WorldWideScience

Sample records for satellite altimeter missions

  1. Reliability of Wind Speed Data from Satellite Altimeter to Support Wind Turbine Energy

    Science.gov (United States)

    Uti, M. N.; Din, A. H. M.; Omar, A. H.

    2017-10-01

    Satellite altimeter has proven itself to be one of the important tool to provide good quality information in oceanographic study. Nowadays, most countries in the world have begun in implementation the wind energy as one of their renewable energy for electric power generation. Many wind speed studies conducted in Malaysia using conventional method and scientific technique such as anemometer and volunteer observing ships (VOS) in order to obtain the wind speed data to support the development of renewable energy. However, there are some limitations regarding to this conventional method such as less coverage for both spatial and temporal and less continuity in data sharing by VOS members. Thus, the aim of this research is to determine the reliability of wind speed data by using multi-mission satellite altimeter to support wind energy potential in Malaysia seas. Therefore, the wind speed data are derived from nine types of satellite altimeter starting from year 1993 until 2016. Then, to validate the reliability of wind speed data from satellite altimeter, a comparison of wind speed data form ground-truth buoy that located at Sabah and Sarawak is conducted. The validation is carried out in terms of the correlation, the root mean square error (RMSE) calculation and satellite track analysis. As a result, both techniques showing a good correlation with value positive 0.7976 and 0.6148 for point located at Sabah and Sarawak Sea, respectively. It can be concluded that a step towards the reliability of wind speed data by using multi-mission satellite altimeter can be achieved to support renewable energy.

  2. A global high resolution mean sea surface from multi mission satellite altimetry

    DEFF Research Database (Denmark)

    Knudsen, Per

    1999-01-01

    Satellite altimetry from the GEOSAT and the ERS-1 geodetic missions provide altimeter data with a very dense coverage. Hence, the heights of the sea surface may be recovered very detailed. Satellite altimetry from the 35 days repeat cycle mission of the ERS satellites and, especially, from the 10...

  3. An Evaluation of Recent Gravity Models wrt. Altimeter Satellite Missions

    Science.gov (United States)

    Lemoine, Frank G.; Zelensky, N. P.; Luthcke, S. B.; Beckley, B. D.; Chinn, D. S.; Rowlands, D. D.

    2003-01-01

    With the launch of CHAMP and GRACE, we have entered a new phase in the history of satellite geodesy. For the first time, geopotential models are now available based almost exclusively on satellite-satellite tracking either with GPS in the case of the CHAMP-based geopotential models, or co-orbital intersatellite ultra-precise ranging in the case of GRACE. Different groups have analyzed these data, and produced a series of geopotential models (e.g., EIGENlS, EIGEN2, GGM0lS, GGMOlC) that incorporate the new data. We will compare the performance of these "newer" geopotential models with the standard models now used for computations, (e.g., JGM-3, BGM-96, PGS7727, and GRIMS-C1) for TOPEX, JASON, Geosat-Follow-On (GFO), and Envisat using standard metrics such as SLR RMS of fit, altimeter crossovers, and orbit overlaps. Where covariances are available we can evaluate the predicted geographically correlated orbit error. These predicted results can be compared with the Earth-fixed differences between dynamic and reduced-dynamic orbits to test the predictive accuracy of the covariances, as well as to calibrate the error of the solutions.

  4. Long-term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements

    Science.gov (United States)

    Chen, J. L.; Wilson, C. R.; Tapley, B. D.; Save, H.; Cretaux, Jean-Francois

    2017-03-01

    We examine recent Caspian Sea level change by using both satellite radar altimetry and satellite gravity data. The altimetry record for 2002-2015 shows a declining level at a rate that is approximately 20 times greater than the rate of global sea level rise. Seasonal fluctuations are also much larger than in the world oceans. With a clearly defined geographic region and dominant signal magnitude, variations in the sea level and associated mass changes provide an excellent way to compare various approaches for processing satellite gravity data. An altimeter time series derived from several successive satellite missions is compared with mass measurements inferred from Gravity Recovery and Climate Experiment (GRACE) data in the form of both spherical harmonic (SH) and mass concentration (mascon) solutions. After correcting for spatial leakage in GRACE SH estimates by constrained forward modeling and accounting for steric and terrestrial water processes, GRACE and altimeter observations are in complete agreement at seasonal and longer time scales, including linear trends. This demonstrates that removal of spatial leakage error in GRACE SH estimates is both possible and critical to improving their accuracy and spatial resolution. Excellent agreement between GRACE and altimeter estimates also provides confirmation of steric Caspian Sea level change estimates. GRACE mascon estimates (both the Jet Propulsion Laboratory (JPL) coastline resolution improvement version 2 solution and the Center for Space Research (CSR) regularized) are also affected by leakage error. After leakage corrections, both JPL and CSR mascon solutions also agree well with altimeter observations. However, accurate quantification of leakage bias in GRACE mascon solutions is a more challenging problem.

  5. Dramatic and long-term lake level changes in the Qinghai-Tibet Plateau from Cryosat-2 altimeter: validation and augmentation by results from repeat altimeter missions and satellite imagery

    Science.gov (United States)

    Hwang, Cheinway; Huang, YongRuei; Cheng, Ys; Shen, WenBin; Pan, Yuanjin

    2017-04-01

    The mean elevation of the Qinghai-Tibet Plateau (QTP) exceeds 4000 m. Lake levels in the QTP are less affected by human activities than elsewhere, and may better reflect the state of contemporary climate change. Here ground-based lake level measurements are rare. Repeat altimeter missions, particularly those from the TOPEX and ERS series of altimetry, have provided long-term lake level observations in the QTP, but their large cross-track distances allow only few lakes to be monitored. In contrast, the Cryosat-2 altimeter, equipped with the new sensor SIRAL (interferometric/ synthetic aperture radar altimeter), provides a much better ranging accuracy and a finer spatial coverage than these repeated missions, and can detect water level changes over a large number of lakes in the QTP. In this study, Cryosat-2 data are used to determine lake level changes over 75˚E-100˚E and 28˚N-37.5˚N, where Cryosat-2 covers 60 lakes and SARAL/ AltiKa covers 32 lakes from 2013 to 2016. Over a lake, Cryosat-2 in different cycles can pass through different spots of the lake, making the numbers of observations non-uniform and requiring corrections for lake slopes. Four cases are investigated to cope with these situations: (1) neglecting inconsistency in data volume and lake slopes (2) considering data volume, (3) considering lake slopes only, and (4) considering both data volume and lake slopes. The CRYOSAT-2 result is then compared with the result from the SARAL to determine the best case. Because Cryosat-2 is available from 2010 to 2016, Jason-2 data are used to fill gaps between the time series of Cryosat-2 and ICESat (2003-2009) to obtain >10 years of lake level series. The Cryosat-2 result shows dramatic lake level rises in Lakes Kusai, Zhuoaihu and Salt in 2011 caused by floods. Landsat satellite imagery assists the determination and interpretation of such rises.

  6. ACCELERATION OF SEA LEVEL RISE OVER MALAYSIAN SEAS FROM SATELLITE ALTIMETER

    Directory of Open Access Journals (Sweden)

    A. I. A. Hamid

    2016-09-01

    Full Text Available Sea level rise becomes our concern nowadays as a result of variously contribution of climate change that cause by the anthropogenic effects. Global sea levels have been rising through the past century and are projected to rise at an accelerated rate throughout the 21st century. Due to this change, sea level is now constantly rising and eventually will threaten many low-lying and unprotected coastal areas in many ways. This paper is proposing a significant effort to quantify the sea level trend over Malaysian seas based on the combination of multi-mission satellite altimeters over a period of 23 years. Eight altimeter missions are used to derive the absolute sea level from Radar Altimeter Database System (RADS. Data verification is then carried out to verify the satellite derived sea level rise data with tidal data. Eight selected tide gauge stations from Peninsular Malaysia, Sabah and Sarawak are chosen for this data verification. The pattern and correlation of both measurements of sea level anomalies (SLA are evaluated over the same period in each area in order to produce comparable results. Afterwards, the time series of the sea level trend is quantified using robust fit regression analysis. The findings clearly show that the absolute sea level trend is rising and varying over the Malaysian seas with the rate of sea level varies and gradually increase from east to west of Malaysia. Highly confident and correlation level of the 23 years measurement data with an astonishing root mean square difference permits the absolute sea level trend of the Malaysian seas has raised at the rate 3.14 ± 0.12 mm yr-1 to 4.81 ± 0.15 mm yr-1 for the chosen sub-areas, with an overall mean of 4.09 ± 0.12 mm yr-1. This study hopefully offers a beneficial sea level information to be applied in a wide range of related environmental and climatology issue such as flood and global warming.

  7. Acceleration of Sea Level Rise Over Malaysian Seas from Satellite Altimeter

    Science.gov (United States)

    Hamid, A. I. A.; Din, A. H. M.; Khalid, N. F.; Omar, K. M.

    2016-09-01

    Sea level rise becomes our concern nowadays as a result of variously contribution of climate change that cause by the anthropogenic effects. Global sea levels have been rising through the past century and are projected to rise at an accelerated rate throughout the 21st century. Due to this change, sea level is now constantly rising and eventually will threaten many low-lying and unprotected coastal areas in many ways. This paper is proposing a significant effort to quantify the sea level trend over Malaysian seas based on the combination of multi-mission satellite altimeters over a period of 23 years. Eight altimeter missions are used to derive the absolute sea level from Radar Altimeter Database System (RADS). Data verification is then carried out to verify the satellite derived sea level rise data with tidal data. Eight selected tide gauge stations from Peninsular Malaysia, Sabah and Sarawak are chosen for this data verification. The pattern and correlation of both measurements of sea level anomalies (SLA) are evaluated over the same period in each area in order to produce comparable results. Afterwards, the time series of the sea level trend is quantified using robust fit regression analysis. The findings clearly show that the absolute sea level trend is rising and varying over the Malaysian seas with the rate of sea level varies and gradually increase from east to west of Malaysia. Highly confident and correlation level of the 23 years measurement data with an astonishing root mean square difference permits the absolute sea level trend of the Malaysian seas has raised at the rate 3.14 ± 0.12 mm yr-1 to 4.81 ± 0.15 mm yr-1 for the chosen sub-areas, with an overall mean of 4.09 ± 0.12 mm yr-1. This study hopefully offers a beneficial sea level information to be applied in a wide range of related environmental and climatology issue such as flood and global warming.

  8. The Mercury Laser Altimeter Instrument for the MESSENGER Mission

    Science.gov (United States)

    Cavanaugh, John F.; Smith, James C.; Sun, Xiaoli; Bartels, Arlin E.; Ramos-Izquierdo, Luis; Krebs, Danny J.; Novo-Gradac, Anne marie; McGarry, Jan F.; Trunzo, Raymond; Britt, Jamie L.

    2006-01-01

    The Mercury Laser Altimeter (MLA) is one of the payload science instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, which launched on 3 August 2004. The altimeter will measure the round trip time-of-flight of transmitted laser pulses reflected from the surface of the planet that, in combination with the spacecraft orbit position and pointing data, gives a high-precision measurement of surface topography referenced to Mercury's center of mass. The altimeter measurements will be used to determine the planet's forced librations by tracking the motion of large-scale topographic features as a function of time. MLA's laser pulse energy monitor and the echo pulse energy estimate will provide an active measurement of the surface reflectivity at 1064 nm. This paper describes the instrument design, prelaunch testing, calibration, and results of post-launch testing.

  9. Nudging Satellite Altimeter Data Into Quasi-Geostrophic Ocean Models

    Science.gov (United States)

    Verron, Jacques

    1992-05-01

    This paper discusses the efficiency of several variants of the nudging technique (derived from the technique of the same name developed by meteorologists) for assimilating altimeter data into numerical ocean models based on quasi-geostrophic formulation. Assimilation experiments are performed with data simulated in the nominal sampling conditions of the Topex-Poseidon satellite mission. Under experimental conditions it is found that nudging on the altimetric sea level is as efficient as nudging on the vorticity (second derivative in space of the dynamic topography), the technique used thus far in studies of this type. The use of altimetric residuals only, instead of the total altimetric sea level signal, is also explored. The critical importance of having an adequate reference mean sea level is largely confirmed. Finally, the possibility of nudging only the signal of sea level tendency (i.e., the successive time differences of the sea level height) is examined. Apart from the barotropic mode, results are not very successful compared with those obtained by assimilating the residuals.

  10. Global ocean tides through assimilation of oceanographic and altimeter satellite data in a hydrodynamic model

    Science.gov (United States)

    Leprovost, Christian; Mazzega, P.; Vincent, P.

    1991-01-01

    Ocean tides must be considered in many scientific disciplines: astronomy, oceanography, geodesy, geophysics, meteorology, and space technologies. Progress in each of these disciplines leads to the need for greater knowledge and more precise predictions of the ocean tide contribution. This is particularly true of satellite altimetry. On one side, the present and future satellite altimetry missions provide and will supply new data that will contribute to the improvement of the present ocean tide solutions. On the other side, tidal corrections included in the Geophysical Data Records must be determined with the maximum possible accuracy. The valuable results obtained with satellite altimeter data thus far have not been penalized by the insufficiencies of the present ocean tide predictions included in the geophysical data records (GDR's) because the oceanic processes investigated have shorter wavelengths than the error field of the tidal predictions, so that the residual errors of the tidal corrections are absorbed in the empirical tilt and bias corrections of the satellite orbit. For future applications to large-scale oceanic phenomena, however, it will no longer be possible to ignore these insufficiencies.

  11. A method for separating Antarctic postglacial rebound and ice mass balance using future ICESat Geoscience Laser Altimeter System, Gravity Recovery and Climate Experiment, and GPS satellite data

    OpenAIRE

    Velicogna, Isabella; Wahr, John

    2002-01-01

    Measurements of ice elevation from the Geoscience Laser Altimeter System (GLAS) aboard the Ice, Cloud, and Land Elevation Satellite can be combined with time-variable geoid measurements from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to learn about ongoing changes in polar ice mass and viscoelastic rebound of the lithosphere under the ice sheet. We estimate the accuracy in recovering the spatially varying ice mass trend and postglacial rebound signals for Antarctica...

  12. Validation and Variation of Upper Layer Thickness in South China Sea from Satellite Altimeter Data

    Directory of Open Access Journals (Sweden)

    Nan-Jung Kuo

    2008-06-01

    Full Text Available Satellite altimeter data from 1993 to 2005 has been used to analyze the seasonal variation and the interannual variability of upper layer thickness (ULT in the South China Sea (SCS. Base on in-situ measurements, the ULT is defined as the thickness from the sea surface to the depth of 16°C isotherm which is used to validate the result derived from satellite altimeter data. In comparison with altimeter and in-situ derived ULTs yields a correlation coefficient of 0.92 with a slope of 0.95 and an intercept of 6 m. The basin averaged ULT derived from altimeter is 160 m in winter and 171 m in summer which is similar to the in-situ measurements of 159 m in winter and 175 m in summer. Both results also show similar spatial patterns. It suggests that the sea surface height data derived from satellite sensors are usable for study the variation of ULT in the semi-closed SCS. Furthermore, we also use satellite derived ULT to detect the development of eddy. Interannual variability of two meso-scale cyclonic eddies and one anticyclonic eddy are strongly influenced by El Niño events. In most cases, there are highly positive correlations between ULT and sea surface temperature except the periods of El Niño. During the onset of El Niño event, ULT is deeper when sea surface temperature is lower.

  13. A Fiducial Reference Stie for Satellite Altimetry in Crete, Greece

    Science.gov (United States)

    Mertikas, Stelios; Donlon, Craig; Mavrocordatos, Constantin; Bojkov, Bojan; Femenias, Pierre; Parrinello, Tommaso; Picot, Nicolas; Desjonqueres, Jean-Damien; Andersen, Ole Baltazar

    2016-08-01

    With the advent of diverse satellite altimeters and variant measuring techniques, it has become mature in the scientific community, that an absolute reference Cal/Val site is regularly maintained to define, monitor, control the responses of any altimetric system.This work sets the ground for the establishment of a Fiducial Reference Site for ESA satellite altimetry in Gavdos and West Crete, Greece. It will consistently and reliably determine (a) absolute altimeter biases and their drifts; (b) relative bias among diverse missions; but also (c) continuously and independently connect different missions, on a common and reliable reference and also to SI-traceable measurements. Results from this fiducial reference site will be based on historic Cal/Val site measurement records, and will be the yardstick for building up capacity for monitoring climate change. This will be achieved by defining and assessing any satellite altimeter measurements to known, controlled and absolute reference signals with different techniques, processes and instrumentation.

  14. Single photon laser altimeter simulator and statistical signal processing

    Science.gov (United States)

    Vacek, Michael; Prochazka, Ivan

    2013-05-01

    Spaceborne altimeters are common instruments onboard the deep space rendezvous spacecrafts. They provide range and topographic measurements critical in spacecraft navigation. Simultaneously, the receiver part may be utilized for Earth-to-satellite link, one way time transfer, and precise optical radiometry. The main advantage of single photon counting approach is the ability of processing signals with very low signal-to-noise ratio eliminating the need of large telescopes and high power laser source. Extremely small, rugged and compact microchip lasers can be employed. The major limiting factor, on the other hand, is the acquisition time needed to gather sufficient volume of data in repetitive measurements in order to process and evaluate the data appropriately. Statistical signal processing is adopted to detect signals with average strength much lower than one photon per measurement. A comprehensive simulator design and range signal processing algorithm are presented to identify a mission specific altimeter configuration. Typical mission scenarios (celestial body surface landing and topographical mapping) are simulated and evaluated. The high interest and promising single photon altimeter applications are low-orbit (˜10 km) and low-radial velocity (several m/s) topographical mapping (asteroids, Phobos and Deimos) and landing altimetry (˜10 km) where range evaluation repetition rates of ˜100 Hz and 0.1 m precision may be achieved. Moon landing and asteroid Itokawa topographical mapping scenario simulations are discussed in more detail.

  15. Assessing the impact of multiple altimeter missions and Argo in a global eddy-permitting data assimilation system

    Science.gov (United States)

    Verrier, Simon; Le Traon, Pierre-Yves; Remy, Elisabeth

    2017-12-01

    A series of observing system simulation experiments (OSSEs) is carried out with a global data assimilation system at 1/4° resolution using simulated data derived from a 1/12° resolution free-run simulation. The objective is to not only quantify how well multiple altimeter missions and Argo profiling floats can constrain the global ocean analysis and 7-day forecast at 1/4° resolution but also to better understand the sensitivity of results to data assimilation techniques used in Mercator Ocean operational systems. The impact of multiple altimeter data is clearly evidenced even at a 1/4° resolution. Seven-day forecasts of sea level and ocean currents are significantly improved when moving from one altimeter to two altimeters not only on the sea level, but also on the 3-D thermohaline structure and currents. In high-eddy-energy regions, sea level and surface current 7-day forecast errors when assimilating one altimeter data set are respectively 20 and 45 % of the error of the simulation without assimilation. Seven-day forecasts of sea level and ocean currents continue to be improved when moving from one altimeter to two altimeters with a relative error reduction of almost 30 %. The addition of a third altimeter still improves the 7-day forecasts even at this medium 1/4° resolution and brings an additional relative error reduction of about 10 %. The error level of the analysis with one altimeter is close to the 7-day forecast error level when two or three altimeter data sets are assimilated. Assimilating altimeter data also improves the representation of the 3-D ocean fields. The addition of Argo has a major impact on improving temperature and demonstrates the essential role of Argo together with altimetry in constraining a global data assimilation system. Salinity fields are only marginally improved. Results derived from these OSSEs are consistent with those derived from experiments with real data (observing system evaluations, OSEs) but they allow for more

  16. Orbit determination for ISRO satellite missions

    Science.gov (United States)

    Rao, Ch. Sreehari; Sinha, S. K.

    Indian Space Research Organisation (ISRO) has been successful in using the in-house developed orbit determination and prediction software for satellite missions of Bhaskara, Rohini and APPLE. Considering the requirements of satellite missions, software packages are developed, tested and their accuracies are assessed. Orbit determination packages developed are SOIP, for low earth orbits of Bhaskara and Rohini missions, ORIGIN and ODPM, for orbits related to all phases of geo-stationary missions and SEGNIP, for drift and geo-stationary orbits. Software is tested and qualified using tracking data of SIGNE-3, D5-B, OTS, SYMPHONIE satellites with the help of software available with CNES, ESA and DFVLR. The results match well with those available from these agencies. These packages have supported orbit determination successfully throughout the mission life for all ISRO satellite missions. Member-Secretary

  17. The accuracy of satellite radar altimeter data over the Greenland ice sheet determined from airborne laser data

    DEFF Research Database (Denmark)

    Bamber, J.L.; Ekholm, Simon; Krabill, W.

    1998-01-01

    with airborne laser altimeter data an absolute accuracy typically in the range 2-10 cm +/- 10 cm. Comparison of differences between the radar and laser derived elevations, showed a correlation with surface slope. The difference between the two data sets ranged from 84 cm +/- 79 cm for slopes below 0.1 degrees......The 336 days of the geodetic phase of ERS-1 provides dense coverage, by satellite radar altimetry, of the whole of the Greenland ice sheet. These data have been used to produce a digital elevation model of the ice sheet. The errors present in the altimeter data were investigated via a comparison......, to 10.3 m +/- 8.4 m for a slope of 0.7 degrees ( the half power beam-width of the ERS-1 radar altimeter). An explanation for the behaviour of the difference as a function of surface slope is given in terms of the pattern of surface roughness on the ice sheet....

  18. Improved interpretation of satellite altimeter data using genetic algorithms

    Science.gov (United States)

    Messa, Kenneth; Lybanon, Matthew

    1992-01-01

    Genetic algorithms (GA) are optimization techniques that are based on the mechanics of evolution and natural selection. They take advantage of the power of cumulative selection, in which successive incremental improvements in a solution structure become the basis for continued development. A GA is an iterative procedure that maintains a 'population' of 'organisms' (candidate solutions). Through successive 'generations' (iterations) the population as a whole improves in simulation of Darwin's 'survival of the fittest'. GA's have been shown to be successful where noise significantly reduces the ability of other search techniques to work effectively. Satellite altimetry provides useful information about oceanographic phenomena. It provides rapid global coverage of the oceans and is not as severely hampered by cloud cover as infrared imagery. Despite these and other benefits, several factors lead to significant difficulty in interpretation. The GA approach to the improved interpretation of satellite data involves the representation of the ocean surface model as a string of parameters or coefficients from the model. The GA searches in parallel, a population of such representations (organisms) to obtain the individual that is best suited to 'survive', that is, the fittest as measured with respect to some 'fitness' function. The fittest organism is the one that best represents the ocean surface model with respect to the altimeter data.

  19. Design and Performance Measurement of the Mercury Laser Altimeter

    Science.gov (United States)

    Sun, Xiao-Li; Cavanaugh, John F.; Smith, James C.; Bartels, Arlin E.

    2004-01-01

    We report the design and test results of the Mercury Laser Altimeter on MESSENGER mission to be launched in May 2004. The altimeter will provide planet surface topography measurements via laser pulse time of flight.

  20. GAVDOS/west crete cal-val site: Over a decade calibrations for Jason series, SARAL/Altika, cryoSat-2, Sentinel-3 and HY-2 altimeter satellites

    DEFF Research Database (Denmark)

    Mertikas, Stelios; Tziavos, Ilias; Galanakis, Demitris

    This work presents and compares the latest altimeter calibration results for the Sentinel-3, Jason series, as well as the SARAL/AltiKa and the Chinese HY-2 missions, conducted at the Gavdos/Crete calibration/validation facilities. At first, the Jason altimeter calibration values will be given for...

  1. Teamwork Reasoning and Multi-Satellite Missions

    Science.gov (United States)

    Marsella, Stacy C.; Plaunt, Christian (Technical Monitor)

    2002-01-01

    NASA is rapidly moving towards the use of spatially distributed multiple satellites operating in near Earth orbit and Deep Space. Effective operation of such multi-satellite constellations raises many key research issues. In particular, the satellites will be required to cooperate with each other as a team that must achieve common objectives with a high degree of autonomy from ground based operations. The multi-agent research community has made considerable progress in investigating the challenges of realizing such teamwork. In this report, we discuss some of the teamwork issues that will be faced by multi-satellite operations. The basis of the discussion is a particular proposed mission, the Magnetospheric MultiScale mission to explore Earth's magnetosphere. We describe this mission and then consider how multi-agent technologies might be applied in the design and operation of these missions. We consider the potential benefits of these technologies as well as the research challenges that will be raised in applying them to NASA multi-satellite missions. We conclude with some recommendations for future work.

  2. The Ocean Surface Topography SENTINEL-6/JASON-CS Mission

    Science.gov (United States)

    Cullen, R.

    2015-12-01

    The Sentinel-6/Jason-CS mission will consist of 2 spacecraft and will be the latest in a series of ocean surface topography missions that will span nearly three decades. They follow the altimeters on- board TOPEX/Poseidon through to Jason-3 (expected March 2015). Jason-CS will continue to fulfil objectives of the reference series whilst introducing a major enhancement in capability providing the operational and science oceanographic community with the state of the art in terms of platform, measurement instrumentation design thus securing optimal operational and science data return. The programme is a part of the EC Copernicus initiative, whose objective is to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. The programme brings together: ESA for development, procurement & early orbit activities; EUMETSAT for mission management, ground segment, flight ops, contributing funding of the 1st satellite and participation in funding for the 2nd satellite; NASA for the US payload and launcher procurement in addition to funding US science opportunities; EC for funding the operations and participation in funding (with EUMETSAT) for the 2nd satellite; NOAA are expected to provide US ground stations & operations services; CNES for mission expertise and provision of the POD service. The consortium plan to procure 2 satellites with the 1st planned for launch readiness in the 1st half of 2020 with the 2nd satellite 5 years later. The first major commitment to funding was given by the ESA member states that approved the programme in June 2014 and in addition the European Commission funding is also fully secure. The design is based on a platform derived from CryoSat-2 adjusted to the specific requirements of the higher orbit. The principle payload instrument is a high precision Ku/C band radar altimeter with retrieval of geophysical parameters (surface

  3. The Ocean Surface Topography Sentinel-6/Jason-CS Mission

    Science.gov (United States)

    Giulicchi, L.; Cullen, R.; Donlon, C.; Vuilleumier@esa int, P.

    2016-12-01

    The Sentinel-6/Jason-CS mission consists of two identical satellites flying in sequence and designed to provide operational measurements of sea surface height significant wave high and wind speed to support operational oceanography and climate monitoring. The mission will be the latest in a series of ocean surface topography missions that will span nearly three decades. They follow the altimeters on- board TOPEX/Poseidon through to Jason-3 (launched in January 2016). Jason-CS will continue to fulfil objectives of the reference series whilst introducing a major enhancement in capability providing the operational and science oceanographic community with the state of the art in terms of spacecraft, measurement instrumentation design thus securing optimal operational and science data return. As a secondary objective the mission will also include Radio Occultation user services. Each satellite will be launched sequentially into the Jason orbit (up to 66 latitude) respectively in 2020 and 2025. The principle payload instrument is a high precision Ku/C band radar altimeter with retrieval of geophysical parameters (surface elevation, wind speed and SWH) from the altimeter data require supporting measurements: a DORIS receiver for Precise Orbit Determination; The Climate Quality Advanced Microwave Radiometer (AMR-C) for high stability path delay correction. Orbit tracking data are also provided by GPS & LRA. An additional GPS receiver will be dedicated to radio-occultation measurements. The programme is a part of the European Community Copernicus initiative, whose objective is to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. The Sentinel-6/Jason-CS in particular is a cooperative mission with contributions from NASA, NOAA, EUMETSAT, ESA, CNES and the European Union.

  4. Trends of wave height and period in the Central Arabian Sea from 1996 to 2012: A study based on satellite altimeter data

    Digital Repository Service at National Institute of Oceanography (India)

    Hithin, N.K.; SanilKumar, V.; Shanas, P.R.

    The variability of annual maximum and annual mean significant wave height (SWH) and wave period in the Central Arabian Sea is studied using satellite altimeter data from 1996 to 2012 at a deep water (water depth~3500 m) buoy location (15.5°N, 69...

  5. An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative

    Science.gov (United States)

    Legeais, Jean-François; Ablain, Michaël; Zawadzki, Lionel; Zuo, Hao; Johannessen, Johnny A.; Scharffenberg, Martin G.; Fenoglio-Marc, Luciana; Joana Fernandes, M.; Baltazar Andersen, Ole; Rudenko, Sergei; Cipollini, Paolo; Quartly, Graham D.; Passaro, Marcello; Cazenave, Anny; Benveniste, Jérôme

    2018-02-01

    Sea level is a very sensitive index of climate change since it integrates the impacts of ocean warming and ice mass loss from glaciers and the ice sheets. Sea level has been listed as an essential climate variable (ECV) by the Global Climate Observing System (GCOS). During the past 25 years, the sea level ECV has been measured from space by different altimetry missions that have provided global and regional observations of sea level variations. As part of the Climate Change Initiative (CCI) program of the European Space Agency (ESA) (established in 2010), the Sea Level project (SL_cci) aimed to provide an accurate and homogeneous long-term satellite-based sea level record. At the end of the first phase of the project (2010-2013), an initial version (v1.1) of the sea level ECV was made available to users (Ablain et al., 2015). During the second phase of the project (2014-2017), improved altimeter standards were selected to produce new sea level products (called SL_cci v2.0) based on nine altimeter missions for the period 1993-2015 (https://doi.org/10.5270/esa-sea_level_cci-1993_2015-v_2.0-201612; Legeais and the ESA SL_cci team, 2016c). Corresponding orbit solutions, geophysical corrections and altimeter standards used in this v2.0 dataset are described in detail in Quartly et al. (2017). The present paper focuses on the description of the SL_cci v2.0 ECV and associated uncertainty and discusses how it has been validated. Various approaches have been used for the quality assessment such as internal validation, comparisons with sea level records from other groups and with in situ measurements, sea level budget closure analyses and comparisons with model outputs. Compared with the previous version of the sea level ECV, we show that use of improved geophysical corrections, careful bias reduction between missions and inclusion of new altimeter missions lead to improved sea level products with reduced uncertainties on different spatial and temporal scales. However, there

  6. Inference of Altimeter Accuracy on Along-track Gravity Anomaly Recovery

    Directory of Open Access Journals (Sweden)

    LI Yang

    2015-04-01

    Full Text Available A correlation model between along-track gravity anomaly accuracy, spatial resolution and altimeter accuracy is proposed. This new model is based on along-track gravity anomaly recovery and resolution estimation. Firstly, an error propagation formula of along-track gravity anomaly is derived from the principle of satellite altimetry. Then the mathematics between the SNR (signal to noise ratio and cross spectral coherence is deduced. The analytical correlation between altimeter accuracy and spatial resolution is finally obtained from the results above. Numerical simulation results show that along-track gravity anomaly accuracy is proportional to altimeter accuracy, while spatial resolution has a power relation with altimeter accuracy. e.g., with altimeter accuracy improving m times, gravity anomaly accuracy improves m times while spatial resolution improves m0.4644 times. This model is verified by real-world data.

  7. The Ocean Surface Topography JASON-CS/SENTINEL-6 Mission

    Science.gov (United States)

    Cullen, R.; Francis, R.

    2014-12-01

    The Jason-CS/Sentinel-6 programme will consist of 2 spacecraft and will be the latest in a series of ocean surface topography missions that will span nearly three decades. They follow the altimeters on-board TOPEX/Poseidon through to Jason-3 (expected March 2015). Jason-CS will continue to fulfil objectives of the reference series whilst introducing a major enhancement in capability providing the operational and science oceanographic community with the state of the art in terms of platform, measurement instrumentation design thus securing optimal operational and science data return. The programme is a part of the EC Copernicus initiative, whose objective is to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. The programme brings together: ESA for development, procurement & early orbit activities; EUMETSAT for mission management, ground segment, flight ops, contributing funding of the 1st satellite and participation in funding for the 2nd satellite; NOAA for US payload instruments, launcher, ground stations & operations; NASA for developing the US payload, launcher procurement and funding US science; EU for funding the operations and participation in funding (with EUMETSAT) for the 2nd satellite; CNES for mission expertise and provision of POD. The consortium plan to procure 2 satellites with the 1st planned for launch readiness in the 1st half of 2020 with the 2nd satellite 5 years later. The first major commitment to funding was given by the ESA member states that approved the programme in June 2014 and in addition the European Union funding is also secure. The design will be based on a platform derived from CryoSat-2 but adjusted to the specific requirements of the higher orbit. The principle payload instrument is a high precision Ku/C band radar altimeter with retrieval of geophysical parameters (surface elevation, wind speed and SWH) from

  8. Comparison of gridded multi-mission and along-track mono-mission satellite altimetry wave heights with in situ near-shore buoy data.

    Digital Repository Service at National Institute of Oceanography (India)

    Shanas, P.R.; SanilKumar, V.; Hithin, N.K.

    and studied the validity of these observations against ship-reported and buoy data. Many studies have been undertaken on how best to use the data available from satellite observation systems in wave models (Mastenbroek, 1994; Young and Glowacki, 1996... Sea wave model. Journal of Geophysical Research 10, 5829–5849. Young, I.R., 1994. Global ocean wave statistics obtained from satellite observations. Applied Ocean Research 16, 235-248. Young, I.R., Glowacki, T.J., 1996. Assimilation of altimeter...

  9. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros

    2011-01-01

    Although the first satellite observations of the Earth’s magnetic field were already taken more than 50 years ago, continuous geomagnetic measurements from space are only available since 1999. The unprecedented time-space coverage of this recent data set opened revolutionary new possibilities...... for exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...... exploration of Earth’s magnetic field with satellites....

  10. Nano-Satellite Secondary Spacecraft on Deep Space Missions

    Science.gov (United States)

    Klesh, Andrew T.; Castillo-Rogez, Julie C.

    2012-01-01

    NanoSat technology has opened Earth orbit to extremely low-cost science missions through a common interface that provides greater launch accessibility. They have also been used on interplanetary missions, but these missions have used one-off components and architectures so that the return on investment has been limited. A natural question is the role that CubeSat-derived NanoSats could play to increase the science return of deep space missions. We do not consider single instrument nano-satellites as likely to complete entire Discovery-class missions alone,but believe that nano-satellites could augment larger missions to significantly increase science return. The key advantages offered by these mini-spacecrafts over previous planetary probes is the common availability of advanced subsystems that open the door to a large variety of science experiments, including new guidance, navigation and control capabilities. In this paper, multiple NanoSat science applications are investigated, primarily for high risk/high return science areas. We also address the significant challenges and questions that remain as obstacles to the use of nano-satellites in deep space missions. Finally, we provide some thoughts on a development roadmap toward interplanetary usage of NanoSpacecraft.

  11. An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative

    DEFF Research Database (Denmark)

    Legeais, Jean-Francois; Ablain, Michael; Zawadzki, Lionel

    2018-01-01

    , the sea level ECV has been measured from space by different altimetry missions that have provided global and regional observations of sea level variations. As part of the Climate Change Initiative (CCI) program of the European Space Agency (ESA) (established in 2010), the Sea Level project (SL_cci) aimed...... to provide an accurate and homogeneous long-term satellite-based sea level record. At the end of the first phase of the project (2010-2013), an initial version (v1.1) of the sea level ECV was made available to users (Ablain et al., 2015). During the second phase of the project (2014-2017), improved altimeter...

  12. Compact, passively Q-switched Nd:YAG laser for the MESSENGER mission to Mercury.

    Science.gov (United States)

    Krebs, Danny J; Novo-Gradac, Anne-Marie; Li, Steven X; Lindauer, Steven J; Afzal, Robert S; Yu, Anthony W

    2005-03-20

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter, an instrument on the Mercury Surface, Space Environment, Geochemistry, and Ranging mission to the planet Mercury. The laser achieves 5.4% efficiency with a near-diffraction-limited beam. It passed all space-flight environmental tests at subsystem, instrument, and satellite integration testing and successfully completes a postlaunch aliveness check en route to Mercury. The laser design draws on a heritage of previous laser altimetry missions, specifically the Ice Cloud and Elevation Satellite and the Mars Global Surveyor, but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.

  13. Impact of ITRS 2014 realizations on altimeter satellite precise orbit determination

    Science.gov (United States)

    Zelensky, Nikita P.; Lemoine, Frank G.; Beckley, Brian D.; Chinn, Douglas S.; Pavlis, Despina E.

    2018-01-01

    This paper evaluates orbit accuracy and systematic error for altimeter satellite precise orbit determination on TOPEX, Jason-1, Jason-2 and Jason-3 by comparing the use of four SLR/DORIS station complements from the International Terrestrial Reference System (ITRS) 2014 realizations with those based on ITRF2008. The new Terrestrial Reference Frame 2014 (TRF2014) station complements include ITRS realizations from the Institut National de l'Information Géographique et Forestière (IGN) ITRF2014, the Jet Propulsion Laboratory (JPL) JTRF2014, the Deutsche Geodätisches Forschungsinstitut (DGFI) DTRF2014, and the DORIS extension to ITRF2014 for Precise Orbit Determination, DPOD2014. The largest source of error stems from ITRF2008 station position extrapolation past the 2009 solution end time. The TRF2014 SLR/DORIS complement impact on the ITRF2008 orbit is only 1-2 mm RMS radial difference between 1992-2009, and increases after 2009, up to 5 mm RMS radial difference in 2016. Residual analysis shows that station position extrapolation error past the solution span becomes evident even after two years, and will contribute to about 3-4 mm radial orbit error after seven years. Crossover data show the DTRF2014 orbits are the most accurate for the TOPEX and Jason-2 test periods, and the JTRF2014 orbits for the Jason-1 period. However for the 2016 Jason-3 test period only the DPOD2014-based orbits show a strong and statistically significant margin of improvement. The positive results with DTRF2014 suggest the new approach to correct station positions or normal equations for non-tidal loading before combination is beneficial. We did not find any compelling POD advantage in using non-linear over linear station velocity models in our SLR & DORIS orbit tests on the Jason satellites. The JTRF2014 proof-of-concept ITRS realization demonstrates the need for improved SLR+DORIS orbit centering when compared to the Ries (2013) CM annual model. Orbit centering error is seen as an annual

  14. Orbit Determination of the SELENE Satellites Using Multi-Satellite Data Types and Evaluation of SELENE Gravity Field Models

    Science.gov (United States)

    Goossens, S.; Matsumoto, K.; Noda, H.; Araki, H.; Rowlands, D. D.; Lemoine, F. G.

    2011-01-01

    The SELENE mission, consisting of three separate satellites that use different terrestrial-based tracking systems, presents a unique opportunity to evaluate the contribution of these tracking systems to orbit determination precision. The tracking data consist of four-way Doppler between the main orbiter and one of the two sub-satellites while the former is over the far side, and of same-beam differential VLBI tracking between the two sub-satellites. Laser altimeter data are also used for orbit determination. The contribution to orbit precision of these different data types is investigated through orbit overlap analysis. It is shown that using four-way and VLBI data improves orbit consistency for all satellites involved by reducing peak values in orbit overlap differences that exist when only standard two-way Doppler and range data are used. Including laser altimeter data improves the orbit precision of the SELENE main satellite further, resulting in very smooth total orbit errors at an average level of 18m. The multi-satellite data have also resulted in improved lunar gravity field models, which are assessed through orbit overlap analysis using Lunar Prospector tracking data. Improvements over a pre-SELENE model are shown to be mostly in the along-track and cross-track directions. Orbit overlap differences are at a level between 13 and 21 m with the SELENE models, depending on whether l-day data overlaps or I-day predictions are used.

  15. Scientific analysis of satellite ranging data

    Science.gov (United States)

    Smith, David E.

    1994-01-01

    A network of satellite laser ranging (SLR) tracking systems with continuously improving accuracies is challenging the modelling capabilities of analysts worldwide. Various data analysis techniques have yielded many advances in the development of orbit, instrument and Earth models. The direct measurement of the distance to the satellite provided by the laser ranges has given us a simple metric which links the results obtained by diverse approaches. Different groups have used SLR data, often in combination with observations from other space geodetic techniques, to improve models of the static geopotential, the solid Earth, ocean tides, and atmospheric drag models for low Earth satellites. Radiation pressure models and other non-conservative forces for satellite orbits above the atmosphere have been developed to exploit the full accuracy of the latest SLR instruments. SLR is the baseline tracking system for the altimeter missions TOPEX/Poseidon, and ERS-1 and will play an important role in providing the reference frame for locating the geocentric position of the ocean surface, in providing an unchanging range standard for altimeter calibration, and for improving the geoid models to separate gravitational from ocean circulation signals seen in the sea surface. However, even with the many improvements in the models used to support the orbital analysis of laser observations, there remain systematic effects which limit the full exploitation of SLR accuracy today.

  16. The German joint research project "concepts for future gravity satellite missions"

    Science.gov (United States)

    Reubelt, Tilo; Sneeuw, Nico; Fichter, Walter; Müller, Jürgen

    2010-05-01

    Within the German joint research project "concepts for future gravity satellite missions", funded by the Geotechnologies programme of the German Federal Ministry of Education and Research, options and concepts for future satellite missions for precise (time-variable) gravity field recovery are investigated. The project team is composed of members from science and industry, bringing together experts in geodesy, satellite systems, metrology, sensor technology and control systems. The majority of team members already contributed to former gravity missions. The composition of the team guarantees that not only geodetic aspects and objectives are investigated, but also technological and financial constraints are considered. Conversely, satellite, sensor and system concepts are developed and improved in a direct exchange with geodetic and scientific claims. The project aims to develop concepts for both near and mid-term future satellite missions, taking into account e.g. advanced satellite formations and constellations, improved orbit design, innovative metrology and sensor systems and advances in satellite systems.

  17. Measuring canopy structure with an airborne laser altimeter

    International Nuclear Information System (INIS)

    Ritchie, J.C.; Evans, D.L.; Jacobs, D.; Everitt, J.H.; Weltz, M.A.

    1993-01-01

    Quantification of vegetation patterns and properties is needed to determine their role on the landscape and to develop management plans to conserve our natural resources. Quantifying vegetation patterns from the ground, or by using aerial photography or satellite imagery is difficult, time consuming, and often expensive. Digital data from an airborne laser altimeter offer an alternative method to quantify selected vegetation properties and patterns of forest and range vegetation. Airborne laser data found canopy heights varied from 2 to 6 m within even-aged pine forests. Maximum canopy heights measured with the laser altimeter were significantly correlated to measurements made with ground-based methods. Canopy shape could be used to distinguish deciduous and evergreen trees. In rangeland areas, vegetation heights, spatial patterns, and canopy cover measured with the laser altimeter were significantly related with field measurements. These studies demonstrate the potential of airborne laser data to measure canopy structure and properties for large areas quickly and quantitatively

  18. ZY3-02 Laser Altimeter On-orbit Geometrical Calibration and Test

    Directory of Open Access Journals (Sweden)

    TANG Xinming

    2017-06-01

    Full Text Available ZY3-02 is the first satellite equipped with a laser altimeter for earth observation in China .This laser altimeter is an experimental payload for land elevation measurement experiment. The ranging and pointing bias of the laser altimeter would change due to the launch vibration, the space environment difference or other factors, and that could bring plane and elevation errors of laser altimeter. In this paper, we propose an on-orbit geometric calibration method using a ground-based electro-optical detection system based on the analysis of ZY3-02 laser altimeter characteristic, and this method constructs the rigorous geometric calibration model, which consider the pointing and ranging bias as unknown systematic errors, and the unknown parameters are calibrated with laser spot's location captured by laser detectors and the minimum ranging error principle. With the ALOS-DSM data as reference, the elevation accuracy of the laser altimeter can be improved from 100~150 meters before calibration to 2~3 meters after calibration when the terrain slope is less than 2 degree. With several ground control points obtained with RTK in laser footprint for validation, the absolute elevation precision of laser altimeter in the flat area can reach about 1 meter after the calibration. The test results demonstrated the effectiveness and feasibility of the proposed method.

  19. The Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter (LRO) mission

    Science.gov (United States)

    Riris, H.; Cavanaugh, J.; Sun, X.; Liiva, P.; Rodriguez, M.; Neuman, G.

    2017-11-01

    The Lunar Orbiter Laser Altimeter (LOLA) instrument [1-3] on NASA's Lunar Reconnaissance Orbiter (LRO) mission, launched on June 18th, 2009, from Kennedy Space Center, Florida, will provide a precise global lunar topographic map using laser altimetry. LOLA will assist in the selection of landing sites on the Moon for future robotic and human exploration missions and will attempt to detect the presence of water ice on or near the surface, which is one of the objectives of NASA's Exploration Program. Our present knowledge of the topography of the Moon is inadequate for determining safe landing areas for NASA's future lunar exploration missions. Only those locations, surveyed by the Apollo missions, are known with enough detail. Knowledge of the position and characteristics of the topographic features on the scale of a lunar lander are crucial for selecting safe landing sites. Our present knowledge of the rest of the lunar surface is at approximately 1 km kilometer level and in many areas, such as the lunar far side, is on the order of many kilometers. LOLA aims to rectify that and provide a precise map of the lunar surface on both the far and near side of the moon. LOLA uses short (6 ns) pulses from a single laser through a Diffractive Optical Element (DOE) to produce a five-beam pattern that illuminates the lunar surface. For each beam, LOLA measures the time of flight (range), pulse spreading (surface roughness), and transmit/return energy (surface reflectance). LOLA will produce a high-resolution global topographic model and global geodetic framework that enables precise targeting, safe landing, and surface mobility to carry out exploratory activities. In addition, it will characterize the polar illumination environment, and image permanently shadowed regions of the lunar surface to identify possible locations of surface ice crystals in shadowed polar craters.

  20. Baseline Design and Performance Analysis of Laser Altimeter for Korean Lunar Orbiter

    Directory of Open Access Journals (Sweden)

    Hyung-Chul Lim

    2016-09-01

    Full Text Available Korea’s lunar exploration project includes the launching of an orbiter, a lander (including a rover, and an experimental orbiter (referred to as a lunar pathfinder. Laser altimeters have played an important scientific role in lunar, planetary, and asteroid exploration missions since their first use in 1971 onboard the Apollo 15 mission to the Moon. In this study, a laser altimeter was proposed as a scientific instrument for the Korean lunar orbiter, which will be launched by 2020, to study the global topography of the surface of the Moon and its gravitational field and to support other payloads such as a terrain mapping camera or spectral imager. This study presents the baseline design and performance model for the proposed laser altimeter. Additionally, the study discusses the expected performance based on numerical simulation results. The simulation results indicate that the design of system parameters satisfies performance requirements with respect to detection probability and range error even under unfavorable conditions.

  1. Non-Stationary Internal Tides Observed with Satellite Altimetry

    Science.gov (United States)

    Ray, Richard D.; Zaron, E. D.

    2011-01-01

    Temporal variability of the internal tide is inferred from a 17-year combined record of Topex/Poseidon and Jason satellite altimeters. A global sampling of along-track sea-surface height wavenumber spectra finds that non-stationary variance is generally 25% or less of the average variance at wavenumbers characteristic of mode-l tidal internal waves. With some exceptions the non-stationary variance does not exceed 0.25 sq cm. The mode-2 signal, where detectable, contains a larger fraction of non-stationary variance, typically 50% or more. Temporal subsetting of the data reveals interannual variability barely significant compared with tidal estimation error from 3-year records. Comparison of summer vs. winter conditions shows only one region of noteworthy seasonal changes, the northern South China Sea. Implications for the anticipated SWOT altimeter mission are briefly discussed.

  2. A Battery Certification Testbed for Small Satellite Missions

    Science.gov (United States)

    Cameron, Zachary; Kulkarni, Chetan S.; Luna, Ali Guarneros; Goebel, Kai; Poll, Scott

    2015-01-01

    A battery pack consisting of standard cylindrical 18650 lithium-ion cells has been chosen for small satellite missions based on previous flight heritage and compliance with NASA battery safety requirements. However, for batteries that transit through the International Space Station (ISS), additional certification tests are required for individual cells as well as the battery packs. In this manuscript, we discuss the development of generalized testbeds for testing and certifying different types of batteries critical to small satellite missions. Test procedures developed and executed for this certification effort include: a detailed physical inspection before and after experiments; electrical cycling characterization at the cell and pack levels; battery-pack overcharge, over-discharge, external short testing; battery-pack vacuum leak and vibration testing. The overall goals of these certification procedures are to conform to requirements set forth by the agency and identify unique safety hazards. The testbeds, procedures, and experimental results are discussed for batteries chosen for small satellite missions to be launched from the ISS.

  3. The Emergent Capabilities of Distributed Satellites and Methods for Selecting Distributed Satellite Science Missions

    Science.gov (United States)

    Corbin, B. A.; Seager, S.; Ross, A.; Hoffman, J.

    2017-12-01

    Distributed satellite systems (DSS) have emerged as an effective and cheap way to conduct space science, thanks to advances in the small satellite industry. However, relatively few space science missions have utilized multiple assets to achieve their primary scientific goals. Previous research on methods for evaluating mission concepts designs have shown that distributed systems are rarely competitive with monolithic systems, partially because it is difficult to quantify the added value of DSSs over monolithic systems. Comparatively little research has focused on how DSSs can be used to achieve new, fundamental space science goals that cannot be achieved with monolithic systems or how to choose a design from a larger possible tradespace of options. There are seven emergent capabilities of distributed satellites: shared sampling, simultaneous sampling, self-sampling, census sampling, stacked sampling, staged sampling, and sacrifice sampling. These capabilities are either fundamentally, analytically, or operationally unique in their application to distributed science missions, and they can be leveraged to achieve science goals that are either impossible or difficult and costly to achieve with monolithic systems. The Responsive Systems Comparison (RSC) method combines Multi-Attribute Tradespace Exploration with Epoch-Era Analysis to examine benefits, costs, and flexible options in complex systems over the mission lifecycle. Modifications to the RSC method as it exists in previously published literature were made in order to more accurately characterize how value is derived from space science missions. New metrics help rank designs by the value derived over their entire mission lifecycle and show more accurate cumulative value distributions. The RSC method was applied to four case study science missions that leveraged the emergent capabilities of distributed satellites to achieve their primary science goals. In all four case studies, RSC showed how scientific value was

  4. Waveform identification and retracking analyses of Jason-2 altimeter satellite data for improving sea surface height estimation in Southern Java Island Waters and Java Sea, Indonesia

    Science.gov (United States)

    Nababan, Bisman; Hakim, Muhammad R.; Panjaitan, James P.

    2018-05-01

    Indonesian waters containing many small islands and shallow waters leads to a less accurate of sea surface height (SSH) estimation from satellite altimetry. Little efforts are also given for the validation of SSH estimation from the satellite in Indonesian waters. The purpose of this research was to identify and retrack waveforms of Jason-2 altimeter satellite data in southern Java island waters and Java Sea using several retrackers and performed improvement percentage analyses for new SSH estimation. The study used data of the Sensor Geophysical Data Record type D (SGDR-D) of Jason-2 satellite altimeter of the year 2010 in the southern Java island waters and 2012-2014 in Java Sea. Waveform retracking analyses were conducted using several retrackers (Offset Center of Gravity, Ice, Threshold, and Improved Threshold) and examined using a world reference undulation geoid of EGM08 and Oceanic retracker. Result showed that shape and pattern of waveforms were varied in all passes, seasons, and locations specifically along the coastal regions. In general, non-Brownish and complex waveforms were identified along coastal region specifically within the distance of 0-10 km from the shoreline. In contrary, generally Brownish waveforms were found in offshore. However, Brownish waveform can also be found within coastal region and non-Brownish waveforms within offshore region. The results were also showed that the four retrackers produced a better SSH estimation in coastal region. However, there was no dominant retracker to improve the accuracy of the SSH estimate.

  5. Virtual Mission First Results Supporting the WATER HM Satellite Concept

    Science.gov (United States)

    Alsdorf, D.; Andreadis, K.; Lettenmaier, D.; Moller, D.; Rodriguez, E.; Bates, P.; Mognard, N.; Participants, W.

    2007-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of its variability in space and time. Similarly, ocean circulation and ocean-atmosphere interactions fundamentally drive weather and climate variability, yet the global ocean current and eddy field (e.g., the Gulf Stream) that affects ocean circulation is poorly known. The Water And Terrestrial Elevation Recovery Hydrosphere Mapper satellite mission concept (WATER HM or SWOT per the NRC Decadal Survey) is a swath-based interferometric-altimeter designed to acquire elevations of ocean and terrestrial water surfaces at unprecedented spatial and temporal resolutions. WATER HM will have tremendous implications for estimation of the global water cycle, water management, ocean and coastal circulation, and assessment of many water-related impacts from climate change (e.g., sea level rise, carbon evasion, etc.). We describe a hydrological "virtual mission" (VM) for WATER HM which consists of: (a) A hydrodynamic-instrument simulation model that maps variations in water levels along river channels and across floodplains. These are then assimilated to estimate discharge and to determine trade-offs between resolutions and mission costs. (b) Measurements from satellites to determine feasibility of existing platforms for measuring storage changes and estimating discharge. First results demonstrate that: (1) Ensemble Kalman filtering of VM simulations recover water depth and discharge, reducing the discharge RMSE from 23.2% to 10.0% over an 84- day simulation period, relative to a simulation without assimilation. The filter also shows that an 8-day overpass frequency produces discharge relative errors of 10.0%, while 16-day and 32-day frequencies result in errors of 12.1% and 16.9%, respectively. (2) SRTM measurements of water surfaces along the Mississippi, Missouri, Ohio, and Amazon rivers, as well as smaller tributaries, show height standard deviations of 5 meters or greater (SRTM is the

  6. Thermal Testing and Model Correlation for Advanced Topographic Laser Altimeter Instrument (ATLAS)

    Science.gov (United States)

    Patel, Deepak

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) part of the Ice Cloud and Land Elevation Satellite 2 (ICESat-2) is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This topic covers the analysis leading up to the test setup for ATLAS thermal testing as well as model correlation to flight predictions. Test setup analysis section will include areas where ATLAS could not meet flight like conditions and what were the limitations. Model correlation section will walk through changes that had to be made to the thermal model in order to match test results. The correlated model will then be integrated with spacecraft model for on-orbit predictions.

  7. M2 Internal Tides and Their Observed Wavenumber Spectra from Satellite Altimetry*

    Science.gov (United States)

    Ray, R. D.; Zaron, E. D.

    2015-01-01

    A near-global chart of surface elevations associated with the stationary M2 internal tide is empirically constructed from multi-mission satellite altimeter data. An advantage of a strictly empirical mapping approach is that results are independent of assumptions about ocean wave dynamics and, in fact, can be used to test such assumptions. A disadvantage is that present-day altimeter coverage is only marginally adequate to support mapping such short-wavelength features. Moreover, predominantly north-south ground-track orientations and contamination from nontidal oceanographic variability can lead to deficiencies in mapped tides. Independent data from Cryosphere Satellite-2 (CryoSat-2) and other altimeters are used to test the solutions and show positive reduction in variance except in regions of large mesoscale variability. The tidal fields are subjected to two-dimensional wavenumber spectral analysis, which allows for the construction of an empirical map of modal wavelengths. Mode-1 wavelengths show good agreement with theoretical wavelengths calculated from the ocean's mean stratification, with a few localized exceptions (e.g., Tasman Sea). Mode-2 waves are detectable in much of the ocean, with wavelengths in reasonable agreement with theoretical expectations, but their spectral signatures grow too weak to map in some regions.

  8. Solutions Network Formulation Report: Improving NOAA's PORTS(R) Through Enhanced Data Inputs from NASA's Ocean Surface Topography Mission

    Science.gov (United States)

    Guest, DeNeice

    2007-01-01

    The Nation uses water-level data for a variety of practical purposes, including nautical charting, maritime navigation, hydrography, coastal engineering, and tsunami and storm surge warnings. Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years. NOAA s PORTS (Physical Oceanographic Real-Time System) DST (decision support tool), managed by the Center for Operational Oceanographic Products and Services, supports safe and cost-efficient navigation by providing ship masters and pilots with accurate real-time information required to avoid groundings and collisions. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s PORTS. NASA has a long heritage of collecting data for ocean research, including its current Terra and Aqua missions. Numerous other missions provide additional important information for coastal management issues, and data collection will continue in the coming decade with such missions as the OSTM (Ocean Surface Topography Mission). OSTM will provide data on sea-surface heights for determining ocean circulation, climate change, and sea-level rise. We suggest that NASA incorporate OSTM altimeter data (C- and Ku-band) into NOAA s PORTS DST in support of NASA s Coastal Management National Application with secondary support to the

  9. Compact, Passively Q-Switched Nd:YAG Laser for the MESSENGER Mission to the Planet Mercury

    Science.gov (United States)

    Krebs, Danny J.; Novo-Gradac, Anne-Marie; Li, Steven X.; Lindauer, Steven J.; Afzal, Robert S.; Yu, Antony

    2004-01-01

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter (MLA) instrument which is an instrument on the MESSENGER mission to the planet Mercury. The laser achieves 5.4 percent efficiency with a near diffraction limited beam. It has passed all space flight environmental tests at system, instrument, and satellite integration. The laser design draws on a heritage of previous laser altimetry missions, specifically ISESAT and Mars Global Surveyor; but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.

  10. VERTICAL ACCURACY ASSESSMENT OF ZY-3 DIGITAL SURFACE MODEL USING ICESAT/GLAS LASER ALTIMETER DATA

    Directory of Open Access Journals (Sweden)

    G. Li

    2017-05-01

    Full Text Available The Ziyuan-3 (ZY-3 satellite, as the first civilian high resolution surveying and mapping satellite in China, has a very important role in national 1 : 50,000 stereo mapping project. High accuracy digital surface Model (DSMs can be generated from the three line-array images of ZY-3, and ZY-3 DSMs of China can be produced without using any ground control points (GCPs by selecting SRTM (Shuttle Radar Topography Mission and ICESat/GLAS (Ice, Cloud, and land Elevation Satellite, Geo-science Laser Altimeter System as the datum reference in the Satellite Surveying and Mapping Application Center, which is the key institute that manages and distributes ZY-3 products. To conduct the vertical accuracy evaluation of ZY-3 DSMs of China, three representative regions were chosen and the results were compared to ICESat/GLAS data. The experimental results demonstrated that the root mean square error (RMSE elevation accuracy of the ZY-3 DSMs was better than 5.0 m, and it even reached to less than 2.5 m in the second region of eastern China. While this work presents preliminary results, it is an important reference for expanding the application of ZY-3 satellite imagery to widespread regions. And the satellite laser altimetry data can be used as referenced data for wide-area DSM evaluation.

  11. The large satellite program of ESA and its relevance for broadcast missions

    Science.gov (United States)

    Fromm, H.-H.; Herdan, B. L.

    1981-03-01

    In an investigation of the market prospects and payload requirements of future communications satellites, it was concluded that during the next 15 years many space missions will demand larger satellite platforms than those currently available. These platforms will be needed in connection with direct-broadcasting satellites, satellites required to enhance capacities in the case of traditional services, and satellites employed to introduce new types of satellite-based communications operating with small terminals. Most of the larger satellites would require the Ariane III capability, corresponding to about 1400 kg satellite mass in geostationary orbit. Attention is given to L-SAT platform capabilities and broadcast payload requirements, taking into account a European direct-broadcast satellite and Canadian direct-broadcast missions.

  12. Application of current and future satellite missions to hydrologic prediction in transboundary rivers

    Science.gov (United States)

    Biancamaria, S.; Clark, E.; Lettenmaier, D. P.

    2010-12-01

    More than 256 major global river basins, which cover about 45% of the continental land surface, are shared among two or more countries. The flow of such a large part of the global runoff across international boundaries has led to tension in many cases between upstream and downstream riparian countries. Among many examples, this is the case of the Ganges and the Brahmaputra Rivers, which cross the boundary between India and Bangladesh. Hydrological data (river discharge, reservoir storage) are viewed as sensitive by India (the upstream country) and are therefore not shared with Bangladesh, which can only monitor river discharge and water depth at the international border crossing. These measurements only allow forecasting of floods in the interior and southern portions of the country two to three days in advance. These forecasts are not long enough either for agricultural water management purposes (for which knowledge of upstream reservoir storage is essential) or for disaster preparedness purposes. Satellite observations of river spatial extent, surface slope, reservoir area and surface elevation have the potential to make tremendous changes in management of water within the basins. In this study, we examine the use of currently available satellite measurements (in India) and in-situ measurements in Bangladesh to increase forecast lead time in the Ganges and Brahmaputra Rivers. Using nadir altimeters, we find that it is possible to forecast the discharge of the Ganges River at the Bangladesh border with lead time 3 days and mean absolute error of around 25%. On the Ganges River, 2-day forecasts are possible with a mean absolute error of around 20%. When combined with optical/infra-red MODIS images, it is possible to map water elevations along the river and its floodplain upstream of the boundary, and to compute water storage. However, the high frequency of clouds in this region results in relatively large errors in the water mask. Due to the nadir altimeter

  13. The Infrared Astronomical Satellite (IRAS) mission

    Science.gov (United States)

    Neugebauer, G.; Habing, H. J.; Van Duinen, R.; Aumann, H. H.; Beichman, C. A.; Baud, B.; Beintema, D. A.; Boggess, N.; Clegg, P. E.; De Jong, T.

    1984-01-01

    The Infrared Astronomical Satellite (IRAS) consists of a spacecraft and a liquid helium cryostat that contains a cooled IR telescope. The telescope's focal plane assembly is cooled to less than 3 K, and contains 62 IR detectors in the survey array which are arranged so that every source crossing the field of view can be seen by at least two detectors in each of four wavelength bands. The satellite was launched into a 900 km-altitude near-polar orbit, and its cryogenic helium supply was exhausted on November 22, 1983. By mission's end, 72 percent of the sky had been observed with three or more hours-confirming scans, and 95 percent with two or more hours-confirming scans. About 2000 stars detected at 12 and 25 microns early in the mission, and identified in the SAO (1966) catalog, have a positional uncertainty ellipse whose axes are 45 x 9 arcsec for an hours-confirmed source.

  14. Optical System Design and Integration of the Mercury Laser Altimeter

    Science.gov (United States)

    Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger

    2005-01-01

    The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.

  15. FireBird - a small satellite fire monitoring mission: Status and first results

    Science.gov (United States)

    Lorenz, Eckehard; Rücker, Gernot; Terzibaschian, Thomas; Klein, Doris; Tiemann, Joachim

    2014-05-01

    The scientific mission FireBird is operated by the German Aerospace Center (DLR) and consists of two small satellites. The first satellite - TET-1 - was successfully launched from Baikonur, Russia in July 2012. Its first year in orbit was dedicated to a number of experiments within the framework of the DLR On Orbit Verification (OOV) program which is dedicated to technology testing in space. After successful completion of its OOV phase, TET-1 was handed over to the DLR FireBird mission and is now a dedicated Earth Observation mission. Its primary goal is sensing of hot phenomena such as wildfires, volcanoes, gas flares and industrial hotspots. The second satellite, BiROS is scheduled for launch in the second or third quarter of 2015. The satellite builds on the heritage of the DLR BIRD (BIspectral Infrared Detection) mission and delivers quantitative information (such as Fire Radiative Power, FRP) at a spatial resolution of 350 m, superior to any current fire enabled satellite system such as NPP VIIRS, MODIS or Meteosat SEVIRI. The satellite is undergoing a four month validation phase during which satellite operations are adapted to the new mission goals of FireBIRD and processing capacities are established to guarantee swift processing and delivery of high quality data. The validation phase started with an informal Operational Readiness Review and will be completed with a formal review, covering all aspects of the space and ground segments. The satellite is equipped with a camera with a 42 m ground pixel size in the red, green and near infrared spectral range, and a 370 m ground pixel size camera in the mid and thermal infrared with a swath of 185 km. The satellite can be pointed towards a target in order to enhance observation frequency. First results of the FireBird mission include a ground validation experiment and acquisitions over fires across the world. Once the validation phase is finished the data will be made available to a wide scientific community.

  16. PoPSat: The Polar Precipitation Satellite Mission

    Science.gov (United States)

    Binder, Matthias J.; Agten, Dries; Arago-Higueras, Nadia; Borderies, Mary; Diaz-Schümmer, Carlos; Jamali, Maryam; Jimenez-Lluva, David; Kiefer, Joshua; Larsson, Anna; Lopez-Gilabert, Lola; Mione, Michele; Mould, Toby JD; Pavesi, Sara; Roth, Georg; Tomicic, Maja

    2017-04-01

    The terrestrial water cycle is one of many unique regulatory systems on planet Earth. It is directly responsible for sustaining biological life on land and human populations by ensuring sustained crop yields. However, this delicate balanced system continues to be influenced significantly by a changing climate, which has had drastic impacts particularly on the polar regions. Precipitation is a key process in the weather and climate system, due to its storage, transport and release of latent heat in the atmosphere. It has been extensively investigated in low latitudes, in which detailed models have been established for weather prediction. However, a gap has been left in higher latitudes above 65°, which show the strongest response to climate changes and where increasing precipitations have been foreseen in the future. In order to establish a global perspective of atmospheric processes, space observation of high-latitude areas is crucial to produce globally consistent data. The increasing demand for those data has driven a critical need to devise a mission which fills the gaps in current climate models. The authors propose the Polar Precipitation Satellite (PoPSat), an innovative satellite mission to provide enhanced observation of light and medium precipitation, focusing on snowfall and light rain in high latitudes. PoPSat is the first mission aimed to provide high resolution 3D structural information about snow and light precipitation systems and cloud structure in the covered areas. The satellite is equipped with a dual band (Ka and W band) phased-array radar. These antennas provide a horizontal resolution of 2 km and 4 km respectively which will exceed all other observations made to date at high-latitudes, while providing the additional capability to monitor snowfall. The data gathered will be compatible and complementary with measurements made during previous missions. PoPSat has been designed to fly on a sun-synchronous, dawn-dusk orbit at 460 km. This orbit

  17. New satellite altimetry products for coastal oceans

    Science.gov (United States)

    Dufau, Claire; Mercier, F.; Ablain, M.; Dibarboure, G.; Carrere, L.; Labroue, S.; Obligis, E.; Sicard, P.; Thibaut, P.; Birol, F.; Bronner, E.; Lombard, A.; Picot, N.

    Since the launch of Topex-Poseidon in 1992, satellite altimetry has become one of the most essential elements of the Earth's observing system. Its global view of the ocean state has permitted numerous improvements in the environment understanding, particularly in the global monitoring of climate changes and ocean circulation. Near the coastlines where human activities have a major impact on the ocean, satellite altimeter techniques are unfortunately limited by a growth of their error budget. This quality loss is due to land contamination in the altimetric and radiometric footprints but also to inaccurate geophysical corrections (tides, high-frequency processes linked to atmospheric forcing).Despite instrumental perturbations by emerged lands until 10 km (altimeter) and 50 km (radiometer) off the coasts, measurements are made and may contain useful information for coastal studies. In order to recover these data close to the coast, the French Spatial Agency (CNES) has funded the development of the PISTACH prototype dedicated to Jason-2 altimeter processing in coastal ocean. Since November 2008, these new satellite altimeter products have been providing new retracking solutions, several state-of-the-art or with higher resolution corrections in addition to standard fields. This presentation will present and illustrate this new set of satellite data for the coastal oceans.

  18. Definition of technology development missions for early space station satellite servicing, volume 1

    Science.gov (United States)

    1983-01-01

    The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.

  19. Adding a Mission to the Joint Polar Satellite System (JPSS) Common Ground System (CGS)

    Science.gov (United States)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar-orbiting Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 With this established infrastructure and existing suite of missions, the CGS

  20. Insertion, Validation, and Application of Barotropic and Baroclinic Tides in 1/12 and 1/25 Degree Global HYCOM

    Science.gov (United States)

    2013-09-30

    implications for the development of the proposed wide-swath satellite altimeter (NASA/CNES SWOT mission). Three-dimensional maps of internal-wave driven...planned wide-swath satellite altimeter mission ( SWOT ). 4 --Conrad Luecke, graduate student in the UM Department of Earth and Environmental Sciences...harmonic analysis . If instead they are mostly non-stationary, then harmonic analysis will not suffice. In Figure 2 we display the non-stationarity as

  1. Data Quality Assessment of In Situ and Altimeter Observations Through Two-Way Intercomparison Methods

    Science.gov (United States)

    Guinehut, Stephanie; Valladeau, Guillaume; Legeais, Jean-Francois; Rio, Marie-Helene; Ablain, Michael; Larnicol, Gilles

    2013-09-01

    This proceeding presents an overview of the two-way inter-comparison activities performed at CLS for both space and in situ observation agencies and why this activity is a required step to obtain accurate and homogenous data sets that can then be used together for climate studies or in assimilation/validation tools. We first describe the work performed in the frame of the SALP program to assess the stability of altimeter missions through SSH comparisons with tide gauges (GLOSS/CLIVAR network). Then, we show how the SSH comparison between the Argo array and altimeter time series allows the detection of drifts or jumps in altimeter (SALP program) but also for some Argo floats (Ifremer/Coriolis center). Lastly, we describe how the combine use of altimeter and wind observations helps the detection of drogue loss of surface drifting buoys (GDP network) and allow the computation of a correction term for wind slippage.

  2. Formation flying within a constellation of nano-satellites the QB50 mission

    NARCIS (Netherlands)

    Gill, E.K.A.; Sundaramoorthy, P.; Bouwmeester, J.; Zandbergen, B.; Reinhard, R.

    2010-01-01

    QB50 is a mission establishing an international network of 50 nano-satellites for multi-point, in-situ measurements in the lower thermosphere and re-entry research. As part of the QB50 mission, the Delft University of Technology intends to contribute two nano-satellites both being equipped with a

  3. A satellite constellation optimization for a regional GNSS remote sensing mission

    Science.gov (United States)

    Gavili Kilaneh, Narin; Mashhadi Hossainali, Masoud

    2017-04-01

    Due to the recent advances in the Global Navigation Satellite System Remote sensing (GNSS¬R) applications, optimization of a satellite orbit to investigate the Earth's properties seems significant. The comparison of the GNSS direct and reflected signals received by a Low Earth Orbit (LEO) satellite introduces a new technique to remotely sense the Earth. Several GNSS¬R missions including Cyclone Global Navigation Satellite System (CYGNSS) have been proposed for different applications such as the ocean wind speed and height monitoring. The geometric optimization of the satellite orbit before starting the mission is a key step for every space mission. Since satellite constellation design varies depending on the application, we have focused on the required geometric criteria for oceanography applications in a specified region. Here, the total number of specular points, their spatial distribution and the accuracy of their position are assumed to be sufficient for oceanography applications. Gleason's method is used to determine the position of specular points. We considered the 2-D lattice and 3-D lattice theory of flower constellation to survey whether a circular orbit or an elliptical one is suitable to improve the solution. Genetic algorithm is implemented to solve the problem. To check the visibility condition between the LEO and GPS satellites, the satellite initial state is propagated by a variable step size numerical integration method. Constellation orbit parameters achieved by optimization provide a better resolution and precession for the specular points in the study area of this research.

  4. Auto Mission Planning System Design for Imaging Satellites and Its Applications in Environmental Field

    Directory of Open Access Journals (Sweden)

    He Yongming

    2016-10-01

    Full Text Available Satellite hardware has reached a level of development that enables imaging satellites to realize applications in the area of meteorology and environmental monitoring. As the requirements in terms of feasibility and the actual profit achieved by satellite applications increase, we need to comprehensively consider the actual status, constraints, unpredictable information, and complicated requirements. The management of this complex information and the allocation of satellite resources to realize image acquisition have become essential for enhancing the efficiency of satellite instrumentation. In view of this, we designed a satellite auto mission planning system, which includes two sub-systems: the imaging satellite itself and the ground base, and these systems would then collaborate to process complicated missions: the satellite mainly focuses on mission planning and functions according to actual parameters, whereas the ground base provides auxiliary information, management, and control. Based on the requirements analysis, we have devised the application scenarios, main module, and key techniques. Comparison of the simulation results of the system, confirmed the feasibility and optimization efficiency of the system framework, which also stimulates new thinking for the method of monitoring environment and design of mission planning systems.

  5. Artificial intelligence in a mission operations and satellite test environment

    Science.gov (United States)

    Busse, Carl

    1988-01-01

    A Generic Mission Operations System using Expert System technology to demonstrate the potential of Artificial Intelligence (AI) automated monitor and control functions in a Mission Operations and Satellite Test environment will be developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Expert system techniques in a real time operation environment are being studied and applied to science and engineering data processing. Advanced decommutation schemes and intelligent display technology will be examined to develop imaginative improvements in rapid interpretation and distribution of information. The Generic Payload Operations Control Center (GPOCC) will demonstrate improved data handling accuracy, flexibility, and responsiveness in a complex mission environment. The ultimate goal is to automate repetitious mission operations, instrument, and satellite test functions by the applications of expert system technology and artificial intelligence resources and to enhance the level of man-machine sophistication.

  6. Time series for water levels in virtual gauge stations in the Amazon basin using satellite radar altimetry

    Directory of Open Access Journals (Sweden)

    Juan Gabriel León Hernández

    2009-01-01

    Full Text Available Using satellite altimeter radar technology for monitoring changes in water levels at continental scale is a relatively recent ad- vance. Several studies have demonstrated the interest being shown in applying this technology to monitoring the hydrographic patterns of large-scale basins worldwide. The current study presents the inference of time series representing changes in water le- vel for bodies of water by defining virtual gauge stations deduced for two very different rivers in terms of their biophysical and to- pographic characteristics; the two rivers were the Rio Negro in the Brazilian Amazon Basin and the Caqueta River on the Colombian side. The differences between the two rivers revealed the limits of satellite radar altimeter when applied to continental waters (±20cm and ±40 cm precision for Río Negro and Río Caquetá, respectively. However, applying this technology seems very promising, since new missions have been scheduled to be put into orbit by the end of 2008.

  7. Magnetic dipole moment estimation and compensation for an accurate attitude control in nano-satellite missions

    Science.gov (United States)

    Inamori, Takaya; Sako, Nobutada; Nakasuka, Shinichi

    2011-06-01

    Nano-satellites provide space access to broader range of satellite developers and attract interests as an application of the space developments. These days several new nano-satellite missions are proposed with sophisticated objectives such as remote-sensing and observation of astronomical objects. In these advanced missions, some nano-satellites must meet strict attitude requirements for obtaining scientific data or images. For LEO nano-satellite, a magnetic attitude disturbance dominates over other environmental disturbances as a result of small moment of inertia, and this effect should be cancelled for a precise attitude control. This research focuses on how to cancel the magnetic disturbance in orbit. This paper presents a unique method to estimate and compensate the residual magnetic moment, which interacts with the geomagnetic field and causes the magnetic disturbance. An extended Kalman filter is used to estimate the magnetic disturbance. For more practical considerations of the magnetic disturbance compensation, this method has been examined in the PRISM (Pico-satellite for Remote-sensing and Innovative Space Missions). This method will be also used for a nano-astrometry satellite mission. This paper concludes that use of the magnetic disturbance estimation and compensation are useful for nano-satellites missions which require a high accurate attitude control.

  8. Schedule Optimization of Imaging Missions for Multiple Satellites and Ground Stations Using Genetic Algorithm

    Science.gov (United States)

    Lee, Junghyun; Kim, Heewon; Chung, Hyun; Kim, Haedong; Choi, Sujin; Jung, Okchul; Chung, Daewon; Ko, Kwanghee

    2018-04-01

    In this paper, we propose a method that uses a genetic algorithm for the dynamic schedule optimization of imaging missions for multiple satellites and ground systems. In particular, the visibility conflicts of communication and mission operation using satellite resources (electric power and onboard memory) are integrated in sequence. Resource consumption and restoration are considered in the optimization process. Image acquisition is an essential part of satellite missions and is performed via a series of subtasks such as command uplink, image capturing, image storing, and image downlink. An objective function for optimization is designed to maximize the usability by considering the following components: user-assigned priority, resource consumption, and image-acquisition time. For the simulation, a series of hypothetical imaging missions are allocated to a multi-satellite control system comprising five satellites and three ground stations having S- and X-band antennas. To demonstrate the performance of the proposed method, simulations are performed via three operation modes: general, commercial, and tactical.

  9. Ocean current surface measurement using dynamic elevations obtained by the GEOS-3 radar altimeter

    Science.gov (United States)

    Leitao, C. D.; Huang, N. E.; Parra, C. G.

    1977-01-01

    Remote Sensing of the ocean surface from the GEOS-3 satellite using radar altimeter data has confirmed that the altimeter can detect the dynamic ocean topographic elevations relative to an equipotential surface, thus resulting in a reliable direct measurement of the ocean surface. Maps of the ocean dynamic topography calculated over a one month period and with 20 cm contour interval are prepared for the last half of 1975. The Gulf Stream is observed by the rapid slope change shown by the crowding of contours. Cold eddies associated with the current are seen as roughly circular depressions.

  10. Onboard autonomous mission re-planning for multi-satellite system

    Science.gov (United States)

    Zheng, Zixuan; Guo, Jian; Gill, Eberhard

    2018-04-01

    This paper presents an onboard autonomous mission re-planning system for Multi-Satellites System (MSS) to perform onboard re-planing in disruptive situations. The proposed re-planning system can deal with different potential emergency situations. This paper uses Multi-Objective Hybrid Dynamic Mutation Genetic Algorithm (MO-HDM GA) combined with re-planning techniques as the core algorithm. The Cyclically Re-planning Method (CRM) and the Near Real-time Re-planning Method (NRRM) are developed to meet different mission requirements. Simulations results show that both methods can provide feasible re-planning sequences under unforeseen situations. The comparisons illustrate that using the CRM is average 20% faster than the NRRM on computation time. However, by using the NRRM more raw data can be observed and transmitted than using the CRM within the same period. The usability of this onboard re-planning system is not limited to multi-satellite system. Other mission planning and re-planning problems related to autonomous multiple vehicles with similar demands are also applicable.

  11. CAWRES: A Waveform Retracking Fuzzy Expert System for Optimizing Coastal Sea Levels from Jason-1 and Jason-2 Satellite Altimetry Data

    Directory of Open Access Journals (Sweden)

    Nurul Hazrina Idris

    2017-06-01

    Full Text Available This paper presents the Coastal Altimetry Waveform Retracking Expert System (CAWRES, a novel method to optimise the Jason satellite altimetric sea levels from multiple retracking solutions. CAWRES’ aim is to achieve the highest possible accuracy of coastal sea levels, thus bringing measurement of radar altimetry data closer to the coast. The principles of CAWRES are twofold. The first is to reprocess altimeter waveforms using the optimal retracker, which is sought based on the analysis from a fuzzy expert system. The second is to minimise the relative offset in the retrieved sea levels caused by switching from one retracker to another using a neural network. The innovative system is validated against geoid height and tide gauges in the Great Barrier Reef, Australia for Jason-1 and Jason-2 satellite missions. The regional investigations have demonstrated that the CAWRES can effectively enhance the quality of 20 Hz sea level data and recover up to 16% more data than the standard MLE4 retracker over the tested region. Comparison against tide gauge indicates that the CAWRES sea levels are more reliable than those of Sensor Geophysical Data Records (SGDR products, because the former has a higher (≥0.77 temporal correlation and smaller (≤19 cm root mean square errors. The results demonstrate that the CAWRES can be applied to coastal regions elsewhere as well as other satellite altimeter missions.

  12. Assessment of Current Estimates of Global and Regional Mean Sea Level from the TOPEX/Poseidon, Jason-1, and OSTM 17-Year Record

    Science.gov (United States)

    Beckley, Brian D.; Ray, Richard D.; Lemoine, Frank G.; Zelensky, N. P.; Holmes, S. A.; Desal, Shailen D.; Brown, Shannon; Mitchum, G. T.; Jacob, Samuel; Luthcke, Scott B.

    2010-01-01

    The science value of satellite altimeter observations has grown dramatically over time as enabling models and technologies have increased the value of data acquired on both past and present missions. With the prospect of an observational time series extending into several decades from TOPEX/Poseidon through Jason-1 and the Ocean Surface Topography Mission (OSTM), and further in time with a future set of operational altimeters, researchers are pushing the bounds of current technology and modeling capability in order to monitor global sea level rate at an accuracy of a few tenths of a mm/yr. The measurement of mean sea-level change from satellite altimetry requires an extreme stability of the altimeter measurement system since the signal being measured is at the level of a few mm/yr. This means that the orbit and reference frame within which the altimeter measurements are situated, and the associated altimeter corrections, must be stable and accurate enough to permit a robust MSL estimate. Foremost, orbit quality and consistency are critical to satellite altimeter measurement accuracy. The orbit defines the altimeter reference frame, and orbit error directly affects the altimeter measurement. Orbit error remains a major component in the error budget of all past and present altimeter missions. For example, inconsistencies in the International Terrestrial Reference Frame (ITRF) used to produce the precision orbits at different times cause systematic inconsistencies to appear in the multimission time-frame between TOPEX and Jason-1, and can affect the intermission calibration of these data. In an effort to adhere to cross mission consistency, we have generated the full time series of orbits for TOPEX/Poseidon (TP), Jason-1, and OSTM based on recent improvements in the satellite force models, reference systems, and modeling strategies. The recent release of the entire revised Jason-1 Geophysical Data Records, and recalibration of the microwave radiometer correction also

  13. Offshore limit of coastal ocean variability identified from hydrography and altimeter data in the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, M.K.; Swamy, G.N.; Somayajulu, Y.K.

    In this communication, we describe a hitherto-unknown offshore limit to the coastal ocean variability signatures away from the continental shelf in the eastern Arabian Sea, based on hydrographic observations and satellite altimeter (TOPEX...

  14. A preliminary study of level 1A data processing of a low–low satellite to satellite tracking mission

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-09-01

    Full Text Available With the Gravity Recovery and Climate Experiment (GRACE mission as the prime example, an overview is given on the management and processing of Level 1A data of a low–low satellite to satellite tracking mission. To illustrate the underlying principle and algorithm, a detailed study is made on the K-band ranging (KBR assembly, which includes the measurement principles, modeling of noises, the generation of Level 1A data from that of Level 0 as well as Level 1A to Level 1B data processing.

  15. Numerical experiment with modelled return echo of a satellite

    Indian Academy of Sciences (India)

    Abstract. We have simulated the return echo of a satellite altimeter from a rough ocean surface using an analytical formula and have studied its sensitivity with respect to various oceanic and altimeter parameters. Our numerical expcriment shows that for normally observed significant wave heights (SWFI) the effect of ...

  16. Advancing the capabilities of reservoir remote sensing by leveraging multi-source satellite data

    Science.gov (United States)

    Gao, H.; Zhang, S.; Zhao, G.; Li, Y.

    2017-12-01

    With a total global capacity of more than 6000 km3, reservoirs play a key role in the hydrological cycle and in water resources management. However, essential reservoir data (e.g., elevation, storage, and evaporation loss) are usually not shared at a large scale. While satellite remote sensing offers a unique opportunity for monitoring large reservoirs from space, the commonly used radar altimeters can only detect storage variations of about 15% of global lakes at a repeat period of 10 days or longer. To advance the capabilities of reservoir sensing, we developed a series of algorithms geared towards generating long term reservoir records at improved spatial coverage, and at improved temporal resolution. To this goal, observations are leveraged from multiple satellite sensors, which include radar/laser altimeters, imagers, and passive microwave radiometers. In South Asia, we demonstrate that reservoir storage can be estimated under all-weather conditions at a 4 day time step, with the total capacity of monitored reservoirs increased to 45%. Within the Continuous United States, a first Landsat based evaporation loss dataset was developed (containing 204 reservoirs) from 1984 to 2011. The evaporation trends of these reservoirs are identified and the causes are analyzed. All of these algorithms and products were validated with gauge observations. Future satellite missions, which will make significant contributions to monitoring global reservoirs, are also discussed.

  17. The impact of the snow cover on sea-ice thickness products retrieved by Ku-band radar altimeters

    Science.gov (United States)

    Ricker, R.; Hendricks, S.; Helm, V.; Perovich, D. K.

    2015-12-01

    Snow on sea ice is a relevant polar climate parameter related to ocean-atmospheric interactions and surface albedo. It also remains an important factor for sea-ice thickness products retrieved from Ku-band satellite radar altimeters like Envisat or CryoSat-2, which is currently on its mission and the subject of many recent studies. Such satellites sense the height of the sea-ice surface above the sea level, which is called sea-ice freeboard. By assuming hydrostatic equilibrium and that the main scattering horizon is given by the snow-ice interface, the freeboard can be transformed into sea-ice thickness. Therefore, information about the snow load on hemispherical scale is crucial. Due to the lack of sufficient satellite products, only climatological values are used in current studies. Since such values do not represent the high variability of snow distribution in the Arctic, they can be a substantial contributor to the total sea-ice thickness uncertainty budget. Secondly, recent studies suggest that the snow layer cannot be considered as homogenous, but possibly rather featuring a complex stratigraphy due to wind compaction and/or ice lenses. Therefore, the Ku-band radar signal can be scattered at internal layers, causing a shift of the main scattering horizon towards the snow surface. This alters the freeboard and thickness retrieval as the assumption that the main scattering horizon is given by the snow-ice interface is no longer valid and introduces a bias. Here, we present estimates for the impact of snow depth uncertainties and snow properties on CryoSat-2 sea-ice thickness retrievals. We therefore compare CryoSat-2 freeboard measurements with field data from ice mass-balance buoys and aircraft campaigns from the CryoSat Validation Experiment. This unique validation dataset includes airborne laser scanner and radar altimeter measurements in spring coincident to CryoSat-2 overflights, and allows us to evaluate how the main scattering horizon is altered by the

  18. The Fiber Optic System for the Advanced Topographic Laser Altimeter System (ATLAS) Instrument

    Science.gov (United States)

    Ott, Melanie N.; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm. The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

  19. The fiber optic system for the Advanced Topographic Laser Altimeter System (ATLAS) instrument.

    Science.gov (United States)

    Ott, Melanie N; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-08-28

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

  20. The influence of rain and clouds on a satellite dual frequency radar altimeter system operating at 13 and 35 GHz

    Science.gov (United States)

    Walsh, E. J.; Monaldo, F. M.; Goldhirsh, J.

    1983-01-01

    The effects of inhomogeneous spatial attenuation resulting from clouds and rain on the altimeter estimate of the range to mean sea level are modelled. It is demonstrated that typical cloud and rain attenuation variability at commonly expected spatial scales can significantly degrade altimeter range precision. Rain cell and cloud scale sizes and attenuations are considered as factors. The model simulation of altimeter signature distortion is described, and the distortion of individual radar pulse waveforms by different spatial scales of attenuation is considered. Examples of range errors found for models of a single cloud, a rain cell, and cloud streets are discussed.

  1. Sensitivity of Satellite Altimetry Data Assimilation on a Weapon Acoustic Preset Using MODAS

    National Research Council Canada - National Science Library

    Chu, Peter; Mancini, Steven; Gottshall, Eric; Cwalina, David; Barron, Charlie N

    2007-01-01

    ...) is analyzed with SSP derived from the modular ocean data assimilation system (MODAS). The MODAS fields differ in that one uses altimeter data assimilated from three satellites while the other uses no altimeter data...

  2. Analysis and Validation of ZY-3 02 Satellite Laser Altimetry Data

    Directory of Open Access Journals (Sweden)

    LI Guoyuan

    2017-12-01

    Full Text Available ZY-3 02 satellite loaded with Chinese first earth observing satellite laser altimeter,and has been launched successfully on 30th May,2016. In this paper,the theoretical accuracy of the laser altimeter is analyzed,and several experimental areas are used to verify the actual accuracy. At the same time,the application of the laser altimetry data in the field of space-borne photogrammetry is tested. The laser altimetry theoretical accuracy of ZY-3 02 satellite in the flat area (slope less than 2 degrees is about 0.85 m and 14.2 m in the elevation and planimetry direction,respectively. The effective laser altimetry data account for about 23.89%,and near the calibration field the elevation accuracy is 0.89 m,and planimetry accuracy is about 14.76 m. Moreover,the verified elevation accuracy is 1.09 m in the North China by high precision DSM terrain data,and laser footprint points accuracy on the surface of the Bohai inland sea is about 0.47 m. When the laser foot print point is used as elevation control point,the elevation accuracy of the ZY-3 02 satellite stereo images in Shaanxi Weinan can be increased from 11.54 m to 1.90 m without GCPs. Although ZY3-02 satellite laser altimeter is just a test,the results proved that the domestic satellite laser altimetry data can effectively improve the stereo images without GCPs,which will be valuable in the global mapping project. It is suggest that operational laser altimeter equip on the next satellite of ZY-3 serials.

  3. Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

    Directory of Open Access Journals (Sweden)

    Sangwook Park

    2009-12-01

    Full Text Available This paper describes the Flight Dynamics Automation (FDA system for COMS Flight Dynamics System (FDS and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator’s tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system’s quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

  4. Inland and Near Shore Water Profiles Derived from the High Altitude Multiple Altimeter Beam Experimental Lidar (MABEL)

    Science.gov (United States)

    Jasinski, Michael F.; Stoll, Jeremy D.; Cook, William B.; Ondrusek, Michael; Stengel, Eric; Brunt, Kelly

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532 nm laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in icecaps, sea ice and vegetation, the polar-orbital satellite will observe global surface water during its designed three year life span, including inland water bodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype or the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the datasets of three MABEL transects observed from 20 km above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 km in length and included the middle Chesapeake Bay, the near shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABEL's high capability for retrieving surface water height statistics with a mean height precision of approximately 5-7 cm per 100m segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR0, were observed over a range of 1.3 to 9.3 meters depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when solar background rate was low. Near shore bottom reflectance was detected only at the Lake Mead site down to maximum of 10 m under a clear night sky and low turbidity of approximately 1.6 Nephelometric Turbidity Units (NTU). The overall results suggest

  5. Inland and Near-Shore Water Profiles Derived from the High-Altitude Multiple Altimeter Beam Experimental Lidar (MABEL)

    Science.gov (United States)

    Jasinski, Michael F.; Stoll, Jeremy D.; Cook, William B.; Ondrusek, Michael; Stengel, Eric; Brunt, Kelly

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532-nanometer laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in ice caps, sea ice, and vegetation, the polar-orbiting satellite will observe global surface water during its designed three-year life span, including inland waterbodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype, the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high-altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the data sets of three MABEL transects observed from 20 kilometers above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 kilometers in length and included the middle Chesapeake Bay, the near-shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABEL's high capability for retrieving surface water height statistics with a mean height precision ofapproximately 5-7 centimeters per 100-meter segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR (sub 0), were observed over a range of 1.3 to 9.3 meters, depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when the solar background rate was low. Near-shore bottom reflectance was detected only at the Lake Mead site down to a maximum of 10 meters under a clear night sky and low turbidity of approximately 1

  6. Absolute Sea Level Monitoring and Altimeter Calibration At Gavdos, Crete, Greece

    Science.gov (United States)

    Pavlis, E. C.; Gavdos Team

    We present the mean sea level (MSL) monitoring aspect of the altimeter calibration fa- cility under deployment on western Crete and the isle of Gavdos. The Eastern Mediter- ranean area is one of great interest for its intense tectonic activity as well as for its regional oceanography. Recent observations have convincingly demonstrated the im- portance of that area for the regional meteorological and climatological changes. Tide- gauge monitoring with GPS has gained importance lately since tectonics contaminate the inferred sea level variations, and a global network of tide-gauges with long his- torical records can be used as satellite altimeter calibration sites for current and fu- ture missions (e.g. TOPEX/POSEIDON, GFO, JASON-1, ENVISAT, etc.). This is at present a common IOC-GLOSS-IGS effort, already underway (TIGA). Crete hosts two of the oldest tide-gauges in the regional network and our project will further ex- pand it to the south of the island with a new site on the isle of Gavdos, the southernmost European parcel of land. One component of our "GAVDOS" project is the repeated occupation of two already in existence tide-gauge sites at Souda Bay and Heraklion, and their tie to the new facility. We show here initial results from positioning of these sites and some of the available tidal records. Gavdos is situated under a ground-track crossing point of the present T/P and JASON-1 orbits. It is an ideal calibration site if the tectonic motions are monitored precisely and continuously. Our plans include the deployment of additional instrumentation at this site: GPS and DORIS beacons for positioning, transponders for direct calibration, water vapor radiometers, GPS-loaded buoys, airborne surveys with gravimeters and laser profiling lidars, etc., to ensure the best possible and most reliable results.

  7. Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms.

    Science.gov (United States)

    Michael A. Lefskya; Michael Keller; Yong Panga; Plinio B. de Camargod; Maria O. Hunter

    2007-01-01

    The vertical extent of waveforms collected by the Geoscience Laser Altimeter System (onboard ICESat - the Ice, Cloud, and land Elevation Satellite) increases as a function of terrain slope and footprint size (the area on the ground that is illuminated by the laser). Over sloped terrain, returns from both canopy and ground surfaces can occur at the same elevation. As a...

  8. A fixed full-matrix method for determining ice sheet height change from satellite altimeter: an ENVISAT case study in East Antarctica with backscatter analysis

    Science.gov (United States)

    Yang, Yuande; Hwang, Cheinway; E, Dongchen

    2014-09-01

    A new method, called the fixed full-matrix method (FFM), is used to compute height changes at crossovers of satellite altimeter ground tracks. Using the ENVISAT data in East Antarctica, FFM results in crossovers of altimeter heights that are 1.9 and 79 times more than those from the fixed half method (FHM) and the one-row method (ORM). The mean standard error of height changes is about 14 cm from ORM, which is reduced to 7 cm by FHM and to 3 cm by FFM. Unlike FHM, FFM leads to uniform errors in the first-half and second-half height-change time series. FFM has the advantage in improving the accuracy of the change of height and backscattered power over ORM and FHM. Assisted by the ICESat-derived height changes, we determine the optimal threshold correlation coefficient (TCC) for a best correction for the backscatter effect on ENVISAT height changes. The TCC value of 0.92 yields an optimal result for FFM. With this value, FFM yields ENVISAT-derived height change rates in East Antarctica mostly falling between and 3 cm/year, and matching the ICESat result to 0.94 cm/year. The ENVISAT result will provide a constraint on the current mass balance result along the Chinese expedition route CHINARE.

  9. Cryosat: Mission Status, Achievements and Data Access

    Science.gov (United States)

    Parrinello, T.; Mardle, N.; Hoyos Ortega, B.; Bouzinac, C.; Badessi, S.; Frommknecht, B.; Wingham, D.; CryoSat Mission Team

    2011-12-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. Cryosat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. After an intensive but rewarding six months of commissioning, the CryoSat mission entered the science phase in November last year. Data was released to the scientific community in February 2011 and since then, products have been systematically distributed to more than 150 Principal Investigators and used by more than 400 scientists worldwide. This community is increasing every day. Scope of this paper is to describe the current mission status and the main scientific achievements since the start of the science phase. Topics will also include programmatic highlights and information on accessing Cryosat products following the new ESA Earth Observation Data Policy.

  10. SWOT, The Surface Water and Ocean Topography Satellite Mission (Invited)

    Science.gov (United States)

    Alsdorf, D.; Andreadis, K.; Bates, P. D.; Biancamaria, S.; Clark, E.; Durand, M. T.; Fu, L.; Lee, H.; Lettenmaier, D. P.; Mognard, N. M.; Moller, D.; Morrow, R. A.; Rodriguez, E.; Shum, C.

    2009-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of its variability in space and time. Similarly, ocean circulation fundamentally drives global climate variability, yet the ocean current and eddy field that affects ocean circulation and heat transport at the sub-mesoscale resolution and particularly near coastal and estuary regions, is poorly known. About 50% of the vertical exchange of water properties (nutrients, dissovled CO2, heat, etc) in the upper ocean is taking place at the sub-mesoscale. Measurements from the Surface Water and Ocean Topography satellite mission (SWOT) will make strides in understanding these processes and improving global ocean models for studying climate change. SWOT is a swath-based interferometric-altimeter designed to acquire elevations of ocean and terrestrial water surfaces at unprecedented spatial and temporal resolutions. The mission will provide measurements of storage changes in lakes, reservoirs, and wetlands as well as estimates of discharge in rivers. These measurements are important for global water and energy budgets, constraining hydrodynamic models of floods, carbon evasion through wetlands, and water management, especially in developing nations. Perhaps most importantly, SWOT measurements will provide a fundamental understanding of the spatial and temporal variations in global surface waters, which for many countries are the primary source of water. An on-going effort, the “virtual mission” (VM) is designed to help constrain the required height and slope accuracies, the spatial sampling (both pixels and orbital coverage), and the trade-offs in various temporal revisits. Example results include the following: (1) Ensemble Kalman filtering of VM simulations recover water depth and discharge, reducing the discharge RMSE from 23.2% to 10.0% over an 84-day simulation period, relative to a simulation without assimilation. (2) Ensemble-based data assimilation of SWOT like measurements yields

  11. Cryosat: ESA's ice Explorer Mission. 7 years in operations: status and future outlook

    Science.gov (United States)

    Parrinello, Tommaso

    2017-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. Since its launch, CryoSat data has been used by different scientific communities on a number of Earth Science topics also beyond its prime mission objectives, cryosphere. Scope of this paper is to describe the current mission status and provide programmatic highlights and information on the next development of the mission in its extended period of operations (2017-2019).

  12. Spatial Mapping of NEO 2008 EV5 Using Small Satellite Formation Flying and Steresoscopic Technology

    Science.gov (United States)

    Gonzalez, Juan; Singh Derewa, Chrishma

    2016-10-01

    NASA is currently developing the first-ever robotic Asteroid Redirect Robotic Mission (ARRM) to the near-Earth asteroid 2008 EV5 with the objective to capture a multi-ton boulder from the asteroids surface and use its mass to redirect its parent into a CIS lunar orbit where astronauts will study its physical and chemical composition.A critical step towards achieving this mission is to effectively map the target asteroid, identify the candidate boulder for retrieval and characterize its critical parameters. Currently, ARRM utilizes a laser altimeter to characterize the height of the boulders and mapping for final autonomous control of the capture. The proposed Lava-Kusha mission provides the increased of stereoscopic imaging and mapping, not only the Earthward side of the asteroid which has been observed for possible landing sites, but mapping the whole asteroid. LKM will enhance the fidelity of the data collected by the laser altimeter and gather improved topographic data for future Orion missions to 2008 EV5 once in cis lunar space.LKM consists of two low cost small satellites (6U) as a part of the ARRM. They will launch with ARRM as an integrated part of the system. Once at the target, this formation of pathfinder satellites will image the mission critical boulder to ensure the system design can support its removal. LKM will conduct a series of flybys prior to ARRM's rendezvous. LKMs stereoscopic cameras will provide detailed surveys of the boulder's terrain and environment to ensure ARRM can operate safely, reach the location and interface with the boulder. The LKM attitude control and cold gas propulsion system will enable formation maintenance maneuvers for global mapping of asteroid 2008 EV5 at an altitude of 100 km to a high-spatial resolution imaging altitude of 5 km.LKM will demonstrate formation flying in deep space and the reliability of stereoscopic cameras to precisely identify a specific target and provide physical characterization of an asteroid. An

  13. SPACE-BORNE LASER ALTIMETER GEOLOCATION ERROR ANALYSIS

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2018-05-01

    Full Text Available This paper reviews the development of space-borne laser altimetry technology over the past 40 years. Taking the ICESAT satellite as an example, a rigorous space-borne laser altimeter geolocation model is studied, and an error propagation equation is derived. The influence of the main error sources, such as the platform positioning error, attitude measurement error, pointing angle measurement error and range measurement error, on the geolocation accuracy of the laser spot are analysed by simulated experiments. The reasons for the different influences on geolocation accuracy in different directions are discussed, and to satisfy the accuracy of the laser control point, a design index for each error source is put forward.

  14. Level-2 product generation for the Swarm satellite constellation mission

    DEFF Research Database (Denmark)

    Olsen, Poul Erik Holmdahl; Tøffner-Clausen, Lars; Olsen, Nils

    In order to take advantage of the unique constellation aspect of ESA's Swarm constellation mission, considerably advanced data analysis tools have been developed. The Swarm ESL/SCARF (Satellite Constellation Application and Research Facility), a consortium of several research institutions, derives...

  15. Potential fields & satellite missions: what they tell us about the Earth's core?

    Science.gov (United States)

    Mandea, M.; Panet, I.; Lesur, V.; de Viron, O.; Diament, M.; Le Mouël, J.

    2012-12-01

    Since the advent of satellite potential field missions, the search to find information they can carry about the Earth's core has been motivated both by an interest in understanding the structure of dynamics of the Earth's interior and by the possibility of applying new space data analysis. While it is agreed upon that the magnetic field measurements from space bring interesting information on the rapid variations of the core magnetic field and flows associated with, the question turns to whether the core process can have a signature in the space gravity data. Here, we tackle this question, in the light of the recent data from the GRACE mission, that reach an unprecedented precision. Our study is based on eight years of high-resolution, high-accuracy gravity and magnetic satellite data, provided by the GRACE and CHAMP satellite missions. From the GRACE CNES/GRGS geoid solutions, we have emphasized the long-term variability by using a specific post-processing technique. From the CHAMP magnetic data we have computed models for the core magnetic field and its temporal variations, and the flow at the top of the core. A correlation analysis between the gravity and magnetic gridded series indicates that the inter-annual changes in the core magnetic field - under a region from the Atlantic to Indian Oceans - coincide with similar changes in the gravity field. These results should be considered as a constituent when planning new Earth's observation space missions and future innovations relevant to both gravity (after GRACE Follow-On) and magnetic (after Swarm) missions.

  16. Definition of technology development missions for early space station satellite servicing, volume 2

    Science.gov (United States)

    1983-01-01

    The results of all aspects of the early space station satellite servicing study tasks are presented. These results include identification of servicing tasks (and locations), identification of servicing mission system and detailed objectives, functional/operational requirements analyses of multiple servicing scenarios, assessment of critical servicing technology capabilities and development of an evolutionary capability plan, design and validation of selected servicing technology development missions (TDMs), identification of space station satellite servicing accommodation needs, and the cost and schedule implications of acquiring both required technology capability development and conducting the selected TDMs.

  17. The OSIRIS-REx Laser Altimeter (OLA) Investigation and Instrument

    Science.gov (United States)

    Daly, M. G.; Barnouin, O. S.; Dickinson, C.; Seabrook, J.; Johnson, C. L.; Cunningham, G.; Haltigin, T.; Gaudreau, D.; Brunet, C.; Aslam, I.; Taylor, A.; Bierhaus, E. B.; Boynton, W.; Nolan, M.; Lauretta, D. S.

    2017-10-01

    The Canadian Space Agency (CSA) has contributed to the Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) spacecraft the OSIRIS-REx Laser Altimeter (OLA). The OSIRIS-REx mission will sample asteroid 101955 Bennu, the first B-type asteroid to be visited by a spacecraft. Bennu is thought to be primitive, carbonaceous, and spectrally most closely related to CI and/or CM meteorites. As a scanning laser altimeter, the OLA instrument will measure the range between the OSIRIS-REx spacecraft and the surface of Bennu to produce digital terrain maps of unprecedented spatial scales for a planetary mission. The digital terrain maps produced will measure ˜7 cm per pixel globally, and ˜3 cm per pixel at specific sample sites. In addition, OLA data will be used to constrain and refine the spacecraft trajectories. Global maps and highly accurate spacecraft trajectory estimates are critical to infer the internal structure of the asteroid. The global and regional maps also are key to gain new insights into the surface processes acting across Bennu, which inform the selection of the OSIRIS-REx sample site. These, in turn, are essential for understanding the provenance of the regolith sample collected by the OSIRIS-REx spacecraft. The OLA data also are important for quantifying any hazards near the selected OSIRIS-REx sample site and for evaluating the range of tilts at the sampling site for comparison against the capabilities of the sample acquisition device.

  18. Study of the Penetration Bias of ENVISAT Altimeter Observations over Antarctica in Comparison to ICESat Observations

    Directory of Open Access Journals (Sweden)

    Aurélie Michel

    2014-09-01

    Full Text Available The aim of this article is to characterize the penetration bias of the ENVIronmental SATellite (ENVISAT radar altimeter over the Antarctic ice sheet through comparison with the more accurate measurements of the Ice, Cloud and land Elevation Satellite (ICESat altimeter at crossover points. We studied the difference between ENVISAT and ICESat fluctuations over six years. We observed the same patterns between the leading edge width and the elevation difference. Both parameters are linked, and the major bias is due to the lengthening of the leading edge width due to the radar penetration. We show that the elevation difference between both altimeters and the leading edge width are linearly well-linked with a 0.8 Pearson correlation coefficient, whereas the slope effect over the coasts is difficult to analyze. When we analyze each crossover point temporal evolution locally, the linear correlation between the leading edge width and the elevation difference is between −0.6 and −1. Fitting a linear model between them, we find a reliability index greater than 0.7 for the Antarctic Plateau and Dronning Maud Land, which confirms that the penetration effect has a linear influence on the retrieved height. Moreover, we present results from SARAL/AltiKa (launched in February 2013 that confirm SARAL/AltiKa accuracy and the promising information it will provide.

  19. Mission studies on constellation of LEO satellites with remote-sensing and communication payloads

    Science.gov (United States)

    Chen, Chia-Ray; Hwang, Feng-Tai; Hsueh, Chuang-Wei

    2017-09-01

    Revisiting time and global coverage are two major requirements for most of the remote sensing satellites. Constellation of satellites can get the benefit of short revisit time and global coverage. Typically, remote sensing satellites prefer to choose Sun Synchronous Orbit (SSO) because of fixed revisiting time and Sun beta angle. The system design and mission operation will be simple and straightforward. However, if we focus on providing remote sensing and store-and-forward communication services for low latitude countries, Sun Synchronous Orbit will not be the best choice because we need more satellites to cover the communication service gap in low latitude region. Sometimes the design drivers for remote sensing payloads are conflicted with the communication payloads. For example, lower orbit altitude is better for remote sensing payload performance, but the communication service zone will be smaller and we need more satellites to provide all time communication service. The current studies focus on how to provide remote sensing and communication services for low latitude countries. A cost effective approach for the mission, i.e. constellation of microsatellites, will be evaluated in this paper.

  20. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    As accuracy of satellite precipitation estimates improves and observation frequency increases, application of those data to societal benefit areas, such as weather forecasts and flood predictions, is expected, in addition to research of precipitation climatology to analyze precipitation systems. There is, however, limitation on single satellite observation in coverage and frequency. Currently, the Global Precipitation Measurement (GPM) mission is scheduled under international collaboration to fulfill various user requirements that cannot be achieved by the single satellite, like the Tropical Rainfall Measurement Mission (TRMM). The GPM mission is an international mission to achieve high-accurate and high-frequent rainfall observation over a global area. GPM is composed of a TRMM-like non-sun-synchronous orbit satellite (GPM core satellite) and constellation of satellites carrying microwave radiometer instruments. The GPM core satellite carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). Development of DPR instrument is in good progress for scheduled launch in 2013, and DPR Critical Design Review has completed in July - September 2009. Constellation satellites, which carry a microwave imager and/or sounder, are planned to be launched around 2013 by each partner agency for its own purpose, and will contribute to extending coverage and increasing frequency. JAXA's future mission, the Global Change Observation Mission (GCOM) - Water (GCOM-W) satellite will be one of constellation satellites. The first generation of GCOM-W satellite is scheduled to be launched in 2011, and it carries the Advanced Microwave Scanning Radiometer 2 (AMSR2), which is being developed based on the experience of the AMSR-E on EOS Aqua satellite

  1. Cryosat: ESA'S Ice Explorer Mission, 6 years in operations: status and achievements

    Science.gov (United States)

    Parrinello, Tommaso; Maestroni, Elia; Krassenburg, Mike; Badessi, Stefano; Bouffard, Jerome; Frommknecht, Bjorn; Davidson, Malcolm; Fornari, Marco; Scagliola, Michele

    2016-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. The CryoSat mission reached its 6th years of operational life in April 2016. Since its launch has delivered high quality products to the worldwide cryospheric and marine community that is increasing every year. Scope of this paper is to describe the current mission status and its main scientific achievements. Topics will also include programmatic highlights and information on the next scientific development of the mission in its extended period of operations.

  2. Cryosat: ESA'S Ice Explorer Mission. Five years in operations: status and achievements

    Science.gov (United States)

    Parrinello, Tommaso; Mardle, Nicola; Krassenburg, Mike; Badessi, Stefano; Bouffard, Jerome; Frommknecht, Bjorn; Fornari, Marco; Scagliola, Michele

    2015-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. The CryoSat mission reached its 5th years of operational life in April 2015. Since its launch has delivered high quality products to the worldwide cryospheric and marine community that is increasing every year. Scope of this paper is to describe the current mission status and the main scientific achievements in the last twelve months. Topics will also include programmatic highlights and information on the next scientific development of the mission in its extended period of operations.

  3. Mapping ocean tides with satellites - A computer simulation

    Science.gov (United States)

    Won, I. J.; Kuo, J. T.; Jachens, R. C.

    1978-01-01

    As a preliminary study for the future worldwide direct mapping of the open ocean tide with satellites equipped with precision altimeters we conducted a simulated study using sets of artificially generated altimeter data constructed from a realistic geoid and four pairs of major tides in the northeastern Pacific Ocean. Recovery of the original geoid and eight tidal maps is accomplished by a space-time, least squares harmonic analysis scheme. The resultant maps appear fairly satisfactory even when random noises up to + or - 100 cm are added to the altimeter data of sufficient space-time density. The method also produces a refined geoid which is rigorously corrected for the dynamic tides.

  4. Detection and characterization of ship targets using CryoSat-2 altimeter waveforms

    OpenAIRE

    G?mez-Enri, Jesus; Scozzari, Andrea; Soldovieri, Francesco; Coca, Josep; Vignudelli, Stefano

    2016-01-01

    This article describes an investigation of the new possibilities offered by SAR altimetry compared with conventional altimetry in the detection and characterization of non-ocean targets. We explore the capabilities of the first SAR altimeter installed on the European Space Agency satellite CryoSat-2 for the detection and characterization of ships. We propose a methodology for the detection of anomalous targets in the radar signals, based on the advantages of SAR/Doppler processing over conven...

  5. Turbulence Heating ObserveR – satellite mission proposal

    Czech Academy of Sciences Publication Activity Database

    Vaivads, A.; Retinò, A.; Souček, Jan; Khotyaintsev, Y. V.; Valentini, F.; Escoubet, C. P.; Alexandrova, O.; André, M.; Bale, S. D.; Balikhin, M.; Burgess, D.; Camporeale, E.; Caprioli, D.; Chen, C. H. K.; Clacey, E.; Cully, C. M.; Keyser de, J.; Eastwood, J. P.; Fazakerley, A. N.; Eriksson, S.; Goldstein, M. L.; Graham, D. B.; Haaland, S.; Hoshino, M.; Ji, H.; Karimabadi, H.; Kucharek, H.; Lavraud, B.; Marcucci, F.; Matthaeus, W. H.; Moore, T. E.; Nakamura, R.; Narita, Y.; Němeček, Z.; Norgren, C.; Opgenoorth, H.; Palmroth, M.; Perrone, D.; Pinçon, J.-L.; Rathsman, P.; Rothkaehl, H.; Sahraoui, F.; Servidio, S.; Sorriso-Valvo, L.; Vainio, L.; Vörös, Z.; Wimmer-Schweingruber, R. F.

    2016-01-01

    Roč. 82, č. 5 (2016), 905820501/1-905820501/16 ISSN 0022-3778 Institutional support: RVO:68378289 Keywords : plasma heating * plasma properties * space plasma physics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.160, year: 2016 https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/div-classtitleturbulence-heating-observer-satellite-mission-proposaldiv/01BB69B09206CE04C48BEDA8F24ED33C/core-reader

  6. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

    Science.gov (United States)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-03-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  7. CryoSat: ESA's ice explorer mission. 4 years in operations: status and achievements

    Science.gov (United States)

    Parrinello, T.; Mardle, N.; Ortega, B.; Bouffard, J.; Badessi, S.; Frommknecht, B.; Davidson, M.

    2014-12-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. The CryoSat mission reached its 4th years of operational life in April 2014. Since its launch has delivered high quality products to the worldwide cryospheric and marine community that is increasing every year. Scope of this paper is to describe the current mission status and the main scientific achievements in the last twelve months. Topics will also include programmatic highlights and information on the next scientific development of the mission in its extended period of operations.

  8. The ICESat-2 mission: design, status, applications and pre-launch performance assessments for monitoring cryopsheric changes

    Science.gov (United States)

    Neumann, T.; Markus, T.; Csatho, B. M.; Martino, A. J.

    2013-12-01

    NASA's Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is the next-generation orbiting laser altimeter, following the ICESat mission, which operated between 2003 and 2009. Its primary aim is to monitor sea-ice thickness and ice sheet elevation change at scales from outlet glaciers to the entire ice sheet, and enable global assessment of vegetation canopy height as established by ICESat. ICESat-2 is now in Phase C (Design and Development). It is scheduled to launch in 2016 on a Delta II rocket from Vandenberg Air Force Base in California. ICESat-2 will carry the Advanced Topographic Laser Altimeter System (ATLAS) and collect data to a latitudinal limit of 88 degrees. In contrast to Geoscience Laser Altimeter System (GLAS) on ICESat, ATLAS employs a 6-beam micro-pulse laser photon-counting approach. It uses a high repetition rate (10 kHz; resulting in 70 cm footprint spacing on the ground along the direction of travel) low-power laser in conjunction with single-photon sensitive detectors to measure ranges using 532 nm (green) laser light. In the polar regions, the 91-day repeat orbit pattern with a roughly monthly sub-cycle is designed to monitor seasonal and interannual variations of Greenland and Antarctic ice sheet elevations and monthly sea ice thickness changes. Dense ground-tracks over the rest of the globe achieved through a systematic sequence of off-nadir pointing (resulting in < 2 km ground-track spacing at the equator after two years) will enable measurements of land topography and vegetation canopy heights, allowing estimates of biomass and carbon in above-ground vegetation. While the ICESat-2 mission was optimized for cryospheric science, elevation measurements will be collected over land and oceans as well as histograms of backscatter from the atmosphere. These observations will provide a wealth of opportunities in addition to the primary science objectives, ranging from the retrieval of cloud properties, to river stages, to snow cover, to land

  9. CryoSat: ESA's Ice Explorer Mission: status and achievements

    Science.gov (United States)

    Parrinello, Tommaso; Mardle, Nicola; Hoyos Ortega, Berta; Bouzinac, Catherine; Badessi, Stefano; Frommknecht, Bjorn; Davidson, Malcolm; Fornari, Marco; Cullen, Robert

    2013-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. Cryosat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Experimental evidence have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. In April 2012, the first winter [2010 -2011] sea-ice variation map of the Arctic was released to the scientific community. Scope of this paper is to describe the current mission status and the main scientific achievements in the last twelve months. Topics will also include programmatic highlights and information on accessing Cryosat products following the new ESA Earth Observation Data Policy.

  10. GEOS-C altimeter attitude bias error correction. [gate-tracking radar

    Science.gov (United States)

    Marini, J. W.

    1974-01-01

    A pulse-limited split-gate-tracking radar altimeter was flown on Skylab and will be used aboard GEOS-C. If such an altimeter were to employ a hypothetical isotropic antenna, the altimeter output would be independent of spacecraft orientation. To reduce power requirements the gain of the altimeter antenna proposed is increased to the point where its beamwidth is only a few degrees. The gain of the antenna consequently varies somewhat over the pulse-limited illuminated region of the ocean below the altimeter, and the altimeter output varies with antenna orientation. The error introduced into the altimeter data is modeled empirically, but close agreements with the expected errors was not realized. The attitude error effects expected with the GEOS-C altimeter are modelled using a form suggested by an analytical derivation. The treatment is restricted to the case of a relatively smooth sea, where the height of the ocean waves are small relative to the spatial length (pulse duration times speed of light) of the transmitted pulse.

  11. Mars Relays Satellite Orbit Design Considerations for Global Support of Robotic Surface Missions

    Science.gov (United States)

    Hastrup, Rolf; Cesarone, Robert; Cook, Richard; Knocke, Phillip; McOmber, Robert

    1993-01-01

    This paper discusses orbit design considerations for Mars relay satellite (MRS)support of globally distributed robotic surface missions. The orbit results reported in this paper are derived from studies of MRS support for two types of Mars robotic surface missions: 1) the mars Environmental Survey (MESUR) mission, which in its current definition would deploy a global network of up to 16 small landers, and 2)a Small Mars Sample Return (SMSR) mission, which included four globally distributed landers, each with a return stage and one or two rovers, and up to four additional sets of lander/rover elements in an extended mission phase.

  12. Fluxgate Magnetometry on the Experimental Albertan Satellite #1 (Ex-Alta-1) CubeSat Mission: Steps Toward a Magnetospheric Constellation Mission

    Science.gov (United States)

    Mann, I. R.; Miles, D.; Nokes, C.; Cupido, C.; Elliott, D.; Ciurzynski, M.; Barona, D.; Narod, B. B.; Bennest, J.; Pakhotin, I.; Kale, A.; Bruner, B.; Haluza-DeLay, T.; Forsyth, C.; Rae, J.; Lange, C.; Sameoto, D.; Milling, D. K.

    2017-12-01

    Making low noise magnetic measurements is a significant challenge to the use of cube-satellite (CubeSat) platforms for scientific constellation class missions for studies of geospace. We describe the design, validation, and test, and initial on-orbit results from a miniature, low-mass, low-power, and low-magnetic noise boom-mounted fluxgate magnetometer flown on the University of Alberta Experimental Albertan Satellite #1 (Ex-Alta-1) Cube Satellite, launched in 2017 from the International Space Station as part of the QB50 constellation mission. The miniature instrument achieves a magnetic noise floor of 150-200 pT/√Hz at 1 Hz, consumes 400 mW of power, has a mass of 121 g (sensor and boom), stows on the hull, and deploys on a 60 cm boom from a three-unit CubeSat reducing the noise from the onboard reaction wheel to less than 1.5 nT at the sensor. The instrument's capabilities are being demonstrated and validated in space with flight on Ex-Alta-1. We present on-orbit data from the boom-deployment and initial operations of the fluxgate sensor and illustrate the potential scientific returns and utility of using CubeSats carrying such fluxgate magnetometers to constitute a magnetospheric constellation mission. We further illustrate the value of scientific constellations using example data from the low-Earth orbit European Space Agency Swarm mission. Swarm data reveal significant changes in the spatiotemporal characteristics of the magnetic fields in the coupled magnetosphere-ionosphere system, even when the spacecraft are separated by only approximately 10 s along track and approximately 1.4° in longitude. This indicates the likely energetic significance of Alfven wave dynamics, and we use Swarm measurements to illustrate the value of satellite constellations for diagnosing magnetosphere-ionosphere coupling even in low-Earth orbit.

  13. Subsurface Scattered Photons: Friend or Foe? Improving visible light laser altimeter elevation estimates, and measuring surface properties using subsurface scattered photons

    Science.gov (United States)

    Greeley, A.; Kurtz, N. T.; Neumann, T.; Cook, W. B.; Markus, T.

    2016-12-01

    Photon counting laser altimeters such as MABEL (Multiple Altimeter Beam Experimental Lidar) - a single photon counting simulator for ATLAS (Advanced Topographical Laser Altimeter System) - use individual photons with visible wavelengths to measure their range to target surfaces. ATLAS, the sole instrument on NASA's upcoming ICESat-2 mission, will provide scientists a view of Earth's ice sheets, glaciers, and sea ice with unprecedented detail. Precise calibration of these instruments is needed to understand rapidly changing parameters such as sea ice freeboard, and to measure optical properties of surfaces like snow covered ice sheets using subsurface scattered photons. Photons that travel through snow, ice, or water before scattering back to an altimeter receiving system travel farther than photons taking the shortest path between the observatory and the target of interest. These delayed photons produce a negative elevation bias relative to photons scattered directly off these surfaces. We use laboratory measurements of snow surfaces using a flight-tested laser altimeter (MABEL), and Monte Carlo simulations of backscattered photons from snow to estimate elevation biases from subsurface scattered photons. We also use these techniques to demonstrate the ability to retrieve snow surface properties like snow grain size.

  14. Revisiting the South Atlantic Anomaly after 3 years of Swarm satellite mission

    Science.gov (United States)

    Pavón-Carrasco, F. Javier; Campuzano, Saioa A.; De Santis, Angelo

    2017-04-01

    Covering part of Southern America and the South Atlantic Ocean, the South Atlantic Anomaly (SAA) is nowadays one of the most important and largest features of the geomagnetic field at the Earth's surface. It is characterized by lower intensity values than expected for those geomagnetic latitudes. Thanks to the global geomagnetic models, the spatial and temporal geometry of the Earth's magnetic field can be defined at the core-mantle boundary, showing the origin of the SAA as a reversal polarity patch that is growing with a pronounced rate of -2.54ṡ105 nT per century and with western drift. Since the Swarm satellite mission of the European Space Agency was launched at the end of 2013, the three twin satellites are picking up the most accurate values of the geomagnetic field up to now. In this work, we use the satellite magnetic data from Swarm mission along with the observatory ground data of surrounding areas to evaluate the spatial and temporal evolution of the SAA during the Swarm-life.

  15. Signature of biased range in the non-dynamical Chern-Simons modified gravity and its measurements with satellite-satellite tracking missions: theoretical studies

    Science.gov (United States)

    Qiang, Li-E.; Xu, Peng

    2015-08-01

    Having great accuracy in the range and range rate measurements, the GRACE mission and the planed GRACE follow on mission can in principle be employed to place strong constraints on certain relativistic gravitational theories. In this paper, we work out the range observable of the non-dynamical Chern-Simons modified gravity for the satellite-to-satellite tracking (SST) measurements. We find out that a characteristic time accumulating range signal appears in non-dynamical Chern-Simons gravity, which has no analogue found in the standard parity-preserving metric theories of gravity. The magnitude of this Chern-Simons range signal will reach a few times of cm for each free flight of these SST missions, here is the dimensionless post-Newtonian parameter of the non-dynamical Chern-Simons theory. Therefore, with the 12 years data of the GRACE mission, one expects that the mass scale of the non-dynamical Chern-Simons gravity could be constrained to be larger than eV. For the GRACE FO mission that scheduled to be launched in 2017, the much stronger bound that eV is expected.

  16. Mars Relay Satellite: Key to Enabling Low-Cost Exploration Missions

    Science.gov (United States)

    Hastrup, R.; Cesarone, R.; Miller, A.

    1993-01-01

    Recently, there has been increasing evidence of a renewed focus on Mars exploration both by NASA and the international community. The thrust of this renewed interest appears to be manifesting itself in numerous low-cost missions employing small, light weight elements, which utilize advanced technologies including integrated microelectronics. A formidable problem facing these low-cost missions is communications with Earth. Providing adequate direct-link performance has very significant impacts on spacecraft power, pointing, mass and overall complexity. Additionally, for elements at or near the surface of Mars, there are serious connectivity constraints, especially at higher latitudes, which lose view of Earth for up to many months at a time. This paper will discuss the role a Mars relay satellite can play in enabling and enhancing low-cost missions to Mars...

  17. Small Explorer project: Submillimeter Wave Astronomy Satellite (SWAS). Mission operations and data analysis plan

    Science.gov (United States)

    Melnick, Gary J.

    1990-01-01

    The Mission Operations and Data Analysis Plan is presented for the Submillimeter Wave Astronomy Satellite (SWAS) Project. It defines organizational responsibilities, discusses target selection and navigation, specifies instrument command and data requirements, defines data reduction and analysis hardware and software requirements, and discusses mission operations center staffing requirements.

  18. Plasma propulsion for geostationary satellites for telecommunication and interplanetary missions

    International Nuclear Information System (INIS)

    Dudeck, M; Doveil, F; Arcis, N; Zurbach, S

    2012-01-01

    The advantages of electric propulsion for the orbit maintenance of geostationary satellites for telecommunications are described. Different types of plasma sources for space propulsion are presented. Due to its large performances, one of them, named Hall effect thruster is described in detail and two recent missions in space (Stentor and Smart1) using French Hall thrusters are briefly presented.

  19. The Iodine Satellite (iSAT) Hall Thruster Demonstration Mission Concept and Development

    Science.gov (United States)

    Dankanich, John W.; Polzin, Kurt A.; Calvert, Derek; Kamhawi, Hani

    2014-01-01

    The use of iodine propellant for Hall thrusters has been studied and proposed by multiple organizations due to the potential mission benefits over xenon. In 2013, NASA Marshall Space Flight Center competitively selected a project for the maturation of an iodine flight operational feed system through the Technology Investment Program. Multiple partnerships and collaborations have allowed the team to expand the scope to include additional mission concept development and risk reduction to support a flight system demonstration, the iodine Satellite (iSAT). The iSAT project was initiated and is progressing towards a technology demonstration mission preliminary design review. The current status of the mission concept development and risk reduction efforts in support of this project is presented.

  20. Determination of Interannual to Decadal Changes in Ice Sheet Mass Balance from Satellite Altimetry

    Science.gov (United States)

    Zwally, H. Jay; Busalacchi, Antonioa J. (Technical Monitor)

    2001-01-01

    A major uncertainty in predicting sea level rise is the sensitivity of ice sheet mass balance to climate change, as well as the uncertainty in present mass balance. Since the annual water exchange is about 8 mm of global sea level equivalent, the +/- 25% uncertainty in current mass balance corresponds to +/- 2 mm/yr in sea level change. Furthermore, estimates of the sensitivity of the mass balance to temperature change range from perhaps as much as - 10% to + 10% per K. Although the overall ice mass balance and seasonal and inter-annual variations can be derived from time-series of ice surface elevations from satellite altimetry, satellite radar altimeters have been limited in spatial coverage and elevation accuracy. Nevertheless, new data analysis shows mixed patterns of ice elevation increases and decreases that are significant in terms of regional-scale mass balances. In addition, observed seasonal and interannual variations in elevation demonstrate the potential for relating the variability in mass balance to changes in precipitation, temperature, and melting. From 2001, NASA's ICESat laser altimeter mission will provide significantly better elevation accuracy and spatial coverage to 86 deg latitude and to the margins of the ice sheets. During 3 to 5 years of ICESat-1 operation, an estimate of the overall ice sheet mass balance and sea level contribution will be obtained. The importance of continued ice monitoring after the first ICESat is illustrated by the variability in the area of Greenland surface melt observed over 17-years and its correlation with temperature. In addition, measurement of ice sheet changes, along with measurements of sea level change by a series of ocean altimeters, should enable direct detection of ice level and global sea level correlations.

  1. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    Science.gov (United States)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  2. Mission planning for space based satellite surveillance experiments with the MSX

    Science.gov (United States)

    Sridharan, R.; Fishman, T.; Robinson, E.; Viggh, H.; Wiseman, A.

    1994-01-01

    The Midcourse Space Experiment is a BMDO-sponsored scientific satellite set for launch within the year. The satellite will collect phenomenology data on missile targets, plumes, earth limb backgrounds and deep space backgrounds in the LWIR, visible and ultra-violet spectral bands. It will also conduct functional demonstrations for space-based space surveillance. The Space-Based Visible sensor, built by Lincoln Laboratory, Massachusetts Institute of Technology, is the primary sensor on board the MSX for demonstration of space surveillance. The SBV Processing, Operations and Control Center (SPOCC) is the mission planning and commanding center for all space surveillance experiments using the SBV and other MSX instruments. The guiding principle in the SPOCC Mission Planning System was that all routine functions be automated. Manual analyst input should be minimal. Major concepts are: (I) A high level language, called SLED, for user interface to the system; (2) A group of independent software processes which would generally be run in a pipe-line mode for experiment commanding but can be run independently for analyst assessment; (3) An integrated experiment cost computation function that permits assessment of the feasibility of the experiment. This paper will report on the design, implementation and testing of the Mission Planning System.

  3. 20 Years Experience with using Low Cost Launch Opportunities for 20 Small Satellite Missions

    Science.gov (United States)

    Meerman, Maarten; Sweeting, Martin, , Sir

    To realise the full potential of modern low cost mini-micro-nano-satellite missions, regular and affordable launch opportunities are required. It is simply not economic to launch individual satellites of 5-300kg on single dedicated launchers costing typically 15-20M per launch. Whilst there have been periodic 'piggy-back' launches of small satellites on US launchers since the 1960's, these have been infrequent and often experienced significant delays due the vagaries of the main (paying!) payload. In 1989, Arianespace provided a critical catalyst to the microsatellite community when it imaginatively developed the ASAP platform on Ariane-4 providing, for the first time, a standard interface and affordable launch contracts for small payloads up to 50kg. During the 1990's, some 20 small satellites have been successfully launched on the Ariane-4 ASAP ring for international customers carrying out a range of operational, technology demonstration and training missions. However, most of these microsatellite missions seek low Earth orbit and especially sun-synchronous orbits, but the number of primary missions into these orbit has declined since 1996 and with it the availability of useful low cost launch opportunities for microsatellites. Whilst Ariane-5 has an enhanced capacity ASAP, it has yet to be widely used due both to the infrequent launches, higher costs, and the GTO orbit required by the majority of customers. China, Japan and India have also provided occasional secondary launches for small payloads, but not yet on a regular basis. Fortunately, the growing interest and demand for microsatellite missions coincided with the emergence of regular, low cost launch opportunities from the former Soviet Union (FSU) - both as secondary 'piggy-back' missions or as multiple microsatellite payloads on converted military ICBMs. Indeed, the FSU now supplies the only affordable means of launching minisatellites (200-500kg) into LEO as dedicated missions on converted missiles as

  4. Considerations in the Design of Future Planetary Laser Altimeters

    Science.gov (United States)

    Smith, D. E.; Neumann, G. A.; Mazarico, E.; Zuber, M. T.; Sun, X.

    2017-12-01

    Planetary laser altimeters have generally been designed to provide high accuracy measurements of the nadir range to an uncooperative surface for deriving the shape of the target body, and sometimes specifically for identifying and characterizing potential landing sites. However, experience has shown that in addition to the range measurement, other valuable observations can be acquired, including surface reflectance and surface roughness, despite not being given high priority in the original altimeter design or even anticipated. After nearly 2 decades of planetary laser altimeter design, the requirements are evolving and additional capabilities are becoming equally important. The target bodies, once the terrestrial planets, are now equally asteroids and moons that in many cases do not permit simple orbital operations due to their small mass, radiation issues, or spacecraft fuel limitations. In addition, for a number of reasons, it has become necessary to perform shape determination from a much greater range, even thousands of kilometers, and thus ranging is becoming as important as nadir altimetry. Reflectance measurements have also proved important for assessing the presence of ice, water or CO2, and laser pulse spreading informed knowledge of surface roughness; all indicating a need for improved instrument capability. Recently, the need to obtain accurate range measurement to laser reflectors on landers or on a planetary surface is presenting new science opportunities but for which current designs are far from optimal. These changes to classic laser altimetry have consequences for many instrument functions and capabilities, including beam divergence, laser power, number of beams and detectors, pixelation, energy measurements, pointing stability, polarization, laser wavelengths, and laser pulse rate dependent range. We will discuss how a new consideration of these trades will help make lidars key instruments to execute innovative science in future planetary

  5. Global-scale Observations of the Limb and Disk (GOLD) Mission: Science from Geostationary Orbit on-board a Commercial Communications Satellite

    Science.gov (United States)

    Eastes, R.; Deaver, T.; Krywonos, A.; Lankton, M. R.; McClintock, W. E.; Pang, R.

    2011-12-01

    Geostationary orbits are ideal for many science investigations of the Earth system on global scales. These orbits allow continuous observations of the same geographic region, enabling spatial and temporal changes to be distinguished and eliminating the ambiguity inherent to observations from low Earth orbit (LEO). Just as observations from geostationary orbit have revolutionized our understanding of changes in the troposphere, they will dramatically improve our understanding of the space environment at higher altitudes. However, geostationary orbits are infrequently used for science missions because of high costs. Geostationary satellites are large, typically weighing tons. Consequently, devoting an entire satellite to a science mission requires a large financial commitment, both for the spacecraft itself and for sufficient science instrumentation to justify a dedicated spacecraft. Furthermore, the small number of geostationary satellites produced for scientific missions increases the costs of each satellite. For these reasons, it is attractive to consider flying scientific instruments on satellites operated by commercial companies, some of whom have fleets of ~40 satellites. However, scientists' lack of understanding of the capabilities of commercial spacecraft as well as commercial companies' concerns about risks to their primary mission have impeded the cooperation necessary for the shared use of a spacecraft. Working with a commercial partner, the GOLD mission has successfully overcome these issues. Our experience indicates that there are numerous benefits to flying on commercial communications satellites (e.g., it is possible to downlink large amounts of data) and the costs are low if the experimental requirements adequately match the capabilities and available resources of the host spacecraft. Consequently, affordable access to geostationary orbit aboard a communications satellite now appears possible for science payloads.

  6. Applications of the SWOT Mission to Reservoirs in the Mekong River Basin

    Science.gov (United States)

    Bonnema, M.; Hossain, F.

    2017-12-01

    The forthcoming Surface Water and Ocean Topography (SWOT) mission has the potential to significantly improve our ability to observe artificial reservoirs globally from a remote sensing perspective. By providing simultaneous estimates of reservoir water surface extent and elevation with near global coverage, reservoir storage changes can be estimated. Knowing how reservoir storage changes over time is critical for understanding reservoir impacts on river systems. In data limited regions, remote sensing is often the only viable method of retrieving such information about reservoir operations. When SWOT launches in 2021, it will join an array of satellite sensors with long histories of reservoir observation and monitoring capabilities. There are many potential synergies in the complimentary use of future SWOT observations with observations from current satellite sensors. The work presented here explores the potential benefits of utilizing SWOT observations over 20 reservoirs in the Mekong River Basin. The SWOT hydrologic simulator, developed by NASA Jet Propulsion Laboratory, is used to generate realistic SWOT observations, which are then inserted into a previously established remote sensing modeling framework of the 20 Mekong Basin reservoirs. This framework currently combines data from Landsat missions, Jason radar altimeters, and the Shuttle Radar and Topography Mission (SRTM), to provide monthly estimates of reservoir storage change. The incorporation of SWOT derived reservoir surface area and elevation into the model is explored in an effort to improve both accuracy and temporal resolution of observed reservoir operations.

  7. Lessons Learned from Engineering a Multi-Mission Satellite Operations Center

    Science.gov (United States)

    Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David

    2006-01-01

    NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being re-engineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the re-enginering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team's experiences with integrating multiple missions into a fleet-automated ground system.

  8. Pi-Sat: A Low Cost Small Satellite and Distributed Spacecraft Mission System Test Platform

    Science.gov (United States)

    Cudmore, Alan

    2015-01-01

    Current technology and budget trends indicate a shift in satellite architectures from large, expensive single satellite missions, to small, low cost distributed spacecraft missions. At the center of this shift is the SmallSatCubesat architecture. The primary goal of the Pi-Sat project is to create a low cost, and easy to use Distributed Spacecraft Mission (DSM) test bed to facilitate the research and development of next-generation DSM technologies and concepts. This test bed also serves as a realistic software development platform for Small Satellite and Cubesat architectures. The Pi-Sat is based on the popular $35 Raspberry Pi single board computer featuring a 700Mhz ARM processor, 512MB of RAM, a flash memory card, and a wealth of IO options. The Raspberry Pi runs the Linux operating system and can easily run Code 582s Core Flight System flight software architecture. The low cost and high availability of the Raspberry Pi make it an ideal platform for a Distributed Spacecraft Mission and Cubesat software development. The Pi-Sat models currently include a Pi-Sat 1U Cube, a Pi-Sat Wireless Node, and a Pi-Sat Cubesat processor card.The Pi-Sat project takes advantage of many popular trends in the Maker community including low cost electronics, 3d printing, and rapid prototyping in order to provide a realistic platform for flight software testing, training, and technology development. The Pi-Sat has also provided fantastic hands on training opportunities for NASA summer interns and Pathways students.

  9. CryoSat: ESA's ice explorer mission. One year in operations: status and achievements

    Science.gov (United States)

    Parrinello, T.; Mardle, N.; Ortega, B. H.; Bouzinac, C.; Badessi, S.; Frommknecht, B.; Davidson, M.; Cullen, R.; Wingham, D.

    2012-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. Cryosat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. After an intensive but rewarding six months of commissioning, the CryoSat mission entered the science phase in November last year. Data was released to the scientific community in February 2011 and since then, products have been systematically distributed to more than 150 Principal Investigators and used by more than 400 scientists worldwide. This community is increasing every day. Scope of this paper is to describe the current mission status and the main scientific achievements since the start of the science phase. Topics will also include programmatic highlights and information on accessing Cryosat products following the new ESA Earth Observation Data Policy.

  10. 77 FR 3323 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Science.gov (United States)

    2012-01-23

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Airborne Radar Altimeter Equipment... to cancel Technical Standard Order (TSO)-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This notice announces the FAA's intent to cancel TSO-C67, Airborne Radar Altimeter...

  11. Trends in the Global Small Satellite Ecosystem: Implications for Science Missions

    Science.gov (United States)

    Behrens, J.; Lal, B.

    2017-12-01

    Activity in the small satellite industry has increased in the recent years. New actors and nations have joined the evolving market globally in both the private and public sector. Progress in the smallsat sector has been driven, in part, by growing capabilities and falling costs of smallsats. Advancements include the miniaturization of technology for the small satellite platform, increased data processing capabilities, the ubiquitous presence of GPS enabling location and attitude determination, improvements in ground system costs and signal processing capabilities, and the deployment of inexpensive COTS parts. The emerging trends in the state of the art for smallsat technology, paired with planned smallsat constellation missions by both private and public actors, open the opportunity for new earth and remote sensing scientific endeavors. This presentation will characterize the drivers influencing the development of smallsat technology and the industry more generally. An overview will be provided for trends in the state of the art of smallsat technology, and secondary trends that influence the smallsat sector including infrastructure, demand, the satellite launch market, and the policy environment. These trends are mapped onto current and projected Earth observation needs, as identified by academic and governmental communities, to identify those that could be fulfilled by smallsats in the near and long term. A set of notional science missions that could be enabled, based on the various drivers identified, will be presented for both the near (3 years) and farther term (10 years).

  12. History of satellite missions and measurements of the Earth Radiation Budget (1957-1984)

    Science.gov (United States)

    House, F. B.; Gruber, A.; Hunt, G. E.; Mecherikunnel, A. T.

    1986-01-01

    The history of satellite missions and their measurements of the earth radiation budget from the beginning of the space age until the present time are reviewed. The survey emphasizes the early struggle to develop instrument systems to monitor reflected shortwave and emitted long-wave exitances from the earth, and the problems associated with the interpretation of these observations from space. In some instances, valuable data sets were developed from satellite measurements whose instruments were not specifically designed for earth radiation budget observations.

  13. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Science.gov (United States)

    2012-04-11

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Airborne Radar Altimeter Equipment... Technical Standard Order (TSO)-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This is a confirmation notice of the cancellation of TSO-C67, Airborne Radar Altimeter Equipment (For...

  14. Satellite altimetry and GRACE gravimetry for studies of annual water storage variations in Bangladesh

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Berry, P.; Freeman, J.

    2008-01-01

    Four different data sources have been compared with respect to observations of the annual water storage variations in the region of Bangladesh. Data from satellite altimeters and river gauges estimates the variation in surface water storage in the major rivers of Bangladesh. The GRACE satellites ...

  15. CryoSat: Mission Status, Achievements and New Results

    Science.gov (United States)

    Francis, R.; Wingham, D.; Cullen, R.; Parrinello, T.

    2010-12-01

    After 10 years of development and one failed launch attempt the CryoSat mission was successfully launched on 8 April 2010. The main payload instrument, the advanced SIRAL radar altimeter, was switched on just 3 days after launch and made its first measurements during a pass over Antarctica. Although data flow to the expert team at UCL was operational from the start, two more months were needed to iron out some system issues and bugs before data could be released to the calibration and validation teams. The process of further optimising the system performance as well as comparing measurements to known surface data has continued through the commissioning phase, ending in October 2010. The end of the commissioning phase marks the transition to routine operations and the release of data to registered Principal Investigators. The results from SIRAL are unlike those from previous altimeters. Representative results will be described, highlighting improvements and demonstrating the level of detail which can be observed and measured. In addition to its ‘design’ targets CryoSat has made measurements over various ocean and land areas. The ocean results, in particular, are indicative of the measurements which will be delivered by Sentinel-3’s SRAL instrument. These will also be described. The satellite in flight has proved to be using less propellant than foreseen and, based on the commissioning results, the prognosis for its future performance will be outlined.

  16. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods

    Directory of Open Access Journals (Sweden)

    J. L. Bamber

    2009-05-01

    Full Text Available Digital elevation models (DEMs of the whole of Antarctica have been derived, previously, from satellite radar altimetry (SRA and limited terrestrial data. Near the ice sheet margins and in other areas of steep relief the SRA data tend to have relatively poor coverage and accuracy. To remedy this and to extend the coverage beyond the latitudinal limit of the SRA missions (81.5° S we have combined laser altimeter measurements from the Geosciences Laser Altimeter System onboard ICESat with SRA data from the geodetic phase of the ERS-1 satellite mission. The former provide decimetre vertical accuracy but with poor spatial coverage. The latter have excellent spatial coverage but a poorer vertical accuracy. By combining the radar and laser data using an optimal approach we have maximised the vertical accuracy and spatial resolution of the DEM and minimised the number of grid cells with an interpolated elevation estimate. We assessed the optimum resolution for producing a DEM based on a trade-off between resolution and interpolated cells, which was found to be 1 km. This resulted in just under 32% of grid cells having an interpolated value. The accuracy of the final DEM was assessed using a suite of independent airborne altimeter data and used to produce an error map. The RMS error in the new DEM was found to be roughly half that of the best previous 5 km resolution, SRA-derived DEM, with marked improvements in the steeper marginal and mountainous areas and between 81.5 and 86° S. The DEM contains a wealth of information related to ice flow. This is particularly apparent for the two largest ice shelves – the Filchner-Ronne and Ross – where the surface expression of flow of ice streams and outlet glaciers can be traced from the grounding line to the calving front. The surface expression of subglacial lakes and other basal features are also illustrated. We also use the DEM to derive new estimates of balance velocities and ice divide locations.

  17. Design Concepts for a Small Space-Based GEO Relay Satellite for Missions Between Low Earth and near Earth Orbits

    Science.gov (United States)

    Bhasin, Kul B.; Warner, Joseph D.; Oleson, Steven; Schier, James

    2014-01-01

    The main purpose of the Small Space-Based Geosynchronous Earth orbiting (GEO) satellite is to provide a space link to the user mission spacecraft for relaying data through ground networks to user Mission Control Centers. The Small Space Based Satellite (SSBS) will provide services comparable to those of a NASA Tracking Data Relay Satellite (TDRS) for the same type of links. The SSBS services will keep the user burden the same or lower than for TDRS and will support the same or higher data rates than those currently supported by TDRS. At present, TDRSS provides links and coverage below GEO; however, SSBS links and coverage capability to above GEO missions are being considered for the future, especially for Human Space Flight Missions (HSF). There is also a rising need for the capability to support high data rate links (exceeding 1 Gbps) for imaging applications. The communication payload on the SSBS will provide S/Ka-band single access links to the mission and a Ku-band link to the ground, with an optical communication payload as an option. To design the communication payload, various link budgets were analyzed and many possible operational scenarios examined. To reduce user burden, using a larger-sized antenna than is currently in use by TDRS was considered. Because of the SSBS design size, it was found that a SpaceX Falcon 9 rocket could deliver three SSBSs to GEO. This will greatly reduce the launch costs per satellite. Using electric propulsion was also evaluated versus using chemical propulsion; the power system size and time to orbit for various power systems were also considered. This paper will describe how the SSBS will meet future service requirements, concept of operations, and the design to meet NASA users' needs for below and above GEO missions. These users' needs not only address the observational mission requirements but also possible HSF missions to the year 2030. We will provide the trade-off analysis of the communication payload design in terms of

  18. Prototype Design and Mission Analysis for a Small Satellite Exploiting Environmental Disturbances for Attitude Stabilization

    Science.gov (United States)

    2016-03-01

    AND MISSION ANALYSIS FOR A SMALL SATELLITE EXPLOITING ENVIRONMENTAL DISTURBANCES FOR ATTITUDE STABILIZATION by Halis C. Polat March 2016...FOR A SMALL SATELLITE EXPLOITING ENVIRONMENTAL DISTURBANCES FOR ATTITUDE STABILIZATION 5. FUNDING NUMBERS 6. AUTHOR(S) Halis C. Polat 7...need a robust and accurate attitude control system. Due to the mass- and volume-constrained design environment of CubeSat, conventional methods are

  19. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions

    Science.gov (United States)

    Kim, Edward

    2012-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201l. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record -- provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica--parameters such as surface temperature.

  20. Photogrammetry and altimetry. Part A: Apollo 16 laser altimeter

    Science.gov (United States)

    Wollenhaupt, W. R.; Sjogren, W. L.

    1972-01-01

    The laser altimeter measures precise altitudes of the command and service module above the lunar surface and can function either with the metric (mapping) camera or independently. In the camera mode, the laser altimeter ranges at each exposure time, which varies between 20 and 28 sec (i.e., 30 to 43 km on the lunar surface). In the independent mode, the laser altimeter ranges every 20 sec. These altitude data and the spacecraft attitudes that are derived from simultaneous stellar photography are used to constrain the photogrammetric reduction of the lunar surface photographs when cartographic products are generated. In addition, the altimeter measurements alone provide broad-scale topographic relief around the entire circumference of the moon. These data are useful in investigating the selenodetic figure of the moon and may provide information regarding gravitational anomalies on the lunar far side.

  1. Polarimetric, Two-Color, Photon-Counting Laser Altimeter Measurements of Forest Canopy Structure

    Science.gov (United States)

    Harding, David J.; Dabney, Philip W.; Valett, Susan

    2011-01-01

    Laser altimeter measurements of forest stands with distinct structures and compositions have been acquired at 532 nm (green) and 1064 nm (near-infrared) wavelengths and parallel and perpendicular polarization states using the Slope Imaging Multi-polarization Photon Counting Lidar (SIMPL). The micropulse, single photon ranging measurement approach employed by SIMPL provides canopy structure measurements with high vertical and spatial resolution. Using a height distribution analysis method adapted from conventional, 1064 nm, full-waveform lidar remote sensing, the sensitivity of two parameters commonly used for above-ground biomass estimation are compared as a function of wavelength. The results for the height of median energy (HOME) and canopy cover are for the most part very similar, indicating biomass estimations using lidars operating at green and near-infrared wavelengths will yield comparable estimates. The expected detection of increasing depolarization with depth into the canopies due to volume multiple-scattering was not observed, possibly due to the small laser footprint and the small detector field of view used in the SIMPL instrument. The results of this work provide pathfinder information for NASA's ICESat-2 mission that will employ a 532 nm, micropulse, photon counting laser altimeter.

  2. CONTRIBUTION OF SATELLITE ALTIMETRY DATA IN GEOLOGICAL STRUCTURE RESEARCH IN THE SOUTH CHINA SEA

    Directory of Open Access Journals (Sweden)

    T. D. Tran

    2016-06-01

    Full Text Available The study area is bordered on the East China Sea, the Philippine Sea, and the Australian-Indo plate in the Northeast, in the East and in the South, respectively. It is a large area with the diversely complicated conditions of geological structure. In spite of over the past many years of investigation, marine geological structure in many places have remained poorly understood because of a thick seawater layer as well as of the sensitive conflicts among the countries in the region. In recent years, the satellite altimeter technology allows of enhancement the marine investigation in any area. The ocean surface height is measured by a very accurate radar altimeter mounted on a satellite. Then, that surface can be converted into marine gravity anomaly or bathymetry by using the mathematical model. It is the only way to achieve the data with a uniform resolution in acceptable time and cost. The satellite altimetry data and its variants are essential for understanding marine geological structure. They provide a reliable opportunity to geologists and geophysicists for studying the geological features beneath the ocean floor. Also satellite altimeter data is perfect for planning the more detailed shipboard surveys. Especially, it is more meaningful in the remote or sparsely surveyed regions. In this paper, the authors have effectively used the satellite altimetry and shipboard data in combination. Many geological features, such as seafloor spreading ridges, fault systems, volcanic chains as well as distribution of sedimentary basins are revealed through the 2D, 3D model methods of interpretation of satellite-shipboard-derived data and the others. These results are improved by existing boreholes and seismic data in the study area.

  3. Review of a relativity and geodesy mission with counter-orbiting polar satellites

    International Nuclear Information System (INIS)

    Van Patten, R.A.

    1977-01-01

    A new test of general relativity, capable of measuring the Lense-Thirring precession on a satellite orbit was proposed in 1974. We have recently realized that the remarkable geophysical output of this experiment can be enriched by allowing the point of encounter between the two satellites to progress from the poles to the equator during the course of the mission. There is reason to believe that by performing the experiment in this mode, all tesseral harmonics up to about 60th order could be separated and determined to accuracies up to three orders of magnitude better than current knowledge, and still obtain a 1% Lense-Thirring measurement. (orig.) [de

  4. Measurement and stability of the pointing of the BepiColombo Laser Altimeter under thermal load

    Science.gov (United States)

    Gouman, J.; Beck, T.; Affolter, M.; Thomas, N.; Geissbühler, U.; Péteut, A.; Bandy, T.; Servonet, A.; Piazza, D.; Seiferlin, K.

    2014-04-01

    The first European laser altimeter, designed for interplanetary flight, BELA, (on BepiColombo mission to Mercury) will be launched in July 2016. This abstract describes the setup used to characterize the angular movements of BELA during the simulation of the environment that the instrument will encounter when orbiting Mercury. Tests performed using the Engineering Qualification Model (EQM) show that the setup is accurate enough to characterize angular movements of the instrument components with an accuracy of ≈ 10 μrad.

  5. Definition of technology development missions for early Space Station satellite servicing. Volume 1: Executive summary

    Science.gov (United States)

    1984-01-01

    The Executive Summary volume 1, includes an overview of both phases of the Definition of Technology Development Missions for Early Space Station Satellite Servicing. The primary purpose of Phase 1 of the Marshall Space Flight Center (MSFC) Satellite Servicing Phase 1 study was to establish requirements for demonstrating the capability of performing satellite servicing activities on a permanently manned Space Station in the early 1990s. The scope of Phase 1 included TDM definition, outlining of servicing objectives, derivation of initial Space Station servicing support requirements, and generation of the associated programmatic schedules and cost. The purpose of phase 2 of the satellite servicing study was to expand and refine the overall understanding of how best to use the manned space station as a test bed for demonstration of satellite servicing capabilities.

  6. Cryosat: Esa's Ice Explorer Mission. Two YEARs in Operations: Status and Achievements

    Science.gov (United States)

    Parrinello, T.; Mardle, N.; Hoyos, B.; Bouzinac, C.; Badessi, S.; Frommknecht, B.; Cullen, R.; Fornari, M.; Davidson, M.; Laxon, S.

    2012-12-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. Cryosat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Experimental evidence have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. After an intensive but rewarding six months of commissioning, the CryoSat mission entered the science phase in November last year. Data was released to the scientific community in February 2011 and since then, products have been systematically distributed to more than 150 Principal Investigators and used by more than 400 scientists worldwide. This community is increasing every day. In April 2012, the first winter [2010 -2011] sea-ice variation map of the Arctic was released to the scientific community. Scope of this paper is to describe the current mission status and the main scientific achievements in the last twelve months. Topics will also include programmatic highlights and information on accessing Cryosat products following the new ESA Earth Observation Data Policy.

  7. The Delta low-inclination satellite concept, an opportunity to enhance the science return of the Swarm mission

    DEFF Research Database (Denmark)

    Hulot, Gauthier; Leger, Jean-Michel; Olsen, Nils

    ESA’s Swarm mission aims at studying all sources of Earth’s magnetic field. It consists of two satellites (Alpha and Charlie), which fly side-by-side on near polar orbits at an altitude of slightly less than 500 km, and of a third satellite (Bravo) on a similar but slightly more polar and higher ...

  8. PRIMA Platform capability for satellite missions in LEO and MEO (SAR, Optical, GNSS, TLC, etc.)

    Science.gov (United States)

    Logue, T.; L'Abbate, M.

    2016-12-01

    PRIMA (Piattaforma Riconfigurabile Italiana Multi Applicativa) is a multi-mission 3-axis stabilized Platform developed by Thales Alenia Space Italia under ASI contract.PRIMA is designed to operate for a wide variety of applications from LEO, MEO up to GEO and for different classes of satellites Platform Family. It has an extensive heritage in flight heritage (LEO and MEO Satellites already fully operational) in which it has successfully demonstrated the flexibility of use, low management costs and the ability to adapt to changing operational conditions.The flexibility and modularity of PRIMA provides unique capability to satisfy different Payload design and mission requirements, thanks to the utilization of recurrent adaptable modules (Service Module-SVM, Propulsion Module-PPM, Payload Module-PLM) to obtain mission dependent configuration. PRIMA product line development is continuously progressing, and is based on state of art technology, modular architecture and an Integrated Avionics. The aim is to maintain and extent multi-mission capabilities to operate in different environments (LEO to GEO) with different payloads (SAR, Optical, GNSS, TLC, etc.). The design is compatible with a wide range of European and US equipment suppliers, thus maximising cooperation opportunity. Evolution activities are mainly focused on the following areas: Structure: to enable Spacecraft configurations for multiple launch; Thermal Control: to guarantee thermal limits for new missions, more demanding in terms of environment and payload; Electrical: to cope with higher power demand (e.g. electrical propulsion, wide range of payloads, etc.) considering orbital environment (e.g. lighting condition); Avionics : AOCS solutions optimized on mission (LEO observation driven by agility and pointing, agility not a driver for GEO). Use of sensors and actuators tailored for specific mission and related environments. Optimised Propulsion control. Data Handling, SW and FDIR mission customization

  9. Optimizing Orbit-Instrument Configuration for Global Precipitation Mission (GPM) Satellite Fleet

    Science.gov (United States)

    Smith, Eric A.; Adams, James; Baptista, Pedro; Haddad, Ziad; Iguchi, Toshio; Im, Eastwood; Kummerow, Christian; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Following the scientific success of the Tropical Rainfall Measuring Mission (TRMM) spearheaded by a group of NASA and NASDA scientists, their external scientific collaborators, and additional investigators within the European Union's TRMM Research Program (EUROTRMM), there has been substantial progress towards the development of a new internationally organized, global scale, and satellite-based precipitation measuring mission. The highlights of this newly developing mission are a greatly expanded scope of measuring capability and a more diversified set of science objectives. The mission is called the Global Precipitation Mission (GPM). Notionally, GPM will be a constellation-type mission involving a fleet of nine satellites. In this fleet, one member is referred to as the "core" spacecraft flown in an approximately 70 degree inclined non-sun-synchronous orbit, somewhat similar to TRMM in that it carries both a multi-channel polarized passive microwave radiometer (PMW) and a radar system, but in this case it will be a dual frequency Ku-Ka band radar system enabling explicit measurements of microphysical DSD properties. The remainder of fleet members are eight orbit-synchronized, sun-synchronous "constellation" spacecraft each carrying some type of multi-channel PMW radiometer, enabling no worse than 3-hour diurnal sampling over the entire globe. In this configuration the "core" spacecraft serves as a high quality reference platform for training and calibrating the PMW rain retrieval algorithms used with the "constellation" radiometers. Within NASA, GPM has advanced to the pre-formulation phase which has enabled the initiation of a set of science and technology studies which will help lead to the final mission design some time in the 2003 period. This presentation first provides an overview of the notional GPM program and mission design, including its organizational and programmatic concepts, scientific agenda, expected instrument package, and basic flight

  10. Trajectory Design to Mitigate Risk on the Transiting Exoplanet Survey Satellite (TESS) Mission

    Science.gov (United States)

    Dichmann, Donald

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will employ a highly eccentric Earth orbit, in 2:1 lunar resonance, reached with a lunar flyby preceded by 3.5 phasing loops. The TESS mission has limited propellant and several orbit constraints. Based on analysis and simulation, we have designed the phasing loops to reduce delta-V and to mitigate risk due to maneuver execution errors. We have automated the trajectory design process and use distributed processing to generate and to optimize nominal trajectories, check constraint satisfaction, and finally model the effects of maneuver errors to identify trajectories that best meet the mission requirements.

  11. Climate-change-driven accelerated sea-level rise detected in the altimeter era.

    Science.gov (United States)

    Nerem, R S; Beckley, B D; Fasullo, J T; Hamlington, B D; Masters, D; Mitchum, G T

    2018-02-27

    Using a 25-y time series of precision satellite altimeter data from TOPEX/Poseidon, Jason-1, Jason-2, and Jason-3, we estimate the climate-change-driven acceleration of global mean sea level over the last 25 y to be 0.084 ± 0.025 mm/y 2 Coupled with the average climate-change-driven rate of sea level rise over these same 25 y of 2.9 mm/y, simple extrapolation of the quadratic implies global mean sea level could rise 65 ± 12 cm by 2100 compared with 2005, roughly in agreement with the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5) model projections. Copyright © 2018 the Author(s). Published by PNAS.

  12. A probabilistic analysis of the implications of instrument failures on ESA's Swarm mission for its individual satellite orbit deployments

    Science.gov (United States)

    Jackson, Andrew

    2015-07-01

    On launch, one of Swarm's absolute scalar magnetometers (ASMs) failed to function, leaving an asymmetrical arrangement of redundant spares on different spacecrafts. A decision was required concerning the deployment of individual satellites into the low-orbit pair or the higher "lonely" orbit. I analyse the probabilities for successful operation of two of the science components of the Swarm mission in terms of a classical probabilistic failure analysis, with a view to concluding a favourable assignment for the satellite with the single working ASM. I concentrate on the following two science aspects: the east-west gradiometer aspect of the lower pair of satellites and the constellation aspect, which requires a working ASM in each of the two orbital planes. I use the so-called "expert solicitation" probabilities for instrument failure solicited from Mission Advisory Group (MAG) members. My conclusion from the analysis is that it is better to have redundancy of ASMs in the lonely satellite orbit. Although the opposite scenario, having redundancy (and thus four ASMs) in the lower orbit, increases the chance of a working gradiometer late in the mission; it does so at the expense of a likely constellation. Although the results are presented based on actual MAG members' probabilities, the results are rather generic, excepting the case when the probability of individual ASM failure is very small; in this case, any arrangement will ensure a successful mission since there is essentially no failure expected at all. Since the very design of the lower pair is to enable common mode rejection of external signals, it is likely that its work can be successfully achieved during the first 5 years of the mission.

  13. TYCHO: Demonstrator and operational satellite mission to Earth-Moon-Libration point EML-4 for communication relay provision as a service

    Science.gov (United States)

    Hornig, Andreas; Homeister, Maren

    2015-03-01

    In the current wake of mission plans to the Moon and to Earth-Moon Libration points (EML) by several agencies and organizations, TYCHO identifies the key role of telecommunication provision for the future path of lunar exploration. It demonstrates an interesting extension to existing communication methods to the Moon and beyond by combining innovative technology with a next frontier location and the commercial space communication sector. It is evident that all communication systems will rely on direct communication to Earth ground stations. In case of EML-2 missions around HALO orbits or bases on the far side of the Moon, it has to be extended by communication links via relay stations. The innovative approach is that TYCHO provides this relay communication to those out-of-sight lunar missions as a service. TYCHO will establish a new infrastructure for future missions and even create a new market for add-on relay services. The TMA-0 satellite is TYCHO's first phase and a proposed demonstrator mission to the Earth-Moon Libration point EML-4. It demonstrates relay services needed for automated exploratory and manned missions (Moon bases) on the rim (>90°E and >90°W) and far side surface, to lunar orbits and even to EML-2 halo orbits (satellites and space stations). Its main advantage is the permanent availability of communication coverage. This will provide full access to scientific and telemetry data and furthermore to crucial medical monitoring and safety. The communication subsystem is a platform for conventional communication but also a test-bed for optical communication with high data-rate LASER links to serve the future needs of manned bases and periodic burst data-transfer from lunar poles. The operational TMA-1 satellite is a stand-alone mission integrated into existing space communication networks to provide open communication service to external lunar missions. Therefore the long-time stable libration points EML-4 and -5 are selected to guarantee an

  14. Joint operations planning for space surveillance missions on the MSX satellite

    Science.gov (United States)

    Stokes, Grant; Good, Andrew

    1994-01-01

    The Midcourse Space Experiment (MSX) satellite, sponsored by BMDO, is intended to gather broad-band phenomenology data on missiles, plumes, naturally occurring earthlimb backgrounds and deep space backgrounds. In addition the MSX will be used to conduct functional demonstrations of space-based space surveillance. The JHU/Applied Physics Laboratory (APL), located in Laurel, MD, is the integrator and operator of the MSX satellite. APL will conduct all operations related to the MSX and is charged with the detailed operations planning required to implement all of the experiments run on the MSX except the space surveillance experiments. The non-surveillance operations are generally amenable to being defined months ahead of time and being scheduled on a monthly basis. Lincoln Laboratory, Massachusetts Institute of Technology (LL), located in Lexington, MA, is the provider of one of the principle MSX instruments, the Space-Based Visible (SBV) sensor, and the agency charged with implementing the space surveillance demonstrations on the MSX. The planning timelines for the space surveillance demonstrations are fundamentally different from those for the other experiments. They are generally amenable to being scheduled on a monthly basis, but the specific experiment sequence and pointing must be refined shortly before execution. This allocation of responsibilities to different organizations implies the need for a joint mission planning system for conducting space surveillance demonstrations. This paper details the iterative, joint planning system, based on passing responsibility for generating MSX commands for surveillance operations from APL to LL for specific scheduled operations. The joint planning system, including the generation of a budget for spacecraft resources to be used for surveillance events, has been successfully demonstrated during ground testing of the MSX and is being validated for MSX launch within the year. The planning system developed for the MSX forms a

  15. A fiducial reference site for satellite altimetry in Crete, Greece

    DEFF Research Database (Denmark)

    Mertikas, Stelios; Donlon, Craig; Mavrokordatos, Constantin

    With the advent of diverse satellite altimeters and variant measuring techniques, it has become mature in the scientific community, that an absolute reference Cal/Val site is regularly maintained to define, monitor, control the responses of any altimetric system. This work sets the ground for the...

  16. Ensemble Kalman filter assimilation of temperature and altimeter data with bias correction and application to seasonal prediction

    Directory of Open Access Journals (Sweden)

    C. L. Keppenne

    2005-01-01

    Full Text Available To compensate for a poorly known geoid, satellite altimeter data is usually analyzed in terms of anomalies from the time mean record. When such anomalies are assimilated into an ocean model, the bias between the climatologies of the model and data is problematic. An ensemble Kalman filter (EnKF is modified to account for the presence of a forecast-model bias and applied to the assimilation of TOPEX/Poseidon (T/P altimeter data. The online bias correction (OBC algorithm uses the same ensemble of model state vectors to estimate biased-error and unbiased-error covariance matrices. Covariance localization is used but the bias covariances have different localization scales from the unbiased-error covariances, thereby accounting for the fact that the bias in a global ocean model could have much larger spatial scales than the random error.The method is applied to a 27-layer version of the Poseidon global ocean general circulation model with about 30-million state variables. Experiments in which T/P altimeter anomalies are assimilated show that the OBC reduces the RMS observation minus forecast difference for sea-surface height (SSH over a similar EnKF run in which OBC is not used. Independent in situ temperature observations show that the temperature field is also improved. When the T/P data and in situ temperature data are assimilated in the same run and the configuration of the ensemble at the end of the run is used to initialize the ocean component of the GMAO coupled forecast model, seasonal SSH hindcasts made with the coupled model are generally better than those initialized with optimal interpolation of temperature observations without altimeter data. The analysis of the corresponding sea-surface temperature hindcasts is not as conclusive.

  17. An overview of the laser ranging method of space laser altimeter

    Science.gov (United States)

    Zhou, Hui; Chen, Yuwei; Hyyppä, Juha; Li, Song

    2017-11-01

    Space laser altimeter is an active remote sensing instrument to measure topographic map of Earth, Moon and planetary. The space laser altimeter determines the range between the instrument and laser footprint by measuring round trip time of laser pulse. The return pulse reflected from ground surface is gathered by the receiver of space laser altimeter, the pulsewidth and amplitude of which are changeable with the variability of the ground relief. Meantime, several kinds of noise overlapped on the return pulse signal affect its signal-to-noise ratio. To eliminate the influence of these factors that cause range walk and range uncertainty, the reliable laser ranging methods need to be implemented to obtain high-precision range results. Based on typical space laser altimeters in the past few decades, various ranging methods are expounded in detail according to the operational principle of instruments and timing method. By illustrating the concrete procedure of determining time of flight of laser pulse, this overview provides the comparison of the employed technologies in previous and undergoing research programs and prospect innovative technology for space laser altimeters in future.

  18. Monte Carlo Analysis as a Trajectory Design Driver for the Transiting Exoplanet Survey Satellite (TESS) Mission

    Science.gov (United States)

    Nickel, Craig; Parker, Joel; Dichmann, Don; Lebois, Ryan; Lutz, Stephen

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will be injected into a highly eccentric Earth orbit and fly 3.5 phasing loops followed by a lunar flyby to enter a mission orbit with lunar 2:1 resonance. Through the phasing loops and mission orbit, the trajectory is significantly affected by lunar and solar gravity. We have developed a trajectory design to achieve the mission orbit and meet mission constraints, including eclipse avoidance and a 30-year geostationary orbit avoidance requirement. A parallelized Monte Carlo simulation was performed to validate the trajectory after injecting common perturbations, including launch dispersions, orbit determination errors, and maneuver execution errors. The Monte Carlo analysis helped identify mission risks and is used in the trajectory selection process.

  19. Evaluation and adjustment of altimeter measurement and numerical hindcast in wave height trend estimation in China's coastal seas

    Science.gov (United States)

    Li, Shuiqing; Guan, Shoude; Hou, Yijun; Liu, Yahao; Bi, Fan

    2018-05-01

    A long-term trend of significant wave height (SWH) in China's coastal seas was examined based on three datasets derived from satellite measurements and numerical hindcasts. One set of altimeter data were obtained from the GlobWave, while the other two datasets of numerical hindcasts were obtained from the third-generation wind wave model, WAVEWATCH III, forced by wind fields from the Cross-Calibrated Multi-Platform (CCMP) and NCEP's Climate Forecast System Reanalysis (CFSR). The mean and extreme wave trends were estimated for the period 1992-2010 with respect to the annual mean and the 99th-percentile values of SWH, respectively. The altimeter wave trend estimates feature considerable uncertainties owing to the sparse sampling rate. Furthermore, the extreme wave trend tends to be overestimated because of the increasing sampling rate over time. Numerical wave trends strongly depend on the quality of the wind fields, as the CCMP waves significantly overestimate the wave trend, whereas the CFSR waves tend to underestimate the trend. Corresponding adjustments were applied which effectively improved the trend estimates from the altimeter and numerical data. The adjusted results show generally increasing mean wave trends, while the extreme wave trends are more spatially-varied, from decreasing trends prevailing in the South China Sea to significant increasing trends mainly in the East China Sea.

  20. Bottom Pressure Tides Along a Line in the Southeast Atlantic Ocean and Comparisons with Satellite Altimetry

    Science.gov (United States)

    Ray, Richard D.; Byrne, Deidre A.

    2010-01-01

    Seafloor pressure records, collected at 11 stations aligned along a single ground track of the Topex/Poseidon and Jason satellites, are analyzed for their tidal content. With very low background noise levels and approximately 27 months of high-quality records, tidal constituents can be estimated with unusually high precision. This includes many high-frequency lines up through the seventh-diurnal band. The station deployment provides a unique opportunity to compare with tides estimated from satellite altimetry, point by point along the satellite track, in a region of moderately high mesoscale variability. That variability can significantly corrupt altimeter-based tide estimates, even with 17 years of data. A method to improve the along-track altimeter estimates by correcting the data for nontidal variability is found to yield much better agreement with the bottom-pressure data. The technique should prove useful in certain demanding applications, such as altimetric studies of internal tides.

  1. Investigating the Potential Impact of the Surface Water and Ocean Topography (SWOT) Altimeter on Ocean Mesoscale Prediction

    Science.gov (United States)

    Carrier, M.; Ngodock, H.; Smith, S. R.; Souopgui, I.

    2016-02-01

    NASA's Surface Water and Ocean Topography (SWOT) satellite, scheduled for launch in 2020, will provide sea surface height anomaly (SSHA) observations with a wider swath width and higher spatial resolution than current satellite altimeters. It is expected that this will help to further constrain ocean models in terms of the mesoscale circulation. In this work, this expectation is investigated by way of twin data assimilation experiments using the Navy Coastal Ocean Model Four Dimensional Variational (NCOM-4DVAR) data assimilation system using a weak constraint formulation. Here, a nature run is created from which SWOT observations are sampled, as well as along-track SSHA observations from simulated Jason-2 tracks. The simulated SWOT data has appropriate spatial coverage, resolution, and noise characteristics based on an observation-simulator program provided by the SWOT science team. The experiment is run for a three-month period during which the analysis is updated every 24 hours and each analysis is used to initialize a 96 hour forecast. The forecasts in each experiment are compared to the available nature run to determine the impact of the assimilated data. It is demonstrated here that the SWOT observations help to constrain the model mesoscale in a more consistent manner than traditional altimeter observations. The findings of this study suggest that data from SWOT may have a substantial impact on improving the ocean model analysis and forecast of mesoscale features and surface ocean transport.

  2. A new planetary mapping for future space missions

    Science.gov (United States)

    Karachevtseva, Irina; Kokhanov, Alexander; Rodionova, Janna; Zubarev, Anatoliy; Nadezhdina, Irina; Kreslavsky, Mikhail; Oberst, Jürgen

    2015-04-01

    The wide studies of Solar system, including different planetary bodies, were announced by new Russian space program. Their geodesy and cartography support provides by MIIGAiK Extraterrestrial Laboratory (http://mexlab.miigaik.ru/eng) in frames of the new project "Studies of Fundamental Geodetic Parameters and Topography of Planets and Satellites". The objects of study are satellites of the outer planets (satellites of Jupiter - Europa, Calisto and Ganymede; Saturnine satellite Enceladus), some planets (Mercury and Mars) and the satellites of the terrestrial planets - Phobos (Mars) and the Moon (Earth). The new research project, which started in 2014, will address the following important scientific and practical tasks: - Creating new three-dimensional geodetic control point networks of satellites of the outer planets using innovative photogrammetry techniques; - Determination of fundamental geodetic parameters and study size, shape, and spin parameters and to create the basic framework for research of their surfaces; - Studies of relief of planetary bodies and comparative analysis of general surface characteristics of the Moon, Mars, and Mercury, as well as studies of morphometric parameters of volcanic formations on the Moon and Mars; - Modeling of meteoritic bombardment of celestial bodies and the study of the dynamics of particle emissions caused by a meteorite impacts; - Development of geodatabase for studies of planetary bodies, including creation of object catalogues, (craters and volcanic forms, etc.), and thematic mapping using GIS technology. The significance of the project is defined both by necessity of obtaining fundamental characteristics of the Solar System bodies, and practical tasks in preparation for future Russian and international space missions to the Jupiter system (Laplace-P and JUICE), the Moon (Luna-Glob and Luna-Resource), Mars (Exo-Mars), Mercury (Bepi-Colombo), and possible mission to Phobos (project Boomerang). For cartographic support of

  3. Lunar Topography: Results from the Lunar Orbiter Laser Altimeter

    Science.gov (United States)

    Neumann, Gregory; Smith, David E.; Zuber, Maria T.; Mazarico, Erwan

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO) has been operating nearly continuously since July 2009, accumulating over 6 billion measurements from more than 2 billion in-orbit laser shots. LRO's near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, with full coverage at the equator from more than 12000 orbital tracks averaging less than 1 km in spacing at the equator. LRO has obtained a global geodetic model of the lunar topography with 50-meter horizontal and 1-m radial accuracy in a lunar center-of-mass coordinate system, with profiles of topography at 20-m horizontal resolution, and 0.1-m vertical precision. LOLA also provides measurements of reflectivity and surface roughness down to its 5-m laser spot size. With these data LOLA has measured the shape of all lunar craters 20 km and larger. In the proposed extended mission commencing late in 2012, LOLA will concentrate observations in the Southern Hemisphere, improving the density of the polar coverage to nearly 10-m pixel resolution and accuracy to better than 20 m total position error. Uses for these data include mission planning and targeting, illumination studies, geodetic control of images, as well as lunar geology and geophysics. Further improvements in geodetic accuracy are anticipated from the use of re ned gravity fields after the successful completion of the Gravity Recovery and Interior Laboratory (GRAIL) mission in 2012.

  4. A new, high-resolution digital elevation model of Greenland fully validated with airborne laser altimeter data

    DEFF Research Database (Denmark)

    Bamber, J.L.; Ekholm, Simon; Krabill, W.B.

    2001-01-01

    were corrected for a slope-dependent bias that had been identified in a previous study. The radar altimetry was supplemented with stereophotogrammetric data sets, synthetic aperture radar interferometry, and digitized cartographic maps over regions of bare rock and where gaps in the satellite altimeter...... the bare rock areas the accuracy ranged from 20 to 200 m, dependent on the data source available. The new digital elevation model was used as an input data set for a positive degree day model of ablation. The new elevation model was found to reduce ablation by only 2% compared with using an older, 2.5-km...

  5. Ranging error analysis of single photon satellite laser altimetry under different terrain conditions

    Science.gov (United States)

    Huang, Jiapeng; Li, Guoyuan; Gao, Xiaoming; Wang, Jianmin; Fan, Wenfeng; Zhou, Shihong

    2018-02-01

    Single photon satellite laser altimeter is based on Geiger model, which has the characteristics of small spot, high repetition rate etc. In this paper, for the slope terrain, the distance of error's formula and numerical calculation are carried out. Monte Carlo method is used to simulate the experiment of different terrain measurements. The experimental results show that ranging accuracy is not affected by the spot size under the condition of the flat terrain, But the inclined terrain can influence the ranging error dramatically, when the satellite pointing angle is 0.001° and the terrain slope is about 12°, the ranging error can reach to 0.5m. While the accuracy can't meet the requirement when the slope is more than 70°. Monte Carlo simulation results show that single photon laser altimeter satellite with high repetition rate can improve the ranging accuracy under the condition of complex terrain. In order to ensure repeated observation of the same point for 25 times, according to the parameters of ICESat-2, we deduce the quantitative relation between the footprint size, footprint, and the frequency repetition. The related conclusions can provide reference for the design and demonstration of the domestic single photon laser altimetry satellite.

  6. Calibrating the SAR SSH of Sentinel-3A and CryoSat-2 over the Corsica Facilities

    Directory of Open Access Journals (Sweden)

    Pascal Bonnefond

    2018-01-01

    Full Text Available Initially developed to monitor the performance of TOPEX/Poseidon and to follow the Jason legacy satellite altimeters at Senetosa Cape, Corsica, this calibration/validation site has been extended to include a new location at Ajaccio. This addition enables the site to monitor Envisat and ERS missions, CryoSat-2 and, more recently, the SARAL/AltiKa mission and Sentinel-3A satellites. Sentinel-3A and CryoSat-2 carry altimeters that use a synthetic aperture radar (SAR mode that is different to the conventional pulse-bandwidth limited altimeters often termed “low resolution mode” (LRM. The aim of this study is to characterize the sea surface height (SSH bias of the new SAR altimeter instruments and to demonstrate the improvement of data quality close to the coast. Moreover, some passes of Sentinel-3A and CryoSat-2 overfly both Senetosa and Ajaccio with only a few seconds time difference, allowing us to evaluate the reliability and homogeneity of both ground sites in term of geodetic datum. The Sentinel-3A and CryoSat-2 SSH biases for the SAR mode are respectively +22 ± 7 mm and −73 ± 5 mm (for CryoSat-2 baseline C products. The results show that the stability of the SAR SSH bias time series is better than standard LRM altimetry. Moreover, compared to standard LRM data, for which the measurements closer than ~10 km from the coast were generally unusable, SAR mode altimeters provide measurements that are reliable at less than few hundred meters from the coast.

  7. High-resolution residual geoid and gravity anomaly data of the northern Indian Ocean - An input to geological understanding

    Digital Repository Service at National Institute of Oceanography (India)

    Sreejith, K.M.; Rajesh, S.; Majumdar, T.J.; Rao, G.S.; Radhakrishna, M.; Krishna, K.S.; Rajawat, A.S.

    ') geoid anomaly map of the northern Indian Ocean generated from the altimeter data obtained from Geodetic Missions of GEOSAT and ERS-1 along with ERS-2, TOPEX/POSIDEON and JASON satellites is presented. The geoid map of the Indian Ocean is dominated by a...

  8. Geographical representation of radial orbit perturbations due to ocean tides: Implications for satellite altimetry

    Science.gov (United States)

    Bettadpur, Srinivas V.; Eanes, Richard J.

    1994-01-01

    In analogy to the geographical representation of the zeroth-order radial orbit perturbations due to the static geopotential, similar relationships have been derived for radial orbit perturbations due to the ocean tides. At each location these perturbations are seen to be coherent with the tide height variations. The study of this singularity is of obvious importance to the estimation of ocean tides from satellite altimeter data. We derive analytical expressions for the sensitivity of altimeter derived ocean tide models to the ocean tide force model induced errors in the orbits of the altimeter satellite. In particular, we focus on characterizing and quantifying the nonresonant tidal orbit perturbations, which cannot be adjusted into the empirical accelerations or radial perturbation adjustments commonly used during orbit determination and in altimeter data processing. As an illustration of the utility of this technique, we study the differences between a TOPEX/POSEIDON-derived ocean tide model and the Cartwright and Ray 1991 Geosat model. This analysis shows that nearly 60% of the variance of this difference for M(sub 2) can be explained by the Geosat radial orbit eror due to the omission of coefficients from the GEM-T2 background ocean tide model. For O(sub 1), K(sub 1), S(sub 2), and K(sub 2) the orbital effects account for approximately 10 to 40% of the variances of these differences. The utility of this technique to assessment of the ocean tide induced errors in the TOPEX/POSEIDON-derived tide models is also discussed.

  9. Evaluating Cloud and Precipitation Processes in Numerical Models using Current and Potential Future Satellite Missions

    Science.gov (United States)

    van den Heever, S. C.; Tao, W. K.; Skofronick Jackson, G.; Tanelli, S.; L'Ecuyer, T. S.; Petersen, W. A.; Kummerow, C. D.

    2015-12-01

    Cloud, aerosol and precipitation processes play a fundamental role in the water and energy cycle. It is critical to accurately represent these microphysical processes in numerical models if we are to better predict cloud and precipitation properties on weather through climate timescales. Much has been learned about cloud properties and precipitation characteristics from NASA satellite missions such as TRMM, CloudSat, and more recently GPM. Furthermore, data from these missions have been successfully utilized in evaluating the microphysical schemes in cloud-resolving models (CRMs) and global models. However, there are still many uncertainties associated with these microphysics schemes. These uncertainties can be attributed, at least in part, to the fact that microphysical processes cannot be directly observed or measured, but instead have to be inferred from those cloud properties that can be measured. Evaluation of microphysical parameterizations are becoming increasingly important as enhanced computational capabilities are facilitating the use of more sophisticated schemes in CRMs, and as future global models are being run on what has traditionally been regarded as cloud-resolving scales using CRM microphysical schemes. In this talk we will demonstrate how TRMM, CloudSat and GPM data have been used to evaluate different aspects of current CRM microphysical schemes, providing examples of where these approaches have been successful. We will also highlight CRM microphysical processes that have not been well evaluated and suggest approaches for addressing such issues. Finally, we will introduce a potential NASA satellite mission, the Cloud and Precipitation Processes Mission (CAPPM), which would facilitate the development and evaluation of different microphysical-dynamical feedbacks in numerical models.

  10. Performance Analysis of Satellite Missions for Multi-Temporal SAR Interferometry.

    Science.gov (United States)

    Bovenga, Fabio; Belmonte, Antonella; Refice, Alberto; Pasquariello, Guido; Nutricato, Raffaele; Nitti, Davide O; Chiaradia, Maria T

    2018-04-27

    Multi-temporal InSAR (MTI) applications pose challenges related to the availability of coherent scattering from the ground surface, the complexity of the ground deformations, atmospheric artifacts, and visibility problems related to ground elevation. Nowadays, several satellite missions are available providing interferometric SAR data at different wavelengths, spatial resolutions, and revisit time. A new and interesting opportunity is provided by Sentinel-1, which has a spatial resolution comparable to that of previous ESA C-band sensors, and revisit times improved by up to 6 days. According to these different SAR space-borne missions, the present work discusses current and future opportunities of MTI applications in terms of ground instability monitoring. Issues related to coherent target detection, mean velocity precision, and product geo-location are addressed through a simple theoretical model assuming backscattering mechanisms related to point scatterers. The paper also presents an example of a multi-sensor ground instability investigation over Lesina Marina, a village in Southern Italy lying over a gypsum diapir, where a hydration process, involving the underlying anhydride, causes a smooth uplift and the formation of scattered sinkholes. More than 20 years of MTI SAR data have been processed, coming from both legacy ERS and ENVISAT missions, and latest-generation RADARSAT-2, COSMO-SkyMed, and Sentinel-1A sensors. Results confirm the presence of a rather steady uplift process, with limited to null variations throughout the whole monitored time-period.

  11. Performance Analysis of Satellite Missions for Multi-Temporal SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Fabio Bovenga

    2018-04-01

    Full Text Available Multi-temporal InSAR (MTI applications pose challenges related to the availability of coherent scattering from the ground surface, the complexity of the ground deformations, atmospheric artifacts, and visibility problems related to ground elevation. Nowadays, several satellite missions are available providing interferometric SAR data at different wavelengths, spatial resolutions, and revisit time. A new and interesting opportunity is provided by Sentinel-1, which has a spatial resolution comparable to that of previous ESA C-band sensors, and revisit times improved by up to 6 days. According to these different SAR space-borne missions, the present work discusses current and future opportunities of MTI applications in terms of ground instability monitoring. Issues related to coherent target detection, mean velocity precision, and product geo-location are addressed through a simple theoretical model assuming backscattering mechanisms related to point scatterers. The paper also presents an example of a multi-sensor ground instability investigation over Lesina Marina, a village in Southern Italy lying over a gypsum diapir, where a hydration process, involving the underlying anhydride, causes a smooth uplift and the formation of scattered sinkholes. More than 20 years of MTI SAR data have been processed, coming from both legacy ERS and ENVISAT missions, and latest-generation RADARSAT-2, COSMO-SkyMed, and Sentinel-1A sensors. Results confirm the presence of a rather steady uplift process, with limited to null variations throughout the whole monitored time-period.

  12. Improved Traceability of a Small Satellite Mission Concept to Requirements Using Model Based System Engineering

    Science.gov (United States)

    Reil, Robin L.

    2014-01-01

    Model Based Systems Engineering (MBSE) has recently been gaining significant support as a means to improve the "traditional" document-based systems engineering (DBSE) approach to engineering complex systems. In the spacecraft design domain, there are many perceived and propose benefits of an MBSE approach, but little analysis has been presented to determine the tangible benefits of such an approach (e.g. time and cost saved, increased product quality). This paper presents direct examples of how developing a small satellite system model can improve traceability of the mission concept to its requirements. A comparison of the processes and approaches for MBSE and DBSE is made using the NASA Ames Research Center SporeSat CubeSat mission as a case study. A model of the SporeSat mission is built using the Systems Modeling Language standard and No Magic's MagicDraw modeling tool. The model incorporates mission concept and requirement information from the mission's original DBSE design efforts. Active dependency relationships are modeled to demonstrate the completeness and consistency of the requirements to the mission concept. Anecdotal information and process-duration metrics are presented for both the MBSE and original DBSE design efforts of SporeSat.

  13. High Density GEOSAT/GM Altimeter Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The high density Geosat/GM altimeter data south of 30 S have finally arrived. In addition, ERS-1 has completed more than 6 cycles of its 35-day repeat track. These...

  14. Multi-agent robotic systems and applications for satellite missions

    Science.gov (United States)

    Nunes, Miguel A.

    A revolution in the space sector is happening. It is expected that in the next decade there will be more satellites launched than in the previous sixty years of space exploration. Major challenges are associated with this growth of space assets such as the autonomy and management of large groups of satellites, in particular with small satellites. There are two main objectives for this work. First, a flexible and distributed software architecture is presented to expand the possibilities of spacecraft autonomy and in particular autonomous motion in attitude and position. The approach taken is based on the concept of distributed software agents, also referred to as multi-agent robotic system. Agents are defined as software programs that are social, reactive and proactive to autonomously maximize the chances of achieving the set goals. Part of the work is to demonstrate that a multi-agent robotic system is a feasible approach for different problems of autonomy such as satellite attitude determination and control and autonomous rendezvous and docking. The second main objective is to develop a method to optimize multi-satellite configurations in space, also known as satellite constellations. This automated method generates new optimal mega-constellations designs for Earth observations and fast revisit times on large ground areas. The optimal satellite constellation can be used by researchers as the baseline for new missions. The first contribution of this work is the development of a new multi-agent robotic system for distributing the attitude determination and control subsystem for HiakaSat. The multi-agent robotic system is implemented and tested on the satellite hardware-in-the-loop testbed that simulates a representative space environment. The results show that the newly proposed system for this particular case achieves an equivalent control performance when compared to the monolithic implementation. In terms on computational efficiency it is found that the multi

  15. Assimilation of radar altimeter data in numerical wave models: an impact study in two different wave climate regions

    Directory of Open Access Journals (Sweden)

    G. Emmanouil

    2007-03-01

    Full Text Available An operational assimilation system incorporating significant wave height observations in high resolution numerical wave models is studied and evaluated. In particular, altimeter satellite data provided by the European Space Agency (ESA-ENVISAT are assimilated in the wave model WAM which operates in two different wave climate areas: the Mediterranean Sea and the Indian Ocean. The first is a wind-sea dominated area while in the second, swell is the principal part of the sea state, a fact that seriously affects the performance of the assimilation scheme. A detailed study of the different impact is presented and the resulting forecasts are evaluated against available buoy and satellite observations. The corresponding results show a considerable improvement in wave forecasting for the Indian Ocean while in the Mediterranean Sea the assimilation impact is restricted to isolated areas.

  16. FORMOSAT-3/COSMIC Spacecraft Constellation System, Mission Results, and Prospect for Follow-On Mission

    Directory of Open Access Journals (Sweden)

    Chen-Joe Fong

    2009-01-01

    Full Text Available The FORMOSAT-3/COSMIC spacecraft constellation consisting of six LEO satellites is the world's first operational GPS Radio Occultation (RO mission. The mission is jointly developed by Taiwan¡¦s National Space Organization (NSPO and the United States¡¦UCAR in collaboration with NSF, USAF, NOAA, NASA, NASA's Jet Propulsion Laboratory, and the US Naval Research Laboratory. The FORMOSAT-3/COSMIC satellites were successfully launched from Vandenberg US AFB in California at 0140 UTC 15 April 2006 into the same orbit plane of the designated 516 km altitude. The mission goal is to deploy the six satellites into six orbit planes at 800 km altitude with a 30-degree separation for evenly distributed global coverage. All six FORMOSAT-3/COSMIC satellites are currently maintaining a satisfactory good state-of-health. Five out of six satellites have reached their final mission orbit of 800 km as of November 2007. The data as received by FORMOSAT-3/COSMIC satellites constellation have been processed in near real time into 2500 good ionospheric profiles and 1800 good atmospheric profiles per day. These have outnumbered the worldwide radiosondes (~900 mostly over land launched from the ground per day. The processed atmospheric RO data have been assimilated into the Numerical Weather Prediction (NWP models for real-time weather prediction and typhoon/hurricane forecasting by many major weather centers in the world. This paper describes the FORMOSAT-3/COSMIC satellite constellation system performance and the mission results that span the period from April 2006 to October 2007; and reviews the prospect of a future follow-on mission.

  17. Navigating the MESSENGER Spacecraft through End of Mission

    Science.gov (United States)

    Bryan, C. G.; Williams, B. G.; Williams, K. E.; Taylor, A. H.; Carranza, E.; Page, B. R.; Stanbridge, D. R.; Mazarico, E.; Neumann, G. A.; O'Shaughnessy, D. J.; McAdams, J. V.; Calloway, A. B.

    2015-12-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited the planet Mercury from March 2011 until the end of April 2015, when it impacted the planetary surface after propellant reserves used to maintain the orbit were depleted. This highly successful mission was led by the principal investigator, Sean C. Solomon, of Columbia University. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and assembled the spacecraft and served as the home for spacecraft operations. Spacecraft navigation for the entirety of the mission was provided by the Space Navigation and Flight Dynamics Practice (SNAFD) of KinetX Aerospace. Orbit determination (OD) solutions were generated through processing of radiometric tracking data provided by NASA's Deep Space Network (DSN) using the MIRAGE suite of orbital analysis tools. The MESSENGER orbit was highly eccentric, with periapsis at a high northern latitude and periapsis altitude in the range 200-500 km for most of the orbital mission phase. In a low-altitude "hover campaign" during the final two months of the mission, periapsis altitudes were maintained within a narrow range between about 35 km and 5 km. Navigating a spacecraft so near a planetary surface presented special challenges. Tasks required to meet those challenges included the modeling and estimation of Mercury's gravity field and of solar and planetary radiation pressure, and the design of frequent orbit-correction maneuvers. Superior solar conjunction also presented observational modeling issues. One key to the overall success of the low-altitude hover campaign was a strategy to utilize data from an onboard laser altimeter as a cross-check on the navigation team's reconstructed and predicted estimates of periapsis altitude. Data obtained from the Mercury Laser Altimeter (MLA) on a daily basis provided near-real-time feedback that proved invaluable in evaluating alternative orbit estimation strategies, and

  18. Airborne laser altimeter measurements of landscape topography

    International Nuclear Information System (INIS)

    Ritchie, J.C.

    1995-01-01

    Measurements of topography can provide a wealth of information on landscape properties for managing hydrologic and geologic systems and conserving natural and agricultural resources. This article discusses the application of an airborne laser altimeter to measure topography and other landscape surface properties. The airborne laser altimeter makes 4000 measurements per second with a vertical recording resolution of 5 cm. Data are collected digitally with a personal computer. A video camera, borehole sighted with the laser, records an image for locating flight lines. GPS data are used to locate flight line positions on the landscape. Laser data were used to measure vegetation canopy topography, height, cover, and distribution and to measure microtopography of the land surface and gullies with depths of 15–20 cm. Macrotopography of landscape profiles for segments up to 4 km were in agreement with available topographic maps but provided more detail. Larger gullies with and without vegetation, and stream channel cross sections and their associated floodplains have also been measured and reported in other publications. Landscape segments for any length could be measured for either micro- or macrotopography. Airborne laser altimeter measurements of landscape profiles can provide detailed information on landscape properties or specific needs that will allow better decisions on the design and location of structures (i.e., roads, pipe, and power lines) and for improving the management and conservation of natural and agricultural landscapes. (author)

  19. Life Science Research in Outer Space: New Platform Technologies for Low-Cost, Autonomous Small Satellite Missions

    Science.gov (United States)

    Ricco, Antonio J.; Parra, Macarena P.; Niesel, David; McGinnis, Michael; Ehrenfreund, Pascale; Nicholson, Wayne; Mancinelli, Rocco; Piccini, Matthew E.; Beasley, Christopher C.; Timucin, Linda R.; hide

    2009-01-01

    We develop integrated instruments and platforms suitable for economical, frequent space access for autonomous life science experiments and processes in outer space. The technologies represented by three of our recent free-flyer small-satellite missions are the basis of a rapidly growing toolbox of miniaturized biologically/biochemically-oriented instrumentation now enabling a new generation of in-situ space experiments. Autonomous small satellites ( 1 50 kg) are less expensive to develop and build than fullsize spacecraft and not subject to the comparatively high costs and scheduling challenges of human-tended experimentation on the International Space Station, Space Shuttle, and comparable platforms. A growing number of commercial, government, military, and civilian space launches now carry small secondary science payloads at far lower cost than dedicated missions; the number of opportunities is particularly large for so-called cube-sat and multicube satellites in the 1 10 kg range. The recent explosion in nano-, micro-, and miniature technologies, spanning fields from telecommunications to materials to bio/chemical analysis, enables development of remarkably capable autonomous miniaturized instruments to accomplish remote biological experimentation. High-throughput drug discovery, point-of-care medical diagnostics, and genetic analysis are applications driving rapid progress in autonomous bioanalytical technology. Three of our recent missions exemplify the development of miniaturized analytical payload instrumentation: GeneSat-1 (launched: December 2006), PharmaSat (launched: May 2009), and O/OREOS (organism/organics exposure to orbital stresses; scheduled launch: May 2010). We will highlight the overall architecture and integration of fluidic, optical, sensor, thermal, and electronic technologies and subsystems to support and monitor the growth of microorganisms in culture in these small autonomous space satellites, including real-time tracking of their culture

  20. The use of airborne laser data to calibrate satellite radar altimetry data over ice sheets

    DEFF Research Database (Denmark)

    Ekholm, Simon; Bamber, J.L.; Krabill, W.B.

    2002-01-01

    Satellite radar altimetry is the most important data source for ice sheet elevation modeling but it is well established that the accuracy of such data from satellite borne radar altimeters degrade seriously with increasing surface slope and level of roughness. A significant fraction of the slope......-precision airborne laser profiling data from the so-called Arctic Ice Mapping project as a tool to determine that bias and to calibrate the satellite altimetry. This is achieved by a simple statistical analysis of the airborne laser profiles, which defines the mean amplitude of the local surface undulations...

  1. Improvement of global and regional mean sea level derived from satellite altimetry multi missions

    Science.gov (United States)

    Ablain, M.; Faugere, Y.; Larnicol, G.; Picot, N.; Cazenave, A.; Benveniste, J.

    2012-04-01

    With the satellite altimetry missions, the global mean sea level (GMSL) has been calculated on a continual basis since January 1993. 'Verification' phases, during which the satellites follow each other in close succession (Topex/Poseidon--Jason-1, then Jason-1--Jason-2), help to link up these different missions by precisely determining any bias between them. Envisat, ERS-1 and ERS-2 are also used, after being adjusted on these reference missions, in order to compute Mean Sea Level at high latitudes (higher than 66°N and S), and also to improve spatial resolution by combining all these missions together. The global mean sea level (MSL) deduced from TOPEX/Poseidon, Jason-1 and Jason-2 provide a global rate of 3.2 mm from 1993 to 2010 applying the post glacial rebound (MSL aviso website http://www.jason.oceanobs.com/msl). Besides, the regional sea level trends bring out an inhomogeneous repartition of the ocean elevation with local MSL slopes ranging from + 8 mm/yr to - 8 mm/year. A study published in 2009 [Ablain et al., 2009] has shown that the global MSL trend unceratainty was estimated at +/-0.6 mm/year with a confidence interval of 90%. The main sources of errors at global and regional scales are due to the orbit calculation and the wet troposphere correction. But others sea-level components have also a significant impact on the long-term stability of MSL as for instance the stability of instrumental parameters and the atmospheric corrections. Thanks to recent studies performed in the frame of the SALP project (supported by CNES) and Sea-level Climate Change Initiative project (supported by ESA), strong improvements have been provided for the estimation of the global and regional MSL trends. In this paper, we propose to describe them; they concern the orbit calculation thanks to new gravity fields, the atmospheric corrections thanks to ERA-interim reanalyses, the wet troposphere corrections thanks to the stability improvement, and also empirical corrections

  2. On the unification of geodetic leveling datums using satellite altimetry

    Science.gov (United States)

    Mather, R. S.; Rizos, C.; Morrison, T.

    1978-01-01

    Techniques are described for determining the height of Mean Sea Level (MSL) at coastal sites from satellite altimetry. Such information is of value in the adjustment of continental leveling networks. Numerical results are obtained from the 1977 GEOS-3 altimetry data bank at Goddard Space Flight Center using the Bermuda calibration of the altimeter. Estimates are made of the heights of MSL at the leveling datums for Australia and a hypothetical Galveston datum for central North America. The results obtained are in reasonable agreement with oceanographic estimates obtained by extrapolation. It is concluded that all gravity data in the Australian bank AUSGAD 76 and in the Rapp data file for central North America refer to the GEOS-3 altimeter geoid for 1976.0 with uncertainties which do not exceed + or - 0.1 mGal.

  3. The OICETS mission

    Science.gov (United States)

    Jono, Takashi; Arai, Katsuyoshi

    2017-11-01

    The Optical Inter-orbit Communications Engineering Test Satellite (OICETS) was successfully launched on 23th August 2005 and thrown into a circular orbit at the altitude of 610 km. The main mission is to demonstrate the free-space inter satellite laser communications with the cooperation of the Advanced Relay and Technology Mission (ARTEMIS) geostationary satellite developed by the European Space Agency. This paper presents the overview of the OICETS and laser terminal, a history of international cooperation between Japan Aerospace Exploration Agency (JAXA) and ESA and typical results of the inter-orbit laser communication experiment carried out with ARTEMIS.

  4. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions with Climate Data Record Applications

    Science.gov (United States)

    Kim, Edward

    2011-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201 I. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record-provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica-parameters such as surface temperature.

  5. ALES+: Adapting a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters

    DEFF Research Database (Denmark)

    Passaro, Marcello; Kildegaard Rose, Stine; Andersen, Ole B.

    2018-01-01

    ice retracker used for fitting specular echoes. Compared to an existing open ocean altimetry dataset, the presented strategy increases the number of sea level retrievals in the sea ice-covered area and the correlation with a local tide gauge. Further tests against in-situ data show that also......Water level from sea ice-covered oceans is particularly challenging to retrieve with satellite radar altimeters due to the different shapes assumed by the returned signal compared with the standard open ocean waveforms. Valid measurements are scarce in large areas of the Arctic and Antarctic Oceans...... the fitting of the signal depending on the sea state and on the slope of its trailing edge. The algorithm modifies the existing Adaptive Leading Edge Subwaveform retracker originally designed for coastal waters, and is applied to Envisat and ERS-2 missions. The validation in a test area of the Arctic Ocean...

  6. Definition phase of Grand Tour missions/radio science investigations study for outer planets missions

    Science.gov (United States)

    Tyler, G. L.

    1972-01-01

    Scientific instrumentation for satellite communication and radio tracking systems in the outer planet exploration mission is discussed. Mission planning considers observations of planetary and satellite-masses, -atmospheres, -magnetic fields, -surfaces, -gravitational fields, solar wind composition, planetary radio emissions, and tests of general relativity in time delay and ray bending experiments.

  7. Characterising and improving the performance of the Sentinel-3 SRAL altimeter: A Report from SCOOP, SHAPE & SPICE Projects

    Science.gov (United States)

    Restano, Marco; Ambrózio, Américo; Cotton, David; Scoop Team; Fabry, Pierre; Shape Team; McMillan, Malcolm; Spice Team; Benveniste, Jérôme

    2017-04-01

    Under the ESA Scientific Exploitation of Operational Missions (SEOM) Programme, 3 Projects are currently underway to accurately characterise and improve the performance of the Sentinel-3 SRAL SAR mode altimeter. They are: 1) SCOOP (SAR Altimetry Coastal & Open Ocean Performance Exploitation and Roadmap Study) for Coastal and Open Ocean; 2) SHAPE (Sentinel-3 Hydrologic Altimetry PrototypE) for Inland Water; 3) SPICE (Sentinel-3 Performance improvement for ICE sheets) for Ice Sheets. As projects started before the launch of Sentinel-3 (a full SAR mission), calibrated Cryosat-2 data have been used as input to a processor replicating the Sentinel-3 baseline processing. For the SCOOP project, a first test dataset has been released to end users including data from 10 regions of interest. The successful SAMOSA retracker, adopted in the previous CP4O Project (CryoSat Plus for Oceans), has been readapted to re-track Sentinel-3 waveforms. An improved version of SAMOSA will be released at the end of the project. The SHAPE project is working towards the design and assessment of alternative/innovative techniques not implemented in the Sentinel-3 ground segment (performing no Inland Water dedicated processing). Both rivers and lakes will be studied. Amazon, Brahmaputra and Danube have been selected as rivers, whereas Titicaca and Vanern have been chosen as lakes. The study will include the assimilation of output products into hydrological models for all regions of interest. A final dataset will be provided to end users. The SPICE project is addressing four high level objectives: 1) Assess and improve the Delay-Doppler altimeter processing for ice sheets. 2) Assess and develop SAR waveform retrackers for ice sheets. 3) Evaluate the performance of SAR altimetry relative to conventional pulse limited altimetry. 4) Assess the impact on SAR altimeter measurements of radar wave interaction with the snowpack. Dataset used for validation include ICESat and IceBridge products. Vostok

  8. Sustained Satellite Missions for Climate Data Records

    Science.gov (United States)

    Halpern, David

    2012-01-01

    Satellite CDRs possess the accuracy, longevity, and stability for sustained moni toring of critical variables to enhance understanding of the global integrated Earth system and predict future conditions. center dot Satellite CDRs are a critical element of a global climate observing system. center dot Satellite CDRs are a difficult challenge and require high - level managerial commitment, extensive intellectual capital, and adequate funding.

  9. Current Trends and Challenges in Satellite Laser Ranging

    Science.gov (United States)

    Appleby, Graham M.; Bianco, Giuseppe; Noll, Carey E.; Pavlis, Erricos C.; Pearlman, Michael R.

    2016-12-01

    Satellite Laser Ranging (SLR) is used to measure accurately the distance from ground stations to retro-reflectors on satellites and on the Moon. SLR is one of the fundamental space-geodetic techniques that define the International Terrestrial Reference Frame (ITRF), which is the basis upon which many aspects of global change over space, time, and evolving technology are measured; with VLBI the two techniques define the scale of the ITRF; alone the SLR technique defines its origin (geocenter). The importance of the reference frame has recently been recognized at the inter-governmental level through the United Nations, which adopted in February 2015 the Resolution "Global Geodetic Reference Frame for Sustainable Development." Laser Ranging provides precision orbit determination and instrument calibration and validation for satellite-borne altimeters for the better understanding of sea level change, ocean dynamics, ice mass-balance, and terrestrial topography. It is also a tool to study the dynamics of the Moon and fundamental constants and theories. With the exception of the currently in-orbit GPS constellation, all GNSS satellites now carry retro-reflectors for improved orbit determination, harmonization of reference frames, and in-orbit co-location and system performance validation; the next generation of GPS satellites due for launch from 2019 onwards will also carry retro-reflectors. The ILRS delivers weekly realizations that are accumulated sequentially to extend the ITRF and the Earth Orientation Parameter series with a daily resolution. SLR technology continues to evolve towards the next-generation laser ranging systems and it is expected to successfully meet the challenges of the GGOS2020 program for a future Global Space Geodetic Network. Ranging precision is improving as higher repetition rate, narrower pulse lasers, and faster detectors are implemented within the network. Automation and pass interleaving at some stations is expanding temporal coverage and

  10. Radiation Measured for Chinese Satellite SJ-10 Space Mission

    Science.gov (United States)

    Zhou, Dazhuang; Sun, Yeqing; Zhang, Binquan; Zhang, Shenyi; Sun, Yueqiang; Liang, Jinbao; Zhu, Guangwu; Jing, Tao; Yuan, Bin; Zhang, Huanxin; Zhang, Meng; Wang, Wei; Zhao, Lei

    2018-02-01

    Space biological effects are mainly a result of space radiation particles with high linear energy transfer (LET); therefore, accurate measurement of high LET space radiation is vital. The radiation in low Earth orbits is composed mainly of high-energy galactic cosmic rays (GCRs), solar energetic particles, particles of radiation belts, the South Atlantic Anomaly, and the albedo neutrons and protons scattered from the Earth's atmosphere. CR-39 plastic nuclear track detectors sensitive to high LET are the best passive detectors to measure space radiation. The LET method that employs CR-39 can measure all the radiation LET spectra and quantities. CR-39 detectors can also record the incident directions and coordinates of GCR heavy ions that pass through both CR-39 and biosamples, and the impact parameter, the distance between the particle's incident point and the seed's spore, can then be determined. The radiation characteristics and impact parameter of GCR heavy ions are especially beneficial for in-depth research regarding space radiation biological effects. The payload returnable satellite SJ-10 provided an excellent opportunity to investigate space radiation biological effects with CR-39 detectors. The space bio-effects experiment was successfully conducted on board the SJ-10 satellite. This paper introduces space radiation in low Earth orbits and the LET method in radiation-related research and presents the results of nuclear tracks and biosamples hitting distributions of GCR heavy ions, the radiation LET spectra, and the quantities measured for the SJ-10 space mission. The SJ-10 bio-experiment indicated that radiation may produce significant bio-effects.

  11. The local ionospheric modeling by integration ground GPS observations and satellite altimetry data

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Sharifi

    2017-01-01

    Full Text Available The free electrons in the ionosphere have a strong impact on the propagation of radio waves. When the signals pass through the ionosphere, both their group and phase velocity are disturbed. Several space geodetic techniques such as satellite altimetry, low Earth orbit (LEO satellite and very long baseline interferometry (VLBI can be used to model the total electron content. At present, the classical input data for development of ionospheric models are based on dual-frequency GPS observations, However, a major problem with this observation type is the nonuniform distribution of the terrestrial GPS reference stations with large gaps notably over the sea surface and ocean where only some single stations are located on islands, leading to lower the precision of the model over these areas. In these regions the dual-frequency satellite altimeters provide precise information about the parameters of the ionosphere. Combination of GPS and satellite altimetry observations allows making best use of the advantages of their different spatial and temporal distributions. In this study, the local ionosphere modeling was done by the combination of space geodetic observations using spherical Slepian function. The combination of the data from ground GPS observations over the western part of the USA and the altimetry mission Jason-2 was performed on the normal equation level in the least-square procedure and a least-square variance component estimation (LS-VCE was applied to take into account the different accuracy levels of the observations. The integrated ionosphere model is more accurate and more reliable than the results derived from the ground GPS observations over the oceans.

  12. Resumes of the Bird mission

    Science.gov (United States)

    Lorenz, E.; Borwald, W.; Briess, K.; Kayal, H.; Schneller, M.; Wuensten, Herbert

    2004-11-01

    The DLR micro satellite BIRD (Bi-spectral Infra Red Detection) was piggy- back launched with the Indian Polar Satellite Launch Vehicle PSLV-C3 into a 570 km circular sun-synchronous orbit on 22 October 2001. The BIRD mission, fully funded by the DLR, answers topical technological and scientific questions related to the operation of a compact infra- red push-broom sensor system on board of a micro satellite and demonstrates new spacecraft bus technologies. BIRD mission control is conducted by DLR / GSOC in Oberpfaffenhofen. Commanding, data reception and data processing is performed via ground stations in Weilheim and Neustrelitz (Germany). The BIRD mission is a demonstrator for small satellite projects dedicated to the hazard detection and monitoring. In the year 2003 BIRD has been used in the ESA project FUEGOSAT to demonstrate the utilisation of innovative space technologies for fire risk management.

  13. Improving maps of ice-sheet surface elevation change using combined laser altimeter and stereoscopic elevation model data

    DEFF Research Database (Denmark)

    Fredenslund Levinsen, Joanna; Howat, I. M.; Tscherning, C. C.

    2013-01-01

    We combine the complementary characteristics of laser altimeter data and stereoscopic digital elevation models (DEMs) to construct high-resolution (_100 m) maps of surface elevations and elevation changes over rapidly changing outlet glaciers in Greenland. Measurements from spaceborne and airborne...... laser altimeters have relatively low errors but are spatially limited to the ground tracks, while DEMs have larger errors but provide spatially continuous surfaces. The principle of our method is to fit the DEM surface to the altimeter point clouds in time and space to minimize the DEM errors and use...... that surface to extrapolate elevations away from altimeter flight lines. This reduces the DEM registration errors and fills the gap between the altimeter paths. We use data from ICESat and ATM as well as SPOT 5 DEMs from 2007 and 2008 and apply them to the outlet glaciers Jakobshavn Isbræ (JI...

  14. Report on the Stanford/KACST/AMES UVLED small satellite mission to demonstrate charge management of an electrically isolated proof mass for drag-free operation

    Science.gov (United States)

    Saraf, Shailendhar

    A spacecraft demonstration of ultra-violet (UV) LEDs and UV LED charge management based on research done at Stanford University is being developed jointly by the King Abdulaziz City for Science and Technology (KACST) Saudi Arabia and NASA Ames Research Center, with an expected launch date of June 2014. This paper will report on the payload design and testing, mission preparation, satellite launch and payload bring -up in space. Mission lifetime is expected to be at least one month, during which time the ability for the UV LEDs to mitigate actual space-based charging and the effects of radiation on the UV LED device performance will be studied. Precise control over the potential of an electrically isolated proof mass is necessary for the operation of devices such as a Gravitational Reference Sensor (GRS) and satellite missions such as LISA. The mission will demonstrate that AlGaN UV LEDs operating at 255 nm are an effective low-cost, low-power and compact substitute for Mercury vapor lamps used in previous missions. The goal of the mission is to increase the UV LED device to TRL-9 and the charge management system to TRL-7.

  15. The Influence of the Terrestrial Reference Frame on Studies of Sea Level Change

    Science.gov (United States)

    Nerem, R. S.; Bar-Sever, Y. E.; Haines, B. J.; Desai, S.; Heflin, M. B.

    2015-12-01

    The terrestrial reference frame (TRF) provides the foundation for the accurate monitoring of sea level using both ground-based (tide gauges) and space-based (satellite altimetry) techniques. For the latter, tide gauges are also used to monitor drifts in the satellite instruments over time. The accuracy of the terrestrial reference frame (TRF) is thus a critical component for both types of sea level measurements. The TRF is central to the formation of geocentric sea-surface height (SSH) measurements from satellite altimeter data. The computed satellite orbits are linked to a particular TRF via the assumed locations of the ground-based tracking systems. The manner in which TRF errors are expressed in the orbit solution (and thus SSH) is not straightforward, and depends on the models of the forces underlying the satellite's motion. We discuss this relationship, and provide examples of the systematic TRF-induced errors in the altimeter derived sea-level record. The TRF is also crucial to the interpretation of tide-gauge measurements, as it enables the separation of vertical land motion from volumetric changes in the water level. TRF errors affect tide gauge measurements through GNSS estimates of the vertical land motion at each tide gauge. This talk will discuss the current accuracy of the TRF and how errors in the TRF impact both satellite altimeter and tide gauge sea level measurements. We will also discuss simulations of how the proposed Geodetic Reference Antenna in SPace (GRASP) satellite mission could reduce these errors and revolutionize how reference frames are computed in general.

  16. A Stochastic Approach to Noise Modeling for Barometric Altimeters

    Directory of Open Access Journals (Sweden)

    Angelo Maria Sabatini

    2013-11-01

    Full Text Available The question whether barometric altimeters can be applied to accurately track human motions is still debated, since their measurement performance are rather poor due to either coarse resolution or drifting behavior problems. As a step toward accurate short-time tracking of changes in height (up to few minutes, we develop a stochastic model that attempts to capture some statistical properties of the barometric altimeter noise. The barometric altimeter noise is decomposed in three components with different physical origin and properties: a deterministic time-varying mean, mainly correlated with global environment changes, and a first-order Gauss-Markov (GM random process, mainly accounting for short-term, local environment changes, the effects of which are prominent, respectively, for long-time and short-time motion tracking; an uncorrelated random process, mainly due to wideband electronic noise, including quantization noise. Autoregressive-moving average (ARMA system identification techniques are used to capture the correlation structure of the piecewise stationary GM component, and to estimate its standard deviation, together with the standard deviation of the uncorrelated component. M-point moving average filters used alone or in combination with whitening filters learnt from ARMA model parameters are further tested in few dynamic motion experiments and discussed for their capability of short-time tracking small-amplitude, low-frequency motions.

  17. The CYGNSS flight segment; A major NASA science mission enabled by micro-satellite technology

    Science.gov (United States)

    Rose, R.; Ruf, C.; Rose, D.; Brummitt, M.; Ridley, A.

    While hurricane track forecasts have improved in accuracy by ~50% since 1990, there has been essentially no improvement in the accuracy of intensity prediction. This lack of progress is thought to be caused by inadequate observations and modeling of the inner core due to two causes: 1) much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the inner rain bands and 2) the rapidly evolving stages of the tropical cyclone (TC) life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. NASA's most recently awarded Earth science mission, the NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) has been designed to address these deficiencies by combining the all-weather performance of GNSS bistatic ocean surface scatterometry with the sampling properties of a satellite constellation. This paper provides an overview of the CYGNSS flight segment requirements, implementation, and concept of operations for the CYGNSS constellation; consisting of 8 microsatellite-class spacecraft (historical TC track. The CYGNSS mission is enabled by modern electronic technology; it is an example of how nanosatellite technology can be applied to replace traditional "old school" solutions at significantly reduced cost while providing an increase in performance. This paper provides an overview of how we combined a reliable space-flight proven avionics design with selected microsatellite components to create an innovative, low-cost solution for a mainstream science investigation.

  18. Future Satellite Gravimetry and Earth Dynamics

    CERN Document Server

    Flury, Jakob

    2005-01-01

    Currently, a first generation of dedicated satellite missions for the precise mapping of the Earth’s gravity field is in orbit (CHAMP, GRACE, and soon GOCE). The gravity data from these satellite missions provide us with very new information on the dynamics of planet Earth. In particular, on the mass distribution in the Earth’s interior, the entire water cycle (ocean circulation, ice mass balance, continental water masses, and atmosphere), and on changes in the mass distribution. The results are fascinating, but still rough with respect to spatial and temporal resolution. Technical progress in satellite-to-satellite tracking and in gravity gradiometry will allow more detailed results in the future. In this special issue, Earth scientists develop visions of future applications based on follow-on high-precision satellite gravimetry missions.

  19. Soviet satellite communications science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Birch, J.N.; Campanella, S.J.; Gordon, G.D.; McElroy, D.R.; Pritchard, W.L.; Stamminger, R.

    1991-08-01

    This is a report by six US scientists and engineers concerning the current state of the art and projections of future Soviet satellite communications technologies. The panel members are experts in satellite stabilization, spacecraft environments, space power generation, launch systems, spacecraft communications sciences and technologies, onboard processing, ground stations, and other technologies that impact communications. The panel assessed the Soviet ability to support high-data-rate space missions at 128 Mbps by evaluating current and projected Soviet satellite communications technologies. A variety of space missions were considered, including Earth-to-Earth communications via satellites in geostationary or highly elliptical orbits, those missions that require space-to-Earth communications via a direct path and those missions that require space-to-Earth communications via a relay satellite. Soviet satellite communications capability, in most cases, is 10 years behind that of the United States and other industrialized nations. However, based upon an analysis of communications links needed to support these missions using current Soviet capabilities, it is well within the current Soviet technology to support certain space missions outlined above at rates of 128 Mbps or higher, although published literature clearly shows that the Soviet Union has not exceeded 60 Mbps in its current space system. These analyses are necessary but not sufficient to determine mission data rates, and other technologies such as onboard processing and storage could limit the mission data rate well below that which could actually be supported via the communications links. Presently, the Soviet Union appears to be content with data rates in the low-Earth-orbit relay via geostationary mode of 12 Mbps. This limit is a direct result of power amplifier limits, spacecraft antenna size, and the utilization of K{sub u}-band frequencies. 91 refs., 16 figs., 15 tabs.

  20. Performance Considerations for the SIMPL Single Photon, Polarimetric, Two-Color Laser Altimeter as Applied to Measurements of Forest Canopy Structure and Composition

    Science.gov (United States)

    Dabney, Philip W.; Harding, David J.; Valett, Susan R.; Vasilyev, Aleksey A.; Yu, Anthony W.

    2012-01-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is a multi-beam, micropulse airborne laser altimeter that acquires active and passive polarimetric optical remote sensing measurements at visible and near-infrared wavelengths. SIMPL was developed to demonstrate advanced measurement approaches of potential benefit for improved, more efficient spaceflight laser altimeter missions. SIMPL data have been acquired for wide diversity of forest types in the summers of 2010 and 2011 in order to assess the potential of its novel capabilities for characterization of vegetation structure and composition. On each of its four beams SIMPL provides highly-resolved measurements of forest canopy structure by detecting single-photons with 15 cm ranging precision using a narrow-beam system operating at a laser repetition rate of 11 kHz. Associated with that ranging data SIMPL provides eight amplitude parameters per beam unlike the single amplitude provided by typical laser altimeters. Those eight parameters are received energy that is parallel and perpendicular to that of the plane-polarized transmit pulse at 532 nm (green) and 1064 nm (near IR), for both the active laser backscatter retro-reflectance and the passive solar bi-directional reflectance. This poster presentation will cover the instrument architecture and highlight the performance of the SIMPL instrument with examples taken from measurements for several sites with distinct canopy structures and compositions. Specific performance areas such as probability of detection, after pulsing, and dead time, will be highlighted and addressed, along with examples of their impact on the measurements and how they limit the ability to accurately model and recover the canopy properties. To assess the sensitivity of SIMPL's measurements to canopy properties an instrument model has been implemented in the FLIGHT radiative transfer code, based on Monte Carlo simulation of photon transport. SIMPL data collected in 2010 over

  1. Validation of ERS-1 and high-resolution satellite gravity with in-situ shipborne gravity over the Indian offshore regions: Accuracies and implications to subsurface modeling

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterjee, S.; Bhattacharyya, R.; Michael, L.; Krishna, K.S.; Majumdar, T.J.

    Geoid and gravity anomalies derived from satellite altimetry are gradually gaining importance in marine geoscientific investigations. Keeping this in mind, we have validated ERS-1 (168 day repeat) altimeter data and very high-resolution free...

  2. Validation of High Wind Retrievals from the Cyclone Global Navigation Satellite System (CYGNSS) Mission

    Science.gov (United States)

    McKague, D. S.; Ruf, C. S.; Balasubramaniam, R.; Clarizia, M. P.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) mission, launched in December of 2016, provides all-weather observations of sea surface winds. Using GPS-based bistatic reflectometry, the CYGNSS satellites can estimate sea surface winds even through a hurricane eye wall. This, combined with the high temporal resolution of the CYGNSS constellation (median revisit time of 2.8 hours), yields unprecedented ability to estimate hurricane strength winds. While there are a number of other sources of sea surface wind estimates, such as buoys, dropsondes, passive and active microwave from aircraft and satellite, and models, the combination of all-weather, high accuracy, short revisit time, high spatial coverage, and continuous operation of the CYGNSS mission enables significant advances in the understanding, monitoring, and prediction of cyclones. Validating CYGNSS wind retrievals over the bulk of the global wind speed distribution, which peaks at around 7 meters per second, is relatively straight-forward, requiring spatial-temporal matching of observations with independent sources (such as those mentioned above). Validating CYGNSS wind retrievals for "high" winds (> 20 meters per second), though, is problematic. Such winds occur only in intense storms. While infrequent, making validation opportunities also infrequent and problematic due to their intense nature, such storms are important to study because of the high potential for damage and loss of life. This presentation will describe the efforts of the CYGNSS Calibration/Validation team to gather measurements of high sea surface winds for development and validation of the CYGNSS geophysical model function (GMF), which forms the basis of retrieving winds from CYGNSS observations. The bulk of these observations come from buoy measurements as well as aircraft ("hurricane hunter") measurements from passive microwave and dropsondes. These data are matched in space and time to CYGNSS observations for training of the

  3. Solar maximum mission

    International Nuclear Information System (INIS)

    Ryan, J.

    1981-01-01

    By understanding the sun, astrophysicists hope to expand this knowledge to understanding other stars. To study the sun, NASA launched a satellite on February 14, 1980. The project is named the Solar Maximum Mission (SMM). The satellite conducted detailed observations of the sun in collaboration with other satellites and ground-based optical and radio observations until its failure 10 months into the mission. The main objective of the SMM was to investigate one aspect of solar activity: solar flares. A brief description of the flare mechanism is given. The SMM satellite was valuable in providing information on where and how a solar flare occurs. A sequence of photographs of a solar flare taken from SMM satellite shows how a solar flare develops in a particular layer of the solar atmosphere. Two flares especially suitable for detailed observations by a joint effort occurred on April 30 and May 21 of 1980. These flares and observations of the flares are discussed. Also discussed are significant discoveries made by individual experiments

  4. Geodynamics implication of GPS and satellite altimeter and gravity observations to the Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    Khaled H. Zahran

    2012-06-01

    Results show important zones of mass discontinuity in this region correlated with the seismological activities and temporal gravity variations agree with the crustal deformation obtained from GPS observations. The current study indicates that satellite gravity data is a valuable source of data in understanding the geodynamical behavior of the studied region and that satellite gravity data is an important contemporary source of data in the geodynamical studies.

  5. Preface to the Special Issue on "Geophysical and Climate Change Studies in Tibet, Xinjiang, and Siberia (TibXS from Satellite Geodesy"

    Directory of Open Access Journals (Sweden)

    Cheinway Hwang

    2013-01-01

    Full Text Available This special issue publishes papers on recent results in geophysical and climate change studies over Tibet, Xinjiang and Siberia (TibXS based upon some of the key sensors used in satellite geodesy, including satellite gravimetric sensors (GRACE and GOCE, satellite altimeters (TOPEX, Jason-1 and -2, and ENVISAT, and Global Positioning System satellites. Results from ground- and airborne-based geodetic observations, notably those based on airborne gravimeter, superconducting gravimeter (SG and seismometers are also included in the special issue. In all, 22 papers were submitted for this special issue; 17 papers were accepted.

  6. Summary of the results from the lunar orbiter laser altimeter after seven years in lunar orbit

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan; Lemoine, Frank G.; Head, James W., III; Lucey, Paul G.; Aharonson, Oded; Robinson, Mark S.; Sun, Xiaoli; Torrence, Mark H.; Barker, Michael K.; Oberst, Juergen; Duxbury, Thomas C.; Mao, Dandan; Barnouin, Olivier S.; Jha, Kopal; Rowlands, David D.; Goossens, Sander; Baker, David; Bauer, Sven; Gläser, Philipp; Lemelin, Myriam; Rosenburg, Margaret; Sori, Michael M.; Whitten, Jennifer; Mcclanahan, Timothy

    2017-02-01

    In June 2009 the Lunar Reconnaissance Orbiter (LRO) spacecraft was launched to the Moon. The payload consists of 7 science instruments selected to characterize sites for future robotic and human missions. Among them, the Lunar Orbiter Laser Altimeter (LOLA) was designed to obtain altimetry, surface roughness, and reflectance measurements. The primary phase of lunar exploration lasted one year, following a 3-month commissioning phase. On completion of its exploration objectives, the LRO mission transitioned to a science mission. After 7 years in lunar orbit, the LOLA instrument continues to map the lunar surface. The LOLA dataset is one of the foundational datasets acquired by the various LRO instruments. LOLA provided a high-accuracy global geodetic reference frame to which past, present and future lunar observations can be referenced. It also obtained high-resolution and accurate global topography that were used to determine regions in permanent shadow at the lunar poles. LOLA further contributed to the study of polar volatiles through its unique measurement of surface brightness at zero phase, which revealed anomalies in several polar craters that may indicate the presence of water ice. In this paper, we describe the many LOLA accomplishments to date and its contribution to lunar and planetary science.

  7. Summary of the Results from the Lunar Orbiter Laser Altimeter after Seven Years in Lunar Orbit

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan; Lemoine, Frank G.; Head, James W., III; Lucey, Paul G.; Aharonson, Oded; Robinson, Mark S.; Sun, Xiaoli; hide

    2016-01-01

    In June 2009 the Lunar Reconnaissance Orbiter (LRO) spacecraft was launched to the Moon. The payload consists of 7 science instruments selected to characterize sites for future robotic and human missions. Among them, the Lunar Orbiter Laser Altimeter (LOLA) was designed to obtain altimetry, surface roughness, and reflectance measurements. The primary phase of lunar exploration lasted one year, following a 3-month commissioning phase. On completion of its exploration objectives, the LRO mission transitioned to a science mission. After 7 years in lunar orbit, the LOLA instrument continues to map the lunar surface. The LOLA dataset is one of the foundational datasets acquired by the various LRO instruments. LOLA provided a high-accuracy global geodetic reference frame to which past, present and future lunar observations can be referenced. It also obtained high-resolution and accurate global topography that were used to determine regions in permanent shadow at the lunar poles. LOLA further contributed to the study of polar volatiles through its unique measurement of surface brightness at zero phase, which revealed anomalies in several polar craters that may indicate the presence of water ice. In this paper, we describe the many LOLA accomplishments to date and its contribution to lunar and planetary science.

  8. Laser altimeter measurements at Walnut Gulch Watershed, Arizona

    International Nuclear Information System (INIS)

    Ritchie, J.C.; Humes, K.S.; Weltz, M.A.

    1995-01-01

    Measurements of landscape surface roughness properties are necessary for understanding many watershed processes. This paper reviews the use of an airborne laser altimeter to measure topography and surface roughness properties of the landscape at Walnut Gulch Watershed in Arizona. Airborne laser data were used to measure macro and micro topography as well as canopy topography, height, cover, and distribution. Macro topography of landscape profiles for segments up to 5 km (3 mi) were measured and were in agreement with available topographic maps but provided more detail. Gullies and stream channel cross-sections and their associated floodplains were measured. Laser measurements of vegetation properties (height and cover) were highly correlated with ground measurements. Landscape segments for any length can be used to measure these landscape roughness properties. Airborne laser altimeter measurements of landscape profiles can provide detailed information on watershed surface properties for improving the management of watersheds. (author)

  9. Corrections for the effects of significant wave height and attitude on Geosat radar altimeter measurements

    Science.gov (United States)

    Hayne, G. S.; Hancock, D. W., III

    1990-01-01

    Range estimates from a radar altimeter have biases which are a function of the significant wave height (SWH) and the satellite attitude angle (AA). Based on results of prelaunch Geosat modeling and simulation, a correction for SWH and AA was already applied to the sea-surface height estimates from Geosat's production data processing. By fitting a detailed model radar return waveform to Geosat waveform sampler data, it is possible to provide independent estimates of the height bias, the SWH, and the AA. The waveform fitting has been carried out for 10-sec averages of Geosat waveform sampler data over a wide range of SWH and AA values. The results confirm that Geosat sea-surface-height correction is good to well within the original dm-level specification, but that an additional height correction can be made at the level of several cm.

  10. Prospects of the ICESat-2 Laser Altimetry Mission for Savanna Ecosystem Structural Studies Based on Airborne Simulation Data

    Science.gov (United States)

    Gwenzi, David; Lefsky, Michael A.; Suchdeo, Vijay P.; Harding, David J.

    2016-01-01

    The next planned spaceborne lidar mission is the Ice, Cloud and land Elevation Satellite 2 (ICESat-2), which will use the Advanced Topographic Laser Altimeter System (ATLAS) sensor, a photon counting technique. To pre-validate the capability of this mission for studying three dimensional vegetation structure in savannas, we assessed the potential of the measurement approach to estimate canopy height in an oak savanna landscape. We used data from the Multiple Altimeter Beam Experimental Lidar (MABEL), an airborne photon counting lidar sensor developed by NASA's Goddard Space Flight Center. ATLAS-like data was generated using the MATLAS simulator, which adjusts MABEL data's detected number of signal and noise photons to that expected from the ATLAS instrument. Transects flown over the Tejon ranch conservancy in Kern County, California, USA were used for this work. For each transect we chose to use data from the near infrared channel that had the highest number of photons. We segmented each transect into 50 m, 25 m and 14 m long blocks and aggregated the photons in each block into a histogram based on their elevation values. We then used an automated algorithm to identify cut off points where the cumulative density of photons from the highest elevation indicates the presence of the canopy top and likewise where such cumulative density from the lowest elevation indicates the mean terrain elevation. MABEL derived height metrics were moderately correlated to discrete return lidar (DRL) derived height metrics r(sub 2) and RMSE values ranging from 0.60 to 0.73 and 2.9 m to 4.4 m respectively) but MATLAS simulation resulted in more modest correlations with DRL indices r(sub 2) ranging from 0.5 to 0.64 and RMSE from 3.6 m to 4.6 m). Simulations also indicated that the expected number of signal photons from ATLAS will be substantially lower, a situation that reduces canopy height estimation precision especially in areas of low density vegetation cover. On the basis of the

  11. SWEAT: Snow Water Equivalent with AlTimetry

    Science.gov (United States)

    Agten, Dries; Benninga, Harm-Jan; Diaz Schümmer, Carlos; Donnerer, Julia; Fischer, Georg; Henriksen, Marie; Hippert Ferrer, Alexandre; Jamali, Maryam; Marinaci, Stefano; Mould, Toby JD; Phelan, Liam; Rosker, Stephanie; Schrenker, Caroline; Schulze, Kerstin; Emanuel Telo Bordalo Monteiro, Jorge

    2017-04-01

    To study how the water cycle changes over time, satellite and airborne remote sensing missions are typically employed. Over the last 40 years of satellite missions, the measurement of true water inventories stored in sea and land ice within the cryosphere have been significantly hindered by uncertainties introduced by snow cover. Being able to determine the thickness of this snow cover would act to reduce such error, improving current estimations of hydrological and climate models, Earth's energy balance (albedo) calculations and flood predictions. Therefore, the target of the SWEAT (Snow Water Equivalent with AlTimetry) mission is to directly measure the surface Snow Water Equivalent (SWE) on sea and land ice within the polar regions above 60°and below -60° latitude. There are no other satellite missions currently capable of directly measuring SWE. In order to achieve this, the proposed mission will implement a novel combination of Ka- and Ku-band radioaltimeters (active microwave sensors), capable of penetrating into the snow microstructure. The Ka-band altimeter (λ ≈ 0.8 cm) provides a low maximum snow pack penetration depth of up to 20 cm for dry snow at 37 GHz, since the volume scattering of snow dominates over the scattering caused by the underlying ice surface. In contrast, the Ku-band altimeter (λ ≈ 2 cm) provides a high maximum snowpack penetration depth of up to 15 m in high latitudes regions with dry snow, as volume scattering is decreased by a factor of 55. The combined difference in Ka- and Ku-band signal penetration results will provide more accurate and direct determination of SWE. Therefore, the SWEAT mission aims to improve estimations of global SWE interpreted from passive microwave products, and improve the reliability of numerical snow and climate models.

  12. Satellite Altimeters and Gravimeters as Proxy of the Indonesian Throughflow

    Science.gov (United States)

    Susanto, R. D.; Song, Y. T.

    2014-12-01

    The Indonesian Throughflow (ITF), the only pathway for interocean exchange between the Pacific to the Indian Ocean, plays an important role in global ocean circulation and climate. Yet, continuous ITF measurement is difficult and expensive. We demonstrate a plausible approach to derive the ITF transport proxy using satellite altimetry sea surface height (SSH), gravimetry ocean bottom pressure (OBP) data, in situ measurements from the Makassar Strait from 1996-1998 and 2004-2009, and a theoretical formulation. We first identified the optimal locations in the Pacific and Indian Ocean based on the optimal correlation between the ITF transport through the Makassar Strait and the pressure gradients, represented by the SSH and OBP differences between the Pacific and Indian Oceans at a 1° x 1° horizontal resolution. These geographical locations (centred at off-equatorial in the western Pacific Ocean and centred at along the equator in the eastern Indian Ocean) that control the strength and variability of the ITF transport in the Makassar Strait differ from early studies. The proxy time series follow the observation time series quite well, resolving the intraseasonal, monsoonal, and interannual signals with the 1993-2011 annual mean proxy transport of 11.6 ± 3.2 Sv. Our formulation provides a continuous approach to derive the ITF proxy as long as the satellite data are available. Such a continuous record would be difficult to achieve by in situ measurements alone due to logistical and financial challenges. Ideally, the proxy can be used to complement or fill in the gaps of the observations for a continuous ITF proxy for better understanding the ocean climate and validating ocean circulation models.

  13. Assimilation of satellite altimeter data into an open ocean model

    Science.gov (United States)

    Vogeler, Armin; SchröTer, Jens

    1995-08-01

    Geosat sea surface height data are assimilated into an eddy-resolving quasi-geostrophic open ocean model using the adjoint technique. The method adjusts the initial conditions for all layers and is successful on the timescale of a few weeks. Time-varying values for the open boundaries are prescribed by a much larger quasi-geostrophic model of the Antarctic Circumpolar Current (ACC). Both models have the same resolution of approximately 20×20 km (1/3°×1/6°), have three layers, and include realistic bottom topography and coastlines. The open model box is embedded in the African sector of the ACC. For continuous assimilation of satellite data into the larger model the nudging technique is applied. These results are used for the adjoint optimization procedure as boundary conditions and as a first guess for the initial condition. For the open model box the difference between model and satellite sea surface height that remains after the nudging experiment amounts to a 19-cm root-mean-square error (rmse). By assimilation into the regional model this value can be reduced to a 6-cm rmse for an assimilation period of 20 days. Several experiments which attempt to improve the convergence of the iterative optimization method are reported. Scaling and regularization by smoothing have to be applied carefully. Especially during the first 10 iterations, the convergence can be improved considerably by low-pass filtering of the cost function gradient. The result of a perturbation experiment shows that for longer assimilation periods the influence of the boundary values becomes dominant and they should be determined inversely by data assimilation into the open ocean model.

  14. Definition of technology development missions for early Space Station satellite servicing. Volume 2: Technical

    Science.gov (United States)

    Cable, D. A.; Diewald, C. A.; Hills, T. C.; Parmentier, T. J.; Spencer, R. A.; Stone, G. E.

    1984-01-01

    Volume 2 contains the Technical Report of the approach and results of the Phase 2 study. The phase 2 servicing study was initiated in June 1983, and is being reported in this document. The scope of the contract was to: (1) define in detail five selected technology development missions (TDM); (2) conduct a design requirement analysis to refine definitions of satellite servicing requirements at the space station; and (3) develop a technology plan that would identify and schedule prerequisite precursor technology development, associated. STS flight experiments and space station experiments needed to provide onorbit validation of the evolving technology.

  15. CryoSat Mission over the Ocean: A Review of Product Validations, Evolutions and Scientific Exploitation

    Science.gov (United States)

    Bouffard, J.; Abdalla, S.; Bojkov, B.; Calafat, F. M.; Cipollini, P.; Féménias, P.; Leuliette, E. W.; Naeije, M.; Parrinello, T.; Schrama, E. J. O.; Snaith, H. M.; Urien, S.

    2015-12-01

    The main objective of this paper is to present the status of the CryoSat (CS) Mission over the ocean. Launched in 2010, the polar-orbiting CS was primarily developed to measure the changes in the thickness of polar sea ice and the elevation of the ice sheets. Going beyond its ice-monitoring objective, CS is also a valuable source of data for the oceanographic community. The satellite's radar altimeter can indeed measure high resolution Sea-Level Height (SSH), Significant Wave Height (SWH), and Wind Speed (WS) from the open-ocean to the coast. To enable their full scientific and operational exploitation, the CS ocean products continuously evolve and need to be thoroughly validated via science-oriented diagnostics based on in situ data, models and other satellite missions. In support to ESA, the CS ocean validation team (NOCS, ECMWF and TU Delft/DEOS) conjointly conduct these analysis for both the near real time and offline products for the SSH, the SWH, and the WS parameters. The SSH is validated at the coast against sea level measured by a set of carefully selected tide gauges, HF radars and with the help of tools from the Radar Altimetry Database System (RADS). In the open ocean, the SSH is compared globally with the steric heights derived from ARGO temperature and salinity profiles. Near real time WS and SWH are monitored and validated against the corresponding parameters from ECMWF Integrated Forecast System (IFS), the Wavewatch III model, in-situ buoy and platform instruments as well as from other altimetric missions (Jason2 and Saral/AltiKa). Numerical experiments with CS SWH data assimilation have been recently conducted, showing positive impact on ECMWF model analysis and forecasts and leading to the operational assimilation of CS SWH in IFS. Based on the outcomes from these analysis and the scientific exploitations of CS over the ocean, ESA intends to upgrade the CryoSat Ocean processing chain for 2016.

  16. The Near-Earth Space Surveillance (NESS) Mission: Discovery, Tracking, and Characterization of Asteroids, Comets, and Artificial Satellites with a Microsatellite

    Science.gov (United States)

    Hildebrand, A. R.; Carroll, K. A.; Balam, D. D.; Cardinal, R. D.; Matthews, J. M.; Kuschnig, R.; Walker, G. A. H.; Brown, P. G.; Tedesco, E. F.; Worden, S. P.

    2001-01-01

    The Near-Earth Space Surveillance (NESS) Mission, a microsatellite dedicated to observing near-Earth (NEO) and interior-to-the-Earth (IEO)asteroids and comets plus artificial satellites, is currently being studied under contract to the Canadian Space Agency. Additional information is contained in the original extended abstract.

  17. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    Science.gov (United States)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  18. FIREBIRD: A Dual Satellite Mission to Examine the Spatial and Energy Coherence Scales of Radiation Belt Electron Microbursts

    Science.gov (United States)

    Klumpar, D. M.; Spence, H. E.; Larsen, B. A.; Blake, J. B.; Springer, L.; Crew, A. B.; Mosleh, E.; Mashburn, K. W.

    2009-12-01

    FIREBIRD (Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics), a mission under NSF’s “CubeSat-based Science Missions for Space Weather and Atmospheric Research”, will address the broad scientific question: What is the role of microburst electron precipitation in radiation belt dynamics? There are four major candidate processes for losses of relativistic electrons from the outer radiation belt [Millan and Thorne, 2007]: wave-particle interactions with whistler-mode chorus, wave-particle interactions with electromagnetic ion-cyclotron (EMIC) waves, outward radial diffusion to the magnetopause, and loss of adiabaticity on stretched magnetic field lines. FIREBIRD will further investigate the role of whistler-mode chorus, by examining the microburst electron precipitation phenomenon attributed to chorus. Microbursts are thought to be a hallmark of rapid radiation belt losses, possibly removing the entire pre-storm outer zone in a single day [Lorentzen 2001b; O'Brien et al., 2004], yet they are also intimately tied to in-situ acceleration mechanisms. FIREBIRD’s two 1.5U (10 x 10 x 15 cm) CubeSats, each weighing up to 2 kg, will be placed into a common high-inclination bead-on-a-string orbit. The two satellites will remain within ~500 km of one another for six to twelve months, allowing characterization over the spatial scale regime from 10 - 500 km. Each satellite will carry an identical co-aligned pair of solid-state detectors sensitive to electrons from 30 keV to ~3 MeV with 100 msec time resolution. Simultaneous dual measurements provided by the twin FIREBIRD satellites will permit, for the first time, the determination of spatial scales of single microburst events. Along with energy-resolved spectra, these measurements will provide the critically needed answers on the radiation belt loss rate attributed to microbursts. There are three critical questions about relativistic electron microbursts that FIREBIRD can answer: 1) What

  19. Using Satellite Altimetry to Calibrate the Simulation of Typhoon Seth Storm Surge off Southeast China

    Directory of Open Access Journals (Sweden)

    Xiaohui Li

    2018-04-01

    Full Text Available Satellite altimeters can capture storm surges generated by typhoons and tropical storms, if the satellite flies over at the right time. In this study, we show TOPEX/Poseidon altimeter-observed storm surge features off Southeast China on 10 October 1994 during Typhoon Seth. We then use a three-dimensional, barotropic, finite-volume community ocean model (FVCOM to simulate storm surges. An innovative aspect is that satellite data are used to calibrate the storm surge model to improve model performance, by adjusting model wind forcing fields (the National Center for Environment Prediction (NCEP reanalysis product in reference to the typhoon best-track data. The calibration reduces the along-track root-mean-square (RMS difference between model and altimetric data from 0.15 to 0.10 m. It also reduces the RMS temporal difference from 0.21 to 0.18 m between the model results and independent tide-gauge data at Xiamen. In particular, the calibrated model produces a peak storm surge of 1.01 m at 6:00 10 October 1994 at Xiamen, agreeing with tide-gauge data; while the peak storm surge with the NCEP forcing is 0.71 m only. We further show that the interaction between storm surges and astronomical tides contributes to the peak storm surge by 34% and that the storm surge propagates southwestward as a coastally-trapped Kelvin wave.

  20. Orbital Express mission operations planning and resource management using ASPEN

    Science.gov (United States)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel

    2008-04-01

    As satellite equipment and mission operations become more costly, the drive to keep working equipment running with less labor-power rises. Demonstrating the feasibility of autonomous satellite servicing was the main goal behind the Orbital Express (OE) mission. Like a tow-truck delivering gas to a car on the road, the "servicing" satellite of OE had to find the "client" from several kilometers away, connect directly to the client, and transfer fluid (or a battery) autonomously, while on earth-orbit. The mission met 100% of its success criteria, and proved that autonomous satellite servicing is now a reality for space operations. Planning the satellite mission operations for OE required the ability to create a plan which could be executed autonomously over variable conditions. As the constraints for execution could change weekly, daily, and even hourly, the tools used create the mission execution plans needed to be flexible and adaptable to many different kinds of changes. At the same time, the hard constraints of the plans needed to be maintained and satisfied. The Automated Scheduling and Planning Environment (ASPEN) tool, developed at the Jet Propulsion Laboratory, was used to create the schedule of events in each daily plan for the two satellites of the OE mission. This paper presents an introduction to the ASPEN tool, an overview of the constraints of the OE domain, the variable conditions that were presented within the mission, and the solution to operations that ASPEN provided. ASPEN has been used in several other domains, including research rovers, Deep Space Network scheduling research, and in flight operations for the NASA's Earth Observing One mission's EO1 satellite. Related work is discussed, as are the future of ASPEN and the future of autonomous satellite servicing.

  1. On the estimation of physical height changes using GRACE satellite mission data – A case study of Central Europe

    Directory of Open Access Journals (Sweden)

    Godah Walyeldeen

    2017-12-01

    Full Text Available The dedicated gravity satellite missions, in particular the GRACE (Gravity Recovery and Climate Experiment mission launched in 2002, provide unique data for studying temporal variations of mass distribution in the Earth’s system, and thereby, the geometry and the gravity fi eld changes of the Earth. The main objective of this contribution is to estimate physical height (e.g. the orthometric/normal height changes over Central Europe using GRACE satellite mission data as well as to analyse them and model over the selected study area. Physical height changes were estimated from temporal variations of height anomalies and vertical displacements of the Earth surface being determined over the investigated area. The release 5 (RL05 GRACE-based global geopotential models as well as load Love numbers from the Preliminary Reference Earth Model (PREM were used as input data. Analysis of the estimated physical height changes and their modelling were performed using two methods: the seasonal decomposition method and the PCA/ EOF (Principal Component Analysis/Empirical Orthogonal Function method and the differences obtained were discussed. The main fi ndings reveal that physical height changes over the selected study area reach up to 22.8 mm. The obtained physical height changes can be modelled with an accuracy of 1.4 mm using the seasonal decomposition method.

  2. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Astrup, P.; Nielsen, M. (and others)

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  3. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C B; Astrup, P; Nielsen, M [and others

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  4. On retrieving sea ice freeboard from ICESat laser altimeter

    Directory of Open Access Journals (Sweden)

    K. Khvorostovsky

    2016-10-01

    Full Text Available Sea ice freeboard derived from satellite altimetry is the basis for the estimation of sea ice thickness using the assumption of hydrostatic equilibrium. High accuracy of altimeter measurements and freeboard retrieval procedure are, therefore, required. As of today, two approaches for estimating the freeboard using laser altimeter measurements from Ice, Cloud, and land Elevation Satellite (ICESat, referred to as tie points (TP and lowest-level elevation (LLE methods, have been developed and applied in different studies. We reproduced these methods for the ICESat observation periods (2003–2008 in order to assess and analyse the sources of differences found in the retrieved freeboard and corresponding thickness estimates of the Arctic sea ice as produced by the Jet Propulsion Laboratory (JPL and Goddard Space Flight Center (GSFC. Three main factors are found to affect the freeboard differences when applying these methods: (a the approach used for calculation of the local sea surface references in leads (TP or LLE methods, (b the along-track averaging scales used for this calculation, and (c the corrections for lead width relative to the ICESat footprint and for snow depth accumulated in refrozen leads. The LLE method with 100 km averaging scale, as used to produce the GSFC data set, and the LLE method with a shorter averaging scale of 25 km both give larger freeboard estimates comparing to those derived by applying the TP method with 25 km averaging scale as used for the JPL product. Two factors, (a and (b, contribute to the freeboard differences in approximately equal proportions, and their combined effect is, on average, about 6–7 cm. The effect of using different methods varies spatially: the LLE method tends to give lower freeboards (by up to 15 cm over the thick multiyear ice and higher freeboards (by up to 10 cm over first-year ice and the thin part of multiyear ice; the higher freeboards dominate. We show that the

  5. Remote Sensing of Surface Water and Recent Developments in the SWOT Mission

    Science.gov (United States)

    Alsdorf, D. E.; Mognard, N. M.; Lettenmaier, D. P.; SWOT Virtual Mission Team

    2011-12-01

    CNES, NASA, and the CSA are partners in the Surface Water and Ocean Topography satellite mission (SWOT, http://swot.jpl.nasa.gov/). The following exemplify some of the recent challenges in mission development that are being solved by an international team. (1) River discharge is typically defined as the flux through a channel cross-sectional area, thus river bathymetry is required to estimate discharge. While SWOT will not measure bottom-depths, it will enable cross-section measurements above the lowest water levels that occur during the mission. Moreover, recent algorithm developments combined with data assimilation show promise of using fluvial geomorphology and SWOT's hydraulic measurements to provide reasonable discharge estimates. Depending on algorithm complexity, errors in total discharge are 17% RMS for a non-data assimilation method and 10.5% RMS for a method that uses assimilation. Under development is an idea based on SWOT's hydraulic measurements that will enable discharge anomalies, perhaps even more accurate than total discharge. (2) The impact of floods on economies and on life is of great importance and thus SWOT researchers are investigating how the satellite-based hydraulic measurements will improve our understanding of flood processes. Simulation experiments using SWOT's orbital configuration over the Kanawha River (an Ohio River tributary) show an ability to measure flow hydraulics and hence estimate discharge at the initial arrival of the flood wave and again three days later during the falling limb of the wave. An important advance that will be made by the mission is that measurements will be made all along river reaches, thus providing a high-spatial resolution mapping of flood wave hydraulics and the connectivity to associated floodplains. This is particularly important as demonstrated by a study of the River Po, Italy, showing that 2D modeling inclusive of floodplain geomorphology improves model performance compared to a 1D version. (3

  6. The GLAS Algorithm Theoretical Basis Document for Precision Attitude Determination (PAD)

    Science.gov (United States)

    Bae, Sungkoo; Smith, Noah; Schutz, Bob E.

    2013-01-01

    The Geoscience Laser Altimeter System (GLAS) was the sole instrument for NASAs Ice, Cloud and land Elevation Satellite (ICESat) laser altimetry mission. The primary purpose of the ICESat mission was to make ice sheet elevation measurements of the polar regions. Additional goals were to measure the global distribution of clouds and aerosols and to map sea ice, land topography and vegetation. ICESat was the benchmark Earth Observing System (EOS) mission to be used to determine the mass balance of the ice sheets, as well as for providing cloud property information, especially for stratospheric clouds common over polar areas.

  7. Arctic sea level change over the past 2 decades from GRACE gradiometry and multi-mission satellite altimetry

    DEFF Research Database (Denmark)

    Andersen, O. B.; Stenseng, L.; Sørensen, C. S.

    2014-01-01

    The Arctic is still an extremely challenging region for theuse of remote sensing for sea level studies. Despite the availability of 20 years of altimetry, only very limited sea level observations exist in the interior of the Arctic Ocean. However, with Cryosat-2 SAR altimetry the situation...... gradiometer observations from the ESA GOCE mission, we are now able to derive a mean dynamic topography of the Arctic Ocean with unprecedented accuracy to constrain the Arctic Ocean circulation controlling sea level variations in the Arctic. We present both a new estimation of the mean ocean circulation...... and new estimates of large scale sea level changes based on satellite data and perform an estimation of the fresh waterstorage increase over the last decade using temporal gravity changes from the GRACE satellite....

  8. Education and Public Outreach for the PICASSO-CENA Satellite-Based Research Mission: K-12 Students Use Sun Photometers to Assist Scientists in Validating Atmospheric Data

    Science.gov (United States)

    Robinson, D. Q.

    2001-05-01

    Hampton University, a historically black university, is leading the Education and Public Outreach (EPO) portion of the PICASSO-CENA satellite-based research mission. Currently scheduled for launch in 2004, PICASSO-CENA will use LIDAR (LIght Detection and Ranging), to study earth's atmosphere. The PICASSO-CENA Outreach program works with scientists, teachers, and students to better understand the effects of clouds and aerosols on earth's atmosphere. This program actively involves students nationwide in NASA research by having them obtain sun photometer measurements from their schools and homes for comparison with data collected by the PICASSO-CENA mission. Students collect data from their classroom ground observations and report the data via the Internet. Scientists will use the data from the PICASSO-CENA research and the student ground-truthing observations to improve predications about climatic change. The two-band passive remote sensing sun photometer is designed for student use as a stand alone instrument to study atmospheric turbidity or in conjunction with satellite data to provide ground-truthing. The instrument will collect measurements of column optical depth from the ground level. These measurements will not only give the students an appreciation for atmospheric turbidity, but will also provide quantitative correlative information to the PICASSO-CENA mission on ground-level optical depth. Student data obtained in this manner will be sufficiently accurate for scientists to use as ground truthing. Thus, students will have the opportunity to be involved with a NASA satellite-based research mission.

  9. Evaluation of multi-mode CryoSat-2 altimetry data over the Po River against in situ data and a hydrodynamic model

    DEFF Research Database (Denmark)

    Schneider, Raphael; Tarpanelli, Angelica; Nielsen, Karina

    2018-01-01

    Coverage of in situ observations to monitor surface waters is insufficient on the global scale, and decreasing across the globe. Satellite altimetry has become an increasingly important monitoring technology for continental surface waters. The ESA CryoSat-2 altimetry mission, launched in 2010, has...... two novel features. (i) The radar altimeter instrument on board of CryoSat-2 is operated in three modes; two of them reduce the altimeter footprint by using Delay-Doppler processing. (ii) CryoSat-2 is placed on a distinct orbit with a repeat cycle of 369 days, leading to a drifting ground track...... pattern. The drifting ground track pattern challenges many common methods of processing satellite altimetry data over rivers. This study evaluates the observation error of CryoSat-2 water level observations over the Po River, Italy, against in situ observations. The average RMSE between CryoSat-2...

  10. Satellite Ocean Biology: Past, Present, Future

    Science.gov (United States)

    McClain, Charles R.

    2012-01-01

    Since 1978 when the first satellite ocean color proof-of-concept sensor, the Nimbus-7 Coastal Zone Color Scanner, was launched, much progress has been made in refining the basic measurement concept and expanding the research applications of global satellite time series of biological and optical properties such as chlorophyll-a concentrations. The seminar will review the fundamentals of satellite ocean color measurements (sensor design considerations, on-orbit calibration, atmospheric corrections, and bio-optical algorithms), scientific results from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate resolution Imaging Spectroradiometer (MODIS) missions, and the goals of future NASA missions such as PACE, the Aerosol, Cloud, Ecology (ACE), and Geostationary Coastal and Air Pollution Events (GeoCAPE) missions.

  11. A Conceptual Design for a Small Deployer Satellite

    Science.gov (United States)

    Zumbo, S.

    2002-01-01

    In the last few years, the space scientific and industrial communities have demonstrated a renewed interest for small missions based on new categories of space platforms: micro &nano satellites. The cost reduction w.r.t. larger satellite missions, the shorter time from concept to launch, the risk distribution and the possibility to use this kind of bus both for stand-alone projects and as complementary to larger programs, are key factors that make this new kind of technology suitable for a wide range of space related activities. In particular it is now possible to conceive new mission philosophy implying the realisation of micro satellite constellations, with S/C flying in close formation to form a network of distributed sensors either for near-real time telecommunication or Earth remote sensing and disaster monitoring systems or physics and astronomical researches for Earth-Sun dynamics and high energy radiation studies. At the same time micro satellite are becoming important test- beds for new technologies that will eventually be used on larger missions, with relevant spin-offs potentialities towards other industrial fields. The foreseen social and economical direct benefits, the reduced mission costs and the possibility even for a small skilled team to manage all the project, represent very attractive arguments for universities and research institutes to invest funds and human resources to get first order technical and theoretical skills in the field of micro satellite design, with important influences on the training programs of motivated students that are directly involved in all the project's phases. In consideration of these space market important new trends and of the academic benefits that could be guaranteed by undertaking a micro satellite mission project, basing on its long space activities heritage, University of Rome "La Sapienza" - Aerospace and Astronautics Department, with the support of the Italian Space Agency, Alenia Spazio and of important

  12. 3-Axis magnetic control: flight results of the TANGO satellite in the PRISMA mission

    Science.gov (United States)

    Chasset, C.; Noteborn, R.; Bodin, P.; Larsson, R.; Jakobsson, B.

    2013-09-01

    PRISMA implements guidance, navigation and control strategies for advanced formation flying and rendezvous experiments. The project is funded by the Swedish National Space Board and run by OHB-Sweden in close cooperation with DLR, CNES and the Danish Technical University. The PRISMA test bed consists of a fully manoeuvrable MANGO satellite as well as a 3-axis controlled TANGO satellite without any Δ V capability. PRISMA was launched on the 15th of June 2010 on board DNEPR. The TANGO spacecraft is the reference satellite for the experiments performed by MANGO, either with a "cooperative" or "non-cooperative" behaviour. Small, light and low-cost were the keywords for the TANGO design. The attitude determination is based on Sun sensors and magnetometers, and the active attitude control uses magnetic torque rods only. In order to perform the attitude manoeuvres required to fulfil the mission objectives, using any additional gravity gradient boom to passively stabilize the spacecraft was not allowed. After a two-month commissioning phase, TANGO separated from MANGO on the 11th of August 2010. All operational modes have been successfully tested, and the pointing performance in flight is in accordance with expectations. The robust Sun Acquisition mode reduced the initial tip-off rate and placed TANGO into a safe attitude in MANGO. At the same time, it points its solar panel towards the Sun, and all payload equipments can be switched on without any restriction. This paper gives an overview of the TANGO Attitude Control System design. It then presents the flight results in the different operating modes. Finally, it highlights the key elements at the origin of the successful 3-axis magnetic control strategy on the TANGO satellite.

  13. IInvestigations of space-time variability of the sea level in the Barents Sea and the White Sea by satellite altimetry data and results of hydrodynamic modelling

    Science.gov (United States)

    Lebedev, S. A.; Zilberstein, O. I.; Popov, S. K.; Tikhonova, O. V.

    2003-04-01

    The problem of retrieving of the sea level anomalies in the Barents and White Seas from satellite can be considered as two different problems. The first one is to calculate the anomalies of sea level along the trek taking into account all amendments including tidal heights. The second one is to obtain of fields of the sea level anomalies on the grid over one cycle of the exact repeat altimetry mission. Experience results show that there is preferable to use the regional tidal model for calculating tidal heights. To construct of the anomalies fields of the sea level during the exact repeat mission (cycle 35 days for ERS-1 and ERS-2), when a density of the coverage of the area of water of the Barents and White Seas by satellite measurements achieves maximum. It is necessary to solve the problem of the error minimum. This error is based by the temporal difference of the measurements over one cycle and by the specific of the hydrodynamic regime of the both seas (tidal, storm surge variations, tidal currents). To solve this problem it is assumed to use the results of the hydrodynamic modeling. The error minimum is preformed by the regression of the model results and satellite measurements. As a version it is considered the possibility of the utilizing of the neuronet obtained by the model results to construct maps of the sea level anomalies. The comparison of the model results and the calculation of the satellite altimetry variability of the sea level of Barents and White Seas shows a good coincidence between them. The satellite altimetry data of ERS-1/2 and TOPEX/POSEIDON of Ocean Altimeter Pathfinder Project (NASA/GSFC) has been used in this study. Results of the regional tidal model computations and three dimensional baroclinic model created in the Hydrometeocenter have been used as well. This study also exploited the atmosphere date of the Project REANALYSIS. The research was undertaken with partial support from the Russian Basic Research Foundation (Project No. 01-07-90106).

  14. Analysis of sea-level reconstruction techniques for the Arctic Ocean

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    Sea-level reconstructions spanning several decades have been examined in numerous studies for most of the world's ocean areas, where satellite missions such as TOPEX/Poseidon and Jason-1 and -2 have provided much-improved knowledge of variability and long-term changes in sea level. However......, these dedicated oceanographic missions are limited in coverage to between ±66° latitude, and satellite altimeter data at higher latitudes is of a substantially worse quality. Following the approach of Church et al. (2004), we apply a model based on empirical orthogonal functions (EOFs) to the Arctic Ocean......, constrained by tide gauge records. A major challenge for this area is the sparsity of both satellite and tide gauge data beyond what can be covered with interpolation, necessitating a time-variable model and consideration to data preprocessing, including selection of appropriate tide gauges. In order to have...

  15. Infrared Astronomical Satellite (IRAS) Catalogs and Atlases. Explanatory Supplement

    Science.gov (United States)

    Beichman, C. A. (Editor); Neugebauer, G. (Editor); Habing, H. J. (Editor); Clegg, P. E. (Editor); Chester, T. J. (Editor)

    1985-01-01

    The Infrared Astronomical Satellite (IRAS) mission is described. An overview of the mission, a description of the satellite and its telescope system, and a discussion of the mission design, requirements, and inflight modifications are given. Data reduction, flight tests, flux reconstruction and calibration, data processing, and the formats of the IRAS catalogs and atlases are also considered.

  16. Relativity mission with two counter-orbiting polar satellites

    International Nuclear Information System (INIS)

    Van Patten, R.A.; Everitt, C.W.F.

    1975-01-01

    In 1918, J. Lense and H. Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. An experiment to measure this effect with two counter-orbiting drag-free satellites in polar earth orbit is described. For a 2 1 / 2 year experiment, the measurement accuracy should approach 1 percent. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler ranging data are taken at points of passing near the poles. New geophysical information on both earth harmonics and tidal effects is inherent in the polar ranging data. (auth)

  17. Estimating water storage changes and sink terms in Volta Basin from satellite missions

    Directory of Open Access Journals (Sweden)

    Vagner G. Ferreira

    2014-01-01

    Full Text Available The insufficiency of distributed in situ hydrological measurements is a major challenge for hydrological studies in many regions of the world. Satellite missions such as the Gravity Recovery and Climate Experiment (GRACE and the Tropical Rainfall Measurement Mission (TRMM can be used to improve our understanding of water resources beyond surface water in poorly gauged basins. In this study we combined GRACE and TRMM to investigate monthly estimates of evaporation plus runoff (sink terms using the water balance equation for the period from January 2005 to December 2010 within the Volta Basin. These estimates have been validated by comparison with time series of sink terms (evaporation plus surface and subsurface runoff from the Global Land Data Assimilation System (GLDAS. The results, for the period under consideration, show strong agreement between both time series, with a root mean square error (RMSE of 20.2 mm/month (0.67 mm/d and a correlation coefficient of 0.85. This illustrates the ability of GRACE to predict hydrological quantities, e.g. evaporation, in the Volta Basin. The water storage change data from GRACE and precipitation data from TRMM all show qualitative agreement, with evidence of basin saturation at approximately 73 mm in the equivalent water column at the annual and semi-annual time scales.

  18. Scheduling algorithm for data relay satellite optical communication based on artificial intelligent optimization

    Science.gov (United States)

    Zhao, Wei-hu; Zhao, Jing; Zhao, Shang-hong; Li, Yong-jun; Wang, Xiang; Dong, Yi; Dong, Chen

    2013-08-01

    Optical satellite communication with the advantages of broadband, large capacity and low power consuming broke the bottleneck of the traditional microwave satellite communication. The formation of the Space-based Information System with the technology of high performance optical inter-satellite communication and the realization of global seamless coverage and mobile terminal accessing are the necessary trend of the development of optical satellite communication. Considering the resources, missions and restraints of Data Relay Satellite Optical Communication System, a model of optical communication resources scheduling is established and a scheduling algorithm based on artificial intelligent optimization is put forwarded. According to the multi-relay-satellite, multi-user-satellite, multi-optical-antenna and multi-mission with several priority weights, the resources are scheduled reasonable by the operation: "Ascertain Current Mission Scheduling Time" and "Refresh Latter Mission Time-Window". The priority weight is considered as the parameter of the fitness function and the scheduling project is optimized by the Genetic Algorithm. The simulation scenarios including 3 relay satellites with 6 optical antennas, 12 user satellites and 30 missions, the simulation result reveals that the algorithm obtain satisfactory results in both efficiency and performance and resources scheduling model and the optimization algorithm are suitable in multi-relay-satellite, multi-user-satellite, and multi-optical-antenna recourses scheduling problem.

  19. IceBridge Riegl Laser Altimeter L2 Geolocated Surface Elevation Triplets

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge Riegl Laser Altimeter L2 Geolocated Surface Elevation Triplets (ILUTP2) data set contains surface range values for Antarctica and Greenland derived...

  20. Centralized mission planning and scheduling system for the Landsat Data Continuity Mission

    Science.gov (United States)

    Kavelaars, Alicia; Barnoy, Assaf M.; Gregory, Shawna; Garcia, Gonzalo; Talon, Cesar; Greer, Gregory; Williams, Jason; Dulski, Vicki

    2014-01-01

    Satellites in Low Earth Orbit provide missions with closer range for studying aspects such as geography and topography, but often require efficient utilization of space and ground assets. Optimizing schedules for these satellites amounts to a complex planning puzzle since it requires operators to face issues such as discontinuous ground contacts, limited onboard memory storage, constrained downlink margin, and shared ground antenna resources. To solve this issue for the Landsat Data Continuity Mission (LDCM, Landsat 8), all the scheduling exchanges for science data request, ground/space station contact, and spacecraft maintenance and control will be coordinated through a centralized Mission Planning and Scheduling (MPS) engine, based upon GMV’s scheduling system flexplan9 . The synchronization between all operational functions must be strictly maintained to ensure efficient mission utilization of ground and spacecraft activities while working within the bounds of the space and ground resources, such as Solid State Recorder (SSR) and available antennas. This paper outlines the functionalities that the centralized planning and scheduling system has in its operational control and management of the Landsat 8 spacecraft.

  1. A New Model of the Mean Albedo of the Earth: Estimation and Validation from the GRACE Mission and SLR Satellites.

    Science.gov (United States)

    Deleflie, F.; Sammuneh, M. A.; Coulot, D.; Pollet, A.; Biancale, R.; Marty, J. C.

    2017-12-01

    This talk provides new results of a study that we began last year, and that was the subject of a poster by the same authors presented during AGU FM 2016, entitled « Mean Effect of the Albedo of the Earth on Artificial Satellite Trajectories: an Update Over 2000-2015. »The emissivity of the Earth, split into a part in the visible domain (albedo) and the infrared domain (thermic emissivity), is at the origin of non gravitational perturbations on artificial satellite trajectories. The amplitudes and periods of these perturbations can be investigated if precise orbits can be carried out, and reveal some characteristics of the space environment where the satellite is orbiting. Analyzing the perturbations is, hence, a way to characterize how the energy from the Sun is re-emitted by the Earth. When led over a long period of time, such an approach enables to quantify the variations of the global radiation budget of the Earth.Additionally to the preliminary results presented last year, we draw an assessment of the validity of the mean model based on the orbits of the GRACE missions, and, to a certain extent, of some of the SLR satellite orbits. The accelerometric data of the GRACE satellites are used to evaluate the accuracy of the models accounting for non gravitational forces, and the ones induced by the albedo and the thermic emissivity in particular. Three data sets are used to investigate the mean effects on the orbit perturbations: Stephens tables (Stephens, 1980), ECMWF (European Centre for Medium-Range Weather Forecasts) data sets and CERES (Clouds and the Earth's Radiant Energy System) data sets (publickly available). From the trajectography point of view, based on post-fit residual analysis, we analyze what is the data set leading to the lowest residual level, to define which data set appears to be the most suitable one to derive a new « mean albedo model » from accelerometric data sets of the GRACE mission. The period of investigation covers the full GRACE

  2. An Online Satellite Altimetry Data Processing System: Ads Central

    Science.gov (United States)

    Helm, A.; Braun, A.; Schöne, T.; Wen, H.; Reigber, C.

    To help solving important issues of climate change and sea level change and to un- derstand the complex system Earth, an interdisciplinary interpretation of various data sets is needed. Several groups on the national and international level are recently ac- tive in building up services to faciliate the access to geoscientific data to a broader community, especially the access to higher level products. In Germany, GFZ-Potsdam is currently building up the modular German Earth Science and Information System (GESIS). In the frame of GESIS the Altimeter Database System (ADS) has been com- pleted recently. This modul provides high quality data and processing capabilities for radar altimetry data to a wide range of users. The ADS modul can be accessed worldwide via the internet based user-interface "ADS Central" with a standard browser at (http://gesis.gfz-potsdam.de/ads). After a registra- tion process the system offers higher level standard products, calculated routinely from the harmonised and intercalibrated satellite database. Additionally, ADS allows to generate individual user specific products. The user is able to perform several processing and analysing steps, e.g. to generate mean sea sur- face height grids, to extract altimetry data time series around a given location, to anal- yse parameter variability, or to perform a crossover analysis. The user can specify general parameters like the satellite mission, time interval and region of the used data. Additionally, different available correction models can be choosen, which will be ap- plied to the data. It is further possible to enter several quality parameters to optimize the data for individual applications. These individual user defined products are au- tomatically processed by ADS at GFZ-Potsdam and are subsequently distributed via anonymous ftp. The system is an attempt to offer easy access to the daily growing satellite altime- try database and numerous correction models and orbits. Due to the effectiveness

  3. Swarm: ESA's Magnetic Field Mission

    Science.gov (United States)

    Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

    2013-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

  4. OLFAR, a radio telescope based on nano satellites in moon orbit

    NARCIS (Netherlands)

    Engelen, S.; Verhoeven, C.J.M.; Bentum, Marinus Jan

    2010-01-01

    It seems very likely that missions with nano-satellites in professional scientific or commercial applications will not be single-satellite missions. Well structured formations or less structured swarms of nano-satellites will be able to perform tasks that cannot be done in the “traditional‿ way. The

  5. One-Centimeter Orbits in Near-Real Time: The GPS Experience on OSTM/JASON-2

    Science.gov (United States)

    Haines, Bruce; Armatys, Michael; Bar-Sever, Yoaz; Bertiger, Willy; Desai, Shailen; Dorsey, Angela; Lane, Christopher; Weiss, Jan

    2010-01-01

    The advances in Precise Orbit Determination (POD) over the past three decades have been driven in large measure by the increasing demands of satellite altimetry missions. Since the launch of Seasat in 1978, both tracking-system technologies and orbit modeling capabilities have evolved considerably. The latest in a series of precise (TOPEX-class) altimeter missions is the Ocean Surface Topography Mission (OSTM, also Jason-2). GPS-based orbit solutions for this mission are accurate to 1-cm (radial RMS) within 3-5 hrs of real time. These GPS-based orbit products provide the basis for a near-real time sea-surface height product that supports increasingly diverse applications of operational oceanography and climate forecasting.

  6. From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography

    Directory of Open Access Journals (Sweden)

    P. Y. Le Traon

    2013-10-01

    Full Text Available The launch of the French/US mission Topex/Poseidon (T/P (CNES/NASA in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large-scale sea level and ocean circulation observations was flying. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. Together with my CLS colleagues, we demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. Near-real-time high-resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 yr. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. Altimetry needs to be complemented with global in situ observations. At the end of the 90s, a major international initiative was launched to develop Argo, the global array of profiling floats. This has been an outstanding success. Argo floats now provide the most important in situ observations to monitor and understand the role of the ocean on the earth climate and for operational oceanography. This is a second revolution in oceanography. The unique capability of satellite altimetry to observe the global ocean in near-real-time at high resolution and the development of Argo were essential for the development of global operational oceanography, the third revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE was instrumental in the development of the required capabilities. This paper provides an historical perspective on the development of these three revolutions in oceanography which are very much interlinked. This is not an exhaustive review and I will mainly focus on the contributions we made together with many

  7. The OVIRS Visible/IR Spectrometer on the OSIRIS-Rex Mission

    Science.gov (United States)

    Reuter, D. C.; Simon-Miller, A. A.

    2012-01-01

    The OSIRIS-REx (Origins Spectral Interpretation Resource Identification Security Regolith Explorer) Mission is a planetary science mission to study, and return a sample from, the carbonaceous asteroid 1999 RQ-36. The third mission selected under NASA's New Frontiers Program, it is scheduled to be launched in 2016. It is led by PI Dante Lauretta at the University of Arizona and managed by NASA's Goddard Space Flight Center. The spacecraft and the asteroid sampling mechanism, TAGSAM (Touch-And-Go Sample Acquisition Mechanism) will be provided by Lockheed Martin Space Systems. Instrumentation for studying the asteroid include: OCAMS (the OSIRIS-REx Camera Suite), OLA (the OSIRIS-REx Laser Altimeter, a scanning LIDAR), OTES (The OSIRIS-REx Thermal Emission Spectrometer, a 4-50 micron point spectrometer) and OVIRS (the OSIRIS-REx Visible and IR Spectrometer, a 0.4 to 4.3 micron point spectrometer). The payload also includes REXIS (the Regolith X-ray Imaging Spectrometer) a student provided experiment. This paper presents a description of the OVIRS instrument.

  8. MACSAT - A Near Equatorial Earth Observation Mission

    Science.gov (United States)

    Kim, B. J.; Park, S.; Kim, E.-E.; Park, W.; Chang, H.; Seon, J.

    MACSAT mission was initiated by Malaysia to launch a high-resolution remote sensing satellite into Near Equatorial Orbit (NEO). Due to its geographical location, Malaysia can have large benefits from NEO satellite operation. From the baseline circular orbit of 685 km altitude with 7 degrees of inclination, the neighboring regions around Malaysian territory can be frequently monitored. The equatorial environment around the globe can also be regularly observed with unique revisit characteristics. The primary mission objective of MACSAT program is to develop and validate technologies for a near equatorial orbit remote sensing satellite system. MACSAT is optimally designed to accommodate an electro-optic Earth observation payload, Medium-sized Aperture Camera (MAC). Malaysian and Korean joint engineering teams are formed for the effective implementation of the satellite system. An integrated team approach is adopted for the joint development for MACSAT. MAC is a pushbroom type camera with 2.5 m of Ground Sampling Distance (GSD) in panchromatic band and 5 m of GSD in four multi-spectral bands. The satellite platform is a mini-class satellite. Including MAC payload, the satellite weighs under 200 kg. Spacecraft bus is designed optimally to support payload operations during 3 years of mission life. The payload has 20 km of swath width with +/- 30 o of tilting capability. 32 Gbits of solid state recorder is implemented as the mass image storage. The ground element is an integrated ground station for mission control and payload operation. It is equipped with S- band up/down link for commanding and telemetry reception as well as 30 Mbps class X-band down link for image reception and processing. The MACSAT system is capable of generating 1:25,000-scale image maps. It is also anticipated to have capability for cross-track stereo imaging for Digital elevation Model (DEM) generation.

  9. MIOSAT Mission Scenario and Design

    Science.gov (United States)

    Agostara, C.; Dionisio, C.; Sgroi, G.; di Salvo, A.

    2008-08-01

    MIOSAT ("Mssione Ottica su microSATellite") is a low-cost technological / scientific microsatellite mission for Earth Observation, funded by Italian Space Agency (ASI) and managed by a Group Agreement between Rheinmetall Italia - B.U. Spazio - Contraves as leader and Carlo Gavazzi Space as satellite manufacturer. Several others Italians Companies, SME and Universities are involved in the development team with crucial roles. MIOSAT is a microsatellite weighting around 120 kg and placed in a 525 km altitude sun-synchronuos circular LEO orbit. The microsatellite embarks three innovative optical payloads: Sagnac multi spectral radiometer (IFAC-CNR), Mach Zehender spectrometer (IMM-CNR), high resolution pancromatic camera (Selex Galileo). In addition three technological experiments will be tested in-flight. The first one is an heat pipe based on Marangoni effect with high efficiency. The second is a high accuracy Sun Sensor using COTS components and the last is a GNSS SW receiver that utilizes a Leon2 processor. Finally a new generation of 28% efficiency solar cells will be adopted for the power generation. The platform is highly agile and can tilt along and cross flight direction. The pointing accuracy is in the order of 0,1° for each axe. The pointing determination during images acquisition is <0,02° for the axis normal to the boresight and 0,04° for the boresight. This paper deals with MIOSAT mission scenario and definition, highlighting trade-offs for mission implementation. MIOSAT mission design has been constrained from challenging requirements in terms of satellite mass, mission lifetime, instrument performance, that have implied the utilization of satellite agility capability to improve instruments performance in terms of S/N and resolution. The instruments provide complementary measurements that can be combined in effective ways to exploit new applications in the fields of atmosphere composition analysis, Earth emissions, antropic phenomena, etc. The Mission

  10. Current state of art of satellite altimetry

    Science.gov (United States)

    Łyszkowicz, Adam Bolesław; Bernatowicz, Anna

    2017-12-01

    One of the fundamental problems of modern geodesy is precise defi nition of the gravitational fi eld and its changes in time. This is essential in positioning and navigation, geophysics, geodynamics, oceanography and other sciences related to the climate and Earth's environment. One of the major sources of gravity data is satellite altimetry that provides gravity data with almost 75% surface of the Earth. Satellite altimetry also provides data to study local, regional and global geophysical processes, the geoid model in the areas of oceans and seas. This technique can be successfully used to study the ocean mean dynamic topography. The results of the investigations and possible products of altimetry will provide a good material for the GGOS (Global Geodetic Observing System) and institutions of IAS (International Altimetry Service). This paper presents the achievements in satellite altimetry in all the above disciplines obtained in the last years. First very shorly basic concept of satellite altimetry is given. In order to obtain the highest accuracy on range measurements over the ocean improved of altimetry waveforms performed on the ground is described. Next, signifi cant improvements of sea and ocean gravity anomalies models developed presently is shown. Study of sea level and its extremes examined, around European and Australian coasts using tide gauges data and satellite altimetry measurements were described. Then investigations of the phenomenon of the ocean tides, calibration of altimeters, studies of rivers and ice-sheets in the last years are given.

  11. Current state of art of satellite altimetry

    Directory of Open Access Journals (Sweden)

    Łyszkowicz Adam Bolesław

    2017-12-01

    Full Text Available One of the fundamental problems of modern geodesy is precise defi nition of the gravitational fi eld and its changes in time. This is essential in positioning and navigation, geophysics, geodynamics, oceanography and other sciences related to the climate and Earth’s environment. One of the major sources of gravity data is satellite altimetry that provides gravity data with almost 75% surface of the Earth. Satellite altimetry also provides data to study local, regional and global geophysical processes, the geoid model in the areas of oceans and seas. This technique can be successfully used to study the ocean mean dynamic topography. The results of the investigations and possible products of altimetry will provide a good material for the GGOS (Global Geodetic Observing System and institutions of IAS (International Altimetry Service. This paper presents the achievements in satellite altimetry in all the above disciplines obtained in the last years. First very shorly basic concept of satellite altimetry is given. In order to obtain the highest accuracy on range measurements over the ocean improved of altimetry waveforms performed on the ground is described. Next, signifi cant improvements of sea and ocean gravity anomalies models developed presently is shown. Study of sea level and its extremes examined, around European and Australian coasts using tide gauges data and satellite altimetry measurements were described. Then investigations of the phenomenon of the ocean tides, calibration of altimeters, studies of rivers and ice-sheets in the last years are given.

  12. The Ganymede Laser Altimeter (GALA)

    Science.gov (United States)

    Hussmann, H.

    2015-12-01

    The Ganymede Laser Altimeter (GALA) is one of the instruments selected for ESA's Jupiter Icy Moons Explorer (JUICE). A fundamental goal of any exploratory space mission is to characterize and measure the shape, topography, and rotation of the target bodies. A state of the art tool for this task is laser altimetry because it can provide absolute topographic height and position with respect to a body centered reference system. With respect to Ganymede, the GALA instrument aims at mapping of global, regional and local topography; confirming the global subsurface ocean and further characterization of the water-ice/liquid shell by monitoring the dynamic response of the ice shell to tidal forces; providing constraints on the forced physical librations and spin-axis obliquity; determining Ganymede's shape; obtaining detailed topographic profiles across the linear features of grooved terrain, impact structures, possible cryo-volcanic features and other different surface units; providing information about slope, roughness and albedo (at 1064nm) of Ganymede's surface. GALA uses the direct-detection (classical) approach of laser altimetry. Laser pulses are emitted at a wavelength of 1064 nm by using an actively Q-switched Nd:Yag laser. The pulse energy and pulse repetition frequency are 17 mJ at 30 Hz, respectively. The emission time of each pulse is measured by the detector. The beam is reflected from the surface and received at a 25 cm diameter F/1 telescope. The returning laser pulse is refocused onto a silicon avalanche photodiode (APD) through back-end optics including a narrow bandpass interference filter for isolating the 1064 nm wavelength. The APD-signal is then amplified, sampled and fed to a digital range finder. The minimum acceptable SNR is approx. 1.2. This system determines the time of flight, pulse intensity, width and full shape. The GALA instrument is developed in collaboration of institutes and industry from Germany, Japan, Switzerland and Spain.

  13. Gravity and Nonconservative Force Model Tuning for the GEOSAT Follow-On Spacecraft

    Science.gov (United States)

    Lemoine, Frank G.; Zelensky, Nikita P.; Rowlands, David D.; Luthcke, Scott B.; Chinn, Douglas S.; Marr, Gregory C.; Smith, David E. (Technical Monitor)

    2000-01-01

    The US Navy's GEOSAT Follow-On spacecraft was launched on February 10, 1998 and the primary objective of the mission was to map the oceans using a radar altimeter. Three radar altimeter calibration campaigns have been conducted in 1999 and 2000. The spacecraft is tracked by satellite laser ranging (SLR) and Doppler beacons and a limited amount of data have been obtained from the Global Positioning Receiver (GPS) on board the satellite. Even with EGM96, the predicted radial orbit error due to gravity field mismodelling (to 70x70) remains high at 2.61 cm (compared to 0.88 cm for TOPEX). We report on the preliminary gravity model tuning for GFO using SLR, and altimeter crossover data. Preliminary solutions using SLR and GFO/GFO crossover data from CalVal campaigns I and II in June-August 1999, and January-February 2000 have reduced the predicted radial orbit error to 1.9 cm and further reduction will be possible when additional data are added to the solutions. The gravity model tuning has improved principally the low order m-daily terms and has reduced significantly the geographically correlated error present in this satellite orbit. In addition to gravity field mismodelling, the largest contributor to the orbit error is the non-conservative force mismodelling. We report on further nonconservative force model tuning results using available data from over one cycle in beta prime.

  14. Promoting space research and applications in developing countries through small satellite missions

    Science.gov (United States)

    Sweeting, M.

    The high vantage-point of space offers very direct and tangible benefits to developing countries when carefully focused upon their real and particular communications and Earth observation needs. However, until recently, access to space has been effectively restricted to only those countries prepared to invest enormous sums in complex facilities and expensive satellites and launchers: this has placed individual participation in space beyond the sensible grasp of developing countries. However, during the last decade, highly capable and yet inexpensive small satellites have been developed which provide an opportunity for developing countries realistically to acquire and operate their own independent space assets - customized to their particular national needs. Over the last 22 years, the Surrey Space Centre has pioneered, developed and launched 23 nano-micro-minisatellite missions, and has worked in partnership with 12 developing countries to enable them to take their first independent steps into space. Surrey has developed a comprehensive and in-depth space technology know-how transfer and 'hands-on' training programme that uses a collaborative project comprising the design, construction, launch and operation of a microsatellite to acquire an indigenous space capability and create the nucleus of a national space agency and space industry. Using low cost small satellite projects as a focus, developing countries are able to initiate a long term, affordable and sustainable national space programme specifically tailored to their requirements, that is able to access the benefits derived from Earth observation for land use and national security; improved communications services; catalyzing scientific research and indigenous high-technology supporting industries. Perhaps even more important is the long-term benefit to the country provided by stimulating educational and career opportunities for your scientists and engineers and retaining them inside the country rather the

  15. Advanced satellite servicing facility studies

    Science.gov (United States)

    Qualls, Garry D.; Ferebee, Melvin J., Jr.

    1988-01-01

    A NASA-sponsored systems analysis designed to identify and recommend advanced subsystems and technologies specifically for a manned Sun-synchronous platform for satellite management is discussed. An overview of system design, manned and unmanned servicing facilities, and representative mission scenarios are given. Mission areas discussed include facility based satellite assembly, checkout, deployment, refueling, repair, and systems upgrade. The ferrying of materials and consumables to and from manufacturing platforms, deorbit, removal, repositioning, or salvage of satellites and debris, and crew rescue of any other manned vehicles are also examined. Impacted subsytems discussed include guidance navigation and control, propulsion, data management, power, thermal control, structures, life support, and radiation management. In addition, technology issues which would have significant impacts on the system design are discussed.

  16. Improvement in the radial accuracy of altimeter-satellite orbits due to the geopotential

    Czech Academy of Sciences Publication Activity Database

    Klokočník, Jaroslav; Kostelecký, J.; Wagner, C. A.

    2008-01-01

    Roč. 91, 1-4 (2008), s. 106-120 ISSN 0012-8252 R&D Projects: GA AV ČR IAA3003407; GA MŠk(CZ) LC506 Institutional research plan: CEZ:AV0Z10030501 Keywords : orbits of Earth artificial satellites * gravity field of the Earth * radial orbit error Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.558, year: 2008

  17. Assessment of Systematic Errors in the Computation of Gravity Gradients from Satellite Altimeter Data

    Czech Academy of Sciences Publication Activity Database

    Bouman, J.; Bosch, W.; Sebera, Josef

    2011-01-01

    Roč. 34, č. 2 (2011), s. 85-107 ISSN 0149-0419 Institutional research plan: CEZ:AV0Z10030501 Keywords : satellite altimetry * gravity gradients * GOCE Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.329, year: 2011

  18. SWARM - An earth Observation Mission investigating Geospace

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Lühr, H.; Knudsen, D.

    2008-01-01

    The Swarm mission was selected as the 5th mission in ESA's Earth Explorer Programme in 2004. This mission aims at measuring the Earth's magnetic field with unprecedented accuracy. This will be done by a constellation of three satellites, where two will fly at lower altitude, measuring the gradient...... of the magnetic field, and one satellite will fly at higher altitude. The measured magnetic field is the sum of many contributions including both magnetic fields and currents in the Earth's interior and electrical currents in Geospace. In order to separate all these sources electric field and plasma measurements...... will also be made to complement the primary magnetic field measurements. Together these will allow the deduction of information on a series of solid earth processes responsible for the creation of the fields measured. The completeness of the measurements on each satellite and the constellation aspect...

  19. Greenland Ice sheet mass balance from satellite and airborne altimetry

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Bevis, M. G.; Wahr, J. M.

    Ice loss from the Greenland Ice Sheet (GrIS) is dominated by loss in the marginal areas. Dynamic induced ice loss and its associated ice surface lowering is often largest close to the glacier calving front and may vary from rates of tens of meters per years to a few meters per year over relatively...... short distances. Hence, high spatial resolution data are required to accurately estimate volume changes. Here, we estimate ice volume change rate of the Greenland ice sheet using data from Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter during 2003-2009 and CryoSat-2 data during 2010...

  20. JAXA's activities for environmental health monitoring

    Science.gov (United States)

    Murakami, Hiroshi

    2014-11-01

    In the first ten years after establishment of the Japan Aerospace eXploration Agency (JAXA) in 2003, our focuses were mainly on technical development (hardware and software) and accumulation of application research. In the next decade, we focus more on solution on social issues using innovative space science technology. Currently, JAXA is operating and developing several earth observation satellites and sensors: Greenhouse gases Observing SATellite (GOSAT) "IBUKI", Global Change Observation Mission - Water "SHIZUKU" (GCOM-W), Global Precipitation Measurement/Dual- frequency Precipitation Radar (GPM/DPR), Advanced Land Observing Satellite-2 "DAICHI-2" (ALOS-2), Global Change Observation Mission - Climate (GCOM-C), Earth Cloud, Aerosol and Radiation Explorer (EarthCARE), and GOSAT-2. They will provide essential environmental parameters, such as aerosols, clouds, land vegetation, ocean color, GHGs, and so on. In addition to the above missions, we are studying new instruments (altimeter, LIDAR, detectors, optical components) to obtain new parameters. Our activities will advance to provide essential inputs for diagnosis, prediction, and management of climate change, environmental assessment, and disaster monitoring.

  1. The NASA Earth Science Program and Small Satellites

    Science.gov (United States)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  2. Surge of Bering Glacier and Bagley Ice Field: Parameterization of surge characteristics based on automated analysis of crevasse image data and laser altimeter data

    Science.gov (United States)

    Stachura, M.; Herzfeld, U. C.; McDonald, B.; Weltman, A.; Hale, G.; Trantow, T.

    2012-12-01

    The dynamical processes that occur during the surge of a large, complex glacier system are far from being understood. The aim of this paper is to derive a parameterization of surge characteristics that captures the principle processes and can serve as the basis for a dynamic surge model. Innovative mathematical methods are introduced that facilitate derivation of such a parameterization from remote-sensing observations. Methods include automated geostatistical characterization and connectionist-geostatistical classification of dynamic provinces and deformation states, using the vehicle of crevasse patterns. These methods are applied to analyze satellite and airborne image and laser altimeter data collected during the current surge of Bering Glacier and Bagley Ice Field, Alaska.

  3. Conceptual design of a synchronous Mars telecommunications satellite

    Science.gov (United States)

    Badi, Deborah M.; Farmer, Jeffrey T.; Garn, Paul A.; Martin, Gary L.

    1989-01-01

    Future missions to Mars will require a communications system to link activities on the Martian surface with each other and with mission controllers on Earth. A conceptual design is presented for an aerosynchronous communications satellite to provide these links. The satellite provides the capability for voice, data/command, and video transmissions. The mission scenario assumed for the design is described, and a description of a single aerosynchronous satellite is explained. A viable spacecraft design is then presented. Communication band selection and channel allocation are discussed. The communications system conceptual design is presented along with the trades used in sizing each of the required antennas. Also, the analyses used to develop the supporting subsystem designs are described as is the communications impact on each subsystem design.

  4. GRACE Status at Mission End

    Science.gov (United States)

    Tapley, B. D.; Flechtner, F. M.; Watkins, M. M.; Bettadpur, S. V.

    2017-12-01

    The twin satellites of the Gravity Recovery and Climate Experiment (GRACE) were launched on March 17, 2002 and have operated for nearly 16 years. The mission objectives are to observe the spatial and temporal variations of the Earth's mass through its effects on the gravity field at the GRACE satellite altitude. The mass changes observed are related to both the changes within the solid earth and the change within and between the Erath system components. A significant cause of the time varying mass is water motion and the GRACE mission has provided a continuous decade long measurement sequence which characterizes the seasonal cycle of mass transport between the oceans, land, cryosphere and atmosphere; its inter-annual variability; and the climate driven secular, or long period, mass transport signals. The fifth reanalysis on the mission data set, the RL05 data, were released in mid-2013. With the planned launch of GRACE Follow-On in early 2018, plans are underway for a reanalysis that will be consistent with the GRACE FO processing standards. The mission is entering the final phases of its operation life with mission end expected to occur in early 2018. The current mission operations strategy emphasizes extending the mission lifetime to obtain an overlap with the GRACE FO. This presentation will review the mission status and the projections for mission lifetime, describe the current operations philosophy and its impact on the science data, discuss the issues related to achieving the GRACE and GRACE FO connection and discuss issues related to science data products during this phase of the mission period.

  5. Assessing the fitness-for-purpose of satellite multi-mission ocean color climate data records: A protocol applied to OC-CCI chlorophyll-a data.

    Science.gov (United States)

    Mélin, F; Vantrepotte, V; Chuprin, A; Grant, M; Jackson, T; Sathyendranath, S

    2017-12-15

    In this work, trend estimates are used as indicators to compare the multi-annual variability of different satellite chlorophyll- a (Chl a ) data and to assess the fitness-for-purpose of multi-mission Chl a products as climate data records (CDR). Under the assumption that single-mission products are free from spurious temporal artifacts and can be used as benchmark time series, multi-mission CDRs should reproduce the main trend patterns observed by single-mission series when computed over their respective periods. This study introduces and applies quantitative metrics to compare trend distributions from different data records. First, contingency matrices compare the trend diagnostics associated with two satellite products when expressed in binary categories such as existence, significance and signs of trends. Contingency matrices can be further summarized by metrics such as Cohen's κ index that rates the overall agreement between the two distributions of diagnostics. A more quantitative measure of the discrepancies between trends is provided by the distributions of differences between trend slopes. Thirdly, maps of the level of significance P of a t -test quantifying the degree to which two trend estimates differ provide a statistical, spatially-resolved, evaluation. The proposed methodology is applied to the multi-mission Ocean Colour-Climate Change Initiative (OC-CCI) Chl a data. The agreement between trend distributions associated with OC-CCI data and single-mission products usually appears as good as when single-mission products are compared. As the period of analysis is extended beyond 2012 to 2015, the level of agreement tends to be degraded, which might be at least partly due to the aging of the MODIS sensor on-board Aqua. On the other hand, the trends displayed by the OC-CCI series over the short period 2012-2015 are very consistent with those observed with VIIRS. These results overall suggest that the OC-CCI Chl a data can be used for multi-annual time

  6. Overview of the LARES Mission: orbit, error analysis and technological aspects

    International Nuclear Information System (INIS)

    Ciufolini, Ignazio; Paolozzi, Antonio; Paris, Claudio

    2012-01-01

    LARES (LAser RElativity Satellite), is an Italian Space Agency (ASI) mission to be launched beginning of 2012 with the new European launch vehicle, VEGA; the launch opportunity was provided by the European Space Agency (ESA). LARES is a laser ranged satellite; it will be launched into a nearly circular orbit, with an altitude of 1450 km and an inclination of 69.5 degrees. The goal of the mission is the measurement of the Lense-Thirring effect with an uncertainty of few percent; such a small uncertainty will be achieved using LARES data together with data from the LAGEOS I (NASA) and LAGEOS II (NASA and ASI) satellites, and because GRACE mission (NASA-CSR and DLR-GFZ) is improving Earth's gravity field models. This paper describes LARES experiment along with the principal error sources affecting the measurement. Furthermore, some engineering aspects of the mission, in particular the structure and materials of the satellite (designed in order to minimize the non-gravitational perturbations), are described.

  7. Highly Enhanced Risk Management Emergency Satellite

    DEFF Research Database (Denmark)

    Dalmeir, Michael; Gataullin, Yunir; Indrajit, Agung

    HERMES (Highly Enhanced Risk Management Emergency Satellite) is potential European satellite mission for global flood management, being implemented by Technical University Munich and European Space Agency. With its main instrument - a reliable and precise Synthetic Aperture Radar (SAR) antenna...

  8. Design and Fabrication of DebriSat - A Representative LEO Satellite for Improvements to Standard Satellite Breakup Models

    Science.gov (United States)

    Clark, S.; Dietrich, A.; Fitz-Coy, N.; Weremeyer, M.; Liou, J.-C.

    2012-01-01

    This paper discusses the design and fabrication of DebriSat, a 50 kg satellite developed to be representative of a modern low Earth orbit satellite in terms of its components, materials used, and fabrication procedures. DebriSat will be the target of a future hypervelocity impact experiment to determine the physical characteristics of debris generated after an on-orbit collision of a modern LEO satellite. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was SOCIT, conducted in 1992. The target used for that experiment was a Navy transit satellite (40 cm, 35 kg) fabricated in the 1960's. Modern satellites are very different in materials and construction techniques than those built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. To ensure that DebriSat is truly representative of typical LEO missions, a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 1 kg to 5000 kg was conducted. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions. Although DebriSat is an engineering model, specific attention is placed on the quality, type, and quantity of the materials used in its fabrication to ensure the integrity of the outcome. With the exception of software, all other aspects of the satellite s design, fabrication, and assembly integration and testing will be as rigorous as that of an actual flight vehicle. For example, to simulate survivability of launch loads, DebriSat will be subjected to a vibration test. As well, the satellite will undergo thermal vacuum tests to verify that the components and overall systems meet typical environmental standards. Proper assembly and integration techniques will involve comprehensive joint analysis, including the precise

  9. Initial development of a laser altimeter

    Science.gov (United States)

    Gilio, J. P.

    1985-09-01

    A design study was carried out of a small, expendable, self-contained laser altimeter for overwater operation at low altitude. A .904 micrometer Gallium Arsenide laser was used to build a prototype transmitter/ receiver at a cost of less than $600 and small enough to fit inside a 5 inch diameter cylinder, 5 inches long. Tests at a height of 120 feet above the surface of a lake resulted in a signal-to-noise ratio of 6, and validated the trade-off equation used in this study. A second test model, with design improvements incorporated, is predicted to yield a SNR of over 20 for an altitude of 150 meters.

  10. Quantification of surface water volume changes in the Mackenzie Delta using satellite multi-mission data

    Science.gov (United States)

    Normandin, Cassandra; Frappart, Frédéric; Lubac, Bertrand; Bélanger, Simon; Marieu, Vincent; Blarel, Fabien; Robinet, Arthur; Guiastrennec-Faugas, Léa

    2018-02-01

    Quantification of surface water storage in extensive floodplains and their dynamics are crucial for a better understanding of global hydrological and biogeochemical cycles. In this study, we present estimates of both surface water extent and storage combining multi-mission remotely sensed observations and their temporal evolution over more than 15 years in the Mackenzie Delta. The Mackenzie Delta is located in the northwest of Canada and is the second largest delta in the Arctic Ocean. The delta is frozen from October to May and the recurrent ice break-up provokes an increase in the river's flows. Thus, this phenomenon causes intensive floods along the delta every year, with dramatic environmental impacts. In this study, the dynamics of surface water extent and volume are analysed from 2000 to 2015 by combining multi-satellite information from MODIS multispectral images at 500 m spatial resolution and river stages derived from ERS-2 (1995-2003), ENVISAT (2002-2010) and SARAL (since 2013) altimetry data. The surface water extent (permanent water and flooded area) peaked in June with an area of 9600 km2 (±200 km2) on average, representing approximately 70 % of the delta's total surface. Altimetry-based water levels exhibit annual amplitudes ranging from 4 m in the downstream part to more than 10 m in the upstream part of the Mackenzie Delta. A high overall correlation between the satellite-derived and in situ water heights (R > 0.84) is found for the three altimetry missions. Finally, using altimetry-based water levels and MODIS-derived surface water extents, maps of interpolated water heights over the surface water extents are produced. Results indicate a high variability of the water height magnitude that can reach 10 m compared to the lowest water height in the upstream part of the delta during the flood peak in June. Furthermore, the total surface water volume is estimated and shows an annual variation of approximately 8.5 km3 during the whole study period, with

  11. A Survey of Cost Estimating Methodologies for Distributed Spacecraft Missions

    Science.gov (United States)

    Foreman, Veronica L.; Le Moigne, Jacqueline; de Weck, Oliver

    2016-01-01

    Satellite constellations present unique capabilities and opportunities to Earth orbiting and near-Earth scientific and communications missions, but also present new challenges to cost estimators. An effective and adaptive cost model is essential to successful mission design and implementation, and as Distributed Spacecraft Missions (DSM) become more common, cost estimating tools must become more representative of these types of designs. Existing cost models often focus on a single spacecraft and require extensive design knowledge to produce high fidelity estimates. Previous research has examined the limitations of existing cost practices as they pertain to the early stages of mission formulation, for both individual satellites and small satellite constellations. Recommendations have been made for how to improve the cost models for individual satellites one-at-a-time, but much of the complexity in constellation and DSM cost modeling arises from constellation systems level considerations that have not yet been examined. This paper constitutes a survey of the current state-of-theart in cost estimating techniques with recommendations for improvements to increase the fidelity of future constellation cost estimates. To enable our investigation, we have developed a cost estimating tool for constellation missions. The development of this tool has revealed three high-priority shortcomings within existing parametric cost estimating capabilities as they pertain to DSM architectures: design iteration, integration and test, and mission operations. Within this paper we offer illustrative examples of these discrepancies and make preliminary recommendations for addressing them. DSM and satellite constellation missions are shifting the paradigm of space-based remote sensing, showing promise in the realms of Earth science, planetary observation, and various heliophysical applications. To fully reap the benefits of DSM technology, accurate and relevant cost estimating capabilities

  12. Automated and Adaptive Mission Planning for Orbital Express

    Science.gov (United States)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel; Koblick, Darin

    2008-01-01

    The Orbital Express space mission was a Defense Advanced Research Projects Agency (DARPA) lead demonstration of on-orbit satellite servicing scenarios, autonomous rendezvous, fluid transfers of hydrazine propellant, and robotic arm transfers of Orbital Replacement Unit (ORU) components. Boeing's Autonomous Space Transport Robotic Operations (ASTRO) vehicle provided the servicing to the Ball Aerospace's Next Generation Serviceable Satellite (NextSat) client. For communication opportunities, operations used the high-bandwidth ground-based Air Force Satellite Control Network (AFSCN) along with the relatively low-bandwidth GEO-Synchronous space-borne Tracking and Data Relay Satellite System (TDRSS) network. Mission operations were conducted out of the RDT&E Support Complex (RSC) at the Kirtland Air Force Base in New Mexico. All mission objectives were met successfully: The first of several autonomous rendezvous was demonstrated on May 5, 2007; autonomous free-flyer capture was demonstrated on June 22, 2007; the fluid and ORU transfers throughout the mission were successful. Planning operations for the mission were conducted by a team of personnel including Flight Directors, who were responsible for verifying the steps and contacts within the procedures, the Rendezvous Planners who would compute the locations and visibilities of the spacecraft, the Scenario Resource Planners (SRPs), who were concerned with assignment of communications windows, monitoring of resources, and sending commands to the ASTRO spacecraft, and the Mission planners who would interface with the real-time operations environment, process planning products and coordinate activities with the SRP. The SRP position was staffed by JPL personnel who used the Automated Scheduling and Planning ENvironment (ASPEN) to model and enforce mission and satellite constraints. The lifecycle of a plan began three weeks outside its execution on-board. During the planning timeframe, many aspects could change the plan

  13. IceBridge Riegl Laser Altimeter L1B Time-Tagged Laser Ranges

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA IceBridge Riegl Laser Altimeter L1B Time-Tagged Laser Ranges (ILUTP1B) data set contains laser ranges, returned pulses, and deviation for returned pulses in...

  14. Using Satellite and Airborne LiDAR to Model Woodpecker Habitat Occupancy at the Landscape Scale

    Science.gov (United States)

    Vierling, Lee A.; Vierling, Kerri T.; Adam, Patrick; Hudak, Andrew T.

    2013-01-01

    Incorporating vertical vegetation structure into models of animal distributions can improve understanding of the patterns and processes governing habitat selection. LiDAR can provide such structural information, but these data are typically collected via aircraft and thus are limited in spatial extent. Our objective was to explore the utility of satellite-based LiDAR data from the Geoscience Laser Altimeter System (GLAS) relative to airborne-based LiDAR to model the north Idaho breeding distribution of a forest-dependent ecosystem engineer, the Red-naped sapsucker (Sphyrapicus nuchalis). GLAS data occurred within ca. 64 m diameter ellipses spaced a minimum of 172 m apart, and all occupancy analyses were confined to this grain scale. Using a hierarchical approach, we modeled Red-naped sapsucker occupancy as a function of LiDAR metrics derived from both platforms. Occupancy models based on satellite data were weak, possibly because the data within the GLAS ellipse did not fully represent habitat characteristics important for this species. The most important structural variables influencing Red-naped Sapsucker breeding site selection based on airborne LiDAR data included foliage height diversity, the distance between major strata in the canopy vertical profile, and the vegetation density near the ground. These characteristics are consistent with the diversity of foraging activities exhibited by this species. To our knowledge, this study represents the first to examine the utility of satellite-based LiDAR to model animal distributions. The large area of each GLAS ellipse and the non-contiguous nature of GLAS data may pose significant challenges for wildlife distribution modeling; nevertheless these data can provide useful information on ecosystem vertical structure, particularly in areas of gentle terrain. Additional work is thus warranted to utilize LiDAR datasets collected from both airborne and past and future satellite platforms (e.g. GLAS, and the planned IceSAT2

  15. Arctic Sea Ice Thickness Estimation from CryoSat-2 Satellite Data Using Machine Learning-Based Lead Detection

    Directory of Open Access Journals (Sweden)

    Sanggyun Lee

    2016-08-01

    Full Text Available Satellite altimeters have been used to monitor Arctic sea ice thickness since the early 2000s. In order to estimate sea ice thickness from satellite altimeter data, leads (i.e., cracks between ice floes should first be identified for the calculation of sea ice freeboard. In this study, we proposed novel approaches for lead detection using two machine learning algorithms: decision trees and random forest. CryoSat-2 satellite data collected in March and April of 2011–2014 over the Arctic region were used to extract waveform parameters that show the characteristics of leads, ice floes and ocean, including stack standard deviation, stack skewness, stack kurtosis, pulse peakiness and backscatter sigma-0. The parameters were used to identify leads in the machine learning models. Results show that the proposed approaches, with overall accuracy >90%, produced much better performance than existing lead detection methods based on simple thresholding approaches. Sea ice thickness estimated based on the machine learning-detected leads was compared to the averaged Airborne Electromagnetic (AEM-bird data collected over two days during the CryoSat Validation experiment (CryoVex field campaign in April 2011. This comparison showed that the proposed machine learning methods had better performance (up to r = 0.83 and Root Mean Square Error (RMSE = 0.29 m compared to thickness estimation based on existing lead detection methods (RMSE = 0.86–0.93 m. Sea ice thickness based on the machine learning approaches showed a consistent decline from 2011–2013 and rebounded in 2014.

  16. A miniature, low-power scientific fluxgate magnetometer: A stepping-stone to cube-satellite constellation missions

    Science.gov (United States)

    Miles, D. M.; Mann, I. R.; Ciurzynski, M.; Barona, D.; Narod, B. B.; Bennest, J. R.; Pakhotin, I. P.; Kale, A.; Bruner, B.; Nokes, C. D. A.; Cupido, C.; Haluza-DeLay, T.; Elliott, D. G.; Milling, D. K.

    2016-12-01

    Difficulty in making low noise magnetic measurements is a significant challenge to the use of cube-satellite (CubeSat) platforms for scientific constellation class missions to study the magnetosphere. Sufficient resolution is required to resolve three-dimensional spatiotemporal structures of the magnetic field variations accompanying both waves and current systems of the nonuniform plasmas controlling dynamic magnetosphere-ionosphere coupling. This paper describes the design, validation, and test of a flight-ready, miniature, low-mass, low-power, and low-magnetic noise boom-mounted fluxgate magnetometer for CubeSat applications. The miniature instrument achieves a magnetic noise floor of 150-200 pT/√Hz at 1 Hz, consumes 400 mW of power, has a mass of 121 g (sensor and boom), stows on the hull, and deploys on a 60 cm boom from a three-unit CubeSat reducing the noise from the onboard reaction wheel to less than 1.5 nT at the sensor. The instrument's capabilities will be demonstrated and validated in space in late 2016 following the launch of the University of Alberta Ex-Alta 1 CubeSat, part of the QB50 constellation mission. We illustrate the potential scientific returns and utility of using a CubeSats carrying such fluxgate magnetometers to constitute a magnetospheric constellation using example data from the low-Earth orbit European Space Agency Swarm mission. Swarm data reveal significant changes in the spatiotemporal characteristics of the magnetic fields in the coupled magnetosphere-ionosphere system, even when the spacecraft are separated by only approximately 10 s along track and approximately 1.4° in longitude.

  17. Korea Earth Observation Satellite Program

    Science.gov (United States)

    Baek, Myung-Jin; Kim, Zeen-Chul

    via Korea Aerospace Research Institute (KARI) as the prime contractor in the area of Korea earth observation satellite program to enhance Korea's space program development capability. In this paper, Korea's on-going and future earth observation satellite programs are introduced: KOMPSAT- 1 (Korea Multi Purpose Satellite-1), KOMPSAT-2 and Communication, Broadcasting and Meteorological Satellite (CBMS) program. KOMPSAT-1 satellite successfully launched in December 1999 with Taurus launch vehicle. Since launch, KOMPSAT-1 is downlinking images of Korea Peninsular every day. Until now, KOMPSAT-1 has been operated more than 2 and half years without any major hardware malfunction for the mission operation. KOMPSAT-1 payload has 6.6m panchromatic spatial resolution at 685 km on-orbit and the spacecraft bus had NASA TOMS-EP (Total Ozone Mapping Spectrometer-Earth Probe) spacecraft bus heritage designed and built by TRW, U.S.A.KOMPSAT-1 program was international co-development program between KARI and TRW funded by Korean Government. be launched in 2004. Main mission objective is to provide geo-information products based on the multi-spectral high resolution sensor called Multi-Spectral Camera (MSC) which will provide 1m panchromatic and 4m multi-spectral high resolution images. ELOP of Israel is the prime contractor of the MSC payload system and KARI is the total system prime contractor including spacecraft bus development and ground segment. KARI also has the contract with Astrium of Europe for the purpose of technical consultation and hardware procurement. Based on the experience throughout KOMPSAT-1 and KOMPSAT-2 space system development, Korea is expecting to establish the infrastructure of developing satellite system. Currently, KOMPSAT-2 program is in the critical design stage. are scheduled to launch in 2008 and in 2014, respectively. The mission of CBMS consists of two areas. One is of space technology test for the communications mission, and the other is of a real

  18. Antenna System for Nano-satelite Mission GOMX-3

    DEFF Research Database (Denmark)

    Tatomirescu, Alexandru; Pedersen, Gert F.; Christiansen, J.

    2016-01-01

    In this paper, we present the antenna design for a nano-satellite mission launched in September, the GOMX-3 mission. Some of the key design challenges are discussed and the chosen solutions are presented. In an effort to minimize development and manufacturing costs for future missions, this study...

  19. Moon Search Algorithms for NASA's Dawn Mission to Asteroid Vesta

    Science.gov (United States)

    Memarsadeghi, Nargess; Mcfadden, Lucy A.; Skillman, David R.; McLean, Brian; Mutchler, Max; Carsenty, Uri; Palmer, Eric E.

    2012-01-01

    A moon or natural satellite is a celestial body that orbits a planetary body such as a planet, dwarf planet, or an asteroid. Scientists seek understanding the origin and evolution of our solar system by studying moons of these bodies. Additionally, searches for satellites of planetary bodies can be important to protect the safety of a spacecraft as it approaches or orbits a planetary body. If a satellite of a celestial body is found, the mass of that body can also be calculated once its orbit is determined. Ensuring the Dawn spacecraft's safety on its mission to the asteroid Vesta primarily motivated the work of Dawn's Satellite Working Group (SWG) in summer of 2011. Dawn mission scientists and engineers utilized various computational tools and techniques for Vesta's satellite search. The objectives of this paper are to 1) introduce the natural satellite search problem, 2) present the computational challenges, approaches, and tools used when addressing this problem, and 3) describe applications of various image processing and computational algorithms for performing satellite searches to the electronic imaging and computer science community. Furthermore, we hope that this communication would enable Dawn mission scientists to improve their satellite search algorithms and tools and be better prepared for performing the same investigation in 2015, when the spacecraft is scheduled to approach and orbit the dwarf planet Ceres.

  20. Statistical Analyses of High-Resolution Aircraft and Satellite Observations of Sea Ice: Applications for Improving Model Simulations

    Science.gov (United States)

    Farrell, S. L.; Kurtz, N. T.; Richter-Menge, J.; Harbeck, J. P.; Onana, V.

    2012-12-01

    /divergent ice zones, (ii) provide datasets that support enhanced parameterizations in numerical models as well as model initialization and validation, (iii) parameters of interest to Arctic stakeholders for marine navigation and ice engineering studies, and (iv) statistics that support algorithm development for the next-generation of airborne and satellite altimeters, including NASA's ICESat-2 mission. We describe the potential contribution our results can make towards the improvement of coupled ice-ocean numerical models, and discuss how data synthesis and integration with high-resolution models may improve our understanding of sea ice variability and our capabilities in predicting the future state of the ice pack.

  1. Global Precipitation Measurement (GPM) Mission: Overview and Status

    Science.gov (United States)

    Hou, Arthur Y.

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite to unify precipitation measurements from the constellation of sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder

  2. Using high sampling rate (10/20 Hz) altimeter data for the observation of coastal surface currents: A case study over the northwestern Mediterranean Sea

    Science.gov (United States)

    Birol, Florence; Delebecque, Caroline

    2014-01-01

    Satellite altimetry, measuring sea surface heights (SSHs), has unique capabilities to provide information about the ocean dynamics. In this paper, the skill of the original full rate (10/20 Hz) measurements, relative to conventional 1-Hz data, is evaluated in the context of coastal studies in the Northwestern Mediterranean Sea. The performance and the question of the measurement noise are quantified through a comparison with different tide gauge sea level time series. By applying a specific processing, closer than 30 km to the land, the number of valid data is higher for the 10/20-Hz than for the 1-Hz observations: + 4.5% for T/P, + 10.3 for Jason-1 and + 13% for Jason-2. By filtering higher sampling rate measurements (using a 30-km cut-off low-pass Lanczos filter), we can obtain the same level of sea level accuracy as we would using the classical 1-Hz altimeter data. The gain in near-shore data results in a better observation of the Liguro-Provençal-Catalan Current. The seasonal evolution of the currents derived from 20-Hz data is globally consistent with patterns derived from the corresponding 1-Hz observations. But the use of higher frequency altimeter measurements allows us to observe the variability of the regional flow closer to the coast (~ 10-15 km from land).

  3. NOAA's Joint Polar Satellite System's (JPSS) Proving Ground and Risk Reduction (PGRR) Program - Bringing JPSS Science into Support of Key NOAA Missions!

    Science.gov (United States)

    Sjoberg, W.; McWilliams, G.

    2017-12-01

    This presentation will focus on the continuity of the NOAA Joint Polar Satellite System (JPSS) Program's Proving Ground and Risk Reduction (PGRR) and key activities of the PGRR Initiatives. The PGRR Program was established in 2012, following the launch of the Suomi National Polar Partnership (SNPP) satellite. The JPSS Program Office has used two PGRR Project Proposals to establish an effective approach to managing its science and algorithm teams in order to focus on key NOAA missions. The presenter will provide details of the Initiatives and the processes used by the initiatives that have proven so successful. Details of the new 2017 PGRR Call-for-Proposals and the status of project selections will be discussed.

  4. Evolutionary design of a satellite thermal control system: Real experiments for a CubeSat mission

    International Nuclear Information System (INIS)

    Escobar, Emanuel; Diaz, Marcos; Zagal, Juan Cristóbal

    2016-01-01

    Highlights: • GAs applied to automate design of CubeSat passive thermal control system (coating). • Simulation adapted with real physical data (mockup experiment in vacuum chamber). • Obtained coating patterns consistently outperform engineered solutions (by 5 K). • Evolved coating patterns are far superior (by 8 K) than unpainted aluminum. - Abstract: This paper studies the use of artificial evolution to automate the design of a satellite passive thermal control system. This type of adaptation often requires the use of computer simulations to evaluate fitness of a large number of candidate solutions. Simulations are required to be expedient and accurate so that solutions can be successfully transferred to reality. We explore a design process that involves three steps. On a first step candidate solutions (implemented as surface paint tiling patterns) are tested using a FEM model and ranked according to their quality to meet mission temperature requirements. On a second step the best individual is implemented as a real physical satellite mockup and tested inside a vacuum chamber, having light sources imitating the effect of solar light. On a third step the simulation model is adapted with data obtained during the real evaluation. These updated models can be further employed for continuing genetic search. Current differences between our simulation and our real physical setup are in the order of 1.45 K mean squared error for faces pointing toward the light source and 2.4 K mean squared errors for shadowed faces. We found that evolved tiling patterns can be 5 K below engineered patterns and 8 K below using unpainted aluminum satellite surfaces.

  5. Validation of Sentinel-3A altimetry data by using in-situ multi-platform observations near Mallorca Island (western Mediterranean)

    Science.gov (United States)

    Sánchez-Román, Antonio; Heslop, Emma; Reeve, Krissy; Rodriguez, Daniel; Pujol, Isabelle; Faugère, Yannice; Torner, Marc; Tintoré, Joaquín; Pascual, Ananda

    2017-04-01

    In the frame of the Copernicus Marine Environment Monitoring Service (CMEMS) Sea Level Thematic Assembly Center (SL-TAC), a glider mission was undertaken between May and June 2016 along the same track as the overpass of the Sentinel 3A satellite in the Southern Mallorca region. Moreover, a one-day ship mission on May 30, synchronous with the overpass of the satellite, captured two transects of moving vessel ADCP close to the coastal area. The aim was to compare the along track altimeter products and multi-platform in-situ observations in the southern coastal zone of the Mallorca Island and the Algerian Basin. In addition, we explored the potential of the Synthetic Aperture Radar Mode (SARM) instrumentation of Sentinel-3 mission, which enables the satellite to measure nearest the coasts with both higher spatial resolution and higher precision than previous missions. With the ultimate goal of contributing to a more complete understanding of both ocean and coastal physical processes and the biogeochemical impacts. The analyses presented here are conducted through the comparison of Absolute Dynamic Topography (ADT) obtained from the Sentinel-3A altimetry measurements along ground-track #713 and Dynamic Height (DH) derived from temperature and salinity profiles measured by the glider along the trajectory followed by the satellite. Moreover, currents derived from altimetry and in-situ glider data along the track followed by the satellite; and from ADCP data collected in the coastal region are analysed. Results show a good agreement between ADT from altimetry and DH from glider data with maximum differences of around 2 cm that promote a root mean square error (RMSE) of 1 cm, the correlation coefficient between both datasets is 0.89. The satellite data closely resemble the geostrophic velocity pattern observed by the glider measurements along the Algerian Current, and also the ADCP data in the coastal zone, exhibiting a RMSE lower than 10 cm/s and a correlation coefficient

  6. Study on Earth Radiation Budget mission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Dlhopolsky, R; Hollmann, R; Mueller, J; Stuhlmann, R [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1998-12-31

    The goal of this study is to study optimized satellite configurations for observation of the radiation balance of the earth. We present a literature survey of earth radiation budget missions and instruments. We develop a parametric tool to simulate realistic multiple satellite mission scenarios. This tool is a modular computer program which models satellite orbits and scanning operation. We use Meteosat data sampled at three hour intervals as a database to simulate atmospheric scenes. Input variables are satellite equatorial crossing time and instrument characteristics. Regional, zonal and global monthly averages of shortwave and longwave fluxes for an ideal observing system and several realistic satellite scenarios are produced. Comparisons show that the three satellite combinations which have equatorial crossing times at midmorning, noon and midafternoon provide the best shortwave monitoring. Crossing times near sunrise and sunset should be avoided for the shortwave. Longwave diurnal models are necessary over and surfaces and cloudy regions, if there are only two measurements made during daylight hours. We have found in the shortwave inversion comparison that at least 15% of the monthly regional errors can be attributed to the shortwave anisotropic models used. (orig.) 68 refs.

  7. Study on Earth Radiation Budget mission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Dlhopolsky, R.; Hollmann, R.; Mueller, J.; Stuhlmann, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    The goal of this study is to study optimized satellite configurations for observation of the radiation balance of the earth. We present a literature survey of earth radiation budget missions and instruments. We develop a parametric tool to simulate realistic multiple satellite mission scenarios. This tool is a modular computer program which models satellite orbits and scanning operation. We use Meteosat data sampled at three hour intervals as a database to simulate atmospheric scenes. Input variables are satellite equatorial crossing time and instrument characteristics. Regional, zonal and global monthly averages of shortwave and longwave fluxes for an ideal observing system and several realistic satellite scenarios are produced. Comparisons show that the three satellite combinations which have equatorial crossing times at midmorning, noon and midafternoon provide the best shortwave monitoring. Crossing times near sunrise and sunset should be avoided for the shortwave. Longwave diurnal models are necessary over and surfaces and cloudy regions, if there are only two measurements made during daylight hours. We have found in the shortwave inversion comparison that at least 15% of the monthly regional errors can be attributed to the shortwave anisotropic models used. (orig.) 68 refs.

  8. A Satellite Mortality Study to Support Space Systems Lifetime Prediction

    Science.gov (United States)

    Fox, George; Salazar, Ronald; Habib-Agahi, Hamid; Dubos, Gregory

    2013-01-01

    Estimating the operational lifetime of satellites and spacecraft is a complex process. Operational lifetime can differ from mission design lifetime for a variety of reasons. Unexpected mortality can occur due to human errors in design and fabrication, to human errors in launch and operations, to random anomalies of hardware and software or even satellite function degradation or technology change, leading to unrealized economic or mission return. This study focuses on data collection of public information using, for the first time, a large, publically available dataset, and preliminary analysis of satellite lifetimes, both operational lifetime and design lifetime. The objective of this study is the illustration of the relationship of design life to actual lifetime for some representative classes of satellites and spacecraft. First, a Weibull and Exponential lifetime analysis comparison is performed on the ratio of mission operating lifetime to design life, accounting for terminated and ongoing missions. Next a Kaplan-Meier survivor function, standard practice for clinical trials analysis, is estimated from operating lifetime. Bootstrap resampling is used to provide uncertainty estimates of selected survival probabilities. This study highlights the need for more detailed databases and engineering reliability models of satellite lifetime that include satellite systems and subsystems, operations procedures and environmental characteristics to support the design of complex, multi-generation, long-lived space systems in Earth orbit.

  9. Probability of satellite collision

    Science.gov (United States)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  10. Cost-Effective Icy Bodies Exploration using Small Satellite Missions

    Science.gov (United States)

    Jonsson, Jonas; Mauro, David; Stupl, Jan; Nayak, Michael; Aziz, Jonathan; Cohen, Aaron; Colaprete, Anthony; Dono-Perez, Andres; Frost, Chad; Klamm, Benjamin; hide

    2015-01-01

    It has long been known that Saturn's moon Enceladus is expelling water-rich plumes into space, providing passing spacecraft with a window into what is hidden underneath its frozen crust. Recent discoveries indicate that similar events could also occur on other bodies in the solar system, such as Jupiter's moon Europa and the dwarf planet Ceres in the asteroid belt. These plumes provide a possible giant leap forward in the search for organics and assessing habitability beyond Earth, stepping stones toward the long-term goal of finding extraterrestrial life. The United States Congress recently requested mission designs to Europa, to fit within a cost cap of $1B, much less than previous mission designs' estimates. Here, innovative cost-effective small spacecraft designs for the deep-space exploration of these icy worlds, using new and emerging enabling technologies, and how to explore the outer solar system on a budget below the cost horizon of a flagship mission, are investigated. Science requirements, instruments selection, rendezvous trajectories, and spacecraft designs are some topics detailed. The mission concepts revolve around a comparably small-sized and low-cost Plume Chaser spacecraft, instrumented to characterize the vapor constituents encountered on its trajectory. In the event that a plume is not encountered, an ejecta plume can be artificially created by a companion spacecraft, the Plume Maker, on the target body at a location timed with the passage of the Plume Chaser spacecraft. Especially in the case of Ceres, such a mission could be a great complimentary mission to Dawn, as well as a possible future Europa Clipper mission. The comparably small volume of the spacecraft enables a launch to GTO as a secondary payload, providing multiple launch opportunities per year. Plume Maker's design is nearly identical to the Plume Chaser, and fits within the constraints for a secondary payload launch. The cost-effectiveness of small spacecraft missions enables the

  11. NASDA'S activities and roles in promoting satellite utilization experiments

    Science.gov (United States)

    Shigeta, Tsutomu; Miyoshi, Takashi

    2004-02-01

    While NASDA has been engaged in the development of new satellite missions and the bus technologies, NASDA explores new and attractive applications by promoting the utilization of satellite missions and strengthening the relationships with external parties. Offering opportunities to external parties for conducting application experiments will bring great chances for them in challenging and experimenting new space-based applications. Consequently, it is expected that the outcomes of the space development are returned to general public, research institutes, industries, and that ideas or requirements for new satellite mission could emerge and be materialized. With these objectives in mind, NASDA is presently planning a new space project that is named "i-Space". The i-Space project aims to contribute to the progressing "IT Revolution" by providing new space communication capabilities and to develop practical applications by collaborating with external parties. This paper introduces the activities and roles of NASDA in promoting satellite utilization experiments, particularly focusing on the i-Space project.

  12. Cibola flight experiment satellite

    Science.gov (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart

    2004-11-01

    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  13. The Ballerina experiment on the Romer mission

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian

    2001-01-01

    The Romer mission has recently been approved as the next mission within the Danish Small Satellite Program. The scientific payload will consist of two separate experiments, the MONS and the Ballerina payloads. The primary objective of Ballerina is to provide accurate, real-time positions relayed...

  14. Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations

    Science.gov (United States)

    Montenbruck, Oliver; Hackel, Stefan; Jäggi, Adrian

    2017-11-01

    The Sentinel-3 mission takes routine measurements of sea surface heights and depends crucially on accurate and precise knowledge of the spacecraft. Orbit determination with a targeted uncertainty of less than 2 cm in radial direction is supported through an onboard Global Positioning System (GPS) receiver, a Doppler Orbitography and Radiopositioning Integrated by Satellite instrument, and a complementary laser retroreflector for satellite laser ranging. Within this study, the potential of ambiguity fixing for GPS-only precise orbit determination (POD) of the Sentinel-3 spacecraft is assessed. A refined strategy for carrier phase generation out of low-level measurements is employed to cope with half-cycle ambiguities in the tracking of the Sentinel-3 GPS receiver that have so far inhibited ambiguity-fixed POD solutions. Rather than explicitly fixing double-difference phase ambiguities with respect to a network of terrestrial reference stations, a single-receiver ambiguity resolution concept is employed that builds on dedicated GPS orbit, clock, and wide-lane bias products provided by the CNES/CLS (Centre National d'Études Spatiales/Collecte Localisation Satellites) analysis center of the International GNSS Service. Compared to float ambiguity solutions, a notably improved precision can be inferred from laser ranging residuals. These decrease from roughly 9 mm down to 5 mm standard deviation for high-grade stations on average over low and high elevations. Furthermore, the ambiguity-fixed orbits offer a substantially improved cross-track accuracy and help to identify lateral offsets in the GPS antenna or center-of-mass (CoM) location. With respect to altimetry, the improved orbit precision also benefits the global consistency of sea surface measurements. However, modeling of the absolute height continues to rely on proper dynamical models for the spacecraft motion as well as ground calibrations for the relative position of the altimeter reference point and the CoM.

  15. Ice Sheet Change Detection by Satellite Image Differencing

    Science.gov (United States)

    Bindschadler, Robert A.; Scambos, Ted A.; Choi, Hyeungu; Haran, Terry M.

    2010-01-01

    Differencing of digital satellite image pairs highlights subtle changes in near-identical scenes of Earth surfaces. Using the mathematical relationships relevant to photoclinometry, we examine the effectiveness of this method for the study of localized ice sheet surface topography changes using numerical experiments. We then test these results by differencing images of several regions in West Antarctica, including some where changes have previously been identified in altimeter profiles. The technique works well with coregistered images having low noise, high radiometric sensitivity, and near-identical solar illumination geometry. Clouds and frosts detract from resolving surface features. The ETM(plus) sensor on Landsat-7, ALI sensor on EO-1, and MODIS sensor on the Aqua and Terra satellite platforms all have potential for detecting localized topographic changes such as shifting dunes, surface inflation and deflation features associated with sub-glacial lake fill-drain events, or grounding line changes. Availability and frequency of MODIS images favor this sensor for wide application, and using it, we demonstrate both qualitative identification of changes in topography and quantitative mapping of slope and elevation changes.

  16. Spaceborne observations of a changing Earth - Contribution from ESÁ s operating and approved satellite missions.

    Science.gov (United States)

    Johannessen, J. A.

    2009-04-01

    , managerial and regulatory activities (i.e. weather forecasting, deforestation, flooding, etc.) essential to the safe exploitation of global resources, conservation of sustainable ecosystems, and the compliance with numerous international treaties and conventions, depend absolutely on continuity of satellite missions to maximise socio-economic and environmental benefits. This presentation will highlight some of the multidisciplinary Earth science achievements and operational applications using ESA satellite missions. It will also address some of the key scientific challenges and need for operational monitoring services in the years to come. It capitalizes on the knowledge and awareness outlined in "The Changing Earth - New scientific challenges for ESÁs Living Planet Programme" issued in 2006 together with updated views and approved plans expressed during ESÁs Earth Sciences Advisory Committee (ESAC) meetings and agreed at the recent User Consultation meeting in January 2009.

  17. Innovative approach for low-cost quick-access small payload missions

    Science.gov (United States)

    Friis, Jan W., Jr.

    2000-11-01

    A significant part of the burgeoning commercial space industry is placing an unprecedented number of satellites into low earth orbit for a variety of new applications and services. By some estimates the commercial space industry now exceeds that of government space activities. Yet the two markets remain largely separate, with each deploying dedicated satellites and infrastructure for their respective missions. One commercial space firm, Final Analysis, has created a new program wherein either government, scientific or new technology payloads can be integrated on a commercial spacecraft on commercial satellites for a variety of mission scenarios at a fraction of the cost of a dedicated mission. NASA has recognized the advantage of this approach, and has awarded the Quick Ride program to provide frequent, low cost flight opportunities for small independent payloads aboard the Final Analysis constellation, and investigators are rapidly developing science programs that conform to the proposed payload accommodations envelope. Missions that were not feasible using dedicated launches are now receiving approval under the lower cost Quick Ride approach. Final Analysis has dedicated ten out of its thirty-eight satellites in support of the Quick Ride efforts. The benefit of this type of space access extend beyond NASA science programs. Commercial space firms can now gain valuable flight heritage for new technology and satellite product offerings. Further, emerging international space programs can now place a payload in orbit enabling the country to allocate its resources against the payload and mission requirements rather htan increased launch costs of a dedicated spacecraft. Finally, the low cost nature provides University-based research educational opportunities previously out of the reach of most space-related budgets. This paper will describe the motivation, benefits, technical features, and program costs of the Final Analysis secondary payload program. Payloads can be

  18. The future of spaceborne altimetry. Oceans and climate change: A long-term strategy

    Science.gov (United States)

    Koblinsky, C. J. (Editor); Gaspar, P. (Editor); Lagerloef, G. (Editor)

    1992-01-01

    The ocean circulation and polar ice sheet volumes provide important memory and control functions in the global climate. Their long term variations are unknown and need to be understood before meaningful appraisals of climate change can be made. Satellite altimetry is the only method for providing global information on the ocean circulation and ice sheet volume. A robust altimeter measurement program is planned which will initiate global observations of the ocean circulation and polar ice sheets. In order to provide useful data about the climate, these measurements must be continued with unbroken coverage into the next century. Herein, past results of the role of the ocean in the climate system is summarized, near term goals are outlined, and requirements and options are presented for future altimeter missions. There are three basic scientific objectives for the program: ocean circulation; polar ice sheets; and mean sea level change. The greatest scientific benefit will be achieved with a series of dedicated high precision altimeter spacecraft, for which the choice of orbit parameters and system accuracy are unencumbered by requirements of companion instruments.

  19. The future of spaceborne altimetry. Oceans and climate change: A long-term strategy

    International Nuclear Information System (INIS)

    Koblinsky, C.J.; Gaspar, P.; Lagerloef, G.

    1992-03-01

    The ocean circulation and polar ice sheet volumes provide important memory and control functions in the global climate. Their long term variations are unknown and need to be understood before meaningful appraisals of climate change can be made. Satellite altimetry is the only method for providing global information on the ocean circulation and ice sheet volume. A robust altimeter measurement program is planned which will initiate global observations of the ocean circulation and polar ice sheets. In order to provide useful data about the climate, these measurements must be continued with unbroken coverage into the next century. Herein, past results of the role of the ocean in the climate system is summarized, near term goals are outlined, and requirements and options are presented for future altimeter missions. There are three basic scientific objectives for the program: ocean circulation; polar ice sheets; and mean sea level change. The greatest scientific benefit will be achieved with a series of dedicated high precision altimeter spacecraft, for which the choice of orbit parameters and system accuracy are unencumbered by requirements of companion instruments

  20. Phillips Laboratory small satellite initiatives

    Science.gov (United States)

    Lutey, Mark K.; Imler, Thomas A.; Davis, Robert J.

    1993-09-01

    The Phillips Laboratory Space Experiments Directorate in conjunction with the Air Force Space Test Program (AF STP), Defense Advanced Research and Projects Agency (DARPA) and Strategic Defense Initiative Organization (SDIO), are managing five small satellite program initiatives: Lightweight Exo-Atmospheric Projectile (LEAP) sponsored by SDIO, Miniature Sensor Technology Integration (MSTI) sponsored by SDIO, Technology for Autonomous Operational Survivability (TAOS) sponsored by Phillips Laboratory, TechSat sponsored by SDIO, and the Advanced Technology Standard Satellite Bus (ATSSB) sponsored by DARPA. Each of these spacecraft fulfills a unique set of program requirements. These program requirements range from a short-lived `one-of-a-kind' mission to the robust multi- mission role. Because of these diverging requirements, each program is driven to use a different design philosophy. But regardless of their design, there is the underlying fact that small satellites do not always equate to small missions. These spacecraft with their use of or ability to insert new technologies provide more capabilities and services for their respective payloads which allows the expansion of their mission role. These varying program efforts culminate in an ATSSB spacecraft bus approach that will support moderate size payloads, up to 500 pounds, in a large set of orbits while satisfying the `cheaper, faster, better' method of doing business. This technical paper provides an overview of each of the five spacecraft, focusing on the objectives, payoffs, technologies demonstrated, and program status.

  1. Test Port for Fiber-Optic-Coupled Laser Altimeter

    Science.gov (United States)

    Ramos Izquierdo, Luis; Scott, V. Stanley; Rinis, Haris; Cavanaugh, John

    2011-01-01

    A test port designed as part of a fiber optic coupled laser altimeter receiver optical system allows for the back-illumination of the optical system for alignment verification, as well as illumination of the detector(s) for testing the receiver electronics and signal-processing algorithms. Measuring the optical alignment of a laser altimeter instrument is difficult after the instrument is fully assembled. The addition of a test port in the receiver aft-optics allows for the back-illumination of the receiver system such that its focal setting and boresight alignment can be easily verified. For a multiple-detector receiver system, the addition of the aft-optics test port offers the added advantage of being able to simultaneously test all the detectors with different signals that simulate the expected operational conditions. On a laser altimeter instrument (see figure), the aft-optics couple the light from the receiver telescope to the receiver detector(s). Incorporating a beam splitter in the aft-optics design allows for the addition of a test port to back-illuminate the receiver telescope and/or detectors. The aft-optics layout resembles a T with the detector on one leg, the receiver telescope input port on the second leg, and the test port on the third leg. The use of a custom beam splitter with 99-percent reflection, 1-percent transmission, and a mirrored roof can send the test port light to the receiver telescope leg as well as the detector leg, without unduly sacrificing the signal from the receiver telescope to the detector. The ability to test the receiver system alignment, as well as multiple detectors with different signals without the need to disassemble the instrument or connect and reconnect components, is a great advantage to the aft-optics test port. Another benefit is that the receiver telescope aperture is fully back-illuminated by the test port so the receiver telescope focal setting vs. pressure and or temperature can be accurately measured (as

  2. SIMULATION OF THE Ku-BAND RADAR ALTIMETER SEA ICE EFFECTIVE SCATTERING SURFACE

    DEFF Research Database (Denmark)

    Tonboe, Rasmus; Andersen, Søren; Pedersen, Leif Toudal

    2006-01-01

    A radiative transfer model is used to simulate the sea ice radar altimeter effective scattering surface variability as a function of snow depth and density. Under dry snow conditions without layering these are the primary snow parameters affecting the scattering surface variability. The model is ...

  3. Low-Amplitude Topographic Features and Textures on the Moon: Initial Results from Detrended Lunar Orbiter Laser Altimeter (LOLA) Topography

    Science.gov (United States)

    Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.

    2016-01-01

    Global lunar topographic data derived from ranging measurements by the Lunar Orbiter Laser Altimeter (LOLA) onboard LRO mission to the Moon have extremely high vertical precision. We use detrended topography as a means for utilization of this precision in geomorphological analysis. The detrended topography was calculated as a difference between actual topography and a trend surface defined as a median topography in a circular sliding window. We found that despite complicated distortions caused by the non-linear nature of the detrending procedure, visual inspection of these data facilitates identification of low-amplitude gently-sloping geomorphic features. We present specific examples of patterns of lava flows forming the lunar maria and revealing compound flow fields, a new class of lava flow complex on the Moon. We also highlight the identification of linear tectonic features that otherwise are obscured in the images and topographic data processed in a more traditional manner.

  4. Coupled thermo-elastic and optical performance analyses of a reflective baffle for the BepiColombo laser altimeter (BELA) receiver

    Science.gov (United States)

    Heesel, E.; Weigel, T.; Lochmatter, P.; Rugi Grond, E.

    2017-11-01

    For the BepiColombo mission, the extreme thermal environment around Mercury requires good heat shields for the instruments. The BepiColombo Laser altimeter (BELA) Receiver will be equipped with a specular reflective baffle in order to limit the solar power impact. The design uses a Stavroudis geometry with alternating elliptical and hyperbolic vanes to reflect radiation at angles >38° back into space. The thermal loads on the baffle lead to deformations, and the resulting changes in the optical performance can be modeled by ray-tracing. Conventional interfaces, such as Zernike surface fitting, fail to provide a proper import of the mechanical distortions into optical models. We have studied alternative models such as free form surface representations and compared them to a simple modeling approach with straight segments. The performance merit is presented in terms of the power rejection ratio and the absence of specular stray-light.

  5. University Satellite Consortium and Space Education in Japan Centered on Micro-Nano Satellites

    Science.gov (United States)

    Nakasuka, S.; Kawashima, R.

    2002-01-01

    in Japan especially centered on micro or nano class satellites. Hands-on training using micro-nano satellites provide unique opportunity of space education to university level students, by giving them a chance to experience the whole space project cycle from mission creation, satellite design, fabrication, test, launch, operation through analysis of the results. Project management and team working are other important skills that can be trained in these projects. include 1) low cost, which allows one laboratory in university to carry out a project, 2) short development period such as one or two year, which enables students to obtain the results of their projects before they graduate, and 3) small size and weight, which enables fabrication and test within usually very narrow university laboratory areas. In Japan, several projects such as CanSat, CubeSat or Whale Observation Satellite have been carried out, proving that micro-nano satellites provide very unique and valuable educational opportunity. with the objective to make a university student and staff community of these micro-nano satellite related activities in Japan. This consortium aims for many activities including facilitating information and skills exchange and collaborations between member universities, helping students to use ground test facilities of national laboratories, consulting them on political or law related matters, coordinating joint development of equipments or projects, and bridging between these university activities and the needs or interests of the people in general. This kind of outreach activity is essential because how to create missions of micro-nano satellites should be pursued in order for this field to grow larger than a merely educational enterprise. The final objectives of the consortium is to make a huge community of the users, mission creators, investors and manufactures(i.e., university students) of micro-nano satellites, and provide a unique contribution to the activation of

  6. The OSIRIS-REx laser altimeter (OLA): Development progress

    Science.gov (United States)

    Daly, M.; Barnouin, O.; Johnson, C.; Bierhaus, E.; Seabrook, J.; Dickinson, C.; Haltigin, T.; Gaudreau, D.; Brunet, C.; Cunningham, G.; Lauretta, D.; Boynton, W.; Beshore, E.

    2014-07-01

    Introduction: The NASA New Frontiers Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission will be the first to sample the B-type asteroid (101955) Bennu [1]. This asteroid is thought to be primitive and carbonaceous, and is probably closely related to CI and/or CM meteorites [2]. The OSIRIS-REx mission hopes to better understand both the physical and geochemical origin and evolution of carbonaceous asteroids through its investigation of Bennu. The OSIRIS-REx spacecraft will launch in September 2016, and arrive at Bennu two years later. The Canadian Space Agency is contributing a scanning lidar system known as the OSIRIS-REx Laser Altimeter (OLA), to the OSIRIS-REx Mission. The OLA instrument is part of suite of onboard instruments [3] including cameras (OCAMS) [4], a visible and near- infrared spectrometer (OVIRS) [5], a thermal emission spectrometer (OTES), and an X-ray imaging spectrometer (REXIS) [6]. OLA Objectives: The OLA instrument has a suite of scientific and mission operations purposes. At a global scale, it will update the shape and mass of Bennu to provide insights on the geological origin and evolution of Bennu, by, for example, further refining constraints on its bulk density. With a carefully undertaken geodesy campaign, OLA-based precision ranges, constraints from radio science (2-way tracking) data and stereo OCAMS images, it will yield broad-scale, quantitative constraints on any internal heterogeneity of Bennu and hence provide further clues to Bennu's origin and subsequent collisional evolution. OLA-derived global asteroid maps of slopes, elevation relative to the asteroid geoid, and vertical roughness will provide quantitative insights on how local-regional surfaces on Bennu evolved subsequent to the formation of the asteroid. In addition, OLA data and derived products support the assessment of the safety and sampleability of potential sample sites. At the sample-site scale, the OLA instrument

  7. Satellite Attitude Control System Simulator

    Directory of Open Access Journals (Sweden)

    G.T. Conti

    2008-01-01

    Full Text Available Future space missions will involve satellites with great autonomy and stringent pointing precision, requiring of the Attitude Control Systems (ACS with better performance than before, which is function of the control algorithms implemented on board computers. The difficulties for developing experimental ACS test is to obtain zero gravity and torque free conditions similar to the SCA operate in space. However, prototypes for control algorithms experimental verification are fundamental for space mission success. This paper presents the parameters estimation such as inertia matrix and position of mass centre of a Satellite Attitude Control System Simulator (SACSS, using algorithms based on least square regression and least square recursive methods. Simulations have shown that both methods have estimated the system parameters with small error. However, the least square recursive methods have performance more adequate for the SACSS objectives. The SACSS platform model will be used to do experimental verification of fundamental aspects of the satellite attitude dynamics and design of different attitude control algorithm.

  8. CARINA Satellite Mission to Investigate the Upper Atmosphere below the F-Layer Ionosphere

    Science.gov (United States)

    Siefring, C. L.; Bernhardt, P. A.; Briczinski, S. J., Jr.; Huba, J.; Montgomery, J. A., Jr.

    2017-12-01

    A new satellite design permits broad science measurements from the ocean to the ionosphere by flying below the F-Layer. The satellite called CARINA for Coastal-Ocean, Assimilation, Radio, Ionosphere, Neutral-Drag, and Atmospherics. The unique system capabilities are long duration orbits below the ionosphere and a HF receiver to measure broadband signals. The CARINA science products include recording the ocean surface properties, data for assimilation into global ionosphere models, radio wave propagation measurements, in-situ observations of ionospheric structures, validating neutral drag models and theory, and broadband atmospheric lightning characterization. CARINA will also measure nonlinear wave-generation using ionospheric modification sites in Alaska, Norway, Puerto Rico, and Russia and collaborate with geophysics HF radars (such as Super-DARN) for system calibration. CARINA is a linear 6-U CubeSat with a long antenna extended in the wake direction. The CARINA science mission is supported by three instruments. First, the Electric Field Instrument (EFI) is a radio receiver covering the 2 to 18 MHz range. The receiver can capture both narrow and wide bandwidths for up to 10 minutes. EFI is designed to provide HF signal strength and phase, radar Doppler shift and group delay, and electron plasma density from photoelectron excited plasma waves. Second a Ram Langmuir Probe (RLP) measures high-resolution ion currents at a 10 kHz rate. These measurements yield electron and ion density at the spacecraft. Finally, the Orbiting GPS Receiver (OGR) provides dual frequency GPS position with ionosphere correction. OGR also measures total electron content above the spacecraft and L-Band scintillations. CARINA will be the lowest satellite in orbit at 250 km altitude, <0.01 eccentricity, and up to 4-month lifetime. The design supports unique capabilities with broad applications to the geosciences. Remote sensing of the ocean will sample the HF signals scattered from the rough

  9. Low-degree gravity change from GPS data of COSMIC and GRACE satellite missions

    Science.gov (United States)

    Lin, Tingjung; Hwang, Cheinway; Tseng, Tzu-Pang; Chao, B. F.

    2012-01-01

    This paper demonstrates estimation of time-varying gravity harmonic coefficients from GPS data of COSMIC and GRACE satellite missions. The kinematic orbits of COSMIC and GRACE are determined to the cm-level accuracy. The NASA Goddard's GEODYN II software is used to model the orbit dynamics of COSMIC and GRACE, including the effect of a static gravity field. The surface forces are estimated per one orbital period. Residual orbits generated from kinematic and reference orbits serve as observables to determine the harmonic coefficients in the weighted-constraint least-squares. The monthly COSMIC and GRACE GPS data from September 2006 to December 2007 (16 months) are processed to estimate harmonic coefficients to degree 5. The geoid variations from the GPS and CSR RL04 (GRACE) solutions show consistent patterns over space and time, especially in regions of active hydrological changes. The monthly GPS-derived second zonal coefficient closely resembles the SLR-derived and CSR RL04 values, and third and fourth zonal coefficients resemble the CSR RL04 values.

  10. Advanced mobile satellite communications using COMETS satellite in MM-wave and Ka-band

    Science.gov (United States)

    Ohmori, Shingo; Isobe, Shunkichi; Takeuchi, Makoto; Naito, Hideyuki

    1993-01-01

    Early in the 21st century, the demand for personal communications using mobile, hand-held, and VSAT terminals will rapidly increase. In a future system, many different types of services should be provided with one-hop connection. The Communications Research Laboratory (CRL) has studied a future advanced mobile satellite communications system using millimeter wave and Ka band. In 1990, CRL started the Communications and Broadcasting Engineering Test Satellite (COMETS) project. The satellite has been developed in conjunction with NASDA and will be launched in 1997. This paper describes the COMETS payload configuration and the experimental system for the advanced mobile communications mission.

  11. Error Characterization of Altimetry Measurements at Climate Scales

    Science.gov (United States)

    Ablain, Michael; Larnicol, Gilles; Faugere, Yannice; Cazenave, Anny; Meyssignac, Benoit; Picot, Nicolas; Benveniste, Jerome

    2013-09-01

    Thanks to studies performed in the framework of the SALP project (supported by CNES) since the TOPEX era and more recently in the framework of the Sea- Level Climate Change Initiative project (supported by ESA), strong improvements have been provided on the estimation of the global and regional mean sea level over the whole altimeter period for all the altimetric missions. Thanks to these efforts, a better characterization of altimeter measurements errors at climate scales has been performed and presented in this paper. These errors have been compared to user requirements in order to know if scientific goals are reached by altimeter missions. The main issue of this paper is the importance to enhance the link between altimeter and climate communities to improve or refine user requirements, to better specify future altimeter system for climate applications but also to reprocess older missions beyond their original specifications.

  12. Enterprise Level Status and Control of Multi-Satellite Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — Single-satellite mission operation centers are used for nearly all Goddard Space Flight Center (GSFC) mission ground data systems, with a focus on localized data...

  13. Development of Mission and Spacecraft Dynamics Analysis System for Geostationary Communication Satellite

    Directory of Open Access Journals (Sweden)

    Hyeon Cheol Gong

    1998-06-01

    Full Text Available We consider the motion of the subsystems as separate bodies as well as the entire satellite for the attitude and orbit control of a communication satellite by multi-body modeling technique. Thus, the system can be applied to a general communication satellite as well as a specific communication satellite, i.e. Koreasat I, II. The simulation results can be viewed by two-dimensional graphics and three-dimensional animation. The graphical user interface (GUI makes its usage much simpler. We have simulated a couple of scenarios for Koreasat I, II which are being operated as geostationary communication satellites to verify the system performance.

  14. Application of CryoSat-2 altimetry data for river analysis and modelling

    DEFF Research Database (Denmark)

    Schneider, Raphael; Godiksen, Peter Nygaard; Villadsen, Heidi

    2017-01-01

    , satellite altimeters are used in various ways to provide information about such river basins. Most missions provide virtual station time series of water levels at locations where their repeat orbits cross rivers. CryoSat-2 is equipped with a new type of altimeter, providing estimates of the actual ground....... This allowed extraction of river water levels over previously unmonitored narrow stretches of the river. In the Assam Valley section of the Brahmaputra River, CryoSat-2 data and Envisat virtual station data were combined to calibrate cross sections in a 1-D hydrodynamic model of the river. The hydrologic......Availability of in situ river monitoring data, especially of data shared across boundaries, is decreasing, despite growing challenges for water resource management across the entire globe. This is especially valid for the case study of this work, the Brahmaputra Basin in South Asia. Commonly...

  15. Jitter reduction of a reaction wheel by management of angular momentum using magnetic torquers in nano- and micro-satellites

    Science.gov (United States)

    Inamori, Takaya; Wang, Jihe; Saisutjarit, Phongsatorn; Nakasuka, Shinichi

    2013-07-01

    Nowadays, nano- and micro-satellites, which are smaller than conventional large satellites, provide access to space to many satellite developers, and they are attracting interest as an application of space development because development is possible over shorter time period at a lower cost. In most of these nano- and micro-satellite missions, the satellites generally must meet strict attitude requirements for obtaining scientific data under strict constraints of power consumption, space, and weight. In many satellite missions, the jitter of a reaction wheel degrades the performance of the mission detectors and attitude sensors; therefore, jitter should be controlled or isolated to reduce its effect on sensor devices. In conventional standard-sized satellites, tip-tilt mirrors (TTMs) and isolators are used for controlling or isolating the vibrations from reaction wheels; however, it is difficult to use these devices for nano- and micro-satellite missions under the strict power, space, and mass constraints. In this research, the jitter of reaction wheels is reduced by using accurate sensors, small reaction wheels, and slow rotation frequency reaction wheel instead of TTMs and isolators. The objective of a reaction wheel in many satellite missions is the management of the satellite's angular momentum, which increases because of attitude disturbances. If the magnitude of the disturbance is reduced in orbit or on the ground, the magnitude of the angular momentum that the reaction wheels gain from attitude disturbances in orbit becomes smaller; therefore, satellites can stabilize their attitude using only smaller reaction wheels or slow rotation speed, which cause relatively smaller vibration. In nano- and micro-satellite missions, the dominant attitude disturbance is a magnetic torque, which can be cancelled by using magnetic actuators. With the magnetic compensation, the satellite reduces the angular momentum that the reaction wheels gain, and therefore, satellites do

  16. Embedded model control GNC for the Next Generation Gravity Mission

    Science.gov (United States)

    Colangelo, Luigi; Massotti, Luca; Canuto, Enrico; Novara, Carlo

    2017-11-01

    A Next Generation Gravity Mission (NGGM) concept for measuring the Earth's variable gravity field has been recently proposed by ESA. The mission objective consists in measuring the temporal variations of the Earth gravity field over a long-time span, with very high spatial and temporal resolutions. This paper focuses on the guidance, navigation and control (GNC) design for the science phase of the NGGM mission. NGGM will consist of a two-satellite long-distance formation like GRACE, where each satellite will be controlled to be drag-free like GOCE. Satellite-to-satellite distance variations, encoding gravity anomalies, will be measured by laser interferometry. The formation satellites, distant up to 200 km, will fly in a quasi-polar orbit at an Earth altitude between 300 and 450 km. Orbit and formation control counteract bias and drift of the residual drag-free accelerations, in order to reach orbit/formation long-term stability. Drag-free control allows the formation to fly counteracting the atmospheric drag, ideally subject only to gravity. Orbit and formation control, designed through the innovative Integrated Formation Control (IFC), have been integrated into a unique control system, aiming at stabilizing the formation triangle consisting of satellites and Earth Center of Masses. In addition, both spacecraft must align their control axis to the satellite-to-satellite line (SSL) with micro-radian accuracy. This is made possible by specific optical sensors and the inter-satellite laser interferometer, capable of materializing the SSL. Such sensors allow each satellite to pursue an autonomous alignment after a suitable acquisition procedure. Pointing control is severely constrained by the angular drag-free control, which must ideally zero the angular acceleration vector, in the science frequency band. The control unit has been designed according to the Embedded Model Control methodology and is organized in a hierarchical way, where the drag-free control plays the

  17. CryoSat-2 science algorithm status, expected future improvements and impacts concerning Sentinel-3 and Jason-CS missions

    Science.gov (United States)

    Cullen, R.; Wingham, D.; Francis, R.; Parrinello, T.

    2011-12-01

    With CryoSat-2 soon to enter its second year of post commissioning operations there is now sufficient experience and evidence showing improvements of the SIRAL's (Synthetic interferometric radar altimeter) SAR and SARIn modes over conventional pulse-width limited altimeters for both the targeted marine/land ice fields but also for non mission relevant surfaces such as the ocean, for example. In the process of understanding the CryoSat data some side effects of the end-to-end platform measurement and ground retrieval system have been identified and whilst those key to mission success are understood and are being handled others, remain open and pave the way to longer term fine-tuning. Of interest to the session will be a summary of the manditory changes made during 2011 to all the modes of CryoSat-2 science processing with a view to longer term algorithm improvements that could benefit the planned mid-to-late nominal operations re-processing. Since some of the science processor improvements have direct implication to the SAR mode processing of Sentinel-3 and Jason-CS science then these will also be highlighted. Finally a summary of the CryoSat-2 in-orbit platform and payload performances and their stability will also be provided. Expectations of the longer term uses of CryoSat's primary sensor (SIRAL) and its successors will be discussed.

  18. Modeling and simulation of satellite subsystems for end-to-end spacecraft modeling

    Science.gov (United States)

    Schum, William K.; Doolittle, Christina M.; Boyarko, George A.

    2006-05-01

    During the past ten years, the Air Force Research Laboratory (AFRL) has been simultaneously developing high-fidelity spacecraft payload models as well as a robust distributed simulation environment for modeling spacecraft subsystems. Much of this research has occurred in the Distributed Architecture Simulation Laboratory (DASL). AFRL developers working in the DASL have effectively combined satellite power, attitude pointing, and communication link analysis subsystem models with robust satellite sensor models to create a first-order end-to-end satellite simulation capability. The merging of these two simulation areas has advanced the field of spacecraft simulation, design, and analysis, and enabled more in-depth mission and satellite utility analyses. A core capability of the DASL is the support of a variety of modeling and analysis efforts, ranging from physics and engineering-level modeling to mission and campaign-level analysis. The flexibility and agility of this simulation architecture will be used to support space mission analysis, military utility analysis, and various integrated exercises with other military and space organizations via direct integration, or through DOD standards such as Distributed Interaction Simulation. This paper discusses the results and lessons learned in modeling satellite communication link analysis, power, and attitude control subsystems for an end-to-end satellite simulation. It also discusses how these spacecraft subsystem simulations feed into and support military utility and space mission analyses.

  19. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    Science.gov (United States)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The cornerstone of the GPM mission is the deployment of a Core Observatory in a 65 deg non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The first space-borne dual-frequency radar will provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from passive microwave sensors. The combined use of DPR and GMI measurements will place greater constraints on radiometer retrievals to improve the accuracy and consistency of precipitation estimates from all constellation radiometers. The GPM constellation is envisioned to comprise five or more conical-scanning microwave radiometers and four or more cross-track microwave sounders on operational satellites. NASA and the Japan Aerospace Exploration Agency (JAXA) plan to launch the GPM Core in July 2013. NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory (L10) to improve near real-time monitoring of hurricanes and mid-latitude storms. NASA and the Brazilian Space Program (AEB/IPNE) are currently engaged in a one-year study on potential L10 partnership. JAXA will contribute to GPM data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include microwave radiometers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross

  20. Integrating biogeochemistry and ecology into ocean data assimilation systems

    DEFF Research Database (Denmark)

    Brasseur, Pierre; Gruber, Nicolas; Barciela, Rosa

    2009-01-01

    that are not yet considered essential, such as upper-ocean vertical fluxes that are critically important to biological activity. Further, the observing systems will need to be expanded in terms of in situ platforms (with intensified deployments of sensors for O-2 and chlorophyll, and inclusion of new sensors...... for nutrients, zooplankton, micronekton biomass, and others), satellite missions (e.g., hyperspectral instruments for ocean color, lidar systems for mixed-layer depths, and wide-swath altimeters for coastal sea level), and improved methods to assimilate these new measurements....

  1. Oceanography and Yacht Racing - A Handful of Competitors, Millions of Spectators

    Science.gov (United States)

    Griffin, D.; Cresswell, G.; Badcock, K.; Cahill, M.; Rathbone, C.; Turner, P.

    2006-07-01

    Satellite altimeter measurements of sea level have proven to be far more accurate, and useful, than was hope for when the missions were designed, especially when data from several instruments are combines. In the regard, the experimental missions (ERS1 and 2, Topex/Poseidon, Jason-1 and GFO) have all been a resounding success. Why then, are there not plans already in place to continue and improve on the recent missions? One reason is surely that end-user uptake of the mission products has not yet convincingly justified the costs of future missions. At CSIRO we sought to maximise the awareness, amongst all marine sectors, that mapping ocean currents with sufficient accuracy and detail for operational use is indeed possible, so that the societal benefits of the system would become clear as quickly as possible. We did this using a well know marketing too - sport.

  2. Ocean Surface Topography Mission (OSTM) /Jason-3: Telemetry, 2015- (NODC Accession 0122599)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Jason-3 is the fourth mission in U.S.-European series of satellite missions that measure the height of the ocean surface. Scheduled to launch in 2015, the mission...

  3. Satellite-Based Precipitation Datasets

    Science.gov (United States)

    Munchak, S. J.; Huffman, G. J.

    2017-12-01

    Of the possible sources of precipitation data, those based on satellites provide the greatest spatial coverage. There is a wide selection of datasets, algorithms, and versions from which to choose, which can be confusing to non-specialists wishing to use the data. The International Precipitation Working Group (IPWG) maintains tables of the major publicly available, long-term, quasi-global precipitation data sets (http://www.isac.cnr.it/ ipwg/data/datasets.html), and this talk briefly reviews the various categories. As examples, NASA provides two sets of quasi-global precipitation data sets: the older Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and current Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG). Both provide near-real-time and post-real-time products that are uniformly gridded in space and time. The TMPA products are 3-hourly 0.25°x0.25° on the latitude band 50°N-S for about 16 years, while the IMERG products are half-hourly 0.1°x0.1° on 60°N-S for over 3 years (with plans to go to 16+ years in Spring 2018). In addition to the precipitation estimates, each data set provides fields of other variables, such as the satellite sensor providing estimates and estimated random error. The discussion concludes with advice about determining suitability for use, the necessity of being clear about product names and versions, and the need for continued support for satellite- and surface-based observation.

  4. Status of Precise Orbit Determination for Jason-2 Using GPS

    Science.gov (United States)

    Melachroinos, S.; Lemoine, F. G.; Zelensky, N. P.; Rowlands, D. D.; Pavlis, D. E.

    2011-01-01

    The JASON-2 satellite, launched in June 2008, is the latest follow-on to the successful TOPEX/Poseidon (T/P) and JASON-I altimetry missions. JASON-2 is equipped with a TRSR Blackjack GPS dual-frequency receiver, a laser retroreflector array, and a DORIS receiver for precise orbit determination (POD). The most recent time series of orbits computed at NASA GSFC, based on SLR/DORIS data have been completed using both ITRF2005 and ITRF2008. These orbits have been shown to agree radially at 1 cm RMS for dynamic vs SLRlDORIS reduced-dynamic orbits and in comparison with orbits produced by other analysis centers (Lemoine et al., 2010; Zelensky et al., 2010; Cerri et al., 2010). We have recently upgraded the GEODYN software to implement model improvements for GPS processing. We describe the implementation of IGS standards to the Jason2 GEODYN GPS processing, and other dynamical and measurement model improvements. Our GPS-only JASON-2 orbit accuracy is assessed using a number of tests including analysis of independent SLR and altimeter crossover residuals, orbit overlap differences, and direct comparison to orbits generated at GSFC using SLR and DORIS tracking, and to orbits generated externally at other centers. Tests based on SLR and the altimeter crossover residuals provide the best performance indicator for independent validation of the NASAlGSFC GPS-only reduced dynamic orbits. For the ITRF2005 and ITRF2008 implementation of our GPS-only obits we are using the IGS05 and IGS08 standards. Reduced dynamic versus dynamic orbit differences are used to characterize the remaining force model error and TRF instability. We evaluate the GPS vs SLR & DORIS orbits produced using the GEODYN software and assess in particular their consistency radially and the stability of the altimeter satellite reference frame in the Z direction for both ITRF2005 and ITRF2008 as a proxy to assess the consistency of the reference frame for altimeter satellite POD.

  5. Compensation of an attitude disturbance torque caused by magnetic substances in LEO satellites

    Science.gov (United States)

    Inamori, Takaya; Wang, Jihe; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki

    This research considers an attitude disturbance torque caused by ferromagnetic substances in a LEO satellite. In most LEO satellite missions, a gravity gradient torque, solar pressure torque, aerodynamic torque, and magnetic dipole moment torque are considered for their attitude control systems, however, the effect of the ferromagnetic substances causing a disturbance torque in the geomagnetic field is not considered in previous satellite missions. The ferromagnetic substances such as iron cores of MTQs and a magnetic hysteresis damper for a passive attitude control system are used in various small satellites. These substances cause a disturbance torque which is almost the same magnitude of the dipole magnetic disturbance and the dominant disturbance in the worst cases. This research proposes a method to estimate and compensate for the effect of the ferromagnetic substances using an extended Kalman filter. From simulation results, the research concludes that the proposed method is useful and attractive for precise attitude control for LEO satellite missions.

  6. Laser metrology for a next generation gravimetric mission

    Science.gov (United States)

    Mottini, Sergio; Biondetti, Giorgio; Cesare, Stefano; Castorina, Giuseppe; Musso, Fabio; Pisani, Marco; Leone, Bruno

    2017-11-01

    Within the ESA technology research project "Laser Interferometer High Precision tracking for LEO", Thales Alenia Space Italia is developing a laser metrology system for a Next Generation Gravimetric Mission (NGGM) based on satellite-to-satellite tracking. This technique is based on the precise measurement of the displacement between two satellites flying in formation at low altitude for monitoring the variations of Earth's gravity field at high resolution over a long time period. The laser metrology system that has been defined for this mission consists of the following elements: • an heterodyne Michelson interferometer for measuring the distance variation between retroreflectors positioned on the two satellites; • an angle metrology for measuring the orientation of the laser beam in the reference frames of the two satellites; • a lateral displacement metrology for measuring the deviations of the laser beam axis from the target retro-reflector. The laser interferometer makes use of a chopped measurement beam to avoid spurious signals and nonlinearity caused by the unbalance between the strong local beam and the weak return beam. The main results of the design, development and test activities performed on the breadboard of the metrology system are summarized in this paper.

  7. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Overview and Architectural Tenets

    Science.gov (United States)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence and Information Systems (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS architecture will receive a technology refresh in 2015 to satisfy several key

  8. The PROPEL Electrodynamic Tether Demonstration Mission

    Science.gov (United States)

    Bilen, Sven G.; Johnson, C. Les; Wiegmann, Bruce M.; Alexander, Leslie; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael

    2012-01-01

    The PROPEL ("Propulsion using Electrodynamics") mission will demonstrate the operation of an electrodynamic tether propulsion system in low Earth orbit and advance its technology readiness level for multiple applications. The PROPEL mission has two primary objectives: first, to demonstrate the capability of electrodynamic tether technology to provide robust and safe, near-propellantless propulsion for orbit-raising, de-orbit, plane change, and station keeping, as well as to perform orbital power harvesting and formation flight; and, second, to fully characterize and validate the performance of an integrated electrodynamic tether propulsion system, qualifying it for infusion into future multiple satellite platforms and missions with minimal modification. This paper provides an overview of the PROPEL system and design reference missions; mission goals and required measurements; and ongoing PROPEL mission design efforts.

  9. Mapping coastal sea level at high resolution with radar interferometry: the SWOT Mission

    Science.gov (United States)

    Fu, L. L.; Chao, Y.; Laignel, B.; Turki, I., Sr.

    2017-12-01

    The spatial resolution of the present constellation of radar altimeters in mapping two-dimensional sea surface height (SSH) variability is approaching 100 km (in wavelength). At scales shorter than 100 km, the eddies and fronts are responsible for the stirring and mixing of the ocean, especially important in the various coastal processes. A mission currently in development will make high-resolution measurement of the height of water over the ocean as well as on land. It is called Surface Water and Ocean Topography (SWOT), which is a joint mission of US NASA and French CNES, with contributions from Canada and UK. SWOT will carry a pair of interferometry radars and make 2-dimensional SSH measurements over a swath of 120 km with a nadir gap of 20 km in a 21-day repeat orbit. The synthetic aperture radar of SWOT will make SSH measurement at extremely high resolution of 10-70 m. SWOT will also carry a nadir looking conventional altimeter and make 1-dimensional SSH measurements along the nadir gap. The temporal sampling varies from 2 repeats per 21 days at the equator to more than 4 repeats at mid latitudes and more than 6 at high latitudes. This new mission will allow a continuum of fine-scale observations from the open ocean to the coasts, estuaries and rivers, allowing us to investigate a number of scientific and technical questions in the coastal and estuarine domain to assess the coastal impacts of regional sea level change, such as the interaction of sea level with river flow, estuary inundation, storm surge, coastal wetlands, salt water intrusion, etc. As examples, we will illustrate the potential impact of SWOT to the studies of the San Francisco Bay Delta, and the Seine River estuary, etc. Preliminary results suggest that the SWOT Mission will provide fundamental data to map the spatial variability of water surface elevations under different hydrodynamic conditions and at different scales (local, regional and global) to improve our knowledge of the complex

  10. Nanosatellite missions - the future

    Science.gov (United States)

    Koudelka, O.; Kuschnig, R.; Wenger, M.; Romano, P.

    2017-09-01

    In the beginning, nanosatellite projects were focused on educational aspects. In the meantime, the technology matured and now allows to test, demonstrate and validate new systems, operational procedures and services in space at low cost and within much shorter timescales than traditional space endeavors. The number of spacecraft developed and launched has been increasing exponentially in the last years. The constellation of BRITE nanosatellites is demonstrating impressively that demanding scientific requirements can be met with small, low-cost satellites. Industry and space agencies are now embracing small satellite technology. Particularly in the USA, companies have been established to provide commercial services based on CubeSats. The approach is in general different from traditional space projects with their strict product/quality assurance and documentation requirements. The paper gives an overview of nanosatellite missions in different areas of application. Based on lessons learnt from the BRITE mission and recent developments at TU Graz (in particular the implementation of the OPS-SAT nanosatellite for ESA), enhanced technical possibilities for a future astronomy mission after BRITE will be discussed. Powerful on-board computers will allow on-board data pre-processing. A state-of-the-art telemetry system with high data rates would facilitate interference-free operations and increase science data return.

  11. SCOC3: A Brand New Heart for Space Mission

    Science.gov (United States)

    Poupat, Jean-Luc; Lefevre, Aurelien

    2012-08-01

    Satellites are controlled via a platform On Board Computer (OBC) that manages different parameters (attitude, orbit, modes, temperatures ...) with respect to its payload mission (telecommunication, earth observation, scientific mission). The platform OBC is connected to the satellite and the ground control via digital links, and executes on board software.The main functions of a platform OBC are to provide the satellite flight segment with the following features: o Processing resources for the flight mission softwareo TM/TC services and interfaces with the RF communication chaino General communication services with the Avionics and payload equipments through on- board communication buso Time synchronization and distributiono Failure tolerant architecture based on the use of redounded reconfiguration units and redundancy implementationIn order to reach an ultimate level of integration, Astrium has designed an ASIC gathering on a single chip all these required digital functions: the SCOC3 ASIC.This paper presents in a first part the major innovations introduced by Astrium for SCOC3, in a second part the development tools associated to SCOC3, and in a third part the status concerning its commercialization.

  12. Interactive Dynamic Mission Scheduling for ASCA

    Science.gov (United States)

    Antunes, A.; Nagase, F.; Isobe, T.

    The Japanese X-ray astronomy satellite ASCA (Advanced Satellite for Cosmology and Astrophysics) mission requires scheduling for each 6-month observation phase, further broken down into weekly schedules at a few minutes resolution. Two tools, SPIKE and NEEDLE, written in Lisp and C, use artificial intelligence (AI) techniques combined with a graphic user interface for fast creation and alteration of mission schedules. These programs consider viewing and satellite attitude constraints as well as observer-requested criteria and present an optimized set of solutions for review by the planner. Six-month schedules at 1 day resolution are created for an oversubscribed set of targets by the SPIKE software, originally written for HST and presently being adapted for EUVE, XTE and AXAF. The NEEDLE code creates weekly schedules at 1 min resolution using in-house orbital routines and creates output for processing by the command generation software. Schedule creation on both the long- and short-term scale is rapid, less than 1 day for long-term, and one hour for short-term.

  13. German telecommunications satellite (Deutscher fernmelde satellit) (DFS-1 and -2)

    Science.gov (United States)

    Hiendlmeier, G.; Schmeller, H.

    1991-01-01

    The German Telecommunications Satellite (DFS) Program is to provide telecommunications service for high data rate transmission of text and video data to the Federal Republic of Germany within the 11-14 GHz and 20-30 GHz bands. The space segment of this program is composed of three satellites, DFS-1, DFS-2, and DFS-3, which will be located at 23.5 degrees E longitude of the geostationary orbit. The DFS will be launched from the Center Spatial Guyanis in French Giana on an Ariane launch vehicle. The mission follows the typical injection sequence: parking orbit, transfer orbit, and earth orbit. Attitude maneuvers will be performed to orient the spacecraft prior to Apogee Kick Motor (AKM) firing. After AKM firing, drift phase orbital and attitude maneuvers will be performed to place the spacecraft in its final geostationary position. The Deep Space Network (DSN) will support the transfer and drift orbit mission phases. Information is presented in tabular form for the following areas: DSN support, compatibility testing, frequency assignments, telemetry, command, and tracking support responsibilities.

  14. Co-ordination of satellite and data programs: The committee on earth observation satellites' approach

    Science.gov (United States)

    Embleton, B. J. J.; Kingwell, J.

    1997-01-01

    Every year, an average of eight new civilian remote sensing satellite missions are launched. Cumulatively, over 250 such missions, each with a cost equivalent in current value to between US 100 million to US 1000 million, have been sponsored by space agencies in perhaps two dozen countries. These missions produce data and information products which are vital for informed decision making all over the world, on matters relating to natural resource exploitation, health and safety, sustainable national development, infrastructure planning, and a host of other applications. By contributing to better scientific understanding of global changes in the atmosphere, land surface, oceans and ice caps, these silently orbiting sentinels in the sky make it possible for governments and industries to make wiser environmental policy decisions and support the economic development needs of humanity. The international Committee on Earth Observation Satellites (CEOS) is the premier world body for co-ordinating and planning civilian satellite missions for Earth observation. Through its technical working groups and special task teams, it endeavours to: • maximise the international benefits from Earth observation satellites; and • harmonise practice in calibration, validation, data management and information systems for Earth observation. CEOS encompasses not only space agencies (data providers), but also the great international scientific and operational programs which rely on Earth science data from space. The user organisations affiliated with CEOS, together with the mission operators, attempt to reconcile user needs with the complex set of considerations — including national interests, cost, schedule — which affect the undertaking of space missions. Without such an internationally co-ordinated consensual approach, there is a much greater risk of waste through duplication, and of missed opportunity, or through the absence of measurements of some vital physical or biological

  15. Shallow-earth rheology from glacial isostasy and satellite gravity : A sensitivity analysis for GOCE

    NARCIS (Netherlands)

    Schotman, H.H.A.

    2008-01-01

    In recent years, satellite gravity missions have been launched that probe the earth's long- to mediumwavelength (1000 - 500 km) gravity field. The upcoming ESA satellite gravity mission GOCE is predicted to measure the gravity field with an accuracy of a few centimeters at spatial scales of 100 km.

  16. Performance Evaluation of Orbit Determination System during Initial Phase of INSAT-3 Mission

    Science.gov (United States)

    Subramanian, B.; Vighnesam, N. V.

    INSAT-3C is the second in the third generation of ISRO's INSAT series of satellites that was launched by ARIANE-SPACE on 23 January 2002 at 23 h 46 m 57 s (lift off time in U.T). The ARIANE-4 Flight Nr.147 took off from Kourou in French Guyana and injected the 2750-kg communications satellite in a geostationary transfer orbit of (571 X 35935) km with an inclination of 4.007 deg at 00 h 07 m 48 s U.T on 24 January 2002 (1252 s after lift off). The satellite was successfully guided into its intended geostationary position of 74 deg E longitude by 09 February 2002 after a series of four firings of its Liquid Apogee Motor (LAM) and four station acquisition (STAQ) maneuvers. Six distinct phases of the mission were categorized based on the orbit characteristics of the INSAT- 3C mission, namely, the pre-launch phase, the launch phase, transfer orbit phase, intermediate orbit phase, drift orbit phase and synchronous orbit phase. The orbit with a perigee height of 571 km at injection of the satellite, was gradually raised to higher orbits with perigee height increasing to 9346 km after Apogee Motor Firing #1 (AMF #1), 18335 km after AMF #2, 32448 km after AMF #3 and 35493 km after AMF #4. The North and South solar panels and the reflectors were deployed at this stage of the mission and the attitude of the satellite with respect to the three axes was stabilized. The Orbit Determination System (ODS) that was used in the initial phase of the mission played a crucial role in realizing the objectives of the mission. This system which consisted of Tracking Data Pre-Processing (TDPP) software, Ephemeris Generation (EPHGEN) software and the Orbit Determination (OD) software, performed rigorously and its results were used for planning the AMF and STAQ strategies with a greater degree of accuracy. This paper reports the results of evaluation of the performance of the apogee-motor firings employed to place the satellite in its intended position where it is collocated with INSAT-1D

  17. The CRYOSAT-2 Payload Ground Segment: Data Processing Status and Data Access

    Science.gov (United States)

    Parrinello, T.; Frommknecht, B.; Gilles, P.

    2010-12-01

    Selected as the first Earth Explorer Opportunity mission and following the launch failure of Cryosat-1 in 2005, the Cryosat-2 mission was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. The main CryoSat-2 mission objectives can be summarised in the determination of the regional and basin-scale trends in perennial Arctic sea ice thickness and mass, and in the determination of regional and total contributions to global sea level of the Antarctic and Greenland Ice. Therefore, the observations made over the life time of the mission will provide conclusive evidence as to whether there is a trend towards diminishing polar ice cover and consequently improve our understanding of the relationship between ice and global climate change. Cryosat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Scope of this paper is to describe the Cryosat Ground Segment and its main function to satisfy the Cryosat mission requirements. In particular, the paper will discuss the processing steps necessary to produce SIRAL L1b waveform power data and the SIRAL L2 geophysical elevation data from the raw data acquired by the satellite. The papers will also present the current status of the data processing in terms of completeness, availability and data access to the scientific community.

  18. Chartering Launchers for Small Satellites

    Science.gov (United States)

    Hernandez, Daniel

    The question of how to launch small satellites has been solved over the years by the larger launchers offering small satellites the possibility of piggy-backing. Specific fixtures have been developed and commercialized: Arianespace developed the ASAP interface, the USAF studied ESPA, NASA has promoted Shuttle launch possibilities, Russian authorities and companies have been able to find solutions with many different launchers... It is fair to say that most launcher suppliers have worked hard and finally often been able to find solutions to launch most small satellites into orbit. It is also true, however, that most of these small satellites were technology demonstration missions capable of accepting a wide range of orbit and launch characteristics: orbit altitude and inclination, launch date, etc. In some cases the small satellite missions required a well-defined type of orbit and have therefore been obliged to hire a small launcher on which they were the prime passenger. In our paper we would like to propose an additional solution to all these possibilities: launchers could plan well in advance (for example about 3 years), trips to precisely defined orbits to allow potential passengers to organize themselves and be ready on the D-Day. On the scheduled date the chartered launcher goes to the stated orbit while on another date, another chartered launcher goes to another orbit. The idea is to organize departures for space like trains or airplanes leaving on known schedules for known destinations.

  19. Vertical and Horizontal Analysis of Crustal Structure of Southeastern Mediterranean and the Egyptian Coastal Zone, from Bouguer and Satellite Mission Data

    Science.gov (United States)

    Saleh, Salah

    2016-07-01

    The present Tectonic system of Southeastern Mediterranean is driven by the collision of the African and Eurasian plates, the Arabian Eurasian convergence and the displacement of the Anatolian Aegean microplate, which generally represents the characteristic of lithospheric structure of the region. In the scope of this study, Bouguer and the satellite gravity (satellite altimetry) anomalies of southeastern Mediterranean and North Eastern part of Egypt were used for investigating the lithospheric structures. Second order trend analyses were applied firstly to Bouguer and satellite altimetry data for examining the characteristic of the anomaly. Later, the vertical and horizontal derivatives applications were applied to the same data. Generally, the purpose of the applying derivative methods is determining the vertical and horizontal borders of the structure. According to the results of derivatives maps, the study area could mainly divided into important four tectonic subzones depending on basement and Moho depth maps. These subzones are distributed from south to the north as: Nile delta-northern Sinai zone, north Egyptian coastal zone, Levantine basin zone and northern thrusting (Cyprus and its surroundings) zone. These zones are separated from each other by horizontal tectonic boundaries and/or near-vertical faults that display the block-faulting tectonic style of this belt. Finally, the gravity studies were evaluated together with the seismic activity of the region. Consequently, the geodynamical structure of the region is examined with the previous studies done in the region. Thus, the current study indicates that satellite gravity mission data is a valuable source of data in understanding the tectonic boundary behavior of the studied region and that satellite gravity data is an important modern source of data in the geodynamical studies.

  20. Cassini Solstice Mission Maneuver Experience: Year Two

    Science.gov (United States)

    Arrieta, Juan; Ballard, Christopher G.; Hahn, Yungsun

    2012-01-01

    The Cassini Spacecraft was launched in October 1997 on a mission to observe Saturn and its moons; it entered orbit around Saturn in July 2004 for a nominal four-year Prime Mission, later augmented by two extensions: the Equinox Mission, from July 2008 through September 2010, and the Solstice Mission, from October 2010 through September 2017. This paper provides an overview of the maneuver activities from August 2011 through June 2012 which include the design of 38 Orbit Trim Maneuvers--OTM-288 through OTM-326-- for attaining 14 natural satellite encounters: seven with Titan, six with Enceladus, and one with Dione.

  1. Quantifying Seasonal Skill In Coupled Sea Ice Models Using Freeboard Measurements From Spaceborne Laser Altimeters

    Science.gov (United States)

    2016-06-01

    Data collection periods during the ICESat mission were influenced by the presence of atmospheric clouds and aerosols, and also LASER malfunctions. Upon...measurements after that satellite is launched next year. 14. subject terms Arctic, climate change, Regional Arctic System Model, altimetry...measurements, sea ice, sea ice thickness, freeboard, ICESat, ICESat-2, climate model, coupled model, Operation IceBridge 15. NUMBER OF PAGES 147 16

  2. The EGSE science software of the IBIS instrument on-board INTEGRAL satellite

    International Nuclear Information System (INIS)

    La Rosa, Giovanni; Fazio, Giacomo; Segreto, Alberto; Gianotti, Fulvio; Stephen, John; Trifoglio, Massimo

    2000-01-01

    IBIS (Imager on Board INTEGRAL Satellite) is one of the key instrument on-board the INTEGRAL satellite, the follow up mission of the high energy missions CGRO and Granat. The EGSE of IBIS is composed by a Satellite Interface Simulator, a Control Station and a Science Station. Here are described the solutions adopted for the architectural design of the software running on the Science Station. Some preliminary results are used to show the science functionality, that allowed to understand the instrument behavior, all along the test and calibration campaigns of the Engineering Model of IBIS

  3. Virtual Satellite Integration Environment, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advatech Pacific proposes to develop a Virtual Satellite Integration Environment (VSIE) for the NASA Ames Mission Design Center. The VSIE introduces into NASA...

  4. Laser altimeter observations from MESSENGER's first Mercury flyby.

    Science.gov (United States)

    Zuber, Maria T; Smith, David E; Solomon, Sean C; Phillips, Roger J; Peale, Stanton J; Head, James W; Hauck, Steven A; McNutt, Ralph L; Oberst, Jürgen; Neumann, Gregory A; Lemoine, Frank G; Sun, Xiaoli; Barnouin-Jha, Olivier; Harmon, John K

    2008-07-04

    A 3200-kilometers-long profile of Mercury by the Mercury Laser Altimeter on the MESSENGER spacecraft spans approximately 20% of the near-equatorial region of the planet. Topography along the profile is characterized by a 5.2-kilometer dynamic range and 930-meter root-mean-square roughness. At long wavelengths, topography slopes eastward by 0.02 degrees , implying a variation of equatorial shape that is at least partially compensated. Sampled craters on Mercury are shallower than their counterparts on the Moon, at least in part the result of Mercury's higher gravity. Crater floors vary in roughness and slope, implying complex modification over a range of length scales.

  5. Virtual Satellite Integration Environment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — An integrated environment for rapid design studies of small satellite missions will be developed. This environment will be designed to streamline processes at the...

  6. SAC-C mission, an example of international cooperation

    Science.gov (United States)

    Colomb, F.; Alonso, C.; Hofmann, C.; Nollmann, I.

    In comp liance with the objectives established in the National Space Program, Argentina in Space 1997-2008 ((Plan Espacial Nacional, Argentina en el Espacio 1997-2008), the National Commission on Space Activities (Comisión Nacional de Actividades Espaciales - CONAE) undertook the design, construction, and launching of the SAC-C satellite in close collaboration with NASA. The purpose of this Mission is to carry out observations of interest both for the USA and Argentina, thus contributing effectively to NASA's Earth Science Program and to CONAE's National Space Program. The SAC-C is an international Earth observing satellite mission conceived as a partnership between CONAE and NASA, with additional support in instrumentation and satellite development from the Danish DSRI, the Italian ASI, the French CNES and the Brazilian INPE. A Delta II rocket successfully launched it on November 21st, 2000, from Vandenberg AFB, California, USA. Ten instruments on board the SAC-C perform different studies related to the ground and sea ecosystems, the atmosphere and the geomagnetic field. There are also technological experiments for determination of the satellite attitude and velocity as well as for the studies of the influence of space radiation on advanced electronic components . The inclusion of SAC-C in the AM Constellation, jointly with NASA satellites Landsat 7, EO 1 and Terra, is another example of important international cooperation which synergies the output of any single Mission. The Constellation has been working since March 2001 as a single mission and several cooperative activities have been undertaken including several jointly sponsored technical workshops and collaborative spacecraft navigation experiments. A flight campaign of the NASA AVIRIS instrument was performed in Argentine during January and February 2001, for calibration of SAC-C and EO 1 cameras and the development of joint scientific works. In Cordoba Space Center a jointly operated ground GPS reference

  7. Ocean Surface Topography Mission (OSTM) /Jason-3: Auxiliary Files, 2015- (NODC Accession 0122597)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Jason-3 is the fourth mission in U.S.-European series of satellite missions that measure the height of the ocean surface. Scheduled to launch in 2015, the mission...

  8. Ocean Surface Topography Mission (OSTM) /Jason-3: Orbital Information, 2015- (NODC Accession 0122598)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Jason-3 is the fourth mission in U.S.-European series of satellite missions that measure the height of the ocean surface. Scheduled to launch in 2015, the mission...

  9. Ocean Surface Topography Mission (OSTM) /Jason-3: Ancillary Files, 2015- (NCEI Accession 0122596)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Jason-3 is the fourth mission in U.S.-European series of satellite missions that measure the height of the ocean surface. Scheduled to launch in 2015, the mission...

  10. Remote Sounding of the Earth's Atmospheric Limb From a Micro-Satellite Platform: a Feasibility Study of the ALTIUS Mission

    Science.gov (United States)

    Vrancken, D.; Paijmans, B.; Fussen, D.; Neefs, E.; Loodts, N.; Dekemper, E.; Vahellemont, F.; Devos, L.; Moelans, W.; Nevejans, D.; Schroeven-Deceuninck, H.; Bernaerts, D.; Zender, J.

    2008-08-01

    There is more and more interest in the understanding and the monitoring of the physics and chemistry of the Earth's atmosphere and its impact on the climate change. Currently a significantly high number of sounders provide the required data to monitor the changes in atmosphere composition, but a dramatic drop in operational atmosphere monitoring missions is expected around 2010. This drop is mainly visible in sounders capable of a high vertical resolution. Currently, instruments on ENVISAT and METOP provide relevant data but this is envisaged to be insufficient to ensure full spatial and temporal coverage and redundancy in the measurement data set. ALTIUS (Atmospheric Limb Tracker for the Investigation of the Upcoming Stratosphere) is a remote sounding experiment proposed by the Belgian Institute for Space Aeronomy (BIRA/IASB) for which a feasibility study was initiated with BELSPO (Belgian Science Policy) and ESA support. The main objective of this study phase was to establish a mission concept, to define the required payload and to establish a satellite platform design. The study was led by the BIRA/IASB team and performed in close collaboration with OIP (payload developer) and Verhaert Space (spacecraft developer). The mission scenario includes bright limb observations in basically all directions, solar occultations around the terminator passages and star occultations during eclipse. These observation modes allow imaging the atmosphere with a high vertical resolution. The spacecraft will be operated in a 10:00 sun-synchronous orbit at an altitude of 695 km, allowing a 3-day revisit time. The envisaged payload for the ALTIUS mission is an imaging spectrometer, observing in the UV, the VIS and the NIR spectral ranges. For each spectral range, an AOTF (Acousto-Optical Tunable Filter) will permit to perform observations of selectable small wavelength domains. A typical set of 10 wavelengths will be recorded within 1 second. The different operational modes impose a

  11. Photon counting altimeter and lidar for air and spaceborne applications

    Science.gov (United States)

    Vacek, Michael; Michalek, Vojtech; Peca, Marek; Prochazka, Ivan; Blazej, Josef; Kodet, Jan

    2011-06-01

    We are presenting the concept and preliminary design of modular multipurpose device for space segment: single photon counting laser altimeter, atmospheric lidar, laser transponder and one way laser ranging receiver. For all the mentioned purposes, the same compact configuration of the device is appropriate. Overall estimated device weight should not exceed 5 kg with the power consumption below 10 W. The device will consists of three main parts, namely, receiver, transmitter and control and processing unit. As a transmitter a commercial solid state laser at 532 nm wavelength with 10 mW power will be used. The transmitter optics will have a diameter at most of 50 mm. The laser pulse width will be of hundreds of picoseconds order. For the laser altimeter and atmospheric lidar application, the repetition rate of 10 kHz is planned in order to obtain sufficient number of data for a distance value computing. The receiver device will be composed of active quenched Single Photon Avalanche Diode module, tiny optics, and narrow-band optical filter. The core part of the control and processing unit including high precision timing unit is implemented using single FPGA chip. The preliminary device concept includes considerations on energy balance, and statistical algorithms to meet all the mentioned purposes. Recently, the bread board version of the device is under construction in our labs. The concept, construction, and timing results will be presented.

  12. Evaluation end-of-life power generation of a satellite solar array

    International Nuclear Information System (INIS)

    Taherbaneh, Mohsen; Ghafooifard, H.; Rezaie, A.H.; Rahimi, K.

    2011-01-01

    Research highlights: → We present detailed design description and necessary considerations for solar panels utilized in a specific space mission. → All sources of losses and degradation of the solar panels are fully taken into account. → We introduce a comprehensive novel approach to investigate the electrical behavior of the solar panels. → We use a simple model to calculate the operating temperature range of the solar panels. → We also calculate Mission End-of-Life electrone fluence using SPENVIS. -- Abstract: Knowing the power generated by of solar arrays in a space missions shall satisfy mission requirements; prediction of the power generated by a solar array used in a space mission is very important and necessary. In this research, a detailed design description and necessary considerations for solar panels utilized in a specific space mission is presented. All sources of losses and degradation of solar panels are fully taken into account. This research emphasizes on investigation, analysis and verification of a manufactured solar assembly for a satellite before launch. Solar panels' generated power should be estimated at the end of the mission. For this purpose, radiation values and temperature operating range are specified for the mission. Panels' temperature operating rate is determined through considering a simple model and different spins for the satellite. Mission end-of-life 1 MeV equivalent dose is calculated by SPENVIS suite software. Finally, a comprehensive novel approach is introduced to investigate the electrical behavior of the solar panels. This approach can be implemented in MATLAB environment to obtain output power characteristics of the solar panels for each specific mission. The results are in full accordance with the mission requirements either in beginning-of-life or end-of-life. Therefore, the power prediction of the designed solar array for the mentioned satellite completely satisfies its mission requirements.

  13. Analytical solution of perturbed relative motion: an application of satellite formations to geodesy

    Science.gov (United States)

    Wnuk, Edwin

    In the upcoming years, several space missions will be operated using a number of spacecraft flying in formation. Clusters of spacecraft with a carefully designed orbits and optimal formation geometry enable a wide variety of applications ranging from remote sensing to astronomy, geodesy and basic physics. Many of the applications require precise relative navigation and autonomous orbit control of satellites moving in a formation. For many missions a centimeter level of orbit control accuracy is required. The GRACE mission, since its launch in 2002, has been improving the Earth's gravity field model to a very high level of accuracy. This mission is a formation flying one consisting of two satellites moving in coplanar orbits and provides range and range-rate measurements between the satellites in the along-track direction. Future geodetic missions probably will employ alternative architectures using additional satellites and/or performing out-of-plane motion, e.g cartwheel orbits. The paper presents an analytical model of a satellite formation motion that enables propagation of the relative spacecraft motion. The model is based on the analytical theory of satellite relative motion that was presented in the previous our papers (Wnuk and Golebiewska, 2005, 2006). This theory takes into account the influence of the following gravitational perturbation effects: 1) zonal and tesseral harmonic geopotential coefficients up to arbitrary degree and order, 2) Lunar gravity, 3) Sun gravity. Formulas for differential perturbations were derived with any restriction concerning a plane of satellite orbits. They can be applied in both: in plane and out of plane cases. Using this propagator we calculated relative orbits and future relative satellite positions for different types of formations: in plane, out of plane, cartwheel and others. We analyzed the influence of particular parts of perturbation effects and estimated the accuracy of predicted relative spacecrafts positions

  14. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    Science.gov (United States)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  15. Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography

    Science.gov (United States)

    Guest, DeNeice C.

    2010-01-01

    This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.

  16. CRUCIAL: Cryosat-2 Success over Inland Water and Land

    DEFF Research Database (Denmark)

    Moore, Philip; Berry, Philippa; Balmbra, Robert

    2014-01-01

    CRUCIAL is an ESA/STSE funded project investigating innovative land and inland water applications from Cryosat-2 with a forward-look component to the future Sentinel-3 mission. The fact that the Earth’s land surface is, in general, a relatively poor reflector of Ku band energy, with the exceptions...... of inland water, salar and ice surfaces has enabled Earth-orbiting satellite radar altimeters to be used for land surface applications including mapping and measurement of river and lake systems. Research with EnviSat Burst Echoes has shown that substantial high frequency information content is present...... of Cryosat-2 altimeter in SAR mode (I8 KHz) offers the opportunity to recover high frequency signals over much of the Earth’s land surface, enhancing the inland water height retrieval capability. Constraining this application is the limited availability of SAR Full Bit Rate (FBR) data from Cryosat-2 over...

  17. Proceedings from the 2nd International Symposium on Formation Flying Missions and Technologies

    Science.gov (United States)

    2004-01-01

    Topics discussed include: The Stellar Imager (SI) "Vision Mission"; First Formation Flying Demonstration Mission Including on Flight Nulling; Formation Flying X-ray Telescope in L2 Orbit; SPECS: The Kilometer-baseline Far-IR Interferometer in NASA's Space Science Roadmap Presentation; A Tight Formation for Along-track SAR Interferometry; Realization of the Solar Power Satellite using the Formation Flying Solar Reflector; SIMBOL-X : Formation Flying for High-Energy Astrophysics; High Precision Optical Metrology for DARWIN; Close Formation Flight of Micro-Satellites for SAR Interferometry; Station-Keeping Requirements for Astronomical Imaging with Constellations of Free-Flying Collectors; Closed-Loop Control of Formation Flying Satellites; Formation Control for the MAXIM Mission; Precision Formation Keeping at L2 Using the Autonomous Formation Flying Sensor; Robust Control of Multiple Spacecraft Formation Flying; Virtual Rigid Body (VRB) Satellite Formation Control: Stable Mode-Switching and Cross-Coupling; Electromagnetic Formation Flight (EMFF) System Design, Mission Capabilities, and Testbed Development; Navigation Algorithms for Formation Flying Missions; Use of Formation Flying Small Satellites Incorporating OISL's in a Tandem Cluster Mission; Semimajor Axis Estimation Strategies; Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers; Analysis of Formation Flying in Eccentric Orbits Using Linearized Equations of Relative Motion; Conservative Analytical Collision Probabilities for Orbital Formation Flying; Equations of Motion and Stability of Two Spacecraft in Formation at the Earth/Moon Triangular Libration Points; Formations Near the Libration Points: Design Strategies Using Natural and Non-Natural Ares; An Overview of the Formation and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer; GVE-Based Dynamics and Control for Formation Flying Spacecraft; GNC System Design for a New Concept of X

  18. Failure analysis of satellite subsystems to define suitable de-orbit devices

    Science.gov (United States)

    Palla, Chiara; Peroni, Moreno; Kingston, Jennifer

    2016-11-01

    Space missions in Low Earth Orbit (LEO) are severely affected by the build-up of orbital debris. A key practice, to be compliant with IADC (Inter-Agency Space Debris Coordination Committee) mitigation guidelines, is the removal of space systems that interfere with the LEO region not later than 25 years after the End of Mission. It is important to note that the current guidelines are not generally legally binding, even if different Space Agencies are now looking at the compliance for their missions. If the guidelines will change in law, it will be mandatory to have a postmission disposal strategy for all satellites, including micro and smaller classes. A potential increased number of these satellites is confirmed by different projections, in particular in the commercial sector. Micro and smaller spacecraft are, in general, not provided with propulsion capabilities to achieve a controlled re-entry, so they need different de-orbit disposal methods. When considering the utility of different debris mitigation methods, it is useful to understand which spacecraft subsystems are most likely to fail and how this may affect the operation of a de-orbit system. This also helps the consideration of which components are the most relevant or should be redundant depending on the satellite mass class. This work is based on a sample of LEO and MEO satellites launched between January 2000 and December 2014 with mass lower than 1000 kg. Failure analysis of satellite subsystems is performed by means of the Kaplan-Meier survival analysis; the parametric fits are conducted with Weibull distributions. The study is carried out by using the satellite database SpaceTrak™ which provides anomalies, failures, and trends information for spacecraft subsystems and launch vehicles. The database identifies five states for each satellite subsystem: three degraded states, one fully operational state, and one failed state (complete failure). The results obtained can guide the identification of the

  19. Measurements of land surface features using an airborne laser altimeter: the HAPEX-Sahel experiment

    International Nuclear Information System (INIS)

    Ritchie, J.C.; Menenti, M.; Weltz, M.A.

    1997-01-01

    An airborne laser profiling altimeter was used to measure surface features and properties of the landscape during the HAPEX-Sahel Experiment in Niger, Africa in September 1992. The laser altimeter makes 4000 measurements per second with a vertical resolution of 5 cm. Airborne laser and detailed field measurements of vegetation heights had similar average heights and frequency distribution. Laser transects were used to estimate land surface topography, gully and channel morphology, and vegetation properties ( height, cover and distribution). Land surface changes related to soil erosion and channel development were measured. For 1 km laser transects over tiger bush communities, the maximum vegetation height was between 4-5 and 6-5 m, with an average height of 21 m. Distances between the centre of rows of tiger bush vegetation averaged 100 m. For two laser transects, ground cover for tiger bush was estimated to be 225 and 301 per cent for vegetation greater than 0-5m tall and 190 and 25-8 per cent for vegetation greater than 10m tall. These values are similar to published values for tiger bush. Vegetation cover for 14 and 18 km transects was estimated to be 4 per cent for vegetation greater than 0-5 m tall. These cover values agree within 1-2 per cent with published data for short transects (⩾ 100 m) for the area. The laser altimeter provided quick and accurate measurements for evaluating changes in land surface features. Such information provides a basis for understanding land degradation and a basis for management plans to rehabilitate the landscape. (author)

  20. Hipparcos: mission accomplished

    Science.gov (United States)

    1993-08-01

    During the last few months of its life, as the high radiation environment to which the satellite was exposed took its toll on the on-board system, Hipparcos was operated with only two of the three gyroscopes normally required for such a satellite, following an ambitious redesign of the on-board and on-ground systems. Plans were in hand to operate the satellite without gyroscopes at all, and the first such "gyro- less" data had been acquired, when communication failure with the on-board computers on 24 June 1993 put an end to the relentless flow of 24000 bits of data that have been sent down from the satellite each second, since launch. Further attempts to continue operations proved unsuccessful, and after a short series of sub-systems tests, operations were terminated four years and a week after launch. An enormous wealth of scientific data was gathered by Hipparcos. Even though data analysis by the scientific teams involved in the programme is not yet completed, it is clear that the mission has been an overwhelming success. "The ESA advisory bodies took a calculated risk in selecting this complex but fundamental programme" said Dr. Roger Bonnet, ESA's Director of Science, "and we are delighted to have been able to bring it to a highly successful conclusion, and to have contributed unique information that will take a prominent place in the history and development of astrophysics". Extremely accurate positions of more than one hundred thousand stars, precise distance measurements (in most cases for the first time), and accurate determinations of the stars' velocity through space have been derived. The resulting HIPPARCOS Star Catalogue, expected to be completed in 1996, will be of unprecedented accuracy, achieving results some 10-100 times more accurate than those routinely determined from ground-based astronomical observatories. A further star catalogue, the Thyco Star Catalogue of more than a million stars, is being compiled from additional data accumulated by the

  1. Validation of SARAL/AltiKa data in the Amazon basin

    Science.gov (United States)

    Santos da Silva, Joecila; Calmant, Stephane; Medeiros Moreira, Daniel; Oliveira, Robson; Conchy, Taina; Gennero, Marie-Claude; Seyler, Frederique

    2015-04-01

    SARAL/AltiKa is a link between past missions (since it flies on the ERS-ENVISAT orbit with Ku band nadir altimeters in LRM) and future missions such as SWOT's Ka band interferometry swaths. In the present study, we compare the capability of its altimeter AltiKa to that of previous missions working in the Ku band such as ENVISAT and Jason-2 in retrieving water levels over the Amazon basin. Same as for the aforementioned preceding missions, the best results were obtained with the ICE-1 retracking algorithm. We qualitatively analyze the impact of rainfalls in the loss of measurements. Since making long -multi mission- time series is of major importance either for hydro-climatic studies or for basin management, we also present an estimate of the altimeter bias in order that the SARAL series of water level can be appended to those of these previous missions.

  2. Small Satellite Constellations for Geospace Sciences

    Science.gov (United States)

    Spence, H. E.

    2016-12-01

    The recent National Academy of Sciences Solar and Space Physics Decadal Survey (DS) identified community-consensus science priorities for the decade spanning 2013 - 2022. In this talk, we discuss the ways by which small satellite constellations are already and may soon accelerate progress toward achieving many of these science targets. The DS outlined four overarching science goals: (1) determine the origins of the Sun's activity and predict the variations in the space environment; (2) determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs; (3) determine the interaction of the Sun with the solar system and the interstellar medium; and, (4) discover and characterize fundamental processes that occur both within the heliosphere and throughout the universe. These DS science goals provide the context for key science challenges in the three connected parts of the system that encompass all of solar and space physics, herein referred to as geospace: the Sun and heliosphere; the coupled solar wind-magnetosphere system; and, the coupled atmosphere-ionosphere-magnetosphere system. The DS further presented the role that small satellites play in resolving many of these science challenges, with a particular emphasis on the role that constellations of small satellites will play. While once considered by many as being "futuristic" or even "unrealizable", constellations of small satellites are already making important contributions to geospace science and with the promise for more to come. Using the DS as a guidepost, in this presentation, we outline representative small satellite constellation missions alread underway, some in development, and others notionally proposed over the next several years that employ small satellite constellations to tackle large science imperatives. Finally, we give examples of key small satellite technologies in development that will potentially enable great scientific

  3. Development of the European Small Geostationary Satellite SGEO

    Science.gov (United States)

    Lübberstedt, H.; Schneider, A.; Schuff, H.; Miesner, Th.; Winkler, A.

    2008-08-01

    The SGEO product portfolio, ranging from Satellite platform delivery up to in-orbit delivery of a turnkey system including satellite and ground control station, is designed for applications ranging from TV Broadcast to multimedia applications, Internet access, mobile or fixed services in a wide range of frequency bands. Furthermore, Data Relay missions such as the European Data Relay Satellite (EDRS) as well as other institutional missions are targeted. Key design features of the SGEO platform are high flexibility and modularity in order to accommodate a very wide range of future missions, a short development time below two years and the objective to build the system based on ITAR free subsystems and components. The system will provide a long lifetime of up to 15 years in orbit operations with high reliability. SGEO is the first European satellite to perform all orbit control tasks solely by electrical propulsion (EP). This design provides high mass efficiency and the capability for direct injection into geostationary orbit without chemical propulsion (CP). Optionally, an Apogee Engine Module based on CP will provide the perigee raising manoeuvres in case of a launch into geostationary transfer orbit (GTO). This approach allows an ideal choice out of a wide range of launcher candidates in dependence of the required payload capacity. SGEO will offer to the market a versatile and high performance satellite system with low investment risk for the customer and a short development time. This paper provides an overview of the SGEO system key features and the current status of the SGEO programme.

  4. Online Visualization and Analysis of Global Half-Hourly Infrared Satellite Data

    Science.gov (United States)

    Liu, Zhong; Ostrenga, Dana; Leptoukh, Gregory

    2011-01-01

    nfrared (IR) images (approximately 11-micron channel) recorded by satellite sensors have been widely used in weather forecasting, research, and classroom education since the Nimbus program. Unlike visible images, IR imagery can reveal cloud features without sunlight illumination; therefore, they can be used to monitor weather phenomena day and night. With geostationary satellites deployed around the globe, it is possible to monitor weather events 24/7 at a temporal resolution that polar-orbiting satellites cannot achieve at the present time. When IR data from multiple geostationary satellites are merged to form a single product--also known as a merged product--it allows for observing weather on a global scale. Its high temporal resolution (e.g., every half hour) also makes it an ideal ancillary dataset for supporting other satellite missions, such as the Tropical Rainfall Measuring Mission (TRMM), etc., by providing additional background information about weather system evolution.

  5. Virtual Mission Operations Center -Explicit Access to Small Satellites by a Net Enabled User Base

    Science.gov (United States)

    Miller, E.; Medina, O.; Paulsen, P.; Hopkins, J.; Long, C.; Holloman, K.

    2008-08-01

    The Office of Naval Research (ON R), The Office of the Secr etary of Defense (OSD) , Th e Operationally Responsive Space Off ice (ORS) , and th e National Aeronautics and Space Administration (NASA) are funding the development and integration of key technologies and new processes that w ill allow users across th e bread th of operations the ab ility to access, task , retr ieve, and collaborate w ith data from various sensors including small satellites v ia the Intern et and the SIPRnet. The V irtual Mission Oper ations Center (VMO C) facilitates the dynamic apportionmen t of space assets, allows scalable mission man agement of mu ltiple types of sensors, and provid es access for non-space savvy users through an intu itive collaborative w eb site. These key technologies are b eing used as experimentation pathfinders fo r th e Do D's Operationally Responsiv e Sp ace (O RS) initiative and NASA's Sensor W eb. The O RS initiative seeks to provide space assets that can b e rapid ly tailored to meet a commander's in telligen ce or commun ication needs. For the DoD and NASA the V MO C provid es ready and scalab le access to space b ased assets. To the commercial space sector the V MO C may provide an analog to the innovativ e fractional ownersh ip approach represen ted by FlexJet. This pap er delves in to the technology, in tegration, and applicability of th e V MO C to th e DoD , NASA , and co mmer cial sectors.

  6. South Atlantic Ocean circulation: Simulation experiments with a quasi-geostrophic model and assimilation of TOPEX/POSEIDON and ERS 1 altimeter data

    Science.gov (United States)

    Florenchie, P.; Verron, J.

    1998-10-01

    Simulation experiments of South Atlantic Ocean circulations are conducted with a 1/6°, four-layered, quasi-geostrophic model. By means of a simple nudging data assimilation procedure along satellite tracks, TOPEX/POSEIDON and ERS 1 altimeter measurements are introduced into the model to control the simulation of the basin-scale circulation for the period from October 1992 to September 1994. The model circulation appears to be strongly influenced by the introduction of altimeter data, offering a consistent picture of South Atlantic Ocean circulations. Comparisons with observations show that the assimilating model successfully simulates the kinematic behavior of a large number of surface circulation components. The assimilation procedure enables us to produce schematic diagrams of South Atlantic circulation in which patterns ranging from basin-scale currents to mesoscale eddies are portrayed in a realistic way, with respect to their complexity. The major features of the South Atlantic circulation are described and analyzed, with special emphasis on the Brazil-Malvinas Confluence region, the Subtropical Gyre with the formation of frontal structures, and the Agulhas Retroflection. The Agulhas eddy-shedding process has been studied extensively. Fourteen eddies appear to be shed during the 2-year experiment. Because of their strong surface topographic signature, Agulhas eddies have been tracked continuously during the assimilation experiment as they cross the South Atlantic basin westward. Other effects of the assimilation procedure are shown, such as the intensification of the Subtropical Gyre, the appearance of a strong seasonal cycle in the Brazil Current transport, and the increase of the mean Brazil Current transport. This last result, combined with the westward oriention of the Agulhas eddies' trajectories, leads to a southward transport of mean eddy kinetic energy across 30°S.

  7. Night and Day: The Opacity of Clouds Measured by the Mars Orbiter Laser Altimeter (MOLA)

    Science.gov (United States)

    Neumann, G. A.; Wilson, R. J.

    2006-01-01

    The Mars Orbiter Laser Altimeter (MOLA) [l] on the Mars Global Surveyor spacecraft ranged to clouds over the course of nearly two Mars years [2] using an active laser ranging system. While ranging to the surface, the instrument was also able to measure the product of the surface reflectivity with the two-way atmospheric transmission at 1064 nm. Furthermore, the reflectivity has now been mapped over seasonal cycles using the passive radiometric capability built into MOLA [3]. Combining these measurements, the column opacity may be inferred. MOLA uniquely provides these measurements both night and day. This study examines the pronounced nighttime opacity of the aphelion season tropical water ice clouds, and the indiscernibly low opacity of the southern polar winter clouds. The water ice clouds (Figure 1) do not themselves trigger the altimeter but have measured opacities tau > 1.5 and are temporally and spatially correlated with temperature anomalies predicted by a Mars Global Circulation Model (MGCM) that incorporates cloud radiative effects [4]. The south polar CO2 ice clouds trigger the altimeter with a very high backscatter cross-section over a thickness of 3-9 m and are vertically dispersed over several km, but their total column opacities lie well below the MOLA measurement limit of tau = 0.7. These clouds correspond to regions of supercooled atmosphere that may form either very large specularly reflecting particles [2] or very compact, dense concentrations (>5x10(exp 6)/cu m) of 100-p particles

  8. MYRIADE: CNES Micro-Satellite Program

    OpenAIRE

    Thoby, Michel

    2001-01-01

    CNES is currently leading the development of a program of micro-satellites, which has been now blessed with a name in line with the ambition: MYRIADE. The intention is to primarily fulfill the needs of the national scientific research in small space missions. Technology experiments as well as demonstration flights for new mission concepts shall however not be forgotten. The main objective is to make access to space much easier and affordable. The first five scientific and technological mixed ...

  9. Semi-active Attitude Control and Off-line Attitude Determination for the SEETI-Express Student Micro-satellite

    DEFF Research Database (Denmark)

    Alminde, Lars

    This paper concerns the development of the Attitude Determination and Control System (ADCS) for the SSETI-Express micro-satellite mission. The mission is an educational project involving 14 universities and the European Space Agency (ESA). The satellite has been designed and built, by students...

  10. Semi-active Attitude Control and Off-line Attitude Determination for the SSETI-Express Student Micro-satellite

    DEFF Research Database (Denmark)

    Alminde, Lars

    2005-01-01

    This paper concerns the development of the Attitude Determination and Control System (ADCS) for the SSETI-Express micro-satellite mission. The mission is an educational project involving 14 universities and the European Space Agency (ESA). The satellite has been designed and built, by students...

  11. Contrast in low-cost operational concepts for orbiting satellites

    Science.gov (United States)

    Walyus, Keith D.; Reis, James; Bradley, Arthur J.

    2002-12-01

    Older spacecraft missions, especially those in low Earth orbit with telemetry intensive requirements, required round-the-clock control center staffing. The state of technology relied on control center personnel to continually examine data, make decisions, resolve anomalies, and file reports. Hubble Space Telescope (HST) is a prime example of this description. Technological advancements in hardware and software over the last decade have yielded increases in productivity and operational efficiency, which result in lower cost. The re-engineering effort of HST, which has recently concluded, utilized emerging technology to reduce cost and increase productivity. New missions, of which NASA's Transition Region and Coronal Explorer Satellite (TRACE) is an example, have benefited from recent technological advancements and are more cost-effective than when HST was first launched. During its launch (1998) and early orbit phase, the TRACE Flight Operations Team (FOT) employed continually staffed operations. Yet once the mission entered its nominal phase, the FOT reduced their staffing to standard weekday business hours. Operations were still conducted at night and during the weekends, but these operations occurred autonomously without compromising their high standards for data collections. For the HST, which launched in 1990, reduced cost operations will employ a different operational concept, when the spacecraft enters its low-cost phase after its final servicing mission in 2004. Primarily due to the spacecraft"s design, the HST Project has determined that single-shift operations will introduce unacceptable risks for the amount of dollars saved. More importantly, significant cost-savings can still be achieved by changing the operational concept for the FOT, while still maintaining round-the-clock staffing. It"s important to note that the low-cost solutions obtained for one satellite may not be applicable for other satellites. This paper will contrast the differences between

  12. Global gravity field from recent satellites (DTU15) - Arctic improvements

    DEFF Research Database (Denmark)

    Andersen, O. B.; Knudsen, P.; Kenyon, S.

    2017-01-01

    Global marine gravity field modelling using satellite altimetry is currently undergoing huge improvement with the completion of the Jason-1 end-of-life geodetic mission, but particularly with the continuing Cryosat-2 mission. These new satellites provide three times as many geodetic mission...... altimetric sea surface height observations as ever before. The impact of these new geodetic mission data is a dramatic improvement of particularly the shorter wavelength of the gravity field (10-20 km) which is now being mapped at significantly higher accuracy. The quality of the altimetric gravity field...... is in many places surpassing the quality of gravity fields derived using non-commercial marine gravity observations. Cryosat-2 provides for the first time altimetry throughout the Arctic Ocean up to 88°N. Here, the huge improvement in marine gravity mapping is shown through comparison with high quality...

  13. Determination of ocean tides from the first year of TOPEX/POSEIDON altimeter measurements

    Science.gov (United States)

    Ma, X. C.; Shum, C. K.; Eanes, R. J.; Tapley, B. D.

    1994-01-01

    An improved geocentric global ocean tide model has been determined using 1 year of TOPEX/POSEIDON altimeter measurements to provide corrections to the Cartwright and Ray (1991) model (CR91). The corrections were determined on a 3 deg x 3 deg grid using both the harmonic analysis method and the response method. The two approaches produce similar solutions. The effect on the tide solution of simultaneously adjusting radial orbit correction parameters using altimeter measurements was examined. Four semidiurnal (N(sub 2), M(sub 2), S(sub 2) and K(sub 2)), four diurnal (Q(sdub 1), O(sub 1), P(sub 1), and K(sub 1)), and three long-period (S(sub sa), M(sub m), and M(sub f)) constituents, along with the variations at the annual frequency, were included in the harmomnic analysis solution. The observed annual variations represents the first global measurement describing accurate seasonal changes of the ocean during an El Nino year. The corrections to the M(sub 2) constituent have an root mean square (RMS) of 3.6 cm and display a clear banding pattern with regional highs and lows reaching 8 cm. The improved tide model reduces the weighted altimeter crossover residual from 9.8 cm RMS, when the CR91 tide model is used, to 8.2 cm on RMS. Comparison of the improved model to pelagic tidal constants determined from 80 tide gauges gives RMS differences of 2.7 cm for M(sub 2) and 1.7 cm for K(sub 1). Comparable values when the CR91 model is used are 3.9 cm and 2.0 cm, respectively. Examination of TOPEX/POSEIDON sea level anomaly variations using the new tide model further confirms that the tide model has been improved.

  14. Atmospheric Pressure Corrections in Geodesy and Oceanography: a Strategy for Handling Air Tides

    Science.gov (United States)

    Ponte, Rui M.; Ray, Richard D.

    2003-01-01

    Global pressure data are often needed for processing or interpreting modern geodetic and oceanographic measurements. The most common source of these data is the analysis or reanalysis products of various meteorological centers. Tidal signals in these products can be problematic for several reasons, including potentially aliased sampling of the semidiurnal solar tide as well as the presence of various modeling or timing errors. Building on the work of Van den Dool and colleagues, we lay out a strategy for handling atmospheric tides in (re)analysis data. The procedure also offers a method to account for ocean loading corrections in satellite altimeter data that are consistent with standard ocean-tide corrections. The proposed strategy has immediate application to the on-going Jason-1 and GRACE satellite missions.

  15. KARIN: The Ka-Band Radar Interferometer for the Proposed Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Esteban-Fernandez, Daniel; Peral, Eva; McWatters, Dalia; Pollard, Brian; Rodriguez, Ernesto; Hughes, Richard

    2013-01-01

    Over the last two decades, several nadir profiling radar altimeters have provided our first global look at the ocean basin-scale circulation and the ocean mesoscale at wavelengths longer than 100 km. Due to sampling limitations, nadir altimetry is unable to resolve the small wavelength ocean mesoscale and sub-mesoscale that are responsible for the vertical mixing of ocean heat and gases and the dissipation of kinetic energy from large to small scales. The proposed Surface Water and Ocean Topography (SWOT) mission would be a partnership between NASA, CNES (Centre National d'Etudes Spaciales) and the Canadian Space Agency, and would have as one of its main goals the measurement of ocean topography with kilometer-scale spatial resolution and centimeter scale accuracy. In this paper, we provide an overview of all ocean error sources that would contribute to the SWOT mission.

  16. Satellite Hardware: Stow-and-Go for Space Travel

    OpenAIRE

    Pellegrino, Sergio

    2012-01-01

    Man-made satellites have to fit a lot into a compact package. Protected inside a rocket while blasted through the atmosphere, a satellite is launched into Earth orbit, or beyond, to continue its unmanned mission alone. It uses gyroscopes, altitude thrusters, and magnets to regulate sun exposure and stay pointed in the right direction. Once stable, the satellite depends on solar panels to recharge its internal batteries, mirrors, and lenses for data capture, and antennas for communication back...

  17. Joint Center for Satellite Data Assimilation Overview and Research Activities

    Science.gov (United States)

    Auligne, T.

    2017-12-01

    In 2001 NOAA/NESDIS, NOAA/NWS, NOAA/OAR, and NASA, subsequently joined by the US Navy and Air Force, came together to form the Joint Center for Satellite Data Assimilation (JCSDA) for the common purpose of accelerating the use of satellite data in environmental numerical prediction modeling by developing, using, and anticipating advances in numerical modeling, satellite-based remote sensing, and data assimilation methods. The primary focus was to bring these advances together to improve operational numerical model-based forecasting, under the premise that these partners have common technical and logistical challenges assimilating satellite observations into their modeling enterprises that could be better addressed through cooperative action and/or common solutions. Over the last 15 years, the JCSDA has made and continues to make major contributions to operational assimilation of satellite data. The JCSDA is a multi-agency U.S. government-owned-and-operated organization that was conceived as a venue for the several agencies NOAA, NASA, USAF and USN to collaborate on advancing the development and operational use of satellite observations into numerical model-based environmental analysis and forecasting. The primary mission of the JCSDA is to "accelerate and improve the quantitative use of research and operational satellite data in weather, ocean, climate and environmental analysis and prediction systems." This mission is fulfilled through directed research targeting the following key science objectives: Improved radiative transfer modeling; new instrument assimilation; assimilation of humidity, clouds, and precipitation observations; assimilation of land surface observations; assimilation of ocean surface observations; atmospheric composition; and chemistry and aerosols. The goal of this presentation is to briefly introduce the JCSDA's mission and vision, and to describe recent research activities across various JCSDA partners.

  18. MEMS for pico- to micro-satellites

    OpenAIRE

    Shea, Herbert

    2009-01-01

    MEMS sensors, actuators, and sub-systems can enable an important reduction in the size and mass of spacecrafts, first by replacing larger and heavier components, then by replacing entire subsystems, and finally by enabling the microfabrication of highly integrated picosats. Very small satellites (1 to 100 kg) stand to benefit the most from MEMS technologies. These small satellites are typically used for science or technology demonstration missions, with higher risk tolerance than multi-ton te...

  19. After 10 years of service, NOAA retires GOES-12 satellite

    Science.gov (United States)

    NOAA HOME WEATHER OCEANS FISHERIES CHARTING SATELLITES CLIMATE RESEARCH COASTS CAREERS National oceans. In addition to GOES, NOAA also operates the polar operational environmental satellite (POES spacecraft. NOAA's mission is to understand and predict changes in the Earth's environment, from the depths

  20. Modal recovery of sea-level variability in the South China Sea using merged altimeter data

    Science.gov (United States)

    Jiang, Haoyu; Chen, Ge

    2015-09-01

    Using 20 years (1993-2012) of merged data recorded by contemporary multi-altimeter missions, a variety of sea-level variability modes are recovered in the South China Sea employing three-dimensional harmonic extraction. In terms of the long-term variation, the South China Sea is estimated to have a rising sea-level linear trend of 5.39 mm/a over these 20 years. Among the modes extracted, the seven most statistically significant periodic or quasi-periodic modes are identified as principal modes. The geographical distributions of the magnitudes and phases of the modes are displayed. In terms of intraannual and annual regimes, two principal modes with strict semiannual and annual periods are found, with the annual variability having the largest amplitudes among the seven modes. For interannual and decadal regimes, five principal modes at approximately 18, 21, 23, 28, and 112 months are found with the most mode-active region being to the east of Vietnam. For the phase distributions, a series of amphidromes are observed as twins, termed "amphidrome twins", comprising rotating dipole systems. The stability of periodic modes is investigated employing joint spatiotemporal analysis of latitude/longitude sections. Results show that all periodic modes are robust, revealing the richness and complexity of sea-level modes in the South China Sea.

  1. Constellations of Next Generation Gravity Missions: Simulations regarding optimal orbits and mitigation of aliasing errors

    Science.gov (United States)

    Hauk, M.; Pail, R.; Gruber, T.; Purkhauser, A.

    2017-12-01

    The CHAMP and GRACE missions have demonstrated the tremendous potential for observing mass changes in the Earth system from space. In order to fulfil future user needs a monitoring of mass distribution and mass transport with higher spatial and temporal resolution is required. This can be achieved by a Bender-type Next Generation Gravity Mission (NGGM) consisting of a constellation of satellite pairs flying in (near-)polar and inclined orbits, respectively. For these satellite pairs the observation concept of the GRACE Follow-on mission with a laser-based low-low satellite-to-satellite tracking (ll-SST) system and more precise accelerometers and state-of-the-art star trackers is adopted. By choosing optimal orbit constellations for these satellite pairs high frequency mass variations will be observable and temporal aliasing errors from under-sampling will not be the limiting factor anymore. As part of the European Space Agency (ESA) study "ADDCON" (ADDitional CONstellation and Scientific Analysis Studies of the Next Generation Gravity Mission) a variety of mission design parameters for such constellations are investigated by full numerical simulations. These simulations aim at investigating the impact of several orbit design choices and at the mitigation of aliasing errors in the gravity field retrieval by co-parametrization for various constellations of Bender-type NGGMs. Choices for orbit design parameters such as altitude profiles during mission lifetime, length of retrieval period, value of sub-cycles and choice of prograde versus retrograde orbits are investigated as well. Results of these simulations are presented and optimal constellations for NGGM's are identified. Finally, a short outlook towards new geophysical applications like a near real time service for hydrology is given.

  2. Estimating the mass density in the thermosphere with the CYGNSS mission.

    Science.gov (United States)

    Bussy-Virat, C.; Ridley, A. J.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) mission, launched in December 2016, is a constellation of eight satellites orbiting the Earth at 510 km. Its goal is to improve our understanding of rapid hurricane wind intensification. Each CYGNSS satellite uses GPS signals that are reflected off of the ocean's surface to measure the wind. The GPS can also be used to specify the orbit of the satellites quite precisely. The motion of satellites in low Earth orbit are greatly influenced by the neutral density of the surrounding atmosphere through drag. Modeling the neutral density in the upper atmosphere is a major challenge as it involves a comprehensive understanding of the complex coupling between the thermosphere and the ionosphere, the magnetosphere, and the Sun. This is why thermospheric models (such as NRLMSIS, Jacchia-Bowman, HASDM, GITM, or TIEGCM) can only approximate it with a limited accuracy, which decreases during strong geomagnetic events. Because atmospheric drag directly depends on the thermospheric density, it can be estimated applying filtering methods to the trajectories of the CYGNSS observatories. The CYGNSS mission can provide unique results since the constellation of eight satellites enables multiple measurements of the same region at close intervals ( 10 minutes), which can be used to detect short time scale features. Moreover, the CYGNSS spacecraft can be pitched from a low to high drag attitude configuration, which can be used in the filtering methods to improve the accuracy of the atmospheric density estimation. The methodology and the results of this approach applied to the CYGNSS mission will be presented.

  3. Exploring Modular Architecture for Nano Satellite and Opportunity for Developing Countries

    Science.gov (United States)

    Rhaman, M. K.; Monowar, M. I.; Shakil, S. R.; Kafi, A. H.; Antara, R. S. I.

    2015-01-01

    SPACE Technology has the potential to provide information, infrastructure and inspiration that meets national needs in developing countries like Bangladesh. Many countries recognize this; in response they are investing in new national satellite programs to harness satellite services. Technology related to space is one example of a tool that can contribute to development both by addressing societal challenges and by advancing a nation's technological capability. To cope up with the advanced world in space technology Bangladesh seems to be highly potential country for satellite, Robotics, embedded systems and renewable energy research. BRAC University, Bangladesh is planning to launch a nano satellite with the collaboration of KIT, Japan. The proposed nano satellite project mission is to experiment about social, commercial and agricultural survey needs in Bangladesh. Each of the proposed applications of the project will improve the lives of millions of people of Bangladesh and it will be a pathfinder mission for the people of this country. Another intention of this project is to create a cheap satellite based remote sensing for developing countries as the idea of large space systems is very costly for us therefore we have decided to make a Nano-satellite.

  4. Exploring Modular Architecture for Nano Satellite and Opportunity for Developing Countries

    International Nuclear Information System (INIS)

    Rhaman, M K; Monowar, M I; Shakil, S R; Kafi, A H; Antara, R S I

    2015-01-01

    SPACE Technology has the potential to provide information, infrastructure and inspiration that meets national needs in developing countries like Bangladesh. Many countries recognize this; in response they are investing in new national satellite programs to harness satellite services. Technology related to space is one example of a tool that can contribute to development both by addressing societal challenges and by advancing a nation's technological capability. To cope up with the advanced world in space technology Bangladesh seems to be highly potential country for satellite, Robotics, embedded systems and renewable energy research. BRAC University, Bangladesh is planning to launch a nano satellite with the collaboration of KIT, Japan. The proposed nano satellite project mission is to experiment about social, commercial and agricultural survey needs in Bangladesh. Each of the proposed applications of the project will improve the lives of millions of people of Bangladesh and it will be a pathfinder mission for the people of this country. Another intention of this project is to create a cheap satellite based remote sensing for developing countries as the idea of large space systems is very costly for us therefore we have decided to make a Nano-satellite

  5. Cassini’s Discoveries at Saturn and the Proposed Cassini Solstice Mission

    Science.gov (United States)

    Pappalardo, R. T.; Spilker, L. J.; Mitchell, R. T.; Cuzzi, J.; Gombosi, T. I.; Ingersoll, A. P.; Lunine, J. I.

    2009-12-01

    Understanding of the Saturn system has been greatly enhanced by the Cassini-Huygens mission. Fundamental discoveries have altered our views of Saturn, Titan and the other icy satellites, the rings, and magnetosphere of the system. Key discoveries include: water-rich plumes emanating from the south pole of Enceladus; hints of possible activity on Dione and of rings around Rhea; a methane hydrological cycle on Titan complete with fluvial erosion, lakes, and seas of liquid methane and ethane; non-axisymmetric ring microstructure in all moderate optical depth rings; south polar vortices on Saturn; and a unique magnetosphere that shares characteristics with both Earth’s and Jupiter’s magnetospheres. These new discoveries are directly relevant to current Solar System science goals including: planet and satellite formation processes, formation of gas giants, the nature of organic material, the history of volatiles, habitable zones and processes for life, processes that shape planetary bodies, and evolution of exoplanets. The proposed 7-year Cassini Solstice Mission would address new questions that have arisen during the Cassini Prime and Equinox Missions, and would observe seasonal and temporal change in the Saturn system to prepare for future missions to Saturn, Titan, and Enceladus. The proposed Cassini Solstice Mission would provide new science in three ways. First, it would observe seasonally and temporally dependent processes on Saturn, Titan and other icy satellites, and within the rings and magnetosphere, in a hitherto unobserved seasonal phase from equinox to solstice. Second, it would address new questions that have arisen during the mission thus far, providing qualitatively new measurements (e.g. of Enceladus and Titan) which could not be accommodated in the earlier mission phases. Tthird, it would conduct a close-in mission phase at Saturn that would provide unique science including comparison to the Juno observations at Jupiter.

  6. Testing in a stratospheric balloon of a semiconductor detector altimeter

    International Nuclear Information System (INIS)

    Gilly, L.; Jourdan, P.

    1968-01-01

    An altimeter containing a semiconductor detector has been operated on flight. We have used a stratospheric balloon launched from AIRE-SUR-ADOUR with the C.N.E.S. collaboration. During this assay two apparatus have been used. The first allowed to follow the balloon during its ascension and descent, the second to follow its evolution at its maximum altitude. Informations transmitted by radio and recorded on Magnetophon, have been studied after the flight. Results are identical with these given by the barometer used by the C.N.E.S. in this essay. (authors) [fr

  7. Tethered Satellite System Contingency Investigation Board

    Science.gov (United States)

    1992-11-01

    The Tethered Satellite System (TSS-1) was launched aboard the Space Shuttle Atlantis (STS-46) on July 31, 1992. During the attempted on-orbit operations, the Tethered Satellite System failed to deploy successfully beyond 256 meters. The satellite was retrieved successfully and was returned on August 6, 1992. The National Aeronautics and Space Administration (NASA) Associate Administrator for Space Flight formed the Tethered Satellite System (TSS-1) Contingency Investigation Board on August 12, 1992. The TSS-1 Contingency Investigation Board was asked to review the anomalies which occurred, to determine the probable cause, and to recommend corrective measures to prevent recurrence. The board was supported by the TSS Systems Working group as identified in MSFC-TSS-11-90, 'Tethered Satellite System (TSS) Contingency Plan'. The board identified five anomalies for investigation: initial failure to retract the U2 umbilical; initial failure to flyaway; unplanned tether deployment stop at 179 meters; unplanned tether deployment stop at 256 meters; and failure to move tether in either direction at 224 meters. Initial observations of the returned flight hardware revealed evidence of mechanical interference by a bolt with the level wind mechanism travel as well as a helical shaped wrap of tether which indicated that the tether had been unwound from the reel beyond the travel by the level wind mechanism. Examination of the detailed mission events from flight data and mission logs related to the initial failure to flyaway and the failure to move in either direction at 224 meters, together with known preflight concerns regarding slack tether, focused the assessment of these anomalies on the upper tether control mechanism. After the second meeting, the board requested the working group to complete and validate a detailed integrated mission sequence to focus the fault tree analysis on a stuck U2 umbilical, level wind mechanical interference, and slack tether in upper tether

  8. Benefits of Delay Tolerant Networking for Earth Science Missions

    Science.gov (United States)

    Davis, Faith; Marquart, Jane; Menke, Greg

    2012-01-01

    To date there has been much discussion about the value of Delay Tolerant Networking (DTN) for space missions. Claims of various benefits, based on paper analysis, are good; however a benefits statement with empirical evidence to support is even better. This paper presents potential and actual advantages of using DTN for Earth science missions based on results from multiple demonstrations, conducted by the Communications, Standards, and Technology Laboratory (CSTL) at NASA Goddard Space Flight Center (GSFC). Demonstrations included two flight demonstrations using the Earth Observing Mission 1 (EO-1) and the Near Earth Network (NEN), a ground based demonstration over satellite links to the Internet Router in Space (IRIS) payload on Intelsat-14, and others using the NASA Tracking Data Relay Satellite System (TDRSS). Real and potential findings include increased flexibility and efficiency in science campaigns, reduced latency in a collaborative science scenario, and improved scientist-instrument communication and control.

  9. Versatile Satellite Architecture and Technology: A New Architecture for Low Cost Satellite Missions for Solar-Terrestrial Studies

    Science.gov (United States)

    Cook, T. A.; Chakrabarti, S.; Polidan, R.; Jaeger, T.; Hill, L.

    2011-12-01

    Early in the 20th century, automobiles appeared as extraordinary vehicles - and now they are part of life everywhere. Late in the 20th century, internet and portable phones appeared as innovations - and now omni-present requirements. At mid-century, the first satellites were launched into space - and now 50 years later - "making a satellite" remains in the domain of highly infrequent events. Why do all universities and companies not have their own satellites? Why is the work force capable of doing so remarkably small? Why do highly focused science objectives that require just a glimpse from space never get a chance to fly? Historically, there have been two primary impediments to place an experiment in orbit - high launch costs and the high cost of spacecraft systems and related processes. The first problem appears to have been addressed through the availability of several low-cost (hands-on training for these participants and will leave an important legacy in developing a scientifically and technically competent workforce.

  10. Integration and Testing Challenges of Small, Multiple Satellite Missions: Experiences from the Space Technology 5 Project

    Science.gov (United States)

    Sauerwein, Timothy A.; Gostomski, Thomas

    2008-01-01

    The ST5 technology demonstration mission led by GSFC of NASA's New Millennium Program managed by JPL consisted of three micro satellites (approximately 30 kg each) deployed into orbit from the Pegasus XL launch vehicle. In order to meet the launch date schedule of ST5, a different approach was required rather than the standard I&T approach used for single, room-sized satellites. The three spacecraft were designed, integrated, and tested at NASA Goddard Space Flight Center. It was determined that there was insufficient time in the schedule to perform three spacecraft I&T activities in series using standard approaches. The solution was for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 simultaneously. This simultaneous integration was successful for several reasons. Each spacecraft had a Lead Test Conductor who planned and coordinated their spacecraft through its integration and test activities. One team of engineers and technicians executed the integration of all three spacecraft, learning and gaining knowledge and efficiency as spacecraft #1 integration and testing progressed. They became acutely familiar with the hardware, operation and processes for I&T, thus had the experience and knowledge to safely execute I&T for spacecraft #2 and #3. The integration team was extremely versatile; each member could perform many different activities or work any spacecraft, when needed. ST5 was successfully integrated, tested and shipped to the launch site per the I&T schedule that was planned three years previously. The I&T campaign was completed with ST5's successful launch on March 22, 2006.

  11. An overview of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite

    International Nuclear Information System (INIS)

    Voss, S.S.; Reynolds, E.L.

    1994-01-01

    Early in 1992 the idea of purchasing a Russian designed and fabricated space reactor power system and integrating it with a US designed satellite went from fiction to reality with the purchase of the first two Topaz II reactors by the Strategic Defense Initiative Organization (now the Ballistic Missile Defense Organization (BMDO)). The New Mexico Alliance was formed to establish a ground test facility in which to perform nonnuclear systems testing of the Topaz II, and to evaluate the Topaz II system for flight testing with respect to safety, performance, and operability. In conjunction, SDIO requested that the Applied Physics Laboratory in Laurel, MD propose a mission and design a satellite in which the Topaz II could be used as the power source. The outcome of these two activities was the design of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite which combines a modified Russian Topaz II power system with a US designed satellite to achieve a specified mission. Due to funding reduction within the SDIO, the Topaz II flight program was postponed indefinitely at the end of Fiscal year 1993. The purpose of this paper is to present an overview of the NEPSTP mission and the satellite design at the time the flight program ended

  12. EO-1/Hyperion: Nearing Twelve Years of Successful Mission Science Operation and Future Plans

    Science.gov (United States)

    Middleton, Elizabeth M.; Campbell, Petya K.; Huemmrich, K. Fred; Zhang, Qingyuan; Landis, David R.; Ungar, Stephen G.; Ong, Lawrence; Pollack, Nathan H.; Cheng, Yen-Ben

    2012-01-01

    The Earth Observing One (EO-1) satellite is a technology demonstration mission that was launched in November 2000, and by July 2012 will have successfully completed almost 12 years of high spatial resolution (30 m) imaging operations from a low Earth orbit. EO-1 has two unique instruments, the Hyperion and the Advanced Land Imager (ALI). Both instruments have served as prototypes for NASA's newer satellite missions, including the forthcoming (in early 2013) Landsat-8 and the future Hyperspectral Infrared Imager (HyspIRI). As well, EO-1 is a heritage platform for the upcoming German satellite, EnMAP (2015). Here, we provide an overview of the mission, and highlight the capabilities of the Hyperion for support of science investigations, and present prototype products developed with Hyperion imagery for the HyspIRI and other space-borne spectrometers.

  13. Sea-level-rise trends off the Indian coasts during the last two decades

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Nidheesh, A.G.; Lengaigne, M.

    The present communication discusses sea-level-rise trends in the north Indian Ocean, particularly off the Indian coasts, based on estimates derived from satellite altimeter and tide-gauge data. Altimeter data analysis over the 1993–2012 period...

  14. Thermal Conductivity Measurements on Icy Satellite Analogs

    Science.gov (United States)

    Javeed, Aurya; Barmatz, Martin; Zhong, Fang; Choukroun, Mathieu

    2012-01-01

    With regard to planetary science, NASA aspires to: "Advance scientific knowledge of the origin and history of the solar system, the potential for life elsewhere, and the hazards and resources present as humans explore space". In pursuit of such an end, the Galileo and Cassini missions garnered spectral data of icy satellite surfaces implicative of the satellites' structure and material composition. The potential for geophysical modeling afforded by this information, coupled with the plausibility of life on icy satellites, has pushed Jupiter's Europa along with Saturn's Enceladus and Titan toward the fore of NASA's planetary focus. Understanding the evolution of, and the present processes at work on, the aforementioned satellites falls squarely in-line with NASA's cited goal.

  15. Signatures of Kelvin and Rossby wave propagation in the northern Indian Ocean from TOPEX/POSEIDON Altimeter

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Unnikrishnan, A.S.; Muraleedharan, P.M.

    The climatological monthly mean sea surface height (SSH) anomalies derived from T/P altimeter in the northern Indian Ocean, during 1993 to 1997, are used to prepare time-longitude plots. Along the equator they reveal strong semi-annual variability...

  16. A Prototype Knowledge-Based System for Satellite Mission Planning.

    Science.gov (United States)

    1986-12-01

    used by different groups in an operational environment. 6 II. Literature Review As management science has recognized, it is not practical to separate...schedule only one satellite per set of requirements. A -4 .............. er.- Appendix B O9perational Conce~t Usin a Knowlede -Based System There are many

  17. Discussions on attitude determination and control system for micro/nano/pico-satellites considering survivability based on Hodoyoshi-3 and 4 experiences

    Science.gov (United States)

    Nakasuka, Shinichi; Miyata, Kikuko; Tsuruda, Yoshihiro; Aoyanagi, Yoshihide; Matsumoto, Takeshi

    2018-04-01

    The recent advancement of micro/nano/pico-satellites technologies encourages many universities to develop three axis stabilized satellites. As three axis stabilization is high level technology requiring the proper functioning of various sensors, actuators and control software, many early satellites failed in their initial operation phase because of shortage of solar power generation or inability to realize the initial step of missions because of unexpected attitude control system performance. These results come from failure to design the satellite attitude determination and control system (ADCS) appropriately and not considering "satellite survivability." ADCS should be designed such that even if some sensors or actuators cannot work as expected, the satellite can survive and carry out some of its missions, even if not full. This paper discusses how to realize ADCS while taking satellite survivability into account, based on our experiences of design and in-orbit operations of Hodoyoshi-3 and 4 satellites launched in 2014, which suffered from various component anomalies but could complete their missions.

  18. The Italian contribution to the CSES satellite

    Science.gov (United States)

    Conti, Livio

    2016-04-01

    We present the Italian contribution to the CSES (China Seismo-Electromagnetic Satellite) mission. The CSES satellite aims at investigating electromagnetic field, plasma and particles in the near-Earth environment in order to study in particular seismic precursors, particles fluxes (from Van Allen belts, cosmic rays, solar wind, etc.), anthropogenic electromagnetic pollution and more in general the atmosphere-ionosphere-magnetosphere coupling mechanisms that can affect the climate changes. The launch of CSES - the first of a series of several satellite missions - is scheduled by the end of 2016. The CSES satellite has been financed by the CNSA (China National Space Agency) and developed by CEA (China Earthquake Administration) together with several Chinese research institutes and private companies such as the DFH (that has developed the CAST2000 satellite platform). Italy participates to the CSES satellite mission with the LIMADOU project funded by ASI (Italian Space Agency) in collaboration with the Universities of Roma Tor Vergata, Uninettuno, Trento, Bologna and Perugia, as well as the INFN (Italian National Institute of Nuclear Physics), INGV (Italian National Institute of Geophysics and Volcanology) and INAF-IAPS (Italian National Institute of Astrophysics and Planetology). Many analyses have shown that satellite observations of electromagnetic fields, plasma parameters and particle fluxes in low Earth orbit may be useful in order to study the existence of electromagnetic emissions associated with the occurrence of earthquakes of medium and high magnitude. Although the earthquakes forecasting is not possible today, it is certainly a major challenge - and perhaps even a duty - for science in the near future. The claims that the reported anomalies (of electromagnetic, plasma and particle parameters) are seismic precursors are still intensely debated and analyses for confirming claimed correlations are still lacking. In fact, ionospheric currents, plasma

  19. Optimal mission planning of GEO on-orbit refueling in mixed strategy

    Science.gov (United States)

    Chen, Xiao-qian; Yu, Jing

    2017-04-01

    The mission planning of GEO on-orbit refueling (OOR) in Mixed strategy is studied in this paper. Specifically, one SSc will be launched to an orbital slot near the depot when multiple GEO satellites are reaching their end of lives. The SSc replenishes fuel from the depot and then extends the lifespan of the target satellites via refueling. In the mixed scenario, only some of the target satellites could be served by the SSc, and the remaining ones will be fueled by Pseudo SScs (the target satellite which has already been refueled by the SSc and now has sufficient fuel for its operation as well as the fuel to refuel other target satellites is called Pseudo SSc here). The mission sequences and fuel mass of the SSc and Pseudo SScs, the dry mass of the SSc are used as design variables, whereas the economic benefit of the whole mission is used as design objective. The economic cost and benefit models are stated first, and then a mathematical optimization model is proposed. A comprehensive solution method involving enumeration, particle swarm optimization and modification is developed. Numerical examples are carried out to demonstrate the effectiveness of the model and solution method. Economic efficiencies of different OOR strategies are compared and discussed. The mixed strategy would perform better than the other strategies only when the target satellites satisfy some conditions. This paper presents an available mixed strategy scheme for users and analyzes its advantages and disadvantages by comparing with some other OOR strategies, providing helpful references to decision makers. The best strategy in practical applications depends on the specific demands and user preference.

  20. Initial Assessment of Cyclone Global Navigation Satellite System (CYGNSS) Observations

    Science.gov (United States)

    McKague, D. S.; Ruf, C. S.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  1. Mean dynamic topography over Peninsular Malaysian seas using multimission satellite altimetry

    Science.gov (United States)

    Abazu, Isaac Chidi; Din, Ami Hassan Md; Omar, Kamaludin Mohd

    2017-04-01

    The development of satellite altimeters (SALTs) has brought huge benefits, among which is the ability to more adequately sense ocean-surface topography. The radar altimeter database system was used to capture and process ENVISAT, CRYOSAT-2, SARAL, JASON-1, and JASON-2 SALT data of 5 years between 2011 and 2015. The time series of monthly multimission SALT data showed an estimated sea level trend of 1.0, 2.4, 2.4, 3.6, and 12.0 mm/year at Gelang, Port Kelang, Kukup, Cendering, and Keling. The correlation analysis for the selected tide gauge stations produced satisfying results of R-squared with 0.86, 0.89, 0.91, and 0.97 for Cendering, Sedili, Gelang, and Geting, respectively. The ITG-Grace2010s geoid model was used to compute the mean dynamic topography (MDT) and plot to a grid of 0.25 deg for the Malacca Strait and South China Sea of Peninsular Malaysia, with Keling, Port Kelang, Geting, Sedili, and Johor Bahru tide gauge stations having values determined by interpolation to be 1.14, 1.19, 1.26, 1.88, and 2.91 m, respectively. MDT is computed from the SALT with respect to Port Kelang, the north-south sea slope ranges between -0.64 and 0.29 m/50 km and -0.01 and 0.52 m/50 km along the east and west coasts of Peninsular Malaysia, respectively.

  2. The NASA CYGNSS Small Satellite Constellation

    Science.gov (United States)

    Ruf, C. S.; Gleason, S.; McKague, D. S.; Rose, R.; Scherrer, J.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a constellation of eight microsatellite observatories that was launched into a low (35°) inclination, low Earth orbit on 15 December 2016. Each observatory carries a 4-channel GNSS-R bistatic radar receiver. The radars are tuned to receive the L1 signals transmitted by GPS satellites, from which near-surface ocean wind speed is estimated. The mission architecture is designed to improve the temporal sampling of winds in tropical cyclones (TCs). The 32 receive channels of the complete CYGNSS constellation, combined with the 30 GPS satellite transmitters, results in a revisit time for sampling of the wind of 2.8 hours (median) and 7.2 hours (mean) at all locations between 38 deg North and 38 deg South latitude. Operation at the GPS L1 frequency of 1575 MHz allows for wind measurements in the TC inner core that are often obscured from other spaceborne remote sensing instruments by intense precipitation in the eye wall and inner rain bands. An overview of the CYGNSS mission wil be presented, followed by early on-orbit status and results.

  3. Improving the Operations of the Earth Observing One Mission via Automated Mission Planning

    Science.gov (United States)

    Chien, Steve A.; Tran, Daniel; Rabideau, Gregg; Schaffer, Steve; Mandl, Daniel; Frye, Stuart

    2010-01-01

    We describe the modeling and reasoning about operations constraints in an automated mission planning system for an earth observing satellite - EO-1. We first discuss the large number of elements that can be naturally represented in an expressive planning and scheduling framework. We then describe a number of constraints that challenge the current state of the art in automated planning systems and discuss how we modeled these constraints as well as discuss tradeoffs in representation versus efficiency. Finally we describe the challenges in efficiently generating operations plans for this mission. These discussions involve lessons learned from an operations model that has been in use since Fall 2004 (called R4) as well as a newer more accurate operations model operational since June 2009 (called R5). We present analysis of the R5 software documenting a significant (greater than 50%) increase in the number of weekly observations scheduled by the EO-1 mission. We also show that the R5 mission planning system produces schedules within 15% of an upper bound on optimal schedules. This operational enhancement has created value of millions of dollars US over the projected remaining lifetime of the EO-1 mission.

  4. Lunar Exploration Missions Since 2006

    Science.gov (United States)

    Lawrence, S. J. (Editor); Gaddis, L. R.; Joy, K. H.; Petro, N. E.

    2017-01-01

    The announcement of the Vision for Space Exploration in 2004 sparked a resurgence in lunar missions worldwide. Since the publication of the first "New Views of the Moon" volume, as of 2017 there have been 11 science-focused missions to the Moon. Each of these missions explored different aspects of the Moon's geology, environment, and resource potential. The results from this flotilla of missions have revolutionized lunar science, and resulted in a profoundly new emerging understanding of the Moon. The New Views of the Moon II initiative itself, which is designed to engage the large and vibrant lunar science community to integrate the results of these missions into new consensus viewpoints, is a direct outcome of this impressive array of missions. The "Lunar Exploration Missions Since 2006" chapter will "set the stage" for the rest of the volume, introducing the planetary community at large to the diverse array of missions that have explored the Moon in the last decade. Content: This chapter will encompass the following missions: Kaguya; ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun); Chang’e-1; Chandrayaan-1; Moon Impact Probe; Lunar Reconnaissance Orbiter (LRO); Lunar Crater Observation Sensing Satellite (LCROSS); Chang’e-2; Gravity Recovery and Interior Laboratory (GRAIL); Lunar Atmosphere and Dust Environment Explorer (LADEE); Chang’e-3.

  5. Next generation satellite communications networks

    Science.gov (United States)

    Garland, P. J.; Osborne, F. J.; Streibl, I.

    The paper introduces two potential uses for new space hardware to permit enhanced levels of signal handling and switching in satellite communication service for Canada. One application involves increased private-sector services in the Ku band; the second supports new personal/mobile services by employing higher levels of handling and switching in the Ka band. First-generation satellite regeneration and switching experiments involving the NASA/ACTS spacecraft are described, where the Ka band and switching satellite network problems are emphasized. Second-generation satellite development is outlined based on demand trends for more packet-based switching, low-cost earth stations, and closed user groups. A demonstration mission for new Ka- and Ku-band technologies is proposed, including the payload configuration. The half ANIK E payload is shown to meet the demonstration objectives, and projected to maintain a fully operational payload for at least 10 years.

  6. Evolving earth-based and in-situ satellite network architectures for Mars communications and navigation support

    Science.gov (United States)

    Hastrup, Rolf; Weinberg, Aaron; McOmber, Robert

    1991-09-01

    Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.

  7. A Cubesat Asteroid Mission: Propulsion Trade-offs

    Science.gov (United States)

    Landis, Geoffrey A.; Oleson, Steven R.; McGuire, Melissa L.; Bur, Michael J.; Burke, Laura M.; Fittje, James E.; Kohout, Lisa L.; Fincannon, James; Packard, Thomas W.; Martini, Michael C.

    2014-01-01

    A conceptual design was performed for a 6-U cubesat for a technology demonstration to be launched on the NASA Space Launch System (SLS) test launch EM-1, to be launched into a free-return translunar trajectory. The mission purpose was to demonstrate use of electric propulsion systems on a small satellite platform. The candidate objective chosen was a mission to visit a Near-Earth asteroid. Both asteroid fly-by and asteroid rendezvous missions were analyzed. Propulsion systems analyzed included cold-gas thruster systems, Hall and ion thrusters, incorporating either Xenon or Iodine propellant, and an electrospray thruster. The mission takes advantage of the ability of the SLS launch to place it into an initial trajectory of C3=0.

  8. Topographic profile of a target with use of laser pulses. A survey directed to the Brazilian deep space mission ASTER

    International Nuclear Information System (INIS)

    De Brum, A G V; Rodrigues, A P

    2013-01-01

    This work is directly related to the development of the laser altimeter for the ASTER mission, named ALR. The Brazilian deep space mission ASTER plans to send a small spacecraft to encounter and investigate the triple asteroid 2001-SN263. The launch is scheduled to occur in 2017 and the ALR is now under development in partnership with UNICAMP, UFABC and aerospace companies. In this work, the environment and the operation of the instrument were modeled and simulations were carried out in order to better understand and define the instrument parameters. The creation of the simulation software to control the operation of the instrument was the main purpose of this work, and the software so far created is the main result of it. The software was successfully tested with respect to some common expected situations

  9. Coastal sea-level in Norway from CryoSat-2 SAR altimetry

    DEFF Research Database (Denmark)

    Idžanović, Martina; Ophaug, Vegard; Andersen, Ole Baltazar

    Conventional spaceborne altimeters determine the sea surface height with an accuracy of a few centimeters. Although satellite altimetry may be regarded as a mature technology, altimeter observations collected over coastal regions suffer from numerous effects which degrade their quality. For examp...

  10. On-board attitude determination for the Explorer Platform satellite

    Science.gov (United States)

    Jayaraman, C.; Class, B.

    1992-01-01

    This paper describes the attitude determination algorithm for the Explorer Platform satellite. The algorithm, which is baselined on the Landsat code, is a six-element linear quadratic state estimation processor, in the form of a Kalman filter augmented by an adaptive filter process. Improvements to the original Landsat algorithm were required to meet mission pointing requirements. These consisted of a more efficient sensor processing algorithm and the addition of an adaptive filter which acts as a check on the Kalman filter during satellite slew maneuvers. A 1750A processor will be flown on board the satellite for the first time as a coprocessor (COP) in addition to the NASA Standard Spacecraft Computer. The attitude determination algorithm, which will be resident in the COP's memory, will make full use of its improved processing capabilities to meet mission requirements. Additional benefits were gained by writing the attitude determination code in Ada.

  11. Advanced mobile satellite communications system using Ka and MM-wave bands in Japan's R and D satellite project

    Science.gov (United States)

    Isobe, Shunkichi; Ohmori, Shingo; Hamamoto, Naokazu; Yamamoto, Minoru

    1991-01-01

    Communications Research Laboratory (CRL) studied an advanced mobile satellite communications system using Ka and millimeter-wave bands in the R&D Satellite project. The project started in 1990 and the satellite will be launched in 1997. On-board multi-beam interconnecting is one of basic functions to realize one-hop connection among Very Small Aperture Terminals (VSATs), mobile, and hand-held terminals in future mobile satellite communications system. An Intermediate Frequency (IF) filter bank and regenerative transponder are suitable for this function. The transponder configuration of an advanced mobile communications mission of the R&D Satellite for experiment is shown. High power transmitters of Ka and millimeter-wave bands, a 3x3 IF filter band and Single Channel Per Carrier/Time Division Multiplexing (SCPC/TDM) regenerative MODEMS, which will be boarded on the R&D Satellite, are being developed for the purpose of studying the feasibility of advanced mobile communications system.

  12. AN/FPS-108 COBRA DANE Space Surveillance Mission Evolution

    Science.gov (United States)

    Chorman, P.; Boggs, J.

    2013-09-01

    It has been ten years since the COBRA DANE radar was restored to continuous full power operations in a more dedicated role of space debris tracking. Over this time, the satellite catalog population has grown and the overall average RCS value of cataloged objects has decreased dramatically, due to a combination of breakups and collisions together with the increased sensitivity offered by COBRA DANE's support to the network. This shift in catalog composition places new challenges on COBRA DANE and other debris tracking radars (PARCS and Eglin/FPS-85) to consistently track the ever-increasing number of small objects. Space Surveillance Network radars now operate at the limits of their detection performance, tracking several thousand new objects in a size category that only the most powerful and sensitive radars can observe (i.e., COBRA DANE's inherent Spacetrack mission software functionality remained better tuned for its original support role against the larger (known) orbital objects than for its more modern role in acquiring and reporting small debris in an appreciable number -- that is, until now. Several newly-identified software changes offer promise of significantly increased data yield that will make COBRA DANE an even more important asset for this evolving mission. In the course of assisting JSpOC, AFSPC, and USSTRATCOM with the ongoing challenges of lost satellite management, it was discovered that the radar's performance is being artificially restricted by mission software, rather than by the system's overall architectural design (power-aperture envelope and radar resources). This paper captures specific opportunities to improve COBRA DANE's Spacetrack mission performance, several of which are currently implemented and slated to become operational with the next two software releases. With one of the more prominent enhancements, COBRA DANE will be capable of autonomously 'fence tasking' all newly acquired small objects. Under the current operating paradigm

  13. Mission Operations Planning and Scheduling System (MOPSS)

    Science.gov (United States)

    Wood, Terri; Hempel, Paul

    2011-01-01

    MOPSS is a generic framework that can be configured on the fly to support a wide range of planning and scheduling applications. It is currently used to support seven missions at Goddard Space Flight Center (GSFC) in roles that include science planning, mission planning, and real-time control. Prior to MOPSS, each spacecraft project built its own planning and scheduling capability to plan satellite activities and communications and to create the commands to be uplinked to the spacecraft. This approach required creating a data repository for storing planning and scheduling information, building user interfaces to display data, generating needed scheduling algorithms, and implementing customized external interfaces. Complex scheduling problems that involved reacting to multiple variable situations were analyzed manually. Operators then used the results to add commands to the schedule. Each architecture was unique to specific satellite requirements. MOPSS is an expert system that automates mission operations and frees the flight operations team to concentrate on critical activities. It is easily reconfigured by the flight operations team as the mission evolves. The heart of the system is a custom object-oriented data layer mapped onto an Oracle relational database. The combination of these two technologies allows a user or system engineer to capture any type of scheduling or planning data in the system's generic data storage via a GUI.

  14. New Space at Airbus Defence & Space to facilitate science missions

    Science.gov (United States)

    Boithias, Helene; Benchetrit, Thierry

    2016-10-01

    In addition to Airbus legacy activities, where Airbus satellites usually enable challenging science missions such as Venus Express, Mars Express, Rosetta with an historic landing on a comet, Bepi Colombo mission to Mercury and JUICE to orbit around Jupiter moon Ganymede, Swarm studying the Earth magnetic field, Goce to measure the Earth gravitational field and Cryosat to monitor the Earth polar ice, Airbus is now developing a new approach to facilitate next generation missions.After more than 25 years of collaboration with the scientists on space missions, Airbus has demonstrated its capacity to implement highly demanding missions implying a deep understanding of the science mission requirements and their intrinsic constraints such as- a very fierce competition between the scientific communities,- the pursuit of high maturity for the science instrument in order to be selected,- the very strict institutional budget limiting the number of operational missions.As a matter of fact, the combination of these constraints may lead to the cancellation of valuable missions.Based on that and inspired by the New Space trend, Airbus is developing an highly accessible concept called HYPE.The objective of HYPE is to make access to Space much more simple, affordable and efficient.With a standardized approach, the scientist books only the capacities he needs among the resources available on-board, as the HYPE satellites can host a large range of payloads from 1kg up to 60kg.At prices significantly more affordable than those of comparable dedicated satellite, HYPE is by far a very cost-efficient way of bringing science missions to life.After the launch, the scientist enjoys a plug-and-play access to two-way communications with his instrument through a secure high-speed portal available online 24/7.Everything else is taken care of by Airbus: launch services and the associated risk, reliable power supply, setting up and operating the communication channels, respect of space law

  15. PFERD Mission: Pluto Flyby Exploration/Research Design

    Science.gov (United States)

    Lemke, Gary; Zayed, Husni; Herring, Jason; Fuehne, Doug; Sutton, Kevin; Sharkey, Mike

    1990-01-01

    The Pluto Flyby Exploration/Research Design (PFERD) mission will consist of a flyby spacecraft to Pluto and its satellite, Charon. The mission lifetime is expected to be 18 years. The Titan 4 with a Centaur upper stage will be utilized to launch the craft into the transfer orbit. The proposal was divided into six main subsystems: (1) scientific instrumentation; (2) command, communications, and control: (3) altitude and articulation control; (4) power and propulsion; (5) structures and thermal control; and (6) mission management and costing. Tradeoff studies were performed to optimize all factors of design, including survivability, performance, cost, and weight. Problems encountered in the design are also presented.

  16. Fiscal 2000 survey report. Survey and study of constellation satellites technology; 2000 nendo chosa hokokusho. Konsutereshon eisei gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Demands for constellation satellites were surveyed and satellite systems were studied for extracting basic technical tasks relative to constellation satellite systems and for drafting space verification plans. For a constellation satellite system to accomplish its missions, two or more satellites have to be simultaneously navigated. It is assumed that its field of application will cover earth observation, information communication, risk management, disaster prevention, and the like. With such applications taken into consideration, surveys and studies were conducted about the need and marketability of constellation satellites, need of state-level involvement, and requests for missions to be imposed on a constellation system. For plural satellites to satisfy mission requests by coordinating with each other, it will be necessary to develop basic technologies, such as navigational guidance, communications control, system autonomous management, and operation on the ground. Functions and performance that a constellation satellite system are requested to have and basic technologies to be studied and developed were extracted, and space verification plans were drafted. (NEDO)

  17. Tracking and data relay satellite system (TDRSS) capabilities

    Science.gov (United States)

    Spearing, R. E.

    1985-10-01

    The Tracking and Data Relay Satellite System (TDRSS) is the latest implementation to tracking and data acquisition network for near-earth orbiting satellite support designed to meet the requirements of the current and projected (to the year 2000) satellite user community. The TDRSS consists of a space segment (SS) and a ground segment (GS) that fit within NASA's Space Network (SN) complex controlled at the Goddard Space Flight Center. The SS currently employs a single satellite, TDRS-1, with two additional satellites to be deployed in January 1986 and July 1986. The GS contains the communications and equipment required to manage the three TDR satellites and to transmit and receive information to and from TDRSS user satellites. Diagrams and tables illustrating the TDRSS signal characteristics, the situation of TDRSS within the SN, the SN operations and element interrelationships, as well as future plans for new missions are included.

  18. NASA CYGNSS Mission Overview

    Science.gov (United States)

    Ruf, C. S.; Balasubramaniam, R.; Gleason, S.; McKague, D. S.; O'Brien, A.

    2017-12-01

    The CYGNSS constellation of eight satellites was successfully launched on 15 December 2016 into a low inclination (tropical) Earth orbit. Each satellite carries a four-channel bi-static radar receiver that measures GPS signals scattered by the ocean, from which ocean surface roughness, near surface wind speed, and air-sea latent heat flux are estimated. The measurements are unique in several respects, most notably in their ability to penetrate through all levels of precipitation, made possible by the low frequency at which GPS operates, and in the frequent sampling of tropical cyclone intensification and of the diurnal cycle of winds, made possible by the large number of satellites. Engineering commissioning of the constellation was successfully completed in March 2017 and the mission is currently in the early phase of science operations. Level 2 science data products have been developed for near surface (10 m referenced) ocean wind speed, ocean surface roughness (mean square slope) and latent heat flux. Level 3 gridded versions of the L2 products have also been developed. A set of Level 4 products have also been developed specifically for direct tropical cyclone overpasses. These include the storm intensity (peak sustained winds) and size (radius of maximum winds), its extent (34, 50 and 64 knot wind radii), and its integrated kinetic energy. Assimilation of CYGNSS L2 wind speed data into the HWRF hurricane weather prediction model has also been developed. An overview and the current status of the mission will be presented, together with highlights of early on-orbit performance and scientific results.

  19. Generating High-Resolution Lake Bathymetry over Lake Mead using the ICESat-2 Airborne Simulator

    Science.gov (United States)

    Li, Y.; Gao, H.; Jasinski, M. F.; Zhang, S.; Stoll, J.

    2017-12-01

    Precise lake bathymetry (i.e., elevation/contour) mapping is essential for optimal decision making in water resources management. Although the advancement of remote sensing has made it possible to monitor global reservoirs from space, most of the existing studies focus on estimating the elevation, area, and storage of reservoirs—and not on estimating the bathymetry. This limitation is attributed to the low spatial resolution of satellite altimeters. With the significant enhancement of ICESat-2—the Ice, Cloud & Land Elevation Satellite #2, which is scheduled to launch in 2018—producing satellite-based bathymetry becomes feasible. Here we present a pilot study for deriving the bathymetry of Lake Mead by combining Landsat area estimations with airborne elevation data using the prototype of ICESat-2—the Multiple Altimeter Beam Experimental Lidar (MABEL). First, an ISODATA classifier was adopted to extract the lake area from Landsat images during the period from 1982 to 2017. Then the lake area classifications were paired with MABEL elevations to establish an Area-Elevation (AE) relationship, which in turn was applied to the classification contour map to obtain the bathymetry. Finally, the Lake Mead bathymetry image was embedded onto the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), to replace the existing constant values. Validation against sediment survey data indicates that the bathymetry derived from this study is reliable. This algorithm has the potential for generating global lake bathymetry when ICESat-2 data become available after next year's launch.

  20. Satellite Observation Systems for Polar Climate Change Studies

    Science.gov (United States)

    Comiso, Josefino C.

    2012-01-01

    The key observational tools for detecting large scale changes of various parameters in the polar regions have been satellite sensors. The sensors include passive and active satellite systems in the visible, infrared and microwave frequencies. The monitoring started with Tiros and Nimbus research satellites series in the 1970s but during the period, not much data was stored digitally because of limitations and cost of the needed storage systems. Continuous global data came about starting with the launch of ocean color, passive microwave, and thermal infrared sensors on board Nimbus-7 and Synthetic Aperture Radar, Radar Altimeter and Scatterometer on board SeaSat satellite both launched in 1978. The Nimbus-7 lasted longer than expected and provided about 9 years of useful data while SeaSat quit working after 3 months but provided very useful data that became the baseline for follow-up systems with similar capabilities. Over the years, many new sensors were launched, some from Japan Aeronautics and Space Agency (JAXA), some from the European Space Agency (ESA) and more recently, from RuSSia, China, Korea, Canada and India. For polar studies, among the most useful sensors has been the passive microwave sensor which provides day/night and almost all weather observation of the surface. The sensor provide sea surface temperature, precipitation, wind, water vapor and sea ice concentration data that have been very useful in monitoring the climate of the region. More than 30 years of such data are now available, starting with the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7, the Special Scanning Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program (DMSP) and the Advanced Microwave Scanning Radiometer on board the EOS/ Aqua satellite. The techniques that have been developed to derive geophysical parameters from data provided by these and other sensors and associated instrumental and algorithm errors and validation techniques

  1. Precise topography assessment of Lop Nur Lake Basin using GLAS altimeter

    International Nuclear Information System (INIS)

    Wang, Longfei; Gong, Huaze; Shao, Yun

    2014-01-01

    Lop Nur is a dried-up salt lake lying in the eastern part of Tarim basin, which used to be the second largest lagon in China. The ''ear'' rings in Lop Nur attract many interests and are regarded as the lake shorelines during its recession. The topography of the lake basin is important in understanding the formation of the ''ear'' rings. In this paper, elevation data along three transects obtained from laser altimeter were taken as the basic material of the topography in Lop Nur. Elevation data of laser altimeter show great consistency between adjacent passes. Orthometric height (OH) derived from altimetry data and the geoid model are used to analyze the elevation characteristic along ''ear'' rings. The result shows the ''ear'' rings are basically identical in elevation, supporting the statement that ''ear'' rings are former lake shorelines. A discrepancy of approximately 1 meter in OH is observed on the same ''ear'' ring, lower in the north and higher in the south, which is found for the first time. Possible explanations could be deformation of ground surface due to earthquake or tectonic movement after the ''ear'' rings are formed, or tilt of water surface due to wind stress or lake current during the formation of the rings

  2. Landsat Data Continuity Mission - Launch Fever

    Science.gov (United States)

    Irons, James R.; Loveland, Thomas R.; Markham, Brian L.; Masek, Jeffrey G.; Cook, Bruce; Dwyer, John L.

    2012-01-01

    The year 2013 will be an exciting period for those that study the Earth land surface from space, particularly those that observe and characterize land cover, land use, and the change of cover and use over time. Two new satellite observatories will be launched next year that will enhance capabilities for observing the global land surface. The United States plans to launch the Landsat Data Continuity Mission (LDCM) in January. That event will be followed later in the year by the European Space Agency (ESA) launch of the first Sentinel 2 satellite. Considered together, the two satellites will increase the frequency of opportunities for viewing the land surface at a scale where human impact and influence can be differentiated from natural change. Data from the two satellites will provide images for similar spectral bands and for comparable spatial resolutions with rigorous attention to calibration that will facilitate cross comparisons. This presentation will provide an overview of the LDCM satellite system and report its readiness for the January launch.

  3. SeaWiFS Technical Report Series. Volume 42; Satellite Primary Productivity Data and Algorithm Development: A Science Plan for Mission to Planet Earth

    Science.gov (United States)

    Falkowski, Paul G.; Behrenfeld, Michael J.; Esaias, Wayne E.; Balch, William; Campbell, Janet W.; Iverson, Richard L.; Kiefer, Dale A.; Morel, Andre; Yoder, James A.; Hooker, Stanford B. (Editor); hide

    1998-01-01

    Two issues regarding primary productivity, as it pertains to the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Program and the National Aeronautics and Space Administration (NASA) Mission to Planet Earth (MTPE) are presented in this volume. Chapter 1 describes the development of a science plan for deriving primary production for the world ocean using satellite measurements, by the Ocean Primary Productivity Working Group (OPPWG). Chapter 2 presents discussions by the same group, of algorithm classification, algorithm parameterization and data availability, algorithm testing and validation, and the benefits of a consensus primary productivity algorithm.

  4. The GALILEO GALILEI small-satellite mission with FEEP thrusters (G G)

    International Nuclear Information System (INIS)

    Nobili, A. M.; Bramanti, D.; Catastini, G.

    1997-01-01

    The Equivalence Principle, formulated by Einstein generalizing Galileo's and Newton's work, is a fundamental principle of modern physics. As such it should be tested as accurately as possible. Its most direct consequence, namely the Universality of Free Fall, can be tested in space, in a low Earth orbit, the crucial advantage being that the driving signal is about three orders of magnitude stronger than on Earth. GALILEO GALILEI (G G) is a small space mission designed for such a high-accuracy test. At the time of print, G G has been selected by ASI (Agenzia Spaziale Italiana) as a candidate for the next small Italian mission. Ground tests of the proposed apparatus now indicate that an accuracy of 1 part in 10 17 is within the reach of this small mission

  5. Economic benefits of the Space Station to commercial communication satellite operators

    Science.gov (United States)

    Price, Kent M.; Dixson, John E.; Weyandt, Charles J.

    1987-01-01

    The economic and financial aspects of newly defined space-based activities, procedures, and operations (APOs) and associated satellite system designs are presented that have the potential to improve economic performance of future geostationary communications satellites. Launch insurance, launch costs, and the economics of APOs are examined. Retrieval missions and various Space Station scenarios are addressed. The potential benefits of the new APOs to the commercial communications satellite system operator are quantified.

  6. Aquarius and the Aquarius/SAC-D Mission

    Science.gov (United States)

    LeVine, D. M.; Lagerloef, G. S. E.; Torrusio, S.

    2010-01-01

    Aquarius is a combination L-band radiometer and scatterometer designed to map the salinity field at the ocean surface from space. It will be flown on the Aquarius/SAC-D mission, a partnership between the USA space agency (NASA) and Argentine space agency (CONAE). The mission is composed of two parts: (a) The Aquarius instrument being developed as part of NASA.s Earth System Science Pathfinder (ESSP) program; and (b) SAC-D the fourth spacecraft service platform in the CONAE Satellite de Aplicaciones Cientificas (SAC) program. The primary focus of the mission is to monitor the seasonal and interannual variations of the salinity field in the open ocean. The mission also meets the needs of the Argentine space program for monitoring the environment and for hazard detection and includes several instruments related to these goals.

  7. Deep drivers of mesoscale circulation in the central Rockall Trough

    Science.gov (United States)

    Sherwin, T. J.; Alyenik, D.; Dumont, E.; Inall, M.

    2014-11-01

    Mesoscale variability in the central Rockall Trough between about 56 and 58° N has been investigated using a combination of ship-borne, underwater glider and gridded satellite altimeter measurements. Altimeter observations show that mesoscale features such as eddies and large scale circulation cells are ubiquitous phenomena. They have horizontal length scales of order 100 km with vertical scales of over 1000 m and are associated with mean current speeds (over the upper 1000 m) of 15 ± 7 cm s-1. Monthly area averaged surface Eddy Kinetic Energy (EKE) has substantial inter-annual variability, which at times can dominate a mean seasonal signal that varies from a maximum in May (74 cm2 s-2) to a minimum in October (52 cm2 s-2) and has increased gradually since 1992 at about 1.1 cm2 s-2 per year. A five month glider mission in the Trough showed that much of this energy comes from features that are located over 1000 m below the surface in the deep cold waters of the Trough (possibly from eddies associated the North Atlantic Current). The surface currents from altimeters had similar magnitude to the drift currents averaged over 1000 m from the glider in the stratified autumn, but were half the deep water speed during late winter. Although the mesoscale features move in an apparent random manner they may also be quasi-trapped by submarine topography such as seamounts. Occasionally anti-cyclonic and cyclonic cells combine to cause a coherent westward deflection of the European slope current that warms the Rockall side of the Trough. Such deflections contribute to the inter-annual variability in the observed temperature and salinity that are monitored in the upper 800 m of the Trough. By combining glider and altimeter measurements it is shown that altimeter measurements fail to observe a 15 cm s-1 northward flowing slope current on the eastern side and a small persistent southward current on the western side. There is much to be gained from the synergy between satellite

  8. Measurement requirements for a Near-Earth Asteroid impact mitigation demonstration mission

    Science.gov (United States)

    Wolters, Stephen D.; Ball, Andrew J.; Wells, Nigel; Saunders, Christopher; McBride, Neil

    2011-10-01

    A concept for an Impact Mitigation Preparation Mission, called Don Quijote, is to send two spacecrafts to a Near-Earth Asteroid (NEA): an Orbiter and an Impactor. The Impactor collides with the asteroid while the Orbiter measures the resulting change in the asteroid's orbit, by means of a Radio Science Experiment (RSE) carried out before and after the impact. Three parallel Phase A studies on Don Quijote were carried out for the European Space Agency: the research presented here reflects the outcomes of the study by QinetiQ. We discuss the mission objectives with regard to the prioritisation of payload instruments, with emphasis on the interpretation of the impact. The Radio Science Experiment is described and it is examined how solar radiation pressure may increase the uncertainty in measuring the orbit of the target asteroid. It is determined that to measure the change in orbit accurately a thermal IR spectrometer is mandatory, to measure the Yarkovsky effect. The advantages of having a laser altimeter are discussed. The advantages of a dedicated wide-angle impact camera are discussed and the field-of-view is initially sized through a simple model of the impact.

  9. The Proba Satellite Star Tracker Performance

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Denver, Troelz; Betto, Maurizio

    2005-01-01

    ESA's PROBA satellite features a high degree of autonomy, both technologically and scientifically. It is build around a powerful command, data and AOCS controller and with its less than 100 kg it is a true microsatellite. The scientific mission of PROBA includes a scanning telescope, which calls ...

  10. Impact study of the Argo array definition in the Mediterranean Sea based on satellite altimetry gridded data

    Science.gov (United States)

    Sanchez-Roman, Antonio; Ruiz, Simón; Pascual, Ananda; Guinehut, Stéphanie; Mourre, Baptiste

    2016-04-01

    The existing Argo network provides essential data in near real time to constrain monitoring and forecasting centers and strongly complements the observations of the ocean surface from space. The comparison of Sea Level Anomalies (SLA) provided by satellite altimeters with in-situ Dynamic Heights Anomalies (DHA) derived from the temperature and salinity profiles of Argo floats contribute to better characterize the error budget associated with the altimeter observations. In this work, performed in the frame of the E-AIMS FP7 European Project, we focus on the Argo observing system in the Mediterranean Sea and its impact on SLA fields provided by satellite altimetry measurements in the basin. Namely, we focus on the sensitivity of specific SLA gridded merged products provided by AVISO in the Mediterranean to the reference depth (400 or 900 dbar) selected in the computation of the Argo Dynamic Height (DH) as an integration of the Argo T/S profiles through the water column. This reference depth will have impact on the number of valid Argo profiles and therefore on their temporal sampling and the coverage by the network used to compare with altimeter data. To compare both datasets, altimeter grids and synthetic climatologies used to compute DHA were spatially and temporally interpolated at the position and time of each in-situ Argo profile by a mapping method based on an optimal interpolation scheme. The analysis was conducted in the entire Mediterranean Sea and different sub-regions of the basin. The second part of this work is devoted to investigate which configuration in terms of spatial sampling of the Argo array in the Mediterranean will properly reproduce the mesoscale dynamics in this basin, which is comprehensively captured by new standards of specific altimeter products for this region. To do that, several Observing System Simulation Experiments (OSSEs) were conducted assuming that altimetry data computed from AVISO specific reanalysis gridded merged product for

  11. The Tropical Rainfall Measuring Mission and Vern Suomi 's Vital Role

    Science.gov (United States)

    Simpson, Joanne; Kummerow, Christian

    1999-01-01

    The Tropical Rainfall Measuring Mission was a new concept of measuring rainfall over the global tropics using a combination of instruments, including the first weather radar to be flown in space. An important objective of the mission was to obtain profiles of latent heat in order to initialize large-scale circulation models and to understand the relationship between short-term climate changes in relation to rainfall variability. The idea originated in the early 1980's from scientists at the Goddard Space Flight Center/NASA who had been involved with attempts to measure rain with a passive microwave instrument on Nimbus 5 and had compared its results with rain falling in the area covered by the GATE1 radar ships. Using an imaginary satellite flying over the GATE ships, scientists showed that a satellite with an inclined orbit of 30-35 degrees could obtain monthly rainfalls with a sampling error of less than 10 percent over 5 degree by 5 degree areas. The Japanese proposed that they could build a nadir-scanning rain radar for the satellite. Vern Suomi was excited by this mission from the outset, since he recognized the great importance of adequate rainfall measurements over the tropical oceans. He was a charter member of the Science Steering Team and prepared a large part of the Report. While the mission attracted strong support in the science community, it was opposed by some of the high-level NASA management who feared its competition for funds with some much larger Earth Science satellites. Vern was able to overcome this opposition and to generate Congressional support, so that the Project finally got underway on both sides of the Pacific in 1991. The paper will discuss the design of the satellite, its data system and ground validation program. TP.NM was successfully launched in late 1997. Early results will be described. 1 GATE stands for GARP Atlantic Tropical Experiment and GARP stands for Global Atmospheric Research Program.

  12. Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 1: Explanatory supplement

    Science.gov (United States)

    Beichman, C. A. (Editor); Neugebauer, G. (Editor); Habing, H. J. (Editor); Clegg, P. E. (Editor); Chester, Thomas J. (Editor)

    1988-01-01

    The Infrared Astronomical Satellite (IRAS) was launched on January 26, 1983. During its 300-day mission, IRAS surveyed over 96 pct of the celestial sphere at four infrared wavelengths, centered approximately at 12, 25, 60, and 100 microns. Volume 1 describes the instrument, the mission, and data reduction.

  13. Satellite measurements of the earth's crustal magnetic field

    Science.gov (United States)

    Schnetzler, C. C.

    1989-01-01

    The literature associated with the Magsat mission has evaluated the capabilities and limitations of satellite measurements of the earth's crustal magnetic field, and demonstrated that there exists a 300-3000 km magnetic field, related to major features in the earth's crust, which is primarily caused by induction. Due to its scale and sensitivity, satellite data have been useful in the development of models for such large crustal features as subduction zones, submarine platforms, continental accretion boundaries, and rifts. Attention is presently given to the lack of agreement between laboratory and satellite estimates of lower crustal magnetization.

  14. CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate

    Science.gov (United States)

    Renno, N.; Williams, E.; Rosenfeld, D.; Fischer, D.; Fischer, J.; Kremic, T.; Agrawal, A.; Andreae, M.; Bierbaum, R.; Blakeslee, R.; Boerner, A.; Bowles, N.; Christian, H.; Dunion, J.; Horvath, A.; Huang, X.; Khain, A.; Kinne, S.; Lemos, M.-C.; Penner, J.

    2012-04-01

    The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. Knowledge of these interactions is foundational to our understanding of weather and climate. The Intergovernmental Panel on Climate Change (IPCC) and the Decadal Survey (NRC 2007) indicate that the uncertainty in how clouds adjust to aerosol perturbations dominates the uncertainty in the overall quantification of the radiative forcing attributable to human activities. The Clouds, Hazards, and Aerosols Survey for Earth Researchers (CHASER) mission concept responds to the IPCC and Decadal Survey concerns by studying the activation of CCN and their interactions with clouds and storms. CHASER proposes to revolutionize our understanding of the interactions of aerosols with clouds by making the first global measurements of the fundamental physical entity linking them: activated cloud condensation nuclei. The CHASER mission was conceptualized to measure all quantities necessary for determining the interactions of aerosols with clouds and storms. Measurements by current satellites allow the determination of crude profiles of cloud particle size but not of the activated CCN that seed them. CHASER uses a new technique (Freud et al. 2011; Rosenfeld et al. 2012) and high-heritage instruments to produce the first global maps of activated CCN and the properties of the clouds associated with them. CHASER measures the CCN concentration and cloud thermodynamic forcing simultaneously, allowing their effects to be distinguished. Changes in the behavior of a group of weather systems in which only one of the quantities varies (a partial derivative of the intensity with the desirable quantity) allow the determination of each effect statistically. The high uncertainties of current climate predictions limit their much-needed use in decision-making. CHASER mitigates this

  15. The THEMIS Mission

    CERN Document Server

    Burch, J. L

    2009-01-01

    The THEMIS mission aims to determine the trigger and large-scale evolution of substorms by employing five identical micro-satellites which line up along the Earth's magnetotail to track the motion of particles, plasma, and waves from one point to another and for the first time, resolve space-time ambiguities in key regions of the magnetosphere on a global scale. The primary goal of THEMIS is to elucidate which magnetotail process is responsible for substorm onset at the region where substorm auroras map: (i) local disruption of the plasma sheet current (current disruption) or (ii) the interaction of the current sheet with the rapid influx of plasma emanating from reconnection. The probes also traverse the radiation belts and the dayside magnetosphere, allowing THEMIS to address additional baseline objectives. This volume describes the mission, the instrumentation, and the data derived from them.

  16. AIM satellite-based research bridges the unique scientific aspects of the mission to informal education programs globally

    Science.gov (United States)

    Robinson, D.; Maggi, B.

    2003-04-01

    The Education and Public Outreach (EPO) component of the satellite-based research mission "Aeronomy of Ice In the Mesosphere" (AIM) will bridge the unique scientific aspects of the mission to informal education organizations. The informal education materials developed by the EPO will utilize AIM data and educate the public about the environmental implications associated with the data. This will assist with creating a scientifically literate workforce and in developing a citizenry capable of making educated decisions related to environmental policies and laws. The objective of the AIM mission is to understand the mechanisms that cause Polar Mesospheric Clouds (PMCs) to form, how their presence affects the atmosphere, and how change in the atmosphere affects them. PMCs are sometimes known as Noctilucent Clouds (NLCs) because of their visibility during the night from appropriate locations. The phenomenon of PMCs is an observable indicator of global change, a concern to all citizens. Recent sightings of these clouds over populated regions have compelled AIM educators to expand informal education opportunities to communities worldwide. Collaborations with informal organizations include: Museums/Science Centers; NASA Sun-Earth Connection Forum; Alaska Native Ways of Knowing Project; Amateur Noctilucent Cloud Observers Organization; National Parks Education Programs; After School Science Clubs; Public Broadcasting Associations; and National Public Radio. The Native Ways of Knowing Project is an excellent example of informal collaboration with the AIM EPO. This Alaska based project will assist native peoples of the state with photographing NLCs for the EPO website. It will also aid the EPO with developing materials for informal organizations that incorporate traditional native knowledge and science, related to the sky. Another AIM collaboration that will offer citizens lasting informal education opportunities is the one established with the United States National Parks

  17. EUPOS and SLR Contribution to GOCE Mission

    Science.gov (United States)

    Balodis, J.; Caunite, M.; Janpaule, I.; Kenyeres, A.; Rubans, A.; Silabriedis, G.; Rosenthal, G.; Zarinsjh, A.; Zvirgzds, J.; Abel, M.

    2010-12-01

    After the interest of geodesists from several East European countries on successful use of SAPOS in Germany the European Position Determination System EUPOS® project has been established at 2002 under the leadership of Gerd Rosenthal, Berlin State Department of Urban Development. Currently the ground based GNSS augmentation system EUPOS® sub-networks has been developed successfully in 17 countries and the wish to join has been expressed by several other countries. EUPOS® is widely used in many practical applications. Two proposals - "EUPOS® Contribution to GOCE Mission" (Id 4307), "GOCE Observations using SLR for LEO satellites" (Id 4333), were submitted to ESA when ESA in autumn 2006 invited research people to submit proposals for GOCE mission applications. The report is presented in this article on the work which has been done in EUPOS® community and at the University of Latvia. During last 3 years the EUPOS® sub- networks has been completed (Poland, Lithuania, Slovakia, Bulgaria, they tied to the National levelling networks, detailed system behaviour has been depicted on the bases of EUPOS®-Riga network. The development of the SLR for LEO satellites is presented. Initially it was developed for GOCE spacecraft positioning. However, SLR till now was able to observe satellites at night.

  18. Small-satellite technology and applications; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    Science.gov (United States)

    Horais, Brian J.

    Remote sensing applications and systems, small satellites for sensing missions, and supporting technologies are the broad topics discussed. Particular papers are presented on small satellites for water cycle experiments, low-cost spacecraft buses for remote sensing applications, Webersat (a low-cost imaging satellite), DARPA initiatives in small-satellite technologies, a solid-state magnetic azimuth sensor for small satellites, and thermal analysis of a small expendable tether satellite package. (For individual items see A93-24152 to A93-24175)

  19. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    Science.gov (United States)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  20. Recurring dynamically induced thinning during 1985 to 2010 on Upernavik Isstrøm, West Greenland

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Kjaer, K.H.; Korsgaard, N.J.

    2013-01-01

    elevation satellite laser altimeter data supplemented with altimeter surveys from NASA's Airborne Topographic Mapper during 2002 to 2010. To assess thinning prior to 2002, we analyze aerial photographs from 1985. We document at least two distinct periods of dynamically induced ice loss during 1985 to 2010...

  1. Studying the Formation, Evolution, and Habitability of the Galilean Satellites

    Science.gov (United States)

    McGrath, M.; Waite, J. H. Jr.; Brockwell, T.; McKinnon, W.; Wyrick, D.; Mousis, O.; Magee, B.

    2013-01-01

    Highly sensitive, high-mass resolution mass spectrometry is an important in situ tool for the study of solar system bodies. In this talk we detail the science objectives, develop the rationale for the measurement requirements, and describe potential instrument/mission methodologies for studying the formation, evolution, and habitability of the Galilean satellites. We emphasize our studies of Ganymede and Europa as described in our instrument proposals for the recently selected JUICE mission and the proposed Europa Clipper mission.

  2. Emerging Technologies: Small Satellite and Associated TPED

    Science.gov (United States)

    Zitz, R.

    2014-09-01

    The 2010 National Space Policy directs the U.S. space community, comprised of the Department of Defense, Intelligence Community, Military Services and NASA to examine our nation's ability to conduct space-based ISR and communications even during a period of peer state and near peer state attacks intended to deny us our advantages we accrue from our use of space systems. DOD and the ICs past experience is largely one of building small numbers of extraordinarily capable and expensive (exquisite) satellites for communications and ISR. As potential adversaries continue to develop cyber-attack capabilities and have demonstrated an ability to kinetically attack spacecraft, the vulnerability of our architecture is now a serious concern. In addition, the sluggish U.S. economy, the draw down and pull back from a decade of combat operations, and other factors have combined to force a significant reduction in DOD and IC spending over the coming decade(s). Simultaneously, DOD and the IC have a growing awareness that the long lead times and long mission duration of the exquisite space assets can lead to fielding technologies that become obsolete and mission limiting. Some DOD and IC leaders are now examining alternative architectures to provide lower cost, flexible, more diverse and rapidly launchable space systems. Government leaders are considering commercially hosted payloads in geosynchronous orbits and smaller, lower cost, free flying government and commercial satellites in low earth orbits. Additional changes to the ground tasking, processing, exploitation and dissemination (TPED) systems would ensure small satellites have end-to-end mission capability and meet emerging needs such as ease of tasking, multi-INT processing, and more advanced distribution mechanisms (e.g., to users on the move). Today, a majority of agency leaders and their subordinate program managers remain convinced that only large, expensive systems can truly answer requirements and provide reliable

  3. Characterization of Terrestrial Water Dynamics in the Congo Basin Using GRACE and Satellite Radar Altimetry

    Science.gov (United States)

    Lee, Lyongki; Beighley, R. Edward; Alsdorf, Douglas; Jung, Hahn Chul; Shum, C. K.; Duan, Jianbin; Guo, Junyi; Yamazaki, Dai; Andreadis, Konstantinos

    2011-01-01

    The Congo Basin is the world's third largest in size (approximately 3.7 million km^2), and second only to the Amazon River in discharge (approximately 40,200 cms annual average). However, the hydrological dynamics of seasonally flooded wetlands and floodplains remains poorly quantified. Here, we separate the Congo wetland into four 3 degree x 3 degree regions, and use remote sensing measurements (i.e., GRACE, satellite radar altimeter, GPCP, JERS-1, SRTM, and MODIS) to estimate the amounts of water filling and draining from the Congo wetland, and to determine the source of the water. We find that the amount of water annually filling and draining the Congo wetlands is 111 km^3, which is about one-third the size of the water volumes found on the mainstem Amazon floodplain. Based on amplitude comparisons among the water volume changes and timing comparisons among their fluxes, we conclude that the local upland runoff is the main source of the Congo wetland water, not the fluvial process of river-floodplain water exchange as in the Amazon. Our hydraulic analysis using altimeter measurements also supports our conclusion by demonstrating that water surface elevations in the wetlands are consistently higher than the adjacent river water levels. Our research also highlights differences in the hydrology and hydrodynamics between the Congo wetland and the mainstem Amazon floodplain.

  4. Low Cost High Performance Generator Technology Program. Volume 4. Mission application study

    International Nuclear Information System (INIS)

    1975-07-01

    Results of initial efforts to investigate application of selenide thermoelectric RTG's to specific missions as well as an indication of development requirements to enable satisfaction of emerging RTG performance criteria are presented. Potential mission applications in DoD such as SURVSATCOM, Advance Defense Support Program, Laser Communication Satellite, Satellite Data System, Global Positioning Satellite, Deep Space Surveillance Satellite, and Unmanned Free Swimming Submersible illustrate power requirements in the range of 500 to 1000 W. In contrast, the NASA applications require lower power ranging from 50 W for outer planetary atmospheric probes to about 200 W for spacecraft flights to Jupiter and other outer planets. The launch dates for most of these prospective missions is circa 1980, a requirement roughly compatible with selenide thermoelectric and heat source technology development. A discussion of safety criteria is included to give emphasis to the requirements for heat source design. In addition, the observation is made that the potential accident environments of all launch vehicles are similar so that a reasonable composite set of design specifications may be derived to satisfy almost all applications. Details of the LCHPG application potential is afforded by three designs: an 80 W RTG using improved selenide thermoelectric material, a 55 to 65 W LCHPG using current and improved selenide materials, and the final 500 W LCHPG as reported in Volume 2. The final results of the LCHPG design study have shown that in general, all missions can expect an LCHPG design which yields 10 percent efficiency at 3 W/lb with the current standard selenide thermoelectric materials, with growth potential to 14 percent at greater than 4 W/lb in the mid 1980's time frame

  5. High Resolution Airborne InSAR DEM of Bagley Ice Valley, South-central Alaska: Geodetic Validation with Airborne Laser Altimeter Data

    Science.gov (United States)

    Muskett, R. R.; Lingle, C. S.; Echelmeyer, K. A.; Valentine, V. B.; Elsberg, D.

    2001-12-01

    Bagley Ice Valley, in the St. Elias and Chugach Mountains of south-central Alaska, is an integral part of the largest connected glacierized terrain on the North American continent. From the flow divide between Mt. Logan and Mt. St. Elias, Bagley Ice Valley flows west-northwest for some 90 km down a slope of less than 1o, at widths up to 15 km, to a saddle-gap where it turns south-west to become Bering Glacier. During 4-13 September 2000, an airborne survey of Bagley Ice Valley was performed by Intermap Technologies, Inc., using their Star-3i X-band SAR interferometer. The resulting digital elevation model (DEM) covers an area of 3243 km2. The DEM elevations are orthometric heights, in meters above the EGM96 geoid. The horizontal locations of the 10-m postings are with respect to the WGS84 ellipsoid. On 26 August 2000, 9 to 18 days prior to the Intermap Star-3i survey, a small-aircraft laser altimeter profile was acquired along the central flow line for validation. The laser altimeter data consists of elevations above the WGS84 ellipsoid and orthometric heights above GEOID99-Alaska. Assessment of the accuracy of the Intermap Star-3i DEM was made by comparison of both the DEM orthometric heights and elevations above the WGS84 ellipsoid with the laser altimeter data. Comparison of the orthometric heights showed an average difference of 5.4 +/- 1.0 m (DEM surface higher). Comparison of elevations above the WGS84 ellipsoid showed an average difference of -0.77 +/- 0.93 m (DEM surface lower). This indicates that the X-band Star-3i interferometer was penetrating the glacier surface by an expected small amount. The WGS84 comparison is well within the 3 m RMS accuracy quoted for GT-3 DEM products. Snow accumulation may have occurred, however, on Bagley Ice Valley between 26 August and 4-13 September 2000. This will be estimated using a mass balance model and used to correct the altimeter-derived surface heights. The new DEM of Bagley Ice Valley will provide a reference

  6. An Assessment of the Capabilities of the ERS Satellites' Active Microwave Instruments for Monitoring Soil Moisture Change

    Directory of Open Access Journals (Sweden)

    K. Blyth

    1997-01-01

    Full Text Available The launch of the European Remote sensing Satellite (ERS-1 in July 1991 represented an important turning point in the development of Earth observation as it was the first of a series of satellites which would carry high resolution active microwave (radar sensors which could operate through the thickest cloudeover and provide continuity of data for at least a decade. This was of particular relevance to hydrological applications, such as soil moisture monitoring, which generally require frequent satellite observations to monitor changes in state. ERS-1 and its successor ERS-2 carry the active microwave instrument (AMI which operates in 3 modes (synthetic aperture radar, wind scatterometer and wave seatterometer together with the radar altimeter which may all be useful for the observation of soil moisture. This paper assesses the utility of these sensors through a comprehensive review of work in this field. Two approaches to soil moisture retrieval are identified: 1 inversion modelling, where the physical effects of vegetation and soil roughness on radar backscatter are quantified through the use of multi-frequency and/or multi-polarization sensors and 2 change detection where these effects are normalized through frequent satellite observation, the residual effects being attributed to short-term changes in soil moisture. Both approaches will be better supported by the future European Envisat-l satellite which will provide both multi-polarization SAR and low resolution products which should facilitate more frequent temporal observation.

  7. Ka-band SAR interferometry studies for the SWOT mission

    Science.gov (United States)

    Fernandez, D. E.; Fu, L.; Rodriguez, E.; Hodges, R.; Brown, S.

    2008-12-01

    The primary objective of the NRC Decadal Survey recommended SWOT (Surface Water and Ocean Topography) Mission is to measure the water elevation of the global oceans, as well as terrestrial water bodies (such as rivers, lakes, reservoirs, and wetlands), to answer key scientific questions on the kinetic energy of ocean circulation, the spatial and temporal variability of the world's surface freshwater storage and discharge, and to provide societal benefits on predicting climate change, coastal zone management, flood prediction, and water resources management. The SWOT mission plans to carry the following suite of microwave instruments: a Ka-band interferometer, a dual-frequency nadir altimeter, and a multi-frequency water-vapor radiometer dedicated to measuring wet tropospheric path delay to correct the radar measurements. We are currently funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) to reduce the risk of the main technological drivers of SWOT, by addressing the following technologies: the Ka-band radar interferometric antenna design, the on-board interferometric SAR processor, and the internally calibrated high-frequency radiometer. The goal is to significantly enhance the readiness level of the new technologies required for SWOT, while laying the foundations for the next-generation missions to map water elevation for studying Earth. The first two technologies address the challenges of the Ka-band SAR interferometry, while the high- frequency radiometer addresses the requirement for small-scale wet tropospheric corrections for coastal zone applications. In this paper, we present the scientific rational, need and objectives behind these technology items currently under development.

  8. The esa earth explorer land surface processes and interactions mission

    Science.gov (United States)

    Labandibar, Jean-Yves; Jubineau, Franck; Silvestrin, Pierluigi; Del Bello, Umberto

    2017-11-01

    The European Space Agency (ESA) is defining candidate missions for Earth Observation. In the class of the Earth Explorer missions, dedicated to research and pre-operational demonstration, the Land Surface Processes and Interactions Mission (LSPIM) will acquire the accurate quantitative measurements needed to improve our understanding of the nature and evolution of biosphere-atmosphere interactions and to contribute significantly to a solution of the scaling problems for energy, water and carbon fluxes at the Earth's surface. The mission is intended to provide detailed observations of the surface of the Earth and to collect data related to ecosystem processes and radiation balance. It is also intended to address a range of issues important for environmental monitoring, renewable resources assessment and climate models. The mission involves a dedicated maneuvering satellite which provides multi-directional observations for systematic measurement of Land Surface BRDF (BiDirectional Reflectance Distribution Function) of selected sites on Earth. The satellite carries an optical payload : PRISM (Processes Research by an Imaging Space Mission), a multispectral imager providing reasonably high spatial resolution images (50 m over 50 km swath) in the whole optical spectral domain (from 450 nm to 2.35 μm with a resolution close to 10 nm, and two thermal bands from 8.1 to 9.1 μm). This paper presents the results of the Phase A study awarded by ESA, led by ALCATEL Space Industries and concerning the design of LSPIM.

  9. Iodine Small Satellite Propulsion Demonstration - iSAT

    OpenAIRE

    Jehle, MAJ; L., Alexander

    2017-01-01

    NASA’s Iodine Satellite (iSAT) is a small satellite demonstration mission designed and built at NASA’s Marshall Spaceflight Center (MSFC). Previously expected to launch late 2nd quarter of fiscal year ’18, iSAT’s flight effort has temporarily stood-down as of May 2017 to allow for the propulsion system to mature. Once launched, iSAT will demonstrate and characterize the efficiency of BUSEK’s 200 Watt Hall effect thruster utilizing iodine as a propellant in low Earth orbit. This paper covers i...

  10. CASTOR: Cathode/Anode Satellite Thruster for Orbital Repositioning

    Science.gov (United States)

    Mruphy, Gloria A.

    2010-01-01

    The purpose of CASTOR (Cathode/Anode Satellite Thruster for Orbital Repositioning) satellite is to demonstrate in Low Earth Orbit (LEO) a nanosatellite that uses a Divergent Cusped Field Thruster (DCFT) to perform orbital maneuvers representative of an orbital transfer vehicle. Powered by semi-deployable solar arrays generating 165W of power, CASTOR will achieve nearly 1 km/s of velocity increment over one year. As a technology demonstration mission, success of CASTOR in LEO will pave the way for a low cost, high delta-V orbital transfer capability for small military and civilian payloads in support of Air Force and NASA missions. The educational objective is to engage graduate and undergraduate students in critical roles in the design, development, test, carrier integration and on-orbit operations of CASTOR as a supplement to their curricular activities. This program is laying the foundation for a long-term satellite construction program at MIT. The satellite is being designed as a part of AFRL's University Nanosatellite Program, which provides the funding and a framework in which student satellite teams compete for a launch to orbit. To this end, the satellite must fit within an envelope of 50cmx50cmx60cm, have a mass of less than 50kg, and meet stringent structural and other requirements. In this framework, the CASTOR team successfully completed PDR in August 2009 and CDR in April 2010 and will compete at FCR (Flight Competition Review) in January 2011. The complexity of the project requires implementation of many systems engineering techniques which allow for development of CASTOR from conception through FCR and encompass the full design, fabrication, and testing process.

  11. Analysis of raw AIS spectrum recordings from a LEO satellite

    DEFF Research Database (Denmark)

    Larsen, Jesper Abildgaard; Mortensen, Hans Peter

    2014-01-01

    The AAUSAT3 satellite is a 1U cubesat, which has been developed by students at Aalborg University, Denmark in collaboration with the Danish Maritime Authority. The satellite was launched in February 2013 on a mission to monitor ships from space using their AIS broadcast signals as an indication...... of position. The SDR receiver developed to listen for these AIS signals also allows for sampling and storing of the raw intermediate frequency spectrum, which has been used in order to map channel utilization over the areas of interest for the mission, which is mainly the arctic regions. The SDR based...... receiver used onboard the satellite is using a single chip front-end solution, which down converts the AIS signal located around 162 MHz into an intermediate frequency, with a up to 200 kHz bandwidth. This I/F signal is sampled with a 750 kSPS A/D converter and further processed by an Analog Devices DSP...

  12. Atmospheric Drag, Occultation ‘N’ Ionospheric Scintillation (ADONIS mission proposal

    Directory of Open Access Journals (Sweden)

    Hettrich Sebastian

    2015-01-01

    Full Text Available The Atmospheric Drag, Occultation ‘N’ Ionospheric Scintillation mission (ADONIS studies the dynamics of the terrestrial thermosphere and ionosphere in dependency of solar events over a full solar cycle in Low Earth Orbit (LEO. The objectives are to investigate satellite drag with in-situ measurements and the ionospheric electron density profiles with radio occultation and scintillation measurements. A constellation of two satellites provides the possibility to gain near real-time data (NRT about ionospheric conditions over the Arctic region where current coverage is insufficient. The mission shall also provide global high-resolution data to improve assimilative ionospheric models. The low-cost constellation can be launched using a single Vega rocket and most of the instruments are already space-proven allowing for rapid development and good reliability. From July 16 to 25, 2013, the Alpbach Summer School 2013 was organised by the Austrian Research Promotion Agency (FFG, the European Space Agency (ESA, the International Space Science Institute (ISSI and the association of Austrian space industries Austrospace in Alpbach, Austria. During the workshop, four teams of 15 students each independently developed four different space mission proposals on the topic of “Space Weather: Science, Missions and Systems”, supported by a team of tutors. The present work is based on the mission proposal that resulted from one of these teams’ efforts.

  13. Use of Advanced Solar Cells for Commercial Communication Satellites

    Science.gov (United States)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  14. GNSS, Satellite Altimetry and Formosat-3/COSMIC for Determination of Ionosphere Parameters

    Science.gov (United States)

    Mahdi Alizadeh Elizei, M.; Schuh, Harald; Schmidt, Michael; Todorova, Sonya

    The dispersion of ionosphere with respect to the microwave signals allows gaining information about the parameters of this medium in terms of the electron density (Ne), or the Total Elec-tron Content (TEC). In the last decade space geodetic techniques, such as Global Navigation Satellite System (GNSS), satellite altimetry missions, and Low Earth Orbiting (LEO) satel-lites have turned into a promising tool for remote sensing the ionosphere. The dual-frequency GNSS observations provide the main input data for development of Global Ionosphere Maps (GIM). However, the GNSS stations are heterogeneously distributed, with large gaps particu-larly over the sea surface, which lowers the precision of the GIM over these areas. Conversely, dual-frequency satellite altimetry missions provide information about the ionosphere precisely above the sea surface. In addition, LEO satellites such as Formosat-3/COSMIC (F-3/C) pro-vide well-distributed information of ionosphere around the world. In this study we developed GIMs of VTEC from combination of GNSS, satellite altimetry and F-3/C data with temporal resolution of 2 hours and spatial resolution of 5 degree in longitude and 2.5 degree in latitude. The combined GIMs provide a more homogeneous global coverage and higher precision and reliability than results of each individual technique.

  15. WAVE-E: The WAter Vapour European-Explorer Mission

    Science.gov (United States)

    Jimenez-LLuva, David; Deiml, Michael; Pavesi, Sara

    2017-04-01

    In the last decade, stratosphere-troposphere coupling processes in the Upper Troposphere Lower Stratosphere (UTLS) have been increasingly recognized to severely impact surface climate and high-impact weather phenomena. Weakened stratospheric circumpolar jets have been linked to worldwide extreme temperature and high-precipitation events, while anomalously strong stratospheric jets can lead to an increase in surface winds and tropical cyclone intensity. Moreover, stratospheric water vapor has been identified as an important forcing for global decadal surface climate change. In the past years, operational weather forecast and climate models have adapted a high vertical resolution in the UTLS region in order to capture the dynamical processes occurring in this highly stratified region. However, there is an evident lack of available measurements in the UTLS region to consistently support these models and further improve process understanding. Consequently, both the IPCC fifth assessment report and the ESA-GEWEX report 'Earth Observation and Water Cycle Science Priorities' have identified an urgent need for long-term observations and improved process understanding in the UTLS region. To close this gap, the authors propose the 'WAter Vapour European - Explorer' (WAVE-E) space mission, whose primary goal is to monitor water vapor in the UTLS at 1 km vertical, 25 km horizontal and sub-daily temporal resolution. WAVE-E consists of three quasi-identical small ( 500 kg) satellites (WAVE-E 1-3) in a constellation of Sun-Synchronous Low Earth Orbits, each carrying a limb sounding and cross-track scanning mid-infrared passive spectrometer (824 cm-1 to 829 cm-1). The core of the instruments builds a monolithic, field-widened type of Michelson interferometer without any moving parts, rendering it rigid and fault tolerant. Synergistic use of WAVE-E and MetOp-NG operational satellites is identified, such that a data fusion algorithm could provide water vapour profiles from the

  16. Enhancements and Evolution of the Real Time Mission Monitor

    Science.gov (United States)

    Goodman, M.; Blakeslee, R.; Hardin, D.; Hall, J.; He, Y.; Regner, K.

    2008-12-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual earth application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. RTMM has received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and

  17. Straylight analysis of the BepiColombo Laser Altimeter

    Science.gov (United States)

    Weigel, T.; Rugi-Grond, E.; Kudielka, K.

    2008-09-01

    The BepiColombo Laser Altimeter (BELA) shall profile the surface of planet Mercury and operates on the day side as well as on the night side. Because of the high thermal loads, most interior surfaces of the front optics are highly reflective and specular, including the baffle. This puts a handicap on the straylight performance, which is needed to limit the solar background. We present the design measures used to reach an attenuation of about 10-8. We resume the method of backward straylight analysis which starts the rays at the detector and analyses the results in object space. The backward analysis can be quickly compiled and challenges computer resources rather than labor effort. This is very useful in a conceptual design phase when a design is iterated and trade-offs are to be performed. For one design, we compare the results with values obtained from a forward analysis.

  18. The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS mission: design, execution, and first results

    Directory of Open Access Journals (Sweden)

    D. J. Jacob

    2010-06-01

    Full Text Available The NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS mission was conducted in two 3-week deployments based in Alaska (April 2008 and western Canada (June–July 2008. Its goal was to better understand the factors driving current changes in Arctic atmospheric composition and climate, including (1 influx of mid-latitude pollution, (2 boreal forest fires, (3 aerosol radiative forcing, and (4 chemical processes. The June–July deployment was preceded by one week of flights over California (ARCTAS-CARB focused on (1 improving state emission inventories for greenhouse gases and aerosols, (2 providing observations to test and improve models of ozone and aerosol pollution. ARCTAS involved three aircraft: a DC-8 with a detailed chemical payload, a P-3 with an extensive aerosol and radiometric payload, and a B-200 with aerosol remote sensing instrumentation. The aircraft data augmented satellite observations of Arctic atmospheric composition, in particular from the NASA A-Train. The spring phase (ARCTAS-A revealed pervasive Asian pollution throughout the Arctic as well as significant European pollution below 2 km. Unusually large Siberian fires in April 2008 caused high concentrations of carbonaceous aerosols and also affected ozone. Satellite observations of BrO column hotspots were found not to be related to Arctic boundary layer events but instead to tropopause depressions, suggesting the presence of elevated inorganic bromine (5–10 pptv in the lower stratosphere. Fresh fire plumes from Canada and California sampled during the summer phase (ARCTAS-B indicated low NOx emission factors from the fires, rapid conversion of NOx to PAN, no significant secondary aerosol production, and no significant ozone enhancements except when mixed with urban pollution.

  19. Internationally coordinated multi-mission planning is now critical to sustain the space-based rainfall observations needed for managing floods globally

    International Nuclear Information System (INIS)

    Reed, Patrick M; Herman, Jonathan D; Chaney, Nathaniel W; Wood, Eric F; Ferringer, Matthew P

    2015-01-01

    At present 4 of 10 dedicated rainfall observing satellite systems have exceeded their design life, some by more than a decade. Here, we show operational implications for flood management of a ‘collapse’ of space-based rainfall observing infrastructure as well as the high-value opportunities for a globally coordinated portfolio of satellite missions and data services. Results show that the current portfolio of rainfall missions fails to meet operational data needs for flood management, even when assuming a perfectly coordinated data product from all current rainfall-focused missions (i.e., the full portfolio). In the full portfolio, satellite-based rainfall data deficits vary across the globe and may preclude climate adaptation in locations vulnerable to increasing flood risks. Moreover, removing satellites that are currently beyond their design life (i.e., the reduced portfolio) dramatically increases data deficits globally and could cause entire high intensity flood events to be unobserved. Recovery from the reduced portfolio is possible with internationally coordinated replenishment of as few as 2 of the 4 satellite systems beyond their design life, yielding rainfall data coverages that outperform the current full portfolio (i.e., an optimized portfolio of eight satellites can outperform ten satellites). This work demonstrates the potential for internationally coordinated satellite replenishment and data services to substantially enhance the cost-effectiveness, sustainability and operational value of space-based rainfall observations in managing evolving flood risks. (letter)

  20. Retrieving Baseflow from SWOT Mission

    Science.gov (United States)

    Baratelli, F.; Flipo, N.; Biancamaria, S.; Rivière, A.

    2017-12-01

    The quantification of aquifer contribution to river discharge is of primary importance to evaluate the impact of climatic and anthropogenic stresses on the availability of water resources. Several baseflow estimation methods require river discharge measurements, which can be difficult to obtain at high spatio-temporal resolution for large scale basins. The SWOT satellite mission will provide discharge estimations for large rivers (50 - 100 m wide) even in remote basins. The frequency of these estimations depends on the position and ranges from zero to four values in the 21-days satellite cycle. This work aims at answering the following question: can baseflow be estimated from SWOT observations during the mission lifetime? An algorithm based on hydrograph separation by Chapman's filter was developed to automatically estimate the baseflow in a river network at regional or larger scale (> 10000 km2). The algorithm was first applied using the discharge time series simulated at daily time step by a coupled hydrological-hydrogeological model to obtain the reference baseflow estimations. The same algorithm is then forced with discharge time series sampled at SWOT observation frequency. The methodology was applied to the Seine River basin (65000 km2, France). The results show that the average baseflow is estimated with good accuracy for all the reaches which are observed at least once per cycle (relative bias less than 4%). The time evolution of baseflow is also rather well retrieved, with a Nash coefficient which is more than 0.7 for 94% of the network length. This work provides new potential for the SWOT mission in terms of global hydrological analysis.

  1. Propagation of Satelite Rainfall Products uncertainties in hydrological applications : Examples in West-Africa in the framework of the Megha-Tropiques Satellite Mission

    Science.gov (United States)

    Casse, C.; Gosset, M.; Peugeot, C.; Boone, A.; Pedinotti, V.

    2013-12-01

    The use of satellite based rainfall in research or operational Hydrological application is becoming more and more frequent. This is specially true in the Tropics where ground based gauge (or radar) network are generally scarce and often degrading. Member of the GPM constellation, the new French-Indian satellite Mission Megha-Tropiques (MT) dedicated to the water and energy budget in the tropical atmosphere contributes to a better monitoring of rainfall in the inter-tropical zone. As part of this mission, research is developed on the use of MT rainfall products for hydrological research or operational application such as flood monitoring. A key issue for such applications is how to account for rainfall products biases and uncertainties, and how to propagate them in the end user models ? Another important question is how to choose the best space-time resolution for the rainfall forcing, given that both model performances and rain-product uncertainties are resolution dependent. This talk will present on going investigations and perspectives on this subject, with examples from the Megha_tropiques Ground validation sites in West Africa. The CNRM model Surfex-ISBA/TRIP has been set up to simulate the hydrological behavior of the Niger River. This modeling set up is being used to study the predictability of Niger Floods events in the city of Niamey and the performances of satellite rainfall products as forcing for such predictions. One of the interesting feature of the Niger outflow in Niamey is its double peak : a first peak attributed to 'local' rainfall falling in small to medium size basins situated in the region of Niamey, and a second peak linked to the rainfall falling in the upper par of the river, and slowly propagating through the river towards Niamey. The performances of rainfall products are found to differ between the wetter/upper part of the basin, and the local/sahelian areas. Both academic tests with artificially biased or 'perturbed' rainfield and actual

  2. About Nano-JASMINE Satellite System and Project Status

    Science.gov (United States)

    Sako, Nobutada

    Intelligent Space Systems Laboratory, The University of Tokyo (ISSL) and National Astronomical Observatory of Japan (NAO) have been developing a small infrared astrometry satellite named “Nano-JASMINE”. The satellite size is about 50cm cubic and 20kg, which plays a pre-cursor role of JASMINE Project which is programmed by NAO and JAXA. In addition, since there has been only one astrometry satellite HIPPARCOS by ESA in the past, Nano-JASMINE is also expected to achieve certain scientific results in the field of astrometry. In this project, ISSL aims to develop new advanced small satellite bus system whose performance is comparable to that of 100-500kg sized satellites, including attitude stability of 1 arc-second and thermal stability of the mission subsystem of 1 mK. This paper overviews the Nano-JASMINE bus system with emphasis on attitude and thermal control systems.

  3. Lessons learned after one year in space for the AAUSAT3 satellite

    DEFF Research Database (Denmark)

    Larsen, Jesper Abildgaard; Mortensen, Hans Peter; Jessen, Troels

    2014-01-01

    The AAUSAT3 satellite is a 1U cubesat, which has been developed by students at Aalborg University, Denmark in collaboration with the Danish Maritime Authority. The satellite was launched into a polar DD-SSO orbit of 800 km altitude on February 25th 2013 on a mission to monitor ships from space...

  4. VLBI Observations of Geostationary Satellites

    Science.gov (United States)

    Artz, T.; Nothnagel, A.; La Porta, L.

    2013-08-01

    For a consistent realization of a Global Geodetic Observing System (GGOS), a proper tie between the individual global reference systems used in the analysis of space-geodetic observations is a prerequisite. For instance, the link between the terrestrial, the celestial and the dynamic reference system of artificial Earth orbiters may be realized by Very Long O Baseline Interferometry (VLBI) observations of one or several satellites. In the preparation phase for a dedicated satellite mission, one option to realize this is using a geostationary (GEO) satellite emitting a radio signal in X-Band and/or S-Band and, thus, imitating a quasar. In this way, the GEO satellite can be observed by VLBI together with nearby quasars and the GEO orbit can, thus, be determined in a celestial reference frame. If the GEO satellite is, e.g., also equipped with a GNSS-type transmitter, a further tie between GNSS and VLBI may be realized. In this paper, a concept for the generation of a radio signal is shown. Furthermore, simulation studies for estimating the GEO position are presented with a GEO satellite included in the VLBI schedule. VLBI group delay observations are then simulated for the quasars as well as for the GEO satellite. The analysis of the simulated observations shows that constant orbit changes are adequately absorbed by estimated orbit parameters. Furthermore, the post-fit residuals are comparable to those from real VLBI sessions.

  5. Ultra-Sensitive Electrostatic Accelerometers and Future Fundamental Physics Missions

    Science.gov (United States)

    Touboul, Pierre; Christophe, Bruno; Rodrigues, M.; Marque, Jean-Pierre; Foulon, Bernard

    Ultra-sensitive electrostatic accelerometers have in the last decade demonstrated their unique performance and reliability in orbit leading to the success of the three Earth geodesy missions presently in operation. In the near future, space fundamental physics missions are in preparation and highlight the importance of this instrument for achieving new scientific objectives. Corner stone of General Relativity, the Equivalence Principle may be violated as predicted by attempts of Grand Unification. Verification experiment at a level of at least 10-15 is the objective of the CNES-ESA mission MICROSCOPE, thanks to a differential accelerometer configuration with concentric cylindrical test masses. To achieve the numerous severe requirements of the mission, the instrument is also used to control the attitude and the orbital motion of the space laboratory leading to a pure geodesic motion of the drag-free satellite. The performance of the accelerometer is a few tenth of femto-g, at the selected frequency of the test about 10-3 Hz, i.e several orbit frequencies. Another important experimental research in Gravity is the verification of the Einstein metric, in particular its dependence with the distance to the attractive body. The Gravity Advanced Package (GAP) is proposed for the future EJSM planetary mission, with the objective to verify this scale dependence of the gravitation law from Earth to Jupiter. This verification is performed, during the interplanetary cruise, by following precisely the satellite trajectory in the planet and Sun fields with an accurate measurement of the non-gravitational accelerations in order to evaluate the deviations to the geodesic motion. Accelerations at DC and very low frequency domain are concerned and the natural bias of the electrostatic accelerometer is thus compensated down to 5 10-11 m/s2 thanks to a specific bias calibration device. More ambitious, the dedicated mission Odyssey, proposed for Cosmic Vision, will fly in the Solar

  6. Orbital resonances of Taiwan's FORMOSAT-2 remote sensing satellite

    Science.gov (United States)

    Lin, Shin-Fa; Hwang, Cheinway

    2018-06-01

    Unlike a typical remote sensing satellite that has a global coverage and non-integral orbital revolutions per day, Taiwan's FORMOSAT-2 (FS-2) satellite has a non-global coverage due to the mission requirements of one-day repeat cycle and daily visit around Taiwan. These orbital characteristics result in an integer number of revolutions a day and orbital resonances caused by certain components of the Earth's gravity field. Orbital flight data indicated amplified variations in the amplitudes of FS-2's Keplerian elements. We use twelve years of orbital observations and maneuver data to analyze the cause of the resonances and explain the differences between the simulated (at the pre-launch stage) and real orbits of FS-2. The differences are quantified using orbital perturbation theories that describe secular and long-period orbital evolutions caused by resonances. The resonance-induced orbital rising rate of FS-2 reaches +1.425 m/day, due to the combined (modeled) effect of resonances and atmospheric drags (the relative modeling errors remote sensing mission similar to FS-2, especially in the early mission design and planning phase.

  7. Connecting Satellite-Based Precipitation Estimates to Users

    Science.gov (United States)

    Huffman, George J.; Bolvin, David T.; Nelkin, Eric

    2018-01-01

    Beginning in 1997, the Merged Precipitation Group at NASA Goddard has distributed gridded global precipitation products built by combining satellite and surface gauge data. This started with the Global Precipitation Climatology Project (GPCP), then the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), and recently the Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG). This 20+-year (and on-going) activity has yielded an important set of insights and lessons learned for making state-of-the-art precipitation data accessible to the diverse communities of users. Merged-data products critically depend on the input sensors and the retrieval algorithms providing accurate, reliable estimates, but it is also important to provide ancillary information that helps users determine suitability for their application. We typically provide fields of estimated random error, and recently reintroduced the quality index concept at user request. Also at user request we have added a (diagnostic) field of estimated precipitation phase. Over time, increasingly more ancillary fields have been introduced for intermediate products that give expert users insight into the detailed performance of the combination algorithm, such as individual merged microwave and microwave-calibrated infrared estimates, the contributing microwave sensor types, and the relative influence of the infrared estimate.

  8. Earth scientists list top priorities for space missions

    Science.gov (United States)

    Voosen, Paul

    2018-01-01

    Earth scientists hope a new priority setting effort will help them make the most of NASA's limited budget for satellite missions that watch over the planet. The so-called decadal survey, issued in January by the National Academies of Sciences, Engineering, and Medicine, laid out the community's consensus wish list, ranging from cloud monitoring to multiwavelength imaging—and recommends a strong dose of competition to keep costs down. The report prioritizes five observations for launch, including hyperspectral imaging, clouds, atmospheric particles, and missions to chart gravity variations and tiny crustal movements. It also advocates creating a new line of $350 million missions targeting seven observations, with competitions to choose three for flight in the next 10 years.

  9. Spanish Earth Observation Satellite System

    Science.gov (United States)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  10. LOTUS— Preparing Sentinel-3 SAR Altimetry Processing for Ocean and Land

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar; Nielsen, Karina

    2016-01-01

    methods and processing chains need to be developed. Subsequently, new potential Copernicus products should be developed that utilize the improved alongtrack resolution over both the oceans and over land. The main objective of the LOTUS project is to prepare the scientific and operational use of data from......The Sentinel-3 satellite mission with its SRAL instrumentation contains new features compared to the conventional radar altimeter mission that form the basis for new innovative scientific analyses of both ocean and inland water levels. To utilize the full potential of the new data source, new...... that they will be used for commercial activities. LOTUS will develop processing scheme for extracting high-resolution sea surface heights, wave heights and wind speeds from SAR mode data. Over land, the LOTUS will develop processing scheme for extracting high-resolution river and lake heights, soil moisture, and snow...

  11. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites

    Science.gov (United States)

    Belward, Alan S.; Skøien, Jon O.

    2015-05-01

    This paper presents a compendium of satellites under civilian and/or commercial control with the potential to gather global land-cover observations. From this we show that a growing number of sovereign states are acquiring capacity for space based land-cover observations and show how geopolitical patterns of ownership are changing. We discuss how the number of satellites flying at any time has progressed as a function of increased launch rates and mission longevity, and how the spatial resolutions of the data they collect has evolved. The first such satellite was launched by the USA in 1972. Since then government and/or private entities in 33 other sovereign states and geopolitical groups have chosen to finance such missions and 197 individual satellites with a global land-cover observing capacity have been successfully launched. Of these 98 were still operating at the end of 2013. Since the 1970s the number of such missions failing within 3 years of launch has dropped from around 60% to less than 20%, the average operational life of a mission has almost tripled, increasing from 3.3 years in the 1970s to 8.6 years (and still lengthening), the average number of satellites launched per-year/per-decade has increased from 2 to 12 and spatial resolution increased from around 80 m to less than 1 m multispectral and less than half a meter for panchromatic; synthetic aperture radar resolution has also fallen, from 25 m in the 1970s to 1 m post 2007. More people in more countries have access to data from global land-cover observing spaceborne missions at a greater range of spatial resolutions than ever before. We provide a compendium of such missions, analyze the changes and shows how innovation, the need for secure data-supply, national pride, falling costs and technological advances may underpin the trends we document.

  12. Global astrometry with the space interferometry mission

    Science.gov (United States)

    Boden, A.; Unwin, S.; Shao, M.

    1997-01-01

    The prospects for global astrometric measurements with the space interferometry mission (SIM) are discussed. The SIM mission will perform four microarcsec astrometric measurements on objects as faint as 20 mag using the optical interferometry technique with a 10 m baseline. The SIM satellite will perform narrow angle astrometry and global astrometry by means of an astrometric grid. The sensitivities of the SIM global astrometric performance and the grid accuracy versus instrumental parameters and sky coverage schemes are reported on. The problems in finding suitable astrometric grid objects to support microarcsec astrometry, and related ground-based observation programs are discussed.

  13. Integrated analysis of PALSAR/Radarsat-1 InSAR and ENVISAT altimeter data for mapping of absolute water level changes in Louisiana wetlands

    Science.gov (United States)

    Kim, J.-W.; Lu, Z.; Lee, H.; Shum, C.K.; Swarzenski, C.M.; Doyle, T.W.; Baek, S.-H.

    2009-01-01

    Interferometric Synthetic Aperture Radar (InSAR) has been used to detect relative water level changes in wetlands. We developed an innovative method to integrate InSAR and satellite radar altimetry for measuring absolute or geocentric water level changes and applied the methodology to remote areas of swamp forest in coastal Louisiana. Coherence analysis of InSAR pairs suggested that the HH polarization is preferred for this type of observation, and polarimetric analysis can help to identify double-bounce backscattering areas in the wetland. ENVISAT radar altimeter-measured 18-Hz (along-track sampling of 417 m) water level data processed with regional stackfile method have been used to provide vertical references for water bodies separated by levees. The high-resolution (~ 40 m) relative water changes measured from ALOS PALSAR L-band and Radarsat-1 C-band InSAR are then integrated with ENVISAT radar altimetry to obtain absolute water level. The resulting water level time series were validated with in situ gauge observations within the swamp forest. We anticipate that this new technique will allow retrospective reconstruction and concurrent monitoring of water conditions and flow dynamics in wetlands, especially those lacking gauge networks.

  14. Radioisotope fueled pulsed power generation system for propulsion and electrical power for deep space missions

    Science.gov (United States)

    Howe, Troy

    Space exploration missions to the moon, Mars, and other celestial bodies have allowed for great scientific leaps to enhance our knowledge of the universe; yet the astronomical cost of these missions limits their utility to only a few select agencies. Reducing the cost of exploratory space travel will give rise to a new era of exploration, where private investors, universities, and world governments can send satellites to far off planets and gather important data. By using radioisotope power sources and thermal storage devices, a duty cycle can be introduced to extract large amounts of energy in short amounts of time, allowing for efficient space travel. The same device can also provide electrical power for subsystems such as communications, drills, lasers, or other components that can provide valuable scientific information. This project examines the use of multiple radioisotope sources combined with a thermal capacitor using Phase Change Materials (PCMs) which can collect energy over a period of time. The result of this design culminates in a variety of possible spacecraft with their own varying costs, transit times, and objectives. Among the most promising are missions to Mars which cost less than 17M, missions that can provide power to satellite constellations for decades, or missions that can deliver large, Opportunity-sized (185kg) payloads to mars for less than 53M. All made available to a much wider range of customer with commercially available satellite launches from earth. The true cost of such progress though lies in the sometimes substantial increase in transit times for these missions.

  15. Space Access for Small Satellites on the K-1

    Science.gov (United States)

    Faktor, L.

    Affordable access to space remains a major obstacle to realizing the increasing potential of small satellites systems. On a per kilogram basis, small launch vehicles are simply too expensive for the budgets of many small satellite programs. Opportunities for rideshare with larger payloads on larger launch vehicles are still rare, given the complications associated with coordinating delivery schedules and deployment orbits. Existing contractual mechanisms are also often inadequate to facilitate the launch of multiple payload customers on the same flight. Kistler Aerospace Corporation is committed to lowering the price and enhancing the availability of space access for small satellite programs through the fully-reusable K-1 launch vehicle. Kistler has been working with a number of entities, including Astrium Ltd., AeroAstro, and NASA, to develop innovative approaches to small satellite missions. The K-1 has been selected by NASA as a Flight Demonstration Vehicle for the Space Launch Initiative. NASA has purchased the flight results during the first four K-1 launches on the performance of 13 advanced launch vehicle technologies embedded in the K-1 vehicle. On K-1 flights #2-#4, opportunities exist for small satellites to rideshare to low-earth orbit for a low-launch price. Kistler's flight demonstration contract with NASA also includes options to fly Add-on Technology Experiment flights. Opportunities exist for rideshare payloads on these flights as well. Both commercial and government customers may take advantage of the rideshare pricing. Kistler is investigating the feasibility of flying dedicated, multiple small payload missions. Such a mission would launch multiple small payloads from a single customer or small payloads from different customers. The orbit would be selected to be compatible with the requirements of as many small payload customers as possible, and make use of reusable hardware, standard interfaces (such as the existing MPAS) and verification plans

  16. Microwave and theoretical studies for Cosmic Background Explorer satellite

    International Nuclear Information System (INIS)

    Wilkinson, D.T.

    1983-07-01

    The Cosmic Background Explorer (COBE) satellite, its instruments, and its scientific mission are discussed. The COBE radiometer is considered, and measurement of galactic radio emission with masers is reviewed. Extragalactic radiation and zodiacal dust are mentioned briefly

  17. The Study of a Super Low Altitude Satellite

    Science.gov (United States)

    Noda, Atsushi; Homma, Masanori; Utashima, Masayoshi

    This paper reports the result of a study for super low altitude satellite. The altitude of this satellite's orbit is lower than ever. The altitude of a conventional earth observing satellite is generally around from 600km to 900km. The lowest altitude of earth observing satellite launched in Japan was 350km; the Tropical Rainfall Measuring Mission (TRMM). By comparison, the satellite reported in this paper is much lower than that and it is planned to orbit below 200km. Furthermore, the duration of the flight planned is more than two years. Any satellite in the world has not achieved to keep such a low altitude that long term. The satellite in such a low orbit drops quickly because of the strong air drag. Our satellite will cancel the air drag effect by ion engine thrust. To realize this idea, a drag-free system will be applied. This usually leads a complicated and expensive satellite system. We, however, succeeded in finding a robust control law for a simple system even under the unpredictable change of air drag. When the altitude of the satellite is lowered successfully, the spatial resolution of an optical sensor can be highly improved. If a SAR is equipped with the satellite, it enables the drastic reduction of electric power consumption and the fabulous spatial resolution improvement at the same time.

  18. Ocean Surface Topography Mission (OSTM) /Jason-3: Near Real-Time Altimetry Validation System (NRTAVS) QA Reports, 2015 - (NCEI Accession 0122600)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Jason-3 is the fourth mission in U.S.-European series of satellite missions that measure the height of the ocean surface. Scheduled to launch in 2015, the mission...

  19. Satellite information for wind energy applications

    DEFF Research Database (Denmark)

    Nielsen, M.; Astrup, Poul; Hasager, Charlotte Bay

    2004-01-01

    An introduction to satellite information relevant for wind energy applications is given. It includes digital elevation model (DEM) data based on satellite observations. The Shuttle Radar Topography Mission (SRTM) is useful for regional scale wind resourcestudies. Comparison results from complex...... terrain in Spain and flat terrain in Denmark are found to be acceptable for both sites. Also land cover type information can be retrieved from satellite observations. Land cover type maps have to be combined withroughness data from field observation or literature values. Land cover type maps constitute...... an aid to map larger regions within shorter time. Field site observations of obstacles and hedges are still necessary. The raster-based map information from DEMand land cover maps can be converted for use in WASP. For offshore locations it is possible to estimate the wind resources based on ocean surface...

  20. Stability of orbits around planetary satellites considering a disturbing body in an elliptical orbit: Applications to Europa and Ganymede

    Science.gov (United States)

    Cardoso dos Santos, Josué; Carvalho, Jean Paulo; Vilhena de Moraes, Rodolpho

    Europa and Ganymede are two of the four Jupiter’s moons which compose the Galilean satellite. These ones are planetary satellites of greater interest at the present moment among the scientific community. There are some missions being planned to visit them and and the Jovian system. One of them is the cooperation between NASA and ESA for the Europa Jupiter System Mission (EJSM). In this mission are planned the insertion of the spacecrafts JEO (Jupiter Europa Orbiter) and JGO (Jupiter Ganymede Orbiter) into Europa and Ganymede’s orbit. Thus, there is a great necessity for having a better comprehension of the dynamics of the orbits around this planetary satellite. This comprehension is essential for the success of this type of mission. In this context, this work aims to perform a search for low-altitude orbits around these planetary satellites. An emphasis is given in polar orbits. These orbits can be useful in the planning of aerospace activities to be conducted around this planetary satellite, with respect to the stability of orbits of artificial satellites. The study considers orbits of an artificial satellite around Europa and Ganymede under the influence of the third-body perturbation (the gravitational attraction of Jupiter) and the polygenic perturbations. These last ones occur due to forces such as the non-uniform distribution of mass (J2 and J3) of the main (central) body. A simplified dynamic model for polygenic perturbations is used. A new model for the third-body disturbance is presented considering it in an elliptical orbit. The Lagrange planetary equations, which compose a system of nonlinear differential equations, are used to describe the orbital motion of the artificial satellite around Ganymede. The equations showed here are developed in closed form to avoid expansions in inclination and eccentricity.

  1. A Challenging Trio in Space 'Routine' Operations of the Swarm Satellite Constellation

    Science.gov (United States)

    Diekmann, Frank-Jurgen; Clerigo, Ignacio; Albini, Giuseppe; Maleville, Laurent; Neto, Alessandro; Patterson, David; Nino, Ana Piris; Sieg, Detlef

    2016-08-01

    Swarm is the first ESA Earth Observation Mission with three satellites flying in a semi-controlled constellation. The trio is operated from ESA's satellite control centre ESOC in Darmstadt, Germany. The Swarm Flight Operations Segment consists of the typical elements of a satellite control system at ESOC, but had to be carefully tailored for this innovative mission. The main challenge was the multi-satellite system of Swarm, which necessitated the development of a Mission Control System with a multi-domain functionality, both in hardware and software and covering real-time and backup domains. This was driven by the need for extreme flexibility for constellation operations and parallel activities.The three months of commissioning in 2014 were characterized by a very tight and dynamically changing schedule of activities. All operational issues could be solved during that time, including the challenging orbit acquisition phase to achieve the final constellation.Although the formal spacecraft commissioning phase was concluded in spring 2014, the investigations for some payload instruments continue even today. The Electrical Field Instruments are for instance still being tested in order to characterize and improve science data quality. Various test phases also became necessary for the Accelerometers on the Swarm satellites. In order to improve the performance of the GPS Receivers for better scientific exploitation and to minimize the failures due to loss of synchronization, a number of parameter changes were commanded via on-board patches.Finally, to minimize the impact on operations, a new strategy had to be implemented to handle single/multi bit errors in the on-board mass Memories, defining when to ignore and when to restore the memory via a re-initialisation.The poster presentation summarizes the Swarm specific ground segment elements of the FOS and explains some of the extended payload commissioning operations, turning Swarm into a most demanding and challenging

  2. Rainfall Imprint on Sea Surface Salinity in the ITCZ: new satellite perspectives

    Science.gov (United States)

    Boutin, J.; Viltard, N.; Supply, A.; Martin, N.; Vergely, J. L.; Hénocq, C.; Reverdin, G. P.

    2016-02-01

    The European Soil Moisture and Ocean Salinity (SMOS) satellite mission monitors sea surface salinity (SSS) over the global ocean for more than 5 years since 2010. The MADRAS microwave radiometer carried by the French (CNES) Indian (ISRO) satellite mission Megha-Tropiques sampled the 30° N-30° S region end of 2011 and in 2012, very complementary to other Global Precipitation Measurement(GPM) missions. In tropical regions, SMOS SSS contains a large imprint of atmospheric rainfall, but is also likely affected by oceanographic processes (advection and diffusion). At local and short time scales, Boutin et al. (2013, 2014) have shown that the spatio-temporal variability of SSS is dominated by rainfall as detected by satellite microwave radiometers and have demonstrated a close to linear relationship between SMOS SSS freshening under rain cells and satellite rain rate. The order of magnitude is in remarkable agreement with the theoretical renewal model of Schlussel et al. (1997) and compatible with AQUARIUS SSS observations, as well as with in situ drifters observations although the latter are local and taken at 45cm depth while satellite L-band SSS roughly correspond to the top 1cm depth and are spatially integrated over 43-150km. It is thus expected that the combined information of satellite rain rates and satellite SSS brings new constraints on the precipitation budget. We first look at the consistency between the spatial structures of SMOS SSS decrease and of rain rates derived either from the MADRAS microwave radiometer or from the CMORPH combined products that do not use MADRAS rain rates. This provides an indirect validation of the rain rates estimates. We then investigate the impact of rain history and of wind speed on the observed SMOS freshening. Based on these results, we discuss the precision on various precipitation estimates over 2012 in the ITCZ region and the major sources of uncertainties that the SPURS2 campaign could help to resolve.

  3. Revised coordinates of the Mars Orbiter Laser Altimeter (MOLA) footprints

    Science.gov (United States)

    Annibali, S.; Stark, A.; Gwinner, K.; Hussmann, H.; Oberst, J.

    2017-09-01

    We revised the Mars Orbiter Laser Altimeter (MOLA) footprint locations (i.e. areocentric body-fixed latitude and longitude), using updated trajectory models for the Mars Global Surveyor and updated rotation parameters of Mars, including precession, nutation and length-of-day variation. We assess the impact of these updates on the gridded MOLA maps. A first comparison reveals that even slight corrections to the rotational state of Mars can lead to height differences up to 100 m (in particular in regions with high slopes, where large interpolation effects are expected). Ultimately, we aim at independent measurements of the rotation parameters of Mars. We co-register MOLA profiles to digital terrain models from stereo images (stereo DTMs) and measure offsets of the two data sets.

  4. A Robust Controller Structure for Pico-Satellite Applications

    DEFF Research Database (Denmark)

    Kragelund, Martin Nygaard; Green, Martin; Kristensen, Mads

    This paper describes the development of a robust controller structure for use in pico-satellite missions. The structure relies on unknown disturbance estimation and use of robust control theory to implement a system that is robust to both unmodeled disturbances and parameter uncertainties. As one...

  5. CryoSat Data Quality, Product Evolutions and Activities in Support to the Sentinel-3 Topography Mission

    Science.gov (United States)

    Bouffard, J.; Femenias, P.; Parrinello, T.; Bojkov, B.; Dinardo, S.; Fornari, M.; Benveniste, J.

    2015-12-01

    It is well known that conventional nadir altimetry acquisitions are not always suitable to monitor oceanic small-scale dynamics, coastal processes as well as ice sheet areas of rough topography. CryoSat (CS) is the first SAR(in) altimeter concept to be flown on Earth and therefore represents a unique opportunity to process SAR data for which we still have poor knowledge. After briefly presenting the CS data quality and recent evolutions, this paper provide a high level overview of CS activities specifically aiming at supporting the Copernicus Sentinel-3 Topography mission (S-3) within the framework of: - The ground segment processing development and evolution - The data validation and quality control - The potential synergies for future scientific and operational exploitation over ice and ocean.

  6. The Europa Clipper Mission Concept

    Science.gov (United States)

    Pappalardo, Robert; Goldstein, Barry; Magner, Thomas; Prockter, Louise; Senske, David; Paczkowski, Brian; Cooke, Brian; Vance, Steve; Wes Patterson, G.; Craft, Kate

    2014-05-01

    A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon's surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite's ice and ocean, composition, and geology. The set of investigations derived from the Europa Clipper science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces within and beneath the ice shell), Topographical Imager (for stereo imaging of the surface), ShortWave Infrared Spectrometer (for surface composition), Neutral Mass Spectrometer (for atmospheric composition), Magnetometer and Langmuir Probes (for inferring the satellite's induction field to characterize an ocean), and Gravity Science (to confirm an ocean).The mission would also include the capability to perform reconnaissance for a future lander

  7. Sentinel-3 SAR Altimetry over Coastal and Open Ocean: performance assessment and improved retrieval methods in the ESA SCOOP Project.

    Science.gov (United States)

    Benveniste, J.; Cotton, D.; Moreau, T.; Raynal, M.; Varona, E.; Cipollini, P.; Cancet, M.; Martin, F.; Fenoglio-Marc, L.; Naeije, M.; Fernandes, J.; Lazaro, C.; Restano, M.; Ambrózio, A.

    2017-12-01

    The ESA Sentinel-3 satellite, launched in February 2016 as a part of the Copernicus programme, is the second satellite to operate a SAR mode altimeter. The Sentinel 3 Synthetic Aperture Radar Altimeter (SRAL) is based on the heritage from Cryosat-2, but this time complemented by a Microwave Radiometer (MWR) to provide a wet troposphere correction, and operating at Ku and C-Bands to provide an accurate along-track ionospheric correction. The SRAL is operated in SAR mode over the whole ocean and promises increased performance w.r.t. conventional altimetry. SCOOP (SAR Altimetry Coastal & Open Ocean Performance) is a project funded under the ESA SEOM (Scientific Exploitation of Operational Missions) Programme Element, started in September 2015, to characterise the expected performance of Sentinel-3 SRAL SAR mode altimeter products, in the coastal zone and open-ocean, and then to develop and evaluate enhancements to the baseline processing scheme in terms of improvements to ocean measurements. There is also a work package to develop and evaluate an improved Wet Troposphere correction for Sentinel-3, based on the measurements from the on-board MWR, further enhanced mostly in the coastal and polar regions using third party data, and provide recommendations for use. In this presentation we present results from the SCOOP project that demonstrate the excellent performance of SRAL in terms of measurement precision, and we illustrate the development and testing of new processing approaches designed specifically to improve performance close to the coast. The SCOOP test data sets and relevant documentation are available to external researchers on application to the project team. At the end of the project recommendations for further developments and implementations will be provided through a scientific roadmap.

  8. Calibration And Validation Of CryoSat-2 Low Resolution Mode Data

    Science.gov (United States)

    Naeije, M.; Schrama, E.; Scharroo, R.

    2011-02-01

    Running ahead of the continuously growing need for operational use of sea level products, TUDelft started off the Radar Altimeter Database System RADS many years ago. This system attends to a global international sea- level service. It supports, on one hand, science, like studies on ocean circulation, El Nio, sea level change, and ice topography, and on the other hand (offshore) operations, like delivery of ocean current information, wind and wave statistics, ice detection and ice classification. At present, the database is used by a large scientific community throughout the world, and is daily maintained and developed by Altimetrics LLC, TUDelft and NOAA. It contains all historic altimeter data, and now has to be up- dated with the data from ESAs ice mission CryoSat-2, which was launched successfully in April 2010. These new data are important to augment the data set and by that to improve the estimates of sea level change and its contributors. For this the data have to be validated and calibrated, necessary corrections added and improved (including modelling of corrections that are not directly available from the CryoSat-2 platform), and the orbit ac- curacy verified and if possible the orbits brushed up. Subsequently, value-added ocean and ice products need to be developed in synergy with all the other satellite altimeter data. During the commissioning phase we primarily looked at the sanity of the available level-1b and level-2 Low Resolution Mode (LRM) data. Here, for the 2011 CryoSat Validation Workshop, we present the results of our calibration and validation of LRM L2 data by internal comparison of CryoSat-2 and external comparison with other satellites. We have established a range bias of 3.77 (measurement range too long) and a timing bias of 8.2ms (measurement range too late).

  9. Simulation of the Chang'E-5 mission contribution in lunar long wavelength gravity field improvement

    Science.gov (United States)

    Yan, Jianguo; Yang, Xuan; Ping, Jinsong; Ye, Mao; Liu, Shanhong; Jin, Weitong; Li, Fei; Barriot, Jean-Pierre

    2018-06-01

    The precision of lunar gravity field estimation has improved by means of three to five orders of magnitude since the successful GRAIL lunar mission. There are still discrepancies however, in the low degree coefficients and long wavelength components of the solutions developed by two space research centers (JPL and GSFC). These discrepancies hint at the possibilities for improving the accuracy in the long wavelength part of the lunar gravity field. In the near future, China will launch the Chang'E-5 lunar mission. In this sample-return mission, there will be a chance to do KBRR measurements between an ascending module and an orbiting module. These two modules will fly around lunar at an inclination of ˜49 degrees, with an orbital height of 100 km and an inter-satellite distance of 200 km. In our research, we simulated the contribution of the KBRR tracking mode for different GRAIL orbital geometries. This analysis indicated possible deficiencies in the low degree coefficient solutions for the polar satellite-to-satellite tracking mode at various orbital heights. We also investigated the potential contributions of the KBRR to the Chang'E-5 mission goal of lunar gravity field recovery, especially in the long wavelength component. Potential improvements were assessed using various power spectrums of the lunar gravity field models. In addition, we also investigated possible improvements in solving lunar tidal Love number K2. These results may assist the implementation of the Chang'E-5 mission.

  10. Using Information From Prior Satellite Scans to Improve Cloud Detection Near the Day-Night Terminator

    Science.gov (United States)

    Yost, Christopher R.; Minnis, Patrick; Trepte, Qing Z.; Palikonda, Rabindra; Ayers, Jeffrey K.; Spangenberg, Doulas A.

    2012-01-01

    With geostationary satellite data it is possible to have a continuous record of diurnal cycles of cloud properties for a large portion of the globe. Daytime cloud property retrieval algorithms are typically superior to nighttime algorithms because daytime methods utilize measurements of reflected solar radiation. However, reflected solar radiation is difficult to accurately model for high solar zenith angles where the amount of incident radiation is small. Clear and cloudy scenes can exhibit very small differences in reflected radiation and threshold-based cloud detection methods have more difficulty setting the proper thresholds for accurate cloud detection. Because top-of-atmosphere radiances are typically more accurately modeled outside the terminator region, information from previous scans can help guide cloud detection near the terminator. This paper presents an algorithm that uses cloud fraction and clear and cloudy infrared brightness temperatures from previous satellite scan times to improve the performance of a threshold-based cloud mask near the terminator. Comparisons of daytime, nighttime, and terminator cloud fraction derived from Geostationary Operational Environmental Satellite (GOES) radiance measurements show that the algorithm greatly reduces the number of false cloud detections and smoothes the transition from the daytime to the nighttime clod detection algorithm. Comparisons with the Geoscience Laser Altimeter System (GLAS) data show that using this algorithm decreases the number of false detections by approximately 20 percentage points.

  11. Ocean Remote Sensing from Chinese Spaceborne Microwave Sensors

    Science.gov (United States)

    Yang, J.

    2017-12-01

    GF-3 (GF stands for GaoFen, which means High Resolution in Chinese) is the China's first C band multi-polarization high resolution microwave remote sensing satellite. It was successfully launched on Aug. 10, 2016 in Taiyuan satellite launch center. The synthetic aperture radar (SAR) on board GF-3 works at incidence angles ranging from 20 to 50 degree with several polarization modes including single-polarization, dual-polarization and quad-polarization. GF-3 SAR is also the world's most imaging modes SAR satellite, with 12 imaging modes consisting of some traditional ones like stripmap and scanSAR modes and some new ones like spotlight, wave and global modes. GF-3 SAR is thus a multi-functional satellite for both land and ocean observation by switching the different imaging modes. TG-2 (TG stands for TianGong, which means Heavenly Palace in Chinese) is a Chinese space laboratory which was launched on 15 Sep. 2016 from Jiuquan Satellite Launch Centre aboard a Long March 2F rocket. The onboard Interferometric Imaging Radar Altimeter (InIRA) is a new generation radar altimeter developed by China and also the first on orbit wide swath imaging radar altimeter, which integrates interferometry, synthetic aperture, and height tracking techniques at small incidence angles and a swath of 30 km. The InIRA was switch on to acquire data during this mission on 22 September. This paper gives some preliminary results for the quantitative remote sensing of ocean winds and waves from the GF-3 SAR and the TG-2 InIRA. The quantitative analysis and ocean wave spectra retrieval have been given from the SAR imagery. The image spectra which contain ocean wave information are first estimated from image's modulation using fast Fourier transform. Then, the wave spectra are retrieved from image spectra based on Hasselmann's classical quasi-linear SAR-ocean wave mapping model and the estimation of three modulation transfer functions (MTFs) including tilt, hydrodynamic and velocity bunching

  12. Development of approximate shielding calculation method for high energy cosmic radiation on LEO satellites

    International Nuclear Information System (INIS)

    Sin, M. W.; Kim, M. H.

    2002-01-01

    To calculate total dose effect on semi-conductor devices in satellite for a period of space mission effectively, two approximate calculation models for a comic radiation shielding were proposed. They are a sectoring method and a chord-length distribution method. When an approximate method was applied in this study, complex structure of satellite was described into multiple 1-dimensional slabs, structural materials were converted to reference material(aluminum), and the pre-calculated dose-depth conversion function was introduced to simplify the calculation process. Verification calculation was performed for orbit location and structure geometry of KITSAT-1 and compared with detailed 3-dimensional calculation results and experimental values. The calculation results from approximate method were estimated conservatively with acceptable error. However, results for satellite mission simulation were underestimated in total dose rate compared with experimental values

  13. Development of approximate shielding calculation method for high energy cosmic radiation on LEO satellites

    Energy Technology Data Exchange (ETDEWEB)

    Sin, M. W.; Kim, M. H. [Kyunghee Univ., Yongin (Korea, Republic of)

    2002-10-01

    To calculate total dose effect on semi-conductor devices in satellite for a period of space mission effectively, two approximate calculation models for a comic radiation shielding were proposed. They are a sectoring method and a chord-length distribution method. When an approximate method was applied in this study, complex structure of satellite was described into multiple 1-dimensional slabs, structural materials were converted to reference material(aluminum), and the pre-calculated dose-depth conversion function was introduced to simplify the calculation process. Verification calculation was performed for orbit location and structure geometry of KITSAT-1 and compared with detailed 3-dimensional calculation results and experimental values. The calculation results from approximate method were estimated conservatively with acceptable error. However, results for satellite mission simulation were underestimated in total dose rate compared with experimental values.

  14. The Surface Water and Ocean Topography Satellite Mission - An Assessment of Swath Altimetry Measurements of River Hydrodynamics

    Science.gov (United States)

    Wilson, Matthew D.; Durand, Michael; Alsdorf, Douglas; Chul-Jung, Hahn; Andreadis, Konstantinos M.; Lee, Hyongki

    2012-01-01

    The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements.

  15. Attitude Control of a Satellite by using Digital Signal Processing

    Directory of Open Access Journals (Sweden)

    Adirelle C. Santana

    2012-03-01

    Full Text Available This article has discussed the development of a three-axis attitude digital controller for an artificial satellite using a digital signal processor. The main motivation of this study is the attitude control system of the satellite Multi-Mission Platform, developed by the Brazilian National Institute for Space Research for application in different sort of missions. The controller design was based on the theory of the Linear Quadratic Gaussian Regulator, synthesized from the linearized model of the motion of the satellite, i.e., the kinematics and dynamics of attitude. The attitude actuators considered in this study are pairs of cold gas jets powered by a pulse width/pulse frequency modulator. In the first stage of the project development, a system controller for continuous time was studied with the aim of testing the adequacy of the adopted control. The next steps had included an analysis of discretization techniques, the setting time of sampling rate, and the testing of the digital version of the Linear Quadratic Gaussian Regulator controller in the MATLAB/SIMULINK. To fulfill the study, the controller was implemented in a digital signal processor, specifically the Blackfin BF537 from Analog Devices, along with the pulse width/pulse frequency modulator. The validation tests used a scheme of co-simulation, where the model of the satellite was simulated in MATLAB/SIMULINK, while the controller and modulator were processed in the digital signal processor with a tool called Processor-In-the-Loop, which acted as a data communication link between both environments.function and required time to achieve a given mission accuracy are determined, and results are provided as illustration.

  16. Utilizing the ISS Mission as a Testbed to Develop Cognitive Communications Systems

    Science.gov (United States)

    Jackson, Dan

    2016-01-01

    The ISS provides an excellent opportunity for pioneering artificial intelligence software to meet the challenges of real-time communications (comm) link management. This opportunity empowers the ISS Program to forge a testbed for developing cognitive communications systems for the benefit of the ISS mission, manned Low Earth Orbit (LEO) science programs and future planetary exploration programs. In November, 1998, the Flight Operations Directorate (FOD) started the ISS Antenna Manager (IAM) project to develop a single processor supporting multiple comm satellite tracking for two different antenna systems. Further, the processor was developed to be highly adaptable as it supported the ISS mission through all assembly stages. The ISS mission mandated communications specialists with complete knowledge of when the ISS was about to lose or gain comm link service. The current specialty mandated cognizance of large sun-tracking solar arrays and thermal management panels in addition to the highly-dynamic satellite service schedules and rise/set tables. This mission requirement makes the ISS the ideal communications management analogue for future LEO space station and long-duration planetary exploration missions. Future missions, with their precision-pointed, dynamic, laser-based comm links, require complete autonomy for managing high-data rate communications systems. Development of cognitive communications management systems that permit any crew member or payload science specialist, regardless of experience level, to control communications is one of the greater benefits the ISS can offer new space exploration programs. The IAM project met a new mission requirement never previously levied against US space-born communications systems management: process and display the orientation of large solar arrays and thermal control panels based on real-time joint angle telemetry. However, IAM leaves the actual communications availability assessment to human judgement, which introduces

  17. Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission

    Science.gov (United States)

    Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.

    2012-01-01

    The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).

  18. A new TDRSS Compatible Transceiver for Long Duration HIgh Altitude Scientific Balloon Missions

    Science.gov (United States)

    Stilwell, B.; Siemon, M.

    High altitude scientific balloons have been used for many years to provide scientists with access to near space at a fraction of the cost of satellite based or sounding rocket experiments. In recent years, these balloons have been successfully used for long duration missions of up to several weeks. Longer missions with durations of up to 100 days (Ultra-Long) are on the drawing board. An enabling technology for the growth of the scientific balloon missions is the use of the NASA Tracking and Data Relay Satellite System (TDRSS) for telemetering the health, status, position and payload science data to mission operations personnel. The TDRSS system provides global coverage by relaying the data through geostationary relay satellites to a single ground station in White Sands New Mexico. Data passes from the White Sands station to the user via commercial telecommunications services including the Internet. A forward command link can also be established to the balloon for real- time command and control. Early TDRSS communications equipment used by the National Scientific Balloon Facility was either unreliable or too expensive. The equipment must be a le tob endure the rigors of space flight including radiation exposure, high temperature extremes and the shock of landing and recovery. Since a payload may occasionally be lost, the cost of the TDRSS communications gear is a limiting factor in the number of missions that can be supported. Under sponsorship of the NSBF, General Dynamics Decision Systems has developed a new TDRSS compatible transceiver that reduces the size, weight and cost to approximately one half that of the prior generation of hardware. This paper describes the long and ultra-long balloon missions and the role that TDRSS communications plays in mission success. The new transceiver design is described, along with its interfaces, performance characteristics, qualification and production status. The transceiver can also be used in other space, avionics or

  19. European Telecommunications Satellite II (EUTELSAT II)

    Science.gov (United States)

    Laemmel, G.; Brittinger, P.

    1991-01-01

    EUTELSAT II is a regional public telecommunications system for Europe. The services which will be provided are telephone and television. The satellites will be placed at a geostationary orbit within the arcs of 6 degrees east to 19 degrees east or 26 degrees to 36 degrees east. The designed lifetime is 7 years. After separation of the satellites from the launch vehicles, telemetry, telecommand, and ranging will be performed within the S-band frequencies. After positioning of the satellite at its final geostationary orbit, the Ku-band telecommunication equipment will be activated. From this time on, all satellite control operations will be performed in Ku-band. The Deep Space Network (DSN) will support the transfer and drift orbit mission phases. The coverage will consist of the 26-m antennas at Goldstone and Canberra as prime support for the transfer and drift orbits. Maximum support will consist of a 7-day period, plus 14 days of contingency support. Information is given in tabular form for DSN support, frequency assignments, telemetry, command, and tracking support responsibility.

  20. Description of Simulated Small Satellite Operation Data Sets

    Science.gov (United States)

    Kulkarni, Chetan S.; Guarneros Luna, Ali

    2018-01-01

    A set of two BP930 batteries (Identified as PK31 and PK35) were operated continuously for a simulated satellite operation profile completion for single cycle. The battery packs were charged to an initial voltage of around 8.35 V for 100% SOC before the experiment was started. This document explains the structure of the battery data sets. Please cite this paper when using this dataset: Z. Cameron, C. Kulkarni, A. Guarneros, K. Goebel, S. Poll, "A Battery Certification Testbed for Small Satellite Missions", IEEE AUTOTESTCON 2015, Nov 2-5, 2015, National Harbor, MA