performance of communications satellites. The value of these programs must be measured in terms of their impacts on the financial performane of the business ventures that may ultimately utilize the communications satellites. An economic evaluation and planning capability was developed and used to assess the impact of NASA on-orbit propulsion and space power programs on typical fixed satellite service (FSS) and direct broadcast service (DBS) communications satellite business ventures. Typical FSS and DBS spin and three-axis stabilized spacecraft were configured in the absence of NASA technology programs. These spacecraft were reconfigured taking into account the anticipated results of NASA specified on-orbit propulsion and space power programs. In general, the NASA technology programs resulted in spacecraft with increased capability. The developed methodology for assessing the value of spacecraft technology programs in terms of their impact on the financial performance of communication satellite business ventures is described. Results of the assessment of NASA specified on-orbit propulsion and space power technology programs are presented for typical FSS and DBS business ventures.

  6. McIDAS-V: A powerful visualization and data analysis tool for geostationary environmental satellites

    Science.gov (United States)

    Achtor, T. H.; Rink, T.; Straka, W.; Feltz, J.

    2012-12-01

    The University of Wisconsin's Space Science and Engineering Center (SSEC) has been at the forefront in developing data analysis and visualization tools for environmental satellite and other geophysical data. The fifth generation of the Man-computer Interactive Data Access System (McIDAS-V) is a java-based, open-source, freely available system for researchers and algorithm developers that is being adapted and expanded for use with advanced geostationary environmental satellite observations. A key attribute of analysis and visualization systems is access to and display of a large variety of geophysical data. Providing these capabilities for numerous data types provides users with powerful tools for merging information, comparison of products and evaluation. McIDAS-V provides unique capabilities that support creative techniques for developing and evaluating algorithms, visualizing data and products in 4 dimensions, and validating results. For geostationary applications, McIDAS-V provides visualization and analysis support for GOES, MSG, MTSAT and FY2 data. NOAA is supporting the McIDAS-V development program for ABI imagery and products for the GOES-R/S series, which will bring an advanced multi-spectral imager into geostationary orbit. Used together, the geostationary environmental satellites provide the user community with detailed global coverage with rapid update cycles. This poster and demonstration will provide an overview of McIDAS-V with demonstrations of the data acquisition, visualization and analysis tools to support the international geostationary environmental satellite programs. It will also present results from several research projects involving current and future environmental satellites, demonstrating how the McIDAS-V software can be used to acquire satellite and ancillary data, create multi--spectral products using both scripting and interactive data manipulation tools, and evaluate output through on-board validation techniques.;

  7. Probabilistic Structural Analysis Program

    Science.gov (United States)

    Pai, Shantaram S.; Chamis, Christos C.; Murthy, Pappu L. N.; Stefko, George L.; Riha, David S.; Thacker, Ben H.; Nagpal, Vinod K.; Mital, Subodh K.

    2010-01-01

    NASA/NESSUS 6.2c is a general-purpose, probabilistic analysis program that computes probability of failure and probabilistic sensitivity measures of engineered systems. Because NASA/NESSUS uses highly computationally efficient and accurate analysis techniques, probabilistic solutions can be obtained even for extremely large and complex models. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety-critical and one-of-a-kind systems, as well as for maintaining a level of quality while reducing manufacturing costs for larger-quantity products. NASA/NESSUS has been successfully applied to a diverse range of problems in aerospace, gas turbine engines, biomechanics, pipelines, defense, weaponry, and infrastructure. This program combines state-of-the-art probabilistic algorithms with general-purpose structural analysis and lifting methods to compute the probabilistic response and reliability of engineered structures. Uncertainties in load, material properties, geometry, boundary conditions, and initial conditions can be simulated. The structural analysis methods include non-linear finite-element methods, heat-transfer analysis, polymer/ceramic matrix composite analysis, monolithic (conventional metallic) materials life-prediction methodologies, boundary element methods, and user-written subroutines. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. NASA/NESSUS 6.2c is structured in a modular format with 15 elements.

  8. Toward seamless multiview scene analysis from satellite to street level

    NARCIS (Netherlands)

    Lefevre, Sebastien; Tuia, Devis; Wegner, Jan Dirk; Produit, Timothee; Nassar, Ahmed Samy

    2017-01-01

    In this paper, we discuss and review how combined multiview imagery from satellite to street level can benefit scene analysis. Numerous works exist that merge information from remote sensing and images acquired from the ground for tasks such as object detection, robots guidance, or scene

  9. Silicon avalanche photodiode operation and lifetime analysis for small satellites.

    Science.gov (United States)

    Tan, Yue Chuan; Chandrasekara, Rakhitha; Cheng, Cliff; Ling, Alexander

    2013-07-15

    Silicon avalanche photodiodes (APDs) are sensitive to operating temperature fluctuations and are also susceptible to radiation flux expected in satellite-based quantum experiments. We introduce a low power voltage adjusting mechanism to overcome the effects of in-orbit temperature fluctuations. We also present data on the performance of Si APDs after irradiation (γ-ray and proton beam). Combined with an analysis of expected orbital irradiation, we propose that a Si APD in a 400 km equatorial orbit may operate beyond the lifetime of the satellite.

  10. Silicon avalanche photodiode operation and lifetime analysis for small satellites

    CERN Document Server

    Tan, Yue Chuan; Cheng, Cliff; Ling, Alexander

    2013-01-01

    Silicon avalanche photodiodes (APDs) are sensitive to operating temperature fluctuations and are also susceptible to radiation flux expected in satellite-based quantum experiments. We introduce a low power voltage adjusting mechanism to overcome the effects of in-orbit temperature fluctuations. We also present data on the performance of Si APDs after irradiation (gamma-ray and proton beam). Combined with an analysis of expected orbital irradiation, we propose that a Si APD in a 400 km equatorial orbit may operate beyond the lifetime of the satellite.

  11. Communication Satellite Technology as a Potential Comprehensive Delivery System for Correctional Institution Education and Training Programs

    Science.gov (United States)

    Polcyn, Kenneth A.

    1977-01-01

    By pooling resources and using communication satellites to access quality regional or national programs and personnel, institutions may be able to determine inmate aptitudes and career options, receive career counselling for inmates based on job trends, access educational and vocational training programs that match the inmates' capabilities and…

  12. Communication Satellite Technology as a Potential Comprehensive Delivery System for Correctional Institution Education and Training Programs

    Science.gov (United States)

    Polcyn, Kenneth A.

    1977-01-01

    By pooling resources and using communication satellites to access quality regional or national programs and personnel, institutions may be able to determine inmate aptitudes and career options, receive career counselling for inmates based on job trends, access educational and vocational training programs that match the inmates' capabilities and…

  13. Validation of GOCE Satellite Gravity Gradient Observations by Orbital Analysis

    Science.gov (United States)

    Visser, P.

    The upcoming European Space Agency ESA Gravity Field and Steady-State Ocean Circular Explorer GOCE mission foreseen to be launched in 2007 will carry a highly sensitive gradiometer consisting of 3 orthogonal pairs of ultra-sensitive accelerometers A challenging calibration procedure has been developed to calibrate the gradiometer not only before launch by a series of on-ground tests but also after launch by making use of on-board cold-gas thrusters to provoke a long series of gradiometer shaking events which will provide observations for its calibration This calibration can be checked by a combined analysis of GPS Satellite-to-Satellite Tracking SST and Satellite Gravity Gradient SGG observations An assessment has been made of how well SGG calibration parameters can be estimated in a combined orbit and gravity field estimation from these observations

  14. Technology programs and related policies - Impacts on communications satellite business ventures

    Science.gov (United States)

    Greenberg, J. S.

    1985-01-01

    The DOMSAT II stochastic communication satellite business venture financial planning simulation model is described. The specification of business scenarios and the results of several analyses are presented. In particular, the impacts of NASA on-orbit propulsion and power technology programs are described. The effects of insurance rates and self-insurance and of the use of the Space Shuttle and Ariane transportation systems on a typical fixed satellite service business venture are discussed.

  15. Technology programs and related policies - Impacts on communications satellite business ventures

    Science.gov (United States)

    Greenberg, J. S.

    1985-01-01

    The DOMSAT II stochastic communication satellite business venture financial planning simulation model is described. The specification of business scenarios and the results of several analyses are presented. In particular, the impacts of NASA on-orbit propulsion and power technology programs are described. The effects of insurance rates and self-insurance and of the use of the Space Shuttle and Ariane transportation systems on a typical fixed satellite service business venture are discussed.

  16. Multisensor Satellite Analysis Of The November 2001 Algeria Flood

    Science.gov (United States)

    Pinori, S.; Adamo, C.; Dietrich, S.; Mugnai, A.; Tripoli, G. J.

    A major flood event occurred in northern Africa (Algeria) at the beginning of Novem- ber 2001. After several months of drought, torrential rain, over 100 mm of rain fell in 6 hour, and strong winds of up to 200 km/h caused huge mudslides and floods on Sat- urday 10 November in the capital Algiers and other villages, particularly in the coastal zones, causing more than 700 deaths according to official reports. The aim of the pa- per is to show the evolution of this event as seen from a satellite point of view, and to compare it with the simulation of the event performed with the non-hydrostatical UW model developed at the University of Wisconsin (Tripoli, 1992). In such perspective we will discuss results obtained combining measurements acquired by different sen- sors to better exploit the potential of each technique. The principal satellite observing the event was the Tropical Rainfall Measuring Mission (TRMM) carry on board the sensors: PR (Precipitation Radar), TMI (TRMM Microwave Imager) and LIS (Light- ning Image Sensor). Also, the measurements acquired by the SSM/I (Special Sensor Microwave Imager) on board the Defense Meteorological Satellite Program (DMSP) satellites are available. In this way the retrieved precipitation from radar and mi- crowave sensors can be related to the lightning occurrences and the microphysical cloud content.

  17. The Combined Release and Radiation Effects Satellite (CRRES) program: A unique series of scientific experiments

    Science.gov (United States)

    Reasoner, David L.; McCook, Morgan W.; Vaughan, William W.

    The Defense Department and NASA have joined in a program to study the space environment which surrounds the earth and the effects of space radiation on modern satellite electronic systems. The Combined Release and Radiation Effects Satellite (CRRES) will carry an array of active experiments including chemical releases and a complement of sophisticated scientific instruments to accomplish these objectives. Other chemical release active experiments will be performed with sub-orbital rocket probes. The chemical releases will 'paint' the magnetic and electric fields of earthspace with clouds of glowing ions. Earthspace will be a laboratory, and the releases will be studied with an extensive network of ground-, aircraft-, and satellite-based diagnostic instruments. Some of the topics discussed include the following: the effects of earthspace; the need for active experiments; types of chemical releases; the CRRES program schedule; international support and coordinated studies; photographing chemical releases; information on locating chemical releases for observation by the amateur; and CRRES as a program.

  18. Aerothermodynamic Analysis of a Reentry Brazilian Satellite

    CERN Document Server

    Santos, Wilson F N

    2012-01-01

    This work deals with a computational investigation on the small ballistic reentry Brazilian vehicle SARA (acronyms for SAt\\'elite de Reentrada Atmosf\\'erica). Hypersonic flows over the vehicle SARA at zero-degree angle of attack in a chemical equilibrium and thermal non-equilibrium are modeled by the Direct Simulation Monte Carlo (DSMC) method, which has become the main technique for studying complex multidimensional rarefied flows, and that properly accounts for the non-equilibrium aspects of the flows. The emphasis of this paper is to examine the behavior of the primary properties during the high altitude portion of SARA reentry. In this way, velocity, density, pressure and temperature field are investigated for altitudes of 100, 95, 90, 85 and 80 km. In addition, comparisons based on geometry are made between axisymmetric and planar two-dimensional configurations. Some significant differences between these configurations were noted on the flowfield structure in the reentry trajectory. The analysis showed t...

  19. Astronomy satellites in the U.S. program

    Science.gov (United States)

    Aucremanne, M. J.

    1974-01-01

    The Orbiting Astronomical Observatory (OAO) series demonstrated that necessary thermal control systems and high pointing stability are feasible on astronomical satellites. A geosynchronous International Ultraviolet Explorer (IUE) is being planned by the US, UK, and ESRO for stellar spectroscopy. High Energy Astronomy Observatories, HEAO-A B, and C, will concentrate on stellar X-ray objects, cosmic ray physics, and gamma ray astronomy. A Shuttle-compatible Solar Maximum Mission (SMM) is planned for studying solar flares and flare related phenomena during the next solar maximum. Now in the instrumentation definition stage is the Large Space Telescope (LST), to provide higher resolution and sensitivity, larger wavelength range (from ultraviolet to far infrared), and higher time resolution than ground-based telescopes.

  20. Baseband processor development for the Advanced Communications Satellite Program

    Science.gov (United States)

    Moat, D.; Sabourin, D.; Stilwell, J.; Mccallister, R.; Borota, M.

    1982-01-01

    An onboard-baseband-processor concept for a satellite-switched time-division-multiple-access (SS-TDMA) communication system was developed for NASA Lewis Research Center. The baseband processor routes and controls traffic on an individual message basis while providing significant advantages in improved link margins and system flexibility. Key technology developments required to prove the flight readiness of the baseband-processor design are being verified in a baseband-processor proof-of-concept model. These technology developments include serial MSK modems, Clos-type baseband routing switch, a single-chip CMOS maximum-likelihood convolutional decoder, and custom LSL implementation of high-speed, low-power ECL building blocks.

  1. Environmental assessment for the satellite power system concept development and evaluation program: atmospheric effects

    Energy Technology Data Exchange (ETDEWEB)

    Rote, D.M.; Brubaker, K.L.; Lee, J.L.

    1980-11-01

    The US Department of Energy (DOE) has undertaken a preliminary, three-year program to investigate the impacts of the construction and operation of a satellite power system, of unprecedented scale. The Department of Energy's program, titled The Concept Development and Evaluation Program, focused its investigations on a Reference System description that calls for the use of either silicon (Si) or gallium aluminum-arsenide (GaAlAs) photovoltaic cells on 60 satellites to be constructed in GEO over a 30-yr period. Rectennas would be constructed on the ground to receive microwave energy from the satellites. Each satellite-rectenna pair is designed to produce 5 GW of power on an essentially continuous basis for use as a baseload power source for an electric power distribution system. The environmental assessment part of the program was divided into five interdependent task areas. The present document constitutes the final technical report on one of the five task areas, the Assessment of the Atmospheric Effects, and as such presents an in-depth summary of work performed during the assessment program. The issues associated with SPS activities in the troposphere are examined. These include tropospheric weather modification related to rectenna operations and rocket launches, and air quality impacts related to rocketlaunch ground clouds. Then progressing upward through the various levels of the atmosphere, the principal middle and upper atmospheric effects associated with rocket effluents are analyzed. Finally, all of the potential SPS atmospheric effects are summarized.

  2. An analysis of Jupiter data from the RAE-1 satellite

    Science.gov (United States)

    Carr, T. D.

    1974-01-01

    The analysis of Radio Astronomy Explorer Satellite data are presented. Radio bursts from Jupiter are reported in the frequency range 4700 KHz to 45 KHz. Strong correlations with lo were found at 4700, 3930, and 2200 KHz, while an equally strong Europa effect was observed at 1300, 900, and 700 KHz. Histograms indicating the relative probability and the successful identification of Jupiter activity were plotted, using automatic computer and visual search techniques.

  3. Program Theory Evaluation: Logic Analysis

    Science.gov (United States)

    Brousselle, Astrid; Champagne, Francois

    2011-01-01

    Program theory evaluation, which has grown in use over the past 10 years, assesses whether a program is designed in such a way that it can achieve its intended outcomes. This article describes a particular type of program theory evaluation--logic analysis--that allows us to test the plausibility of a program's theory using scientific knowledge.…

  4. Satellite Orbit Programs Utilizing the Graphics Capabilities of the Microcomputer.

    Science.gov (United States)

    1986-06-01

    interact directly with a computer graphics program in real time. [Ref. 2 :p. vii) 7 A. OBJECTIVE The laws of celestial mechanics as formulated by Tycho ... Brahe , Kepler, and Sir Isaac Newton came from simple ideas and meticulous observations of the heavens above. The intent of this thesis is to use the

  5. Nonlinear programming analysis and methods

    CERN Document Server

    Avriel, Mordecai

    2012-01-01

    This text provides an excellent bridge between principal theories and concepts and their practical implementation. Topics include convex programming, duality, generalized convexity, analysis of selected nonlinear programs, techniques for numerical solutions, and unconstrained optimization methods.

  6. Challenging Conventional Wisdom: Building an Adult-Centered Degree Completion Program at a Traditional University's Satellite Campus

    Science.gov (United States)

    Parkinson Norton, Susan; Pickus, Keith

    2011-01-01

    This essay will discuss the creation of adult-learner degree programs at Wichita State University's satellite campuses with a particular focus on how such programs complement the mission of a traditional urban-serving research institution. It will assess the decision-making process that led to the transformation of satellite campuses into…

  7. Autonomous rendezvous and proximate motion of satellites - A covariance analysis

    Science.gov (United States)

    Mackison, Donald L.; Morenthaler, George W.

    1992-08-01

    The construction of large (10 exp 6 kg) spacecraft in orbit will, in order to meet the requirements of interplanetary launch windows and restrictions of launch facilities require the launch of several 100,000-kg payloads using the Heavy Lift Launch Vehicle (HLLV), and their subsequent in-orbit assembly into a completed spacecraft. This assembly will require that the components rendezvous and dock within a reasonable time, taking into consideration launch window restrictions and the operating time limits on the component spacecraft. This will require that the rendezvous and docking operations be accomplished autonomously, without ground control. The trajectory and attitude control of a chase satellite to rendezvous with a target satellite are modeled using the Euler-Hill equations of relative orbital motion, and a linearized set of relative attitude parameters. The effect of uncertainties in the orbit dynamics and sensors, and the attitude dynamics and sensors are modeled using a linearized covariance analysis.

  8. Analysis of satellite broadcasting systems for digital television

    Science.gov (United States)

    de Gaudenzi, Riccardo; Elia, Carlo; Viola, Roberto

    1993-01-01

    This paper introduces the new concept of digital direct satellite broadcasting (D-DBS), which allows unprecedented flexibility by providing a large number of audio-visual services. The concept elaborated on in this paper assumes an information rate of about 40 Mb/s, which is compatible with practically all present-day transponders. After discussion of the general system concept, the optimization procedure is introduced and results of the transmission system optimization are presented. Channel distortion and uplink/downlink interference effects are taken into account by means of a time domain system computer simulation approach. It is shown, by means of link budget analysis, how a medium power direct-to-home TV satellite can provide multimedia services to users equipped with small (60 cm) dish antennas.

  9. International Coordination of and Contributions to Environmental Satellite Programs.

    Science.gov (United States)

    1985-06-01

    station in Santiago Dominican Instituto Nacional de Recursos Hidraulicos -a Republic (MOA 11/84-10/89) Relay of hydrolological and meteorological data...City for use in improving weather forecasting services Panama Instituto de Recursos Hidraulicos y Electrificacion (MOA 6/83-5/88) Relay of hydrological...24 Country User, MOA Dates, and Program Ecuador Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos (CLIRSEN) (MOA 10/83-9

  10. Satellite triangulation in Europe from WEST and ISAGEX data. [computer programs

    Science.gov (United States)

    Leick, A.; Arur, M.

    1975-01-01

    Observational data that was acquired during the West European Satellite Triangulation (WEST) program and the International Satellite Geodesy Experiment (ISAGEX) campaign was obtained for the purpose of performing a geometric solution to improve the present values of coordinates of the European stations in the OSU WN14 solutions, adding some new stations and assessing the quality of the WN14 solution with the help of the additional data available. The status of the data as received, the preprocessing required and the preliminary tests carried out for the initial screening of the data are described. The adjustment computations carried out and the results of the adjustments are discussed.

  11. New Opportunitie s for Small Satellite Programs Provided by the Falcon Family of Launch Vehicles

    Science.gov (United States)

    Dinardi, A.; Bjelde, B.; Insprucker, J.

    2008-08-01

    The Falcon family of launch vehicles, developed by Space Exploration Technologies Corporation (SpaceX), are designed to provide the world's lowest cost access to orbit. Highly reliable, low cost launch services offer considerable opportunities for risk reduction throughout the life cycle of satellite programs. The significantly lower costs of Falcon 1 and Falcon 9 as compared with other similar-class launch vehicles results in a number of new business case opportunities; which in turn presents the possibility for a paradigm shift in how the satellite industry thinks about launch services.

  12. Covariance analysis of differential drag-based satellite cluster flight

    Science.gov (United States)

    Ben-Yaacov, Ohad; Ivantsov, Anatoly; Gurfil, Pini

    2016-06-01

    One possibility for satellite cluster flight is to control relative distances using differential drag. The idea is to increase or decrease the drag acceleration on each satellite by changing its attitude, and use the resulting small differential acceleration as a controller. The most significant advantage of the differential drag concept is that it enables cluster flight without consuming fuel. However, any drag-based control algorithm must cope with significant aerodynamical and mechanical uncertainties. The goal of the current paper is to develop a method for examination of the differential drag-based cluster flight performance in the presence of noise and uncertainties. In particular, the differential drag control law is examined under measurement noise, drag uncertainties, and initial condition-related uncertainties. The method used for uncertainty quantification is the Linear Covariance Analysis, which enables us to propagate the augmented state and filter covariance without propagating the state itself. Validation using a Monte-Carlo simulation is provided. The results show that all uncertainties have relatively small effect on the inter-satellite distance, even in the long term, which validates the robustness of the used differential drag controller.

  13. Thermal Analysis of Iodine Satellite (iSAT)

    Science.gov (United States)

    Mauro, Stephanie

    2015-01-01

    This paper presents the progress of the thermal analysis and design of the Iodine Satellite (iSAT). The purpose of the iSAT spacecraft (SC) is to demonstrate the ability of the iodine Hall Thruster propulsion system throughout a one year mission in an effort to mature the system for use on future satellites. The benefit of this propulsion system is that it uses a propellant, iodine, that is easy to store and provides a high thrust-to-mass ratio. The spacecraft will also act as a bus for an earth observation payload, the Long Wave Infrared (LWIR) Camera. Four phases of the mission, determined to either be critical to achieving requirements or phases of thermal concern, are modeled. The phases are the Right Ascension of the Ascending Node (RAAN) Change, Altitude Reduction, De-Orbit, and Science Phases. Each phase was modeled in a worst case hot environment and the coldest phase, the Science Phase, was also modeled in a worst case cold environment. The thermal environments of the spacecraft are especially important to model because iSAT has a very high power density. The satellite is the size of a 12 unit cubesat, and dissipates slightly more than 75 Watts of power as heat at times. The maximum temperatures for several components are above their maximum operational limit for one or more cases. The analysis done for the first Design and Analysis Cycle (DAC1) showed that many components were above or within 5 degrees Centigrade of their maximum operation limit. The battery is a component of concern because although it is not over its operational temperature limit, efficiency greatly decreases if it operates at the currently predicted temperatures. In the second Design and Analysis Cycle (DAC2), many steps were taken to mitigate the overheating of components, including isolating several high temperature components, removal of components, and rearrangement of systems. These changes have greatly increased the thermal margin available.

  14. ESPACE - a geodetic Master's program for the education of Satellite Application Engineers

    Science.gov (United States)

    Hedman, K.; Kirschner, S.; Seitz, F.

    2012-04-01

    In the last decades there has been a rapid development of new geodetic and other Earth observation satellites. Applications of these satellites such as car navigation systems, weather predictions, and, digital maps (such as Google Earth or Google Maps) play a more and more important role in our daily life. For geosciences, satellite applications such as remote sensing and precise positioning/navigation have turned out to be extremely useful and are meanwhile indispensable. Today, researchers within geodesy, climatology, oceanography, meteorology as well as within Earth system science are all dependent on up-to-date satellite data. Design, development and handling of these missions require experts with knowledge not only in space engineering, but also in the specific applications. That gives rise to a new kind of engineers - satellite application engineers. The study program for these engineers combines parts of different classical disciplines such as geodesy, aerospace engineering or electronic engineering. The satellite application engineering program Earth Oriented Space Science and Technology (ESPACE) was founded in 2005 at the Technische Universität München, mainly from institutions involved in geodesy and aerospace engineering. It is an international, interdisciplinary Master's program, and is open to students with a BSc in both Science (e.g. Geodesy, Mathematics, Informatics, Geophysics) and Engineering (e.g. Aerospace, Electronical and Mechanical Engineering). The program is completely conducted in English. ESPACE benefits from and utilizes its location in Munich with its unique concentration of expertise related to space science and technology. Teaching staff from 3 universities (Technische Universität München, Ludwig-Maximilian University, University of the Federal Armed Forces), research institutions (such as the German Aerospace Center, DLR and the German Geodetic Research Institute, DGFI) and space industry (such as EADS or Kayser-Threde) are

  15. Collector-Output Analysis Program

    Science.gov (United States)

    Glandorf, D. R.; Phillips, Robert F., II

    1986-01-01

    Collector-Output Analysis Program (COAP) programmer's aid for analyzing output produced by UNIVAC collector (MAP processor). COAP developed to aid in design of segmentation structures for programs with large memory requirements and numerous elements but of value in understanding relationships among components of any program. Crossreference indexes and supplemental information produced. COAP written in FORTRAN 77.

  16. Satellite time series analysis using Empirical Mode Decomposition

    Science.gov (United States)

    Pannimpullath, R. Renosh; Doolaeghe, Diane; Loisel, Hubert; Vantrepotte, Vincent; Schmitt, Francois G.

    2016-04-01

    Geophysical fields possess large fluctuations over many spatial and temporal scales. Satellite successive images provide interesting sampling of this spatio-temporal multiscale variability. Here we propose to consider such variability by performing satellite time series analysis, pixel by pixel, using Empirical Mode Decomposition (EMD). EMD is a time series analysis technique able to decompose an original time series into a sum of modes, each one having a different mean frequency. It can be used to smooth signals, to extract trends. It is built in a data-adaptative way, and is able to extract information from nonlinear signals. Here we use MERIS Suspended Particulate Matter (SPM) data, on a weekly basis, during 10 years. There are 458 successive time steps. We have selected 5 different regions of coastal waters for the present study. They are Vietnam coastal waters, Brahmaputra region, St. Lawrence, English Channel and McKenzie. These regions have high SPM concentrations due to large scale river run off. Trend and Hurst exponents are derived for each pixel in each region. The energy also extracted using Hilberts Spectral Analysis (HSA) along with EMD method. Normalised energy computed for each mode for each region with the total energy. The total energy computed using all the modes are extracted using EMD method.

  17. The Joint Polar Satellite System (JPSS) Program's Algorithm Change Process (ACP): Past, Present and Future

    Science.gov (United States)

    Griffin, Ashley

    2017-01-01

    The Joint Polar Satellite System (JPSS) Program Office is the supporting organization for the Suomi National Polar Orbiting Partnership (S-NPP) and JPSS-1 satellites. S-NPP carries the following sensors: VIIRS, CrIS, ATMS, OMPS, and CERES with instruments that ultimately produce over 25 data products that cover the Earths weather, oceans, and atmosphere. A team of scientists and engineers from all over the United States document, monitor and fix errors in operational software code or documentation with the algorithm change process (ACP) to ensure the success of the S-NPP and JPSS 1 missions by maintaining quality and accuracy of the data products the scientific community relies on. This poster will outline the programs algorithm change process (ACP), identify the various users and scientific applications of our operational data products and highlight changes that have been made to the ACP to accommodate operating system upgrades to the JPSS programs Interface Data Processing Segment (IDPS), so that the program is ready for the transition to the 2017 JPSS-1 satellite mission and beyond.

  18. Regional climate network analysis from irregularly sampled satellite data

    Science.gov (United States)

    Wiedermann, Marc; Sykioti, Olga; Papadimitriou, Constantinos; Balasis, George; Kurths, Jürgen; Donner, Reik V.

    2016-04-01

    With the increasing availability of remote sensing data Earth System Analysis has taken a great step forward. This type of data, however, also harbors a variety of conceptual complications. First, depending on whether the satellite is orbiting on an ascending or descending path systematic biases are induced into the data, and both measurements cannot be evaluated simultaneously without an appropriate preprocessing. Second, remote sensing data are usually not produced with equidistant temporal sampling, but might contain huge gaps and irregular time steps. Third, the time period covered by the data is often too short to perform an appropriate seasonal detrending. Here, we propose a general framework to create homogeneous anomalized time series for a (multivariate) satellite data set by combining time series from ascending and descending satellite paths or even different missions using principal component and singular spectrum analysis. We then exemplarily apply our method to sea surface temperature data obtained from the SMOS satellite mission to study small-scale regional correlative patterns covering different parts of the Aegean Sea. To address the issue of irregular temporal sampling we utilize a kernel weighted version of the linear cross-correlation function to compute lagged correlations between all pairs of grid points in the data set. By binarizing the thus obtained matrices, we obtain a network representation of the system's similarity structure. Ultimately, we use tools from complex network theory to study regional interdependencies in the study area for different time lags of up to forty days. We find that the obtained networks represent well the observed average wind directions and speeds and display interaction structures between small regions in the Aegean Sea, which are in good agreement with earlier observations. In a second step, we extend the study area to the whole Mediterranean and Black Sea and investigate lagged interactions between these two

  19. Exploratory investigation of the need for and feasibility of a Lower Atmosphere Research Satellite (LARS) program

    Science.gov (United States)

    1980-01-01

    The need for and feasibility of a research satellite program for the intensive study of the lower atmosphere (the troposphere and lower stratosphere) is discussed. The priorities for scientific investigation of the lower atmosphere during the next decade are examined. The findings of the study are concerned with identification of those broad research issues of highest priority and, in particular, with those that are most appropriate for investigation from space platforms.

  20. DS-CDMA satellite diversity reception for personal satellite communication: Downlink performance analysis

    Science.gov (United States)

    DeGaudenzi, Riccardo; Giannetti, Filippo

    1995-01-01

    The downlink of a satellite-mobile personal communication system employing power-controlled Direct Sequence Code Division Multiple Access (DS-CDMA) and exploiting satellite-diversity is analyzed and its performance compared with a more traditional communication system utilizing single satellite reception. The analytical model developed has been thoroughly validated by means of extensive Monte Carlo computer simulations. It is shown how the capacity gain provided by diversity reception shrinks considerably in the presence of increasing traffic or in the case of light shadowing conditions. Moreover, the quantitative results tend to indicate that to combat system capacity reduction due to intra-system interference, no more than two satellites shall be active over the same region. To achieve higher system capacity, differently from terrestrial cellular systems, Multi-User Detection (MUD) techniques are likely to be required in the mobile user terminal, thus considerably increasing its complexity.

  1. Authentication Scheme Based on Principal Component Analysis for Satellite Images

    Directory of Open Access Journals (Sweden)

    Ashraf. K. Helmy

    2009-09-01

    Full Text Available This paper presents a multi-band wavelet image content authentication scheme for satellite images by incorporating the principal component analysis (PCA. The proposed schemeachieves higher perceptual transparency and stronger robustness. Specifically, the developed watermarking scheme can successfully resist common signal processing such as JPEG compression and geometric distortions such as cropping. In addition, the proposed scheme can be parameterized, thus resulting in more security. That is, an attacker may not be able to extract the embedded watermark if the attacker does not know the parameter.In an order to meet these requirements, the host image is transformed to YIQ to decrease the correlation between different bands, Then Multi-band Wavelet transform (M-WT is applied to each channel separately obtaining one approximate sub band and fifteen detail sub bands. PCA is then applied to the coefficients corresponding to the same spatial location in all detail sub bands. The last principle component band represents an excellent domain forinserting the water mark since it represents lowest correlated features in high frequency area of host image.One of the most important aspects of satellite images is spectral signature, the behavior of different features in different spectral bands, the results of proposed algorithm shows that the spectral stamp for different features doesn't tainted after inserting the watermark.

  2. LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (IBM PC VERSION)

    Science.gov (United States)

    Manning, R. M.

    1994-01-01

    The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal

  3. LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (MACINTOSH VERSION)

    Science.gov (United States)

    Manning, R. M.

    1994-01-01

    The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal

  4. System Critical Design Audit (CDA). Books 1, 2 and 3; [Small Satellite Technology Initiative (SSTI Lewis Spacecraft Program)

    Science.gov (United States)

    1995-01-01

    Small Satellite Technology Initiative (SSTI) Lewis Spacecraft Program is evaluated. Spacecraft integration, test, launch, and spacecraft bus are discussed. Payloads and technology demonstrations are presented. Mission data management system and ground segment are also addressed.

  5. Program Analysis in Arts Education

    Science.gov (United States)

    Dobbs, Stephen Mark

    1972-01-01

    Major drawback of traditional evaluation is its emphasis on outcome" or terminal performance; what is needed are more process-oriented methods of assessment. Author describes Program Analysis" as a possible model. (Author/MB)

  6. Medicare Part D Program Analysis

    Data.gov (United States)

    U.S. Department of Health & Human Services — This page contains information on Part D program analysis performed by CMS. These reports will also be used to better identify, evaluate and measure the effects of...

  7. Design and Analysis of HJ-1-C Satellite SAR Antenna

    Directory of Open Access Journals (Sweden)

    Zheng Shi-kun

    2014-06-01

    Full Text Available With truss deployable mesh parabolic reflector, the HJ-1-C SAR antenna has complex structure and multiple steps during the deployed processing. The design of the antenna is difficult in terms of deployed reliability and electrical performance. This paper makes intensive research on system, structure and electrical design, and the analysis of mechanical and thermal performance in the actual space conditions is also presented. The successful deploying in orbit and high image quality of the HJ-1-C satellite indicate that the mechanical, electronic, thermal and reliability design of the antenna satisfy the project requirement, and these research provides valuable experience for the design of the centralized mesh parabolic SAR antenna.

  8. Bioinformatic Analysis of BBTV Satellite DNA in Hainan

    Institute of Scientific and Technical Information of China (English)

    Nai-tong Yu; Tuan-cheng Feng; Yu-liang Zhang; Jian-hua Wang; Zhi-xin Liu

    2011-01-01

    Banana bunchy top virus (BBTV),family Nanaviridae,genus Babuvirus,is a single stranded DNA virus (ssDNA) that causes banana bunchy top disease (BBTD) in banana plants.It is the most common and most destructive of all viruses in these plants and is widespread throughout the Asia-Pacific region.In this study we isolated,cloned and sequenced a BBTV sample from Hainan Island,China.The results from sequencing and bioinformatics analysis indicate this isolate represents a satellite DNA component with 12 DNA sequences motifs.We also predicted the physical and chemical properties,structure,signal peptide,phosphorylation,secondary structure,tertiary structure and functional domains of its encoding protein,and compare them with the corresponding quantities in the replication initiation protein of BBTV DNA1.

  9. The silicon solar satellite power system - A net energy analysis

    Science.gov (United States)

    Hannon, B.; Naughton, J. P.

    The physical aspects and net energy balance of a Satellite Solar Power System (SSPS) are examined. The feasibility of operating with or without laser annealing for the cells, possible variations in the total system costs, the projected worth of the energy, and the R&D costs are explored. The energy needed to mine, refine, fabricate, manufacture, launch, and maintain the SSPS materials and structures are included in the energy analysis, and cost-to-energy ratio of energy used to energy produced graphs are provided for the cases of the use or non-use of laser annealing for radiation protection for the solar cells. The resulting energy ratios indicate that the reference SSPS compares unfavorably with coal or nuclear earth-based plants, although further research is necessary to determine what level of technology is actually required for construction of the SSPS.

  10. Analysis of Errors in a Special Perturbations Satellite Orbit Propagator

    Energy Technology Data Exchange (ETDEWEB)

    Beckerman, M.; Jones, J.P.

    1999-02-01

    We performed an analysis of error densities for the Special Perturbations orbit propagator using data for 29 satellites in orbits of interest to Space Shuttle and International Space Station collision avoidance. We find that the along-track errors predominate. These errors increase monotonically over each 36-hour prediction interval. The predicted positions in the along-track direction progressively either leap ahead of or lag behind the actual positions. Unlike the along-track errors the radial and cross-track errors oscillate about their nearly zero mean values. As the number of observations per fit interval decline the along-track prediction errors, and amplitudes of the radial and cross-track errors, increase.

  11. GAP Analysis Program (GAP)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas GAP Analysis Land Cover database depicts 43 land cover classes for the state of Kansas. The database was generated using a two-stage hybrid classification...

  12. Finite Element Analysis for Satellite Structures Applications to Their Design, Manufacture and Testing

    CERN Document Server

    Abdelal, Gasser F; Gad, Ahmed H

    2013-01-01

    Designing satellite structures poses an ongoing challenge as the interaction between analysis, experimental testing, and manufacturing phases is underdeveloped. Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture and Testing explains the theoretical and practical knowledge needed to perform design of satellite structures. By layering detailed practical discussions with fully developed examples, Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture and Testing provides the missing link between theory and implementation.   Computational examples cover all the major aspects of advanced analysis; including modal analysis, harmonic analysis, mechanical and thermal fatigue analysis using finite element method. Test cases are included to support explanations an a range of different manufacturing simulation techniques are described from riveting to shot peening to material cutting. Mechanical design of a satellites structures are covered...

  13. XML Graphs in Program Analysis

    DEFF Research Database (Denmark)

    Møller, Anders; Schwartzbach, Michael I.

    2011-01-01

    XML graphs have shown to be a simple and effective formalism for representing sets of XML documents in program analysis. It has evolved through a six year period with variants tailored for a range of applications. We present a unified definition, outline the key properties including validation...... of XML graphs against different XML schema languages, and provide a software package that enables others to make use of these ideas. We also survey the use of XML graphs for program analysis with four very different languages: XACT (XML in Java), Java Servlets (Web application programming), XSugar...

  14. IAEA Safeguards: Cost/benefit analysis of commercial satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [SSC Satellitbild AB, Kiruna (Sweden)

    1999-03-01

    A major milestone in the efforts to strengthen the Safeguards System was reached in May 1997 when the Board of Governors approved a `Model Protocol Additional to Safeguards Agreements`. The Protocol provides the legal basis necessary to enhance the Agency`s ability to detect undeclared nuclear material and activities by using information available from open sources to complement the declarations made by Member States. Commercially available high-resolution satellite data has emerged as one potential complementary open information source to support the traditional and extended Safeguard activities of IAEA. This document constitutes a first report from SSC Satellitbild giving the Agency tentative and initial estimates of the potential cost and time-savings possible with the new proposed technology. The initial cost/benefit simulation will be further finalised in the following `Implementation Blueprint` study. The general foundation and starting point for the cost/benefit calculation is to simulate a new efficient and relatively small `imagery unit` within the IAEA, capable of performing advanced image processing as a tool for various safeguards tasks. The image processing capacity is suggested to be task- and interpretation-oriented. The study was performed over a period of 1,5 weeks in late 1998, and is based upon interviews of IAEA staff, reviews of existing IAEA documentation as well as from SSC Satellitbild`s long-standing experience of satellite imagery and field missions. The cost/benefit analysis is based on a spreadsheet simulation of five potential applications of commercial satellite imagery: Reference information; Confirmation of Agency acquired and Member State supplied data; Change detection and on-going monitoring; Assessing open source information available to the Agency; Detecting undeclared activities and undeclared sites. The study confirms that the proposed concept of a relatively small `imagery unit` using high-resolution data will be a sound and

  15. Detection and Extraction of Roads from High Resolution Satellites Images with Dynamic Programming

    Science.gov (United States)

    Benzouai, Siham; Smara, Youcef

    2010-12-01

    The advent of satellite images allows now a regular and a fast digitizing and update of geographic data, especially roads which are very useful for Geographic Information Systems (GIS) applications such as transportation, urban pollution, geomarketing, etc. For this, several studies have been conducted to automate roads extraction in order to minimize the manual processes [4]. In this work, we are interested in roads extraction from satellite imagery with high spatial resolution (at best equal to 10 m). The method is semi automatic and follows a linear approach where road is considered as a linear object. As roads extraction is a pattern recognition problem, it is useful, above all, to characterize roads. After, we realize a pre-processing by applying an Infinite Size Edge Filter -ISEF- and processing method based on dynamic programming concept, in particular, Fishler algorithm designed by F*.

  16. The Human-Technological Interface: An Analysis of a Satellite Communication Learning Environment.

    Science.gov (United States)

    Collins, Valerie A. C.; Murphy, Peter J.

    1987-01-01

    The effectiveness of distance education methods that involve direct interaction between the student and communications satellite technology is discussed, drawing on experiences in British Columbia adult distance education programs using interactive instructional television and other modern technologies. (MSE)

  17. Program Analysis Scenarios in Rascal

    NARCIS (Netherlands)

    M.A. Hills (Mark); P. Klint (Paul); J.J. Vinju (Jurgen); F. Durán

    2012-01-01

    textabstractRascal is a meta programming language focused on the implementation of domain-specific languages and on the rapid construction of tools for software analysis and software transformation. In this paper we focus on the use of Rascal for software analysis. We illustrate a range of scenarios

  18. Program assessment report, statement of findings. Satellite power systems concept development and evaluation program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    What is known, uncertain, and unknown about the Solar Power Satellite (SPS) concept is stated. The important technical, environmental, and cost goal questions that must be answered prior to making a commitment to the SPS concept are discussed. Although significant technological, environmental and economic questions remain to be answered, the preliminary investigations undertaken in the CDEP do provide a basis for a policy decision on further commitment. Also, areas of research and experimentation required to acquire the knowledge by which a series of informed, time-phased decisions may be made concerning the possibility of the SPS concept playing a major role in the United States' energy future are suggested.

  19. Lithospheric analysis of satellite geopotential anomalies of East Asia

    Science.gov (United States)

    Tan, Li

    Satellite gravity and magnetic anomalies are used to study the lithosphere of East Asia. Free-air gravity anomalies are decomposed into terrain-correlated, mantle/core and intracrustal components by spectral correlation analysis of the free-air gravity anomalies and terrain gravity effects. Compensated terrain gravity anomalies are obtained by removing the terrain-correlated free-air gravity anomalies. They are used to estimate the Moho undulation and crustal thickness by Gauss-Legendre quadrature (GLQ) inversion techniques assuming a Airy-Heiskanen model of crustal compensation. These results are used to develop enhanced reduction procedures to generate an improved Magsat magnetic anomaly map for East Asia. A degree 12 core field is removed from the data that are updated for the crustal components in the core field differences between degree 14 and 12. These components are estimated by using spectral correlation analysis to compare the Magsat anomalies to the magnetic effect of the crust that is available from the first vertical derivative of the terrain-correlated free-air gravity anomalies via Poisson's theorem. External field effects are separated using pass-by-pass correlation analysis of the dusk and dawn data sets and their spectral reconstruction. Coherent components in the dusk and dawn maps are combined to estimate the magnetic anomalies of the lithosphere. Long wavelength magnetic features related to lower crustal thickness variations are converted into effective magnetization contrasts by a new GLQ inversion technique. Effective magnetization contrasts of the lower crust range over ±4 A/m in accordance petrological studies. Finally, a new GLQ integration formula for triangular wedge sources is derived for modeling of satellite-altitude geopotential field anomalies from arbitrarily shaped sources. Detailed magnetization and density contrasts for central India, the Tibetan Plateau, and the Bengal Gulf region are modeled by this new formula. Positive

  20. The LTS timing analysis program :

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Darrell Jewell; Schwarz, Jens

    2013-08-01

    The LTS Timing Analysis program described in this report uses signals from the Tempest Lasers, Pulse Forming Lines, and Laser Spark Detectors to carry out calculations to quantify and monitor the performance of the the Z-Accelerators laser triggered SF6 switches. The program analyzes Z-shots beginning with Z2457, when Laser Spark Detector data became available for all lines.

  1. Nonlinear programming analysis and methods

    CERN Document Server

    Avriel, Mordecai

    2003-01-01

    Comprehensive and complete, this overview provides a single-volume treatment of key algorithms and theories. The author provides clear explanations of all theoretical aspects, with rigorous proof of most results. The two-part treatment begins with the derivation of optimality conditions and discussions of convex programming, duality, generalized convexity, and analysis of selected nonlinear programs. The second part concerns techniques for numerical solutions and unconstrained optimization methods, and it presents commonly used algorithms for constrained nonlinear optimization problems. This g

  2. Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program.

    Science.gov (United States)

    Lee, Eun Ju; Jan, Arif Tasleem; Baig, Mohammad Hassan; Ashraf, Jalaluddin Mohammad; Nahm, Sang-Soep; Kim, Yong-Woon; Park, So-Young; Choi, Inho

    2016-08-01

    Differentiation of muscle satellite cells (MSCs) involves interaction of the proteins present in the extracellular matrix (ECM) with MSCs to regulate their activity, and therefore phenotype. Herein, we report fibromodulin (FMOD), a member of the proteoglycan family participating in the assembly of ECM, as a novel regulator of myostatin (MSTN) during myoblast differentiation. In addition to having a pronounced effect on the expression of myogenic marker genes [myogenin (MYOG) and myosin light chain 2 (MYL2)], FMOD was found to maintain the transcriptional activity of MSTN Moreover, coimmunoprecipitation and in silico studies performed to investigate the interaction of FMOD helped confirm that it antagonizes MSTN function by distorting its folding and preventing its binding to activin receptor type IIB. Furthermore, in vivo studies revealed that FMOD plays an active role in healing by increasing satellite cell recruitment to sites of injury. Together, these findings disclose a hitherto unrecognized regulatory role for FMOD in MSCs and highlight new mechanisms whereby FMOD circumvents the inhibitory effects of MSTN and triggers myoblast differentiation. These findings offer a basis for the design of novel MSTN inhibitors that promote muscle regeneration after injury or for the development of pharmaceutical agents for the treatment of different muscle atrophies.-Lee, E. J., Jan, A. T., Baig, M. H., Ashraf, J. M., Nahm, S.-S., Kim, Y.-W., Park, S.-Y., Choi, I. Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program.

  3. Matlab programming for numerical analysis

    CERN Document Server

    Lopez, Cesar

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. Programming MATLAB for Numerical Analysis introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. You will first become

  4. R data analysis without programming

    CERN Document Server

    Gerbing, David W

    2013-01-01

    This book prepares readers to analyze data and interpret statistical results using R more quickly than other texts. R is a challenging program to learn because code must be created to get started. To alleviate that challenge, Professor Gerbing developed lessR. LessR extensions remove the need to program. By introducing R through less R, readers learn how to organize data for analysis, read the data into R, and produce output without performing numerous functions and programming exercises first. With lessR, readers can select the necessary procedure and change the relevant variables without pro

  5. Coherent Uncertainty Analysis of Aerosol Measurements from Multiple Satellite Sensors

    Science.gov (United States)

    Petrenko, M.; Ichoku, C.

    2013-01-01

    Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS altogether, a total of 11 different aerosol products were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in

  6. Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors

    Directory of Open Access Journals (Sweden)

    M. Petrenko

    2013-02-01

    Full Text Available Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua, MISR, OMI, POLDER, CALIOP, and SeaWiFS – altogether, a total of 11 different aerosol products – were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/. The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT retrievals during 2006–2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2 values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow/ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties

  7. Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors

    Directory of Open Access Journals (Sweden)

    M. Petrenko

    2013-07-01

    Full Text Available Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua, MISR, OMI, POLDER, CALIOP, and SeaWiFS – altogether, a total of 11 different aerosol products – were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/. The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT retrievals during 2006–2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 7%. Squared correlation coefficient (R2 values of the satellite AOD retrievals relative to AERONET exceeded 0.8 for many of the analyzed products, while root mean square error (RMSE values for most of the AOD products were within 0.15 over land and 0.07 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different land cover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the land cover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow/ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface closed shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in certain

  8. SatelliteDL - An IDL Toolkit for the Analysis of Satellite Earth Observations - GOES, MODIS, VIIRS and CERES

    Science.gov (United States)

    Fillmore, D. W.; Galloy, M. D.; Kindig, D.

    2013-12-01

    SatelliteDL is an IDL toolkit for the analysis of satellite Earth observations from a diverse set of platforms and sensors. The design features an abstraction layer that allows for easy inclusion of new datasets in a modular way. The core function of the toolkit is the spatial and temporal alignment of satellite swath and geostationary data. IDL has a powerful suite of statistical and visualization tools that can be used in conjunction with SatelliteDL. Our overarching objective is to create utilities that automate the mundane aspects of satellite data analysis, are extensible and maintainable, and do not place limitations on the analysis itself. Toward this end we have constructed SatelliteDL to include (1) HTML and LaTeX API document generation, (2) a unit test framework, (3) automatic message and error logs, (4) HTML and LaTeX plot and table generation, and (5) several real world examples with bundled datasets available for download. For ease of use, datasets, variables and optional workflows may be specified in a flexible format configuration file. Configuration statements may specify, for example, a region and date range, and the creation of images, plots and statistical summary tables for a long list of variables. SatelliteDL enforces data provenance; all data should be traceable and reproducible. The output NetCDF file metadata holds a complete history of the original datasets and their transformations, and a method exists to reconstruct a configuration file from this information. Release 0.1.0 of SatelliteDL is anticipated for the 2013 Fall AGU conference. It will distribute with ingest methods for GOES, MODIS, VIIRS and CERES radiance data (L1) as well as select 2D atmosphere products (L2) such as aerosol and cloud (MODIS and VIIRS) and radiant flux (CERES). Future releases will provide ingest methods for ocean and land surface products, gridded and time averaged datasets (L3 Daily, Monthly and Yearly), and support for 3D products such as temperature and

  9. Assessment of needs for satellite tracking of birds and suggestions for expediting a program. [experimental design using Nimbus 6

    Science.gov (United States)

    Craighead, F. C., Jr.

    1978-01-01

    Equipment development and testing, animal-instrument interphase or attachment methods, and the evaluation of various feasibility-tracking experiments with raptors are described as well as suggestions for expediting a future program. Results of animal-instrument interphases work indicate that large free-flying birds can be successfully instrumented with radio packages comparable in weight to satellite-transmitter packages. The 401 MHz frequency proved satisfactory for a combination of satellite and ground tracking of migrating birds. Tests run for nearly a year with the Nimbus 6 satellite and a miniaturized, one-watt prototype RAMS transmitter produced encouraging results in regard to location accuracy, frequency of contact with satellite and use of whip antennas. A future program is recommended with priority given to development of six operational transmitters for feasibility experiments.

  10. Potential Role of Omega-3 Fatty Acids on the Myogenic Program of Satellite Cells.

    Science.gov (United States)

    Bhullar, Amritpal S; Putman, Charles T; Mazurak, Vera C

    2016-01-01

    Skeletal muscle loss is associated with aging as well as pathological conditions. Satellite cells (SCs) play an important role in muscle regeneration. Omega-3 fatty acids are widely studied in a variety of muscle wasting diseases; however, little is known about their impact on skeletal muscle regeneration. The aim of this review is to evaluate studies examining the effect of omega-3 fatty acids, α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid on the regulation of SC proliferation and differentiation. This review highlights mechanisms by which omega-3 fatty acids may modulate the myogenic program of the stem cell population within skeletal muscles and identifies considerations for future studies. It is proposed that minimally three myogenic transcriptional regulatory factors, paired box 7 (Pax7), myogenic differentiation 1 protein, and myogenin, should be measured to confirm the stage of SCs within the myogenic program affected by omega-3 fatty acids.

  11. XML Graphs in Program Analysis

    DEFF Research Database (Denmark)

    Møller, Anders; Schwartzbach, Michael Ignatieff

    2007-01-01

    XML graphs have shown to be a simple and effective formalism for representing sets of XML documents in program analysis. It has evolved through a six year period with variants tailored for a range of applications. We present a unified definition, outline the key properties including validation...

  12. Thermal deformation analysis of the composite material satellite antenna

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Controlling the thermal deformation is a crucial index for the design of the satellite antenna. To calculate and measure the satellite antenna's thermal deformation is also an important step for the design of satellite antenna. Based on the foundation of equivalent assumption, the thermal deformation of the parabolic satellite antenna was analyzed by the finite element method for different design project. The best design project that had the minimum of the thermal deformation could be obtained through changing the lay-angle, lay-layers and lay-thickness of each layer. Results show the asymmetry structure has the minimum of thermal deformation. This paper may provide useful information for the further investigation on the coupling of thermal-stress structure.

  13. Preliminary Analysis of a Novel SAR Based Emergency System for Earth Orbit Satellites using Galileo

    NARCIS (Netherlands)

    Gill, E.K.A.; Helderweirt, A.

    2010-01-01

    This paper presents a preliminary analysis of a novel Search and Rescue (SAR) based emergency system for Low Earth Orbit (LEO) satellites using the Galileo Global Navigation Satellite System (GNSS). It starts with a description of the space user SAR system including a concept description, mission ar

  14. Design for an Analysis and Assessment of the Education Satellite Communications Demonstration: Final Report.

    Science.gov (United States)

    Practical Concepts, Inc., Washington, DC.

    A 3-month evaluation design effort developed a strategy and implementation plan for a policy level evaluation of the Educational Satellite Communications Demonstration (ESCD). The final report of the effort covers: (1) development of the evaluation strategy and plan; (2) data collection and analysis; (3) measurement of the impact of satellite TV…

  15. On satellite lazer ranging data analysis using interpolation

    Science.gov (United States)

    Hanna, Yousry

    2016-07-01

    Chebyshev polynomials are used to fit the satellite laser ranging (SLR) data. The spline technique is given to obtain a continuous approximation function of matching these Chebyshev polynomials developed for fitting data over progressively classified separate intervals. An algorithm for the used technique as well as its application on the laser ranging data taken for the satellite Topex are given. The results followed by the discussion of the used technique are also presented.

  16. Program Instrumentation and Trace Analysis

    Science.gov (United States)

    Havelund, Klaus; Goldberg, Allen; Filman, Robert; Rosu, Grigore; Koga, Dennis (Technical Monitor)

    2002-01-01

    Several attempts have been made recently to apply techniques such as model checking and theorem proving to the analysis of programs. This shall be seen as a current trend to analyze real software systems instead of just their designs. This includes our own effort to develop a model checker for Java, the Java PathFinder 1, one of the very first of its kind in 1998. However, model checking cannot handle very large programs without some kind of abstraction of the program. This paper describes a complementary scalable technique to handle such large programs. Our interest is turned on the observation part of the equation: How much information can be extracted about a program from observing a single execution trace? It is our intention to develop a technology that can be applied automatically and to large full-size applications, with minimal modification to the code. We present a tool, Java PathExplorer (JPaX), for exploring execution traces of Java programs. The tool prioritizes scalability for completeness, and is directed towards detecting errors in programs, not to prove correctness. One core element in JPaX is an instrumentation package that allows to instrument Java byte code files to log various events when executed. The instrumentation is driven by a user provided script that specifies what information to log. Examples of instructions that such a script can contain are: 'report name and arguments of all called methods defined in class C, together with a timestamp'; 'report all updates to all variables'; and 'report all acquisitions and releases of locks'. In more complex instructions one can specify that certain expressions should be evaluated and even that certain code should be executed under various conditions. The instrumentation package can hence be seen as implementing Aspect Oriented Programming for Java in the sense that one can add functionality to a Java program without explicitly changing the code of the original program, but one rather writes an

  17. Differential Spatio-temporal Multiband Satellite Image Clustering using K-means Optimization With Reinforcement Programming

    Directory of Open Access Journals (Sweden)

    Irene Erlyn Wina Rachmawan

    2015-06-01

    Full Text Available Deforestration is one of the crucial issues in Indonesia because now Indonesia has world's highest deforestation rate. In other hand, multispectral image delivers a great source of data for studying spatial and temporal changeability of the environmental such as deforestration area. This research present differential image processing methods for detecting nature change of deforestration. Our differential image processing algorithms extract and indicating area automatically. The feature of our proposed idea produce extracted information from multiband satellite image and calculate the area of deforestration by years with calculating data using temporal dataset. Yet, multiband satellite image consists of big data size that were difficult to be handled for segmentation. Commonly, K- Means clustering is considered to be a powerfull clustering algorithm because of its ability to clustering big data. However K-Means has sensitivity of its first generated centroids, which could lead into a bad performance. In this paper we propose a new approach to optimize K-Means clustering using Reinforcement Programming in order to clustering multispectral image. We build a new mechanism for generating initial centroids by implementing exploration and exploitation knowledge from Reinforcement Programming. This optimization will lead a better result for K-means data cluster. We select multispectral image from Landsat 7 in past ten years in Medawai, Borneo, Indonesia, and apply two segmentation areas consist of deforestration land and forest field. We made series of experiments and compared the experimental results of K-means using Reinforcement Programming as optimizing initiate centroid and normal K-means without optimization process. Keywords: Deforestration, Multispectral images, landsat, automatic clustering, K-means.

  18. GEOS-2 refraction program summary document. [ionospheric and tropospheric propagation errors in satellite tracking instruments

    Science.gov (United States)

    Mallinckrodt, A. J.

    1977-01-01

    Data from an extensive array of collocated instrumentation at the Wallops Island test facility were intercompared in order to (1) determine the practical achievable accuracy limitations of various tropospheric and ionospheric correction techniques; (2) examine the theoretical bases and derivation of improved refraction correction techniques; and (3) estimate internal systematic and random error levels of the various tracking stations. The GEOS 2 satellite was used as the target vehicle. Data were obtained regarding the ionospheric and tropospheric propagation errors, the theoretical and data analysis of which was documented in some 30 separate reports over the last 6 years. An overview of project results is presented.

  19. Analysis of Faint Glints from Stabilized GEO Satellites

    Science.gov (United States)

    2013-09-01

    Galaxy 14, which use Orbital’s Star -2 TM design, featuring a roughly cubical bus (measuring 1.75 m  1.7 m  1.8 m) and two solar panels (each measuring...satellites can be used for characterization. Figure 1. Artists renderings of the Galaxy 12, 14 and 15 geosynchronous satellites [11]. 3 GLINTS...glints in addition to those Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is

  20. Analysis of satellite precipitation over East Africa during last decades

    Science.gov (United States)

    Cattani, Elsa; Wenhaji Ndomeni, Claudine; Merino, Andrés; Levizzani, Vincenzo

    2016-04-01

    Daily accumulated precipitation time series from satellite retrieval algorithms (e.g., ARC2 and TAMSAT) are exploited to extract the spatial and temporal variability of East Africa (EA - 5°S-20°N, 28°E-52°E) precipitation during last decades (1983-2013). The Empirical Orthogonal Function (EOF) analysis is applied to precipitation time series to investigate the spatial and temporal variability in particular for October-November-December referred to as the short rain season. Moreover, the connection among EA's precipitation, sea surface temperature, and soil moisture is analyzed through the correlation with the dominant EOF modes of variability. Preliminary results concern the first two EOF's modes for the ARC2 data set. EOF1 is characterized by an inter-annual variability and a positive correlation between precipitation and El Niño, positive Indian Ocean Dipole mode, and soil moisture, while EOF2 shows a dipole structure of spatial variability associated with a longer scale temporal variability. This second dominant mode is mostly linked to sea surface temperature variations in the North Atlantic Ocean. Further analyses are carried out by computing the time series of the joint CCI/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI, http://etccdi.pacificclimate.org/index.shtml), i.e. RX1day, RX5day, CDD, CDD, CWD, SDII, PRCPTOT, R10, R20. The purpose is to identify the occurrenes of extreme events (droughts and floods) and extract precipitation temporal variation by trend analysis (Mann-Kendall technique). Results for the ARC2 data set demonstrate the existence of a dipole spatial pattern in the linear trend of the time series of PRCPTOT (annual precipitation considering days with a rain rate > 1 mm) and SDII (average precipitation on wet days over a year). A negative trend is mainly present over West Ethiopia and Sudan, whereas a positive trend is exhibited over East Ethiopia and Somalia. CDD (maximum number of consecutive dry days) and

  1. A Program Transformation for Backwards Analysis of Logic Programs

    DEFF Research Database (Denmark)

    Gallagher, John Patrick

    2003-01-01

    The input to backwards analysis is a program together with properties that are required to hold at given program points. The purpose of the analysis is to derive initial goals or pre-conditions that guarantee that, when the program is executed, the given properties hold. The solution for logic...... programs presented here is based on a transformation of the input program, which makes explicit the dependencies of the given program points on the initial goals. The transformation is derived from the resultants semantics of logic programs. The transformed program is then analysed using a standard...... abstract interpretation. The required pre-conditions on initial goals can be deduced from the analysis results without a further fixpoint computation. For the modes backwards analysis problem, this approach gives the same results as previous work, but requires only a standard abstract interpretation...

  2. Analysis of raw AIS spectrum recordings from a LEO satellite

    DEFF Research Database (Denmark)

    Larsen, Jesper Abildgaard; Mortensen, Hans Peter

    2014-01-01

    The AAUSAT3 satellite is a 1U cubesat, which has been developed by students at Aalborg University, Denmark in collaboration with the Danish Maritime Authority. The satellite was launched in February 2013 on a mission to monitor ships from space using their AIS broadcast signals as an indication...... receiver used onboard the satellite is using a single chip front-end solution, which down converts the AIS signal located around 162 MHz into an intermediate frequency, with a up to 200 kHz bandwidth. This I/F signal is sampled with a 750 kSPS A/D converter and further processed by an Analog Devices DSP....... The receiver also allows for this 750 kSPS signal to be stored onboard the receiver and later downloaded. A number of 330 ms samples have been downloaded via the satellite and further analyzed. The results shows, that there is a large variation of AIS band utilization depending on if it is the northern...

  3. Use of satellite information for analysis of aerosol substance propagation

    Science.gov (United States)

    Lezhenin, A. A.; Raputa, V. F.; Yaroslavtseva, T. V.

    2015-11-01

    With satellite data on pollution of snow cover and data of meteorological observations, some fields of dust sedimentation from high chimneys of the Iskitim cement plant are studied. In the absence of snowfalls, a possibility to analyze of the areas of pollution, which are formed in time intervals from several days to several weeks in the vicinities of industrial enterprises, is shown.

  4. Very high resolution satellite data: New challenges in image analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    with the exception that a ground-based view covers the entire optical range from 400 to 700 nm while satellite images will be wavelength-specific. Although the images will not surpass details observed by a human eye, they will, in principle, be comparable with aerial...

  5. Capacity Model and Constraints Analysis for Integrated Remote Wireless Sensor and Satellite Network in Emergency Scenarios

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-11-01

    Full Text Available This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN.

  6. An analysis of the wide area differential method of geostationary orbit satellites

    Institute of Scientific and Technical Information of China (English)

    CAI ChengLin; LI XiaoHui; WU HaiTao

    2009-01-01

    This work aims to obtain a wide area differential method for geostationary orbit (GEO) constellation. A comparison between the dilution of precision (DOP) of four-dimensional (4D) calculation including satellite clock errors and ephemeris errors and that of three-dimensional (3D) calculation only including ephemeris errors with the inverse positioning theory of GPS shows the conclusion that all the 3D PDOPs are greatly reduced. Based on this, a basic idea of correcting satellite clock errors and ephem-eris errors apart is put forward, and moreover, a specific method of separation is proposed. Satellite clock errors are separated in a master station with time synchronization, and all the remaining pseudo-range errors after the satellite clock errors have been deducted are used to work out ephemeris corrections of all GEO satellites. By a comparative analysis of user positioning accuracy before and after differential, the wide area differential method is verified to be quite valid for GEO constellation.

  7. Satellite images analysis for shadow detection and building height estimation

    Science.gov (United States)

    Liasis, Gregoris; Stavrou, Stavros

    2016-09-01

    Satellite images can provide valuable information about the presented urban landscape scenes to remote sensing and telecommunication applications. Obtaining information from satellite images is difficult since all the objects and their surroundings are presented with feature complexity. The shadows cast by buildings in urban scenes can be processed and used for estimating building heights. Thus, a robust and accurate building shadow detection process is important. Region-based active contour models can be used for satellite image segmentation. However, spectral heterogeneity that usually exists in satellite images and the feature similarity representing the shadow and several non-shadow regions makes building shadow detection challenging. In this work, a new automated method for delineating building shadows is proposed. Initially, spectral and spatial features of the satellite image are utilized for designing a custom filter to enhance shadows and reduce intensity heterogeneity. An effective iterative procedure using intensity differences is developed for tuning and subsequently selecting the most appropriate filter settings, able to highlight the building shadows. The response of the filter is then used for automatically estimating the radiometric property of the shadows. The customized filter and the radiometric feature are utilized to form an optimized active contour model where the contours are biased to delineate shadow regions. Post-processing morphological operations are also developed and applied for removing misleading artefacts. Finally, building heights are approximated using shadow length and the predefined or estimated solar elevation angle. Qualitative and quantitative measures are used for evaluating the performance of the proposed method for both shadow detection and building height estimation.

  8. Use of satellite land surface temperatures in the EUSTACE global surface air temperature analysis

    Science.gov (United States)

    Ghent, D.; Good, E.; Rayner, N. A.

    2015-12-01

    EUSTACE (EU Surface Temperatures for All Corners of Earth) is a Horizon2020 project that will produce a spatially complete, near-surface air temperature (NSAT) analysis for the globe for every day since 1850. The analysis will be based on both satellite and in situ surface temperature observations over land, sea, ice and lakes, which will be combined using state-of-the-art statistical methods. The use of satellite data will enable the EUSTACE analysis to offer improved estimates of NSAT in regions that are poorly observed in situ, compared with existing in-situ based analyses. This presentation illustrates how satellite land surface temperature (LST) data - sourced from the European Space Agency (ESA) Data User Element (DUE) GlobTemperature project - will be used in EUSTACE. Satellite LSTs represent the temperature of the Earth's skin, which can differ from the corresponding NSAT by several degrees or more, particularly during the hottest part of the day. Therefore the first challenge is to develop an approach to estimate global NSAT from satellite observations. Two methods will be trialled in EUSTACE, both of which are summarised here: an established empirical regression-based approach for predicting NSAT from satellite data, and a new method whereby NSAT is calculated from LST and other parameters using a physics-based model. The second challenge is in estimating the uncertainties for the satellite NSAT estimates, which will determine how these data are used in the final blended satellite-in situ analysis. This is also important as a key component of EUSTACE is in delivering accurate uncertainty information to users. An overview of the methods to estimate the satellite NSATs is also included in this presentation.

  9. Error Analysis of Satellite Precipitation-Driven Modeling of Flood Events in Complex Alpine Terrain

    Directory of Open Access Journals (Sweden)

    Yiwen Mei

    2016-03-01

    Full Text Available The error in satellite precipitation-driven complex terrain flood simulations is characterized in this study for eight different global satellite products and 128 flood events over the Eastern Italian Alps. The flood events are grouped according to two flood types: rain floods and flash floods. The satellite precipitation products and runoff simulations are evaluated based on systematic and random error metrics applied on the matched event pairs and basin-scale event properties (i.e., rainfall and runoff cumulative depth and time series shape. Overall, error characteristics exhibit dependency on the flood type. Generally, timing of the event precipitation mass center and dispersion of the time series derived from satellite precipitation exhibits good agreement with the reference; the cumulative depth is mostly underestimated. The study shows a dampening effect in both systematic and random error components of the satellite-driven hydrograph relative to the satellite-retrieved hyetograph. The systematic error in shape of the time series shows a significant dampening effect. The random error dampening effect is less pronounced for the flash flood events and the rain flood events with a high runoff coefficient. This event-based analysis of the satellite precipitation error propagation in flood modeling sheds light on the application of satellite precipitation in mountain flood hydrology.

  10. Conducting a SWOT Analysis for Program Improvement

    Science.gov (United States)

    Orr, Betsy

    2013-01-01

    A SWOT (strengths, weaknesses, opportunities, and threats) analysis of a teacher education program, or any program, can be the driving force for implementing change. A SWOT analysis is used to assist faculty in initiating meaningful change in a program and to use the data for program improvement. This tool is useful in any undergraduate or degree…

  11. Planetary Protection Bioburden Analysis Program

    Science.gov (United States)

    Beaudet, Robert A.

    2013-01-01

    This program is a Microsoft Access program that performed statistical analysis of the colony counts from assays performed on the Mars Science Laboratory (MSL) spacecraft to determine the bioburden density, 3-sigma biodensity, and the total bioburdens required for the MSL prelaunch reports. It also contains numerous tools that report the data in various ways to simplify the reports required. The program performs all the calculations directly in the MS Access program. Prior to this development, the data was exported to large Excel files that had to be cut and pasted to provide the desired results. The program contains a main menu and a number of submenus. Analyses can be performed by using either all the assays, or only the accountable assays that will be used in the final analysis. There are three options on the first menu: either calculate using (1) the old MER (Mars Exploration Rover) statistics, (2) the MSL statistics for all the assays, or This software implements penetration limit equations for common micrometeoroid and orbital debris (MMOD) shield configurations, windows, and thermal protection systems. Allowable MMOD risk is formulated in terms of the probability of penetration (PNP) of the spacecraft pressure hull. For calculating the risk, spacecraft geometry models, mission profiles, debris environment models, and penetration limit equations for installed shielding configurations are required. Risk assessment software such as NASA's BUMPERII is used to calculate mission PNP; however, they are unsuitable for use in shield design and preliminary analysis studies. The software defines a single equation for the design and performance evaluation of common MMOD shielding configurations, windows, and thermal protection systems, along with a description of their validity range and guidelines for their application. Recommendations are based on preliminary reviews of fundamental assumptions, and accuracy in predicting experimental impact test results. The software

  12. Satellite microwave observations of a storm complex: A comparative analysis

    Science.gov (United States)

    Martin, D. W.

    1985-01-01

    The hypothesis that cold events correspond to a particular stage in a class of thunderstorms was tested. That class is a storms class which updrafts are: (1) strong, broad and moist, and (2) extend well above the freezing level. Condition (1) implies strong mesoscale forcing. Condition (2) implies a tall updraft or a relatively low freezing level. Such storms should have big, intense radar echoes and cold, fast-growing anvils. The thunderstorm events were analyzed by radar, rain gauge and GOES infrared observations. Radar was the starting point for detection and definition of the hypothesized thunderstorms. The radar signature is compared to the signature of the storm in rain gauge observations, satellite infrared images and satellite microwave images.

  13. Arctic sea-level reconstruction analysis using recent satellite altimetry

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2014-01-01

    We present a sea-level reconstruction for the Arctic Ocean using recent satellite altimetry data. The model, forced by historical tide gauge data, is based on empirical orthogonal functions (EOFs) from a calibration period; for this purpose, newly retracked satellite altimetry from ERS-1 and -2...... and Envisat has been used. Despite the limited coverage of these datasets, we have made a reconstruction up to 82 degrees north for the period 1950–2010. We place particular emphasis on determining appropriate preprocessing for the tide gauge data, and on validation of the model, including the ability...... to reconstruct known data. The relationship between the reconstruction and climatic variables, such as atmospheric pressure, and climate oscillations, including the Arctic Oscillation (AO), is examined....

  14. System analysis for millimeter-wave communication satellites

    Science.gov (United States)

    Holland, L. D.; Hilsen, N. B.; Gallagher, J. J.; Stevens, G.

    1980-01-01

    Research and development needs for millimeter-wave space communication systems are presented. Assumed propagation fade statistics are investigated along with high data rate diversity link and storage. The development of reliable ferrite switches, and high performance receivers and transmitters is discussed, in addition to improved tolerance of dish and lens fabrication for the antennas. The typical cost for using a simplex voice channel via a high capacity 40/50 GHz satellite is presented.

  15. Environmental assessment for the satellite power system concept development and evaluation program-electromagnetic systems compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K A; Grant, W B; Morrison, E L; Juroshek, J R

    1981-01-01

    The EMC analysis addressed only the direct effects of electromagnetic emissions from the SPS on other technological systems. Emissions were defined quite broadly, including not only those from the microwave system, but also thermal blackbody emission and scattered sunlight from the satellite. The analysis is based on the design for an SPS as described in the Reference System Report and some quantitative conclusions, e.g., ranges from rectenna sites at which effects are expected are specific to that design. The methodology and qualitative conclusions, however, apply to an SPS concept using microwave power transmission. Quantitative conclusions have been obtained parametrically and can be adjusted as SPS designs change. The electromagnetic environment that the Reference System would produce, and in which other systems would have to function, is described. As an early part of the EMC Assessment, the problems expected for a hypothetical rectenna site, in the Mojave Desert of southern California, were analyzed in detail. This effort provided an initial quantitative indication of the scope of potential EMC problems and indicated the importance of EMC considerations in rectenna site selection. The results of this analysis are presented. The effects of SPS microwave emissions on important categories of electronic systems and equipment are summarized, with many examples of test results and demonstrated techniques for mitigation of problems encountered. SPS effects on other satellite systems are presented. Astronomical research frequently involves measurement of extremely low levels of electromagnetic radiation and is thus very susceptible to interference. The concerns of both radio astronomy with microwave emissions from SPS and optical astronomy with sunlight scattered from SPS spacecraft are discussed. Summaries of mitigation techniques, cost estimates, and conclusions are presented. (WHK)

  16. 40 Years Young: Social Media for the World's Longest-Running Earth-Observation Satellite Program

    Science.gov (United States)

    Riebeek, H.; Rocchio, L. E.; Taylor, M.; Owen, T.; Allen, J. E.; Keck, A.

    2012-12-01

    With social media becoming a communication juggernaut it is essential to harness the medium's power to foster better science communication. On July 23, 2012, the Landsat Earth-observing satellite program celebrated the 40th anniversary of the first Landsat launch. To more effectively communicate the impact and importance of Landsat's four-decade long data record a carefully planned social media event was designed to supplement the day's traditional media communications. The social media event, dubbed the "Landsat Social," was modeled on and supported by the NASA Social methodology. The Landsat Social was the first such event for NASA Earth science not associated with a launch. For the Landsat Social, 23 social media-savvy participants were selected to attend a joint NASA/U.S. Geological Survey Landsat anniversary press event at the Newseum in Washington, D.C. The participants subsequently toured the NASA Goddard Space Flight Facility in Greenbelt, Maryland where they had the opportunity to learn about the latest Landsat satellite; visit the Landsat mission control; download and work with Landsat data; and meet Landsat scientists and engineers. All Landsat Social participants had Twitter accounts and used the #Landsat and #NASASocial hashtags to unify their commentary throughout the day. A few key Landsat messages were communicated to the Landsat Social participants at the event's onset. Propagation of this messaging was witnessed for the duration of the Landsat Social; and a spike in online Landsat interest followed. Here, we examine the Landsat 40th anniversary social event, explain impacts made, and report lessons learned.; Landsat Social attendees are busy tweeting, texting, and blogging as Project Scientist Dr. Jim Irons talks about the Landsat Data Continuity Mission in front of the Hyperwall at NASA Goddard Space Flight Center. Photo courtesy Bill Hrybyk.

  17. Personal Computer Transport Analysis Program

    Science.gov (United States)

    DiStefano, Frank, III; Wobick, Craig; Chapman, Kirt; McCloud, Peter

    2012-01-01

    The Personal Computer Transport Analysis Program (PCTAP) is C++ software used for analysis of thermal fluid systems. The program predicts thermal fluid system and component transients. The output consists of temperatures, flow rates, pressures, delta pressures, tank quantities, and gas quantities in the air, along with air scrubbing component performance. PCTAP s solution process assumes that the tubes in the system are well insulated so that only the heat transfer between fluid and tube wall and between adjacent tubes is modeled. The system described in the model file is broken down into its individual components; i.e., tubes, cold plates, heat exchangers, etc. A solution vector is built from the components and a flow is then simulated with fluid being transferred from one component to the next. The solution vector of components in the model file is built at the initiation of the run. This solution vector is simply a list of components in the order of their inlet dependency on other components. The component parameters are updated in the order in which they appear in the list at every time step. Once the solution vectors have been determined, PCTAP cycles through the components in the solution vector, executing their outlet function for each time-step increment.

  18. Comparison and analysis of Wuding and avian chicken skeletal muscle satellite cells.

    Science.gov (United States)

    Tong, H Q; Jiang, Z Q; Dou, T F; Li, Q H; Xu, Z Q; Liu, L X; Gu, D H; Rong, H; Huang, Y; Chen, X B; Jois, M; Te Pas, M F W; Ge, C R; Jia, J J

    2016-10-05

    Chicken skeletal muscle satellite cells are located between the basement membrane and the sarcolemma of mature muscle fibers. Avian broilers have been genetically selected based on their high growth velocity and large muscle mass. The Wuding chicken is a famous local chicken in Yunnan Province that undergoes non-selection breeding and is slow growing. In this study, we aimed to explore differences in the proliferation and differentiation properties of satellite cells isolated from the two chicken breeds. Using immunofluorescence, hematoxylin-eosin staining and real-time polymerase chain reaction analysis, we analyzed the in vitro characteristics of proliferating and differentiating satellite cells isolated from the two chicken breeds. The growth curve of satellite cells was S-shaped, and cells from Wuding chickens entered the logarithmic phase and plateau phase 1 day later than those from Avian chicken. The results also showed that the two skeletal muscle satellite cell lines were positive for Pax7, MyoD and IGF-1. The expression of Pax7 followed a downward trend, whereas that of MyoD and IGF-1 first increased and subsequently decreased in cells isolated from the two chickens. These data indicated that the skeletal muscle satellite cells of Avian chicken grow and differentiate faster than did those of Wuding chickens. We suggest that the methods of breeding selection applied to these breeds regulate the characteristics of skeletal muscle satellite cells to influence muscle growth.

  19. Satellite image analysis for surveillance, vegetation and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Cai, D Michael [Los Alamos National Laboratory

    2011-01-18

    Recently, many studies have provided abundant evidence to show the trend of tree mortality is increasing in many regions, and the cause of tree mortality is associated with drought, insect outbreak, or fire. Unfortunately, there is no current capability available to monitor vegetation changes, and correlate and predict tree mortality with CO{sub 2} change, and climate change on the global scale. Different survey platforms (methods) have been used for forest management. Typical ground-based forest surveys measure tree stem diameter, species, and alive or dead. The measurements are low-tech and time consuming, but the sample sizes are large, running into millions of trees, covering large areas, and spanning many years. These field surveys provide powerful ground validation for other survey methods such as photo survey, helicopter GPS survey, and aerial overview survey. The satellite imagery has much larger coverage. It is easier to tile the different images together, and more important, the spatial resolution has been improved such that close to or even higher than aerial survey platforms. Today, the remote sensing satellite data have reached sub-meter spatial resolution for panchromatic channels (IKONOS 2: 1 m; Quickbird-2: 0.61 m; Worldview-2: 0.5 m) and meter spatial resolution for multi-spectral channels (IKONOS 2: 4 meter; Quickbird-2: 2.44 m; Worldview-2: 2 m). Therefore, high resolution satellite imagery can allow foresters to discern individual trees. This vital information should allow us to quantify physiological states of trees, e.g. healthy or dead, shape and size of tree crowns, as well as species and functional compositions of trees. This is a powerful data resource, however, due to the vast amount of the data collected daily, it is impossible for human analysts to review the imagery in detail to identify the vital biodiversity information. Thus, in this talk, we will discuss the opportunities and challenges to use high resolution satellite imagery and

  20. Satellite-Delivered Learning.

    Science.gov (United States)

    Arnall, Gail C.

    1987-01-01

    Discusses the application of satellite information delivery to training. Describes a new trend, horizontal programming. Also discusses vertical programming and in-house production of training materials. Lists vendors of satellite-based training. (CH)

  1. Combined analysis of GNSS and SLR observations for the GIOVE satellites

    Science.gov (United States)

    Thaller, D.; Steinbach, A.; Dach, R.

    2009-04-01

    The GGSP (Galileo Geodetic Service Provider) is responsible to provide the geodetic basement of the future European GNSS, the Galileo system. The AIUB is one partner of the consortium of seven institutions. In the context of this project, the data of 13 GESS (Galileo Experimental Sensor Stations) are processed together with the GPS data of about 120 IGS sites. Apart from the station coordinates also the satellite orbits, ERPs, and clock corrections are computed. Since the 13 GESS do not only provide GPS data but also track the two first Galileo satellites (i.e., GIOVE-A and GIOVE-B), a combined processing of the GPS and Galileo data using microwave data is possible. Due to the sparse network of GESS the GPS data highly support the Galileo related products (the orbits and satellite clock corrections). Nevertheless, the quality of the GIOVE orbits is limited to about 20 cm. As both GIOVE are equipped with retro-reflector arrays, the satellites are tracked by satellite laser ranging (SLR), as it is already done for some GLONASS satellites and those two GPS satellites equipped with retro-reflectors. The availability of SLR data allows a validation of the satellite orbits determined from GNSS observations. The range residuals show whether there is any systematic difference between the GNSS and SLR system and, thus, may help to improve the orbit modeling for the GIOVE satellites. Furthermore, we will include the SLR tracking data into the orbit determination in order to derive a combined GNSS+SLR orbit. It will be studied whether the inclusion of SLR data shows any significant improvement for the combined orbit compared to the GNSS-only orbit. This study can be seen as a further step toward the combined processing of GNSS and SLR observations for a fully integrated multi-technique data analysis.

  2. LISA: a linear structured system analysis program

    OpenAIRE

    Martinez-Martinez, Sinuhé; Mader, Theodor; Boukhobza, Taha; Hamelin, Frédéric

    2007-01-01

    International audience; In this paper the program LISA is presented. LISA is a flexible and portable program which has been developed to analyse structural properties of large scale linear and bilinear structured systems. More precisely, the program LISA contains programmed algorithms which allow us to apply recent results in the analysis of structured systems to some particular cases.

  3. COMPARATIVE ANALYSIS OF SATELLITE IMAGE PRE-PROCESSING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    T. Sree Sharmila

    2013-01-01

    Full Text Available Satellite images are corrupted by noise in its acquisition and transmission. The removal of noise from the image by attenuating the high frequency image components, removes some important details as well. In order to retain the useful information and improve the visual appearance, an effective denoising and resolution enhancement techniques are required. In this research, Hybrid Directional Lifting (HDL technique is proposed to retain the important details of the image and improve the visual appearance. The Discrete Wavelet Transform (DWT based interpolation technique is developed for enhancing the resolution of the denoised image. The performance of the proposed techniques are tested by Land Remote-Sensing Satellite (LANDSAT images, using the quantitative performance measure, Peak Signal to Noise Ratio (PSNR and computation time to show the significance of the proposed techniques. The PSNR of the HDL technique increases 1.02 dB compared to the standard denoising technique and the DWT based interpolation technique increases 3.94 dB. From the experimental results it reveals that newly developed image denoising and resolution enhancement techniques improve the image visual quality with rich textures.

  4. Swarm Utilisation Analysis: LEO satellite observations for the ESA's SSA Space Weather network

    Science.gov (United States)

    Kervalishvili, Guram; Stolle, Claudia; Rauberg, Jan; Olsen, Nils; Vennerstrøm, Susanne; Gullikstad Johnsen, Magnar; Hall, Chris

    2017-04-01

    ESA's (European Space Agency) constellation mission Swarm was successfully launched on 22 November 2013. The three satellites achieved their final constellation on 17 April 2014 and since then Swarm-A and Swarm-C orbiting the Earth at about 470 km (flying side-by-side) and Swarm-B at about 520 km altitude. Each of Swarm satellite carries instruments with high precision to measure magnetic and electric fields, neutral and plasma densities, and TEC (Total Electron Content) for which a dual frequency GPS receiver is used. SUA (Swarm Utilisation Analysis) is a project of the ESA's SSA (Space Situational Awareness) SWE (Space Weather) program. Within this framework GFZ (German Research Centre for Geosciences, Potsdam, Germany) and DTU (National Space Institute, Kongens Lyngby, Denmark) have developed two new Swarm products ROT (Rate Of change of TEC) and PEJ (Location and intensity level of Polar Electrojets), respectively. ROT is derived as the first time derivative from the Swarm measurements of TEC at 1 Hz sampling. ROT is highly relevant for users in navigation and communications: strong plasma gradients cause GPS signal degradation or even loss of GPS signal. Also, ROT is a relevant space weather asset irrespective of geomagnetic activity, e.g., high amplitude values of ROT occur during all geomagnetic conditions. PEJ is derived from the Swarm measurements of the magnetic field strength at 1 Hz sampling. PEJ has a high-level importance for power grid companies since the polar electrojet is a major cause for ground-induced currents. ROT and PEJ together with five existing Swarm products TEC, electron density, IBI (Ionospheric Bubble Index), FAC (Field-Aligned Current), and vector magnetic field build the SUA service prototype. This prototype will be integrated into ESA's SSA Space Weather network as a federated service and will be available soon from ESA's SSA SWE Ionospheric Weather and Geomagnetic Conditions Expert Service Centres (ESCs).

  5. Quest for learning: A study of teachers' perceptions of the Satellite Education and Environmental Research Program

    Science.gov (United States)

    Ahern, Kathryn A.

    The purpose of this study was to examine the perceptions of teachers who participated in the Satellite Education and Environmental Research (SEER) Program Water Project, a curriculum design course developed at the University of Nebraska-Lincoln. The distance education course was a complex intervention which used the Nebraska Mathematics and Science Initiative's Model Program criteria for inquiry-based curriculum. Teachers formed communities of inquiry, experienced scientific inquiry processes, integrated different disciplines to create new thematic science curricula, and were encouraged to employ innovative pedagogical practices. National Science Education Standards and Nebraska Mathematics and Science Frameworks were consulted to develop important science process skills and concepts. Multicultural science education was addressed through investigation of local water issues. Teachers were encouraged to form community partnerships, supported with testing materials for conducting scientific research, and expected to use computer technology. Grounded theory was used to examine interviews of 26 participants for their perceptions of the effects of the intervention on their teaching strategies. The self-reports were triangulated through the external evaluation report, classroom artifacts, and a limited number of observations of classroom and field activities. Open coding was used to categorize the interview responses and to propose relationships among them. The central phenomenon that emerged from the axial and select coding was the changed focus: teaching science more thematically. Three theoretical propositions were posed to guide further inquiry: (1) teachers need opportunities and resources to experience science as an authentic, tenable, and realistic process if they are to develop curriculum and focus classroom activities on scientific inquiry; (2) autonomous learning communities must be fostered at downlink sites if distance learning experiences are to affect

  6. Dataflow Analysis for Datarace-Free Programs

    Science.gov (United States)

    de, Arnab; D'Souza, Deepak; Nasre, Rupesh

    Memory models for shared-memory concurrent programming languages typically guarantee sequential consistency (SC) semantics for datarace-free (DRF) programs, while providing very weak or no guarantees for non-DRF programs. In effect programmers are expected to write only DRF programs, which are then executed with SC semantics. With this in mind, we propose a novel scalable solution for dataflow analysis of concurrent programs, which is proved to be sound for DRF programs with SC semantics. We use the synchronization structure of the program to propagate dataflow information among threads without requiring to consider all interleavings explicitly. Given a dataflow analysis that is sound for sequential programs and meets certain criteria, our technique automatically converts it to an analysis for concurrent programs.

  7. Present status and future plans of the Japanese earth observation satellite program

    Science.gov (United States)

    Tsuchiya, Kiyoshi; Arai, Kohei; Igarashi, Tamotsu

    Japan is now operating 3 earth observation satellites, i. e. MOS-1 (Marine Observation Satellite-1, Momo-1 in Japanese), EGS (Experimental Geodetic Satellite, Ajisai in Japanese) and GMS (Geostationary Meteorological Satellite, Himawari in Japanese). MOS-1 has 3 different sensors, MESSR (Multispectral Electronic Self Scanning Radiometer), VTIR (Visible and Thermal Infrared Radiometer) and MSR (Microwave Scanning Radiometer) in addition to DCS (Data Collection System). GMS has two sensors, VISSR (Visible and IR Spin Scan Radiometer) and SEM (Solar Environmental Monitor). EGS is equipped with reflecting mirrors of the sun light and laser reflecters. For the future earth observation satellites, ERS-1 (Earth Resources Satellite-1), MOS-1b, ADEOS (Advanced Earth Observing Satellite) are under development. Two sensors, AMSR (Advanced Microwave Scanning Radiometer) and ITIR (Intermediate Thermal IR Radiometer) for NASA's polar platform are initial stage of development. Study and planning are made for future earth observation satellites including Japanese polor platform, TRMM, etc.). The study for the second generation GMS has been made by the Committee on the Function of Future GMS under the request of Japan Meteorological Agency in FY 1987.

  8. Detecting Anomaly Regions in Satellite Image Time Series Based on Sesaonal Autocorrelation Analysis

    Science.gov (United States)

    Zhou, Z.-G.; Tang, P.; Zhou, M.

    2016-06-01

    Anomaly regions in satellite images can reflect unexpected changes of land cover caused by flood, fire, landslide, etc. Detecting anomaly regions in satellite image time series is important for studying the dynamic processes of land cover changes as well as for disaster monitoring. Although several methods have been developed to detect land cover changes using satellite image time series, they are generally designed for detecting inter-annual or abrupt land cover changes, but are not focusing on detecting spatial-temporal changes in continuous images. In order to identify spatial-temporal dynamic processes of unexpected changes of land cover, this study proposes a method for detecting anomaly regions in each image of satellite image time series based on seasonal autocorrelation analysis. The method was validated with a case study to detect spatial-temporal processes of a severe flooding using Terra/MODIS image time series. Experiments demonstrated the advantages of the method that (1) it can effectively detect anomaly regions in each of satellite image time series, showing spatial-temporal varying process of anomaly regions, (2) it is flexible to meet some requirement (e.g., z-value or significance level) of detection accuracies with overall accuracy being up to 89% and precision above than 90%, and (3) it does not need time series smoothing and can detect anomaly regions in noisy satellite images with a high reliability.

  9. DETECTING ANOMALY REGIONS IN SATELLITE IMAGE TIME SERIES BASED ON SESAONAL AUTOCORRELATION ANALYSIS

    Directory of Open Access Journals (Sweden)

    Z.-G. Zhou

    2016-06-01

    Full Text Available Anomaly regions in satellite images can reflect unexpected changes of land cover caused by flood, fire, landslide, etc. Detecting anomaly regions in satellite image time series is important for studying the dynamic processes of land cover changes as well as for disaster monitoring. Although several methods have been developed to detect land cover changes using satellite image time series, they are generally designed for detecting inter-annual or abrupt land cover changes, but are not focusing on detecting spatial-temporal changes in continuous images. In order to identify spatial-temporal dynamic processes of unexpected changes of land cover, this study proposes a method for detecting anomaly regions in each image of satellite image time series based on seasonal autocorrelation analysis. The method was validated with a case study to detect spatial-temporal processes of a severe flooding using Terra/MODIS image time series. Experiments demonstrated the advantages of the method that (1 it can effectively detect anomaly regions in each of satellite image time series, showing spatial-temporal varying process of anomaly regions, (2 it is flexible to meet some requirement (e.g., z-value or significance level of detection accuracies with overall accuracy being up to 89% and precision above than 90%, and (3 it does not need time series smoothing and can detect anomaly regions in noisy satellite images with a high reliability.

  10. Utility green pricing programs: A statistical analysis of program effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Olson, Scott; Bird, Lori; Swezey, Blair

    2004-02-01

    Development of renewable energy. Such programs have grown in number in recent years. The design features and effectiveness of these programs varies considerably, however, leading a variety of stakeholders to suggest specific marketing and program design features that might improve customer response and renewable energy sales. This report analyzes actual utility green pricing program data to provide further insight into which program features might help maximize both customer participation in green pricing programs and the amount of renewable energy purchased by customers in those programs. Statistical analysis is performed on both the residential and non-residential customer segments. Data comes from information gathered through a questionnaire completed for 66 utility green pricing programs in early 2003. The questionnaire specifically gathered data on residential and non-residential participation, amount of renewable energy sold, program length, the type of renewable supply used, program price/cost premiums, types of consumer research and program evaluation performed, different sign-up options available, program marketing efforts, and ancillary benefits offered to participants.

  11. Environmental assessment for the satellite power system concept development and evaluation program: nonmicrowave health and ecological effects

    Energy Technology Data Exchange (ETDEWEB)

    White, M R

    1980-11-01

    A Concept Development and Evaluation Program is being carried out for a proposed Satellite Power System (SPS). For purposes of this evaluation, a preliminary reference system has been developed. SPS, as described in the reference system, would collect solar energy on satellites in geosychronous orbit in space. The energy would be converted to microwaves and beamed to an earth-receiving antenna (rectenna). One task in the environmental part of the program is the assessment of the nonmicrowave effects on health and the environment. These effects would result from all phases of SPS development and operation. This report covers the current knowledge regarding these effects, and is based on the reference system. The assessment is summarized as to scope, methodology, impacts of terrestrial development, launch and recovery of spacecraft, space activities (including health effects of the space environment, ionizing radiation, electromagnetic exposure, spacecraft charging and environmental interactions, occupational hazards, etc.) and construction and operation of rectenna (ground receiving station).

  12. THE SATELLITE STRUCTURE TOPOLOGY OPTIMIZATION BASED ON HOMOGENIZATION METHOD AND ITS SIZE SENSITIVITY ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    ChenChangya; PanJin; WangDeyu

    2005-01-01

    With the development of satellite structure technology, more and more design parameters will affect its structural performance. It is desirable to obtain an optimal structure design with a minimum weight, including optimal configuration and sizes. The present paper aims to describe an optimization analysis for a satellite structure, including topology optimization and size optimization. Based on the homogenization method, the topology optimization is carried out for the main supporting frame of service module under given constraints and load conditions, and then the sensitivity analysis is made of 15 structural size parameters of the whole satellite and the optimal sizes are obtained. The numerical result shows that the present optimization design method is very effective.

  13. Optimizing statistical classification accuracy of satellite remotely sensed imagery for supporting fast flood hydrological analysis

    Science.gov (United States)

    Alexakis, Dimitrios; Agapiou, Athos; Hadjimitsis, Diofantos; Retalis, Adrianos

    2012-06-01

    The aim of this study is to improve classification results of multispectral satellite imagery for supporting flood risk assessment analysis in a catchment area in Cyprus. For this purpose, precipitation and ground spectroradiometric data have been collected and analyzed with innovative statistical analysis methods. Samples of regolith and construction material were in situ collected and examined in the spectroscopy laboratory for their spectral response under consecutive different conditions of humidity. Moreover, reflectance values were extracted from the same targets using Landsat TM/ETM+ images, for drought and humid time periods, using archived meteorological data. The comparison of the results showed that spectral responses for all the specimens were less correlated in cases of substantial humidity, both in laboratory and satellite images. These results were validated with the application of different classification algorithms (ISODATA, maximum likelihood, object based, maximum entropy) to satellite images acquired during time period when precipitation phenomena had been recorded.

  14. Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT

    Directory of Open Access Journals (Sweden)

    I. M. Lensky

    2008-03-01

    Full Text Available A methodology for representing much of the physical information content of the METEOSAT Second Generation (MSG geostationary satellite using red-green-blue (RGB composites of the computed physical values of the picture elements is presented. The physical values are the solar reflectance in the solar channels and brightness temperature in the thermal channels. The main RGB compositions are (1 "Day Natural Colors", presenting vegetation in green, bare surface in brown, sea surface in black, water clouds as white, ice as magenta; (2 "Day Microphysical", presenting cloud microstructure using the solar reflectance component of the 3.9 μm, visible and thermal IR channels; (3 "Night Microphysical", also presenting clouds microstructure using the brightness temperature differences between 10.8 and 3.9 μm; (4 "Day and Night", using only thermal channels for presenting surface and cloud properties, desert dust and volcanic emissions; (5 "Air Mass", presenting mid and upper tropospheric features using thermal water vapor and ozone channels. The scientific basis for these rendering schemes is provided, with examples for the applications. The expanding use of these rendering schemes requires their proper documentation and setting as standards, which is the main objective of this publication.

  15. Analysis of Characteristics of QZSS Satellite Orbit and Clock Products during Yaw Attitude Model Switching

    Directory of Open Access Journals (Sweden)

    ZHOU Peiyuan

    2016-03-01

    Full Text Available Yaw attitude model switching of navigation satellites have great impact on its orbit and clock products derived from precise orbit determination. Firstly, the yaw attitude and solar radiation model of QZSS is given briefly. Then, using QZSS precise orbit and clock products provided by IGS MGEX analysis center, precision of orbit and clock is analyzed by satellite laser ranging residuals and polynomial fit residuals respectively. Finally, spectral analysis and modified Allan variance is carried out on clock products to reveal its periodic variations. Research on QZSS satellite orbit and clock products of 2014 shows that there are two eclipse seasons of 20 days and the beta angle is fluctuating with a period of half-year. And there is significant correlation between the precision of orbit and clock products and beta angle. Moreover, the satellite clock offset has periodic variations similar to orbit periods and its amplitude is changing with the beta angle which indicates problems of current orbit determination strategies. In view of similarities between QZSS and BeiDou IGSO and MEO satellites in yaw attitude model, the conclusion is beneficial to improve BeiDou precise orbit determination.

  16. The Multi-Sensor Aerosol Products Sampling System (MAPSS) for Integrated Analysis of Satellite Retrieval Uncertainties

    Science.gov (United States)

    Ichoku, Charles; Petrenko, Maksym; Leptoukh, Gregory

    2010-01-01

    Among the known atmospheric constituents, aerosols represent the greatest uncertainty in climate research. Although satellite-based aerosol retrieval has practically become routine, especially during the last decade, there is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus and the inconsistencies are not well characterized and understood ', there will be no way of developing reliable climate data records from satellite aerosol measurements. Fortunately, the most globally representative well-calibrated ground-based aerosol measurements corresponding to the satellite-retrieved products are available from the Aerosol Robotic Network (AERONET). To adequately utilize the advantages offered by this vital resource,., an online Multi-sensor Aerosol Products Sampling System (MAPSS) was recently developed. The aim of MAPSS is to facilitate detailed comparative analysis of satellite aerosol measurements from different sensors (Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP) based on the collocation of these data products over AERONET stations. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainty analysis of aerosol products from multiple satellite sensors.

  17. Application of remote sensing to thermal pollution analysis. [satellite sea surface temperature measurement assessment

    Science.gov (United States)

    Hiser, H. W.; Lee, S. S.; Veziroglu, T. N.; Sengupta, S.

    1975-01-01

    A comprehensive numerical model development program for near-field thermal plume discharge and far field general circulation in coastal regions is being carried on at the University of Miami Clean Energy Research Institute. The objective of the program is to develop a generalized, three-dimensional, predictive model for thermal pollution studies. Two regions of specific application of the model are the power plants sites at the Biscayne Bay and Hutchinson Island area along the Florida coastline. Remote sensing from aircraft as well as satellites are used in parallel with in situ measurements to provide information needed for the development and verification of the mathematical model. This paper describes the efforts that have been made to identify problems and limitations of the presently available satellite data and to develop methods for enhancing and enlarging thermal infrared displays for mesoscale sea surface temperature measurements.

  18. Real-time, Quasi-Global, Multi-Satellite Precipitation Analysis Using TRMM and other Satellite Observations

    Science.gov (United States)

    Adler, Robert F.; Huffman, George; Curtis, Scott; Bolvin, David; Nelkin, Eric

    2003-01-01

    A TRMM-based 3-hr analyses that use TRMM observations to calibrate polar-orbit microwave observations from SSM/I (and other satellites) and geosynchronous IR observations and merges the various calibrated observations into a final, 3-hr resolution map is described. This TRMM standard product will be available for the entire TRMM period (January 1998-present) in 2003 as part of Version 6 of the TRMM products. A real-time version of this merged product is being produced and is available at 0.25" latitude-longitude resolution over the latitude range from 50 N-500S. Examples will be shown, including its use in monitoring flood conditions and in relating weather-scale patterns to climate-scale patterns. Plans to incorporate the TRMM data and 3-hourly analysis into the Global Precipitation Climatology Project (GPCP) products are outlined. The outcome in the near future should be an improved global analysis and climatology on monthly scales for the 23 year period and finer time scale analyses for more recent periods, including 3-hourly analyses over the globe. These technique developments are potential prototypes for analyses with the Global Precipitation Measurement (GPM) mission.

  19. Wind-driven marine phytoplank blooms: Satellite observation and analysis

    Science.gov (United States)

    Tang, DanLing

    2016-07-01

    Algal bloom is defined as a rapid increase or accumulation in biomass in an aquatic system. It not only can increase the primary production but also could result in negative ecological consequence, e.g.,Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actuallythe traditional observation is only sporadic capture to the existence of algal blooms.Taking full advantage of multiple data of satellite remote sensing , this study introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; (2)Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. (3)Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. The proposed "wind-pump" mechanism integrates theoretical system combined "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. These

  20. FORTRAN computer program for seismic risk analysis

    Science.gov (United States)

    McGuire, Robin K.

    1976-01-01

    A program for seismic risk analysis is described which combines generality of application, efficiency and accuracy of operation, and the advantage of small storage requirements. The theoretical basis for the program is first reviewed, and the computational algorithms used to apply this theory are described. The information required for running the program is listed. Published attenuation functions describing the variation with earthquake magnitude and distance of expected values for various ground motion parameters are summarized for reference by the program user. Finally, suggestions for use of the program are made, an example problem is described (along with example problem input and output) and the program is listed.

  1. Vegetation Cover Change in Yellowstone National Park Detected Using Landsat Satellite Image Analysis

    Science.gov (United States)

    Potter, Christopher S.

    2015-01-01

    Results from Landsat satellite image analysis since 1987 in all unburned areas (since the 1880s) of Yellowstone National Park (YNP) showed that consistent decreases in the normalized difference vegetation index (NDVI) have been strongly dependent on periodic variations in peak annual snow water equivalents (SWE).

  2. Temporal scaling analysis of irradiance estimated from daily satellite data and numerical modelling

    Science.gov (United States)

    Vindel, Jose M.; Navarro, Ana A.; Valenzuela, Rita X.; Ramírez, Lourdes

    2016-11-01

    The temporal variability of global irradiance estimated from daily satellite data and numerical models has been compared for different spans of time. According to the time scale considered, a different behaviour can be expected for each climate. Indeed, for all climates and at small scale, the persistence decreases as this scale increases, but the mediterranean climate, and its continental variety, shows higher persistence than oceanic climate. The probabilities of maintaining the values of irradiance after a certain period of time have been used as a first approximation to analyse the quality of each source, according to the climate. In addition, probability distributions corresponding to variations of clearness indices measured at several stations located in different climate zones have been compared with those obtained from satellite and modelling estimations. For this work, daily radiation data from the reanalysis carried out by the European Centre for Medium-Range Weather Forecasts and from the Satellite Application Facilities on climate monitoring have been used for mainland Spain. According to the results, the temporal series estimation of irradiance is more accurate when using satellite data, independent of the climate considered. In fact, the coefficients of determination corresponding to the locations studied are always above 0.92 in the case of satellite data, while this coefficient decreases to 0.69 for some cases of the numerical model. This conclusion is more evident in oceanic climates, where the most important errors can be observed. Indeed, in this case, the RRMSE derived from the CM-SAF estimations is 20.93%, while in the numerical model, it is 48.33%. Analysis of the probabilities corresponding to variations in the clearness indices also shows a better behaviour of the satellite-derived estimates for oceanic climate. For the standard mediterranean climate, the satellite also provides better results, though the numerical model improves

  3. Leadex Data Report. Part 1. Weather Analysis and Satellite Images

    Science.gov (United States)

    1992-12-01

    ANALYSIS AND FORECAST PRODUCTS 111120OZ Analyses and Forecasts (MR- dato ) A trough is shown extending across the central Beaufort at analysis time. Weather...DISTRIBUTION . DR STEPHEN BURK SAIC 2 NRL CODE 7541 550 CAMINO EL ESTERO MONTEREY CA 93913-5006 MONTEREY CA 93940 DR KENNETH DAVIDSON DR ROBERT SCHUCHMAN

  4. Failure analysis of satellite subsystems to define suitable de-orbit devices

    Science.gov (United States)

    Palla, Chiara; Peroni, Moreno; Kingston, Jennifer

    2016-11-01

    Space missions in Low Earth Orbit (LEO) are severely affected by the build-up of orbital debris. A key practice, to be compliant with IADC (Inter-Agency Space Debris Coordination Committee) mitigation guidelines, is the removal of space systems that interfere with the LEO region not later than 25 years after the End of Mission. It is important to note that the current guidelines are not generally legally binding, even if different Space Agencies are now looking at the compliance for their missions. If the guidelines will change in law, it will be mandatory to have a postmission disposal strategy for all satellites, including micro and smaller classes. A potential increased number of these satellites is confirmed by different projections, in particular in the commercial sector. Micro and smaller spacecraft are, in general, not provided with propulsion capabilities to achieve a controlled re-entry, so they need different de-orbit disposal methods. When considering the utility of different debris mitigation methods, it is useful to understand which spacecraft subsystems are most likely to fail and how this may affect the operation of a de-orbit system. This also helps the consideration of which components are the most relevant or should be redundant depending on the satellite mass class. This work is based on a sample of LEO and MEO satellites launched between January 2000 and December 2014 with mass lower than 1000 kg. Failure analysis of satellite subsystems is performed by means of the Kaplan-Meier survival analysis; the parametric fits are conducted with Weibull distributions. The study is carried out by using the satellite database SpaceTrak™ which provides anomalies, failures, and trends information for spacecraft subsystems and launch vehicles. The database identifies five states for each satellite subsystem: three degraded states, one fully operational state, and one failed state (complete failure). The results obtained can guide the identification of the

  5. Error analysis for relay type satellite-aided search and rescue systems

    Science.gov (United States)

    Marini, J. W.

    1979-01-01

    An analysis is made of the errors in the determination of the position of an emergency transmitter in a satellite-aided search and rescue system. The satellite is assumed to be at a height of 820 km in a near-circular near polar orbit. Short data spans of four minutes or less are used. The error sources considered are measurement noise, transmitter frequency drift, ionospheric effects, and error in the assumed height of the transmitter. The errors are calculated for several different transmitter positions, data rates, and data spans. The only transmitter frequency used was 406 MHz, but the result can be scaled to different frequencies.

  6. Analysis of coherent satellite communication systems in the presence of interference and noise

    Science.gov (United States)

    Huang, T.-C.; Omura, J. K.; Lindsey, W. C.

    1981-01-01

    The general analysis presented can be used to evaluate the performance of M-ary phase shift keying (MPSK) used over a nonlinear satellite channel in the presence of interference (CW tone and ISI) and channel noise. The numerical evaluation is based on the classical moment technique for approximating the probability distribution from moments of a random variable. The mathematical formulation of error probabilities of MPSK signals transmitted over nonlinear satellite repeaters is presented to include the effect of CW tone interference as well as the intersymbol interference. The approach is general and can be extended to include the effect of the synchronization.

  7. Static Complexity Analysis of Higher Order Programs

    DEFF Research Database (Denmark)

    Avery, James Emil; Kristiansen, Lars; Moyen, Jean-Yves

    2009-01-01

    The overall goal of the research presented in this paper is to find^M automatic methods for static complexity analysis of higher order^M programs.......The overall goal of the research presented in this paper is to find^M automatic methods for static complexity analysis of higher order^M programs....

  8. Probabilistic Output Analysis by Program Manipulation

    OpenAIRE

    Rosendahl, Mads; Kirkeby, Maja H.

    2015-01-01

    The aim of a probabilistic output analysis is to derive a probability distribution of possible output values for a program from a probability distribution of its input. We present a method for performing static output analysis, based on program transformation techniques. It generates a probability function as a possibly uncomputable expression in an intermediate language. This program is then analyzed, transformed, and approximated. The result is a closed form expression that computes an over...

  9. Semantic Solutions to Program Analysis Problems

    CERN Document Server

    Tobin-Hochstadt, Sam

    2011-01-01

    Problems in program analysis can be solved by developing novel program semantics and deriving abstractions conventionally. For over thirty years, higher-order program analysis has been sold as a hard problem. Its solutions have required ingenuity and complex models of approximation. We claim that this difficulty is due to premature focus on abstraction and propose a new approach that emphasizes semantics. Its simplicity enables new analyses that are beyond the current state of the art.

  10. Satellite change detection analysis of deforestation rates and patterns along the Colombia-Ecuador border.

    Science.gov (United States)

    Viña, Andrés; Echavarria, Fernando R; Rundquist, Donald C

    2004-05-01

    This study uses Landsat satellite data to document the rates and patterns of land-cover change along a portion of the Colombia-Ecuador border during a 23-yr period (1973-1996). Human colonization has resulted in extensive deforestation in both countries. Satellite change detection analysis showed that the annual rates of deforestation were considerably higher for the Colombian side of the border. In addition, loss of forest cover on the Colombian side for the study period was almost 43%, while only 22% on the Ecuadorian side. The study found that there is no single factor driving deforestation on either side of the border, but concluded that the higher rates on the Colombian side may be due to higher colonization pressures and intensification of illegal coca cultivation. On the Ecuador side of the border the satellite images documented patterns of deforestation that reflected road networks associated with oil exploration and development.

  11. Planetary gearbox condition monitoring of ship-based satellite communication antennas using ensemble multiwavelet analysis method

    Science.gov (United States)

    Chen, Jinglong; Zhang, Chunlin; Zhang, Xiaoyan; Zi, Yanyang; He, Shuilong; Yang, Zhe

    2015-03-01

    Satellite communication antennas are key devices of a measurement ship to support voice, data, fax and video integration services. Condition monitoring of mechanical equipment from the vibration measurement data is significant for guaranteeing safe operation and avoiding the unscheduled breakdown. So, condition monitoring system for ship-based satellite communication antennas is designed and developed. Planetary gearboxes play an important role in the transmission train of satellite communication antenna. However, condition monitoring of planetary gearbox still faces challenges due to complexity and weak condition feature. This paper provides a possibility for planetary gearbox condition monitoring by proposing ensemble a multiwavelet analysis method. Benefit from the property on multi-resolution analysis and the multiple wavelet basis functions, multiwavelet has the advantage over characterizing the non-stationary signal. In order to realize the accurate detection of the condition feature and multi-resolution analysis in the whole frequency band, adaptive multiwavelet basis function is constructed via increasing multiplicity and then vibration signal is processed by the ensemble multiwavelet transform. Finally, normalized ensemble multiwavelet transform information entropy is computed to describe the condition of planetary gearbox. The effectiveness of proposed method is first validated through condition monitoring of experimental planetary gearbox. Then this method is used for planetary gearbox condition monitoring of ship-based satellite communication antennas and the results support its feasibility.

  12. Validation of satellite data through the remote sensing techniques and the inclusion of them into agricultural education pilot programs

    Science.gov (United States)

    Papadavid, Georgios; Kountios, Georgios; Bournaris, T.; Michailidis, Anastasios; Hadjimitsis, Diofantos G.

    2016-08-01

    Nowadays, the remote sensing techniques have a significant role in all the fields of agricultural extensions as well as agricultural economics and education but they are used more specifically in hydrology. The aim of this paper is to demonstrate the use of field spectroscopy for validation of the satellite data and how combination of remote sensing techniques and field spectroscopy can have more accurate results for irrigation purposes. For this reason vegetation indices are used which are mostly empirical equations describing vegetation parameters during the lifecycle of the crops. These numbers are generated by some combination of remote sensing bands and may have some relationship to the amount of vegetation in a given image pixel. Due to the fact that most of the commonly used vegetation indices are only concerned with red-near-infrared spectrum and can be divided to perpendicular and ratio based indices the specific goal of the research is to illustrate the effect of the atmosphere to those indices, in both categories. In this frame field spectroscopy is employed in order to derive the spectral signatures of different crops in red and infrared spectrum after a campaign of ground measurements. The main indices have been calculated using satellite images taken at interval dates during the whole lifecycle of the crops by using a GER 1500 spectro-radiomete. These indices was compared to those extracted from satellite images after applying an atmospheric correction algorithm -darkest pixel- to the satellite images at a pre-processing level so as the indices would be in comparable form to those of the ground measurements. Furthermore, there has been a research made concerning the perspectives of the inclusion of the above mentioned remote satellite techniques to agricultural education pilot programs.

  13. Application of Multi-Satellite Precipitation Analysis to Floods and Landslides

    Science.gov (United States)

    Adler, Robert; Hong, Yang; Huffman, George

    2007-01-01

    Satellite data acquired and processed in real time now have the potential to provide the spacetime information on rainfall needed to monitor flood and landslide events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models and landslide algorithms. Progress in using the TRMM Multi-satellite Precipitation Analysis (TMPA) as input to flood and landslide forecasts is outlined, with a focus on understanding limitations of the rainfall data and impacts of those limitations on flood/landslide analyses. Case studies of both successes and failures will be shown, as well as comparison with ground comparison data sets both in terms of rainfall and in terms of flood/landslide events. In addition to potential uses in real-time, the nearly ten years of TMPA data allow retrospective running of the models to examine variations in extreme events. The flood determination algorithm consists of four major components: 1) multi-satellite precipitation estimation; 2) characterization of land surface including digital elevation from NASA SRTM (Shuttle Radar Terrain Mission), topography-derived hydrologic parameters such as flow direction, flow accumulation, basin, and river network etc.; 3) a hydrological model to infiltrate rainfall and route overland runoff; and 4) an implementation interface to relay the input data to the models and display the flood inundation results to potential users and decision-makers. In terms of landslides, the satellite rainfall information is combined with a global landslide susceptibility map, derived from a combination of global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a weighted linear combination approach. In those areas identified as "susceptible" (based on the surface characteristics), landslides are forecast where and when a rainfall intensity/duration threshold is exceeded. Results are described

  14. Decision Vulnerability Analysis (DVA) Program

    Science.gov (United States)

    2014-05-01

    analysis is shown in the figure to the left.8 Although SWOT analysis typically considers both external and internal factors that contribute to an...Examples of the multitude of factors that may be considered in a SWOT analysis include number of new products in the “pipeline”; how quickly new...perform a SWOT analysis , which factors to analyze, and how to measure each factor or attribute (although some of these choices may be influenced by

  15. 34 CFR 477.1 - What is the State Program Analysis Assistance and Policy Studies Program?

    Science.gov (United States)

    2010-07-01

    ... ANALYSIS ASSISTANCE AND POLICY STUDIES PROGRAM General § 477.1 What is the State Program Analysis Assistance and Policy Studies Program? The State Program Analysis Assistance and Policy Studies Program... 34 Education 3 2010-07-01 2010-07-01 false What is the State Program Analysis Assistance and...

  16. Research on a New Program of Satellite Network Security Certification%一种新型卫星网络安全认证方案的研究

    Institute of Scientific and Technical Information of China (English)

    高婧; 朱晨光

    2011-01-01

    在卫星网络通信中,卫星的安全防护是卫星通信系统建设的重要内容之一.结合卫星网络的特点,在对卫星网络的安全认证需求进行分析的基础上,提出了一种基于ELGamal数字签名的卫星网络安全双向认证方案,以解决卫星干扰、非法盗用卫星资源的问题;克服了传统认证方案中普遍存在的认证效率较低和认证过程较复杂等问题,如将该方案加以推广,可以广泛采用.%In the communication of satellite network, the security of satellite is an important content in the development of satellite communication system.Combining with the characteristics of satellite network and analyzing the safety certification requirements of satellite network, a two-way satellite network security certification program based on EIGamal digital signature is introduced to address the satellite interference, illegal use of satellite resources, and overcome the low efficiency and complex process certification existed in traditional common certification.This program can he widely adopted.

  17. Structured Analysis and Design of a Satellite Simulator

    Science.gov (United States)

    1977-09-01

    iv List of Fl.’:ur’’". Figura 26 Sequence Errors . , 27 Current Statue Data ••••.•...••••••••• 28 Vehicle Message Data 29 Output Messages 50a...and a structured design method for the design refinement. Functional Specifications Functior.al specifications are imposed on the functional ar... imposed by the desired design goals. Analysis and design techniques are selected that should make the design meet those goals. The functional

  18. An Assessment of China’s Anti-Satellite and Space Warfare Programs, Policies and Doctrines

    Science.gov (United States)

    2008-01-19

    successfully tested in an anti-satellite experiment conducted in the White sands missile range in New Mexico . The ground-based Russian lasers at Sary...neat comic book containing all of these over-ambitious unaffordable or just plain unnecessary military space weapons system that Air Force generals

  19. Design for the Assessment and Policy Analysis of the Education Satellite Communications Demonstration. Phase 2 Final Report.

    Science.gov (United States)

    Syracuse Univ. Research Corp., NY. Educational Policy Research Center.

    The overall goal of the Education Satellite Communications Demonstration is to design a framework for the analysis of the potential utility of satellites to education in this country. Within this framework, Phase 2 sought to identify research which would be clearly related to educational goals that might be worthy of attainment. The entire…

  20. Temporal Spectral Analysis of Be stars observed with CoRoT satellite

    Science.gov (United States)

    Emilio, Marcelo; Janot Pacheco, Eduardo; Andrade, Laerte

    . Nevertheless, to measure frequencies with great accuracy in stars requires both high photometric precision and high time-frequency resolution. The CoRoT (Convection, Rotation and planetary Transits) satellite opens for the first time in history the possibility of fulfilling this goal. CoRoT is an experiment of astronomy dedicated to seismology and the detection of extrasolar planet transits. It was launched on December 2006 in an inertial polar orbit at an altitude of 897 mathrm{km}. The instrument is fed by a phi=27 textrm{cm} telescope. Its scientific program is three-fold consisting of: (1) The seismology core program (SISMO), which concerns the seismic study of ˜10 bright (6analysis. (2) The exoplanet core program (EXO), which concerns the search for exoplanets around ˜12000 faint (11.5program (AP), which concerns the study of a few hundreds faint (11.5analysis of the star HD 171219 and CoRoT ID 102761769 observed by CoRoT satellite. We found two close frequencies related to the .CoRoT ID 102761769 star. They are 2.465 c d(-1) (28.5 mathrm{mu Hz}) and 2.441 c d(-1) (28.2 mathrm{mu Hz}). The precision to which those frequencies were found is 0.018 c d(-1) (0.2 mathrm{mu Hz}). The projected stellar rotation was estimated to be 120 km s(-1) from the Fourier transform of spectral lines. If CoRoT-ID 102761769 is a typical Galactic Be star it rotates near the critical velocity. The critical rotation frequency of a typical B5-6 star is about 3.5 c d(-1) (40.5 mathrm{mu Hz}), which implies that the above frequencies are really caused by stellar pulsations rather than star's rotation. HD 171219 frequencies 1.113, 1.130, 1.146 c * d(-1) form a triplet with the

  1. Program Analysis as Model Checking

    DEFF Research Database (Denmark)

    Olesen, Mads Chr.

    and abstract interpretation. Model checking views the program as a finite automaton and tries to prove logical properties over the automaton model, or present a counter-example if not possible — with a focus on precision. Abstract interpretation translates the program semantics into abstract semantics...... problems as the other by a reformulation. This thesis argues that there is even a convergence on the practical level, and that a generalisation of the formalism of timed automata into lattice automata captures key aspects of both methods; indeed model checking timed automata can be formulated in terms...... of an abstract interpretation. For the generalisation to lattice automata to have benefit it is important that efficient tools exist. This thesis presents multi-core tools for efficient and scalable reachability and Büchi emptiness checking of timed/lattice automata. Finally, a number of case studies...

  2. Computer Programs for Settlement Analysis.

    Science.gov (United States)

    1980-10-01

    istrnibt ion. is itiifornt from top to bottomk arid thtat the presurre tit til’ riiddleto itile sti-atuitt (depth 25 ftct I represent s tilie average...1.1206 0 5000 0 1590 2 4 0.9694 20000 1,060 1 0000 0 1600 2 S 0.3200 4.0000 09see 2.0060 1 1610 11620 3 .095 6 0 58 Table 16 Output Data File for Program

  3. Event/Time/Availability/Reliability-Analysis Program

    Science.gov (United States)

    Viterna, L. A.; Hoffman, D. J.; Carr, Thomas

    1994-01-01

    ETARA is interactive, menu-driven program that performs simulations for analysis of reliability, availability, and maintainability. Written to evaluate performance of electrical power system of Space Station Freedom, but methodology and software applied to any system represented by block diagram. Program written in IBM APL.

  4. Probabilistic Resource Analysis by Program Transformation

    DEFF Research Database (Denmark)

    Kirkeby, Maja Hanne; Rosendahl, Mads

    2016-01-01

    The aim of a probabilistic resource analysis is to derive a probability distribution of possible resource usage for a program from a probability distribution of its input. We present an automated multi-phase rewriting based method to analyze programs written in a subset of C. It generates...

  5. A PROGRAM FOR TRANSFORMATIONAL SYNTACTIC ANALYSIS.

    Science.gov (United States)

    PETRICK,S.R.

    A CLASS OF TRANSFORMATION GRAMMARS IS DEFINED AND A COMPUTER PROGRAM FOR SENTENCE ANALYSIS IS DESCRIBED AND DOCUMENTED WITH RESPECT TO THIS CLASS. THE PROGRAM EXISTS IN PURE LISP FORM AND IN MIXED LISP AND IBM 7090 ASSEMBLY LANGUAGE FORM. THE PAPER CONTAINS INFORMATION TO PERMIT THE USER TO WRITE HIS OWN TRANSFORMATIONAL GRAMMAR. COMPUTER PROGRAM…

  6. Incorporating Satellite Observations of `No Rain' in an Australian Daily Rainfall Analysis.

    Science.gov (United States)

    Ebert, Elizabeth E.; Weymouth, Gary T.

    1999-01-01

    Geostationary satellite observations can be used to distinguish potential rain-bearing clouds from nonraining areas, thereby providing surrogate observations of `no rain' over large areas. The advantages of including such observations are the provision of data in regions void of conventional rain gauges or radars, as well as the improved delineation of raining from nonraining areas in gridded rainfall analyses.This paper describes a threshold algorithm for delineating nonraining areas using the difference between the daily minimum infrared brightness temperature and the climatological minimum surface temperature. Using a fixed difference threshold of 13 K, the accuracy of `no rain' detection (defined as the percentage of no-rain diagnoses that was correct) was 98%. The average spatial coverage was 45%, capturing about half of the observed space-time frequency of no rain over Australia. By delineating cool, moderate, and warm threshold areas, the average spatial coverage was increased to 54% while maintaining the same level of accuracy.The satellite no-rain observations were sampled to a density consistent with the existing gauge network, then added to the real-time gauge observations and analyzed using the Bureau of Meteorology's operational three-pass Barnes objective rainfall analysis scheme. When verified against independent surface rainfall observations, the mean bias in the satellite-augmented analyses was roughly half of bias in the gauge-only analyses. The most noticeable impact of the additional satellite observations was a 66% reduction in the size of the data-void regions.

  7. An analysis of the wide area differential method of geostationary orbit satellites

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This work aims to obtain a wide area differential method for geostationary orbit (GEO) constellation. A comparison between the dilution of precision (DOP) of four-dimensional (4D) calculation including sa- tellite clock errors and ephemeris errors and that of three-dimensional (3D) calculation only including ephemeris errors with the inverse positioning theory of GPS shows the conclusion that all the 3D PDOPs are greatly reduced. Based on this, a basic idea of correcting satellite clock errors and ephem- eris errors apart is put forward, and moreover, a specific method of separation is proposed. Satellite clock errors are separated in a master station with time synchronization, and all the remaining pseu- do-range errors after the satellite clock errors have been deducted are used to work out ephemeris corrections of all GEO satellites. By a comparative analysis of user positioning accuracy before and after differential, the wide area differential method is verified to be quite valid for GEO constellation.

  8. Incorporating temporal variability to improve geostatistical analysis of satellite-observed CO2 in China

    Institute of Scientific and Technical Information of China (English)

    ZENG ZhaoCheng; LEI LiPing; GUO LiJie; ZHANG Li; ZHANG Bing

    2013-01-01

    Observations of atmospheric carbon dioxide (CO2) from satellites offer new data sources to understand global carbon cycling.The correlation structure of satellite-observed CO2 can be analyzed and modeled by geostatistical methods,and CO2 values at unsampled locations can be predicted with a correlation model.Conventional geostatistical analysis only investigates the spatial correlation of CO2,and does not consider temporal variation in the satellite-observed CO2 data.In this paper,a spatiotemporal geostatistical method that incorporates temporal variability is implemented and assessed for analyzing the spatiotemporal correlation structure and prediction of monthly CO2 in China.The spatiotemporal correlation is estimated and modeled by a product-sum variogram model with a global nugget component.The variogram result indicates a significant degree of temporal correlation within satellite-observed CO2 data sets in China.Prediction of monthly CO2 using the spatiotemporal variogram model and spacetime kriging procedure is implemented.The prediction is compared with a spatial-only geostatistical prediction approach using a cross-validation technique.The spatiotemporal approach gives better results,with higher correlation coefficient (r2),and less mean absolute prediction error and root mean square error.Moreover,the monthly mapping result generated from the spatiotemporal approach has less prediction uncertainty and more detailed spatial variation of CO2 than those from the spatial-only approach.

  9. A Multi-Scale Analysis of Namibian Rainfall: Comparing TRMM Satellite Data and Ground Observations

    Science.gov (United States)

    Lu, X.; Wang, L.; Pan, M.; Kaseke, K. F.

    2014-12-01

    Rainfall is critically important in dryland regions, as it is the major source of water for natural vegetation as well as agriculture and livestock production. However, the lack of ground observations has long been a major obstacle to the study of rainfall patterning in drylands. In this study, a continuous 6-year record of ground observations collected at Weltevrede Guest Farm Namibia was used to evaluate the Tropical Rainfall Measuring Mission (TRMM) 0.25-degree (~25 km) 3-hourly satellite rainfall estimates for the period of 2008-2013 for two locations. The agreement between ground and satellite rainfall data was generally good at annual scales but a large variation was observed at the hourly scale. A trend analysis was carried out using bias-corrected annual satellite data (1998-2013) to examine the long-term patterns in rainfall amount, intensity, frequency and seasonal variations. Our results suggest that satellite rainfall estimates offer reasonable performance at annual scale. The preliminary trend analyses showed significant changes in frequency, but not in intensity or total amount in one of the two locations during the rainy season (November - March), but not in the other, emphasizing the spatial variability of the dryland rainfall.

  10. Advanced ISDN satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The research performed by GTE Government Systems and the University of Colorado in support of the NASA Satellite Communications Applications Research (SCAR) Program is summarized. Two levels of research were undertaken. The first dealt with providing interim services Integrated Services Digital Network (ISDN) satellite (ISIS) capabilities that accented basic rate ISDN with a ground control similar to that of the Advanced Communications Technology Satellite (ACTS). The ISIS Network Model development represents satellite systems like the ACTS orbiting switch. The ultimate aim is to move these ACTS ground control functions on-board the next generation of ISDN communications satellite to provide full-service ISDN satellite (FSIS) capabilities. The technical and operational parameters for the advanced ISDN communications satellite design are obtainable from the simulation of ISIS and FSIS engineering software models of the major subsystems of the ISDN communications satellite architecture. Discrete event simulation experiments would generate data for analysis against NASA SCAR performance measure and the data obtained from the ISDN satellite terminal adapter hardware (ISTA) experiments, also developed in the program. The Basic and Option 1 phases of the program are also described and include the following: literature search, traffic mode, network model, scenario specifications, performance measures definitions, hardware experiment design, hardware experiment development, simulator design, and simulator development.

  11. Error analysis for satellite gravity field determination based on two-dimensional Fourier methods

    CERN Document Server

    Cai, Lin; Hsu, Houtse; Gao, Fang; Zhu, Zhu; Luo, Jun

    2012-01-01

    The time-wise and space-wise approaches are generally applied to data processing and error analysis for satellite gravimetry missions. But both the approaches, which are based on least-squares collocation, address the whole effect of measurement errors and estimate the resolution of gravity field models mainly from a numerical point of indirect view. Moreover, requirement for higher accuracy and resolution gravity field models could make the computation more difficult, and serious numerical instabilities arise. In order to overcome the problems, this study focuses on constructing a direct relationship between power spectral density of the satellite gravimetry measurements and coefficients of the Earth's gravity potential. Based on two-dimensional Fourier transform, the relationship is analytically concluded. By taking advantage of the analytical expression, it is efficient and distinct for parameter estimation and error analysis of missions. From the relationship and the simulations, it is analytically confir...

  12. Soil salinity detection from satellite image analysis: an integrated approach of salinity indices and field data.

    Science.gov (United States)

    Morshed, Md Manjur; Islam, Md Tazmul; Jamil, Raihan

    2016-02-01

    This paper attempts to detect soil salinity from satellite image analysis using remote sensing and geographic information system. Salinity intrusion is a common problem for the coastal regions of the world. Traditional salinity detection techniques by field survey and sampling are time-consuming and expensive. Remote sensing and geographic information system offer economic and efficient salinity detection, monitoring, and mapping. To predict soil salinity, an integrated approach of salinity indices and field data was used to develop a multiple regression equation. The correlations between different indices and field data of soil salinity were calculated to find out the highly correlated indices. The best regression model was selected considering the high R (2) value, low P value, and low Akaike's Information Criterion. About 20% variation was observed between the field data and predicted EC from the satellite image analysis. The precision of this salinity detection technique depends on the accuracy and uniform distribution of field data.

  13. Use of the Comprehensive Inversion method for Swarm satellite data analysis

    DEFF Research Database (Denmark)

    Sabaka, T. J.; Tøffner-Clausen, Lars; Olsen, Nils

    2013-01-01

    An advanced algorithm, known as the “Comprehensive Inversion” (CI), is presented for the analysis of Swarm measurements to generate a consistent set of Level-2 data products to be delivered by the Swarm “Satellite Constellation Application and Research Facility” (SCARF) to the European Space Agen...... data from a full simulation of the Swarm mission, where it is found to significantly exceed all mandatory and most target accuracy requirements....

  14. Analysis of Standards Efficiency in Digital Television Via Satellite at Ku and Ka Bands

    Directory of Open Access Journals (Sweden)

    Landeros-Ayala Salvador

    2013-06-01

    Full Text Available In this paper, an analysis on the main technical features of digital television standards for satellite transmission is carried out. Based on simulations and link budgets, the standard with the best operational performance is defined, based on simulations and link budget analysis, as well as a comparative efficiency analysis is conducted for the Ku and Ka bands for both transparent and regenerative transponders in terms of power, bandwidth, information rate and link margin, including clear sky, uplink rain, downlink rain and rain in both.

  15. Environmental Assessment for the Advanced Extremely High Frequency Satellite Beddown and Deployment Program

    Science.gov (United States)

    2010-07-01

    Fish and Wildlife Service Advanced Extremely High Frequency Satellite Final Environmental Assessment v VIF Vehicle Integration Facility WMO World...Vehicle Mate Operations Upon arrival on CCAFS, the transporter would take the encapsulated payload to the Vehicle Integration Facility ( VIF ), which...is located just south of LC-41 (Figure 2-2). At the VIF , the encapsulated payload would be mated to the Atlas V Launch Vehicle (LV) using a mobile

  16. Time and frequency requirement for the earth and ocean physics applications program. [characteristics and orbital mechanics of artificial satellites for data acquisition

    Science.gov (United States)

    Vonbun, F. O.

    1972-01-01

    The application of time and frequency standards to the Earth and Ocean Physics Applications Program (EOPAP) is discussed. The goals and experiments of the EOPAP are described. Methods for obtaining frequency stability and time synchronization are analyzed. The orbits, trajectories, and characteristics of the satellites used in the program are reported.

  17. Energy Analysis Program 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, ``Energy Efficiency, Developing Countries, and Eastern Europe,`` part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program`s researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings.

  18. Automated Astrometric Analysis of Satellite Observations using Wide-field Imaging

    Science.gov (United States)

    Skuljan, J.; Kay, J.

    2016-09-01

    An observational trial was conducted in the South Island of New Zealand from 24 to 28 February 2015, as a collaborative effort between the United Kingdom and New Zealand in the area of space situational awareness. The aim of the trial was to observe a number of satellites in low Earth orbit using wide-field imaging from two separate locations, in order to determine the space trajectory and compare the measurements with the predictions based on the standard two-line elements. This activity was an initial step in building a space situational awareness capability at the Defence Technology Agency of the New Zealand Defence Force. New Zealand has an important strategic position as the last land mass that many satellites selected for deorbiting pass before entering the Earth's atmosphere over the dedicated disposal area in the South Pacific. A preliminary analysis of the trial data has demonstrated that relatively inexpensive equipment can be used to successfully detect satellites at moderate altitudes. A total of 60 satellite passes were observed over the five nights of observation and about 2600 images were collected. A combination of cooled CCD and standard DSLR cameras were used, with a selection of lenses between 17 mm and 50 mm in focal length, covering a relatively wide field of view of 25 to 60 degrees. The CCD cameras were equipped with custom-made GPS modules to record the time of exposure with a high accuracy of one millisecond, or better. Specialised software has been developed for automated astrometric analysis of the trial data. The astrometric solution is obtained as a two-dimensional least-squares polynomial fit to the measured pixel positions of a large number of stars (typically 1000) detected across the image. The star identification is fully automated and works well for all camera-lens combinations used in the trial. A moderate polynomial degree of 3 to 5 is selected to take into account any image distortions introduced by the lens. A typical RMS

  19. Theoretical analysis and numerical solution of laser pulse transformation for satellite laser ranging

    Institute of Scientific and Technical Information of China (English)

    FAN; Jianxing

    2001-01-01

    [1]Yang Fumin,Xiao Chikun,Chen Wanzhen et al.,Design and observations of satellite laser ranging system for daylight tracking at Shanghai Observatory,Science in China,Series A,1999,42(2):198-206.[2]Degnan,J.,Effects of detection threshold and signal strength on lageos range bias,Proceedings of Ninth International Workshop on Laser Ranging Instrumentation,1994,3:920-925.[3]Degnan,J.,Satellite laser ranging:current status and future prospects,IEEE Transactions on Geoscience and Remote Sensing,1985,GE-23(4):398-413.[4]Degnan,J.,Millimeter accuracy satellites for two color ranging,Proceedings of Eighth International Workshop on Laser Ranging Instrumentation,1992,7:36-51.[5]Neubert,R.,An analytical model of satellite signature effects,Proceedings of Ninth International Workshop on Laser Ranging Instrumentation,1994,1:82-91.[6]Si Yu,Li Yaowu,Application of Probability and Math-Physics Statistics (in Chinese),Xi'an:Xi'an Jiaotong University Press,1997,48-49.[7]Li Huxi,Jiang Hong,Matlab Step by Step[M](in Chinese),Shanghai:Shanghai Jiaotong University Press,1997,91-93[8]Si Suo,Mathcad 7.0 Practice Course (in Chinese),Beijing:The People's Post & Communication Press,1998,126-127.[9]Xi Meicheng,Methods of Numerical Analysis (in Chinese),Hefei:University of Science and Technology of China Press,1995,123-134.[10]Fan Jianxing,Yang Fumin,Chen Qixiu,The CoM model of satellite signature for laser ranging,Acta Photonica Sinica (in Chinese),2000,29(11):1012-1016.[11]Lu Dajin,Random Process & Its Application (in Chinese),Beijing:Tsinghua University Press,1986,133-137.

  20. Real-Time Application of Multi-Satellite Precipitation Analysis for Floods and Landslides

    Science.gov (United States)

    Adler, Robert; Hong, Yang; Huffman, George

    2007-01-01

    Satellite data acquired and processed in real time now have the potential to provide the spacetime information on rainfall needed to monitor flood and landslide events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models and landslide algorithms. Progress in using the TRMM Multi-satellite Precipitation Analysis (TMPA) as input to flood and landslide forecasts is outlined, with a focus on understanding limitations of the rainfall data and impacts of those limitations on flood/landslide analyses. Case studies of both successes and failures will be shown, as well as comparison with ground comparison data sets-- both in terms of rainfall and in terms of flood/landslide events. In addition to potential uses in real-time, the nearly ten years of TMPA data allow retrospective running of the models to examine variations in extreme events. The flood determination algorithm consists of four major components: 1) multi-satellite precipitation estimation; 2) characterization of land surface including digital elevation from NASA SRTM (Shuttle Radar Terrain Mission), topography-derived hydrologic parameters such as flow direction, flow accumulation, basin, and river network etc.; 3) a hydrological model to infiltrate rainfall and route overland runoff; and 4) an implementation interface to relay the input data to the models and display the flood inundation results to potential users and decision-makers, In terms of landslides, the satellite rainfall information is combined with a global landslide susceptibility map, derived from a combination of global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a weighted linear combination approach. In those areas identified as "susceptible" (based on the surface characteristics), landslides are forecast where and when a rainfall intensity/duration threshold is exceeded. Results are described

  1. Static Analysis of Mobile Programs

    Science.gov (United States)

    2017-02-01

    PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air...and then use static analysis to verify them. In the end we pursued this idea successfully for several differnet properties and developed novel...difficult to develop with enough precision. In [3], we establish a connection between compositional analyses and modular lattices, which require

  2. Energy Analysis Program 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, Energy Efficiency, Developing Countries, and Eastern Europe,'' part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program's researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings.

  3. Analysis of stability boundaries of satellite's equilibrium attitude in a circular orbit

    Science.gov (United States)

    Novikov, M. A.

    2016-03-01

    An asymmetric satellite equipped with control momentum gyroscopes (CMGs) with the center of mass of the system moving uniformly in a circular orbit was considered. The stability of a relative equilibrium attitude of the satellite was analyzed using Lyapunov's direct method. The Lyapunov function V is a positive definite integral of the total energy of the perturbed motion of the system. The asymptotic stability analysis of the stationary motion of the conservative system was based on the Barbashin-Krasovskii theorem on the nonexistence of integer trajectories of the set dot V, which was obtained using the differential equations of motion of the satellite with CMGs. By analyzing the sign definiteness of the quadratic part of V, it was found earlier by V.V. Sazonov that the stability region is described by four strict inequalities. The asymptotic stability at the stability boundary was analyzed by sequentially turning these inequalities into equalities with terms of orders higher than the second taken into account in V. The sign definiteness analysis of the inhomogeneous function V at the stability boundary involved a huge amount of computations related to the multiplication, expansion, substitution, and factorization of symbolic expressions. The computations were performed by applying a computer algebra system on a personal computer.

  4. Optimization and Feasibility Analysis of Satellite Earth Station Power System Using Homer

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available Satellite earth stations which located in remote areas are one of many applications powered by the renewable energy sources. Ground system consists of ground station and control centers working together to support the spacecraft and the data user. Earth station consists of major subsystems, transmitter, receiver, antenna, tracking equipment, terrestrial interface equipment and power supply. Power subsystem is an important part that required for supplying the earth station with electrical power to continue communicating with its remote sensing satellite. This paper deals with simulation and optimal sizing of earth station power system using HOMER software. A combination of two energy sources (solar, and wind to provide a continuous electric power production is used to determine the optimum system operation. Three system configurations are compared with respect to the total net present cost (NPC and levelized cost of energy (COE. Also, economical study will be analyzed for energy demand and sensitivity analysis will be performed.

  5. Coherent receiving efficiency in satellite-ground coherent laser communication system based on analysis of polarization

    Science.gov (United States)

    Hao, Shiqi; Zhang, Dai; Zhao, Qingsong; Wang, Lei; Zhao, Qi

    2017-06-01

    Aimed at analyzing the coherent receiving efficiency of a satellite-ground coherent laser communication system, polarization state of the received light is analyzed. We choose the circularly polarized, partially coherent laser as transmitted light source. The analysis process includes 3 parts. Firstly, an theoretical model to analyze received light's polarization state is constructed based on Gaussian-Schell model (GSM) and cross spectral density function matrix. Then, analytic formulas to calculate coherent receiving efficiency are derived in which both initial ellipticity modification and deflection angle between polarization axes of the received light and the intrinsic light are considered. At last, numerical simulations are operated based on our study. The research findings investigate variations of polarization state and obtain analytic formulas to calculate the coherent receiving efficiency. Our study has theoretical guiding significances in construction and optimization of satellite-ground coherent laser communication system.

  6. Preliminary analysis of habitat utilization by woodland caribou in northwestern Ontario using satellite telemetry

    Directory of Open Access Journals (Sweden)

    T.L. Hillis

    1998-03-01

    Full Text Available Locational data collected over a one year period from 10 female woodland caribou, Rangifer tarandus caribou, collared with Argos satellite collars in northwestern Ontario, Canada were superimposed on supervised Landsat images using Geographical Information System (GIS technology. Landscape parameters, land cover classifications, and drainage were utilized to create the basemap. Using ARCVIEW software, all digital fixes from collared caribou with information of date, time, and activity status were overlain on the basemap to facilitate a preliminary analysis of habitat use in this species. Results supported the conclusions (1 that woodland caribou in northwestern Ontario select habitats containing high to moderate conifer cover and avoided disturbed areas and shrub-rich habitats, (2 that seasonal changes in habitat utilization occurs in females of this species, and (3 that satellite telemetry technology can be employed in the boreal forest ecosystem to assess habitat utilization by large ungulate species.

  7. Optimization and Feasibility Analysis of Satellite Earth Station Power System Using Homer

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available Satellite earth stations which located in remote areas are one of many applications powered by the renewable energy sources. Ground system consists of ground station and control centers working together to support the spacecraft and the data user. Earth station consists of major subsystems, transmitter, receiver, antenna, tracking equipment, terrestrial interface equipment and power supply. Power subsystem is an important part that required for supplying the earth station with electrical power to continue communicating with its remote sensing satellite. This paper deals with simulation and optimal sizing of earth station power system using HOMER software. A combination of two energy sources (solar, and wind to provide a continuous electric power production is used to determine the optimum system operation. Three system configurations are compared with respect to the total net present cost (NPC and levelized cost of energy (COE. Also, economical study will be analyzed for energy demand and sensitivity analysis will be performed.

  8. Space debris proximity analysis in powered and orbital phases during satellite launch

    Science.gov (United States)

    Bandyopadhyay, Priyankar; Sharma, R. K.; Adimurthy, V.

    2004-01-01

    This paper describes the methodology of the space debris proximity analysis in powered and orbital phase at the time of a satellite launch. The details of the SPADEPRO analysis package, developed for this purpose, are presented. It consists of modules which provide the functions related to ephemeris generation and reconstruction of primary object (launch vehicle or its payload upon insertion), determination of close approaches with resident space objects, computation of the state vector variance of the primary and the secondary objects to represent the knowledge uncertainty, and computation of the collision risk given the variance. This has been successfully applied during the recent launches of the Indian Space Research Organization.

  9. Monitoring of environmental change in Dzungar basin by the analysis of multi temporal satellite data sets

    Science.gov (United States)

    Nakayama, Y.; Yanagi, T.; Nishimura, J.

    In recent 40-50 years, rapid environmental changes are shown in the arid and semi-arid regions of the inland areas in each continent. The environment change situation is especially remarkable at closed lakes and their vicinity of the Asian continent inland. This study aimed to investigate the environmental change and its cause in Dzungar basin of the central Asia through the analysis of multi-temporal satellite data sets. The multi temporal and multi stage satellite data sets were firstly created by using high spatial resolution satellite data such as LANDSAT/MSS TM, Terra/ASTER, and JERS-1/OPS, and wide observation satellite data such as NOAA/AVHRR and Terra/MODIS. Next, the fluctuations of the past about 50 years in water area of lakes were investigated in detail by analyzing the data sets, and also changes in the irrigated agricultural lands along the inflow rivers, and the snow and glacier covering the mountainous district were investigated. Finally, hydrological change situation and its cause in the object area were examined by comparing the analyzed results with meteorological data and auxiliary sources. The results of this study are summarized as follows; Most of closed lakes in Dzungar basin have shown the rapid shrinkages in the past about 50 years. However, it changed into the remarkable expansion of the water area since 2001. According to the analysis results of changes in the irrigated agricultural lands, snow and glacier extents, it was shown that the influence of human activities such as development of irrigation lands was bigger than the influence of the nature fluctuation based on the global warming as a cause of the change in closed lakes.

  10. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites........ The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...

  11. TC-2 Satellite Delivered

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    On April 18, 2005, TC-2, the second satellite of Double Star Program (DSP), which was jointly developed by CNSA and ESA, was approved to be delivered to the user after the on-board test and trial operation. The satellite is working well and the performance can meet the user's need. The satellite has collected large amount of valuable scientific data

  12. An experimental analysis for the impact of 3D variation assi- milation of satellite data on typhoon track simulation

    Institute of Scientific and Technical Information of China (English)

    XIE Hongqin; WU Zengmao; GAO Shanhong

    2004-01-01

    A series of test simulations are performed to evaluate the impact of satellite-derived meteorological data on numerical typhoon track prediction. Geostationary meteorological satellite (GMS-5) and NOAA's TIROS operational vertical sounder (TOVS) observations are used in the experiments. A three-dimensional variational (3D-Var) assimilation scheme is developed to assimilate the satellite data directly into the Penn State-NCAR nonhydrostatic meteorological model (MM5). Three-dimensional objective analysis fields based on the T213 results and conventional observations are employed as the background fields of the initialization. The comparisons of the simulated typhoon tracks are carried out, which correspond respectively to assimilate different kinds of satellite data. It is found that, compared with the experiment without satellite data assimilation, the 3D-Var assimilation schemes lead to significant improvements on typhoon track prediction. Track errors reduce from approximately 25% at 24 h to approximately 30% at 48 h for 3D-Var assimilation experiments.

  13. Energy analysis program, FY 1979

    Science.gov (United States)

    1980-04-01

    Energy analysis attempts to understand the volitional choices of energy use and supply available to human society, and the multi-faceted consequences of choosing any one of them. Topics deal with economic impacts; assessments of regional issues and impacts; air quality evaluation; institutional and political issues in California power plant siting; assessment of environmental standards; water issues; characterization of aquatic systems dissolved oxygen profiles; modeling; computer-generated interactive graphics; energy assessment in Hawaii; solar energy in communities; utilities solar financial data; population impacts of geothermal development; energy conservation in colleges and residential sectors; energy policy; decision making; building energy performance standards; standards for residential appliances; and impact of energy performance standards on demand for peak electrical energy.

  14. Space station interior noise analysis program

    Science.gov (United States)

    Stusnick, E.; Burn, M.

    1987-02-01

    Documentation is provided for a microcomputer program which was developed to evaluate the effect of the vibroacoustic environment on speech communication inside a space station. The program, entitled Space Station Interior Noise Analysis Program (SSINAP), combines a Statistical Energy Analysis (SEA) prediction of sound and vibration levels within the space station with a speech intelligibility model based on the Modulation Transfer Function and the Speech Transmission Index (MTF/STI). The SEA model provides an effective analysis tool for predicting the acoustic environment based on proposed space station design. The MTF/STI model provides a method for evaluating speech communication in the relatively reverberant and potentially noisy environments that are likely to occur in space stations. The combinations of these two models provides a powerful analysis tool for optimizing the acoustic design of space stations from the point of view of speech communications. The mathematical algorithms used in SSINAP are presented to implement the SEA and MTF/STI models. An appendix provides an explanation of the operation of the program along with details of the program structure and code.

  15. Radial diffusion in Saturn's radiation belts - A modeling analysis assuming satellite and ring E absorption

    Science.gov (United States)

    Hood, L. L.

    1983-01-01

    A modeling analysis is carried out of six experimental phase space density profiles for nearly equatorially mirroring protons using methods based on the approach of Thomsen et al. (1977). The form of the time-averaged radial diffusion coefficient D(L) that gives an optimal fit to the experimental profiles is determined under the assumption that simple satellite plus Ring E absorption of inwardly diffusing particles and steady-state radial diffusion are the dominant physical processes affecting the proton data in the L range that is modeled. An extension of the single-satellite model employed by Thomsen et al. to a model that includes multisatellite and ring absorption is described, and the procedures adopted for estimating characteristic satellite and ring absorption times are defined. The results obtained in applying three representative solid-body absorption models to evaluate D(L) in the range where L is between 4 and 16 are reported, and a study is made of the sensitivity of the preferred amplitude and L dependence for D(L) to the assumed model parameters. The inferred form of D(L) is then compared with that which would be predicted if various proposed physical mechanisms for driving magnetospheric radial diffusion are operative at Saturn.

  16. Local high-resolution crustal magnetic field analysis from satellite data

    Science.gov (United States)

    Plattner, Alain; Simons, Frederik J.

    2016-04-01

    Planetary crustal magnetic fields are key to understanding a planet or moon's structure and history. Due to satellite orbit parameters such as aerobraking (Mars) or only partial coverage (Mercury), or simply because of the strongly heterogeneous crustal field strength, satellite data of planetary magnetic fields vary regionally in their signal-to noise ratio and data coverage. To take full advantage of data quality within one region of a planet or moon without diluting the data with lower quality measurements outside of that region we resort to local methods. Slepian functions are linear combinations of spherical harmonics that provide local sensitivity to structure. Here we present a selection of crustal magnetic field models obtained from vector-valued variable-altitude satellite observations using an altitude-cognizant gradient-vector Slepian approach. This method is based on locally maximizing energy concentration within the region of data availability while simultaneously bandlimiting the model in terms of its spherical-harmonic degree and minimizing noise amplification due to downward continuation. For simple regions such as spherical caps, our method is computationally efficient and allows us to calculate local crustal magnetic field solutions beyond spherical harmonic degree 800, if the data permit. We furthermore discuss extensions of the method that are optimized for the analysis and separation of internal and external magnetic fields.

  17. Classification of mangroves vegetation species using texture analysis on Rapideye satellite imagery

    Science.gov (United States)

    Roslani, M. A.; Mustapha, M. A.; Lihan, T.; Juliana, W. A. Wan

    2013-11-01

    Mangroves are unique ecosystem structures that are typically made up of salt tolerant species of vegetation that can be found in tropical and subtropical climate country. Mangrove ecosystem plays important role and also is known as highly productive ecosystem with high diversity of flora and fauna. However, these ecosystems have been declining over time due to the various kinds of direct and indirect pressures. Thus, there is an increasing need to monitor and assess this ecosystem for better conservation and management efforts. The multispectral RapidEye satellite image was used to identify the mangrove vegetation species within the Matang Mangrove Forest Reserve in Perak, Malaysia using texture analysis. Classification was implemented using the maximum likelihood classifier (MLC) method. Total of eleven main mangrove species were found in the satellite image of the study site which includes Rhizophora mucronata, Rhizophora apiculata, Bruguiera parviflora, Bruguiera cylindrica, Bruguiera gymnorrhiza, Avicennia alba, Avicennia officinalis, Sonneratia alba, Sonneratia caseolaris, Sonneratia ovata and Xylocarpus granatum. The classification results showed that the textured image produced high overall classification assessment recorded at 84% and kappa statistic of 0.8016. Meanwhile, the non-textured image produces 80% of overall accuracy and kappa statistic of 0.7061. The classification result indicated the capability of high resolution satellite image to classify the mangrove species and inclusion of texture information in the classification increased the classification accuracy.

  18. Inter-satellite coherent optical communication locked frequency analysis and method

    Science.gov (United States)

    Guo, Haichao; She, Shang; Xiaojun, Li; Song, Dawei

    2014-10-01

    In free space optical homodyne receiver that analyze Residual carrier COSTAS loop, Inter-satellite LEO-GEO laser communication link frequency analysis, result from Doppler frequency shift 10GHz in the maximum range, LEO-GEO inter-satellite laser links between Doppler rate of change in the 20MHz/s. The optical homodyne COSTAS receiver is the application in inter-satellite optical link coherent communication system. The homodyne receiver is the three processes: Scanning frequency, Locked frequency and Locked phase, before the homodyne coherent communication. The processes are validated in lab., and the paper presents the locked frequency data and chart, LO laser frequency with triangle control scanning and receiving optical frequency is mixed less 100MHz intermediate frequency, locked frequency range between 100MHz and 1MHz basically, discriminator method determines mixing intermediate frequency less 1MHz between the signal laser and the LO laser with the low-pass filter due to frequency loop and phase loop noise. When two loops are running, the boundary frequency of laser tuning is fuzzy, so that we must be decoupling internal PID parameters. In the Locked frequency and phase COSTAS loop homodyne receiver gave the eye-diagram with Bit error rate 10E-7.

  19. PERFORMANCE ANALYSIS AND SIMULATION OF VARIOUS BURST TIME PLAN GENERATION METHODS IN BROADBAND SATELLITE MULTIMEDIA SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Feng Shaodong; Li Guangxia; Feng Qi

    2011-01-01

    The Burst Time Plan (BTP) generation is the key for resource allocation in Broadband Satellite Multimedia (BSM) system.The main purpose of this paper is to minimize the system response time to users' request caused by BTP generation as well as maintain the Quality of Service (QoS) and improve the channel utilization efficiency.Traditionally the BTP is generated periodically in order to simplify the implementation of the resource allocation algorithm.Based on the analysis we find that Periodical BTP Generation (P-BTPG) method cannot guarantee the delay performance,channel utilization efficiency and QoS simultaneously,especially when the capacity requests arrived randomly.The Optimized BTP Generation (O-BTPG) method is given based on the optimal scheduling period and scheduling latency without considering the signaling overhead.Finally,a novel Asynchronous BTP Generation (A-BTPG) method is proposed which is invoked according to users' requests.A BSM system application scenario is simulated.Simulation results show that A-BTPG is a trade-off between the performance and signaling overhead which can improve the system performance insensitive to the traffic pattern.This method can be used in the ATM onboard switching satellite system and further more can be expended to Digital Video Broadcasting-Return Channel Satellite (DVB-RCS) system or IP onboard routing BSM system in the future.

  20. Estimating Reliability of Disturbances in Satellite Time Series Data Based on Statistical Analysis

    Science.gov (United States)

    Zhou, Z.-G.; Tang, P.; Zhou, M.

    2016-06-01

    Normally, the status of land cover is inherently dynamic and changing continuously on temporal scale. However, disturbances or abnormal changes of land cover — caused by such as forest fire, flood, deforestation, and plant diseases — occur worldwide at unknown times and locations. Timely detection and characterization of these disturbances is of importance for land cover monitoring. Recently, many time-series-analysis methods have been developed for near real-time or online disturbance detection, using satellite image time series. However, the detection results were only labelled with "Change/ No change" by most of the present methods, while few methods focus on estimating reliability (or confidence level) of the detected disturbances in image time series. To this end, this paper propose a statistical analysis method for estimating reliability of disturbances in new available remote sensing image time series, through analysis of full temporal information laid in time series data. The method consists of three main steps. (1) Segmenting and modelling of historical time series data based on Breaks for Additive Seasonal and Trend (BFAST). (2) Forecasting and detecting disturbances in new time series data. (3) Estimating reliability of each detected disturbance using statistical analysis based on Confidence Interval (CI) and Confidence Levels (CL). The method was validated by estimating reliability of disturbance regions caused by a recent severe flooding occurred around the border of Russia and China. Results demonstrated that the method can estimate reliability of disturbances detected in satellite image with estimation error less than 5% and overall accuracy up to 90%.

  1. Cloud mask via cumulative discriminant analysis applied to satellite infrared observations: scientific basis and initial evaluation

    Directory of Open Access Journals (Sweden)

    U. Amato

    2014-06-01

    Full Text Available We introduce a classification method (Cumulative Discriminant Analysis of the Discriminant Analysis type to discriminate between cloudy and clear sky satellite observations in the thermal infrared. The tool is intended for the high spectral resolution infrared sounder (IRS planned for the geostationary METEOSAT (Meteorological Satellite Third Generation platform and uses IASI (Infrared Atmospheric Sounding Interferometer data as a proxy. The Cumulative Discriminant Analysis does not introduce biases intrinsic with the approximation of the probability density functions and is flexible enough to adapt to different strategies to optimize the cloud mask. The methodology is based on nine statistics computed from IASI spectral radiances, which exploit the high spectral resolution of the instrument and which effectively summarize information contained within the IASI spectrum. A Principal Component Analysis prior step is also introduced which makes the problem more consistent with the statistical assumptions of the methodology. An initial assessment of the scheme is performed based on global and regional IASI real data sets and cloud masks obtained from AVHRR (Advanced Very High Resolution Radiometer and SEVIRI (Spinning Enhanced Visible and Infrared Imager imagers. The agreement with these independent cloud masks is generally well above 80%, except at high latitudes in their winter seasons.

  2. Cloud mask via cumulative discriminant analysis applied to satellite infrared observations: scientific basis and initial evaluation

    Science.gov (United States)

    Amato, U.; Lavanant, L.; Liuzzi, G.; Masiello, G.; Serio, C.; Stuhlmann, R.; Tjemkes, S. A.

    2014-10-01

    We introduce a classification method (cumulative discriminant analysis) of the discriminant analysis type to discriminate between cloudy and clear-sky satellite observations in the thermal infrared. The tool is intended for the high-spectral-resolution infrared sounder (IRS) planned for the geostationary METEOSAT (Meteorological Satellite) Third Generation platform and uses IASI (Infrared Atmospheric Sounding Interferometer) data as a proxy. The cumulative discriminant analysis does not introduce biases intrinsic with the approximation of the probability density functions and is flexible enough to adapt to different strategies to optimize the cloud mask. The methodology is based on nine statistics computed from IASI spectral radiances, which exploit the high spectral resolution of the instrument and which effectively summarize information contained within the IASI spectrum. A principal component analysis prior step is also introduced, which makes the problem more consistent with the statistical assumptions of the methodology. An initial assessment of the scheme is performed based on global and regional IASI real data sets and cloud masks obtained from AVHRR (Advanced Very High Resolution Radiometer) and SEVIRI (Spinning Enhanced Visible and Infrared Imager) imagers. The agreement with these independent cloud masks is generally well above 80 %, except at high latitudes in the winter seasons.

  3. Canadian EHF (28/19 GHz) satellite communication terminals for the Olympus program

    Science.gov (United States)

    Pike, C. J.; Bradley, D. R.; Hindson, D. J. M.

    Researchers at the Communications Research Center (CRC) are actively developing extremely high frequency (EHF) technology for the development of the Olympus satellite terminals. The specifications and performance evaluation of the terminals are presented from the radio frequency (RF) perspective as well as the digital approach using 70 MHz modems. Terminals constructed at CRC will be used to conduct experiments in the areas of rain fade countermeasures using an adaptive data rate transmission technique, in on-board processing (OBP) that will be demonstrated in a double-hop configuration using a surface acoustic wave demodulator, and in other user trials related to tele-education, and tele-medicine. Phase shift keyed (PSK) modems will be used for the rain fade countermeasures experiment. Terminals will also be used for demonstrations of point-to-point communications applicable to private business, tele-education and tele-medicine networks.

  4. Use of the Advanced Communications Technology Satellite to Promote International Distance Education Programs for Georgetown University

    Science.gov (United States)

    Bradley, Harold; Kauffman, Amy

    1996-01-01

    Georgetown's distance education program is designed to demonstrate to faculty and administrators the feasibility and desirability of using two-way video transmission for international education. These programs will extend the reach of Georgetown's educational offerings; enrich the curriculum and content of Georgetown's offerings by interaction with institutions in other nations; enhance the world view of the School of Business Administration; enable Georgetown to share its resources with other institutions outside of the United States; and promote Commerce within the Americas. The primary reason for this pilot program is to evaluate the effectiveness and economic viability of offering academic courses and Small Business Development training.

  5. A Virtual Environment for Satellite Modeling and Orbital Analysis in a Distributed Interactive Simulation

    Science.gov (United States)

    1993-12-01

    center of mass to the center of the earth. Interactive modification of the heading or pitch components of satellite orientation is not factored in to... satellite orientation and orientation by simulating thruster-firing activities. Both systems accept actual satellite telemetry for propagating models in the...model by applying rigid body dynamics. Model satellite sensor capabilities to determine FOV. Process actual satellite orientation data. _ __ Incorporate

  6. SIMS analysis: Development and evaluation program summary

    Energy Technology Data Exchange (ETDEWEB)

    Groenewold, G.S.; Appelhans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1996-11-01

    This report provides an overview of the ``SIMS Analysis: Development and Evaluation Program``, which was executed at the Idaho National Engineering Laboratory from mid-FY-92 to the end of FY-96. It should be noted that prior to FY-1994 the name of the program was ``In-Situ SIMS Analysis``. This report will not go into exhaustive detail regarding program accomplishments, because this information is contained in annual reports which are referenced herein. In summary, the program resulted in the design and construction of an ion trap secondary ion mass spectrometer (IT-SIMS), which is capable of the rapid analysis of environmental samples for adsorbed surface contaminants. This instrument achieves efficient secondary ion desorption by use of a molecular, massive ReO{sub 4}{sup {minus}} primary ion particle. The instrument manages surface charge buildup using a self-discharging principle, which is compatible with the pulsed nature of the ion trap. The instrument can achieve high selectivity and sensitivity using its selective ion storage and MS/MS capability. The instrument was used for detection of tri-n-butyl phosphate, salt cake (tank cake) characterization, and toxic metal speciation studies (specifically mercury). Technology transfer was also an important component of this program. The approach that was taken toward technology transfer was that of component transfer. This resulted in transfer of data acquisition and instrument control software in FY-94, and ongoing efforts to transfer primary ion gun and detector technology to other manufacturers.

  7. Geosynchronous Earth Orbit/Low Earth Orbit Space Object Inspection and Debris Disposal: A Preliminary Analysis Using a Carrier Satellite With Deployable Small Satellites

    OpenAIRE

    Crockett, Derick A.

    2013-01-01

    Detailed observations of geosynchronous satellites from earth are very limited. To better inspect these high altitude satellites, the use of small, refuelable satellites is proposed. The small satellites are stationed on a carrier platform in an orbit near the population of geosynchronous satellites. A carrier platform equipped with deployable, refuelable SmallSats is a viable option to inspect geosynchronous satellites. The propellant requirement to transfer to a targeted geosynchronous sate...

  8. Analysis of Satellite-Based Navigation Signal Reflectometry: Simulations and Observations

    DEFF Research Database (Denmark)

    von Benzon, Hans-Henrik; Høeg, Per; Durgonics, Tibor

    2016-01-01

    A new wave propagator that can be used to simulate global navigation satellite systems reflected signals from ocean surfaces is presented. The wave propagator simulates the characteristics of a bistatic scattering system. Simulated GPS ocean surface reflections will be presented and discussed based...... on the Hawaiian island of Maui. The GPS receiver was during the experiments running in an open-loop configuration. The analysis of both the simulated surface-reflection signals and the measured reflection signals will in general reveal spectral structures of the reflected signals that can lead to extraction...

  9. Counter Trafficking System Development "Analysis Training Program"

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Dennis C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-12-01

    This document will detail the training curriculum for the Counter-Trafficking System Development (CTSD) Analysis Modules and Lesson Plans are derived from the United States Military, Department of Energy doctrine and Lawrence Livermore National Laboratory (LLNL), Global Security (GS) S Program.

  10. Multi Resolution Analysis (MRA of satellite images of oil spill disasters

    Directory of Open Access Journals (Sweden)

    Rashid Hussain

    2014-09-01

    Full Text Available Oil spill disasters monitoring and mitigation requires availability of state of the art applications and tools. Conventional technology gets benefit from latest trends and research in satellite imaginary. This research highlights multi-resolution wavelet analysis of satellite images of oil spill disasters. Multi-resolution analysis is one of the powerful techniques to analyze information content of images. This analysis enables us to have a scale-invariant interpretation of the image. At each resolution level, both smooth and detailed signals carry all the necessary information to reconstruct the smooth signal at the next level. The wavelet decomposition results in detail and approximate threshold coefficients. Multi resolution wavelet decomposition is used to analyze the image in both time and frequency domain. It provides better frequency resolution and poor time resolution for lower frequency; better time resolution and poor frequency resolution for higher frequency. This condition is fortunately suited for real applications; as signals have high frequency components for very short period of the interval and low frequency components for longer durations.

  11. A Mathematical Modeling Approach of the Failure Analysis for the Real-Time Mexican Satellite Space Launch Center

    OpenAIRE

    Omar Ariosto Niño Prieto; Luis Enrique Colmenares Guillén

    2015-01-01

    In this paper, a simulation of the Mathematical Model for Real-Time Satellite Launch Platform approach in Mexico is presented. Mexico holds the fourth best place in the world for building a platform to launch space satellites, since its geographic location is optimal for its construction. It is essential to have the Probabilistic Failure Analysis in Space Systems Engineering from its design, in order to minimize risks and avoid any possible catastrophe. The mathematical approach o...

  12. Geopotential Error Analysis from Satellite Gradiometer and Global Positioning System Observables on Parallel Architecture

    Science.gov (United States)

    Schutz, Bob E.; Baker, Gregory A.

    1997-01-01

    The recovery of a high resolution geopotential from satellite gradiometer observations motivates the examination of high performance computational techniques. The primary subject matter addresses specifically the use of satellite gradiometer and GPS observations to form and invert the normal matrix associated with a large degree and order geopotential solution. Memory resident and out-of-core parallel linear algebra techniques along with data parallel batch algorithms form the foundation of the least squares application structure. A secondary topic includes the adoption of object oriented programming techniques to enhance modularity and reusability of code. Applications implementing the parallel and object oriented methods successfully calculate the degree variance for a degree and order 110 geopotential solution on 32 processors of the Cray T3E. The memory resident gradiometer application exhibits an overall application performance of 5.4 Gflops, and the out-of-core linear solver exhibits an overall performance of 2.4 Gflops. The combination solution derived from a sun synchronous gradiometer orbit produce average geoid height variances of 17 millimeters.

  13. Global, Persistent, Real-time Multi-sensor Automated Satellite Image Analysis and Crop Forecasting in Commercial Cloud

    Science.gov (United States)

    Brumby, S. P.; Warren, M. S.; Keisler, R.; Chartrand, R.; Skillman, S.; Franco, E.; Kontgis, C.; Moody, D.; Kelton, T.; Mathis, M.

    2016-12-01

    Cloud computing, combined with recent advances in machine learning for computer vision, is enabling understanding of the world at a scale and at a level of space and time granularity never before feasible. Multi-decadal Earth remote sensing datasets at the petabyte scale (8×10^15 bits) are now available in commercial cloud, and new satellite constellations will generate daily global coverage at a few meters per pixel. Public and commercial satellite observations now provide a wide range of sensor modalities, from traditional visible/infrared to dual-polarity synthetic aperture radar (SAR). This provides the opportunity to build a continuously updated map of the world supporting the academic community and decision-makers in government, finanace and industry. We report on work demonstrating country-scale agricultural forecasting, and global-scale land cover/land, use mapping using a range of public and commercial satellite imagery. We describe processing over a petabyte of compressed raw data from 2.8 quadrillion pixels (2.8 petapixels) acquired by the US Landsat and MODIS programs over the past 40 years. Using commodity cloud computing resources, we convert the imagery to a calibrated, georeferenced, multiresolution tiled format suited for machine-learning analysis. We believe ours is the first application to process, in less than a day, on generally available resources, over a petabyte of scientific image data. We report on work combining this imagery with time-series SAR collected by ESA Sentinel 1. We report on work using this reprocessed dataset for experiments demonstrating country-scale food production monitoring, an indicator for famine early warning. We apply remote sensing science and machine learning algorithms to detect and classify agricultural crops and then estimate crop yields and detect threats to food security (e.g., flooding, drought). The software platform and analysis methodology also support monitoring water resources, forests and other general

  14. Program on stimulating operational private sector use of Earth observation satellite information

    Science.gov (United States)

    Eastwood, L. F., Jr.; Foshage, J.; Gomez, G.; Kirkpatrick, B.; Konig, B.; Stein, R. (Principal Investigator)

    1981-01-01

    Ideas for new businesses specializing in using remote sensing and computerized spatial data systems were developd. Each such business serves as an 'information middleman', buying raw satellite or aircraft imagery, processing these data, combining them in a computer system with customer-specific information, and marketing the resulting information products. Examples of the businesses the project designed are: (1) an agricultural facility site evaluation firm; (2) a mass media grocery price and supply analyst and forecaster; (3) a management service for privately held woodlots; (4) a brokerage for insulation and roofing contractors, based on infrared imagery; (5) an expanded real estate information service. In addition, more than twenty-five other commercially attractive ideas in agribusiness, forestry, mining, real estate, urban planning and redevelopment, and consumer information were created. The commercial feasibility of the five business was assessed. This assessment included market surveys, revenue projections, cost analyses, and profitability studies. The results show that there are large and enthusiastic markets willing to pay for the services these businesses offer, and that the businesses could operate profitably.

  15. Spatial and temporal variations of albedo and absorbed solar radiation during 2009 - 2016 from IKOR-M satellite program

    Science.gov (United States)

    Cherviakov, Maksim; Bogdanov, Mikhail; Spiryakhina, Anastasia; Shishkina, Elena; Surkova, Yana; Kulkova, Eugenia

    2017-04-01

    This report describes Earth's radiation budget IKOR-M satellite program which has been started in Russia. The first satellite "Meteor-M» No 1 of this project was put into orbit in September, 2009. The IKOR-M radiometer is a satellite instrument that measures reflected shortwave radiation (0.3-4.0 µm). It was created in Saratov State University and installed on Russian hydrometeorological satellites "Meteor-M" No 1 and No 2. Radiometer IKOR-M designed for satellite monitoring of the outgoing reflected short-wave radiation, which is one of the components of Earth's radiation budget. Such measurements can be used to derive Earth's surface albedo and absorbed solar radiation. This information also can be used in different models of long-term weather forecasts and in researches of climate change trends (Sklyarov et al., 2016). Satellite "Meteor-M" No 1 and No 2 are heliosynchronous that allows observing from North to South Poles. The basic products of data processing are given in the form of global maps of distribution outgoing short-wave radiation (OSR), albedo and absorbed solar radiation (ASR). Such maps were made for each month during observation period. The IKOR-M product archive is available online at all times. A searchable catalogue of data products is continually updated and users may search and download data products via the Earth radiation balance components research laboratory website (http://www.sgu.ru/structure/geographic/metclim/balans) as soon as they become available. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October, 2009 to August, 2014 and second - from August, 2014 to the present. Therefore, there is a period when both radiometers work at the same time. Top-of-atmosphere fluxes deduced from the "Meteor-M" No 1 measurements in August, 2014 show very good agreement with the fluxes determined from "Meteor-M" No 2 (Bogdanov et al., 2016). The effect of aging is investigated for first IKOR

  16. Efficient Global Programming Model for Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    M.ANGULAKSHMI

    2011-03-01

    Full Text Available Conventional statistical analysis includes the capacity to systematically assign individuals to groups. We suggest alternative assignment procedures, utilizing a set of interrelated goal programming formulations. This paper represents an effort to suggest ways by which the discriminant problem might reasonably be addressed via straightforward linear goal programming formulations. Simple and direct, such formulations may ultimately compete with conventional approaches - free of the classical assumptions and possessing a stronger intuitive appeal. We further demonstrate via simple illustration the potential of these procedures to play a significant part in addressing the discriminant problem, and indicate fundamental ideas that lay the foundation for other more sophisticated approaches.

  17. TEST COVERAGE ANALYSIS BASED ON PROGRAM SLICING

    Institute of Scientific and Technical Information of China (English)

    Chen Zhenqiang; Xu Baowen; Guanjie

    2003-01-01

    Coverage analysis is a structural testing technique that helps to eliminate gaps in atest suite and determines when to stop testing. To compute test coverage, this letter proposes anew concept coverage about variables, based on program slicing. By adding powers accordingto their importance, the users can focus on the important variables to obtain higher test coverage.The letter presents methods to compute basic coverage based on program structure graphs. Inmost cases, the coverage obtained in the letter is bigger than that obtained by a traditionalmeasure, because the coverage about a variable takes only the related codes into account.

  18. Static Analysis of Lockless Microcontroller C Programs

    Directory of Open Access Journals (Sweden)

    Eva Beckschulze

    2012-11-01

    Full Text Available Concurrently accessing shared data without locking is usually a subject to race conditions resulting in inconsistent or corrupted data. However, there are programs operating correctly without locking by exploiting the atomicity of certain operations on a specific hardware. In this paper, we describe how to precisely analyze lockless microcontroller C programs with interrupts by taking the hardware architecture into account. We evaluate this technique in an octagon-based value range analysis using access-based localization to increase efficiency.

  19. 76 FR 73601 - Request for Comments on Additional USPTO Satellite Offices for the Nationwide Workforce Program

    Science.gov (United States)

    2011-11-29

    ... various economic factors, including cost of living and unemployment rates of the city. Comments should... the Nationwide Workforce Program The United States Patent and Trademark Office (USPTO) is interested... regions that would best serve the interests of our employees, the USPTO's user community, and America's...

  20. Fully automated extraction and analysis of surface Urban Heat Island patterns from moderate resolution satellite images

    Science.gov (United States)

    Keramitsoglou, I.; Kiranoudis, C. T.

    2012-04-01

    Comparison of thermal patterns across different cities is hampered by the lack of an appropriate methodology to extract the patterns and characterize them. What is more, increased attention by the urban climate community has been expressed to assess the magnitude and dynamics of the surface Urban Heat Island effect and to identify environmental impacts of large cities and "megacities". Motivated by this need, we propose an innovative object-based image analysis procedure to extract thermal patterns for the quantitative analysis of satellite-derived land surface temperature maps. The spatial and thermal attributes associated with these objects are then calculated and used for the analyses of the intensity, the position and the spatial extent of SUHIs. The output eventually builds up and populates a database with comparable and consistent attributes, allowing comparisons between cities as well as urban climate studies. The methodology is demonstrated over the Greater Athens Area, Greece, with more than 3000 LST images acquired by MODIS over a decade being analyzed. The approach can be potentially applied to current and future (e.g. Sentinel-3) level-2 satellite-derived land surface temperature maps of 1km spatial resolution acquired over continental and coastal cities.

  1. Proximity graph analysis for linear networks extraction from high-resolution satellite imagery

    Science.gov (United States)

    Skourikhine, Alexei N.

    2006-05-01

    Reliable and accurate methods for detection and extraction of linear network, such as road networks, in satellite imagery are essential to many applications. We present an approach to the road network extraction from high-resolution satellite imagery that is based on proximity graph analysis. We are jumping off from the classification provided by existing spectral and textural classification tools, which produce a set of candidate road patches. Then, constrained Delaunay triangulation and Chordal Axis transform are used to extract centerline characterization of the delineated candidate road patches. We refine produced center lines to reduce noise influence on patch boundaries, resulting in a smaller set of robust center lines authentically representing their road patches. Refined center lines are triangulated using constrained Delaunay triangulation (CDT) algorithm to generate a sub-optimal mesh of interconnections among them. The generated triangle edges connecting different center lines are used for spatial analysis of the center lines relations. A subset of the Delaunay tessellation grid contains the Euclidian Minimum Spanning Tree (EMST) that provides an approximation of road network. The approach can be generalized to the multi-criteria MST and multi-criteria shortest path algorithms to integrate other factors important for road network extraction, in addition to proximity relations considered by standard EMST.

  2. Meteorological Satellites (METSAT) and Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL)

    Science.gov (United States)

    1996-01-01

    This Failure Modes and Effects Analysis (FMEA) is for the Advanced Microwave Sounding Unit-A (AMSU-A) instruments that are being designed and manufactured for the Meteorological Satellites Project (METSAT) and the Earth Observing System (EOS) integrated programs. The FMEA analyzes the design of the METSAT and EOS instruments as they currently exist. This FMEA is intended to identify METSAT and EOS failure modes and their effect on spacecraft-instrument and instrument-component interfaces. The prime objective of this FMEA is to identify potential catastrophic and critical failures so that susceptibility to the failures and their effects can be eliminated from the METSAT/EOS instruments.

  3. Analysis of Geosynchronous Satellite-air Bistatic SAR Clutter Characteristics from the Point of View of Ground Moving Target Indication

    Directory of Open Access Journals (Sweden)

    Zhang Dan-dan

    2013-09-01

    Full Text Available Under the geometry of geosynchronous satellite-air bistatic SAR where the geosynchronous satellite is the transmitter and aerostat is the receiver, in order to suppress clutter and detect slowly moving target using Space Time Adaptive Processing (STAP, it is necessary to analyze the clutter characteristics. From the point of view of ground moving target indication, the theory model of the clutter characteristics under the geometry of geosynchronous satellite-space bistatic SAR is analyzed and established in this paper; especially, the range-dependence characteristics of the angle-Doppler curve of the clutter is analyzed. Finally, the simulation verifies correctness of the analysis. The theory model and the conclusion in this paper indicates the clutter characteristics of the new geosynchronous satellite-air bistatic SAR mode, and provide theory basis for the selection and research of ground moving target indication method under this mode.

  4. The Matsu Wheel: A Cloud-based Framework for Efficient Analysis and Reanalysis of Earth Satellite Imagery

    CERN Document Server

    Patterson, Maria T; Bennett, Collin; Bruggemann, Jacob; Grossman, Robert; Handy, Matthew; Ly, Vuong; Mandl, Dan; Pederson, Shane; Pivarski, Jim; Powell, Ray; Spring, Jonathan; Wells, Walt

    2016-01-01

    Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for the cloud-based processing of Earth satellite imagery. A particular focus is the development of applications for detecting fires and floods to help support natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStack, Hadoop, MapReduce, Storm and related technologies. We describe a framework for efficient analysis of large amounts of data called the Matsu "Wheel." The Matsu Wheel is currently used to process incoming hyperspectral satellite data produced daily by NASA's Earth Observing-1 (EO-1) satellite. The framework is designed to be able to support scanning queries using cloud computing applications, such as Hadoop and Accumulo. A scanning query processes all, or most of the data, in a database or data repository. We also descri...

  5. Spatial and radiometric characterization of multi-spectrum satellite images through multi-fractal analysis

    Science.gov (United States)

    Alonso, Carmelo; Tarquis, Ana M.; Zúñiga, Ignacio; Benito, Rosa M.

    2017-03-01

    Several studies have shown that vegetation indexes can be used to estimate root zone soil moisture. Earth surface images, obtained by high-resolution satellites, presently give a lot of information on these indexes, based on the data of several wavelengths. Because of the potential capacity for systematic observations at various scales, remote sensing technology extends the possible data archives from the present time to several decades back. Because of this advantage, enormous efforts have been made by researchers and application specialists to delineate vegetation indexes from local scale to global scale by applying remote sensing imagery. In this work, four band images have been considered, which are involved in these vegetation indexes, and were taken by satellites Ikonos-2 and Landsat-7 of the same geographic location, to study the effect of both spatial (pixel size) and radiometric (number of bits coding the image) resolution on these wavelength bands as well as two vegetation indexes: the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). In order to do so, a multi-fractal analysis of these multi-spectral images was applied in each of these bands and the two indexes derived. The results showed that spatial resolution has a similar scaling effect in the four bands, but radiometric resolution has a larger influence in blue and green bands than in red and near-infrared bands. The NDVI showed a higher sensitivity to the radiometric resolution than EVI. Both were equally affected by the spatial resolution. From both factors, the spatial resolution has a major impact in the multi-fractal spectrum for all the bands and the vegetation indexes. This information should be taken in to account when vegetation indexes based on different satellite sensors are obtained.

  6. Performance Analysis of an Enhanced PRMA-HS Protocol for LEO Satellite Communication

    Institute of Scientific and Technical Information of China (English)

    ZHUO Yong-ning; YAN Shao-hu; WU Shi-qi

    2005-01-01

    The packet reservation multiple access with hindering state (PRMA-HS) is a protocol suitable for LEO satellite mobile communication. Although working well with light system payload (amount of user terminals), the protocol imposes high channel congestion on system with heavy payload, thus degrades the system's quality of service. To controlling the channel congestion, a scheme of enhanced PRMA-HS protocol is proposed, which aims to reduce the collision of voice packets by adopting a mechanism of access control. Through theoretic analysis, the system's mathematic model is presented and the packet drop probability of the scheme is deduced. To testify the performance of the scheme, a simulation is performed and the results support our analysis.

  7. Quantitative Analysis of Programming Efficiency in Mixed Programming

    Directory of Open Access Journals (Sweden)

    Wen Lin-Tao

    2012-03-01

    Full Text Available Prolog language is used for mixed programming in a example of Class Scheduling System based on multi-agent, in order to enhance the programming efficiency. The Language Suitability Model is introduced to quantify the programming efficiency of the programming. Finally, experiment is carried out for sample codes.

  8. ESTIMATING RELIABILITY OF DISTURBANCES IN SATELLITE TIME SERIES DATA BASED ON STATISTICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Z.-G. Zhou

    2016-06-01

    Full Text Available Normally, the status of land cover is inherently dynamic and changing continuously on temporal scale. However, disturbances or abnormal changes of land cover — caused by such as forest fire, flood, deforestation, and plant diseases — occur worldwide at unknown times and locations. Timely detection and characterization of these disturbances is of importance for land cover monitoring. Recently, many time-series-analysis methods have been developed for near real-time or online disturbance detection, using satellite image time series. However, the detection results were only labelled with “Change/ No change” by most of the present methods, while few methods focus on estimating reliability (or confidence level of the detected disturbances in image time series. To this end, this paper propose a statistical analysis method for estimating reliability of disturbances in new available remote sensing image time series, through analysis of full temporal information laid in time series data. The method consists of three main steps. (1 Segmenting and modelling of historical time series data based on Breaks for Additive Seasonal and Trend (BFAST. (2 Forecasting and detecting disturbances in new time series data. (3 Estimating reliability of each detected disturbance using statistical analysis based on Confidence Interval (CI and Confidence Levels (CL. The method was validated by estimating reliability of disturbance regions caused by a recent severe flooding occurred around the border of Russia and China. Results demonstrated that the method can estimate reliability of disturbances detected in satellite image with estimation error less than 5% and overall accuracy up to 90%.

  9. The Coverage Analysis for Low Earth Orbiting Satellites at Low Elevation

    Directory of Open Access Journals (Sweden)

    Shkelzen Cakaj

    2014-07-01

    Full Text Available Low Earth Orbit (LEO satellites are used for public networking and for scientific purposes. Communication via satellite begins when the satellite is positioned in its orbital position. Ground stations can communicate with LEO satellites only when the satellite is in their visibility region. The duration of the visibility and the communication vary for each LEO satellite pass over the station, since LEO satellites move too fast over the Earth. The satellite coverage area is defined as a region of the Earth where the satellite is seen at a minimum predefined elevation angle. The satellite’s coverage area on the Earth depends on orbital parameters. The communication under low elevation angles can be hindered by natural barriers. For safe communication and for savings within a link budget, the coverage under too low elevation is not always provided. LEO satellites organized in constellations act as a convenient network solution for real time global coverage. Global coverage model is in fact the complementary networking process of individual satellite’s coverage. Satellite coverage strongly depends on elevation angle. To conclude about the coverage variation for low orbiting satellites at low elevation up to 10º, the simulation for attitudes from 600km to 1200km is presented through this paper.

  10. Forest Fires and Post - Fire Regeneration in Algeria Analysis with Satellite Data

    Science.gov (United States)

    Zegrar, Ahmed

    2016-07-01

    The Algerian forests are characterized by a particularly flammable material and fuel. The wind, the relief and the slope facilitates the propagation of fire. The use of remote sensing data multi-­dates, combined with other types of data of various kinds on the environment and forest burned, opens up interesting perspectives for the management of post-­fire regeneration. In this study the use of multi-­temporal remote sensing image Alsat-­1 and Landsat combined with other types of data concerning both background and burned down forest appears to be promising in evaluating and spatial and temporal effects of post fire regeneration. A spatial analysis taking into consideration the characteristics of the burned down site in the North West of Algeria, allowed to better account new factors to explain the regeneration and its temporal and spatial variation. We intended to show the potential use of remote sensing data from satellite ALSAT-­1, of spatial resolution of 32 m. . This approach allows showing the contribution of the data of Algerian satellite ALSAT in the detection and the well attended some forest fires in Algeria.

  11. On safe ground? Analysis of European urban geohazards using satellite radar interferometry

    Science.gov (United States)

    Capes, Renalt; Teeuw, Richard

    2017-06-01

    Urban geological hazards involving ground instability can be costly, dangerous, and affect many people, yet there is little information about the extent or distribution of geohazards within Europe's urban areas. A reason for this is the impracticality of measuring ground instability associated with the many geohazard processes that are often hidden beneath buildings and are imperceptible to conventional geological survey detection techniques. Satellite radar interferometry, or InSAR, offers a remote sensing technique to map mm-scale ground deformation over wide areas given an archive of suitable multi-temporal data. The EC FP7 Space project named PanGeo (2011-2014), used InSAR to map areas of unstable ground in 52 of Europe's cities, representing ∼15% of the EU population. In partnership with Europe's national geological surveys, the PanGeo project developed a standardised geohazard-mapping methodology and recorded 1286 instances of 19 types of geohazard covering 18,000 km2. Presented here is an analysis of the results of the PanGeo-project output data, which provides insights into the distribution of European urban geohazards, their frequency and probability of occurrence. Merging PanGeo data with Eurostat's GeoStat data provides a systematic estimate of population exposures. Satellite radar interferometry is shown to be as a valuable tool for the systematic detection and mapping of urban geohazard phenomena.

  12. The Evolution of Operational Satellite Based Remote Sensing in Support of Weather Analysis, Nowcasting, and Hazard Mitigation

    Science.gov (United States)

    Hughes, B. K.

    2010-12-01

    The mission of the National Oceanic and Atmospheric Administration (NOAA) National Environmental Data Information Service (NESDIS) is to provide timely access to global environmental data from satellites and other sources to promote, protect, and enhance America’s economy, security, environment, and quality of life. To fulfill its responsibilities, NESDIS acquires and manages America’s operational environmental satellites, operates the NOAA National Data Centers, provides data and information services including Earth system monitoring, performs official assessments of the environment, and conducts related research. The Nation’s fleet of operational environmental satellites has proven to be very critical in the detection, analysis, and forecast of natural or man-made phenomena. These assets have provided for the protection of people and property while safeguarding the Nation’s commerce and enabling safe and effective military operations. This presentation will take the audience through the evolution of operational satellite based remote sensing in support of weather forecasting, nowcasting, warning operations, hazard detection and mitigation. From the very first experiments involving radiation budget to today’s fleet of Geostationary and Polar Orbiting satellites to tomorrow’s constellation of high resolution imagers and hyperspectral sounders, environmental satellites sustain key observations for current and future generations.

  13. Uncertainty analysis of the optical satellite data-derived snow products

    Science.gov (United States)

    Salminen, Miia; Pulliainen, Jouni; Metsämäki, Sari; Luojus, Kari; Böttcher, Kristin; Hannula, Henna-Reetta

    2014-05-01

    The behavior of the global snow cover can be effectively estimated using optical Earth Observation (EO) data, in particular during the end of the melting season. In addition to successful dry and continuous 100% (full) snow cover mapping, optical methods perform well over snowmelt regions with patchy wet snow. Long decadal scale time series of satellite data estimates on global Snow Extent (SE) or Fractional Snow Cover (FSC) and albedo are needed for constructing Climate Data Records (CDR). CDRs have a high relevance in climate research e.g. in climate monitoring including trend analysis and verification of climate models. Currently, the available optical satellite data records for hemispherical snow monitoring reach back for several decades, e.g. AVHRR (since ca 1980), ATSR (since ca 1990), AATSR and MODIS (since ca 2000). Also, the current VIIRS (since 2011) and the future Sentinel-3 both provide very potential data for global snow monitoring. It is fundamental to generate extensive CDRs with quality/estimation error information attached to each snow estimate, as the usefulness of the EO-based snow estimate is highly dependent on the quality of the interpretation. The objective of this work is to establish and develop a methodology to determine a dynamic retrieval error estimate for the optical satellite-retrieved FSC. This is performed by applying an error propagation analysis for the consideration of the statistical error of FSC estimation. The procedure is demonstrated here by using the SCAmod algoritm, which is suited for global snow detection and able to perform well also in forested regions. Apart from determining the statistical (random) error, we outline the procedure for the evaluation of the systematic error (biases) of FSC products, both of which are essential for the generation of snow cover CDR. As we focus here on determining the statistical random error, it is crucial to know the variability of the different factors affecting the satellite

  14. Analysis of rain fade duration models for Earth-to-satellite path based on data measured in Malaysia

    Science.gov (United States)

    Dao, Hassan; Rafiqul, Islam Md; Al-Khateeb, Khalid A. S.

    2013-12-01

    Statistical analysis of rain fade duration is crucial information for system engineer to design and plan a fade mitigation technique (FMT) for the satellite communication system. An investigation is carried out based on data measured of one year period in Kuala Lumpur, Malaysia from satellite path of MEASAT3. This paper presents statistical analysis of measured fade duration on high elevation angle (77.4°) in Ku-band compared to three prediction models of fade duration. It is found that none of the models could predict measured fade duration distribution accurately.

  15. Satellite power system concept development and evaluation program system definition technical assessment report

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The results of the system definition studies conducted by NASA as a part of the Department of Energy/National Aeronautics and Space Administration SPS Concept Development and Evaluation Program are summarized. The purpose of the system definition efforts was to identify and define candidate SPS concepts and to evaluate the concepts in terms of technical and cost factors. Although the system definition efforts consisted primarily of evaluation and assessment of alternative technical approaches, a reference system was also defined to facilitate economic, environmental, and societal assessments by the Department of Energy. This reference system was designed to deliver 5 GW of electrical power to the utility grid. Topics covered include system definition; energy conversion and power management; power transmission and reception; structures, controls, and materials; construction and operations; and space transportation.

  16. China's Meteorological Satellite Application System

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiashen

    2008-01-01

    @@ China's meteorological satellite program consists of five systems,namely the satellite system,the launch vehicle system,the launch center system,TT&C and the ground application system.The satellite system consists of FengYun (FY) polar orbiting series and FY geostationary series,which are launched by LM launch vehicles from Taiyan Satellite Launch Center (TSLC) and Xichang Satellite Launch Center (XSLC) respectively.

  17. Energy Analysis Program. 1992 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The Program became deeply involved in establishing 4 Washington, D.C., project office diving the last few months of fiscal year 1942. This project office, which reports to the Energy & Environment Division, will receive the majority of its support from the Energy Analysis Program. We anticipate having two staff scientists and support personnel in offices within a few blocks of DOE. Our expectation is that this office will carry out a series of projects that are better managed closer to DOE. We also anticipate that our representation in Washington will improve and we hope to expand the Program, its activities, and impact, in police-relevant analyses. In spite of the growth that we have achieved, the Program continues to emphasize (1) energy efficiency of buildings, (2) appliance energy efficiency standards, (3) energy demand forecasting, (4) utility policy studies, especially integrated resource planning issues, and (5) international energy studies, with considerate emphasis on developing countries and economies in transition. These continuing interests are reflected in the articles that appear in this report.

  18. Gravitomagnetism in Metric Theories Analysis of Earth Satellites Results, and its Coupling with Spin

    CERN Document Server

    Camacho, A

    2002-01-01

    Employing the PPN formalism the gravitomagnetic field in different metric theories is considered in the analysis of the LAGEOS results. It will be shown that there are several models that predict exactly the same effect that general relativity comprises. In other words, these Earth satellites results can be taken as experimental evidence that the orbital angular momentum of a body does indeed generate space--time geometry, notwithstanding they do not endow general relativity with an outstanding status among metric theories. Additionally the coupling spin--gravitomagnetic field is analyzed with the introduction of the Rabi transitions that this field produces on a quantum system with spin 1/2. Afterwards, a continuous measurement of the energy of this system is introduced, and the consequences upon the corresponding probabilities of the involved gravitomagnetic field will be obtained. Finally, it will be proved that these proposals allows us, not only to confront against future experiments the usual assumption...

  19. Subpixel Accuracy Analysis of Phase Correlation Shift Measurement Methods Applied to Satellite Imagery

    Directory of Open Access Journals (Sweden)

    S.M. Badwai

    2013-01-01

    Full Text Available the key point of super resolution process is the accurate measuring of sub-pixel shift. Any tiny error in measuring such shift leads to an incorrect image focusing. In this paper, methodology of measuring sub-pixel shift using Phase correlation (PC are evaluated using different window functions, then modified version of (PC method using high pass filter (HPF is introduced . Comprehensive analysis and assessment of (PC methods shows that different natural features yield different shift measurements. It is concluded that there is no universal window function for measuring shift; it mainly depends on the features in the satellite images. Even the question of which window is optimal of particular feature is generally remains open. This paper presents the design of a method for obtaining high accuracy sub pixel shift phase correlation using (HPF.The proposed method makes the change in the different locations that lack of edges easy.

  20. Analysis of broadcasting satellite service feeder link power control and polarization

    Science.gov (United States)

    Sullivan, T. M.

    1982-01-01

    Statistical analyses of carrier to interference power ratios (C/Is) were performed in assessing 17.5 GHz feeder links using (1) fixed power and power control, and (2) orthogonal linear and orthogonal circular polarizations. The analysis methods and attenuation/depolarization data base were based on CCIR findings to the greatest possible extent. Feeder links using adaptive power control were found to neither cause or suffer significant C/I degradation relative to that for fixed power feeder links having similar or less stringent availability objectives. The C/Is for sharing between orthogonal linearly polarized feeder links were found to be significantly higher than those for circular polarization only in links to nominally colocated satellites from nominally colocated Earth stations in high attenuation environments.

  1. Analysis Of Usefulness Of Satellite Image Processing Methods For Investigations Of Cultural Heritage Resources

    Science.gov (United States)

    Osińska-Skotak, Katarzyna; Zapłata, Rafał

    2015-12-01

    The paper presents the analysis of usefulness of WorldView-2 satellite image processing, which enhance information concerning the cultural heritage objects. WorldView-2 images are characterised by the very high spatial resolution and high spectral resolution; that is why they create new possibilities for many applications, including investigations of the cultural heritage. The vicinities of Iłża have been selected as the test site for presented investigations. The presented results of works are the effect of research works, which were performed in the frames of the scientific project "Utilisation of laser scanning and remote sensing in protection, investigations and inventory of the cultural heritage. Development of non-invasive, digital methods of documenting and recognising the architectural and archaeological heritage", as the part of "The National Programme for the Development of Humanities" of the Minister of Science and Higher Education in the period of 2012-2015.

  2. Coastal erosion and accretion in Pak Phanang, Thailand by GIS analysis of maps and satellite imagery

    Directory of Open Access Journals (Sweden)

    Sayedur Rahman Chowdhury

    2013-12-01

    Full Text Available Coastal erosion and accretion in Pak Phanang of southern Thailand between 1973 and 2003 was measured using multi-temporal topographic maps and Landsat satellite imageries. Within a GIS environment landward and seaward movements of shoreline was estimated by a transect-based analysis, and amounts of land accretion and erosion were estimated by a parcel-based geoprocessing. The whole longitudinal extent of the 58 kilometer coast was classified based on the erosion and accretion trends during this period using agglomerative hierarchical clustering approach. Erosion and accretion were found variable over time and space, and periodic reversal of status was also noticed in many places. Estimates of erosion were evaluated against field-survey based data, and found reasonably accurate where the rates were relatively great. Smoothing of shoreline datasets was found desirable as its impacts on the estimates remained within tolerable limits.

  3. Monte Carlo Analysis as a Trajectory Design Driver for the Transiting Exoplanet Survey Satellite (TESS) Mission

    Science.gov (United States)

    Nickel, Craig; Parker, Joel; Dichmann, Don; Lebois, Ryan; Lutz, Stephen

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will be injected into a highly eccentric Earth orbit and fly 3.5 phasing loops followed by a lunar flyby to enter a mission orbit with lunar 2:1 resonance. Through the phasing loops and mission orbit, the trajectory is significantly affected by lunar and solar gravity. We have developed a trajectory design to achieve the mission orbit and meet mission constraints, including eclipse avoidance and a 30-year geostationary orbit avoidance requirement. A parallelized Monte Carlo simulation was performed to validate the trajectory after injecting common perturbations, including launch dispersions, orbit determination errors, and maneuver execution errors. The Monte Carlo analysis helped identify mission risks and is used in the trajectory selection process.

  4. A new regard on the tectonic map of the Arabian-African region inferred from the satellite gravity analysis

    Science.gov (United States)

    Eppelbaum, Lev; Katz, Youri

    2017-07-01

    Satellite gravimetry is a powerful and reliable tool for regional tectono-geodynamic zonation. The studied region contains intricate geodynamical features (high seismological indicators, active rift systems and collision processes), richest structural arrangement (existence of mosaic blocks of oceanic and continental Earth's crust of various age), and a number of high-amplitude gravity anomalies and complex magnetic pattern. The most hydrocarbon reserves of the world and other important economic deposits occur in this region. Comprehensive analysis of satellite gravity data with application of different approaches was used to develop a sequence of maps specifying crucial properties of the region deep structure. Careful examination of numerous geological sources and their combined examination with satellite gravity (main), magnetic, GPS, seismic, seismological and some other geophysical data enabled to develop a new tectonic map of the Arabian-African region. Integrated analysis of series of gravity map transformations and certain geological indicators allowed to reveal significant geodynamic features of the region.

  5. Sediment Analysis Using a Structured Programming Approach

    Directory of Open Access Journals (Sweden)

    Daniela Arias-Madrid

    2012-12-01

    Full Text Available This paper presents an algorithm designed for the analysis of a sedimentary sample of unconsolidated material and seeks to identify very quickly the main features that occur in a sediment and thus classify them fast and efficiently. For this purpose, it requires that the weight of each particle size to be entered in the program and using the method of Moments, which is based on four equations representing the mean, standard deviation, skewness and kurtosis, is found the attributes of the sample in few seconds. With the program these calculations are performed in an effective and more accurately way, obtaining also the explanations of the results of the features such as grain size, sorting, symmetry and origin, which helps to improve the study of sediments and in general the study of sedimentary rocks.

  6. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  7. Program on application of communications satellites to educational development: Design of a 12 channel FM microwave receiver. [color television from communication satellites

    Science.gov (United States)

    Risch, C. O.; Rosenbaum, F. J.; Gregory, R. O.

    1974-01-01

    The design, fabrication, and performance of elements of a low cost FM microwave satellite ground station receiver is described. It is capable of accepting 12 contiguous color television equivalent bandwidth channels in the 11.72 to 12.2 GHz band. Each channel is 40 MHz wide and incorporates a 4 MHz guard band. The modulation format is wideband FM and the channels are frequency division multiplexed. Twelve independent CATV compatible baseband outputs are provided. The overall system specifications are first discussed, then consideration is given to the receiver subsystems and the signal branching network.

  8. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program; Satellite Facilities Operation and Maintenance, 2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

    2006-01-01

    There were 2 acclimation periods at the Catherine Creek Acclimation Facility (CCAF) in 2005. During the early acclimation period, 130,748 smolts were delivered from Lookingglass Hatchery (LGH) on 7 March. This group contained progeny of both the captive (53%) and conventional broodstock programs. The size of the fish at delivery was 23.9 fish/lb. Volitional releases began 14 March 2005 and ended 27 March with an estimated total (based on PIT tag detections of 3,187) of 29,402 fish leaving the raceways. This was 22.5% of the total fish delivered. Fish remaining in the raceways after volitional release were forced out. Hourly detections of PIT-tagged fish showed that most of the fish left around 1900 hours. The size of the fish just before the volitional release was 23.9 and the size of the fish remaining just before the forced release was 23.2 fish/lb. The total mortality for the acclimation period was 204 (0.16%). The total number of fish released from the acclimation facility during the early period was 130,544. During the second acclimation period 59,100 smolts were delivered from LGH on 28 March. This group was comprised entirely of progeny from the conventional broodstock program. The size of the fish at delivery was 21.8 fish/lb. Volitional releases began 3 April 2005 and ended with a force out emergency release on 7 April. The size of the fish just before the volitional release was 21.8. The total mortality for the acclimation period was 64 (0.11 %). The total number of fish released from the acclimation facility during the late period was 59,036. There was only 1 planned acclimation period at the Upper Grande Ronde Acclimation Facility (UGRAF) in 2005. During the early acclimation period 105,418 smolts were delivered from LGH on 8 March. This group was comprised entirely of progeny from the conventional broodstock program. The size of the fish at delivery was 21.0 fish/lb. There was no volitional release in 2005 due to freezing air and water conditions

  9. Visual analysis as a method of interpretation of the results of satellite ionospheric measurements for exploratory problems

    Science.gov (United States)

    Korneva, N. N.; Mogilevskii, M. M.; Nazarov, V. N.

    2016-05-01

    Traditional methods of time series analysis of satellite ionospheric measurements have some limitations and disadvantages that are mainly associated with the complex nonstationary signal structure. In this paper, the possibility of identifying and studying the temporal characteristics of signals via visual analysis is considered. The proposed approach is illustrated by the example of the visual analysis of wave measurements on the DEMETER microsatellite during its passage over the HAARP facility.

  10. Exploration of mineral resource deposits based on analysis of aerial and satellite image data employing artificial intelligence methods

    Science.gov (United States)

    Osipov, Gennady

    2013-04-01

    We propose a solution to the problem of exploration of various mineral resource deposits, determination of their forms / classification of types (oil, gas, minerals, gold, etc.) with the help of satellite photography of the region of interest. Images received from satellite are processed and analyzed to reveal the presence of specific signs of deposits of various minerals. Course of data processing and making forecast can be divided into some stages: Pre-processing of images. Normalization of color and luminosity characteristics, determination of the necessary contrast level and integration of a great number of separate photos into a single map of the region are performed. Construction of semantic map image. Recognition of bitmapped image and allocation of objects and primitives known to system are realized. Intelligent analysis. At this stage acquired information is analyzed with the help of a knowledge base, which contain so-called "attention landscapes" of experts. Used methods of recognition and identification of images: a) combined method of image recognition, b)semantic analysis of posterized images, c) reconstruction of three-dimensional objects from bitmapped images, d)cognitive technology of processing and interpretation of images. This stage is fundamentally new and it distinguishes suggested technology from all others. Automatic registration of allocation of experts` attention - registration of so-called "attention landscape" of experts - is the base of the technology. Landscapes of attention are, essentially, highly effective filters that cut off unnecessary information and emphasize exactly the factors used by an expert for making a decision. The technology based on denoted principles involves the next stages, which are implemented in corresponding program agents. Training mode -> Creation of base of ophthalmologic images (OI) -> Processing and making generalized OI (GOI) -> Mode of recognition and interpretation of unknown images. Training mode

  11. An Analysis of the Radio Program Manager Occupation.

    Science.gov (United States)

    Friedberg, Jerry; Stella, Phillip.

    This occupational analysis data was assembled to help broadcasting arts teachers develop a course of study in program management for junior and senior high school students. Following a job description for a program manager, the remainder of the content in standard task analysis format presents an analysis of nine program management duties (tasks).…

  12. A linear circuit analysis program with stiff systems capability

    Science.gov (United States)

    Cook, C. H.; Bavuso, S. J.

    1973-01-01

    Several existing network analysis programs have been modified and combined to employ a variable topological approach to circuit translation. Efficient numerical integration techniques are used for transient analysis.

  13. Expansion of epicyclic gear dynamic analysis program

    Science.gov (United States)

    Boyd, Linda Smith; Pike, James A.

    1987-01-01

    The multiple mesh/single stage dynamics program is a gear tooth analysis program which determines detailed geometry, dynamic loads, stresses, and surface damage factors. The program can analyze a variety of both epicyclic and single mesh systems with spur or helical gear teeth including internal, external, and buttress tooth forms. The modifications refine the options for the flexible carrier and flexible ring gear rim and adds three options: a floating Sun gear option; a natural frequency option; and a finite element compliance formulation for helical gear teeth. The option for a floating Sun incorporates two additional degrees of freedom at the Sun center. The natural frequency option evaluates the frequencies of planetary, star, or differential systems as well as the effect of additional springs at the Sun center and those due to a flexible carrier and/or ring gear rim. The helical tooth pair finite element calculated compliance is obtained from an automated element breakup of the helical teeth and then is used with the basic gear dynamic solution and stress postprocessing routines. The flexible carrier or ring gear rim option for planetary and star spur gear systems allows the output torque per carrier and ring gear rim segment to vary based on the dynamic response of the entire system, while the total output torque remains constant.

  14. The Cyclone Global Navigation Satellite System (CYGNSS) - Analysis and Data Assimilation for Tropical Convection

    Science.gov (United States)

    Li, Xuanli; Lang, Timothy J.; Mecikalski, John; Castillo, Tyler; Hoover, Kacie; Chronis, Themis

    2017-01-01

    Cyclone Global Navigation Satellite System (CYGNSS): a constellation of 8 micro-satellite observatories launched in November 2016, to measure near-surface oceanic wind speed. Main goal: To monitor surface wind fields of the Tropical Cyclones' inner core, including regions beneath the intense eye wall and rain bands that could not previously be measured from space; Cover 38 deg S -38 deg N with unprecedented temporal resolution and spatial coverage, under all precipitating conditions Low flying satellite: Pass over ocean surface more frequently than one large satellite. A median(mean) revisit time of 2.8(7.2) hrs.

  15. Comparative Analysis of Satellite DNA in the Drosophila melanogaster Species Complex.

    Science.gov (United States)

    Jagannathan, Madhav; Warsinger-Pepe, Natalie; Watase, George J; Yamashita, Yukiko M

    2017-02-09

    Satellite DNAs are highly repetitive sequences that account for the majority of constitutive heterochromatin in many eukaryotic genomes. It is widely recognized that sequences and locations of satellite DNAs are highly divergent even in closely related species, contributing to the hypothesis that satellite DNA differences may underlie speciation. However, due to its repetitive nature, the mapping of satellite DNAs has been mostly left out of recent genomics analyses, hampering the use of molecular genetics techniques to better understand their role in speciation and evolution. Satellite DNAs are most extensively and comprehensively mapped in Drosophila melanogaster, a species that is also an excellent model system with which to study speciation. Yet the lack of comprehensive knowledge regarding satellite DNA identity and location in its sibling species (D. simulans, D. mauritiana, and D. sechellia) has prevented the full utilization of D. melanogaster in studying speciation. To overcome this problem, we initiated the mapping of satellite DNAs on the genomes of the D. melanogaster species complex (D. melanogaster, D. simulans, D. mauritiana, and D. sechellia) using multi-color fluorescent in situ hybridization (FISH) probes. Our study confirms a striking divergence of satellite DNAs in the D. melanogaster species complex, even among the closely related species of the D. simulans clade (D. simulans, D. mauritiana, and D. sechellia), and suggests the presence of unidentified satellite sequences in these species.

  16. Quantitative analysis of geomorphic processes using satellite image data at different scales

    Science.gov (United States)

    Williams, R. S., Jr.

    1985-01-01

    When aerial and satellite photographs and images are used in the quantitative analysis of geomorphic processes, either through direct observation of active processes or by analysis of landforms resulting from inferred active or dormant processes, a number of limitations in the use of such data must be considered. Active geomorphic processes work at different scales and rates. Therefore, the capability of imaging an active or dormant process depends primarily on the scale of the process and the spatial-resolution characteristic of the imaging system. Scale is an important factor in recording continuous and discontinuous active geomorphic processes, because what is not recorded will not be considered or even suspected in the analysis of orbital images. If the geomorphic process of landform change caused by the process is less than 200 m in x to y dimension, then it will not be recorded. Although the scale factor is critical, in the recording of discontinuous active geomorphic processes, the repeat interval of orbital-image acquisition of a planetary surface also is a consideration in order to capture a recurring short-lived geomorphic process or to record changes caused by either a continuous or a discontinuous geomorphic process.

  17. Analysis of mutual events of Galilean satellites observed from VBO during 2014-2015

    Science.gov (United States)

    Vasundhara, R.; Selvakumar, G.; Anbazhagan, P.

    2017-06-01

    Results of analysis of 23 events of the 2014-2015 mutual event series from the Vainu Bappu Observatory are presented. Our intensity distribution model for the eclipsed/occulted satellite is based on the criterion that it simulates a rotational light curve that matches the ground-based light curve. Dichotomy in the scattering characteristics of the leading and trailing sides explains the basic shape of the rotational light curves of Europa, Ganymede and Callisto. In the case of Io, the albedo map (courtesy United States Geological Survey) along with global values of scattering parameters works well. Mean values of residuals in (O - C) along and perpendicular to the track are found to be -3.3 and -3.4 mas, respectively, compared to 'L2' theory for the seven 2E1/2O1 events. The corresponding rms values are 8.7 and 7.8 mas, respectively. For the five 1E3/1O3 events, the along and perpendicular to the track mean residuals are 5.6 and 3.2 mas, respectively. The corresponding rms residuals are 6.8 and 10.5 mas, respectively. We compare the results using the chosen model (Model 1) with a uniform but limb-darkened disc (Model 2). The residuals with Model 2 of the 2E1/2O1 and 1E3/1O3 events indicate a bias along the satellite track. The extent and direction of bias are consistent with the shift of the light centre from the geometric centre. Results using Model 1, which intrinsically takes into account the intensity distribution, show no such bias.

  18. Long-term change analysis of satellite-based evapotranspiration over Indian vegetated surface

    Science.gov (United States)

    Gupta, Shweta; Bhattacharya, Bimal K.; Krishna, Akhouri P.

    2016-05-01

    In the present study, trend of satellite based annual evapotranspiration (ET) and natural forcing factors responsible for this were analyzed. Thirty years (1981-2010) of ET data at 0.08° grid resolution, generated over Indian region from opticalthermal observations from NOAA PAL and MODIS AQUA satellites, were used. Long-term data on gridded (0.5° x 0.5°) annual rainfall (RF), annual mean surface soil moisture (SSM) ERS scatterometer at 25 km resolution and annual mean incoming shortwave radiation from MERRA-2D reanalysis were also analyzed. Mann-Kendall tests were performed with time series data for trend analysis. Mean annual ET loss from Indian ago-ecosystem was found to be almost double (1100 Cubic Km) than Indian forest ecosystem (550 Cubic Km). Rainfed vegetation systems such as forest, rainfed cropland, grassland showed declining ET trend @ - 4.8, -0.6 &-0.4 Cubic Kmyr-1, respectively during 30 years. Irrigated cropland initially showed ET decline upto 1995 @ -0.8 cubic Kmyr-1 which could possibly be due to solar dimming followed by increasing ET @ 0.9 cubic Kmyr-1 after 1995. A cross-over point was detected between forest ET decline and ET increase in irrigated cropland during 2008. During 2001-2010, the four agriculturally important Indian states eastern, central, western and southern showed significantly increasing ET trend with S-score of 15-25 and Z-score of 1.09-2.9. Increasing ET in western and southern states was found to be coupled with increase in annual rainfall and SSM. But in eastern and central states no significant trend in rainfall was observed though significant increase in ET was noticed. The study recommended to investigate the influence of anthropogenic factors such as increase in area under irrigation, increased use of water for irrigation through ground water pumping, change in cropping pattern and cultivars on increasing ET.

  19. Satellite Based Live and Interactive Distance Learning Program in the Field of Geoinformatics - a Perspective of Indian Institute of Remote Sensing, India

    Science.gov (United States)

    Raju, P. L. N.; Gupta, P. K.; Roy, P. S.

    2011-09-01

    Geoinformatics is a highly specialized discipline that deals with Remote Sensing, Geographical Information System (GIS), Global Positioning System (GPS) and field surveys for assessing, quantification, development and management of resources, planning and infrastructure development, utility services etc. Indian Institute of Remote Sensing (IIRS), a premier institute and one of its kinds has played a key role for capacity Building in this specialized area since its inception in 1966. Realizing the large demand, IIRS has started outreach program in basics of Remote Sensing, GIS and GPS for universities and institutions. EDUSAT (Educational Satellite) is the communication satellite built and launched by ISRO in 2004 exclusively for serving the educational sector to meet the demand for an interactive satellite based distance education system for the country. IIRS has used EDUSAT (shifted to INSAT 4 CR recently due to termination of services from EDUSAT) for its distance learning program to impart basic training in Remote Sensing, GIS and GPS, catering to the universities spread across India. The EDUSAT based training is following similar to e-learning method but has advantage of live interaction sessions between teacher and the students when the lecture is delivered using EDUSAT satellite communication. Because of its good quality reception the interactions are not constrained due to bandwidth problems of Internet. National Natural Resource Management System, Department of Space, Government of India, under Standing Committee in Training and Technology funded this unique program to conduct the basic training in Geoinformatics. IIRS conducts 6 weeks basic training course on "Remote Sensing, GIS and GPS" regularly since the year 2007. The course duration is spread over the period of 3 months beginning with the start of the academic year (1st semester) i.e., July to December every year, for university students. IIRS has utilized EDUSAT satellite for conducting 4 six weeks

  20. SATELLITE BASED LIVE AND INTERACTIVE DISTANCE LEARNING PROGRAM IN THE FIELD OF GEOINFORMATICS – A PERSPECTIVE OF INDIAN INSTITUTE OF REMOTE SENSING, INDIA

    Directory of Open Access Journals (Sweden)

    P. L. N. Raju

    2012-09-01

    Full Text Available Geoinformatics is a highly specialized discipline that deals with Remote Sensing, Geographical Information System (GIS, Global Positioning System (GPS and field surveys for assessing, quantification, development and management of resources, planning and infrastructure development, utility services etc. Indian Institute of Remote Sensing (IIRS, a premier institute and one of its kinds has played a key role for capacity Building in this specialized area since its inception in 1966. Realizing the large demand, IIRS has started outreach program in basics of Remote Sensing, GIS and GPS for universities and institutions. EDUSAT (Educational Satellite is the communication satellite built and launched by ISRO in 2004 exclusively for serving the educational sector to meet the demand for an interactive satellite based distance education system for the country. IIRS has used EDUSAT (shifted to INSAT 4 CR recently due to termination of services from EDUSAT for its distance learning program to impart basic training in Remote Sensing, GIS and GPS, catering to the universities spread across India. The EDUSAT based training is following similar to e-learning method but has advantage of live interaction sessions between teacher and the students when the lecture is delivered using EDUSAT satellite communication. Because of its good quality reception the interactions are not constrained due to bandwidth problems of Internet. National Natural Resource Management System, Department of Space, Government of India, under Standing Committee in Training and Technology funded this unique program to conduct the basic training in Geoinformatics. IIRS conducts 6 weeks basic training course on "Remote Sensing, GIS and GPS" regularly since the year 2007. The course duration is spread over the period of 3 months beginning with the start of the academic year (1st semester i.e., July to December every year, for university students. IIRS has utilized EDUSAT satellite for

  1. Satellite Communication.

    Science.gov (United States)

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  2. 小卫星项目的法律适用和发展趋势%On the Law Application and Future Tr ends in Small Satellites Programs

    Institute of Scientific and Technical Information of China (English)

    夏春利

    2016-01-01

    The vigorous development of small satellites with high functional density significantly enhanced the capacity of exploring outer space by private entities and non-space-faring nations and triggered a demand for revising the rules . National governments should issue space activities license according to the classified and categorized conditions and relax the market access requirements for small satellites programs .Third party liability insurance policy should be set on the balance of the purpose , cost, benefit and risks in small satellites programs .Registration of small satellites should be regulated according to international and national rules .Space debris mitigation should be a condition for licensing small satellites programs so that the States can bear the responsibility in space environment protection .The ITU satellite frequencies and orbits coordination procedures should be simplified to adapt to the special orbital characteristics , operating life and service type of small satellites .%具有高功能密度的小卫星项目蓬勃发展,大大增强了私营实体和非航天大国参与空间活动的能力,引发了规则修订的需求。国家应建立空间活动的分级、分类许可条件,放宽小卫星行业的准入要求,并根据小卫星项目的目的、成本、收益和风险来设定第三者责任保险要求,规范小卫星的登记实践。空间碎片减缓应作为小卫星项目许可条件之一,以切实履行国家的外空环境保护责任。应简化国际电信联盟卫星频率和轨道位置协调程序,建立适应小卫星轨道特性、运行寿命和业务类型的管理规则。

  3. Satellite and ground-based sensors for the Urban Heat Island analysis in the city of Rome

    DEFF Research Database (Denmark)

    Fabrizi, Roberto; Bonafoni, Stefania; Biondi, Riccardo

    2010-01-01

    In this work, the trend of the Urban Heat Island (UHI) of Rome is analyzed by both ground-based weather stations and a satellite-based infrared sensor. First, we have developed a suitable algorithm employing satellite brightness temperatures for the estimation of the air temperature belonging...... to the layer of air closest to the surface. UHI spatial characteristics have been assessed using air temperatures measured by both weather stations and brightness temperature maps from the Advanced Along Track Scanning Radiometer (AATSR) on board ENVISAT polar-orbiting satellite. In total, 634 daytime...... and nighttime scenes taken between 2003 and 2006 have been processed. Analysis of the Canopy Layer Heat Island (CLHI) during summer months reveals a mean growth in magnitude of 3-4 K during nighttime and a negative or almost zero CLHI intensity during daytime, confirmed by the weather stations. © 2010...

  4. Shallow-earth rheology from glacial isostasy and satellite gravity: a sensitivity analysis for GOCE

    NARCIS (Netherlands)

    Schotman, H.H.A.

    2008-01-01

    In recent years, satellite gravity missions have been launched that probe the earth's long- to mediumwavelength (1000 - 500 km) gravity field. The upcoming ESA satellite gravity mission GOCE is predicted to measure the gravity field with an accuracy of a few centimeters at spatial scales of 100 km.

  5. Feasibility Analysis Of Free Space Earth To Satellite Optical Link In Tropical Region

    Directory of Open Access Journals (Sweden)

    Norhanis Aida M. Nor

    2012-01-01

    Full Text Available Free Space Optics (FSO becomes a great attention because of the chances in transmitting data up to 2.5Gbps. There are a lot of advantages offered by FSO such as easily deployment with saving time and cost and no electromagnetic interference. In spite of the advantages, FSO has an uncontrolled drawback which is highly sensitive to atmospheric phenomena because uses air as tranmission medium. Current studies and researches are only focusing on FSO terrestrial link with short path length and based on data from temperate region. Therefore, this paper is aiming to provide feasibility analysis of FSO link from earth to satellite especially Low Earth Orbit (LEO based on atmospheric data in tropical region. The analysis will include the losses from geometrical attenuation, absorption, scintillation, haze attenuation, and rain attenuation. ABSTRAK: Ruang Bebas Optik (Free Space Optics (FSO mendapat perhatian kerana kebolehannya memancarkan data pada kelajuan tinggi. Di sebalik kelebihannya, FSO amat sensitif terhadap fenomena atmosfera kerana ia menggunakan udara sebagai perantara transmisi. Penyelidikan dan kajian terkini hanya memfokus kepada jalinan darat FSO dengan kepanjangan jarak pendek dan bergantung kepada kawasan tenang.  Oleh itu, kertas ini menyasarkan untuk memberikan analisis kebolehlaksanaan  jalinan FSO dari bumi ke satelit terutamanya Orbit Rendah Bumi (Low Earth Orbit (LEO bergantung kepada data atmosfera di kawasan tropika. Analisa termasuklah kehilangannya akibat pengecilan geometri, penyerapan, kelipan, pelemahan jerebu dan pelemahan hujan.KEYWORDS:  feasibility; Free Space Optics; availability; atmospheric attenuation; beam divergence angle; elevation angle

  6. Designing Abstractions for JavaScript Program Analysis

    DEFF Research Database (Denmark)

    Andreasen, Esben Sparre

    JavaScript is a widely used dynamic programming language. What started out as a client-side scripting language for browsers, is now used for large applications in many different settings. As for other dynamic languages, JavaScript makes it easy to write programs quickly without being constrained...... by the language, and programmers exploit that power to write highly dynamic programs. Automated tools for helping programmers and optimizing programs are used successfully for many programming languages. Unfortunately, the automated tools for JavaScript are not as good as for other programming languages...... the highly dynamic nature of JavaScript programs in order to improve program analysis for JavaScript. This is done for two kinds of program analysis: dataflow analysis and type systems. We design, implement and evaluate new abstractions for dataflow analysis. These abstractions improve on state...

  7. Satellite Images Analysis of Temporal Change (1979-2000) of the Mangrove Covertures that Surround the Mandinga Coastal Lagoon, Mexico.

    Science.gov (United States)

    Aldeco-Ramírez, J.; Cervantes-Candelas, A.

    2007-05-01

    Knowledge about the historical condition of the resources and the risk of natural hazards is an urgent necessity in developing countries. Satellite images analysis was applied in this study in order to evaluate coverture changes between 1979 and 2000. Mangroves cover large areas of coastal lagoon shoreline in the tropics and subtropics where they are important components in the productivity and integrity of their ecosystems. Visual and digital analysis of satellite images have been applied since the seventies when the first Land sat satellite was put in orbit. The digital analysis technique is mainly based on the reflectance or spectral response of the different objects laid on the earth surface as captured by the satellite. The results are useful for the environmental assessment of natural resources as forest and crops, and the quantification of hazards as fires, plagues, deforestation and urban expansion. This research surveys satellite images from the Mandinga Lagoon System, a coastal lagoon located to the south of the main port of Veracruz (19.1N, 96.1W), during three periods: 1989 1999 and 2000. The mangrove foliar cover was analyzed throughout the time. The reflectance signal of the mangrove that encircles the lagoon was taken as a base line for reference. The normalized difference vegetation index (NDVI) was computed in order to classify the vegetal coverage along the time. From our analysis we obtained that from 1979 to 1990 and from 1990 to 2000 areas of 122 hectares (approx. 305 acres) and 202 hectares (approx. 505 acres) were lost, respectively. The rates of mangrove trimming of 11.1 and 20.2 hectares yr-1 are high compared with other coastal lagoons of Mexico. The main causes of this deforestation are also discussed along with other factors as, the change of use of land and the fishery declination.

  8. DATA MONITORING AND ANALYSIS PROGRAM MANUAL

    Energy Technology Data Exchange (ETDEWEB)

    Gravois, Melanie

    2007-07-06

    This procedure provides guidelines and techniques for analyzing and trending data using statistical methods for Lawrence Berkeley National Laboratory (LBNL). This procedure outlines the steps used in data analysis and trending. It includes guidelines for performing data analysis and for monitoring (or controlling) processes using performance indicators. This procedure is used when trending and analyzing item characteristics and reliability, process implementation, and other quality-related information to identify items, services, activities, and processes needing improvement, in accordance with 10 CFR Part 830, Subpart A, U.S. Department of Energy (DOE) Order 414.1C, and University of California (UC) Assurance Plan for LBNL. Trend codes, outlined in Attachment 4, are assigned to issues at the time of initiation and entry into the Corrective Action Tracking System (CATS) database in accordance with LBNL/PUB-5519 (1), Issues Management Program Manual. Throughout this procedure, the term performance is used to encompass all aspects of performance including quality, timeliness, efficiency, effectiveness, and reliability. Data analysis tools are appropriate whenever quantitative information describing the performance of an item, service, or process can be obtained.

  9. DATA MONITORING AND ANALYSIS PROGRAM MANUAL

    Energy Technology Data Exchange (ETDEWEB)

    Gravois, Melanie

    2007-07-06

    This procedure provides guidelines and techniques for analyzing and trending data using statistical methods for Lawrence Berkeley National Laboratory (LBNL). This procedure outlines the steps used in data analysis and trending. It includes guidelines for performing data analysis and for monitoring (or controlling) processes using performance indicators. This procedure is used when trending and analyzing item characteristics and reliability, process implementation, and other quality-related information to identify items, services, activities, and processes needing improvement, in accordance with 10 CFR Part 830, Subpart A, U.S. Department of Energy (DOE) Order 414.1C, and University of California (UC) Assurance Plan for LBNL. Trend codes, outlined in Attachment 4, are assigned to issues at the time of initiation and entry into the Corrective Action Tracking System (CATS) database in accordance with LBNL/PUB-5519 (1), Issues Management Program Manual. Throughout this procedure, the term performance is used to encompass all aspects of performance including quality, timeliness, efficiency, effectiveness, and reliability. Data analysis tools are appropriate whenever quantitative information describing the performance of an item, service, or process can be obtained.

  10. US army land condition-trend analysis (LCTA) program

    Science.gov (United States)

    Diersing, Victor E.; Shaw, Robert B.; Tazik, David J.

    1992-05-01

    The US Army Land Condition-Trend Analysis (LCTA) program is a standardized method of data collection, analysis, and reporting designed to meet multiple goals and objectives. The method utilizes vascular plant inventories, permanent field plot data, and wildlife inventories. Vascular plant inventories are used for environmental documentation, training of personnel, species identification during LCTA implementation, and as a survey for state and federal endangered or threatened species. The permanent field plot data documents the vegetational, edaphic, topographic, and disturbance characteristics of the installation. Inventory plots are allocated in a stratified random fashion across the installation utilizing a geographic information system that integrates satellite imagery and soil survey information. Ground cover, canopy cover, woody plant density, slope length, slope gradient, soil information, and disturbance data are collected at each plot. Plot data are used to: (1) describe plant communities, (2) characterize wildlife and threatened and endangered species habitat, (3) document amount and kind of military and nonmilitary disturbance, (4) determine the impact of military training on vegetation and soil resources, (5) estimate soil erosion potential, (6) classify land as to the kind and amount of use it can support, (7) determine allowable use estimates for tracked vehicle training, (8) document concealment resources, (9) identify lands that require restoration and evaluate the effectiveness of restorative techniques, and (10) evaluate potential acquisition property. Wildlife inventories survey small and midsize mammals, birds, bats, amphibians, and reptiles. Data from these surveys can be used for environmental documentation, to identify state and federal endangered and threatened species, and to evaluate the impact of military activities on wildlife populations. Short- and long-term monitoring of permanent field plots is used to evaluate and adjust land

  11. Analysis on BDS Satellite Internal Multipath and Its Impact on Wide-lane FCB Estimation

    Directory of Open Access Journals (Sweden)

    RUAN Rengui

    2017-08-01

    Full Text Available To the issue of the satellite internal multipath (SIMP of BeiDou satellites, it proposed and emphasized that the SIMP model should be established as a function of the nadir angle with respect to the observed satellite rather than the elevation of the measurement, so that it can be used for receivers at various altitude. BDS data from global distributed stations operated by the International Monitoring and Assessment System (iGMAS and the Multi-GNSS Experiment (MGEX of the International GNSS Service (IGS are collected and a new SIMP model as a piece-wise linear function of the nadir angle is released for the IGSO-and MEO-satellite groups and for B1, B2 and B3 frequency band individually. The SIMP of GEO,IGSO and MEO satellites is further analyzed with B1/B2 dual-frequency data onboard the FengYun-3 C(FY3C satellite at an altitude of~830 km, and it showed that, for nadir angles smaller than 7°, the SIMP values for GEO is quite close to the IGSO's, especially for B2, which may suggest that the SIMP model for IGSO satellites possibly also works for GEO satellites. It also demonstrated that, when the nadir angle is smaller than 12°for the MEO and 7°for the IGSO, the estimated SIMP model with data from FY3C is considerable consistent with that estimated with data collected at ground stations. Experiments are carried out to investigate the impacts of the SIMP on wide-lane fractional cycle bias (FCB estimation for BDS satellites. The result indicates that, with the correction of the estimated SIMP, the repeatability of the FCB series is significantly improved by more than 60% for all satellites. Specifically, for the MEO and IGSO satellites, the repeatability is smaller than 0.05 cycle; the repeatability of 0.023 and 0.068 cycles achieved for GEO satellites C01 and C02 respectively with the estimated SIMP model for IGSO satellites.

  12. Army Ordnance Satellite Program

    Science.gov (United States)

    2007-11-02

    from White Sands were not V-Zfs, but American C I T =Pr iva te F’so" 8 The nPr iva ten m i s s i l e s were p a r t of P r o j e c t ORD-GIT...Rocket -pent Division, RUD iervice, Off ice, Chief of Ordnance, ARGNb Technical Library files, The =Pr iva te A and Fn m i s s i l e s c a r r i e...E. Laidlaw, is located in south central New Mexico . Its main mission is providing integrated mngc facilities for flight testing of mis- siles

  13. A Quantitative Analysis of an Arts Program

    Science.gov (United States)

    Gallagher, Faustina

    2013-01-01

    This study assessed the relationship of an Arts Summer Learning Program (Arts Program) to student academic performance and college readiness. A North Texas school district collaborated with a research-based Arts Program in 2010, and a new approach was implemented in the summer school program for low-performing students who had failed courses in…

  14. Aspects with Program Analysis for Security Policies

    DEFF Research Database (Denmark)

    Yang, Fan

    , small modification of the security requirement might lead to substantial changes in a number of modules within a large mobile distributed system. Indeed, security is a crosscutting concern which can spread to many business modules within a system, and is difficult to be integrated in a modular way......Enforcing security policies to IT systems, especially for a mobile distributed system, is challenging. As society becomes more IT-savvy, our expectations about security and privacy evolve. This is usually followed by changes in regulation in the form of standards and legislation. In many cases......-oriented extension of the process calculus KLAIM that excels at modeling mobile, distributed systems. A novel feature of our approach is that advices are able to analyze the future use of data, which is achieved by using program analysis techniques. We also present AspectK to propose other possible aspect...

  15. Tree canopy light interception estimates in almond and a walnut orchards using ground, low flying aircraft, and satellite based methods to improve irrigation scheduling programs.

    Science.gov (United States)

    Rosecrance, R. C.; Johnson, L.; Soderstrom, D.

    2016-12-01

    Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.

  16. Tree Canopy Light Interception Estimates in Almond and a Walnut Orchards Using Ground, Low Flying Aircraft, and Satellite Based Methods to Improve Irrigation Scheduling Programs

    Science.gov (United States)

    Rosecrance, Richard C.; Johnson, Lee; Soderstrom, Dominic

    2016-01-01

    Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.

  17. Mobile satellite service for Canada

    Science.gov (United States)

    Sward, David

    1988-05-01

    The Mobile Satellite (MSAT) system and a special program designed to provide interim mobile satellite services (IMSS) during the construction phase of MSAT are described. A mobile satellite system is a key element in extending voice and and data telecommunications to all Canadians.

  18. A learning tool for optical and microwave satellite image processing and analysis

    Science.gov (United States)

    Dashondhi, Gaurav K.; Mohanty, Jyotirmoy; Eeti, Laxmi N.; Bhattacharya, Avik; De, Shaunak; Buddhiraju, Krishna M.

    2016-04-01

    This paper presents a self-learning tool, which contains a number of virtual experiments for processing and analysis of Optical/Infrared and Synthetic Aperture Radar (SAR) images. The tool is named Virtual Satellite Image Processing and Analysis Lab (v-SIPLAB) Experiments that are included in Learning Tool are related to: Optical/Infrared - Image and Edge enhancement, smoothing, PCT, vegetation indices, Mathematical Morphology, Accuracy Assessment, Supervised/Unsupervised classification etc.; Basic SAR - Parameter extraction and range spectrum estimation, Range compression, Doppler centroid estimation, Azimuth reference function generation and compression, Multilooking, image enhancement, texture analysis, edge and detection. etc.; SAR Interferometry - BaseLine Calculation, Extraction of single look SAR images, Registration, Resampling, and Interferogram generation; SAR Polarimetry - Conversion of AirSAR or Radarsat data to S2/C3/T3 matrix, Speckle Filtering, Power/Intensity image generation, Decomposition of S2/C3/T3, Classification of S2/C3/T3 using Wishart Classifier [3]. A professional quality polarimetric SAR software can be found at [8], a part of whose functionality can be found in our system. The learning tool also contains other modules, besides executable software experiments, such as aim, theory, procedure, interpretation, quizzes, link to additional reading material and user feedback. Students can have understanding of Optical and SAR remotely sensed images through discussion of basic principles and supported by structured procedure for running and interpreting the experiments. Quizzes for self-assessment and a provision for online feedback are also being provided to make this Learning tool self-contained. One can download results after performing experiments.

  19. RELAV - RELIABILITY/AVAILABILITY ANALYSIS PROGRAM

    Science.gov (United States)

    Bowerman, P. N.

    1994-01-01

    RELAV (Reliability/Availability Analysis Program) is a comprehensive analytical tool to determine the reliability or availability of any general system which can be modeled as embedded k-out-of-n groups of items (components) and/or subgroups. Both ground and flight systems at NASA's Jet Propulsion Laboratory have utilized this program. RELAV can assess current system performance during the later testing phases of a system design, as well as model candidate designs/architectures or validate and form predictions during the early phases of a design. Systems are commonly modeled as System Block Diagrams (SBDs). RELAV calculates the success probability of each group of items and/or subgroups within the system assuming k-out-of-n operating rules apply for each group. The program operates on a folding basis; i.e. it works its way towards the system level from the most embedded level by folding related groups into single components. The entire folding process involves probabilities; therefore, availability problems are performed in terms of the probability of success, and reliability problems are performed for specific mission lengths. An enhanced cumulative binomial algorithm is used for groups where all probabilities are equal, while a fast algorithm based upon "Computing k-out-of-n System Reliability", Barlow & Heidtmann, IEEE TRANSACTIONS ON RELIABILITY, October 1984, is used for groups with unequal probabilities. Inputs to the program include a description of the system and any one of the following: 1) availabilities of the items, 2) mean time between failures and mean time to repairs for the items from which availabilities are calculated, 3) mean time between failures and mission length(s) from which reliabilities are calculated, or 4) failure rates and mission length(s) from which reliabilities are calculated. The results are probabilities of success of each group and the system in the given configuration. RELAV assumes exponential failure distributions for

  20. RAMPAC: a Program for Analysis of Complicated Raman Spectra

    NARCIS (Netherlands)

    de Mul, F.F.M.; Greve, Jan

    1993-01-01

    A computer program for the analysis of complicated (e.g. multi-line) Raman spectra is described. The program includes automatic peak search, various procedures for background determination, peak fit and spectrum deconvolution and extensive spectrum handling procedures.

  1. Application of Object Based Classification and High Resolution Satellite Imagery for Savanna Ecosystem Analysis

    Directory of Open Access Journals (Sweden)

    Jane Southworth

    2010-12-01

    Full Text Available Savanna ecosystems are an important component of dryland regions and yet are exceedingly difficult to study using satellite imagery. Savannas are composed are varying amounts of trees, shrubs and grasses and typically traditional classification schemes or vegetation indices cannot differentiate across class type. This research utilizes object based classification (OBC for a region in Namibia, using IKONOS imagery, to help differentiate tree canopies and therefore woodland savanna, from shrub or grasslands. The methodology involved the identification and isolation of tree canopies within the imagery and the creation of tree polygon layers had an overall accuracy of 84%. In addition, the results were scaled up to a corresponding Landsat image of the same region, and the OBC results compared to corresponding pixel values of NDVI. The results were not compelling, indicating once more the problems of these traditional image analysis techniques for savanna ecosystems. Overall, the use of the OBC holds great promise for this ecosystem and could be utilized more frequently in studies of vegetation structure.

  2. Development of Ray Tracing Algorithms for Scanning Plane and Transverse Plane Analysis for Satellite Multibeam Application

    Directory of Open Access Journals (Sweden)

    N. H. Abd Rahman

    2014-01-01

    Full Text Available Reflector antennas have been widely used in many areas. In the implementation of parabolic reflector antenna for broadcasting satellite applications, it is essential for the spacecraft antenna to provide precise contoured beam to effectively serve the required region. For this purpose, combinations of more than one beam are required. Therefore, a tool utilizing ray tracing method is developed to calculate precise off-axis beams for multibeam antenna system. In the multibeam system, each beam will be fed from different feed positions to allow the main beam to be radiated at the exact direction on the coverage area. Thus, detailed study on caustics of a parabolic reflector antenna is performed and presented in this paper, which is to investigate the behaviour of the rays and its relation to various antenna parameters. In order to produce accurate data for the analysis, the caustic behaviours are investigated in two distinctive modes: scanning plane and transverse plane. This paper presents the detailed discussions on the derivation of the ray tracing algorithms, the establishment of the equations of caustic loci, and the verification of the method through calculation of radiation pattern.

  3. Satellite Remote Sensing and Transportation Lifelines: Safety and Risk Analysis Along Rural Roads

    Science.gov (United States)

    Williamson, R.

    the application of satellite Earth Observation (EO) methods to the analysis of transportation networks. Other geospatial technologies, including geographic information systems (GIS) and the Global Positioning System (GPS), sharply enhance the utility of EO data in identifying potential road hazards and providing an objective basis for allocating resources to reduce their risks. In combination, these powerful information technologies provide substantial public benefits and increased business opportunities to remote sensing value-added firms. departments in rural jurisdictions improve the trafficability of the roads under their management during severe weather. We are developing and testing these methods in the U.S. Southwest, where thousands of kilometers of unimproved and graded dirt roads cross Native American reservations. This generally arid region is nevertheless subject to periodic summer rainstorms and winter snow and ice, creating hazardous conditions for the region's transportation lifelines. Arizona and Southeast Utah, as well as digital terrain models from the U.S. Geological Survey. We have analyzed several risk factors, such as slope, road curvature, and intersections, by means of multi-criteria evaluation (MCE) on both unimproved and improved roads. In partnership with the Hopi Indian Nation in Arizona, we have acquired and analyzed GPS road centerline data and accident data that validate our methodology. hazards along paved and unpaved roads of the American Southwest. They are also transferable to the international settings, particularly in similarly arid climates.

  4. Future large broadband switched satellite communications networks

    Science.gov (United States)

    Staelin, D. H.; Harvey, R. R.

    1979-01-01

    Critical technical, market, and policy issues relevant to future large broadband switched satellite networks are summarized. Our market projections for the period 1980 to 2000 are compared. Clusters of switched satellites, in lieu of large platforms, etc., are shown to have significant advantages. Analysis of an optimum terrestrial network architecture suggests the proper densities of ground stations and that link reliabilities 99.99% may entail less than a 10% cost premium for diversity protection at 20/30 GHz. These analyses suggest that system costs increase as the 0.6 power of traffic. Cost estimates for nominal 20/30 GHz satellite and ground facilities suggest optimum system configurations might employ satellites with 285 beams, multiple TDMA bands each carrying 256 Mbps, and 16 ft ground station antennas. A nominal development program is outlined.

  5. Online Visualization and Analysis of Merged Global Geostationary Satellite Infrared Dataset

    Science.gov (United States)

    Liu, Z.; Ostrenga, D.; Leptoukh, G.; Mehta, A.

    2008-12-01

    The NASA Goddard Earth Sciences Data Information Services Center (GES DISC) is home of Tropical Rainfall Measuring Mission (TRMM) data archive. The global merged IR product, also known as, the NCEP/CPC 4-km Global (60°N - 60°S) IR Dataset, is one of TRMM ancillary datasets. They are globally-merged (60°N-60°S) pixel-resolution (4 km) IR brightness temperature data (equivalent blackbody temperatures), merged from all available geostationary satellites (GOES-8/10, METEOSAT-7/5 & GMS). The availability of data from METEOSAT-5, which is located at 63E at the present time, yields a unique opportunity for total global (60°N-60°S) coverage. The GES DISC has collected over 8 years of the data beginning from February of 2000. This high temporal resolution dataset can not only provide additional background information to TRMM and other satellite missions, but also allow observing a wide range of meteorological phenomena from space, such as, mesoscale convection system, tropical cyclones, hurricanes, etc. The dataset can also be used to verify model simulations. Despite that the data can be downloaded via ftp, however, its large volume poses a challenge for many users. A single file occupies about 70 MB disk space and there is a total of ~73,000 files (~4.5 TB) for the past 8 years. Because there is a lack of data subsetting service, one has to download the entire file, which could be time consuming and require a lot of disk space. In order to facilitate data access, we have developed a web prototype, the Global Image ViewER (GIVER), to allow users to conduct online visualization and analysis of this dataset. With a web browser and few mouse clicks, users can have a full access to over 8 year and over 4.5 TB data and generate black and white IR imagery and animation without downloading any software and data. Basic functions include selection of area of interest, single imagery or animation, a time skip capability for different temporal resolution and image size. Users

  6. Multi-temporal satellite analysis of Wilkins Ice Shelf, Antarctic Peninsula, and consequences for its stability

    Science.gov (United States)

    Rankl, Melanie; Fürst, Johannes; Helm, Veit; Humbert, Angelika; Braun, Matthias

    2016-04-01

    Antarctic Peninsula (AP) ice shelves have been affected by ice front retreat and surface lowering over the past decades. 12 major ice shelves have disintegrated or significantly retreated and have been affected by volume loss. Longterm ice shelf thinning is twice as high at western AP ice shelves than at eastern AP ice shelves. Wilkins Ice Shelf (WIS), located at the western AP, has undergone considerable ice front retreat since the 1990s. It lost ~ 5000 km² of its size since then. Surface lowering at WIS was found to be the largest at AP ice shelves between 1978 and 2008. Here, we analyze time-series of satellite data in order to assess dynamic changes of WIS following the ice front retreat between 1994 and 2010. We present multi-temporal changes in surface velocities and deduced products, such as strain rate and stress regimes. Surface flow was derived from SAR intensity offset tracking applied to ALOS PALSAR image pairs. In addition, we show variations in ice thickness between 2003 and 2012 derived from TanDEM-X satellite acquisitions and altimetry datasets (CryoSAT-2, ICESat). The bistatic TanDEM-X acquisitions are very suitable for interferometric processing due to highly coherent image pairs. The results showed surface velocity speed up during break-up of an ice bridge between two confining islands in 2006-2008, when an area of ~ 1800 km² broke off. A sharp transition between compressive and extensive in-flow strain rates evolved at the narrowest part of the ice bridge, which contributed to the formation of a crack and hence, failure of the ice bridge in April 2009. First principal stresses were estimated to amount to ~ 250 kPa in the vicinity of the crack formation. The imaging TanDEM-X radar geometry allowed for a comprehensive ice thickness mapping of the ice shelf in 2012 and resolved many details due to the high spatial resolution. The ice thickness at WIS was found to be very heterogeneous. Thickness changes between 2003 and 2012 revealed increased

  7. Satellite Remote Sensing Analysis to Monitor Desertification Processes in Central Plateau of Mexico

    Science.gov (United States)

    Becerril, R.; González Sosa, E.; Diaz-Delgado, C.; Mastachi-Loza, C. A.; Hernández-Tellez, M.

    2013-05-01

    Desertification is defined as land degradation in arid, semi-arid and sub-humid areas due to climatic variations and human activities. Therefore there is a need to monitor the desertification process in the spatiotemporal scale in order to develop strategies to fight against desertification (Wu and Ci, 2002). In this sense, data provided by remote sensing is an important source for spatial and temporal information, which allows monitoring changes in the environment at low cost and high effectiveness. In Mexico, drylands hold 65% of the area, with about 1,280,494 km2 (UNESCO, 2010), where is located 46% of the national population (SEMARNAT, 2008). Given these facts, there is interest in monitoring the degradation of these lands, especially in Mexico because no specific studies have identified trends and progress of desertification in the country so far. However, it has been considered land degradation as an indicator of desertification process. Thus, it has been determined that 42% of soils in Mexico present some degradation degree. The aim of this study was to evaluate the spatial and temporal dynamics of desertification for 1993, 2000 and 2011 in the semiarid central plateau in Mexico based on demographic, climatic and satellite data. It took into consideration: 1) the Anthropogenic Impact Index (HII), based on the spatial population distribution and its influence on the use of resources and 2) the Aridity Index (AI), calculated with meteorological station records for annual rainfall and potential evapotranspiration. Mosaics were made with Landsat TM scenes; considering they are a data source that allows evaluate surface processes regionally and with high spectral resolution. With satellite information five indices were estimated to assess the vegetation and soil conditions: Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Weighted Difference Vegetation Index (WDVI), Grain Size Index (GSI) and Bare Soil Index (BSI). The rates

  8. Satellite-guided hydro-economic analysis for integrated management and prediction of the impact of droughts on agricultural regions

    Science.gov (United States)

    Maneta, M. P.; Howitt, R.; Kimball, J. S.

    2013-12-01

    Agricultural activity can exacerbate or buffer the impact of climate variability, especially droughts, on the hydrologic and socioeconomic conditions of rural areas. Potential negative regional impacts of droughts include impoverishment of agricultural regions, deterioration or overuse of water resources, risk of monoculture, and regional dependence on external food markets. Policies that encourage adequate management practices in the face of adverse climatic events are critical to preserve rural livelihoods and to ensure a sustainable future for agriculture. Diagnosing and managing drought effects on agricultural production, on the social and natural environment, and on limited water resources, is highly complex and interdisciplinary. The challenges that decision-makers face to mitigate the impact of water shortage are social, agronomic, economic and environmental in nature and therefore must be approached from an integrated multidisciplinary point of view. Existing observation technologies, in conjunction with models and assimilation methods open the opportunity for novel interdisciplinary analysis tools to support policy and decision making. We present an integrated modeling and observation framework driven by satellite remote sensing and other ancillary information from regional monitoring networks to enable robust regional assessment and prediction of drought impacts on agricultural production, water resources, management decisions and socioeconomic policy. The core of this framework is a hydroeconomic model of agricultural production that assimilates remote sensing inputs to quantify the amount of land, water, fertilizer and labor farmers allocate for each crop they choose to grow on a seasonal basis in response to changing climatic conditions, including drought. A regional hydroclimatologic model provides biophysical constraints to an economic model of agricultural production based on a class of models referred to as positive mathematical programming (PMP

  9. Analysis of TRMM Satellite Data in Varying Climates and Elevation in Morocco

    Science.gov (United States)

    Milewski, A.; El Kadiri, R.; Durham, M.

    2012-12-01

    The use of satellite precipitation data (TRMM, SSM/I) in scientific investigations has been on the rise due to the general paucity or unavailability of adequate rain gauge data for the majority of the Earth's surface. Unfortunately, the number of research studies integrating TRMM data into various scientific applications (e.g., water resources, rainfall analysis, climate change, hydrologic modeling, etc.) has far outweighed those studying the accuracy, uncertainty, and usefulness of TRMM data. Even less research has been conducted on the viability of TRMM rainfall products as an adequate substitute for field gauges in data sparse and arid to semi-arid environments; the most critical area in need of satellite rainfall. An assessment on the accuracy and uncertainty of TRMM in these critical areas (ungauged basins, low rainfall) was conducted by comparing in-situ rain gauge stations in Northern Morocco against both the TRMM 3B42.v6 and recently processed 3B42.v7 precipitation products. We compared average annual precipitation values from 79 wide-spread field gauges in three watersheds (Oum Er Rbia, Sebou, Melouya Watersheds) originating in the Atlas Mountains to the TRMM datasets. In addition, we assessed the effect that different variables (elevation, climate regime, and season) have on both the version 6 and version 7 TRMM products. Gauges were divided into three elevation classes (Low: 0-500m; Medium: 500-1000m; High: >1000m) and precipitation/climate (Arid: 100-300mm/yr; Semi-Arid: 300-500mm/yr; Humid: >500mm/yr) classes to evaluate the impact of rainfall and elevation on satellite-based rainfall products. Results indicate that 3B42.v7 is more accurate than 3B42.v6 data using average annual precipitation data from 1998-2009 for the Oum Er Rbia Watershed (0.47 to 0.18 R2), however produces similar correlations for the 79 gauges combined (0.30 to 0.29 R2). The R2 values were improved using the version 7 products for the different elevation (Low: 0.30 v7 to 0.46 v6

  10. COVERAGE PERFORMANCES ANALYSIS ON COMBINED-GEO-IGSO SATELLITE CONSTELLATION1

    Institute of Scientific and Technical Information of China (English)

    Jiang Yong; Yang Sen; Zhang Gengxin; Li Guangxia

    2011-01-01

    The Combined-GEO-IGSO constellation is the combination of Geostationary Earth Orbit (GEO) satellite and Inclining GeoSynchronons Orbit (IGSO) satellite.The Combined-GEO-IGSO constellation can integrate the advantages of GEO and IGSO to achieve regional coverage.In order to discuss the performances of the Combined-GEO-IGSO constellation,the performances of coverage,elevation,diversity,and transmission are simulated in China and surrounding regions by Satellite Tool Kit (STK).The simulation results show that:the combined constellation can reach higher multi-satellite coverage and higher communication elevation in China and surrounding areas; the Doppler shift,delay,and propagation loss of this constellation have little impact on the system.As regional coverage constellation,the Combined-GEO-IGSO is feasible.

  11. Nonlinear analysis of a simple model of temperature evolution in a satellite

    CERN Document Server

    Gaite, Jose; Pérez-Grande, Isabel

    2007-01-01

    We analyse a simple model of the heat transfer to and from a small satellite orbiting round a solar system planet. Our approach considers the satellite isothermal, with external heat input from the environment and from internal energy dissipation, and output to the environment as black-body radiation. The resulting nonlinear ordinary differential equation for the satellite's temperature is analysed by qualitative, perturbation and numerical methods, which show that the temperature approaches a periodic pattern (attracting limit cycle). This approach can occur in two ways, according to the values of the parameters: (i) a slow decay towards the limit cycle over a time longer than the period, or (ii) a fast decay towards the limit cycle over a time shorter than the period. In the first case, an exactly soluble average equation is valid. We discuss the consequences of our model for the thermal stability of satellites.

  12. An error analysis of tropical cyclone divergence and vorticity fields derived from satellite cloud winds on the Atmospheric and Oceanographic Information Processing System (AOIPS)

    Science.gov (United States)

    Hasler, A. F.; Rodgers, E. B.

    1977-01-01

    An advanced Man-Interactive image and data processing system (AOIPS) was developed to extract basic meteorological parameters from satellite data and to perform further analyses. The errors in the satellite derived cloud wind fields for tropical cyclones are investigated. The propagation of these errors through the AOIPS system and their effects on the analysis of horizontal divergence and relative vorticity are evaluated.

  13. Proceedings of the Second Annual Symposium on Mathematical Pattern Recognition and Image Analysis Program

    Science.gov (United States)

    Guseman, L. F., Jr. (Principal Investigator)

    1984-01-01

    Several papers addressing image analysis and pattern recognition techniques for satellite imagery are presented. Texture classification, image rectification and registration, spatial parameter estimation, and surface fitting are discussed.

  14. Performance Analysis of Integrated Wireless Sensor and Multibeam Satellite Networks Under Terrestrial Interference

    Directory of Open Access Journals (Sweden)

    Hongjun Li

    2016-10-01

    Full Text Available This paper investigates the performance of integrated wireless sensor and multibeam satellite networks (IWSMSNs under terrestrial interference. The IWSMSNs constitute sensor nodes (SNs, satellite sinks (SSs, multibeam satellite and remote monitoring hosts (RMHs. The multibeam satellite covers multiple beams and multiple SSs in each beam. The SSs can be directly used as SNs to transmit sensing data to RMHs via the satellite, and they can also be used to collect the sensing data from other SNs to transmit to the RMHs. We propose the hybrid one-dimensional (1D and 2D beam models including the equivalent intra-beam interference factor β from terrestrial communication networks (TCNs and the equivalent inter-beam interference factor α from adjacent beams. The terrestrial interference is possibly due to the signals from the TCNs or the signals of sinks being transmitted to other satellite networks. The closed-form approximations of capacity per beam are derived for the return link of IWSMSNs under terrestrial interference by using the Haar approximations where the IWSMSNs experience the Rician fading channel. The optimal joint decoding capacity can be considered as the upper bound where all of the SSs’ signals can be jointly decoded by a super-receiver on board the multibeam satellite or a gateway station that knows all of the code books. While the linear minimum mean square error (MMSE capacity is where all of the signals of SSs are decoded singularly by a multibeam satellite or a gateway station. The simulations show that the optimal capacities are obviously higher than the MMSE capacities under the same conditions, while the capacities are lowered by Rician fading and converge as the Rician factor increases. α and β jointly affect the performance of hybrid 1D and 2D beam models, and the number of SSs also contributes different effects on the optimal capacity and MMSE capacity of the IWSMSNs.

  15. Theoretical analysis and numerical solution of laser pulse transformation for satellite laser ranging

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The processes of the pulse transformation in satellite laser ranging (SLR) are analyzed,the analytical expressions of the transformation are deduced,and the effects of the transformation on Center-of-Mass corrections of satellite and ranging precision are discussed.The numerical solution of the transformation and its effects are also given.The results reveal the rules of pulse transformation affected by different kinds of factors.These are significant for designing the SLR system with millimeter accuracy.

  16. Structural design and analysis of a solar array substrate for a GEO satellite

    OpenAIRE

    Safak, Omer

    2013-01-01

    The aim of this thesis is the design of solar array substrate for a geostationary satellite. The design of deployable solar array substrate is realized based on the requirements which are provided by BILUZAY (Bilkent University Space Technologies Research Centre). This array is going to empower a telecommunication satellite which will be operating in a geostationary orbit during 15 years. The main work presented in this thesis consists of two principal directions: solar cell array area dimens...

  17. Delay analysis for interlan traffic using two suitable TDMA satellite access schemes

    OpenAIRE

    Celandroni, Nedo; Ferro, Erina; Potort?, Francesco; Maral, Gerard

    1997-01-01

    This paper presents Faded Environments Effective Distributed Engineering Redundant Signalling (FEEDERS), an access scheme for sharing, in time division multiple access (TDMA) mode, the capacity of a satellite channel among a number of stations, on the basis of user demand, This scheme and its companion Distributed Allocation with Request In Fixed Slots (DRIFS), result from a study carried out by the authors on distributed-control protocols for geostationary satellite access. Both protocols de...

  18. Performance Analysis of Integrated Wireless Sensor and Multibeam Satellite Networks Under Terrestrial Interference.

    Science.gov (United States)

    Li, Hongjun; Yin, Hao; Gong, Xiangwu; Dong, Feihong; Ren, Baoquan; He, Yuanzhi; Wang, Jingchao

    2016-10-14

    This paper investigates the performance of integrated wireless sensor and multibeam satellite networks (IWSMSNs) under terrestrial interference. The IWSMSNs constitute sensor nodes (SNs), satellite sinks (SSs), multibeam satellite and remote monitoring hosts (RMHs). The multibeam satellite covers multiple beams and multiple SSs in each beam. The SSs can be directly used as SNs to transmit sensing data to RMHs via the satellite, and they can also be used to collect the sensing data from other SNs to transmit to the RMHs. We propose the hybrid one-dimensional (1D) and 2D beam models including the equivalent intra-beam interference factor β from terrestrial communication networks (TCNs) and the equivalent inter-beam interference factor α from adjacent beams. The terrestrial interference is possibly due to the signals from the TCNs or the signals of sinks being transmitted to other satellite networks. The closed-form approximations of capacity per beam are derived for the return link of IWSMSNs under terrestrial interference by using the Haar approximations where the IWSMSNs experience the Rician fading channel. The optimal joint decoding capacity can be considered as the upper bound where all of the SSs' signals can be jointly decoded by a super-receiver on board the multibeam satellite or a gateway station that knows all of the code books. While the linear minimum mean square error (MMSE) capacity is where all of the signals of SSs are decoded singularly by a multibeam satellite or a gateway station. The simulations show that the optimal capacities are obviously higher than the MMSE capacities under the same conditions, while the capacities are lowered by Rician fading and converge as the Rician factor increases. α and β jointly affect the performance of hybrid 1D and 2D beam models, and the number of SSs also contributes different effects on the optimal capacity and MMSE capacity of the IWSMSNs.

  19. Structural design and analysis of a solar array substrate for a GEO satellite

    OpenAIRE

    Safak, Omer

    2013-01-01

    The aim of this thesis is the design of solar array substrate for a geostationary satellite. The design of deployable solar array substrate is realized based on the requirements which are provided by BILUZAY (Bilkent University Space Technologies Research Centre). This array is going to empower a telecommunication satellite which will be operating in a geostationary orbit during 15 years. The main work presented in this thesis consists of two principal directions: solar cell array area dimens...

  20. The Matsu Wheel: A Cloud-Based Framework for Efficient Analysis and Reanalysis of Earth Satellite Imagery

    Science.gov (United States)

    Patterson, Maria T.; Anderson, Nicholas; Bennett, Collin; Bruggemann, Jacob; Grossman, Robert L.; Handy, Matthew; Ly, Vuong; Mandl, Daniel J.; Pederson, Shane; Pivarski, James; hide

    2016-01-01

    Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for cloud-based processing of Earth satellite imagery with practical applications to aid in natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStack, Hadoop, MapReduce and related technologies. We describe a framework for efficient analysis of large amounts of data called the Matsu "Wheel." The Matsu Wheel is currently used to process incoming hyperspectral satellite data produced daily by NASA's Earth Observing-1 (EO-1) satellite. The framework allows batches of analytics, scanning for new data, to be applied to data as it flows in. In the Matsu Wheel, the data only need to be accessed and preprocessed once, regardless of the number or types of analytics, which can easily be slotted into the existing framework. The Matsu Wheel system provides a significantly more efficient use of computational resources over alternative methods when the data are large, have high-volume throughput, may require heavy preprocessing, and are typically used for many types of analysis. We also describe our preliminary Wheel analytics, including an anomaly detector for rare spectral signatures or thermal anomalies in hyperspectral data and a land cover classifier that can be used for water and flood detection. Each of these analytics can generate visual reports accessible via the web for the public and interested decision makers. The result products of the analytics are also made accessible through an Open Geospatial Compliant (OGC)-compliant Web Map Service (WMS) for further distribution. The Matsu Wheel allows many shared data services to be performed together to efficiently use resources for processing hyperspectral satellite image data and other, e.g., large environmental datasets that may be analyzed for

  1. Integrated predictive maintenance program vibration and lube oil analysis: Part I - history and the vibration program

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, H.

    1996-12-01

    This paper is the first of two papers which describe the Predictive Maintenance Program for rotating machines at the Palo Verde Nuclear Generating Station. The organization has recently been restructured and significant benefits have been realized by the interaction, or {open_quotes}synergy{close_quotes} between the Vibration Program and the Lube Oil Analysis Program. This paper starts with the oldest part of the program - the Vibration Program and discusses the evolution of the program to its current state. The {open_quotes}Vibration{close_quotes} view of the combined program is then presented.

  2. Probabilistic Output Analysis by Program Manipulation

    DEFF Research Database (Denmark)

    Rosendahl, Mads; Kirkeby, Maja Hanne

    2015-01-01

    function as a possibly uncomputable expression in an intermediate language. This program is then analyzed, transformed, and approximated. The result is a closed form expression that computes an over approximation of the output probability distribution for the program. We focus on programs where...... the possible input follows a known probability distribution. Tests in programs are not assumed to satisfy the Markov property of having fixed branching probabilities independently of previous history....

  3. Integrated Analysis of Interferometric SAR, Satellite Altimetry and Hydraulic Modeling to Quantify Louisiana Wetland Dynamics

    Science.gov (United States)

    Lee, Hyongki; Kim, Jin-woo; Lu, Zhong; Jung, Hahn Chul; Shum, C. K.; Alsdorf, Doug

    2012-01-01

    Wetland loss in Louisiana has been accelerating due primarily to anthropogenic and nature processes, and is being advocated as a problem with national importance. Accurate measurement or modeling of wetland-wide water level changes, its varying extent, its storage and discharge changes resulting in part from sediment loads, erosion and subsidence are fundamental to assessment of hurricane-induced flood hazards and wetland ecology. Here, we use innovative method to integrate interferometric SAR (InSAR) and satellite radar altimetry for measuring absolute or geocentric water level changes and applied the methodology to remote areas of swamp forest in coastal Louisiana. Coherence analysis of InSAR pairs suggested that the HH polarization is preferred for this type of observation, and polarimetric analysis can help to identi:fy double-bonnce backscattering areas in the wetland. Envisat radar altimeter-measured 18- Hz (along-track sampling of 417 m) water level data processed with regional stackfile method have been used to provide vertical references for water bodies separated by levees. The high-resolution (approx.40 m) relative water changes measured from ALOS PALSAR L-band and Radarsat-l C-band InSAR are then integrated with Envisat radar altimetry to obtain absolute water level. The resulting water level time series were validated with in situ gauge observations within the swamp forest. Furthermore, we compare our water elevation changes with 2D flood modeling from LISFLOOD hydrodynamic model. Our study demonstrates that this new technique allows retrospective reconstruction and concurrent monitoring of water conditions and flow dynamics in wetlands, especially those lacking gauge networks.

  4. Ecological Analysis of Deserti Fication Processes in Semi Arid Land in Algeria Using Satellite Data

    Science.gov (United States)

    Zegrar, Ahmed

    2016-07-01

    Desertification, a phenomenon of loss of productivity of the land is both a matter of Environment and Development (Cornet, 2002). It is linked to the anthropogenic action and to climate variability but also to changes in biodiversity, in particular the Maghreb (Hobbs et al., 1995). The desertification of the steppe areas of North Africa (Algeria, Morocco and Tunisia) is considered of special concern by the specialists in these regions. Desertification, Climate Change and the erosion of biodiversity are the central issues for the development of arid, semi-­arid. In this region, the combination of two factors, climatic and anthropogenic, has fostered a deterioration of the vegetation cover, soil erosion and the scarcity of water resources. The climate of this region is characterized by periods of recurring droughts since the 1970s. The anthropogenic pressure is the result of a combination of factors among which the strong demographic growth, the intensification and extension of production systems agro-­pastoral or still further the concentration of a growing livestock on smaller spaces. In this study, the criteria for classification and identification of physical parameters for spatial ecological analysis of vegetation in the steppe region to determine the degradation and vulnerability vegetation formations and how to conduct to phenomenon of desertification. So we use some satellite data in different dates (LANDSAT) in order to determine the ecological of steppe formation and changes in land cover, sand moving and forest deterioration. The application of classification and some arithmetic combination with NDVI and MSAVI2 through specific processes was used to characterize the main steppe formations. An ecological analysis of plant communities and impact of sand move describe the nature of the desertification phenomenon and allow us to determine the impact of factors of climate and entropic activity in the Algerian steppe.

  5. The Development of Practical Item Analysis Program for Indonesian Teachers

    Science.gov (United States)

    Muhson, Ali; Lestari, Barkah; Supriyanto; Baroroh, Kiromim

    2017-01-01

    Item analysis has essential roles in the learning assessment. The item analysis program is designed to measure student achievement and instructional effectiveness. This study was aimed to develop item-analysis program and verify its feasibility. This study uses a Research and Development (R & D) model. The procedure includes designing and…

  6. Forecast analysis on satellites that need de-orbit technologies: future scenarios for passive de-orbit devices

    Science.gov (United States)

    Palla, Chiara; Kingston, Jennifer

    2016-09-01

    Propulsion-based de-orbit is a space-proven technology; however, this strategy can strongly limit operational lifetime, as fuel mass is dedicated to the de-orbiting. In addition previous reliability studies have identified the propulsion subsystem as one of the major contributors driving satellite failures. This issue brings the need to develop affordable de-orbit technologies with a limited reliance on the system level performance of the host satellite, ideally largely passive methods. Passive disposal strategies which take advantage of aerodynamic drag as the de-orbit force are particularly attractive because they are independent of spacecraft propulsion capabilities. This paper investigates the future market for passive de-orbit devices in LEO to aid in defining top-level requirements for the design of such devices. This is performed by considering the compliances of projected future satellites with the Inter Agency Space Debris Coordination Committee de-orbit time, to quantify the number of spacecraft that are compliant or non-compliant with the guidelines and, in this way, determine their need for the previously discussed devices. The study is performed by using the SpaceTrak™ database which provides future launch schedules, and spacecraft information; the de-orbit analysis is carried out by means of simulations with STELA. A case study of a passive strategy is given by the de-orbit mechanism technological demonstrator, which is currently under development at Cranfield University and designed to deploy a drag sail at the end of the ESEO satellite mission.

  7. Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC

    Directory of Open Access Journals (Sweden)

    S. Choi

    2011-09-01

    Full Text Available We derive estimates of tropospheric BrO column amounts during two Arctic field campaigns in 2008 using information from the satellite UV nadir sensors Ozone Monitoring Instrument (OMI and the second Global Ozone Monitoring Experiment (GOME-2 as well as estimates of stratospheric BrO columns from a model simulation. The sensitivity of the satellite-derived tropospheric BrO columns to various parameters is investigated using a radiative transfer model. We conduct a comprehensive analysis of satellite-derived tropospheric BrO columns including a detailed comparison with aircraft in-situ observations of BrO and related species obtained during the field campaigns. In contrast to prior expectation, tropospheric BrO, when present, existed over a broad range of altitudes. Our results show reasonable agreement between tropospheric BrO columns derived from the satellite observations and columns found using aircraft in-situ BrO. After accounting for the stratospheric contribution to total BrO column, several events of rapid BrO activation due to surface processes in the Arctic are apparent in both the OMI and GOME-2 based tropospheric columns. The wide orbital swath of OMI allows examination of the evolution of tropospheric BrO on about hourly time intervals near the pole. Low pressure systems, strong surface winds, and high planetary boundary layer heights are associated with the observed tropospheric BrO activation events.

  8. Instantaneous Shoreline Extraction Utilizing Integrated Spectrum and Shadow Analysis From LiDAR Data and High-resolution Satellite Imagery

    Science.gov (United States)

    Lee, I.-Chieh

    manually connected, for its length was less than 3% of the total shoreline length in our dataset. Secondly, the parameters for satellite image classification needed to be manually determined. The need for manpower was significantly less compared to the ground surveying or aerial photogrammetry. The first phase of shoreline extraction was to utilize Normalized Difference Vegetation Index (NDVI), Mean-Shift segmentation on the coordinate (X, Y, Z), and attributes (multispectral bands from satellite images) of the LiDAR points to classify each LiDAR point into land or water surface. Boundary of the land points were then traced to create the shoreline. The second phase of shoreline extraction solely from satellite images utilized spectrum, NDVI, and shadow analysis to classify the satellite images into classes. These classes were then refined by mean-shift segmentation on the panchromatic band. By tracing the boundary of the water surface, the shoreline can be created. Since these two shorelines may represent different shoreline instances in time, evaluating the changes of shoreline was the first to be done. Then an independent scenario analysis and a procedure are performed for the shoreline of each of the three conditions: in the process of erosion, in the process of accession, and remaining the same. With these three conditions, we could analysis the actual terrain type and correct the classification errors to obtain a more accurate shoreline. Meanwhile, methods of evaluating the quality of shorelines had also been discussed. The experiment showed that there were three indicators could best represent the quality of the shoreline. These indicators were: (1) shoreline accuracy, (2) land area difference between extracted shoreline and ground truth shoreline, and (3) bias factor from shoreline quality metrics.

  9. Biomedical Image Analysis by Program "Vision Assistant" and "Labview"

    Directory of Open Access Journals (Sweden)

    Peter Izak

    2005-01-01

    Full Text Available This paper introduces application in image analysis of biomedical images. General task is focused on analysis and diagnosis biomedical images obtained from program ImageJ. There are described methods which can be used for images in biomedical application. The main idea is based on particle analysis, pattern matching techniques. For this task was chosensophistication method by program Vision Assistant, which is a part of program LabVIEW.

  10. LPNORM: A linear programming normative analysis code

    Science.gov (United States)

    de Caritat, Patrice; Bloch, John; Hutcheon, Ian

    1994-04-01

    The computer code LPNORM implements the mathematical method of linear programming to calculate the mineralogical makeup of mineral mixtures, such as rock, sediment, or soil samples, from their bulk geochemical composition and from the mineralogical (or geochemical) composition of the contained minerals. This method simultaneously solves the set of linear equations governing the distribution of oxides into these minerals, subject to an objective function and a set of basic constraints. LPNORM allows the user to specify what minerals will be considered for normative analysis, what their composition is (in terms of mineral formula or geochemical composition), and whether to maximize mineral abundances, minimize slack variables (oxides that can not be accounted for), or do both at once in the objective function. Independent knowledge about the abundance of one or several of the minerals in the sample can be entered as additional equality or inequality constraints. Trial-and-error approach enables the user to "optimize" the composition of one or a few of the contained minerals. Results of comparative tests, highlighting the efficiency, as well as the shortcomings, of LPNORM are presented.

  11. Analysis of Long-Range Transport of Carbon Dioxide Using Satellite and Modeling Data over East Asia

    Science.gov (United States)

    Moon, K. J.; Choi, W. J.; Kim, S. Y.; Kim, D. R.; Chang, L. S.; Lee, S. D.; Lee, J. B.; Kim, S. K.; Hong, J.

    2015-12-01

    This study aims to evaluate the long-range transport of CO2 in East Asian region, using concentration data from a ground-based measurement site, column averaged concentration data of GOSAT observations, and the chemical transport model (GEOS-Chem) results for the period June 2009 to May 2011. We performed a validation of the data from GOSAT and GEOS-Chem with total column observations (TCCON). Satellite data and model simulation results show very similar seasonal variation and spatial distribution with well-known difference with TCCON data. The analysis of the long-range transport and high concentration (HC) events using surface/satellite observations and modeling results was conducted. During the HC events, the concentrations of CO2 and other air pollutants such as SO2 and CO are higher than that of all episodes. It means that CO2 known as a globally well-mixed gas may also play as a finger-print of human activity with unique regional characteristics like other air pollutants. The comprehensive analysis, in particular with GOSAT CO2 observation data, shows that CO2 plume with high concentration can be long-range transported with 1-2 days duration with regional scale. This analysis with satellite data and modeling conducted in this study can help better understanding of the behavior of CO2 and its impact on climate change and the carbon cycle.

  12. Accuracy analysis of continuous deformation monitoring using BeiDou Navigation Satellite System at middle and high latitudes in China

    Science.gov (United States)

    Jiang, Weiping; Xi, Ruijie; Chen, Hua; Xiao, Yugang

    2017-02-01

    As BeiDou Navigation Satellite System (BDS) has been operational in the whole Asia-Pacific region, it means a new GNSS system with a different satellite orbit structure will become available for deformation monitoring in the future. Conversely, GNSS deformation monitoring data are always processed with a regular interval to form displacement time series for deformation analysis, where the interval can neither be too long from the time perspective nor too short from the precision of determined displacements angle. In this paper, two experimental platforms were designed, with one being at mid-latitude and another at higher latitude in China. BDS data processing software was also developed for investigating the accuracy of continuous deformation monitoring using current in-orbit BDS satellites. Data over 20 days at both platforms were obtained and were processed every 2, 4 and 6 h to generate 3 displacement time series for comparison. The results show that with the current in-orbit BDS satellites, in the mid-latitude area it is easy to achieve accuracy of 1 mm in horizontal component and 2-3 mm in vertical component; the accuracy could be further improved to approximately 1 mm in both horizontal and vertical directions when combined BDS/GPS measurements are employed. At higher latitude, however, the results are not as good as expected due to poor satellite geometry, even the 6 h solutions could only achieve accuracy of 4-6 and 6-10 mm in horizontal and vertical components, respectively, which implies that it may not be applicable to very high-precision deformation monitoring at high latitude using the current BDS. With the integration of BDS and GPS observations, however, in 4-h session, the accuracy can achieve 2 mm in horizontal component and 4 mm in vertical component, which would be an optimal choice for high-accuracy structural deformation monitoring at high latitude.

  13. Analysis of L5 phase variations in GPS IIF satellites by the raw observation PPP approach

    Science.gov (United States)

    Liu, Sha; Becker, Matthias

    2015-04-01

    GPS modernization along with Glonass modernization and the emerging Galileo and Compass system has been highly anticipated by every GNSS user since several years. The third civilian L5 signal transmitted by the modernized GPS satellites brings us to the GNSS multi-frequency era. The first GPS IIF satellite was launched in May 2010, until now there are eight block IIF satellites in service and the remaining four IIF satellites are planned to be launched by 2016. The introduction of the third frequency to GPS and the usage of advanced atomic clocks not only provide the users more possibilities but also enable higher positioning accuracy. Nevertheless phase variations are found on the new L5 observation of GPS SVN62. Further investigations suggest that the variations of this satellite are strongly dependent on the satellite inner temperature variation caused by sun illumination. Besides achieving precise positioning accuracy, PPP is also frequently used as a tool to analyze and evaluate various GNSS errors, for instance, tropospheric delays and receiver clock errors. Other than with differential GNSS, it is possible to separate different errors and to identify the error sources with PPP. Conventional PPP is based on the ionosphere-free linear combination, in order to eliminate the first-order ionospheric delays. However only dual frequencies can be used to build ionosphere-free linear combination, which leads to the waste of the information on the third frequency. Furthermore, the frequency dependent errors can not be separated and traced. A new PPP approach that avoids using any linear combination is proposed recently, which is called the raw observation PPP. One advantage of the raw observation PPP approach is that data of all frequencies and all GNSS systems can be jointly used. In addition, the frequency dependent errors are possible to be separated, identified and analyzed. In this paper the raw observation PPP is utilized to analyze the phase variations on L5

  14. A Satellite-Derived Climatological Analysis of Urban Heat Island over Shanghai during 2000–2013

    Directory of Open Access Journals (Sweden)

    Weijiao Huang

    2017-06-01

    Full Text Available The urban heat island is generally conducted based on ground observations of air temperature and remotely sensing of land surface temperature (LST. Satellite remotely sensed LST has the advantages of global coverage and consistent periodicity, which overcomes the weakness of ground observations related to sparse distributions and costs. For human related studies and urban climatology, canopy layer urban heat island (CUHI based on air temperatures is extremely important. This study has employed remote sensing methodology to produce monthly CUHI climatology maps during the period 2000–2013, revealing the spatiotemporal characteristics of daytime and nighttime CUHI during this period of rapid urbanization in Shanghai. Using stepwise linear regression, daytime and nighttime air temperatures at the four overpass times of Terra/Aqua were estimated based on time series of Terra/Aqua-MODIS LST and other auxiliary variables including enhanced vegetation index, normalized difference water index, solar zenith angle and distance to coast. The validation results indicate that the models produced an accuracy of 1.6–2.6 °C RMSE for the four overpass times of Terra/Aqua. The models based on Terra LST showed higher accuracy than those based on Aqua LST, and nighttime air temperature estimation had higher accuracy than daytime. The seasonal analysis shows daytime CUHI is strongest in summer and weakest in winter, while nighttime CUHI is weakest in summer and strongest in autumn. The annual mean daytime CUHI during 2000–2013 is 1.0 and 2.2 °C for Terra and Aqua overpass, respectively. The annual mean nighttime CUHI is about 1.0 °C for both Terra and Aqua overpass. The resultant CUHI climatology maps provide a spatiotemporal quantification of CUHI with emphasis on temperature gradients. This study has provided information of relevance to urban planners and environmental managers for assessing and monitoring urban thermal environments which are constantly

  15. Maximizing the Use of Satellite Thermal Infrared Data for Advancing Land Surface Temperature Analysis

    Science.gov (United States)

    Weng, Q.; Fu, P.; Gao, F.

    2014-12-01

    Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. Thus, various algorithms/models have been developed to enhance the spatial or the temporal resolution of TIR data, but rare of those can enhance both spatial and temporal details. This paper presents a new data fusion algorithm for producing Landsat-like LST data by blending daily MODIS and periodic Landsat TM datasets. The original Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) was improved and modified for predicting thermal radiance and LST data by considering annual temperature cycle (ATC) and urban thermal landscape heterogeneity. The technique of linear spectral mixture analysis was employed to relate the Landsat radiance with the MODIS one, so that the temporal changes in radiance can be incorporated in the fusion model. This paper details the theoretical basis and the implementation procedures of the proposed data fusion algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT). A case study was conducted that predicted LSTs of five dates in 2005 from July to October in Los Angeles County, California. The results indicate that the prediction accuracy for the whole study area ranged from 1.3 K to 2 K. Like existing spatio-temporal data fusion models, the SADFAT method has a limitation in predicting LST changes that were not recorded in the MODIS and/or Landsat pixels due to the model assumption.

  16. Stable isotope analysis and satellite tracking reveal interspecific resource partitioning of nonbreeding albatrosses off Alaska

    Science.gov (United States)

    Suryan, R.M.; Fischer, K.N.

    2010-01-01

    Albatrosses (Diomedeidae) are the most threatened family of birds globally. The three North Pacific species (Phoebastria Reichenbach, 1853) are listed as either endangered or vulnerable, with the population of Short-tailed Albatross (Phoebastria albatrus (Pallas, 1769)) less than 1% of its historical size. All North Pacific albatross species do not currently breed sympatrically, yet they do co-occur at-sea during the nonbreeding season. We incorporated stable isotope analysis with the first simultaneous satellite-tracking study of all three North Pacific albatross species while sympatric on summer (nonbreeding season) foraging grounds off Alaska. Carbon isotope ratios and tracking data identify differences in primary foraging domains of continental shelf and slope waters for Short-tailed Albatrosses and Black-footed Albatrosses (Phoebastria nigripes (Audubon, 1839)) versus oceanic waters for Laysan Albatrosses (Phoebastria immutabilis (Roths-child, 1893)). Short-tailed and Black-footed albatrosses also fed at higher trophic levels than Laysan Albatrosses. The relative trophic position of Black-footed and Laysan albatrosses, however, appears to differ between nonbreeding and breeding seasons. Spatial segregation also occurred at a broader geographic scale, with Short-tailed Albatrosses ranging more north into the Bering Sea than Black-footed Albatrosses, which ranged more to the southeast, and Laysan Albatrosses more to the southwest. Differences in carbon isotope ratios among North Pacific albatross species during the nonbreeding season likely reflect the relative proportion of neritic (more carbon enriched) versus oceanic (carbon depleted) derived nutrients, and possible differential use of fishery discards, rather than latitudinal differences in distribution.

  17. Satellite Based Analysis of Carbon Monoxide Levels Over Alberta Oil Sand

    Science.gov (United States)

    Marey, H. S.; Hashisho, Z.; Fu, L.; Gille, J. C.

    2014-12-01

    The rapid expansion of oil sands activities and massive energy requirements to extract and upgrade the bitumen require a comprehensive understanding of their potential environmental impacts, particularly on air quality. In this study, satellite-based analysis of carbon monoxide (CO) levels was used to assess the magnitude and distribution of this pollutant throughout Alberta oil sands region. Measurements of Pollution in the Troposphere (MOPITT) V5 multispectral product that uses both near-infrared and the thermal-infrared radiances for CO retrieval were used. MOPITT-based climatology and inter-annual variations were examined for 12 years (2002-2013) on spatial and temporal scales. Seasonal climatological maps for CO total columns indicated conspicuous spatial variations in all seasons except in winter where the CO spatial variations are less prominent. High CO loadings are observed to extend from the North East to North West regions of Alberta, with highest values in spring. The CO mixing ratios at the surface level in winter and spring seasons exhibited dissimilar spatial distribution pattern where the enhancements are detected in south eastern rather than northern Alberta. Analyzing spatial distributions of Omega at 850 mb pressure level for four seasons implied that, conditions in northeastern Alberta are more favorable for up lofting while in southern Alberta, subsidence of CO emissions are more likely. Time altitude CO profile climatology as well as the inter-annual variability were investigated for the oil sands and main urban regions in Alberta to assess the impact of various sources on CO loading. Monthly variations over urban regions are consistent with the general seasonal cycle of CO in Northern Hemisphere which exhibits significant enhancement in winter and spring, and minimum mixing ratios in summer. The typical seasonal CO variations over the oil sands region are less prominent. This study has demonstrated the potential use of multispectral CO

  18. Regional biomass burning trends in India: Analysis of satellite fire data

    Indian Academy of Sciences (India)

    L K Sahu; Varun Sheel; Kumud Pandey; Ravi Yadav; P Saxena; Sachin Gunthe

    2015-10-01

    The results based on the analysis of satellite fire counts detected by the Along-Track Scanning Radiometer (ATSR) sensors over different regions of India during 1998–2009 have been presented. Generally, the activities of open biomass burning show large spatial and temporal variations in India. The highest and lowest values of monthly fire counts were detected during the periods of March–May and July–September, respectively over different regions of India. The activities of biomass burning in two central states of Madhya Pradesh and Maharashtra were the highest and together accounted for about 25–45% of total annual fire counts detected over India during the study period. However, in opposite phases, the rainfall and fire count data show strong seasonal variation. In addition to large regional and seasonal variations, the fire data also show significant year-to-year variation. The higher annual fire counts exceeding the mean of entire period by about 16% and 43% were detected during the two periods of 1998–2000 and 2007–2009, respectively. We have estimated normalized anomaly of annual fire count data which shows large positive departures from long-term mean for the years 1999, 2007, 2008 and 2009, while negative departures for the years 2002, 2003 and 2005. Consistently, the mixing ratio of carbon monoxide (CO) typical peaks during winter but extended to pre-monsoon season during extensive fire years. The annual data over the entire region of India show lesser positive trend of about 3% yr−1. The inter-annual variation of fire count over entire India follows the trend in the ENSO Precipitation Index (ESPI) but shows opposite trend to the multivariate ENSO Index (MEI).

  19. A Comparative Analysis of the Far Infrared Spectra of Saturn's Rings and Icy Satellites with Cassini CIRS

    Science.gov (United States)

    Brooks, Shawn M.; Spilker, Linda; Edgington, Scott G.

    2016-10-01

    We will report on a campaign to observe Saturn's main rings and major icy satellites with the Composite Infrared Spectrometer onboard Cassini. CIRS' three infrared detectors cover a combined spectral range of 10 to 1400 cm-1 (1 mm down to 7 microns). We focus on data from Focal Plane 1, which covers the 10 to 600 cm-1 range (1 mm to 16 microns). The apodized spectral resolution of the instrument can be varied from 15 cm-1 to 0.5 cm-1 (Flasar et al. 2004).The spectral behavior of Saturn's main rings and icy satellites in the far infrared has been the subject of previous studies with CIRS FP1 data (Spilker at al. 2005, Carvano et al. 2007, Morishima et al. 2012). These studies have shown that the infrared spectra of these icy rings and bodies are remarkably flat between about 40 to 200 microns. Longward of this, CIRS observations, as well as older spacecraft data, show a gradual decrease in ring emissivity. This roll-off in emissivity may be due to varying optical constants of water ice, which dominates the rings' composition, as one moves towards microwave wavelengths. Carvano et al. (2007), who analyzed spectra of the icy satellites Phoebe, Iapetus, Enceladus, Tethys and Hyperion, investigated the absence of emissivity features in spectra of those satellites. This absence is intriguing, as water ice, which dominates their surface composition, contains absorption features in the FP1 spectral range. They conclude that high porosity in these satellites' regoliths may explain this lack of spectral variability.To better characterize the far infrared spectra of the rings and satellites, we have implemented a series of dedicated observations. The goal is to obtain thousands of infrared spectra at 3 cm-1 resolution of each individual ring region and as many satellites as possible. We will have more spectra than Spilker et al. had for their work at a higher spectral resolution than in the analyses of Carvano et al. and Morishima et al. A preliminary analysis of these

  20. Determining spatio-temporal distribution of bee forage species of Al-Baha region based on ground inventorying supported with GIS applications and Remote Sensed Satellite Image analysis.

    Science.gov (United States)

    Adgaba, Nuru; Alghamdi, Ahmed; Sammoud, Rachid; Shenkute, Awraris; Tadesse, Yilma; Ansari, Mahammad J; Sharma, Deepak; Hepburn, Colleen

    2017-07-01

    In arid zones, the shortage of bee forage is critical and usually compels beekeepers to move their colonies in search of better forages. Identifying and mapping the spatiotemporal distribution of the bee forages over given area is important for better management of bee colonies. In this study honey bee plants in the target areas were inventoried following, ground inventory work supported with GIS applications. The study was conducted on 85 large plots of 50 × 50 m each. At each plot, data on species name, height, base diameter, crown height, crown diameter has been taken for each plant with their respective geographical positions. The data were stored, and processed using Trimble GPS supported with ArcGIS10 software program. The data were used to estimate the relative frequency, density, abundance and species diversity, species important value index and apicultural value of the species. In addition, Remotely Sensed Satellite Image of the area was obtained and processed using Hopfield Artificial Neural Network techniques. During the study, 182 species from 49 plant families were identified as bee forages of the target area. From the total number of species; shrubs, herbs and trees were accounting for 61%, 27.67%, and 11.53% respectively. Of which Ziziphus spina-christi, Acacia tortilis, Acacia origina, Acacia asak, Lavandula dentata, and Hypoestes forskaolii were the major nectar source plants of the area in their degree of importance. The average vegetation cover values of the study areas were low (place. The Remote Sensed Satellite Image analysis confirmed the spatial distribution of the bee forage resources as determined by the ground inventory work. An integrated approach, combining the ground inventory work with GIS and satellite image processing techniques could be an important tool for characterizing and mapping the available bee forage resources leading to their efficient and sustainable utilization.

  1. Performance analysis of GPS augmentation using Japanese Quasi-Zenith Satellite System

    Science.gov (United States)

    Wu, F.; Kubo, N.; Yasuda, A.

    2004-01-01

    The current GPS satellite constellation provides limited availability and reliability for a country like Japan where mountainous terrain and urban canyons do not allow a clear skyline to the horizon. At present, the Japanese Quasi-Zenith Satellite System (QZSS) is under investigation through a government-private sector cooperation. QZSS is considered a multi-mission satellite system, as it is able to provide communication, broadcasting and positioning services for mobile users in a specified region with high elevation angle. The performance of a Global Navigation Satellite System (GNSS) can be quantified by availability, accuracy, reliability and integrity. This paper focuses on availability, accuracy and reliability of GPS with and without augmentation using QZSS. The availability, accuracy and reliability of GPS only and augmented GPS using QZSS in the Asia-Pacific and Australian area is studied by software simulation. The simulation results are described by the number of visible satellites as a measure of availability, geometric dilution of precision as a measure of accuracy and minimal detectable bias, and bias-to-noise rate as a measure of reliability, with spatial and temporal variations. It is shown that QZSS does not only improve the availability and accuracy of GPS positioning, but also enhances the reliability of GPS positioning in Japan and its neighboring area.

  2. Thermal design, analysis and comparison on three concepts of space solar power satellite

    Science.gov (United States)

    Yang, Chen; Hou, Xinbin; Wang, Li

    2017-08-01

    Space solar power satellites (SSPS) have been widely studied as systems for collecting solar energy in space and transmitting it wirelessly to earth. A previously designed planar SSPS concept collects solar power in two huge arrays and then transmits it through one side of the power-conduction joint to the antenna. However, the system's one group of power-conduction joints may induce a single point of failure. As an SSPS concept, the module symmetrical concentrator (MSC) architecture has many advantages. This architecture can help avoid the need for a large, potentially failure-prone conductive rotating joint and limit wiring mass. However, the thermal control system has severely restricted the rapid development of MSC, especially in the sandwich module. Because of the synchronous existence of five suns concentration and solar external heat flux, the sandwich module will have a very high temperature, which will surpass the permissible temperature of the solar cells. Recently, an alternate multi-rotary joints (MR) SSPS concept was designed by the China Academy of Space Technology (CAST). This system has multiple joints to avoid the problem of a single point of failure. Meanwhile, this concept has another advantage for reducing the high power and heat removal in joints. It is well known to us that, because of the huge external flux in SSPS, the thermal management sub-system is an important component that cannot be neglected. Based on the three SSPS concepts, this study investigated the thermal design and analysis of a 1-km, gigawatt-level transmitting antenna in SSPS. This study compares the thermal management sub-systems of power-conduction joints in planar and MR SSPS. Moreover, the study considers three classic thermal control architectures of the MSC's sandwich module: tile, step, and separation. The study also presents an elaborate parameter design, analysis and discussion of step architecture. Finally, the results show the thermal characteristics of each SSPS

  3. GAUSS Market Analysis for Integrated Satellite Communication and Navigation Location Based services

    Science.gov (United States)

    Di Fazio, Antonella; Dricot, Fabienne; Tata, Francesco

    2003-07-01

    The demand for mobile information services coupled with positioning technologies for delivering value- added services that depend on a user's location has rapidly increased during last years. In particular, services and applications related with improved mobility safety and transport efficiency look very attractive.Solutions for location services vary in respect of positioning accuracy and the technical infrastructure required, and the associated investment in terminals and networks. From the analysis of the state-of-the art, it comes that various technologies are currently available on the European market, while mobile industry is gearing up to launch a wide variety of location services like tracking, alarming and locating.Nevertheless, when addressing safety of life as well as security applications, severe hurdles have to be posed in the light of existing technologies. Existing navigation (e.g. GPS) and communication systems are not able to completely satisfy the needs and requirements of safety-of-life-critical applications. As a matter of fact, the GPS system's main weaknesses today is its lack of integrity, which means its inability to warn users of a malfunction in a reasonable time, while the other positioning techniques do not provide satisfactory accuracy as well, and terrestrial communication networks are not capable to cope with stringent requirement in terms of service reliability and coverage.In this context, GAUSS proposes an innovative satellite-based solution using novel technology and effective tools for addressing mobility challenges in a cost efficient manner, improving safety and effectiveness.GAUSS (Galileo And UMTS Synergetic System) is a Research and Technological Development project co- funded by European Commission, within the frame of the 5th IST Programme. The project lasted two years, and it was successfully completed in November 2002. GAUSS key concept is the integration of Satellite Navigation GNSS and UMTS communication technology, to

  4. Social Network Analysis of the Farabi Exchange Program: Student Mobility

    Science.gov (United States)

    Ugurlu, Zeynep

    2016-01-01

    Problem Statement: Exchange programs offer communication channels created through student and instructor exchanges; a flow of information takes place through these channels. The Farabi Exchange Program (FEP) is a student and instructor exchange program between institutions of higher education. Through the use of social network analysis and…

  5. Study of time-lapse processing for dynamic hydrologic conditions. [electronic satellite image analysis console for Earth Resources Technology Satellites imagery

    Science.gov (United States)

    Serebreny, S. M.; Evans, W. E.; Wiegman, E. J.

    1974-01-01

    The usefulness of dynamic display techniques in exploiting the repetitive nature of ERTS imagery was investigated. A specially designed Electronic Satellite Image Analysis Console (ESIAC) was developed and employed to process data for seven ERTS principal investigators studying dynamic hydrological conditions for diverse applications. These applications include measurement of snowfield extent and sediment plumes from estuary discharge, Playa Lake inventory, and monitoring of phreatophyte and other vegetation changes. The ESIAC provides facilities for storing registered image sequences in a magnetic video disc memory for subsequent recall, enhancement, and animated display in monochrome or color. The most unique feature of the system is the capability to time lapse the imagery and analytic displays of the imagery. Data products included quantitative measurements of distances and areas, binary thematic maps based on monospectral or multispectral decisions, radiance profiles, and movie loops. Applications of animation for uses other than creating time-lapse sequences are identified. Input to the ESIAC can be either digital or via photographic transparencies.

  6. Analysis of Doppler-effeet on satellite constellations with wavelength division multiplexing architectures

    Institute of Scientific and Technical Information of China (English)

    Qinglong Yang; Liying Tan; Jing Ma

    2009-01-01

    With the development of optical space communications, a global space-based optical backbone network is currently proposed by using broadband laser inter-satellite links (ISLs) which enable routing traffic through the space. Satellite optical networking techniques based on wavelength division multiplexing (WDM) ISLs can transit significantly high data rates signals. In this letter, a new function of wavelength excursion due to Doppler-effect is developed for the ISLs, considering the conception of pointing ahead mechanism. The characteristic of wavelength excursion induced by Doppler-effect is examined in one of low earth orbit (LEO) satellite constellation networks named the next-generation LEO system (NeLS) with WDM ISLs assumed, and the influence on its communications caused by wavelength excursion is analyzed.

  7. A comprehensive design and performance analysis of LEO satellite quantum communication

    CERN Document Server

    Bourgoin, J -P; Higgins, B L; Helou, B; Erven, C; Huebel, H; Kumar, B; Hudson, D; D'Souza, I; Girard, R; Laflamme, R; Jennewein, T

    2012-01-01

    Optical quantum communication utilizing satellite platforms has the potential to extend the reach of quantum key distribution (QKD) from terrestrial limits of ~200 km to global scales. We have developed a thorough numerical simulation using realistic simulated orbits and incorporating the effects of pointing error, diffraction, atmosphere and telescope design, to obtain estimates of the loss and background noise which a satellite-based system would experience. Combining with quantum optics simulations of sources and detection, we determine the length of secure key for QKD, as well as entanglement visibility and achievable distances for fundamental experiments. We analyze the performance of a low Earth orbit (LEO) satellite for downlink and uplink scenarios of the quantum optical signals. We argue that the advantages of locating the quantum source on the ground justify a greater scientific interest in an uplink as compared to a downlink. An uplink with a ground transmitter of at least 25 cm diameter and a 30 c...

  8. Measurement and Analysis of P2P IPTV Program Resource

    Directory of Open Access Journals (Sweden)

    Wenxian Wang

    2014-01-01

    Full Text Available With the rapid development of P2P technology, P2P IPTV applications have received more and more attention. And program resource distribution is very important to P2P IPTV applications. In order to collect IPTV program resources, a distributed multi-protocol crawler is proposed. And the crawler has collected more than 13 million pieces of information of IPTV programs from 2009 to 2012. In addition, the distribution of IPTV programs is independent and incompact, resulting in chaos of program names, which obstructs searching and organizing programs. Thus, we focus on characteristic analysis of program resources, including the distributions of length of program names, the entropy of the character types, and hierarchy depth of programs. These analyses reveal the disorderly naming conventions of P2P IPTV programs. The analysis results can help to purify and extract useful information from chaotic names for better retrieval and accelerate automatic sorting of program and establishment of IPTV repository. In order to represent popularity of programs and to predict user behavior and popularity of hot programs over a period, we also put forward an analytical model of hot programs.

  9. Measurement and Analysis of P2P IPTV Program Resource

    Science.gov (United States)

    Chen, Xingshu; Wang, Haizhou; Zhang, Qi

    2014-01-01

    With the rapid development of P2P technology, P2P IPTV applications have received more and more attention. And program resource distribution is very important to P2P IPTV applications. In order to collect IPTV program resources, a distributed multi-protocol crawler is proposed. And the crawler has collected more than 13 million pieces of information of IPTV programs from 2009 to 2012. In addition, the distribution of IPTV programs is independent and incompact, resulting in chaos of program names, which obstructs searching and organizing programs. Thus, we focus on characteristic analysis of program resources, including the distributions of length of program names, the entropy of the character types, and hierarchy depth of programs. These analyses reveal the disorderly naming conventions of P2P IPTV programs. The analysis results can help to purify and extract useful information from chaotic names for better retrieval and accelerate automatic sorting of program and establishment of IPTV repository. In order to represent popularity of programs and to predict user behavior and popularity of hot programs over a period, we also put forward an analytical model of hot programs. PMID:24772008

  10. Visual Basic programs for spreadsheet analysis.

    Science.gov (United States)

    Hunt, Bruce

    2005-01-01

    A collection of Visual Basic programs, entitled Function.xls, has been written for ground water spreadsheet calculations. This collection includes programs for calculating mathematical functions and for evaluating analytical solutions in ground water hydraulics and contaminant transport. Several spreadsheet examples are given to illustrate their use.

  11. SPAN - Terminal sterilization process analysis program

    Science.gov (United States)

    1969-01-01

    Computer program, SPAN, measures the dry heat thermal sterilization process applied to a planetary capsule and calculates the time required for heat application, steady state conditions, and cooling. The program is based on the logarithmic survival of micro-organisms. Temperature profiles must be input on tape.

  12. SPAN C - Terminal sterilization process analysis program

    Science.gov (United States)

    1969-01-01

    Computer program, SPAN-C, measures the dry heat thermal sterilization process applied to a planetary capsule and calculates the time required for heat application, steady state conditions, and cooling. The program is based on the logarithmic survival of micro-organisms. Temperature profiles must be input on cards.

  13. A Comparative Accuracy Analysis of Classification Methods in Determination of Cultivated Lands with Spot 5 Satellite Imagery

    Science.gov (United States)

    kaya, S.; Alganci, U.; Sertel, E.; Ustundag, B.

    2013-12-01

    A Comparative Accuracy Analysis of Classification Methods in Determination of Cultivated Lands with Spot 5 Satellite Imagery Ugur ALGANCI1, Sinasi KAYA1,2, Elif SERTEL1,2,Berk USTUNDAG3 1 ITU, Center for Satellite Communication and Remote Sensing, 34469, Maslak-Istanbul,Turkey 2 ITU, Department of Geomatics, 34469, Maslak-Istanbul, Turkey 3 ITU, Agricultural and Environmental Informatics Research Center,34469, Maslak-Istanbul,Turkey alganci@itu.edu.tr, kayasina@itu.edu.tr, sertele@itu.edu.tr, berk@berk.tc ABSTRACT Cultivated land determination and their area estimation are important tasks for agricultural management. Derived information is mostly used in agricultural policies and precision agriculture, in specifically; yield estimation, irrigation and fertilization management and farmers declaration verification etc. The use of satellite image in crop type identification and area estimate is common for two decades due to its capability of monitoring large areas, rapid data acquisition and spectral response to crop properties. With launch of high and very high spatial resolution optical satellites in the last decade, such kind of analysis have gained importance as they provide information at big scale. With increasing spatial resolution of satellite images, image classification methods to derive the information form them have become important with increase of the spectral heterogeneity within land objects. In this research, pixel based classification with maximum likelihood algorithm and object based classification with nearest neighbor algorithm were applied to 2012 dated 2.5 m resolution SPOT 5 satellite images in order to investigate the accuracy of these methods in determination of cotton and corn planted lands and their area estimation. Study area was selected in Sanliurfa Province located on Southeastern Turkey that contributes to Turkey's agricultural production in a major way. Classification results were compared in terms of crop type identification using

  14. Fusion of multispectral and multitemporal satellite data for urban environmental changes analysis

    Science.gov (United States)

    Zoran, Maria

    2010-05-01

    Environmental urban changes assessment is providing information on environmental quality for identifying the major issues, priority areas of the policy making, planning and management. Effective planning is based on the completely and precisely understanding of the environmental parameters in urban area. Remote sensing is a key application in global-change science, being very useful for urban climatology and landuse-landcover dynamics and morphology analysis. Multi-spectral and multi-temporal satellite imagery (LANDSAT TM and ETM, MODIS and IKONOS) for Bucharest urban area over 1988 - 2008 period provides the most reliable technique of monitoring of different urban structures regarding the net radiation and heat fluxes associated with urbanization at the regional scale. The main objectives of this investigation aimed :to develop and validate new techniques for mapping and monitoring land cover and land use within and around Bucharest urban area using satellite sensor images and new digital framework data ; to analyze the spatial pattern of land cover and the detailed morphology of urban land use across the study area, and hence quantify the degree of order and structure that underlies the apparently irregular geometry of land use parcels; to devise a methodology for automatic updating of digital urban land-use maps; to develop an improved information base on urban land-use and land-use change for land-use/transportation models, urban development planning, urban ecology and local plans. Bucharest town, the biggest industrial, commercial center in Romania has experienced a rapid urban expansion during the last decades. A large amount of forest and agricultural land has been converted into housing, infrastructure and industrial estates. The resultant impervious urban surface alters the surface energy balance and surface runoff, which in turn could pose serious environmental problems for its inhabitants (e.g., urban waterlogged and thermal pollution). The changes over

  15. Performance Analysis for Regional Satellite Positioning System Based upon GEO/HEO Hybrid Constellation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Scheme of positioning constellation would greatly influence the positioning performance. In this paper, a GEO/HEO hybrid constellation with 3 HEO satellites deployed in 3 orbits and 3 GEO satellites for regional positioning is presented. Firstly, elements for 3 GEO and 3 HEO are optimized from regional visibility for the selected region of interest. Secondly, positioning performance is provided through GDOP(geometric dilution of precision) and PDOP(positional dilution of precision). Simulation results show that similar accuracy with GPS can be gained by this constellation.

  16. Satellite data for Singapore, Manila and Kuala Lumpur city growth analysis

    Directory of Open Access Journals (Sweden)

    Mukesh Singh Boori

    2016-06-01

    Full Text Available This data article presents satellite data related to city growth of Singapore, Manila and Kuala Lumpur cities. The data were collected from NASA and USGS websites. A method has been developed for city built-up density from city center to outward till 50 km by using satellite data. These data sets consists three decade Landsat images. A detailed description is given to show how to use this data to produce urban growth maps. The urban growth maps have been used to know the changes and growth pattern in the Southeast Asia Cities.

  17. Detailed Analysis of Indian Summer Monsoon Rainfall Processes with Modern/High-Quality Satellite Observations

    Science.gov (United States)

    Smith, Eric A.; Kuo, Kwo-Sen; Mehta, Amita V.; Yang, Song

    2007-01-01

    We examine, in detail, Indian Summer Monsoon rainfall processes using modernhigh quality satellite precipitation measurements. The focus here is on measurements derived from three NASA cloud and precipitation satellite missionslinstruments (TRMM/PR&TMI, AQUNAMSRE, and CLOUDSATICPR), and a fourth TRMM Project-generated multi-satellite precipitation measurement dataset (viz., TRMM standard algorithm 3b42) -- all from a period beginning in 1998 up to the present. It is emphasized that the 3b42 algorithm blends passive microwave (PMW) radiometer-based precipitation estimates from LEO satellites with infi-ared (IR) precipitation estimates from a world network of CEO satellites (representing -15% of the complete space-time coverage) All of these observations are first cross-calibrated to precipitation estimates taken from standard TRMM combined PR-TMI algorithm 2b31, and second adjusted at the large scale based on monthly-averaged rain-gage measurements. The blended approach takes advantage of direct estimates of precipitation from the PMW radiometerequipped LEO satellites -- but which suffer fi-om sampling limitations -- in combination with less accurate IR estimates from the optical-infrared imaging cameras on GEO satellites -- but which provide continuous diurnal sampling. The advantages of the current technologies are evident in the continuity and coverage properties inherent to the resultant precipitation datasets that have been an outgrowth of these stable measuring and retrieval technologies. There is a wealth of information contained in the current satellite measurements of precipitation regarding the salient precipitation properties of the Indian Summer Monsoon. Using different datasets obtained from the measuring systems noted above, we have analyzed the observations cast in the form of: (1) spatially distributed means and variances over the hierarchy of relevant time scales (hourly I diurnally, daily, monthly, seasonally I intra-seasonally, and inter

  18. Satellite data for Singapore, Manila and Kuala Lumpur city growth analysis.

    Science.gov (United States)

    Boori, Mukesh Singh; Choudhary, Komal; Kupriyanov, Alexander; Kovelskiy, Viktor

    2016-06-01

    This data article presents satellite data related to city growth of Singapore, Manila and Kuala Lumpur cities. The data were collected from NASA and USGS websites. A method has been developed for city built-up density from city center to outward till 50 km by using satellite data. These data sets consists three decade Landsat images. A detailed description is given to show how to use this data to produce urban growth maps. The urban growth maps have been used to know the changes and growth pattern in the Southeast Asia Cities.

  19. Single-shell tank retrieval program mission analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, W.J.

    1998-08-11

    This Mission Analysis Report was prepared to provide the foundation for the Single-Shell Tank (SST) Retrieval Program, a new program responsible for waste removal for the SSTS. The SST Retrieval Program is integrated with other Tank Waste Remediation System activities that provide the management, technical, and operations elements associated with planning and execution of SST and SST Farm retrieval and closure. This Mission Analysis Report provides the basis and strategy for developing a program plan for SST retrieval. This Mission Analysis Report responds to a US Department of Energy request for an alternative single-shell tank retrieval approach (Taylor 1997).

  20. Program Analysis and Its Relevance for Educational Research

    Directory of Open Access Journals (Sweden)

    Bernd Käpplinger

    2008-01-01

    Full Text Available Program analyses are frequently used in research on continuing education. The use of such analyses will be described in this article. Existing data sources, research topics, qualitative, quantitative and mixed methods, will be discussed. Three types of program analysis will be developed. The article ends with a discussion of the advantages and disadvantages of program analysis in contrast to questionnaires. Future developments and challenges will be sketched in the conclusion. Recommendations for the future development of program analysis will be given. URN: urn:nbn:de:0114-fqs0801379

  1. Preliminary Technical Risk Analysis for the Geothermal Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-01-18

    This report explains the goals, methods, and results of a probabilistic analysis of technical risk for a portfolio of R&D projects in the DOE Geothermal Technologies Program (The Program). The analysis is a task by Princeton Energy Resources International, LLC, in support of the National Renewable Energy Laboratory on behalf of the Program. The main challenge in the analysis lies in translating R&D results to a quantitative reflection of technical risk for a key Program metric: levelized cost of energy (LCOE).

  2. HiTempo: a platform for time-series analysis of remote-sensing satellite data in a high-performance computing environment

    CSIR Research Space (South Africa)

    Van den Bergh, F

    2012-08-01

    Full Text Available Course resolution earth observation satellites offer large data sets with daily observations at global scales. These data sets represent a rich resource that, because of the high acquisition rate, allows the application of time-series analysis...

  3. Precipitation Analysis at Fine Time Scales Using Multiple Satellites: Real-time and Research Products and Applications

    Science.gov (United States)

    Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric; Curtis, Scott; Pierce, Harold

    2004-01-01

    Quasi-global precipitation analyses at fine time scales (3-hr) are described. TRMM observations (radar and passive microwave) are used to calibrate polar-orbit microwave observations from SSM/I (and other satellites instruments, including AMSR and AMSU) and geosynchronous IR observations. The individual data sets are then merged using a priority order based on quality to form the Multi-satellite Precipitation Analysis (MPA). Raingauge information is used to help constrain the satellite-based estimates over land. The TRMM standard research product (Version 6 3B-42 of the TRMM products) will be available for the entire TRMM period (January 1998-present) in 2004. The real-time version of this merged product has been produced over the past two years and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25" latitude-longitude resolution over the latitude range from 5O"N-5O0S. Validation of daily totals indicates good results, with limitations noted in mid-latitude winter over land and regions of shallow, orographic precipitation. Various applications of these estimates are described, including: 1) detecting potential floods in near real-time; 2) analyzing Indian Ocean precipitation variations related to the initiation of El Nino; 3) determining characteristics of the African monsoon; and 4) analysis of diurnal variations.

  4. Precipitation Analysis at Fine Time Scales using TRMM and Other Satellites: Real-time and Research Products and Applications

    Science.gov (United States)

    Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric; Curtis, Scott; Pierce, Harold; Gu, Guo-Jon

    2004-01-01

    Quasi-global precipitation analyses at fine time scales (3-hr) are described. TRMM observations (radar and passive microwave) are used to calibrate polar-orbit microwave observations from SSM/I (and other satellites instruments, including AMSR and AMSU) and geosynchronous IR observations. The individual data sets are then merged using a priority order based on quality to form the TRMM Multi-satellite Precipitation Analysis (MPA). Raingauge information is used to help constrain the satellite-based estimates over land. The TRMM standard research product (Version 6 3B-42 of the TRMM products) will be available for the entire TRMM period (January 1998-present) by the end of 2004. The real-time version of this merged product has been produced over the past two years and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25" latitude-longitude resolution over the latitude range from 5O0N-50"S. Validation of daily totals indicates good results, with limitations noted in mid-latitude winter over land and regions of shallow, orographic precipitation. Various applications of these estimates are described, includmg: 1) detecting potential floods in near real-time; 2) analyzing Indian Ocean precipitation variations related to the initiation of El Nino; 3) determining characteristics of the African monsoon; and 4) analysis of diurnal variations.

  5. OBJECT-ORIENTED FINITE ELEMENT ANALYSIS AND PROGRAMMING IN VC + +

    Institute of Scientific and Technical Information of China (English)

    马永其; 冯伟

    2002-01-01

    The design of finite element analysis program using object-oriented programming(OOP) techniques is presented. The objects, classes and the subclasses used in theprogramming are explained. The system of classes library of finite element analysis programand Windows-type Graphical User Interfaces by VC + + and its MFC are developed. Thereliability, reusability and extensibility of program are enhanced. It is a reference todevelop the large-scale, versatile and powerful systems of object-oriented finite elementsoftware.

  6. The program of the analysis crosstalk in circuits PCB

    Directory of Open Access Journals (Sweden)

    Sirotко V. K.

    2008-12-01

    Full Text Available The brief review of existing programs of the analysis of electromagnetic compatibility for circuits PCB is given. Advantages of the developed program of the analysis are shown. The description of the developed method of a reduction of equivalent circuits for circuits PCB is given. This method provides fast and exact calculation crosstalk for circuits PCB of a high-speed digital equipment. Data on some checks of the program are given, confirming its high speed and sufficient accuracy.

  7. Link Performance Analysis for a Proposed Future Architecture of the Air Force Satellite Control Network

    Science.gov (United States)

    2011-12-01

    data to update the known location of their spacecraft. This, of course , differs from the way STK and, in turn, the AFSCN LP obtains spacecraft...Dynamic System - A Divide and Conquer Approach. Espoo, Finland: IEEE. Cuevas, E. G., & Rehwinkel, C. A. SPOCS : A System to Measure Satellite Link

  8. Analysis of some methods for obtaining sea surface temperature from satellite observations

    Science.gov (United States)

    Price, J. C.

    1973-01-01

    Satellite measurements of sea surface temperature must be corrected for atmospheric moisture, cloud contamination, reflected solar radiation and other sources of error. Procedures for reducing errors are discussed. It appears that routine accuracies of 1 C are possible, given low noise spectral measurements in the infrared.

  9. Reliability analysis and design of on-board computer system for small stereo mapping satellite

    Institute of Scientific and Technical Information of China (English)

    马秀娟; 曹喜滨; 马兴瑞

    2002-01-01

    The on-board computer system for a small satellite is required to be high in reliability, light in weight, small in volume and low in power consumption. This paper describes the on-board computer system with the advantages of both centralized and distributed systems, analyzes its reliability, and briefs the key techniques used to improve its reliability.

  10. Comparison and analysis of Wuding and avian chicken skeletal muscle satellite cells

    NARCIS (Netherlands)

    Tong, H.Q.; Jiang, Z.Q.; Dou, T.F.; Li, Q.H.; Xu, Z.Q.; Liu, L.X.; Gu, D.H.; Rong, H.; Huang, Y.; Chen, X.B.; Jois, M.; Pas, te M.F.W.; Ge, C.R.; Jia, J.J.

    2016-01-01

    Chicken skeletal muscle satellite cells are located between the basement membrane and the sarcolemma of mature muscle fibers. Avian broilers have been genetically selected based on their high growth velocity and large muscle mass. The Wuding chicken is a famous local chicken in Yunnan Province th

  11. Position Analysis of a Pico-Satellite for Optimum Solar Illumination

    Science.gov (United States)

    Ramirez, F. M.

    2014-06-01

    This study characterizes the attitude of a satellite in order to obtain the optimum solar illumination on the face of a solar panel. While taking into consideration times of eclipse, a curve for the area exposed to the sun is derived.

  12. Comparisons of atmospheric data and reduction methods for the analysis of satellite gravimetry observations

    NARCIS (Netherlands)

    Forootan, E.; Didova, O.; Kusche, J.; Löcher, A.

    2013-01-01

    The Gravity Recovery and Climate Experiment (GRACE) derived gravity solutions contain errors mostly due to instrument noise, anisotropic spatial sampling, and temporal aliasing. Improving the quality of satellite gravimetry observations, in terms of using more sensitive sensors and/or increasing the

  13. USEFUL RELATIVE MOTION DESCRIPTION METHOD FOR PERTURBATIONS ANALYSIS IN SATELLITE FORMATION FLYING

    Institute of Scientific and Technical Information of China (English)

    MENG Xin; LI Jun-feng; GAO Yun-feng

    2005-01-01

    A set of parameters called relative orbital elements were defined to describe the relative motion of the satellites in the formation flying. With the help of these parameters, the effect of the perturbations on the relative orbit trajectory and geometric properties of satellite formation can be easily analyzed. First,the relative orbital elements are derived, and pointed out: if the eccentricity of the leading satellite is a small value, the relative orbit trajectory is determined by the intersection between an elliptic cylinder and a plane in the leading satellite orbit frame reference; and the parameters that describe the elliptic cylinder and the plane can be used to obtain the relative orbit trajectory and the relative orbital elements. Second, by analyzing the effects of gravitational perturbations on the relative orbit using the relative orbital elements,it is found that the propagation of a relative orbit consists of two parts: one is the drift of the elliptic cylinder; and the other is the rotation of the plane resulted from the rotation of the normal of the plane. Meanwhile, the analytic formulae for the drift and rotation rates of a relative trajectory under gravitational perturbations are presented. Finally, the relative orbit trajectory and the corresponding changes were analyzed with respect to the J2 perturbation.

  14. Comparisons of atmospheric data and reduction methods for the analysis of satellite gravimetry observations

    NARCIS (Netherlands)

    Forootan, E.; Didova, O.; Kusche, J.; Löcher, A.

    2013-01-01

    The Gravity Recovery and Climate Experiment (GRACE) derived gravity solutions contain errors mostly due to instrument noise, anisotropic spatial sampling, and temporal aliasing. Improving the quality of satellite gravimetry observations, in terms of using more sensitive sensors and/or increasing the

  15. Consistency analysis of the water cycle from recently derived satellite products

    Science.gov (United States)

    Berbery, E. H.; Hain, C.; Anderson, M. C.; Zhan, X.; Liu, J.; Ferraro, R. R.; Adler, R. F.; Wu, H.

    2015-12-01

    NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) develops environmental data from satellites and other sources that is a critical resource for the management of energy, water, and food supplies. Variables related to the water cycle are routinely computed from satellite remote sensing from several space agencies, and the products are used at NOAA in operational or experimental modes. This study seeks to investigate to what extent there is consistency among the diverse products, and how they represent the water cycle at different scales. Remote sensing of land surface temperature and radiation is used to estimate surface energy fluxes by means of the Atmosphere Land Exchange Inverse (ALEXI) model. An Evaporative Stress Index representing anomalies in the ratio of actual-to-potential is a reliable indicator of drought also obtained from the ALEXI model. Observations from all currently available microwave satellite sensors are processed and merged to obtain the best possible estimates of soil moisture. The Global Soil Moisture Operational Product System (SMOPS) may also ingest brightness temperature observations applying a single channel algorithm to retrieve soil moisture. All satellite retrievals in SMOPS are merged into a soil moisture product that includes proxies of the errors. The Global Precipitation Climatology Project (GPCP) monthly precipitation data set (a current NOAA CDR project) uses satellite precipitation data sets over ocean and satellite plus gauge-based analyses over land. For operational needs, NESDIS's Hydro-Estimator (H-E) uses infrared data from GOES to estimate higher temporal resolution (sub-daily) rainfall rates. Streamflow at all the river mouths is estimated by the Dominant river tracing-Routing Integrated with VIC Environment model using precipitation input and other forcing data. Evapotranspiration, soil moisture, precipitation, streamflow and groundwater are derived at different resolutions, time scales and

  16. A contribution to computer analysis of coupled-cavity traveling wave tubes. [design study for CTS satellite

    Science.gov (United States)

    Connolly, D. J.; Omalley, T. A.

    1977-01-01

    A flexible accurate large-signal computer program has been developed for the design of coupled-cavity traveling wave tubes. The program is written for a TSS-360 time sharing system. The beam is described by a disk model and the slow wave structure by a sequence of cavities or cells. The computational approach is arranged so that each cavity may have different geometrical or electrical parameters than its neighbors. This allows the program user to simulate a tube of almost arbitrary complexity. Input and output couplers, severs, complicated velocity tapers, and other features peculiar to one or a few cavities may be modeled by a correct choice of input data. The beam-wave interaction is handled by a new approach in which the RF fields are expanded in solutions to the TM wave equation retaining all significant space harmonics. The program was used to perform a design study of the TWT developed for the CTS satellite. Good agreement was obtained between the predictions of the program and the measured performance of the flight tube. The internal check on power balance was satisfied within plus or minus 0.2 per cent of input beam power.

  17. Technical Analysis Program / Flight Standards Automation System -

    Data.gov (United States)

    Department of Transportation — 1-TAP is a national data quality application 2-Logbook is field office tracking and suspense program for investigation tracking and certification tracking 3-Numerous...

  18. An Analysis of the Minimalist Program

    Institute of Scientific and Technical Information of China (English)

    赵文静

    2016-01-01

    The publishment of the book Syntactic Structure written by Chomsky in 1957 marked the beginning of the transformational generative grammar. It has had a history of almost fifty years. The binding theory used to hold a controlling position, recently the Minimalist Program ( MP) gradually takes its place. The MP is still a program,not a theory, thus it receives some criticisms from some scholars.

  19. An analysis of Naval Officer accession programs

    OpenAIRE

    Lehner, William D.

    2008-01-01

    This thesis conducts an extensive literature review of prior studies on the three major commissioning programs for United States naval officers --the United States Naval Academy, Naval Reserve Officers Training Corps, and Officer Candidate School. Three areas are covered: historical patterns in officer accessions and historical changes in Navy pre-commissioning training and education philosophy and policy; cost comparisons of the three major commissioning programs; and comparisons of job perf...

  20. The Development of Practical Item Analysis Program for Indonesian Teachers

    Directory of Open Access Journals (Sweden)

    Ali Muhson

    2017-04-01

    Full Text Available Item analysis has essential roles in the learning assessment. The item analysis program is designed to measure student achievement and instructional effectiveness. This study was aimed to develop item-analysis program and verify its feasibility. This study uses a Research and Development (R & D model. The procedure includes designing and developing a product, validating, and testing the product. The data were collected through documentations, questionnaires, and interviews. This study successfully developed item analysis program, namely AnBuso. It is developed based on classical test theory (CTT. It was practical and applicable for Indonesian teachers to analyse test items

  1. Environmental assessment for the satellite power system-concept development and evaluation program-microwave health and ecological effects

    Science.gov (United States)

    1980-01-01

    Potential health and ecological effects of the microwave beam from the microwave power transmission system (MPTS) of the satellite power system (SPS) are discussed. A detailed critical review of selected scientific articles from the published literature on the biological effects of nonionizing electromagnetic radiation is provided followed by an assessment of the possible effects of the SPS, based on exposure values for the reference system.

  2. Environmental assessment for the satellite power system-concept development and evaluation program-microwave health and ecological effects

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This report is concerned with the potential health and ecological effects of the microwave beam from the microwave power transmission system (MPTS) of the satellite power system (SPS). The report is written in the form of a detailed critical review of selected scientific articles from the published literature on the biological effects of nonionizing electromagnetic radiation, followed by an assessment of the possible effects of the SPS, based on exposure values for the reference system (US DOE and NASA, 1978).

  3. Inferring Species Richness and Turnover by Statistical Multiresolution Texture Analysis of Satellite Imagery

    Science.gov (United States)

    Convertino, Matteo; Mangoubi, Rami S.; Linkov, Igor; Lowry, Nathan C.; Desai, Mukund

    2012-01-01

    Background The quantification of species-richness and species-turnover is essential to effective monitoring of ecosystems. Wetland ecosystems are particularly in need of such monitoring due to their sensitivity to rainfall, water management and other external factors that affect hydrology, soil, and species patterns. A key challenge for environmental scientists is determining the linkage between natural and human stressors, and the effect of that linkage at the species level in space and time. We propose pixel intensity based Shannon entropy for estimating species-richness, and introduce a method based on statistical wavelet multiresolution texture analysis to quantitatively assess interseasonal and interannual species turnover. Methodology/Principal Findings We model satellite images of regions of interest as textures. We define a texture in an image as a spatial domain where the variations in pixel intensity across the image are both stochastic and multiscale. To compare two textures quantitatively, we first obtain a multiresolution wavelet decomposition of each. Either an appropriate probability density function (pdf) model for the coefficients at each subband is selected, and its parameters estimated, or, a non-parametric approach using histograms is adopted. We choose the former, where the wavelet coefficients of the multiresolution decomposition at each subband are modeled as samples from the generalized Gaussian pdf. We then obtain the joint pdf for the coefficients for all subbands, assuming independence across subbands; an approximation that simplifies the computational burden significantly without sacrificing the ability to statistically distinguish textures. We measure the difference between two textures' representative pdf's via the Kullback-Leibler divergence (KL). Species turnover, or diversity, is estimated using both this KL divergence and the difference in Shannon entropy. Additionally, we predict species richness, or diversity, based on the

  4. Inferring species richness and turnover by statistical multiresolution texture analysis of satellite imagery.

    Directory of Open Access Journals (Sweden)

    Matteo Convertino

    Full Text Available BACKGROUND: The quantification of species-richness and species-turnover is essential to effective monitoring of ecosystems. Wetland ecosystems are particularly in need of such monitoring due to their sensitivity to rainfall, water management and other external factors that affect hydrology, soil, and species patterns. A key challenge for environmental scientists is determining the linkage between natural and human stressors, and the effect of that linkage at the species level in space and time. We propose pixel intensity based Shannon entropy for estimating species-richness, and introduce a method based on statistical wavelet multiresolution texture analysis to quantitatively assess interseasonal and interannual species turnover. METHODOLOGY/PRINCIPAL FINDINGS: We model satellite images of regions of interest as textures. We define a texture in an image as a spatial domain where the variations in pixel intensity across the image are both stochastic and multiscale. To compare two textures quantitatively, we first obtain a multiresolution wavelet decomposition of each. Either an appropriate probability density function (pdf model for the coefficients at each subband is selected, and its parameters estimated, or, a non-parametric approach using histograms is adopted. We choose the former, where the wavelet coefficients of the multiresolution decomposition at each subband are modeled as samples from the generalized Gaussian pdf. We then obtain the joint pdf for the coefficients for all subbands, assuming independence across subbands; an approximation that simplifies the computational burden significantly without sacrificing the ability to statistically distinguish textures. We measure the difference between two textures' representative pdf's via the Kullback-Leibler divergence (KL. Species turnover, or [Formula: see text] diversity, is estimated using both this KL divergence and the difference in Shannon entropy. Additionally, we predict species

  5. ANALYSIS OF THE EFFECTS OF IMAGE QUALITY ON DIGITAL MAP GENERATION FROM SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    H. Kim

    2012-07-01

    Full Text Available High resolution satellite images are widely used to produce and update a digital map since they became widely available. It is well known that the accuracy of digital map produced from satellite images is decided largely by the accuracy of geometric modelling. However digital maps are made by a series of photogrammetric workflow. Therefore the accuracy of digital maps are also affected by the quality of satellite images, such as image interpretability. For satellite images, parameters such as Modulation Transfer Function(MTF, Signal to Noise Ratio(SNR and Ground Sampling Distance(GSD are used to present images quality. Our previous research stressed that such quality parameters may not represent the quality of image products such as digital maps and that parameters for image interpretability such as Ground Resolved Distance(GRD and National Imagery Interpretability Rating Scale(NIIRS need to be considered. In this study, we analyzed the effects of the image quality on accuracy of digital maps produced by satellite images. QuickBird, IKONOS and KOMPSAT-2 imagery were used to analyze as they have similar GSDs. We measured various image quality parameters mentioned above from these images. Then we produced digital maps from the images using a digital photogrammetric workstation. We analyzed the accuracy of the digital maps in terms of their location accuracy and their level of details. Then we compared the correlation between various image quality parameters and the accuracy of digital maps. The results of this study showed that GRD and NIIRS were more critical for map production then GSD, MTF or SNR.

  6. Automated data analysis to rapidly derive and communicate ecological insights from satellite-tag data: a case study of reintroduced red kites.

    Science.gov (United States)

    van der Wal, René; Zeng, Cheng; Heptinstall, Danny; Ponnamperuma, Kapila; Mellish, Chris; Ben, Stuart; Siddharthan, Advaith

    2015-11-01

    Analysis of satellite-telemetry data mostly occurs long after it has been collected, due to the time and effort needed to collate and interpret such material. Delayed reporting reduces the usefulness of such data for nature conservation where timely information about animal movements is required. To counter this problem, we present a novel approach which combines automated analysis of satellite-telemetry data with rapid communication of insights derived from such data. A relatively simple algorithm (based on radial and angular velocity calculated from fixes) allowed instantaneous detection of excursions away from settlement areas and automated calculation of home ranges on the remaining data. Automating the detection of both excursions and home-range calculations enabled us to disseminate ecological insights from satellite-tag data instantaneously through a dedicated web portal. The automated analysis, interpretation, and communication of satellite-tag and other ecological data offer clear benefits to nature conservation research and practice.

  7. Satellite Remote Sensing of Inundated Wetlands: Global Data Record Assembly and Planned Uncertainty Analysis

    Science.gov (United States)

    McDonald, K. C.; Chapman, B. D.; Podest, E.; Schröder, R.; Hess, L. L.; Jones, L. A.; Kimball, J. S.; Moghaddam, M.; Whitcomb, J.

    2011-12-01

    Wetlands cover less than 5% of Earth's ice-free land surface but exert major impacts on global biogeochemistry, hydrology, and biological diversity. Despite the importance of these environments in the global cycling of carbon and water, there is a scarcity of suitable regional-to-global remote-sensing data for characterizing their distribution and dynamics. We are assembling a global-scale Earth System Data Record (ESDR) of natural Inundated Wetlands to facilitate investigations on their role in climate, biogeochemistry, hydrology, and biodiversity. The ESDR comprises (1) Fine-resolution (100 meter) maps, delineating wetland extent, vegetation type, and seasonal inundation dynamics for regional to continental-scale areas covering crucial wetland regions, and (2) global coarse-resolution (~25 km), multi-temporal mappings of inundated area fraction (Fw) across multiple years. The fine-scale ESDR component is constructed from L-band synthetic aperture radar (SAR) data. The global maps of inundated area fraction are obtained by combining coarse-resolution (~25 km) remote sensing observations from passive and active microwave instruments. We present details of ESDR assembly and a comparative analysis of the high-resolution SAR-based data sets with the coarse resolution inundation data sets for wetlands ecosystems. We compare information content and accuracy of the coarse resolution data sets relative to the SAR-based data sets. We discuss issues which contribute to uncertainty in the ESDR data sets. Error sources include radiometric inconsistency of the remote sensing data sources, paucity of ground validation datasets available for implementation of classification algorithms, temporal undersampling relative to hydrologic variability, and ambiguities associated with implementation of coarse-resolution mixture models. We discuss plans for conducting systematic analyses of error sources related to aspects of ESDR assembly, including uncertainties associated with remote

  8. Satellite-based analysis of recent trends in the ecohydrology of a semi-arid region

    Directory of Open Access Journals (Sweden)

    M. Gokmen

    2013-10-01

    Full Text Available We present a regional framework for an integrated and spatiotemporally distributed assessment of human-induced trends in the hydrology and the associated ecological health of a semi-arid basin where both human activities (i.e. agriculture and natural ecosystems are highly groundwater dependent. To achieve this, we analysed the recent trends (from year 2000 to 2010 in precipitation, evapotranspiration (actual and potential and vegetation greenness (i.e. NDVI using a combination of satellite and ground-based observations. The trend assessment was applied for the semi-arid Konya Basin (Turkey, one of the largest endorheic basins in the world. The results revealed a consistent increasing trend of both yearly evapotranspiration (totally 63 MCM yr−1 from croplands and mean NDVI (about 0.004 NDVI yr−1 in irrigated croplands, especially concentrating in the plain part of the basin, while no significant trends were observed for the precipitation and potential evapotranspiration variables. On the contrary, a consistent decreasing trend of both yearly evapotranspiration (totally −2.1 MCM yr−1 and mean NDVI (−0.001 NDVI yr−1 was observed in the wetlands, which also cannot be explained by trends in precipitation and potential evapotranspiration. The emerging picture suggest that the greening trend of the vegetation and increasing of evapotranspiration in the plain are related to land cover changes (i.e. conversion into irrigated croplands and to the intensification of the supplementary irrigation for agriculture, which in turn caused drying out of some wetlands and the natural vegetation which mostly depend on the groundwater, the main source of irrigation water as well. Our study presented an example of the utility of spatially and temporally continuous RS data in assessing the regional trends in hydrological and ecological variables and their interactions in a spatially distributed manner in a semi-arid region, which can also be adapted to

  9. Evaluation of the Potential of NASA Multi-satellite Precipitation Analysis in Global Landslide Hazard Assessment

    Science.gov (United States)

    Hong, Yang; Adler, Robert F.; Huffman, George J.

    2007-01-01

    Landslides are one of the most widespread natural hazards on Earth, responsible for thousands of deaths and billions of dollars in property damage every year. In the U.S. alone landslides occur in every state, causing an estimated $2 billion in damage and 25- 50 deaths each year. Annual average loss of life from landslide hazards in Japan is 170. The situation is much worse in developing countries and remote mountainous regions due to lack of financial resources and inadequate disaster management ability. Recently, a landslide buried an entire village on the Philippines Island of Leyte on Feb 17,2006, with at least 1800 reported deaths and only 3 houses left standing of the original 300. Intense storms with high-intensity , long-duration rainfall have great potential to trigger rapidly moving landslides, resulting in casualties and property damage across the world. In recent years, through the availability of remotely sensed datasets, it has become possible to conduct global-scale landslide hazard assessment. This paper evaluates the potential of the real-time NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA) system to advance our understanding of and predictive ability for rainfall-triggered landslides. Early results show that the landslide occurrences are closely associated with the spatial patterns and temporal distribution of rainfall characteristics. Particularly, the number of landslide occurrences and the relative importance of rainfall in triggering landslides rely on the influence of rainfall attributes [e.g. rainfall climatology, antecedent rainfall accumulation, and intensity-duration of rainstorms). TMPA precipitation data are available in both real-time and post-real-time versions, which are useful to assess the location and timing of rainfall-triggered landslide hazards by monitoring landslide-prone areas while receiving heavy rainfall. For the purpose of identifying rainfall-triggered landslides, an empirical global rainfall intensity

  10. Smoke injection heights from fires in North America: analysis of 5 years of satellite observations

    Directory of Open Access Journals (Sweden)

    M. Val Martin

    2010-02-01

    Full Text Available We analyze an extensive record of aerosol smoke plume heights derived from observations over North America for the fire seasons of 2002 and 2004–2007 made by the Multi-angle Imaging SpectroRadiometer (MISR instrument on board the NASA Earth Observing System Terra satellite. We characterize the magnitude and variability of smoke plume heights for various biomes, and assess the contribution of local atmospheric and fire conditions to this variability. Plume heights are highly variable, ranging from a few hundred meters up to 5000 m above the terrain at the Terra overpass time (11:00–14:00 local time. The largest plumes are found over the boreal region (median values of ~850 m height, 24 km length and 940 m thickness, whereas the smallest plumes are found over cropland and grassland fires in the contiguous US (median values of ~530 m height, 12 km length and 550–640 m thickness. The analysis of plume heights in combination with assimilated meteorological observations from the NASA Goddard Earth Observing System indicates that a significant fraction (4–12% of plumes from fires are injected above the boundary layer (BL, consistent with earlier results for Alaska and the Yukon Territories during summer 2004. Most of the plumes located above the BL (>83% are trapped within stable atmospheric layers. We find a correlation between plume height and the MODerate resolution Imaging Spectroradiometer (MODIS fire radiative power (FRP thermal anomalies associated with each plume. Smoke plumes located in the free troposphere (FT exhibit larger FRP values (1620–1640 MW than those remaining within the BL (174–465 MW. Plumes located in the FT without a stable layer reach higher altitudes and are more spread-out vertically than those associated with distinct stable layers (2490 m height and 2790 m thickness versus 1880 m height and 1800 m thickness. The MISR plume climatology exhibits a well-defined seasonal cycle of plume heights in boreal and

  11. Smoke injection heights from fires in North America: analysis of 5 years of satellite observations

    Directory of Open Access Journals (Sweden)

    M. Val Martin

    2009-09-01

    Full Text Available We analyze a multi-year record of aerosol smoke plume heights derived from observations over North America made by the Multi-angle Imaging SpectroRadiometer (MISR instrument on board the NASA Earth Observing System Terra satellite. We characterize the magnitude and variability of smoke plume heights for various biomes, and assess the contribution of local atmospheric and fire conditions to this variability. Plume heights are highly variable, ranging from a few hundred meters up to 5000 m above the terrain at the Terra overpass time (11:00–14:00 local time. The largest plumes are found over the boreal region (median values of ∼850 m height, 24 km length and 940 m thickness, whereas the smallest plumes are found over cropland and grassland fires in the contiguous US (median values of ∼530 m height, 12 km length and 550–640 m thickness. The analysis of plume heights in combination with assimilated meteorological observations from the NASA Goddard Earth Observing System indicates that a significant fraction (4–12% of plumes from fires are injected above the boundary layer (BL, consistent with earlier results for Alaska and the Yukon Territories during summer 2004. Most of the plumes located above the BL (>83% are trapped within stable atmospheric layers. We find a correlation between plume height and the MODerate resolution Imaging Spectroradiometer (MODIS fire radiative power (FRP thermal anomalies associated with each plume. Smoke plumes located in the free troposphere (FT exhibit larger FRP values (1620–1640 MW than those remaining within the BL (174–465 MW. Plumes located in the FT without a stable layer reach higher altitudes and are more spread-out vertically than those associated with distinct stable layers (2490 m height and 2790 m thickness versus 1880 m height and 1800 thickness. The MISR plume climatology exhibits a well-defined seasonal cycle of plume heights in boreal and temperate biomes, with greater heights during June

  12. Coastal change analysis program implemented in Louisiana

    Science.gov (United States)

    Ramsey, Elijah W.; Nelson, G.A.; Sapkota, S.K.

    2001-01-01

    Landsat Thematic Mapper images from 1990 to 1996 and collateral data sources were used to classify the land cover of the Mermentau River Basin (MRB) within the Chenier Plain of coastal Louisiana. Landcover classes followed the definition of the National Oceanic and Atmospheric Administration's Coastal Change Analysis Program; however, classification methods had to be developed as part of this study for attainment of these national classification standards. Classification method developments were especially important when classes were spectrally inseparable, when classes were part of spatial and spectral continuums, when the spatial resolution of the sensor included more than one landcover type, and when human activities caused abnormal transitions in the landscape. Most classification problems were overcome by using one or a combination of techniques, such as separating the MRB into subregions of commonality, applying masks to specific land mixtures, and highlighting class transitions between years that were highly unlikely. Overall, 1990, 1993, and 1996 classification accuracy percentages (associated kappa statistics) were 80% (0.79), 78% (0.76), and 86% (0.84), respectively. Most classification errors were associated with confusion between managed (cultivated land) and unmanaged grassland classes; scrub shrub, grasslands and forest classes; water, unconsolidated shore and bare land classes; and especially in 1993, between water and floating vegetation classes. Combining cultivated land and grassland classes and water and floating vegetation classes into single classes accuracies for 1990, 1993, and 1996 increased to 82%, 83%, and 90%, respectively. To improve the interpretation of landcover change, three indicators of landcover class stability were formulated. Location stability was defined as the percentage of a landcover class that remained as the same class in the same location at the beginning and the end of the monitoring period. Residence stability was

  13. Comparative Analysis of Satellite Measurements Calculation Results Using the Postprocessing Services: Asg-Eupos (Poland), Apps (USA) and CSRS (Canada)

    Science.gov (United States)

    Mika, Monika; Kudach, Jakub

    2014-06-01

    The publication has a cognitive research character. It presents a comparative analysis of free Internet services in Poland and abroad, used to adjust the data obtained using satellite measurement techniques. The main aim of this work is to describe and compare free tools for satellite data processing and to examine them for possible use in the surveying works in Poland. Among the many European and global services three of them dedicated to satellite measurements were selected: ASG-EUPOS (Poland), APPS (USA) and CSRS (Canada). The publication contains the results of calculations using these systems. Calculations were based on RINEX files obtained via postprocessing service (ASG-EUPOS network) POZGEO D for 12 reference stations in the South Poland. In order to examine differences in results between the ASG-EUPOS, APPS and CSRS the transformation points coordinate to a single coordinate system ETRF 2000 (in force in Poland) was made. Studies have shown the possibility of the calculation in Poland (in postprocessing mode) using the analyzed applications with global coverage.

  14. Analysis of Software Development Methodologies to Build Safety Software Applications for the SATEX-II: A Mexican Experimental Satellite

    Science.gov (United States)

    Aguilar Cisneros, Jorge; Vargas Martinez, Hector; Pedroza Melendez, Alejandro; Alonso Arevalo, Miguel

    2013-09-01

    Mexico is a country where the experience to build software for satellite applications is beginning. This is a delicate situation because in the near future we will need to develop software for the SATEX-II (Mexican Experimental Satellite). SATEX- II is a SOMECyTA's project (the Mexican Society of Aerospace Science and Technology). We have experienced applying software development methodologies, like TSP (Team Software Process) and SCRUM in other areas. Then, we analyzed these methodologies and we concluded: these can be applied to develop software for the SATEX-II, also, we supported these methodologies with SSP-05-0 Standard in particular with ESA PSS-05-11. Our analysis was focusing on main characteristics of each methodology and how these methodologies could be used with the ESA PSS 05-0 Standards. Our outcomes, in general, may be used by teams who need to build small satellites, but, in particular, these are going to be used when we will build the on board software applications for the SATEX-II.

  15. "Real time analysis" of the ion density measured by the satellite DEMETER in relation with the seismic activity

    Directory of Open Access Journals (Sweden)

    M. Li

    2012-09-01

    Full Text Available This paper is related to the study of the ion density recorded by the low altitude satellite DEMETER. In a first time there is an automatic search for ionospheric perturbations in the complete satellite data set of ion densities. Then perturbations due to known ionospheric phenomena (for example, solar activity are eliminated as well as perturbations not above a seismic zone. In a second time, there is a search to know if each selected perturbation corresponds to a future earthquake. The earthquakes have been classified depending on their magnitude and depth. This attempt to predict earthquakes of course generates false alarms and wrong detections. The results of this statistical analysis are presented as function of various parameters. It is shown that the number of false alarms is very important, because the ionosphere has variations not only linked to the seismic activity. The number of wrong detections is also important and can be explained by the fact that the satellite is above a seismic area only a few minutes per day and we do not expect continuous perturbations from a given earthquake. The more important results of this study is that the ratio between detected earthquakes and earthquakes to be detected increases with the magnitude of the earthquakes which intuitively makes sense.

  16. Observation results of relativistic electrons detected by Fengyun-1 satellite and analysis of relativistic electron enhancement (REE) events

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The space particle component detector on Fengyun-1 satellite which works at the sun-synchronous orbit of about 870 km altitude has detected relativistic electrons for a long time. In comparison with the SAMPEX satellite observations during 1999 -2004, the relativistic electron data from Fengyun-1 satellite from June 1999 to 2005 are used to analyze the relativistic electron enhancement (REE) events at the low earth orbit, and the possible correlation among REE events at the low earth orbit, high-speed solar wind and geomagnetic storms is discussed. The statistical result presents that 45 REE events are found in total during this time period, and the strong REE events with the maximum daily average flux > 400 cm?2·sr?1·s?1 occur mostly during the transition period from solar maximum to solar minimum. Among these 45 REE events, four strong REE events last a longer time period from 26- to 51-day and correlate closely with high speed solar wind and strong geo- magnetic storms. Meanwhile, several strong geomagnetic storms occur continu- ously before these REE events, and these continuous geomagnetic storms would be an important factor causing these long-lasting strong REE events. The correlation analysis for overall 45 events indicates that the strength of the REE events corre- lates with the solar wind speed and the strength of the geomagnetic storm, and the correlation for strong REE events is much stronger than that for weak REE events.

  17. Satellite orbit determination and gravity field recovery from satellite-to-satellite tracking

    Science.gov (United States)

    Wakker, K. F.; Ambrosius, B. A. C.; Leenman, H.

    1989-07-01

    Studies on satellite-to-satellite tracking (SST) with POPSAT (a geodetic satellite concept) and a ERS-class (Earth observation) satellite, a Satellite-to-Satellite Tracking (SST) gravity mission, and precise gravity field determination methods and mission requirements are reported. The first two studies primarily address the application of SST between the high altitude POPSAT and an ERS-class or GRM (Geopotential Research Mission) satellite to the orbit determination of the latter two satellites. Activities focussed on the determination of the tracking coverage of the lower altitude satellite by ground based tracking systems and by POPSAT, orbit determination error analysis and the determination of the surface forces acting on GRM. The third study surveys principles of SST, uncertainties of existing drag models, effects of direct luni-solar attraction and tides on orbit and the gravity gradient observable. Detailed ARISTOTELES (which replaced POPSAT) orbit determination error analyses were performed for various ground based tracking networks.

  18. Preliminary Technical Risk Analysis for the Geothermal Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    McVeigh, J.; Cohen, J.; Vorum, M.; Porro, G.; Nix, G.

    2007-03-01

    This report explains the goals, methods, and results of a probabilistic analysis of technical risk for a portfolio of R&D projects in the DOE Geothermal Technologies Program ('the Program'). The analysis is a task by Princeton Energy Resources International, LLC (PERI), in support of the National Renewable Energy Laboratory (NREL) on behalf of the Program. The main challenge in the analysis lies in translating R&D results to a quantitative reflection of technical risk for a key Program metric: levelized cost of energy (LCOE). This requires both computational development (i.e., creating a spreadsheet-based analysis tool) and a synthesis of judgments by a panel of researchers and experts of the expected results of the Program's R&D.

  19. Notes on numerical reliability of several statistical analysis programs

    Science.gov (United States)

    Landwehr, J.M.; Tasker, Gary D.

    1999-01-01

    This report presents a benchmark analysis of several statistical analysis programs currently in use in the USGS. The benchmark consists of a comparison between the values provided by a statistical analysis program for variables in the reference data set ANASTY and their known or calculated theoretical values. The ANASTY data set is an amendment of the Wilkinson NASTY data set that has been used in the statistical literature to assess the reliability (computational correctness) of calculated analytical results.

  20. Energy analysis program. 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Levine, M.D.

    1995-04-01

    This report provides an energy analysis overview. The following topics are described: building energy analysis; urban and energy environmental issues; appliance energy efficiency standards; utility planning and policy; energy efficiency, economics, and policy issues; and international energy and environmental issues.

  1. Analysis of friction effects on satellite antenna driving mechanism with clearance joints

    Science.gov (United States)

    Bai, Z. F.; Chen, J.; Bian, S.; Shi, X.

    2017-01-01

    The existence of clearance in joints of mechanism is inevitable. In this paper, the friction effects in clearance joints on dynamic responses of driving mechanism of satellite antenna are studied. Considering clearances in joints, the contact force model in clearance joints is established using a nonlinear continuous contact force model and the friction effect is considered by using a modified Coulomb friction model. Then the dual-axis driving mechanism of satellite antenna with clearance joints is used as the application example. The numerical simulation of dual-axis driving mechanism with clearance joints is presented. The friction effects of clearance joint on dynamic responses of the dual-axis driving mechanism are discussed and analyzed quantitatively for four cases with different friction coefficients. The investigation results show that the increase of friction coefficient will decrease the vibration amplitude of the driving mechanism system.

  2. Performance analysis of satellite constellations for the next generation of gravity missions

    Science.gov (United States)

    Raimondo, J.; Flechtner, F.; Löcher, A.; Kusche, J.

    2011-12-01

    The GOCE and GRACE gravity missions have dramatically improved the knowledge of the Earth's static and time-variable gravity field due to their highly precise on-board instrumentation. This resulted in new information about the mass distribution and transport within or around the Earth system to be used in solid Earth geophysics, oceanography and sea level studies, hydrology, ice mass budget investigations and geodesy. GFZ Potsdam and IGG Bonn, with partners from German industry and universities, have conducted several studies in order to develop a concept for a future gravity mission based on low-low satellite-to-satellite tracking, but realized with laser metrology. In our poster we summarize the performance of different mission scenarios through full-scale simulations and their capacity to reach the science objectives.

  3. Performance analysis of MRC spatial diversity receiver system for satellite-to-ground downlink optical transmissions

    Science.gov (United States)

    Li, Kangning; Ma, Jing; Tan, Liying; Yu, Siyuan; Cao, Yubin

    2016-10-01

    The performances of satellite-to-ground downlink optical communications over Gamma-Gamma distributed turbulence are studied for multiple apertures receiver system. Maximum ratio combining (MRC) technique is considered as a combining scheme to mitigate the atmospheric turbulence under thermal noise limited conditions. Bit-error rate (BER) performances for on-off keying (OOK) modulated direct detection optical communications are analyzed for MRC diversity receptions through an approximation method. To show the net diversity gain of multiple apertures receiver system, BER performances of MRC receiver system are compared with a single monolithic aperture receiver system with the same total aperture area (same average total incident optical power) for satellite-to-ground downlink optical communications. All the numerical results are also verified by Monte-Carlo (MC) simulations.

  4. Delay analysis of a satellite channel reservation system with variable frame format

    Science.gov (United States)

    Mine, H.; Ohno, K.; Shioyama, T.

    1983-06-01

    In describing the operation, it is pointed out that the current queue length at each user is reported through minislots in the up-link header to a satellite possessing processing capability. The satellite broadcasts slot assignments for transmission in the next frame to users through the down-link header on the basis of the users' reported queue status. The number of data slots per frame varies according to the reported queue status of the users. A Markov-chain model is presented for analyzing the average total delay of the system. Numerical results are given for comparing the delay of the system with the delay of TDMA and reservation systems with fixed frame format. The system is shown to provide a better delay/throughput performance than these other systems over a wide range of traffic intensities. In addition, the delay curve of the system is relatively flat up to a traffic intensity of approximately 0.8.

  5. Solar power satellite rectenna design study: Directional receiving elements and parallel-series combining analysis

    Science.gov (United States)

    Gutmann, R. J.; Borrego, J. M.

    1978-01-01

    Rectenna conversion efficiencies (RF to dc) approximating 85 percent were demonstrated on a small scale, clearly indicating the feasibility and potential of efficiency of microwave power to dc. The overall cost estimates of the solar power satellite indicate that the baseline rectenna subsystem will be between 25 to 40 percent of the system cost. The directional receiving elements and element extensions were studied, along with power combining evaluation and evaluation extensions.

  6. Current and Future Applications of Multispectral (RGB) Satellite Imagery for Weather Analysis and Forecasting Applications

    Science.gov (United States)

    Molthan, Andrew L.; Fuell, Kevin K.; LaFontaine, Frank; McGrath, Kevin; Smith, Matt

    2013-01-01

    Current and future satellite sensors provide remotely sensed quantities from a variety of wavelengths ranging from the visible to the passive microwave, from both geostationary and low ]Earth orbits. The NASA Short ]term Prediction Research and Transition (SPoRT) Center has a long history of providing multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA fs Terra and Aqua satellites in support of NWS forecast office activities. Products from MODIS have recently been extended to include a broader suite of multispectral imagery similar to those developed by EUMETSAT, based upon the spectral channels available from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard METEOSAT ]9. This broader suite includes products that discriminate between air mass types associated with synoptic ]scale features, assists in the identification of dust, and improves upon paired channel difference detection of fog and low cloud events. Future instruments will continue the availability of these products and also expand upon current capabilities. The Advanced Baseline Imager (ABI) on GOES ]R will improve the spectral, spatial, and temporal resolution of our current geostationary capabilities, and the recent launch of the Suomi National Polar ]Orbiting Partnership (S ]NPP) carries instruments such as the Visible Infrared Imager Radiometer Suite (VIIRS), the Cross ]track Infrared Sounder (CrIS), and the Advanced Technology Microwave Sounder (ATMS), which have unrivaled spectral and spatial resolution, as precursors to the JPSS era (i.e., the next generation of polar orbiting satellites. New applications from VIIRS extend multispectral composites available from MODIS and SEVIRI while adding new capabilities through incorporation of additional CrIS channels or information from the Near Constant Contrast or gDay ]Night Band h, which provides moonlit reflectance from clouds and detection of fires or city lights. This presentation will

  7. Satellite propulsion spectral signature detection and analysis through Hall effect thruster plume and atmospheric modeling

    Science.gov (United States)

    Wheeler, Pamela; Cobb, Richard; Hartsfield, Carl; Prince, Benjamin

    2016-09-01

    Space Situational Awareness (SSA) is of utmost importance in today's congested and contested space environment. Satellites must perform orbital corrections for station keeping, devices like high efficiency electric propulsion systems such as a Hall effect thrusters (HETs) to accomplish this are on the rise. The health of this system is extremely important to ensure the satellite can maintain proper position and perform its intended mission. Electron temperature is a commonly used diagnostic to determine the efficiency of a hall thruster. Recent papers have coordinated near infrared (NIR) spectral measurements of emission lines in xenon and krypton to electron temperature measurements. Ground based observations of these spectral lines could allow the health of the thruster to be determined while the satellite is in operation. Another issue worth considering is the availability of SSA assets for ground-based observations. The current SSA architecture is limited and task saturated. If smaller telescopes, like those at universities, could successfully detect these signatures they could augment data collection for the SSA network. To facilitate this, precise atmospheric modeling must be used to pull out the signature. Within the atmosphere, the NIR has a higher transmission ratio and typical HET propellants are approximately 3x the intensity in the NIR versus the visible spectrum making it ideal for ground based observations. The proposed research will focus on developing a model to determine xenon and krypton signatures through the atmosphere and estimate the efficacy through ground-based observations. The model will take power modes, orbit geometries, and satellite altitudes into consideration and be correlated with lab and field observations.

  8. Study in the Area of Satellite Meteorology. Volume 1. Mesoscale Weather Analysis and Prediction

    Science.gov (United States)

    1974-11-01

    and E. J. Wiegman , "Study of Time-Lapse Processing for Dynamic Hydrologie Conditions," Final Report, NASA Contract NAS5-21841...J. Wiegman , R. G. Hadfield, and W. E. Evans, "Electronic System for Utilization of Satellite Cloud Pictures, " Bull. Amer...Photographs," S~mp Research Paper 71, University of Chicago, Chicago, Ill., 25 pp. (1968). 21. S. M. Serebreny, E. J. Wiegman , R. G. Hadfield, and W. E

  9. Requirements analysis and design for implementation of a satellite link for a local area computer network

    OpenAIRE

    Lorentzen, Richard B.

    1991-01-01

    Approved for public release; distribution is unlimited The purpose of this thesis is to provide naval computer students with a basic knowledge on Very Small Aperture Terminal (VSAT) satellite technology and to define the hardware and software requirements at the interface between a VSAT and a Local Area Network (LAN). By restricting a computer network to terrestrial links, a vast amount of knowledge is not accessed because either the terrestrial links can't access the information or the...

  10. Analysis on the Utility of Satellite Imagery for Detection of Agricultural Facility

    Science.gov (United States)

    Kang, J.-M.; Baek, S.-H.; Jung, K.-Y.

    2012-07-01

    Now that the agricultural facilities are being increase owing to development of technology and diversification of agriculture and the ratio of garden crops that are imported a lot and the crops cultivated in facilities are raised in Korea, the number of vinyl greenhouses is tending upward. So, it is important to grasp the distribution of vinyl greenhouses as much as that of rice fields, dry fields and orchards, but it is difficult to collect the information of wide areas economically and correctly. Remote sensing using satellite imagery is able to obtain data of wide area at the same time, quickly and cost-effectively collect, monitor and analyze information from every object on earth. In this study, in order to analyze the utilization of satellite imagery at detection of agricultural facility, image classification was performed about the agricultural facility, vinyl greenhouse using Formosat-2 satellite imagery. The training set of sea, vegetation, building, bare ground and vinyl greenhouse was set to monitor the agricultural facilities of the object area and the training set for the vinyl greenhouses that are main monitoring object was classified and set again into 3 types according the spectral characteristics. The image classification using 4 kinds of supervise classification methods applied by the same training set were carried out to grasp the image classification method which is effective for monitoring agricultural facilities. And, in order to minimize the misclassification appeared in the classification using the spectral information, the accuracy of classification was intended to be raised by adding texture information. The results of classification were analyzed regarding the accuracy comparing with that of naked-eyed detection. As the results of classification, the method of Mahalanobis distance was shown as more efficient than other methods and the accuracy of classification was higher when adding texture information. Hence the more effective

  11. Symbolic Analysis of Concurrent Programs with Polymorphism

    Science.gov (United States)

    Rungta, Neha Shyam

    2010-01-01

    The current trend of multi-core and multi-processor computing is causing a paradigm shift from inherently sequential to highly concurrent and parallel applications. Certain thread interleavings, data input values, or combinations of both often cause errors in the system. Systematic verification techniques such as explicit state model checking and symbolic execution are extensively used to detect errors in such systems [7, 9]. Explicit state model checking enumerates possible thread schedules and input data values of a program in order to check for errors [3, 9]. To partially mitigate the state space explosion from data input values, symbolic execution techniques substitute data input values with symbolic values [5, 7, 6]. Explicit state model checking and symbolic execution techniques used in conjunction with exhaustive search techniques such as depth-first search are unable to detect errors in medium to large-sized concurrent programs because the number of behaviors caused by data and thread non-determinism is extremely large. We present an overview of abstraction-guided symbolic execution for concurrent programs that detects errors manifested by a combination of thread schedules and data values [8]. The technique generates a set of key program locations relevant in testing the reachability of the target locations. The symbolic execution is then guided along these locations in an attempt to generate a feasible execution path to the error state. This allows the execution to focus in parts of the behavior space more likely to contain an error.

  12. Cost Analysis of Algorithm Based Billboard Manger Based Handover Method in LEO satellite Networks

    Directory of Open Access Journals (Sweden)

    Suman Kumar Sikdar

    2012-12-01

    Full Text Available Now-a-days LEO satellites have an important role in global communication system. They have some advantages like low power requirement and low end-to-end delay, more efficient frequency spectrum utilization between satellites and spot beams over GEO and MEO. So in future they can be used as a replacement of modern terrestrial wireless networks. But the handover occurrence is more due to the speed of the LEOs. Different protocol has been proposed for a successful handover among which BMBHO is more efficient. But it had a problem during the selection of the mobile node during handover. In our previous work we have proposed an algorithm so that the connection can be established easily with the appropriate satellite. In this paper we will evaluate the mobility management cost of Algorithm based Billboard Manager Based Handover method (BMBHO. A simulation result shows that the cost is lower than the cost of Mobile IP of SeaHO-LEO and PatHOLEO

  13. Consideration of Collision "Consequence" in Satellite Conjunction Assessment and Risk Analysis

    Science.gov (United States)

    Hejduk, M.; Laporte, F.; Moury, M.; Newman, L.; Shepperd, R.

    2017-01-01

    Classic risk management theory requires the assessment of both likelihood and consequence of deleterious events. Satellite conjunction risk assessment has produced a highly-developed theory for assessing collision likelihood but holds a completely static solution for collision consequence, treating all potential collisions as essentially equally worrisome. This may be true for the survival of the protected asset, but the amount of debris produced by the potential collision, and therefore the degree to which the orbital corridor may be compromised, can vary greatly among satellite conjunctions. This study leverages present work on satellite collision modeling to develop a method by which it can be estimated, to a particular confidence level, whether a particular collision is likely to produce a relatively large or relatively small amount of resultant debris and how this datum might alter conjunction remediation decisions. The more general question of orbital corridor protection is also addressed, and a preliminary framework presented by which both collision likelihood and consequence can be jointly considered in the risk assessment process.

  14. Analysis of the role of urban vegetation in local climate of Budapest using satellite measurements

    Science.gov (United States)

    Pongracz, Rita; Bartholy, Judit; Dezso, Zsuzsanna; Fricke, Cathy

    2016-08-01

    Urban areas significantly modify the natural environment due to the concentrated presence of humans and the associated anthropogenic activities. In order to assess this effect, it is essential to evaluate the relationship between urban and vegetated surface covers. In our study we focused on the Hungarian capital, Budapest, in which about 1.7 million inhabitants are living nowadays. The entire city is divided by the river Danube into the hilly, greener Buda side on the west, and the flat, more densely built-up Pest side on the east. Most of the extended urban vegetation, i.e., forests are located in the western Buda side. The effects of the past changing of these green areas are analyzed using surface temperature data calculated from satellite measurements in the infrared channels, and NDVI (Normalized Difference Vegetation Index) derived from visible and near-infrared satellite measurements. For this purpose, data available from sensor MODIS (Moderate Resolution Imaging Spectroradiometer) of NASA satellites (i.e., Terra and Aqua) are used. First, the climatological effects of forests on the urban heat island intensity are evaluated. Then, we also aim to evaluate the relationship of surface temperature and NDVI in this urban environment with special focus on vegetation-related sections of the city where the vegetation cover either increased or decreased remarkably.

  15. Hydro-physical processes at the plunge point: an analysis using satellite and in situ data

    Directory of Open Access Journals (Sweden)

    A. T. Assireu

    2011-12-01

    Full Text Available The plunge point is the main mixing point between river and epilimnetic reservoir water. Plunge point monitoring is essential for understanding the behavior of density currents and their implications for reservoir. The use of satellite imagery products from different sensors (Landsat TM band 6 thermal signatures and visible channels for the characterization of the river-reservoir transition zone is presented in this study. It is demonstrated the feasibility of using Landsat TM band imagery to discern the subsurface river plumes and the plunge point. The spatial variability of the plunge point evident in the hydrologic data illustrates the advantages of synoptic satellite measurements over in situ point measurements alone to detect the river-reservoir transition zone. During the dry season, when the river-reservoir water temperature differences vanish and the river circulation is characterized by interflow-overflow, the river water inserts into the upper layers of the reservoir, affecting water quality. The results indicate a good agreement between hydrologic and satellite data and that the joint use of thermal and visible channel data for the operational monitoring of a plunge point is feasible. The deduced information about the density current from this study could potentially be assimilated into numerical models and hence be of significant interest for environmental and climatological research.

  16. Pc5 Oscillation Analysis by the Satellite and Ground-Based Data

    Institute of Scientific and Technical Information of China (English)

    A. Potapov; T. Polyushkina; T. L. Zhang; H. Zhao; A. Guglielmi; J. Kultima

    2005-01-01

    Large amplitude Pc5 event was observed in the space and on ground on August 3, 2001, about three hours after contact of the strong discontinuity in the solar wind with the magnetosphere according to data from ACE and Wind satellites. The Pc5 amplitude was as high as 15 nT in the tail of magnetosphere and about 5 nT at the ground based stations. In the magnetosphere Pc5 waves were observed by Cluster and Polar satellites, which occupied positions in the morning part of the near tail at the close field lines but were parted by distance of 11.5 Re, mainly along the x-axis of the GSM coordinate system. Both compressional and transverse components of the Pc5 wave activity were observed in the space, with the transverse component having the larger amplitude. Time delay between the Cluster and Polar satellites was about 8 minutes, which could be interpreted as a wave propagation from the geomagnetic tail to the Earth with the 150km/s group velocity.The ground-based Pc5 activity was analysed by using data from the Image magnetometer network. Doubtless demonstrations of a field line resonant structure were found in variations of amplitude and polarization with latitude. Finnish chain of search coil magnetometers observed modulated Pc1 emission simultaneously with the Pc5 wave train. A possibility of non-linear impact of Pc5 wave energy on the plasma and waves in the magnetosphere is discussed.

  17. Anomalous transient uplift observed at the Lop Nor, China nuclear test site using satellite radar interferometry time-series analysis

    Science.gov (United States)

    Vincent, P.; Buckley, S. M.; Yang, D.; Carle, S. F.

    2011-12-01

    Anomalous uplift is observed at the Lop Nor, China nuclear test site using ERS satellite SAR data. Using an InSAR time-series analysis method, we show that an increase in absolute uplift with time is observed between 1997 and 1999. The signal is collocated with past underground nuclear tests. Due to the collocation in space with past underground tests we postulate a nuclear test-related hydrothermal source for the uplift signal. A possible mechanism is presented that can account for the observed transient uplift and is consistent with documented thermal regimes associated with underground nuclear tests conducted at the Nevada National Security Site (NNSS) (formerly the Nevada Test Site).

  18. Metallurgical analysis of a failed maraging steel shear screw used in the band separation system of a satellite launch vehicle

    Directory of Open Access Journals (Sweden)

    S.V.S. Narayana Murty

    2016-10-01

    Full Text Available Maraging steels have excellent combination of strength and toughness and are extensively used for a variety of aerospace applications. In one such critical application, this steel was used to fabricate shear screws of a stage separation system in a satellite launch vehicle. During assembly preparations, one of the shear screws which connected the separation band and band end block has failed at the first thread. Microstructural analysis revealed that the crack originated from the root of the thread and propagated in an intergranular mode. The failure is attributed to combined effect of stress and corrosion leading to stress corrosion cracking.

  19. An Evaluation of Satellite-Based and Re-Analysis Radiation Budget Datasets Using CERES EBAF Products

    Science.gov (United States)

    Gupta, Shashi; Stackhouse, Paul; Wong, Takmeng; Mikovitz, Colleen; Cox, Stephen; Zhang, Taiping

    2016-04-01

    Top-of-atmosphere (TOA) and surface radiative fluxes from CERES Energy Balanced and Filled (EBAF; Loeb et al., 2009; Kato et al. 2013) products are used to evaluate the performance of several widely used long-term radiation budget datasets. Two of those are derived from satellite observations and five more are from re-analysis products. Satellite-derived datasets are the NASA/GEWEX Surface and TOA Radiation Budget Dataset Release-3 and the ISCCP-FD Dataset. The re-analysis datasets are taken from NCEP-CFSR, ERA-Interim, Japanese Re-Analysis (JRA-55), MERRA and the newly released MERRA2 products. Close examination is made of the differences between MERRA and MERRA2 products for the purpose of identifying improvements achieved for MERRA2. Many of these datasets have undergone quality assessment under the GEWEX Radiative Flux Assessment (RFA) project. For the purposes of the present study, EBAF datasets are treated as reference and other datasets are compared with it. All-sky and clear-sky, SW and LW, TOA and surface fluxes are included in this study. A 7-year period (2001-2007) common to all datasets is chosen for comparisons of global and zonal averages, monthly and annual average timeseries, and their anomalies. These comparisons show significant differences between EBAF and the other datasets. Certain anomalies and trends observed in the satellite-derived datasets are attributable to corresponding features in satellite datasets used as input, especially ISCCP cloud properties. Comparisons of zonal averages showed significant differences especially over higher latitudes even when those differences are not obvious in the global averages. Special emphasis is placed on the analysis of the correspondence between spatial patterns of geographical distribution of the above fluxes on a 7-year average as well as on a month-by-month basis using the Taylor (2001) methodology. Results showed that for 7-year average fields correlation coefficients between spatial patterns

  20. Satellite DNA in the elm leaf beetle, Xanthogaleruca luteola (Coleoptera, Chrysomelidae): characterization, interpopulation analysis, and chromosome location.

    Science.gov (United States)

    Lorite, P; Carrillo, J A; Garnería, I; Petitpierre, E; Palomeque, T

    2002-01-01

    In this paper the satellite DNA (stDNA) of the phytophagous beetle Xanthogaleruca luteola is analyzed. It is organized in a tandem repeat of 149-bp-long monomers, has an AT content of 59%, and presents inverted internal repeats. Restriction analysis of the total DNA with methylation-sensitive enzymes suggests that this repetitive DNA is not methylated. Analysis of the electrophoretic mobility of stDNA on non-denaturing polyacrylamide gels showed that this stDNA is not curved. In situ hybridization with a biotinylated probe of the stDNA revealed a pericentromeric localization of these sequences in the majority of the meiotic bivalents. We have studied the stDNA of X. luteola from two populations with very distinct geographical origins. The sequence and phylogenetic analysis of monomers from these two populations showed that the repetitive element is conserved within the species. Putative gene conversion tracts are identified when the different monomers of the same population are compared. These results could indicate the existence of processes of homogenization that would extend these mutations to all the satellite repeats.

  1. Mantis: Predicting System Performance through Program Analysis and Modeling

    CERN Document Server

    Chun, Byung-Gon; Lee, Sangmin; Maniatis, Petros; Naik, Mayur

    2010-01-01

    We present Mantis, a new framework that automatically predicts program performance with high accuracy. Mantis integrates techniques from programming language and machine learning for performance modeling, and is a radical departure from traditional approaches. Mantis extracts program features, which are information about program execution runs, through program instrumentation. It uses machine learning techniques to select features relevant to performance and creates prediction models as a function of the selected features. Through program analysis, it then generates compact code slices that compute these feature values for prediction. Our evaluation shows that Mantis can achieve more than 93% accuracy with less than 10% training data set, which is a significant improvement over models that are oblivious to program features. The system generates code slices that are cheap to compute feature values.

  2. Satellite RNAs and Satellite Viruses.

    Science.gov (United States)

    Palukaitis, Peter

    2016-03-01

    Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA.

  3. FY2015 Analysis of the Teamwork USA Program. Memorandum

    Science.gov (United States)

    Howard, Mark

    2015-01-01

    The Department of Research and Evaluation (DRE) has completed an analysis of the performance of students who participated in the Teamwork USA Program, administered in FY2014 at three District schools. Teamwork USA hopes to improve student achievement at select Title I elementary schools via its Instrumental Music Program grant. This memorandum to…

  4. A Systematic Survey of Program Comprehension through Dynamic Analysis

    NARCIS (Netherlands)

    Cornelissen, B.; Zaidman, A.; Van Deursen, A.; Moonen, L.; Koschke, R.

    2009-01-01

    Program comprehension is an important activity in software maintenance, as software must be sufficiently understood before it can be properly modified. The study of a program's execution, known as dynamic analysis, has become a common technique in this respect and has received substantial attention

  5. Surveillance data bases, analysis, and standardization program

    Energy Technology Data Exchange (ETDEWEB)

    Kam, F.B.K.

    1990-09-26

    The traveler presented a paper at the Seventh ASTM-EURATOM Symposium on Reactor Dosimetry and co-chaired an oral session on Computer Codes and Methods. Papers of considerable interest to the NRC Surveillance Dosimetry Program involved statistically based adjustment procedures and uncertainties. The information exchange meetings with Czechoslovakia and Hungary were very enlightening. Lack of large computers have hindered their surveillance program. They depended very highly on information from their measurement programs which were somewhat limited because of the lack of sophisticated electronics. The Nuclear Research Institute at Rez had to rely on expensive mockups of power reactor configurations to test their fluence exposures. Computers, computer codes, and updated nuclear data would advance their technology rapidly, and they were not hesitant to admit this fact. Both eastern-bloc countries said that IBM is providing an IBM 3090 for educational purposes but research and development studies would have very limited access. They were very apologetic that their currencies were not convertible, and any exchange means that they could provide services or pay for US scientists in their respective countries, but funding for their scientists in the United States, or expenses that involved payment in dollars, must come from us.

  6. U.S. Geological Survey Gap Analysis Program

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Gap Analysis Program (GAP) is an element of the U.S. Geological Survey (USGS). GAP helps to implement the Department of Interior?s goals of inventory,...

  7. Time Aquatic Resources Modeling and Analysis Program (STARMAP)

    Data.gov (United States)

    Federal Laboratory Consortium — Colorado State University has received funding from the U.S. Environmental Protection Agency (EPA) for its Space-Time Aquatic Resources Modeling and Analysis Program...

  8. Analysis and Implement of Broadcast Program Monitoring Data

    Directory of Open Access Journals (Sweden)

    Song Jin Bao

    2016-01-01

    Full Text Available With the rapid development of the radio and TV industry and the implementation of INT (the integration of telecommunications networks, cable TV networks and the Internet, the contents of programs and advertisements is showing massive, live and interactive trends. In order to meet the security of radio and television, the broadcast of information have to be controlled and administered. In order to master the latest information of public opinion trends through radio and television network, it is necessary research the specific industry applications of broadcast program monitoring. In this paper, the importance of broadcast monitoring in public opinion analysis is firstly analysed. The monitoring radio and television programs broadcast system architecture is proposed combining with the practice, focusing on the technical requirements and implementation process of program broadcast, advertisement broadcast and TV station broadcast monitoring. The more efficient information is generated through statistical analysis, which provides data analysis for radio and television public opinion analysis.

  9. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  10. Fast Development Of China's Small Satellite Industry

    Institute of Scientific and Technical Information of China (English)

    Sun Hongjin

    2009-01-01

    @@ China Spacesat Co., Ltd of China Academy of Space Technology (CAST) recently said, along with the successful launch of HJ-1A/B for the environment and disaster monitoring and forecasting small satellite constellation and after years of efforts, small satellite development technology has achieved fruitful results, and the development status has been greatly improved.China's small satellite technology has realized a great-leap-forward in development from a single satellite model to series model, from the satellite program to space industry. China has explored a development road for China's small satellite industrialization, and a modern small satellite development base has resulted.

  11. Advanced satellite communication system

    Science.gov (United States)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  12. Analysis of Logic Programs Using Regular Tree Languages

    DEFF Research Database (Denmark)

    Gallagher, John Patrick

    2012-01-01

    The eld of nite tree automata provides fundamental notations and tools for reasoning about set of terms called regular or recognizable tree languages. We consider two kinds of analysis using regular tree languages, applied to logic programs. The rst approach is to try to discover automatically a ...... to the analysis is a program and a tree automaton, and the output is an abstract model of the program. These two contrasting abstract interpretations can be used in a wide range of analysis and verication problems.......The eld of nite tree automata provides fundamental notations and tools for reasoning about set of terms called regular or recognizable tree languages. We consider two kinds of analysis using regular tree languages, applied to logic programs. The rst approach is to try to discover automatically...... a tree automaton from a logic program, approximating its minimal Herbrand model. In this case the input for the analysis is a program, and the output is a tree automaton. The second approach is to expose or check properties of the program that can be expressed by a given tree automaton. The input...

  13. The Correlation Between Atmospheric Dust Deposition to the Surface Ocean and SeaWiFS Ocean Color: A Global Satellite-Based Analysis

    Science.gov (United States)

    Erickson, D. J., III; Hernandez, J.; Ginoux, P.; Gregg, W.; Kawa, R.; Behrenfeld, M.; Esaias, W.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Since the atmospheric deposition of iron has been linked to primary productivity in various oceanic regions, we have conducted an objective study of the correlation of dust deposition and satellite remotely sensed surface ocean chlorophyll concentrations. We present a global analysis of the correlation between atmospheric dust deposition derived from a satellite-based 3-D atmospheric transport model and SeaWiFs estimates of ocean color. We use the monthly mean dust deposition fields of Ginoux et al. which are based on a global model of dust generation and transport. This model is driven by atmospheric circulation from the Data Assimilation Office (DAO) for the period 1995-1998. This global dust model is constrained by several satellite estimates of standard circulation characteristics. We then perform an analysis of the correlation between the dust deposition and the 1998 SeaWIFS ocean color data for each 2.0 deg x 2.5 deg lat/long grid point, for each month of the year. The results are surprisingly robust. The region between 40 S and 60 S has correlation coefficients from 0.6 to 0.95, statistically significant at the 0.05 level. There are swaths of high correlation at the edges of some major ocean current systems. We interpret these correlations as reflecting areas that have shear related turbulence bringing nitrogen and phosphorus from depth into the surface ocean, and the atmospheric supply of iron provides the limiting nutrient and the correlation between iron deposition and surface ocean chlorophyll is high. There is a region in the western North Pacific with high correlation, reflecting the input of Asian dust to that region. The southern hemisphere has an average correlation coefficient of 0.72 compared that in the northern hemisphere of 0.42 consistent with present conceptual models of where atmospheric iron deposition may play a role in surface ocean biogeochemical cycles. The spatial structure of the correlation fields will be discussed within the context

  14. Analysis of ozone and nitric acid in spring and summer Arctic pollution using aircraft, ground-based, satellite observations and MOZART-4 model: source attribution and partitioning

    Directory of Open Access Journals (Sweden)

    C. Wespes

    2012-01-01

    Full Text Available In this paper, we analyze tropospheric O3 together with HNO3 during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport program, combining observations and model results. Aircraft observations from the NASA ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites and NOAA ARCPAC (Aerosol, Radiation and Cloud Processes affecting Arctic Climate campaigns during spring and summer of 2008 are used together with the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4 to assist in the interpretation of the observations in terms of the source attribution and transport of O3 and HNO3 into the Arctic (north of 60° N. The MOZART-4 simulations reproduce the aircraft observations generally well (within 15%, but some discrepancies in the model are identified and discussed. The observed correlation of O3 with HNO3 is exploited to evaluate the MOZART-4 model performance for different air mass types (fresh plumes, free troposphere and stratospheric-contaminated air masses.

    Based on model simulations of O3 and HNO3 tagged by source type and region, we find that the anthropogenic pollution from the Northern Hemisphere is the dominant source of O3 and HNO3 in the Arctic at pressures greater than 400 hPa, and that the stratospheric influence is the principal contribution at pressures less 400 hPa. During the summer, intense Russian fire emissions contribute some amount to the tropospheric columns of both gases over the American sector of the Arctic. North American fire emissions (California and Canada also show an important impact on tropospheric ozone in the Arctic boundary layer.

    Additional analysis of tropospheric O3 measurements from ground-based FTIR and from the IASI satellite sounder made

  15. A graphics approach in the design of the dual air density Explorer satellites

    Science.gov (United States)

    Mcdougal, D. S.

    1975-01-01

    A computer program was developed to generate a graphics display of the Dual Air Density (DAD) Explorer satellites which aids in the engineering and scientific design. The program displays a two-dimensional view of both spacecraft and their surface features from any direction. The graphics have been an indispensable tool in the design, analysis, and understanding of the critical locations of the various surface features for both satellites.

  16. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  17. A sensitivity analysis of Ring effect to aerosol properties and comparison to satellite observations

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2010-12-01

    Full Text Available In this study we explore the sensitivity of satellite observations of the Ring effect (at various wavelengths to atmospheric aerosol properties. Compared to clouds, aerosols have a rather weak influence on the Ring effect, thus the requirements on the accuracy of the measurements and the radiative transfer simulations are high. In this study, we show that for moderate and high aerosol optical depth (AOD, Ring effect observations are sensitive enough to yield information not only on the AOD, but also on the absorbing properties of aerosols and the aerosol layer height. The latter two quantities are especially important for the determination of the radiative effects of aerosols.

    Our investigations are based on observations by the satellite instrument SCIAMACHY on ENVISAT (2004–2008 and on model simulations using the Monte-Carlo radiative transfer model McArtim. In addition to the Ring effect we investigate the impact of aerosols on the absorptions of the oxygen molecule (O2 and dimer (O4 as well as the radiance. In general good consistency between measured and simulated quantities is found. In some cases also systematic differences occurred, which are probably mainly related to the strong polarisation sensitivity of the SCIAMACHY instrument.

    Our study indicates that Ring effect observations have important advantages for aerosol retrievals: they can be analysed with high accuracy in various wavelength ranges; and depending on the wavelength range, they show different sensitivities on aerosol properties like single scattering albedo, optical depth or layer height. The results of this study are of particular interest for future aerosol inversion algorithms for satellite instruments with reduced polarisation sensitivity and smaller ground pixels, capable of measuring the Ring effect with higher accuracy.

  18. Analysis and forecast experiments incorporating satellite soundings and cloud and water vapor drift wind information

    Science.gov (United States)

    Goodman, Brian M.; Diak, George R.; Mills, Graham A.

    1986-01-01

    A system for assimilating conventional meteorological data and satellite-derived data in order to produce four-dimensional gridded data sets of the primary atmospheric variables used for updating limited area forecast models is described. The basic principles of a data assimilation scheme as proposed by Lorenc (1984) are discussed. The design of the system and its incremental assimilation cycles are schematically presented. The assimilation system was tested using radiosonde, buoy, VAS temperature, dew point, gradient wind data, cloud drift, and water vapor motion data. The rms vector errors for the data are analyzed.

  19. In-Orbit Trend Analysis of Galileo Satellites for Power Sources Degradation Estimation

    Directory of Open Access Journals (Sweden)

    Bard Frederic

    2017-01-01

    The results are in all cases better than the predictions, which is expected due to the usage of conservatives assumptions in the design to cover (for both IOV and FOC worst case scenario for the entire constellation. It should be noted that the FOC GSAT201 and GSAT202 batteries are degrading slightly faster than the 6 others FOC batteries identified GSAT203, GSAT204, GSAT205, GSAT206, GSAT208 and GSAT209, but still below predictions due to their peculiar unexpected orbit reached after launch (higher DoD up to 42% measured due to longer eclipses. These 2 satellites will require specific degradation monitoring.

  20. Analysis of innovative scenarios and key technologies to perform active debris removal with satellite modules

    OpenAIRE

    Savioli, Livia / LS

    2015-01-01

    It has surely happened sometimes to look at the night sky and catch sight of a small, brighting spot moving like an airplane, but without ashing as usually airplane lights do: it was a satellite. It is always amazing to think that there are objects that continously orbit around Earth, so far from us. Maybe, it is not well-known that they are a lot...thousands...more or less 17,000 those closer to the Earth, to be precise. It is difficult to imagine how so much objects can orbit without touchi...

  1. Eucb: A C++ program for molecular dynamics trajectory analysis

    Science.gov (United States)

    Tsoulos, Ioannis G.; Stavrakoudis, Athanassios

    2011-03-01

    Eucb is a standalone program for geometrical analysis of molecular dynamics trajectories of protein systems. The program is written in GNU C++ and it can be installed in any operating system running a C++ compiler. The program performs its analytical tasks based on user supplied keywords. The source code is freely available from http://stavrakoudis.econ.uoi.gr/eucb under LGPL 3 license. Program summaryProgram title:Eucb Catalogue identifier: AEIC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 31 169 No. of bytes in distributed program, including test data, etc.: 297 364 Distribution format: tar.gz Programming language: GNU C++ Computer: The tool is designed and tested on GNU/Linux systems Operating system: Unix/Linux systems RAM: 2 MB Supplementary material: Sample data files are available Classification: 3 Nature of problem: Analysis of molecular dynamics trajectories. Solution method: The program finds all possible interactions according to input files and the user instructions. Then it reads all the trajectory frames and finds those frames in which these interactions occur, under certain geometrical criteria. This is a blind search, without a priori knowledge if a certain interaction occurs or not. The program exports time series of these quantities (distance, angles, etc.) and appropriate descriptive statistics. Running time: Depends on the input data and the required options.

  2. Hydrogeomorphic (HGM) Analysis : Natural Resource Program Center

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This factsheet describes hydrogeomorphic (HGM) analysis, a three-step process used to evaluate riparian and wetland ecosystems and surrounding landscapes.

  3. 2011 Biomass Program Platform Peer Review: Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Haq, Zia [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Analysis Platform Review meeting.

  4. Satellite theory

    Science.gov (United States)

    Kozai, Y.

    1981-04-01

    The dynamical characteristics of the natural satellite of Mars, Jupiter, Saturn, Uranus and Neptune are analyzed on the basis of the solar tidal perturbation factor and the oblateness factor of the primary planet for each satellite. For the inner satellites, for which the value of the solar tidal factor is much smaller than the planetary oblateness factor, it is shown that the eccentricity and inclination of satellite orbits are generally very small and almost constant; several pairs of inner satellites are also found to exhibit commensurable mean motions, or secular accelerations in mean longitude. In the case of the outer satellites, for which solar perturbations are dominant, secular perturbations and long-period perturbations may be derived by the solution of equations of motion reduced to one degree of freedom. The existence of a few satellites, termed intermediary satellites, for which the solar tidal perturbation is on the order of the planetary oblateness factor, is also observed, and the pole of the orbital plane of the satellite is noted to execute a complex motion around the pole of the planet or the orbital plane of the planet.

  5. Retrieval of vertical wind profiles during monsoon from satellite observed winds over the Indian Ocean using complex EOF analysis

    Indian Academy of Sciences (India)

    C M Kishtawal; Sujit Basu; S Karthikeyan

    2001-03-01

    The aim of this paper is to study the feasibility of deriving vertical wind profiles from current satellite observations. With this aim, we carried out complex empirical orthogonal function (CEOF) analysis of a large number of radiosonde observations of wind profiles over the Indian Ocean during the monsoon months. It has been found that the first two CEOFs explain 67% of the total variance in wind fields. While the first principal component is well correlated with the winds at 850 mb ( = 0.80), the second one is highly correlated with winds at 200 mb ( = 0.89). This analysis formed the basis of a retrieval algorithm which ensures the retrieval of vertical profiles of winds using satellite tracked cloud motion vector winds. Under the assumption that accurate measurements of wind are available at the above mentioned levels, the r.m.s. error of retrieval of each component of wind is estimated to range between 2ms-1 and 6ms-1 at different levels, which is much less than the natural variance of winds at these levels. For a better visualization of retrieval, we have provided retrieved and true wind profiles side by side for four typical synoptic conditions during the monsoon season.

  6. Acquisition cost analysis for the near term military application of laser versus millimeter wave for satellite crosslink communications

    Science.gov (United States)

    Marlow, S. W.

    1983-12-01

    Two alternative satellite communication technologies have evolved independently of each other and now seem to be in direct competition for limited R&D dollars. In an attempt to identify which technology is best, this study concentrates on one aspect of satellite communications - intersatellite crosslinks which are capable of processing one to ten megabits of data per second. The analysis effort is further limited to comparisons of procurement costs and factors which influence these costs. The RCA PRICE Model is used to estimate costs of crosslink subsystems. Extensive review of the literature, as well as design estimates from experts, is necessary to provide the PRICE Model with sufficient details to produce a credible cost figure. A modified Delphi method is used to aggregate the estimates of the experts. From the cost comparison of laser versus millimeter wave crosslink systems, it seems that millimeter wave with its more mature technology has the cost advantage. However, as laser technology reaches a level of maturity close to that of millimeter wave, the difference in procurement costs should become minimal. There are eleven technical, operational, and cost factors which must be analyzed to adequately determine which technology is best. Procurement cost analysis by itself does not determine which technology should be continued or stopped.

  7. Simulation and Analysis of Autonomous Time Synchronization Based on Asynchronism Two-way Inter-satellite Link

    Science.gov (United States)

    Fang, L.; Yang, X. H.; Sun, B. Q.; Qin, W. J.; Kong, Y.

    2013-09-01

    The measurement of the inter-satellite link is one of the key techniques in the autonomous operation of satellite navigation system. Based on the asynchronism inter-satellite two-way measurement mode in GPS constellation, the reduction formula of the inter-satellite time synchronization is built in this paper. Moreover, the corrective method of main systematic errors is proposed. Inter-satellite two-way time synchronization is simulated on the basis of IGS (International GNSS Service) precise ephemeris. The impacts of the epoch domestication of asynchronism inter-satellite link pseudo-range, the initial orbit, and the main systematic errors on satellite time synchronization are analyzed. Furthermore, the broadcast clock error of each satellite is calculated by the ``centralized'' inter-satellite autonomous time synchronization. Simulation results show that the epoch domestication of asynchronism inter-satellite link pseudo-range and the initial orbit have little impact on the satellite clock errors, and thus they needn't be taken into account. The errors caused by the relativistic effect and the asymmetry of path travel have large impact on the satellite clock errors. These should be corrected with theoretical formula. Compared with the IGS precise clock error, the root mean square of the broadcast clock error of each satellite is about 0.4 ns.

  8. The National Shipbuilding Research Program. Process Analysis Via Accuracy Control

    Science.gov (United States)

    1985-08-01

    Process Analysis Via Accuracy Control U.S. DEPARTMENT OF TRANSPORTATION Maritime Administration in cooperation with Todd Pacific Shipyards...AUG 1985 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE The National Shipbuilding Research Program Process Analysis Via...lighting, retraining work- ers, or other such approaches. This product of A/C is called process or method analysis. Process analysis involves a

  9. McIDAS-V: A Data Analysis and Visualization Tool for Global Satellite Data

    Science.gov (United States)

    Achtor, T. H.; Rink, T. D.

    2011-12-01

    The Man-computer Interactive Data Access System (McIDAS-V) is a java-based, open-source, freely available system for scientists, researchers and algorithm developers working with atmospheric data. The McIDAS-V software tools provide powerful new data manipulation and visualization capabilities, including 4-dimensional displays, an abstract data model with integrated metadata, user defined computation, and a powerful scripting capability. As such, McIDAS-V is a valuable tool for scientists and researchers within the GEO and GOESS domains. The advancing polar and geostationary orbit environmental satellite missions conducted by several countries will carry advanced instrumentation and systems that will collect and distribute land, ocean, and atmosphere data. These systems provide atmospheric and sea surface temperatures, humidity sounding, cloud and aerosol properties, and numerous other environmental products. This presentation will display and demonstrate some of the capabilities of McIDAS-V to analyze and display high temporal and spectral resolution data using examples from international environmental satellites.

  10. Analysis of Southeast Asian pollution episode during June 2013 using satellite remote sensing datasets.

    Science.gov (United States)

    Vadrevu, Krishna Prasad; Lasko, Kristofer; Giglio, Louis; Justice, Chris

    2014-12-01

    In this study, we assess the intense pollution episode of June 2013, in Riau province, Indonesia from land clearing. We relied on satellite retrievals of aerosols and Carbon monoxide (CO) due to lack of ground measurements. We used both the yearly and daily data for aerosol optical depth (AOD), fine mode fraction (FMF), aerosol absorption optical depth (AAOD) and UV aerosol index (UVAI) for characterizing variations. We found significant enhancement in aerosols and CO during the pollution episode. Compared to mean (2008-2012) June AOD of 0.40, FMF-0.39, AAOD-0.45, UVAI-1.77 and CO of 200 ppbv, June 2013 values reached 0.8, 0.573, 0.672, 1.77 and 978 ppbv respectively. Correlations of fire counts with AAOD and UVAI were stronger compared to AOD and FMF. Results from a trajectory model suggested transport of air masses from Indonesia towards Malaysia, Singapore and southern Thailand. Our results highlight satellite-based mapping and monitoring of pollution episodes in Southeast Asia.

  11. Design and analysis of environmental monitoring programs

    DEFF Research Database (Denmark)

    Lophaven, Søren Nymand

    2005-01-01

    applied. Existing design methods are reviewed, and based on these a new Bayesian geostatistical design approach is suggested. This focus on constructing monitoring networks which are efficient for computing spatial predictions, while taking the uncertainties of the parameters in the geostatistical model......This thesis describes statistical methods for modelling space-time phenomena. The methods were applied to data from the Danish marine monitoring program in the Kattegat, measured in the five-year period 1993-1997. The proposed model approaches are characterised as relatively simple methods, which...... can handle missing data values and utilize the spatial and temporal correlation in data. Modelling results can be used to improve reporting on the state of the marine environment in the Kattegat. The thesis also focus on design of monitoring networks, from which geostatistics can be successfully...

  12. Design and analysis of environmental monitoring programs

    DEFF Research Database (Denmark)

    Lophaven, Søren Nymand

    2005-01-01

    This thesis describes statistical methods for modelling space-time phenomena. The methods were applied to data from the Danish marine monitoring program in the Kattegat, measured in the five-year period 1993-1997. The proposed model approaches are characterised as relatively simple methods, which...... PhD afhandling beskriver statistiskemetoder til modellering af fænomener i tid og rum. Metoderne er anvendt på data fra det danske marine overvågningsprogram i Kattegat, der er målt i perioden 1993-1997. De foreslåede modeller er karakteriseret ved at være forholdsvis simple metoder, der kan håndtere...

  13. Observation results of relativistic electrons detected by Fengyun-1 satellite and analysis of relativistic electron enhancement (REE) events

    Institute of Scientific and Technical Information of China (English)

    YANG XiaoChao; WANG Shidin

    2008-01-01

    The space particle component detector on Fengyun-1 satellite which works at the sun-synchronous orbit of about 870 km altitude has detected relativistic electrons for a long time.In comparison with the SAMPEX satellite observations during 1999--2004,the relativistic electron data from Fengyun-1 satellite from June 1999 to 2005 are used to analyze the relativistic electron enhancement (REE) events at the low earth orbit,and the possible correlation among REE events at the low earth orbit,high-speed solar wind and geomagnetic storms is discussed.The statistical result presents that 45 REE events are found in total during this time period,and the strong REE events with the maximum daily average flux > 400 cm-2.sr-1.s-1 occur mostly during the transition period from solar maximum to solar minimum.Among these 45 REE events,four strong REE events last a longer time period from 26- to 51-day and correlate closely with high speed solar wind and strong geo-magnetic storms.Meanwhile,several strong geomagnetic storms occur continu-ously before these REE events,and these continuous geomagnetic storms would be an important factor causing these long-lasting strong REE events.The correlation analysis for overall 45 events indicates that the strength of the REE events corre-lates with the solar wind speed and the strength of the geomagnetic storm,and the correlation for strong REE events is much stronger than that for weak REE events.

  14. The CMU Baryon Amplitude Analysis Program

    Science.gov (United States)

    Bellis, Matt

    2007-05-01

    The PWA group at Carnegie Mellon University has developed a comprehensive approach and analysis package for the purpose of extracting the amplitudes for photoproduced baryon resonances. The end goal is to identify any missing resonances that are predicted by the constituent quark model, but not definitively observed in experiments. The data comes from the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab.

  15. Application of Multifractal Analysis to Segmentation of Water Bodies in Optical and Synthetic Aperture Radar Satellite Images

    CERN Document Server

    Martin, Victor Manuel San

    2016-01-01

    A method for segmenting water bodies in optical and synthetic aperture radar (SAR) satellite images is proposed. It makes use of the textural features of the different regions in the image for segmentation. The method consists in a multiscale analysis of the images, which allows us to study the images regularity both, locally and globally. As results of the analysis, coarse multifractal spectra of studied images and a group of images that associates each position (pixel) with its corresponding value of local regularity (or singularity) spectrum are obtained. Thresholds are then applied to the multifractal spectra of the images for the classification. These thresholds are selected after studying the characteristics of the spectra under the assumption that water bodies have larger local regularity than other soil types. Classifications obtained by the multifractal method are compared quantitatively with those obtained by neural networks trained to classify the pixels of the images in covered against uncovered b...

  16. Using NASA Satellite and Model Analysis for Renewable Energy and Energy Efficiency Applications

    Science.gov (United States)

    Hoell, J. M.; Stackhouse, P. W.; Chandler, W. S.; Whitlock, C. H.; Westberg, D. J.; Zhang, T.

    2009-12-01

    This presentation describes the successful tailoring of NASA research data sets to meet environmental information needs of the renewable energy sector. The data sets currently used for these purposes include the NASA/GEWEX (Global Energy and Water Cycle Experiment) Surface Radiation Budget data set (SRB), the FLASHFlux (Fast Longwave and SHortwave Fluxes from Global CERES and MODIS observations), and the NASA GSFC Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) versions 4.0.3 and 5.0/5.1. These data are available through the Surface meteorology and Solar Energy (SSE) web interface (http://eosweb.larc.nasa.gov/sse). The NASA Earth Science Applied Science program has supported the development of the SSE web interface through a project called the Prediction of World Energy Resource (POWER, http://power.larc.nasa.gov/). The paths of modifying/preparing these data sets for energy applications for the SSE web site are described. These data help engineers, architects, and project analysts develop feasibility studies for renewable energy technology projects, make regional assessments and long-term energy market forecasts. Thus, small-scale projects to regional energy analysis may benefit from this information. The SSE web site has nearly 50,000 users worldwide and version 6.0 is now averaging 250,000 and 60,000 hits and data downloads per month, respectively. Examples of the usage of these data sets are shown to help describe the need and impact of this information. These examples come from the many collaborative partners in this work such as the DOE National Renewable Energy Laboratory (NREL), the Pacific Northwest National Laboratory (PNNL), and the Natural Resources Canada RETScreen project. The presentation also gives potential future data needs of these types of technologies and how NASA data could help contribute to meeting those needs. This is particularly pertinent facing the growing needs to develop clean energy sources to

  17. Determining spatio-temporal distribution of bee forage species of Al-Baha region based on ground inventorying supported with GIS applications and Remote Sensed Satellite Image analysis

    Directory of Open Access Journals (Sweden)

    Nuru Adgaba

    2017-07-01

    Full Text Available In arid zones, the shortage of bee forage is critical and usually compels beekeepers to move their colonies in search of better forages. Identifying and mapping the spatiotemporal distribution of the bee forages over given area is important for better management of bee colonies. In this study honey bee plants in the target areas were inventoried following, ground inventory work supported with GIS applications. The study was conducted on 85 large plots of 50 × 50 m each. At each plot, data on species name, height, base diameter, crown height, crown diameter has been taken for each plant with their respective geographical positions. The data were stored, and processed using Trimble GPS supported with ArcGIS10 software program. The data were used to estimate the relative frequency, density, abundance and species diversity, species important value index and apicultural value of the species. In addition, Remotely Sensed Satellite Image of the area was obtained and processed using Hopfield Artificial Neural Network techniques. During the study, 182 species from 49 plant families were identified as bee forages of the target area. From the total number of species; shrubs, herbs and trees were accounting for 61%, 27.67%, and 11.53% respectively. Of which Ziziphus spina-christi, Acacia tortilis, Acacia origina, Acacia asak, Lavandula dentata, and Hypoestes forskaolii were the major nectar source plants of the area in their degree of importance. The average vegetation cover values of the study areas were low (<30% with low Shannon’s species diversity indices (H′ of 0.5–1.52 for different sites. Based on the eco-climatological factors and the variations in their flowering period, these major bee forage species were found to form eight distinct spatiotemporal categories which allow beekeepers to migrate their colonies to exploit the resources at different seasons and place. The Remote Sensed Satellite Image analysis confirmed the spatial

  18. Analysis on Effectiveness of SO2 Emission Reduction in Shanxi, China by Satellite Remote Sensing

    Directory of Open Access Journals (Sweden)

    Huaxiang Song

    2014-11-01

    Full Text Available The SO2 emissions from coal-fired power plants in China have been regulated since 2005 by a mandatory installation of flue gas desulfurization (FGD devices. In order to verify the effectiveness of FGD systems applied in power plants, Shanxi (a province well-known for the largest coal reserves in China was selected, and the characteristic and evolution of SO2 densities over 22 regions with large coal-fired power plants during 2005–2012 were investigated by using the satellite remote sensing data from the Ozone Monitoring Instrument (OMI. A unit-based inventory was also employed to study the trend of SO2 emissions from coal-fired power plants in Shanxi. The results show that the operation of FGD systems was successful in reducing SO2 emissions from power plants during 2005–2010: the mean SO2 densities satellite-observed over those regions with power plants operated before 2005 showed a notable decrease of approximate 0.4 DU; the mean SO2 densities over other regions with power plants newly built behind 2006 did not show a statistical increasing trend overall; the mean SO2 density over the whole Shanxi also showed a moderate decline from 2008 to 2010. However, the polluted conditions over Shanxi during 2011–2012 rebounded and the declining trend in mean SO2 density over the whole Shanxi disappeared again. In comparison of unit-based emission inventory, the emissions calculated show a similar trend with SO2 densities satellite-observed during 2005–2010 and still maintain at a lower volume during 2011–2012. By investigating the developments of other emission sources in Shanxi during 2005–2012, it is considered that the rapid expansion of industries with high coal-consumption has played an important role for the increment rise of SO2 emissions. Lack of an independent air quality monitoring network and the purposeful reduced operation rate of FGD systems occurring in some coal-fired power plants have reduced the effectiveness of SO2

  19. Development of educational program for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Ryel, Sung; Kang, Young Hwan; Lee, Kil Yong; Yeon, Yeon Yel; Cho, Seung Yeon

    2000-08-01

    This technical report is developed to apply an educational and training program for graduate student and analyst utilizing neutron activation analysis. The contents of guide book consists of five parts as follows; introduction, gamma-ray spectrometry and measurement statistics, its applications, to understand of comprehensive methodology and to utilize a relevant knowledge and information on neutron activation analysis.

  20. SSL Pricing and Efficacy Trend Analysis for Utility Program Planning

    Energy Technology Data Exchange (ETDEWEB)

    Tuenge, J. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-10-01

    Report to help utilities and energy efficiency organizations forecast the order in which important SSL applications will become cost-effective and estimate when each "tipping point" will be reached. Includes performance trend analysis from DOE's LED Lighting Facts® and CALiPER programs plus cost analysis from various sources.

  1. Residual energy applications program systems analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Yngve, P.W.

    1980-10-01

    Current DOE plans call for building an Energy Applied Systems Test (EAST) Facility at the Savannah River Plant in close proximity to the 140 to 150/sup 0/F waste heat from one of several operating nuclear reactors. The waste water flow from each reactor, approximately 165,000 gpm, provides a unique opportunity to test the performance and operating characteristics of large-scale waste heat power generation and heat pump system concepts. This report provides a preliminary description of the potential end-use market, parametric data on heat pump and the power generation system technology, a preliminary listing of EAST Facility requirements, and an example of an integrated industrial park utilizing the technology to maximize economic pay back. The parametric heat pump analysis concluded that dual-fluid Rankine cycle heat pumps with capacities as high as 400 x 10/sup 6/ Btu/h, can utilize large sources of low temperature residual heat to provide 300/sup 0/F saturatd steam for an industrial park. The before tax return on investment for this concept is 36.2%. The analysis also concluded that smaller modular heat pumps could fulfill the same objective while sacrificing only a moderate rate of return. The parametric power generation analysis concluded that multi-pressure Rankine cycle systems not only are superior to single pressure systems, but can also be developed for large systems (approx. = 17 MW/sub e/). This same technology is applicable to smaller systems at the sacrifice of higher investment per unit output.

  2. Meteorological and Satellite Analysis of Eddies in the Marine Stratocumulus Photographed by Pilots Over the California Coast

    Science.gov (United States)

    Muller, B. M.

    2009-12-01

    Mechanical atmospheric eddies on the order of 10-20 km across produced by strong northwesterly marine boundary layer flow are often seen in satellite imagery near the California coast. Yet relatively little is known about the details of their structure and wind fields, since they occur at space scales that may only sporadically be observed by conventional coastal surface observation networks or meteorological buoys. For example, it is not clear whether they are mainly features of the marine inversion as indicated by their cloud-free eyes, or whether their circulations penetrate the depth of the boundary layer all the way to the surface. These eddies have implications for mixing and air pollution dispersion as well as predictability at the coastal margin. For example, they have been implicated in cross-inversion transport, yet it is an open question as to whether specific occurrences can be simulated by very high resolution regional models. Routine forecast models almost certainly do not currently operate at the small scales necessary to explicitly predict their existence. This submission presents a satellite and meteorological analysis of two such meso-gamma scale (2-20 km) eddies in the marine stratocumulus that were photographed by commercial pilots flying coastal routes between Santa Ana and San Francisco, California. One of the eddies formed in the wake of Santa Cruz Island, embedded in the southeasterly flow portion of a larger scale Catalina eddy circulation. The other formed over a headland west of San Luis Obispo and passed near several wind monitoring stations owned by PG&E supporting operations of the Diablo Canyon Nuclear Power Plant, before being photographed by the pilots near Grover Beach. Satellite imagery tracking the motions of the eddies prior to, during, and after the snapshots by the pilots, and eddy signatures in the Diablo Canyon wind data will be presented. Satellite imagery revealing the propensity for similar eddies to form near the

  3. Complexity and information flow analysis for multi-threaded programs

    Science.gov (United States)

    Ngo, Tri Minh; Huisman, Marieke

    2017-01-01

    This paper studies the security of multi-threaded programs. We combine two methods, i.e., qualitative and quantitative security analysis, to check whether a multi-threaded program is secure or not. In this paper, besides reviewing classical analysis models, we present a novel model of quantitative analysis where the attacker is able to select the scheduling policy. This model does not follow the traditional information-theoretic channel setting. Our analysis first studies what extra information an attacker can get if he knows the scheduler's choices, and then integrates this information into the transition system modeling the program execution. Via a case study, we compare this approach with the traditional information-theoretic models, and show that this approach gives more intuitive-matching results.

  4. Complexity and information flow analysis for multi-threaded programs

    Science.gov (United States)

    Ngo, Tri Minh; Huisman, Marieke

    2017-07-01

    This paper studies the security of multi-threaded programs. We combine two methods, i.e., qualitative and quantitative security analysis, to check whether a multi-threaded program is secure or not. In this paper, besides reviewing classical analysis models, we present a novel model of quantitative analysis where the attacker is able to select the scheduling policy. This model does not follow the traditional information-theoretic channel setting. Our analysis first studies what extra information an attacker can get if he knows the scheduler's choices, and then integrates this information into the transition system modeling the program execution. Via a case study, we compare this approach with the traditional information-theoretic models, and show that this approach gives more intuitive-matching results.

  5. Creating Better Satellite Conferences.

    Science.gov (United States)

    Horner, Tommy

    1998-01-01

    Presents four ways to improve broadcasts of company satellite conferences, including creative site selection (using facilities at educational institutions rather than hotel rooms); creative programming (using graphics and other interruptions to break up lectures or speeches); creative crew selection; and creative downlink site activities (to…

  6. Ocean surveillance satellites

    Science.gov (United States)

    Laurent, D.

    Soviet and U.S. programs involving satellites for surveillance of ships and submarines are discussed, considering differences in approaches. The Soviet program began with the Cosmos 198 in 1967 and the latest, the Cosmos 1400 series, 15 m long and weighing 5 tons, carry radar for monitoring ships and a nuclear reactor for a power supply. Other Soviet spacecraft carrying passive microwave sensors and ion drives powered by solar panels have recently been detonated in orbit for unknown reasons. It has also been observed that the Soviet satellites are controlled in pairs, with sequential orbital changes for one following the other, and both satellites then overflying the same points. In contrast, U.S. surveillance satellites have been placed in higher orbits, thus placing greater demands on the capabilities of the on-board radar and camera systems. Project White Cloud and the Clipper Bow program are described, noting the continued operation of the White Cloud spacecraft, which are equipped to intercept radio signals from surface ships. Currently, the integrated tactical surveillance system program has completed its study and a decision is expected soon.

  7. Enabling Realistic Cross-Layer Analysis based on Satellite Physical Layer Traces

    CERN Document Server

    Kuhn, Nicolas; Lacan, Jerome; Boreli, Roksana; Bes, Caroline; Clarac, Laurence

    2012-01-01

    We present a solution to evaluate the performance of transport protocols as a function of link layer reliability schemes (i.e. ARQ, FEC and Hybrid ARQ) applied to satellite physical layer traces. As modelling such traces is complex and may require approximations, the use of real traces will minimise the potential for erroneous performance evaluations resulting from imperfect models. Our Trace Manager Tool (TMT) produces the corresponding link layer output, which is then used within the ns-2 network simulator via the additionally developed ns-2 interface module. We first present the analytical models for the link layer with bursty erasure packets and for the link layer reliability mechanisms with bursty erasures. Then, we present details of the TMT tool and our validation methodology, demonstrating that the selected performance metrics (recovery delay and throughput efficiency) exhibit a good match between the theoretical results and those obtained with TMT. Finally, we present results showing the impact of di...

  8. Assimilation analysis of Rammasun typhoon structure over Northwest Pacific using satellite data

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hua; CHOU Jifan; QIU Chongjian

    2004-01-01

    The kinetic and thermodynamic structure of typhoon Rammasun (No. 0205) over the Northwest Pacific has been analyzed, using NOAA-16 polar orbiting Advanced Microwave Sounding Unit (AMSU) data collected on 2 July, 2002. The three-dimensional variational (3DVAR) assimilation technology is used to assimilate the satellite observation. The results show that the characteristics of the 3D typhoon structure can be more reasonably described from the assimilated data. The warm-cored structure of the typhoon is enhanced in the analyzed field, which corresponds to strong typhoon. The typhoon cyclonic circulation in the middle and lower layers is apparently strengthened, and the strong anticyclonic circulation appears at the top of the typhoon. The water vapor and its supply in the typhoon are enhanced. The microwave assimilation data may be used to supply the lack of the conventional observation data over the tropical ocean.

  9. Multifractal analysis of satellite images. (Polish Title: Multifraktalna analiza zobrazowan satelitarnych)

    Science.gov (United States)

    Wawrzaszek, A.; Krupiński, M.; Drzewiecki, W.; Aleksandrowicz, S.

    2015-12-01

    Research presented in this paper is focused on the efficiency assessment of multifractal description as a tool for Image Information Mining. Large datasets of very high spatial resolution satellite images (WorldView-2 and EROS-A) have been analysed. The results have confirmed the superiority of multifractals as global image descriptors in comparison to monofractals. Moreover, their usefulness in image classification by using decision trees classifiers was confirmed, also in comparison with textural features. Filtration process preceding fractal and multifractal features estimations was also proved to improve classification results. Additionally, airborne hyperspectral data have been initially analysed. Fractal dimension shows high potential for the description of hyperspectral data. To summarise all conducted tests indicate the usefulness of multifractal formalism in various aspects of remote sensing. Prepared methodology can be further developed and used for more specific tasks, for example in change detection or in the description of hyperspectal data complexity.

  10. A satellite-based analysis of the Val d'Agri (South of Italy Oil Center gas flaring emissions

    Directory of Open Access Journals (Sweden)

    M. Faruolo

    2014-06-01

    Full Text Available In this paper the Robust Satellite Techniques (RST, a multi-temporal scheme of satellite data analysis, was implemented to analyze the flaring activity of the largest Italian gas and oil pre-treatment plant (i.e. the Ente Nazionale Idrocarburi – ENI – Val d'Agri Oil Center – COVA. For this site, located in an anthropized area characterized by a~large environmental complexity, flaring emissions are mainly related to emergency conditions (i.e. waste flaring, being the industrial process regulated by strict regional laws. With reference to the peculiar characteristics of COVA flaring, the main aim of this work was to assess the performances of RST in terms of sensitivity and reliability in providing independent estimations of gas flaring volumes in such conditions. In detail, RST was implemented on thirteen years of Moderate Resolution Imaging Spectroradiometer (MODIS medium and thermal infrared data in order to identify the highly radiant records associated to the COVA flare emergency discharges. Then, exploiting data provided by ENI about gas flaring volumes in the period 2003–2009, a MODIS-based regression model was developed and tested. Achieved results indicate that such a model is able to estimate, with a good level of accuracy (R2 of 0.83, emitted gas flaring volumes at COVA.

  11. Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Ajello, M.; /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC; Albert, A.; /Taiwan, Natl. Taiwan U. /Ohio State U.; Atwood, W.B.; /UC, Santa Cruz; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Bechtol, K.; /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; Blandford, R.D.; Bloom, E.D.; /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari Polytechnic /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Buehler, R.; /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC; Burnett, T.H.; /Washington U., Seattle; Buson, S.; /INFN, Padua /Padua U. /ICE, Bellaterra /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC /INFN, Rome /Rome U. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC /Artep Inc. /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC /ASDC, Frascati /Perugia U. /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC /Montpellier U. /Stockholm U. /Stockholm U., OKC /ASDC, Frascati /ASDC, Frascati /Udine U. /INFN, Trieste /Bari Polytechnic /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC /Montpellier U. /Bari Polytechnic /INFN, Bari /Ecole Polytechnique /NASA, Goddard /Hiroshima U. /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC /Bari Polytechnic /INFN, Bari /INFN, Bari /ASDC, Frascati /NASA, Goddard /INFN, Perugia /Perugia U. /Bari Polytechnic /INFN, Bari /Bologna Observ. /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC /DAPNIA, Saclay /Alabama U., Huntsville; /more authors..

    2012-09-14

    Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10{sup -26} cm{sup 3} s{sup -1} at 5 GeV to about 5 x 10{sup -23} cm{sup 3} s{sup -1} at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section ({approx}3 x 10{sup -26} cm{sup 3} s{sup -1} for a purely s-wave cross section), without assuming additional boost factors.

  12. A satellite-based analysis of the Val d'Agri (South of Italy) Oil Center gas flaring emissions

    Science.gov (United States)

    Faruolo, M.; Coviello, I.; Filizzola, C.; Lacava, T.; Pergola, N.; Tramutoli, V.

    2014-06-01

    In this paper the Robust Satellite Techniques (RST), a multi-temporal scheme of satellite data analysis, was implemented to analyze the flaring activity of the largest Italian gas and oil pre-treatment plant (i.e. the Ente Nazionale Idrocarburi - ENI - Val d'Agri Oil Center - COVA). For this site, located in an anthropized area characterized by a~large environmental complexity, flaring emissions are mainly related to emergency conditions (i.e. waste flaring), being the industrial process regulated by strict regional laws. With reference to the peculiar characteristics of COVA flaring, the main aim of this work was to assess the performances of RST in terms of sensitivity and reliability in providing independent estimations of gas flaring volumes in such conditions. In detail, RST was implemented on thirteen years of Moderate Resolution Imaging Spectroradiometer (MODIS) medium and thermal infrared data in order to identify the highly radiant records associated to the COVA flare emergency discharges. Then, exploiting data provided by ENI about gas flaring volumes in the period 2003-2009, a MODIS-based regression model was developed and tested. Achieved results indicate that such a model is able to estimate, with a good level of accuracy (R2 of 0.83), emitted gas flaring volumes at COVA.

  13. A satellite-based analysis of the Val d'Agri Oil Center (southern Italy) gas flaring emissions

    Science.gov (United States)

    Faruolo, M.; Coviello, I.; Filizzola, C.; Lacava, T.; Pergola, N.; Tramutoli, V.

    2014-10-01

    In this paper, the robust satellite techniques (RST), a multi-temporal scheme of satellite data analysis, was implemented to analyze the flaring activity of the Val d'Agri Oil Center (COVA), the largest Italian gas and oil pre-treatment plant, owned by Ente Nazionale Idrocarburi (ENI). For this site, located in an anthropized area characterized by a large environmental complexity, flaring emissions are mainly related to emergency conditions (i.e., waste flaring), as industrial processes are regulated by strict regional laws. While regarding the peculiar characteristics of COVA flaring, the main aim of this work was to assess the performances of RST in terms of sensitivity and reliability in providing independent estimations of gas flaring volumes in such conditions. In detail, RST was implemented for 13 years of Moderate Resolution Imaging Spectroradiometer (MODIS) medium and thermal infrared data in order to identify the highly radiant records associated with the COVA flare emergency discharges. Then, using data provided by ENI about gas flaring volumes in the period 2003-2009, a MODIS-based regression model was developed and tested. The results achieved indicate that the such a model is able to estimate, with a good level of accuracy (R2 of 0.83), emitted gas flaring volumes at COVA.

  14. Solution Method and Precision Analysis of Double-difference Dynamic Precise Orbit Determination of BeiDou Navigation Satellite System

    Directory of Open Access Journals (Sweden)

    LIU Weiping

    2016-02-01

    Full Text Available To resolve the high relativity between the transverse element of GEO orbit and double-difference ambiguity, the classical double-difference dynamic method is improved and the method, which is to determine precise BeiDou satellite orbit using carrier phase and pseudo-range smoothed by phase, is proposed. The feasibility of the method is discussed and the influence of the method about ambiguity fixing is analyzed. Considering the characteristic of BeiDou, the method, which is to fix double-difference ambiguity of BeiDou satellites by QIF, is derived. The real data analysis shows that the new method, which can reduce the relativity and assure the precision, is better than the classical double-difference dynamic method. The result of ambiguity fixing is well by QIF, but the ambiguity fixing success rate is not high on the whole. So the precision of BeiDou orbit can't be improved clearly after ambiguity fixing.

  15. Thermal Analysis of Iodine Satellite (iSAT) from Preliminary Design Review (PDR) to Critical Design Review (CDR)

    Science.gov (United States)

    Mauro, Stephanie

    2016-01-01

    The Iodine Satellite (iSAT) is a 12U cubesat with a primary mission to demonstrate the iodine fueled Hall Effect Thruster (HET) propulsion system. The spacecraft (SC) will operate throughout a one year mission in an effort to mature the propulsion system for use in future applications. The benefit of the HET is that it uses a propellant, iodine, which is easy to store and provides a high thrust-to-mass ratio. This paper will describe the thermal analysis and design of the SC between Preliminary Design Review (PDR) and Critical Design Review (CDR). The design of the satellite has undergone many changes due to a variety of challenges, both before PDR and during the time period discussed in this paper. Thermal challenges associated with the system include a high power density, small amounts of available radiative surface area, localized temperature requirements of the propulsion components, and unknown orbital parameters. The thermal control system is implemented to maintain component temperatures within their respective operational limits throughout the mission, while also maintaining propulsion components at the high temperatures needed to allow gaseous iodine propellant to flow. The design includes heaters, insulation, radiators, coatings, and thermal straps. Currently, the maximum temperatures for several components are near to their maximum operation limit, and the battery is close to its minimum operation limit. Mitigation strategies and planned work to solve these challenges will be discussed.

  16. Telecom and scintillation first data analysis for DOMINO: laser communication between SOTA, onboard SOCRATES satellite, and MEO optical ground station

    Science.gov (United States)

    Phung, D.-H.; Samain, E.; Maurice, N.; Albanesse, D.; Mariey, H.; Aimar, M.; M. Lagarde, G.; Artaud, G.; Issler, J.-L.; Vedrenne, N.; Velluet, M.-T.; Toyoshima, M.; Akioka, M.; Kolev, D.; Munemasa, Y.; Takenaka, H.; Iwakiri, N.

    2016-03-01

    In collaboration between CNES, NICT, Geoazur, the first successful lasercom link between the micro-satellite SOCRATES and an OGS in Europe has been established. This paper presents some results of telecom and scintillation first data analysis for 4 successful links in June & July 2015 between SOTA terminal and MEO optical ground station (OGS) at Caussols France. The telecom and scintillation data have been continuously recorded during the passes by using a detector developed at the laboratory. An irradiance of 190 nW/m2 and 430 nW/m2 has been detected for 1549 nm and 976 nm downlinks at 35° elevation. Spectrums of power fluctuation measured at OGS are analyzed at different elevation angles and at different diameters of telescope aperture to determine fluctuations caused by pointing error (due to satellite & OGS telescope vibrations) and caused by atmospheric turbulence. Downlink & Uplink budgets are analyzed, the theoretical estimation matches well to measured power levels. Telecom signal forms and bit error rates (BER) of 1549 nm and 976 nm downlink are also shown at different diameters of telescope aperture. BER is 'Error Free' with full-aperture 1.5m telescope, and almost in `good channel' with 0.4 m sub-aperture of telescope. We also show the comparison between the expected and measured BER distributions.

  17. A multivariate variational objective analysis-assimilation method. Part 2: Case study results with and without satellite data

    Science.gov (United States)

    Achtemeier, Gary L.; Kidder, Stanley Q.; Scott, Robert W.

    1988-01-01

    The variational multivariate assimilation method described in a companion paper by Achtemeier and Ochs is applied to conventional and conventional plus satellite data. Ground-based and space-based meteorological data are weighted according to the respective measurement errors and blended into a data set that is a solution of numerical forms of the two nonlinear horizontal momentum equations, the hydrostatic equation, and an integrated continuity equation for a dry atmosphere. The analyses serve first, to evaluate the accuracy of the model, and second to contrast the analyses with and without satellite data. Evaluation criteria measure the extent to which: (1) the assimilated fields satisfy the dynamical constraints, (2) the assimilated fields depart from the observations, and (3) the assimilated fields are judged to be realistic through pattern analysis. The last criterion requires that the signs, magnitudes, and patterns of the hypersensitive vertical velocity and local tendencies of the horizontal velocity components be physically consistent with respect to the larger scale weather systems.

  18. Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bladford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Ferrara, E. C.; Gehrels, N.; Hays, E.; Scargle, J. D.; Thompson, D. J.; Troja, E.

    2011-01-01

    Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10(exp -26) cm(exp 3) / s at 5 GeV to about 5 X 10(exp -23) cm(exp 3)/ s at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section (approx 3 X 10(exp -26) cm(exp 3)/s for a purely s-wave cross section), without assuming additional boost factors.

  19. A Novel Double Cluster and Principal Component Analysis-Based Optimization Method for the Orbit Design of Earth Observation Satellites

    Directory of Open Access Journals (Sweden)

    Yunfeng Dong

    2017-01-01

    Full Text Available The weighted sum and genetic algorithm-based hybrid method (WSGA-based HM, which has been applied to multiobjective orbit optimizations, is negatively influenced by human factors through the artificial choice of the weight coefficients in weighted sum method and the slow convergence of GA. To address these two problems, a cluster and principal component analysis-based optimization method (CPC-based OM is proposed, in which many candidate orbits are gradually randomly generated until the optimal orbit is obtained using a data mining method, that is, cluster analysis based on principal components. Then, the second cluster analysis of the orbital elements is introduced into CPC-based OM to improve the convergence, developing a novel double cluster and principal component analysis-based optimization method (DCPC-based OM. In DCPC-based OM, the cluster analysis based on principal components has the advantage of reducing the human influences, and the cluster analysis based on six orbital elements can reduce the search space to effectively accelerate convergence. The test results from a multiobjective numerical benchmark function and the orbit design results of an Earth observation satellite show that DCPC-based OM converges more efficiently than WSGA-based HM. And DCPC-based OM, to some degree, reduces the influence of human factors presented in WSGA-based HM.

  20. Software for Data Analysis Programming with R

    CERN Document Server

    Chambers, John

    2008-01-01

    Although statistical design is one of the oldest branches of statistics, its importance is ever increasing, especially in the face of the data flood that often faces statisticians. It is important to recognize the appropriate design, and to understand how to effectively implement it, being aware that the default settings from a computer package can easily provide an incorrect analysis. The goal of this book is to describe the principles that drive good design, paying attention to both the theoretical background and the problems arising from real experimental situations. Designs are motivated t