WorldWideScience

Sample records for satellite acquired thermal-infrared

  1. TIRCIS: thermal infrared compact imaging spectrometer for small satellite applications

    Science.gov (United States)

    Wright, Robert; Lucey, Paul; Crites, Sarah; Garbeil, Harold; Wood, Mark; Pilger, Eric; Gabrieli, Andrea; Honniball, Casey

    2016-10-01

    Measurements of reflectance or emittance in tens of narrow, contiguous wavebands, allow for the derivation of laboratory quality spectra remotely, from which the chemical composition and physical properties of targets can be determined. Although spaceborne (e.g. EO-1 Hyperion) hyperspectral data in the 0.4-2.5 micron (VSWIR) region are available, the provision of equivalent data in the log-wave infrared has lagged behind, there being no currently operational high spatial resolution LWIR imaging spectrometer on orbit. TIRCIS (Thermal Infra-Red Compact Imaging Spectrometer), uses a Fabry-Perot interferometer, an uncooled microbolometer array, and push-broom scanning to acquire hyperspectral image data. Radiometric calibration is provided by blackbody targets while spectral calibration is achieved using monochromatic light sources. The instrument has a mass of <15 kg and dimensions of 53 cm × 25 cm ♢ 22 cm, and has been designed to be compatible with integration into a micro-satellite platform. (A precursor to this instrument was launched onboard a 55 kg microsatellite in October 2015). The optical design yields a 120 m ground sample size given an orbit of 500 km. Over the wavelength interval of 7.5 to 14 microns up to 50 spectral samples are possible. Measured signal-to-noise ratios range from peak values of 500:1 to 1500:1, for source temperature of 10 to 100°C.

  2. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    Science.gov (United States)

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  3. A low cost thermal infrared hyperspectral imager for small satellites

    Science.gov (United States)

    Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.

    2011-06-01

    The traditional model for space-based earth observations involves long mission times, high cost, and long development time. Because of the significant time and monetary investment required, riskier instrument development missions or those with very specific scientific goals are unlikely to successfully obtain funding. However, a niche for earth observations exploiting new technologies in focused, short lifetime missions is opening with the growth of the small satellite market and launch opportunities for these satellites. These low-cost, short-lived missions provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off the shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCOR), to demonstrate the ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power efficient thermal hyperspectral imager with electronics contained in a pressure vessel to enable the use of COTS electronics, and will be compatible with small satellite platforms. The sensor, called Thermal Hyperspectral Imager (THI), is based on a Sagnac interferometer and uses an uncooled 320x256 microbolometer array. The sensor will collect calibrated radiance data at long-wave infrared (LWIR, 8-14 microns) wavelengths in 230-meter pixels with 20 wavenumber spectral resolution from a 400-km orbit.

  4. A low cost thermal infrared hyperspectral imager for small satellites

    Science.gov (United States)

    Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.; Wood, M.

    2012-06-01

    The growth of the small satellite market and launch opportunities for these satellites is creating a new niche for earth observations that contrasts with the long mission durations, high costs, and long development times associated with traditional space-based earth observations. Low-cost, short-lived missions made possible by this new approach provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off-the-shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCoR), to demonstrate ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power-efficient thermal hyperspectral imager with electronics contained in a pressure vessel to enable use of COTS electronics and will be compatible with small satellite platforms. The sensor, called Thermal Hyperspectral Imager (THI), is based on a Sagnac interferometer and uses an uncooled 320x256 microbolometer array. The sensor will collect calibrated radiance data at long-wave infrared (LWIR, 8-14 microns) wavelengths in 230 meter pixels with 20 wavenumber spectral resolution from a 400 km orbit. We are currently in the laboratory and airborne testing stage in order to demonstrate the spectro-radiometric quality of data that the instrument provides.

  5. An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products

    Directory of Open Access Journals (Sweden)

    Raquel Niclòs

    2015-11-01

    Full Text Available An autonomous system for field land surface temperature (LST measurements taken at different observation angles was developed to be deployed easily at any conventional meteorological tower station. The system permits ground-truth data to be acquired on a continuous basis, and angularly scans land and sky hemispheres with a single thermal-infrared (TIR radiometer. This paper describes the autonomous angular system and the methodology to assess ground-truth LST and relative-to-nadir emissivity data from system measurements. Ground-truth LSTs were used to validate satellite-retrieved LST products at two experimental sites (rice crop and shrubland areas. The relative-to-nadir emissivity values were used to analyze the anisotropy of surface emissive properties over thermally-homogeneous covers. The EOS-MODIS MOD11_L2/MYD11_L2 LST product was evaluated and shown to work within expected uncertainties (<2.0 K when tested against the system data. A slight underestimation of around −0.15 K was observed, which became greater for the off-nadir observation angles at the shrubland site. The system took angular measurements for the different seasonal homogeneous covers at the rice crop site. These measurements showed emissivity angular anisotropies, which were in good agreement with previously published data. The dual-view ENVISAT-AATSR data reproduced them, and revealed that the system data collected for thermally-homogeneous surfaces could be used to test future satellite TIR sensors with multi-angular or bi-angular capabilities, like the forthcoming SLSTR on board Copernicus Sentinel-3A.

  6. An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products

    OpenAIRE

    Raquel Niclòs; José A. Valiente; Maria J. Barberà; César Coll

    2015-01-01

    An autonomous system for field land surface temperature (LST) measurements taken at different observation angles was developed to be deployed easily at any conventional meteorological tower station. The system permits ground-truth data to be acquired on a continuous basis, and angularly scans land and sky hemispheres with a single thermal-infrared (TIR) radiometer. This paper describes the autonomous angular system and the methodology to assess ground-truth LST and relative-to-nadir emissivit...

  7. Probable satellite thermal infrared anomaly before the Zhangbei MS=6.2 earthquake on January 10, 1998

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper used the thermal infrared data of the satellite NOAA-AAVHRR of the north part of North China (113°~119° E, 38°~42° N), and processed the remote sensing data through radiation adjustment, geometric adjustment and so on by the software "The Monitoring and Fast Process System of Earthquake Precursor Thermal Infrared Anomaly", inversed the earth surface temperature. Some disturbances effect had been excluded, and thermal infrared temperature anomaly had been extracted by the picture difference method. The Zhangbei MS=6.2 earthquake is used as the example in the paper, so that in the paper thermal infrared characteristics on time-space before earthquake and the relationship between the anomaly and the earthquake prediction have been summarized.Within more than ten days before the Zhangbei earthquake, the thermal infrared anomaly had emerged widely along Zhangjiakou-Bohai seismic belt, and the anomalous region seemed like a belt and it is also consistent with the tectonic background there; the anomaly expanded from the outside toward the earthquake focus, but the focus lay at the edge of the thermal infrared region. So it is possible to explore a new anomaly observation method for earthquake prediction by observing and studying the satellite thermal infrared anomaly before big earthquakes happen.

  8. TIRCIS: Hyperspectral Thermal Infrared Imaging Using a Small-Satellite Compliant Fourier-Transform Imaging Spectrometer, for Natural Hazard Applications

    Science.gov (United States)

    Wright, R.; Lucey, P. G.; Crites, S.; Garbeil, H.; Wood, M.

    2015-12-01

    Many natural hazards, including wildfires, volcanic eruptions, and, from the perspective of climate-related hazards, urban heat islands, could be better quantified via the routine availability of hyperspectral thermal infrared remote sensing data from orbit. However, no sensors are currently in operation that provide such data at high-to-moderate spatial resolution (e.g. Landsat-class resolution). In this presentation we will describe a prototype instrument, developed using funding provided by NASA's Instrument Incubator Program, that can make these important measurements. Significantly, the instrument has been designed such that its size, mass, power, and cost are consistent with its integration into small satellite platforms, or deployment as part of small satellite constellations. The instrument, TIRCIS (Thermal Infra-Red Compact Imaging Spectrometer), uses a Fabry-Perot interferometer, an uncooled microbolometer array, and push-broom scanning to acquire hyperspectral image data cubes. Radiometric calibration is provided by blackbody targets while spectral calibration is achieved using monochromatic light sources. Neither the focal plane nor the optics need to be cooled, and the instrument has a mass of <10 kg and dimensions of 53 cm × 25 cm × 22 cm. Although the prototype has four moving parts, this can easily be reduced to one. The current optical design yields a 120 m ground sample size given an orbit of 500 km. Over the wavelength interval of 7.5 to 14 microns up to 90 spectral samples are possible, by varying the physical design of the interferometer. Our performance model indicates signal-to-noise ratios of the order of about 200 to 300:1. In this presentation we will provide an overview of the instrument design, fabrication, results from our initial laboratory characterization, and some of the application areas in which small-satellite-ready instruments such as TIRCIS could make a valuable contribution to the study of natural hazards.

  9. The Critical Need for Future Mid-Resolution Thermal Infrared Satellite Sensors

    Science.gov (United States)

    Vincent, R. K.

    2006-12-01

    Eight future applications of data from mid-resolution thermal infrared satellite sensors are suggested, from least to most significant as follows: 8. Map thin ice unsafe for ice-fishing in the Great Lakes as a warning to winter fishermen; 7. Map ammonia plumes to locate large ammonia stockpiles (Homeland Security) and to monitor concentrated animal feeding operations (CAFOs); 6. Map types of surface algae in ocean, lakes, and rivers, especially those containing surface diatoms; 5. Monitor urban heat islands to determine the cooling affects of painting visibly dark surfaces with bright paints or coatings; 4. Map rock-types and soil-types of non- vegetated regions world-wide, a task which ASTER cannot complete in its current lifetime; 3. Detect surface warming of rocks under increased stress and pressure as an earthquake precursor; 2. Map pollutant gases, especially sulfur dioxide, which is important both for smokestack monitoring and volcanic eruption precursors; 1. Map methane escape into the atmosphere from methane clathrate destabilization as a key warning of imminent and drastic temperature rises in the troposphere. Each of these applications will be briefly discussed and past examples will be given for most of them.

  10. Maximizing the Use of Satellite Thermal Infrared Data for Advancing Land Surface Temperature Analysis

    Science.gov (United States)

    Weng, Q.; Fu, P.; Gao, F.

    2014-12-01

    Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. Thus, various algorithms/models have been developed to enhance the spatial or the temporal resolution of TIR data, but rare of those can enhance both spatial and temporal details. This paper presents a new data fusion algorithm for producing Landsat-like LST data by blending daily MODIS and periodic Landsat TM datasets. The original Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) was improved and modified for predicting thermal radiance and LST data by considering annual temperature cycle (ATC) and urban thermal landscape heterogeneity. The technique of linear spectral mixture analysis was employed to relate the Landsat radiance with the MODIS one, so that the temporal changes in radiance can be incorporated in the fusion model. This paper details the theoretical basis and the implementation procedures of the proposed data fusion algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT). A case study was conducted that predicted LSTs of five dates in 2005 from July to October in Los Angeles County, California. The results indicate that the prediction accuracy for the whole study area ranged from 1.3 K to 2 K. Like existing spatio-temporal data fusion models, the SADFAT method has a limitation in predicting LST changes that were not recorded in the MODIS and/or Landsat pixels due to the model assumption.

  11. USING OF THE MULTITEMPORAL THERMAL INFRARED SATELLITE IMAGERY FOR NATURAL AREAS MAPPING (CASE OF MENDELEEV VOLCANO

    Directory of Open Access Journals (Sweden)

    M. Y. Grishchenko

    2014-01-01

    Full Text Available In the paper authors examine the mountain group of Mendeleev volcano situated on the Kunashir island, Kuril archipelago, Russia. Ground observations were led to examine the vegetation cover of the area as well as its typical landscapes. The other type of used data is Landsat imagery. Images were combined into multitemporal thermal infrared and multispectral pictures, which were classified to reveal the heterogeneity of the study area. Ground observations and comparison of the classification results with landscape map derive that the multitemporal thermal infrared image classification result describes better the vegetation cover structure of the area and particularity of its typical landscapes distribution. It leads to the proposition that miltitemporal thermal infrared imagery can be used to refine landscape and vegetation cover contours. 

  12. Satellite Thermal Infrared Earthquake Precursor to the Wenchuan Ms 8.0 Earthquake in Sichuan, China, and its Analysis on Geo-dynamics

    Institute of Scientific and Technical Information of China (English)

    WEI Lejun; GUO Jianfeng; LIU Jianhua; LU Zhenquan; LI Haibing; CAI Hui

    2009-01-01

    Based on an interpretation and study of the satellite remote-sensing images of FY-2C thermal infrared 1st wave band (10.3-11.3 μm) designed in China, the authors found that there existed obvious and isolated satellite thermal infrared anomalies before the 5.12 Wenchuan Ms 8.0 Earthquake. These anomalies had the following characteristics: (1) The precursor appeared rather early: on March 18, 2008, I.e., 55 days before the earthquake, thermal infrared anomalies began to occur; (2) The anomalies experienced quite many and complex evolutionary stages: the satellite thermal infrared anomalies might be divided into five stages, whose manifestations were somewhat different from each other. The existence of so many anomaly stages was probably observed for the first time in numerous cases of satellite thermal infrared research on earthquakes; (3) Each stage lasted quite a long time, with the longest one spanning 13 days; (4) An evident geothermal anomaly gradient was distributed along the Longmen seismic fracture zone, and such a phenomenon might also be discovered for the first time in satellite thermal infrared earthquake research. This discovery is therefore of great guiding and instructive significance in the study of the earthquake occurrence itself and the trend of the post-earthquake phenomena.

  13. Estimation of soil moisture-thermal infrared emissivity relation in arid and semi-arid environments using satellite observations

    Science.gov (United States)

    Grazia Blasi, Maria; Masiello, Guido; Serio, Carmine; Venafra, Sara; Liuzzi, Giuliano; Dini, Luigi

    2016-04-01

    The retrieval of surface parameters is very important for various aspects concerning the climatological and meteorological context. At this purpose surface emissivity represents one of the most important parameters useful for different applications such as the estimation of climate changes and land cover features. It is known that thermal infrared (TIR) emissivity is affected by soil moisture, but there are very few works in literature on this issue. This study is aimed to analyze and find a relation between satellite soil moisture data and TIR emissivity focusing on arid and semi-arid environments. These two parameters, together with the land surface temperature, are fundamental for a better understanding of the physical phenomena implied in the soil-atmosphere interactions and the surface energy balance. They are also important in several fields of study, such as climatology, meteorology, hydrology and agriculture. In particular, there are several studies stating a correlation between soil moisture and the emissivity at 8-9 μm in desertic soils, which corresponds to the quartz Reststrahlen, a feature which is typical of sandy soils. We investigated several areas characterized by arid or semi-arid environments, focusing our attention on the Dahra desert (Senegal), and on the Negev desert (Israel). For the Dahra desert we considered both in situ, provided by the International Soil Moisture Network, and satellite soil moisture data, from ASCAT and AMSR-E sensors, for the whole year 2011. In the case of the Negev desert soil moisture data are derived from ASCAT observations and we computed a soil moisture index from a temporal series of SAR data acquired by the Cosmo-SkyMed constellation covering a period of six months, from June 2015 to November 2015. For both cases soil moisture data were related to the retrieved TIR emissivity from the geostationary satellite SEVIRI in three different spectral channels, at 8.7 μm, 10.8 μm and 12 μm. A Kalman filter physical

  14. Atmospheric correction of thermal-infrared imagery of the 3-D urban environment acquired in oblique viewing geometry

    Directory of Open Access Journals (Sweden)

    F. Meier

    2010-12-01

    Full Text Available This research quantifies and discusses atmospheric effects that alter the radiance observed by a ground-based thermal-infrared (TIR camera mounted on top of a high-rise building in the city of Berlin, Germany. The study shows that atmospheric correction of ground-based TIR imagery of the three-dimensional (3-D urban environment acquired in oblique viewing geometry has to account for spatial variability of line-of-sight (LOS geometry. We present an atmospheric correction procedure that uses these spatially distributed LOS geometry parameters, the radiative transfer model MODTRAN 5.2 and atmospheric profile data derived from meteorological measurements in the field of view (FOV of the TIR camera. The magnitude of atmospheric effects varies during the analysed 24-hourly period (8 August 2009 and is particularly notable for surfaces showing a strong surface-to-air temperature difference. The differences between uncorrected and corrected TIR imagery reach up to 7.7 K at 12:00. Atmospheric effects are biased up to 4.3 K at 12:00 and up to 0.6 K at 24:00, if non-spatially distributed LOS parameters are used.

  15. Correction and evaluation of thermal infrared data acquired with two different airborne systems at the Elbe estuary

    Science.gov (United States)

    Fricke, Katharina; Baschek, Björn; Jenal, Alexander; Kneer, Caspar; Weber, Immanuel; Bongartz, Jens; Wyrwa, Jens; Schöl, Andreas

    2016-10-01

    This study presents the results from a combined aerial survey performed with a hexacopter and a gyrocopter over a part of the Elbe estuary near Hamburg, Germany. The survey was conducted by the Federal Institute of Hydrology, Germany, and the Fraunhofer Application Center for Multimodal and Airborne Sensors as well as by a contracted engineering company with the aim to acquire spatial thermal infrared (TIR) data of the Hahnöfer Nebenelbe, a branch of the Elbe estuary. Additionally, RGB and NIR data was captured to facilitate the identification of water surfaces and intertidal mudflats. The temperature distribution of the Elbe estuary affects all biological processes and in consequence the oxygen content, which is a key parameter in water quality. The oxygen levels vary in space between the main fairway and side channels. So far, only point measurements are available for monitoring and calibration/validation of water quality models. To better represent this highly dynamic system with a high spatial and temporal variability, tidal streams, heating and cooling, diffusion and mixing processes, spatially distributed data from several points of time within the tidal cycle are necessary. The data acquisition took place during two tidal cycles over two subsequent days in the summer of 2015. While the piloted gyrocopter covered the whole Hahnöfer Nebenelbe seven times, the unmanned hexacopter covered a smaller section of the branch and tidal mudflats with a higher spatial and temporal resolution (16 coverages of the subarea). The gyrocopter data was acquired with a thermal imaging system and processed and georeferenced using the structure from motion algorithm with GPS information from the gyrocopter and optional ground control points. The hexacopter data was referenced based on ground control points and the GPS and position information of the acquisition system. Both datasets from the gyrocopter and the hexacopter are corrected for the effects of the atmosphere and

  16. Lava discharge rate estimates from thermal infrared satellite data for Pacaya Volcano during 2004-2010

    Science.gov (United States)

    Morgan, Hilary A.; Harris, Andrew J. L.; Gurioli, Lucia

    2013-08-01

    Pacaya is one of the most active volcanoes in Central America and has produced lava flows frequently since 1961. All effusive activity between 1961 and 2009 was confined by an arcuate collapse scarp surrounding the northern and eastern flanks. However, the recent breaching of this topographic barrier, and the eruption of a large lava flow outside of the main center of activity, have allowed lava to extend into nearby populated areas, indicating the need for assessment and monitoring of lava flow hazards. We investigated whether a commonly used satellite-based model could produce accurate lava discharge rates for the purpose of near-real-time assessment of hazards during future eruptions and to assess the dynamics of this persistently degassing system. The model assumes a linear relationship between active lava flow area and time-averaged discharge rate (TADR) via a simple conversion factor. We calculated the conversion factor via two methods: (1) best-fitting of satellite-derived flow areas to ground-based estimates of lava flow volume, and (2) theoretically via a parameterized model that takes into account the physical properties of the lava. To apply the latter method, we sampled four lava flows and measured density, vesicularity, crystal content, and major element composition. We found the best agreement of conversion factors in the eruption with the most complete satellite coverage, and used data for these flows to define the linear relationship between area and discharge rate. The physical properties of the sampled flows were essentially identical, so that any discrepancy between the two methods of calculating conversion factors must be due to modeling errors or environmental factors unaccounted for by the parameterized model. However, our best-fitting method provides a new means to set the conversion appropriately, and to obtain self-consistent TADRs. We identified two distinct types of effusive activity at Pacaya: Type 1 activity characterized by initially

  17. Long-Term Record of Arctic and Antarctic Sea and Ice Surface Temperatures from Thermal Infrared Satellite Sensors

    Science.gov (United States)

    Luis, Cristina; Dybkjær, Gorm; Eastwood, Steinar; Tonboe, Rasmus; Høyer, Jacob

    2015-04-01

    Surface temperature is among the most important variables in the surface energy balance equation and it significantly affects the atmospheric boundary layer structure, the turbulent heat exchange and, over ice, the ice growth rate. Here we measure the surface temperature using thermal infrared sensors from 10-12 µm wavelength, a method whose primary limitation over sea ice is the detection of clouds. However, in the Arctic and around Antarctica there are very few conventional observations of surface temperature from buoys, and it is sometimes difficult to determine if the temperature is measured at the surface or within the snowpack, the latter of which often results in a warm bias. To reduce this bias, much interest is being paid to alternative remote sensing methods for monitoring high latitude surface temperature. We used Advanced Very High Resolution Radiometer (AVHRR) global area coverage (GAC) data to produce a high latitude sea surface temperature (SST), ice surface temperature (IST) and ice cap skin temperature dataset spanning 27 years (1982-2009). This long-term climate record is the first of its kind for IST. In this project we used brightness temperatures from the infrared channels of AVHRR sensors aboard NOAA and Metop polar-orbiting satellites. Surface temperatures were calculated using separate split window algorithms for day SST, night SST, and IST. The snow surface emissivity across all angles of the swath were simulated specifically for all sensors using an emission model. Additionally, all algorithms were tuned to the Arctic using simulated brightness temperatures from a radiative transfer model with atmospheric profiles and skin temperatures from European Centre for Medium-Range Forecasts (ECMWF) re-analysis data (ERA-Interim). Here we present the results of product quality as compared to in situ measurements from buoys and infrared radiometers, as well as a preliminary analysis of climate trends revealed by the record.

  18. Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe

    Science.gov (United States)

    Cuesta, J.; Eremenko, M.; Liu, X.; Dufour, G.; Cai, Z.; Hoepfner, M.; von Clarmann, T.; Sellitto, P.; Foret, G.; Gaubert, B.; Beekmann, M.; Orphal, J. J.; Chance, K.; Spurr, R. J.; Flaud, J.

    2013-12-01

    Lowermost tropospheric ozone is a major factor determining air quality, which directly affects human health in megacities and causes damages to ecosystems. Monitoring tropospheric ozone is a key societal issue which can be addressed at the regional scale by spaceborne observation. However, current satellite retrievals of tropospheric ozone using uncoupled either ultraviolet (UV) or thermal infrared (TIR) observations show limited sensitivity to ozone at the lowermost troposphere (LMT, up to 3 km asl of altitude above sea level), which is the major concern for air quality. In this framework, we have developed a new multispectral approach for observing lowermost tropospheric ozone from space by synergism of atmospheric TIR radiances observed by IASI and earth UV reflectances measured by GOME-2. Both instruments are onboard the series of MetOp satellites (in orbit since 2006 and expected until 2022) and their scanning capabilities offer global coverage every day, with a relatively fine ground pixel resolution (12-km-diameter pixels spaced by 25 km for IASI at nadir). Our technique uses altitude-dependent Tikhonov-Phillips-type constraints, which optimize sensitivity to lower tropospheric ozone. It integrates the VLIDORT and KOPRA radiative transfer codes for simulating UV reflectance and TIR radiance, respectively. We have used our method to analyze real observations over Europe during an ozone pollution episode in the summer of 2009. The results show that the multispectral synergism of IASI (TIR) and GOME-2 (UV) enables the observation of the spatial distribution of ozone plumes in the LMT, in good agreement with the CHIMERE regional chemistry-transport model. In this case study, when high ozone concentrations extend vertically above 3 km asl, they are similarly observed over land by both the multispectral and IASI retrievals. On the other hand, ozone plumes located below 3 km asl are only clearly depicted by the multispectral retrieval (both over land and over ocean

  19. Characterization of the 3D distribution of ozone and coarse aerosols in the Troposphere using IASI thermal infrared satellite observations

    Science.gov (United States)

    Cuesta, J.; Eremenko, M.; Dufour, G.; Hoepfner, M.; Orphal, J.

    2012-04-01

    Both tropospheric ozone and aerosols significantly affect air quality in megacities during pollution events. Moreover, living conditions may be seriously aggravated when such agglomerations are affected by wildfires (e.g. Russian fires over Moscow in 2010), which produce smoke and pollutant precursors, or even during dense desert dust outbreaks (e.g. recurrently over Beijing or Cairo). Moreover, since aerosols diffuse and absorb solar radiation, they have a direct impact on the photochemical production of tropospheric ozone. These interactions during extreme events of high aerosol loads are nowadays poorly known, even though they may significantly affect the tropospheric photochemical equilibrium. In order to address these issues, we have developed a new retrieval technique to jointly characterize the 3D distribution of both tropospheric ozone and coarse aerosols, using spaceborne observations of the infrared spectrometer IASI onboard MetOp-A satellite. Our methodology is based on the inversion of Earth radiance spectra in the atmospheric window from 8 to 12 μm measured by IASI and a «Tikhonov-Philipps»-type regularisation with constraints varying in altitude (as in [Eremenko et al., 2008, GRL; Dufour et al., 2010 ACP]) to simultaneously retrieve ozone profiles, aerosol optical depths at 10 μm and aerosol layer effective heights. Such joint retrieval prevents biases in the ozone profile retrieval during high aerosol load conditions. Aerosol retrievals using thermal infrared radiances mainly account for desert dust and the coarse fraction of biomass burning aerosols. We use radiances from 15 micro-windows within the 8-12 μm atmospheric window, which were carefully chosen (following [Worden et al., 2006 JGR]) for extracting the maximum information on aerosols and ozone and minimizing contamination by other species. We use the radiative transfer code KOPRA, including line-by-line calculations of gas absorption and single scattering for aerosols [Hoepfner et al

  20. ASTER Urgent Response to the 2006 Eruption of Augustine Volcano, Alaska: Science and Decision Support Gained From Frequent High-resolution, Satellite Thermal Infrared Imaging of Volcanic Events

    Science.gov (United States)

    Wessels, R. L.; Ramsey, M. S.; Schneider, D. S.; Coombs, M.; Dehn, J.; Realmuto, V. J.

    2006-12-01

    Augustine Volcano, Alaska explosively erupted on January 11, 2006 after nearly eight months of increasing seismicity, deformation, gas emission, and small phreatic explosions. The volcano produced a total of 13 explosive eruptions during the last three weeks of January 2006. A new summit lava dome and two short, blocky lava flows grew during February and March 2006. A series of 7 daytime and 15 nighttime Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) scenes were acquired in response to this new activity. This response was facilitated by a new ASTER Urgent Request Protocol system. The ASTER data provided several significant observations as a part of a much larger suite of real-time or near-real-time data from other satellite (AVHRR, MODIS), airborne (FLIR, visual, gas), and ground-based (seismometers, radiometers) sensors used at the Alaska Volcano Observatory (AVO). ASTER is well-suited to volcanic observations because of its 15-m to 90-m spatial resolution, its ability to be scheduled and point off-nadir, and its ability to collect visible-near infrared (VNIR) to thermal infrared (TIR) data during both the day and night. Aided by the volcano's high latitude (59.4°N) ASTER was able to provide frequent repeat imaging as short as one day between scenes with an average 6-day repeat during the height of activity. These data provided a time series of high-resolution VNIR, shortwave infrared (SWIR - detects temperatures from about 200°C to > 600°C averaged over a 30-m pixel), and TIR (detects temperatures up to about 100°C averaged over a 90-m pixel) data of the volcano and its eruptive products. Frequent satellite imaging of volcanoes is necessary to record rapid changes in activity and to avoid recurring cloud cover. Of the 22 ASTER scenes acquired between October 30, 2005 and May 30, 2006, the volcano was clear to partly cloudy in 13 scenes. The most useful pre-eruption ASTER Urgent Request image was acquired on December 20. These data

  1. A Satellite Time Slots Climatology of the Urban Heat Island of Guadalajara Megacity in Mexico from NOAA ¡/AVHRR THERMAL Infrared Monitoring (TIR)

    Science.gov (United States)

    Galindo, I.

    2009-04-01

    The urban heat island (UHI) of the metropolitan area of the second megacity of Mexico, named Guadalajara in Mexico is studied using thermal infrared data (TIR) (10 £ l £ 12 mm) obtained from the Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbitters whose signals are received on real time at our ground station for the period 1996-2006. The TIR data are selected by means of a software, since they depend on natural causes (e.g., atmospheric transparency, surface temperature, spectral emissivity and topography) and observational (time and incidence angle of the satellite pass, season of the year, etc.). The above conditions have a variable contribution to the measurements which it can be so high that they simulate the temporal-space fluctuations considered as thermal anomalies. Using a Geographic Information System and spatial analysis techniques temperatures are obtained for diofferent times of the day (satellite slots) and dropped into a grid with a 2.5 km distance between points (latitude, longitude). The temperatures obtained for each satellite pass slot (four per day) are monthly averaged and the temperature anomalies are represented in thermal isolines for the study area. The temperature difference usually is larger at night than during the day, reaching a thermal gradient of 9 °C.

  2. Analysis of the sensitivity of thermal infrared nadir satellite observations to the chemical and micro-physical properties of upper tropospheric-lower stratospheric sulphate aerosols

    Science.gov (United States)

    Sellitto, Pasquale; Sèze, Geneviève; Legras, Bernard

    2015-04-01

    Secondary sulphate aerosols are the predominant typology of aerosols in the upper troposphere/lower stratosphere (UTLS), and can have an important impact on radiative transfer and climate, cirrus formation and chemistry in the UTLS. Despite their importance, the satellite observation at the regional scale of sulphate aerosols in the UTLS is limited. In this work, we address the sensitivity of the thermal infrared satellite observations to secondary sulphate aerosols in the UTLS. The absorption properties of sulphuric acid/water droplets, for different sulphuric acid mixing ratios and temperatures, are systematically analysed. The absorption coefficients are derived by means of a Mie code, using refractive indexes taken from the GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques : Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) and SEVIRI (Spinning Enhanced Visible and Infrared Imager) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the absorption of idealized aerosol layers, at typical UTLS conditions, on the radiance spectra observed by these simulated satellite instruments. We found a marked spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulphate and bi-sulphate ions and the undissociated sulphuric acid, with absorption peaks at 1170 and 905 cm-1. Micro-windows with a sensitivity to chemical and micro-physical properties of the sulphate aerosol layer are identified, and the role of interfering species, and temperature and water vapour profile is discussed.

  3. A compact thermal infrared imaging radiometer with high spatial resolution and wide swath for a small satellite using a large format uncooled infrared focal plane array

    Science.gov (United States)

    Tatsumi, Kenji; Sakuma, Fumihiro; Kikuchi, Masakuni; Tanii, Jun; Kawanishi, Toneo; Ueno, Shinichi; Kuga, Hideki

    2014-10-01

    In this paper, we present a feasibility study for the potential of a high spatial resolution and wide swath thermal infrared (TIR) imaging radiometer for a small satellite using a large format uncooled infrared focal plane array (IR-FPA). The preliminary TIR imaging radiometer designs were performed. One is a panchromatic (mono-band) imaging radiometer (8-12μm) with a large format 2000 x 1000 pixels uncooled IR-FPA with a pixel pitch of 15 μm. The other is a multiband imaging radiometer (8.8μm, 10.8μm, 11.4μm). This radiometer is employed separate optics and detectors for each wave band. It is based on the use of a 640 x 480 pixels uncooled IR-FPA with a pixel pitch of 25 μm. The thermal time constant of an uncooled IR-FPA is approximately 10-16ms, and introduces a constraint to the satellite operation to achieve better signal-to-noise ratio, MTF and linearity performances. The study addressed both on-ground time-delayintegration binning and staring imaging solutions, although a staring imaging was preferred after trade-off. The staring imaging requires that the line of sight of the TIR imaging radiometer gazes at a target area during the acquisition time of the image, which can be obtained by rotating the satellite or a steering mirror around the pitch axis. The single band radiometer has been designed to yield a 30m ground sample distance over a 30km swath width from a satellite altitude of 500km. The radiometric performance, enhanced with staring imaging, is expected to yield a NETD less than 0.5K for a 300K ground scene. The multi-band radiometer has three spectral bands with spatial resolution of 50m and swath width of 24km. The radiometric performance is expected to yield a NETD less than 0.85K. We also showed some preliminary simulation results on volcano, desert/urban scenes, and wildfire.

  4. Retrieval of SO2 from thermal infrared satellite measurements: correction procedures for the effects of volcanic ash

    Directory of Open Access Journals (Sweden)

    S. Corradini

    2009-05-01

    Full Text Available The simultaneous presence of SO2 and ash in a volcanic plume can lead to a significant error in the SO2 column abundance retrieval when multispectral Thermal InfraRed (TIR data are used. The ash particles within the plume with effective radii from 1 to 10 μm reduce the Top Of Atmosphere (TOA radiance in the entire TIR spectral range, including the channels used for SO2 retrieval. The net effect is a significant SO2 overestimation. In this work the interference of ash is discussed and two correction procedures for satellite SO2 volcanic plume retrieval in the TIR spectral range are developed to achieve an higher computational speed and a better accuracy. The ash correction can be applied when the sensor spectral range includes the 7.3 and/or 8.7 μm SO2 absorption bands, and the split window bands centered around 11 and 12 μm required for ash retrieval. This allows the possibility of simultaneous estimation of both volcanic SO2 and ash in the same data set. The proposed ash correction procedures have been applied to the Moderate Resolution Imaging Spectroradiometer (MODIS and the Spin Enhanced Visible and Infrared Imager (SEVIRI measurements. Data collected during the 24 November 2006 Mt. Etna eruption have been used to illustrate the technique. The SO2 and ash estimation is carried out by using a best weighted least squares fit method and the Brightness Temperature Difference (BTD procedures, respectively. The simulated TOA radiance Look-Up Table (LUT needed for the SO2 column abundance and the ash retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. The results show the importance of the ash correction on SO2 retrievals at 8.7 μm, where the corrected SO2 column abundance values are less than 50% of the uncorrected values. The ash correction on SO2 retrieval at 7.3 μm is much less important and only significant for low SO2 column abundances. Results also show that the simplified and faster correction procedure

  5. Retrieval of SO2 from thermal infrared satellite measurements: correction procedures for the effects of volcanic ash

    Directory of Open Access Journals (Sweden)

    A. J. Prata

    2009-02-01

    Full Text Available The simultaneous presence of SO2 and ash in a volcanic plume can lead to a significant error in the SO2 columnar abundance retrieval when multispectral Thermal InfraRed (TIR data are used. The ash particles within the plume with effective radii (from 1 to 10 μm reduce the Top Of Atmosphere (TOA radiance in the entire TIR spectral range, including the channels used for SO2 retrieval. The net effect is a significant SO2 overestimation. In this work the interference of ash is discussed and two correction procedures for satellite SO2 volcanic plume retrieval in the TIR spectral range are developed to achieve an higher computation speed and a better accuracy. The ash correction can be applied when the sensor spectral range includes the 7.3 and/or 8.7 μm SO2 absorption bands, and the split window bands centered around 11 and 12 μm required for ash retrieval. This allows the possibility of a simultaneous estimation of both volcanic SO2 and ash in the same data set. The proposed ash correction procedures have been applied to the Moderate Resolution Imaging Spectroradiometer (MODIS and the Spin Enhanced Visible and Infrared Imager (SEVIRI measurements. Data collected during the 24 November 2006 Mt. Etna eruption have been used to illustrate the technique. The SO2 and ash estimations are carried out by using a least squares fit method and the Brightness Temperature Difference (BTD procedures, respectively. The simulated TOA radiance Look-Up Table (LUT needed for the SO2 columnar abundance and the ash retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. The results show the importance of the ash correction on SO2 retrieval at 8.7 μm – the SO2 columnar abundance corrected by the ash influence is less than one half of the values retrieved without the correction. The ash correction on SO2 retrieval at 7.3 μm is much less important and only significant for low SO2 columnar abundances. Results also show that the simplified and

  6. Development of practical thermal infrared hyperspectral imaging system

    Science.gov (United States)

    Wang, Jianyu; Li, Chunlai; Lv, Gang; Yuan, Liyin; Liu, Enguang; Jin, Jian; Ji, Hongzhen

    2014-11-01

    As an optical remote sensing equipment, the thermal infrared hyperspectral imager operates in the thermal infrared spectral band and acquires about 180 wavebands in range of 8.0~12.5μm. The field of view of this imager is 13° and the spatial resolution is better than 1mrad. Its noise equivalent temperature difference (NETD) is less than 0.2K@300K(average). 1 The influence of background radiation of the thermal infrared hyperspectral imager,and a simulation model of simplified background radiation is builded. 2 The design and implementationof the Cryogenic Optics. 3 Thermal infrared focal plane array (FPA) and special dewar component for the thermal infrared hyperspectral imager. 4 Parts of test results of the thermal infrared hyperspectral imager.The hyperspectral imaging system is China's first success in developing this type of instrument, whose flight validation experiments have already been embarked on. The thermal infrared hyperspectral data acquired will play an important role in fields such as geological exploration and air pollutant identification.

  7. Terrestrial Applications of the Thermal Infrared Sensor, TIRS

    Science.gov (United States)

    Smith, Ramsey L.; Thome, Kurtis; Richardson, Cathleen; Irons, James; Reuter, Dennis

    2009-01-01

    Landsat satellites have acquired single-band thermal images since 1978. The next satellile in the heritage, Landsat Data Continuity Mission (LDCM), is scheduled to launch in December 2012. LDCM will contain the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), where TIRS operates in concert with, but independently of OLI. This paper will provide an overview of the remote sensing instrument TIRS. The T1RS instrument was designed at National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) where it will be fabricated and calibrated as well. Protecting the integrity of the Scientific Data that will be collected from TIRS played a strong role in definition of the calibration test equipment and procedures used for the optical, radiometric, and spatial calibration. The data that will be produced from LCDM will continue to be used world wide for environment monitoring and resource management.

  8. Thermal infrared anomalies of several strong earthquakes.

    Science.gov (United States)

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  9. An ensemble Kalman filter dual assimilation of thermal infrared and microwave satellite observations of soil moisture into the Noah land surface model

    Science.gov (United States)

    Hain, Christopher R.; Crow, Wade T.; Anderson, Martha C.; Mecikalski, John R.

    2012-11-01

    Studies that have assimilated remotely sensed soil moisture (SM) into land surface models (LSMs) have generally focused on retrievals from microwave (MW) sensors. However, retrievals from thermal infrared (TIR) sensors have also been shown to add unique information, especially where MW sensors are not able to provide accurate retrievals (due to, e.g., dense vegetation). In this study, we examine the assimilation of a TIR product based on surface evaporative flux estimates from the Atmosphere Land Exchange Inverse (ALEXI) model and the MW-based VU Amsterdam NASA surface SM product generated with the Land Parameter Retrieval Model (LPRM). A set of data assimilation experiments using an ensemble Kalman filter are performed over the contiguous United States to assess the impact of assimilating ALEXI and LPRM SM retrievals in isolation and together in a dual-assimilation case. The relative skill of each assimilation case is assessed through a data denial approach where a LSM is forced with an inferior precipitation data set. The ability of each assimilation case to correct for precipitation errors is quantified by comparing with a simulation forced with a higher-quality precipitation data set. All three assimilation cases (ALEXI, LPRM, and Dual assimilation) show relative improvements versus the open loop (i.e., reduced RMSD) for surface and root zone SM. In the surface zone, the dual assimilation case provides the largest improvements, followed by the LPRM case. However, the ALEXI case performs best in the root zone. Results from the data denial experiment are supported by comparisons between assimilation results and ground-based SM observations from the Soil Climate Analysis Network.

  10. Multi-Decadal Variability of Polynya Characteristics and Ice Production in the North Water Polynya by Means of Passive Microwave and Thermal Infrared Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Andreas Preußer

    2015-11-01

    Full Text Available The North Water (NOW Polynya is a regularly-forming area of open-water and thin-ice, located between northwestern Greenland and Ellesmere Island (Canada at the northern tip of Baffin Bay. Due to its large spatial extent, it is of high importance for a variety of physical and biological processes, especially in wintertime. Here, we present a long-term remote sensing study for the winter seasons 1978/1979 to 2014/2015. Polynya characteristics are inferred from (1 sea ice concentrations and brightness temperatures from passive microwave satellite sensors (Advanced Microwave Scanning Radiometer (AMSR-E and AMSR2, Scanning Multichannel Microwave Radiometer (SMMR, Special Sensor Microwave Imager/Sounder (SSM/I-SSMIS and (2 thin-ice thickness distributions, which are calculated using MODIS ice-surface temperatures and European Center for Medium-Range Weather Forecasts (ECMWF atmospheric reanalysis data in a 1D thermodynamic energy-balance model. Daily ice production rates are retrieved for each winter season from 2002/2003 to 2014/2015, assuming that all heat loss at the ice surface is balanced by ice growth. Two different cloud-cover correction schemes are applied on daily polynya area and ice production values to account for cloud gaps in the MODIS composites. Our results indicate that the NOW polynya experienced significant seasonal changes over the last three decades considering the overall frequency of polynya occurrences, as well as their spatial extent. In the 1980s, there were prolonged periods of a more or less closed ice cover in northern Baffin Bay in winter. This changed towards an average opening on more than 85% of the days between November and March during the last decade. Noticeably, the sea ice cover in the NOW polynya region shows signs of a later-appearing fall freeze-up, starting in the late 1990s. Different methods to obtain daily polynya area using passive microwave AMSR-E/AMSR2 data and SSM/I-SSMIS data were applied. A comparison

  11. Human suspicious activity recognition in thermal infrared video

    Science.gov (United States)

    Hossen, Jakir; Jacobs, Eddie; Chowdhury, Fahmida K.

    2014-10-01

    Detecting suspicious behaviors is important for surveillance and monitoring systems. In this paper, we investigate suspicious activity detection in thermal infrared imagery, where human motion can be easily detected from the background regardless of the lighting conditions and colors of the human clothing and surfaces. We use locally adaptive regression kernels (LARK) as patch descriptors, which capture the underlying local structure of the data exceedingly well, even in the presence of significant distortions. Patch descriptors are generated for each query patch and for each database patch. A statistical approach is used to match the query activity with the database to make the decision of suspicious activity. Human activity videos in different condition such as, walking, running, carrying a gun, crawling, and carrying backpack in different terrains were acquired using thermal infrared camera. These videos are used for training and performance evaluation of the algorithm. Experimental results show that the proposed approach achieves good performance in suspicious activity recognition.

  12. Comparison between IASI and GOSAT retrievals in the thermal infrared

    Science.gov (United States)

    Payan, S.; Camy-peyret, C.; Bureau, J.; Shiomi, K.

    2012-04-01

    GOSAT (Greenhouse Gases Observing SATellite) is a satellite dedicated to the study of greenhouses gases. It carries an infrared Fourier transform spectrometer (The Thermal and Near Infrared Sensor for Carbon Observation Fourier-Transform Spectrometer or TANSO-FTS), which acquires spectra in 4 bands, located in the Near-Infrared (NIR), ShortWave Infrared (SWIR) and Thermal Infrared (TIR). An imager (CAI: Cloud and Aerosols imager) enables to gain information on clouds and aerosols, and this information is used to improve the quality of CO2 and CH4 retrievals. IASI (Infrared Atmospheric Sounding Interferometer) designed by CNES for Eumetsat is carried by the MetOp-A satellite. It is used for operational meteorology and is also interesting for greenhouse gases as well as for atmospheric chemistry and climate. We looked for close spatial and temporal coincidences between IASI and TANSO-FTS nadir spectra. Due to the respective orbits of MetOp-A and GOSAT, this is only achieved at high latitudes. We compared the surface temperature, CO2, CH4, N2O and O3 mixing ratios retrieved from TANSO-FTS and from IASI spectra. We used the [940;980] cm-1 window for CO2 (laser band), [1240;1320] cm-1 for CH4, [1140;1200] cm-1 for N2O, and [980;1100] cm-1 for O3. Since IASI is considered as a reference for radiometric calibrations, we compared the surface temperatures retrieved by GOSAT and IASI in these different windows to assess the GOSAT radiometric calibration. The GOSAT/IASI comparison is done on surface temperature rather than on raw radiances because the different instrumental noise and spectral resolution of these instruments make a direct comparison of the radiances more difficult. The use of different spectral windows enabled us to explore the spectral dependence of the TANSO-FTS radiometric calibration. Cloud-free and spatially homogenous fields of view (IFOVs) were selected using CAI images. Finally, we will show the potential to further improve the results using the

  13. Thermal infrared exploration in the Carlin trend, northern Nevada

    Science.gov (United States)

    Watson, K.; Kruse, F.A.; Hummer-Miller, S.

    1990-01-01

    Experimental Thermal Infrared Multispectral Scanner (TIMS) aircraft data have been acquired for the Rodeo Creek NE 7 1/2 minute quadrangle, Eureka County, northern Nevada, covering the Carlin gold mine. A simple model has been developed to extract spectral emissivities for mapping surface lithology and alteration based on the physical properties of geologic materials. Emissivity-ratio images were prepared that allow generalized lithologic discrimination, identification of areas with high silica content, and the first reported detection of the carbonate secondary rest-strahlen feature. -from Authors

  14. On the joint use of IASI and GOSAT retrievals in the thermal infrared

    Science.gov (United States)

    Bureau, J.; Payan, S.; Camy-Peyret, C.; Clerbaux, C.; Coheur, P.; Hurtmans, D.; Hadji-Lazaro, J.; Bauduin, S.; George, M.

    2012-12-01

    GOSAT (Greenhouse Gases Observing SATellite) is a satellite dedicated to the study of greenhouses gases. It carries an infrared Fourier transform spectrometer (Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer or TANSO-FTS), which acquires spectra in 4 bands, located in the Near-Infrared (NIR), ShortWave Infrared (SWIR) and Thermal Infrared (TIR). An imager (Cloud and Aerosol Imager or TANSO-CAI) enables to gain information on clouds and aerosols, and this information is used to improve the quality of CO2 and CH4 retrievals. IASI (Infrared Atmospheric Sounding Interferometer) designed by CNES for Eumetsat is carried by the MetOp-A satellite. It is used for operational meteorology and is also interesting for greenhouse gases as well as for atmospheric chemistry and climate. We looked for close spatial and temporal coincidences with six TCCON sites where high resolution FTIR measurements are performed routinely. Cloud-free and spatially homogeneous fields of view (IFOVs) were selected using CAI images. The TCCON retrieved VMR profiles have been used as reference and compared with those we retrieved from coincident measurements of GOSAT and IASI. We used the [1240;1320] cm-1 window for CH4, and the [980;1100] cm-1 window for O3 retrieval. Finally, we will highlight the potential to further improve the results using the synergy between measurements in the TIR and the SWIR spectral domains.

  15. Stream Temperature Estimation From Thermal Infrared Images

    Science.gov (United States)

    Handcock, R. N.; Kay, J. E.; Gillespie, A.; Naveh, N.; Cherkauer, K. A.; Burges, S. J.; Booth, D. B.

    2001-12-01

    Stream temperature is an important water quality indicator in the Pacific Northwest where endangered fish populations are sensitive to elevated water temperature. Cold water refugia are essential for the survival of threatened salmon when events such as the removal of riparian vegetation result in elevated stream temperatures. Regional assessment of stream temperatures is limited by sparse sampling of temperatures in both space and time. If critical watersheds are to be properly managed it is necessary to have spatially extensive temperature measurements of known accuracy. Remotely sensed thermal infrared (TIR) imagery can be used to derive spatially distributed estimates of the skin temperature (top 100 nm) of streams. TIR imagery has long been used to estimate skin temperatures of the ocean, where split-window techniques have been used to compensate for atmospheric affects. Streams are a more complex environment because 1) most are unresolved in typical TIR images, and 2) the near-bank environment of stream corridors may consist of tall trees or hot rocks and soils that irradiate the stream surface. As well as compensating for atmospheric effects, key problems to solve in estimating stream temperatures include both subpixel unmixing and multiple scattering. Additionally, fine resolution characteristics of the stream surface such as evaporative cooling due to wind, and water surface roughness, will effect measurements of radiant skin temperatures with TIR devices. We apply these corrections across the Green River and Yakima River watersheds in Washington State to assess the accuracy of remotely sensed stream surface temperature estimates made using fine resolution TIR imagery from a ground-based sensor (FLIR), medium resolution data from the airborne MASTER sensor, and coarse-resolution data from the Terra-ASTER satellite. We use linear spectral mixture analysis to isolate the fraction of land-leaving radiance originating from unresolved streams. To compensate the

  16. Thermal Infrared Remote Sensing of the Yellowstone Geothermal System

    Science.gov (United States)

    Vaughan, R. G.; Keszthelyi, L. P.; Heasler, H.; Jaworowski, C.; Lowenstern, J. B.; Schneider, D. J.

    2009-12-01

    The Yellowstone National Park (YNP) geothermal system is one of the largest in the world, with thousands of individual thermal features ranging in size from a few centimeters to tens of meters across, (e.g., fumaroles, geysers, mud pots and hot spring pools). Together, large concentrations of these thermal features make up dozens of distinct thermal areas, characterized by sparse vegetation, hydrothermally altered rocks, and usually either sinter, travertine, or acid sulfate alteration. The temperature of these thermal features generally ranges from ~30 to ~93 oC, which is the boiling temperature of water at the elevation of Yellowstone. In-situ temperature measurements of various thermal features are sparse in both space and time, but they show a dynamic time-temperature relationship. For example, as geysers erupt and send pulses of warm water down slope, the warm water cools rapidly and is then followed by another pulse of warm water, on time scales of minutes. The total heat flux from the Park’s thermal features has been indirectly estimated from chemical analysis of Cl- flux in water flowing from Yellowstone’s rivers. We are working to provide a more direct measurement, as well as estimates of time variability, of the total heat flux using satellite multispectral thermal infrared (TIR) remote sensing data. Over the last 10 years, NASA’s orbiting ASTER and MODIS instruments have acquired hundreds and thousands of multispectral TIR images, respectively, over the YNP area. Compared with some volcanoes, Yellowstone is a relatively low-temperature geothermal system, with low thermal contrast to the non-geothermal surrounding areas; therefore we are refining existing techniques to extract surface temperature and thermal flux information. This task is complicated by issues such as, during the day, solar heated surfaces may be warmer than nearby geothermal features; and there is some topographic (elevation) influence on surface temperatures, even at night. Still

  17. Thermal infrared sensors theory, optimisation and practice

    CERN Document Server

    Budzier, Helmut

    2010-01-01

    The problems involved in designing optimal infrared (IR) measuring systems under given conditions are commensurately complex. The optical set-up and radiation conditions, the interaction between sensor and irradiation and the sensor itself, determine the operation of the sensor system. Simple calculations for solving these problems without any understanding of the causal relationships are not possible. Thermal Infrared Sensors offers a concise explanation of the basic physical and photometric fundamentals needed for the consideration of these interactions. It depicts the basics of

  18. The use of thermal infrared images in geologic mapping

    Science.gov (United States)

    Kahle, A. B.

    1982-01-01

    Thermal infrared image data can be used as an aid to geologic mapping. Broadband thermal data between 8 and 13 microns is used to measure surface temperature, from which surface thermal properties can be inferred. Data from aircraft multispectral scanners at Pisgah, California which include a broadband thermal channel along with several visible and near-IR spectral channels permit better discrimination between rock type units than the same data set without the thermal data. Data from the HCMM satellite and from aircraft thermal scanners also make it possible to monitor moisture changes in Death Valley, California. Multispectral data in the same 8-13 micron wavelength range can be used to discriminate between surface materials with different spectral emission characteristics, as demonstrated with both aircraft scanner and ground spectrometer data.

  19. A data mining approach for sharpening satellite thermal imagery over land

    Science.gov (United States)

    Thermal infrared (TIR) imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes which are at significant...

  20. Plant species discrimination using emissive thermal infrared imaging spectroscopy

    Science.gov (United States)

    Rock, Gilles; Gerhards, Max; Schlerf, Martin; Hecker, Christoph; Udelhoven, Thomas

    2016-12-01

    Discrimination of plant species in the optical reflective domain is somewhat limited by the similarity of their reflectance spectra. Spectral characteristics in the visible to shortwave infrared (VSWIR) consist of combination bands and overtones of primary absorption bands, situated in the Thermal Infrared (TIR) region and therefore resulting in broad spectral features. TIR spectroscopy is assumed to have a large potential for providing complementary information to VSWIR spectroscopy. So far, in the TIR, plants were often considered featureless. Recently and following advances in sensor technology, plant species were discriminated based on specific emissivity signatures by Ullah et al. (2012) using directional-hemispherical reflectance (DHR) measurements in the laboratory. Here we examine if an accurate discrimination of plant species is equally possible using emissive thermal infrared imaging spectroscopy, an explicit spatial technique that is faster and more flexible than non-imaging measurements. Hyperspectral thermal infrared images were acquired in the 7.8⿿11.56 μm range at 40 nm spectral resolution (@10 μm) using a TIR imaging spectrometer (Telops HyperCam-LW) on seven plants each, of eight different species. The images were radiometrically calibrated and subjected to temperature and emissivity separation using a spectral smoothness approach. First, retrieved emissivity spectra were compared to laboratory reference spectra and then subjected to species discrimination using a random forest classifier. Second, classification results obtained with emissivity spectra were compared to those obtained with VSWIR reflectance spectra that had been acquired from the same leaf samples. In general, the mean emissivity spectra measured by the TIR imaging spectrometer showed very good agreement with the reference spectra (average Nash-Sutcliffe-Efficiency Index = 0.64). In species discrimination, the resulting accuracies for emissivity spectra are highly dependent on

  1. Thermal infrared remote sensing sensors, methods, applications

    CERN Document Server

    Kuenzer, Claudia

    2013-01-01

    This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni

  2. Early Analysis of Landsat-8 Thermal Infrared Sensor Imagery of Volcanic Activity

    Directory of Open Access Journals (Sweden)

    Matthew Blackett

    2014-03-01

    Full Text Available The Landsat-8 satellite of the Landsat Data Continuity Mission was launched by the National Aeronautics and Space Administration (NASA in April 2013. Just weeks after it entered active service, its sensors observed activity at Paluweh Volcano, Indonesia. Given that the image acquired was in the daytime, its shortwave infrared observations were contaminated with reflected solar radiation; however, those of the satellite’s Thermal Infrared Sensor (TIRS show thermal emission from the volcano’s summit and flanks. These emissions detected in sensor’s band 10 (10.60–11.19 µm have here been quantified in terms of radiant power, to confirm reports of the actual volcanic processes operating at the time of image acquisition, and to form an initial assessment of the TIRS in its volcanic observation capabilities. Data from band 11 have been neglected as its data have been shown to be unreliable at the time of writing. At the instant of image acquisition, the thermal emission of the volcano was found to be 345 MW. This value is shown to be on the same order of magnitude as similarly timed NASA Earth Observing System (EOS Moderate Resolution Imaging Spectroradiometer thermal observations. Given its unique characteristics, the TIRS shows much potential for providing useful, detailed and accurate volcanic observations in the future.

  3. Roof heat loss detection using airborne thermal infrared imagery

    Science.gov (United States)

    Kern, K.; Bauer, C.; Sulzer, W.

    2012-12-01

    As part of the Austrian and European attempt to reduce energy consumption and greenhouse gas emissions, thermal rehabilitation and the improvement of the energy efficiency of buildings became an important topic in research as well as in building construction and refurbishment. Today, in-situ thermal infrared measurements are routinely used to determine energy loss through the building envelope. However, in-situ thermal surveys are expensive and time consuming, and in many cases the detection of the amount and location of waste heat leaving building through roofs is not possible with ground-based observations. For some years now, a new generation of high-resolution thermal infrared sensors makes it possible to survey heat-loss through roofs at a high level of detail and accuracy. However, to date, comparable studies have mainly been conducted on buildings with uniform roof covering and provided two-dimensional, qualitative information. This pilot study aims to survey the heat-loss through roofs of the buildings of the University of Graz (Austria) campus by using high-resolution airborne thermal infrared imagery (TABI 1800 - Thermal Airborne Broadband imager). TABI-1800 acquires data in a spectral range from 3.7 - 4.8 micron, a thermal resolution of 0.05 °C and a spatial resolution of 0.6 m. The remote sensing data is calibrated to different roof coverings (e.g. clay shingle, asphalt shingle, tin roof, glass) and combined with a roof surface model to determine the amount of waste heat leaving the building and to identify hot spots. The additional integration of information about the conditions underneath the roofs into the study allows a more detailed analysis of the upward heat flux and is a significant improvement of existing methods. The resulting data set provides useful information to the university facility service for infrastructure maintenance, especially in terms of attic and roof insulation improvements. Beyond that, the project is supposed to raise public

  4. Aeolian system dynamics derived from thermal infrared data

    Science.gov (United States)

    Scheidt, Stephen Paul

    Thermal infrared (TIR) remote-sensing and field-based observations were used to study aeolian systems, specifically sand transport pathways, dust emission sources and Saharan atmospheric dust. A method was developed for generating seamless and radiometrically accurate mosaics of thermal infrared data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. Using a combination of high resolution thermal emission spectroscopy results of sand samples and mosaic satellite data, surface emissivity was derived to map surface composition, which led to improvement in the understanding of sand accumulation in the Gran Desierto of northern Sonora, Mexico. These methods were also used to map sand transport pathways in the Sahara Desert, where the interaction between sand saltation and dust emission sources was explored. The characteristics and dynamics of dust sources were studied at White Sands, NM and in the Sahara Desert. At White Sands, an application was developed for studying the response of dust sources to surface soil moisture based on the relationship between soil moisture, apparent thermal inertia and the erosion potential of dust sources. The dynamics of dust sources and the interaction with sand transport pathways were also studied, focusing on the Bodele Depression of Chad and large dust sources in Mali and Mauritania. A dust detection algorithm was developed using ASTER data, and the spectral emissivity of observed atmospheric dust was related to the dust source area in the Sahara. At the Atmospheric Observatory (IZO) in Tenerife, Spain where direct measurement of the Saharan Air Layer could be made, the cycle of dust events occurring in July 2009 were examined. From the observation tower at the IZO, measurements of emitted longwave atmospheric radiance in the TIR wavelength region were made using a Forward Looking Infrared Radiometer (FLIR) handheld camera. The use of the FLIR to study atmospheric dust from the Saharan is a

  5. Thermal Infrared Observations and Thermophysical Modeling of Phobos

    Science.gov (United States)

    Smith, Nathan Michael; Edwards, Christopher Scott; Mommert, Michael; Trilling, David E.; Glotch, Timothy

    2016-10-01

    Mars-observing spacecraft have the opportunity to study Phobos from Mars orbit, and have produced a sizeable record of observations using the same instruments that study the surface of the planet below. However, these observations are generally infrequent, acquired only rarely over each mission.Using observations gathered by Mars Global Surveyor's (MGS) Thermal Emission Spectrometer (TES), we can investigate the fine layer of regolith that blankets Phobos' surface, and characterize its thermal properties. The mapping of TES observations to footprints on the Phobos surface has not previously been undertaken, and must consider the orientation and position of both MGS and Phobos, and TES's pointing mirror angle. Approximately 300 fully resolved observations are available covering a significant subset of Phobos' surface at a variety of scales.The properties of the surface regolith, such as grain size, density, and conductivity, determine how heat is absorbed, transferred, and reradiated to space. Thermophysical modeling allows us to simulate these processes and predict, for a given set of assumed parameters, how the observed thermal infrared spectra will appear. By comparing models to observations, we can constrain the properties of the regolith, and see how these properties vary with depth, as well as regionally across the Phobos surface. These constraints are key to understanding how Phobos formed and evolved over time, which in turn will help inform the environment and processes that shaped the solar system as a whole.We have developed a thermophysical model of Phobos adapted from a model used for unresolved observations of asteroids. The model has been modified to integrate thermal infrared flux across each observed portion of Phobos. It will include the effects of surface roughness, temperature-dependent conductivity, as well as radiation scattered, reflected, and thermally emitted from the Martian surface. Combining this model with the newly-mapped TES

  6. Study on thermal infrared emission directionality over crop canopies with TIR camera imagery

    Institute of Scientific and Technical Information of China (English)

    柳钦火; 顾行法; 李小文; 田国良; 余涛; F.Jacob; J.F.Hanocq; M.Friedl; A.H.Strahler

    2000-01-01

    In order to investigate directionality of thermal infrared emission from crop canopies, a wide-angle thermal video camera (INFRAMETRICS) equipped with an 80?FOV lens was mounted on a small aircraft and used to acquire thermal imagery along several different flight traces. Accordingly, multi-angle directional brightness temperatures were acquired at different view angles for individual pixel. The flight experiment was carried out from January 1997 to October 1997 over a 5 kmx5 km flat agricultural area, located near Avignon, southeastern France.This paper presents results from analyses performed using these data including instrument calibration, radiometric correction, atmospheric correction, temperature temporal adjustment, geometric matching and registration of images. Results are presented for different thermal infrared emission patterns of different surface types including bare soil, wheat, maize and sunflower at different growth stages.

  7. Study on thermal infrared emission directionality over crop canopies with TIR camera imagery

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to investigate directionality of thermal infrared emission from crop canopies,a wide-angle thermal video camera (INFRAMETRICS) equipped with an 80o FOV lens was mounted on a small aircraft and used to acquire thermal imagery along several different flight traces.Accordingly,multi-angle directional brightness temperatures were acquired at different view angles for individual pixel.The flight experiment was carried out from January 1997 to October 1997 over a 5 km×5 km flat agricultural area,located near Avignon,southeastern France.This paper presents results from analyses performed using these data including instrument calibration,radiometric correction,atmospheric correction,temperature temporal adjustment,geometric matching and registration of images.Results are presented for different thermal infrared emission patterns of different surface types including bare soil,wheat,maize and sunflower at different growth stages.

  8. Multispectral Thermal Infrared Mapping of Sulfur Dioxide Plumes: A Case Study from the East Rift Zone of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Realmuto, V. J.; Sutton, A. J.; Elias, T.

    1996-01-01

    The synoptic perspective and rapid mode of data acquisition provided by remote sensing are well-suited for the study of volcanic SO2 plumes. In this paper we describe a plume-mapping procedure that is based on image data acquired with NASA's airborne Thermal Infrared Multispectral Scanner (TIMS).

  9. Multispectral thermal infrared mapping of the 1 October 1988 Kupaianaha flow field, Kilauea volcano, Hawaii

    Science.gov (United States)

    Realmuto, Vincent J.; Hon, Ken; Kahle, Anne B.; Abbott, Elsa A.; Pieri, David C.

    1992-01-01

    Multispectral thermal infrared radiance measurements of the Kupaianaha flow field were acquired with the NASA airborne Thermal Infrared Multispectral Scanner (TIMS) on the morning of 1 October 1988. The TIMS data were used to map both the temperature and emissivity of the surface of the flow field. The temperature map depicted the underground storage and transport of lava. The presence of molten lava in a tube or tumulus resulted in surface temperatures that were at least 10 C above ambient. The temperature map also clearly defined the boundaries of hydrothermal plumes which resulted from the entry of lava into the ocean. The emissivity map revealed the boundaries between individual flow units within the Kupaianaha field. Distinct spectral anomalies, indicative of silica-rich surface materials, were mapped near fumaroles and ocean entry sites. This apparent enrichment in silica may have resulted from an acid-induced leaching of cations from the surfaces of glassy flows.

  10. Thermal infrared hyperspectral imaging from vehicle-carried instrumentation

    Science.gov (United States)

    Kirkland, Laurel E.; Herr, Kenneth C.; Adams, Paul M.; McAfee, John; Salisbury, John

    2002-09-01

    Stand-off identification in the field using thermal infrared spectrometers (hyperspectral) is a maturing technique for gases and aerosols. However, capabilities to identify solid-phase materials on the surface lag substantially, particularly for identification in the field without benefit of ground truth (e.g. for "denied areas"). Spectral signatures of solid phase materials vary in complex and non-intuitive ways, including non-linear variations with surface texture, particle size, and intimate mixing. Also, in contrast to airborne or satellite measurements, reflected downwelling radiance strongly affects the signature measured by field spectrometers. These complex issues can confound interpretations or cause a misidentification in the field. Problems that remain particularly obstinate are (1) low ambiguity identification when there is no accompanying ground truth (e.g. measurements of denied areas, or Mars surface by the 2003 Mars lander spectrometer); (2) real- or near real-time identification, especially when a low ambiguity answer is critical; (3) identification of intimate mixtures (e.g. two fine powders mixed together) and targets composed of very small particles (e.g. aerosol fallout dust, some tailings); and (4) identification of non-diffuse targets (e.g. smooth coatings such as paint and desert varnish), particularly when measured at a high emission angle. In most studies that focus on gas phase targets or specific manmade targets, the solid phase background signatures are called "clutter" and are thrown out. Here we discuss our field spectrometer images measured of test targets that were selected to include a range of particle sizes, diffuse, non-diffuse, high, and low reflectance materials. This study was designed to identify and improve understanding of the issues that complicate stand-off identification in the field, with a focus on developing identification capabilities to proceed without benefit of ground truth. This information allows both improved

  11. A novel super resolution scheme to acquire and process satellite images

    Science.gov (United States)

    Yin, Dong-yu; Su, Xiao-feng; Lin, Jian-chun; Wang, Gan-quan; Kuang, Ding-bo

    2013-09-01

    Geosynchronous satellite has obvious limitations for the weight and the scale of payloads, and large aperture optical system is not permitted. The optical diffraction limit of small aperture optical system has an adverse impact on the resolution of the acquired images. Therefore, how to get high resolution images using super-resolution technique with the acquired low resolution images becomes a popular problem investigated by researchers. Here, we present a novel scheme to acquire low resolution images and process them to achieve a high resolution image. Firstly, to acquire low resolution images, we adopt a special arrangement pattern of four CCD staggered arrays on the focal plane in the remote sensing satellite framework .These four CCD linear arrays are parallelized with a 0.25√2 pixel shift along the CCD direction and a 1.25 pixel shift along the scanning direction. The rotation angle between the two directions is 45 degree. The tilting sampling mode and the special arrangement pattern allow the sensor to acquire images with a smaller sampling interval which can give the resolution a greater enhancement. Secondly, to reconstruct a high resolution image of pretty good quality with a magnification factor 4, we propose a novel algorithm based on the iterative-interpolation super resolution algorithm (IISR) and the new edge-directed interpolation algorithm (NEDI). The new algorithm makes a critical improvement to NEDI and introduces it into the multi-frame interpolation in IISR. The algorithm can preserve the edges well and requires a relatively small number of low-resolution images to achieve better reconstruction accuracy .In the last part of the paper, we carry out a simulation experiment, and use MSE as the quality measure. The results demonstrate that our new scheme substantially improves the image resolution with both better quantitative quality and visual quality compared with some previous normal methods.

  12. Understanding data noise in gravity field recovery on the basis of inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE

    NARCIS (Netherlands)

    Ditmar, P.; Teixeira da Encarnacao, J.; Hashemi Farahani, H.

    2012-01-01

    Spectral analysis of data noise is performed in the context of gravity field recovery from inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE. The motivation of the study is two-fold: (i) to promote a further improvement of GRACE data processing techniques and

  13. Thermal infrared remote sensing of surface features for renewable resource applications

    Science.gov (United States)

    Welker, J. E.

    1981-01-01

    The subjects of infrared remote sensing of surface features for renewable resource applications is reviewed with respect to the basic physical concepts involved at the Earth's surface and up through the atmosphere, as well as the historical development of satellite systems which produce such data at increasingly greater spatial resolution. With this general background in hand, the growth of a variety of specific renewable resource applications using the developing thermal infrared technology are discussed, including data from HCMM investigators. Recommendations are made for continued growth in this field of applications.

  14. Radiometric Cross-Calibration of the HJ-1B IRS in the Thermal Infrared Spectral Band

    Science.gov (United States)

    Sun, K.

    2012-12-01

    The natural calamities occur continually, environment pollution and destruction in a severe position on the earth presently, which restricts societal and economic development. The satellite remote sensing technology has an important effect on improving surveillance ability of environment pollution and natural calamities. The radiometric calibration is precondition of quantitative remote sensing; which accuracy decides quality of the retrieval parameters. Since the China Environment Satellite (HJ-1A/B) has been launched successfully on September 6th, 2008, it has made an important role in the economic development of China. The satellite has four infrared bands; and one of it is thermal infrared. With application fields of quantitative remote sensing in china, finding appropriate calibration method becomes more and more important. Many kinds of independent methods can be used to do the absolute radiometric calibration. In this paper, according to the characteristic of thermal infrared channel of HJ-1B thermal infrared multi-spectral camera, the thermal infrared spectral band of HJ-1B IRS was calibrated using cross-calibration methods based on MODIS data. Firstly, the corresponding bands of the two sensors were obtained. Secondly, the MONDTRAN was run to analyze the influences of different spectral response, satellite view zenith angle, atmosphere condition and temperature on the match factor. In the end, their band match factor was calculated in different temperature, considering the dissimilar band response of the match bands. Seven images of Lake Qinghai in different time were chosen as the calibration data. On the basis of radiance of MODIS and match factor, the IRS radiance was calculated. And then the calibration coefficients were obtained by linearly regressing the radiance and the DN value. We compared the result of this cross-calibration with that of the onboard blackbody calibration, which consistency was good.The maximum difference of brightness temperature

  15. Satellite remote sensing - An integral tool in acquiring global crop production information

    Science.gov (United States)

    Hall, F. G.

    1982-01-01

    Since NASA's program of research concerning remote sensing was initiated in the 1960s, one of its major objectives has been to advance the state-of-the-art in machine processing of satellite acquired multispectral data. Possibilities have been studied regarding a use of these data to identify type, to monitor condition, and to estimate the ontogenetic stage of cultural vegetation. The present investigation provides a review of the state-of-the-art of the technology used to make remote sensing crop production estimates in foreign regions. Attention is given to Landsat data acquisition, aspects of registration and preprocessing, questions of data transformation, data modeling, proportion estimation, labeling, development stage models, crop condition models, and an outlook regarding future developments.

  16. Persistent scatterers detection on synthetic aperture radar images acquired by Sentinel-1 satellite

    Science.gov (United States)

    Dǎnişor, Cosmin; Popescu, Anca; Datcu, Mihai

    2016-12-01

    Persistent Scatterers Interferometry (PS-InSAR) has become a popular method in remote sensing because of its capability to measure terrain deformations with very high accuracy. It relies on multiple Synthetic Aperture Radar (SAR) acquisitions, to monitor points with stable proprieties over time, called Persistent Scatterers (PS)[1]. These points are unaffected by temporal decorrelation, therefore by analyzing their interferometric phase variation we can estimate the scene's deformation rates within a given time interval. In this work, we apply two incoherent detection algorithms to identify Persistent Scatterers candidates in the city of Focșani, Romania. The first method studies the variation of targets' intensities along the SAR acquisitions and the second method analyzes the spectral proprieties of the scatterers. The algorithms were implemented on a dataset containing 11 complex images of the region covering Buzău, Brăila and Focșani cities. Images were acquired by Sentinel-1 satellite in a time span of 5 months, from October 2014 to February 2015. The processing chain follows the requirements imposed by the new C-band SAR images delivered by the Sentinel-1 satellite (launched in April 2014) imaging in Interferometric Wide (IW) mode. Considering the particularities of the TOPS (Terrain Observation with Progressive Scans in Azimuth) imaging mode[2], special requirements had to be considered for pre-processing steps. The PS detection algorithms were implemented in Gamma RS program, a software which contains various function packages dedicated to SAR images focalization, analysis and processing.

  17. Mapping temperature and radiant geothermal heat flux anomalies in the Yellowstone geothermal system using ASTER thermal infrared data

    Science.gov (United States)

    Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.

  18. Adjusted normalized emissivity method for surface temperature and emissivity retrieval from optical and thermal infrared remote sensing data

    OpenAIRE

    Coll Company, César; Valor i Micó, Enric; Caselles Miralles, Vicente; Niclòs Corts, Raquel

    2003-01-01

    A methodology for the retrieval of surface temperatures and emissivities combining visible, near infrared and thermal infrared remote sensing data was applied to Digital Airborne Imaging Spectrometer (DAIS) data and validated with coincident ground measurements acquired in a multiyear experiment held in an agricultural site in Barrax, Spain. The Adjusted Normalized Emissivity Method (ANEM) is based on the use of visible and near infrared data to estimate the vegetation cover and model the max...

  19. Sea surface temperature mapping using a thermal infrared scanner

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Pandya, R.M.; Mathur, K.M.; Charyulu, R.J.K.; Rao, L.V.G.

    1 metre water column below the sea surface. A thermal infrared scanner developed by the Space Applications Centre (ISRO), Ahmedabad was operated on board R.V. Gaveshani in April/May 1984 for mapping SST over the eastern Arabian Sea. SST values...

  20. In-flight validation and recovery of water surface temperature with Landsat-5 thermal infrared data using an automated high-altitude lake validation site at Lake Tahoe

    Science.gov (United States)

    Hook, S.J.; Chander, G.; Barsi, J.A.; Alley, R.E.; Abtahi, A.; Palluconi, Frank Don; Markham, B.L.; Richards, R.C.; Schladow, S.G.; Helder, D.L.

    2004-01-01

    The absolute radiometric accuracy of the thermal infrared band (B6) of the Thematic Mapper (TM) instrument on the Landsat-5 (L5) satellite was assessed over a period of approximately four years using data from the Lake Tahoe automated validation site (California-Nevada). The Lake Tahoe site was established in July 1999, and measurements of the skin and bulk temperature have been made approximately every 2 min from four permanently moored buoys since mid-1999. Assessment involved using a radiative transfer model to propagate surface skin temperature measurements made at the time of the L5 overpass to predict the at-sensor radiance. The predicted radiance was then convolved with the L5B6 system response function to obtain the predicted L5B6 radiance, which was then compared with the radiance measured by L5B6. Twenty-four cloud-free scenes acquired between 1999 and 2003 were used in the analysis with scene temperatures ranging between 4??C and 22??C. The results indicate LSB6 had a radiance bias of 2.5% (1.6??C) in late 1999, which gradually decreased to 0.8% (0.5??C) in mid-2002. Since that time, the bias has remained positive (predicted minus measured) and between 0.3% (0.2??C) and 1.4% (0.9??C). The cause for the cold bias (L5 radiances are lower than expected) is unresolved, but likely related to changes in instrument temperature associated with changes in instrument usage. The in situ data were then used to develop algorithms to recover the skin and bulk temperature of the water by regressing the L5B6 radiance and the National Center for Environmental Prediction (NCEP) total column water data to either the skin or bulk temperature. Use of the NCEP data provides an alternative approach to the split-window approach used with instruments that have two thermal infrared bands. The results indicate the surface skin and bulk temperature can be recovered with a standard error of 0.6??C. This error is larger than errors obtained with other instruments due, in part, to the

  1. Identifying varnished rocks on Mars using thermal infrared spectroscopy

    Science.gov (United States)

    Hibbitts, C. A.; Gillespie, A.; Hansen, G. B.

    2004-12-01

    Thermal infrared (TIR) spectroscopy is widely implemented in attempts to determine the composition of the Mars's surface. Discoveries include basaltic rocks, possible andesites, and hematite-rich terrains associated with areas of probable hydrothermal alteration [Bandfield et al., 2000; Christensen et al., 2001; Glotch et al., 2004]. Some of the basaltic rocks appear to be covered by either a weathering rind or a varnish. The presence of a varnish would be interesting because it is believed to form through multiple wetting and drying events [reference]. The presence of these coatings can potentially be identified through unique nonlinear effects where both the substrate and varnish have strong spectral features. For example, varnished terrestrial quartz-rich rocks have a low-emissivity ~8.4-micron reststrahlan band diagnostic of a silicate-rich substrate which remains present while the longer wavelength reststrahlen band is obscured by the clay-rich varnish. In general, this non-linearity will conform to the Beer-Lambert Law, with additional reflection and scattering terms, so that the light emitted from the varnished stone will be similar to I=Io e-ax, where `Io' is the light emitted from a bare substrate, `a' is the absorption constant for the varnish coating, and `x' is the thickness of the coating. If the effect were linear, as expected for dusty surfaces [Johnson et al., 2002] or discrete patches of rock and clay, the emissivity of the emitted light would, at all wavelengths, possess equal contributions from the varnish and substrate; thus the clay feature would not completely dominate the longwave reststrahlan band without also erasing the shortwave reststrahlan band. After having theoretically determined a nonlinear at some wavelengths is probable, we have focused on laboratory spectral analyses of terrestrial varnished rocks. We have collected over 100 varnished stones from various pavements and unvarnished stones from other surfaces and have acquired over

  2. Human ear detection in the thermal infrared spectrum

    Science.gov (United States)

    Abaza, Ayman; Bourlai, Thirimachos

    2012-06-01

    In this paper the problem of human ear detection in the thermal infrared (IR) spectrum is studied in order to illustrate the advantages and limitations of the most important steps of ear-based biometrics that can operate in day and night time environments. The main contributions of this work are two-fold: First, a dual-band database is assembled that consists of visible and thermal profile face images. The thermal data was collected using a high definition middle-wave infrared (3-5 microns) camera that is capable of acquiring thermal imprints of human skin. Second, a fully automated, thermal imaging based ear detection method is developed for real-time segmentation of human ears in either day or night time environments. The proposed method is based on Haar features forming a cascaded AdaBoost classifier (our modified version of the original Viola-Jones approach1 that was designed to be applied mainly in visible band images). The main advantage of the proposed method, applied on our profile face image data set collected in the thermal-band, is that it is designed to reduce the learning time required by the original Viola-Jones method from several weeks to several hours. Unlike other approaches reported in the literature, which have been tested but not designed to operate in the thermal band, our method yields a high detection accuracy that reaches ~ 91.5%. Further analysis on our data set yielded that: (a) photometric normalization techniques do not directly improve ear detection performance. However, when using a certain photometric normalization technique (CLAHE) on falsely detected images, the detection rate improved by ~ 4%; (b) the high detection accuracy of our method did not degrade when we lowered down the original spatial resolution of thermal ear images. For example, even after using one third of the original spatial resolution (i.e. ~ 20% of the original computational time) of the thermal profile face images, the high ear detection accuracy of our method

  3. The Thermal Infrared Sensor on the Landsat Data Continuity Mission

    Science.gov (United States)

    Reuter, Dennis; Richardson, Cathy; Irons, James; Allen, Rick; Anderson, Martha; Budinoff, Jason; Casto, Gordon; Coltharp, Craig; Finneran, Paul; Forsbacka, Betsy; Hale, Taylor; Jennings, Tom; Jhabvala, Murzy; Lunsford, Allen; Magnuson, Greg; Mills, Rick; Morse, Tony; Otero, Veronica; Rohrbach, Scott; Smith, Ramsey; Sullivan, Terry; Tesfaye, Zelalem; Thome, Kurtis; Unger, Glenn; Whitehouse, Paul

    2010-01-01

    The Landsat Data Continuity Mission (LDCM), a joint NASA and USGS mission, is scheduled for launch in December, 2012. The LDCM instrument payload will consist of the Operational Land Imager (OLI), provided by Ball Aerospace and Technology Corporation (BATC} under contract to NASA and the Thermal Infrared Sensor (TIRS), provided by NASA's Goddard Space Flight Center (GSFC). This paper outlines the design of the TIRS instrument and gives an example of its application to monitoring water consumption by measuring evapotranspiration.

  4. A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies

    Science.gov (United States)

    Hook, Simon J.; Gabell, A. R.; Green, A. A.; Kealy, P. S.

    1992-01-01

    This article evaluates three techniques developed to extract emissivity information from multispectral thermal infrared data. The techniques are the assumed Channel 6 emittance model, thermal log residuals, and alpha residuals. These techniques were applied to calibrated, atmospherically corrected thermal infrared multispectral scanner (TIMS) data acquired over Cuprite, Nevada in September 1990. Results indicate that the two new techniques (thermal log residuals and alpha residuals) provide two distinct advantages over the assumed Channel 6 emittance model. First, they permit emissivity information to be derived from all six TIMS channels. The assumed Channel 6 emittance model only permits emissivity values to be derived from five of the six TIMS channels. Second, both techniques are less susceptible to noise than the assumed Channel 6 emittance model. The disadvantage of both techniques is that laboratory data must be converted to thermal log residuals or alpha residuals to facilitate comparison with similarly processed image data. An additional advantage of the alpha residual technique is that the processed data are scene-independent unlike those obtained with the other techniques.

  5. Systems Analysis for Thermal Infrared ` THz Torch' Applications

    Science.gov (United States)

    Hu, Fangjing; Sun, Jingye; Brindley, Helen E.; Liang, Xiaoxin; Lucyszyn, Stepan

    2015-05-01

    The ` THz Torch' concept was recently introduced by the authors for providing secure wireless communications over short distances within the thermal infrared (10-100 THz). Unlike conventional systems, thermal infrared can exploit front-end thermodynamics with engineered blackbody radiation. For the first time, a detailed power link budget analysis is given for this new form of wireless link. The mathematical modeling of a short end-to-end link is provided, which integrates thermodynamics into conventional signal and noise power analysis. As expected from the Friis formula for noise, it is found that the noise contribution from the pyroelectric detector dominates intrinsic noise. From output signal and noise voltage measurements, experimental values for signal-to-noise ratio (SNR) are obtained and compared with calculated predictions. As with conventional communications systems, it is shown for the first time that the measured SNR and measured bit error rate found with this thermodynamics-based system resembles classical empirical models. Our system analysis can serve as an invaluable tool for the development of thermal infrared systems, accurately characterizing each individual channel and, thus, enables the performance of multi-channel ` THz Torch' systems to be optimized.

  6. Calibration of the Thermal Infrared Sensor on the Landsat Data Continuity Mission

    Science.gov (United States)

    Thome, K; Reuter, D.; Lunsford, D.; Montanaro, M.; Smith, J.; Tesfaye, Z.; Wenny, B.

    2011-01-01

    The Landsat series of satellites provides the longest running continuous data set of moderate-spatial-resolution imagery beginning with the launch of Landsat 1 in 1972 and continuing with the 1999 launch of Landsat 7 and current operation of Landsats 5 and 7. The Landsat Data Continuity Mission (LDCM) will continue this program into a fourth decade providing data that are keys to understanding changes in land-use changes and resource management. LDCM consists of a two-sensor platform comprised of the Operational Land Imager (OLI) and Thermal Infrared Sensors (TIRS). A description of the applications and design of the TIRS instrument is given as well as the plans for calibration and characterization. Included are early results from preflight calibration and a description of the inflight validation.

  7. Detection and mapping of volcanic rock assemblages and associated hydrothermal alteration with Thermal Infrared Multiband Scanner (TIMS) data Comstock Lode Mining District, Virginia City, Nevada

    Science.gov (United States)

    Taranik, James V.; Hutsinpiller, Amy; Borengasser, Marcus

    1986-01-01

    Thermal Infrared Multispectral Scanner (TIMS) data were acquired over the Virginia City area on September 12, 1984. The data were acquired at approximately 1130 hours local time (1723 IRIG). The TIMS data were analyzed using both photointerpretation and digital processing techniques. Karhuen-Loeve transformations were utilized to display variations in radiant spectral emittance. The TIMS image data were compared with color infrared metric camera photography, LANDSAT Thematic Mapper (TM) data, and key areas were photographed in the field.

  8. Estimation of Lake Water Temperature with ASTER and Landsat 8 OLI-TIRS Thermal Infrared Bands: A Case Study Beysehir Lake (Turkey)

    Science.gov (United States)

    Sener, Sehnaz; Sener, Erhan

    2016-08-01

    Beyşehir Lake is the largest fresh water lake in our country with the 653 km2 surface area. Lake water have used for drinking water of several settlements in the basin. Beyşehir Lake is a shallow lake and, especially in recent years its water level was dropped due to unplanned usage and effects of climate change.In this study, determination of the water temperature in Lake Beyşehir is aimed using 90m resolution thermal infrared bands of ASTER (Advance Spaceborne Thermal Emission and Reflection Radiometer) satellite and 30m resolution thermal infrared bands of Landsat 8 OLI-TIRS satellite. The Normalized Water Different Index (NWDI) has been applied to ASTER and Landsat 8 OLI-TIRS satellite images to determine lake surface area. Accordingly, the lake water temperature is generally proportional to the depth and it relatively higher in the shallow area.

  9. [Application study of the thermal infrared emissivity spectra in the estimation of salt content of saline soil].

    Science.gov (United States)

    Xia, Jun; Tashpolat, Tiyip; Mamat, Sawut; Zhang, Fei; Han, Gui-Hong

    2012-11-01

    Studying of soil salinization is of great significance for agricultural production in arid area oasis, thermal infrared remote sensing technology provides a new technology and method in this field. Authors used Fourier transform infrared spectrometer to measure the oasis saline soil in field, employed iterative spectrally smooth temperature/emissivity separation algorithm (ISSTES) to separate temperature and emissivity, and acquired the thermal infrared emissivity data of the saline soil. Through researching the emissivity spectral feature of saline soil, and concluded that soil emissivity will reduce with the increasing of salt content from 8 to 13 microm, so emissivity spectra is more sensitive to salt factor from 8 to 9.5 microm. Then, analyzed the correlation between original emissivity spectra and its first derivative, second derivative and normalized ratio with salt content, the result showed that they have a negative correlation relationship between soil emissivity and salt content, and the correlation between emissivity first derivative and salt content is highest, reach to 0.724 2, the corresponding bands are from 8.370 745-8.390 880 microm. Finally, established the quadratic function regression model, its determination coefficient is 0.741 4, and root mean square error is 0.235 5, the result explained that the approach of using thermal infrared emissivity to retrieve the salt content of saline soil is feasible.

  10. Mapping the Piute Mountains, CA with Thermal Infrared Multispectral Scanner (TIMS)

    Science.gov (United States)

    Hook, S. J.; Karlstrom, K. E.; Miller, C. F.; McCaffrey, K. J. W.

    1993-01-01

    Thermal Infrared Multispectral Scanner (TIMS) data were acquired in 1990 over the PiuteMountains, California to evaluate their usefulness for lithologic mapping in an area ofmetamorphosed, structurally complex, igneous and sedimentary rocks. The data were calibrated,atmospherically corrected, and emissivity variations extracted from them. There was an excellentvisual correlation between the units revealed in the TIMS data and the recent mapping in the easternside of the area. It was also possible to correct, improve and extend the recent map. For example,several areas of amphibolite were identified in the TIMS data that had been incorrectly mapped asgranodioritic gneiss, and the presence of a swarm of mafic dikes, of which only a few had previouslybeen identified, was revealed...

  11. Use of thermal infrared pictures for retrieving intertidal DEM by the waterline method: advantages and limitations

    Science.gov (United States)

    Gaudin, D.; Delacourt, C.; Allemand, P.

    2010-12-01

    Digital Elevation Models (DEM) of the intertidal zones have a growing interest for ecological and land development purposes. They are also a fundamental tool for monitoring current sedimentary movements in those low energy environments. Such DEMs have to be constructed with a centimetric resolution as the topographic changes are not predictable and as sediment displacements are weak. Direct construction of DEM by GPS in these muddy environment is difficult: photogrammetric techniques are not efficient on uniform coloured surfaces and terrestrial laser scans are difficult to stabilize on the mud, due to humidity. In this study, we propose to improve and to apply the waterline method to retrieve DEMs in intertidal zones. This technique is based on monitoring accurately the boundary between sand and water during a whole tide rise with thermal infrared images. The DEM is made by stacking all these lines calibrated by an immersed pressure sensor. Using thermal infrared pictures, instead of optical ones, improves the detection of the waterline, since mud and water have very different responses to sun heating and a large emissivity contrast. However, temperature retrieving from thermal infrared data is not trivial, since the luminance of an object is the sum of a radiative part and a reflexive part, whose relative proportions are given by the emissivity. In the following equation, B accounts for the equivalent blackbody luminance, and Linc is the incident luminance : Ltot}=L{rad}+L_{refl=ɛ B+(1-ɛ )Linc The infrared waterline technique has been used for the monitoring of a beach located on the Aber Benoit, 8.5km away from the open sea. The site is mainly constituted of mud, and waves are very small (less than one centimeter high), which are the ideal conditions for using the waterline method. A few measurements have been made to make differential heigh maps of sediments. We reached a mean resolution of 2cm and a vertical accuracy better than one centimeter. The results

  12. Detecting small groundwater discharge springs using handheld thermal infrared imagery.

    Science.gov (United States)

    Röper, Tania; Greskowiak, Janek; Massmann, Gudrun

    2014-01-01

    Ground-based handheld thermal infrared imagery was used for the detection of small-scale groundwater springs at the northwestern beach of Spiekeroog Island (northwest Germany). The surveys and in situ measurements of electric conductivity were carried out from shortly before to shortly after low tide along the low water line. Several brackish groundwater discharge springs with a diameter of 1-2 cm were observed along the beach at a distance of 2-3 m above the low water line. The high fresh water portion in the discharging water derives from the fresh water lens in the center of the island. During cold weather, the springs were identified by a significantly increased temperature (3-5 °C higher) and a lower electric conductivity (30 mS/cm). During warmer weather conditions, an inverse temperature contrast was observed. The measurements confirm the applicability of thermal imagery for the detection of small-scale groundwater discharge locations as an extension to the established method of aerial thermal scans and prove the existence of submarine groundwater seeps in porous systems. A ground-based handheld thermal infrared imagery survey enables a precise installation of sampling devices as, for example, seepage meters. © 2013, National Ground Water Association.

  13. Observed Asteroid Surface Area in the Thermal Infrared

    Science.gov (United States)

    Nugent, C. R.; Mainzer, A.; Masiero, J.; Wright, E. L.; Bauer, J.; Grav, T.; Kramer, E.; Sonnett, S.

    2017-02-01

    The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emitted flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.

  14. Global trends in lake surface temperatures observed using multi-sensor thermal infrared imagery

    Science.gov (United States)

    Schneider, Philipp; Hook, Simon J.; Radocinski, Robert G.; Corlett, Gary K.; Hulley, Glynn C.; Schladow, S. Geoffrey; Steissberg, Todd E.

    2010-05-01

    Recent research has shown that the temperature of lakes and other inland water bodies does not only act as a good indicator of climate variability but under certain conditions can even increase more rapidly than the regional air temperature. Further investigation of this phenomenon in particular and of the interaction between lake temperature and climate variability in general requires extensive observations of lake temperature on a global scale. Current in situ records are limited in their spatial and/or temporal coverage and are thus insufficient for this task. However, a nearly 30-year archive of satellite-derived thermal infrared imagery from multiple sensors is available at this point and can be used to fill this data gap. We describe research on utilizing the existing archive of spaceborne thermal infrared imagery to generate multi-decadal time series of lake surface temperature for 170 of the largest lakes worldwide. The data used for this purpose includes imagery from the Advanced Very High Resolution Radiometers (AVHRR), the series of (Advanced) Along-Track Scanning Radiometers ((A)ATSR), and the Moderate Resolution Imaging Spectroradiometer (MODIS). Used in combination, these data sets offer a gapless time series of daily to near-daily thermal infrared retrievals from 1981 through present. In this contribution we demonstrate using comprehensive in situ data at Lake Tahoe, California/Nevada, that lake water surface temperature can be estimated using these sensors with an accuracy of up to 0.2 K. We further show that accurate continuous time series of water surface temperature can be derived from the data and that these time series can be used to detect significant trends in the temporal thermal behavior of lakes and other inland water bodies worldwide. Complementing our recent case study for lakes in California and Nevada for which a rapid increase in mean nighttime summertime lake surface temperatures of 0.11 K per year on average was found, we present

  15. Ground-based analysis of volcanic ash plumes using a new multispectral thermal infrared camera approach

    Science.gov (United States)

    Williams, D.; Ramsey, M. S.

    2015-12-01

    Volcanic plumes are complex mixtures of mineral, lithic and glass fragments of varying size, together with multiple gas species. These plumes vary in size dependent on a number of factors, including vent diameter, magma composition and the quantity of volatiles within a melt. However, determining the chemical and mineralogical properties of a volcanic plume immediately after an eruption is a great challenge. Thermal infrared (TIR) satellite remote sensing of these plumes is routinely used to calculate the volcanic ash particle size variations and sulfur dioxide concentration. These analyses are commonly performed using high temporal, low spatial resolution satellites, which can only reveal large scale trends. What is lacking is a high spatial resolution study specifically of the properties of the proximal plumes. Using the emissive properties of volcanic ash, a new method has been developed to determine the plume's particle size and petrology in spaceborne and ground-based TIR data. A multispectral adaptation of a FLIR TIR camera has been developed that simulates the TIR channels found on several current orbital instruments. Using this instrument, data of volcanic plumes from Fuego and Santiaguito volcanoes in Guatemala were recently obtained Preliminary results indicate that the camera is capable of detecting silicate absorption features in the emissivity spectra over the TIR wavelength range, which can be linked to both mineral chemistry and particle size. It is hoped that this technique can be expanded to isolate different volcanic species within a plume, validate the orbital data, and ultimately to use the results to better inform eruption dynamics modelling.

  16. Optimum thermal infrared bands for mapping general rock type and temperature from space

    Science.gov (United States)

    Holmes, Q. A.; Nueesch, D. R.; Vincent, R. K.

    1980-01-01

    A study was carried out to determine quantitatively the number and location of spectral bands required to perform general rock type discrimination from spaceborne imaging sensors using only thermal infrared measurements. Beginning with laboratory spectra collected under idealized conditions from relatively well-characterized homogeneous samples, a radiative transfer model was used to transform ground exitance values into the corresponding spectral radiance at the top of the atmosphere. Taking sensor noise into account, analysis of these data revealed that three 1 micron wide spectral bands would permit independent estimations of rock type and sample temperature from a satellite infrared multispectral scanner. This study, which ignores the mixing of terrain elements within the instantaneous field of view of a satellite scanner, indicates that the location of three spectral bands at 8.1-9.1, 9.5-10.5, and 11.0-12.0 microns, and the employment of appropriate preprocessing to minimize atmospheric effects makes it possible to predict general rock type and temperature for a variety of atmospheric states and temperatures.

  17. An Assessment of Polynomial Regression Techniques for the Relative Radiometric Normalization (RRN of High-Resolution Multi-Temporal Airborne Thermal Infrared (TIR Imagery

    Directory of Open Access Journals (Sweden)

    Mir Mustafizur Rahman

    2014-11-01

    Full Text Available Thermal Infrared (TIR remote sensing images of urban environments are increasingly available from airborne and satellite platforms. However, limited access to high-spatial resolution (H-res: ~1 m TIR satellite images requires the use of TIR airborne sensors for mapping large complex urban surfaces, especially at micro-scales. A critical limitation of such H-res mapping is the need to acquire a large scene composed of multiple flight lines and mosaic them together. This results in the same scene components (e.g., roads, buildings, green space and water exhibiting different temperatures in different flight lines. To mitigate these effects, linear relative radiometric normalization (RRN techniques are often applied. However, the Earth’s surface is composed of features whose thermal behaviour is characterized by complexity and non-linearity. Therefore, we hypothesize that non-linear RRN techniques should demonstrate increased radiometric agreement over similar linear techniques. To test this hypothesis, this paper evaluates four (linear and non-linear RRN techniques, including: (i histogram matching (HM; (ii pseudo-invariant feature-based polynomial regression (PIF_Poly; (iii no-change stratified random sample-based linear regression (NCSRS_Lin; and (iv no-change stratified random sample-based polynomial regression (NCSRS_Poly; two of which (ii and iv are newly proposed non-linear techniques. When applied over two adjacent flight lines (~70 km2 of TABI-1800 airborne data, visual and statistical results show that both new non-linear techniques improved radiometric agreement over the previously evaluated linear techniques, with the new fully-automated method, NCSRS-based polynomial regression, providing the highest improvement in radiometric agreement between the master and the slave images, at ~56%. This is ~5% higher than the best previously evaluated linear technique (NCSRS-based linear regression.

  18. The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality

    National Research Council Canada - National Science Library

    Hache, E; Attié, J.-L; Tourneur, C; Ricaud, P; Coret, L; Lahoz, W. A; El Amraoui, L; Josse, B; Hamer, P; Warner, J; Liu, X; Chance, K; Höpfner, M; Spurr, R; Natraj, V; Kulawik, S; Eldering, A; Orphal, J

    2014-01-01

    ...) in the thermal infrared (GEO TIR) and (2) in the thermal infrared and the visible (GEO TIR+VIS). These configurations are compared against each other, and also against an ozone reference state and a priori ozone information...

  19. Near-surface Thermal Infrared Imaging of a Mixed Forest

    Science.gov (United States)

    Aubrecht, D. M.; Helliker, B. R.; Richardson, A. D.

    2014-12-01

    Measurement of an organism's temperature is of basic physiological importance and therefore necessary for ecosystem modeling, yet most models derive leaf temperature from energy balance arguments or assume it is equal to air temperature. This is because continuous, direct measurement of leaf temperature outside of a controlled environment is difficult and rarely done. Of even greater challenge is measuring leaf temperature with the resolution required to understand the underlying energy balance and regulation of plant processes. To measure leaf temperature through the year, we have mounted a high-resolution, thermal infrared camera overlooking the canopy of a temperate deciduous forest. The camera is co-located with an eddy covariance system and a suite of radiometric sensors. Our camera measures longwave thermal infrared (λ = 7.5-14 microns) using a microbolometer array. Suspended in the canopy within the camera FOV is a matte black copper plate instrumented with fine wire thermocouples that acts as a thermal reference for each image. In this presentation, I will discuss the challenges of continuous, long-term field operation of the camera, as well as measurement sensitivity to physical and environmental parameters. Based on this analysis, I will show that the uncertainties in converting radiometric signal to leaf temperature are well constrained. The key parameter for minimizing uncertainty is the emissivity of the objects being imaged: measuring the emissivity to within 0.01 enables leaf temperature to be calculated to within 0.5°C. Finally, I will present differences in leaf temperature observed amongst species. From our two-year record, we characterize high frequency, daily, and seasonal thermal signatures of leaves and crowns, in relation to environmental conditions. Our images are taken with sufficient spatial and temporal resolution to quantify the preferential heating of sunlit portions of the canopy and the cooling effect of wind gusts. Future work will

  20. Retrieving Land Surface Temperature and Emissivity from Multispectral and Hyperspectral Thermal Infrared Instruments

    Science.gov (United States)

    Hook, Simon; Hulley, Glynn; Nicholson, Kerry

    2017-04-01

    Land Surface Temperature and Emissivity (LST&E) data are critical variables for studying a variety of Earth surface processes and surface-atmosphere interactions such as evapotranspiration, surface energy balance and water vapor retrievals. LST&E have been identified as an important Earth System Data Record (ESDR) by NASA and many other international organizations Accurate knowledge of the LST&E is a key requirement for many energy balance models to estimate important surface biophysical variables such as evapotranspiration and plant-available soil moisture. LST&E products are currently generated from sensors in low earth orbit (LEO) such as the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua satellites as well as from sensors in geostationary Earth orbit (GEO) such as the Geostationary Operational Environmental Satellites (GOES) and airborne sensors such as the Hyperspectral Thermal Emission Spectrometer (HyTES). LST&E products are generated with varying accuracies depending on the input data, including ancillary data such as atmospheric water vapor, as well as algorithmic approaches. NASA has identified the need to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. We will discuss the different approaches that can be used to retrieve surface temperature and emissivity from multispectral and hyperspectral thermal infrared sensors using examples from a variety of different sensors such as those mentioned, and planned new sensors like the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) and the Hyperspectral Infrared Imager (HyspIRI). We will also discuss a project underway at NASA to develop a single unified product from some the individual sensor products and assess the errors associated with the product.

  1. THERMAL INFRARED INSPECTION OF ROOF INSULATION USING UNMANNED AERIAL VEHICLES

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2015-08-01

    Full Text Available UAVs equipped with high-resolution thermal cameras provide an excellent investigative tool used for a multitude of building-specific applications, including roof insulation inspection. We have presented in this study a relative thermographic calibration algorithm and a superpixel Markov Random Field model to address problems in thermal infrared inspection of roof insulation using UAVs. The relative thermographic radiometric calibration algorithm is designed to address the autogain problem of the thermal camera. Results show the algorithm can enhance the contrast between warm and cool areas on the roof surface in thermal images, and produces more constant thermal signatures of different roof insulations or surfaces, which could facilitate both visual interpretation and computer-based thermal anomaly detection. An automatic thermal anomaly detection algorithm based on superpixel Markov Random Field is proposed, which is more computationally efficient than pixel based MRF, and can potentially improve the production throughput capacity and increase the detection accuracy for thermal anomaly detection. Experimental results show the effectiveness of the proposed method.

  2. Landsat 8 thermal infrared sensor geometric characterization and calibration

    Science.gov (United States)

    Storey, James C.; Choate, Michael J.; Moe, Donald

    2014-01-01

    The Landsat 8 spacecraft was launched on 11 February 2013 carrying two imaging payloads: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The TIRS instrument employs a refractive telescope design that is opaque to visible wavelengths making prelaunch geometric characterization challenging. TIRS geometric calibration thus relied heavily on on-orbit measurements. Since the two Landsat 8 payloads are complementary and generate combined Level 1 data products, the TIRS geometric performance requirements emphasize the co-alignment of the OLI and TIRS instrument fields of view and the registration of the OLI reflective bands to the TIRS long-wave infrared emissive bands. The TIRS on-orbit calibration procedures include measuring the TIRS-to-OLI alignment, refining the alignment of the three TIRS sensor chips, and ensuring the alignment of the two TIRS spectral bands. The two key TIRS performance metrics are the OLI reflective to TIRS emissive band registration accuracy, and the registration accuracy between the TIRS thermal bands. The on-orbit calibration campaign conducted during the commissioning period provided an accurate TIRS geometric model that enabled TIRS Level 1 data to meet all geometric accuracy requirements. Seasonal variations in TIRS-to-OLI alignment have led to several small calibration parameter adjustments since commissioning.

  3. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2009-08-01

    Full Text Available Atmospheric remote sounding from satellites is an essential component of the observational strategy deployed to monitor atmospheric pollution and changing composition. The IASI nadir looking thermal infrared sounder onboard MetOp will provide 15 years of global scale observations for a series of key atmospheric species, with unprecedented spatial sampling and coverage. This paper gives an overview of the instrument's capability for measuring atmospheric composition in the perspective of chemistry and air quality. The assessment is made in terms of species, accuracy and vertical information. Global distributions are presented for CO, CH4, O3 (total and tropospheric, HNO3, NH3, and volcanic SO2. Local distributions of organic species measured during fire events, such as C2H4, CH3OH, HCOOH, and PAN are also shown. For each species or process, the link is made to specialized papers in this issue.

  4. Experimental exploration to thermal infrared imaging for detecting the transient process of solid impact

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the analysis and the comparison of stress pattern analysis by thermal emission (SPATE) and remote sensing rock mechanics (RSRM), the idea to detect the transient process of solid impact with thermal infrared (TIR) imaging technology is introduced. By means of TVS-8100MKII T IR imaging system, which has high recording speed, high space distinguishability and high temperature sensibility, TIR imaging experiments on free falling steel ball impacting on marble, granite, concrete, steel, organic-glass and wood plate are conducted. It was discovered that: (i) the target's TIR temperature increases remarkably after impact; (ii) when ball's size is not changed, the variation amplitude of target's TIR temperature proportionally increases with the ball's potential energy or falling height; (iii) the variation amplitude of target's TIR temperature is involved with the material type and the surface glabrous condition of the target, and the amplitudes are in order as concrete, unpolished marble, steel plate, wood plate, polished granite, polished marble and organic-glass plate; and (iv) the TIR radiation of fragile targets decreases gradually after impact, while there is delayed TIR radiation strengthening for plastic target. It is deduced that once the relational runctions and technical parameters, which are involved with certain impact body and target material, are set up through experimental study, the remote detection and back analysis based on TIR imaging for the transient process of solid impact will be no problem. Besides, there is also important scientific meaning for the omen mechanics study and satellite TIR detection and prediction for structural earthquake.

  5. A Temperature and Emissivity Separation Algorithm for Landsat-8 Thermal Infrared Sensor Data

    Directory of Open Access Journals (Sweden)

    Songhan Wang

    2015-08-01

    Full Text Available On-board the Landsat-8 satellite, the Thermal Infrared Sensor (TIRS, which has two adjacent thermal channels centered roughly at 10.9 and 12.0 μm, has a great benefit for the land surface temperature (LST retrieval. The single-channel algorithm (SC and split-window algorithm (SW have been applied to retrieve the LST from TIRS data, which need the land surface emissivity (LSE as prior knowledge. Due to the big challenge of determining the LSE, this study develops a temperature and emissivity separation algorithm which can simultaneously retrieve the LST and LSE. Based on the laboratory emissivity spectrum data, the minimum-maximum emissivity difference module (MMD module for TIRS data is developed. Then, an emissivity log difference method (ELD method is developed to maintain the emissivity spectrum shape in the iterative process, which is based on the modified Wien’s approximation. Simulation results show that the root-mean-square-errors (RMSEs are below 0.7 K for the LST and below 0.015 for the LSE. Based on the SURFRAD ground measurements, further evaluation demonstrates that the average absolute error of the LST is about 1.7 K, which indicated that the algorithm is capable of retrieving the LST and LSE simultaneously from TIRS data with fairly good results.

  6. Jupiter's auroral-related thermal infrared emission from IRTF-TEXES

    Science.gov (United States)

    Sinclair, James; Orton, Glenn; Greathouse, Thomas; Fletcher, Leigh; Irwin, Patrick

    2015-11-01

    Auroral processes on Jupiter can be observed at a large range of wavelengths. Charged particles of the solar wind are deflected by Jupiter’s magnetic field and penetrate the atmosphere at high latitudes. This results in ion and/or electron precipitation, which produces emission at X-ray, UV, visible, near-infrared and even radio wavelengths. These observations indicate three distinct features of the aurora: 1) filament-like oval structures fixed at the magnetic poles (~80°W (System III) in the south, ~180°W in the north), 2) spatially-continuous but transient aurora that fill these oval regions and 3) discrete spots associated with the magnetic footprints of Io and other Galilean satellites. However, observations in the thermal infrared indicate the aurora also modify the neutral atmosphere. Enhanced emission of CH4 is observed coincident with the auroral ovals and indicates heightened stratospheric temperatures possibly as a result of joule heating by the influx of charged particles. Stronger emission is also observed of C2H2, C2H4, C2H6 and even C6H6 though previous work has struggled to determine whether this is a temperature or compositional effect. In order to quantify the auroral effects on the neutral atmosphere and to support the 2016 Juno mission (which has no thermal infrared instrument) we have performed a retrieval analysis of IRTF-TEXES (Texas Echelon Cross Echelle Spectrograph, 5- to 25-μm) spectra obtained on Dec 11th 2014 near solar maximum. The instrument slit was scanned east-west across high latitudes in each hemisphere and Jupiter’s rotation was used to obtain ~360° longitudinal coverage. Spectra of H2 S(1), CH4, C2H2, C2H4 and C2H6 emission were measured at a resolving power of R = 85000, allowing a large vertical range in the atmosphere (100 - 0.001 mbar) to be sounded. Preliminary retrievals of the vertical temperature profile from H2 S(1) and CH4 measurements at 60°N, 180°W (on aurora), in comparison to 60°N, 60°W (quiescent

  7. Thermophysical modeling of asteroids from WISE thermal infrared data - Significance of the shape model and the pole orientation uncertainties

    CERN Document Server

    Hanuš, Josef; Ďurech, Josef; Alí-Lagoa, Victor

    2015-01-01

    In the analysis of thermal infrared data of asteroids by means of thermophysical models (TPMs) it is a common practice to neglect the uncertainty of the shape model and the rotational state, which are taken as an input for the model. Here, we present a novel method of investigating the importance of the shape model and the pole orientation uncertainties in the thermophysical modeling - the varied shape TPM (VS-TPM). Our method uses optical photometric data to generate various shape models that map the uncertainty in the shape and the rotational state. The TPM procedure is then run for all these shape models. We apply the implementation of the classical TPM as well as our VS-TPM to the convex shape models of several asteroids together with their thermal infrared data acquired by the NASA's Wide-field Infrared Survey Explorer (WISE) and compare the results. These show that the uncertainties of the shape model and the pole orientation can be very important (e.g., for the determination of the thermal inertia) and...

  8. Monitoring the Impacts of Severe Drought on Southern California Chaparral Species using Hyperspectral and Thermal Infrared Imagery

    Directory of Open Access Journals (Sweden)

    Austin R. Coates

    2015-10-01

    Full Text Available Airborne hyperspectral and thermal infrared imagery acquired in 2013 and 2014, the second and third years of a severe drought in California, were used to assess drought impacts on dominant plant species. A relative green vegetation fraction (RGVF calculated from 2013–2014 Airborne Visible Infrared Imaging Spectrometer (AVIRIS data using linear spectral unmixing revealed seasonal and multi-year changes relative to a pre-drought 2011 reference AVIRIS image. Deeply rooted tree species and tree species found in mesic areas showed the least change in RGVF. Coastal sage scrub species demonstrated the highest seasonal variability, as well as a longer-term decline in RGVF. Ceanothus species were apparently least well-adapted to long-term drought among chaparral species, showing persistent declines in RGVF over 2013 and 2014. Declining RGVF was associated with higher land surface temperature retrieved from MODIS-ASTER Airborne Simulator (MASTER data. Combined collection of hyperspectral and thermal infrared imagery may offer new opportunities for mapping and monitoring drought impacts on ecosystems.

  9. Airborne Thermal Infrared Multispectral Scanner (TIMS) images over disseminated gold deposits, Osgood Mountains, Humboldt County, Nevada

    Science.gov (United States)

    Krohn, M. Dennis

    1986-01-01

    The U.S. Geological Survey (USGS) acquired airborne Thermal Infrared Multispectral Scanner (TIMS) images over several disseminated gold deposits in northern Nevada in 1983. The aerial surveys were flown to determine whether TIMS data could depict jasperoids (siliceous replacement bodies) associated with the gold deposits. The TIMS data were collected over the Pinson and Getchell Mines in the Osgood Mountains, the Carlin, Maggie Creek, Bootstrap, and other mines in the Tuscarora Mountains, and the Jerritt Canyon Mine in the Independence Mountains. The TIMS data seem to be a useful supplement to conventional geochemical exploration for disseminated gold deposits in the western United States. Siliceous outcrops are readily separable in the TIMS image from other types of host rocks. Different forms of silicification are not readily separable, yet, due to limitations of spatial resolution and spectral dynamic range. Features associated with the disseminated gold deposits, such as the large intrusive bodies and fault structures, are also resolvable on TIMS data. Inclusion of high-resolution thermal inertia data would be a useful supplement to the TIMS data.

  10. Can we detect water stressed areas in forest thanks thermal infrared remote sensing?

    Science.gov (United States)

    Nourtier, Marie; Chanzy, André; Bes, Bernard; Mariotte, Nicolas

    2010-05-01

    In Mediterranean and mountainous areas, an increase of mortality in forest is observed after important drought events. In the context of climate changes, a study of the impact of drought stress on forest is necessary. In order to detect water stress over the whole forest at different periods of the year, we propose the use of a spatialisable indicator, easily measurable: crown surface temperature. As previous works were not conclusive concerning the potentiality of this indicator in forest (Duchemin, 1998a, 1998b, Pierce et al., 1990), we set up an experimentation to study the surface temperature evolution linked to the transpiration at tree scale, during the spring and summer periods on silver fir (Abies alba) forest of Mont Ventoux (south of France). At the same time, several thermal infrared images of the mountainside were acquired corresponding to different levels of transpiration. The signal of surface temperature is studying via the evolution of the difference between measured surface temperature and calculated surface temperature for a tree at maximum transpiration rate. At tree scale, there is a difference of 4 °C of amplitude in the signal of surface temperature between maximum and zero transpiration conditions. The difficulty resides in taking into account the influence of climatic conditions, source of variability in the signal uncorrelated with transpiration evolution. Indices of surface temperature, built to include this influence of climatic conditions, permit to reduce this variability. Another source of variability lies in the percentage of branches present in the area of measurement. Indeed branches have a thermal dynamic differing from the needles one and, considering comparison between trees, the percentage of branches varies. At the mountainside scale, contrasted areas in terms of surface temperature indices are observable. By comparing different dates, corresponding to different levels of drought, it is possible to locate areas with precocious

  11. Mako airborne thermal infrared imaging spectrometer: performance update

    Science.gov (United States)

    Hall, Jeffrey L.; Boucher, Richard H.; Buckland, Kerry N.; Gutierrez, David J.; Keim, Eric R.; Tratt, David M.; Warren, David W.

    2016-09-01

    The Aerospace Corporation's sensitive Mako thermal infrared imaging spectrometer, which operates between 7.6 and 13.2 microns at a spectral sampling of 44 nm, and flies in a DeHavilland DHC-6 Twin Otter, has undergone significant changes over the past year that have greatly increased its performance. A comprehensive overhaul of its electronics has enabled frame rates up to 3255 Hz and noise reductions bringing it close to background-limited. A replacement diffraction grating whose peak efficiency was tuned to shorter wavelength, coupled with new AR coatings on certain key optics, has improved the performance at the short wavelength end by a factor of 3, resulting in better sensitivity for methane detection, for example. The faster frame rate has expanded the variety of different scan schemes that are possible, including multi-look scans in which even sizeable target areas can be scanned multiple times during a single overpass. Off-nadir scanning to +/-56.4° degrees has also been demonstrated, providing an area scan rate of 33 km2/minute for a 2-meter ground sampling distance (GSD) at nadir. The sensor achieves a Noise Equivalent Spectral Radiance (NESR) of better than 0.6 microflicks (μf, 10-6 W/sr/cm2/μm) in each of the 128 spectral channels for a typical airborne dataset in which 4 frames are co-added. An additional improvement is the integration of a new commercial 3D stabilization mount which is significantly better at compensating for aircraft motions and thereby maintains scan performance under quite turbulent flying conditions. The new sensor performance and capabilities are illustrated.

  12. Unmanned ground vehicle perception using thermal infrared cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-05-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5μm) or long-wave infrared (LWIR) radiation (7-14μm). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  13. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-01-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5?m) or long-wave infrared (LWIR) radiation (8-12?m). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  14. Thermal Infrared Imager on Hayabusa2: Science and Development

    Science.gov (United States)

    Okada, Tatsuaki

    2015-04-01

    Thermal Infrared Imager TIR was developed and calibrated for Haya-busa2 asteroid explorer, aiming at the investigation of thermo-physical properties of C-class near-Earth sub-km sized asteroid (162173) 1999JU3. TIR is based on the 2D micro-bolometer array with germani-um lens to image the surface of asteroid in 8 to 12 μm wavelength (1), measuring the thermal emission off the asteroid surface. Its field of view is 16° x 12° with 328 x 248 pixels. At least 40 (up to 100) images will be taken during asteroid rotation once a week, mainly from the Home Position which is about 20km sunward from asteroid surface. Therefore TIR will image the whole asteroid with spatial resolution of scien-tific objectives of TIR include the mapping of asteroid surface condi-tions (regional distribution of thermal inertia), since the surface physical conditions are strongly correlated with thermal inertia. It is so informa-tive on understanding the re-accretion or surface sedimentation process-es of the asteroid to be the current form. TIR data will be used for searching for those sites having the typical particle size of 1mm for best sample collection, and within the proper thermal condition for space-craft safe operation. After launch of Hayabusa2, TIR has been tested successfully, covering from -100 to 150 °C using a single parameter settings (2). This implies that TIR is actually able to map the surface other than the sunlit areas. Performance of TIR was found basically the same as those in the pre-launch test, when the temperature of TIR is well controlled. References: (1) Fukuhara T. et al., (2011) Earth Planet. Space 63, 1009-1018; (2) Okada T. et al., (2015) Lunar Planet. Sci. Conf. 46, #1331.

  15. Is the aerosol emission detectable in the thermal infrared?

    Science.gov (United States)

    Hollweg, H.-D.; Bakan, S.; Taylor, J. P.

    2006-08-01

    The impact of aerosols on the thermal infrared radiation can be assessed by combining observations and radiative transfer calculations. Both have uncertainties, which are discussed in this paper. Observational uncertainties are obtained for two FTIR instruments operated side by side on the ground during the LACE 1998 field campaign. Radiative transfer uncertainties are assessed using a line-by-line model taking into account the uncertainties of the HITRAN 2004 spectroscopic database, uncertainties in the determination of the atmospheric profiles of water vapor and ozone, and differences in the treatment of the water vapor continuum absorption by the CKD 2.4.1 and MT_CKD 1.0 algorithms. The software package OPAC was used to describe the optical properties of aerosols for climate modeling. The corresponding radiative signature is a guideline to the assessment of the uncertainty ranges of observations and models. We found that the detection of aerosols depends strongly on the measurement accuracy of atmospheric profiles of water vapor and ozone and is easier for drier conditions. Within the atmospheric window, only the forcing of downward radiation at the surface by desert aerosol emerges clearly from the uncertainties of modeling and FTIR measurement. Urban and polluted continental aerosols are only partially detectable depending on the wave number and on the atmospheric water vapor amount. Simulations for the space-borne interferometer IASI show that only upward radiation above transported mineral dust aloft emerges out of the uncertainties. The detection of aerosols with weak radiative impact by FTIR instruments like ARIES and OASIS is made difficult by noise as demonstrated by the signal to noise ratio for clean continental aerosols. Altogether, the uncertainties found suggest that it is difficult to detect the optical depths of nonmineral and unpolluted aerosols.

  16. Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Methods and Applications

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    1998-01-01

    Thermal Infrared (TIR) remote sensing data can provide important measurements of surface energy fluxes and temperatures, which are integral to understanding landscape processes and responses. One example of this is the successful application of TIR remote sensing data to estimate evapotranspiration and soil moisture, where results from a number of studies suggest that satellite-based measurements from TIR remote sensing data can lead to more accurate regional-scale estimates of daily evapotranspiration. With further refinement in analytical techniques and models, the use of TIR data from airborne and satellite sensors could be very useful for parameterizing surface moisture conditions and developing better simulations of landscape energy exchange over a variety of conditions and space and time scales. Thus, TIR remote sensing data can significantly contribute to the observation, measurement, and analysis of energy balance characteristics (i.e., the fluxes and redistribution of thermal energy within and across the land surface) as an implicit and important aspect of landscape dynamics and landscape functioning. The application of TIR remote sensing data in landscape ecological studies has been limited, however, for several fundamental reasons that relate primarily to the perceived difficulty in use and availability of these data by the landscape ecology community, and from the fragmentation of references on TIR remote sensing throughout the scientific literature. It is our purpose here to provide evidence from work that has employed TIR remote sensing for analysis of landscape characteristics to illustrate how these data can provide important data for the improved measurement of landscape energy response and energy flux relationships. We examine the direct or indirect use of TIR remote sensing data to analyze landscape biophysical characteristics, thereby offering some insight on how these data can be used more robustly to further the understanding and modeling of

  17. An experiment using mid and thermal infrared in quantum remote sensing

    Institute of Scientific and Technical Information of China (English)

    BI; Siwen; HAN; Jixia

    2006-01-01

    The concept of quantum remote sensing and the differences between quantum remote sensing and remote sensing is introduced, an experiment about the uses of mid and thermal infrared in quantum remote sensing is described and results are analyzed.

  18. Landsat-8 Thermal Infrared Sensor (TIRS Vicarious Radiometric Calibration

    Directory of Open Access Journals (Sweden)

    Julia A. Barsi

    2014-11-01

    Full Text Available Launched in February 2013, the Landsat-8 carries on-board the Thermal Infrared Sensor (TIRS, a two-band thermal pushbroom imager, to maintain the thermal imaging capability of the Landsat program. The TIRS bands are centered at roughly 10.9 and 12 μm (Bands 10 and 11 respectively. They have 100 m spatial resolution and image coincidently with the Operational Land Imager (OLI, also on-board Landsat-8. The TIRS instrument has an internal calibration system consisting of a variable temperature blackbody and a special viewport with which it can see deep space; a two point calibration can be performed twice an orbit. Immediately after launch, a rigorous vicarious calibration program was started to validate the absolute calibration of the system. The two vicarious calibration teams, NASA/Jet Propulsion Laboratory (JPL and the Rochester Institute of Technology (RIT, both make use of buoys deployed on large water bodies as the primary monitoring technique. RIT took advantage of cross-calibration opportunity soon after launch when Landsat-8 and Landsat-7 were imaging the same targets within a few minutes of each other to perform a validation of the absolute calibration. Terra MODIS is also being used for regular monitoring of the TIRS absolute calibration. The buoy initial results showed a large error in both bands, 0.29 and 0.51 W/m2·sr·μm or −2.1 K and −4.4 K at 300 K in Band 10 and 11 respectively, where TIRS data was too hot. A calibration update was recommended for both bands to correct for a bias error and was implemented on 3 February 2014 in the USGS/EROS processing system, but the residual variability is still larger than desired for both bands (0.12 and 0.2 W/m2·sr·μm or 0.87 and 1.67 K at 300 K. Additional work has uncovered the source of the calibration error: out-of-field stray light. While analysis continues to characterize the stray light contribution, the vicarious calibration work proceeds. The additional data have not changed

  19. Validation strategy for satellite observations of tropospheric reactive gases

    Directory of Open Access Journals (Sweden)

    Andreas Richter

    2014-01-01

    Full Text Available Over the last twodecades, satellite observations of tropospheric composition have becomepossible using nadir viewing spectrometers operating in the UV, visible, nearinfrared, and thermal infrared spectral range. [...

  20. Exploring the Saturn System in the Thermal Infrared: The Composite Infrared Spectrometer

    Science.gov (United States)

    Flasar, F. M.; Kunde, V. g.; Abbas, M. M.; Achterberg, R. K.; Ade, P.; Barucci, A.; Bezard, B.; Bjoraker, G. L.; Brasunas, J. C.; Calcutt, S.

    2004-01-01

    The Composite Inbred Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer on the Cassini orbiter that measures thermal radiation over two decades in wave number, from 10 to 1400 cm (1 mm to 7pm), with a spectral resolution that can be set from 0.5 to 20 cm. The far in portion of the spectrum (10 - 600 cm) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view. The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600 - 1100cm, 1100-1400 cm). Each focal plane is composed of a 1x10 array of HgCdTe detectors, each detector having a 0.3-mrad field of view. CIRS observations will provide three-dimensional maps of temperature, gas composition, and aerosols/condensates of the atmospheres of Titan and Saturn with good vertical and horizontal resolution, from deep in their tropospheres to high in their mesospheres. CIRS ability to observe atmospheres in the limb viewing mode (in addition to nadir) offers the opportunity to provide accurate and highly resolved vertical profiles of these atmospheric variables. The ability to observe with high-spectral resolution should facilitate the identification of new constituents. CIRS will also map the thermal and compositional properties of the surfaces of Saturn's icy satellites. It will similarly map Saturn's rings, characterizing their formation and evolution. The combination of broad spectral range, programmable spectral resolution, the small detector fields of view, and an orbiting spacecraft platform will allow CIRS to observe the Saturnian system in the thermal infrared at a level of detail not previously achieved.

  1. Characterization of Lunar Soils Using a Thermal Infrared Microscopic Spectral Imaging System

    Science.gov (United States)

    Crites, S. T.; Lucey, P. G.

    2010-12-01

    Lunar Reconnaissance Orbiter's Diviner radiometer has provided the planetary science community with a large amount of thermal infrared spectral data. This data set offers rich opportunities for lunar science, but interpretation of the data is complicated by the limited data on lunar materials. While spectra of pure terrestrial minerals have been used effectively for Mars applications, lunar minerals and glasses have been affected by space weathering processes that may alter their spectral properties in important ways. For example, mineral grains acquire vapor deposited coatings, and agglutinate glass contains abundant nanophase iron as a result of exposure to the space environment. Producing mineral separates in sufficient quantities (at least tens of mg) for spectral characterization is painstaking, time consuming and labor intensive; as an alternative we have altered an infrared hyperspectral imaging system developed for remote sensing under funding from the Planetary Instrument Definition and Development program (PIDDP) to enable resolved microscopic spectral imaging. The concept is to characterize the spectral properties of individual grains in lunar soils, enabling a wide range of spectral behaviors of components to be measured rapidly. The instrument, sensitive from 8 to 15 microns at 15 wavenumber resolution, images a field of view of 8 millimeters at 30 micron resolution and scans at a rate of about 1 mm/second enabling relatively large areas to be scanned rapidly. Our experiments thus far use a wet-sieved 90-150 um size fraction with the samples arrayed on a heated substrate in a single layer in order to prevent spectral interactions between grains. We have begun with pure mineral separates, and unsurprisingly we find that the individual mineral grain emission spectra of a wide range of silicates are very similar to spectra of coarse grained powders. We have begun to obtain preliminary data on lunar soils as well. We plan to continue imaging of lunar soils

  2. Hyperspectral Thermal Infrared Analysis of the Salton Sea, CA Geothermal Field

    Science.gov (United States)

    Reath, K. A.; Ramsey, M. S.

    2011-12-01

    The Salton Sea Geothermal Field is an active 20 km2 region in southern California, which lies along the Calipatria Fault; an offshoot of the San Andreas Fault. Several geothermal fields (including the Davis-Schrimpf and Sandbar fields) and ten power plants generating 340 MW lie within this region. In order to better understand the mineral and thermal distribution of the surface, hyperspectral thermal infrared (TIR) data were acquired by Aerospace Corporation using the Spatially Enhanced Broadband Array Spectrograph System (SEABSS) airborne sensor on March 26, 2009 and April 6, 2010. SEBASS collects 128 wavelength channels at 1 meter spatial resolution, from which a new and more accurate interpretation was produced of the surface mineralogy of the geothermal fields and surrounding areas. Such data are rarely available for this type of scientific analysis and enabled the identification of mineral assemblages associated with geothermally-active areas. These minerals include anhydrite, gypsum, as well as an unknown mineral with a unique TIR wavelength feature at 8.2 μm. Comparing the 2009 and 2010 data, this unknown mineral varies in abundance and spatial distribution likely due to changes in rainfall. Samples rich in this mineral were collected from an area identified in the SEBASS data and analyzed in the laboratory using high resolution TIR emission spectroscopy. The same spectral absorption feature was found confirming the mineral's presence. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were performed on one of the samples in order to positively identify this mineral and further constrain the TIR analysis. By using the combination of airborne and laboratory spectroscopy, detailed and temporally-variable patterns of the surface mineralogy were ultimately produced. This work has the potential to be used at other geothermal sites to better characterize transient mineralogy, understand the influence of surface and ground water in these systems, and

  3. A development of cloud top height retrieval using thermal infrared spectra observed with GOSAT and comparison with CALIPSO data

    Science.gov (United States)

    Someya, Yu; Imasu, Ryoichi; Saitoh, Naoko; Ota, Yoshifumi; Shiomi, Kei

    2016-05-01

    An algorithm based on CO2 slicing, which has been used for cirrus cloud detection using thermal infrared data, was developed for high-resolution radiance spectra from satellites. The channels were reconstructed based on sensitivity height information of the original spectral channels to reduce the effects of measurement errors. Selection of the reconstructed channel pairs was optimized for several atmospheric profile patterns using simultaneous studies assuming a cloudy sky. That algorithm was applied to data by the Greenhouse gases Observing SATellite (GOSAT). Results were compared with those obtained from the space-borne lidar instrument on-board Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). Monthly mean cloud amounts from the slicing generally agreed with those from CALIPSO observations despite some differences caused by surface temperature biases, optically very thin cirrus, multilayer structures of clouds, extremely low cloud tops, and specific atmospheric conditions. Comparison of coincident data showed good agreement, except for some cases, and revealed that the improved slicing method is more accurate than the traditional slicing method. Results also imply that improved slicing can detect low-level clouds with cloud top heights as low as approximately 1.5 km.

  4. Heterodyne Spectroscopy in the Thermal Infrared Region: A Window on Physics and Chemistry

    Science.gov (United States)

    Kostiuk, Theodor

    2004-01-01

    The thermal infrared region contains molecular bands of many of the most important species in gaseous astronomical sources. True shapes and frequencies of emission and absorption spectral lines from these constituents of planetary and stellar atmospheres contain unique information on local temperature and abundance distribution, non-thermal effects, composition, local dynamics and winds. Heterodyne spectroscopy in the thermal infrared can remotely measure true line shapes in relatively cool and thin regions and enable the retrieval of detailed information about local physics and chemistry. The concept and techniques for heterodyne detection will be discussed including examples of thermal infrared photomixers and instrumentation used in studies of several astronomical sources. Use of heterodyne detection to study non-LTE phenomena, planetary aurora, minor planetary species and gas velocities (winds) will be discussed. A discussion of future technological developments and relation to space flight missions will be addressed.

  5. Detection of leaks in buried rural water pipelines using thermal infrared images

    Science.gov (United States)

    Eidenshink, Jeffery C.

    1985-01-01

    Leakage is a major problem in many pipelines. Minor leaks called 'seeper leaks', which generally range from 2 to 10 m3 per day, are common and are difficult to detect using conventional ground surveys. The objective of this research was to determine whether airborne thermal-infrared remote sensing could be used in detecting leaks and monitoring rural water pipelines. This study indicates that such leaks can be detected using low-altitude 8.7- to 11.5. micrometer wavelength, thermal infrared images collected under proper conditions.

  6. A Multi-Channel Method for Retrieving Surface Temperature for High-Emissivity Surfaces from Hyperspectral Thermal Infrared Images

    Directory of Open Access Journals (Sweden)

    Xinke Zhong

    2015-06-01

    Full Text Available The surface temperature (ST of high-emissivity surfaces is an important parameter in climate systems. The empirical methods for retrieving ST for high-emissivity surfaces from hyperspectral thermal infrared (HypTIR images require spectrally continuous channel data. This paper aims to develop a multi-channel method for retrieving ST for high-emissivity surfaces from space-borne HypTIR data. With an assumption of land surface emissivity (LSE of 1, ST is proposed as a function of 10 brightness temperatures measured at the top of atmosphere by a radiometer having a spectral interval of 800–1200 cm−1 and a spectral sampling frequency of 0.25 cm−1. We have analyzed the sensitivity of the proposed method to spectral sampling frequency and instrumental noise, and evaluated the proposed method using satellite data. The results indicated that the parameters in the developed function are dependent on the spectral sampling frequency and that ST of high-emissivity surfaces can be accurately retrieved by the proposed method if appropriate values are used for each spectral sampling frequency. The results also showed that the accuracy of the retrieved ST is of the order of magnitude of the instrumental noise and that the root mean square error (RMSE of the ST retrieved from satellite data is 0.43 K in comparison with the AVHRR SST product.

  7. New Frontiers for Applications of Thermal Infrared Imaging Devices: Computational Psychopshysiology in the Neurosciences.

    Science.gov (United States)

    Cardone, Daniela; Merla, Arcangelo

    2017-05-05

    Thermal infrared imaging has been proposed, and is now used, as a tool for the non-contact and non-invasive computational assessment of human autonomic nervous activity and psychophysiological states. Thanks to a new generation of high sensitivity infrared thermal detectors and the development of computational models of the autonomic control of the facial cutaneous temperature, several autonomic variables can be computed through thermal infrared imaging, including localized blood perfusion rate, cardiac pulse rate, breath rate, sudomotor and stress responses. In fact, all of these parameters impact on the control of the cutaneous temperature. The physiological information obtained through this approach, could then be used to infer about a variety of psychophysiological or emotional states, as proved by the increasing number of psychophysiology or neurosciences studies that use thermal infrared imaging. This paper presents a review of the principal achievements of thermal infrared imaging in computational psychophysiology, focusing on the capability of the technique for providing ubiquitous and unwired monitoring of psychophysiological activity and affective states. It also presents a summary on the modern, up-to-date infrared sensors technology.

  8. The Surface Roughness of (433) Eros as Measured by Thermal-Infrared Beaming

    CERN Document Server

    Rozitis, Ben

    2016-01-01

    In planetary science, surface roughness is regarded to be a measure of surface irregularity at small spatial scales, and causes the thermal-infrared beaming effect (i.e. re-radiation of absorbed sunlight back towards to the Sun). Typically, surface roughness exhibits a degeneracy with thermal inertia when thermophysical models are fitted to disc-integrated thermal-infrared observations of asteroids because of this effect. In this work, it is demonstrated how surface roughness can be constrained for near-Earth asteroid (433) Eros (i.e. the target of NASA's NEAR Shoemaker mission) when using the Advanced Thermophysical Model with thermal-infrared observations taken during an "almost pole-on" illumination and viewing geometry. It is found that the surface roughness of (433) Eros is characterised by an RMS slope of 38 $\\pm$ 8{\\deg} at the 0.5-cm spatial scale associated with its thermal-infrared beaming effect. This is slightly greater than the RMS slope of 25 $\\pm$ 5{\\deg} implied by the NEAR Shoemaker laser ran...

  9. Postdispersion system for astronomical observations with Fourier transform spectrometers in the thermal infrared

    Science.gov (United States)

    Wiedermann, Guenter; Jennings, D. E.; Hanel, R. H.; Kunde, V. G.; Moseley, S. H.

    1989-01-01

    A postdispersion system for astronomical observations with Fourier transform spectrometers in the thermal infrared has been developed which improves the sensitivity of radiation noise limited observations by reducing the spectral range incident on the detector. Special attention is given to the first-generation blocked impurity band detector. Planetary, solar, and stellar observations are reported.

  10. Retrieval of leaf water content spanning the visible to thermal infrared spectra

    CSIR Research Space (South Africa)

    Ullah, S

    2014-05-01

    Full Text Available The objective of this study was to investigate the entire spectra (from visible to the thermal infrared; 0.390 µm -14.0 µm) to retrieve leaf water content in a consistent manner. Narrow-band spectral indices (calculated from all possible two band...

  11. Thermal infrared imaging of the temporal variability in stomatal conductance for fruit trees

    Science.gov (United States)

    Struthers, Raymond; Ivanova, Anna; Tits, Laurent; Swennen, Rony; Coppin, Pol

    2015-07-01

    Repeated measurements using thermal infrared remote sensing were used to characterize the change in canopy temperature over time and factors that influenced this change on 'Conference' pear trees (Pyrus communis L.). Three different types of sensors were used, a leaf porometer to measure leaf stomatal conductance, a thermal infrared camera to measure the canopy temperature and a meteorological sensor to measure weather variables. Stomatal conductance of water stressed pear was significantly lower than in the control group 9 days after stress began. This decrease in stomatal conductance reduced transpiration, reducing evaporative cooling that increased canopy temperature. Using thermal infrared imaging with wavelengths between 7.5 and13 μm, the first significant difference was measured 18 days after stress began. A second order derivative described the average rate of change of the difference between the stress treatment and control group. The average rate of change for stomatal conductance was 0.06 (mmol m-2 s-1) and for canopy temperature was -0.04 (°C) with respect to days. Thermal infrared remote sensing and data analysis presented in this study demonstrated that the differences in canopy temperatures between the water stress and control treatment due to stomata regulation can be validated.

  12. Mapping Acid Sulfate Alteration of Basaltic Andesite with Thermal Infrared Data

    Science.gov (United States)

    Vaughan, R. G.; Calvin, W. M.; Hook, S. J.; Taranik, J. V.

    2002-01-01

    Airborne thermal infrared multi- and hyperspectral data sets are used to map sulfate alteration of basaltic andesites near Reno, NV. Alteration includes quartz-alunite, jarosite and a number of clay minerals such as kaolinite and montmorillonite. Additional information is contained in the original extended abstract.

  13. A Novel Measuring Method of Emissivity in the Thermal Infrared Region

    OpenAIRE

    松井, 松長; 宮武, 将浩; マツイ, マツナガ; ミヤタケ, マサヒロ; Matsunaga, MATSUI; Masahiro, MIYATAKE

    1981-01-01

    The purpose of this note is to propose a new method for measuring emissivity in the thermal infrared region of opaque or partially transparent bodies at or near room temperature. This method differs from Buettner-Kern method in the point that it makes no use of two different lids of a very high and very low emissivity.

  14. Thermal infrared emissivity spectrum and its characteristics of crude oil slick covered seawater.

    Science.gov (United States)

    Xiong, Pan; Gu, Xing-Fai; Yu, Taol; Meng, Qing-Yan; Li, Jia-Guoi; Shi, Ji-xiang; Cheng, Yang; Wang, Liang; Liu, Wen-Song; Liu, Qi-Yuei; Zhao, Li-Min

    2014-11-01

    Detecting oil slick covered seawater surface using the thermal infrared remote sensing technology exists the advantages such as: oil spill detection with thermal infrared spectrum can be performed in the nighttime which is superior to visible spectrum, the thermal infrared spectrum is superior to detect the radiation characteristics of both the oil slick and the seawater compared to the mid-wavelength infrared spectrum and which have great potential to detect the oil slick thickness. And the emissivity is the ratio of the radiation of an object at a given temperature in normal range of the temperature (260-320 K) and the blackbody radiation under the same temperature , the emissivity of an object is unrelated to the temperature, but only is dependent with the wavelength and material properties. Using the seawater taken from Bohai Bay and crude oil taken from Gudao oil production plant of Shengli Oilfield in Dongying city of Shandong Province, an experiment was designed to study the characteristics and mechanism of thermal infrared emissivity spectrum of artificial crude oil slick covered seawater surface with its thickness. During the experiment, crude oil was continuously dropped into the seawater to generate artificial oil slick with different thicknesses. By adding each drop of crude oil, we measured the reflectivity of the oil slick in the thermal infrared spectrum with the Fourier transform infrared spectrometer (102F) and then calculated its thermal infrared emissivity. The results show that the thermal infrared emissivity of oil slick changes significantly with its thickness when oil slick is relatively thin (20-120 μm), which provides an effective means for detecting the existence of offshore thin oil slick In the spectrum ranges from 8 to 10 μm and from 13. 2 to 14 μm, there is a steady emissivity difference between the seawater and thin oil slick with thickness of 20 μm. The emissivity of oil slick changes marginally with oil slick thickness and

  15. Neural networks for identifying drunk persons using thermal infrared imagery.

    Science.gov (United States)

    Koukiou, Georgia; Anastassopoulos, Vassilis

    2015-07-01

    Neural networks were tested on infrared images of faces for discriminating intoxicated persons. The images were acquired during controlled alcohol consumption by forty-one persons. Two different experimental approaches were thoroughly investigated. In the first one, each face was examined, location by location, using each time a different neural network, in order to find out those regions that can be used for discriminating a drunk from a sober person. It was found that it was mainly the face forehead that changed thermal behaviour with alcohol consumption. In the second procedure, a single neural structure was trained on the whole face. The discrimination performance of this neural structure was tested on the same face, as well as on unknown faces. The neural networks presented high discrimination performance even on unknown persons, when trained on the forehead of the sober and the drunk person, respectively. Small neural structures presented better generalisation performance.

  16. Life cycle monitoring of lithium-ion polymer batteries using cost-effective thermal infrared sensors with applications for lifetime prediction

    Science.gov (United States)

    Zhou, Xunfei; Malik, Anav; Hsieh, Sheng-Jen

    2017-05-01

    Lithium-ion batteries have become indispensable parts of our lives for their high-energy density and long lifespan. However, failure due to from abusive usage conditions, flawed manufacturing processes, and aging and adversely affect battery performance and even endanger people and property. Therefore, battery cells that are failing or reaching their end-of-life need to be replaced. Traditionally, battery lifetime prediction is achieved by analyzing data from current, voltage and impedance sensors. However, such a prognostic system is expensive to implement and requires direct contact. In this study, low-cost thermal infrared sensors were used to acquire thermographic images throughout the entire lifetime of small scale lithium-ion polymer batteries (410 cycles). The infrared system (non-destructive) took temperature readings from multiple batteries during charging and discharging cycles of 1C. Thermal characteristics of the batteries were derived from the thermographic images. A time-dependent and spatially resolved temperature mapping was obtained and quantitatively analyzed. The developed model can predict cycle number using the first 10 minutes of surface temperature data acquired through infrared imaging at the beginning of the cycle, with an average error rate of less than 10%. This approach can be used to correlate thermal characteristics of the batteries with life cycles, and to propose cost-effective thermal infrared imaging applications in battery prognostic systems.

  17. The surface roughness of (433) Eros as measured by thermal-infrared beaming

    Science.gov (United States)

    Rozitis, B.

    2017-01-01

    In planetary science, surface roughness is regarded to be a measure of surface irregularity at small spatial scales, and causes the thermal-infrared beaming effect (i.e. re-radiation of absorbed sunlight back towards to the Sun). Typically, surface roughness exhibits a degeneracy with thermal inertia when thermophysical models are fitted to disc-integrated thermal-infrared observations of asteroids because of this effect. In this work, it is demonstrated how surface roughness can be constrained for near-Earth asteroid (433) Eros (i.e. the target of NASA's NEAR Shoemaker mission) when using the Advanced Thermophysical Model with thermal-infrared observations taken during an `almost pole-on' illumination and viewing geometry. It is found that the surface roughness of (433) Eros is characterized by an rms slope of 38 ± 8° at the 0.5-cm spatial scale associated with its thermal-infrared beaming effect. This is slightly greater than the rms slope of 25 ± 5° implied by the NEAR Shoemaker laser ranging results when extrapolated to this spatial scale, and indicates that other surface shaping processes might operate, in addition to collisions and gravity, at spatial scales under one metre in order to make asteroid surfaces rougher. For other high-obliquity asteroids observed during `pole-on' illumination conditions, the thermal-infrared beaming effect allows surface roughness to be constrained when the sub-solar latitude is greater than 60°, and if the asteroids are observed at phase angles of less than 40°. They will likely exhibit near-Earth asteroid thermal model beaming parameters that are lower than expected for a typical asteroid at all phase angles up to 100°.

  18. Assessment and Correction of on-Orbit Radiometric Calibration for FY-3 VIRR Thermal Infrared Channels

    Directory of Open Access Journals (Sweden)

    Na Xu

    2014-03-01

    Full Text Available FengYun-3 (FY-3 Visible Infrared Radiometer (VIRR, along with its predecessor, Multispectral Visible Infrared Scanning Radiometer (MVISR, onboard FY-1C&D have had continuous global observation more than 14 years. This data record is valuable for weather prediction, climate monitoring, and environment research. Data quality is vital for satellite data assimilations in Numerical Weather Prediction (NWP and quantitative remote sensing applications. In this paper, the accuracies of radiometric calibration for VIRR onboard FY-3A and FY-3B, in thermal infrared (TIR channels, are evaluated using the Low Earth Orbit (LEO-LEO simultaneous nadir overpass intercalibration method. Hyperspectral and high-quality observations from Infrared Atmosphere Sounding Instrument (IASI onboard METOP-A are used as reference. The biases of VIRR measurements with respect to IASI over one-and-a-half years indicate that the TIR calibration accuracy of FY-3B VIRR is better than that of FY-3A VIRR. The brightness temperature (BT measured by FY-3A/VIRR is cooler than that measured by IASI with monthly mean biases ranging from −2 K to −1 K for channel 4 and −1 K to 0.2 K for channel 5. Measurements from FY-3B/VIRR are more consistent with that from IASI, and the annual mean biases are 0.84 ± 0.16 K and −0.66 ± 0.18 K for channels 4 and 5, respectively. The BT biases of FY-3A/VIRR show scene temperature-dependence and seasonal variation, which are not found from FY-3B/VIRR BT biases. The temperature-dependent biases are shown to be attributed to the nonlinearity of detectors. New nonlinear correction coefficients of FY-3A/VIRR TIR channels are reevaluated using various collocation samples. Verification results indicate that the use of the new nonlinear correction can greatly correct the scene temperature-dependent and systematic biases.

  19. Developing a dual assimilation approach for thermal infrared and passive microwave soil moisture retrievals

    Science.gov (United States)

    Hain, Christopher Ryan

    Soil moisture plays a vital role in the partitioning of sensible and latent heat fluxes in the surface energy budget and the lack of a dense spatial and temporal network of ground-based observations provides a challenge to the initialization of the true soil moisture state in numerical weather prediction simulations. The retrieval of soil moisture using observations from both satellite-based thermal-infrared (TIR) and passive microwave (PM) sensors has been developed (Anderson et al., 2007; Hain et al., 2009; Jackson, 1993; Njoku et al., 2003). The ability of the TIR and microwave observations to diagnose soil moisture conditions within different layers of the soil profile provides an opportunity to use each in a synergistic data assimilation approach towards the goal of diagnosing the true soil moisture state from surface to root-zone. TIR and PM retrievals of soil moisture are compared to soil moisture estimates provided by a retrospective Land Information System (LIS) simulation using the NOAH LSM during the time period of 2003--2008. The TIR-based soil moisture product is provided by a retrieval of soil moisture associated with surface flux estimates from the Atmosphere-Land-Exchange-Inversion (ALEXI) model (Anderson et al., 1997; Mecikalski et al., 1999; Hain et al., 2009). The PM soil moisture retrieval is provided by the Vrijie Universiteit Amsterdam (VUA)-NASA surface soil moisture product. The VUA retrieval is based on the findings of Owe et al. (2001; 2008) using the Land Surface Parameter model (LPRM), which uses one dual polarized channel (6.925 or 10.65 GHz) for a dual-retrieval of surface soil moisture and vegetation water content. In addition, retrievals of ALEXI (TIR) and AMSR-E (PM) soil moisture are assimilated within the Land Information System using the NOAH LSM. A series of data assimilation experiments is completed with the following configuration: (a) no assimilation, (b) only ALEXI soil moisture, (c) only AMSR-E soil moisture, and (d) ALEXI

  20. Using thermal infrared imagery produced by unmanned air vehicles to evaluate locations of ecological road structures

    Directory of Open Access Journals (Sweden)

    Sercan Gülci

    2016-07-01

    Full Text Available The aerial photos and satellite images are widely used and cost efficient data for monitoring and analysis of large areas in forestry activities. Nowadays, accurate and high resolution remote sensing data can be generated for large areas by using Unmanned Aerial Vehicles (UAV integrated with sensors working in various spectral bands. Besides, the UAV systems (UAVs have been used in interdisciplinary studies to produce data of large scale forested areas for desired time periods (i.e. in different seasons or different times of a day. In recent years, it has become more important to conduct studies on determination of wildlife corridors for controlling and planning of habitat fragmentation of wild animals that need vast living areas. The wildlife corridors are a very important base for the determination of a road network planning and placement of ecological road structures (passages, as well as for the assessment of special and sensitive areas such as riparian zones within the forest. It is possible to evaluate wildlife corridors for large areas within a shorter time by using data produced by ground measurements, and remote sensing and viewer systems (i.e. photo-trap, radar and etc., as well as by using remote sensing data generated by UAVs. Ecological behaviors and activities (i.e. sheltering, feeding, mating, etc. of wild animals vary spatially and temporally. Some species are active in their habitats at day time, while some species are active during the night time. One of the most effective methods for evaluation of night time animals is utilizing heat sensitive thermal cameras that can be used to collect thermal infrared images with the night vision feature. When the weather conditions are suitable for a flight, UAVs assist for determining location of corridors effectively and accurately for moving wild animals at any time of the day. Then, the most suitable locations for ecological road structures can be determined based on wildlife corridor

  1. Measurement of directional thermal infrared emissivity of vegetation and soils

    Energy Technology Data Exchange (ETDEWEB)

    Norman, J.M. [Wisconsin Univ., Madison, WI (United States). Dept. of Soil Science; Balick, L.K. [EG and G Energy Measurements, Inc., Las Vegas, NV (United States)

    1995-10-01

    A new method has been developed for measuring directional thermal emissivity as a function of view angle for plant canopies and soils using two infrared thermometers each sensitive to a different wavelength band. By calibrating the two infrared thermometers to 0.1C consistency, canopy directional emissivity can be estimated with typical errors less than 0.005 in the 8--14 um wavelength band, depending on clarity of the sky and corrections for CO{sub 2} absorption by the atmosphere. A theoretical justification for the method is developed along with an error analysis. Laboratory measurements were used to develop corrections for CO{sub 2}, absorption and a field calibration method is used to obtain the necessary 0.1C consistency for relatively low cost infrared thermometers. The emissivity of alfalfa (LAI=2.5) and corn (LAI=3.2) was near 0.995 and independent of view angle. Individual corn leaves had an emissivity of 0.97. A wheat (LAI=3.0) canopy had an emissivity of 0.985 at nadir and 0.975 at 75 degree view angle. The canopy emissivity values tend to be higher than values in the literature, and are useful for converting infrared thermometer measurements to kinetic temperature and interpreting satellite thermal observations.

  2. Application of high-resolution thermal infrared sensors for geothermal exploration at the Salton Sea, California

    Science.gov (United States)

    Reath, K. A.; Ramsey, M.; Tratt, D. M.

    2010-12-01

    The Salton Sea geothermal field straddles the southeast margin of the Salton Sea in California, USA. This field includes approximately 20km2 of mud volcanoes and mud pots and centered on the Mullet Island thermal anomaly. The area has been previously exploited for geothermal power; there are currently seven power plants in the area that produce 1000 MW. The field itself is relatively un-vegetated, which provides for unfettered detection of the surface mineralogy, radiant heat, and emitted gases using air and spaceborne thermal infrared (TIR) sensors. On March 26, 2009, the airborne Spatially Enhanced Broadband Array Spectrograph System (SEBASS) sensor was flown over the Salton Sea-Mullet Island area. SEBASS has a spectral resolution of 128 bands in the 7.5-14.5 micron spectral region and a spatial resolution of 1m/pixel from the 3000-ft altitude flown for this study. A large portion of the Calipatria Fault, a NW/SE-trending geothermally active fault that bisects the Mullet Island thermal anomaly, was imaged during this flight and several thermal/mineralogical anomalies were noted. The orbital Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) has only 5 spectral bands at 90m/pixel resolution, but has acquired dozens of visible and TIR datasets over the geothermal field in the 10-year history of the instrument. The thermal-temporal trend of this dataset has been analyzed, and the November 2008 image studied in detail for comparison to SEBASS. The land-leaving TIR radiance data were separated into brightness temperature and surface emissivity. TIR emissivity data are unique to each mineral and a TIR mineral spectral library was used to determine their presence on the ground. Various mineral maps were created showing the distribution surrounding the most active geothermal features. The higher spectral/spatial resolution SEBASS data were used to validate the lower spectral/spatial resolution ASTER data (as well as the higher resolution laboratory TIR

  3. Spatial extrapolation of lysimeter results using thermal infrared imaging

    Science.gov (United States)

    Voortman, B. R.; Bosveld, F. C.; Bartholomeus, R. P.; Witte, J. P. M.

    2016-12-01

    Measuring evaporation (E) with lysimeters is costly and prone to numerous errors. By comparing the energy balance and the remotely sensed surface temperature of lysimeters with those of the undisturbed surroundings, we were able to assess the representativeness of lysimeter measurements and to quantify differences in evaporation caused by spatial variations in soil moisture content. We used an algorithm (the so called 3T model) to spatially extrapolate the measured E of a reference lysimeter based on differences in surface temperature, net radiation and soil heat flux. We tested the performance of the 3T model on measurements with multiple lysimeters (47.5 cm inner diameter) and micro lysimeters (19.2 cm inner diameter) installed in bare sand, moss and natural dry grass. We developed different scaling procedures using in situ measurements and remotely sensed surface temperatures to derive spatially distributed estimates of Rn and G and explored the physical soundness of the 3T model. Scaling of Rn and G considerably improved the performance of the 3T model for the bare sand and moss experiments (Nash-Sutcliffe efficiency (NSE) increasing from 0.45 to 0.89 and from 0.81 to 0.94, respectively). For the grass surface, the scaling procedures resulted in a poorer performance of the 3T model (NSE decreasing from 0.74 to 0.70), which was attributed to effects of shading and the difficulty to correct for differences in emissivity between dead and living biomass. The 3T model is physically unsound if the field scale average air temperature, measured at an arbitrarily chosen reference height, is used as input to the model. The proposed measurement system is relatively cheap, since it uses a zero tension (freely draining) lysimeter which results are extrapolated by the 3T model to the unaffected surroundings. The system is promising for bridging the gap between ground observations and satellite based estimates of E.

  4. Sensitivity of thermal infrared sounders to the chemical and micro-physical properties of UTLS secondary sulphate aerosols

    Directory of Open Access Journals (Sweden)

    P. Sellitto

    2015-08-01

    Full Text Available Monitoring upper tropospheric-lower stratospheric (UTLS secondary sulphate aerosols and their chemical and micro-physical properties from satellite nadir observations is crucial to better understand their formation and evolution processes and then to estimate their impact to the UTLS chemistry, and on regional and global radiative balance. Here we present a study aimed at the evaluation of the sensitivity of thermal infrared (TIR satellite nadir observations to the chemical composition and the size distribution of idealized UTLS sulphate aerosol layers. The extinction properties of sulphuric acid/water droplets, for different sulphuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indexes taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas radiative transfer model, to estimate the impact of the extinction of idealized aerosol layers, at typical UTLS conditions, on the brightness temperature spectra observed by this satellite instrument. We found a marked and typical spectral signature of these aerosol layers between 700 and 1200 cm−1, due to the absorption bands of the sulphate and bi-sulphate ions and the undissociated sulphuric acid, with the main absorption peaks at 1170 and 905 cm−1. The dependence of the aerosol spectral signature to the sulphuric acid mixing ratio, and effective number concentration and radius, as well as the role of interferring parameters like the ozone, sulphur dioxide, carbon dioxide and ash absorption, and temperature and

  5. Sensitivity of thermal infrared sounders to the chemical and micro-physical properties of UTLS secondary sulphate aerosols

    Science.gov (United States)

    Sellitto, P.; Legras, B.

    2015-08-01

    Monitoring upper tropospheric-lower stratospheric (UTLS) secondary sulphate aerosols and their chemical and micro-physical properties from satellite nadir observations is crucial to better understand their formation and evolution processes and then to estimate their impact to the UTLS chemistry, and on regional and global radiative balance. Here we present a study aimed at the evaluation of the sensitivity of thermal infrared (TIR) satellite nadir observations to the chemical composition and the size distribution of idealized UTLS sulphate aerosol layers. The extinction properties of sulphuric acid/water droplets, for different sulphuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indexes taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealized aerosol layers, at typical UTLS conditions, on the brightness temperature spectra observed by this satellite instrument. We found a marked and typical spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulphate and bi-sulphate ions and the undissociated sulphuric acid, with the main absorption peaks at 1170 and 905 cm-1. The dependence of the aerosol spectral signature to the sulphuric acid mixing ratio, and effective number concentration and radius, as well as the role of interferring parameters like the ozone, sulphur dioxide, carbon dioxide and ash absorption, and temperature and water vapour profile

  6. Inspection of calandria front area of Wolsung NPP using technique of mapping thermal infrared image into CCD image

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Kim, Chang Hoi; Seo, Yong Chil; Choi, Young Soo; Kim, Seung Ho [Advance Robotics Teams, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2002-11-15

    This paper describes the enhanced inspection performance of a thermal infrared camera for monitoring abnormal conditions of calandria reactor area of Wolsung nuclear power plant. Thermal infrared camera have poor image qualities compared to commercial CCD cameras, as in contrast, brightness, and resolution. To compensate the poor image quality problems associated with the thermal infrared camera, the technique of mapping thermal infrared image into real ccd image is proposed. The mobile robot KAEROT/m2, loaded with sensor head system at the mast, is entered to monitor leakage of heavy water and thermal abnormality of the calandria reactor area in overhaul period. The sensor head system is composed of thermal infrared camera and ccd camera in parallel. When thermal abnormality on observation points and areas of calandria reactor area is occurred, unusual hot image taken from thermal infrared camera is superimposed on real CCD image. In this inspection experiment, more accurate positions of thermal abnormalities on calandria reactor area can be estimated by using technique of mapping thermal infrared image into CCD image, which include characters arranged in MPOQ order.

  7. In-Flight Validation of Mid and Thermal Infrared Remotely Sensed Data Using the Lake Tahoe and Salton Sea Automated Validation Sites

    Science.gov (United States)

    Hook, Simon J.

    2008-01-01

    The presentation includes an introduction, Lake Tahoe site layout and measurements, Salton Sea site layout and measurements, field instrument calibration and cross-calculations, data reduction methodology and error budgets, and example results for MODIS. Summary and conclusions are: 1) Lake Tahoe CA/NV automated validation site was established in 1999 to assess radiometric accuracy of satellite and airborne mid and thermal infrared data and products. Water surface temperatures range from 4-25C.2) Salton Sea CA automated validation site was established in 2008 to broaden range of available water surface temperatures and atmospheric water vapor test cases. Water surface temperatures range from 15-35C. 3) Sites provide all information necessary for validation every 2 mins (bulk temperature, skin temperature, air temperature, wind speed, wind direction, net radiation, relative humidity). 4) Sites have been used to validate mid and thermal infrared data and products from: ASTER, AATSR, ATSR2, MODIS-Terra, MODIS-Aqua, Landsat 5, Landsat 7, MTI, TES, MASTER, MAS. 5) Approximately 10 years of data available to help validate AVHRR.

  8. Image and Processing Models for Satellite Detection in Images Acquired by Space-based Surveillance-of-Space Sensors

    Science.gov (United States)

    2010-09-01

    software. Résumé …..... Dans le cadre de la surveillance de l’espace, les objets spatiaux connus en orbite (OSO), i.e., satellites actifs ou débris...SAPPHIRE et NEOSSat. Ce document contient des modèles qui décrivent la formation des images et le processus d’acquisition de capteurs , basés au sol ou dans

  9. A novel technique to monitor thermal discharges using thermal infrared imaging.

    Science.gov (United States)

    Muthulakshmi, A L; Natesan, Usha; Ferrer, Vincent A; Deepthi, K; Venugopalan, V P; Narasimhan, S V

    2013-09-01

    Coastal temperature is an important indicator of water quality, particularly in regions where delicate ecosystems sensitive to water temperature are present. Remote sensing methods are highly reliable for assessing the thermal dispersion. The plume dispersion from the thermal outfall of the nuclear power plant at Kalpakkam, on the southeast coast of India, was investigated from March to December 2011 using thermal infrared images along with field measurements. The absolute temperature as provided by the thermal infrared (TIR) images is used in the Arc GIS environment for generating a spatial pattern of the plume movement. Good correlation of the temperature measured by the TIR camera with the field data (r(2) = 0.89) make it a reliable method for the thermal monitoring of the power plant effluents. The study portrays that the remote sensing technique provides an effective means of monitoring the thermal distribution pattern in coastal waters.

  10. The correlation of multi-angle thermal infrared data and the choice of optimal view angles

    Institute of Scientific and Technical Information of China (English)

    FAN; Wenjie; XU; Xiru

    2004-01-01

    Based on the matrix formula of thermal infrared radiant system, the components temperature can be retrieved by the inversive matrix. Around the stability problem of retrieved result, the research work we did was focused on (i) the correlation of (wk,j) which is the key to affect the retrieval accuracy, (ii) a general method which can help us find the number of retrievable parameters and evaluate the retrieval error before its performance, (iii) the choice of "optimal viewing angle group" based on the formula of absolute error propagation. The row winter wheat field was chosen as an example. The results can provide a theoretical basis for multi-angle thermal infrared remote sensing and components temperature retrieval.

  11. Physical characterisation of near-Earth asteroid (1620) Geographos. Reconciling radar and thermal-infrared observations

    CERN Document Server

    Rozitis, Ben

    2014-01-01

    The Yarkovsky (orbital drift) and YORP (spin state change) effects play important roles in the dynamical and physical evolution of asteroids. Thermophysical modelling of these observed effects, and of thermal-infrared observations, allows a detailed physical characterisation of an individual asteroid to be performed. We perform a detailed physical characterisation of near-Earth asteroid (1620) Geographos, a potential meteor stream source and former spacecraft target, using the same techniques as previously used in Rozitis et al. (2013) for (1862) Apollo. We use the advanced thermophysical model (ATPM) on published light-curve, radar, and thermal-infrared observations to constrain the thermophysical properties of Geographos. The derived properties are used to make detailed predictions of the Yarkovsky orbital drift and YORP rotational acceleration, which are then compared against published measurements to determine Geographos's bulk density. We find that Geographos has a thermal inertia of 340 +140/-100 J m-2 ...

  12. Thermal infrared remote sensing of mineral dust over land and ocean: a spectral SVD based retrieval approach for IASI

    Directory of Open Access Journals (Sweden)

    L. Klüser

    2011-05-01

    Full Text Available From the high spectral resolution thermal infrared observations of the Infrared Atmospheric Sounding Interferometer (IASI mineral dust AOD (transferred from thermal infrared to 0.5 μm is retrieved using a Singular Vector Decomposition of brightness temperature spectra. As infrared retrieval based on 8–12 μm observations, dust observation with IASI is independent from solar illumination. Through the linear combinations of suitable independent singular vectors weighted by their contribution to the observed signal, and a projection of different a-priori dust spectra on the resulting signal the dust can be well distinguished from the influence of surface emissivity and gas absorption. In contrast to lookup-table based single-channel retrievals this method takes advantage of the spectral shape of dust extinction and surface and atmosphere influence over the total 8–12 μm window band. Using different a-priori spectra for dust extinction allows also for an estimation of dust particle size in terms of effective radius based on the respective dust model size distributions. These dust models are also used for the transfer of infrared AOD to 0.5 μm. Four months of IASI observations covering Northern Africa and Arabia are used for evaluation. Two large scale dust events, one covering the Arabian Peninsula and adjacent parts of the Indian Ocean, the other over the Atlantic Ocean off the coast of West-Africa, are analysed and compared with other satellite images. They also show the good suitability of IASI data for dust observation at day and night. Monthly means derived from IASI observations represent well the known seasonal cycles of dust activity over Northern Africa and Arabia. IASI Dust AOD0.5 μm and AERONET coarse mode AOD0.5 μm are reasonably well (linearly correlated with ρ=0.623. Moreover, comparison of time series of AERONET and IASI observations shows that the evolution of dust events is very well covered by the

  13. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2015-04-01

    Full Text Available The successful launch of the Landsat 8 satellite with two thermal infrared bands on February 11, 2013, for continuous Earth observation provided another opportunity for remote sensing of land surface temperature (LST. However, calibration notices issued by the United States Geological Survey (USGS indicated that data from the Landsat 8 Thermal Infrared Sensor (TIRS Band 11 have large uncertainty and suggested using TIRS Band 10 data as a single spectral band for LST estimation. In this study, we presented an improved mono-window (IMW algorithm for LST retrieval from the Landsat 8 TIRS Band 10 data. Three essential parameters (ground emissivity, atmospheric transmittance and effective mean atmospheric temperature were required for the IMW algorithm to retrieve LST. A new method was proposed to estimate the parameter of effective mean atmospheric temperature from local meteorological data. The other two essential parameters could be both estimated through the so-called land cover approach. Sensitivity analysis conducted for the IMW algorithm revealed that the possible error in estimating the required atmospheric water vapor content has the most significant impact on the probable LST estimation error. Under moderate errors in both water vapor content and ground emissivity, the algorithm had an accuracy of ~1.4 K for LST retrieval. Validation of the IMW algorithm using the simulated datasets for various situations indicated that the LST difference between the retrieved and the simulated ones was 0.67 K on average, with an RMSE of 0.43 K. Comparison of our IMW algorithm with the single-channel (SC algorithm for three main atmosphere profiles indicated that the average error and RMSE of the IMW algorithm were −0.05 K and 0.84 K, respectively, which were less than the −2.86 K and 1.05 K of the SC algorithm. Application of the IMW algorithm to Nanjing and its vicinity in east China resulted in a reasonable LST estimation for the region. Spatial

  14. Thermal infrared remote sensing of mineral dust over land and ocean: a spectral SVD based retrieval approach for IASI

    Directory of Open Access Journals (Sweden)

    L. Klüser

    2011-01-01

    Full Text Available From the high spectral resolution thermal infrared observations of the Infrared Atmospheric Sounding Interferometer (IASI mineral dust AOD (transferred from thermal infrared to 0.5 μm is retrieved using a Singular Vector Decomposition of brightness temperature spectra. As infrared retrieval based on 8–12 μm observations, dust observation with IASI is independent from solar illumination. Through the linear combinations of suitable independent singular vectors weighted by their contribution to the observed signal, and a projection of different a-priori dust spectra on the resulting signal the dust can be well distinguished from the influence of surface emissivity and gas absorption. In contrast to lookup-table based single-channel retrievals this method takes advantage of the spectral shape of dust extinction and surface and atmosphere influence over the total 8–12 μm window band. Using different a-priori spectra for dust extinction allows also for an estimation of dust particle size in terms of effective radius based on the respective dust model size distributions. These dust models are also used for the transfer of infrared AOD to 0.5 μm.

    Four months of IASI observations covering Northern Africa and Arabia are used for evaluation. Two large scale dust events, one covering the Arabian Peninsula and adjacent parts of the Indian Ocean, the other over the Atlantic Ocean off the coast of West-Africa, are analysed and compared with other satellite images. They also show the good suitability of IASI data for dust observation at day and night. Monthly means derived from IASI observations represent well the known seasonal cycles of dust activity over Northern Africa and Arabia. IASI Dust AOD0.5 μm and AERONET coarse mode AOD0.5 μm are reasonably well (linearly correlated with ρ = 0.655. Moreover, comparison of time series of AERONET and IASI observations shows that the evolution of dust events is very well

  15. Long-Term Volcanic Activity at Shiveluch Volcano: Nine Years of ASTER Spaceborne Thermal Infrared Observations  

    Directory of Open Access Journals (Sweden)

    Adam Carter

    2010-11-01

    Full Text Available Shiveluch (Kamchatka, Russia is the most active andesitic volcano of the Kuril-Kamchatka arc, typically exhibiting near-continual high-temperature fumarolic activity and periods of exogenous lava dome emplacement punctuated by discrete large explosive eruptions. These eruptions can produce large pyroclastic flow (PF deposits, which are common on the southern flank of the volcano. Since 2000, six explosive eruptions have occurred that generated ash fall and PF deposits. Over this same time period, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER instrument has been acquiring image-based visible/near infrared (VNIR, short wave infrared (SWIR and thermal infrared (TIR data globally, with a particular emphasis on active volcanoes. Shiveluch was selected as an ASTER target of interest early in the mission because of its frequent activity and potential impact to northern Pacific air transportation. The north Pacific ASTER archive was queried for Shiveluch data and we present results from 2000 to 2009 that documents three large PF deposits emplaced on 19 May 2001, 9 May 2004, and 28 February 2005. The long-term archive of infrared data provides an excellent record on the changing activity and eruption state of the volcano.

  16. [Study on estimation of deserts soil total phosphorus content from thermal-infrared emissivity].

    Science.gov (United States)

    Hou, Yan-jun; Tiyip, Tashpolat; Zhang, Fei; Sawut, Mamat; Nurmemet, Ilyas

    2015-02-01

    Soil phosphorus provides nutrient elements for plants, is one of important parameters for evaluating soil quality. The traditional method for soil total phosphorus content (STPC) measurement is not effective and time-consuming. However, remote sensing (RS) enables us to determine STPC in a fast and efficient way. Studies on the estimation of STPC in near-infrared spectroscopy have been developed by scholars, but model accuracy is still poor due to the low absorption coefficient and unclear absorption peak of soil phosphorus in near-infrared. In order to solve the deficiency which thermal-infrared emissivity estimate desert soil total phosphorus content, and could improve precision of estimation deserts soil total phosphorus. In this paper, characteristics of soil thermal-infrared emissivity are analyzed on the basis of laboratory processing and spectral measurement of deserts soil samples from the eastern Junggar Basin. Furthermore, thermal-infrared emissivity based RS models for STPC estimation are established and accuracy assessed. Results show that: when STPC is higher than 0.200 g x kg(-1), the thermal-infrared emissivity increases with the increase of STPC on the wavelength between 8.00 microm and 13 microm, and the emissivity is more sensitive to STPC on the wavelength between 9.00 and 9.6 microm; the estimate mode based on multiple stepwise regression was could not to estimate deserts soil total phosphorus content from thermal-infrared emissivity because the estimation effects of them were poor. The estimation accuracy of model based on partial least squares regression is higher than the model based on multiple stepwise regression. However, the accuracy of second-order differential estimation model based on partial least square regression is higher than based on multiple stepwise regression; The first differential of continuous remove estimation model based on partial least squares regression is the best model with R2 of correction and verification are up to

  17. Sensitivity of thermal infrared nadir instruments to the chemical and microphysical properties of UTLS secondary sulfate aerosols

    Science.gov (United States)

    Sellitto, P.; Legras, B.

    2016-01-01

    Monitoring upper-tropospheric-lower-stratospheric (UTLS) secondary sulfate aerosols and their chemical and microphysical properties from satellite nadir observations is crucial to better understand their formation and evolution processes and then to estimate their impact on UTLS chemistry, and on regional and global radiative balance. Here we present a study aimed at the evaluation of the sensitivity of thermal infrared (TIR) satellite nadir observations to the chemical composition and the size distribution of idealised UTLS sulfate aerosol layers. The extinction properties of sulfuric acid/water droplets, for different sulfuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indices taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealised aerosol layers, at typical UTLS conditions, on the brightness temperature spectra observed by this satellite instrument. We found a marked and typical spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulfate and bisulfate ions and the undissociated sulfuric acid, with the main absorption peaks at 1170 and 905 cm-1. The dependence of the aerosol spectral signature to the sulfuric acid mixing ratio, and effective number concentration and radius, as well as the role of interfering parameters like the ozone, sulfur dioxide, carbon dioxide and ash absorption, and temperature and water vapour profile uncertainties

  18. Detection of global tropospheric clouds and polar stratospheric clouds over Antarctica using thermal infrared spectral data observed by TANSO-FTS/GOSAT

    Science.gov (United States)

    Someya, Yu; Imasu, Ryoichi; Ota, Yoshifumi; Saitoh, Naoko

    2014-05-01

    Global tropospheric cloud distribution was derived from thermal infrared band data observed by Thermal And Near infrared Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) onboard Greenhouse gases Observation SATellite (GOSAT). It is expected that this band has ability to detect optically thin clouds compared with Cloud and Aerosol Imager (CAI) which is the other sensor on GOSAT. In addition, polar stratospheric clouds (PSCs) which can be harder to detect than the tropospheric clouds because of high reflectivity or low temperature of the surface and their low optical thickness were also detected. We have modified CO2 slicing method which was developed as one of the cirrus cloud detection techniques using thermal infrared band data to detect thin clouds more stably. The pseudo spectral channels were defined as sets of several actual spectral channels between 700cm-1 and 750cm-1 which have weighting function peak height in a same height range for each 0.5km. These pseudo channels were optimized with simulation studies using a multi-scattering radiative transfer code, Polarized radiance System for Transfer of Atmospheric Radiation (Pstar) 3 for several temperature profile patterns prepared based on latitudes and temperature at 500hPa. GOSAT data was analyzed with the combination of these pseudo channels determined for each of observation points from these simulations and the results were compared with the observational results from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) / Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). The comparisons about global cloud are based on the coincident observations in 2010. Monthly occurrences of Antarctic PSCs were compared for each grid area from June to September in 2010. As a result, the correlation coefficients in each month are 0.76, 0.71, 0.75, and 0.61 relatively. Though that is low value in September, it can be explained by decrease of occurrences.

  19. Exploring the use of thermal infrared imaging in human stress research.

    Directory of Open Access Journals (Sweden)

    Veronika Engert

    Full Text Available High resolution thermal infrared imaging is a pioneering method giving indices of sympathetic activity via the contact-free recording of facial tissues (thermal imprints. Compared to established stress markers, the great advantage of this method is its non-invasiveness. The goal of our study was to pilot the use of thermal infrared imaging in the classical setting of human stress research. Thermal imprints were compared to established stress markers (heart rate, heart rate variability, finger temperature, alpha-amylase and cortisol in 15 participants undergoing anticipation, stress and recovery phases of two laboratory stress tests, the Cold Pressor Test and the Trier Social Stress Test. The majority of the thermal imprints proved to be change-sensitive in both tests. While correlations between the thermal imprints and established stress markers were mostly non-significant, the thermal imprints (but not the established stress makers did correlate with stress-induced mood changes. Multivariate pattern analysis revealed that in contrast to the established stress markers the thermal imprints could not disambiguate anticipation, stress and recovery phases of both tests. Overall, these results suggest that thermal infrared imaging is a valuable method for the estimation of sympathetic activity in the stress laboratory setting. The use of this non-invasive method may be particularly beneficial for covert recordings, in the study of special populations showing difficulties in complying with the standard instruments of data collection and in the domain of psychophysiological covariance research. Meanwhile, the established stress markers seem to be superior when it comes to the characterization of complex physiological states during the different phases of the stress cycle.

  20. Aerial visible-thermal infrared hyperspectral feature extraction technology and its application to object identification

    Science.gov (United States)

    Jie-lin, Zhang; Jun-hu, Wang; Mi, Zhou; Yan-ju, Huang; Ding, Wu

    2014-03-01

    Based on aerial visible-thermal infrared hyperspectral imaging system (CASI/SASI/TASI) data, field spectrometer data and multi-source geological information, this paper utilizes the hyperspectral data processing and feature extraction technology to identify uranium mineralization factors, the spectral features of typical tetravalent, hexavalent uranium minerals and mineralization factors are established, and hyperspectral logging technology for drill cores and trench also are developed, the relationships between radioactive intensity and spectral characteristics are built. Above methods have been applied to characterize uranium mineralization setting of granite-type and sandstone-type uranium deposits in south and northwest China, the successful outcomes of uranium prospecting have been achieved.

  1. The Thermal Infrared Sensor (TIRS on Landsat 8: Design Overview and Pre-Launch Characterization

    Directory of Open Access Journals (Sweden)

    Dennis C. Reuter

    2015-01-01

    Full Text Available The Thermal Infrared Sensor (TIRS on Landsat 8 is the latest thermal sensor in that series of missions. Unlike the previous single-channel sensors, TIRS uses two channels to cover the 10–12.5 micron band. It is also a pushbroom imager; a departure from the previous whiskbroom approach. Nevertheless, the instrument requirements are defined such that data continuity is maintained. This paper describes the design of the TIRS instrument, the results of pre-launch calibration measurements and shows an example of initial on-orbit science performance compared to Landsat 7.

  2. Utilization of Thermal Infrared Image for Inversion of Winter Wheat Yield and Biomass

    Institute of Scientific and Technical Information of China (English)

    DU Wen-yong; HE Xiong-kui; ZHANG Lu-da; HU Zhen-fang; Shamaila Z; ZENG Ai-jun; SONG Jian-li; LIU Ya-jia; Wolfram S; Joachim M

    2011-01-01

    The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation (drip irrigation, sprinkler irrigation, flood irrigation). It is the first time that thermal infrared image is used for predicting the winter wheat yield and biomass. The temperature of crop and background was measured by thermal infrared image. It is necessary to get the crop background separation index (CBSILL ,CBSIH ), which can be used for distinguishing the crop value from the image. CBSIL. and CBSIH (the temperature when the leaves are wet adequately; the temperature when the stomata of leaf is closed completely) are the threshold values. The temperature of crop ranged from CBSI1. to CBSIH. Then the ICWSI was calculated based on relevant theoretical method. The value of stomata leaf has strong negative correlation with ICWSI proving the reliable value of ICWSI. In order to construct the high accuracy simulation model, the samples were divided into two parts. One was used for constructing the simulation model, the other for checking the accuracy of the model. Such result of the model was concluded as: (1) As for the simulation model of soil moisture, the correlation coefficient (R2) is larger than 0. 887 6, the average of relative error (Er) ranges from 13.33% to 16. 88%; (2) As for the simulation model of winter wheat yield, drip irrigation (0.887 6,16.89%, -0. 12), sprinkler irrigation (0. 970 0, 14.85%, -0. 12), flood irrigation (0. 969 0, 18. 87%,-0. 18), with the values ofR2, Er and CRM listed in the parentheses followed by the individual term. (3) As for winter wheat biomass, drip irrigation (0. 980 0, 13.70%, -0.13), sprinkler irrigation (0. 95, 13.15%,-0.14), flood irrigation (0. 970 0, 14.48%, -0.13), and the values in the parentheses are demonstrated the same as above. Both the CRM and Er are shown to be very low values, which points to the accuracy and reliability of the model investigated. The

  3. Three years of harvest with the vector vortex coronagraph in the thermal infrared

    CERN Document Server

    Absil, Olivier; Karlsson, Mikael; Carlomagno, Brunella; Christiaens, Valentin; Defrère, Denis; Delacroix, Christian; Castella, Bruno Femenia; Forsberg, Pontus; Girard, Julien; Gonzalez, Carlos A Gomez; Habraken, Serge; Hinz, Philip M; Huby, Elsa; Jolivet, Aïssa; Matthews, Keith; Milli, Julien; de Xivry, Gilles Orban; Pantin, Eric; Piron, Pierre; Reggiani, Maddalena; Ruane, Garreth J; Serabyn, Eugene; Surdej, Jean; Tristram, Konrad R W; Catalan, Ernesto Vargas; Wertz, Olivier; Wizinowich, Peter

    2016-01-01

    For several years, we have been developing vortex phase masks based on sub-wavelength gratings, known as Annular Groove Phase Masks. Etched onto diamond substrates, these AGPMs are currently designed to be used in the thermal infrared (ranging from 3 to 13 {\\mu}m). Our AGPMs were first installed on VLT/NACO and VLT/VISIR in 2012, followed by LBT/LMIRCam in 2013 and Keck/NIRC2 in 2015. In this paper, we review the development, commissioning, on-sky performance, and early scientific results of these new coronagraphic modes and report on the lessons learned. We conclude with perspectives for future developments and applications.

  4. Mapping alluvial fans in Death Valley, California, using multichannel thermal infrared images

    Science.gov (United States)

    Gillespie, A. R.; Kahle, A. B.; Pallluconi, F. D.

    1984-01-01

    Alluvial fans have been mapped in Death Valley, California using NASA's 8-12 micron six-channel airborne Thermal Infrared Multispectral Scanner (TIMS). Both composition and relative age differences were recognized. Age unit boundries are generally consistent with those obtained by conventional mapping. Composition was verified by field investigation and comparison with existing geologic maps. Bedrock and its young derived fan gravels have similar emissivities. The original composition of the fans is modified by differential erosion and weathering, permitting relative age mapping with TIMS.

  5. Thin ice clouds in the Arctic: cloud optical depth and particle size retrieved from ground-based thermal infrared radiometry

    Science.gov (United States)

    Blanchard, Yann; Royer, Alain; O'Neill, Norman T.; Turner, David D.; Eloranta, Edwin W.

    2017-06-01

    Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookup table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation (R2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21 µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.

  6. Applicability of the Thermal Infrared Spectral Region for the Prediction of Soil Properties Across Semi-Arid Agricultural Landscapes

    Directory of Open Access Journals (Sweden)

    Sabine Chabrillat

    2012-10-01

    Full Text Available In this study we tested the feasibility of the thermal infrared (TIR wavelength region (within the atmospheric window between 8 and 11.5 μm together with the traditional solar reflective wavelengths for quantifying soil properties for coarse-textured soils from the Australian wheat belt region. These soils have very narrow ranges of texture and organic carbon contents. Soil surface spectral signatures were acquired in the laboratory, using a directional emissivity spectrometer (μFTIR in the TIR, as well as a bidirectional reflectance spectrometer (ASD FieldSpec for the solar reflective wavelengths (0.4–2.5 μm. Soil properties were predicted using multivariate analysis techniques (partial least square regression. The spectra were resampled to operational imaging spectroscopy sensor characteristics (HyMAP and TASI-600. To assess the relevance of specific wavelength regions in the prediction, the drivers of the PLS models were interpreted with respect to the spectral characteristics of the soils’ chemical and physical composition. The study revealed the potential of the TIR (for clay: R2 = 0.93, RMSEP = 0.66% and for sand: R2 = 0.93, RMSEP = 0.82% and its combination with the solar reflective region (for organic carbon: R2 = 0.95, RMSEP = 0.04% for retrieving soil properties in typical soils of semi-arid regions. The models’ drivers confirmed the opto-physical base of most of the soils’ constituents (clay minerals, silicates, iron oxides, and emphasizes the TIR’s advantage for soils with compositions dominated by quartz and kaolinite.

  7. [Validation of HJ-1B thermal infrared channels onboard radiometric calibration based on spectral response differences].

    Science.gov (United States)

    Liu, Li; Fu, Qiao-yan; Shi, Ting-ting; Wang, Ai-chun; Zhang, Xue-wen

    2014-08-01

    Since HJ-1B was launched, 7 sets of blackbody data have been used to calculate onboard calibration coefficients, but the research work on the validation of coefficients is rare. According to the onboard calibration principle, calibration coefficients of HJ-1B thermal infrared channel on Sep 14th, 2009 were calculated with the half-width, moments and look-up table methods. MODIS was selected for the reference sensor, and algorithms of spectral match were improved between the HJ-1B thermal infrared channel and MODIS 31, 32 channels based on the spectral response divergence. The relationship of top of atmosphere (TOA) radiance between the remote sensors was calculated, based on which the surface leaving brightness temperature was calculated by Planck function to validate the brightness temperature calculated through the onboard calibration coefficients. The equivalent brightness temperature calculated by spectral response divergence method is 285.97 K, and the inversion brightness temperature calculated by half-width, moments and look-up table methods is 288.77, 274.52 and 285.97 K respectively. The difference between the inversion brightness temperature and the equivalent brightness temperature is 2.8, -11.46 and 0.02 K, respectively, which demonstrate that onboard calibration coefficients calculated by the look-up table method has better precision and feasibility.

  8. Computational imaging from non-uniform degradation of staggered TDI thermal infrared imager.

    Science.gov (United States)

    Sun, Tao; Liu, Jian Guo; Shi, Yan; Chen, Wangli; Qin, Qianqing; Zhang, Zijian

    2015-09-21

    For the Time Delay Integration (TDI) staggered line-scanning thermal infrared imager, a Computational Imaging (CI) approach is developed to achieve higher spatial resolution images. After a thorough analysis of the causes of non-uniform image displacement and degradation for multi-channel staggered TDI arrays, the study aims to approach one-dimensional (1D) sub-pixel displacement estimation and superposition of images from time-division multiplexing scanning lines. Under the assumption that a thermal image is 2D piecewise C(2) smooth, a sparse-and-smooth deconvolution algorithm with L1-norm regularization terms combining the first and second order derivative operators is proposed to restore high frequency components and to suppress aliasing simultaneously. It is theoretically and experimentally demonstrated, with simulation and airborne thermal infrared images, that this is a state-of-the-art practical CI method to reconstruct clear images with higher frequency components from raw thermal images that are subject to instantaneous distortion and blurring.

  9. Evaluation of Radiometric Performance for the Thermal Infrared Sensor Onboard Landsat 8

    Directory of Open Access Journals (Sweden)

    Huazhong Ren

    2014-12-01

    Full Text Available The radiometric performance of remotely-sensed images is important for the applications of such data in monitoring land surface, ocean and atmospheric status. One requirement placed on the Thermal Infrared Sensor (TIRS onboard Landsat 8 was that the noise-equivalent change in temperature (NEΔT should be ≤0.4 K at 300 K for its two thermal infrared bands. In order to optimize the use of TIRS data, this study investigated the on-orbit NEΔT of the TIRS two bands from a scene-based method using clear-sky images over uniform ground surfaces, including lake, deep ocean, snow, desert and Gobi, as well as dense vegetation. Results showed that the NEΔTs of the two bands were 0.051 and 0.06 K at 300 K, which exceeded the design specification by an order of magnitude. The effect of NEΔT on the land surface temperature (LST retrieval using a split window algorithm was discussed, and the estimated NEΔT could contribute only 3.5% to the final LST error in theory, whereas the required NEΔT could contribute up to 26.4%. Low NEΔT could improve the application of TIRS images. However, efforts are needed in the future to remove the effects of unwanted stray light that appears in the current TIRS images.

  10. Dark and background response stability for the Landsat 8 Thermal Infrared Sensor

    Science.gov (United States)

    Vanderwerff, Kelly; Montanaro, Matthew

    2012-01-01

    The Thermal Infrared Sensor (TIRS) is a pushbroom sensor that will be a part of the Landsat Data Continuity Mission (LDCM), which is a joint mission between NASA and the USGS. The TIRS instrument will continue to collect the thermal infrared data that are currently being collected by the Thematic Mapper and the Enhanced Thematic Mapper Plus on Landsats 5 and 7, respectively. One of the key requirements of the new sensor is that the dark and background response be stable to ensure proper data continuity from the legacy Landsat instruments. Pre launch testing of the instrument has recently been completed at the NASA Goddard Space Flight Center (GSFC), which included calibration collects that mimic those that will be performed on orbit. These collects include images of a cold plate meant to simulate the deep space calibration source as viewed by the instrument in flight. The data from these collects give insight into the stability of the instrument’s dark and background response, as well as factors that may cause these responses to vary. This paper quantifies the measured background and dark response of TIRS as well as its stability.

  11. Object detection utilizing a linear retrieval algorithm for thermal infrared imagery

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, M.S. [Arizona State Univ., Tempe, AZ (United States)

    1996-11-01

    Thermal infrared (TIR) spectroscopy and remote sensing have been proven to be extremely valuable tools for mineralogic discrimination. One technique for sub-pixel detection and data reduction, known as a spectral retrieval or unmixing algorithm, will prove useful in the analysis of data from scheduled TIR orbital instruments. This study represents the first quantitative attempt to identify the limits of the model, specifically concentrating on the TIR. The algorithm was written and applied to laboratory data, testing the effects of particle size, noise, and multiple endmembers, then adapted to operate on airborne Thermal Infrared Multispectral Scanner data of the Kelso Dunes, CA, Meteor Crater, AZ, and Medicine Lake Volcano, CA. Results indicate that linear spectral unmixmg can produce accurate endmember detection to within an average of 5%. In addition, the effects of vitrification and textural variations were modeled. The ability to predict mineral or rock abundances becomes extremely useful in tracking sediment transport, decertification, and potential hazard assessment in remote volcanic regions. 26 refs., 3 figs.

  12. Developing selective mining capability for longwall shearers using thermal infrared-based seam tracking

    Institute of Scientific and Technical Information of China (English)

    Jonathon C. Ralston; Andrew D.Strange

    2013-01-01

    Longwall mining continues to remain the most efficient method for underground coal recovery.A key aspect in achieving safe and productive longwall mining is to ensure that the shearer is always correctly positioned within the coal seam.At present,this machine positioning task is the role of longwall personnel who must simultaneously monitor the longwall coal face and the shearer's cutting drum position to infer the geological trends of the coal seam.This is a labour intensive task which has negative impacts on the consistency and quality of coal production.As a solution to this problem,this paper presents a sensing method to automatically track geological coal seam features on the longwall face,known as marker bands,using thermal infrared imaging.These non-visible marker bands are geological features that link strongly to the horizontal trends present in layered coal seams.Tracking these line-like features allows the generation of a vertical datum that can be used to maintain the shearer in a position for optimal coal extraction.Details on the theory of thermal infrared imaging are given,as well as practical aspects associated with machine-based implementation underground.The feature detection and tracking tasks are given with real measurements to demonstrate the efficacy of the approach.The outcome is important as it represents a new selective mining capability to help address a long-standing limitation in longwall mining operations.

  13. First Use of an Airborne Thermal Infrared Hyperspectral Scanner for Compositional Mapping

    Science.gov (United States)

    Kirkland, Laurel; Herr, Kenneth; Keim, Eric; Adams, Paul; Salisbury, John; Hackwell, John; Treiman, Allan

    2002-01-01

    In May 1999, the airborne thermal infrared hyperspectral imaging system, Spatially Enhanced Broadband Array Spectrograph System (SEBASS), was flown over Mon-non Mesa, NV, to provide the first test of such a system for geological mapping. Several types of carbonate deposits were identified using the 11.25 microns band. However, massive calcrete outcrops exhibited weak spectral contrast, which was confirmed by field and laboratory measurements. Because the weathered calcrete surface appeared relatively smooth in hand specimen, this weak spectral contrast was unexpected. Here we show that microscopic roughness not readily apparent to the eye has introduced both a cavity effect and volume scattering to reduce spectral contrast. The macroroughness of crevices and cobbles may also have a significant cavity effect. The diminished spectral contrast is important because it places higher signal-to-noise ratio (SNR) requirements for spectroscopic detection and identification. This effect should be factored into instrumentation planning and interpretations, especially interpretations without benefit of ground truth. SEBASS had the required high SNR and spectral resolution to allow us to demonstrate for the first time the ability of an airborne hyperspectral thermal infrared scanner to detect and identify spectrally subtle materials.

  14. Genetic inverse algorithm for retrieval of component temperature of mixed pixel by multi-angle thermal infrared remote sensing data

    Institute of Scientific and Technical Information of China (English)

    XU; Xiru; (徐希孺); CHEN; Liangfu; (陈良富); ZHUANG; Jiali; (庄家礼)

    2001-01-01

    After carefully studying the results of retrieval of land surface temperature(LST) by multi-channel thermal infrared remote sensing data, the authors of this paper point out that its accuracy and significance for applications are seriously damaged by the high correlation coefficient among multi-channel information and its disablement of direct retrieval of component temperature. Based on the model of directional radiation of non-isothermal mixed pixel, the authors point out that multi-angle thermal infrared remote sensing can offer the possibility to directly retrieve component temperature, but it is also a multi-parameter synchronous inverse problem. The results of digital simulation and field experiments show that the genetic inverse algorithm (GIA) is an effective method to fulfill multi-parameter synchronous retrieval. So it is possible to realize retrieval of component temperature with error less than 1K by multi-angle thermal infrared remote sensing data and GIA.

  15. A study on correlativity between Qinghai-Tibet Plateau thermal infrared remote sensing data and underground temperature

    Institute of Scientific and Technical Information of China (English)

    HAN; Liqun; BI; Siwen; SONG; Shixin

    2006-01-01

    Based on an analysis of the correlativity between Qinghai-Tibet Plateau thermal infrared remote sensing data (QPTIRSD) and underground temperature field distribution, the main factors which obviously influence underground-layer temperatures were derived. Using neural network technology, a model was built to compute underground temperatures via parameters out of the inversion of thermal infrared remote sensing (TIRS) and then analyze the correlativity between above-ground parameters and underground temperatures. This method offers a new way to apply TIRS in monitoring the suture zone of a large-area massif as well as to research structural thermal anomalies.

  16. Determination of the fatigue limit of an austempered ductile iron using thermal infrared imagry

    Science.gov (United States)

    Geraci, Alberto L.; La Rosa, Guido; Risitano, Antonino; Grech, Maurice

    1995-12-01

    Previous work by the authors showed that the endurance limit of specimens, or mechanical components, can be predicted using thermal infrared imagery. The new technique enables the determination of the fatigue strength limit in a comparatively short period of time (few thousands cycles), and using very few specimens (theoretically only 1). The present work applies this technique to rotating-bending test specimens of austempered ductile iron, an alloy whose fatigue limit is, due to the high scatter dispersion of the data points and the long testing period required, generally difficult to determine by the traditional technique. This material exhibited higher fatigue strength than the familiar nodular cast iron. This was confirmed by the results derived from the traditional Wohler test and the new technique, and supported by the data gathered from literature.

  17. Directional Characteristics of Thermal-Infrared Beaming from Atmosphereless Planetary Surfaces - A New Thermophysical Model

    CERN Document Server

    Rozitis, Ben

    2012-01-01

    We present a new rough-surface thermophysical model (Advanced Thermophysical Model or ATPM) that describes the observed directional thermal emission from any atmosphereless planetary surface. It explicitly incorporates partial shadowing, scattering of sunlight, selfheating and thermal-infrared beaming (re-radiation of absorbed sunlight back towards the Sun as a result of surface roughness). The model is verified by accurately reproducing ground-based directional thermal emission measurements of the lunar surface using surface properties that are consistent with the findings of the Apollo missions and roughness characterised by an RMS slope of ~32 degrees. By considering the wide range of potential asteroid surface properties, the model implies a beaming effect that cannot be described by a simple parameter or function. It is highly dependent on the illumination and viewing angles as well as surface thermal properties and is predominantly caused by macroscopic rather than microscopic roughness. Roughness alter...

  18. Rapid microplate, green method for high-throughput evaluation of vinegar acidity using thermal infrared enthalpimetry.

    Science.gov (United States)

    Tischer, Bruna; Oliveira, Alessandra Stangherlin; Ferreira, Daniele de Freitas; Menezes, Cristiano Ragagnin; Duarte, Fábio Andrei; Wagner, Roger; Barin, Juliano Smanioto

    2017-01-15

    Infrared thermal imaging was combined with disposable microplates to perform enthalpimetric analysis using an infrared camera to monitor temperature without contact. The proposed thermal infrared enthalpimetry (TIE) method was used to determine the total, fixed and volatile acidities of vinegars. Sample preparation and analysis were performed in the same vessel, avoiding excessive sample handling and reducing energy expenditure by more than ten times. The results agreed with those of the conventional method for different kinds of vinegars, with values of 1.7%, and 2.3% for repeatability and intermediate precision, respectively. A linear calibration curve was obtained from 0.040 to 1.30molL(-1). The proposed method provided rapid results (within 10s) for four samples simultaneously, a sample throughput of up to 480 samples per hour. In addition, the method complies with at least eight of twelve recommendations for green analytical chemistry, making TIE a promising tool for routine vinegar analysis.

  19. Physics Based Modeling and Rendering of Vegetation in the Thermal Infrared

    Science.gov (United States)

    Smith, J. A.; Ballard, J. R., Jr.

    1999-01-01

    We outline a procedure for rendering physically-based thermal infrared images of simple vegetation scenes. Our approach incorporates the biophysical processes that affect the temperature distribution of the elements within a scene. Computer graphics plays a key role in two respects. First, in computing the distribution of scene shaded and sunlit facets and, second, in the final image rendering once the temperatures of all the elements in the scene have been computed. We illustrate our approach for a simple corn scene where the three-dimensional geometry is constructed based on measured morphological attributes of the row crop. Statistical methods are used to construct a representation of the scene in agreement with the measured characteristics. Our results are quite good. The rendered images exhibit realistic behavior in directional properties as a function of view and sun angle. The root-mean-square error in measured versus predicted brightness temperatures for the scene was 2.1 deg C.

  20. [Quantitative estimation of CaO content in surface rocks using hyperspectral thermal infrared emissivity].

    Science.gov (United States)

    Zhang, Li-Fu; Zhang, Xue-Wen; Huang, Zhao-Qiang; Yang, Hang; Zhang, Fei-Zhou

    2011-11-01

    The objective of the present paper is to study the quantitative relationship between the CaO content and the thermal infrared emissivity spectra. The surface spectral emissivity of 23 solid rocks samples were measured in the field and the first derivative of the spectral emissivity was also calculated. Multiple linear regression (MLR), principal component analysis (PCR) and partial least squares regression (PLSR) were modeled and the regression results were compared. The results show that there is a good relationship between CaO content and thermal emissivity spectra features; emissivities become lower when CaO content increases in the 10.3-13 mm region; the first derivative spectra have a better predictive ability compared to the original emissivity spectra.

  1. Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows

    Science.gov (United States)

    Abrams, Michael; Abbott, Elsa; Kahle, Anne

    1991-01-01

    The weathering of Hawaiian basalts is accompanied by chemical and physical changes of the surfaces. These changes have been mapped using remote sensing data from the visible and reflected infrared and thermal infrared wavelength regions. They are related to the physical breakdown of surface chill coats, the development and erosion of silica coatings, the oxidation of mafic minerals, and the development of vegetation cover. These effects show systematic behavior with age and can be mapped using the image data and related to relative ages of pahoehoe and aa flows. The thermal data are sensitive to silica rind development and fine structure of the scene; the reflectance data show the degree of oxidation and differentiate vegetation from aa and cinders. Together, data from the two wavelength regions show more than either separately. The combined data potentially provide a powerful tool for mapping basalt flows in arid to semiarid volcanic environments.

  2. Static and dynamic thermal infrared signatures measured during the FESTER experiment: first results

    Science.gov (United States)

    Gunter, W. H.; February, F.; Seiffer, D. P.; Eisele, C.

    2016-10-01

    The First European South African Experiment (FESTER) was conducted over about a 10 month period at the Institute of Maritime Technology (IMT) in False Bay, South Africa. One of the principal goals was recording of static and dynamic thermal infrared signatures under different environmental conditions for both validations of existing thermal equilibrium signature prediction codes, but also to aid development of dynamic thermal signature models. A small scientific work boat (called Sea Lab) was used as the principal target and sensor platform. Painted metal plates of different thicknesses were also used as infrared targets on-board Sea Lab to study static/dynamic thermal signatures and were also fitted with pyrgeometers, pyrometers and iButton temperature sensors/loggers. First results focused on the variable of thermal signatures as function of environmental conditions and the accuracy of calculated source temperatures (from measured radiometric temperatures) compared to the physical temperature measurements of the plates.

  3. Thermal infrared as a tool to detect tree water stress in a coniferous forest

    Science.gov (United States)

    Nourtier, M.; Chanzy, A.; Bes, B.; Davi, H.; Hanocq, J. F.; Mariotte, N.; Sappe, G.

    2009-04-01

    In the context of climatic change, species area may move and so, a study of forest species vulnerability is on interest. In Mediterranean regions, trees can suffer of water stress due to drought during summer. Responses to environmental constraints are delayed in forest so it is necessary to anticipate risks in order to adapt management. It would be therefore interesting to localize areas where trees might be vulnerable to water stress. To detect such areas, the idea developed in this study is to map the severity of water stress, which may be linked to soil. Because vegetation surface temperature is linked to transpiration and so to water stress, the relevance of thermal infrared as a tool to detect water stress was explored. Past studies about surface temperature of forests at the planting scale did not lead to conclusive results. At this scale, important spatial and temporal variations of surface temperature, with a magnitude of about 10°C, can be registered but there is possibly a sizeable contribution of the undergrowth (Duchemin, 1998a, 1998b). In the other hand, important stress are not detectable, probably due to meteorological conditions (Pierce et al., 1990). During spring and summer 2008, an experimentation was carried out on the silver fir (Abies alba) forest of Mont Ventoux (south of France) to evaluate temporal variations at tree scale of the surface temperature in relation to water stress and climatic conditions. Two sites and three trees were chosen for measurements of surface temperature with a view to have different levels of water stress. Transpiration deficit is characterised by the ratio of actual transpiration to potential transpiration which is computed by the ISBA model (Noilhan et al., 1989) implemented by climatic observations made at the top of tree canopy. Sap flow measurements needed to calculate this ratio were completed on different trees of the sites. Climatic datas also allows building reference temperature and then surface

  4. Thermal infrared remote sensing for riverscape analysis of water temperature heterogeneity: current research and future directions

    Science.gov (United States)

    Dugdale, S.; Hannah, D. M.; Malcolm, I.; Bergeron, N.; St-Hilaire, A.

    2016-12-01

    Climate change will increase summer water temperatures in northern latitude rivers. It is likely that this will have a negative impact on fish species such as salmonids, which are sensitive to elevated temperatures. Salmonids currently avoid heat stress by opportunistically using cool water zones that arise from the spatio-temporal mosaic of thermal habitats present within rivers. However, there is a general lack of information about the processes driving this thermal habitat heterogeneity or how these spatio-temporal patterns might vary under climate change. In this paper, we document how thermal infrared imaging has previously been used to better understand the processes driving river temperature patterns. We then identify key knowledge gaps that this technology can help to address in the future. First, we demonstrate how repeat thermal imagery has revealed the role of short-term hydrometeorological variability in influencing longitudinal river temperature patterns, showing that precipitation depth is strongly correlated with the degree of longitudinal temperature heterogeneity. Second, we document how thermal infrared imagery of a large watershed in Eastern Canada has shed new light on the landscape processes driving the spatial distribution of cool water patches, revealing that the distribution of cool patches is strongly linked to channel confinement, channel curvature and the proximity of dry tributary valleys. Finally, we detail gaps in current understanding of spatio-temporal patterns of river temperature heterogeneity. We explain how advances in unmanned aerial vehicle technology and deterministic temperature modelling will be combined to address these current limitations, shedding new light on the landscape processes driving geographical variability in patterns of river temperature heterogeneity. We then detail how such advances will help to identify rivers that will be resilient to future climatic warming, improving current and future strategies for

  5. Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2

    Science.gov (United States)

    Okada, Tatsuaki; Fukuhara, Tetsuya; Tanaka, Satoshi; Taguchi, Makoto; Imamura, Takeshi; Arai, Takehiko; Senshu, Hiroki; Ogawa, Yoshiko; Demura, Hirohide; Kitazato, Kohei; Nakamura, Ryosuke; Kouyama, Toru; Sekiguchi, Tomohiko; Hasegawa, Sunao; Matsunaga, Tsuneo; Wada, Takehiko; Takita, Jun; Sakatani, Naoya; Horikawa, Yamato; Endo, Ken; Helbert, Jörn; Müller, Thomas G.; Hagermann, Axel

    2016-09-01

    The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16 × 12° and a spatial resolution of 0.05° per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission.

  6. Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2

    Science.gov (United States)

    Okada, Tatsuaki; Fukuhara, Tetsuya; Tanaka, Satoshi; Taguchi, Makoto; Imamura, Takeshi; Arai, Takehiko; Senshu, Hiroki; Ogawa, Yoshiko; Demura, Hirohide; Kitazato, Kohei; Nakamura, Ryosuke; Kouyama, Toru; Sekiguchi, Tomohiko; Hasegawa, Sunao; Matsunaga, Tsuneo; Wada, Takehiko; Takita, Jun; Sakatani, Naoya; Horikawa, Yamato; Endo, Ken; Helbert, Jörn; Müller, Thomas G.; Hagermann, Axel

    2017-07-01

    The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16 × 12° and a spatial resolution of 0.05° per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission.

  7. Mid and thermal infrared remote sensing at the Jet Propulsion Laboratory

    Science.gov (United States)

    Johnson, William R.; Hook, Simon J.

    2016-05-01

    The mid and thermal infrared (MTIR) for the Earth surface is defined between 3 and 14µm. In the outer solar system, objects are colder and their Planck response shifts towards longer wavelengths. Hence for these objects (e.g. icy moons, polar caps, comets, Europa), the thermal IR definition usually stretches out to 50µm and beyond. Spectroscopy has been a key part of this scientific exploration because of its ability to remotely determine elemental and mineralogical composition. Many key gas species such as methane, ammonia, sulfur, etc. also have vibrational bands which show up in the thermal infrared spectrum above the background response. Over the past few decades, the Jet Propulsion Laboratory has been building up a portfolio of technology to capture the MTIR for various scientific applications. Three recent sensors are briefly reviewed: The airborne Hyperspectral thermal emission spectrometer (HyTES), the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) and Mars Climate Sounder (MCS)/DIVINER. Each of these sensors utilize a different technology to provide a remote sensing product based on MTIR science. For example, HyTES is a push-brooming hyperspectral imager which utilizes a large format quantum well infrared photodetector (QWIP). The goal is to transition this to a new complementary barrier infrared photodetector (CBIRD) with a similar long wave cut-off and increased sensitivity. ECOSTRESS is a push-whisk Mercury Cadmium Telluride (MCT) based high speed, multi-band, imager which will eventually observe and characterize plant/vegetation functionality and stress index from the International Space Station (ISS) across the contiguous United States (CONUS). MCS/DIVINER utilizes thermopile technology to capture the thermal emission from the polar caps and shadow regions of the moon. Each sensor utilizes specific JPL technology to capture unique science.

  8. Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the Moon

    Science.gov (United States)

    Donaldson Hanna, K. L.; Greenhagen, B. T.; Patterson, W. R.; Pieters, C. M.; Mustard, J. F.; Bowles, N. E.; Paige, D. A.; Glotch, T. D.; Thompson, C.

    2017-02-01

    Currently, few thermal infrared measurements exist of fine particulate (Moon and other airless bodies. In this work, we present thermal infrared emissivity measurements of a suite of well-characterized Apollo lunar soils and a fine particulate (Moon for future laboratory measurements and to better interpret lunar surface compositions as observed by Diviner.

  9. Estimation of soil and vegetation temperatures with multiangular thermal infrared observations: IMGRASS, HEIFE, and SGP 1997 experiments

    NARCIS (Netherlands)

    Menenti, M.; Jia, L.; Li, Z.L.; Djepa, V.; Wang, J.; Stoll, M.P.; Su, Z.; Rast, M.

    2001-01-01

    The potential of directional observations in the thermal infrared region for land surface studies is a largely uncharted area of research. The availability of the dual-view Along Track Scanning Radiometer (ATSR) observations led to explore new opportunities in this direction. In the context of studi

  10. Use of thermal infrared remote sensing data for fisheries, environmental monitoring, oil and gas exploration, and ship routing.

    Science.gov (United States)

    Roffer, M. A.; Gawlikowski, G.; Muller-Karger, F.; Schaudt, K.; Upton, M.; Wall, C.; Westhaver, D.

    2006-12-01

    Thermal infrared (TIR) and ocean color remote sensing data (1.1 - 4.0 km) are being used as the primary data source in decision making systems for fisheries management, commercial and recreational fishing advisory services, fisheries research, environmental monitoring, oil and gas operations, and ship routing. Experience over the last 30 years suggests that while ocean color and other remote sensing data (e.g. altimetry) are important data sources, TIR presently yields the most useful data for studying ocean surface circulation synoptically on a daily basis. This is due primarily to the greater temporal resolution, but also due to one's better understanding of the dynamics of sea surface temperature compared with variations in ocean color and the spatial limitations of altimeter data. Information derived from commercial operations and research is being used to improve the operational efficiency of fishing vessels (e.g. reduce search time and increase catch rate) and to improve our understanding of the variations in catch distribution and rate needed to properly manage fisheries. This information is also being used by the oil and gas industry to minimize transit time and thus, save costs (e.g., tug charter, insurance), to increase production and revenue up to 500K dollars a day. The data are also be used to reduce the risk of equipment loss, loss of time and revenue to sudden and unexpected currents such as eddies. Sequential image analysis integrating TIR and ocean color provided near-real time, synoptic visualization of the rapid and wide dispersal of coastal waters from the northern Gulf of Mexico following Hurricanes Katrina and Rita in September 2005. The satellite data and analysis techniques have also been used to monitor the effects and movement of other potential environmentally damaging substances, such as dispersing nutrient enriched waste water offshore. A review of our experience in several commercial applications and research efforts will reinforce the

  11. What can thermal infrared remote sensing of terrestrial volcanoes tell us about processes past and present on Mars?

    Science.gov (United States)

    Ramsey, Michael S.; Harris, Andrew J. L.; Crown, David A.

    2016-02-01

    Over the past fifty years, a diverse set of thermal infrared (TIR) remote sensing data has been acquired from the orbits of Earth and Mars, which both have ubiquitous volcanic landforms. These data vary in spatial, spectral and temporal resolution and are critical for investigating an ever-expanding set of science applications including the focus of this review paper: volcanic processes. Volcanic studies using TIR data include active monitoring of flows and plumes on Earth and mapping the compositional and thermophysical diversity on Mars. Furthermore, recent advances in high-resolution, low-cost, ground and laboratory TIR instrumentation now help to augment the orbital data through a synergistic approach to data analysis and validation. Field and laboratory studies also serve as terrestrially-focused analogues that provide important insights to interpret the geologic processes that have operated on other planetary surfaces including Mars. This review expands upon our invited talk of the same title at the 2014 Geological Society of America Meeting to include several case studies designed to give the reader an overview of how TIR data can be applied to volcanic processes on Earth and Mars. These case studies highlight prior work by the authors presented at past meetings, but which have not been published elsewhere. The examples were chosen specifically to identify the TIR data similarities between the two planets, and include analyses of volcanic surfaces to (1) derive composition and texture using TIR spectra (Earth and Mars); (2) analyze mantled flows with thermophysical data (Earth and Mars); (3) estimate lava discharge rate using TIR-derived temperature (Earth with application to Mars); and (4) model flow dynamics based on geomorphic measurements (Mars). Because of our focus on the TIR, we do not attempt to document other remote sensing wavelength regions nor even every volcanic study using TIR data. As TIR instruments have improved over time along similar

  12. Sea ice thickness analyses for the Bohai Sea using MODIS thermal infrared imagery

    Institute of Scientific and Technical Information of China (English)

    ZENG Tao; SHI Lijian; MARKO Makynen; CHENG Bin; ZOU Juhong; ZHANG Zhiping

    2016-01-01

    Level ice thickness distribution pattern in the Bohai Sea in the winter of 2009–2010 was investigated in this paper using MODIS night-time thermal infrared imagery. The cloud cover in the imagery was masked out manually. Level ice thickness was calculated using MODIS ice surface temperature and an ice surface heat balance equation. Weather forcing data was from the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses. The retrieved ice thickness agreed reasonable well within situ observations from two off-shore oil platforms. The overall bias and the root mean square error of the MODIS ice thickness are –1.4 cm and 3.9 cm, respectively. The MODIS results under cold conditions (air temperature < –10°C) also agree with the estimated ice growth from Lebedev and Zubov models. The MODIS ice thickness is sensitive to the changes of the sea ice and air temperature, in particular when the sea ice is relatively thin. It is less sensitive to the wind speed. Our method is feasible for the Bohai Sea operational ice thickness analyses during cold freezing seasons.

  13. Thermal Infrared Sky Background for a High-Arctic Mountain Observatory

    CERN Document Server

    Steinbring, Eric

    2016-01-01

    Nighttime zenith sky spectral brightness in the 3.3 to 20 micron wavelength region is reported for an observatory site nearby Eureka, on Ellesmere Island in the Canadian High Arctic. Measurements derive from an automated Fourier-transform spectrograph which operated continuously there over three consecutive winters. During that time the median through the most transparent portion of the Q window was 460 Jy/square-arcsec, falling below 32 Jy/square-arcsec in N band, and to sub-Jansky levels by M and shortwards; reaching only 36 mJy/square-arcsec within L. Nearly six decades of twice-daily balloonsonde launches from Eureka, together with contemporaneous meteorological data plus a simple model allows characterization of background stability and extrapolation into K band. This suggests the study location has dark skies across the whole thermal infrared spectrum, typically sub-200 micro-Jy/square-arcsec at 2.4 microns. That background is comparable to South Pole, and more than an order of magnitude less than estim...

  14. Warping-based co-registration of thermal infrared images: Study of factors influencing its applicability

    Science.gov (United States)

    Cardone, D.; Pinti, P.; Di Donato, L.; Merla, A.

    2017-06-01

    A relevant issue for processing biomedical thermal imaging data is the availability of tools for objective and quantitative comparison of images across different conditions or subjects. To this goal, a solution can be offered by projecting the thermal distribution data onto a fictitious template to obtain a common reference for comparison across cases or subjects. In this preliminary study, we tested the feasibility of applying a warping procedure on infrared thermal images. Fifteen thermal images of checkerboard were recorded at three different distances and five different angles in order to evaluate which factor mostly influences the warping accuracy. The accuracy of three different warping transformation models (local weighted mean (LWM), polynomial, affine) was tested by comparing the positioning error between users' selected fiduciary points on each thermal image and their corresponding reference position assigned on the template image. Fifteen users, divided into three groups upon on their experience in thermal imaging processing, participated in this study in order to evaluate the effect of experience in applying a warping procedure to the analysis of thermal infrared images. The most relevant factor influencing the positioning and thermal errors is the acquisition distance, while the users' level of experience and the inclination angle do not seem to play the same importance. Comparing the three transformations, the LWM seems to be the best in terms of minimizing the two categories of errors. This preliminary work helps to understand the limits and the possibilities of applying warping techniques for objective, quantitative and automatic thermal image comparisons.

  15. Thermal Infrared Sky Background for a High-Arctic Mountain Observatory

    Science.gov (United States)

    Steinbring, Eric

    2017-01-01

    Nighttime zenith sky spectral brightness in the 3.3-20 μm wavelength region is reported for an observatory site nearby Eureka on Ellesmere Island in the Canadian High Arctic. Measurements are derived from an automated Fourier-transform spectrograph that operated there continuously over three consecutive winters. During that time, the median through the most transparent portion of the Q window was 460 {Jy} {{arcsec}}-2, falling below 32 {Jy} {{arcsec}}-2 in the N band, and to sub-Jansky levels by M and shortward, reaching only 36 {mJy} {{arcsec}}-2 within L. Nearly six decades of twice-daily balloonsonde launches from Eureka, together with contemporaneous meteorological data plus a simple model, allows characterization of background stability and extrapolation into K band. This suggests that the study location has dark skies across the whole thermal infrared spectrum, typically sub-200 μ {Jy} {{arcsec}}-2 at 2.4 μm. That background is comparable to South Pole and more than an order of magnitude less than estimates for the best temperate astronomical sites, all at much higher elevation. Considerations relevant to future facilities, including for polar transient surveys, are discussed.

  16. Frequency and Spatial Domains Adaptive-based Enhancement Technique for Thermal Infrared Images

    Directory of Open Access Journals (Sweden)

    Debasis Chaudhuri

    2014-09-01

    Full Text Available Low contrast and noisy image limits the amount of information conveyed to the user. With the proliferation of digital imagery and computer interface between man-and-machine, it is now viable to consider digital enhancement in the image before presenting it to the user, thus increasing the information throughput. With better contrast, target detection and discrimination can be improved. The paper presents a sequence of filtering operations in frequency and spatial domains to improve the quality of the thermal infrared (IR images. Basically, two filters – homomorphic filter followed by adaptive Gaussian filter are applied to improve the quality of the thermal IR images. We have systematically evaluated the algorithm on a variety of images and carefully compared it with the techniques presented in the literature. We performed an evaluation of three filter banks such as homomorphic, Gaussian 5×5 and the proposed method, and we have seen that the proposed method yields optimal PSNR for all the thermal images. The results demonstrate that the proposed algorithm is efficient for enhancement of thermal IR images.Defence Science Journal, Vol. 64, No. 5, September 2014, pp.451-457, DOI:http://dx.doi.org/10.14429/dsj.64.6873

  17. Thermal Infrared Emission Spectra of Terrestrial Exoplanets Influenced by Multi-layer Clouds

    Science.gov (United States)

    Schreier, Franz; Vasquez, Mayte; Gimeno Garcia, Sebastian; Kitzmann, Daniel

    2016-04-01

    Clouds play an important role in the radiative transfer of planetary atmospheres: they are key elements of the climate system and influence the planet's spectral appearance. Given the thousands of exoplanets discovered so far, including some dozens of Earth-sized exoplanets, the feasibility of remote sensing of exoplanet atmospheres is attracting increasing attention. Here we present a study of the thermal emission of cloud-covered Earth-like exoplanets orbiting in the habitable zone of F, G, K, and M-type stars. A line-by-line model for molecular absorption has been coupled to a discrete ordinate multiple scattering radiative transfer solver. Pressure, temperature, and molecular concentration profiles were taken from a consistent radiative-convective climate model including a parameterized cloud description (Kitzmann et al., A&A, 2010). The main focus of the current work is the impact of multi-layer clouds on emission spectra in the thermal infrared. The effects of low-level water clouds and high level ice clouds simultaneously on signatures of H2O, CO2, O3, etc will be studied for various resolutions. Furthermore, comparisons with spectra resulting from a low-resolution code will be shown.

  18. Advances in Front-end Enabling Technologies for Thermal Infrared ` THz Torch' Wireless Communications

    Science.gov (United States)

    Hu, Fangjing; Lucyszyn, Stepan

    2016-09-01

    The thermal (emitted) infrared frequency bands (typically 20-40 and 60-100 THz) are best known for remote sensing applications that include temperature measurement (e.g. non-contacting thermometers and thermography), night vision and surveillance (e.g. ubiquitous motion sensing and target acquisition). This unregulated part of the electromagnetic spectrum also offers commercial opportunities for the development of short-range secure communications. The ` THz Torch' concept, which fundamentally exploits engineered blackbody radiation by partitioning thermally generated spectral radiance into pre-defined frequency channels, was recently demonstrated by the authors. The thermal radiation within each channel can be independently pulse-modulated, transmitted and detected, to create a robust form of short-range secure communications within the thermal infrared. In this paper, recent progress in the front-end enabling technologies associated with the THz Torch concept is reported. Fundamental limitations of this technology are discussed; possible engineering solutions for further improving the performance of such thermal-based wireless links are proposed and verified either experimentally or through numerical simulations. By exploring a raft of enabling technologies, significant enhancements to both data rate and transmission range can be expected. With good engineering solutions, the THz Torch concept can exploit nineteenth century physics with twentieth century multiplexing schemes for low-cost twenty-first century ubiquitous applications in security and defence.

  19. Proximity and Gaze Influences Facial Temperature: A Thermal Infrared Imaging Study.

    Directory of Open Access Journals (Sweden)

    Stephanos eIoannou

    2014-08-01

    Full Text Available Direct gaze and interpersonal proximity are known to lead to changes in psycho-physiology, behaviour and brain function. We know little, however, about subtler facial reactions such as rise and fall in temperature, which may be sensitive to contextual effects and functional in social interactions. Using thermal infrared imaging cameras 18 female adult participants were filmed at two interpersonal distances (intimate and social and two gaze conditions (averted and direct. The order of variation in distance was counterbalanced: half the participants experienced a female experimenter’s gaze at the social distance first before the intimate distance (a socially ‘normal’ order and half experienced the intimate distance first and then the social distance (an odd social order. At both distances averted gaze always preceded direct gaze. We found strong correlations in thermal changes between six areas of the face (forehead, chin, cheeks, nose, maxilliary and periorbital regions for all experimental conditions and developed a composite measure of thermal shifts for all analyses. Interpersonal proximity led to a thermal rise, but only in the ‘normal’ social order. Direct gaze, compared to averted gaze, led to a thermal increase at both distances with a stronger effect at intimate distance, in both orders of distance variation. Participants reported direct gaze as more intrusive than averted gaze, especially at the intimate distance. These results demonstrate the powerful effects of another person’s gaze on psycho-physiological responses, even at a distance and independent of context.

  20. New Asia Dust Storm Detection Method Based on the Thermal Infrared Spectral Signature

    Directory of Open Access Journals (Sweden)

    Hui Xu

    2014-12-01

    Full Text Available As hyperspectral instruments can provide the detailed spectral information, a new spectral similarity method for detecting and differentiating dust from non-dust scenes using the Atmospheric Infrared Sounder (AIRS observations has been developed. The detection is based on a pre-defined Dust Spectral Similarity Index (DSSI, which was calculated from the accumulated brightness temperature differences between selected 16 AIRS observation channels, in the thermal infrared region of 800–1250 cm−1. It has been demonstrated that DSSI can effectively separate the dust from non-dust by elevating dust signals. For underlying surface covered with dust, the DSSI tends to show values close to 1.0. However, the values of DSSI for clear sky surfaces or clouds (ice and water are basically lower than those of dust, as their spectrums have significant differences with dust. To evaluate this new simple DSSI dust detection algorithm, several Asia dust events observed in northern China were analyzed, and the results agree favorably with those from the Moderate resolution Imaging Spectro radiometer (MODIS and Cloud Aerosol LiDAR with Orthogonal Polarization (CALIOP observations.

  1. Lunar crater ejecta: Physical properties revealed by radar and thermal infrared observations

    Science.gov (United States)

    Ghent, R. R.; Carter, L. M.; Bandfield, J. L.; Tai Udovicic, C. J.; Campbell, B. A.

    2016-07-01

    We investigate the physical properties, and changes through time, of lunar impact ejecta using radar and thermal infrared data. We use data from two instruments on the Lunar Reconnaissance Orbiter (LRO) - the Diviner thermal radiometer and the Miniature Radio Frequency (Mini-RF) radar instrument - together with Earth-based radar observations. We use this multiwavelength intercomparison to constrain block sizes and to distinguish surface from buried rocks in proximal ejecta deposits. We find that radar-detectable rocks buried within the upper meter of regolith can remain undisturbed by surface processes such as micrometeorite bombardment for >3 Gyr. We also investigate the thermophysical properties of radar-dark haloes, comprised of fine-grained, rock-poor ejecta distal to the blocky proximal ejecta. Using Diviner data, we confirm that the halo material is depleted in surface rocks, but show that it is otherwise thermophysically indistinct from background regolith. We also find that radar-dark haloes, like the blocky ejecta, remain visible in radar observations for craters with ages >3 Ga, indicating that regolith overturn processes cannot replenish their block populations on that timescale.

  2. Determination of physical properties of the asteroid (41) Daphne from interferometric observations in the thermal infrared

    CERN Document Server

    Matter, Alexis; Ligori, Sebastiano; Crouzet, Nicolas; Tanga, Paolo

    2011-01-01

    We describe interferometric observations of the asteroid (41) Daphne in the thermal infrared obtained with the Mid-Infrared Interferometric Instrument (MIDI) of the Very Large Telescope Interferometer (VLTI). We derived the size and the surface thermal properties of (41) Daphne by means of a thermophysical model (TPM), which is used for the interpretation of interferometric data for the first time. From our TPM analysis, we derived a volume equivalent diameter for (41) Daphne of 189 km, using a non-convex 3-D shape model derived from optical lightcurves and adaptive optics images (B. Carry, private communication). On the other hand, when using the convex shape of Kaasalainen et al. (2002. Icarus 159, 369-395) in our TPM analysis, the resulting volume equivalent diameter of (41) Daphne is between 194 and 209 km, depending on the surface roughness. The shape of the asteroid is used as an a priori information in our TPM analysis. No attempt is made to adjust the shape to the data. Only the size of the asteroid a...

  3. 65 Cybele in the thermal infrared: Multiple observations and thermophysical analysis

    CERN Document Server

    Blommaert, J

    2004-01-01

    We investigated the physical and thermal properties of 65 Cybele}, one of the largest main-belt asteroids. Based on published and recently obtained thermal infrared observations, including ISO measurements, we derived through thermophysical modelling (TPM) a size of 302x290x232 km (+/- 4 %) and an geometric visible albedo of 0.050+/-0.005. Our model of a regolith covered surface with low thermal inertia and "default" roughness describes the wavelengths and phase angle dependent thermal aspects very well. Before/after opposition effect and beaming behaviour can be explained in that way. We found a constant emissivity of 0.9 at wavelengths up to about 100 micron and lower values towards the submillimetre range, indicating a grain size distribution dominated by 200 micron particle sizes. The spectroscopic analysis revealed an emissivity increase between 8.0 and 9.5 micron. We compared this emissivity behaviour with the Christiansen features of carbonaceous chondrite meteorites, but a conclusive identification wa...

  4. Mapping the distribution of vesicular textures on silicic lavas using the Thermal Infrared Multispectral Scanner

    Science.gov (United States)

    Ondrusek, Jaime; Christensen, Philip R.; Fink, Jonathan H.

    1993-01-01

    To investigate the effect of vesicularity on TIMS (Thermal Infrared Multispectral Scanner) imagery independent of chemical variations, we studied a large rhyolitic flow of uniform composition but textural heterogeneity. The imagery was recalibrated so that the digital number values for a lake in the scene matched a calculated ideal spectrum for water. TIMS spectra for the lava show useful differences in coarsely and finely vesicular pumice data, particularly in TIMS bands 3 and 4. Images generated by ratioing these bands accurately map out those areas known from field studies to be coarsely vesicular pumice. These texture-related emissivity variations are probably due to the larger vesicles being relatively deeper and separated by smaller septa leaving less smooth glass available to give the characteristic emission of the lava. In studies of inaccessible lava flows (as on Mars) areas of coarsely vesicular pumice must be identified and avoided before chemical variations can be interpreted. Remotely determined distributions of vesicular and glassy textures can also be related to the volatile contents and potential hazards associated with the emplacement of silicic lava flows on Earth.

  5. Comparison of broadband and hyperspectral thermal infrared imaging of buried threat objects

    Science.gov (United States)

    McFee, John E.; Achal, Steve B.; Diaz, Alejandra U.; Faust, Anthony A.

    2013-06-01

    Previous research by many groups has shown that broad-band thermal infrared (TIR) imagers can detect buried explosive threat devices, such as unexploded ordnance (UXO), landmines and improvised explosive devices (IEDs). Broad-band detection measures the apparent temperature - an average over the wave band of the product of the true soil surface temperature and the emissivity. Broad-band detection suffers from inconsistent performance (low signal, high clutter rates), due in part to diurnal variations, environmental and meteorological conditions, and soil surface effects. It has been suggested that hyperspectral TIR imaging might have improved performance since it can, in principle, allow extraction of the wavelength-dependent emissivity and the true soil surface temperature. This would allow the surface disturbance effects to be separated from the soil column (bulk) effects. A significant, and as yet unanswered, question is whether hyperspectral TIR images provide better detection capability (higher probability of detection and/or lower false alarm rate) than do broad-band thermal images. TIR hyperspectral image data of threat objects, buried and surface-laid in bare soil, were obtained in arid, desert-like conditions over full diurnal cycles for several days. Regions of interest containing threat objects and backgrounds were extracted throughout the time period. Simulated broad-band images were derived from the hyperspectral images. The diurnal variation of the images was studied. Hyperspectral was found to provide some advantage over broad-band imaging in detection of buried threat objects for the limited data set studied.

  6. Air quality monitoring with current (IASI) and future (IASI-NG/MetOp-SG, IRS/MTG) space-borne thermal infrared sounders

    Science.gov (United States)

    Boynard, Anne; Clerbaux, Cathy; Bauduin, Sophie; Prunet, Pascal; Tournier, Bernard; Hadji-Lazaro, Juliette; Hurtmans, Daniel; Coheur, Pierre-François

    2017-04-01

    Current nadir-looking thermal infrared (TIR) sounders, such as the Infrared Atmospheric Sounding Interferometer (IASI) launched onboard the MetOp polar-orbiting platforms, are now playing an important role for probing pollutants in the troposphere and in the boundary layer (e.g., carbon monoxide - CO, ozone - O3, ammonia, sulfur dioxide). Vertical profiles can be obtained for the main absorbers, with varying vertical resolution and accuracy, depending on geophysical parameters and instrumental specifications. Two future missions using TIR instruments (IRS on Sentinel 4/MTG geostationary-orbiting platform and IASI-NG on Sentinel 5/MetOp-SG polar-orbiting platform) are planned to be launched by EUMETSAT within 5 years. Both instruments are nadir looking Fourier transform spectrometers like IASI but with different radiometric and spectral characteristics. In this study, we illustrate the ability of IASI to monitor CO and O3 in the lowermost troposphere. We assess more specifically the performances of the different satellite instrument concepts in terms of vertical resolution and sensitivity at the surface for CO and O3, using representative cases at local, continental and global scales.

  7. An Unmanned Airship Thermal Infrared Remote Sensing System for Low-Altitude and High Spatial Resolution Monitoring of Urban Thermal Environments: Integration and an Experiment

    Directory of Open Access Journals (Sweden)

    Peng Ren

    2015-10-01

    Full Text Available Satellite remote sensing data that lacks spatial resolution and timeliness is of limited ability to access urban thermal environment on a micro scale. This paper presents an unmanned airship low-altitude thermal infrared remote sensing system (UALTIRSS, which is composed of an unmanned airship, an onboard control and navigation subsystem, a task subsystem, a communication subsystem, and a ground-base station. Furthermore, an experimental method and an airborne-field experiment for collecting land surface temperature (LST were designed and conducted. The LST pattern within 0.8-m spatial resolution and with root mean square error (RMSE value of 2.63 °C was achieved and analyzed in the study region. Finally, the effects of surface types on the surrounding thermal environment were analyzed by LST profiles. Results show that the high thermal resolution imagery obtained from UALTIRSS can provide more detailed thermal information, which are conducive to classify fine urban material and assess surface urban heat island (SUHI. There is a significant positive correlation between the average LST of profiles and the percent impervious surface area (ISA% with R2 around 0.917. Overall, UALTIRSS and the retrieval method were proved to be low-cost and feasible for studying micro urban thermal environments.

  8. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Saleem, E-mail: ullah19488@itc.nl [Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Skidmore, Andrew K. [Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Naeem, Mohammad [Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM), KPK (Pakistan); Schlerf, Martin [Centre de Recherche Public-Gabriel Lippmann (CRPGL), L-4422 Belvaux (Luxembourg)

    2012-10-15

    Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid to thermal infrared (2.5-14.0 {mu}m) spectra, based on continuous wavelet analysis. The dataset comprised 394 spectra from nine plant species, with different water contents achieved through progressive drying. To identify the spectral feature most sensitive to the variations in leaf water content, first the Directional Hemispherical Reflectance (DHR) spectra were transformed into a wavelet power scalogram, and then linear relations were established between the wavelet power scalogram and leaf water content. The six individual wavelet features identified in the mid infrared yielded high correlations with leaf water content (R{sup 2} = 0.86 maximum, 0.83 minimum), as well as low RMSE (minimum 8.56%, maximum 9.27%). The combination of four wavelet features produced the most accurate model (R{sup 2} = 0.88, RMSE = 8.00%). The models were consistent in terms of accuracy estimation for both calibration and validation datasets, indicating that leaf water content can be accurately retrieved from the mid to thermal infrared domain of the electromagnetic radiation. -- Highlights: Black-Right-Pointing-Pointer The mid and thermal infrared spectra are sensitive to variation in leaf water content. Black-Right-Pointing-Pointer Continuous wavelet analysis detected the variation caused by leaf water content. Black-Right-Pointing-Pointer The selected wavelet features are highly correlated with leaf water content. Black-Right-Pointing-Pointer Mid wave and thermal infrared spectra have the potential to estimate leaf water content.

  9. Transforming Image-Objects into Multiscale Fields: A GEOBIA Approach to Mitigate Urban Microclimatic Variability within H-Res Thermal Infrared Airborne Flight-Lines

    Directory of Open Access Journals (Sweden)

    Mir Mustafizur Rahman

    2014-10-01

    Full Text Available In an effort to minimize complex urban microclimatic variability within high-resolution (H-Res airborne thermal infrared (TIR flight-lines, we describe the Thermal Urban Road Normalization (TURN algorithm, which is based on the idea of pseudo invariant features. By assuming a homogeneous road temperature within a TIR scene, we hypothesize that any variation observed in road temperature is the effect of local microclimatic variability. To model microclimatic variability, we define a road-object class (Road, compute the within-Road temperature variability, sample it at different spatial intervals (i.e., 10, 20, 50, and 100 m then interpolate samples over each flight-line to create an object-weighted variable temperature field (a TURN-surface. The optimal TURN-surface is then subtracted from the original TIR image, essentially creating a microclimate-free scene. Results at different sampling intervals are assessed based on their: (i ability to visually and statistically reduce overall scene variability and (ii computation speed. TURN is evaluated on three non-adjacent TABI-1800 flight-lines (~182 km2 that were acquired in 2012 at night over The City of Calgary, Alberta, Canada. TURN also meets a recent GEOBIA (Geospatial Object Based Image Analysis challenge by incorporating existing GIS vector objects within the GEOBIA workflow, rather than relying exclusively on segmentation methods.

  10. Application of Thermal Infrared Multiband Scanner (TIMS) data to mapping of Plutonic and stratified rock and assemblages in accreted terrains of the Northern Sierra, California

    Science.gov (United States)

    Taranik, James V.; Davis, David; Borengasser, Marcus

    1986-01-01

    The Thermal Infrared Multispectral Scanner (TIMS) data were acquired over the Donner Pass area in California on September 12, 1985. The higher peaks in the area approach 9,200 feet in elevation, while the canyon of the north fork of the American River is only 3000 feet in elevation. The vegetation is dominated by conifers, although manzanita and other shrubs are present in areas where soils have developed. The data contain noise patterns which cut across scan lines diagonally. The TIMS data were analyzed using both photointerpretative and digital processing techniques. Preliminary image interpretation and field analysis confirmed that TIMS image data displays the chert units and silicic volcanics as bright red. The imagery appears to display zoning in the batholithic and hypabyssal intrusive rocks, although this was not field checked at this time. Rocks which appear to be more dioritic in composition appear purple on the imagery, while rocks more granitic in composition appear shades of red and pink. Areas that have more than 40% vegetative cover appear green on the imagery.

  11. Continuous thermal infrared monitoring at Campi Flegrei and Vesuvius (Italy) by automated data processing: an effective surveillance tool of active volcanoes

    Science.gov (United States)

    Sansivero, Fabio; Vilardo, Giuseppe

    2014-05-01

    The INGV-Osservatorio Vesuviano Thermal Infrared Imagery Monitoring Network (TIIMNet) is made up of IR acquisition stations designed to continuously acquire IR scenes of diffuse degassing areas in the Neapolitan volcanic district. Every station consists of a RMS (Remote Monitoring Station) which manages the shooting functionalities of the IR camera and the connection to the surveillance Centre of INGV-Osservatorio Vesuviano in Naples. The first developed station was equipped with a NEC Thermo Tracer TS7302 IR camera (with 320x240 pixel FPA uncooled microbolometer); a newer one is equipped with a FLIR SC645 IR camera (with 640x480 pixel FPA uncooled microbolometer) and is supported by an in-house developed hardware which manages a fully real-time control of data acquisition and transfer procedures. As a whole, TIIMNet is composed of four permanent stations and three transportable ones. The first permanent NEC Station was installed at Vesuvius on July 2004 and dismissed on May 2007. A new permanent FLIR Station was set up on June 2011 and it acquires IR scenes from the inner SW slope of Vesuvius crater. In the Campi Flegrei caldera (Pozzuoli, Italy) a permanent NEC Station was operative at Solfatara since September 2004 and it acquired scenes of the major fumaroles area located on the SE inner slope at the intersection of two active, SW-NE and NW-SE main faults. A permanent FLIR Station has been installed at Solfatara on June 2013 and takes IR shots of a significant thermal anomaly on the Northern inner slope of the crater. At Pisciarelli locality, on the Solfatara NE outer slope, a transportable NEC Station was set up on October 2006 and dismissed on September 2013. It was abreast of a permanent FLIR Station on March 2013. Both stations stored IR scenes of the outer eastern flank of the Solfatara tuff-cone characterized by heavy water vapor and CO2 emissions close to an active NW-SE fault. IR scenes are acquired every night by the TIIMNet stations and in real time

  12. A practical algorithm for estimating surface soil moisture using combined optical and thermal infrared data

    Science.gov (United States)

    Leng, Pei; Song, Xiaoning; Duan, Si-Bo; Li, Zhao-Liang

    2016-10-01

    Surface soil moisture (SSM) is a critical variable for understanding the energy and water exchange between the land and atmosphere. A multi-linear model was recently developed to determine SSM using ellipse variables, namely, the center horizontal coordinate (x0), center vertical coordinate (y0), semi-major axis (a) and rotation angle (θ), derived from the elliptical relationship between diurnal cycles of land surface temperature (LST) and net surface shortwave radiation (NSSR). However, the multi-linear model has a major disadvantage. The model coefficients are calculated based on simulated data produced by a land surface model simulation that requires sufficient meteorological measurements. This study aims to determine the model coefficients directly using limited meteorological parameters rather than via the complicated simulation process, decreasing the dependence of the model coefficients on meteorological measurements. With the simulated data, a practical algorithm was developed to estimate SSM based on combined optical and thermal infrared data. The results suggest that the proposed approach can be used to determine the coefficients associated with all ellipse variables based on historical meteorological records, whereas the constant term varies daily and can only be determined using the daily maximum solar radiation in a prediction model. Simulated results from three FLUXNET sites over 30 cloud-free days revealed an average root mean square error (RMSE) of 0.042 m3/m3 when historical meteorological records were used to synchronously determine the model coefficients. In addition, estimated SSM values exhibited generally moderate accuracies (coefficient of determination R2 = 0.395, RMSE = 0.061 m3/m3) compared to SSM measurements at the Yucheng Comprehensive Experimental Station.

  13. Pre- and Post-Launch Spatial Quality of the Landsat 8 Thermal Infrared Sensor

    Directory of Open Access Journals (Sweden)

    Brian N. Wenny

    2015-02-01

    Full Text Available The Thermal Infrared Sensor (TIRS for the Landsat 8 platform was designed and built at NASA Goddard Space Flight Center (GSFC. TIRS data will extend the data record for thermal observations from the heritage Landsat sensors, dating back to the launch of Landsat 4 in 1982. The two-band (10.9 and 12.0 μm pushbroom sensor with a 185 km-wide swath uses a staggered arrangement of quantum well infrared photodetector (QWIPs arrays. The required spatial resolution is 100 m for TIRS, with the assessment of crop moisture and water resources being science drivers for that resolution. The evaluation of spatial resolution typically relies on a straight knife-edge technique to determine the spatial edge response of a detector system, and such an approach was implemented for TIRS. Flexibility in the ground calibration equipment used for TIRS thermal-vacuum chamber testing also made possible an alternate strategy that implemented a circular target moved in precise sub-pixel increments across the detectors to derive the edge response. On-orbit, coastline targets were developed to evaluate the spatial response performance. Multiple targets were identified that produced similar results to one another. Even though there may be a slight bias in the point spread function (PSF/modulation transfer function (MTF estimates towards poorer performance using this approach, it does have the ability to track relative changes for monitoring long-term instrument status. The results for both pre- and post-launch response analysis show general good agreement and consistency with edge slope along-track values of 0.53 and 0.58 pre- and post-launch and across-track values 0f 0.59 and 0.55 pre- and post-launch.

  14. Single band atmospheric correction tool for thermal infrared data: application to Landsat 7 ETM+

    Science.gov (United States)

    Galve, Joan Miquel; Coll, César; Sánchez, Juan Manuel; Valor, Enric; Niclòs, Raquel; Pérez-Planells, Lluís.; Doña, Carolina; Caselles, Vicente

    2016-10-01

    Atmospheric correction of Thermal Infrared (TIR) remote sensing data is a key process in order to obtain accurate land surface temperatures (LST). Single band atmospheric correction methods are used for sensors provided with a single TIR band. Which employs a radiative transfer model using atmospheric profiles over the study area as inputs to estimate the atmospheric transmittances and emitted radiances. Currently, TIR data from Landsat 5-TM, Landsat 7-ETM+ and Landsat 8-TIRS can be atmospherically corrected using the on-line Atmospheric Correction Parameter Calculator (ACPC, http://atmcorr.gsfc.nasa.gov). For specific geographical coordinates and observation time, the ACPC provides the atmospheric transmittance, and both upwelling and downwelling radiances, which are calculated from MODTRAN4 radiative transfer simulations with NCEP atmospheric profiles as inputs. Since the ACPC provides the atmospheric parameters for a single location, it does not account for their eventual variability within the full Landsat scene. The new Single Band Atmospheric Correction (SBAC) tool provides the geolocated atmospheric parameters for every pixel taking into account their altitude. SBAC defines a three-dimensional grid with 1°×1° latitude/longitude spatial resolution, corresponding to the location of NCEP profiles, and 13 altitudes from sea level to 5000 meters. These profiles are entered in MODTRAN5 to calculate the atmospheric parameters corresponding to a given pixel are obtained by weighted spatial interpolation in the horizontal dimensions and linear interpolation in the vertical dimension. In order to compare both SBAC and ACPC tools, we have compared with ground measurements the Landsat-7/ETM+ LST obtained using both tools over the Valencia ground validation site.

  15. Requirements and Implementation Feasibility for a CubeSat Thermal Infrared Imaging System to Monitor the Structure of Volcanic Ash Clouds

    Science.gov (United States)

    Thorsen, D.; Carroll, R.; Webley, P.; Hawkins, J.

    2014-12-01

    The 2010 eruption of the Eyjafjallajökull volcano in Iceland caused the cancellation of approximately 108,000 flights over an 8-day period, disrupted air traffic worldwide, and cost the airline industry more than $400 million per day. The inconvenience and economic impact of this and similar events, such as Puyehue-Cordon-Caulle in 2011, have heightened the interest in developing improved satellite remote sensing techniques for monitoring volcanic plumes and drifting clouds. For aviation safety, the operational/research community has started to move towards classifying the concentrations within volcanic plumes and clouds. Additionally, volcanic ash transport and dispersion (VATD) models are often used for forecasting ash cloud locations and they require knowledge of the structure of the erupting column to improve their ash simulations and also downwind 3-D maps of the ash cloud to calibrate/validate their modeling output. Existing remote sensing satellites utilize a brightness temperature method with thermal infrared (TIR) measurements from 10 - 12 μm to determine mass loading of volcanic ash along a single line of sight, but they have infrequent revisit times and they cannot resolve the three-dimensional structure of the ash clouds. A cluster of CubeSats dedicated to the monitoring of volcanic ash and plumes could provide both more frequent updates and the multi-aspect images needed to resolve the density structure of volcanic ash clouds and plumes. In this presentation, we discuss the feasibility and requirements for a CubeSat TIR imaging system and the associated on-board image processing that would be required to monitor the structure of volcanic ash clouds from Low Earth Orbit.

  16. A Mars Analog for Wet-Based Glacial Alteration of Volcanic Terrains: Thermal Infrared Remote Sensing at Three Sisters, Oregon, U.S.A.

    Science.gov (United States)

    Rutledge, A. M.; Scudder, N. A.; Horgan, B.; Rampe, E. B.

    2016-09-01

    This study characterizes wet-based glacial weathering products at a volcanic Mars analog site using thermal infrared remote sensing. Decorrelation stretches are used to examine the geographic relationships between compositional units.

  17. Potential of the future thermal infrared space-borne sensor IASI-NG to monitor lower tropospheric ozone

    Directory of Open Access Journals (Sweden)

    P. Sellitto

    2012-09-01

    Full Text Available The lower tropospheric (LT ozone concentration is a key factor for air quality (AQ. Observing efficiently LT ozone from space is crucial to monitor and better understand pollution phenomena occurring from inter-continental to local scales, and that have a proven noxious effect on the human health and the biosphere. The Infrared Atmospheric Sounder Interferometer (IASI flies on MetOp-A spacecraft and is planned to be launched in the next future as part of the other MetOp modules, i.e. MetOp-B and C. IASI has demonstrated to have the capability to single out the LT ozone signal only at favourable conditions, i.e. in presence of high thermal contrast scenarios. New generation satellite instruments are being designed to address several pressing geophysical issues, including a better observation capability of LT ozone. IASI-NG (New Generation, now having reached the accomplishment of design phase-A for launch in the 2020 timeframe as part of the EPS-SG (EUMETSAT Polar System-Second Generation, formerly post-EPS mission, may render feasible a better observation of AQ in terms of LT ozone. To evaluate the added-value brought by IASI-NG in this context, we developed a pseudo-observation simulator, including a direct simulator of thermal infrared spectra and a full inversion scheme to retrieve ozone concentration profiles. We produced one month (August 2009 of tropospheric ozone pseudo-observations based on both IASI and IASI-NG instrumental configurations. We compared the pseudo-observations and we found a clear improvement of LT ozone (up to 6 km altitude pseudo-observations quality for IASI-NG. The estimated total error is expected to be more than 35% smaller at 5 km, and 20% smaller for the LT ozone column. The total error on the LT ozone column is, on average, lower than 10% for IASI-NG. IASI-NG is expected to have a significantly better vertical sensitivity (monthly average degrees of freedom surface-6 km of 0.70 and to be sensitive at lower

  18. Mapping Weathering and Alteration Minerals in the Comstock and Geiger Grade Areas using Visible to Thermal Infrared Airborne Remote Sensing Data

    Science.gov (United States)

    Vaughan, Greg R.; Calvin, Wendy M.

    2005-01-01

    To support research into both precious metal exploration and environmental site characterization a combination of high spatial/spectral resolution airborne visible, near infrared, short wave infrared (VNIR/SWIR) and thermal infrared (TIR) image data were acquired to remotely map hydrothermal alteration minerals around the Geiger Grade and Comstock alteration regions, and map the mineral by-products of weathered mine dumps in Virginia City. Remote sensing data from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), SpecTIR Corporation's airborne hyperspectral imager (HyperSpecTIR), the MODIS-ASTER airborne simulator (MASTER), and the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) were acquired and processed into mineral maps based on the unique spectral signatures of image pixels. VNIR/SWIR and TIR field spectrometer data were collected for both calibration and validation of the remote data sets, and field sampling, laboratory spectral analyses and XRD analyses were made to corroborate the surface mineralogy identified by spectroscopy. The resulting mineral maps show the spatial distribution of several important alteration minerals around each study area including alunite, quartz, pyrophyllite, kaolinite, montmorillonite/muscovite, and chlorite. In the Comstock region the mineral maps show acid-sulfate alteration, widespread propylitic alteration and extensive faulting that offsets the acid-sulfate areas, in contrast to the larger, dominantly acid-sulfate alteration exposed along Geiger Grade. Also, different mineral zones within the intense acid-sulfate areas were mapped. In the Virginia City historic mining district the important weathering minerals mapped include hematite, goethite, jarosite and hydrous sulfate minerals (hexahydrite, alunogen and gypsum) located on mine dumps. Sulfate minerals indicate acidic water forming in the mine dump environment. While there is not an immediate threat to the community, there are clearly sources of

  19. Mapping Weathering and Alteration Minerals in the Comstock and Geiger Grade Areas using Visible to Thermal Infrared Airborne Remote Sensing Data

    Science.gov (United States)

    Vaughan, Greg R.; Calvin, Wendy M.

    2005-01-01

    To support research into both precious metal exploration and environmental site characterization a combination of high spatial/spectral resolution airborne visible, near infrared, short wave infrared (VNIR/SWIR) and thermal infrared (TIR) image data were acquired to remotely map hydrothermal alteration minerals around the Geiger Grade and Comstock alteration regions, and map the mineral by-products of weathered mine dumps in Virginia City. Remote sensing data from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), SpecTIR Corporation's airborne hyperspectral imager (HyperSpecTIR), the MODIS-ASTER airborne simulator (MASTER), and the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) were acquired and processed into mineral maps based on the unique spectral signatures of image pixels. VNIR/SWIR and TIR field spectrometer data were collected for both calibration and validation of the remote data sets, and field sampling, laboratory spectral analyses and XRD analyses were made to corroborate the surface mineralogy identified by spectroscopy. The resulting mineral maps show the spatial distribution of several important alteration minerals around each study area including alunite, quartz, pyrophyllite, kaolinite, montmorillonite/muscovite, and chlorite. In the Comstock region the mineral maps show acid-sulfate alteration, widespread propylitic alteration and extensive faulting that offsets the acid-sulfate areas, in contrast to the larger, dominantly acid-sulfate alteration exposed along Geiger Grade. Also, different mineral zones within the intense acid-sulfate areas were mapped. In the Virginia City historic mining district the important weathering minerals mapped include hematite, goethite, jarosite and hydrous sulfate minerals (hexahydrite, alunogen and gypsum) located on mine dumps. Sulfate minerals indicate acidic water forming in the mine dump environment. While there is not an immediate threat to the community, there are clearly sources of

  20. 2014年10月7日云南景谷MS6.6地震热红外异常%Thermal Infrared Anomaly Occurring before the Jinggu, Yunnan MS6.6 Earthquake on October 7,2014

    Institute of Scientific and Technical Information of China (English)

    李青梅; 张元生; 吕俊强; 任家琪; 张丽峰; 张璇

    2015-01-01

    以中国静止气象卫星FY-2C/2E红外遥感资料为依据,采用小波变换与功率谱相对变化法对2014年10月7日云南景谷MS6.6地震进行震例数据处理和分析。结果显示:震前热异常具有明显时空特征,2014年8月上旬震中及其周围区域出现热红外异常,异常区范围随时间逐渐扩大、幅度陡增;8月30日左右异常面积达到最大,异常持续时间近一个月,异常幅度最大值达到平均值的14倍多,最大值45天后发生地震;该次地震热红外异常特征显著,容易识别,可作为一种识别地震热异常信息的判据,进一步验证卫星热红外异常在地震预判方面的作用。%To analyze the thermal infrared anomaly occurring before the Jinggu,Yunnan MS6.6 earthquake in China on October 7,2014,remotely sensed infrared brightness temperature data obtained from the Chinese geostationary meteorological satellite FY-2C/2E is used for analysis. The wavelet transform is used to determine variations and progression of changes in the power spectrum.Thermal infrared anomalies are analyzed using a temporal evolution diagram of the earthquake and a timing curve of the average brightness temperature.Processing and analysis results show that in early August 2014,thermal anomalies occurring before the earthquake had obvious spatial and temporal characteristics.The epicenter and its surrounding area show thermal infrared anomalies that spread over time in a certain direction throughout the tectonic stress field with a sharp increase in the amplitude.On around August 30th,the anomalous amplitude reached a maximum,which persisted for almost one month at a maximum value of more than 14 times the average.The earthquake occurred 45 days after the appearance of the maximum value.Case analysis and history determines that the abnormal thermal evolution firstly appeared,enhanced before shrinking,and finally disappeared.The results of this study are consistent with those of other earthquakes

  1. Landsat 8 Operational Land Imager and Thermal Infrared Sensor - National Geospatial Data Asset (NGDA)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Earth Resources Observation and Science (EROS) Center archive holds data collected by the Landsat suite of satellites, beginning with Landsat 1 in 1972. All...

  2. Landsat 8 Operational Land Imager and Thermal Infrared Sensor - National Geospatial Data Asset (NGDA)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Earth Resources Observation and Science (EROS) Center archive holds data collected by the Landsat suite of satellites, beginning with Landsat 1 in 1972. All...

  3. On-Orbit Radiometric Performance of the Landsat 8 ThermalInfrared Sensor

    Directory of Open Access Journals (Sweden)

    Matthew Montanaro

    2014-11-01

    Full Text Available The Thermal Infrared Sensor (TIRS requirements for noise, stability, and uniformity were designed to ensure the radiometric integrity of the data products. Since the launch of Landsat 8 in February 2013, many of these evaluations have been based on routine measurements of the onboard calibration sources, which include a variable-temperature blackbody and a deep space view port. The noise equivalent change in temperature (NEdT of TIRS data is approximately 0.05 K @ 300 K in both bands, exceeding requirements by about a factor of 8 and Landsat 7 ETM+ performance by a factor of 3. Coherent noise is not readily apparent in TIRS data. No apparent change in the detector linearization has been observed. The radiometric stability of the TIRS instrument over the period between radiometric calibrations (about 40 min is less than one count of dark current and the variation in terms of radiance is less than 0.015 \\(W/m^2/sr/\\mu m\\ (or 0.13 K at 300 K, easily meeting the short term stability requirements. Long term stability analysis has indicated a degradation of about 0.2% or less per year. The operational calibration is only updated using the biases taken every orbit, due to the fundamental stability of the instrument. By combining the data from two active detector rows per band, 100% detector operability is maintained for the instrument. No trends in the noise, operability, or short term radiometric stability are apparent over the mission life. The uniformity performance is more difficult to evaluate as scene-varying banding artifacts have been observed in Earth imagery. Analyses have shown that stray light is affecting the recorded signal from the Earth and inducing the banding depending on the content of the surrounding Earth surface. As the stray light effects are stronger in the longer wavelength TIRS band11 (12.0 \\(\\mu m\\, the uniformity is better in the shorter wavelength band10 (10.9 \\(\\mu m\\. Both bands have exceptional noise and

  4. Producing Mosaiced Infrared Data on Natural Hazards for Real-time Emergency Management using UAS and Thermal Infrared Cameras

    Science.gov (United States)

    Hatfield, M. C.; Webley, P. W.; Saiet, E., II

    2015-12-01

    Unmanned aerial systems (UAS) provide a unique capability for emergency management and real-time hazard assessment with access to hazardous environments that maybe off limits for manned aircraft while reducing the risk to personnel and loss of ground assets. When dealing with hazards, such as forest fires and volcanic eruptions, there is a need to assess the location of the fire/flow front and where best to assign ground personnel to reduce the risk to local populations and infrastructure. Thermal infrared cameras provide the ideal tool to detect subtle changes in the developing fire/flow front while providing data 24/7. There are limits to the detecting capabilities of these cameras given the wavelengths used and image resolution available. Given the large thermal contrast between the hot flow front and surrounding landscape then the data can be used to map out the location and changes seen as the front of the flow/fire advances. To map the complete hazard then either the UAS has to be flown at an altitude to capture the event in one image or the data has to be mosaiced together. Higher altitudes lead to coarser resolution imagery and therefore we will show how thermal infrared data can be mosaiced to provide the highest spatial resolution map of the hazard. We will present results using different UAS and thermal cameras including adding neutral density filters to detect hotter thermal targets. Timely generation of these mosaiced maps in a real-time environment is critical for those assessing the ongoing event and we will show how these maps can be generated quickly with the necessary spatial and thermal accuracy while discussing the requirements needed to generate thermal infrared maps of the hazardous events that are both useful for quick real-time assessment and also for further investigation in research projects.

  5. Effect of metal stress on the thermal infrared emission of soybeans: A greenhouse experiment - Possible utility in remote sensing

    Science.gov (United States)

    Suresh, R.; Schwaller, M. R.; Foy, C. D.; Weidner, J. R.; Schnetzler, C. S.

    1989-01-01

    Manganese-sensitive forest and manganese-tolerant lee soybean cultivars were subjected to differential manganese stress in loring soil in a greenhouse experiment. Leaf temperature measurements were made using thermistors for forest and lee. Manganese-stressed plants had higher leaf temperatures than control plants in both forest and lee. Results of this experiment have potential applications in metal stress detection using remote sensing thermal infrared data over large areas of vegetation. This technique can be useful in reconnaissance mineral exploration in densely-vegetated regions where conventional ground-based methods are of little help.

  6. Developing a semi/automated protocol to post-process large volume, High-resolution airborne thermal infrared (TIR) imagery for urban waste heat mapping

    Science.gov (United States)

    Rahman, Mir Mustafizur

    In collaboration with The City of Calgary 2011 Sustainability Direction and as part of the HEAT (Heat Energy Assessment Technologies) project, the focus of this research is to develop a semi/automated 'protocol' to post-process large volumes of high-resolution (H-res) airborne thermal infrared (TIR) imagery to enable accurate urban waste heat mapping. HEAT is a free GeoWeb service, designed to help Calgary residents improve their home energy efficiency by visualizing the amount and location of waste heat leaving their homes and communities, as easily as clicking on their house in Google Maps. HEAT metrics are derived from 43 flight lines of TABI-1800 (Thermal Airborne Broadband Imager) data acquired on May 13--14, 2012 at night (11:00 pm--5:00 am) over The City of Calgary, Alberta (˜825 km 2) at a 50 cm spatial resolution and 0.05°C thermal resolution. At present, the only way to generate a large area, high-spatial resolution TIR scene is to acquire separate airborne flight lines and mosaic them together. However, the ambient sensed temperature within, and between flight lines naturally changes during acquisition (due to varying atmospheric and local micro-climate conditions), resulting in mosaicked images with different temperatures for the same scene components (e.g. roads, buildings), and mosaic join-lines arbitrarily bisect many thousands of homes. In combination these effects result in reduced utility and classification accuracy including, poorly defined HEAT Metrics, inaccurate hotspot detection and raw imagery that are difficult to interpret. In an effort to minimize these effects, three new semi/automated post-processing algorithms (the protocol) are described, which are then used to generate a 43 flight line mosaic of TABI-1800 data from which accurate Calgary waste heat maps and HEAT metrics can be generated. These algorithms (presented as four peer-reviewed papers)---are: (a) Thermal Urban Road Normalization (TURN)---used to mitigate the microclimatic

  7. Estimating the relationship between urban 3D morphology and land surface temperature using airborne LiDAR and Landsat-8 Thermal Infrared Sensor data

    Science.gov (United States)

    Lee, J. H.

    2015-12-01

    Urban forests are known for mitigating the urban heat island effect and heat-related health issues by reducing air and surface temperature. Beyond the amount of the canopy area, however, little is known what kind of spatial patterns and structures of urban forests best contributes to reducing temperatures and mitigating the urban heat effects. Previous studies attempted to find the relationship between the land surface temperature and various indicators of vegetation abundance using remote sensed data but the majority of those studies relied on two dimensional area based metrics, such as tree canopy cover, impervious surface area, and Normalized Differential Vegetation Index, etc. This study investigates the relationship between the three-dimensional spatial structure of urban forests and urban surface temperature focusing on vertical variance. We use a Landsat-8 Thermal Infrared Sensor image (acquired on July 24, 2014) to estimate the land surface temperature of the City of Sacramento, CA. We extract the height and volume of urban features (both vegetation and non-vegetation) using airborne LiDAR (Light Detection and Ranging) and high spatial resolution aerial imagery. Using regression analysis, we apply empirical approach to find the relationship between the land surface temperature and different sets of variables, which describe spatial patterns and structures of various urban features including trees. Our analysis demonstrates that incorporating vertical variance parameters improve the accuracy of the model. The results of the study suggest urban tree planting is an effective and viable solution to mitigate urban heat by increasing the variance of urban surface as well as evaporative cooling effect.

  8. Evaluation of aerial thermal infrared remote sensing to identify groundwater-discharge zones in the Meduxnekeag River, Houlton, Maine

    Science.gov (United States)

    Culbertson, Charles W.; Huntington, Thomas G.; Caldwell, James M.; O'Donnell, Cara

    2014-01-01

    Residents of the area near Houlton, Maine, have observed seasonal episodic blooms of algae and documented elevated concentrations of fecal-coliform bacteria and inorganic nutrients and low dissolved oxygen concentrations in the Meduxnekeag River. Although point and nonpoint sources of urban and agricultural runoff likely contribute to water-quality impairment, the role of shallow groundwater inflows in delivering such contaminants to the Meduxnekeag River has not been well understood. To provide information about possible groundwater inflows to the river, airborne thermal infrared videography was evaluated as a means to identify and classify thermal anomalies in a 25-mile reach of the mainstem and tributaries of the Meduxnekeag River near Houlton, Maine. The U.S. Geological Survey, in cooperation with the Houlton Band of Maliseet Indians, collected thermal infrared images from a single-engine, fixed-wing aircraft during flights on December 3–4, 2003, and November 26, 2004. Eleven thermal anomalies were identified on the basis of data from the December 2003 flight and 17 from the November 2004 flight, which covered the same reaches of stream. Following image analysis, characterization, and prioritization, the georeferenced infrared images of the thermal anomalies were compared to features on topographic maps of the study area. The mapped anomalies were used to direct observations on the ground to confirm discharge locations and types of inflow. The variations in grayscale patterns on the images were thus confirmed as representing shallow groundwater-discharge zones (seeps), outfalls of treated wastewater, or ditches draining runoff from impervious surfaces.

  9. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis.

    Science.gov (United States)

    Ullah, Saleem; Skidmore, Andrew K; Naeem, Mohammad; Schlerf, Martin

    2012-10-15

    Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid to thermal infrared (2.5-14.0 μm) spectra, based on continuous wavelet analysis. The dataset comprised 394 spectra from nine plant species, with different water contents achieved through progressive drying. To identify the spectral feature most sensitive to the variations in leaf water content, first the Directional Hemispherical Reflectance (DHR) spectra were transformed into a wavelet power scalogram, and then linear relations were established between the wavelet power scalogram and leaf water content. The six individual wavelet features identified in the mid infrared yielded high correlations with leaf water content (R(2)=0.86 maximum, 0.83 minimum), as well as low RMSE (minimum 8.56%, maximum 9.27%). The combination of four wavelet features produced the most accurate model (R(2)=0.88, RMSE=8.00%). The models were consistent in terms of accuracy estimation for both calibration and validation datasets, indicating that leaf water content can be accurately retrieved from the mid to thermal infrared domain of the electromagnetic radiation.

  10. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries.

    Science.gov (United States)

    Savelyev, Alexander; Sugumaran, Ramanathan

    2008-08-25

    The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixelto-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds.

  11. Mapping of Ice in the Odden by Satellite and Airborne Remote Sensing

    DEFF Research Database (Denmark)

    Pedersen, Leif Toudal; Hansen, K.Q.; Valeur, H.

    1999-01-01

    resolution radiometer, which is a scanner in the visible, near-infrared and thermal infrared range with a resolution of 1.1 km. The finest resolution of 25 m per pixel is obtained from the synthetic aperture radar on the ERS-1 satellite. (C) 1999 Elsevier Science Ltd. All rights reserved....

  12. Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Current Insights and Trends. Chapter 3

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    2014-01-01

    NASA or NOAA Earth-observing satellites are not the only space-based TIR platforms. The European Space Agency (ESA), the Chinese, and other countries have in orbit or plan to launch TIR remote sensing systems. Satellite remote sensing provides an excellent opportunity to study land-atmosphere energy exchanges at the regional scale. A predominant application of TIR data has been in inferring evaporation, evapotranspiration (ET), and soil moisture. In addition to using TIR data for ET and soil moisture analysis over vegetated surfaces, there is also a need for using these data for assessment of drought conditions. The concept of ecological thermodynamics provides a quantification of surface energy fluxes for landscape characterization in relation to the overall amount of energy input and output from specific land cover types.

  13. Scale Dependence of Cirrus Horizontal Heterogeneity Effects on TOA Measurements. Part I; MODIS Brightness Temperatures in the Thermal Infrared

    Science.gov (United States)

    Fauchez, Thomas; Platnick, Steven; Meyer, Kerry; Cornet, Celine; Szczap, Frederic; Varnai, Tamas

    2017-01-01

    This paper presents a study on the impact of cirrus cloud heterogeneities on MODIS simulated thermal infrared (TIR) brightness temperatures (BTs) at the top of the atmosphere (TOA) as a function of spatial resolution from 50 meters to 10 kilometers. A realistic 3-D (three-dimensional) cirrus field is generated by the 3DCLOUD model (average optical thickness of 1.4, cloudtop and base altitudes at 10 and 12 kilometers, respectively, consisting of aggregate column crystals of D (sub eff) equals 20 microns), and 3-D thermal infrared radiative transfer (RT) is simulated with the 3DMCPOL (3-D Monte Carlo Polarized) code. According to previous studies, differences between 3-D BT computed from a heterogenous pixel and 1-D (one-dimensional) RT computed from a homogeneous pixel are considered dependent at nadir on two effects: (i) the optical thickness horizontal heterogeneity leading to the plane-parallel homogeneous bias (PPHB); and the (ii) horizontal radiative transport (HRT) leading to the independent pixel approximation error (IPAE). A single but realistic cirrus case is simulated and, as expected, the PPHB mainly impacts the low-spatial resolution results (above approximately 250 meters), with averaged values of up to 5-7 K (thousand), while the IPAE mainly impacts the high-spatial resolution results (below approximately 250 meters) with average values of up to 1-2 K (thousand). A sensitivity study has been performed in order to extend these results to various cirrus optical thicknesses and heterogeneities by sampling the cirrus in several ranges of parameters. For four optical thickness classes and four optical heterogeneity classes, we have found that, for nadir observations, the spatial resolution at which the combination of PPHB and HRT effects is the smallest, falls between 100 and 250 meters. These spatial resolutions thus appear to be the best choice to retrieve cirrus optical properties with the smallest cloud heterogeneity-related total bias in the thermal

  14. Quantitative estimation of granitoid composition from thermal infrared multispectral scanner (TIMS) data, Desolation Wilderness, northern Sierra Nevada, California

    Science.gov (United States)

    Sabine, Charles; Realmuto, Vincent J.; Taranik, James V.

    1994-01-01

    We have produced images that quantitatively depict modal and chemical parameters of granitoids using an image processing algorithm called MINMAP that fits Gaussian curves to normalized emittance spectra recovered from thermal infrared multispectral scanner (TIMS) radiance data. We applied the algorithm to TIMS data from the Desolation Wilderness, an extensively glaciated area near the northern end of the Sierra Nevada batholith that is underlain by Jurassic and Cretaceous plutons that range from diorite and anorthosite to leucogranite. The wavelength corresponding to the calculated emittance minimum lambda(sub min) varies linearly with quartz content, SiO2, and other modal and chemical parameters. Thematic maps of quartz and silica content derived from lambda(sub min) values distinguish bodies of diorite from surrounding granite, identify outcrops of anorthosite, and separate felsic, intermediate, and mafic rocks.

  15. Characterization of moderate ash-and-gas explosions at Santiaguito volcano, Guatemala, from infrasound waveform inversion and thermal infrared measurements

    Science.gov (United States)

    Angelis, S. De; Lamb, O. D.; Lamur, A.; Hornby, A. J.; Aulock, F. W.; Chigna, G.; Lavallée, Y.; Rietbrock, A.

    2016-06-01

    The rapid discharge of gas and rock fragments during volcanic eruptions generates acoustic infrasound. Here we present results from the inversion of infrasound signals associated with small and moderate gas-and-ash explosions at Santiaguito volcano, Guatemala, to retrieve the time history of mass eruption rate at the vent. Acoustic waveform inversion is complemented by analyses of thermal infrared imagery to constrain the volume and rise dynamics of the eruption plume. Finally, we combine results from the two methods in order to assess the bulk density of the erupted mixture, constrain the timing of the transition from a momentum-driven jet to a buoyant plume, and to evaluate the relative volume fractions of ash and gas during the initial thrust phase. Our results demonstrate that eruptive plumes associated with small-to-moderate size explosions at Santiaguito only carry minor fractions of ash, suggesting that these events may not involve extensive magma fragmentation in the conduit.

  16. Dual-telescope multi-channel thermal-infrared radiometer for outer planet fly-by missions

    Science.gov (United States)

    Aslam, Shahid; Amato, Michael; Bowles, Neil; Calcutt, Simon; Hewagama, Tilak; Howard, Joseph; Howett, Carly; Hsieh, Wen-Ting; Hurford, Terry; Hurley, Jane; Irwin, Patrick; Jennings, Donald E.; Kessler, Ernst; Lakew, Brook; Loeffler, Mark; Mellon, Michael; Nicoletti, Anthony; Nixon, Conor A.; Putzig, Nathaniel; Quilligan, Gerard; Rathbun, Julie; Segura, Marcia; Spencer, John; Spitale, Joseph; West, Garrett

    2016-11-01

    The design of a versatile dual-telescope thermal-infrared radiometer spanning the spectral wavelength range 8-200 μm, in five spectral pass bands, for outer planet fly-by missions is described. The dual-telescope design switches between a narrow-field-of-view and a wide-field-of-view to provide optimal spatial resolution images within a range of spacecraft encounters to the target. The switchable dual-field-of-view system uses an optical configuration based on the axial rotation of a source-select mirror along the optical axis. The optical design, spectral performance, radiometric accuracy, and retrieval estimates of the instrument are discussed. This is followed by an assessment of the surface coverage performance at various spatial resolutions by using the planned NASA Europa Mission 13-F7 fly-by trajectories as a case study.

  17. Detection of coastal and submarine discharge on the Florida Gulf Coast with an airborne thermal-infrared mapping system

    Science.gov (United States)

    Raabe, Ellen; Stonehouse, David; Ebersol, Kristin; Holland, Kathryn; Robbins, Lisa

    2011-01-01

    Along the Gulf Coast of Florida north of Tampa Bay lies a region characterized by an open marsh coast, low topographic gradient, water-bearing limestone, and scattered springs. The Floridan aquifer system is at or near land surface in this region, discharging water at a consistent 70-72°F. The thermal contrast between ambient water and aquifer discharge during winter months can be distinguished using airborne thermal-infrared imagery. An airborne thermal-infrared mapping system was used to collect imagery along 126 miles of the Gulf Coast from Jefferson to Levy County, FL, in March 2009. The imagery depicts a large number of discharge locations and associated warm-water plumes in ponds, creeks, rivers, and nearshore waters. A thermal contrast of 6°F or more was set as a conservative threshold for identifying sites, statistically significant at the 99% confidence interval. Almost 900 such coastal and submarine-discharge locations were detected, averaging seven to nine per mile along this section of coast. This represents approximately one hundred times the number of previously known discharge sites in the same area. Several known coastal springs in Taylor and Levy Counties were positively identified with the imagery and were used to estimate regional discharge equivalent to one 1st-order spring, discharging 100 cubic feet per second or more, for every two miles of coastline. The number of identified discharge sites is a conservative estimate and may represent two-thirds of existing features due to low groundwater levels at time of overflight. The role of aquifer discharge in coastal and estuarine health is indisputable; however, mapping and quantifying discharge in a complex karst environment can be an elusive goal. The results of this effort illustrate the effectiveness of the instrument and underscore the influence of coastal springs along this stretch of the Florida coast.

  18. Retrieval of Land Surface Temperature over the Heihe River Basin Using HJ-1B Thermal Infrared Data

    Directory of Open Access Journals (Sweden)

    Xiaoying Ouyang

    2014-12-01

    Full Text Available The reliable estimation of spatially distributed Land Surface Temperature (LST is useful for monitoring regional land surface heat fluxes. A single-channel method is developed to derive the LST over the Heihe River Basin in China using data from the infrared sensor (IRS onboard the Chinese “Environmental and Disaster Monitoring and Forecasting with a Small Satellite Constellation” (HJ-1B for short for one of the satellites, with ancillary water vapor information from Moderate Resolution Imaging Spectroradiometer (MODIS products (MOD05 and in situ automatic sun tracking photometer CE318 data for the first time. In situ LST data for the period from mid-June to mid-September 2012 were acquired from automatic meteorological stations (AMS that are part of Heihe Watershed Allied Telemetry Experimental Research (HiWATER project. MOD05-based LST and CE318-based LST are compared with in situ measurements at 16 AMS sites with land cover types of vegetable, maize and orchards. The results show that the use of the MOD05 product could achieve a comparable accuracy in LST retrieval with that achieved using the CE318 data. The largest difference between the MOD05-based LST and CE318-based LST is 0.84 K throughout the study period over the Heihe River Basin. The standard deviation (STD, root mean square error (RMSE, and correlation coefficient (R of HJ-1B/IRS vs. the in situ measurements are 2.45 K, 2.78 K, and 0.67, respectively, whereas those for the MODIS 1 km LST product vs. the in situ measurements are 4.07 K, 2.98 K, and 0.79, respectively. The spatial pattern of the HJ-1B/LST over the study area in the Heihe River Basin generally agreed well with the MODIS 1 km LST product and contained more detailed spatial textures.

  19. An airborne thematic thermal infrared and electro-optical imaging system

    Science.gov (United States)

    Sun, Xiuhong; Shu, Peter

    2011-08-01

    This paper describes an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS) and its potential applications. ATTIREOIS sensor payload consists of two sets of advanced Focal Plane Arrays (FPAs) - a broadband Thermal InfraRed Sensor (TIRS) and a four (4) band Multispectral Electro-Optical Sensor (MEOS) to approximate Landsat ETM+ bands 1,2,3,4, and 6, and LDCM bands 2,3,4,5, and 10+11. The airborne TIRS is 3-axis stabilized payload capable of providing 3D photogrammetric images with a 1,850 pixel swathwidth via pushbroom operation. MEOS has a total of 116 million simultaneous sensor counts capable of providing 3 cm spatial resolution multispectral orthophotos for continuous airborne mapping. ATTIREOIS is a complete standalone and easy-to-use portable imaging instrument for light aerial vehicle deployment. Its miniaturized backend data system operates all ATTIREOIS imaging sensor components, an INS/GPS, and an e-Gimbal™ Control Electronic Unit (ECU) with a data throughput of 300 Megabytes/sec. The backend provides advanced onboard processing, performing autonomous raw sensor imagery development, TIRS image track-recovery reconstruction, LWIR/VNIR multi-band co-registration, and photogrammetric image processing. With geometric optics and boresight calibrations, the ATTIREOIS data products are directly georeferenced with an accuracy of approximately one meter. A prototype ATTIREOIS has been configured. Its sample LWIR/EO image data will be presented. Potential applications of ATTIREOIS include: 1) Providing timely and cost-effective, precisely and directly georeferenced surface emissive and solar reflective LWIR/VNIR multispectral images via a private Google Earth Globe to enhance NASA's Earth science research capabilities; and 2) Underflight satellites to support satellite measurement calibration and validation observations.

  20. Acquired blepharoptosis

    NARCIS (Netherlands)

    Oosterhuis, HJGH

    1996-01-01

    A review is given of the aetiology and possible treatment of acquired (non-congenital) blepharoptosis, which is a common but not specific sign of neurological disease: The diagnostic categories of upper eyelid drooping are scheduled as (a) pseudo-ptosis due to a local process or overactivity of eye

  1. Acquired blepharoptosis

    NARCIS (Netherlands)

    Oosterhuis, HJGH

    1996-01-01

    A review is given of the aetiology and possible treatment of acquired (non-congenital) blepharoptosis, which is a common but not specific sign of neurological disease: The diagnostic categories of upper eyelid drooping are scheduled as (a) pseudo-ptosis due to a local process or overactivity of eye

  2. Identifying plant species using mid-wave infrared (2.5-6µm) and thermal infrared (8-14µm) emissivity spectra

    NARCIS (Netherlands)

    Ullah, S.; Schlerf, M.; Skidmore, A.K.; Hecker, C.

    2012-01-01

    Plant species discrimination using remote sensing is generally limited by the similarity of their reflectance spectra in the visible, NIR and SWIR domains. Laboratory measured emissivity spectra in the mid infrared (MIR; 2.5µm-6µm) and the thermal infrared (TIR; 8µm-14µm) domain of different plant s

  3. Estimation of high-resolution near-surface freeze/thaw state by the integration of microwave and thermal infrared remote sensing data on the Tibetan Plateau

    Science.gov (United States)

    Zhao, Tianjie; Shi, Jiancheng; Hu, Tongxi; Zhao, Lin; Zou, Defu; Wang, Tianxing; Ji, Dabin; Li, Rui; Wang, Pingkai

    2017-08-01

    The objective of this study is to investigate how the complementarity between microwave and thermal infrared remote sensing can be exploited for a high-resolution near-surface freeze/thaw state estimation. The basic idea is to establish a feasible relationship between the microwave-derived freeze/thaw state and thermal infrared observations. A quantitative freeze/thaw index from microwave observations at 18.7 and 36.5 GHz is innovatively defined and is assumed to be linearly correlated with land surface temperature from thermal infrared observations. Thus, a linear regression method is proposed and verified to be effective over a multiscale network of Naqu of the Tibetan Plateau. In order to demonstrate the potentiality of the proposed method, it is implemented in the entire Tibetan Plateau. It is found that the linear relationship is quite reliable for most areas and can obtain a high-resolution near-surface soil freeze/thaw state with integrated information from microwave and thermal infrared remote sensing. The validation of the high-resolution freeze/thaw state against soil temperature measured at active layer monitoring sites along the Qinghai-Tibet Highway illustrates a moderate accuracy over a decade scale. This study provides new insights for high-resolution freeze/thaw mapping beyond the Soil Moisture Active Passive mission.

  4. Intercomparison of satellite-derived cloud analyses for the Arctic Ocean in spring and summer

    Science.gov (United States)

    Mcguffie, K.; Barry, R. G.; Schweiger, A.; Newell, J.; Robinson, D. A.

    1988-01-01

    Several methods of deriving Arctic cloud information, primarily from satellite imagery, have been intercompared. The comparisons help in establishing what cloud information is most readily determined in polar regions from satellite data analysis. The analyses for spring-summer conditions show broad agreement, but subjective errors affecting some geographical areas and cloud types are apparent. The results suggest that visible and thermal infrared data may be insufficient for adequate cloud mapping over some Arctic surfaces.

  5. Robust Satellite Techniques for monitoring earth emitted radiation in the Japanese seismic area by using MTSAT observations in the TIR spectral range

    Science.gov (United States)

    Genzano, Nicola; Filizzola, Carolina; Hattori, Katsumi; Lisi, Mariano; Paciello, Rossana; Pergola, Nicola; Tramutoli, Valerio

    2016-04-01

    Since eighties, the fluctuations of Earth's thermally emitted radiation, measured by satellite sensors operating in the thermal infrared (TIR) spectral range, have been associated with the complex process of preparation for major earthquakes. But, like other claimed earthquake precursors (seismological, physical, chemical, biological, etc.) they have been for long-time considered with some caution by scientific community. The lack of a rigorous definition of anomalous TIR signal fluctuations and the scarce attention paid to the possibility that other causes (e.g. meteorological) different from seismic activity could be responsible for the observed TIR variations were the main causes of such skepticism. Compared with previously proposed approaches the general change detection approach, named Robust Satellite Techniques (RST), showed good ability to discriminate anomalous TIR signals possibly associated to seismic activity, from the normal variability of TIR signal due to other causes. Thanks to its full exportability on different satellite packages, since 2001 RST has been implemented on TIR images acquired by polar (e.g. NOAA-AVHRR, EOS -MODIS) and geostationary (e.g. MSG-SEVIRI, NOAA-GOES/W, GMS-5/VISSR) satellite sensors, in order to verify the presence (or absence) of TIR anomalies in presence (absence) of earthquakes (with M>4) in different seismogenic areas around the world (e.g. Italy, Greece, Turkey, India, Taiwan, etc.). In this paper, the RST data analysis approach has been implemented on TIR satellite records collected over Japan by the geostationary satellite sensor MTSAT (Multifunctional Transport SATellites) and RETIRA (Robust Estimator of TIR Anomalies) index was used to identify Significant Sequences of TIR Anomalies (SSTAs) in a possible space-time relations with seismic events. Achieved results will be discussed in the perspective of a multi-parametric approach for a time-Dependent Assessment of Seismic Hazard (t-DASH).

  6. Innovative approach to retrieve land surface emissivity and land surface temperature in areas of highly dynamic emissivity changes by using thermal infrared data

    Science.gov (United States)

    Heinemann, Sascha; Muro, Javier; Burkart, Andreas; Schultz, Johannes; Thonfeld, Frank; Menz, Gunter

    2016-04-01

    The land surface temperature (LST) is an extremely significant parameter in order to understand the processes of energetic interactions between the Earth's surface and the atmosphere. This knowledge is significant for various environmental research questions, particularly with regard to climate change. The current challenge is to reduce the higher deviations during daytime especially for bare areas with a maximum of 5.7 Kelvin. These temperature differences are time and vegetation cover dependent. This study shows an innovative approach to retrieve land surface emissivity (LSE) and LST by using thermal infrared (TIR) data from satellite sensors, such as SEVIRI and AATSR. So far there are no methods to derive LSE/LST particularly in areas of highly dynamic emissivity changes. Therefore especially for regions with large surface temperature amplitude in the diurnal cycle such as bare and uneven soil surfaces but also for regions with seasonal changes in vegetation cover including various surface areas such as grassland, mixed forests or agricultural land different methods were investigated to identify the most appropriate one. The LSE is retrieved by using the day/night Temperature-Independent Spectral Indices (TISI) method, while the Generalised Split-Window (GSW) method is used to retrieve the LST. Nevertheless different GSW algorithms show that equal LSEs lead to large LST differences. For bare surfaces during daytime the difference is about 6 Kelvin. Additionally LSE is also measured using a NDVI-based threshold method (NDVITHM) to distinguish between soil, dense vegetation cover and pixel composed of soil and vegetation. The data used for this analysis were derived from MODIS TIR. The analysis is implemented with IDL and an intercomparison is performed to determine the most effective methods. To compensate temperature differences between derived and ground truth data appropriate correction terms, by comparing derived LSE/LST data with ground-based measurements

  7. Acquired Methemoglobinaemia

    Directory of Open Access Journals (Sweden)

    Adil Al-Lawati

    2012-05-01

    Full Text Available Acquired methemoglobinaemia is a relatively rare condition and, therefore infrequently encountered in acute medical practice. Suspicion of the condition may be triggered when the measured PaO2 is ‘out of keeping’ with the oxygen saturations that are discovered with pulse oximetry. We describe two separate cases of acquired methemoglobinaemia secondary to the recreational use of alkyl nitrites (’poppers’. The patients presented at separate times to two different teaching hospitals in London, UK. The similarity of these cases has led the authors to conclude that a raised awareness of this potentially fatal condition, and its association with a widely-available recreational drug, is necessary to ensure a correct and timely diagnosis.

  8. Errors analysis on temperature and emissivity determination from hyperspectral thermal infrared data.

    Science.gov (United States)

    OuYang, Xiaoying; Wang, Ning; Wu, Hua; Li, Zhao-Liang

    2010-01-18

    Sensitivity analysis of temperature-emissivity separation method commonly applied to hyperspectral data to various sources of errors is performed in this paper. In terms of resulting errors in the process of retrieving surface temperature, results show that: (1) Satisfactory results can be obtained for heterogeneous land surfaces and retrieval error of surface temperature is small enough to be neglected for all atmospheric conditions. (2) Separation of atmospheric downwelling radiance from at-ground radiance is not very sensitive to the uncertainty of column water vapor (WV) in the atmosphere. The errors in land surface temperature retrievals from at-ground radiance with the DRRI method due to the uncertainty in atmospheric downwelling radiance vary from -0.2 to 0.6K if the uncertainty of WV is within 50% of the actual WV; (3) Impact of the errors generated by the poor atmospheric corrections is significant, implying that a well-done atmospheric correction is indeed required to obtain accurate at-ground radiance from at-satellite radiance for successful separation of land-surface temperature and emissivity.

  9. Evapotranspiration Estimation Using Multispectral Thermal Infrared Data from ASTER and MODIS

    Science.gov (United States)

    French, A. N.; Schmugge, T. J.; Kustas, W. P.; Prueger, J. H.

    2009-12-01

    Estimating evapotranspiration (ET) from space is important for monitoring water use at local and regional scales. Terra platform sensors ASTER and MODIS have been valuable for this goal because of their multispectral capabilities and high (90 m with ASTER) to moderate ( 1 km with MODIS) spatial resolutions. These capabilities have allowed discrimination of land cover conditions unobtainable from more conventional satellite imagery. In particular the multiple thermal channels provided by ASTER and MODIS have helped collect accurate observations of land surface temperature and emissivity which can be used to detect water stress and to distinguish between living and senescent vegetation. Each of these characteristics is important for modeling water fluxes. The frequent coverage by MODIS is also very important for this endeavor. To demonstrate how this can be accomplished, ASTER and Terra/MODIS data were modeled using images collected over the Jornada Experimental Range, a semi-arid research site in southern New Mexico. By combining 27 ASTER clear sky scenes with several hundred 1-km scale MODIS scenes between 2001 and 2003, it was feasible to estimate ET at weekly time steps and to also assess longer-term changes in vegetation distributions.

  10. Synergies between Visible/Near-Infrared imaging spectrometry and the Thermal Infrared in an urban environment: An evaluation of the Hyperspectral Infrared Imager (HyspIRI) mission

    Science.gov (United States)

    Roberts, D. A.; Quattrochi, D. A.; Hulley, G. C.; Hook, S.; Green, R. O.

    2011-12-01

    More than half of humanity lives in urban areas, projected to exceed 80% by 2015. Urban areas are major sources of environmental contaminants and sinks of energy and materials. Globally, remote sensing contributes to improved understanding of urban impacts through mapping urban extent, vegetation and impervious cover fractions and urban energy balance including albedo, emissivity and land surface temperature (LST). HyspIRI is a NRC "Decadal Survey" mission combining a visible, near-infrared and shortwave infrared (VSWIR) imaging spectrometer with a multispectral thermal infrared (TIR) instrument . Potential synergies between VSWIR and TIR data were explored using analogous airborne data acquired over Santa Barbara in June, 2008. These data were analyzed at their native spatial resolutions (7.5m VSWIR and 15m TIR), and aggregated 60 m spatial resolution similar to HyspIRI. A spectral library of common urban materials (e.g., grass, trees, soil, roofs, roads) was built from field and airborne-measured spectra . LST and emissivity were also retrieved from the airborne data. Co-located pixels from airborne data were used to generate reflectance/emissivity spectra for a subset of urban materials. Multiple Endmember Spectral Mixture Analysis (MESMA) was used to map fractions of impervious, soil, green vegetation (GV) and non-photosynthetic vegetation (NPV) at the different spatial resolutions and to compare the fractional estimates across spatial scales. Surface energy parameters, including albedo, vegetation cover fraction, broadband emissivity and LST were also determined for urban and natural land-cover classes in the region. Fractions were validated using 1m digital photography. GV and NPV Fractions were highly correlated with validation data at all spatial scales, producing a near 1:1 relationship but with a 0.95) including vegetation, water and asphalt, and low emissivity surfaces (types, beach sands and senesced grass. Residential and commercial areas showed a

  11. Examination of Surface Temperature Modification by Open-Top Chambers along Moisture and Latitudinal Gradients in Arctic Alaska Using Thermal Infrared Photography

    Directory of Open Access Journals (Sweden)

    Nathan C. Healey

    2016-01-01

    Full Text Available Passive warming manipulation methodologies, such as open-top chambers (OTCs, are a meaningful approach for interpretation of impacts of climate change on the Arctic tundra biome. The magnitude of OTC warming has been studied extensively, revealing an average plot-level warming of air temperature that ranges between 1 and 3 °C as measured by shielded resistive sensors or thermocouples. Studies have also shown that the amount of OTC warming depends in part on location climate, vegetation, and soil properties. While digital infrared thermometers have been employed in a few comparisons, most of the focus of the effectiveness of OTC warming has been on air or soil temperature rather than tissue or surface temperatures, which directly translate to metabolism. Here we used thermal infrared (TIR photography to quantify tissue and surface temperatures and their spatial variability at a previously unavailable resolution (3–6 mm2. We analyzed plots at three locations that are part of the International Tundra Experiment (ITEX-Arctic Observing Network (AON-ITEX network along both moisture and latitudinal gradients spanning from the High Arctic (Barrow, AK, USA to the Low Arctic (Toolik Lake, AK, USA. Our results show a range of OTC surface warming from 2.65 to 1.27 °C (31%–10% at our three sites. The magnitude of surface warming detected by TIR imagery in this study was comparable to increases in air temperatures previously reported for these sites. However, the thermal images revealed wide ranges of surface temperatures within the OTCs, with some surfaces well above ambient unevenly distributed within the plots under sunny conditions. We note that analyzing radiometric temperature may be an alternative for future studies that examine data acquired at the same time of day from sites that are in close geographic proximity to avoid the requirement of emissivity or atmospheric correction for validation of results. We foresee future studies using TIR

  12. Synegies Between Visible/Near-Infrared Imaging Spectrometry and the Thermal Infrared in an Urban Environment: An Evaluation of the Hyperspectral Infrared Imager (HYSPIRI) Mission

    Science.gov (United States)

    Roberts, Dar A.; Quattrochi, Dale A.; Hulley, Glynn C.; Hook, Simon J.; Green, Robert O.

    2012-01-01

    A majority of the human population lives in urban areas and as such, the quality of urban environments is becoming increasingly important to the human population. Furthermore, these areas are major sources of environmental contaminants and sinks of energy and materials. Remote sensing provides an improved understanding of urban areas and their impacts by mapping urban extent, urban composition (vegetation and impervious cover fractions), and urban radiation balance through measures of albedo, emissivity and land surface temperature (LST). Recently, the National Research Council (NRC) completed an assessment of remote sensing needs for the next decade (NRC, 2007), proposing several missions suitable for urban studies, including a visible, near-infrared and shortwave infrared (VSWIR) imaging spectrometer and a multispectral thermal infrared (TIR) instrument called the Hyperspectral Infrared Imagery (HyspIRI). In this talk, we introduce the HyspIRI mission, focusing on potential synergies between VSWIR and TIR data in an urban area. We evaluate potential synergies using an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and MODIS-ASTER (MASTER) image pair acquired over Santa Barbara, United States. AVIRIS data were analyzed at their native spatial resolutions (7.5m VSWIR and 15m TIR), and aggregated 60 m spatial resolution similar to HyspIRI. Surface reflectance was calculated using ACORN and a ground reflectance target to remove atmospheric and sensor artifacts. MASTER data were processed to generate estimates of spectral emissivity and LST using Modtran radiative transfer code and the ASTER Temperature Emissivity Separation algorithm. A spectral library of common urban materials, including urban vegetation, roofs and roads was assembled from combined AVIRIS and field-measured reflectance spectra. LST and emissivity were also retrieved from MASTER and reflectance/emissivity spectra for a subset of urban materials were retrieved from co-located MASTER and

  13. Modeling angular-dependent spectral emissivity of snow and ice in the thermal infrared atmospheric window.

    Science.gov (United States)

    Hori, Masahiro; Aoki, Teruo; Tanikawa, Tomonori; Hachikubo, Akihiro; Sugiura, Konosuke; Kuchiki, Katsuyuki; Niwano, Masashi

    2013-10-20

    A model of angular-dependent emissivity spectra of snow and ice in the 8-14 μm atmospheric window is constructed. Past field research revealed that snow emissivity varies depending on snow grain size and the exitance angle. Thermography images acquired in this study further revealed that not only welded snow particles such as sun crust, but also disaggregated particles such as granular snow and dendrite crystals exhibit high reflectivity on their crystal facets, even when the bulk snow surface exhibits blackbody-like behavior as a whole. The observed thermal emissive behaviors of snow particles suggest that emissivity of the bulk snow surface can be expressed by a weighted sum of two emissivity components: those of the specular and blackbody surfaces. Based on this assumption, a semi-empirical emissivity model was constructed; it is expressed by a linear combination of specular and blackbody surfaces' emissivities with a weighting parameter characterizing the specularity of the bulk surface. Emissivity spectra calculated using the model succeeded in reproducing the past in situ measured directional spectra of various snow types by employing a specific weighting parameter for each snow type.

  14. Daytime Land Surface Temperature Extraction from MODIS Thermal Infrared Data under Cirrus Clouds

    Directory of Open Access Journals (Sweden)

    Xiwei Fan

    2015-04-01

    Full Text Available Simulated data showed that cirrus clouds could lead to a maximum land surface temperature (LST retrieval error of 11.0 K when using the generalized split-window (GSW algorithm with a cirrus optical depth (COD at 0.55 μm of 0.4 and in nadir view. A correction term in the COD linear function was added to the GSW algorithm to extend the GSW algorithm to cirrus cloudy conditions. The COD was acquired by a look up table of the isolated cirrus bidirectional reflectance at 0.55 μm. Additionally, the slope k of the linear function was expressed as a multiple linear model of the top of the atmospheric brightness temperatures of MODIS channels 31–34 and as the difference between split-window channel emissivities. The simulated data showed that the LST error could be reduced from 11.0 to 2.2 K. The sensitivity analysis indicated that the total errors from all the uncertainties of input parameters, extension algorithm accuracy, and GSW algorithm accuracy were less than 2.5 K in nadir view. Finally, the Great Lakes surface water temperatures measured by buoys showed that the retrieval accuracy of the GSW algorithm was improved by at least 1.5 K using the proposed extension algorithm for cirrus skies.

  15. Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO2 measurements

    Science.gov (United States)

    Hoffmann, Alex; Macleod, Neil A.; Huebner, Marko; Weidmann, Damien

    2016-12-01

    This technology demonstration paper reports on the development, demonstration, performance assessment, and initial data analysis of a benchtop prototype quantum cascade laser heterodyne spectroradiometer, operating within a narrow spectral window of ˜ 1 cm-1 around 953.1 cm-1 in transmission mode and coupled to a passive Sun tracker. The instrument has been specifically designed for accurate dry air total column, and potentially vertical profile, measurements of CO2. Data from over 8 months of operation in 2015 near Didcot, UK, confirm that atmospheric measurements with noise levels down to 4 times the shot noise limit can be achieved with the current instrument. Over the 8-month period, spectra with spectral resolutions of 60 MHz (0.002 cm-1) and 600 MHz (0.02 cm-1) have been acquired with median signal-to-noise ratios of 113 and 257, respectively, and a wavenumber calibration uncertainty of 0.0024 cm-1.Using the optimal estimation method and RFM as the radiative transfer forward model, prior analysis and theoretical benchmark modelling had been performed with an observation system simulator (OSS) to target an optimized spectral region of interest. The selected narrow spectral window includes both CO2 and H2O ro-vibrational transition lines to enable the measurement of dry air CO2 column from a single spectrum. The OSS and preliminary retrieval results yield roughly 8 degrees of freedom for signal (over the entire state vector) for an arbitrarily chosen a priori state with relatively high uncertainty ( ˜ 4 for CO2). Preliminary total column mixing ratios obtained are consistent with GOSAT monthly data. At a spectral resolution of 60 MHz with an acquisition time of 90 s, instrumental noise propagation yields an error of around 1.5 ppm on the dry air total column of CO2, exclusive of biases and geophysical parameters errors at this stage.

  16. Earth and Moon Observations by Thermal Infrared Imager TIR on Hayabusa2 and Applications to Asteroid 162173 Ryugu

    Science.gov (United States)

    Okada, Tatsuaki

    2016-04-01

    The Earth and the Moon were imaged by the thermal infrared imager TIR on Hayabusa2 during the Earth swing-by operation to change the trajectory of the spacecraft with a gravity assist of the Earth's mass. Hayabusa2 is the second sample-return from a near-Earth asteroid organized by Japan Aerospace Exploration Agency, and will visit and explore C-type small asteroid 162173 Ryugu, collect samples from the surface of the asteroid, and return them to the Earth [1-3]. TIR is a thermal infrared imager based on uncooled micro-bolometer array. It covers the temperature range from 150 to 460 K, and resolves the surface by 16° x 12° with 328 x 248 pixels with 0.05° per pixel [4, 5]. After the launch on 3 December 2014, TIR has been proven to work well by function tests, and its operation temperature has been adjusted by using the in-flight deep sky images. On 14 October 2015, TIR has detected the Earth and the Moon simultaneously from the distance of 2 x 107 km, and the alignment of -Z axis between TIR and the spacecraft attitude control system was checked. Afterwards, the Earth-Moon system were imaged many times and we could determine the alignment more precisely. Just after the Earth swing-by, TIR observed the Earth on 4 December 2015 and the Moon on the next day. We compared those thermal images with the calculated temperatures on the Earth and the Moon. It was a good opportunity to check the performance of thermal radiometry of this instrument, because there is no known calibration target before arrival at Ryugu. We found the temperature pattern on the Earth and the Moon are almost equal to the theoretical estimates [6]. The point spread feature shows that a point is imaged as a point, just the same as taken during the pre-flight tests. More detailed results will be presented. References: [1] Tsuda Y. et al. (2013) Acta. Astronautica, 91, 356-362. [2] Tachibana S. et al. (2014) Geochemical Journal, 48, 571-587. [3] Okada T. (2014) Proc. Intl. CJMT-1 workshop on

  17. Discrete Anisotropic Radiative Transfer (DART 5 for Modeling Airborne and Satellite Spectroradiometer and LIDAR Acquisitions of Natural and Urban Landscapes

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Gastellu-Etchegorry

    2015-02-01

    Full Text Available Satellite and airborne optical sensors are increasingly used by scientists, and policy makers, and managers for studying and managing forests, agriculture crops, and urban areas. Their data acquired with given instrumental specifications (spectral resolution, viewing direction, sensor field-of-view, etc. and for a specific experimental configuration (surface and atmosphere conditions, sun direction, etc. are commonly translated into qualitative and quantitative Earth surface parameters. However, atmosphere properties and Earth surface 3D architecture often confound their interpretation. Radiative transfer models capable of simulating the Earth and atmosphere complexity are, therefore, ideal tools for linking remotely sensed data to the surface parameters. Still, many existing models are oversimplifying the Earth-atmosphere system interactions and their parameterization of sensor specifications is often neglected or poorly considered. The Discrete Anisotropic Radiative Transfer (DART model is one of the most comprehensive physically based 3D models simulating the Earth-atmosphere radiation interaction from visible to thermal infrared wavelengths. It has been developed since 1992. It models optical signals at the entrance of imaging radiometers and laser scanners on board of satellites and airplanes, as well as the 3D radiative budget, of urban and natural landscapes for any experimental configuration and instrumental specification. It is freely distributed for research and teaching activities. This paper presents DART physical bases and its latest functionality for simulating imaging spectroscopy of natural and urban landscapes with atmosphere, including the perspective projection of airborne acquisitions and LIght Detection And Ranging (LIDAR waveform and photon counting signals.

  18. Acquired Techniques

    DEFF Research Database (Denmark)

    Lunde Nielsen, Espen; Halse, Karianne

    2013-01-01

    Acquired Techniques - a Leap into the Archive, at Aarhus School of Architecture. In collaboration with Karianne Halse, James Martin and Mika K. Friis. Following the footsteps of past travelers this is a journey into tools and techniques of the architectural process. The workshop will focus upon...... architectural production as a conglomerate of various analogue and digital methods, and provide the basics, the tips/tricks - and how the tool themselves becomes operational for spatial/thematic investigations. Eventually, this will become a city, exhibition and phamplet inhabited by the (by...

  19. Study on atmospheric transmittance of thermal infrared remote sensing(I):derivation of atmospheric transmittance model%热红外遥感中大气透过率的研究(一):大气透过率模式的构建

    Institute of Scientific and Technical Information of China (English)

    龚绍琦; 孙海波; 王少峰; 国文哲; 李云梅

    2015-01-01

    Atmospheric transmittance is an important parameter in the thermal infrared remote sensing. A multi-variable lookup table of atmospheric transmittance which includes atmospheric model, aerosol model, water vapor content, visibility and view zenith angle was constructed based on the radiation transfer model MODTRAN, effect of different parameters on thermal infrared atmospheric transmittance spectrums was analyzed, the key variables of atmospheric transmittance were determined by the analysis of variance. According to different types of aerosol model, the multi-variable linear regression models of atmospheric transmittance models were deduced based on the water vapor content, visibility and view zenith angle for common thermal infrared sensor channels, which will solve the problem on calculating accurately the atmospheric transmittance for the thermal infrared remote sensing by satellite.%大气透过率是热红外。感中的一个重要参数。通过辐射传输模型MODTRAN模拟热红外波段的大气透过率,构建了基于大气模型、气溶胶模型、水汽量、能见度和观测天顶角等5个因素的大气透过率查找表,分析了不同参数对热红外大气透过率光谱曲线的影响,通过方差分析确定了影响大气透过率的关键因子,针对不同类型的气溶胶模型,构建了基于水汽量、能见度和观测天顶角的常用卫星传感器热红外通道的大气透过率经验模式,解决了卫星热红外。感中大气透过率精确计算的问题。

  20. Evaluation of Methods for Coregistration and Fusion of Rpas-Based 3d Point Clouds and Thermal Infrared Images

    Science.gov (United States)

    Hoegner, L.; Tuttas, S.; Xu, Y.; Eder, K.; Stilla, U.

    2016-06-01

    This paper discusses the automatic coregistration and fusion of 3d point clouds generated from aerial image sequences and corresponding thermal infrared (TIR) images. Both RGB and TIR images have been taken from a RPAS platform with a predefined flight path where every RGB image has a corresponding TIR image taken from the same position and with the same orientation with respect to the accuracy of the RPAS system and the inertial measurement unit. To remove remaining differences in the exterior orientation, different strategies for coregistering RGB and TIR images are discussed: (i) coregistration based on 2D line segments for every single TIR image and the corresponding RGB image. This method implies a mainly planar scene to avoid mismatches; (ii) coregistration of both the dense 3D point clouds from RGB images and from TIR images by coregistering 2D image projections of both point clouds; (iii) coregistration based on 2D line segments in every single TIR image and 3D line segments extracted from intersections of planes fitted in the segmented dense 3D point cloud; (iv) coregistration of both the dense 3D point clouds from RGB images and from TIR images using both ICP and an adapted version based on corresponding segmented planes; (v) coregistration of both image sets based on point features. The quality is measured by comparing the differences of the back projection of homologous points in both corrected RGB and TIR images.

  1. Thermal infrared remote sensing in assessing groundwater and surface-water resources related to Hannukainen mining development site, northern Finland

    Science.gov (United States)

    Rautio, Anne B.; Korkka-Niemi, Kirsti I.; Salonen, Veli-Pekka

    2017-07-01

    Mining development sites occasionally host complicated aquifer systems with notable connections to natural surface water (SW) bodies. A low-altitude thermal infrared (TIR) imaging survey was conducted to identify hydraulic connections between aquifers and rivers and to map spatial surface temperature patterns along the subarctic rivers in the proximity of the Hannukainen mining development area, northern Finland. In addition to TIR data, stable isotopic compositions (δ 18O, δD) and dissolved silica concentrations were used as tracers to verify the observed groundwater (GW) discharge into the river system. Based on the TIR survey, notable GW discharge into the main river channel and its tributaries (61 km altogether) was observed and over 500 GW discharge sites were located. On the basis of the survey, the longitudinal temperature patterns of the studied rivers were found to be highly variable. Hydrological and hydrogeological information is crucial in planning and siting essential mining operations, such as tailing areas, in order to prevent any undesirable environmental impacts. The observed notable GW discharge was taken into consideration in the planning of the Hannukainen mining development area. The results of this study support the use of TIR imagery in GW-SW interaction and environmental studies in extensive and remote areas with special concerns for water-related issues but lacking the baseline research.

  2. Wavelength- or Polarization-Selective Thermal Infrared Detectors for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials.

    Science.gov (United States)

    Ogawa, Shinpei; Kimata, Masafumi

    2017-05-04

    Wavelength- or polarization-selective thermal infrared (IR) detectors are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel detectors, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs) can impart wavelength or polarization selectivity to conventional thermal IR detectors simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs-periodic crystals, metal-insulator-metal and mushroom-type PMAs-to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR detectors with wavelength or polarization selectivity will provide great benefits for a wide range of applications.

  3. Wavelength- or Polarization-Selective Thermal Infrared Detectors for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials

    Directory of Open Access Journals (Sweden)

    Shinpei Ogawa

    2017-05-01

    Full Text Available Wavelength- or polarization-selective thermal infrared (IR detectors are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel detectors, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs can impart wavelength or polarization selectivity to conventional thermal IR detectors simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs—periodic crystals, metal-insulator-metal and mushroom-type PMAs—to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR detectors with wavelength or polarization selectivity will provide great benefits for a wide range of applications.

  4. Design concepts and options for the Thermal Infrared Imager (TIRI) as part of ESA's Asteroid Impact Mission.

    Science.gov (United States)

    Bowles, Neil; Calcutt, Simon; Licandro, Javier; Reyes, Marcos; Delbo, Marco; Donaldson Hanna, Kerri; Arnold, Jessica; Howe, Chris

    2016-04-01

    ESA's Asteroid Impact Mission (AIM) is being studied as part of the joint ESA/NASA AIDA mission for launch in 2020. AIDA's primary mission is to investigate the effect of a kinetic impactor on the secondary component of the binary asteroid 65803 Didymos in late 2022. AIM will characterise the Didymos system and monitor the response of the binary system to the impact. A multi-spectral, thermal-infrared imaging instrument (TIRI) will be an essential component of AIM's remote sensing payload, as it will provide key information on the nature of the surfaces (e.g. presence or absence of materials, degree of compaction, and rock abundance of the regolith) of both components in the Didymos system. The temperature maps provided by TIRI will be important for navigation and spacecraft health and safety for proximity/lander operations. By measuring the asteroids' diurnal thermal responses (thermal inertia) and their surface compositions via spectral signatures, TIRI will provide information on the origin and evolution of the binary system. In this presentation we will discuss possible instrument design for TIRI, exploring options that include imaging spectroscopy to broadband imaging. By using thermal models and compositional analogues of the Didymos system we will show how the performance of each design option compares to the wider scientific goals of the AIDA/AIM mission.

  5. The Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) on the Landsat Data Continuity Mission (LDCM)

    Science.gov (United States)

    Reuter, Dennis; Irons, James; Lunsford, Allen; Montanero, Matthew; Pellerano, Fernando; Richardson, Cathleen; Smith, Ramsey; Tesfaye, Zelalem; Thome, Kurtis

    2011-01-01

    The Landsat Data Continuity Mission (LDCM), a joint NASA and United States Geological Survey (USGS) mission, is scheduled for launch in December, 2012. The LDCM instrument payload will consist of the Operational Land Imager (OLI), provided by Ball Aerospace and Technology Corporation (BATC) under contract to NASA and the Thermal Infrared Sensor (TIRS), provided by NASA's Goddard Space Flight Center (GSFC). This paper will describe the design, capabilities and status of the OLI and TIRS instruments. The OLI will provide 8 channel multispectral images at a spatial resolution of 30 meters and panchromatic images at 15 meter spatial resolution. The TIRS is a 100 meter spatial resolution push-broom imager whose two spectral channels, centered at 10.8 and 12 microns, split the ETM+ thermal bands. The two channels allow the use of the "split-window" technique to aid in atmospheric correction. The TIRS focal plane consists of three Quantum Well Infrared Photodetector (QWIP) arrays to span the 185 km swath width. The OLI and TIRS instruments will be operated independently but in concert with each other. Data from both instruments will be merged into a single data stream at the (USGS)/Earth Resources Observation and Science (EROS) facility. The ground system, being developed by USGS, includes an Image Assessment System (lAS), similar to Landsat-7's, to operationally monitor, characterize and update the calibrations of the two sensors.

  6. The Thermal Infrared Compact Imaging Spectrometer (TIRCIS): a follow-on to the Space Ultra Compact Hyperspectral Imager (SUCHI)

    Science.gov (United States)

    Crites, S. T.; Wright, R.; Lucey, P. G.; Chan, J.; Gabrieli, A.; Garbeil, H.; Horton, K. A.; Imai-Hong, A. K. R.; Pilger, E. J.; Wood, M.; Yoneshige, L.

    2015-05-01

    The Thermal Infrared Compact Imaging Spectrometer (TIRCIS) is a long wave infrared (LWIR, 8-14 microns) hyperspectral imager designed as the follow-on to the University of Hawaii's SUCHI (Space Ultra Compact Hyperspectral Imager). SUCHI is a low-mass (transform spectrometer with images collected by a commercial off-the-shelf microbolometer contained inside a 1-atm sealed vessel. The sensor has been fully integrated with the HiakaSat microsatellite and is awaiting launch in 2015. The TIRCIS instrument is based on the same principles but takes lessons learned from SUCHI and applies them to a new design with improvements in spatial resolution, spectral resolution and spectral responsivity. The TIRCIS instrument is based on an uncooled microbolometer array with custom detector coatings to enhance responsivity towards 7 microns. Like SUCHI, TIRCIS utilizes a variable-gap Fabry Perot interferometer to create the spectra, but three different interferometer wedges with varying slopes resulting in spectral resolution ranging from 44 cm-1 to 6.5 cm-1 will be tested to explore tradeoffs between spectral resolution and sensitivity. TIRCIS is designed to achieve 120 m spatial resolution, compared with 230 m for SUCHI, from a theoretical 500 km orbit. It will be used for ground and aircraft data collection but will undergo environmental testing to demonstrate its relevance to the space environment. TIRCIS has been fully designed and is entering fabrication, with an operational instrument to be delivered in October, 2015.

  7. Practical retrieval of land surface emissivity spectra in 8-14 μm from hyperspectral thermal infrared data.

    Science.gov (United States)

    Wu, Hua; Wang, Ning; Ni, Li; Tang, Bo-Hui; Li, Zhao-Liang

    2012-10-22

    A practical physics-based regression method was developed and evaluated for nearly real time estimate of land surface emissivity spectra in 8-14 μm from hyperspectral thermal infrared data. Two spectral emissivity libraries and one atmospheric profile database fully covering all the possible situations for clear sky conditions were elaborately selected to simulate the radiances at the top of the atmosphere (TOA). The regression coefficients were determined by the main principal components of emissivity spectra and those of simulated brightness temperature at TOA using a ridge regression method. The experience with the simulated Interferometer Atmospheric Sounding Instrument (IASI) data showed that the emissivity spectra could be retrieved under clear sky conditions with root mean square errors of 0.015 and 0.03 for 714-970 cm(-1) (10.3-14.0 μm) and 970-1250 cm(-1) (8.0-10.3 μm), respectively, for various land surface and atmospheric conditions. This indicates the proposed method may be robust and applicable for all hyperspectral infrared sensors.

  8. Integrating seasonal optical and thermal infrared spectra to characterize urban impervious surfaces with extreme spectral complexity: a Shanghai case study

    Science.gov (United States)

    Wang, Wei; Yao, Xinfeng; Ji, Minhe

    2016-01-01

    Despite recent rapid advancement in remote sensing technology, accurate mapping of the urban landscape in China still faces a great challenge due to unusually high spectral complexity in many big cities. Much of this complication comes from severe spectral confusion of impervious surfaces with polluted water bodies and bright bare soils. This paper proposes a two-step land cover decomposition method, which combines optical and thermal spectra from different seasons to cope with the issue of urban spectral complexity. First, a linear spectral mixture analysis was employed to generate fraction images for three preliminary endmembers (high albedo, low albedo, and vegetation). Seasonal change analysis on land surface temperature induced from thermal infrared spectra and coarse component fractions obtained from the first step was then used to reduce the confusion between impervious surfaces and nonimpervious materials. This method was tested with two-date Landsat multispectral data in Shanghai, one of China's megacities. The results showed that the method was capable of consistently estimating impervious surfaces in highly complex urban environments with an accuracy of R2 greater than 0.70 and both root mean square error and mean average error less than 0.20 for all test sites. This strategy seemed very promising for landscape mapping of complex urban areas.

  9. 基于遗传自组织神经元网络的可见光与热红外遥感数据融合方法%Fusion of VNIR and Thermal Infrared Remote Sensing Data Based on GA-SOFM,Neural Network

    Institute of Scientific and Technical Information of China (English)

    王崇倡; 杨贵军; 马振力; 邢著荣

    2009-01-01

    The multi-source data fusion methods are rarely involved in VNIR and thermal infrared remote sensing at present.Therefore,the potential advantages of the two kinds of data have not yet been adequately tapped,which results in low calcu-lation precision of parameters related with land surface temperature.A new fusion method is put forward where the charac-teristics of the high spatial resolution of VNIR (visible and near infrared) data and the high temporal resolution of thermal in-frared data are fully explored in this paper.Non-linear fusion is implemented to obtain the land surface temperature in high spatial resolution and the high temporal resolution between the land surface parameters estimated from VNIR data and the thermal infrared data by means of GA-SOFM (genetic algorithms & self-organizing feature maps)-ANN (artificial neural net-work).Finally,the method is verified by ASTER satellite data.The result shows that the method is simple and convenient and can rapidly capture land surface temperature distribution of higher resolution with high precision.

  10. Thermal infrared spectra of surface rocks. Comparison of in the laboratory, in situ, and remote sensing data; Chihyo ganseki no netsusekigaiiki bunko tokusei. Chijo sokutei data to remote sensing data no hikaku

    Energy Technology Data Exchange (ETDEWEB)

    Ninomiya, Y.; Matsunaga, T. [Geological Survey of Japan, Tsukuba (Japan)

    1996-10-01

    An ASTER (advanced spaceborne thermal emission and reflection radiometer) is one of the image sensors. It is to be installed in an earth survey polar orbit platform satellite, EOS-AM1, which is to be launched in 1998, and it is going to start its operation. Data observed by the thermal infrared remote sensing of ASTER include the spectral emissivity, and the spectral emission reflectivity which is expressed by the function of temperature. It is required to overcome technical problems how to extract the spectral emissivity from the observed data. The spectral emissivity extracted from the remote sensing data by the MMD method, measured for samples collected in Cuprite area, Nevada, and/or measured at sampled points were compared to each other and discussed. The hemisphere spectral reflectivity, which is indirect spectral emissivity, agreed well with the direct spectral emissivity. Data suggesting the establishment of Kirchhoff`s law were obtained even for the weathered samples. The spectral emissivity derived from the remote sensing data by the MMD method was in harmony with the spectral characteristics measured strictly on the ground. 14 refs., 3 figs.

  11. For geological investigations with airborne thermal infrared multispectral images: Transfer of calibration from laboratory spectrometer to TIMS as alternative for removing atmospheric effects

    Science.gov (United States)

    Edgett, Kenneth S.; Anderson, Donald L.

    1995-01-01

    This paper describes an empirical method to correct TIMS (Thermal Infrared Multispectral Scanner) data for atmospheric effects by transferring calibration from a laboratory thermal emission spectrometer to the TIMS multispectral image. The method does so by comparing the laboratory spectra of samples gathered in the field with TIMS 6-point spectra for pixels at the location of field sampling sites. The transference of calibration also makes it possible to use spectra from the laboratory as endmembers in unmixing studies of TIMS data.

  12. Visir-Sat - a Prospective Micro-Satellite Based Multi-Spectral Thermal Mission for Land Applications

    Science.gov (United States)

    Ruecker, G.; Menz, G.; Heinemann, S.; Hartmann, M.; Oertel, D.

    2015-04-01

    Current space-borne thermal infrared satellite systems aimed at land surface remote sensing retain some significant deficiencies, in particular in terms of spatial resolution, spectral coverage, number of imaging bands and temperature-emissivity separation. The proposed VISible-to-thermal IR micro-SATellite (VISIR-SAT) mission addresses many of these limitations, providing multi-spectral imaging data with medium-to-high spatial resolution (80m GSD from 800 km altitude) in the thermal infrared (up to 6 TIR bands, between 8 and 11μm) and in the mid infrared (1 or 2 MIR bands, at 4μm). These MIR/TIR bands will be co-registered with simultaneously acquired high spatial resolution (less than 30 m GSP) visible and near infrared multi-spectral imaging data. To enhance the spatial resolution of the MIR/TIR multi-spectral imagery during daytime, data fusion methods will be applied, such as the Multi-sensor Multi-resolution Technique (MMT), already successfully tested over agricultural terrain. This image processing technique will make generation of Land Surface Temperature (LST) EO products with a spatial resolution of 30 x 30 m2 possible. For high temperature phenomena such as vegetation- and peat-fires, the Fire Disturbance Essential Climate Variables (ECV) "Active fire location" and "Fire Radiative Power" will be retrieved with less than 100 m spatial resolution. Together with the effective fire temperature and the spatial extent even for small fire events the innovative system characteristics of VISIR-SAT go beyond existing and planned IR missions. The comprehensive and physically high-accuracy products from VISIR-SAT (e.g. for fire monitoring) may synergistically complement the high temperature observations of Sentinel-3 SLSTR in a unique way. Additionally, VISIR-SAT offers a very agile sensor system, which will be able to conduct intelligent and flexible pointing of the sensor's line-of-sight with the aim to provide global coverage of cloud free imagery every 5

  13. Urban thermal environment and its biophysical parameters derived from satellite remote sensing imagery

    Science.gov (United States)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.

    2013-10-01

    In frame of global warming, the field of urbanization and urban thermal environment are important issues among scientists all over the world. This paper investigated the influences of urbanization on urban thermal environment as well as the relationships of thermal characteristics to other biophysical variables in Bucharest metropolitan area of Romania based on satellite remote sensing imagery Landsat TM/ETM+, time series MODIS Terra/Aqua data and IKONOS acquired during 1990 - 2012 period. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also retrieved from thermal infrared band of Landsat TM/ETM+, from MODIS Terra/Aqua datasets. Based on these parameters, the urban growth, urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. Results indicated that the metropolitan area ratio of impervious surface in Bucharest increased significantly during two decades investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.

  14. Satellite Validation: A Project to Create a Data-Logging System to Monitor Lake Tahoe

    Science.gov (United States)

    Roy, Rudy A.

    2005-01-01

    Flying aboard the satellite Terra, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument used to acquire detailed maps of Earth's surface temperature, elevation, emissivity, and reflectance. An automated site consisting of four buoys was established 6 years ago at Lake Tahoe for the validation of ASTERS thermal infrared data. Using Campbell CR23X Dataloggers, a replacement system to be deployed on a buoy was designed and constructed for the measurement of the lake's temperature profile, surrounding air temperature, humidity, wind direction and speed, net radiation, and surface skin temperature. Each Campbell Datalogger has been programmed to control, power, and monitor 14 different temperature sensors, a JPL-built radiometer, and an RM Young 32500 meteorological station. The logger communicates with the radiometer and meteorological station through a Campbell SDM-SIO4 RS232 serial interface, sending polling commands, and receiving filtered data back from the sensors. This data is then cataloged and sent back across a cellular modem network every hour to JPL. Each instrument is wired via a panel constructed with 18 individual plugs that allow for simple installation and expansion. Data sent back from the system are analyzed at JPL, where they are used to calibrate ASTER data.

  15. Analysis of Thermal Infrared Anomaly before the Lushan Ms7.0 Earthquake%四川芦山7.0级地震卫星热红外异常解析

    Institute of Scientific and Technical Information of China (English)

    张璇; 张元生; 魏从信; 田秀丰; 汤倩; 高见

    2013-01-01

    以中国静止气象卫星FY-2C/E亮温资料为数据源,采用功率谱相对变化法对2013年4月20日四川芦山7.0级地震进行震例数据处理和分析.结果显示:震前热异常具有明显时空特征,2013年3月底震中及其北部区域出现热红外异常,异常区范围随时间逐渐扩大、幅度陡增;4月13日左右异常面积达到最大,随后缓慢收缩,异常持续时间近一个月,异常幅度最大值达到9倍多,最大值后3天发震.该次地震热红外异常特征显著,易于识别,进一步验证了卫星热红外异常在地震预判方面的作用.%Aiming at analyzing the thermal infrared anomaly that occurred before the Ms7.0 earthquake in Lushan,Sichuan,remotely sensed infrared brightness temperature data from China Geostationary Meteorological satellite FY-2C/E was collected,and the infrared data from the prime period from 1:00 to 5:00 Peking time was selected as the data source.By processing the data to eliminate cloud cover and by using the power spectrum transform method,we analyzed the thermal infrared anomalies in the earthquake temporal evolution diagram and the timing curve of the average brightness temperature.The results showed that a month before the earthquake,a small area of thermal anomaly existed just north of the epicenter,and this area showed irregular shapes.With the passage of time,the abnormal range gradually expanded along a certain direction in the tectonic stress field.From April 4,the abnormal area expanded along the northeasterly direction and reached its maximum on April 13,2013.At the same time,a small-scale anomaly was discovered just south of the epicenter,with the epicenter always being at the edge of the abnormal parts.The earthquake cycle related to these thermal anomalies was 64 days,and the thermal anomalies lasted more than 30 days.Before the earthquake,the magnitude of the relative change was greater than 9 times,the greatest in the past two years.From the end of March to the

  16. Retrieval of volcanic ash particle size, mass and optical depth from a ground-based thermal infrared camera

    Science.gov (United States)

    Prata, A. J.; Bernardo, C.

    2009-09-01

    Volcanoes can emit fine-sized ash particles (1-10 μm radii) into the atmosphere and if they reach the upper troposphere or lower stratosphere, these particles can have deleterious effects on the atmosphere and climate. If they remain within the lowest few kilometers of the atmosphere, the particles can lead to health effects in humans and animals and also affect vegetation. It is therefore of some interest to be able to measure the particle size distribution, mass and other optical properties of fine ash once suspended in the atmosphere. A new imaging camera working in the infrared region between 7-14 μm has been developed to detect and quantify volcanic ash. The camera uses passive infrared radiation measured in up to five spectral channels to discriminate ash from other atmospheric absorbers (e.g. water molecules) and a microphysical ash model is used to invert the measurements into three retrievable quantities: the particle size distribution, the infrared optical depth and the total mass of fine particles. In this study we describe the salient characteristics of the thermal infrared imaging camera and present the first retrievals from field studies at an erupting volcano. An automated ash alarm algorithm has been devised and tested and a quantitative ash retrieval scheme developed to infer particle sizes, infrared optical depths and mass in a developing ash column. The results suggest that the camera is a useful quantitative tool for monitoring volcanic particulates in the size range 1-10 μm and because it can operate during the night, it may be a very useful complement to other instruments (e.g. ultra-violet spectrometers) that only operate during daylight.

  17. An intercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling

    Science.gov (United States)

    Hain, Christopher R.; Crow, Wade T.; Mecikalski, John R.; Anderson, Martha C.; Holmes, Thomas

    2011-08-01

    Remotely sensed soil moisture studies have mainly focused on retrievals using active and passive microwave (MW) sensors, which provide measurements that are directly related to soil moisture (SM). MW sensors have obvious advantages such as the ability to retrieve through nonprecipitating cloud cover which provides shorter repeat cycles. However, MW sensors offer coarse spatial resolution and suffer from reduced retrieval skill over moderate to dense vegetation. A unique avenue for filling these information gaps is to exploit the retrieval of SM from thermal infrared (TIR) observations, which can provide SM information under vegetation cover and at significantly higher resolutions than MW. Previously, an intercomparison of TIR-based and MW-based SM has not been investigated in the literature. Here a series of analyses are proposed to study relationships between SM products during a multiyear period (2003-2008) from a passive MW retrieval (AMSR-E), a TIR based model (ALEXI), and a land surface model (Noah) over the continental United States. The three analyses used in this study include (1) a spatial anomaly correlation analysis, (2) a temporal correlation analysis, and (3) a triple collocation error estimation technique. In general, the intercomparison shows that the TIR and MW methods provide complementary information about the current SM state. TIR can provide SM information over moderate to dense vegetation, a large information gap in current MW methods, while serving as an additional independent source of SM information over low to moderate vegetation. The complementary nature of SM information from MW and TIR sensors implies a potential for integration within an advanced SM data assimilation system.

  18. Accounting for particle non-sphericity in modeling of mineral dust radiative properties in the thermal infrared

    Science.gov (United States)

    Legrand, M.; Dubovik, O.; Lapyonok, T.; Derimian, Y.

    2014-12-01

    Spectral radiative parameters (extinction optical depth, single scattering albedo, asymmetry factor) of spheroids of mineral dust composed of quartz and clays have been simulated at wavelengths between 7.0 and 10.2 μm using a T-matrix code. In spectral intervals with high values of complex index of refraction and for large particles, the parameters cannot be fully calculated with the code. Practically, the calculations are stopped at a truncation radius over which the particles contribution cannot thus be taken into account. To deal with this issue, we have developed and applied an accurate corrective technique of T-matrix Size Truncation Compensation (TSTC). For a mineral dust described by its AERONET standard aspect ratio (AR) distribution, the full error margin when applying the TSTC is within 0.3% (or ±0.15%), whatever the radiative parameter and the wavelength considered, for quartz (the most difficult case). Large AR values limit also the possibilities of calculation with the code. The TSTC has been able to complete the calculations of the T-matrix code for a modified AERONET AR distribution with a maximum AR of 4.7 instead of 3 for the standard distribution. Comparison between the simulated properties of spheroids and of spheres of same volume confirms, in agreement with the literature, that significant differences are observed in the vicinity of the mineral resonant peaks (λ ca. 8.3-8.7 μm for quartz, ca. 9.3-9.5 μm for clays) and that they are due to absorption by the small particles. This is a favorable circumstance for the TSTC, which is concerned with the contribution of the largest particles. This technique of numerical calculation improves the accuracy of the simulated radiative parameters of mineral dust, which must lead to a progress in view of applications such as remote sensing or determination of energy balance of dust in the thermal infrared (TIR), incompletely investigated so far.

  19. Comparing Methods for Land Surface Temperature Retrieval over Heterogeneous Land Cover Using Landsat-5 TM Thermal Infrared Data

    Science.gov (United States)

    Windahl, E.; de Beurs, K.

    2014-12-01

    Among other applications, remotely sensed land surface temperature (LST) has become critical for monitoring the surface urban heat island (SUHI) effect in cities across the world. While daily MODIS thermal infrared data is invaluable for examining changes in LST over time, the large 1 km spatial resolution makes studying the spatial patterns of LST in a heterogeneous urban environment difficult. The 120 m spatial resolution of Landsat 4-5 TM, as well the archive of data stretching back to 1982, make Landsat 4-5 TM sensors valuable resources for thermal data, especially in urban areas. However, the difficulty accurately correcting for atmospheric effects with only one thermal band, as well as the necessity for a priori knowledge of land surface emissivity (LSE), mean it is underutilized. Research to determine best practices for deriving LST from Landsat TM data given homogenous, usually vegetated land cover is relatively extensive; however, the accuracy of these methods given heterogeneous land cover is less well known, especially given Land Surface Emissivity (LSE) calculations that often rely heavily on NDVI. In order to determine the best methodology for measuring LST across heterogeneous land cover in the central United States, this study derives LST from Landsat 5 TM band 6 for Oklahoma City and the surrounding countryside on a fall and a spring date using three different methods: no atmospheric correction, the radiative transfer equation, and the mono-window algorithm. With all three methods, the common NDVI-based approach for estimating LSE is used; a fourth LST calculation with no atmospheric correction and an assumed emissivity of one is therefore included as contrast. Using regression analysis, these four LST measurements are compared to air temperatures recorded concurrently by approximately 40 Oklahoma Mesonet stations across the study area, and results are broken down by land cover type to explore potential biases or variations in accuracy.

  20. Sub-surface paleochannel detection in DeGrussa area, Western Australia, using thermal infrared remote sensing

    Science.gov (United States)

    Thakur, Sanchari; Chudasama, Bijal; Porwal, Alok; González-Álvarez, Ignacio

    2016-05-01

    Thermal Infrared (TIR) remote sensing measures emitted radiation of Earth in the thermal region of electromagnetic spectrum. This information can be useful in studying sub-surface features such as buried palaeochannels, which are ancient river systems that have dried up over time and are now buried under soil cover or overlying sediments in the present landscape. Therefore they have little or no expression on the surface topography. Study of these paleo channels has wide applications in the fields of uranium exploration and ground water hydrology. Identifying paleo channels using remote sensing technique is a cost-effective means of narrowing down search areas and thereby aids in ground exploration. The difference in thermal properties between the paleo channel-fill sediments and the surrounding bed-rock is the key to demarcate these channels. This study uses five TIR bands of day-time Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) L1A data for delineation of paleo-systems in the DeGrussa area of the Capricorn Orogen in Western Australia. The temperature-emissivity separation algorithm is applied to obtain kinetic temperature and emissivity images. Sharp contrasts in kinetic temperature and emissivity values are used to demarcate the channel boundaries. Profiles of topographic elevation, temperature and emissivity values are plotted for different sections of the interpreted channels and compared to distinguish the surface channels from sub-surface channels, and also to interpret the thickness and nature of the paleo channel-fill sediments. The results are validated using core-drilling litho logs and field exploration data.

  1. Synergetic use of SAR and Thermal Infrared data to study the physical properties of the lunar surface

    Science.gov (United States)

    Saran, Sriram; Das, Anup; Mohan, Shiv; Chakraborty, Manab

    2014-11-01

    The surface layer of the Moon preserves vital evidences of lunar impact and cratering processes due to the absence of any Aeolian and fluvial erosion processes acting on it. By examining these evidences, which are recorded throughout the evolutionary history of the Moon, several basic aspects of lunar science can be understood, and this has direct relevance to the surfaces of other airless bodies within the solar system. In this study, rock abundance data obtained from Thermal Infrared (TIR) observations and radar Circular Polarization Ratio (CPR) data sets obtained from polarimetric SAR observations were correlated at some sample sites on the lunar surface. Preliminary results yielded qualitative and quantitative estimates for surface rock abundances. Except at distal ejecta deposits of young, bright craters a general correlation was observed between the two datasets. Mixed results were observed from the impact melt flows where the situation is complex due to the possible subsurface-volume and volume-subsurface interactions of the radar waves. But the flow features were clearly separated from the interior and ejecta regions of their parent craters in terms of CPR and rock abundances. The extent and distributions of pyroclastic deposits and dark haloed regions could not be distinctly identified at the resolution of datasets utilized. Near Gerasimovich D crater, the Diviner Radiometer has provided the first TIR observations of a newly discovered impact melt flow which was not visible in the optical imagery. This facilitated the first ever quantitative comparisons of the radar CPR and rock abundance values near such a region. Also, significant differences in spatial patterns between the radar and rock concentration data sets were observed, owing to the differences in the sensitivity of the two observations.

  2. Research on the Estimation Model of Soil Moisture Content Based on the Characteristics of Thermal Infrared Data

    Institute of Scientific and Technical Information of China (English)

    Jun; XU; Jianjun; JIANG

    2013-01-01

    With the portable Fourier Transform Infrared Spectroscopy (FTIR), the reflectance spectra of soil samples with different moisture content are measured in laboratory for expounding the characteristic of radiation in the thermal infrared part of the spectrum with different soil moisture content. A model of estimating the moisture content in soil is attempted to make based on Moisture Diagnostic Index (MDI). In general,the spectral characteristic of soil emissivity in laboratory includes the following aspects.Firstly,in the region of 8.0-9.5 μm,along with the increase of soil moisture content,the emissivity of soil increases to varying degrees. The spectral curves are parallel relatively and have a tendency to become horizontal and the absorbed characteristic of reststrahlen is also weakened relatively with the increase of soil moisture in this region.Secondly,in the region of 11.0-14.0 μm,the emissivity of soil has a tendency of increasing.There is an absorption value near about 12.7 μm. As the soil moisture content increases,the depth of absorption also increases. This phenomenon may be caused by soil moisture absorption. Methods as derivative, difference and standardized ratio transformation may weaken the background noise effectively to the spectrum data. Especially using the ratio of the emissivity to the average of 8-14 μm may obviously enhance the correlation between soil moisture and soil emissivity. According to the result of correlation analysis, the 8.237 μm is regarded as the best detecting band for soil moisture content. Moreover,based on the Moisture Diagnostic Index ( MDI) in the 8.194-8.279 μm, the logarithmic model of estimating soil moisture is made.

  3. Analysis of Vegetation Within A Semi-Arid Urban Environment Using High Spatial Resolution Airborne Thermal Infrared Remote Sensing Data

    Science.gov (United States)

    Quattrochi, Dale A.; Ridd, Merrill K.

    1998-01-01

    High spatial resolution (5 m) remote sensing data obtained using the airborne Thermal Infrared Multispectral Scanner (TIMS) sensor for daytime and nighttime have been used to measure thermal energy responses for 2 broad classes and 10 subclasses of vegetation typical of the Salt Lake City, Utah urban landscape. Polygons representing discrete areas corresponding to the 10 subclasses of vegetation types have been delineated from the remote sensing data and are used for analysis of upwelling thermal energy for day, night, and the change in response between day and night or flux, as measured by the TIMS. These data have been used to produce three-dimensional graphs of energy responses in W/ sq m for day, night, and flux, for each urban vegetation land cover as measured by each of the six channels of the TIMS sensor. Analysis of these graphs provides a unique perspective for both viewing and understanding thermal responses, as recorded by the TIMS, for selected vegetation types common to Salt Lake City. A descriptive interpretation is given for each of the day, night, and flux graphs along with an analysis of what the patterns mean in reference to the thermal properties of the vegetation types surveyed in this study. From analyses of these graphs, it is apparent that thermal responses for vegetation can be highly varied as a function of the biophysical properties of the vegetation itself, as well as other factors. Moreover, it is also seen where vegetation, particularly trees, has a significant influence on damping or mitigating the amount of thermal radiation upwelling into the atmosphere across the Salt Lake City urban landscape. Published by Elsevier Science Ltd.

  4. Landsat 8 Operational Land Imager and Thermal Infrared Sensor Pre-WRS-2: 2013 - National Geospatial Data Asset (NGDA)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Earth Resources Observation and Science (EROS) Center archive holds data collected by the Landsat suite of satellites, beginning with Landsat 1 in 1972. All...

  5. Characteristics of puffing activity revealed by ground-based, thermal infrared imaging: the example of Stromboli Volcano (Italy)

    Science.gov (United States)

    Gaudin, Damien; Taddeucci, Jacopo; Scarlato, Piergiorgio; Harris, Andrew; Bombrun, Maxime; Del Bello, Elisabetta; Ricci, Tullio

    2017-03-01

    Puffing, i.e., the frequent (1 s ca.) release of small (0.1-10 m3), over-pressurized pockets of magmatic gases, is a typical feature of open-conduit basaltic volcanoes worldwide. Despite its non-trivial contribution to the degassing budget of these volcanoes and its recognized role in volcano monitoring, detection and metering tools for puffing are still limited. Taking advantage of the recent developments in high-speed thermal infrared imaging, we developed a specific processing algorithm to detect the emission of individual puffs and measure their duration, size, volume, and apparent temperature at the vent. As a test case, we applied our method at Stromboli Volcano (Italy), studying "snapshots" of 1 min collected in the years 2012, 2013, and 2014 at several vents. In all 3 years, puffing occurred simultaneously at three or more vents with variable features. At the scale of the single vent, a direct relationship links puff temperature and radius, suggesting that the apparent temperature is mostly a function of puff thickness, while the real gas temperature is constant for all puffs. Once released in the atmosphere, puffs dissipate in less than 20 m. On a broader scale, puffing activity is highly variable from vent to vent and year to year, with a link between average frequency, temperature, and volume from 136 puffs per minute, 600 K above ambient temperature, 0.1 m3, and the occasional ejection of pyroclasts to 20 puffs per minute, 3 K above ambient, 20 m3, and no pyroclasts. Frequent, small, hot puffs occur at random intervals, while as the frequency decreases and size increases, an increasingly longer minimum interval between puffs, up to 0.5 s, appears. These less frequent and smaller puffs also display a positive correlation between puff volume and the delay from the previous puff. Our results suggest an important role of shallow bubble coalescence in controlling puffing activity. The smaller and more frequent puffing at "hotter" vents is in agreement with

  6. Data Fusion Between Microwave and Thermal Infrared Radiometer Data and Its Application to Skin Sea Surface Temperature, Wind Speed and Salinity Retrievals

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2013-03-01

    Full Text Available Method for data fusion between Microwave Scanning Radiometer: MSR and Thermal Infrared Radiometer: TIR derived skin sea surface temperature: SSST, wind speed: WS and salinity is proposed. SSST can be estimated with MSR and TIR radiometer data. Although the contribution ocean depth to MSR and TIR radiometer data are different each other, SSST estimation can be refined through comparisons between MSR and TIR derived SSST. Also WS and salinity can be estimated with MSR data under the condition of the refined SSST. Simulation study results support the idea of the proposed data fusion method.

  7. Evapotranspiration from Airborne Simulators as a Proxy Datasets for NASA's ECOSTRESS mission - A new Thermal Infrared Instrument on the International Space Station

    Science.gov (United States)

    Guillevic, P. C.; Hulley, G. C.; Hook, S. J.; Olioso, A.; Sanchez, J. M.; Drewry, D.; Running, S. W.; Fisher, J. B.

    2014-12-01

    Surface evapotranspiration (ET) represents the loss of water from the Earth's surface both by soil evaporation and vegetation transpiration processes. ET is a key climate variable linking the water, carbon, and energy cycles, and is very sensitive to changes in atmospheric forcing and soil water content. The response of ET to water and heat stress directly affects the surface energy balance and temperature which can be measured by thermal infrared remote sensing observations. The NASA ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) will be deployed in 2019 to address critical questions on plant-water dynamics, ecosystem productivity and future ecosystem changes with climate through an optimal combination of thermal infrared measurements in 5 spectral bands between 8-12 µm with pixel sizes of 38×57 m and an average revisit of 5 days over the contiguous United States at varying times of day. Two instruments capable of providing proxy datasets are the MODIS/ASTER (MASTER) airborne simulator and Hyperspectral Thermal Emissions Spectrometer (HyTES). This study is focused on estimating evapotranspiration using shortwave and thermal infrared remote sensing observations from these instruments. The thermal infrared data from MASTER/HyTES is used as a proxy dataset for ECOSTRESS to demonstrate the capability of the future spaceborne system to derive ET and water stress information from thermal based retrievals of land surface temperature. MASTER and HyTES data collected from 2004 to present over the Western United States at different seasons are used to test and evaluate different ET algorithms using ground-based measurements. Selected algorithms are 1) explicitly based on surface energy budget calculation or 2) based on the Penman-Monteith equation and use information on land surface temperature to estimate the surface resistance to convective fluxes. We use ground data from the Fluxnet and Ameriflux networks, and from permanent validation

  8. Relative dating of Hawaiian lava flows using multispectral thermal infrared images - A new tool for geologic mapping of young volcanic terranes

    Science.gov (United States)

    Kahle, Anne B.; Gillespie, Alan R.; Abbott, Elsa A.; Abrams, Michael J.; Walker, Richard E.

    1988-01-01

    The weathering of Hawaiian basalts in arid and semiarid environments is accompanied by changes in their thermal infrared emittance spectra. The spectral differences can be measured and mapped with multispectral imaging systems. The differences appear to be related to the degree of development, preservation, and alteration of glassy crusts; the oxidation of iron; and the accretion of silica-rich surface veneers. Because the measurements are quantitative and in image format, they are useful for estimating relative ages in geologic mapping of lava flows. In Hawaii this technique is most diagnostic for distinguishing among sparsely vegetated flows less than 1.5 ka in age.

  9. Recommended satellite imagery capabilities for disaster management

    Science.gov (United States)

    Richards, P. B.; Robinove, C. J.; Wiesnet, D. R.; Salomonson, V. V.; Maxwell, M. S.

    1982-01-01

    This study explores the role that satellite imaging systems might play in obtaining information needed in the management of natural and manmade disasters. Information requirements which might conceivably be met by satellite were identified for over twenty disasters. These requirements covered pre-disaster mitigation and preparedness activities, disaster response activities, and post-disaster recovery activities. The essential imaging satellite characteristics needed to meet most of the information requirements are 30 meter (or finer) spatial resolution, frequency of observations of one week or less, data delivery times of one day or less, and stereo, synoptic all-weather coverage of large areas in the visible, near infrared, thermal infrared and microwave bands. Of the current and planned satellite systems investigated for possible application to disaster management, Landsat-D and SPOT appear to have the greatest potential during disaster mitigation and preparedness activities, but all satellites studied have serious deficiencies during response and recovery activities. Several strawman concepts are presented for a satellite system optimized to support all disaster management activities.

  10. Study on thermal infrared remote sensing of Yarlung Zangbo River and Bangong Co-Nujiang River suture belt in Qinghai-Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    BI Siwen; YAN Hao; WANG Changyao

    2006-01-01

    The area change of heat abnormity is not in accordance with conclusions of former thermal infrared remote sensing studies of the Qinghai-Tibet Plateau, which were that the temperature of Yarlung Zangbo River suture belt of the southern Plateau is high and the northern temperature is low. The study result in this paper shows that the highest temperature is found in the Bangong Co-Nujiang River suture belt, the Yarlung Zangbo River suture belt temperature is the second highest, and the northern Tibet temperature is the lowest. The study demonstration area was the suture belt areas of the Yarlung Zangbo River and the Bangong Co-Nujiang River in the Qinghai-Tibet Plateau, where the land temperature of the Qinghai-Tibet Plateau and the bore temperature of field land surface were measured and the emissivity of land surface was calculated. In addition, the authors explore the mechanism of the relationship between thermal infrared remote sensing and constructing thermodynamics and reach four new conclusions about the thermodynamics of the Tibet Plateau.

  11. The Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR): A High Speed, Multispectral, Thermal Instrument Development in Support of HyspIRI-TIR

    Science.gov (United States)

    Hook, Simon

    2011-01-01

    The Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR) is being developed as part of the risk reduction activities associated with the Hyperspectral Infrared Imager (HyspIRI). The HyspIRI mission was recommended by the National Research Council Decadal Survey and includes a visible shortwave infrared (SWIR) pushboom spectrometer and a multispectral whiskbroom thermal infrared (TIR) imager. Data from the HyspIRI mission will be used to address key science questions related to the Solid Earth and Carbon Cycle and Ecosystems focus areas of the NASA Science Mission Directorate. The HyspIRI TIR system will have 60m ground resolution, better than 200mK noise equivalent delta temperature (NEDT), 0.5C absolute temperature resolution with a 5-day repeat from LEO orbit. PHyTIR addresses the technology readiness level (TRL) of certain key subsystems of the TIR imager, primarily the detector assembly and scanning mechanism. PHyTIR will use Mercury Cadmium Telluride (MCT) technology at the focal plane and operate in time delay integration mode. A custom read out integrated circuit (ROIC) will provide the high speed readout hence allowing the high data rates needed for the 5 day repeat. PHyTIR will also demonstrate a newly developed interferometeric metrology system. This system will provide an absolute measurement of the scanning mirror to an order of magnitude better than conventional optical encoders. This will minimize the reliance on ground control points hence minimizing post-processing (e.g. geo-rectification computations).

  12. Acquired platelet function defect

    Science.gov (United States)

    Acquired qualitative platelet disorders; Acquired disorders of platelet function ... blood clotting. Disorders that can cause problems in platelet function include: Idiopathic thrombocytopenic purpura Chronic myelogenous leukemia Multiple ...

  13. The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality

    OpenAIRE

    Hache, E.; Attié, J.-L.; Tourneur, C.; Ricaud, P.; L. Coret; W. A. Lahoz; El Amraoui, L.; Josse, B.; Hamer, P.; Warner, J.; Liu, X.; K. Chance; M. Höpfner; R. Spurr; V. Natraj

    2014-01-01

    Ozone is a tropospheric pollutant and plays a key role in determining the air quality that affects human wellbeing. In this study, we compare the capability of two hypothetical grating spectrometers onboard a geostationary (GEO) satellite to sense ozone in the lowermost troposphere (surface and the 0–1 km column). We consider 1 week during the Northern Hemisphere summer simulated by a chemical transport model, and use the two GEO instrument configurations to...

  14. Satellite Communication.

    Science.gov (United States)

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  15. Sensitivity of high-spectral resolution and broadband thermal infrared nadir instruments to the chemical and microphysical properties of secondary sulfate aerosols in the upper-troposphere/lower-stratosphere

    Science.gov (United States)

    Sellitto, Pasquale; Legras, Bernard

    2016-04-01

    The observation of upper-tropospheric/lower-stratospheric (UTLS) secondary sulfate aerosols (SSA) and their chemical and microphysical properties from satellite nadir observations (with better spatial resolution than limb observations) is a fundamental tool to better understand their formation and evolution processes and then to estimate their impact on UTLS chemistry, and on regional and global radiative balance. Thermal infrared (TIR) observations are sensitive to the chemical composition of the aerosols due to the strong spectral variations of the imaginary part of the refractive index in this band and, correspondingly, of the absorption, as a function of the composition Then, these observations are, in principle, well adapted to detect and characterize UTLS SSA. Unfortunately, the exploitation of nadir TIR observations for sulfate aerosol layer monitoring is today very limited. Here we present a study aimed at the evaluation of the sensitivity of TIR satellite nadir observations to the chemical composition and the size distribution of idealised UTLS SSA layers. The sulfate aerosol particles are assumed as binary systems of sulfuric acid/water solution droplets, with varying sulphuric acid mixing ratios. The extinction properties of the SSA, for different sulfuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indices taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. High-spectral resolution pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealised aerosol layers, at typical UTLS conditions, on

  16. SOME ASPECTS OF SATELLITE IMAGERY INTEGRATION FROM EROS B AND LANDSAT 8

    Directory of Open Access Journals (Sweden)

    A. Fryskowska

    2016-06-01

    Full Text Available The Landsat 8 satellite which was launched in 2013 is a next generation of the Landsat remote sensing satellites series. It is equipped with two new sensors: the Operational Land Imager (OLI and the Thermal Infrared Sensor (TIRS. What distinguishes this satellite from the previous is four new bands (coastal aerosol, cirrus and two thermal infrared TIRS bands. Similar to its antecedent, Landsat 8 records electromagnetic radiation in a panchromatic band at a range of 0.5‐0.9 μm with a spatial resolution equal to 15 m. In the paper, multispectral imagery integration capabilities of Landsat 8 with data from the new high resolution panchromatic EROS B satellite are analyzed. The range of panchromatic band for EROS B is 0.4‐0.9 μm and spatial resolution is 0.7 m. Research relied on improving the spatial resolution of natural color band combinations (bands: 4,3,2 and of desired false color band composition of Landsat 8 satellite imagery. For this purpose, six algorithms have been tested: Brovey’s, Mulitplicative, PCA, IHS, Ehler's, HPF. On the basis of the visual assessment, it was concluded that the best results of multispectral and panchromatic image integration, regardless land cover, are obtained for the multiplicative method. These conclusions were confirmed by statistical analysis using correlation coefficient, ERGAS and R-RMSE indicators.

  17. THERMAL AND VISIBLE SATELLITE IMAGE FUSION USING WAVELET IN REMOTE SENSING AND SATELLITE IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    A. H. Ahrari

    2017-09-01

    Full Text Available Multimodal remote sensing approach is based on merging different data in different portions of electromagnetic radiation that improves the accuracy in satellite image processing and interpretations. Remote Sensing Visible and thermal infrared bands independently contain valuable spatial and spectral information. Visible bands make enough information spatially and thermal makes more different radiometric and spectral information than visible. However low spatial resolution is the most important limitation in thermal infrared bands. Using satellite image fusion, it is possible to merge them as a single thermal image that contains high spectral and spatial information at the same time. The aim of this study is a performance assessment of thermal and visible image fusion quantitatively and qualitatively with wavelet transform and different filters. In this research, wavelet algorithm (Haar and different decomposition filters (mean.linear,ma,min and rand for thermal and panchromatic bands of Landast8 Satellite were applied as shortwave and longwave fusion method . Finally, quality assessment has been done with quantitative and qualitative approaches. Quantitative parameters such as Entropy, Standard Deviation, Cross Correlation, Q Factor and Mutual Information were used. For thermal and visible image fusion accuracy assessment, all parameters (quantitative and qualitative must be analysed with respect to each other. Among all relevant statistical factors, correlation has the most meaningful result and similarity to the qualitative assessment. Results showed that mean and linear filters make better fused images against the other filters in Haar algorithm. Linear and mean filters have same performance and there is not any difference between their qualitative and quantitative results.

  18. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2012-10-01

    Full Text Available Thermal infrared (TIR imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes that are at significantly finer spatial scales. Consequently, thermal sharpening techniques have been developed to sharpen TIR imagery to shortwave band pixel resolutions, which are often fine enough for field-scale applications. A classic thermal sharpening technique, TsHARP, uses a relationship between land surface temperature (LST and Normalized Difference Vegetation Index (NDVI developed empirically at the TIR pixel resolution and applied at the NDVI pixel resolution. However, recent studies show that unique relationships between temperature and NDVI may only exist for a limited class of landscapes, with mostly green vegetation and homogeneous air and soil conditions. To extend application of thermal sharpening to more complex conditions, a new data mining sharpener (DMS technique is developed. The DMS approach builds regression trees between TIR band brightness temperatures and shortwave spectral reflectances based on intrinsic sample characteristics. A comparison of sharpening techniques applied over a rainfed agricultural area in central Iowa, an irrigated agricultural region in the Texas High Plains, and a heterogeneous naturally vegetated landscape in Alaska indicates that the DMS outperformed TsHARP in all cases. The artificial box-like patterns in LST generated by the TsHARP approach are greatly reduced using the DMS scheme, especially for areas containing irrigated crops, water bodies, thin clouds or terrain. While the DMS technique can provide fine resolution TIR imagery, there are limits to the sharpening ratios that can be reasonably implemented. Consequently, sharpening techniques cannot replace actual thermal band imagery at fine resolutions or missions that

  19. Satellite observations of fumarole activity at Aluto volcano, Ethiopia: Implications for geothermal monitoring and volcanic hazard

    Science.gov (United States)

    Braddock, Mathilde; Biggs, Juliet; Watson, Iain M.; Hutchison, William; Pyle, David M.; Mather, Tamsin A.

    2017-07-01

    Fumaroles are the surface manifestation of hydrothermal circulation and can be influenced by magmatic, hydrothermal, hydrological and tectonic processes. This study investigates the temporal changes in fumarole temperatures and spatial extent on Aluto, a restless volcano in the Main Ethiopian Rift (MER), in order to better understand the controls on fluid circulation and the interaction between the magmatic and hydrothermal systems. Thermal infrared (TIR) satellite images, acquired by the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) over the period of 2004 to 2016, are used to generate time series of the fumarole temperatures and areas. The thermal anomalies identified in the ASTER images coincide with known fumaroles with temperatures > 80 °C and are located on or close to fault structures, which provide a pathway for the rising fluids. Most of the fumaroles, including those along the major zone of hydrothermal upwelling, the Artu Jawe Fault Zone, have pixel-integrated temperature variations of only 2 ± 1.5 °C. The exception are the Bobesa fumaroles located on a hypothesised caldera ring fault which show pixel-integrated temperature changes of up to 9 °C consistent with a delayed response of the hydrothermal system to precipitation. We conclude that fumaroles along major faults are strongly coupled to the magmatic-hydrothermal system and are relatively stable with time, whereas those along shallower structures close to the rift flank are more strongly influenced by seasonal variations in groundwater flow. The use of remote sensing data to monitor the thermal activity of Aluto provides an important contribution towards understanding the behaviour of this actively deforming volcano. This method could be used at other volcanoes around the world for monitoring and geothermal exploration.

  20. Circumpolar polynya regions and ice production in the Arctic: results from MODIS thermal infrared imagery from 2002/2003 to 2014/2015 with a regional focus on the Laptev Sea

    Science.gov (United States)

    Preußer, Andreas; Heinemann, Günther; Willmes, Sascha; Paul, Stephan

    2016-12-01

    High-resolution MODIS thermal infrared satellite data are used to infer spatial and temporal characteristics of 17 prominent coastal polynya regions over the entire Arctic basin. Thin-ice thickness (TIT) distributions (≤ 20 cm) are calculated from MODIS ice-surface temperatures, combined with ECMWF ERA-Interim atmospheric reanalysis data in an energy balance model for 13 winter seasons (2002/2003 to 2014/2015; November to March). From all available MODIS swath data, daily thin-ice thickness composites are computed in order to derive quantities such as polynya area and total thermodynamic (i.e., potential) ice production. A gap-filling approach is applied to account for cloud and data gaps in the MODIS composites. All polynya regions combined cover an average thin-ice area of 226.6 ± 36.1 × 103 km2 in winter. This allows for an average total winter-accumulated ice production of about 1811 ± 293 km3, whereby the Kara Sea region, the North Water polynya (both 15 %), polynyas on the western side of Novaya Zemlya (20 %), as well as scattered smaller polynyas in the Canadian Arctic Archipelago (all combined 12 %) are the main contributors. Other well-known sites of polynya formation (Laptev Sea, Chukchi Sea) show smaller contributions and range between 2 and 5 %. We notice distinct differences to earlier studies on pan-Arctic polynya characteristics, originating in some part from the use of high-resolution MODIS data, as the capability to resolve small-scale (> 2 km) polynyas and also large leads are increased. Despite the short record of 13 winter seasons, positive trends in ice production are detected for several regions of the eastern Arctic (most significantly in the Laptev Sea region with an increase of 6.8 km3 yr-1) and the North Water polynya, while other polynyas in the western Arctic show a more pronounced variability with varying trends. We emphasize the role of the Laptev Sea polynyas as being a major influence on Transpolar Drift characteristics through

  1. Hall Effect Thruster Interactions Data From the Russian Express-A2 and Express-A3 Satellites. Acquire Express-A3 SPT 100 Based Propulsion Subsystem and Other Subsystem Flight Operation TM-Data, Task 33

    Science.gov (United States)

    Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.

    2003-01-01

    This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80 deg E and 11 deg W, respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, under contract NAS3-99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.

  2. Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS

    Directory of Open Access Journals (Sweden)

    N. Theys

    2013-06-01

    Full Text Available Sulphur dioxide (SO2 fluxes of active degassing volcanoes are routinely measured with ground-based equipment to characterize and monitor volcanic activity. SO2 of unmonitored volcanoes or from explosive volcanic eruptions, can be measured with satellites. However, remote-sensing methods based on absorption spectroscopy generally provide integrated amounts of already dispersed plumes of SO2 and satellite derived flux estimates are rarely reported. Here we review a number of different techniques to derive volcanic SO2 fluxes using satellite measurements of plumes of SO2 and investigate the temporal evolution of the total emissions of SO2 for three very different volcanic events in 2011: Puyehue-Cordón Caulle (Chile, Nyamulagira (DR Congo and Nabro (Eritrea. High spectral resolution satellite instruments operating both in the ultraviolet-visible (OMI/Aura and GOME-2/MetOp-A and thermal infrared (IASI/MetOp-A spectral ranges, and multispectral satellite instruments operating in the thermal infrared (MODIS/Terra-Aqua are used. We show that satellite data can provide fluxes with a sampling of a day or less (few hours in the best case. Generally the flux results from the different methods are consistent, and we discuss the advantages and weaknesses of each technique. Although the primary objective of this study is the calculation of SO2 fluxes, it also enables us to assess the consistency of the SO2 products from the different sensors used.

  3. A research on coalfield fire detection in Daliuta mining area at Inner Mongolia based on hyperspectral thermal infrared remote sensing

    Science.gov (United States)

    Yang, Guo-fang; Zhou, Jia-jing; Tian, Xin-guang

    2016-10-01

    Daliuta mining coal fires at Inner Mongolia were not reported at present in remote sensing. However, they still pose a serious threat to the surroundings. In order to extract combustion range of the coal mine, we used the wintertime thermal airborne infrared hyperspectral images of TASI acquired in 2016 to detect the coal fire of Daliuta mining. The synchronous in situ measured temperature was used to establish space-to-ground regression equation with the image temperature for retrieving land surface temperature. Extracted coal fire through the reasonable threshold by the processed image data, identified a region where the surface temperatures was -0.5°C to 300°C. MODTRAN4 code was used to estimate the upward and downward radiation and transmission of the atmosphere. On this basis, the non-coal fire anomaly areas, such as the cooling water of power plant, heat buildings, chimney, were separated from the coal fire heat anomaly areas by the characteristic difference of the emissivity spectrum in the objectives. The results show that the bands 1-16 of TASI are suitable for infrared inversion temperature for the coalfield fire. There was a linear relationship between synchronous in situ observation temperature and the image temperature, and the determination coefficient R2 was 0.9938. The extracted coal fire anomaly range is able to provide some decision support for underground coal fire extinguishing. A detailed fire map of shallow coal areas can help to prioritize fire fighting operations in order to avoid the chance of starting a new coal fire.

  4. Atmospheric compensation of thermal infrared hyperspectral imagery with the emissive empirical line method and the in-scene atmospheric compensation algorithms: a comparison

    Science.gov (United States)

    DiStasio, Robert J., Jr.; Resmini, Ronald G.

    2010-04-01

    The in-scene atmospheric compensation (ISAC) algorithm of Young et al. (2002) [14] (and as implemented in the ENVI® software system [16] as 'Thermal Atm Correction') is commonly applied to thermal infrared multi- and hyperspectral imagery (MSI and HSI, respectively). ISAC estimates atmospheric transmissivity and upwelling radiance using only the scene data. The ISAC-derived transmissivity and upwelling radiance are compared to those derived from the emissive empirical line method (EELM), another in-scene atmospheric compensation algorithm for thermal infrared MSI and HSI data. EELM is based on the presence of calibration targets (e.g., panels, water pools) captured in the spectral image data for which the emissivity and temperature are well known at the moment of MSI/HSI data acquisition. EELM is similar in concept to the empirical line method (ELM) algorithm commonly applied to visible/near-infrared to shortwave infrared (VNIR/SWIR) spectral imagery and is implemented as a custom ENVI® plugin application. Both ISAC and EELM are in-scene methods and do not require radiative transfer modeling. ISAC and EELM have been applied to airborne longwave infrared (LWIR; ~7.5 μm to ~13.5 μm) HSI data. Captured in the imagery are calibration panels and/or water pools maintained at different temperatures facilitating the application of EELM. Overall, the atmospheric compensation parameters derived from the two methods are in close agreement: the EELM-derived ground-leaving radiance spectra generally contain fewer residual atmospheric spectral features, although ISAC sometimes produces smoother ground-leaving radiance spectra. Nonetheless, the agreement is viewed as validation of ISAC. ISAC is an effective atmospheric compensation algorithm that is readily available to the remote sensing community in the ENVI® software system. Thus studies such as the present testing and comparing ISAC to other methods are important. The ISAC and EELM algorithms are discussed as are the

  5. The retrieval of two-dimensional distribution of the earth's surface aerodynamic roughness using SAR image and TM thermal infrared image

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Renhua; WANG; Jinfeng; ZHU; Caiying; SUN; Xiaomin

    2004-01-01

    After having analyzed the requirement on the aerodynamic earth's surface roughness in two-dimensional distribution in the research field of interaction between land surface and atmosphere, this paper presents a new way to calculate the aerodynamic roughness using the earth's surface geometric roughness retrieved from SAR (Synthetic Aperture Radar) and TM thermal infrared image data. On the one hand, the SPM (Small Perturbation Model) was used as a theoretical SAR backscattering model to describe the relationship between the SAR backscattering coefficient and the earth's surface geometric roughness and its dielectric constant retrieved from the physical model between the soil thermal inertia and the soil surface moisture with the simultaneous TM thermal infrared image data and the ground microclimate data. On the basis of the SAR image matching with the TM image, the non-volume scattering surface geometric information was obtained from the SPM model at the TM image pixel scale, and the ground pixel surface's equivalent geometric roughness-height standard RMS (Root Mean Square) was achieved from the geometric information by the transformation of the typical topographic factors. The vegetation (wheat, tree) height retrieved from spectrum model was also transferred into its equivalent geometric roughness. A completely two-dimensional distribution map of the equivalent geometric roughness over the experimental area was produced by the data mosaic technique. On the other hand, according to the atmospheric eddy currents theory, the aerodynamic surface roughness was iterated out with the atmosphere stability correction method using the wind and the temperature profiles data measured at several typical fields such as bare soil field and vegetation field. After having analyzed the effect of surface equivalent geometric roughness together with dynamic and thermodynamic factors on the aerodynamic surface roughness within the working area, this paper first establishes a scale

  6. On the value of surface saturated area dynamics mapped with thermal infrared imagery for modeling the hillslope-riparian-stream continuum

    Science.gov (United States)

    Glaser, Barbara; Klaus, Julian; Frei, Sven; Frentress, Jay; Pfister, Laurent; Hopp, Luisa

    2016-10-01

    The highly dynamic processes within a hillslope-riparian-stream (HRS) continuum are known to affect streamflow generation, but are yet not fully understood. Within this study, we simulated a headwater HRS continuum in western Luxembourg with an integrated hydrologic surface subsurface model (HydroGeoSphere). The model was setup with thorough consideration of catchment-specific attributes and we performed a multicriteria model evaluation (4 years) with special focus on the temporally varying spatial patterns of surface saturation. We used a portable thermal infrared (TIR) camera to map surface saturation with a high spatial resolution and collected 20 panoramic snapshots of the riparian zone (approx. 10 m × 20 m) under different hydrologic conditions. Qualitative and quantitative comparison of the processed TIR panoramas and the corresponding model output panoramas revealed a good agreement between spatiotemporal dynamic model and field surface saturation patterns. A double logarithmic linear relationship between surface saturation extent and discharge was similar for modeled and observed data. This provided confidence in the capability of an integrated hydrologic surface subsurface model to represent temporal and spatial water flux dynamics at small (HRS continuum) scales. However, model scenarios with different parameterizations of the riparian zone showed that discharge and surface saturation were controlled by different parameters and hardly influenced each other. Surface saturation only affected very fast runoff responses with a small volumetric contribution to stream discharge, indicating that the dynamic surface saturation in the riparian zone does not necessarily imply a major control on runoff generation.

  7. Remote detection of canopy water stress in coniferous forests using the NS001 Thematic Mapper Simulator and the thermal infrared multispectral scanner

    Science.gov (United States)

    Pierce, Lars L.; Running, Steven W.; Riggs, George A.

    1990-01-01

    Water stress was induced in two coniferous forest stands in West Germany by severing tree sapwood. Leaf water potential, Psi(L), measurements indicated that maximum, naturally occurring levels of water stress developed in the stressed plots while control plots exhibited natural diurnal trends. Images of each site were obtained with the Thematic Mapper Simulator (NS001) and the Thermal Infrared Multispectral Scanner (TIMS) 12 to 15 days after stress induction. NS001 bands 2 to 6, NS001 indices combining bands 4 and 6, and NS001 and TIMS thermal bands showed significant radiance differences between stressed and control plots when large differences in Psi(L) and relative water content (RWC) existed during the morning overflights at Munich. However, the NS001 and TIMS sensors could not detect the slightly smaller differences in Psi(L) and RWC during the Munich afternoon and Frankfurt overflights. The results suggest that routine detection of canopy water stress under operational conditions is difficult utilizing current sensor technology.

  8. Quantifying stream thermal regimes at management-pertinent scales: combining thermal infrared and stationary stream temperature data in a novel modeling framework.

    Science.gov (United States)

    Vatland, Shane J.; Gresswell, Robert E.; Poole, Geoffrey C.

    2015-01-01

    Accurately quantifying stream thermal regimes can be challenging because stream temperatures are often spatially and temporally heterogeneous. In this study, we present a novel modeling framework that combines stream temperature data sets that are continuous in either space or time. Specifically, we merged the fine spatial resolution of thermal infrared (TIR) imagery with hourly data from 10 stationary temperature loggers in a 100 km portion of the Big Hole River, MT, USA. This combination allowed us to estimate summer thermal conditions at a relatively fine spatial resolution (every 100 m of stream length) over a large extent of stream (100 km of stream) during during the warmest part of the summer. Rigorous evaluation, including internal validation, external validation with spatially continuous instream temperature measurements collected from a Langrangian frame of reference, and sensitivity analyses, suggests the model was capable of accurately estimating longitudinal patterns in summer stream temperatures for this system Results revealed considerable spatial and temporal heterogeneity in summer stream temperatures and highlighted the value of assessing thermal regimes at relatively fine spatial and temporal scales. Preserving spatial and temporal variability and structure in abiotic stream data provides a critical foundation for understanding the dynamic, multiscale habitat needs of mobile stream organisms. Similarly, enhanced understanding of spatial and temporal variation in dynamic water quality attributes, including temporal sequence and spatial arrangement, can guide strategic placement of monitoring equipment that will subsequently capture variation in environmental conditions directly pertinent to research and management objectives.

  9. Using airborne thermal infrared imagery and helicopter EM conductivity to locate mine pools and discharges in the Kettle Creek watershed, north-central Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Love, E. (Shaw Environmental, Monroeville, PA); Hammack, R.W.; Harbert, W.P. (Univ. of Pittsburgh); Sams, J.I.; Veloski, G.A.; Ackman, T.E.

    2005-11-01

    The Kettle Creek watershed contains 50–100-year-old surface and underground coal mines that are a continuing source of acid mine drainage (AMD). To characterize the mining-altered hydrology of this watershed, an airborne reconnaissance was conducted in 2002 using airborne thermal infrared imagery (TIR) and helicopter-mounted electromagnetic (HEM) surveys. TIR uses the temperature differential between surface water and groundwater to locate areas where groundwater emerges at the surface. TIR anomalies located in the survey included seeps and springs, as well as mine discharges. In a follow-up ground investigation, hand-held GPS units were used to locate 103 of the TIR anomalies. Of the sites investigated, 26 correlated with known mine discharges, whereas 27 were previously unknown. Seven known mine discharges previously obscured from TIR imagery were documented. HEM surveys were used to delineate the groundwater table and also to locate mine pools, mine discharges, and groundwater recharge zones. These surveys located 12 source regions and flow paths for acidic, metal-containing (conductive) mine drainage; areas containing acid-generating mine spoil; and areas of groundwater recharge and discharge, as well as identifying potential mine discharges previously obscured from TIR imagery by nondeciduous vegetation. Follow-up ground-based electromagnetic surveys verified the results of the HEM survey. Our study suggests that airborne reconnaissance can make the remediation of large watersheds more efficient by focusing expensive ground surveys on small target areas.

  10. Integrated thermal infrared imaging and Structure-from-Motion photogrametry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA USA

    Science.gov (United States)

    Lewis, Aaron; George Hilley,; Lewicki, Jennifer L.

    2015-01-01

    This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the Structure-from-Motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 oC and 450 W m-2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.

  11. Research Prowess in Retrieving Land Surface Temperature Based on Thermal Infrared Remote Sensing Technologies%热红外遥感反演地表温度研究进展

    Institute of Scientific and Technical Information of China (English)

    陈桥驿; 蔡宜泳

    2013-01-01

    介绍在遥感技术支持下用热红外波段反演地表温度的各种方法及其优缺点和适用情况;总结目前通道法反演地表温度的问题所在,引出其研究新方向:组分温度反演;最后,对热红外遥感反演地表温度作出总结和提出展望.%The methods of retrieving land surface temperature based on thermal infrared remote sensing technologies were introduced. The features of the methods and application range were also discussed. The disadvantages in the channel algorithm of retrieving land surface temperature were summarized. The new direction of component temperature retrieving was introduced. Finally, retrieving land surface temperature based on thermal infrared remote sensing temperature was summarized and forecasted.

  12. A satellite observation system simulation experiment for carbon monoxide in the lowermost troposphere

    Science.gov (United States)

    Edwards, David P.; Arellano, Avelino F.; Deeter, Merritt N.

    2009-07-01

    We demonstrate the feasibility of using observing system simulation experiment (OSSE) studies to help define quantitative trace gas measurement requirements for satellite missions and to evaluate the expected performance of proposed observing strategies. The 2007 U.S. National Research Council Decadal Survey calls for a geostationary (GEO) satellite mission for atmospheric composition and air quality applications (Geostationary Coastal and Air Pollution Events Mission (GEO-CAPE)). The requirement includes a multispectral (near-infrared and thermal infrared) measurement of carbon monoxide (CO) at high spatiotemporal resolution with information on lowermost troposphere concentration. We present an OSSE to assess the improvement in surface CO characterization that would result from the addition of a GEO-CAPE CO measurement to current low Earth orbit (LEO) thermal infrared-only measurements. We construct instrument simulators for these two measurement scenarios and study the case of July 2004 when wildfires in Alaska and Canada led to significant CO pollution over the contiguous United States. Compared to a control experiment, an ensemble-based data assimilation of simulated satellite observations in a global model leads to improvements in both the surface CO distributions and the time evolution of CO profiles at locations affected by wildfire plumes and by urban emissions. In all cases, an experiment with the GEO-CAPE CO measurement scenario (overall model skill of 0.84) performed considerably better than the experiment with the current LEO/thermal infrared measurement (skill of 0.58) and the control (skill of 0.07). This demonstrates the advantages of increased sampling from GEO and enhanced measurement sensitivity to the lowermost troposphere with a multispectral retrieval.

  13. Correcting Errors in Catchment-Scale Satellite Rainfall Accumulation Using Microwave Satellite Soil Moisture Products

    Science.gov (United States)

    Ryu, D.; Crow, W. T.

    2011-12-01

    Streamflow forecasting in the poorly gauged or ungauged catchments is very difficult mainly due to the absence of the input forcing data for forecasting models. This challenge poses a threat to human safety and industry in the areas where proper warning system is not provided. Currently, a number of studies are in progress to calibrate streamflow models without relying on ground observations as an effort to construct a streamflow forecasting systems in the ungauged catchments. Also, recent advances in satellite altimetry and innovative application of the optical has enabled mapping streamflow rate and flood extent in the remote areas. In addition, remotely sensed hydrological variables such as the real-time satellite precipitation data, microwave soil moisture retrievals, and surface thermal infrared observations have the great potential to be used as a direct input or signature information to run the forecasting models. In this work, we evaluate a real-time satellite precipitation product, TRMM 3B42RT, and correct errors of the product using the microwave satellite soil moisture products over 240 catchments in Australia. The error correction is made by analyzing the difference between output soil moisture of a simple model forced by the TRMM product and the satellite retrievals of soil moisture. The real-time satellite precipitation products before and after the error correction are compared with the daily gauge-interpolated precipitation data produced by the Australian Bureau of Meteorology. The error correction improves overall accuracy of the catchment-scale satellite precipitation, especially the root mean squared error (RMSE), correlation, and the false alarm ratio (FAR), however, only a marginal improvement is observed in the probability of detection (POD). It is shown that the efficiency of the error correction is affected by the surface vegetation density and the annual precipitation of the catchments.

  14. Acquired inflammatory demyelinating neuropathies.

    Science.gov (United States)

    Ensrud, E R; Krivickas, L S

    2001-05-01

    The acquired demyelinating neuropathies can be divided into those with an acute onset and course and those with a more chronic course. The acute neuropathies present as Guillain-Barré syndrome and include acute inflammatory demyelinating polyradiculoneuropathy (AIDP), Miller Fisher syndrome, acute motor axonal neuropathy (AMAN), acute motor and sensory axonal neuropathy (AMSAN), and acute pandysautonomia. The chronic neuropathies are collectively known as chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and include MADSAM (multifocal acquired demyelinating sensory and motor neuropathy, also know as Lewis-Sumner syndrome) and DADS (distal acquired demyelinating symmetric neuropathy) as variants. The clinical features, pathology, pathogenesis, diagnosis, treatment, rehabilitation, and prognosis of these neuropathies are discussed.

  15. Unmixing of Rock Thermal Infrared Spectrum and Conversion of Mineral Content%岩石热红外光谱解混与矿物含量反演

    Institute of Scientific and Technical Information of China (English)

    刘善军; 卓建英; 吴立新; 徐忠印

    2011-01-01

    Distinguishing and converting mineral ingredient and content based on the spectrum unmixing of rock are an important direction of high-spectral remote sensing. The thermal infrared spectrum of a block of alkali feldspar granite is measured by using Turbo FT portable infrared spectral radiometer in outdoor site and normal temperature, and the thermal infrared spectrums (7-14u,m) of four mineral ingredients of the rock, that is, potash feldspar, plagioclase, white mica, and quartz are also measured under three different conditions, I.e. Grain sample of 0.71-lmm in outdoor site and normal temperature, grain sample of 0.71-lmm in indoor site and 80t, and block sample at outdoor site and normal temperature. Then the spectrum of the rock is linearly decomposed by using the spectrums of the four minerals as the end members, and the results are compared with the results that the ASU spectrum is used as the end member. The result shows that the unmixing effect is best when the spectrums of rock and the end member mineral are measured in the same condition; and that the spectrum of block rock could be decomposed by the spectrums of block minerals, however it could not be decomposed by ASU spectrum. The experimental result is beneficial to the remote sensing geology and mineral mapping.%以碱性长石花岗岩为例,采用Turbo FT便携式红外光谱辐射计对其4种组成矿物(钾长石、斜长石、白云母、石英)分别进行0.71—1mm颗粒室外常温、0.71—1mm颗粒室内80℃、块体室外常温的热红外(7—14μm)光谱特征测试,以测试结果作为端元光谱对室外常温下测得的块状碱性长石花岗岩光谱进行解混,并与将ASU光谱作为端元光谱的解混效果进行比较.结果表明,当岩石与矿物端元的光谱测试条件相同时,解混效果最好;使用块状端元光谱能有效解混块状岩石光谱;ASU颗粒光谱不能解混块体岩石的矿物成分及含量.试验结果对遥感地质及矿物填图的研究具有指导意义.

  16. Hospital-acquired pneumonia

    Science.gov (United States)

    ... tends to be more serious than other lung infections because: People in the hospital are often very sick and cannot fight off ... prevent pneumonia. Most hospitals have programs to prevent hospital-acquired infections.

  17. Acquired Cutix Laxa

    Directory of Open Access Journals (Sweden)

    Jaswal Ritu

    1999-01-01

    Full Text Available A case of acquired cutis laxa in a male is reported. The skin became loose and started hanging in folds after the patient received therapy for piles. Relevant literature is reviewed.

  18. Acquired color vision deficiency.

    Science.gov (United States)

    Simunovic, Matthew P

    2016-01-01

    Acquired color vision deficiency occurs as the result of ocular, neurologic, or systemic disease. A wide array of conditions may affect color vision, ranging from diseases of the ocular media through to pathology of the visual cortex. Traditionally, acquired color vision deficiency is considered a separate entity from congenital color vision deficiency, although emerging clinical and molecular genetic data would suggest a degree of overlap. We review the pathophysiology of acquired color vision deficiency, the data on its prevalence, theories for the preponderance of acquired S-mechanism (or tritan) deficiency, and discuss tests of color vision. We also briefly review the types of color vision deficiencies encountered in ocular disease, with an emphasis placed on larger or more detailed clinical investigations.

  19. A thermal infrared instrument onboard a geostationary platform for CO and O3 measurements in the lowermost troposphere: observing system simulation experiments

    Directory of Open Access Journals (Sweden)

    M. Höpfner

    2011-02-01

    Full Text Available This paper presents observing system simulation experiments (OSSEs to compare the relative capabilities of two geostationary thermal infrared (TIR instruments to monitor ozone (O3 and carbon monoxide (CO for air quality (AQ purposes over Europe. The originality of this study is to use OSSEs to assess how these infrared instruments can constrain different errors affecting AQ hindcasts and forecasts (emissions, meteorology, initial condition and the 3 parameters together. The first instrument (GEO-TIR has a configuration optimized to monitor O3 and CO in the lowermost tr posphere (LmT; defined to be the atmosphere between the surface and 3 km, and the second instrument (GEO-TIR2 is designed to monitor temperature and humidity. Both instruments measure radiances in the same spectral TIR band. Results show that GEO-TIR could have a significant impact (GEO-TIR is closer to the reference atmosphere than GEO-TIR2 on the analyses of O3 and CO LmT column. The value of the measurements for both instruments is mainly over the Mediterranean Basin and some impact can be found over the Atlantic Ocean and Northern Europe. The impact of GEO-TIR is mainly above 1 km for O3 and CO but can also improve the surface analyses for CO. The analyses of GEO-TIR2 show low impact for O3 LmT column but a significant impact (but lower than for GEO-TIR for CO above 1 km. The results of this study indicate the beneficial impact from an infrared instrument (GEO-TIR dedicated to monitoring O3 and CO concentrations in the LmT, and quantify the value of this information for constraining AQ models.

  20. Laboratory-acquired brucellosis

    DEFF Research Database (Denmark)

    Fabiansen, C.; Knudsen, J.D.; Lebech, A.M.

    2008-01-01

    Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9......Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9...

  1. Satellite RNAs and Satellite Viruses.

    Science.gov (United States)

    Palukaitis, Peter

    2016-03-01

    Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA.

  2. Acquired smooth muscle hamartoma

    Directory of Open Access Journals (Sweden)

    Bari Arfan ul

    2006-01-01

    Full Text Available Smooth muscle hamartoma is an uncommon, usually congenital, cutaneous hyperplasia of the arrectores pilorum muscles. When it is acquired, it may be confused with Becker′s nevus. We report a case of this rare tumor in a 19-year-old man. The disease started several years ago as multiple small skin-colored papules that subsequently coalesced to form a large soft plaque on the back of the left shoulder. The diagnosis of acquired smooth muscle hamartoma was confirmed on histopathology. The patient was reassured about the benign nature of the lesion and was not advised any treatment.

  3. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  4. Satellite theory

    Science.gov (United States)

    Kozai, Y.

    1981-04-01

    The dynamical characteristics of the natural satellite of Mars, Jupiter, Saturn, Uranus and Neptune are analyzed on the basis of the solar tidal perturbation factor and the oblateness factor of the primary planet for each satellite. For the inner satellites, for which the value of the solar tidal factor is much smaller than the planetary oblateness factor, it is shown that the eccentricity and inclination of satellite orbits are generally very small and almost constant; several pairs of inner satellites are also found to exhibit commensurable mean motions, or secular accelerations in mean longitude. In the case of the outer satellites, for which solar perturbations are dominant, secular perturbations and long-period perturbations may be derived by the solution of equations of motion reduced to one degree of freedom. The existence of a few satellites, termed intermediary satellites, for which the solar tidal perturbation is on the order of the planetary oblateness factor, is also observed, and the pole of the orbital plane of the satellite is noted to execute a complex motion around the pole of the planet or the orbital plane of the planet.

  5. Hall Effect Thruster Interactions Data From the Russian Express-A2 and Express-A3 Satellites. Part 10; Acquire TM-Data for Type A and Type B Sensors for "Express-A" Number 3 Satellite for the Period of July 1, 2001 to and Including September 30, 2001, Task 27D

    Science.gov (United States)

    Dunning, John (Technical Monitor); Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.

    2003-01-01

    This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80 E. and 11 W., respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, under contract NAS3 99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.

  6. Hall Effect Thruster Interactions Data from the Russian Express-A2 and Express-A3 Satellites. Part 4; Acquire TM-Data for Type A and Type B Sensors for "Express-A" Number 3 Satellite, Task 27A

    Science.gov (United States)

    Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.

    2003-01-01

    This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80deg E., and 11deg W., respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, under contract NAS3-99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.

  7. Hall Effect Thruster Interactions Data from the Russian Express-A2 and Express-A3 Satellites. Part 8; Acquire TM-Data for Type A and Type B Sensors for "Express A" Number 3 Satellite for the Period of January 1, 2001 to and Including March 31, 2001, Task 27C

    Science.gov (United States)

    Dunning, John (Technical Monitor); Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.

    2003-01-01

    This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80deg E. and 11deg W., respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, under contract NAS3 99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.

  8. Hall Effect Thruster Interactions Data From the Russian Express-A2 and Express-A3 Satellites. Part 2; Acquire TM Date for Type B Sensors for "Express-A" Number 2 Satellite for the Period of March 12, 2000 to and Including June 15, 2000, Task 25

    Science.gov (United States)

    Dunning, John (Technical Monitor); Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.

    2003-01-01

    This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80 E. and 11 W., respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, under contract NAS3 99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.

  9. Thermal infrared and microwave absorbing properties of SrTiO{sub 3}/SrFe{sub 12}O{sub 19}/polyaniline nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Seyed Hossein, E-mail: shhosseini@iiau.ac.ir [Department of Chemistry, Faculty of Science, Islamshahr Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Zamani, Parisa [Department of Applied Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Mousavi, S.Y. [Faculty of Passive Defense, Imam Hossein University, Tehran (Iran, Islamic Republic of)

    2015-09-25

    Graphical abstract: We have developed a new perspective of applications and properties of conducting polymers. The combination of absorption ability prepared nanocomposites in the present of PANI display a great potential in organization of shielding structures into thermal IR and microwave. Further investigations using other conducting polymers to demonstrate their capability for advance thermal IR and microwave shielding devices is under way. The application of these samples may improve the IR thermographic detection, catalysis, sensors, magnetic data storage, electromagnetic resonance wave absorption, photonic crystals, and microelectronic devices and military aspects. - Highlights: • The SrTiO{sub 3}/SrFe{sub 12}O{sub 19}/PANI exhibited electric and electromagnetic properties. • The SrTiO{sub 3}/SrFe{sub 12}O{sub 19}/PANI has shielding structures into thermal IR and microwave. • Increasing weight ratios and thicknesses will increase thermal IR ability. • Increasing weight ratios and thicknesses will increase microwave absorption ability. - Abstract: Polyaniline (PANI) as a unique polymer that also has electromagnetic absorption used as the substrate. In this research, SrTiO{sub 3} was synthesized as IR absorbent and core and then SrFe{sub 12}O{sub 19} as microwave absorbent was prepared on SrTiO{sub 3} via co-precipitation method as the first shell. As the next step, PANI was coated on SrTiO{sub 3}/SrFe{sub 12}O{sub 19} nanoparticles via in situ polymerization by multi core–shell structures (SrTiO{sub 3}/SrFe{sub 12}O{sub 19}/PANI). Nanometer size and structures of samples were measured by TEM, XRD and FTIR. Morphology of nanocomposite was showed by SEM images. The magnetic and electric properties were also performed by VSM and four probe techniques. Thermal infrared (IR) absorption and microwave reflection loss of nanocomposites were investigated at 10–40 μm and 8–12 GHz, IR and microwave frequencies, respectively. The results showed that the Sr

  10. Comparison of CO2 retrievals from IASI-A, IASI-B and GOSAT in the thermal infrared for nearly coincident measurements over the Arctic ocean in summer

    Science.gov (United States)

    Camy-Peyret, Claude; Bureau, Jerome; Payan, Sebastien

    2015-04-01

    The capabilities to retrieve reliable information on the concentration of greenhouse gases in the lower atmosphere from thermal infrared (TIR) spectra collected by nadir sounders is still to be assessed. We have selected the two months period of July-August in the high latitude polar region where it is possible to observe almost coincident or superimposed footprints (IFOV) of the three infrared sounders considered in this study, namely IASI-A, IASI-B (on the MetOp platforms) and TANSO-FTS (on GOSAT). Retrievals of the column averaged mixing ratio of carbon dioxide XCO2 (and of the surface temperature) have been performed for three years i.e. 2010, 2013 and 2014 over Arctic waters. The summer period was chosen because ice free IFOVs (in the latitude band 68N to 82N) can be selected for which retrievals are less sensitive to surface inhomogeneity (as compared to IFOVs located over land). The emissivity of sea water is also better constrained. The inversion configuration (using the atmospheric window covering the so-called CO2 laser band in the interval 940-980 cm-1) will be described. The sensitivity of the retrieved XCO2 to the different layers of the lower atmosphere as a function of thermal contrast, temperature and humidity profiles will be presented. The precision/accuracy of the retrieved XCO2 will be discussed and compared between sounders. The CO2 trends is clearly captured over the years analysed in this work. The retrieved values will be compared to similar XCO2 products available from other sources (Leicester Univ., NIES, SRON/KIT). Some remaining spectroscopic issues in the vicinity of 948 cm-1 have been identified and circumvented. The retrieved sea surface temperature Tsurf used as a control variable is also providing an additional check of the performances of the retrievals and is compared to the Eumetsat IASI Tsurf product. These results are interesting starting points for preparing future missions like IASI-NG on MetOp-SG as well as GOSAT-2.

  11. Compositional and Textural Analysis of Maar-Diatreme Volcanic Deposits at Hopi Buttes Volcanic Field (AZ) Using GigaPan Panoramic and Thermal Infrared Imagery

    Science.gov (United States)

    Lee, R.; Graettinger, A. H.; Weinell, M.; Hughes, C. G.

    2016-12-01

    Basaltic maar-diatreme volcanoes are produced when rising magma interacts with groundwater and produces a maar crater at the ground surface. This crater is underlain by a diatreme, a downward-tapering conical structure filled with a mixture of fragments of intruded magma, fractured host rock, and clasts recycled through repeated discrete subsurface explosions. The debris of the diatreme records the mixing processes caused by subsurface explosions and is the source for ejected material that forms maar tephra rings. Determining the variable depths and lateral locations of these explosions and how energy is dissipated in the subsurface is critical to understanding how maar-diatreme eruptions progress. The Hopi Buttes Volcanic Field (HBVF) in the Navajo Nation, Arizona, USA, contains several diatremes and incised tephra rings with heterolithic clasts 10 mm - 10 m in size, and are well-exposed near-vertical to vertical outcrops. Our ability to measure the length scales and distribution of textures produced by subsurface explosions in these diatremes is limited by the physical accessibility of the exposures, due to both the verticality of the outcrops and the cultural sensitivity of the site. Quantifying the number and locations of explosions is dependent on our ability to investigate the full diatreme outcrop, and not just what can be accessed through traditional field observations. We present a novel field and computer-based technique for both quantitatively and qualitatively characterizing the composition and texture of maar-diatreme deposits in vertical outcrops. This technique uses a combination of field-collected multispectral thermal infrared (TIR) image data and visible wavelength GigaPan imagery to characterize the compositional and textural variations over a whole outcrop. To increase the spatial and spectral resolution of the TIR data, a super-resolution technique will be applied. The technique provides a simple and efficient method to augment the study of the

  12. Extension of radiative transfer code MOMO, matrix-operator model to the thermal infrared - Clear air validation by comparison to RTTOV and application to CALIPSO-IIR

    Science.gov (United States)

    Doppler, Lionel; Carbajal-Henken, Cintia; Pelon, Jacques; Ravetta, François; Fischer, Jürgen

    2014-09-01

    1-D radiative transfer code Matrix-Operator Model (MOMO), has been extended from [0.2-3.65 μm] the band to the whole [0.2-100 μm] spectrum. MOMO can now be used for the computation of a full range of radiation budgets (shortwave and longwave). This extension to the longwave part of the electromagnetic radiation required to consider radiative transfer processes that are features of the thermal infrared: the spectroscopy of the water vapor self- and foreign-continuum of absorption at 12 μm and the emission of radiation by gases, aerosol, clouds and surface. MOMO's spectroscopy module, Coefficient of Gas Absorption (CGASA), has been developed for computation of gas extinction coefficients, considering continua and spectral line absorptions. The spectral dependences of gas emission/absorption coefficients and of Planck's function are treated using a k-distribution. The emission of radiation is implemented in the adding-doubling process of the matrix operator method using Schwarzschild's approach in the radiative transfer equation (a pure absorbing/emitting medium, namely without scattering). Within the layer, the Planck-function is assumed to have an exponential dependence on the optical-depth. In this paper, validation tests are presented for clear air case studies: comparisons to the analytical solution of a monochromatic Schwarzschild's case without scattering show an error of less than 0.07% for a realistic atmosphere with an optical depth and a blackbody temperature that decrease linearly with altitude. Comparisons to radiative transfer code RTTOV are presented for simulations of top of atmosphere brightness temperature for channels of the space-borne instrument MODIS. Results show an agreement varying from 0.1 K to less than 1 K depending on the channel. Finally MOMO results are compared to CALIPSO Infrared Imager Radiometer (IIR) measurements for clear air cases. A good agreement was found between computed and observed radiance: biases are smaller than 0.5 K

  13. Thermal-Infrared Image Analysis Application to the Real-Time Monitoring of the Explosive Activity of Etna and Stromboli Volcanoes

    Science.gov (United States)

    Coltelli, M.; Biale, E.; Cristaldi, A.; Mangiagli, S.; Pecora, E.

    2005-12-01

    Starting from 1993 video-cameras were used for the monitoring of the explosive activity at Etna and Stromboli volcanoes. Using image analysis we were seeking to identify, classify and quantify the explosive events and any change of the activity trend that could precede a strong eruptive event, like paroxysmal explosion, fire fountain, lava flow. The visible-band cameras suffered of a low sensitivity that limited the early warning capability of the system at night and during poor weather. Taking into account the high-temperature of the erupted material, infrared cameras appeared the best choice to overcome this observational limitation, unfortunately at that time commercial infrared devises were still too much expensive and fragile to put in operation in such unsafe and extreme environment. In very recent time the availability of solid-state uncooled sensors made possible the use of these devices for volcano monitoring at Etna and Stromboli since their 2002 and 2003 eruptions. Presently three types of Thermal-Infrared image based surveillance systems are in operation at Etna and Stromboli. They are focused to identify, classify and quantify different types of explosive events from small strombolian explosions to large volcanic-cloud forming eruptions. VAMOS on-line image analyzer that operates detection and classification of the strombolian explosive events in real-time. The analysis include the counting of the explosions occurred at the different craters of Stromboli and the parameterization in classes of intensity for each explosion on the base of clast dispersion and kinetics energy. A week report of the trend of the volcanic activity is available at INGV web. SARATERM on-line analyzer of thermal images for recognizing, in function of the temperature, the emission of spatter, ashes or gas from the summit craters of Etna and Stromboli. This system is presently used to alert in real-time the on-duty volcanologists. Finally a network of IR cameras working in

  14. Using an Unmanned Arial Vehicle (UAV) and a thermal infrared camera to estimate temperature differences on a lake surface, revealing incoming groundwater seepage.

    Science.gov (United States)

    Hoffmann, Helene; Müller, Sascha; Friborg, Thomas

    2014-05-01

    UAVs are at the budding stage of becoming efficient tools in geosciences due to their fast coverage of large areas, creating opportunities to collect comprehensive amounts of spatially distributed data. In this survey a fixed-wing UAV is equipped with a thermal infrared camera (Optris PI 450) conducting spatially distributed measurements of radiometric surface temperature, from a small groundwater-fed lake. We hypothesis that larger temperature differences in the lake surface will reveal locations of incoming groundwater seepage. During wintertime, warmer groundwater will have great incentive to rise to the lake surface without significant mixing with colder lake water and hence enable detection of incoming groundwater seepage with surface measurements. The investigated area is a 300x150 m section of Lake Vaeng in southern Jutland, Denmark. Detecting areas of groundwater seepage into lakes and quantifying these fluxes are of great importance not only for water budgets but also in relation to lake environments. Incoming groundwater might be a large nutrient source in lakes. GPS coordinates from the UAV are correlated with each thermal image based on UTC time stamps. Geo-reference is further improved with ground control points in the form of 0.2x0.2 m aluminum foil rectangles. Aluminum stands out clearly in thermal images and using seven of these ground control points, evenly distributed in the investigated area, led to an accuracy of 0.3 m. Using the Structure from Motion photogrammetric technique, a point cloud model is produced and camera positions along with intrinsic and extrinsic properties are established. Distinct temperature differences of 1.5 C have been detected along the south-eastern shore of Lake Vaeng. The location of these hotspots is in agreement with temperature differences measured with Distributed Temperature Sensing (DTS) system - indicating zones of groundwater seepage into the lake. In addition to faster execution of large spatially distributed

  15. Learning to Acquire

    DEFF Research Database (Denmark)

    Henningsson, Stefan

    2015-01-01

    This paper develops a knowledge-based model of information systems (IS) integration in acquisition-based growth programs. Previous research has found important differences in the acquirers’ abilities for acquisition IS integration, and that these differences play key roles in explaining the econo...... are therefore persistent and hard to overcome for the inexperienced acquirer....

  16. Acquired cutis laxa

    Directory of Open Access Journals (Sweden)

    Musaliar S

    2003-03-01

    Full Text Available A 13-yeat-old male patient born of non consanguineous marriage with history of recurrent urticaria and angioedema for the past 2 years presented with wrinkling and laxity of the skin over the face, axilla and abdomen. Histopathology was consistent with cutis laxa. We are reporting a rare case of acquired cutis laxa due to recurrent urticaria.

  17. Acquired cutis laxa

    Directory of Open Access Journals (Sweden)

    Musaliar S

    2003-01-01

    Full Text Available A 13-yeat-old male patient born of non consanguineous marriage with history of recurrent urticaria and angioedema for the past 2 years presented with wrinkling and laxity of the skin over the face, axilla and abdomen. Histopathology was consistent with cutis laxa. We are reporting a rare case of acquired cutis laxa due to recurrent urticaria.

  18. Present status and future plans of the Japanese earth observation satellite program

    Science.gov (United States)

    Tsuchiya, Kiyoshi; Arai, Kohei; Igarashi, Tamotsu

    Japan is now operating 3 earth observation satellites, i. e. MOS-1 (Marine Observation Satellite-1, Momo-1 in Japanese), EGS (Experimental Geodetic Satellite, Ajisai in Japanese) and GMS (Geostationary Meteorological Satellite, Himawari in Japanese). MOS-1 has 3 different sensors, MESSR (Multispectral Electronic Self Scanning Radiometer), VTIR (Visible and Thermal Infrared Radiometer) and MSR (Microwave Scanning Radiometer) in addition to DCS (Data Collection System). GMS has two sensors, VISSR (Visible and IR Spin Scan Radiometer) and SEM (Solar Environmental Monitor). EGS is equipped with reflecting mirrors of the sun light and laser reflecters. For the future earth observation satellites, ERS-1 (Earth Resources Satellite-1), MOS-1b, ADEOS (Advanced Earth Observing Satellite) are under development. Two sensors, AMSR (Advanced Microwave Scanning Radiometer) and ITIR (Intermediate Thermal IR Radiometer) for NASA's polar platform are initial stage of development. Study and planning are made for future earth observation satellites including Japanese polor platform, TRMM, etc.). The study for the second generation GMS has been made by the Committee on the Function of Future GMS under the request of Japan Meteorological Agency in FY 1987.

  19. Prediction of optical communication link availability: real-time observation of cloud patterns using a ground-based thermal infrared camera

    Science.gov (United States)

    Bertin, Clément; Cros, Sylvain; Saint-Antonin, Laurent; Schmutz, Nicolas

    2015-10-01

    The growing demand for high-speed broadband communications with low orbital or geostationary satellites is a major challenge. Using an optical link at 1.55 μm is an advantageous solution which potentially can increase the satellite throughput by a factor 10. Nevertheless, cloud cover is an obstacle for this optical frequency. Such communication requires an innovative management system to optimize the optical link availability between a satellite and several Optical Ground Stations (OGS). The Saint-Exupery Technological Research Institute (France) leads the project ALBS (French acronym for BroadBand Satellite Access). This initiative involving small and medium enterprises, industrial groups and research institutions specialized in aeronautics and space industries, is currently developing various solutions to increase the telecommunication satellite bandwidth. This paper presents the development of a preliminary prediction system preventing the cloud blockage of an optical link between a satellite and a given OGS. An infrared thermal camera continuously observes (night and day) the sky vault. Cloud patterns are observed and classified several times a minute. The impact of the detected clouds on the optical beam (obstruction or not) is determined by the retrieval of the cloud optical depth at the wavelength of communication. This retrieval is based on realistic cloud-modelling on libRadtran. Then, using subsequent images, cloud speed and trajectory are estimated. Cloud blockage over an OGS can then be forecast up to 30 minutes ahead. With this information, the preparation of the new link between the satellite and another OGS under a clear sky can be prepared before the link breaks due to cloud blockage.

  20. Monitoring Surface Climate With its Emissivity Derived From Satellite Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth fs environment. Long-term and large-scale observations needed for global monitoring and research can be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last 5 years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T(sub s) and emissivity spectra epsilon(sub v) with a spatial resolution of 0.5x0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. We demonstrate that surface epsilon(sub v) and T(sub s) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(sub v) together with T(sub s) from current and future operational satellites can be utilized as a means of long-term and large-scale monitoring of Earth 's surface weather environment and associated changes.

  1. Acquired methemoglobinemia in infants

    Directory of Open Access Journals (Sweden)

    Mehmet Mutlu

    2011-06-01

    Full Text Available Objective: This study aimed to determine the etiologic factors of acquired methemoglobinemia in infants younger than three months in our region. Material and Methods: This study was carried out retrospectively in infants with methemoglobinemia admitted to Karadeniz Technical University, Pediatric Clinic, during the period 2000-2009. Infants with methemoglobinemia were identified according to the medical records or ICD-10 code. Results: Nine infants with acquired methemoglobinemia (8 male, 1 female were included in the study. Seven cases were associated with the use of prilocaine for circumcision, one case with the use of prilocaine-lidocaine for local pain therapy, and one case with neonatal sepsis caused by Staphylococcus aureus.Conclusion: Prilocaine should not be used in infants less than three months of age because of the risk of methemoglobinemia. Ascorbic acid is an effective therapy if methylene blue is not obtained. It should not be forgotten that sepsis caused by S. aureus may cause methemoglobinemia in infants.

  2. Racks to acquire

    CERN Multimedia

    2004-01-01

    IT department has 25 80cm deep SCHROFF 19" racks which are no longer needed. Please contact Michel Blanc (Michel.Blanc@cern.ch, 74925 or 163223) from Monday 27th September if you are interested in acquiring some or all of these racks. Five shelf units suitable for housing up to 44 mini-tower PCs are also available. Photographs of racks and shelf units are available in the directory \\\\cern.ch\\dfs\\users\\t\\tim\\Public\\513.

  3. Acquired hypertrichosis lanuginosa

    Directory of Open Access Journals (Sweden)

    Kumar Pramod

    1993-01-01

    Full Text Available Acquired hypertirichosis lanuginose developed rapidly in a patient with no detectable malignancy. Soft, fine, downy hair growth was noticed on the face, ears, limbs and trunk. Bilaterally symmetrical vitiliginous macules were present on the ear and preauricular region. This case is reported because of its rarity, absence of any detectable malignancy and development of vitiligo, which to our knowledge has not been reported earlier.

  4. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  5. Preparation of thermal infrared and microwave absorber using SrTiO{sub 3}/BaFe{sub 12}O{sub 19}/polyaniline nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Seyed Hossein, E-mail: shhosseini@iiau.ac.ir [Department of Chemistry, Faculty of Science, Islamshahr Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Zamani, Parisa [Department of Applied Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-01-01

    In this research, first, SrTiO{sub 3} was synthesized as thermal infrared (TIR) absorbent and core and then BaFe{sub 12}O{sub 19} as microwave absorbent was prepared on SrTiO{sub 3} via co-precipitation method as first shell. Second, polyaniline (PANI) was coated on SrTiO{sub 3}/BaFe{sub 12}O{sub 19} NPs (NPs) via in situ polymerization by multi core–shell structures (SrTiO{sub 3}/BaFe{sub 12}O{sub 19}/PANI). Nanometer size and structures of samples were measured by TEM, XRD and FTIR. Morphology of nanocomposite was showed by SEM images. The magnetic and electric properties were also performed by VSM and four probe methods. The TIR absorption and microwave reflection loss of nanocomposites were investigated at 10–40 µm and 8–12 GHz, TIR and microwave frequencies, respectively. The results showed that the SrTiO{sub 3}/BaFe{sub 12}O{sub 19}/PANI nanocomposites have good compatible electric and magnetic properties and hence the microwave absorbency show wide bandwidth properties. The infrared thermal image testing showed that the ability of infrared thermal imaging was increased by increasing SrTiO{sub 3}/BaFe{sub 12}O{sub 19} as core and independent to increasing PANI as final shell. - Graphical abstract: The light reflectivity times of samples on human body are higher than metallic disks. So, they are suitable for TIR as absorbers. The light reflectivity times of samples were increased by increasing weight ratio and thickness. Human temperature could not transmit to samples by increasing weight ratio of core. Therefore weight ratio (SrTiO{sub 3}/BaFe{sub 12}O{sub 19} as core) above 40% and 1 mm diameter are the best result as TIR absorber. The SrTiO{sub 3}/BaFe{sub 12}O{sub 19}/PANI enhanced broad band IR light absorption was observed in the wavelength range of 10–40 µm. A minimum RL of −19 dB was observed at 9.2 GHz for a 1.5-mm thickness nanocomposite. The application of these samples may improve the IR thermographic detection, catalysis, sensors

  6. Modeling the ascent rate of the 2004 Mount St. Helens lava body using pre-eruption airborne thermal infrared camera data

    Science.gov (United States)

    Ramsey, M.; Schneider, D.; Wessels, R.; Clark, M.

    2005-12-01

    A helicopter-mounted forward-looking infrared radiometer (FLIR) was deployed by the Cascades Volcano Observatory (CVO) during the initial phases of renewed volcanic activity at Mount St. Helens (MSH). The instrument began collecting data on October 1, 2004, and was flown twice daily (weather permitting) during the first month of the eruption. Thermal infrared (TIR) data collected during the first seven flight-days imaged the 1980 crater floor, phreatic explosion pits, and ash cooling on the surface. However, it was not until October 11, 2004, that the FLIR data confirmed a lava body was present at the surface. After the initial extrusion of new dome rock, subsequent surveys from the helicopter-mounted and a hand-held FLIR were used to model its rise rate and volume. During the pre-extrusive phase of the eruption, the FLIR camera commonly imaged the same regions of the older lava dome and portions of the uplifted crater floor. Qualitative changes in the heat flux were noted at the time, but the rapid escalation in activity and long days of field work precluded a more quantitative approach. In an effort to understand the early phases of the eruption process, FLIR data from times prior to October 11 have been re-analyzed. Data from these days were ideal because of good weather conditions, relative stability of ground surface features, and a minimal amount of plume within the crater itself. Two distinct geomorphic features identifiable in each day's data were clipped from the full resolution images. The data were first corrected for distance, atmospheric pathlength energy, and surface emissivity and then converted to radiant flux. Assuming the radiative heat output at these locations is related to the conductive heat loss from the magma body below, heat balance models can be employed to estimate the depth of the magma. Assumptions that must be made for such an approach include: 1) the average pre-eruptive temperature for dacitic magma; 2) the contribution of convective

  7. Optical satellite data volcano monitoring: a multi-sensor rapid response system

    Science.gov (United States)

    Duda, Kenneth A.; Ramsey, Michael; Wessels, Rick L.; Dehn, Jonathan

    2009-01-01

    of the ASTER Urgent Request Protocol (URP) for natural disaster monitoring and scientific analysis, has expanded the project to other volcanoes around the world and is in progress through 2011. The focus on ASTER data is due to the suitability of the sensor for natural disaster monitoring and the availability of data. The instrument has several unique facets that make it especially attractive for volcanic observations (Ramsey and Dehn, 2004). Specifically, ASTER routinely collects data at night, it has the ability to generate digital elevation models using stereo imaging, it can collect data in various gain states to minimize data saturation, it has a cross-track pointing capability for faster targeting, and it collects data up to ±85° latitude for better global coverage. As with any optical imaging-based remote sensing, the viewing conditions can negatively impact the data quality. This impact varies across the optical and thermal infrared wavelengths as well as being a function of the specific atmospheric window within a given wavelength region. Water vapor and cloud formation can obscure surface data in the visible and near infrared (VNIR)/shortwave infrared (SWIR) region due mainly to non-selective scattering of the incident photons. In the longer wavelengths of the thermal infrared (TIR), scattering is less of an issue, but heavy cloud cover can still obscure the ground due to atmospheric absorption. Thin clouds can be optically-transparent in the VNIR and TIR regions, but can cause errors in the extracted surface reflectance or derived surface temperatures. In regions prone to heavy cloud cover, optical remote sensing can be improved through increased temporal resolution. As more images are acquired in a given time period the chances of a clear image improve dramatically. The Advanced Very High Resolution Radiometer (AVHRR) routine monitoring, which commonly collects 4-6 images per day of any north Pacific volcano, takes advantage of this fact. The rapid

  8. The Next Landsat Satellite: The Landsat Data Continuity Mission

    Science.gov (United States)

    Rons, James R.; Dwyer, John L.; Barsi, Julia A.

    2012-01-01

    The Landsat program is one of the longest running satellite programs for Earth observations from space. The program was initiated by the launch of Landsat 1 in 1972. Since then a series of six more Landsat satellites were launched and at least one of those satellites has been in operations at all times to continuously collect images of the global land surface. The Department of Interior (DOI) U.S. Geological Survey (USGS) preserves data collected by all of the Landsat satellites at their Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota. This 40-year data archive provides an unmatched record of the Earth's land surface that has undergone dramatic changes in recent decades due to the increasing pressure of a growing population and advancing technologies. EROS provides the ability for anyone to search the archive and order digital Landsat images over the internet for free. The Landsat data are a public resource for observing, characterizing, monitoring, trending, and predicting land use change over time providing an invaluable tool for those addressing the profound consequences of those changes to society. The most recent launch of a Landsat satellite occurred in 1999 when Landsat 7 was placed in orbit. While Landsat 7 remains in operation, the National Aeronautics and Space Administration (NASA) and the DOI/ USGS are building its successor satellite system currently called the Landsat Data Continuity Mission (LDCM). NASA has the lead for building and launching the satellite that will carry two Earth-viewing instruments, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI will take images that measure the amount of sunlight reflected by the land surface at nine wavelengths of light with three of those wavelengths beyond the range of human vision. T1RS will collect coincident images that measure light emitted by the land surface as a function of surface temperature at two longer wavelengths well beyond the

  9. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites........ The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...

  10. Satellite (Natural)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    In its most general sense, any celestial object in orbit around a similar larger object. Thus, for example, the Magellanic Clouds are satellite galaxies of our own Milky Way galaxy. Without qualification, the term is used to mean a body in orbit around a planet; an alternative term is moon. The term natural satellite distinguishes these bodies from artificial satellites—spacecraft placed in orbi...

  11. Acquired hyperostosis syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Dihlmann, W.; Hering, L.; Bargon, G.W.

    1988-10-01

    Sterno-costo-clavicular hyperostosis (SCCH) is the most common manifestation of a syndrome, consisting of increased bone metabolism, mostly new bone formation and heterotopic ossification of fibrous tissue, which we have characterised as the acquired hyperostosis syndrome. In part I we discuss the terminology, radiological appearances, scintigraphy, clinical and laboratory findings, bacteriology, histology, nosology, complications, treatment and differential diagnosis of SCCH. Chronic recurrent multifocal osteomyelitis (CRMO) is regarded as a phaenotype of SCCH, depending on the age. CRMO occurs in children, adolescents and young adults, SCCH predominantly in middleaged and elderly adults.

  12. Acquired von Willebrand Syndrome

    Institute of Scientific and Technical Information of China (English)

    郭涛

    2005-01-01

    @@ Acquired von Willebrand syndrome (AvWS) is kind of bleeding disorder with laboratory findings similar to those in congenital yon Willebrand disease (vWD).AvWS doesn's have any personal or family history of bleeding, but is associated with certain diseases or abnormal conditions or drugs. Although AvWS is being stated as a rare disease, it has gained more and more attention during the past years. Not because of the severity of the disease, but it is more common than we thought and most patients don' t have a proper diagnosis.

  13. "Ready to Acquire"

    DEFF Research Database (Denmark)

    Yetton, Philip; Henningsson, Stefan; Bjørn-Andersen, Niels

    2013-01-01

    This article describes the experiences of Danisco (a global food ingredients company) as it followed a growth-by-acquisition business strategy, focusing on how a new CIO built the IT resources to ensure the IT organization was "ready to acquire." We illustrate how these IT capabilities expedited...... the IT integration following two acquisitions, one of which involved Danisco expanding the scale of its business and the other extending the scope. Based on insights gained from Danisco, we provide lessons for CIOs to realize business benefits when managing post-acquisition IT integration....

  14. Application of remote sensing to thermal pollution analysis. [satellite sea surface temperature measurement assessment

    Science.gov (United States)

    Hiser, H. W.; Lee, S. S.; Veziroglu, T. N.; Sengupta, S.

    1975-01-01

    A comprehensive numerical model development program for near-field thermal plume discharge and far field general circulation in coastal regions is being carried on at the University of Miami Clean Energy Research Institute. The objective of the program is to develop a generalized, three-dimensional, predictive model for thermal pollution studies. Two regions of specific application of the model are the power plants sites at the Biscayne Bay and Hutchinson Island area along the Florida coastline. Remote sensing from aircraft as well as satellites are used in parallel with in situ measurements to provide information needed for the development and verification of the mathematical model. This paper describes the efforts that have been made to identify problems and limitations of the presently available satellite data and to develop methods for enhancing and enlarging thermal infrared displays for mesoscale sea surface temperature measurements.

  15. Detection of the urban heat island in Beijing using HJ-1B satellite imagery

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Satellite images are used extensively in studying the urban heat island(UHI) phenomenon.We evaluated the suitability of thermal infrared(TIR) data from the HJ-1B satellite for detecting UHI using a case study in Beijing.Two modified algorithms for retrieving the land surface temperature(LST) from HJ-1B data were tested.The results were compared with LST images derived from a Landsat TM thermal band and the MODIS LST output.The spatial pattern of UHI generated using HJ-1B data matched well with that produced using TM and MODIS data.Of the two algorithms,the mono-window algorithm performed better but further tests are necessary.With more frequent coverage than TM and higher spatial resolution than MODIS,the HJ-1B TIR data present a unique opportunity to study thermal environments in cities in China and neighboring countries.

  16. COMPARISON OF THE GROUND AND SATELLITE TEMPERATURE DATA, CASE OF WRANGELL ISLAND

    Directory of Open Access Journals (Sweden)

    M. Y. Grishchenko

    2016-01-01

    Full Text Available In modern times, in the country many remote areas are characterized by low density of weather stations, which reduces the accuracy of synoptic forecasts for territories remoted from the weather stations. In this regard, the use of thermal infrared satellite images for simulation of some climatic parameters is considered by the authors as a promising area of science. The article presents the results of comparing the land surface temperature values calculated from Landsat satellites images and ground-measured air temperature values. For the considered seasons the indicators are characterized by a pronounced linear relationship with a high correlation coefficient.

  17. Learning-by-Being-Acquired

    DEFF Research Database (Denmark)

    Colombo, Massimo Gaetano; Moreira, Solon; Rabbiosi, Larissa

    2016-01-01

    of new teams with both inventors of the acquiring and acquired firms-and assess the impact of this integration action in the period that immediately follows the acquisition. Drawing on social identity and self-categorization theories, we argue that R&D team reorganization increases the acquired inventors......’ use of the prior stock of technological knowledge of the acquiring firm after the acquisition. Furthermore, this effect is enhanced if the focal acquired inventor has high relative innovation ability but is weakened for acquired inventors with high ingroup collaborative strength. We construct a sample...

  18. Learning-By-Being-Acquired

    DEFF Research Database (Denmark)

    Colombo, Massimo G.; Moreira, Solon; Rabbiosi, Larissa

    In this paper we study post-acquisition integration in terms of R&D team reorganization—i.e., the creation of new teams with both inventors of the acquiring and acquired firms—and assess its impact on knowledge transfer in the period that follows the acquisition. Drawing on social identity and self......-categorization theories, we argue that R&D team reorganization increases the acquired inventors’ use of the prior stock of technological knowledge of the acquiring firm after the acquisition. Furthermore, this effect is enhanced if acquired inventors have higher innovation ability relative to their acquiring peers...

  19. Surgical treatment of acquired tracheocele.

    Science.gov (United States)

    Porubsky, Edward A; Gourin, Christine G

    2006-06-01

    Acquired tracheoceles are rare clinical entities that can cause a variety of chronic and recurrent aerodigestive tract symptoms. The management of acquired tracheoceles is primarily conservative, but surgical intervention may be indicated for patients with refractory symptoms. We present a case of acquired tracheocele and describe a method of successful surgical management.

  20. Multi-mission Satellite Management

    Science.gov (United States)

    Jamilkowski, M. L.; Teter, M. A.; Grant, K. D.; Dougherty, B.; Cochran, S.

    2015-12-01

    NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. CGS's multi-mission capabilities allows management all of assets as a single enterprise, more efficiently using ground resources and personnel and consolidating multiple ground systems into one. Sophisticated scheduling algorithms compare mission priorities and constraints across all ground stations, creating an enterprise schedule optimized to mission needs, which CGS executes to acquire the satellite link, uplink commands, downlink and route data to the operations and data processing facilities, and generate the final products for delivery to downstream users. This paper will illustrate the CGS's ability to manage multiple, enterprise-wide polar orbiting missions by demonstrating resource modeling and tasking, production of enterprise contact schedules for NOAA's Fairbanks ground station (using both standing and ad hoc requests), deconflicting resources due to ground outages, and updating resource allocations through dynamic priority definitions.

  1. Scientific Satellites

    Science.gov (United States)

    1967-01-01

    followed Hale’s into orbit. In 1879, Jules Verne wrote about launching small satellites with a gun possessing a muzzle velocity of 10 000 m/sec (ref. 3...was activated in 1950.11 It was located only a few tens of miles from the spot where Jules Verne had his Baltimore Gun Club fire a manned projectile to...principle, satellites can be launched by a single impulse applied at the Earth’s surface-say, with a large cannon, & la Jules Verne (sec. 8-3). In

  2. ICU-Acquired Weakness.

    Science.gov (United States)

    Jolley, Sarah E; Bunnell, Aaron E; Hough, Catherine L

    2016-11-01

    Survivorship after critical illness is an increasingly important health-care concern as ICU use continues to increase while ICU mortality is decreasing. Survivors of critical illness experience marked disability and impairments in physical and cognitive function that persist for years after their initial ICU stay. Newfound impairment is associated with increased health-care costs and use, reductions in health-related quality of life, and prolonged unemployment. Weakness, critical illness neuropathy and/or myopathy, and muscle atrophy are common in patients who are critically ill, with up to 80% of patients admitted to the ICU developing some form of neuromuscular dysfunction. ICU-acquired weakness (ICUAW) is associated with longer durations of mechanical ventilation and hospitalization, along with greater functional impairment for survivors. Although there is increasing recognition of ICUAW as a clinical entity, significant knowledge gaps exist concerning identifying patients at high risk for its development and understanding its role in long-term outcomes after critical illness. This review addresses the epidemiologic and pathophysiologic aspects of ICUAW; highlights the diagnostic challenges associated with its diagnosis in patients who are critically ill; and proposes, to our knowledge, a novel strategy for identifying ICUAW. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  3. Acquiring specific interpreting competence

    Directory of Open Access Journals (Sweden)

    Jana Zidar Forte

    2012-12-01

    Full Text Available In postgraduate interpreter training, the main objective of the course is to help trainees develop various competences, from linguistic, textual and cultural competence, to professional and specific interpreting competence. For simultaneous interpreting (SI, the main focus is on mastering the SI technique and strategies as well as on developing and strengthening communicative skills, which is discussed and illustrated with examples in the present paper. First, a brief overview is given of all the necessary competences of a professional interpreter with greater emphasis on specific interpreting competence for SI. In the second part of the paper, various approaches are described in terms of acquiring specific skills and strategies, specifically through a range of exercises. Besides interpreting entire speeches, practical courses should also consist of targeted exercises, which help trainees develop suitable coping strategies and mechanisms (later on almost automatisms, while at the same time "force" them to reflect on their individual learning process and interpreting performance. This provides a solid base on which trained interpreters can progress and develop their skills also after joining the professional sphere.

  4. Landsat—Earth observation satellites

    Science.gov (United States)

    ,

    2015-11-25

    Since 1972, Landsat satellites have continuously acquired space-based images of the Earth’s land surface, providing data that serve as valuable resources for land use/land change research. The data are useful to a number of applications including forestry, agriculture, geology, regional planning, and education. Landsat is a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). NASA develops remote sensing instruments and the spacecraft, then launches and validates the performance of the instruments and satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground reception, data archiving, product generation, and data distribution. The result of this program is an unprecedented continuing record of natural and human-induced changes on the global landscape.

  5. Mapping variations in weight percent silica measured from multispectral thermal infrared imagery - Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico

    Science.gov (United States)

    Hook, S.J.; Dmochowski, J.E.; Howard, K.A.; Rowan, L.C.; Karlstrom, K.E.; Stock, J.M.

    2005-01-01

    Remotely sensed multispectral thermal infrared (8-13 ??m) images are increasingly being used to map variations in surface silicate mineralogy. These studies utilize the shift to longer wavelengths in the main spectral feature in minerals in this wavelength region (reststrahlen band) as the mineralogy changes from felsic to mafic. An approach is described for determining the amount of this shift and then using the shift with a reference curve, derived from laboratory data, to remotely determine the weight percent SiO2 of the surface. The approach has broad applicability to many study areas and can also be fine-tuned to give greater accuracy in a particular study area if field samples are available. The approach was assessed using airborne multispectral thermal infrared images from the Hiller Mountains, Nevada, USA and the Tres Virgenes-La Reforma, Baja California Sur, Mexico. Results indicate the general approach slightly overestimates the weight percent SiO2 of low silica rocks (e.g. basalt) and underestimates the weight percent SiO2 of high silica rocks (e.g. granite). Fine tuning the general approach with measurements from field samples provided good results for both areas with errors in the recovered weight percent SiO2 of a few percent. The map units identified by these techniques and traditional mapping at the Hiller Mountains demonstrate the continuity of the crystalline rocks from the Hiller Mountains southward to the White Hills supporting the idea that these ranges represent an essentially continuous footwall block below a regional detachment. Results from the Baja California data verify the most recent volcanism to be basaltic-andesite. ?? 2005 Elsevier Inc. All rights reserved.

  6. Recognition of shallow karst water resources and cave potentials using thermal infrared image and terrain characteristics in semi-arid regions of Iran

    Science.gov (United States)

    Jalali, Nader; Saghafian, Bahram; Imanov, Farda; Museyyibov, Museyyib

    2009-12-01

    Shallow karst water resources and caves may influence land surface temperatures due to cold transfer property of rocks and evaporation from buried karst. The objective of this research was to develop a method for recognition of karst areas based on evaluating the surface characteristics that manifest itself by low land surface temperature in the satellite images. Investigation of thermal ETM + image of the study region in Iran showed that parts of carbonate rocks that bear karst water are relatively cooler compared to areas with similar terrain conditions. Relational modeling provided useful information on spatial distribution of areas that have the potential to hold karst water resources and/or caves. Further inspection of ASTER images, along with geotechnical, geophysical and geological field surveys verified the approach. Significant correlation was found between electrical resistivity and thermal band values. The method may be used as a primary exploratory tool for shallow karst water explorations in similar areas.

  7. Satellite Gravimetry Applied to Drought Monitoring

    Science.gov (United States)

    Rodell, Matthew

    2010-01-01

    Near-surface wetness conditions change rapidly with the weather, which limits their usefulness as drought indicators. Deeper stores of water, including root-zone soil wetness and groundwater, portend longer-term weather trends and climate variations, thus they are well suited for quantifying droughts. However, the existing in situ networks for monitoring these variables suffer from significant discontinuities (short records and spatial undersampling), as well as the inherent human and mechanical errors associated with the soil moisture and groundwater observation. Remote sensing is a promising alternative, but standard remote sensors, which measure various wavelengths of light emitted or reflected from Earth's surface and atmosphere, can only directly detect wetness conditions within the first few centimeters of the land s surface. Such sensors include the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) C-band passive microwave measurement system on the National Aeronautic and Space Administration's (NASA) Aqua satellite, and the combined active and passive L-band microwave system currently under development for NASA's planned Soil Moisture Active Passive (SMAP) satellite mission. These instruments are sensitive to water as deep as the top 2 cm and 5 cm of the soil column, respectively, with the specific depth depending on vegetation cover. Thermal infrared (TIR) imaging has been used to infer water stored in the full root zone, with limitations: auxiliary information including soil grain size is required, the TIR temperature versus soil water content curve becomes flat as wetness increases, and dense vegetation and cloud cover impede measurement. Numerical models of land surface hydrology are another potential solution, but the quality of output from such models is limited by errors in the input data and tradeoffs between model realism and computational efficiency. This chapter is divided into eight sections, the next of which describes

  8. Weather Satellite Enterprise Information Chain

    Science.gov (United States)

    Jamilkowski, M. L.; Grant, K. D.; Miller, S. W.; Cochran, S.

    2015-12-01

    NOAA & NASA are acquiring the next-generation civilian operational weather satellite: Joint Polar Satellite System (JPSS). Contributing the afternoon orbit & ground system (GS) to replace current NOAA POES Satellites, its sensors will collect meteorological, oceanographic & climatological data. The JPSS Common Ground System (CGS), consisting of C3 and IDP segments, is developed by Raytheon. It now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transferring data between ground facilities, processing them into environmental products for NOAA weather centers, and expanding to support JPSS-1 in 2017. As a multi-mission system, CGS provides combinations of C3, data processing, and product delivery for numerous NASA, NOAA, DoD and international missions.The CGS provides a wide range of support to a number of missions: Command and control and mission management for the S-NPP mission today, expanding this support to the JPSS-1 satellite mission in 2017 Data acquisition for S-NPP, the JAXA's Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the DoD Data routing over a global fiber network for S-NPP, JPSS-1, GCOM-W1, POES, DMSP, Coriolis/WindSat, NASA EOS missions, MetOp for EUMETSAT and the National Science Foundation Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS plays a key role in facilitating the movement and value-added enhancement of data all the way from satellite-based sensor data to delivery to the consumers who generate forecasts and produce watches and warnings. This presentation will discuss the information flow from sensors, through data routing and processing, and finally to product delivery. It will highlight how advances in architecture developed through lessons learned from S-NPP and implemented for JPSS-1 will increase data availability and reduce latency for end user applications.

  9. Global distributions of methanol and formic acid retrieved for the first time from the IASI/MetOp thermal infrared sounder

    Directory of Open Access Journals (Sweden)

    A. Razavi

    2011-01-01

    Full Text Available Methanol (CH3OH and formic acid (HCOOH are among the most abundant volatile organic compounds present in the atmosphere. In this work, we derive the global distributions of these two organic species using for the first time the Infrared Atmospheric Sounding Interferometer (IASI launched onboard the MetOp-A satellite in 2006. This paper describes the method used and provides a first critical analysis of the retrieved products. The retrieval process follows a two-step approach in which global distributions are first obtained on the basis of a simple radiance indexing (transformed into brightness temperatures, and then mapped onto column abundances using suitable conversion factors. For methanol, the factors were calculated using a complete retrieval approach in selected regions. In the case of formic acid, a different approach, which uses a set of forward simulations for representative atmospheres, has been used. In both cases, the main error sources are carefully determined: the average relative error on the column for both species is estimated to be about 50%, increasing to about 100% for the least favorable conditions. The distributions for the year 2009 are discussed in terms of seasonality and source identification. Time series comparing methanol, formic acid and carbon monoxide in different regions are also presented.

  10. All sky imaging observations in visible and infrared waveband for validation of satellite cloud and aerosol products

    Science.gov (United States)

    Lu, Daren; Huo, Juan; Zhang, W.; Liu, J.

    A series of satellite sensors in visible and infrared wavelengths have been successfully operated on board a number of research satellites, e.g. NOAA/AVHRR, the MODIS onboard Terra and Aqua, etc. A number of cloud and aerosol products are produced and released in recent years. However, the validation of the product quality and accuracy are still a challenge to the atmospheric remote sensing community. In this paper, we suggest a ground based validation scheme for satellite-derived cloud and aerosol products by using combined visible and thermal infrared all sky imaging observations as well as surface meteorological observations. In the scheme, a visible digital camera with a fish-eye lens is used to continuously monitor the all sky with the view angle greater than 180 deg. The digital camera system is calibrated for both its geometry and radiance (broad blue, green, and red band) so as to a retrieval method can be used to detect the clear and cloudy sky spatial distribution and their temporal variations. A calibrated scanning thermal infrared thermometer is used to monitor the all sky brightness temperature distribution. An algorithm is developed to detect the clear and cloudy sky as well as cloud base height by using sky brightness distribution and surface temperature and humidity as input. Based on these composite retrieval of clear and cloudy sky distribution, it can be used to validate the satellite retrievals in the sense of real-simultaneous comparison and statistics, respectively. What will be presented in this talk include the results of the field observations and comparisons completed in Beijing (40 deg N, 116.5 deg E) in year 2003 and 2004. This work is supported by NSFC grant No. 4002700, and MOST grant No 2001CCA02200

  11. Intercomparison of desert dust optical depth from satellite measurements

    Directory of Open Access Journals (Sweden)

    E. Carboni

    2012-08-01

    Full Text Available This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, vegetated, and ocean surfaces. The aim is to identify the differences between current datasets. The satellite instruments considered are AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting aspect is that the different algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. These include multi-angle approaches (MISR, AATSR, polarisation measurements (POLDER, single-view approaches using solar wavelengths (OMI, MODIS, and the thermal infrared spectral region (SEVIRI, AIRS. Differences between instruments, together with the comparison of different retrieval algorithms applied to measurements from the same instrument, provide a unique insight into the performance and characteristics of the various techniques employed. As well as the intercomparison between different satellite products, the AODs have also been compared to co-located AERONET data. Despite the fact that the agreement between satellite and AERONET AODs is reasonably good for all of the datasets, there are significant differences between them when compared to each other, especially over land. These differences are partially due to differences in the algorithms, such as assumptions about aerosol model and surface properties. However, in this comparison of spatially and temporally averaged data, it is important to note that differences in sampling, related to the actual footprint of each instrument on the heterogeneous aerosol field, cloud identification and the quality control flags of each dataset can be an important issue.

  12. Satellite observations indicate rapid warming trend for lakes in California and Nevada

    Science.gov (United States)

    Schneider, P.; Hook, S. J.; Radocinski, R. G.; Corlett, G. K.; Hulley, G. C.; Schladow, S. G.; Steissberg, T. E.

    2009-11-01

    Large lake temperatures are excellent indicators of climate change; however, their usefulness is limited by the paucity of in situ measurements and lack of long-term data records. Thermal infrared satellite imagery has the potential to provide frequent and accurate retrievals of lake surface temperatures spanning several decades on a global scale. Analysis of seventeen years of data from the Along-Track Scanning Radiometer series of sensors and data from the Moderate Resolution Imaging Spectroradiometer shows that six lakes situated in California and Nevada have exhibited average summer nighttime warming trends of 0.11 ± 0.02°C yr-1 (p < 0.002) since 1992. A comparison with air temperature observations suggests that the lake surface temperature is warming approximately twice as fast as the average minimum surface air temperature.

  13. 高帧频低噪声红外焦平面信息获取系统%Information Acquisition System for Thermal Infrared Focal Plane Array with High Frame-rate and Low-noise

    Institute of Scientific and Technical Information of China (English)

    程高超; 陈小文; 王湘波; 李春来; 王建宇

    2013-01-01

    A kind of high-rate and low-noise information acquisition system for French cooled 320×256 HgCdTe long wave infrared focal plane arrays MARS LW K508 was designed. The system consists of detector drive, signal processing, data acquisition and sequential control, image transmission and processing modules. Experimental results show that the frame frequency of the system can be up to 200 frame/s, the RMS is 0.7-0.8 mV (300 K) and images after nonuniformity correction are clear, which can be used in the high-end thermal infrared focal plane field such as surface thermal infrared spectral detection and high-speed infrared surveillance and imaging.%  设计了一种针对法国引进制冷型高性能320×256元HgCdTe长波红外焦平面探测器MARS LW K508的信息获取系统。该系统包括红外光学镜头、探测器驱动电路、信号处理电路、数据采集与控制电路、图像传输与处理软件等。经过测试,系统在全帧读出时可实现最高200 Hz的帧频,面对300 K黑体目标测试得到均值噪声为0.7~0.8 mV,综合灵敏度优于0.1 K。系统获取的图像经过校正后质量良好。该系统可用于地表热红外成像光谱探测、高速红外监视成像等高端热红外焦平面应用领域。

  14. Acquired ichthyosis with hoffman's syndrome

    Directory of Open Access Journals (Sweden)

    Sathyanarayana B

    2003-01-01

    Full Text Available A middle aged man presented with features of acquired ichthyosis with Hoffman's syndrome. Laboratory tests support hypothyodism. Myoedema and hypertrophy of muscles were present. Patient was previously treated for Pellagra.

  15. Land surface thermal characterization of Asian-pacific region with Japanese geostationary satellite

    Science.gov (United States)

    Oyoshi, K.; Tamura, M.

    2010-12-01

    Land Surface Temperature (LST) is a significant indicator of energy balance at the Earth's surface. It is required for a wide variety of climate, hydrological, ecological, and biogeochemical studies. Although LST is highly variable both temporally and spatially, it is impossible for polar-orbiting satellite to detect hourly changes in LST, because the satellite is able to only collect data of the same area at most twice a day. On the other hand, geostationary satellite is able to collect hourly data and has a possibility to monitor hourly changes in LST, therefore hourly measurements of geostationary satellite enables us to characterize detailed thermal conditions of the Earth's surface and improve our understanding of the surface energy balance. Multi-functional Transport Satellite (MTSAT) is a Japanese geostationary satellite launched in 2005 and covers Asia-Pacific region. MTSAT provides hourly data with 5 bands including two thermal infrared (TIR) bands in the 10.5-12.5 micron region. In this research, we have developed a methodology to retrieve hourly LST from thermal infrared data of MTSAT. We applied Generalized Split-window (GSW) equation to estimate LST from TIR data. First, the brightness temperatures measured at sensor on MTSAT was simulated by radiative transfer code (MODTRAN), and the numerical coefficients of GSW equation were optimized based on the simulation results with non-linear minimization algorithm. The standard deviation of derived GSW equation was less than or equal to 1.09K in the case of viewing zenith angle lower than 40 degree and 1.73K in 60 degree. Then, spatial distributions of LST have been mapped optimized GSW equation with brightness temperatures of MTSAT IR1 and IR2 and emissivity map from MODIS product. Finally, these maps were validated with MODIS LST product (MOD11A1) over four Asian-pacific regions such as Bangkok, Tokyo, UlanBator and Jakarta , It is found that RMSE of these regions were 4.57K, 2.22K, 2.71K and 3.92K

  16. [Analysis of the Influence of Temperature on the Retrieval of Ozone Vertical Profiles Using the Thermal Infrared CrIS Sounder].

    Science.gov (United States)

    Ma, Peng-fei; Chen, Liang-fu; Zou, Ming-min; Zhang, Ying; Tao, Ming-hui; Wang, Zi-leng; Su, Lin

    2015-12-01

    Ozone is a particularly critical trace gas in the Earth's atmosphere, since this molecule plays a key role in the photochemical reactions and climate change. The TIR measurements can capture the variability of ozone and are weakly sensitive to the lowermost tropospheric ozone content but can provide accurate measurements of tropospheric ozone and higher vertical resolution ozone profiles, with the additional advantage that measurements are also possible during the night. Because of the influence of atmospheric temperature, the ozone profile retrieval accuracy is severely limited. This paper analyze and discuss the ozone absorption spectra and weighting function sensitivity of temperature and its influence on ozone profile retrieval in detail. First, we simulate the change of atmospheric transmittance and radiance by importing 1 K temperature uncertainty, using line-by-line radiative transfer mode under 6 different atmosphere modes. The results show that the transmittance change ratio for 1 K temperature variation was consistent with the transmittance change ratio for 5%-6% change of ozone density variation in all layers of the profile. Then, we calculate the change of weighting function by a temperature error of 1 K, using the Community Radiative Transfer Model (CRTM) for the Cross-track Infrared Sounder (CrIS) on the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite and calculate the corresponding change of retrieval result. The results demonstrate that CrIS is sensitive to Ozone in the middle to upper stratosphere, with the peak vertical sensitivity between 10-100 hPa and the change of weighting function for 1 K temperature variation was consistent with 6% change in the ozone profile. Finally, the paper retrieves ozone profiles from the CrIS radiances with a nonlinear Newton iteration method and use the eigenvector regression algorithm to construct the a priori state. In order to resolve the problem of temperature uncertainty and get high accuracy

  17. The Galilean Satellites

    Science.gov (United States)

    1998-01-01

    This composite includes the four largest moons of Jupiter which are known as the Galilean satellites. The Galilean satellites were first seen by the Italian astronomer Galileo Galilei in 1610. Shown from left to right in order of increasing distance from Jupiter, Io is closest, followed by Europa, Ganymede, and Callisto.The order of these satellites from the planet Jupiter helps to explain some of the visible differences among the moons. Io is subject to the strongest tidal stresses from the massive planet. These stresses generate internal heating which is released at the surface and makes Io the most volcanically active body in our solar system. Europa appears to be strongly differentiated with a rock/iron core, an ice layer at its surface, and the potential for local or global zones of water between these layers. Tectonic resurfacing brightens terrain on the less active and partially differentiated moon Ganymede. Callisto, furthest from Jupiter, appears heavily cratered at low resolutions and shows no evidence of internal activity.North is to the top of this composite picture in which these satellites have all been scaled to a common factor of 10 kilometers (6 miles) per picture element.The Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft acquired the Io and Ganymede images in June 1996, the Europa images in September 1996, and the Callisto images in November 1997.Launched in October 1989, the spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission

  18. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  19. Thermal infrared image analysis of a quiescent cone on Piton de la Fournaise volcano: Evidence of convective air flow within an unconsolidated soil

    Science.gov (United States)

    Antoine, R.; Baratoux, D.; Rabinowicz, M.; Fontaine, F.; Bachèlery, P.; Staudacher, T.; Saracco, G.; Finizola, A.

    2009-06-01

    We report on the detection of air convection with infrared thermal images for two quasi-circular craters, 20 m and 40 m wide, forming the volcanically inactive cone of Formica Leo (Reunion Island). The thermal images have been acquired from an infrared camera at regular time intervals during a complete diurnal cycle. During the night and at dawn, we observe that the rims are warmer than the centers of the craters. The conductivity contrast of the highly porous soils filling the craters and their 30° slopes are unable to explain the systematic temperature drop from rim to centers. We suggest that this signal could be attributed to air convection with gas entering the highly permeable soil at the center of each crater, then flowing upslope along the bottom of the soil layer, before exiting it along the crater rims. To quantify this process, we present a two-dimensional numerical modelling of air convection in a sloped volcanic soil with a surface temperature evolving between day and night. This convection depends on a unique dimensionless equivalent Rayleigh number Raeq which is the product of the standard Rayleigh number with the volumetric heat capacity ratio of the air and the soil. The convective flow is unsteady: during some periods, the convective flow is entirely confined within the soil, and at other times air enters the crater at its center and exits it at the rim crests. When Raeq = 6000, a value likely compatible with the soil permeability and the geothermal heat flux, a very strong transient cold air plume occasionally develops along the center of the crater. The interval of time between two plumes only depends on the thermal fluctuations within the top boundary layer of the convective cell, and thus is not contrasted by the diurnal cycle. The detachment of a cold plume can occur at any time, after few days of quiescence, and lasts several hours. During the whole convective cycle, the rim to center temperature drop persists and has an amplitude and a

  20. Neptune's small satellites

    Science.gov (United States)

    Thomas, P.

    1992-04-01

    The small satellites of Neptune and other planets discovered during the Voyager 2 mission are discussed in terms of their composition and relationship to the planetary systems. The satellite Proteus is described in terms of its orbit, five other satellites are described, and they are compared to ther small satellites and systems. Neptune's satellites are hypothesized to be related to the ring system, and the satellite Galatea is related to the confinement of the rings.

  1. Thermal Infrared Imaging and Atmospheric Modeling of VHS J125601.92-125723.9 b: Evidence for Moderately Thick Clouds and Equilibrium Carbon Chemistry in a Hierarchical Triple System

    CERN Document Server

    Rich, Evan A; Wisniewski, John P; Hashimoto, Jun; Brandt, Timothy D; Carson, Joseph C; Kuzuhara, Masayuki; Uyama, Taichi

    2016-01-01

    We present and analyze Subaru/IRCS L' and M' images of the nearby M dwarf VHS J125601.92-125723.9 (VHS 1256), which was recently claimed to have a ~11 M_Jup companion (VHS 1256 b) at ~102 au separation. Our AO images partially resolve the central star into a binary, whose components are nearly equal in brightness and separated by 0.106" +/- 0.001". VHS 1256 b occupies nearly the same near-IR color-magnitude diagram position as HR 8799 bcde and has a comparable L' brightness. However, it has a substantially redder H - M' color, implying a relatively brighter M' flux density than for the HR 8799 planets and suggesting that non-equilibrium carbon chemistry may be less significant in VHS 1256 b. We successfully match the entire SED (optical through thermal infrared) for VHS 1256 b to atmospheric models assuming chemical equilibrium, models which failed to reproduce HR 8799 b at 5 microns. Our modeling favors slightly thick clouds in the companion's atmosphere, although perhaps not quite as thick as those favored ...

  2. Somatically acquired structural genetic differences

    DEFF Research Database (Denmark)

    Magaard Koldby, Kristina; Nygaard, Marianne; Christensen, Kaare;

    2016-01-01

    Structural genetic variants like copy number variants (CNVs) comprise a large part of human genetic variation and may be inherited as well as somatically acquired. Recent studies have reported the presence of somatically acquired structural variants in the human genome and it has been suggested t...... with age.European Journal of Human Genetics advance online publication, 20 April 2016; doi:10.1038/ejhg.2016.34.......Structural genetic variants like copy number variants (CNVs) comprise a large part of human genetic variation and may be inherited as well as somatically acquired. Recent studies have reported the presence of somatically acquired structural variants in the human genome and it has been suggested...... that they may accumulate in elderly individuals. To further explore the presence and the age-related acquisition of somatic structural variants in the human genome, we investigated CNVs acquired over a period of 10 years in 86 elderly Danish twins as well as CNV discordances between co-twins of 18 monozygotic...

  3. Global satellite composites - 20 years of evolution

    Science.gov (United States)

    Kohrs, Richard A.; Lazzara, Matthew A.; Robaidek, Jerrold O.; Santek, David A.; Knuth, Shelley L.

    2014-01-01

    For two decades, the University of Wisconsin Space Science and Engineering Center (SSEC) and the Antarctic Meteorological Research Center (AMRC) have been creating global, regional and hemispheric satellite composites. These composites have proven useful in research, operational forecasting, commercial applications and educational outreach. Using the Man computer Interactive Data System (McIDAS) software developed at SSEC, infrared window composites were created by combining Geostationary Operational Environmental Satellite (GOES), and polar orbiting data from the SSEC Data Center and polar data acquired at McMurdo and Palmer stations, Antarctica. Increased computer processing speed has allowed for more advanced algorithms to address the decision making process for co-located pixels. The algorithms have evolved from a simplistic maximum brightness temperature to those that account for distance from the sub-satellite point, parallax displacement, pixel time and resolution. The composites are the state-of-the-art means for merging/mosaicking satellite imagery.

  4. Comparison of Phenomenology for Satellite Characterization

    Science.gov (United States)

    Richmond, D.; Spoto, G.

    2016-09-01

    Techniques for improved characterization of Satellites have been an area of research for several years. Many of these approaches show great promise and have been validated using models and simulations. In this paper, multiple phenomenologies that support satellite characterization will be discussed to include: optical, radar, signals, and Infra-Red. The paper will identify satellite characteristics that could be gleaned from the various data types. Algorithms that support extracting the information will be referenced. Unique collection conditions that enable a phenomenology to yield desired data will be discussed. This paper will discuss the impact of changes to satellite characterization data types over the life of an on-orbit asset. The benefits of such information will be discussed, to include re-acquiring objects after a maneuver.

  5. Characterization of urban heat island effects over Asian megacities with hourly LST maps derived from Japanese geostationary satellite data

    Science.gov (United States)

    Oyoshi, K.; Tamura, M.

    2009-12-01

    Asian countries are expected to continue economic growth with high rate and urban structure can be transformed dramatically. Urbanization and increase in anthropogenic energy consumption cause urban heat island effect. And, Heat island effect increases cooling cost in summer and induces health problem such as heat stroke. Remotely sensed data can be powerful tool to characterize urban area and measure urban thermal conditions, because it is able to capture spatio-temporal variations in urban environments. Japanese geostationary meteorological satellite, MTSAT which covers east Asia and the western Pacific region from 140 degrees East above the equator was launched in February 2005. MTSAT provides hourly visible and thermal infrared image, and hourly Land Surface Temperature (LST) can be retrieved. Therefore, compared to polar orbiting satellites such as MODIS or AVHRR, MTSAT is expected to characterize urban thermal conditions in much detailed temporal scale. In this study, in order to evaluate thermal conditions over Asian megacities with MTSAT data, we investigated methodology for monitoring urban LST with satellite data and characterize thermal conditions by using hourly LST data. Firstly, LST were retrieved from MTSAT thermal infrared data with split-window algorithm, and it was confirmed that MTSAT is able to capture hourly spatio-temporal changes and detect urban heat island effects. Then, we constructed LST database of Asian megacities and the database was open to public on the WWW (http://eiserv.uee.kyoto-u.ac.jp/MTSAT/LST/index_e.php). Finally, by using developed LST database, characteristics of hourly temperature changes of Asian megacities were compared and categorized. And it is found that these characteristics were depend on urban structure of each city. Near-real time land surface temperature (LST) monitoring system on the WWW. Latest LST images of Asian megacities are displayed on the top page.

  6. The next Landsat satellite; the Landsat Data Continuity Mission

    Science.gov (United States)

    Irons, James R.; Dwyer, John L.; Barsi, Julia A.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) and the Department of Interior United States Geological Survey (USGS) are developing the successor mission to Landsat 7 that is currently known as the Landsat Data Continuity Mission (LDCM). NASA is responsible for building and launching the LDCM satellite observatory. USGS is building the ground system and will assume responsibility for satellite operations and for collecting, archiving, and distributing data following launch. The observatory will consist of a spacecraft in low-Earth orbit with a two-sensor payload. One sensor, the Operational Land Imager (OLI), will collect image data for nine shortwave spectral bands over a 185 km swath with a 30 m spatial resolution for all bands except a 15 m panchromatic band. The other instrument, the Thermal Infrared Sensor (TIRS), will collect image data for two thermal bands with a 100 m resolution over a 185 km swath. Both sensors offer technical advancements over earlier Landsat instruments. OLI and TIRS will coincidently collect data and the observatory will transmit the data to the ground system where it will be archived, processed to Level 1 data products containing well calibrated and co-registered OLI and TIRS data, and made available for free distribution to the general public. The LDCM development is on schedule for a December 2012 launch. The USGS intends to rename the satellite "Landsat 8" following launch. By either name a successful mission will fulfill a mandate for Landsat data continuity. The mission will extend the almost 40-year Landsat data archive with images sufficiently consistent with data from the earlier missions to allow long-term studies of regional and global land cover change.

  7. Acquiring taste in home economics?

    DEFF Research Database (Denmark)

    Stenbak Larsen, Christian

    2015-01-01

    appreciated by the group of boys, and others again learned to stick with their idiosyncrasies when pressured by the teacher. Conclusions: Children were acquiring taste in the home economic lessons, but not only the kind of tastes that the teacher had planned for. This leads to reflections on the very complex...

  8. Acquired Equivalence Changes Stimulus Representations

    Science.gov (United States)

    Meeter, M.; Shohamy, D.; Myers, C. E.

    2009-01-01

    Acquired equivalence is a paradigm in which generalization is increased between two superficially dissimilar stimuli (or antecedents) that have previously been associated with similar outcomes (or consequents). Several possible mechanisms have been proposed, including changes in stimulus representations, either in the form of added associations or…

  9. Acquired aplastic anemia in children.

    Science.gov (United States)

    Hartung, Helge D; Olson, Timothy S; Bessler, Monica

    2013-12-01

    This article provides a practice-based and concise review of the etiology, diagnosis, and management of acquired aplastic anemia in children. Bone marrow transplantation, immunosuppressive therapy, and supportive care are discussed in detail. The aim is to provide the clinician with a better understanding of the disease and to offer guidelines for the management of children with this uncommon yet serious disorder.

  10. Post febrile acquired cutis laxa

    Directory of Open Access Journals (Sweden)

    Muthukumaran R

    1999-01-01

    Full Text Available Acquired cutis laxa following enteric fever has been described in a male in the neck region. Biopsy revealed fragmented elastic fibres in the dermis which were better visualised with special stain for elastic tissue. This case is reported for rarity of its occurrence at the localised site following febrile illness.

  11. Complement's participation in acquired immunity

    DEFF Research Database (Denmark)

    Nielsen, Claus Henrik; Leslie, Robert Graham Quinton

    2002-01-01

    in which antigen is seen, be it alone or in association with natural or induced antibodies and/or C3-complement fragments. The aim of this review is to describe the present status of our understanding of complement's participation in acquired immunity and the regulation of autoimmune responses....

  12. Acquired causes of intestinal malabsorption

    NARCIS (Netherlands)

    van der Heide, F.

    This review focuses on the acquired causes, diagnosis, and treatment of intestinal malabsorption. Intestinal absorption is a complex process that depends on many variables, including the digestion of nutrients within the intestinal lumen, the absorptive surface of the small intestine, the membrane

  13. Satellite data compression

    CERN Document Server

    Huang, Bormin

    2011-01-01

    Satellite Data Compression covers recent progress in compression techniques for multispectral, hyperspectral and ultra spectral data. A survey of recent advances in the fields of satellite communications, remote sensing and geographical information systems is included. Satellite Data Compression, contributed by leaders in this field, is the first book available on satellite data compression. It covers onboard compression methodology and hardware developments in several space agencies. Case studies are presented on recent advances in satellite data compression techniques via various prediction-

  14. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  15. Thermal precursors in satellite images of the 1999 eruption of Shishaldin Volcano

    Science.gov (United States)

    Dehn, Jonathan; Dean, Kenneson; Engle, Kevin; Izbekov, Pavel

    2002-07-01

    Shishaldin Volcano, Unimak Island Alaska, began showing signs of thermal unrest in satellite images on 9 February 1999. A thermal anomaly and small steam plume were detected at the summit of the volcano in short-wave thermal infrared AVHRR (advanced very high resolution radiometer) satellite data. This was followed by over 2 months of changes in the observed thermal character of the volcano. Initially, the thermal anomaly was only visible when the satellite passed nearly directly over the volcano, suggesting a hot source deep in the central crater obscured from more oblique satellite passes. The "zenith angle" needed to see the anomaly increased with time, presumably as the thermal source rose within the conduit. Based on this change, an ascent rate of ca. 14 m per day for the thermal source was estimated, until it reached the summit on around 21 March. It is thought that Strombolian activity began around this time. The precursory activity culminated in a sub-Plinian eruption on 19 April, ejecting ash to over 45,000 ft. (13,700 m). The thermal energy output through the precursory period was calculated based on geometric constraints unique to Shishaldin. These calculations show fluctuations that can be tied to changes in the eruptive character inferred from seismic records and later geologic studies. The remote location of this volcano made satellite images a necessary observation tool for this eruption. To date, this is the longest thermal precursory activity preceding a sub-Plinian eruption recorded by satellite images in the region. This type of thermal monitoring of remote volcanoes is central in the efforts of the Alaska Volcano Observatory to provide timely warnings of volcanic eruption, and mitigate their associated hazards to air-traffic and local residents.

  16. Discovery of a Satellite around a Near-Earth Asteroid

    Science.gov (United States)

    1997-07-01

    secure lightcurve coverage over a longer period of time than was possible from La Silla alone. As a result, a series of lightcurve measurements were performed from June 3 to 9 in close cooperation with Petr Pravec and Lenka Sarounova working at the Ondrejov Observatory, near Prague in the Czech Republic. Luckily, the weather conditions were favourable at both sites and the dips in the lightcurve were indeed observed at the predicted times. Based on the four well observed events, it was then possible to determine a period of 1.155 days for their occurence. Thus, the hypothesis of a satellite orbiting around Dionysus was confirmed. As a result, the International Astronomical Union's Minor Planet Center located in Cambridge (MA, USA) promptly gave a provisional designation to the new satellite - S/1997 (3671) 1 . How big is Dionysus? Meanwhile, in Hawaii, the world's largest infrared telescope was being trained on Dionysus to obtain information about its size and composition. Alan Harris , also a scientist from the DLR in Berlin, and John Davies from the Joint Astronomy Centre in Hilo, Hawaii, observed the thermal infrared radiation emitted by Dionysus with the 3.8-m United Kingdom Infrared Telescope (UKIRT) situated on Mauna Kea. Similar observations over a broader spectral range were also made by the European Space Agency's orbiting Infrared Space Observatory. The thermal or "heat" radiation emitted by an asteroid depends on its size and the amount of sunlight it absorbs (darker bodies being warmer). In the case of Dionysus the measured radiation was much weaker than expected, indicating that the asteroid has an intrinsically bright (reflective) surface and is only about 1 km in diameter. This is much smaller than (253) Ida, the only other asteroid known to have a moon, which is about 60 km across. Further observations Eventually it should be possible to determine the orbital radius of the satellite, its size and the inclination of its orbital plane. In order to obtain

  17. Occupationally Acquired American Cutaneous Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Maria Edileuza Felinto de Brito

    2012-01-01

    Full Text Available We report two occupationally acquired cases of American cutaneous leishmaniasis (ACL: one accidental laboratory autoinoculation by contaminated needlestick while handling an ACL lesion sample, and one acquired during field studies on bird biology. Polymerase chain reaction (PCR assays of patient lesions were positive for Leishmania, subgenus Viannia. One isolate was obtained by culture (from patient 2 biopsy samples and characterized as Leishmania (Viannia naiffi through an indirect immunofluorescence assay (IFA with species-specific monoclonal antibodies (mAbs and by multilocus enzyme electrophoresis (MLEE. Patients were successfully treated with N-methyl-glucamine. These two cases highlight the potential risks of laboratory and field work and the need to comply with strict biosafety procedures in daily routines. The swab collection method, coupled with PCR detection, has greatly improved ACL laboratory diagnosis.

  18. Nursing home-acquired pneumonia.

    Science.gov (United States)

    El Solh, Ali A

    2009-02-01

    Nursing home-acquired pneumonia (NHAP) was first described in 1978. Since then there has been much written regarding NHAP and its management despite the lack of well-designed studies in this patient population. The most characteristic features of patients with NHAP are the atypical presentation, which may lead to delay in diagnosis and therapy. The microbial etiology of pneumonia encompasses a wide spectrum that spans microbes recovered from patients with community-acquired pneumonia to organisms considered specific only to nosocomial settings. Decision to transfer a nursing home patient to an acute care facility depends on a host of factors, which include the level of staffing available at the nursing home, patients' advance directives, and complexity of treatment. The presence of risk factors for multidrug-resistant pathogens dictates approach to therapy. Prevention remains the cornerstone of reducing the incidence of disease. Despite the advance in medical services, mortality from NHAP remains high.

  19. Occupationally Acquired American Cutaneous Leishmaniasis

    Science.gov (United States)

    Felinto de Brito, Maria Edileuza; Andrade, Maria Sandra; de Almeida, Éricka Lima; Medeiros, Ângela Cristina Rapela; Werkhäuser, Roberto Pereira; de Araújo, Ana Isabele Freitas; Brandão-Filho, Sinval Pinto; Paiva de Almeida, Alzira Maria; Gomes Rodrigues, Eduardo Henrique

    2012-01-01

    We report two occupationally acquired cases of American cutaneous leishmaniasis (ACL): one accidental laboratory autoinoculation by contaminated needlestick while handling an ACL lesion sample, and one acquired during field studies on bird biology. Polymerase chain reaction (PCR) assays of patient lesions were positive for Leishmania, subgenus Viannia. One isolate was obtained by culture (from patient 2 biopsy samples) and characterized as Leishmania (Viannia) naiffi through an indirect immunofluorescence assay (IFA) with species-specific monoclonal antibodies (mAbs) and by multilocus enzyme electrophoresis (MLEE). Patients were successfully treated with N-methyl-glucamine. These two cases highlight the potential risks of laboratory and field work and the need to comply with strict biosafety procedures in daily routines. The swab collection method, coupled with PCR detection, has greatly improved ACL laboratory diagnosis. PMID:23227369

  20. CNOOC Acquires Oversea Assets Successfully

    Institute of Scientific and Technical Information of China (English)

    Hu Senlin

    2006-01-01

    @@ After last year CNOOC's bidding for buy the US energy company Unocal Corp lost out to the Chevron Corporation, it conducted the crossing-border asset-acquirement again in the beginning of this year. On Jan. 9, 2006,CNOOC Ltd signed a definitive agreement with Nigeria South Atlantic Petroleum Limited (SAPETRO) to acquire a 45 % working interest in an offshore oil developing license OML 130 in Nigeria for US$2.268 billion cash. The purchase will be funded by the internal capital resources of CNOOC Ltd. In which, US$1.75 billion will pay for buying SAPETRO, and the remaining cash will be used to pay for the early operation cost.

  1. [Acquired disorders of color vision].

    Science.gov (United States)

    Lascu, Lidia; Balaş, Mihaela

    2002-01-01

    This article is a general view of acquired disorders of color vision. The revision of the best known methods and of the etiopathogenic classification is not very important in ophthalmology but on the other hand, the detection of the blue defect advertise and associated ocular pathology. There is a major interest in serious diseases as multiple sclerosis, AIDS, diabetes melitus, when the first ocular sign can be a defect in the color vision.

  2. Xichang Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    Xichang Satellite Launch Center(XSLC) is mainly for geosynchronous orbit launches. The main purpose of XSLC is to launch spacecraft, such as broadcasting,communications and meteorological satellites, into geo-stationary orbit.Most of the commercial satellite launches of Long March vehicles have been from Xichang Satellite Launch Center. With 20 years' development,XSLC can launch 5 kinds of launch vehicles and send satellites into geostationary orbit and polar orbit. In the future, moon exploration satellites will also be launched from XSLC.

  3. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2017-01-01

    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  4. Galileo satellite antenna modeling

    Science.gov (United States)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  5. Satellite-Delivered Learning.

    Science.gov (United States)

    Arnall, Gail C.

    1987-01-01

    Discusses the application of satellite information delivery to training. Describes a new trend, horizontal programming. Also discusses vertical programming and in-house production of training materials. Lists vendors of satellite-based training. (CH)

  6. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  7. China's Recoverable Satellites

    Institute of Scientific and Technical Information of China (English)

    Tang Boehang

    2008-01-01

    @@ By the end of 2006, China had launched 24 recoverable satellites (FSW) in total. Among them, 23 were launched successfully, of which all but one were successfully recovered. Recoverable satellites launched by China are listed in Table 1.

  8. Satellite Tags- Hawaii EEZ

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite tagging was implemented in 2013. Satellite tagging is conducted using a Dan Inject air rifle and deployment arrows designed by Wildlife Computers. Two...

  9. Acquired Upper Extremity Growth Arrest.

    Science.gov (United States)

    Gauger, Erich M; Casnovsky, Lauren L; Gauger, Erica J; Bohn, Deborah C; Van Heest, Ann E

    2017-01-01

    This study reviewed the clinical history and management of acquired growth arrest in the upper extremity in pediatric patients. The records of all patients presenting from 1996 to 2012 with radiographically proven acquired growth arrest were reviewed. Records were examined to determine the etiology and site of growth arrest, management, and complications. Patients with tumors or hereditary etiology were excluded. A total of 44 patients (24 boys and 20 girls) with 51 physeal arrests who presented at a mean age of 10.6 years (range, 0.8-18.2 years) were included in the study. The distal radius was the most common site (n=24), followed by the distal humerus (n=8), metacarpal (n=6), distal ulna (n=5), proximal humerus (n=4), radial head (n=3), and olecranon (n=1). Growth arrest was secondary to trauma (n=22), infection (n=11), idiopathy (n=6), inflammation (n=2), compartment syndrome (n=2), and avascular necrosis (n=1). Twenty-six patients (59%) underwent surgical intervention to address deformity caused by the physeal arrest. Operative procedures included ipsilateral unaffected bone epiphysiodesis (n=21), shortening osteotomy (n=10), lengthening osteotomy (n=8), excision of physeal bar or bone fragment (n=2), angular correction osteotomy (n=1), and creation of single bone forearm (n=1). Four complications occurred; 3 of these required additional procedures. Acquired upper extremity growth arrest usually is caused by trauma or infection, and the most frequent site is the distal radius. Growth disturbances due to premature arrest can be treated effectively with epiphysiodesis or osteotomy. In this series, the specific site of anatomic growth arrest was the primary factor in determining treatment. [Orthopedics. 2017; 40(1):e95-e103.]. Copyright 2016, SLACK Incorporated.

  10. Pneumonia acquired in the Community

    Directory of Open Access Journals (Sweden)

    María Caridad Fragoso Marchante

    2007-06-01

    Full Text Available A bibliographical revision of the main aspects in the diagnosis and treatment of the patients suffering from pneumonia acquired in the community is carried out. Microorganisms responsible for this type of pneumonia are mention in this paper as well as the available diagnostic methods for germs isolation. Different guidelines for diagnosis and treatment of this disease published by several medical societies and scientific institutions are analyzed by means of a review of the stratification index of the patients used in each of them. Aspects related to the duration of the treatment and the possible causes associated with the unfavorable evolution are stated.

  11. Satellite communication engineering

    CERN Document Server

    Kolawole, Michael Olorunfunmi

    2013-01-01

    An undeniably rich and thorough guide to satellite communication engineering, Satellite Communication Engineering, Second Edition presents the fundamentals of information communications systems in a simple and succinct way. This book considers both the engineering aspects of satellite systems as well as the practical issues in the broad field of information transmission. Implementing concepts developed on an intuitive, physical basis and utilizing a combination of applications and performance curves, this book starts off with a progressive foundation in satellite technology, and then moves on

  12. Taiyuan Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    There are three major space launch bases in China, the Jiuquan Satellite Launch Center,the Taiyuan Satellite Launch Center and the Xichang Satellite Launch Center. All the three launch centers are located in sparsely populated areas where the terrain is even and the field of vision is broad. Security, transport conditions and the influence of the axial rotation

  13. Geodetic Secor Satellite

    Science.gov (United States)

    1974-06-01

    simple, and had low-power lem. 17 14. Satellite Orientation . The satellite was designed to maintain a constant relationship between the antenna...the same satellite orientation . Further considerations were Th oscillations, however, when higher orbital ranges (500-2500 nautical miles) -, 3 a

  14. TC-2 Satellite Delivered

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    On April 18, 2005, TC-2, the second satellite of Double Star Program (DSP), which was jointly developed by CNSA and ESA, was approved to be delivered to the user after the on-board test and trial operation. The satellite is working well and the performance can meet the user's need. The satellite has collected large amount of valuable scientific data

  15. Commercial satellite imagery comes of age

    Energy Technology Data Exchange (ETDEWEB)

    Jasani, Bhupendra [King' s College, London (United Kingdom). Dept. of War Studies

    2003-05-01

    In the absence of on-site inspections until recently, in the Seventh Quarterly Report to the United Nations Security Council, the Executive Director of the UN Monitoring, Verification and Inspection Commission (UNMOVIC) stated that the imagery acquired over Iraq, which UNMOVIC is receiving through a commercial satellite supplier is continuously, being analysed. Not only this but the report hopes that 'Member States will continue to provide it with imagery from their own assets as such assistance provided to date has proven very valuable' Even after the on-site inspections have begun, satellite imagery over Iraq continues, for example, to be used for inspection planning purposes. This indicates that commercial satellite imagery might finally be used on a routine basis. As the findings by the UNMOVIC are not made public, this paper examines a number of images acquired over Baghdad from different commercial satellite sources and at different times to determine what could be concluded about Iraq's nuclear and chemical weapon activities in the region.

  16. Foodborne listeriosis acquired in hospitals.

    Science.gov (United States)

    Silk, Benjamin J; McCoy, Morgan H; Iwamoto, Martha; Griffin, Patricia M

    2014-08-15

    Listeriosis is characterized by bacteremia or meningitis. We searched for listeriosis case series and outbreak investigations published in English by 2013, and assessed the strength of evidence for foodborne acquisition among patients who ate hospital food. We identified 30 reports from 13 countries. Among the case series, the median proportion of cases considered to be hospital-acquired was 25% (range, 9%-67%). The median number of outbreak-related illnesses considered to be hospital-acquired was 4.0 (range, 2-16). All patients were immunosuppressed in 18 of 24 (75%) reports with available data. Eight outbreak reports with strong evidence for foodborne acquisition in a hospital implicated sandwiches (3 reports), butter, precut celery, Camembert cheese, sausage, and tuna salad (1 report each). Foodborne acquisition of listeriosis among hospitalized patients is well documented internationally. The number of listeriosis cases could be reduced substantially by establishing hospital policies for safe food preparation for immunocompromised patients and by not serving them higher-risk foods.

  17. Pruritic acquired nevus of Ota.

    Science.gov (United States)

    Quenan, S; Strueven, V; Saxer, N; Laffitte, E; Kaya, G; Krischer, J; Hafezi, F; Le Gal, F-A

    2013-01-01

    Nevus of Ota is a unilateral, asymptomatic cutaneous and mucosal hyperpigmentation of the face that is congenital or may appear during childhood. We present a case of symptomatic acquired nevus of Ota in an adult, associated with intense pruritus, not described in the literature so far. A 32-year-old woman presented with brownish mottled macules which appeared on her face progressively over 8 days, following the distribution of the first and second divisions of the left trigeminal nerve and partially covering the iris and sclera of the left eye. She reported an intense pruritus in this area. We performed a biopsy on the left forehead, which confirmed the diagnosis of nevus of Ota. Specific stains and immunohistochemistry revealed increased numbers of mast cells. Ophthalmological tests showed acute acquired melanocytosis of the left iris and sclera. The origin of the nevus is still unclear. Several hypotheses suggest a reactivation of melanocytes during their migration from the neural crest. The pruritus reported in our patient may be explained by the increased quantity of mast cells observed in the lesion and/or neuronal stimulation of the ophthalmic and maxillary divisions of the fifth cranial nerve.

  18. Monitoring volcanic systems through cross-correlation of coincident A-Train satellite data.

    Science.gov (United States)

    Flower, V. J. B.; Carn, S. A.; Wright, R.

    2014-12-01

    The remote location and inaccessibility of many active volcanic systems around the world hinders detailed investigation of their eruptive dynamics. One methodology for monitoring such locations is through the utilisation of multiple satellite datasets to elucidate underlying eruption dynamics and aid volcanic hazard mitigation. Whilst satellite datasets are often analysed individually, here we exploit the multi-platform NASA A-Train satellite constellation, including the Ozone Monitoring Instrument (OMI) on Aura and Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua. OMI measures volcanic emissions (e.g. sulphur dioxide, ash) whilst MODIS enables monitoring of thermal anomalies (e.g. lava flows, lava lakes, pyroclastic deposits), allowing analysis of a more diverse range of volcanic unrest than is possible using a single measurement technique alone, and permitting cross-correlation between datasets for specific locations to assess cyclic activity. A Multi-taper (MTM) Fast Fourier Transform (FFT) analysis was implemented at an initial sample site (Soufriere Hills volcano [SHV], Montserrat) facilitating cycle identification and subsequent comparison with existing ground-based data. Corresponding cycles at intervals of 8, 12 and ~50 days were identified in both the satellite-based SO2 and thermal infrared signals and ground-based SO2 measurements (Nicholson et al. 2013), validating the methodology. Our analysis confirms the potential for identification of cyclical volcanic activity through synergistic analysis of satellite data, which would be of particular value at poorly monitored volcanic systems. Following our initial test at SHV, further sample sites have been selected in locations with varied eruption dynamics and monitoring capabilities including Ambrym (Vanuatu), Kilauea (Hawaii), Nyiragongo (DR Congo) and Etna (Italy) with the intention of identifying not only cyclic signals that can be attributed to volcanic systems but also those which are

  19. Severe thunderstorm activity over Bihar on 21st April, 2015: a simulation study by satellite based Nowcasting technique

    Science.gov (United States)

    Goyal, Suman; Kumar, Ashish; Sangar, Ghansham; Mohapatra, M.

    2016-05-01

    Satellite based Nowcasting technique is customized version of Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC), it uses the extrapolation technique that allows for the tracking of Mesoscale convective systems (MCS) radiative and morphological properties and forecasts the evolution of these properties (based on cloud-top brightness temperature and area of the cloud cluster) up to 360 minutes, using infrared satellite imagery. The Thermal Infrared (TIR) channel of the weather satellite has been broadly used to study the behaviour of the cloud systems associated with deep convection. The main advantage of this approach is that for most of the globe the best statistics can only be obtained from satellite observations. Such a satellite survey would provide the statistics of MCSs covering the range of meteorological conditions needed to generalize the result and on the other hand only satellite observations can cover the very large range of space and time scale. The algorithm script is taken from Brazilian Scientist Dr. Danial Vila and implemented it into the Indian environment and made compatible with INSAT-3D hdf5 data format. For Indian region it utilizes the INSAT-3D satellite data of TIR1 (10.8 μm) channel and creates nowcast. The output is made compatible with GUI based software MIAS by generating the output in hdf5 format for better understanding and analysis of forecast. The main features of this algorithm are detection of Cloud Cluster based on Cloud Top Brightness Temperature (CTBT) and area i.e. ≤235 ºK and ≥2400 km2 respectively. The tracking technique based on MCS overlapping areas in successive images. The script has been automized in Auxiliary Data Processing System (ADPS) and generating the forecast file in every half an hour and convert the output file in geotiff format. The geotiff file is easily converted into KMZ file format using ArcGIS software to overlay it on google map and hosted on the web server.

  20. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  1. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  2. A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data

    National Research Council Canada - National Science Library

    Christopher D Elvidge; Daniel Ziskin; Kimberly E Baugh; Benjamin T Tuttle; Tilottama Ghosh; Dee W Pack; Edward H Erwin; Mikhail Zhizhin

    2009-01-01

      We have produced annual estimates of national and global gas flaring and gas flaring efficiency from 1994 through 2008 using low light imaging data acquired by the Defense Meteorological Satellite Program (DMSP...

  3. Casa Grande Ruins National Monument Vegetation Mapping Project - Quickbird Satellite Imagery

    Data.gov (United States)

    National Park Service, Department of the Interior — This imagery was acquired on December 3, 2007 by DigitalGlobe, Inc.'s Quickbird satellite. Its 4 multispectral bands (blue, green, red, near infrared), together with...

  4. Design of a nano-satellite demonstrator of an infrared imaging space interferometer: the HyperCube

    Science.gov (United States)

    Dohlen, Kjetil; Vives, Sébastien; Rakotonimbahy, Eddy; Sarkar, Tanmoy; Tasnim Ava, Tanzila; Baccichet, Nicola; Savini, Giorgio; Swinyard, Bruce

    2014-07-01

    The construction of a kilometer-baseline far infrared imaging interferometer is one of the big instrumental challenges for astronomical instrumentation in the coming decades. Recent proposals such as FIRI, SPIRIT, and PFI illustrate both science cases, from exo-planetary science to study of interstellar media and cosmology, and ideas for construction of such instruments, both in space and on the ground. An interesting option for an imaging multi-aperture interferometer with km baseline is the space-based hyper telescope (HT) where a giant, sparsely populated primary mirror is constituted of several free-flying satellites each carrying a mirror segment. All the segments point the same object and direct their part of the pupil towards a common focus where another satellite, containing recombiner optics and a detector unit, is located. In Labeyrie's [1] original HT concept, perfect phasing of all the segments was assumed, allowing snap-shot imaging within a reduced field of view and coronagraphic extinction of the star. However, for a general purpose observatory, image reconstruction using closure phase a posteriori image reconstruction is possible as long as the pupil is fully non-redundant. Such reconstruction allows for much reduced alignment tolerances, since optical path length control is only required to within several tens of wavelengths, rather than within a fraction of a wavelength. In this paper we present preliminary studies for such an instrument and plans for building a miniature version to be flown on a nano satellite. A design for recombiner optics is proposed, including a scheme for exit pupil re-organization, is proposed, indicating the focal plane satellite in the case of a km-baseline interferometer could be contained within a 1m3 unit. Different options for realization of a miniature version are presented, including instruments for solar observations in the visible and the thermal infrared and giant planet observations in the visible, and an

  5. Complement's participation in acquired immunity

    DEFF Research Database (Denmark)

    Nielsen, Claus Henrik; Leslie, Robert Graham Quinton

    2002-01-01

    of the B cell receptor for antigen (BCR), a complex composed of the iC3b/C3d fragment-binding complement type 2 receptor (CR2, CD21) and its signaling element CD19 and the IgG-binding receptor FcgammaRIIb (CD32). The positive or negative outcome of signaling through this triad is determined by the context...... in which antigen is seen, be it alone or in association with natural or induced antibodies and/or C3-complement fragments. The aim of this review is to describe the present status of our understanding of complement's participation in acquired immunity and the regulation of autoimmune responses....

  6. Lymphoma in acquired generalized lipodystrophy.

    Science.gov (United States)

    Brown, Rebecca J; Chan, Jean L; Jaffe, Elaine S; Cochran, Elaine; DePaoli, Alex M; Gautier, Jean-Francois; Goujard, Cecile; Vigouroux, Corinne; Gorden, Phillip

    2016-01-01

    Acquired generalized lipodystrophy (AGL) is a rare disease thought to result from autoimmune destruction of adipose tissue. Peripheral T-cell lymphoma (PTCL) has been reported in two AGL patients. We report five additional cases of lymphoma in AGL, and analyze the role of underlying autoimmunity and recombinant human leptin (metreleptin) replacement in lymphoma development. Three patients developed lymphoma during metreleptin treatment (two PTCL and one ALK-positive anaplastic large cell lymphoma), and two developed lymphomas (mycosis fungoides and Burkitt lymphoma) without metreleptin. AGL is associated with high risk for lymphoma, especially PTCL. Autoimmunity likely contributes to this risk. Lymphoma developed with or without metreleptin, suggesting metreleptin does not directly cause lymphoma development; a theoretical role of metreleptin in lymphoma progression remains possible. For most patients with AGL and severe metabolic complications, the proven benefits of metreleptin on metabolic disease will likely outweigh theoretical risks of metreleptin in lymphoma development or progression.

  7. Bejel: acquirable only in childhood?

    Science.gov (United States)

    Rothschild, Bruce M; Rothschild, Christine; Naples, Virginia; Billard, Michel; Panero, Barbara

    2006-10-01

    Bejel clearly has a long history in the Middle East and the Sudan, but was it transmitted to Europe? As the major manifestation of bejel is presence of periosteal reaction in 20-40% of afflicted populations, absence of significant population frequency of periosteal reaction in Europe would exclude that diagnosis. Examination of skeletal populations from continental Europe revealed no significant periosteal reaction at the time of and immediately subsequent to the Crusades. Thus, there is no evidence for bejel in Europe, in spite of clear contact (the mechanism of bejel transmission in children) between warring groups, at least during the Crusades. This supports the hypothesis that bejel is a childhood-acquired disease and apparently cannot be contracted in adulthood.

  8. 12 CFR 583.1 - Acquire.

    Science.gov (United States)

    2010-01-01

    ... AND LOAN HOLDING COMPANIES § 583.1 Acquire. The term acquire means to acquire, directly or indirectly, ownership or control through an acquisition of shares, an acquisition of assets or assumption of liabilities, a merger or consolidation, or any similar transaction....

  9. Cloud mask via cumulative discriminant analysis applied to satellite infrared observations: scientific basis and initial evaluation

    Directory of Open Access Journals (Sweden)

    U. Amato

    2014-06-01

    Full Text Available We introduce a classification method (Cumulative Discriminant Analysis of the Discriminant Analysis type to discriminate between cloudy and clear sky satellite observations in the thermal infrared. The tool is intended for the high spectral resolution infrared sounder (IRS planned for the geostationary METEOSAT (Meteorological Satellite Third Generation platform and uses IASI (Infrared Atmospheric Sounding Interferometer data as a proxy. The Cumulative Discriminant Analysis does not introduce biases intrinsic with the approximation of the probability density functions and is flexible enough to adapt to different strategies to optimize the cloud mask. The methodology is based on nine statistics computed from IASI spectral radiances, which exploit the high spectral resolution of the instrument and which effectively summarize information contained within the IASI spectrum. A Principal Component Analysis prior step is also introduced which makes the problem more consistent with the statistical assumptions of the methodology. An initial assessment of the scheme is performed based on global and regional IASI real data sets and cloud masks obtained from AVHRR (Advanced Very High Resolution Radiometer and SEVIRI (Spinning Enhanced Visible and Infrared Imager imagers. The agreement with these independent cloud masks is generally well above 80%, except at high latitudes in their winter seasons.

  10. Cloud mask via cumulative discriminant analysis applied to satellite infrared observations: scientific basis and initial evaluation

    Science.gov (United States)

    Amato, U.; Lavanant, L.; Liuzzi, G.; Masiello, G.; Serio, C.; Stuhlmann, R.; Tjemkes, S. A.

    2014-10-01

    We introduce a classification method (cumulative discriminant analysis) of the discriminant analysis type to discriminate between cloudy and clear-sky satellite observations in the thermal infrared. The tool is intended for the high-spectral-resolution infrared sounder (IRS) planned for the geostationary METEOSAT (Meteorological Satellite) Third Generation platform and uses IASI (Infrared Atmospheric Sounding Interferometer) data as a proxy. The cumulative discriminant analysis does not introduce biases intrinsic with the approximation of the probability density functions and is flexible enough to adapt to different strategies to optimize the cloud mask. The methodology is based on nine statistics computed from IASI spectral radiances, which exploit the high spectral resolution of the instrument and which effectively summarize information contained within the IASI spectrum. A principal component analysis prior step is also introduced, which makes the problem more consistent with the statistical assumptions of the methodology. An initial assessment of the scheme is performed based on global and regional IASI real data sets and cloud masks obtained from AVHRR (Advanced Very High Resolution Radiometer) and SEVIRI (Spinning Enhanced Visible and Infrared Imager) imagers. The agreement with these independent cloud masks is generally well above 80 %, except at high latitudes in the winter seasons.

  11. Satellite remotely-sensed land surface parameters and their climatic effects for three metropolitan regions

    Science.gov (United States)

    Xian, George

    2008-01-01

    By using both high-resolution orthoimagery and medium-resolution Landsat satellite imagery with other geospatial information, several land surface parameters including impervious surfaces and land surface temperatures for three geographically distinct urban areas in the United States – Seattle, Washington, Tampa Bay, Florida, and Las Vegas, Nevada, are obtained. Percent impervious surface is used to quantitatively define the spatial extent and development density of urban land use. Land surface temperatures were retrieved by using a single band algorithm that processes both thermal infrared satellite data and total atmospheric water vapor content. Land surface temperatures were analyzed for different land use and land cover categories in the three regions. The heterogeneity of urban land surface and associated spatial extents were shown to influence surface thermal conditions because of the removal of vegetative cover, the introduction of non-transpiring surfaces, and the reduction in evaporation over urban impervious surfaces. Fifty years of in situ climate data were integrated to assess regional climatic conditions. The spatial structure of surface heating influenced by landscape characteristics has a profound influence on regional climate conditions, especially through urban heat island effects.

  12. Inherited or acquired metabolic disorders.

    Science.gov (United States)

    Eichler, Florian; Ratai, Eva; Carroll, Jason J; Masdeu, Joseph C

    2016-01-01

    This chapter starts with a description of imaging of inherited metabolic disorders, followed by a discussion on imaging of acquired toxic-metabolic disorders of the adult brain. Neuroimaging is crucial for the diagnosis and management of a number of inherited metabolic disorders. Among these, inherited white-matter disorders commonly affect both the nervous system and endocrine organs. Magnetic resonance imaging (MRI) has enabled new classifications of these disorders that have greatly enhanced both our diagnostic ability and our understanding of these complex disorders. Beyond the classic leukodystrophies, we are increasingly recognizing new hereditary leukoencephalopathies such as the hypomyelinating disorders. Conventional imaging can be unrevealing in some metabolic disorders, but proton magnetic resonance spectroscopy (MRS) may be able to directly visualize the metabolic abnormality in certain disorders. Hence, neuroimaging can enhance our understanding of pathogenesis, even in the absence of a pathologic specimen. This review aims to present pathognomonic brain MRI lesion patterns, the diagnostic capacity of proton MRS, and information from clinical and laboratory testing that can aid diagnosis. We demonstrate that applying an advanced neuroimaging approach enhances current diagnostics and management. Additional information on inherited and metabolic disorders of the brain can be found in Chapter 63 in the second volume of this series.

  13. High Resolution Imaging of Satellites with Ground-Based 10-m Astronomical Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Marois, C

    2007-01-04

    High resolution imaging of artificial satellites can play an important role in current and future space endeavors. One such use is acquiring detailed images that can be used to identify or confirm damage and aid repair plans. It is shown that a 10-m astronomical telescope equipped with an adaptive optics system (AO) to correct for atmospheric turbulence using a natural guide star can acquire high resolution images of satellites in low-orbits using a fast shutter and a near-infrared camera even if the telescope is not capable of tracking satellites. With the telescope pointing towards the satellite projected orbit and less than 30 arcsec away from a guide star, multiple images of the satellite are acquired on the detector using the fast shutter. Images can then be shifted and coadded by post processing to increase the satellite signal to noise ratio. Using the Keck telescope typical Strehl ratio and anisoplanatism angle as well as a simple diffusion/reflection model for a satellite 400 km away observed near Zenith at sunset or sunrise, it is expected that such system will produced > 10{sigma} K-band images at a resolution of 10 cm inside a 60 arcsec diameter field of view. If implemented, such camera could deliver the highest resolution satellite images ever acquired from the ground.

  14. High Resolution Imaging of Satellites with Ground-Based 10-m Astronomical Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Marois, C

    2007-01-04

    High resolution imaging of artificial satellites can play an important role in current and future space endeavors. One such use is acquiring detailed images that can be used to identify or confirm damage and aid repair plans. It is shown that a 10-m astronomical telescope equipped with an adaptive optics system (AO) to correct for atmospheric turbulence using a natural guide star can acquire high resolution images of satellites in low-orbits using a fast shutter and a near-infrared camera even if the telescope is not capable of tracking satellites. With the telescope pointing towards the satellite projected orbit and less than 30 arcsec away from a guide star, multiple images of the satellite are acquired on the detector using the fast shutter. Images can then be shifted and coadded by post processing to increase the satellite signal to noise ratio. Using the Keck telescope typical Strehl ratio and anisoplanatism angle as well as a simple diffusion/reflection model for a satellite 400 km away observed near Zenith at sunset or sunrise, it is expected that such system will produced > 10{sigma} K-band images at a resolution of 10 cm inside a 60 arcsec diameter field of view. If implemented, such camera could deliver the highest resolution satellite images ever acquired from the ground.

  15. 隧道衬砌渗漏水红外辐射特征影响因素试验研究%EXPERIMENTAL STUDY OF FACTORS AFFECTING THERMAL INFRARED RADIATION CHARACTERISTICS OF TUNNEL LINING WATER LEAKAGE

    Institute of Scientific and Technical Information of China (English)

    豆海涛; 黄宏伟; 薛亚东

    2011-01-01

    In light of infrared thermal imaging of tunnel leakage detection. The factors such as temperature and flow of water leakage, water leakage location, materials of lining surface and so on. Affecting thermal infrared radiation of water leakage are summarized. The concrete specimen is used to simulate water leakage of tunnel lining. The infrared radiation characteristics are recorded and analyzed using infrared thermal imager; and the influencing law is studied. The experimental results are as follows: Thermal image presents temperature of water leakage decreasing along water flow direction, while temperature along water flow cross-section showing parabolic distribution. With the increasing water leakage flow and temperature difference, decreasing angle between horizontal surface and leakage surface, decreasing emissivity of leakage surface and temperature of leakage points increasing linearly, the temperature gradient along water flow direction increases linearly, but the temperature gradient along water flow cross-section decreases. In addition, as for the infrared radiation characteristics with different surface materials, the emissivity correction indicator is established; and the leakage characteristics of infrared thermal images are extracted with Matlab image processing program. The results show that the shape and size of water leakage after modified agree well with the actual one. The study results can provide basis and means for rapid detection and analysis in tunnel operation using infrared thermal imaging technology.%针对隧道渗漏水红外热成像检测问题,总结渗漏水红外辐射特征的影响因素(渗漏温差、流量、位置以及衬砌表面材料等),采用室内混凝土试块注水模拟各工况下隧道衬砌渗漏水,并利用红外热像仪记录分析渗漏水的红外辐射特征,研究不同因素对渗漏水红外辐射特征的影响规律.试验结果表明:渗漏水热图像呈现水流方向温度递减,水流横断面

  16. Enhancement and identification of dust events in the south-west region of Iran using satellite observations

    Science.gov (United States)

    Taghavi, F.; Owlad, E.; Ackerman, S. A.

    2017-03-01

    South-west Asia including the Middle East is one of the most prone regions to dust storm events. In recent years, there was an increase in the occurrence of these environmental and meteorological phenomena. Remote sensing could serve as an applicable method to detect and also characterise these events. In this study, two dust enhancement algorithms were used to investigate the behaviour of dust events using satellite data, compare with numerical model output and other satellite products and finally validate with in-situ measurements. The results show that the use of thermal infrared algorithm enhances dust more accurately. The aerosol optical depth from MODIS and output of a Dust Regional Atmospheric Model (DREAM8b) are applied for comparing the results. Ground-based observations of synoptic stations and sun photometers are used for validating the satellite products. To find the transport direction and the locations of the dust sources and the synoptic situations during these events, model outputs (HYSPLIT and NCEP/NCAR) are presented. Comparing the results with synoptic maps and the model outputs showed that using enhancement algorithms is a more reliable way than any other MODIS products or model outputs to enhance the dust.

  17. Enhancement and identification of dust events in the south-west region of Iran using satellite observations

    Indian Academy of Sciences (India)

    F Taghavi; E Owlad; S A Ackerman

    2017-03-01

    South-west Asia including the Middle East is one of the most prone regions to dust storm events. In recent years, there was an increase in the occurrence of these environmental and meteorological phenomena. Remote sensing could serve as an applicable method to detect and also characterise these events. In this study, two dust enhancement algorithms were used to investigate the behaviour of dust events using satellite data, compare with numerical model output and other satellite products and finally validate with in-situ measurements. The results show that the use of thermal infrared algorithm enhances dust moreaccurately. The aerosol optical depth from MODIS and output of a Dust Regional Atmospheric Model (DREAM8b) are applied for comparing the results. Ground-based observations of synoptic stations and sun photometers are used for validating the satellite products. To find the transport direction and thelocations of the dust sources and the synoptic situations during these events, model outputs (HYSPLIT and NCEP/NCAR) are presented. Comparing the results with synoptic maps and the model outputs showed that using enhancement algorithms is a more reliable way than any other MODIS products or model outputs to enhance the dust.

  18. Mobile satellite communications handbook

    CERN Document Server

    Cochetti, Roger

    2014-01-01

    With a Preface by noted satellite scientist Dr. Ahmad Ghais, the Second Edition reflects the expanded user base for this technology by updating information on historic, current, and planned commercial and military satellite systems and by expanding sections that explain the technology for non-technical professionals.   The book begins with an introduction to satellite communications and goes on to provide an overview of the technologies involved in mobile satellite communications, providing basic introductions to RF Issues, power Issues, link issues and system issues. It describes

  19. Satellite communication antenna technology

    Science.gov (United States)

    Mittra, R. (Editor); Imbriale, W. A. (Editor); Maanders, E. J. (Editor)

    1983-01-01

    A general overview of current technology in the field of communication satellite antennas is presented. Among the topics discussed are: the design of multiple beam systems; frequency reuse; and polarization control of antenna measurements. Consideration is also given to: contour beam synthesis; dual shaped reflector synthesis; beam shaping; and offset reflector design. The applications of the above technologies to present and future generations of communications satellites is considered, with emphasis given to such systems as: the Intelsats; the Defense Satellite Communications System, (DSCS-III); Satellite Business System (SBS), and Comstar.

  20. Methods of satellite oceanography

    Science.gov (United States)

    Stewart, R. H.

    1985-01-01

    The theoretical basis for remote sensing measurements of climate and ocean dynamics is examined. Consideration is given to: the absorption of electromagnetic radiation in the atmosphere; scattering in the atmosphere; and satellite observations using visible light. Consideration is also given to: the theory of radio scatter from the sea; scatter of centimeter waves from the sea; and the theory of operation of synthetic aperture radars. Additional topics include: the coordinate systems of satellite orbits for oceanographic remote sensing applications; the operating features of the major U.S. satellite systems for viewing the ocean; and satellite altimetry.

  1. 17 CFR 210.8-04 - Financial statements of businesses acquired or to be acquired.

    Science.gov (United States)

    2010-04-01

    ... businesses acquired or to be acquired. (a) If a business combination has occurred or is probable, financial... section. The required financial statements of related businesses may be presented on a combined basis for... financial statements of the business acquired or to be acquired and the smaller reporting company's...

  2. 17 CFR 210.8-06 - Real estate operations acquired or to be acquired.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Real estate operations acquired or to be acquired. 210.8-06 Section 210.8-06 Commodity and Securities Exchanges SECURITIES AND... Statements of Smaller Reporting Companies § 210.8-06 Real estate operations acquired or to be acquired. If...

  3. Toward seamless multiview scene analysis from satellite to street level

    NARCIS (Netherlands)

    Lefevre, Sebastien; Tuia, Devis; Wegner, Jan Dirk; Produit, Timothee; Nassar, Ahmed Samy

    2017-01-01

    In this paper, we discuss and review how combined multiview imagery from satellite to street level can benefit scene analysis. Numerous works exist that merge information from remote sensing and images acquired from the ground for tasks such as object detection, robots guidance, or scene

  4. Acquired immune deficiency syndrome: review.

    Science.gov (United States)

    Scully, C; Cawson, R A; Porter, S R

    1986-07-19

    Acquired immunodeficiency syndrome (AIDS) is reviewed for dental practitioners, with an emphasis on oral findings; the clinical course, diagnosis, reporting, treatment, prognosis, transmission, and epidemiology are also covered. HIV infection has an incubation period that may be associated with glandular fever, a prodrome called AIDS-Related Complex (ARC) characterized by lymphadenopathy, low fever, weight loss, night sweats, diarrhea, oral candidosis, nonproductive cough and recurrent infections. AIDS is characterized by opportunistic infections. Over 50% present with pneumocystis carinii pneumonia, 21% with Kaposi's sarcoma, and 6% have both. The AIDS virus causes direct neurological symptoms in some cases. Oral candidosis (thrush) in a young male without a local cause such as xerostomia or immune suppression is strongly suggestive of AIDS. Other oral manifestations are severe herpes simplex, varicella-zoster, Epstein-Barr virus, cytomegalovirus, venereal warts, aphthous ulceration, mycobacterial oral ulcers, oral histoplasmosis, sinusitis and osteomyelitis of the jaw. Hairy leukoplakia, usually seen on the lateral border of the tongue, is probably caused by Epstein-Barr virus. Kaposi's sarcoma, an endothelial cell tumor, is characteristic of AIDS, and in 50% of patients is oral or perioral. Cervical lymph node enlargement will be seen in those with ARC as well as AIDS. No guidelines have been issued by the Department of Health and Social Security for dental surgeons in the UK for reporting AIDS cases. Although HIV virions have been isolated from saliva, there are no known incidents of transmission via saliva. HIV is less likely to be transmitted by needle stick injuries than, for example hepatitis B (25% risk), especially if the blood is from a carrier rather than a full blown AIDS case.

  5. Satellite observation of atmospheric methane: intercomparison between AIRS and GOSAT TANSO-FTS retrievals

    Science.gov (United States)

    Zou, Mingmin; Xiong, Xiaozhen; Saitoh, Naoko; Warner, Juying; Zhang, Ying; Chen, Liangfu; Weng, Fuzhong; Fan, Meng

    2016-08-01

    Space-borne observations of atmospheric methane (CH4) have been made using the Atmospheric Infrared Sounder (AIRS) on the EOS/Aqua satellite since August 2002 and the Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) on the Greenhouse Gases Observing Satellite (GOSAT) since April 2009. This study compared the GOSAT TANSO-FTS thermal infrared (TIR) version 1.0 CH4 product with the collocated AIRS version 6 CH4 product using data from 1 August 2010 to 30 June 2012, including the CH4 mixing ratios and the total column amounts. The results show that at 300-600 hPa, where both AIRS and GOSAT-TIR CH4 have peak sensitivities, they agree very well, but GOSAT-TIR retrievals tend to be higher than AIRS in layer 200-300 hPa. At 300 hPa the CH4 mixing ratio from GOSAT-TIR is, on average, 10.3 ± 31.8 ppbv higher than that from AIRS, and at 600 hPa GOSAT-TIR retrieved CH4 is -16.2 ± 25.7 ppbv lower than AIRS CH4. Comparison of the total column amount of CH4 shows that GOSAT-TIR agrees with AIRS to within 1 % in the mid-latitude regions of the Southern Hemisphere and in the tropics. In the mid to high latitudes in the Northern Hemisphere, comparison shows that GOSAT-TIR is ˜ 1-2 % lower than AIRS, and in the high-latitude regions of the Southern Hemisphere the difference of GOSAT from AIRS varies from -3 % in October to +2 % in July. The difference between AIRS and GOSAT TANSO-FTS retrievals is mainly due to the difference in retrieval algorithms and instruments themselves, and the larger difference in the high-latitude regions is associated with the low information content and small degrees of freedom of the retrieval. The degrees of freedom of GOSAT-TIR retrievals are lower than that of AIRS, which also indicates that the constraint in GOSAT-TIR retrievals may be too strong. From the good correlation between AIRS and GOSAT-TIR retrievals and the seasonal variation they observed, we are confident that the thermal infrared

  6. Satellites of spiral galaxies

    Science.gov (United States)

    Zaritsky, Dennis; Smith, Rodney; Frenk, Carlos; White, Simon D. M.

    1993-01-01

    We present a survey of satellites around a homogeneous set of late-type spirals with luminosity similar to that of the Milky Way. On average, we find fewer than 1.5 satellites per primary, but we argue that we can treat the survey as an ensemble and so derive the properties of the halo of a 'typical' isolated spiral. The projected density profile of the ensemble falls off approximately as 1/r. Within 50 kpc the azimuthal distribution of satellites shows some evidence for the 'Holmberg effect', an excess near the minor axis of the primary; however, at larger projected distances, the distribution appears isotropic. There is a weak but significant correlation between the size of a satellite and its distance from its primary, as expected if satellites are tidally truncated. Neither Hubble type nor spectral characteristics correlate with apparent separation. The ensemble of satellites appears to be rotating at about 30 km/s in the same direction as the galactic disk. Satellites on prograde orbits tend to be brighter than those on retrograde orbits. The typical velocity difference between a satellite and its primary shows no clear dependence either on apparent separation, or on the rotation speed of the primary. Thus our survey demonstrates that isolated spiral galaxies have massive halos that extend to many optical radii.

  7. Communication satellite technology trends

    Science.gov (United States)

    Cuccia, Louis

    1986-01-01

    A chronology of space-Earth interconnectivity is presented. The Advanced Communications Technology Satellite (ACTS) system, Land Mobile Satellite, space-Earth antennas, impact of antenna size on coverage, intersatellite links are outlined. This presentation is represented by graphs and charts only.

  8. Central Satellite Data Repository Supporting Research and Development

    Science.gov (United States)

    Han, W.; Brust, J.

    2015-12-01

    Near real-time satellite data is critical to many research and development activities of atmosphere, land, and ocean processes. Acquiring and managing huge volumes of satellite data without (or with less) latency in an organization is always a challenge in the big data age. An organization level data repository is a practical solution to meeting this challenge. The STAR (Center for Satellite Applications and Research of NOAA) Central Data Repository (SCDR) is a scalable, stable, and reliable repository to acquire, manipulate, and disseminate various types of satellite data in an effective and efficient manner. SCDR collects more than 200 data products, which are commonly used by multiple groups in STAR, from NOAA, GOES, Metop, Suomi NPP, Sentinel, Himawari, and other satellites. The processes of acquisition, recording, retrieval, organization, and dissemination are performed in parallel. Multiple data access interfaces, like FTP, FTPS, HTTP, HTTPS, and RESTful, are supported in the SCDR to obtain satellite data from their providers through high speed internet. The original satellite data in various raster formats can be parsed in the respective adapter to retrieve data information. The data information is ingested to the corresponding partitioned tables in the central database. All files are distributed equally on the Network File System (NFS) disks to balance the disk load. SCDR provides consistent interfaces (including Perl utility, portal, and RESTful Web service) to locate files of interest easily and quickly and access them directly by over 200 compute servers via NFS. SCDR greatly improves collection and integration of near real-time satellite data, addresses satellite data requirements of scientists and researchers, and facilitates their primary research and development activities.

  9. Cryptosporidiosis in the acquired immune deficiency syndrome.

    Science.gov (United States)

    Cooper, D A; Wodak, A; Marriot, D J; Harkness, J L; Ralston, M; Hill, A; Penny, R

    1984-10-01

    Cryptosporidiosis was found in a patient with the acquired immune deficiency syndrome. The microbiological and morphological features of this newly recognized opportunistic infection are distinctive and diagnostic.

  10. Acquired Dyslexia and Dysgraphia in Chinese

    Directory of Open Access Journals (Sweden)

    Wengang Yin

    2005-01-01

    Full Text Available Understanding how the mappings between orthography and phonology in alphabetic languages are learned, represented and processed has been enhanced by the cognitive neuropsychological investigation of patients with acquired reading and writing disorders. During the past decade, this methodology has been extended to understanding reading and writing in Chinese leading to new insights about language processing, dyslexia and dysgraphia. The aim of this paper is to review reports of patients who have acquired dyslexia and acquired dysgraphia in Chinese and describe the functional architecture of the reading and writing system. Our conclusion is that the unique features of Chinese script will determine the symptoms of acquired dyslexia and dysgraphia in Chinese.

  11. Saturn's F-ring and inner satellite

    Science.gov (United States)

    1981-01-01

    Saturn's F-ring and its inner shepherding satellite (1980S27) are pictured in this closeup Voyager 2 image acquired Aug. 25 from a range of 365,000 kilometers (227,000 miles). Features as small as 6 km. (3.7 mi.) across are visible. The satellite is elongated and irregular, with its longest axis pointing toward the center of Saturn (toward the upper right in this view). As seen here, the F-ring is thin and does not show the multiple, braided structure Voyager 1 saw last fall. Nor is there any indication of a band or kink in the ring at its closest point to the shepherd; such a feature would be consistent with some of the theories advanced on the formation of the braids. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.

  12. Beginnings of Satellite Navigation

    Directory of Open Access Journals (Sweden)

    Miljenko Solarić

    2008-05-01

    Full Text Available The first satellite navigation system called the Navy Navigation Satellite System (NNSS or TRANSIT was planned in the USA in 1958. It consisted of 5-6 artificial Earth satellites, was set in motion for the USA military in 1964, and in 1967 for civilian purposes. The frequency shift of received radio waves emitted from the satellite and caused by the Doppler effect was measured. The TRANSIT satellite speed of approaching or moving away was derived from that; the TRANSIT satellites emmited also their own coordinates. Then the ship's position was determined by an intersection of three hyperboloids, which were determined from differences of distances in three time intervals. Maintenance of this navigation system was stopped in 1996, but it is still being used in the USA Navy for exploring the ionosphere. Furthermore, results of Doppler measurements in international projects at the Hvar Observatory from 1982 and 1983. This was the first time in Croatia and the former country that the coordinates of the Hvar Observatory were determined in the unique world coordinate system WGS'72. The paper ends with a brief representation of the Tsiklon Doppler navigation system produced in the former Soviet Union, and there is a list of some of numerous produced and designed satellite navigation systems.Ključne riječi

  13. Global clear-sky surface skin temperature from multiple satellites using a single-channel algorithm with angular anisotropy corrections

    Science.gov (United States)

    Scarino, Benjamin R.; Minnis, Patrick; Chee, Thad; Bedka, Kristopher M.; Yost, Christopher R.; Palikonda, Rabindra

    2017-01-01

    Surface skin temperature (Ts) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared (TIR) method to retrieve Ts over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) and low Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of Ts over the diurnal cycle in non-polar regions, while polar Ts retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR), can complement the GEO measurements. The combined global coverage of remotely sensed Ts, along with accompanying cloud and surface radiation parameters, produced in near-realtime and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-realtime hourly Ts observations can be assimilated in high-temporal-resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived Ts data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing and illumination angles. Therefore, Ts validation with established references is essential, as is proper evaluation of Ts sensitivity to atmospheric correction source.This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based Ts product that is derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirically adjusted theoretical model of satellite land surface temperature (LST) angular anisotropy is tested to improve satellite LST retrievals. Application of the anisotropic correction

  14. Global Clear-Sky Surface Skin Temperature from Multiple Satellites Using a Single-Channel Algorithm with Angular Anisotropy Corrections

    Science.gov (United States)

    Scarino, Benjamin R.; Minnis, Patrick; Chee, Thad; Bedka, Kristopher M.; Yost, Christopher R.; Palikonda, Rabindra

    2017-01-01

    Surface skin temperature (T(sub s)) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared (TIR) method to retrieve T(sub s) over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) and low Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of T(sub s) over the diurnal cycle in non-polar regions, while polar T(sub s) retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR), can complement the GEO measurements. The combined global coverage of remotely sensed T(sub s), along with accompanying cloud and surface radiation parameters, produced in near-realtime and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-realtime hourly T(sub s) observations can be assimilated in high-temporal-resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived T(sub s) data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing and illumination angles. Therefore, T(sub s) validation with established references is essential, as is proper evaluation of T(sub s) sensitivity to atmospheric correction source. This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based T(sub s) product that is derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirically adjusted theoretical model of satellite land surface temperature (LST) angular anisotropy is tested to improve

  15. And the Winner is – Acquired

    DEFF Research Database (Denmark)

    Henkel, Joachim; Rønde, Thomas; Wagner, Marcus

    value in case of success—that is, a more radical innovation. In the second stage, successful entrants bid to be acquired by the incumbent. We assume that entrants cannot survive on their own, so being acquired amounts to a ‘prize’ in a contest. We identify an equilibrium in which the incumbent chooses...

  16. An automated processing chains for surface temperature monitoring on Earth's most active volcanoes by optical data from multiple satellites

    Science.gov (United States)

    Silvestri, Malvina; Musacchio, Massimo; Fabrizia Buongiorno, Maria

    2017-04-01

    The Geohazards Exploitation Platform, or GEP is one of six Thematic Exploitation Platforms developed by ESA to serve data user communities. As a new element of the ground segment delivering satellite results to users, these cloud-based platforms provide an online environment to access information, processing tools, computing resources for community collaboration. The aim is to enable the easy extraction of valuable knowledge from vast quantities of satellite-sensed data now being produced by Europe's Copernicus programme and other Earth observation satellites. In this context, the estimation of surface temperature on active volcanoes around the world is considered. E2E processing chains have been developed for different satellite data (ASTER, Landsat8 and Sentinel 3 missions) using thermal infrared (TIR) channels by applying specific algorithms. These chains have been implemented on the GEP platform enabling the use of EO missions and the generation of added value product such as surface temperature map, from not skilled users. This solution will enhance the use of satellite data and improve the dissemination of the results saving valuable time (no manual browsing, downloading or processing is needed) and producing time series data that can be speedily extracted from a single co-registered pixel, to highlight gradual trends within a narrow area. Moreover, thanks to the high-resolution optical imagery of Sentinel 2 (MSI), the detection of lava maps during an eruption can be automatically obtained. The proposed lava detection method is based on a contextual algorithm applied to Sentinel-2 NIR (band 8 - 0.8 micron) and SWIR (band 12 - 2.25 micron) data. Examples derived by last eruptions on active volcanoes are showed.

  17. Preliminary analysis of the forest health state based on multispectral images acquired by Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Czapski Paweł

    2015-09-01

    Full Text Available The main purpose of this publication is to present the current progress of the work associated with the use of a lightweight unmanned platforms for various environmental studies. Current development in information technology, electronics and sensors miniaturisation allows mounting multispectral cameras and scanners on unmanned aerial vehicle (UAV that could only be used on board aircraft and satellites. Remote Sensing Division in the Institute of Aviation carries out innovative researches using multisensory platform and lightweight unmanned vehicle to evaluate the health state of forests in Wielkopolska province. In this paper, applicability of multispectral images analysis acquired several times during the growing season from low altitude (up to 800m is presented. We present remote sensing indicators computed by our software and common methods for assessing state of trees health. The correctness of applied methods is verified using analysis of satellite scenes acquired by Landsat 8 OLI instrument (Operational Land Imager.

  18. Toward the Estimation of Surface Soil Moisture Content Using Geostationary Satellite Data over Sparsely Vegetated Area

    Directory of Open Access Journals (Sweden)

    Pei Leng

    2015-04-01

    Full Text Available Based on a novel bare surface soil moisture (SSM retrieval model developed from the synergistic use of the diurnal cycles of land surface temperature (LST and net surface shortwave radiation (NSSR (Leng et al. 2014. “Bare Surface Soil Moisture Retrieval from the Synergistic Use of Optical and Thermal Infrared Data”. International Journal of Remote Sensing 35: 988–1003., this paper mainly investigated the model’s capability to estimate SSM using geostationary satellite observations over vegetated area. Results from the simulated data primarily indicated that the previous bare SSM retrieval model is capable of estimating SSM in the low vegetation cover condition with fractional vegetation cover (FVC ranging from 0 to 0.3. In total, the simulated data from the Common Land Model (CoLM on 151 cloud-free days at three FLUXNET sites that with different climate patterns were used to describe SSM estimates with different underlying surfaces. The results showed a strong correlation between the estimated SSM and the simulated values, with a mean Root Mean Square Error (RMSE of 0.028 m3·m−3 and a coefficient of determination (R2 of 0.869. Moreover, diurnal cycles of LST and NSSR derived from the Meteosat Second Generation (MSG satellite data on 59 cloud-free days were utilized to estimate SSM in the REMEDHUS soil moisture network (Spain. In particular, determination of the model coefficients synchronously using satellite observations and SSM measurements was explored in detail in the cases where meteorological data were not available. A preliminary validation was implemented to verify the MSG pixel average SSM in the REMEDHUS area with the average SSM calculated from the site measurements. The results revealed a significant R2 of 0.595 and an RMSE of 0.021 m3·m−3.

  19. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique

    Science.gov (United States)

    Tote, Carolien; Patricio, Domingos; Boogaard, Hendrik; van der Wijngaart, Raymond; Tarnavsky, Elena; Funk, Christopher C.

    2015-01-01

    Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and floods and thus, an understanding of the strengths and weaknesses of different rainfall products is valuable. Three dekadal (10-day) gridded satellite rainfall products (TAMSAT African Rainfall Climatology And Time-series (TARCAT) v2.0, Famine Early Warning System NETwork (FEWS NET) Rainfall Estimate (RFE) v2.0, and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS)) are compared to independent gauge data (2001–2012). This is done using pairwise comparison statistics to evaluate the performance in estimating rainfall amounts and categorical statistics to assess rain-detection capabilities. The analysis was performed for different rainfall categories, over the seasonal cycle and for regions dominated by different weather systems. Overall, satellite products overestimate low and underestimate high dekadal rainfall values. The RFE and CHIRPS products perform as good, generally outperforming TARCAT on the majority of statistical measures of skill. TARCAT detects best the relative frequency of rainfall events, while RFE underestimates and CHIRPS overestimates the rainfall events frequency. Differences in products performance disappear with higher rainfall and all products achieve better results during the wet season. During the cyclone season, CHIRPS shows the best results, while RFE outperforms the other products for lower dekadal rainfall. Products blending thermal infrared and passive microwave imagery perform better than infrared only products and particularly when meteorological patterns are more complex, such as over the coastal, central and south regions of Mozambique, where precipitation is influenced by frontal systems.

  20. Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique

    Directory of Open Access Journals (Sweden)

    Carolien Toté

    2015-02-01

    Full Text Available Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and floods and thus, an understanding of the strengths and weaknesses of different rainfall products is valuable. Three dekadal (10-day gridded satellite rainfall products (TAMSAT African Rainfall Climatology And Time-series (TARCAT v2.0, Famine Early Warning System NETwork (FEWS NET Rainfall Estimate (RFE v2.0, and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS are compared to independent gauge data (2001–2012. This is done using pairwise comparison statistics to evaluate the performance in estimating rainfall amounts and categorical statistics to assess rain-detection capabilities. The analysis was performed for different rainfall categories, over the seasonal cycle and for regions dominated by different weather systems. Overall, satellite products overestimate low and underestimate high dekadal rainfall values. The RFE and CHIRPS products perform as good, generally outperforming TARCAT on the majority of statistical measures of skill. TARCAT detects best the relative frequency of rainfall events, while RFE underestimates and CHIRPS overestimates the rainfall events frequency. Differences in products performance disappear with higher rainfall and all products achieve better results during the wet season. During the cyclone season, CHIRPS shows the best results, while RFE outperforms the other products for lower dekadal rainfall. Products blending thermal infrared and passive microwave imagery perform better than infrared only products and particularly when meteorological patterns are more complex, such as over the coastal, central and south regions of Mozambique, where precipitation is influenced by frontal systems.

  1. Preliminary results on the comparison between satellite derived ground temperature and in-situ measurement of soil CO2 flux and soil temperature at Solfatara of Pozzuoli (Naples, Italy)

    Science.gov (United States)

    Cardellini, Carlo; Silvestri, Malvina; Chiodini, Giovanni; Fabrizia Buongiorno, Maria

    2014-05-01

    In this work we want to analyze the comparison between the ground temperature acquired with in-situ campaigns and the ground temperature obtained by processing remote sensing data with particular attention to ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) data. Moreover we have studied the possible correlation between the CO2 measurements and the ground temperature. Test site area has been the Solfatara volcano, situated to the west of Naples, Italy. The Solfatara crater has a persistent volcanic-hydrothermal activity as demonstrate by ground deformation, seismicity and variations of the chemical-physical characteristics of the fluids emitted from fumaroles. Solfatara crater is characterized by a large soil diffuse degassing structure (Solfatara DDS, abot 0.8 km2), from where a CO2 flux in the order of 1000-1500 t/d is released by the soil. Solfatara DDS is also characterized by anomalous soil temperature. The correspondence between high CO2 fluxes and soil temperature has been interpreted as the results of the condensation of CO2-rich steam, rising from the hydrothermal system, in the uppermost part of the soil (Chiodini et al., 2001; 2005). The energy dissipated daily by the degassing at Solfatara DDS is the main source of energy release in the entire Campi Flegrei caldera in the current period (Chiodini et al., 2001; 2005). Concerning the satellite data, to monitor the thermal state of volcanic areas it is necessary to use TIR sensors with high spatial resolution in order to obtain detailed information on the areas where there are significant changes. Thanks to ASTER thermal infrared (TIR, 5 bands, 90 m spatial resolution) regions of the electromagnetic spectrum we have obtained the temperature ground map on the volcano area. For this study we have considered the ASTER's night observations that show well defined episodes of increasing thermal emission of crater thanks to a more uniform background temperature. CO2 fluxes and soil

  2. Trends In Satellite Communication

    Science.gov (United States)

    Poley, William A.; Stevens, Grady H.; Stevenson, Steven M.; Lekan, Jack; Arth, Clifford H.; Hollansworth, James E.; Miller, Edward F.

    1988-01-01

    Report assesses trends in satellite communication from present to year 2010. Examines restrictions imposed by limited spectrum resource and technology needs created by trends. Personal communications, orbiting switchboards, and videophones foreseen.

  3. Domestic Communication Satellites

    Science.gov (United States)

    Horowitz, Andrew

    1974-01-01

    A discussion of the Federal Communications Commission's new policy on domestic satellites in light of our 1) military and economic history; 2) corporate interests; 3) citizen surveillance; and 4) media control. (HB)

  4. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2013-01-01

    Top space experts from around the world have collaborated to produce this comprehensive, authoritative, and clearly illustrated reference guide to the fast growing, multi-billion dollar field of satellite applications and space communications. This handbook, done under the auspices of the International Space University based in France, addresses not only system technologies but also examines market dynamics, technical standards and regulatory constraints. The handbook is a completely multi-disciplinary reference book that covers, in an in-depth fashion, the fields of satellite telecommunications, Earth observation, remote sensing, satellite navigation, geographical information systems, and geosynchronous meteorological systems. It covers current practices and designs as well as advanced concepts and future systems. It provides a comparative analysis of the common technologies and design elements for satellite application bus structures, thermal controls, power systems, stabilization techniques, telemetry, com...

  5. Biological satellite Kosmos-936

    Science.gov (United States)

    Vedeshin, L. A.

    1978-01-01

    A description is given of physiological experiments performed on the biological satellite Kosmos-936. Other experiments to determine the electrostatic and dielectric responses to the effects of cosmic radiation are discussed.

  6. Small Satellite Transporter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary objective is to determine whether this small satellite transporter is capable of transporting at least four 6U CubeSats is possible for a given set of...

  7. DFH-3 Satellite Platform

    Institute of Scientific and Technical Information of China (English)

    RenShufang

    2005-01-01

    The DFH-3 satellite platform is designed and developed by China Academy of Space Technology (CAST). It is a medium capability communications satellite platform. The platform adopts threeaxis attitude stabilization control system, having solar array output power of 1.7kW by the end of its design lifetime of 8 years. Its mass is 2100kg with payload capacity of 220kg.

  8. The Archimedes satellite system

    Science.gov (United States)

    Taylor, Stuart C.; Shurvinton, William D.

    1992-03-01

    Archimedes is a satellite system conceived by the European Space Agency (ESA) to effectively serve the European market for Mobile Radio Services (MRS). This paper describes the requirements and technical design of the Archimedes satellite system. The underlying assumptions and trade-offs behind the design are detailed and the design is compared and contrasted against alternative design solutions, both technically and economically. A path forward for the development of the system is indicated.

  9. ASTRID II satellit projekt

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Primdahl, Fritz

    1997-01-01

    The report describes the instruments developed for the Swedish micro satellite "ASTRID II". Specifications of the two instruments realized under this contract, a Stellar Compass and a CSC magnetometer are given follwed by a description of the project status and plan.......The report describes the instruments developed for the Swedish micro satellite "ASTRID II". Specifications of the two instruments realized under this contract, a Stellar Compass and a CSC magnetometer are given follwed by a description of the project status and plan....

  10. Satellite formation. II

    Science.gov (United States)

    Harris, A. W.

    1978-01-01

    A satellite formation model is extended to include evolution of planetary ring material and elliptic orbital motion. In this model the formation of the moon begins at a later time in the growth of the earth, and a significant fraction of the lunar material is processed through a circumterrestrial debris cloud where volatiles might have been lost. Thus, the chemical differences between the earth and moon are more plausibly accounted for. Satellites of the outer planets probably formed in large numbers throughout the growth of those planets. Because of rapid inward evolution of the orbits of small satellites, the present satellite systems represent only satellites formed in the last few percent of the growths of their primaries. The rings of Saturn and Uranus are most plausibly explained as the debris of satellites disrupted within the Roche limit. Because such a ring would collapse onto the planet in the course of any significant further accretion by the planet, the rings must have formed very near or even after the conclusion of accretion.

  11. CHINA LAUNCHES NEW SCIENTIFIC SATELLITE

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    China on Sept. 27, 2004 launched a scientific satellite atop a Long March 2D carrier rocket from Jiuquan Satellite Launch Center in Gansu province. 10 minutes after the launch, the satellite entered a preset orbit and is running sound at the orbit. It is the 20th recoverable satellite for scientific and technological

  12. Real-time monitoring of seismic data using satellite telemetry

    Directory of Open Access Journals (Sweden)

    L. Merucci

    1997-06-01

    Full Text Available This article describes the ARGO Satellite Seismic Network (ARGO SSN as a reliable system for monitoring, collection, visualisation and analysis of seismic and geophysical low-frequency data, The satellite digital telemetry system is composed of peripheral geophysical stations, a centraI communications node (master sta- tion located in CentraI Italy, and a data collection and processing centre located at ING (Istituto Nazionale di Geofisica, Rome. The task of the peripheral stations is to digitalise and send via satellite the geophysical data collected by the various sensors to the master station. The master station receives the data and forwards them via satellite to the ING in Rome; it also performs alI the monitoring functions of satellite communications. At the data collection and processing centre of ING, the data are received and analysed in real time, the seismic events are identified and recorded, the low-frequency geophysical data are stored. In addition, the generaI sta- tus of the satellite network and of each peripheral station connected, is monitored. The procedure for analysjs of acquired seismic signals allows the automatic calculation of local magnitude and duration magnitude The communication and data exchange between the seismic networks of Greece, Spain and Italy is the fruit of a recent development in the field of technology of satellite transmission of ARGO SSN (project of European Community "Southern Europe Network for Analysis of Seismic Data"

  13. An inter-comparison of soil moisture data products from satellite remote sensing and a land surface model

    Science.gov (United States)

    Fang, Li; Hain, Christopher R.; Zhan, Xiwu; Anderson, Martha C.

    2016-06-01

    Significant advances have been achieved in generating soil moisture (SM) products from satellite remote sensing and/or land surface modeling with reasonably good accuracy in recent years. However, the discrepancies among the different SM data products can be considerably large, which hampers their usage in various applications. The bias of one SM product from another is well recognized in the literature. Bias estimation and spatial correction methods have been documented for assimilating satellite SM product into land surface and hydrologic models. Nevertheless, understanding the characteristics of each of these SM data products is required for many applications where the most accurate data products are desirable. This study inter-compares five SM data products from three different sources with each other, and evaluates them against in situ SM measurements over 14-year period from 2000 to 2013. Specifically, three microwave (MW) satellite based data sets provided by ESA's Climate Change Initiative (CCI) (CCI-merged, -active and -passive products), one thermal infrared (TIR) satellite based product (ALEXI), and the Noah land surface model (LSM) simulations. The in-situ SM measurements are collected from the North American Soil Moisture Database (NASMD), which involves more than 600 ground sites from a variety of networks. They are used to evaluate the accuracies of these five SM data products. In general, each of the five SM products is capable of capturing the dry/wet patterns over the study period. However, the absolute SM values among the five products vary significantly. SM simulations from Noah LSM are more stable relative to the satellite-based products. All TIR and MW satellite based products are relatively noisier than the Noah LSM simulations. Even though MW satellite based SM retrievals have been predominantly used in the past years, SM retrievals of the ALEXI model based on TIR satellite observations demonstrate skills equivalent to all the MW satellite

  14. Satellite Communications for ATM

    Science.gov (United States)

    Shamma, Mohammed A.

    2003-01-01

    This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new

  15. A satellite-based analysis of the Val d'Agri (South of Italy Oil Center gas flaring emissions

    Directory of Open Access Journals (Sweden)

    M. Faruolo

    2014-06-01

    Full Text Available In this paper the Robust Satellite Techniques (RST, a multi-temporal scheme of satellite data analysis, was implemented to analyze the flaring activity of the largest Italian gas and oil pre-treatment plant (i.e. the Ente Nazionale Idrocarburi – ENI – Val d'Agri Oil Center – COVA. For this site, located in an anthropized area characterized by a~large environmental complexity, flaring emissions are mainly related to emergency conditions (i.e. waste flaring, being the industrial process regulated by strict regional laws. With reference to the peculiar characteristics of COVA flaring, the main aim of this work was to assess the performances of RST in terms of sensitivity and reliability in providing independent estimations of gas flaring volumes in such conditions. In detail, RST was implemented on thirteen years of Moderate Resolution Imaging Spectroradiometer (MODIS medium and thermal infrared data in order to identify the highly radiant records associated to the COVA flare emergency discharges. Then, exploiting data provided by ENI about gas flaring volumes in the period 2003–2009, a MODIS-based regression model was developed and tested. Achieved results indicate that such a model is able to estimate, with a good level of accuracy (R2 of 0.83, emitted gas flaring volumes at COVA.

  16. A satellite-based analysis of the Val d'Agri (South of Italy) Oil Center gas flaring emissions

    Science.gov (United States)

    Faruolo, M.; Coviello, I.; Filizzola, C.; Lacava, T.; Pergola, N.; Tramutoli, V.

    2014-06-01

    In this paper the Robust Satellite Techniques (RST), a multi-temporal scheme of satellite data analysis, was implemented to analyze the flaring activity of the largest Italian gas and oil pre-treatment plant (i.e. the Ente Nazionale Idrocarburi - ENI - Val d'Agri Oil Center - COVA). For this site, located in an anthropized area characterized by a~large environmental complexity, flaring emissions are mainly related to emergency conditions (i.e. waste flaring), being the industrial process regulated by strict regional laws. With reference to the peculiar characteristics of COVA flaring, the main aim of this work was to assess the performances of RST in terms of sensitivity and reliability in providing independent estimations of gas flaring volumes in such conditions. In detail, RST was implemented on thirteen years of Moderate Resolution Imaging Spectroradiometer (MODIS) medium and thermal infrared data in order to identify the highly radiant records associated to the COVA flare emergency discharges. Then, exploiting data provided by ENI about gas flaring volumes in the period 2003-2009, a MODIS-based regression model was developed and tested. Achieved results indicate that such a model is able to estimate, with a good level of accuracy (R2 of 0.83), emitted gas flaring volumes at COVA.

  17. A satellite-based analysis of the Val d'Agri Oil Center (southern Italy) gas flaring emissions

    Science.gov (United States)

    Faruolo, M.; Coviello, I.; Filizzola, C.; Lacava, T.; Pergola, N.; Tramutoli, V.

    2014-10-01

    In this paper, the robust satellite techniques (RST), a multi-temporal scheme of satellite data analysis, was implemented to analyze the flaring activity of the Val d'Agri Oil Center (COVA), the largest Italian gas and oil pre-treatment plant, owned by Ente Nazionale Idrocarburi (ENI). For this site, located in an anthropized area characterized by a large environmental complexity, flaring emissions are mainly related to emergency conditions (i.e., waste flaring), as industrial processes are regulated by strict regional laws. While regarding the peculiar characteristics of COVA flaring, the main aim of this work was to assess the performances of RST in terms of sensitivity and reliability in providing independent estimations of gas flaring volumes in such conditions. In detail, RST was implemented for 13 years of Moderate Resolution Imaging Spectroradiometer (MODIS) medium and thermal infrared data in order to identify the highly radiant records associated with the COVA flare emergency discharges. Then, using data provided by ENI about gas flaring volumes in the period 2003-2009, a MODIS-based regression model was developed and tested. The results achieved indicate that the such a model is able to estimate, with a good level of accuracy (R2 of 0.83), emitted gas flaring volumes at COVA.

  18. Satellite observations of ethylene (C2H4) from the Aura Tropospheric Emission Spectrometer: A scoping study

    Science.gov (United States)

    Dolan, Wayana; Payne, Vivienne H.; Kualwik, Susan S.; Bowman, Kevin W.

    2016-09-01

    We present a study focusing on detection and initial quantitative estimates of ethylene (C2H4) in observations from the Tropospheric Emission Spectrometer (TES), a Fourier transform spectrometer aboard the Aura satellite that measures thermal infrared radiances with high spectral resolution (0.1 cm-1). We analyze observations taken in support of the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission and demonstrate the feasibility of future development of C2H4 into a TES standard product. In the Northern Hemisphere, C2H4 is commonly associated with boreal fire plumes, motor vehicle exhaust and petrochemical emissions. It has a short lifetime (∼14-32 h) in the troposphere due to its reaction with OH and O3. Chemical destruction of C2H4 in the atmosphere leads to the production of ozone and other species such as carbon monoxide (CO) and formaldehyde. Results indicate a correlation between C2H4 and CO in boreal fire plumes. Quantitative C2H4 estimates are sensitive to assumptions about the plume height and width. We find that C2H4 greater than 2-3 ppbv can be detected in a single TES observation (for a fire plume at 3 km altitude and 1.5 km width). Spatial averaging will be needed for surface-peaking profiles where TES sensitivity is lower.

  19. Use of thermal infrared imaging for monitoring renewed dome growth at Mount St. Helens, 2004: Chapter 17 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    Science.gov (United States)

    Schneider, David J.; Vallance, James W.; Wessels, Rick L.; Logan, Matthew; Ramsey, Michael S.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    A helicopter-mounted thermal imaging radiometer documented the explosive vent-clearing and effusive phases of the eruption of Mount St. Helens in 2004. A gyrostabilized gimbal controlled by a crew member housed the radiometer and an optical video camera attached to the nose of the helicopter. Since October 1, 2004, the system has provided thermal and video observations of dome growth. Flights conducted as frequently as twice daily during the initial month of the eruption monitored rapid changes in the crater and 1980-86 lava dome. Thermal monitoring decreased to several times per week once dome extrusion began. The thermal imaging system provided unique observations, including timely recognition that the early explosive phase was phreatic, location of structures controlling thermal emissions and active faults, detection of increased heat flow prior to the extrusion of lava, and recognition of new lava extrusion. The first spines, 1 and 2, were hotter when they emerged (maximum temperature 700-730°C) than subsequent spines insulated by as much as several meters of fault gouge. Temperature of gouge-covered spines was about 200°C where they emerged from the vent, and it decreased rapidly with distance from the vent. The hottest parts of these spines were as high as 500-730°C in fractured and broken-up regions. Such temperature variation needs to be accounted for in the retrieval of eruption parameters using satellite-based techniques, as such features are smaller than pixels in satellite images.

  20. Experimental Satellite 2 Successfully Launched

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    Small satellite Experimental Satellite 2 (SY-2) was launched by LM-2C launch vehicle from Xichang Satellite Launch Center on Nov. 18, 2004. Later the satellite entered the preset sun-synchronous orbit, which is 700 kilometers above the earth. The launch was the eighthmission this year by China Aerospace Science and Technology Corporation(CASC), which aims to test the technology of the satellite, conduct survey and monitoring of the land and resources and geographical environment on a trial basis.

  1. China's Meteorological Satellite Application System

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiashen

    2008-01-01

    @@ China's meteorological satellite program consists of five systems,namely the satellite system,the launch vehicle system,the launch center system,TT&C and the ground application system.The satellite system consists of FengYun (FY) polar orbiting series and FY geostationary series,which are launched by LM launch vehicles from Taiyan Satellite Launch Center (TSLC) and Xichang Satellite Launch Center (XSLC) respectively.

  2. Enhancing Medicares Hospital Acquired Conditions Policy

    Data.gov (United States)

    U.S. Department of Health & Human Services — The current Medicare policy of non-payment to hospitals for Hospital Acquired Conditions (HAC) seeks to avoid payment for preventable complications identified within...

  3. Common acquired kidney diseases in children

    African Journals Online (AJOL)

    5. Common acquired kidney diseases in children. Examination of the urine is probably the most ... rheumatic fever and APSGN should not ... remains unknown. ... Volume overload may also cause ..... systematic review of observational studies.

  4. Hospital-Acquired Condition Reduction Program

    Data.gov (United States)

    U.S. Department of Health & Human Services — In October 2014, CMS began reducing Medicare payments for subsection (d) hospitals that rank in the worst performing quartile with respect to hospital-acquired...

  5. The evolution of costly acquired immune memory

    National Research Council Canada - National Science Library

    Best, Alex; Hoyle, Andy

    2013-01-01

    A key feature of the vertebrate adaptive immune system is acquired immune memory, whereby hosts launch a faster and heightened response when challenged by previously encountered pathogens, preventing full infection...

  6. 7 CFR 926.10 - Acquire.

    Science.gov (United States)

    2010-01-01

    ... of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE DATA COLLECTION, REPORTING AND RECORDKEEPING REQUIREMENTS APPLICABLE TO CRANBERRIES NOT SUBJECT TO THE CRANBERRY MARKETING ORDER § 926.10 Acquire....

  7. Enhancing Medicares Hospital Acquired Conditions Policy

    Data.gov (United States)

    U.S. Department of Health & Human Services — The current Medicare policy of non-payment to hospitals for Hospital Acquired Conditions (HAC) seeks to avoid payment for preventable complications identified within...

  8. A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa

    Science.gov (United States)

    Maidment, Ross I.; Grimes, David; Black, Emily; Tarnavsky, Elena; Young, Matthew; Greatrex, Helen; Allan, Richard P.; Stein, Thorwald; Nkonde, Edson; Senkunda, Samuel; Alcántara, Edgar Misael Uribe

    2017-05-01

    Rainfall information is essential for many applications in developing countries, and yet, continually updated information at fine temporal and spatial scales is lacking. In Africa, rainfall monitoring is particularly important given the close relationship between climate and livelihoods. To address this information gap, this paper describes two versions (v2.0 and v3.0) of the TAMSAT daily rainfall dataset based on high-resolution thermal-infrared observations, available from 1983 to the present. The datasets are based on the disaggregation of 10-day (v2.0) and 5-day (v3.0) total TAMSAT rainfall estimates to a daily time-step using daily cold cloud duration. This approach provides temporally consistent historic and near-real time daily rainfall information for all of Africa. The estimates have been evaluated using ground-based observations from five countries with contrasting rainfall climates (Mozambique, Niger, Nigeria, Uganda, and Zambia) and compared to other satellite-based rainfall estimates. The results indicate that both versions of the TAMSAT daily estimates reliably detects rainy days, but have less skill in capturing rainfall amount—results that are comparable to the other datasets.

  9. Using radiance of cloud shadow for retrieve Investigation of AOD retrieval with Himawari-8 satellite data

    Science.gov (United States)

    Sun, Ta-Min; Chang, Yuan-Hsiang; Chang, Kuo-En; Lin, Tang-Huang

    2016-04-01

    As we know, the emission of pollutants, such as dust storm, biomass burning and anthropogenic pollution are serious issues related to the environmental change and human health topics in Asia. With the high temporal observation over a broad area, the new generated geostationary satellite, Himawari-8 (H-8) seems to be a good choice for atmospheric pollution monitor. It can provide the observation over Asia with 16 bands in visible and thermal infrared spectral every 10 minutes. For the atmospheric pollutant monitor by means of remote sensing, the retrieval of aerosol optical depth (AOD) is the most important index. In this study, the long method is employed for AOD retrieval which depends on the path radiance significantly. Apparent radiance of the suitable cloud shadow is selected as the path radiance. In order to let the atmospheric pollution monitor is used efficiently, so the distribution of the path radiance is using the objective analysis to expand it. The results of AOD retrieval from H-8 visible data are well consistent with MODIS (Moderate Resolution Imaging Spectroradiometer) AOD products and ground measurements AERONET (Aerosol Robotic Networks), indicating the practical of proposed approach for the AOD retrieval with H-8 data.

  10. Study on the volcanic ash cloud with Feng Yun-3 meteorological satellite data

    Science.gov (United States)

    Gong, Cai-lan T.; Jiang, Shan; Hu, Yong; Meng, Peng

    2013-09-01

    Volcano eruption can produce a mass of volcanic ash floating in the air for a long period, which will seriously threaten the aerial planes safety, and cause the air pollution, it could do harm to people's living environment and their health. Take the Iceland Eyjafjallajokull volcano as an example which erupted in April to May 2010, the volcano ash cloud were derived with the visible and infrared scanning radiometer of FengYun-3(FY-3 VIRR) meteorological satellite data. The medium wave infrared (MWIR) and the thermal infrared split windows (THIR-SW) data were used separately. the MODIS THIR-SW data were also be used to retrieve ash cloud to test the results derived from FY-3 VIRR data. It showed that the MWIR was more applicable for the ash cloud retrieving than the THIR-SW with FY-3 VIRR data, and the threshold value should be adjusted to around negative 1 rather than 0 for VIRR THIR-SW data. And the threshold should be adjusted with the THIR-SW of FY-3. The ash cloud radiation and bright temperature(BT), spatial distribution characteristics were also analyzed quantitatively with the two channels data. The study could provide parameters for the prediction of volcanic ash cloud dispersion simulate. When the real temperature of lava flow were high enough, the sensor will show a false bright temperature, how to retrieve the real temperature of the higher lava flow is a problem need to be studied in the future.

  11. Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data

    Directory of Open Access Journals (Sweden)

    Ugur Avdan

    2016-01-01

    Full Text Available Land surface temperature is an important factor in many areas, such as global climate change, hydrological, geo-/biophysical, and urban land use/land cover. As the latest launched satellite from the LANDSAT family, LANDSAT 8 has opened new possibilities for understanding the events on the Earth with remote sensing. This study presents an algorithm for the automatic mapping of land surface temperature from LANDSAT 8 data. The tool was developed using the LANDSAT 8 thermal infrared sensor Band 10 data. Different methods and formulas were used in the algorithm that successfully retrieves the land surface temperature to help us study the thermal environment of the ground surface. To verify the algorithm, the land surface temperature and the near-air temperature were compared. The results showed that, for the first case, the standard deviation was 2.4°C, and for the second case, it was 2.7°C. For future studies, the tool should be refined with in situ measurements of land surface temperature.

  12. Acquired uniparental disomy in myeloproliferative neoplasms.

    Science.gov (United States)

    Score, Joannah; Cross, Nicholas C P

    2012-10-01

    The finding of somatically acquired uniparental disomy, where both copies of a chromosome pair or parts of chromosomes have originated from one parent, has led to the discovery of several novel mutated genes in myeloproliferative neoplasms and related disorders. This article examines how the development of single nucleotide polymorphism array technology has facilitated the identification of regions of acquired uniparental disomy and has led to a much greater understanding of the molecular pathology of these heterogeneous diseases.

  13. The evolution of costly acquired immune memory

    OpenAIRE

    Best, A.; Hoyle, A

    2013-01-01

    A key feature of the vertebrate adaptive immune system is acquired immune memory, whereby hosts launch a faster and heightened response when challenged by previously encountered pathogens, preventing full infection. Here, we use a mathematical model to explore the role of ecological and epidemiological processes in shaping selection for costly acquired immune memory. Applying the framework of adaptive dynamics to the classic SIR (Susceptible-Infected-Recovered) epidemiological model, we focus...

  14. Acquiring Evolving Technologies: Web Services Standards

    Science.gov (United States)

    2016-06-30

    2006 Carnegie Mellon University Acquiring Evolving Technologies: Web Services Standards Harry L. Levinson Software Engineering Institute Carnegie...Acquiring Evolving Technologies: Web Services Standards 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...NUMBER OF PAGES 22 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form

  15. Acquired pure red cell aplasia in children

    Directory of Open Access Journals (Sweden)

    Sujata R Dafale

    2012-01-01

    Full Text Available Acquired Pure Red Cell Aplasia (PRCA is a rare occurrence in children.This is a case of an eight year old girl child who developed acquired PRCA secondary to long term intake of sodium Valproate. This case is reported to review the causes of PRCA in children and to reconsider the use of drugs of longer duration in children and adults.

  16. Acquiring Secure Systems Through Information Economics

    Science.gov (United States)

    2015-05-01

    Acquiring Secure Systems Through Information Economics Chad Dacus Research Professor of Defense Economics Air Force Research Institute Dr. Pano...to 00-00-2015 4. TITLE AND SUBTITLE Acquiring Secure Systems Through Information Economics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...If adversary can hack into mission essential software/hardware, then mission is compromised • Mission assurance requires materiel solutions, educated

  17. Internal Calibration of HJ-1-C Satellite SAR System

    Directory of Open Access Journals (Sweden)

    Yang Zhen

    2014-06-01

    Full Text Available The HJ-1-C satellite is a Synthetic Aperture Radar (SAR satellite of a small constellation for environmental and disaster monitoring. At present, it is in orbit and working well. The SAR system uses a mesh reflector antenna and centralized power amplifier, and has an internal calibration function in orbit. This study introduces the internal calibration modes and signal paths. The design and realization of the internal calibrator are discussed in detail. Finally, the internal calibration data acquired in orbit are also analyzed.

  18. Intelligent fault isolation and diagnosis for communication satellite systems

    Science.gov (United States)

    Tallo, Donald P.; Durkin, John; Petrik, Edward J.

    1992-01-01

    Discussed here is a prototype diagnosis expert system to provide the Advanced Communication Technology Satellite (ACTS) System with autonomous diagnosis capability. The system, the Fault Isolation and Diagnosis EXpert (FIDEX) system, is a frame-based system that uses hierarchical structures to represent such items as the satellite's subsystems, components, sensors, and fault states. This overall frame architecture integrates the hierarchical structures into a lattice that provides a flexible representation scheme and facilitates system maintenance. FIDEX uses an inexact reasoning technique based on the incrementally acquired evidence approach developed by Shortliffe. The system is designed with a primitive learning ability through which it maintains a record of past diagnosis studies.

  19. Monitoring coastal inundation with Synthetic Aperture Radar satellite data

    Science.gov (United States)

    Suzuoki, Yukihiro; Rangoonwala, Amina; Ramsey, Elijah W.

    2011-01-01

    Maps representing the presence and absence of surface inundation in the Louisiana coastal zone were created from available satellite scenes acquired by the Japanese Aerospace Exploration Agency's Advanced Land Observing Satellite and by the European Space Agency's Envisat from late 2006 through summer 2009. Detection of aboveground surface flooding relied on the well-documented and distinct signature of decreased backscatter in Synthetic Aperture Radar (SAR), which is indicative of inundated marsh in the Gulf of Mexico. Even though decreases in backscatter were distinctive, the multiplicity of possible interactions between changing flood depths and canopy height yielded complex SAR-based representations of the marshes.

  20. Exploiting the sensitivity of two satellite cloud height retrievals to cloud vertical distribution

    Directory of Open Access Journals (Sweden)

    C. K. Carbajal Henken

    2015-03-01

    Full Text Available This work presents a study on the sensitivity of two satellite cloud height retrievals to cloud vertical distribution. The difference in sensitivity is exploited by relating the difference in the retrieved cloud heights to cloud vertical extent. The two cloud height retrievals, performed within the Freie Universität Berlin AATSR MERIS Cloud (FAME-C algorithm, are based on independent measurements and different retrieval techniques. First, cloud top temperature (CTT is retrieved from Advanced Along Track Scanning Radiometer (AATSR measurements in the thermal infrared. Second, cloud top pressure (CTP is retrieved from Medium Resolution Imaging Spectrometer (MERIS measurements in the oxygen-A absorption band. Both CTT and CTP are converted to cloud top height (CTH using atmospheric profiles from a numerical weather prediction model. A sensitivity study using radiative transfer simulations in the near-infrared and thermal infrared were performed to demonstrate the larger impact of the assumed cloud vertical extinction profile on MERIS than on AATSR top-of-atmosphere measurements. The difference in retrieved CTH (ΔCTH from AATSR and MERIS are related to cloud vertical extent (CVE as observed by ground-based lidar and radar at three ARM sites. To increase the impact of the cloud vertical extinction profile on the MERIS-CTP retrievals, single-layer and geometrically thin clouds are assumed in the forward model. The results of the comparison to the ground-based observations were separated into single-layer and multi-layer cloud cases. Analogous to previous findings, the MERIS-CTP retrievals appear to be close to pressure levels in the middle of the cloud. Assuming a linear relationship, the ΔCTH multiplied by 2.5 gives an estimate on the CVE for single-layer clouds. The relationship is weaker for multi-layer clouds. Due to large variations of cloud vertical extinction profiles occurring in nature, a quantitative estimate of the cloud vertical extent

  1. Detection of supercooled liquid water-topped mixed-phase clouds >from shortwave-infrared satellite observations

    Science.gov (United States)

    NOH, Y. J.; Miller, S. D.; Heidinger, A. K.

    2015-12-01

    Many studies have demonstrated the utility of multispectral information from satellite passive radiometers for detecting and retrieving the properties of cloud globally, which conventionally utilizes shortwave- and thermal-infrared bands. However, the satellite-derived cloud information comes mainly from cloud top or represents a vertically integrated property. This can produce a large bias in determining cloud phase characteristics, in particular for mixed-phase clouds which are often observed to have supercooled liquid water at cloud top but a predominantly ice phase residing below. The current satellite retrieval algorithms may report these clouds simply as supercooled liquid without any further information regarding the presence of a sub-cloud-top ice phase. More accurate characterization of these clouds is very important for climate models and aviation applications. In this study, we present a physical basis and preliminary results for the algorithm development of supercooled liquid-topped mixed-phase cloud detection using satellite radiometer observations. The detection algorithm is based on differential absorption properties between liquid and ice particles in the shortwave-infrared bands. Solar reflectance data in narrow bands at 1.6 μm and 2.25 μm are used to optically probe below clouds for distinction between supercooled liquid-topped clouds with and without an underlying mixed phase component. Varying solar/sensor geometry and cloud optical properties are also considered. The spectral band combination utilized for the algorithm is currently available on Suomi NPP Visible/Infrared Imaging Radiometer Suite (VIIRS), Himawari-8 Advanced Himawari Imager (AHI), and the future GOES-R Advance Baseline Imager (ABI). When tested on simulated cloud fields from WRF model and synthetic ABI data, favorable results were shown with reasonable threat scores (0.6-0.8) and false alarm rates (0.1-0.2). An ARM/NSA case study applied to VIIRS data also indicated promising

  2. The impact of curved satellite tracks on SAR focusing

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    2000-01-01

    This paper addresses the geometric effect of processing single look complex synthetic aperture radar (SAR) data to a reference squint angle different from that given by the center of the real antenna beam. For data acquired on a straight flight line, the required transformation of radar coordinates...... from one Doppler reference to another is independent of the target elevation but for data acquired from a satellite orbit over a rotating Earth that is not true. Also the effect of ignoring Earth rotation is addressed....

  3. Solar Power Satellites

    CERN Document Server

    Flournoy, Don M

    2012-01-01

    Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.

  4. Geostationary satellites collocation

    CERN Document Server

    Li, Hengnian

    2014-01-01

    Geostationary Satellites Collocation aims to find solutions for deploying a safe and reliable collocation control. Focusing on the orbital perturbation analysis, the mathematical foundations for orbit and control of the geostationary satellite are summarized. The mathematical and physical principle of orbital maneuver and collocation strategies for multi geostationary satellites sharing with the same dead band is also stressed. Moreover, the book presents some applications using the above algorithms and mathematical models to help readers master the corrective method for planning station keeping maneuvers. Engineers and scientists in the fields of aerospace technology and space science can benefit from this book. Hengnian Li is the Deputy Director of State Key Laboratory of Astronautic Dynamics, China.

  5. ESA's satellite communications programme

    Science.gov (United States)

    Bartholome, P.

    1985-02-01

    The developmental history, current status, and future plans of the ESA satellite-communications programs are discussed in a general survey and illustrated with network diagrams and maps. Consideration is given to the parallel development of national and European direct-broadcast systems and telecommunications networks, the position of the European space and electronics industries in the growing world market, the impact of technological improvements (both in satellite systems and in ground-based networks), and the technological and commercial advantages of integrated space-terrestrial networks. The needs for a European definition of the precise national and international roles of satellite communications, for maximum speed in implementing such decisions (before the technology becomes obsolete), and for increased cooperation and standardization to assure European equipment manufacturers a reasonable share of the market are stressed.

  6. AVS on satellite

    Science.gov (United States)

    Zhao, Haiwu; Wang, Guozhong; Hou, Gang

    2005-07-01

    AVS is a new digital audio-video coding standard established by China. AVS will be used in digital TV broadcasting and next general optical disk. AVS adopted many digital audio-video coding techniques developed by Chinese company and universities in recent years, it has very low complexity compared to H.264, and AVS will charge very low royalty fee through one-step license including all AVS tools. So AVS is a good and competitive candidate for Chinese DTV and next generation optical disk. In addition, Chinese government has published a plan for satellite TV signal directly to home(DTH) and a telecommunication satellite named as SINO 2 will be launched in 2006. AVS will be also one of the best hopeful candidates of audio-video coding standard on satellite signal transmission.

  7. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... is suspended on an air bearing, and rotates freely in 3 degrees of freedom. In order to avoid any influence of the gravitational force the centre of mass of the satellite is placed in the geometric centre of the air bearing by an automatic balancing system. The test spacecraft is equipped with a three......-axis magnetometer, three piezoelectric gyros, and four reaction wheels in a tetrahedron configuration. The operation of the spacecraft is fully autonomous. The data flow between the transducers and the onboard computer placed physically outside the satellite is provided by a radio link. The purpose...

  8. Autonomous sensor-based dual-arm satellite grappling

    Science.gov (United States)

    Wilcox, Brian; Tso, Kam; Litwin, Todd; Hayati, Samad; Bon, Bruce

    1989-01-01

    Dual-arm satellite grappling involves the integration of technologies developed in the Sensing and Perception (S&P) Subsystem for object acquisition and tracking, and the Manipulator Control and Mechanization (MCM) Subsystem for dual-arm control. S&P acquires and tracks the position, orientation, velocity, and angular velocity of a slowly spinning satellite, and sends tracking data to the MCM subsystem. MCM grapples the satellite and brings it to rest, controlling the arms so that no excessive forces or torques are exerted on the satellite or arms. A 350-pound satellite mockup which can spin freely on a gimbal for several minutes, closely simulating the dynamics of a real satellite is demonstrated. The satellite mockup is fitted with a panel under which may be mounted various elements such as line replacement modules and electrical connectors that will be used to demonstrate servicing tasks once the satellite is docked. The subsystems are housed in three MicroVAX II microcomputers. The hardware of the S&P Subsystem includes CCD cameras, video digitizers, frame buffers, IMFEX (a custom pipelined video processor), a time-code generator with millisecond precision, and a MicroVAX II computer. Its software is written in Pascal and is based on a locally written vision software library. The hardware of the MCM Subsystem includes PUMA 560 robot arms, Lord force/torque sensors, two MicroVAX II computers, and unimation pneumatic parallel grippers. Its software is written in C, and is based on a robot language called RCCL. The two subsystems are described and test results on the grappling of the satellite mockup with rotational rates of up to 2 rpm are provided.

  9. GPS satellite surveying

    CERN Document Server

    Leick, Alfred; Tatarnikov, Dmitry

    2015-01-01

    THE MOST COMPREHENSIVE, UP-TO-DATE GUIDE ON GPS TECHNOLOGY FOR SURVEYING Three previous editions have established GPS Satellite Surveying as the definitive industry reference. Now fully updated and expanded to reflect the newest developments in the field, this Fourth Edition features cutting-edge information on GNSS antennas, precise point positioning, real-time relative positioning, lattice reduction, and much more. Expert authors examine additional tools and applications, offering complete coverage of geodetic surveying using satellite technologies. The past decade has seen a major evolut

  10. Declassified intelligence satellite photographs

    Science.gov (United States)

    ,

    1998-01-01

    Recently declassified photographs from spy satellites are an important addition to the record of the Earth?s land surface held by the U.S. Geological Survey (USGS). More than 800,000 high-resolution photos taken between 1959 through 1972 were made available by Executive Order of the President. The collection is held at the USGS EROS Data Center, near Sioux Falls, S. Dak., and are offered for public sale. For some purposes in earth science studies, these photos extend the record of changes in the land surface another decade back in time from the advent of the Landsat earth-observing satellite program.