WorldWideScience

Sample records for sas2h isotopic predictions

  1. OECD benchmark a of MOX fueled PWR unit cells using SAS2H, triton and mocup

    International Nuclear Information System (INIS)

    Ganda, F.; Greenspan, A.

    2005-01-01

    Three code systems are tested by applying them to calculate the OECD PWR MOX unit cell benchmark A. The codes tested are the SAS2H code sequence of the SCALE5 code package using 44 group library, MOCUP (MCNP4C + ORIGEN2), and the new TRITON depletion sequence of SCALE5 using 238 group cross sections generated using CENTRM with continuous energy cross sections. The burnup-dependent k ∞ and actinides concentration calculated by all three code-systems were found to be in good agreement with the OECD benchmark average results. Limited results were calculated also with the WIMS-ANL code package. WIMS-ANL was found to significantly under-predict k ∞ as well as the concentration of Pu 242 , consistently with the predictions of the WIMS-LWR reported by two of the OECD benchmark participants. Additionally, SAS2H is benchmarked against MOCUP for a hydride fuel containing unit cell, giving very satisfactory agreement. (authors)

  2. A SAS2H/KENO-V Methodology for 3D Full Core depletion analysis

    International Nuclear Information System (INIS)

    Milosevic, M.; Greenspan, E.; Vujic, J.; Petrovic, B.

    2003-04-01

    This paper describes the use of a SAS2H/KENO-V methodology for 3D full core depletion analysis and illustrates its capabilities by applying it to burnup analysis of the IRIS core benchmarks. This new SAS2H/KENO-V sequence combines a 3D Monte Carlo full core calculation of node power distribution and a 1D Wigner-Seitz equivalent cell transport method for independent depletion calculation of each of the nodes. This approach reduces by more than an order of magnitude the time required for getting comparable results using the MOCUP code system. The SAS2H/KENO-V results for the asymmetric IRIS core benchmark are in good agreement with the results of the ALPHA/PHOENIX/ANC code system. (author)

  3. A SAS2H/KENO-V methodology for 3D fuel burnup analysis

    International Nuclear Information System (INIS)

    Milosevic, M.; Greenspan, E.; Vujic, J.

    2002-01-01

    An efficient methodology for 3D fuel burnup analysis of LWR reactors is described in this paper. This methodology is founded on coupling Monte Carlo method for 3D calculation of node power distribution, and transport method for depletion calculation in ID Wigner-Seitz equivalent cell for each node independently. The proposed fuel burnup modeling, based on application of SCALE-4.4a control modules SAS2H and KENO-V.a is verified for the case of 2D x-y model of IRIS 15 x 15 fuel assembly (with reflective boundary condition) by using two well benchmarked code systems. The one is MOCUP, a coupled MCNP-4C and ORIGEN2.1 utility code, and the second is KENO-V.a/ORIGEN2.1 code system recently developed by authors of this paper. The proposed SAS2H/KENO-V.a methodology was applied for 3D burnup analysis of IRIS-1000 benchmark.44 core. Detailed k sub e sub f sub f and power density evolution with burnup are reported. (author)

  4. Isotopic biases for actinide-only burnup credit

    International Nuclear Information System (INIS)

    Rahimi, M.; Lancaster, D.; Hoeffer, B.; Nichols, M.

    1997-01-01

    The primary purpose of this paper is to present the new methodology for establishing bias and uncertainty associated with isotopic prediction in spent fuel assemblies for burnup credit analysis. The analysis applies to the design of criticality control systems for spent fuel casks. A total of 54 spent fuel samples were modeled and analyzed using the Shielding Analyses Sequence (SAS2H). Multiple regression analysis and a trending test were performed to develop isotopic correction factors for 10 actinide burnup credit isotopes. 5 refs., 1 tab

  5. Kinetic isotope effects in the CH4 + H→CH3 + H2 system. Predictions of the LMR six-body potential-energy reaction hypersurface

    International Nuclear Information System (INIS)

    Marriott, T.D.

    1976-01-01

    Scope of Study: The purpose of this study was two-fold. First, it served to test, in part, the usefulness of the LMR six-body potential-energy surface (LMR-PES) for transition-state theory predictions of the kinetic isotope effects for both the forward and reverse reactions of CH 4 + H reversible CH 3 + H 2 . In this regard the agreement between experimental and theoretical isotope effects, assuming the former to be accurate, provides information about the accuracy of the curvature of the potential energy surface for motion both parallel and perpendicular to the reaction coordinate. Second, these isotope effects were used to assess the validity of a number of qualitative and semi-quantitative interpretations of kinetic isotope effects developed in physical organic chemistry with regard to this reaction system. The force constants and geometries obtained numerically from the LMR-PES were found to produce reasonable harmonic approximations to the reactant normal mode frequencies. Neglecting tunneling, the LMR-PES reasonably reproduces the experimental k/sub H//k/sub D/ values for the reactions CH 4 + H(D), CH 3 + HD(DH) and CD 2 + HD(DH). Since previous theoretical treatments of primary deuterium kinetic isotope effects have neglected the bending normal mode frequencies, a semi-quantitative study of the effect of neglecting bending frequencies on the VP, EXC, and ZPE elements as well as the transition-state theory kinetic isotope effects was performed. The Swain-Schaad relationship between primary deuterium and tritium kinetic isotope effects was shown to hold to a reasonable degree of accuracy for the LMR-PES reaction system. A relationship between 13-carbon and 14-carbon kinetic isotope effects similar to the Swain-Schaad relationship was derived

  6. An alternative to the SAS2H/ORIGEN-S sequence to account for water-density effects in BWR systems

    International Nuclear Information System (INIS)

    Leal, L.C.; Hermann, O.W.; Ryman, J.C.; Broadhead, B.L.

    1996-01-01

    A scheme to generate one-group problem-dependent cross-section libraries for point-depletion calculations with the ORIGEN-S code was developed as an alternative to the SAS2H sequence of the SCALE code system. The methodology, named Automatic Rapid Processing (ARP), generates libraries by interpolating in SAS2H precomputed cross section libraries. The method has been used to generate ORIGEN-S cross section libraries on a personal computer resulting in a great reduction of computer time without a sacrifice of accuracy over that required by corresponding SAS2H calculations. The ARP scheme generates ORIGEN-S libraries by interpolating in burnup and enrichment for PWR assemblies. The intent of this work is to describe a procedure which extends the application of the ARP methodology to BWR assemblies by including the axial water-density effects in the generation of the ORIGEN-S cross-section libraries. The axial liquid- to-steam change of state in BWR systems leads to a variation in the water density and significant cross-section changes as a function of the water density. To account for the axial water-density changes in a SAS2H calculation, the water density is entered explicitly in the generation of the one-group ORIGEN-S cross-section libraries generated from the SCALE 27-group library. In its original version, ARP does not account for the effects of water-density variation in ORIGEN-S cross-section library generation, and, therefore, its application is restricted to systems for which the impact of this parameter is negligible. To update the ARP methodology to account for the water-density effect, a detailed study of the cross-section change with this parameter was performed with an 8 x 8 (General Electric) BWR assembly

  7. SAS-macros for estimation and prediction in an model of the electricity consumption

    DEFF Research Database (Denmark)

    1998-01-01

    SAS-macros for estimation and prediction in an model of the electricity consumption'' is a large collection of SAS-macros for handling a model of the electricity consumption in the Eastern Denmark. The macros are installed at Elkraft, Ballerup.......SAS-macros for estimation and prediction in an model of the electricity consumption'' is a large collection of SAS-macros for handling a model of the electricity consumption in the Eastern Denmark. The macros are installed at Elkraft, Ballerup....

  8. SAS2H Generated Isotopic Concentrations For B and W 15X15 PWR Assembly

    International Nuclear Information System (INIS)

    J.W. Davis

    1996-01-01

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide pressurized water reactor (PWR) isotopic composition data as a function of time for use in criticality analyses. The objectives of this evaluation are to generate burnup and decay dependant isotopic inventories and to provide these inventories in a form which can easily be utilized in subsequent criticality calculations

  9. Mechanism of Nitrogenase H 2 Formation by Metal-Hydride Protonation Probed by Mediated Electrocatalysis and H/D Isotope Effects

    Energy Technology Data Exchange (ETDEWEB)

    Khadka, Nimesh [Department of Chemistry; Milton, Ross D. [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States; Shaw, Sudipta [Department of Chemistry; Lukoyanov, Dmitriy [Department; Dean, Dennis R. [Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States; Minteer, Shelley D. [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States; Raugei, Simone [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Hoffman, Brian M. [Department; Seefeldt, Lance C. [Department of Chemistry

    2017-09-15

    Nitrogenase catalyzes the reduction of dinitrogen (N2) to ammonia (NH3) with obligatory reduction of protons (H+) to dihydrogen (H2) through a mechanism involving reductive elimination of two [Fe-H-Fe] bridging hydrides at its active site FeMo-cofactor. The overall rate-limiting step is associated with ATP-driven electron delivery from Fe protein, precluding isotope effect measurements on substrate reduction steps. Here, we use mediated bioelectrocatalysis to drive electron delivery to MoFe protein without Fe protein and ATP hydrolysis, thereby eliminating the normal rate-limiting step. The ratio of catalytic current in mixtures of H2O and D2O, the proton inventory, changes linearly with the D2O/H2O ratio, revealing that a single H/D is involved in the rate limiting step. Kinetic models, along with measurements that vary the electron/proton delivery rate and use different substrates, reveal that the rate-limiting step under these conditions is the H2 formation reaction. Altering the chemical environment around the active site FeMo-cofactor in the MoFe protein either by substituting nearby amino acids or transferring the isolated FeMo-cofactor into a different peptide matrix, changes the net isotope effect, but the proton inventory plot remains linear, consistent with an unchanging rate-limiting step. Density functional theory predicts a transition state for H2 formation where the proton from S-H+ moves to the hydride in Fe-H-, predicting the number and magnitude of the observed H/D isotope effect. This study not only reveals the mechanism of H2 formation, but also illustrates a strategy for mechanistic study that can be applied to other enzymes and to biomimetic complexes.

  10. Linking hydrogen (δ2H isotopes in feathers and precipitation: sources of variance and consequences for assignment to isoscapes.

    Directory of Open Access Journals (Sweden)

    Keith A Hobson

    Full Text Available Tracking small migrant organisms worldwide has been hampered by technological and recovery limitations and sampling bias inherent in exogenous markers. Naturally occurring stable isotopes of H (δ(2H in feathers provide an alternative intrinsic marker of animal origin due to the predictable spatial linkage to underlying hydrologically driven flow of H isotopes into foodwebs. This approach can assess the likelihood that a migrant animal originated from a given location(s within a continent but requires a robust algorithm linking H isotopes in tissues of interest to an appropriate hydrological isotopic spatio-temporal pattern, such as weighted-annual rainfall. However, a number of factors contribute to or alter expected isotopic patterns in animals. We present results of an extensive investigation into taxonomic and environmental factors influencing feather δ(2H patterns across North America.Stable isotope data were measured from 544 feathers from 40 species and 140 known locations. For δ(2H, the most parsimonious model explaining 83% of the isotopic variance was found with amount-weighted growing-season precipitation δ(2H, foraging substrate and migratory strategy.This extensive H isotopic analysis of known-origin feathers of songbirds in North America and elsewhere reconfirmed the strong coupling between tissue δ(2H and global hydrologic δ(2H patterns, and accounting for variance associated with foraging substrate and migratory strategy, can be used in conservation and research for the purpose of assigning birds and other species to their approximate origin.

  11. Isotopic exchange processes in cold plasmas of H2/D2 mixtures.

    Science.gov (United States)

    Jiménez-Redondo, Miguel; Carrasco, Esther; Herrero, Víctor J; Tanarro, Isabel

    2011-05-28

    Isotope exchange in low pressure cold plasmas of H(2)/D(2) mixtures has been investigated by means of mass spectrometric measurements of neutrals and ions, and kinetic model calculations. The measurements, which include also electron temperatures and densities, were performed in a stainless steel hollow cathode reactor for three discharge pressures: 1, 2 and 8 Pa, and for mixture compositions ranging from 100% H(2) to 100% D(2). The data are analyzed in the light of the model calculations, which are in good global agreement with the experiments. Isotope selective effects are found both in the surface recombination and in the gas-phase ionic chemistry. The dissociation of the fuel gas molecules is followed by wall recycling, which regenerates H(2) and D(2) and produces HD. Atomic recombination at the wall is found to proceed through an Eley-Rideal mechanism, with a preference for reaction of the adsorbed atoms with gas phase D atoms. The best fit probabilities for Eley-Rideal abstraction with H and D are: γ(ER H) = 1.5 × 10(-3), γ(ER D) = 2.0 × 10(-3). Concerning ions, at 1 Pa the diatomic species H(2)(+), D(2)(+) and HD(+), formed directly by electron impact, prevail in the distributions, and at 8 Pa, the triatomic ions H(3)(+), H(2)D(+), HD(2)(+) and D(3)(+), produced primarily in reactions of diatomic ions with molecules, dominate the plasma composition. In this higher pressure regime, the formation of the mixed ions H(2)D(+) and HD(2)(+) is favoured in comparison with that of H(3)(+) and D(3)(+), as expected on statistical grounds. The model results predict a very small preference, undetectable within the precision of the measurements, for the generation of triatomic ions with a higher degree of deuteration, which is probably a residual influence at room temperature of the marked zero point energy effects (ZPE), relevant for deuterium fractionation in interstellar space. In contrast, ZPE effects are found to be decisive for the observed distribution of

  12. The H+3 + H2 isotopic system. Origin of deuterium astrochemistry

    International Nuclear Information System (INIS)

    Hugo, Edouard Jean-Marie

    2008-01-01

    Dense cold molecular clouds reckoned to be stellar nurseries are the scene of an extreme molecular deuteration. Despite the cosmic D/H ratio of ∝10 -5 , molecular species in prestellar cores are observed to contain nearly as much deuterium as hydrogen. This astonishing deuterium enrichment promoted by low temperatures is the work of H + 3 . It is the key species which unlocks the deuterium from its HD reservoir via reactions like H + 3 +HD ↔ H 2 D + +H 2 and drags it further to other species in successive reactions. For this reason, the H + 3 +H 2 isotopic system is outstandingly critical for the astrochemistry of cold environments. However, its understanding is yet incomplete and insufficient. This thesis thus focuses on the H + 3 +H 2 isotopic system from a theoretical, experimental and astronomical point of view giving a particular look into the role of nuclear spins. As a first step, the stringent nuclear spin selection rules in associative, dissociative and reactive collisions are investigated. This purely theoretical study zooms into the details of the nuclear spin wavefunctions and shows that their permutation symmetry representation is necessary and sufficient, contrary to their angular momentum representation. Additionally, a new deterministic interpretation of nuclear spins in chemical reactions is proposed. Based on these considerations, a complete set of state-to-state rate coefficients for all H + 3 + H 2 isotopic variants is calculated using a microcanonical model leaned on phase space theory. An experimental study is conducted in parallel with a 22-pole ion trap apparatus in order to inspect the influences of temperature and H 2 ortho-to-para ratio. The good overall agreement between experimental and theoretical results supports the validity and utility of the calculated set of rate coefficients. Furthermore, the potentiality of the 22-pole ion trap apparatus is explored via the Laser Induced Reaction (LIR) technique applied to our system of

  13. Sas2

    International Development Research Centre (IDRC) Digital Library (Canada)

    The fascinating multi-country examples in the Guide illustrate how SAS2 ... The challenge is to raise all forms of inquiry to the power of two: making the .... This requires an ability to suspend judgment, consider the views of others, ..... Our view is that the drive to think "holistically" must always be expressed with local color and ...

  14. SAS2H Generated Isotopic Concentrations For B&W 15X15 PWR Assembly (SCPB:N/A)

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Davis

    1996-08-29

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide pressurized water reactor (PWR) isotopic composition data as a function of time for use in criticality analyses. The objectives of this evaluation are to generate burnup and decay dependant isotopic inventories and to provide these inventories in a form which can easily be utilized in subsequent criticality calculations.

  15. Oxygen isotope fractionation in the CaCO3-DIC-H2O system

    Science.gov (United States)

    Devriendt, Laurent S.; Watkins, James M.; McGregor, Helen V.

    2017-10-01

    The oxygen isotope ratio (δ18O) of inorganic and biogenic carbonates is widely used to reconstruct past environments. However, the oxygen isotope exchange between CaCO3 and H2O rarely reaches equilibrium and kinetic isotope effects (KIE) commonly complicate paleoclimate reconstructions. We present a comprehensive model of kinetic and equilibrium oxygen isotope fractionation between CaCO3 and water (αc/w) that accounts for fractionation between both (a) CaCO3 and the CO32- pool (α c / CO32-) , and (b) CO32- and water (α CO32- / w) , as a function of temperature, pH, salinity, calcite saturation state (Ω), the residence time of the dissolved inorganic carbon (DIC) in solution, and the activity of the enzyme carbonic anhydrase. The model results suggest that: (1) The equilibrium αc/w is only approached in solutions with low Ω (i.e. close to 1) and low ionic strength such as in the cave system of Devils Hole, Nevada. (2) The sensitivity of αc/w to the solution pH and/or the mineral growth rate depends on the level of isotopic equilibration between the CO32- pool and water. When the CO32- pool approaches isotopic equilibrium with water, small negative pH and/or growth rate effects on αc/w of about 1-2‰ occur where these parameters covary with Ω. In contrast, isotopic disequilibrium between CO32- and water leads to strong (>2‰) positive or negative pH and growth rate effects on α CO32-/ w (and αc/w) due to the isotopic imprint of oxygen atoms derived from HCO3-, CO2, H2O and/or OH-. (3) The temperature sensitivity of αc/w originates from the negative effect of temperature on α CO32-/ w and is expected to deviate from the commonly accepted value (-0.22 ± 0.02‰/°C between 0 and 30 °C; Kim and O'Neil, 1997) when the CO32- pool is not in isotopic equilibrium with water. (4) The model suggests that the δ18O of planktic and benthic foraminifers reflects a quantitative precipitation of DIC in isotopic equilibrium with a high-pH calcifying fluid, leading

  16. Introduction to SAS on VAX

    International Nuclear Information System (INIS)

    Kardaun, O.; Miura, Yukitoshi; Matsuda, Toshiaki; Tamai, Hiroshi.

    1991-06-01

    To analyse, among others, the H-mode data base, a new version (6.06) of the SAS system has been installed on the VAX 3200 Workstation at JFT-2M. In this report, we summarize how to use SAS interactively (i.e., in 'display manager mode') on this machine. By a didactical example program and its annotated output we illustrate some of the capabilities of SAS. The report is intended to facilitate the access to the SAS documentation by physicists interested in plasma physical applications. (author)

  17. Technical support for a proposed decay heat guide using SAS2H/ORIGEN-S data

    International Nuclear Information System (INIS)

    Hermann, O.W.; Parks, C.V.; Renier, J.P.

    1994-09-01

    Major revisions are proposed to the current US Nuclear Regulatory Commission decay heat rate guide entitled ''Regulatory Guide 3.54, Spent Fuel Heat Generation in an Independent Spent Fuel Storage Installation,'' using a new data base produced by the SAS2H analysis sequence of the SCALE-4 system. The data base for the proposed guide revision has been significantly improved by increasing the number and range of parameters that generally characterize pressurized-water-reactor (PWR) and boiling-water-reactor (BWR) spent fuel assemblies. Using generic PWR and BWR assembly models, calculations were performed with each model for six different burnups at each of three separate specific powers to produce heat rates at 20 cooling times in the range of 1 to 110 y. The proposed procedure specifies proper interpolation formulae for the tabulated heat generation rates. Adjustment formulae for the interpolated values are provided to account for differences in initial 235 U enrichment and changes in the specific power of a cycle from the average value. Finally, safety factor formulae were derived as a function of burnup, cooling time, and type of reactor. The proposed guide revision was designed to be easier to use. Also, the complete data base and guide procedure is incorporated into an interactive code called LWRARC which can be executed on a personal computer. The report shows adequate comparisons of heat rates computed by SAS2H/ORIGEN-S and measurements for 10 BWR and 10 PWR fuel assemblies. The average differences of the computed minus the measured heat rates of fuel assemblies were -07 ± 2.6% for the BWR and 1.5 ± 1.3% for the PWR. In addition, a detailed analysis of the proposed procedure indicated the method and equations to be valid

  18. A Tale of Two Gases: Isotope Effects Associated with the Enzymatic Production of H2 and N2O

    Science.gov (United States)

    Yang, H.; Gandhi, H.; Kreuzer, H. W.; Moran, J.; Hill, E. A.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.; Hegg, E. L.

    2014-12-01

    Stable isotopes can provide considerable insight into enzymatic mechanisms and fluxes in various biological processes. In our studies, we used stable isotopes to characterize both enzyme-catalyzed H2 and N2O production. H2 is a potential alternative clean energy source and also a key metabolite in many microbial communities. Biological H2 production is generally catalyzed by hydrogenases, enzymes that combine protons and electrons to produce H2 under anaerobic conditions. In our study, H isotopes and fractionation factors (α) were used to characterize two types of hydrogenases: [FeFe]- and [NiFe]-hydrogenases. Due to differences in the active site, the α associated with H2 production for [FeFe]- and [NiFe]-hydrogenases separated into two distinct clusters (αFeFe > αNiFe). The calculated kinetic isotope effects indicate that hydrogenase-catalyzed H2 production has a preference for light isotopes, consistent with the relative bond strengths of O-H and H-H bonds. Interestingly, the isotope effects associated with H2 consumption and H2-H2O exchange reactions were also characterized, but in this case no specific difference was observed between the different enzymes. N2O is a potent greenhouse gas with a global warming potential 300 times that of CO2, and the concentration of N2O is currently increasing at a rate of ~0.25% per year. Thus far, bacterial and fungal denitrification processes have been identified as two of the major sources of biologically generated N2O. In this study, we measured the δ15N, δ18O, δ15Nα (central N atom in N2O), and δ15Nβ (terminal N atom in N2O) of N2O generated by purified fungal P450 nitric oxide reductase (P450nor) from Histoplasma capsulatum. We observed normal isotope effects for δ18O and δ15Nα, and inverse isotope effects for bulk δ15N (the average of Nα and Nβ) and δ15Nβ. The observed isotope effects have been used in conjunction with DFT calculations to provide important insight into the mechanism of P450nor. Similar

  19. Hydrogen isotope effect on muonic x-ray spectra of (CH2)/sub x/ and H2O

    International Nuclear Information System (INIS)

    Mausner, L.F.; Knight, J.D.; Orth, C.J.; Schillaci, M.E.; Naumann, R.A.

    1977-01-01

    We have measured the muonic x-ray intensity patterns of C in (CH 2 )/sub x/ and (CD 2 )/sub x/ and of O in H 2 O and D 2 O. In both cases the relative intensities of the higher Lyman series members are significantly lower in the deuterium compounds, indicating that the initial angular momentum distribution of the muons captured on C and O is weighted to higher l states compared to the normal hydrogen compounds. This isotope effect has not been predicted by any model of negative-meson capture

  20. Nanoporous materials for hydrogen storage and H2/D2 isotope separation

    International Nuclear Information System (INIS)

    Oh, Hyunchul

    2014-01-01

    This thesis presents a study of hydrogen adsorption properties at RT with noble metal doped porous materials and an efficient separation of hydrogen isotopes with nanoporous materials. Most analysis is performed via thermal desorption spectra (TDS) and Sieverts-type apparatus. The result and discussion is presented in two parts; Chapter 4 focuses on metal doped nanoporous materials for hydrogen storage. Cryogenic hydrogen storage by physisorption on porous materials has the advantage of high reversibility and fast refuelling times with low heat evolution at modest pressures. At room temperature, however, the physisorption mechanism is not abEle to achieve enough capacity for practical application due to the weak van der Waals interaction, i.e., low isosteric heats for hydrogen sorption. Recently, the ''spillover'' effect has been proposed by R. Yang et al. to enhance the room temperature hydrogen storage capacity. However, the mechanism of this storage enhancement by decoration of noble metal particles inside high surface area supports is not yet fully understood and still under debate. In this chapter, noble metal (Pt / Pd) doped nanoporous materials (i.e. porous carbon, COFs) have been investigated for room temperature hydrogen storage. Their textural properties and hydrogen storage capacity are characterized by various analytic techniques (e.g. SEM, HRTEM, XRD, BET, ICP-OES, Thermal desorption spectra, Sievert's apparatus and Raman spectroscopy). Firstly, Pt-doped and un-doped templated carbons possessing almost identical textural properties were successfully synthesized via a single step wet impregnation method. This enables the study of Pt catalytic activities and hydrogen adsorption kinetics on porous carbons at ambient temperature by TDS after H 2 /D 2 gas exposure and PCT measurement, respectively. While the H 2 adsorption kinetics in the microporous structure is enhanced by Pt catalytic activities (spillover), only a small enhancement of the hydrogen

  1. Influence of isotopic disorder on solid state amorphization and polyamorphism in solid H2O -D2O solutions

    Science.gov (United States)

    Gromnitskaya, E. L.; Danilov, I. V.; Lyapin, A. G.; Brazhkin, V. V.

    2015-10-01

    We present a low-temperature and high-pressure ultrasonic study of elastic properties of isotopic H2O-D2O solid solutions, comparing their properties with those of the isotopically pure H2O and D2O ices. Measurements were carried out for solid state amorphization (SSA) from 1h to high-density amorphous (HDA) ice upon compression up to 1.8 GPa at 77 K and for the temperature-induced (77 -190 K ) u-HDA (unrelaxed HDA) → e-HDA (expanded HDA) → low-density amorphous (LDA )→1 c cascade of ice transformations near room pressure. There are many similarities in the elasticity behaviour of H2O ,D2O , and H2O-D2O solid solutions, including the softening of the shear elastic modulus as a precursor of SSA and the HDA →LDA transition. We have found significant isotopic effects during H/D substitution, including elastic softening of H2O -D2O solid solutions with respect to the isotopically pure ices in the case of the bulk moduli of ices 1c and 1h and for both bulk and shear elastic moduli of HDA ice at high pressures (>1 GPa ) . This softening is related to the configurational isotopic disorder in the solid solutions. At low pressures, the isotope concentration dependence of the elastic moduli of u-HDA ice changes remarkably and becomes monotonic with pronounced change of the bulk modulus (≈20 %) .

  2. Experimental investigation of H2/D2 isotope separation by cryo-adsorption in metal-organic frameworks

    International Nuclear Information System (INIS)

    Teufel, Julia Sonja

    2012-01-01

    Light-gas isotopes differ in their adsorption behavior under cryogenic conditions in nanoporous materials due to their difference in zero-point energy. However, the applicability of these cryo-effects for the separation of isotope mixtures is still lacking an experimental proof. The current work describes the first experimentally obtained H 2 /D 2 selectivity values of nanoporous materials measured by applying isotope mixtures in low-temperature thermal desorption spectroscopy (TDS). The dissertation contains the following key points: 1) A proof of the experimental method, i.e. it is shown that TDS leads to reasonable selectivity values. 2) A series of small-pore MFU-4 derivatives (MOFs) is shown to separate isotope mixtures by quantum sieving, i.e. by the difference in the adsorption kinetics. The influence of the pore size on the selectivity is studied systematically for this series. 3) Two MOFs with pores much larger than the kinetic diameter of H 2 do not exhibit kinetic quantum sieving. However, if the MOFs are exposed to an isotope mixture, deuterium adsorbs preferentially at the adsorption sites with high heats of adsorption. According to the experimental results, these strong adsorption sites can be every selective for deuterium. On the basis of the experimentally obtained selectivity values, technical implementations for H 2 /D 2 light-gas isotope separation by cryo-adsorption are described.

  3. Isotopic equilibrium constants of the deuterium exchange between HDO and H2S, H2Se and H2Te

    International Nuclear Information System (INIS)

    Marx, D.

    1959-11-01

    We have determined experimentally the equilibrium constant K of each of the following isotope exchanges: SH 2 + OHD ↔ SHD + OH 2 ; SeH 2 + OHD ↔ SeHD + OH 2 ; TeH 2 + OHD ↔ TeHD + OH 2 . In gaseous phase, statistical thermodynamics leads to the expression: K (Z OHD x Z RH 2 )/(Z OH 2 x Z RHD ) x e W/T (R being the elements S, Se or Te). Z, the partition functions, have been calculated and, through our experimental results, the constant W has been determined. Having obtained W, the equilibrium constant K has been calculated for a series of temperatures. (author) [fr

  4. 18O, 2H and 3H isotopic composition of precipitation and shallow groundwater in Olkiluoto

    International Nuclear Information System (INIS)

    Hendriksson, N.; Karhu, J.; Niinikoski, P.

    2014-12-01

    The isotopic composition of oxygen and hydrogen in local precipitation is a key parameter in the modelling of local water circulation. This study was initiated in order to provide systematic monthly records of the isotope content of atmospheric precipitation in the Olkiluoto area and to establish the relation between local rainfall and newly formed groundwater. During January 2005 - December 2012, a total of 85 cumulative monthly rainfall samples and 68 shallow groundwater samples were collected and the isotopic composition of oxygen and hydrogen was recorded for all those samples. Tritium values are available for 79 precipitation and 65 groundwater samples. Based on the 8-year monitoring, the long-term weighted annual mean isotope values of precipitation and the mean values of shallow groundwater are -11.59 per mille and -11.27 per mille for δ 18 O, - 82.3 per mille and -80.3 per mille for δ 2 H and 9.8 and 9.1 TU for tritium, respectively. Based on these data, the mean stable isotope ratios of groundwater represent the long-term mean annual isotopic composition of local precipitation. The precipitation data were used to establish the local meteoric water line (LMWL) for the Olkiluoto area. The line is formulated as: δ 2 H = 7.45 star δ 18 O + 3.82. The isotope time series reveal a change in time. The increasing trend for the δ 18 O and δ 2 H values may be related to climatic variability while the gradual decline observed in the 3 H data is attributed to the still continuing decrease in atmospheric 3 H activity in the northern hemisphere. The systematic seasonal and long-term tritium trends suggest that any potential ground-level tritium release from the Olkiluoto nuclear power plants is insignificant. The d-excess values of Olkiluoto precipitation during the summer period indicated that a notable amount of re-cycled Baltic Sea water may have contributed to precipitation in the Finnish southern coast. Preliminary estimates of the evaporated Baltic Sea water

  5. 2H Stable Isotope Analysis of Tooth Enamel: A Pilot Study

    Science.gov (United States)

    Holobinko, Anastasia; Kemp, Helen; Meier-Augenstein, Wolfram; Prowse, Tracy; Ford, Susan

    2010-05-01

    Stable isotope analysis of biogenic tissues such as tooth enamel and bone mineral has become a well recognized and increasingly important method for determining provenance of human remains, and has been used successfully in bioarchaeological studies as well as forensic investigations (Lee-Thorp, 2008; Meier-Augenstein and Fraser, 2008). Particularly, 18O and 2H stable isotopes are well established proxies as environmental indicators of climate (temperature) and source water and are therefore considered as indicators of geographic life trajectories of animals and humans (Hobson et al., 2004; Schwarcz and Walker, 2006). While methodology for 2H analysis of human hair, fingernails, and bone collagen is currently used to determine geographic origin and identify possible migration patterns, studies involving the analysis of 2H in tooth enamel appear to be nonexistent in the scientific literature. The apparent lack of research in this area is believed to have two main reasons. (1) Compared to the mineral calcium hydroxylapatite Ca10(PO4)6(OH)2, in tooth enamel forming bio-apatite carbonate ions replace some of the hydroxyl ions at a rate of one CO32 replacing two OH, yet published figures for the degree of substitution vary (Wopenka and Pasteris, 2005). (2) Most probably due to the aforementioned no published protocols exist for sample preparation and analytical method to obtain δ2H-values from the hydroxyl fraction of tooth enamel. This dilemma has been addressed through a pilot study to establish feasibility of 2H stable isotope analysis of ground tooth enamel by continuous-flow isotope ratio mass spectrometry (IRMS) coupled on-line to a high-temperature conversion elemental analyzer (TC/EA). An array of archaeological and modern teeth has been analyzed under different experimental conditions, and results from this pilot study are being presented. References: Lee-Thorp, J.A. (2008) Archaeometry, 50, 925-950 Meier-Augenstein, W. and Fraser, I. (2008) Science & Justice

  6. Trajectory Calculations for Bergman Cyclization Predict H/D Kinetic Isotope Effects Due to Nonstatistical Dynamics in the Product.

    Science.gov (United States)

    Doubleday, Charles; Boguslav, Mayla; Howell, Caronae; Korotkin, Scott D; Shaked, David

    2016-06-22

    An unusual H/D kinetic isotope effect (KIE) is described, in which isotopic selectivity arises primarily from nonstatistical dynamics in the product. In DFT-based quasiclassical trajectories of Bergman cyclization of (Z)-3-hexen-1,5-diyne (1) at 470 K, the new CC bond retains its energy, and 28% of nascent p-benzyne recrosses back to the enediyne on a vibrational time scale. The competing process of intramolecular vibrational redistribution (IVR) in p-benzyne is too slow to prevent this. Deuteration increases the rate of IVR, which decreases the fraction of recrossing and increases the yield of statistical (trapable) p-benzyne, 2. Trapable yields for three isotopomers of 2 range from 72% to 86%. The resulting KIEs for Bergman cyclization differ substantially from KIEs predicted by transition state theory, which suggests that IVR in this reaction can be studied by conventional KIEs. Leakage of vibrational zero point energy (ZPE) into the reaction coordinate was probed by trajectories in which initial ZPE in the CH/CD stretching modes was reduced by 25%. This did not change the predicted KIEs.

  7. Evidence for H2/D2 isotope effects on Fischer-Tropsch synthesis over supported ruthenium catalysts

    International Nuclear Information System (INIS)

    Kellner, C.S.; Bell, A.T.

    1981-01-01

    The effects of using D 2 rather than H 2 during Fischer-Tropsch synthesis were investigated using alumina- and silica-supported Ru catalysts. For the alumina-supported catalysts, the rate of CD 4 formation was 1.4 to 1.6 times faster than the formation of CH 4 . A noticeable isotope effect was also observed for higher molecular weight products. The magnitude of the isotope effects observed using the silica-supported catalyst was much smaller than that found using the alumina-supported catalysts. The formation of olefins relative to paraffins was found to be higher when H 2 rather than D 2 was used, independent of the catalyst support. The observed isotope effects are explained in terms of a mechanism for CO hydrogenation and are shown to arise from a complex combination of the kinetic and equilibrium isotope effects associated with elementary processes occurring on the catalyst surface

  8. The H{sup +}{sub 3} + H{sub 2} isotopic system. Origin of deuterium astrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Edouard Jean-Marie

    2008-07-01

    Dense cold molecular clouds reckoned to be stellar nurseries are the scene of an extreme molecular deuteration. Despite the cosmic D/H ratio of {proportional_to}10{sup -5}, molecular species in prestellar cores are observed to contain nearly as much deuterium as hydrogen. This astonishing deuterium enrichment promoted by low temperatures is the work of H{sup +}{sub 3}. It is the key species which unlocks the deuterium from its HD reservoir via reactions like H{sup +}{sub 3}+HD {r_reversible} H{sub 2}D{sup +}+H{sub 2} and drags it further to other species in successive reactions. For this reason, the H{sup +}{sub 3}+H{sub 2} isotopic system is outstandingly critical for the astrochemistry of cold environments. However, its understanding is yet incomplete and insufficient. This thesis thus focuses on the H{sup +}{sub 3}+H{sub 2} isotopic system from a theoretical, experimental and astronomical point of view giving a particular look into the role of nuclear spins. As a first step, the stringent nuclear spin selection rules in associative, dissociative and reactive collisions are investigated. This purely theoretical study zooms into the details of the nuclear spin wavefunctions and shows that their permutation symmetry representation is necessary and sufficient, contrary to their angular momentum representation. Additionally, a new deterministic interpretation of nuclear spins in chemical reactions is proposed. Based on these considerations, a complete set of state-to-state rate coefficients for all H{sup +}{sub 3} + H{sub 2} isotopic variants is calculated using a microcanonical model leaned on phase space theory. An experimental study is conducted in parallel with a 22-pole ion trap apparatus in order to inspect the influences of temperature and H{sub 2} ortho-to-para ratio. The good overall agreement between experimental and theoretical results supports the validity and utility of the calculated set of rate coefficients. Furthermore, the potentiality of the 22-pole

  9. Hydration of DNA by tritiated water and isotope distribution: a study by 1H, 2H, and 3H NMR spectroscopy

    International Nuclear Information System (INIS)

    Mathur-De Vre, R.; Grimee-Declerck, R.; Lejeune, P.; Bertinchamps, A.J.

    1982-01-01

    The hydration layer of DNA (0.75%) in tritiated water represents 3.5% of solvent 3 HHO. The combined effects of temperature (-6 to -40 0 C) and H 2 O/ 2 H 2 O solvent composition on the spin-lattice relaxation times of water protons and deuterons suggest selective distribution of isotopes in the hydration layer. The ''hydration isotope'' effect and the localization of tritiated water molecules in the hydration layer of DNA have important implications in describing the radiobiological effects of tritiated water because the initial molecular damage caused by 3 HHO (internal radiation source) localizes close to 3 H due to the short range and low energy of 3 H β rays

  10. Process for the production of heavy water by H2-methylamine isotopic exchange

    International Nuclear Information System (INIS)

    Briec, M.; Ravoire, J.; Rostaing, M.

    1977-01-01

    An isotopic exchange process for separating D 2 from H 2 is presented. The H 2 -monomethylamine system is studied on the laboratory scale (kinetics, H 2 solubility, thermal stability and solubility of the catalyst) and on the pilot plant scale (operating conditions and economics) [fr

  11. Analysis of stable isotope ratios (δ18O and δ2H) in precipitation of the Verde River watershed, Arizona 2003 through 2014

    Science.gov (United States)

    Beisner, Kimberly R.; Paretti, Nicholas V.; Tucci, Rachel S.

    2016-04-25

    Stable isotope delta values (δ18O and δ2H) of precipitation can vary with elevation, and quantification of the precipitation elevation gradient can be used to predict recharge elevation within a watershed. Precipitation samples were analyzed for stable isotope delta values between 2003 and 2014 from the Verde River watershed of north-central Arizona. Results indicate a significant decrease in summer isotopic values overtime at 3,100-, 4,100-, 6,100-, 7,100-, and 8,100-feet elevation. The updated local meteoric water line for the area is δ2H = 7.11 δ18O + 3.40. Equations to predict stable isotopic values based on elevation were updated from previous publications in Blasch and others (2006), Blasch and Bryson (2007), and Bryson and others (2007). New equations were separated for samples from the Camp Verde to Flagstaff transect and the Prescott to Chino Valley transect. For the Camp Verde to Flagstaff transect, the new equations for winter precipitation are δ18O = -0.0004z − 8.87 and δ2H = -0.0029z − 59.8 (where z represents elevation in feet) and the summer precipitation equations were not statistically significant. For the Prescott to Chino Valley transect, the new equations for summer precipitation are δ18O = -0.0005z − 3.22 and δ2H = -0.0022z − 27.9; the winter precipitation equations were not statistically significant and, notably, stable isotope values were similar across all elevations. Interpretation of elevation of recharge contributing to surface and groundwaters in the Verde River watershed using the updated equations for the Camp Verde to Flagstaff transect will give lower elevation values compared with interpretations presented in the previous studies. For waters in the Prescott and Chino Valley area, more information is needed to understand local controls on stable isotope values related to elevation.

  12. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere.

    Science.gov (United States)

    Webster, Chris R; Mahaffy, Paul R; Flesch, Gregory J; Niles, Paul B; Jones, John H; Leshin, Laurie A; Atreya, Sushil K; Stern, Jennifer C; Christensen, Lance E; Owen, Tobias; Franz, Heather; Pepin, Robert O; Steele, Andrew; Achilles, Cherie; Agard, Christophe; Alves Verdasca, José Alexandre; Anderson, Robert; Anderson, Ryan; Archer, Doug; Armiens-Aparicio, Carlos; Arvidson, Ray; Atlaskin, Evgeny; Aubrey, Andrew; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Bean, Keri; Beegle, Luther; Behar, Alberto; Bell, James; Bender, Steve; Benna, Mehdi; Bentz, Jennifer; Berger, Gilles; Berger, Jeff; Berman, Daniel; Bish, David; Blake, David F; Blanco Avalos, Juan J; Blaney, Diana; Blank, Jen; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, Bill; Breves, Elly; Bridges, John; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John; Cantor, Bruce; Caplinger, Michael; Caride Rodríguez, Javier; Carmosino, Marco; Carrasco Blázquez, Isaías; Charpentier, Antoine; Chipera, Steve; Choi, David; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy; Cros, Alain; Cucinotta, Frank; d'Uston, Claude; Davis, Scott; Day, Mackenzie; de la Torre Juarez, Manuel; DeFlores, Lauren; DeLapp, Dorothea; DeMarines, Julia; DesMarais, David; Dietrich, William; Dingler, Robert; Donny, Christophe; Downs, Bob; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason; Dyar, M Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher; Edwards, Laurence; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jen; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Farley, Ken; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Feldman, Sabrina; Fisk, Marty; Fitzgibbon, Mike; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fraeman, Abby; Francis, Raymond; François, Pascaline; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Gaboriaud, Alain; Gailhanou, Marc; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez Gómez, Felipe; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Grant, John; Griffes, Jennifer; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Vicky; Hardgrove, Craig; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alex; Herkenhoff, Ken; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Steve; Israël, Guy; Jackson, Ryan; Jacob, Samantha; Jakosky, Bruce; Jensen, Elsa; Jensen, Jaqueline Kløvgaard; Johnson, Jeffrey; Johnson, Micah; Johnstone, Steve; Jones, Andrea; Joseph, Jonathan; Jun, Insoo; Kah, Linda; Kahanpää, Henrik; Kahre, Melinda; Karpushkina, Natalya; Kasprzak, Wayne; Kauhanen, Janne; Keely, Leslie; Kemppinen, Osku; Keymeulen, Didier; Kim, Myung-Hee; Kinch, Kjartan; King, Penny; Kirkland, Laurel; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kozyrev, Alexander; Krezoski, Jill; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lees, David; Lefavor, Matthew; Lemmon, Mark; Lepinette Malvitte, Alain; Léveillé, Richard; Lewin-Carpintier, Éric; Lewis, Kevin; Li, Shuai; Lipkaman, Leslie; Little, Cynthia; Litvak, Maxim; Lorigny, Eric; Lugmair, Guenter; Lundberg, Angela; Lyness, Eric; Madsen, Morten; Maki, Justin; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gérard; Manning, Heidi; Marchand, Geneviève; Marín Jiménez, Mercedes; Martín García, César; Martin, Dave; Martin, Mildred; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F Javier; Mauchien, Patrick; Maurice, Sylvestre; McAdam, Amy; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McLennan, Scott; McNair, Sean; Melikechi, Noureddine; Meslin, Pierre-Yves; Meyer, Michael; Mezzacappa, Alissa; Miller, Hayden; Miller, Kristen; Milliken, Ralph; Ming, Douglas; Minitti, Michelle; Mischna, Michael; Mitrofanov, Igor; Moersch, Jeff; Mokrousov, Maxim; Molina Jurado, Antonio; Moores, John; Mora-Sotomayor, Luis; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Mueller-Mellin, Reinhold; Muller, Jan-Peter; Muñoz Caro, Guillermo; Nachon, Marion; Navarro López, Sara; Navarro-González, Rafael; Nealson, Kenneth; Nefian, Ara; Nelson, Tony; Newcombe, Megan; Newman, Claire; Newsom, Horton; Nikiforov, Sergey; Nixon, Brian; Noe Dobrea, Eldar; Nolan, Thomas; Oehler, Dorothy; Ollila, Ann; Olson, Timothy; de Pablo Hernández, Miguel Ángel; Paillet, Alexis; Pallier, Etienne; Palucis, Marisa; Parker, Timothy; Parot, Yann; Patel, Kiran; Paton, Mark; Paulsen, Gale; Pavlov, Alex; Pavri, Betina; Peinado-González, Verónica; Peret, Laurent; Perez, Rene; Perrett, Glynis; Peterson, Joe; Pilorget, Cedric; Pinet, Patrick; Pla-García, Jorge; Plante, Ianik; Poitrasson, Franck; Polkko, Jouni; Popa, Radu; Posiolova, Liliya; Posner, Arik; Pradler, Irina; Prats, Benito; Prokhorov, Vasily; Purdy, Sharon Wilson; Raaen, Eric; Radziemski, Leon; Rafkin, Scot; Ramos, Miguel; Rampe, Elizabeth; Raulin, François; Ravine, Michael; Reitz, Günther; Rennó, Nilton; Rice, Melissa; Richardson, Mark; Robert, François; Robertson, Kevin; Rodriguez Manfredi, José Antonio; Romeral-Planelló, Julio J; Rowland, Scott; Rubin, David; Saccoccio, Muriel; Salamon, Andrew; Sandoval, Jennifer; Sanin, Anton; Sans Fuentes, Sara Alejandra; Saper, Lee; Sarrazin, Philippe; Sautter, Violaine; Savijärvi, Hannu; Schieber, Juergen; Schmidt, Mariek; Schmidt, Walter; Scholes, Daniel; Schoppers, Marcel; Schröder, Susanne; Schwenzer, Susanne; Sebastian Martinez, Eduardo; Sengstacken, Aaron; Shterts, Ruslan; Siebach, Kirsten; Siili, Tero; Simmonds, Jeff; Sirven, Jean-Baptiste; Slavney, Susie; Sletten, Ronald; Smith, Michael; Sobrón Sánchez, Pablo; Spanovich, Nicole; Spray, John; Squyres, Steven; Stack, Katie; Stalport, Fabien; Stein, Thomas; Stewart, Noel; Stipp, Susan Louise Svane; Stoiber, Kevin; Stolper, Ed; Sucharski, Bob; Sullivan, Rob; Summons, Roger; Sumner, Dawn; Sun, Vivian; Supulver, Kimberley; Sutter, Brad; Szopa, Cyril; Tan, Florence; Tate, Christopher; Teinturier, Samuel; ten Kate, Inge; Thomas, Peter; Thompson, Lucy; Tokar, Robert; Toplis, Mike; Torres Redondo, Josefina; Trainer, Melissa; Treiman, Allan; Tretyakov, Vladislav; Urqui-O'Callaghan, Roser; Van Beek, Jason; Van Beek, Tessa; VanBommel, Scott; Vaniman, David; Varenikov, Alexey; Vasavada, Ashwin; Vasconcelos, Paulo; Vicenzi, Edward; Vostrukhin, Andrey; Voytek, Mary; Wadhwa, Meenakshi; Ward, Jennifer; Weigle, Eddie; Wellington, Danika; Westall, Frances; Wiens, Roger Craig; Wilhelm, Mary Beth; Williams, Amy; Williams, Joshua; Williams, Rebecca; Williams, Richard B; Wilson, Mike; Wimmer-Schweingruber, Robert; Wolff, Mike; Wong, Mike; Wray, James; Wu, Megan; Yana, Charles; Yen, Albert; Yingst, Aileen; Zeitlin, Cary; Zimdar, Robert; Zorzano Mier, María-Paz

    2013-07-19

    Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.

  13. What is the effect of variations optimization of the transition state on α-deuterium secondary kinetic isotope effects? A prototype: CD3H + H right-reversible CD3 + H2

    International Nuclear Information System (INIS)

    Lu, Dahong; Maurice, D.; Truhlar, D.G.

    1990-01-01

    Variational Transition state theory calculations with semiclassical transmission coefficients have been carried out for a prototype case of α-deuterium secondary kinetic isotope effects (KIEs) in a reaction involving the transformation of an sp 3 carbon to sp 2 , in particular for the reactions of CH 4 and CD 3 H with H and D. The authors also study the KIE for the reverse direction and for the reactions of CH 4 and CD 3 H with D. They find that the variational transition states lead to significantly different nontunneling KIEs than the conventional ones, e.g., 1.22 vs. 1.07, and the inclusion of multidimensional tunneling effects increases the discrepancy even more. The origins of these variations and tunneling effects are examined in detail in terms of structures, vibrational frequencies, and the curvature of the reaction path. The conclusions have wide implications for the validity of conventional treatments of kinetic isotope effects. They predict some particularly large secondary KIEs at low temperature, and these predictions can be tested by future experiments

  14. CO and H2 uptake and emissions by soil: variability of fluxes and their isotopic signatures

    Science.gov (United States)

    Popa, Maria Elena; Chen, Qianjie; Ferrero Lopez, Noelia; Röckmann, Thomas

    2017-04-01

    In order to study the uptake and release of H2 and CO by soil, we performed long term, high frequency measurements with an automatic soil chamber at two sites in the Netherlands (Cabauw - grassland, and Speuld - forest). The measurements were performed over different seasons and cover in total a cumulated interval of about one year. These measurements allow determining separately, for each species, the two distinct fluxes i.e. uptake and release, and investigating their temporal variability and dependencies on environmental variables. Additional experiments were performed for determining the isotopic signatures of the H2 and CO uptake and release by soil. Flask samples were filled from the soil chamber, and then analyzed in the laboratory for the stable isotopic composition of H2 (δD) and CO (δ13C and δ18O). We find that both uptake and release are present at all times, regardless of the direction of the net flux. The emissions are significant for both species and at Cabauw, there are times and places where emissions outweigh the soil uptake. For each species, the two fluxes have different behavior and dependence on external variables, which indicates that they have different origins. The isotope results also support that, for both H2 and CO, uptake and emission occur simultaneously. We were able to determine separately the isotopic effects of the two fluxes. For both H2 and CO, soil uptake is associated with a small positive fractionation (the lighter molecule is taken up faster). The soil uptake fractionation (α = kheavy/klight) was 0.945 ± 0.004 for H2; for CO, the fractionation was 0.992 for 13C and 0.985 for 18O. The isotopic composition of the H2 emitted from the grassland was -530 ± 40 ‰, less depleted that what is expected from the isotopic equilibrium of H2 with water. For CO, the isotopic composition of the soil emission is depleted in 13C compared to atmospheric CO, and lower than the average isotopic composition of plant or soil organic matter.

  15. Ab initio calculation of the transition-state properties and addition rate constants for H + C2H2 and selected isotopic analogues

    International Nuclear Information System (INIS)

    Harding, L.B.; Wagner, A.F.; Bowman, J.M.; Schatz, G.C.; Christoffel, K.

    1982-01-01

    GVB-POL-CI ab initio calculations of the geometries, energetics, and normal mode frequencies of C 2 H 2 , C 2 H 3 , and the transition state for the addition reaction of H + C 2 H 2 are presented. In addition, normal mode frequencies for the isotopic variants D + C 2 D 2 , D + C 2 H 2 , and H + C 2 D 2 are preented. These results are compared to experimental values for C 2 H 2 and to ab initio values of Hagase and Kern, and semiempirical values of Keil, Lynch, Cowfer, and Michael. The results are also used to calculate the apparent bimolecular addition rate constant using conventional RRKM theory for chemical activation. The calculated rate constants and their isotopic variants are compared as a function of temperature and pressure to available experimental information. The agreement is little different from that obtained by Keil et al. with a similar calculation using semiempirical values for acetylene, transition-state, and vinyl radical properties. In particular, the calculated high-pressure limit of the rate constant appears to be at least 1 order of magnitude higher than the experimental limit. Several possible reasons for this discrepancy are discussed

  16. Kinetic stable Cr isotopic fractionation between aqueous Cr(III)-Cl-H2O complexes at 25 °C: Implications for Cr(III) mobility and isotopic variations in modern and ancient natural systems

    Science.gov (United States)

    Babechuk, Michael G.; Kleinhanns, Ilka C.; Reitter, Elmar; Schoenberg, Ronny

    2018-02-01

    dissolution of two Cr(III)-Cl solids (dried NIST SRM979 standard and commercial CrCl3·6H2O salt) in 0.01 M HCl (pH2). The ε53/52Cr(CrCl2+/CrCl2+) for the CrCl2+ to CrCl2+ reaction is -0.19‰ (SRM979) and -0.38‰ (salt) and the ε53/52Cr(Cr3+/CrCl2+) for the CrCl2+ to Cr3+ reaction is consistent for both experiments at -0.49‰ (SRM979) and -0.51‰ (salt). Experiments where SRM979 is dissolved in 0.1 and 1 M HCl for a longer aging period provide preliminary evidence that the Cr3+/CrCl2+ Cr(III) isotopic fractionation scales with HCl concentration (transformation rate). Chromium(III) dissolved in 6 M HCl and aged 5 months still yields an inter-species Cr isotope distribution that is apparently inherited from kinetic effects (light Cr isotopes in Cr3+), attesting to the slow development of inter-species isotopic equilibrium, which instead predicts progressively heavier Cr isotopes from CrCl2+ to CrCl2+ to Cr3+. The kinetic Cr(III) isotopic fractionation documented herein is proposed to be relevant to understanding systems where aqueous Cr(III)-Cl species may be temporarily stable (e.g., metamorphic and hydrothermal systems or lateritic weathering). Further, the complexation of Cr(III) with other ligands (e.g., CO32-, organics), combined with additional kinetic effects of Cr(III) potentially occurring in soils or sediment, must be explored prior to establishing the significance of empirical stable Cr isotope signatures in marine and continental environments. Further understanding of non-redox effects may lead to stable Cr isotopes developing as a proxy for system pH or ligand chemistry.

  17. Using Gas Chromatography/Isotope Ratio Mass Spectrometry to Determine the Fractionation Factor for H2 Production by Hydrogenases

    International Nuclear Information System (INIS)

    Yang, Hui; Ghandi, H.; Shi, Liang; Kreuzer, Helen W.; Ostrom, Nathaniel; Hegg, Eric L.

    2012-01-01

    Hydrogenases catalyze the reversible formation of H2, and they are key enzymes in the biological cycling of H2. H isotopes should be a very useful tool in quantifying proton trafficking in biological H2 production processes, but there are several obstacles that have thus far limited the use of this tool. In this manuscript, we describe a new method that overcomes some of these barriers and is specifically designed to measure isotopic fractionation during enzyme-catalyzed H2 evolution. A key feature of this technique is that purified hydrogenases are employed, allowing precise control over the reaction conditions and therefore a high level of precision. A custom-designed high-throughput gas chromatography-isotope ratio mass spectrometer is employed to measure the isotope ratio of the H2. Using this method, we determined that the fractionation factor of H2 production by the (NiFe)-hydrogenase from Desulfivibrio fructosovran is 0.27. This result indicates that, as expected, protons are highly favored over deuterons during H2 evolution. Potential applications of this new method are discussed.

  18. H/D isotope effects in high temperature proton conductors

    DEFF Research Database (Denmark)

    Bonanos, Nikolaos; Huijser, A.; Poulsen, Finn Willy

    2015-01-01

    The atomic mass ratio of ca. 2 between deuterium and hydrogen is the highest for any pair of stable isotopes and results in significant and measurable H/D isotope effects in high temperature proton conductors containing these species. This paper discusses H/D isotope effects manifested in O-H/O-D...

  19. Isotope analysis of diamond-surface passivation effect of high-temperature H2O-grown atomic layer deposition-Al2O3 films

    International Nuclear Information System (INIS)

    Hiraiwa, Atsushi; Saito, Tatsuya; Matsumura, Daisuke; Kawarada, Hiroshi

    2015-01-01

    The Al 2 O 3 film formed using an atomic layer deposition (ALD) method with trimethylaluminum as Al precursor and H 2 O as oxidant at a high temperature (450 °C) effectively passivates the p-type surface conduction (SC) layer specific to a hydrogen-terminated diamond surface, leading to a successful operation of diamond SC field-effect transistors at 400 °C. In order to investigate this excellent passivation effect, we carried out an isotope analysis using D 2 O instead of H 2 O in the ALD and found that the Al 2 O 3 film formed at a conventional temperature (100 °C) incorporates 50 times more CH 3 groups than the high-temperature film. This CH 3 is supposed to dissociate from the film when heated afterwards at a higher temperature (550 °C) and causes peeling patterns on the H-terminated surface. The high-temperature film is free from this problem and has the largest mass density and dielectric constant among those investigated in this study. The isotope analysis also unveiled a relatively active H-exchange reaction between the diamond H-termination and H 2 O oxidant during the high-temperature ALD, the SC still being kept intact. This dynamic and yet steady H termination is realized by the suppressed oxidation due to the endothermic reaction with H 2 O. Additionally, we not only observed the kinetic isotope effect in the form of reduced growth rate of D 2 O-oxidant ALD but found that the mass density and dielectric constant of D 2 O-grown Al 2 O 3 films are smaller than those of H 2 O-grown films. This is a new type of isotope effect, which is not caused by the presence of isotopes in the films unlike the traditional isotope effects that originate from the presence of isotopes itself. Hence, the high-temperature ALD is very effective in forming Al 2 O 3 films as a passivation and/or gate-insulation layer of high-temperature-operation diamond SC devices, and the knowledge of the aforementioned new isotope effect will be a basis for further enhancing ALD

  20. Climatic and geographical dependence of the H, C and O stable isotope ratios of Italian wine

    International Nuclear Information System (INIS)

    Camin, Federica; Dordevic, Nikola; Wehrens, Ron; Neteler, Markus; Delucchi, Luca; Postma, Geert; Buydens, Lutgarde

    2015-01-01

    Graphical abstract: Correlation matrix between (D/H) 1 , (D/H) 2 , δ 13 C and δ 18 O parameters of wine (4000 samples) and the climatic and geographical characteristics of the areas of origin. - Highlights: • We studied the relationship between wine isotopic data and climate and geography. • We considered (D/H) 1 , (D/H) 2 and δ 13 C of ethanol and δ 18 O of water of 4000 wines. • δ 18 O, followed by (D/H) 1 , had the strongest relationship with climate and location. • The dominant variables were latitude, δ 18 O and δ 2 H of precipitation and temperature. • Relationships and models may be used to predict the isotopic composition of wine. - Abstract: In this study, we investigated the relationship between (D/H) 1, (D/H) 2 and δ 13 C of ethanol and δ 18 O of water in wine, and variables describing the climate and the geography of the production area, using exploratory visualisation tools, regression analysis and linear modelling. For the first time, a large amount of data (around 4000 wine samples collected over 11 years in Italy) and all the official isotopic parameters, as well as a large number of significant climatic and geographical descriptors (date of harvest, latitude, longitude, elevation, distance from the sea, amount of precipitation, maximum daily temperature, minimum daily temperature, mean daily temperature, δ 18 O and δ 2 H of precipitation) were considered. δ 18 O, followed by (D/H) 1 , was shown to have the strongest relationship with climate and location. The dominant variables were latitude, with a negative relationship, δ 18 O and δ 2 H of precipitation and temperature, both with positive relationships. The identified correlations and models could be used to predict the isotopic composition of authentic wines, offering increased possibilities for detecting fraud and mislabelling

  1. {sup 18}O, {sup 2}H and {sup 3}H isotopic composition of precipitation and shallow groundwater in Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Hendriksson, N. [Geological Survey of Finland, Espoo (Finland); Karhu, J.; Niinikoski, P. [Univ. of Helsinki (Finland)

    2014-12-15

    The isotopic composition of oxygen and hydrogen in local precipitation is a key parameter in the modelling of local water circulation. This study was initiated in order to provide systematic monthly records of the isotope content of atmospheric precipitation in the Olkiluoto area and to establish the relation between local rainfall and newly formed groundwater. During January 2005 - December 2012, a total of 85 cumulative monthly rainfall samples and 68 shallow groundwater samples were collected and the isotopic composition of oxygen and hydrogen was recorded for all those samples. Tritium values are available for 79 precipitation and 65 groundwater samples. Based on the 8-year monitoring, the long-term weighted annual mean isotope values of precipitation and the mean values of shallow groundwater are -11.59 per mille and -11.27 per mille for δ{sup 18}O, - 82.3 per mille and -80.3 per mille for δ{sup 2}H and 9.8 and 9.1 TU for tritium, respectively. Based on these data, the mean stable isotope ratios of groundwater represent the long-term mean annual isotopic composition of local precipitation. The precipitation data were used to establish the local meteoric water line (LMWL) for the Olkiluoto area. The line is formulated as: δ{sup 2}H = 7.45 star δ{sup 18}O + 3.82. The isotope time series reveal a change in time. The increasing trend for the δ{sup 18}O and δ{sup 2}H values may be related to climatic variability while the gradual decline observed in the {sup 3}H data is attributed to the still continuing decrease in atmospheric {sup 3}H activity in the northern hemisphere. The systematic seasonal and long-term tritium trends suggest that any potential ground-level tritium release from the Olkiluoto nuclear power plants is insignificant. The d-excess values of Olkiluoto precipitation during the summer period indicated that a notable amount of re-cycled Baltic Sea water may have contributed to precipitation in the Finnish southern coast. Preliminary estimates

  2. Comparison of SAS3A and MELT-III predictions for a transient overpower hypothetical accident

    International Nuclear Information System (INIS)

    Wilburn, N.P.

    1976-01-01

    A comparison is made of the predictions of the two major codes SAS3A and MELT-III for the hypothetical unprotected transient overpower accident in the FFTF. The predictions of temperatures, fuel restructuring, fuel melting, reactivity feedbacks, and core power are compared

  3. Application of 18O and 2H natural isotopes for groundwater study in Semarang Basin, Central Java

    International Nuclear Information System (INIS)

    Rasi Prasetio; Satrio

    2015-01-01

    As a big city that support industrialism, Semarang has increasing needs of fresh water supply which is mostly provided by ground water. The utilization of groundwater must consider sustainability and environmental preservation aspects, as water is basic needs for human being. Therefore, the knowledge about groundwater dynamics is important to manage groundwater utilization. Isotope hydrology technique using 18 O and 2 H isotopes has been applied to investigate groundwater dynamics and can be taken as consideration for groundwater management. For this purpose, water samples have been collected from various water sources such as springs, deep monitoring wells, dug wells, streams and rain water for 18 O and 2 H isotopes analysis. The results show that isotopes composition of groundwater varied between -8.77‰ to -4.76‰ for δ 18 O and -56.6‰ to -29.4‰ for δ 2 H. Isotopes composition for unconfined groundwater in most of study area are relatively uniform, i.e. between -5.9‰ to -6.6‰ for δ 18 O and -35.1‰ to -40.4‰ for δ 2 H, except in some minor places that have more depleted and more enriched composition. This distribution indicates that the unconfined aquifer is depend on local recharge. While most of isotopes composition of deep confined aquifer plotted around isotopes composition of Ungaran's rain water, indicates that the recharge area of these confined groundwater were originated from this elevation or higher. (author)

  4. Nyheder i SAS Analytics 14.2

    DEFF Research Database (Denmark)

    Milhøj, Anders

    2017-01-01

    I november 2016 blev Analytical Produts i den opdaterede version 14.2 sendt på markedet. Denne opdatering indeholder opdateringer af de analytiske programpakker inden for statistik, økonometri, operationsanalyse etc. Disse opdateringer er nu løsrevet fra samtidige opdateringer af det samlede SAS-program...

  5. Climatic and geographical dependence of the H, C and O stable isotope ratios of Italian wine

    Energy Technology Data Exchange (ETDEWEB)

    Camin, Federica, E-mail: federica.camin@fmach.it [Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all' Adige (Italy); Dordevic, Nikola [Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all' Adige (Italy); Radboud University Nijmegen, Institute for Molecules and Materials, Analytical Chemistry, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Wehrens, Ron; Neteler, Markus; Delucchi, Luca [Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all' Adige (Italy); Postma, Geert; Buydens, Lutgarde [Radboud University Nijmegen, Institute for Molecules and Materials, Analytical Chemistry, P.O. Box 9010, 6500 GL Nijmegen (Netherlands)

    2015-01-01

    Graphical abstract: Correlation matrix between (D/H){sub 1}, (D/H){sub 2}, δ{sup 13}C and δ{sup 18}O parameters of wine (4000 samples) and the climatic and geographical characteristics of the areas of origin. - Highlights: • We studied the relationship between wine isotopic data and climate and geography. • We considered (D/H){sub 1}, (D/H){sub 2} and δ{sup 13}C of ethanol and δ{sup 18}O of water of 4000 wines. • δ{sup 18}O, followed by (D/H){sub 1}, had the strongest relationship with climate and location. • The dominant variables were latitude, δ{sup 18}O and δ{sup 2}H of precipitation and temperature. • Relationships and models may be used to predict the isotopic composition of wine. - Abstract: In this study, we investigated the relationship between (D/H){sub 1,} (D/H){sub 2} and δ{sup 13}C of ethanol and δ{sup 18}O of water in wine, and variables describing the climate and the geography of the production area, using exploratory visualisation tools, regression analysis and linear modelling. For the first time, a large amount of data (around 4000 wine samples collected over 11 years in Italy) and all the official isotopic parameters, as well as a large number of significant climatic and geographical descriptors (date of harvest, latitude, longitude, elevation, distance from the sea, amount of precipitation, maximum daily temperature, minimum daily temperature, mean daily temperature, δ{sup 18}O and δ{sup 2}H of precipitation) were considered. δ{sup 18}O, followed by (D/H){sub 1}, was shown to have the strongest relationship with climate and location. The dominant variables were latitude, with a negative relationship, δ{sup 18}O and δ{sup 2}H of precipitation and temperature, both with positive relationships. The identified correlations and models could be used to predict the isotopic composition of authentic wines, offering increased possibilities for detecting fraud and mislabelling.

  6. Isotopic and criticality validation for actinide-only burnup credit

    International Nuclear Information System (INIS)

    Fuentes, E.; Lancaster, D.; Rahimi, M.

    1997-01-01

    The techniques used for actinide-only burnup credit isotopic validation and criticality validation are presented and discussed. Trending analyses have been incorporated into both methodologies, requiring biases and uncertainties to be treated as a function of the trending parameters. The isotopic validation is demonstrated using the SAS2H module of SCALE 4.2, with the 27BURNUPLIB cross section library; correction factors are presented for each of the actinides in the burnup credit methodology. For the criticality validation, the demonstration is performed with the CSAS module of SCALE 4.2 and the 27BURNUPLIB, resulting in a validated upper safety limit

  7. D/H fractionation in the H2-H2O system at supercritical water conditions: Compositional and hydrogen bonding effects

    Science.gov (United States)

    Foustoukos, Dionysis I.; Mysen, Bjorn O.

    2012-06-01

    A series of experiments has been conducted in the H2-D2-D2O-H2O-Ti-TiO2 system at temperatures ranging from 300 to 800 °C and pressures between ∼0.3 and 1.3 GPa in a hydrothermal diamond anvil cell, utilizing Raman spectroscopy as a quantitative tool to explore the relative distribution of hydrogen and deuterium isotopologues of the H2 and H2O in supercritical fluids. In detail, H2O-D2O solutions (1:1) were reacted with Ti metal (3-9 h) in the diamond cell, leading to formation of H2, D2, HD, and HDO species through Ti oxidation and H-D isotope exchange reactions. Experimental results obtained in situ and at ambient conditions on quenched samples indicate significant differences from the theoretical estimates of the equilibrium thermodynamic properties of the H-D exchange reactions. In fact, the estimated enthalpy for the H2(aq)-D2(aq) disproportionation reaction (ΔHrxn) is about -3.4 kcal/mol, which differs greatly from the +0.16 kcal/mol predicted for the exchange reaction in the gas phase by statistical mechanics models. The exothermic behavior of the exchange reaction implies enhanced stability of H2 and D2 relative to HD. Accordingly, the significant energy difference of the internal H2(aq)-D2(aq)-HD(aq) equilibrium translates to strong differences of the fractionation effects between the H2O-H2 and D2O-D2 isotope exchange relationships. The D/H fractionation factors between H2O-H2(aq) and D2O-D2(aq) differ by 365‰ in the 600-800 °C temperature range, and are indicative of the greater effect of D2O contribution to the δD isotopic composition of supercritical fluids. The negative ΔHrxn values for the H2(aq)-D2(aq)-HD(aq) equilibrium and the apparent decrease of the equilibrium constant with increasing temperature might be because of differences of the Henry’s law constant between the H- and D-bearing species dissolved in supercritical aqueous solutions. Such effects may be attributed to the stronger hydrogen bonding in the O-H⋯O relative to the

  8. H/D Isotope Effects in Hydrogen Bonded Systems

    Directory of Open Access Journals (Sweden)

    Aleksander Filarowski

    2013-04-01

    Full Text Available An extremely strong H/D isotope effect observed in hydrogen bonded A-H…B systems is connected with a reach diversity of the potential shape for the proton/deuteron motion. It is connected with the anharmonicity of the proton/deuteron vibrations and of the tunneling effect, particularly in cases of short bridges with low barrier for protonic and deuteronic jumping. Six extreme shapes of the proton motion are presented starting from the state without possibility of the proton transfer up to the state with a full ionization. The manifestations of the H/D isotope effect are best reflected in the infra-red absorption spectra. A most characteristic is the run of the relationship between the isotopic ratio nH/nD and position of the absorption band shown by using the example of NHN hydrogen bonds. One can distinguish a critical range of correlation when the isotopic ratio reaches the value of ca. 1 and then increases up to unusual values higher than . The critical range of the isotope effect is also visible in NQR and NMR spectra. In the critical region one observes a stepwise change of the NQR frequency reaching 1.1 MHz. In the case of NMR, the maximal isotope effect is reflected on the curve presenting the dependence of Δd (1H,2H on d (1H. This effect corresponds to the range of maximum on the correlation curve between dH and ΔpKa that is observed in various systems. There is a lack in the literature of quantitative information about the influence of isotopic substitution on the dielectric properties of hydrogen bond except the isotope effect on the ferroelectric phase transition in some hydrogen bonded crystals.

  9. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 1, 2, AND 3 OF CRYSTAL RIVER UNIT 3

    International Nuclear Information System (INIS)

    Wright, Kenneth D.

    1997-01-01

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 1, 2, and 3 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies

  10. Accurate experimental determination of the isotope effects on the triple point temperature of water. I. Dependence on the "2H abundance

    International Nuclear Information System (INIS)

    Faghihi, V.; Aerts-Bijma, A.T.; Jansen, H.G.; Spriensma, J.J.; Meijer, H.A.J.; Peruzzi, A.; Geel, J. van

    2015-01-01

    Variation in the isotopic composition of water is one of the major contributors to uncertainty in the realization of the triple point of water (TPW). Although the dependence of the TPW on the isotopic composition of the water has been known for years, there is still a lack of a detailed and accurate experimental determination of the values for the correction constants. This paper is the first of two articles (Part I and Part II) that address quantification of isotope abundance effects on the triple point temperature of water. In this paper, we describe our experimental assessment of the "2H isotope effect. We manufactured five triple point cells with prepared water mixtures with a range of "2H isotopic abundances encompassing widely the natural abundance range, while the "1"8O and "1"7O isotopic abundance were kept approximately constant and the "1"8O - "1"7O ratio was close to the Meijer-Li relationship for natural waters. The selected range of "2H isotopic abundances led to cells that realised TPW temperatures between approximately -140 μK to + 2500 μK with respect to the TPW temperature as realized by VSMOW (Vienna Standard Mean Ocean Water). Our experiment led to determination of the value for the δ"2H correction parameter of A_2_H = 673 μK/(per thousand deviation of δ"2H from VSMOW) with a combined uncertainty of 4 μK (k = 1, or 1 s). (authors)

  11. Anomalous H/D isotope effect on 35Cl NQR frequencies and H/D isotope effect on 1H MAS NMR spectra in pyrrolidinium p-chlorobenzoate

    International Nuclear Information System (INIS)

    Nakano, Ryo; Honda, Hisashi; Nakata, Eiichi; Takamizawa, Satoshi; Noro, Sumiko; Kimura, Taiki; Kyo, Shin-shin; Ishimaru, Shin'ichi; Miyake, Ryosuke

    2010-01-01

    An anomalous isotope effect was observed in the 35 Cl NQR frequency of pyrrolidinium p-chlorobenzoate (C 4 H 8 NH 2 + ·ClC 6 H 4 COO - ) by deuterium substitution of hydrogen atoms which form two kinds of N-H...O type hydrogen bonds. Large negative frequency shifts of the 35 Cl resonance lines, reaching 309 kHz at 77 K and 267 kHz at 293 K, were obtained upon deuteration, although the Cl atom in the molecule formed no hydrogen bonds in the crystal. 1 H MAS NMR lines showed significant changes by the deuterium substitution, while in contrast, small shifts of 13 C CP/MAS NMR signals were obtained. Our measurements of 1 H NMR spin-lattice relaxation times (T 1 ) suggested that the H/D isotope shifts detected from the 35 Cl NQR frequencies and 1 H NMR spectra are due to structural changes rather than molecular dynamics. Single-crystal X-ray diffraction measurements showed two remarkable H/D isotope differences in the molecular arrangements, (1) the N-H length along the crystallographic a axis became 1 pm shorter, and (2) the dihedral angle between benzene and the pyrrolidine ring changed by 1.1(2)deg upon deuteration. Using density functional theory estimations, the anomalous 35 Cl NQR frequency shifts and 1 H MAS NMR line-shape changes could be explained by the dihedral angle change rather than the N-H length difference. (author)

  12. Isotopic exchange between CO2 and H2O and labelling kinetics of photosynthetic oxygen

    International Nuclear Information System (INIS)

    Gerster, Richard

    1971-01-01

    The reaction of carbon dioxide with water has been studied by measuring the rate of oxygen exchange between C 18 O 2 and H 2 16 O. The mathematical treatment of the kinetics allows to determine with accuracy the diffusion flow between the gas and the liquid phase, in the same way as the CO 2 hydration rate. The velocity constant of this last process, whose value gives the in situ enzymatic activity of carbonic anhydrase, has been established in the case of chloroplast and Euglena suspensions and of aerial leaves. The study of the isotopic exchange between C 18 O 2 and a vegetable submitted to alternations of dark and light has allowed to calculate the isotopic abundance of the metabolized CO 2 whose value has been compared to that of the intracellular water and that of photosynthetic oxygen. In addition, a new method using 13 C 18 O 2 gives the means to measure with accuracy eventual isotopic effects. The labelling kinetics of the oxygen evolved by Euglena suspensions whose water has been enriched with 18 O have been established at different temperatures. (author) [fr

  13. Implementation, verification, and validation of the FPIN2 metal fuel pin mechanics model in the SASSYS/SAS4A LMR transient analysis codes

    International Nuclear Information System (INIS)

    Sofu, T.; Kramer, J.M.

    1994-01-01

    The metal fuel version of the FPIN2 code which provides a validated pin mechanics model is coupled with SASSYS/SAS4A Version 3.0 for single pin calculations. In this implementation, SASSY/SAS4A provides pin temperatures, and FPIN2 performs analysis of pin deformation and predicts the time and location of cladding failure. FPIN2 results are also used for the estimates of axial expansion of fuel and associated reactivity effects. The revalidation of the integrated SAS-FPIN2 code system is performed using TREAT tests

  14. INVESTIGATION OF STABLE ISOTOPE OF 18O AND 2H IN SHALLOW GROUNDWATER FROM KARAWANG AREA

    Directory of Open Access Journals (Sweden)

    E. Ristin Pujiindiyati

    2010-06-01

    Full Text Available Karawang area is well known as an agriculture area and 2% area is utilized for industries. Clean water demands increase due to developing industry development and population increasement. The origin of groundwater is necessary to keep the sustainability of water resources in this area. Stable isotopes such as 18O and 2H can be used as a parameter to trace the ground water origin. The methods used were Epstein-Mayeda and Zinc reduction for analysis 18O and 2H, respectively. Sampling period was conducted in major dry season in year 2002. The result showed that evaporation effect had influenced to the content of both isotopes in its shallow groundwater that caused a slope shift from its local meteoric line. The origin of its shallow groundwater was from rainwater infiltrating directly in less than 10 m altitude. Citarum River showed more depleted values in both isotopes compared to shallow groundwater and it indicated that its water might originate from spring at the altitude of 600 m.     Keywords: oxygene-18, deuterium, groundwater, isotope

  15. Isotope analysis of diamond-surface passivation effect of high-temperature H{sub 2}O-grown atomic layer deposition-Al{sub 2}O{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Hiraiwa, Atsushi, E-mail: hiraiwa@aoni.waseda.jp, E-mail: qs4a-hriw@asahi-net.or.jp [Institute for Nanoscience and Nanotechnology, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Saito, Tatsuya; Matsumura, Daisuke; Kawarada, Hiroshi, E-mail: kawarada@waseda.jp [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2015-06-07

    The Al{sub 2}O{sub 3} film formed using an atomic layer deposition (ALD) method with trimethylaluminum as Al precursor and H{sub 2}O as oxidant at a high temperature (450 °C) effectively passivates the p-type surface conduction (SC) layer specific to a hydrogen-terminated diamond surface, leading to a successful operation of diamond SC field-effect transistors at 400 °C. In order to investigate this excellent passivation effect, we carried out an isotope analysis using D{sub 2}O instead of H{sub 2}O in the ALD and found that the Al{sub 2}O{sub 3} film formed at a conventional temperature (100 °C) incorporates 50 times more CH{sub 3} groups than the high-temperature film. This CH{sub 3} is supposed to dissociate from the film when heated afterwards at a higher temperature (550 °C) and causes peeling patterns on the H-terminated surface. The high-temperature film is free from this problem and has the largest mass density and dielectric constant among those investigated in this study. The isotope analysis also unveiled a relatively active H-exchange reaction between the diamond H-termination and H{sub 2}O oxidant during the high-temperature ALD, the SC still being kept intact. This dynamic and yet steady H termination is realized by the suppressed oxidation due to the endothermic reaction with H{sub 2}O. Additionally, we not only observed the kinetic isotope effect in the form of reduced growth rate of D{sub 2}O-oxidant ALD but found that the mass density and dielectric constant of D{sub 2}O-grown Al{sub 2}O{sub 3} films are smaller than those of H{sub 2}O-grown films. This is a new type of isotope effect, which is not caused by the presence of isotopes in the films unlike the traditional isotope effects that originate from the presence of isotopes itself. Hence, the high-temperature ALD is very effective in forming Al{sub 2}O{sub 3} films as a passivation and/or gate-insulation layer of high-temperature-operation diamond SC devices, and the knowledge of

  16. SAS for dummies

    CERN Document Server

    McDaniel, Stephen

    2010-01-01

    The fun and easy way to learn to use this leading business intelligence tool Written by an author team who is directly involved with SAS, this easy-to-follow guide is fully updated for the latest release of SAS and covers just what you need to put this popular software to work in your business. SAS allows any business or enterprise to improve data delivery, analysis, reporting, movement across a company, data mining, forecasting, statistical analysis, and more. SAS For Dummies, 2nd Edition  gives you the necessary background on what SAS can do for you and explains how to use the Enterprise Guide. SAS provides statistical and data analysis tools to help you deal with all kinds of data: operational, financial, performance, and more Places special emphasis on Enterprise Guide and other analytical tools, covering all commonly used features Covers all commonly used features and shows you the practical applications you can put to work in your business Explores how to get various types of data into the software and...

  17. SAS4A and FPIN2X validation for slow ramp TOP accidents: experiments TS-1 and TS-2

    International Nuclear Information System (INIS)

    Hill, D.J.

    1986-01-01

    The purpose of this paper is to present further results in the series of experimental analyses being performed using SAS4A and FPIN2X in order to provide a systematic validation of these codes. The two experiments discussed here, TS-1 and TS-2, were performed by Westinghouse Hanford/Hanford Engineering Development Laboratory (WHC/HEDL) in the Transient Reactor Test (TREAT) Facility. They were slow ramp transient overpowers (TOPs) of ∼ 5 cent/s equivalent Fast Flux Test Facility (FFTF) ramp rate, single-pin experiments in flowing sodium loops. The good agreement found here adds significantly to the experimental data base that provides the foundation for SAS4A and FPIN2X validation. It also shows that prefailure internal fuel motion is a phenomenon that has to be correctly accounted for, not only as a potential inherent safety mechanism, but also before any accurate prediction of fuel failure and subsequent fuel motion and the associated reactivity effects can be made. This is also true for metal-fueled pins. This capability is provided by PINACLE, which is being incorporated into SAS4A

  18. Accurate experimental determination of the isotope effects on the triple point temperature of water. I. Dependence on the 2H abundance

    Science.gov (United States)

    Faghihi, V.; Peruzzi, A.; Aerts-Bijma, A. T.; Jansen, H. G.; Spriensma, J. J.; van Geel, J.; Meijer, H. A. J.

    2015-12-01

    Variation in the isotopic composition of water is one of the major contributors to uncertainty in the realization of the triple point of water (TPW). Although the dependence of the TPW on the isotopic composition of the water has been known for years, there is still a lack of a detailed and accurate experimental determination of the values for the correction constants. This paper is the first of two articles (Part I and Part II) that address quantification of isotope abundance effects on the triple point temperature of water. In this paper, we describe our experimental assessment of the 2H isotope effect. We manufactured five triple point cells with prepared water mixtures with a range of 2H isotopic abundances encompassing widely the natural abundance range, while the 18O and 17O isotopic abundance were kept approximately constant and the 18O  -  17O ratio was close to the Meijer-Li relationship for natural waters. The selected range of 2H isotopic abundances led to cells that realised TPW temperatures between approximately  -140 μK to  +2500 μK with respect to the TPW temperature as realized by VSMOW (Vienna Standard Mean Ocean Water). Our experiment led to determination of the value for the δ2H correction parameter of A2H  =  673 μK / (‰ deviation of δ2H from VSMOW) with a combined uncertainty of 4 μK (k  =  1, or 1σ).

  19. On the basic substances used in the separation process by isotope exchange H2S - H2O, at two temperatures, in view of producing heavy water

    International Nuclear Information System (INIS)

    Popescu, V.

    1977-01-01

    In view of producing heavy water, the influence of the deuterium proportion in the basic substances, on the efficiency of the isotope exchange process H 2 S - H 2 O for two temperatures was studied. Heavy water is extracted from ordinary water and concentrated from 0.014 per cent to 5-15 per cent D 2 O by isotope bithermal exchange with the hydrogen sulphite. Theoretical and experimental research was carried out in laboratories and then applied on a pilot plant by designing and testing a drying equipment for hydrogen sulphite. The maximum H 2 S concentration rose to 99.84 per cent. The purity of the hydrogen sulphite resulting from the pilot plant, as well as the optimization of the installation for producing H 2 S depending on the deuterium distribution, make sure that the two methods for the preparation of sodium sulphite and hydrogen sulphite can be applied in industry. (author)

  20. 2ΔH(D) and 1ΔN(D) isotope effects on nuclear shielding of ammonium ions in complexes with crown ethers and cryptands

    International Nuclear Information System (INIS)

    Hansen, P.E.; Hansen, Aa.E.; Lycka, A.; Buvari-Barcza, A.

    1993-01-01

    One-bond deuterium isotope effects on nitrogen nuclear shielding, 1 ΔN(D) and two-bond isotope effects at 1 H nuclear shielding, 2 ΔH(D), have been investigated in a series of inclusion complexes. The hosts comprise, SC-24, [2.2.2], [2.2.1], [2.2.1] D, [2.2] DD, K5, 18-crown-6 and 18-crown-6 tetracarboxylic acid. The structure of the host [2.2.1] is discussed based on isotope effects and 1 H chemical shifts, and an interesting exchange reaction is observed between CDCl 3 and ammonium ions in the [2.2.1] complex. The counterion dependence is shown to be zero for ammonium ions fully included in cages such as SC-24 and [2.2.2] and for 18-C-6(COOH) 4 . For cryptands and podands such as [2.2.1] and K5 a weak counterion dependence of 2 ΔH(D) opposite to that found for ammonium ions in water is observed, while 1 ΔN(D) and 15 N chemical shifts depend very strongly on the counterions, as also found for ammonium ions in water solution. The anilinium ion shows effects similar to those observed for the ammonium ion. 1 ΔN(D) isotope effects correlate well with δN and 2 ΔH(D) correlate with δNH. The correlation between 1 ΔN(D) and 2 ΔH(D) is different for ammonium ions in water and ions included in crowns, cryptands or podands. This shows that different mechanisms are operating. The 2 ΔH(D) isotope effects and δNH chemical shifts depend on the distance to the nearest acceptor (oxygen or nitrogen), and they also depend on the type of acceptor. 2 ΔH(D) isotope effects are found to be a good gauge of N ... N or N ... O distances of the inclusion complexes. The 2 ΔH(D) isotope effects vary with temperature, but the dramatic changes in the 1 H NMR spectra of the host are not reflected in the isotope effects. The one-bond couplings, 1 J(N,H), correlate with 2 ΔH(D). The variations are much larger for the cryptands than found in water solutions. (au) (50 refs.)

  1. Electrochemical H-D isotope effect at metal-perovskite proton conductor interfaces

    DEFF Research Database (Denmark)

    Kek, D.; Bonanos, N.

    1999-01-01

    The H-D isotope effect on the electrode kinetics of a metal-proton conductor interface has been investigated. The current-voltage behaviour depends on the nature of the electrode (Ni, Ag), the atmosphere (H(2), D(2)), the partial pressures of the gases, and the temperature. The isotope effect was...

  2. Affordable uniform isotope labeling with 2H, 13C and 15N in insect cells

    International Nuclear Information System (INIS)

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D.

    2015-01-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80 % can be achieved for 15 N and 13 C with yields comparable to expression in full media. For 2 H, 15 N and 2 H, 13 C, 15 N labeling, incorporation is only slightly lower with 75 and 73 %, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins

  3. Variation of δ2H, δ18O & δ13C in crude palm oil from different regions in Malaysia: Potential of stable isotope signatures as a key traceability parameter.

    Science.gov (United States)

    Muhammad, Syahidah Akmal; Seow, Eng-Keng; Mohd Omar, A K; Rodhi, Ainolsyakira Mohd; Mat Hassan, Hasnuri; Lalung, Japareng; Lee, Sze-Chi; Ibrahim, Baharudin

    2018-01-01

    A total of 33 crude palm oil samples were randomly collected from different regions in Malaysia. Stable carbon isotopic composition (δ 13 C) was determined using Flash 2000 elemental analyzer while hydrogen and oxygen isotopic compositions (δ 2 H and δ 18 O) were analyzed by Thermo Finnigan TC/EA, wherein both instruments were coupled to an isotope ratio mass spectrometer. The bulk δ 2 H, δ 18 O and δ 13 C of the samples were analyzed by Hierarchical Cluster Analysis (HCA), Principal Component Analysis (PCA) and Orthogonal Partial Least Square-Discriminant Analysis (OPLS-DA). Unsupervised HCA and PCA methods have demonstrated that crude palm oil samples were grouped into clusters according to respective state. A predictive model was constructed by supervised OPLS-DA with good predictive power of 52.60%. Robustness of the predictive model was validated with overall accuracy of 71.43%. Blind test samples were correctly assigned to their respective cluster except for samples from southern region. δ 18 O was proposed as the promising discriminatory marker for discerning crude palm oil samples obtained from different regions. Stable isotopes profile was proven to be useful for origin traceability of crude palm oil samples at a narrower geographical area, i.e. based on regions in Malaysia. Predictive power and accuracy of the predictive model was expected to improve with the increase in sample size. Conclusively, the results in this study has fulfilled the main objective of this work where the simple approach of combining stable isotope analysis with chemometrics can be used to discriminate crude palm oil samples obtained from different regions in Malaysia. Overall, this study shows the feasibility of this approach to be used as a traceability assessment of crude palm oils. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  4. USGS48 Puerto Rico precipitation - A new isotopic reference material for δ2H and δ18O measurements of water

    Science.gov (United States)

    Qi, Haiping; Coplen, Tyler B.; Tarbox, Lauren V.; Lorenz, Jennifer M.; Scholl, Martha A.

    2014-01-01

    A new secondary isotopic reference material has been prepared from Puerto Rico precipitation, which was filtered, homogenised, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and calibrated by dual-inlet isotope-ratio mass spectrometry. This isotopic reference material, designated as USGS48, is intended to be one of two isotopic reference waters for daily normalisation of stable hydrogen (δ2H) and stable oxygen (δ18O) isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. The δ2H and δ18O values of this reference water are−2.0±0.4 and−2.224±0.012 ‰, respectively, relative to Vienna Standard Mean Ocean Water on scales normalised such that the δ2H and δ18O values of Standard Light Antarctic Precipitation reference water are−428 and−55.5 ‰, respectively. Each uncertainty is an estimated expanded uncertainty (U=2uc) about the reference value that provides an interval that has about a 95 % probability of encompassing the true value. This isotopic reference water is available by the case of 144 glass ampoules containing 5 mL of water in each ampoule.

  5. Minimal Influence of [NiFe] Hydrogenase on Hydrogen Isotope Fractionation in H2-Oxidizing Cupriavidus necator

    Directory of Open Access Journals (Sweden)

    Brian J. Campbell

    2017-10-01

    Full Text Available Fatty acids produced by H2-metabolizing bacteria are sometimes observed to be more D-depleted than those of photoautotrophic organisms, a trait that has been suggested as diagnostic for chemoautotrophic bacteria. The biochemical reasons for such a depletion are not known, but are often assumed to involve the strong D-depletion of H2. Here, we cultivated the bacterium Cupriavidus necator H16 (formerly Ralstonia eutropha H16 under aerobic, H2-consuming, chemoautotrophic conditions and measured the isotopic compositions of its fatty acids. In parallel with the wild type, two mutants of this strain, each lacking one of two key hydrogenase enzymes, were also grown and measured. In all three strains, fractionations between fatty acids and water ranged from -173‰ to -235‰, and averaged -217‰, -196‰, and -226‰, respectively, for the wild type, SH- mutant, and MBH- mutant. There was a modest increase in δD as a result of loss of the soluble hydrogenase enzyme. Fractionation curves for all three strains were constructed by growing parallel cultures in waters with δDwater values of approximately -25‰, 520‰, and 1100‰. These curves indicate that at least 90% of the hydrogen in fatty acids is derived from water, not H2. Published details of the biochemistry of the soluble and membrane-bound hydrogenases confirm that these enzymes transfer electrons rather than intact hydride (H- ions, providing no direct mechanism to connect the isotopic composition of H2 to that of lipids. Multiple lines of evidence thus agree that in this organism, and presumably others like it, environmental H2 plays little or no direct role in controlling lipid δD values. The observed fractionations must instead result from isotope effects in the reduction of NAD(PH by reductases with flavin prosthetic groups, which transfer two electrons and acquire H+ (or D+ from solution. Parallels to NADPH reduction in photosynthesis may explain why D/H fractionations in C. necator

  6. Isotopic identification and quantification of seawater influx into a groundwater body using environmental isotopes (2H,18O)

    International Nuclear Information System (INIS)

    Stichler, W.; Weise, S.M.; Trimborn, P.

    2001-01-01

    The development of optimal strategies for groundwater protection and for minimising the danger to groundwater through raw material excavation presupposes a well-founded hydrogeological knowledge of the complex interactions between flooded gravel pit and groundwater. The present study was dedicated to a quantitative determination of the groundwater throughput of a representative flooded gravel pit, the Alte Vogelbaggersee, on the basis of isotope experiments. Water samples were taken from groundwater analysis points upstream and downstream of the gravel pit and in the pit itself over a two-year observation period. In addition to isotope analysis ( 2 H, 1 8O) the scope of measurements included local parameters and chemical analysis in vertical profiles, time series and spatial distributions on selected days [de

  7. Syntheses of [5-2H]-uracil, [5-2H]-cytosine, [6-2H]-uracil and [6-2H]-cytosine

    International Nuclear Information System (INIS)

    Kiritani, Reiko; Asano, Takeyoshi; Fujita, Shin-ichi; Dohmaru, Takaaki; Kawanishi, Tetsuro

    1986-01-01

    Syntheses of [5- 2 H]-, [6- 2 H]-uracil and [5- 2 H]-, [6- 2 H]-cytosine were investigated. The catalytic reaction of uracil or cytosine with 2 H 2 gas in alkaline media gave rise to [6- 2 H]-compounds almost exclusively. On the other hand, the reaction of 5-bromouracil or 5-bromocytosine with 2 H 2 gas gave rise to a mixture of [5- 2 H]-, [6- 2 H]- and [5- 2 H, 6- 2 H]-compounds depending on the experimental conditions. By controlling the temperature, the pressure of 2 H 2 gas and the amount of catalyst, [5- 2 H]-uracil and [5- 2 H]-cytosine were obtained. The isotopic distribution in each product was measured by 1 H NMR spectroscopy combined with an HPLC method. (author)

  8. Solvent 1H/2H isotopic effects in the reaction of the L-Tyrosine oxidation catalyzed by Tyrosinase

    International Nuclear Information System (INIS)

    Kozlowska, M.; Kanska, M.

    2006-01-01

    Tyrosinase is well known catalyst in the oxidation of L-Tyrosine to L-DOPA and following oxidation of L-DOPA to dopachinone. The aim of communication is to present the results of studies on the solvent isotopic effects (SIE) in the above reactions for the 1 H/ 2 H in the 3',5' and 2',6' substituted tyrosine. Obtained dependence of the reaction rate on the substrate concentration were applied for optimization of the kinetic parameters, k cat and k cat /K m , in the Michaelis-Menten equation. As a result - better understanding of the L-DOPA creation can be achieved

  9. A combustion setup to precisely reference δ13C and δ2H isotope ratios of pure CH4 to produce isotope reference gases of δ13C-CH4 in synthetic air

    Directory of Open Access Journals (Sweden)

    H. Schaefer

    2012-09-01

    Full Text Available Isotope records of atmospheric CH4 can be used to infer changes in the biogeochemistry of CH4. One factor currently limiting the quantitative interpretation of such changes are uncertainties in the isotope measurements stemming from the lack of a unique isotope reference gas, certified for δ13C-CH4 or δ2H-CH4. We present a method to produce isotope reference gases for CH4 in synthetic air that are precisely anchored to the VPDB and VSMOW scales and have δ13C-CH4 values typical for the modern and glacial atmosphere. We quantitatively combusted two pure CH4 gases from fossil and biogenic sources and determined the δ13C and δ2H values of the produced CO2 and H2O relative to the VPDB and VSMOW scales within a very small analytical uncertainty of 0.04‰ and 0.7‰, respectively. We found isotope ratios of −39.56‰ and −56.37‰ for δ13C and −170.1‰ and −317.4‰ for δ2H in the fossil and biogenic CH4, respectively. We used both CH4 types as parental gases from which we mixed two filial CH4 gases. Their δ13C was determined to be −42.21‰ and −47.25‰ representing glacial and present atmospheric δ13C-CH4. The δ2H isotope ratios of the filial CH4 gases were found to be −193.1‰ and −237.1‰, respectively. Next, we mixed aliquots of the filial CH4 gases with ultrapure N2/O2 (CH4 ≤ 2 ppb producing two isotope reference gases of synthetic air with CH4 mixing ratios near atmospheric values. We show that our method is reproducible and does not introduce isotopic fractionation for δ13C within the uncertainties of our detection limit (we cannot conclude this for δ2H because our system is currently not prepared for δ2H-CH4 measurements in air samples. The general principle of our method can be applied to produce synthetic isotope reference gases targeting δ2H-CH4 or other gas species.

  10. SAS essentials mastering SAS for data analytics

    CERN Document Server

    Elliott, Alan C

    2015-01-01

    A step-by-step introduction to using SAS® statistical software as a foundational approach to data analysis and interpretation Presenting a straightforward introduction from the ground up, SAS® Essentials: Mastering SAS for Data Analytics, Second Edition illustrates SAS using hands-on learning techniques and numerous real-world examples. Keeping different experience levels in mind, the highly-qualified author team has developed the book over 20 years of teaching introductory SAS courses. Divided into two sections, the first part of the book provides an introduction to data manipulation, st

  11. Molecular hydrogen (H2) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning

    NARCIS (Netherlands)

    Vollmer, M.K.; Walter, S.; Mohn, J.; Steinbacher, M.; Bond, S.W.; Röckmann, T.; Reimann, S.

    2012-01-01

    Molecular hydrogen (H2), its stable isotope signature ( D), and the key combustion parameters carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were measured from various combustion processes. H2 in the exhaust of gas and oil-fired heaters and of waste incinerator plants was generally

  12. The ground state infrared spectra of several isotopic forms of the CdH and ZnH radicals

    International Nuclear Information System (INIS)

    Urban, R.; Magg, U.; Birk, H.; Jones, H.

    1990-01-01

    The infrared spectra of six isotopic forms of cadmium monohydride, [ 116 CdH (7.6%), 114 CdH (28.9%), 113 CdH (12.3%), 112 CdH (24.1%), 111 CdH (12.7%), and 110 CdH (12.4%)] and four isotopic forms of zinc hydride [ 68 ZnH (18.6%), 67 ZnH (4.1%), 66 ZnH (27.8%), and 64 ZnH (48.9%)] have been observed in natural abundance in their ground electronic state ( 2 Σ + ) in the gas phase using a diode laser spectrometer. A number of transitions of 108 CdH (0.9%) and 106 CdH (1.2%) and 70 ZnH (0.6%) were also observed, but too little data was accumulated to allow a good analysis. The hydrides were produced by reaction of hydrogen with metal vapor at elevated temperature in an electric discharge. The analysis of the experimental data was carried out in two ways. (a) A complete set of Dunham parameters and spin--rotation parameters (γ parameters) was determined for each isotopic species of the two radicals and (b) a set of mass-independent parameters were calculated for both ZnH and CdH. Since only information over the isotopic species of the heavy atom was produced in each case, effects arising from a breakdown of the Born--Oppenheimer approximation were negligible. The effects of the strong anharmonicity present in these two molecules on the values of the parameters are discussed

  13. Laboratory isotopic behaviour (2H, 18O) of sediments pore water during evaporation

    International Nuclear Information System (INIS)

    Ciolzyk, A.; Bariac, T.; Klamecki, A.; Jusserand, C.

    1987-01-01

    Two bare sediments (sand and loam) wetted with water of known isotopic composition have been subjected to evaporation in laboratory conditions. An attempt of application of classical isotopic evaporation models for free waters with reducing reservoir has been made, the better fit implies: a)laminar conditions of the atmosphere in the sediment under evaporation; b) a similar isotopic composition of water vapor as the isotopic composition of the water vapor of the external atmosphere. Variation of ε K and δ V H implies a better knowledge of the complex mechanisms of the atmosphere behaviour in the pore path of porous media under evaporation [fr

  14. Computational Replication of the Primary Isotope Dependence of Secondary Kinetic Isotope Effects in Solution Hydride-Transfer Reactions: Supporting the Isotopically Different Tunneling Ready State Conformations.

    Science.gov (United States)

    Derakhshani-Molayousefi, Mortaza; Kashefolgheta, Sadra; Eilers, James E; Lu, Yun

    2016-06-30

    We recently reported a study of the steric effect on the 1° isotope dependence of 2° KIEs for several hydride-transfer reactions in solution (J. Am. Chem. Soc. 2015, 137, 6653). The unusual 2° KIEs decrease as the 1° isotope changes from H to D, and more in the sterically hindered systems. These were explained in terms of a more crowded tunneling ready state (TRS) conformation in D-tunneling, which has a shorter donor-acceptor distance (DAD) than in H-tunneling. To examine the isotopic DAD difference explanation, in this paper, following an activated motion-assisted H-tunneling model that requires a shorter DAD in a heavier isotope transfer process, we computed the 2° KIEs at various H/D positions at different DADs (2.9 Å to 3.5 Å) for the hydride-transfer reactions from 2-propanol to the xanthylium and thioxanthylium ions (Xn(+) and TXn(+)) and their 9-phenyl substituted derivatives (Ph(T)Xn(+)). The calculated 2° KIEs match the experiments and the calculated DAD effect on the 2° KIEs fits the observed 1° isotope effect on the 2° KIEs. These support the motion-assisted H-tunneling model and the isotopically different TRS conformations. Furthermore, it was found that the TRS of the sterically hindered Ph(T)Xn(+) system does not possess a longer DAD than that of the (T)Xn(+) system. This predicts a no larger 1° KIE in the former system than in the latter. The observed 1° KIE order is, however, contrary to the prediction. This implicates the stronger DAD-compression vibrations coupled to the bulky Ph(T)Xn(+) reaction coordinate.

  15. Prediction of absolute infrared intensities for the fundamental vibrations of H2O2

    Science.gov (United States)

    Rogers, J. D.; Hillman, J. J.

    1981-01-01

    Absolute infrared intensities are predicted for the vibrational bands of gas-phase H2O2 by the use of a hydrogen atomic polar tensor transferred from the hydroxyl hydrogen atom of CH3OH. These predicted intensities are compared with intensities predicted by the use of a hydrogen atomic polar tensor transferred from H2O. The predicted relative intensities agree well with published spectra of gas-phase H2O2, and the predicted absolute intensities are expected to be accurate to within at least a factor of two. Among the vibrational degrees of freedom, the antisymmetric O-H bending mode nu(6) is found to be the strongest with a calculated intensity of 60.5 km/mole. The torsional band, a consequence of hindered rotation, is found to be the most intense fundamental with a predicted intensity of 120 km/mole. These results are compared with the recent absolute intensity determinations for the nu(6) band.

  16. The synthesis of [2-3H2] taurine and [2-3H2] hypotaurine

    International Nuclear Information System (INIS)

    Fellman, J.H.

    1981-01-01

    The synthesis of [2- 3 H 2 ]-2-aminoethanesulfonate [2- 3 H]-taurine by the reduction of cyanomethanesulfonic acid with tritium gas is described. The conversion of [2- 3 H]-taurine and its 14 C and 35 S isotopic forms to 2-aminoethanesulfinate (hypotaurine) was accomplished by converting taurine to its corresponding sulfonyl chloride and reducing the latter with metallic zinc. (author)

  17. The O and H stable isotope composition of freshwaters in the British Isles. 2. Surface waters and groundwater

    Directory of Open Access Journals (Sweden)

    W. G. Darling

    2003-01-01

    Full Text Available The utility of stable isotopes as tracers of the water molecule has a long pedigree. The study reported here is part of an attempt to establish a comprehensive isotopic 'baseline' for the British Isles as background data for a range of applications. Part 1 of this study (Darling and Talbot, 2003 considered the isotopic composition of rainfall in Britain and Ireland. The present paper is concerned with the composition of surface waters and groundwater. In isotopic terms, surface waters (other than some upland streams are poorly characterised in the British Isles; their potential variability has yet to be widely used as an aid in hydrological research. In what may be the first study of a major British river, a monthly isotopic record of the upper River Thames during 1998 was obtained. This shows high damping of the isotopic variation compared to that in rainfall over most of the year, though significant fluctuations were seen for the autumn months. Smaller rivers such as the Stour and Darent show a more subdued response to the balance between runoff and baseflow. The relationship between the isotopic composition of rainfall and groundwater is also considered. From a limited database, it appears that whereas Chalk groundwater is a representative mixture of weighted average annual rainfall, for Triassic sandstone groundwater there is a seasonal selection of rainfall biased towards isotopically-depleted winter recharge. This may be primarily the result of physical differences between the infiltration characteristics of rock types, though other factors (vegetation, glacial history could be involved. In the main, however, groundwaters appear to be representative of bulk rainfall within an error band of 0.5‰ δ18O. Contour maps of the δ18O and δ2H content of recent groundwaters in the British Isles show a fundamental SW-NE depletion effect modified by topography. The range of measured values, while much smaller than those for rainfall, still covers

  18. Multicomponent DFT study of geometrical H/D isotope effect on hydrogen-bonded organic conductor, κ-H3(Cat EDT-ST)2

    Science.gov (United States)

    Yamamoto, Kaichi; Kanematsu, Yusuke; Nagashima, Umpei; Ueda, Akira; Mori, Hatsumi; Tachikawa, Masanori

    2017-04-01

    We theoretically investigated a significant contraction of the hydrogen-bonding O⋯O distance upon H/D substitution in our recently developed purely organic crystals, κ-H3(Cat-EDT-ST)2 (H-ST) and its isotopologue κ-D3(Cat-EDT-ST)2 (D-ST), having π-electron systems coupled with hydrogen-bonding fluctuation. The origin of this geometrical H/D isotope effect was elucidated by using the multicomponent DFT method, which takes the H/D nuclear quantum effect into account. The optimized O⋯O distance in H-ST was found to be longer than that in D-ST due to the anharmonicity of the potential energy curve along the Osbnd H bond direction, which was in reasonable agreement with the experimental trend.

  19. Oxygen isotope partitioning between rhyolitic glass/melt and CO2: An experimental study at 550-950 degrees C and 1 bar

    International Nuclear Information System (INIS)

    Palin, J.M.; Epstein, S.; Stolper, E.M.

    1996-01-01

    Oxygen isotope partitioning between gaseous CO 2 and a natural rhyolitic glass and melt (77.7 wt% SiO 2 , 0.16 wt% H 2 O total ) has been measured at 550-950 degrees C and approximately 1 bar. Equilibrium oxygen isotope fractionation factors (α CO2-rhyolite = ( 18 O/ 16 O) rhyolite ) determined in exchange experiments of 100-255 day duration. These values agree well with predictions based on experimentally determined oxygen isotope fractionation factors for CO 2 -silica glass and CO 2 -albitic glass/melt, if the rhyolitic glass is taken to be a simple mixture of normative silica and alkali feldspar components. The results indicate that oxygen isotope partitioning in felsic glasses and melts can be modeled by linear combinations of endmember silicate constituents. Rates of oxygen isotope exchange observed in the partitioning experiments are consistent with control by diffusion of molecular H 2 O dissolved in the glass/melt and are three orders of magnitude faster than predicted for rate control solely by diffusion of dissolved molecular CO 2 under the experimental conditions. Additional experiments using untreated and dehydrated (0.09 wt% H 2 O total ) rhyolitic glass quantatively support these interpretations. We conclude that diffusive oxygen isotope exchange in rhyolitic glass/melt, and probably other polymerized silicate materials, it controlled by the concentrations and diffusivities of dissolved oxygen-bearing volatile species rather than diffusion of network oxygen under all but the most volatile-poor conditions. 25 refs., 6 figs., 1 tab

  20. pH-Dependent isotope exchange and hydrogenation catalysed by water-soluble NiRu complexes as functional models for [NiFe]hydrogenases.

    Science.gov (United States)

    Kure, Bunsho; Matsumoto, Takahiro; Ichikawa, Koji; Fukuzumi, Shunichi; Higuchi, Yoshiki; Yagi, Tatsuhiko; Ogo, Seiji

    2008-09-21

    The pH-dependent hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes and hydrogenation of the carbonyl compounds have been investigated with water-soluble bis(mu-thiolate)(mu-hydride)NiRu complexes, Ni(II)(mu-SR)(2)(mu-H)Ru(II) {(mu-SR)(2) = N,N'-dimethyl-N,N'-bis(2-mercaptoethyl)-1,3-propanediamine}, as functional models for [NiFe]hydrogenases. In acidic media (at pH 4-6), the mu-H ligand of the Ni(II)(mu-SR)(2)(mu-H)Ru(II) complexes has H(+) properties, and the complexes catalyse the hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes. A mechanism of the hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes through a low-valent Ni(I)(mu-SR)(2)Ru(I) complex is proposed. In contrast, in neutral-basic media (at pH 7-10), the mu-H ligand of the Ni(II)(mu-SR)(2)(mu-H)Ru(II) complexes acts as H(-), and the complexes catalyse the hydrogenation of carbonyl compounds.

  1. Construction of CARS Spectroscopy for Determination of Isotope shift of Hydrogen H2, D2

    International Nuclear Information System (INIS)

    Zidan, M. D.; Jazmati, A.; Manni, A.

    2007-01-01

    Coherent anti-Stokes Raman scattering (CARS) spectrometer has been built. It consists of Raman cell, which is filled with a H2 gas at 5 atm pressure, and a frequency-doubled Nd:YAG laser-pumped dye laser. The two beams are focused by means of a bi-convex 400 mm lens into the Raman cell. The anti-Stokes signal (CARS beam) is generated due to four-wave mixing process. The anti-Stokes signal is directed to a monochrometer entrance slit by prism to be detected by a photomultiplier, which is connected to a computer. The dye laser frequency has to be tuned to satisfy the energy difference between the V 1 beam (Nd:YAG laser beam) and the V 2 beam (the Stokes beam or the dye laser beam) that exactly corresponds to a vibrational or a rotational Raman resonance (E 2 -E 1 ) in the hydrogen molecule, then the anti-Stokes signal ( V 3 ) is generated. The spectra of the anti-Stokes signal has been recorded to determine the isotope shift between H 2 , and D 2 , which is 1161 cm -1 .

  2. Centriolar SAS-7 acts upstream of SPD-2 to regulate centriole assembly and pericentriolar material formation

    Science.gov (United States)

    Sugioka, Kenji; Hamill, Danielle R; Lowry, Joshua B; McNeely, Marie E; Enrick, Molly; Richter, Alyssa C; Kiebler, Lauren E; Priess, James R; Bowerman, Bruce

    2017-01-01

    The centriole/basal body is a eukaryotic organelle that plays essential roles in cell division and signaling. Among five known core centriole proteins, SPD-2/Cep192 is the first recruited to the site of daughter centriole formation and regulates the centriolar localization of the other components in C. elegans and in humans. However, the molecular basis for SPD-2 centriolar localization remains unknown. Here, we describe a new centriole component, the coiled-coil protein SAS-7, as a regulator of centriole duplication, assembly and elongation. Intriguingly, our genetic data suggest that SAS-7 is required for daughter centrioles to become competent for duplication, and for mother centrioles to maintain this competence. We also show that SAS-7 binds SPD-2 and regulates SPD-2 centriolar recruitment, while SAS-7 centriolar localization is SPD-2-independent. Furthermore, pericentriolar material (PCM) formation is abnormal in sas-7 mutants, and the PCM-dependent induction of cell polarity that defines the anterior-posterior body axis frequently fails. We conclude that SAS-7 functions at the earliest step in centriole duplication yet identified and plays important roles in the orchestration of centriole and PCM assembly. DOI: http://dx.doi.org/10.7554/eLife.20353.001 PMID:28092264

  3. SAS-1 Is a C2 Domain Protein Critical for Centriole Integrity in C. elegans

    Science.gov (United States)

    Delattre, Marie; Balestra, Fernando R.; Blanchoud, Simon; Finger, Susanne; Knott, Graham; Müller-Reichert, Thomas; Gönczy, Pierre

    2014-01-01

    Centrioles are microtubule-based organelles important for the formation of cilia, flagella and centrosomes. Despite progress in understanding the underlying assembly mechanisms, how centriole integrity is ensured is incompletely understood, including in sperm cells, where such integrity is particularly critical. We identified C. elegans sas-1 in a genetic screen as a locus required for bipolar spindle assembly in the early embryo. Our analysis reveals that sperm-derived sas-1 mutant centrioles lose their integrity shortly after fertilization, and that a related defect occurs when maternal sas-1 function is lacking. We establish that sas-1 encodes a C2 domain containing protein that localizes to centrioles in C. elegans, and which can bind and stabilize microtubules when expressed in human cells. Moreover, we uncover that SAS-1 is related to C2CD3, a protein required for complete centriole formation in human cells and affected in a type of oral-facial-digital (OFD) syndrome. PMID:25412110

  4. SAS-1 is a C2 domain protein critical for centriole integrity in C. elegans.

    Directory of Open Access Journals (Sweden)

    Lukas von Tobel

    2014-11-01

    Full Text Available Centrioles are microtubule-based organelles important for the formation of cilia, flagella and centrosomes. Despite progress in understanding the underlying assembly mechanisms, how centriole integrity is ensured is incompletely understood, including in sperm cells, where such integrity is particularly critical. We identified C. elegans sas-1 in a genetic screen as a locus required for bipolar spindle assembly in the early embryo. Our analysis reveals that sperm-derived sas-1 mutant centrioles lose their integrity shortly after fertilization, and that a related defect occurs when maternal sas-1 function is lacking. We establish that sas-1 encodes a C2 domain containing protein that localizes to centrioles in C. elegans, and which can bind and stabilize microtubules when expressed in human cells. Moreover, we uncover that SAS-1 is related to C2CD3, a protein required for complete centriole formation in human cells and affected in a type of oral-facial-digital (OFD syndrome.

  5. Combination of functional MRI with SAS and MRA

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, Masayuki; Takeshita, Shinichirou; Kutsuna, Munenori; Akimitsu, Tomohide; Arita, Kazunori; Kurisu, Kaoru [Hiroshima Univ. (Japan). School of Medicine

    1999-02-01

    For presurgical diagnosis of brain surface, combination of functional MRI (fMRI) with the MR angiography was examined. This method could visualize brain bay, convolution and vein as index of surface. Five normal adults (male, mean age: 28-year-old) and 7 patients with brain tumor on the main locus to surface (male: 4, female: 3, mean age: 52.3-year-old) were studied. fMRI was performed by SPGR method (TR 70, TE 40, flip angle 60, one slice, thickness 10 mm, FOV 20 cm, matrix 128 x 128). The brain surface was visualized by SAS (surface anatomy scanning). SAS was performed by FSE method (TR 6000, TE 200, echo train 16, thickness 20 mm, slice 3, NEX 2). Cortical veins near superior sagittal sinus were visualized by MRA with 2D-TOF method (TR 50, TE 20, flip angle 60, thickness 2 mm, slice 28, NEX 1). These images were superimposed and functional image of peripheral sensorimotor region was evaluated anatomically. In normal adults, high signal was visualized at another side of near sensorimotor region at 8 of 10 sides. All high signal area of fMRI agreed with cortical vein near sensorimotor region that was visualized by MRA. In patients with brain tumor, signal was visualized at another side of sensorimotor region of tumor without 2 cases with palsy. In another side of tumor, signal of fMRI was visualized in 5 of 7 cases. The tumor was visualized as opposite low signal field in SAS. Locational relation between tumor and brain surface and brain function was visualized distinctly by combination of MRA, SAS and MRA. This method could become useful for presurgical diagnosis. (K.H.)

  6. Water as a solute in aprotic dipolar solvents. 2. D2O-H2O solute isotope effects on the enthalpy of water dissolution in nitromethane, acetonitrile and propylene carbonate at 298.15 K

    International Nuclear Information System (INIS)

    Ivanov, Evgeniy V.; Smirnov, Valeriy I.

    2010-01-01

    The enthalpies of solution of ordinary (H 2 O) and heavy (D 2 O) water in nitromethane (NM), acetonitrile (ACN) and propylene carbonate (PC) were measured calorimetrically at 298.15 K. Standard (at the infinite dilution) enthalpies of solution and solvation, along with D 2 O-H 2 O solute isotope effects on the quantities in question, were calculated. The enthalpies of solution of water H/D isotopologues were found to be positive by sign and substantially increasing in magnitude on going from ACN and PC to NM, whereas the corresponding positive solute H/D isotope effect changes in a consequence: NM > ACN > PC. The qualitative interrelations between the enthalpy-isotopic effect of dissolution (solvation) of water and the electron-accepting/donating ability of aprotic dipolar solvent (within a series considered) were found.

  7. Reconstructing lake evaporation history and the isotopic composition of precipitation by a coupled δ18O-δ2H biomarker approach

    Science.gov (United States)

    Hepp, Johannes; Tuthorn, Mario; Zech, Roland; Mügler, Ines; Schlütz, Frank; Zech, Wolfgang; Zech, Michael

    2015-10-01

    Over the past decades, δ18O and δ2H analyses of lacustrine sediments became an invaluable tool in paleohydrology and paleolimnology for reconstructing the isotopic composition of past lake water and precipitation. However, based on δ18O or δ2H records alone, it can be challenging to distinguish between changes of the precipitation signal and changes caused by evaporation. Here we propose a coupled δ18O-δ2H biomarker approach that provides the possibility to disentangle between these two factors. The isotopic composition of long chain n-alkanes (n-C25, n-C27, n-C29, n-C31) were analyzed in order to establish a 16 ka Late Glacial and Holocene δ2H record for the sediment archive of Lake Panch Pokhari in High Himalaya, Nepal. The δ2Hn-alkane record generally corroborates a previously established δ18Osugar record reporting on high values characterizing the deglaciation and the Older and the Younger Dryas, and low values characterizing the Bølling and the Allerød periods. Since the investigated n-alkane and sugar biomarkers are considered to be primarily of aquatic origin, they were used to reconstruct the isotopic composition of lake water. The reconstructed deuterium excess of lake water ranges from +57‰ to -85‰ and is shown to serve as proxy for the evaporation history of Lake Panch Pokhari. Lake desiccation during the deglaciation, the Older Dryas and the Younger Dryas is affirmed by a multi-proxy approach using the Hydrogen Index (HI) and the carbon to nitrogen ratio (C/N) as additional proxies for lake sediment organic matter mineralization. Furthermore, the coupled δ18O and δ2H approach allows disentangling the lake water isotopic enrichment from variations of the isotopic composition of precipitation. The reconstructed 16 ka δ18Oprecipitation record of Lake Panch Pokhari is well in agreement with the δ18O records of Chinese speleothems and presumably reflects the Indian Summer Monsoon variability.

  8. Affordable uniform isotope labeling with {sup 2}H, {sup 13}C and {sup 15}N in insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D., E-mail: alvar.gossert@novartis.com [Novartis Institutes for BioMedical Research (Switzerland)

    2015-06-15

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80 % can be achieved for {sup 15}N and {sup 13}C with yields comparable to expression in full media. For {sup 2}H,{sup 15}N and {sup 2}H,{sup 13}C,{sup 15}N labeling, incorporation is only slightly lower with 75 and 73 %, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins.

  9. Stable-isotope geochemistry of the Pierina high-sulfidation Au-Ag deposit, Peru: Influence of hydrodynamics on SO42--H2S sulfur isotopic exchange in magmatic-steam and steam-heated environments

    Science.gov (United States)

    Fifarek, R.H.; Rye, R.O.

    2005-01-01

    The Pierina high-sulfidation Au-Ag deposit formed 14.5 my ago in rhyolite ash flow tuffs that overlie porphyritic andesite and dacite lavas and are adjacent to a crosscutting and interfingering dacite flow dome complex. The distribution of alteration zones indicates that fluid flow in the lavas was largely confined to structures but was dispersed laterally in the tuffs because of a high primary and alteration-induced permeability. The lithologically controlled hydrodynamics created unusual fluid, temperature, and pH conditions that led to complete SO42--H2S isotopic equilibration during the formation of some magmatic-steam and steam-heated alunite, a phenomenon not previously recognized in similar deposits. Isotopic data for early magmatic hydrothermal and main-stage alunite (??34S=8.5??? to 31.7???; ??18 OSO4=4.9??? to 16.5???; ??18 OOH=2.2??? to 14.4???; ??D=-97??? to -39???), sulfides (??34 S=-3.0??? to 4.3???), sulfur (??34S=-1.0??? to 1.1???), and clay minerals (??18O=4.3??? to 12.5???; ??D=-126??? to -81???) are typical of high-sulfidation epithermal deposits. The data imply the following genetic elements for Pierina alteration-mineralization: (1) fluid and vapor exsolution from an I-type magma, (2) wallrock buffering and cooling of slowing rising vapors to generate a reduced (H2S/SO4???6) highly acidic condensate that mixed with meteoric water but retained a magmatic ??34S???S signature of ???1???, (3) SO2 disproportionation to HSO4- and H2S between 320 and 180 ??C, and (4) progressive neutralization of laterally migrating acid fluids to form a vuggy quartz???alunite-quartz??clay???intermediate argillic???propylitic alteration zoning. Magmatic-steam alunite has higher ??34S (8.5??? to 23.2???) and generally lower ??18OSO4 (1.0 to 11.5???), ??18OOH (-3.4 to 5.9???), and ??D (-93 to -77???) values than predicted on the basis of data from similar occurrences. These data and supporting fluid-inclusion gas chemistry imply that the rate of vapor ascent for this

  10. Tracing groundwater recharge sources in the northwestern Indian alluvial aquifer using water isotopes (δ18O, δ2H and 3H)

    Science.gov (United States)

    Joshi, Suneel Kumar; Rai, Shive Prakash; Sinha, Rajiv; Gupta, Sanjeev; Densmore, Alexander Logan; Rawat, Yadhvir Singh; Shekhar, Shashank

    2018-04-01

    Rapid groundwater depletion from the northwestern Indian aquifer system in the western Indo-Gangetic basin has raised serious concerns over the sustainability of groundwater and the livelihoods that depend on it. Sustainable management of this aquifer system requires that we understand the sources and rates of groundwater recharge, however, both these parameters are poorly constrained in this region. Here we analyse the isotopic (δ18O, δ2H and tritium) compositions of groundwater, precipitation, river and canal water to identify the recharge sources, zones of recharge, and groundwater flow in the Ghaggar River basin, which lies between the Himalayan-fed Yamuna and Sutlej River systems in northwestern India. Our results reveal that local precipitation is the main source of groundwater recharge. However, depleted δ18O and δ2H signatures at some sites indicate recharge from canal seepage and irrigation return flow. The spatial variability of δ18O, δ2H, d-excess, and tritium reflects limited lateral connectivity due to the heterogeneous and anisotropic nature of the aquifer system in the study area. The variation of tritium concentration with depth suggests that groundwater above c. 80 mbgl is generally modern water. In contrast, water from below c. 80 mbgl is a mixture of modern and old waters, and indicates longer residence time in comparison to groundwater above c. 80 mbgl. Isotopic signatures of δ18O, δ2H and tritium suggest significant vertical recharge down to a depth of 320 mbgl. The spatial and vertical variations of isotopic signature of groundwater reveal two distinct flow patterns in the aquifer system: (i) local flow (above c. 80 mbgl) throughout the study area, and (ii) intermediate and regional flow (below c. 80 mbgl), where water recharges aquifers through large-scale lateral flow as well as vertical infiltration. The understanding of spatial and vertical recharge processes of groundwater in the study area provides important base-line knowledge

  11. Social Analysis Systems (SAS2) - Phase III

    International Development Research Centre (IDRC) Digital Library (Canada)

    Scaling Up the International Impact of Action Research : Social Analysis ... up the international impact of action research : SAS phase 3; final technical report ... 000 Canadians abroad to work at the local level on various development issues.

  12. Hydrogen and oxygen isotope exchange reactions over illuminated and nonilluminated TiO2

    International Nuclear Information System (INIS)

    Sato, S.

    1987-01-01

    Hydrogen isotope exchange between H 2 , gaseous H 2 O, and the surface hydroxyls of TiO 2 , and oxygen isotope exchange between O 2 , CO 2 , CO, H 2 O vapor, and the hydroxyls over TiO 3 were studied at room temperature in the dark and under illumination. Hydrogen isotope exchange between H 2 O and the hydroxyls occurred rapidly in the dark, but the exchange involving H 2 did not occur at all even under illumination. Oxygen isotope exchange among H 2 O vapor, CO 2 , and the hydroxyls easily took place in the dark, but the exchange involving O 2 required band-gap illumination. Dioxygen isotope equilibration was much faster than the other photoexchange reactions. Although the oxygen exchange between O 2 and illuminated TiO 2 has been considered to involve lattice-oxygen exchange, the present experiments revealed that the hydroxyls of TiO 2 mainly participate in the exchange reaction. The oxygen exchange between O 2 and H 2 O vapor was strongly inhibited by H 2 O vapor itself probably because oxygen adsorption was retarded by adsorbed water. Oxygen in CO was not exchanged with the other substrates under any conditions tested

  13. Predicting trace metal solubility and fractionation in Urban soils from isotopic exchangeability

    International Nuclear Information System (INIS)

    Mao, L.C.; Young, S.D.; Tye, A.M.; Bailey, E.H.

    2017-01-01

    Metal-salt amended soils (MA, n = 23), and historically-contaminated urban soils from two English cities (Urban, n = 50), were investigated to assess the effects of soil properties and contaminant source on metal lability and solubility. A stable isotope dilution method, with and without a resin purification step, was used to measure the lability of Cd, Cu, Ni, Pb and Zn. For all five metals in MA soils, lability (%E-values) could be reasonably well predicted from soil pH value with a simple logistic equation. However, there was evidence of continuing time-dependent fixation of Cd and Zn in the MA soils, following more than a decade of storage under air-dried conditions, mainly in high pH soils. All five metals in MA soils remained much more labile than in Urban soils, strongly indicating an effect of contaminant source on metal lability in the latter. Metal solubility was predicted for both sets of soil by the geochemical speciation model WHAM-VII, using E-value as an input variable. For soils with low metal solution concentrations, over-estimation of Cd, Ni and Zn solubility was associated with binding to the Fe oxide fraction while accurate prediction of Cu solubility was dependent on humic acid content. Lead solubility was most poorly described, especially in the Urban soils. Generally, slightly poorer estimation of metal solubility was observed in Urban soils, possibly due to a greater incidence of high pH values. The use of isotopically exchangeable metal to predict solubility is appropriate both for historically contaminated soils and where amendment with soluble forms of metal is used, as in toxicological trials. However, the major limitation to predicting solubility may lie with the accuracy of model input variables such as humic acid and Fe oxide contents where there is often a reliance on relatively crude analytical estimations of these variables. Trace metal reactivity in urban soils depends on both soil properties and the original source material

  14. Temperature-dependent transitions between normal and inverse isotope effects pertaining to the interaction of H-H and C-H bonds with transition metal centers.

    Science.gov (United States)

    Parkin, Gerard

    2009-02-17

    Deuterium kinetic isotope effects (KIEs) serve as versatile tools to infer details about reaction mechanisms and the nature of transition states, while equilibrium isotope effects (EIEs) associated with the site preferences of hydrogen and deuterium enable researchers to study aspects of molecular structure. Researchers typically interpret primary deuterium isotope effects based on two simple guidelines: (i) the KIE for an elementary reaction is normal (k(H)/k(D) > 1) and (ii) the EIE is dictated by deuterium preferring to be located in the site corresponding to the highest frequency oscillator. In this Account, we evaluate the applicability of these rules to the interactions of H-H and C-H bonds with a transition metal center. Significantly, experimental and computational studies question the predictability of primary EIEs in these systems based on the notion that deuterium prefers to occupy the highest frequency oscillator. In particular, the EIEs for (i) formation of sigma-complexes by coordination of H-H and C-H bonds and (ii) oxidative addition of dihydrogen exhibit unusual temperature dependencies, such that the same system may demonstrate both normal (i.e., K(H)/K(D) > 1) and inverse (i.e., K(H)/K(D) ZPE (where SYM is the symmetry factor, MMI is the mass-moment of inertia term, EXC is the excitation term, and ZPE is the zero-point energy term), and the distinctive temperature profile results from the inverse ZPE (enthalpy) and normal [SYM x MMI x EXC] (entropy) components opposing each other and having different temperature dependencies. At low temperatures, the ZPE component dominates and the EIE is inverse, while at high temperatures, the [SYM x MMI x EXC] component dominates and the EIE is normal. The inverse nature of the ZPE term is a consequence of the rotational and translational degrees of freedom of RH (R = H, CH(3)) becoming low-energy isotopically sensitive vibrations in the product, while the normal nature of the [SYM x MMI x EXC] component

  15. State Space Modeling Using SAS

    Directory of Open Access Journals (Sweden)

    Rajesh Selukar

    2011-05-01

    Full Text Available This article provides a brief introduction to the state space modeling capabilities in SAS, a well-known statistical software system. SAS provides state space modeling in a few different settings. SAS/ETS, the econometric and time series analysis module of the SAS system, contains many procedures that use state space models to analyze univariate and multivariate time series data. In addition, SAS/IML, an interactive matrix language in the SAS system, provides Kalman filtering and smoothing routines for stationary and nonstationary state space models. SAS/IML also provides support for linear algebra and nonlinear function optimization, which makes it a convenient environment for general-purpose state space modeling.

  16. Within-wing isotopic2H, δ13C, δ15N variation of monarch butterflies: implications for studies of migratory origins and diet

    Directory of Open Access Journals (Sweden)

    Hobson Keith A.

    2017-02-01

    Full Text Available Increasingly, stable isotope measurements are being used to assign individuals to broad geographic origins based on established relationships between animal tissues and tissue-specific isoscapes. In particular, the eastern North American population of the monarch butterfly (Danaus plexippus has been the subject of several studies using established δ2H and δ13C wingtissue isoscapes to infer natal origins of migrating and overwintering individuals. However, there has been no study investigating potential variance that can derive from subsampling different regions of the wings, especially those regions differing in pigmentation (orange versus black. Within-wing isotopic2H, δ13C, δ15N variance of 40 monarch butterflies collected from natural overwinter mortality on Mexican roost sites were split evenly into two groups: unwashed samples and those washed in a 2:1 chloroform:methanol solvent. Isotopic variance in δ2H and δ13C was related to pigment (within-wing range 5‰ and 0.5‰, respectively, but not region of subsampling. This variance was reduced 3 to 4 fold through solvent washing that removed pigmented surface scales and any adhered oils. Wing δ15N was similarly influenced by pigment (range 0.3‰, but this effect was not reduced through washing. We recommend future isotopic studies of monarchs and other butterflies for migration research to use the same region for subsampling consistently and to wash samples with solvent to reduce isotopic variance related to uncontrolled variance in discrimination (δ2H, δ13C, δ15N and/or adsorbed water vapor (δ2H. These data also need to be included in description of methods.

  17. Auto-inducing media for uniform isotope labeling of proteins with 15N, 13C and 2H

    International Nuclear Information System (INIS)

    Guthertz, Nicolas; Klopp, Julia; Winterhalter, Aurélie; Fernández, César; Gossert, Alvar D.

    2015-01-01

    Auto-inducing media for protein expression offer many advantages like robust reproducibility, high yields of soluble protein and much reduced workload. Here, an auto-inducing medium for uniform isotope labelling of proteins with 15 N, 13 C and/or 2 H in E. coli is presented. So far, auto-inducing media have not found widespread application in the NMR field, because of the prohibitively high cost of labeled lactose, which is an essential ingredient of such media. Here, we propose using lactose that is only selectively labeled on the glucose moiety. It can be synthesized from inexpensive and readily available substrates: labeled glucose and unlabeled activated galactose. With this approach, uniformly isotope labeled proteins were expressed in unattended auto-inducing cultures with incorporation of 13 C, 15 N of 96.6 % and 2 H, 15 N of 98.8 %. With the present protocol, the NMR community could profit from the many advantages that auto-inducing media offer

  18. State-to-state dynamics of the H*(n) + HD → D*(n′) + H2 reactive scattering

    International Nuclear Information System (INIS)

    Yu, Shengrui; Su, Shu; Dai, Dongxu; Yuan, Kaijun; Yang, Xueming

    2014-01-01

    The state-to-state dynamics of the H * (n) + HD → D * (n ′ ) + H 2 reactive scattering at the collision energy of 0.5 eV have been carried out for the first time by using H-atom Rydberg tagging time-of-flight technique. Experimental results show that the angular distribution of the total H 2 products presents clearly forward-backward asymmetric, which considerably differs from that of the corresponding H + + HD → D + + H 2 reaction predicted by previously theoretical calculations. Such disagreement between these two processes suggests that the Fermi independent-collider model is also not valid in describing the dynamics of isotopic variants of the H * + H 2 reaction. The rotational state distribution of the H 2 products demonstrates a saw-toothed distribution with odd-j ′ > even-j ′ . This interesting observation is strongly influenced by nuclear spin statistics

  19. New biotite and muscovite isotopic reference materials, USGS57 and USGS58, for δ2H measurements–A replacement for NBS 30

    Science.gov (United States)

    Qi, Haiping; Coplen, Tyler B.; Gehre, Matthias; Vennemann, Torsten W.; Brand, Willi A.; Geilmann, Heike; Olack, Gerard; Bindeman, Ilya N.; Palandri, Jim; Huang, Li; Longstaffe, Fred J.

    2017-01-01

    The advent of continuous-flow isotope-ratio mass spectrometry (CF-IRMS) coupled with a high temperature conversion (HTC) system enabled faster, more cost effective, and more precise δ2H analysis of hydrogen-bearing solids. Accurate hydrogen isotopic analysis by on-line or off-line techniques requires appropriate isotopic reference materials (RMs). A strategy of two-point calibrations spanning δ2H range of the unknowns using two RMs is recommended. Unfortunately, the supply of the previously widely used isotopic RM, NBS 30 biotite, is exhausted. In addition, recent measurements have shown that the determination of δ2H values of NBS 30 biotite on the VSMOW-SLAP isotope-delta scale by on-line HTC systems with CF-IRMS may be unreliable because hydrogen in this biotite may not be converted quantitatively to molecular hydrogen. The δ2HVSMOW-SLAP values of NBS 30 biotite analyzed by on-line HTC systems can be as much as 21 mUr (or ‰) too positive compared to the accepted value of − 65.7 mUr, determined by only a few conventional off-line measurements. To ensure accurate and traceable on-line hydrogen isotope-ratio determinations in mineral samples, we here propose two isotopically homogeneous, hydrous mineral RMs with well-characterized isotope-ratio values, which are urgently needed. The U.S. Geological Survey (USGS) has prepared two such RMs, USGS57 biotite and USGS58 muscovite. The δ2H values were determined by both glassy carbon-based on-line conversion and chromium-based on-line conversion, and results were confirmed by off-line conversion. The quantitative conversion of hydrogen from the two RMs using the on-line HTC method was carefully evaluated in this study. The isotopic compositions of these new RMs with 1-σ uncertainties and mass fractions of hydrogen are:USGS57 (biotite)δ2HVSMOW-SLAP = − 91.5 ± 2.4 mUr (n = 24)Mass fraction hydrogen = 0.416 ± 0.002% (n = 4)Mass fraction water = 3.74 ± 0.02% (n = 4)USGS58 (muscovite

  20. Stable Fe isotope fractionation during anaerobic microbial dissimilatory iron reduction at low pH

    Science.gov (United States)

    Chanda, P.; Amenabar, M. J.; Boyd, E. S.; Beard, B. L.; Johnson, C.

    2017-12-01

    In low-temperature anaerobic environments microbial dissimilatory iron reduction (DIR) plays an important role in Fe cycling. At neutral pH, sorption of aqueous Fe(II) (Fe(II)aq, produced by DIR) catalyzes isotopic exchange between Fe(II) and solid Fe(III), producing 56Fe/54Fe fractionations on the order of 3‰ during DIR[1,2,3]. At low pH, however, the absence of sorbed Fe(II) produces only limited abiologic isotopic exchange[4]. Here we investigated the scope of isotopic exchange between Fe(II)aq and ferric (hydr)oxides (ferrihydrite and goethite) and the associated stable Fe isotope fractionation during DIR by Acidianus strain DS80 at pH 3.0 and 80°C[5]. Over 19 days, 13% reduction of both minerals via microbial DIR was observed. The δ56Fe values of the fluid varied from -2.31 to -1.63‰ (ferrihydrite) and -0.45 to 0.02‰ (goethite). Partial leaching of bulk solid from each reactor with dilute HCl showed no sorption of Fe(II), and the surface layers of the solids were composed of Fe(III) with high δ56Fe values (ferrihydrite: 0.20 to 0.48‰ and goethite: 1.20 to 1.30‰). These results contrast with the lack of Fe isotope exchange in abiologic low-pH systems and indicate a key role for biology in catalyzing Fe isotope exchange between Fe(II)aq and Fe(III) solids, despite the absence of sorbed Fe(II). The estimated fractionation factor (ΔFeFe(III) -Fe(II)aq 2.6‰) from leaching of ferrihydrite is similar to the abiologic equilibrium fractionation factor ( 3.0‰)[3]. The fractionation factor (ΔFeFe(III) -Fe(II)aq 2.0‰) for goethite is higher than the abiologic fractionation factor ( 1.05‰)[2], but is consistent with the previously proposed "distorted surface layer" of goethite produced during the exchange with Fe(II)aq at neutral pH[1]. This study indicates that significant variations in Fe isotope compositions may be produced in low-pH environments where biological cycling of Fe occurs, in contrast to the expected lack of isotopic fractionation in

  1. Multi-Isotopic2H, δ13C, δ15N Tracing of Molt Origin for Red-Winged Blackbirds Associated with Agro-Ecosystems.

    Directory of Open Access Journals (Sweden)

    Scott J Werner

    Full Text Available We analyzed stable-hydrogen (δ2H, carbon (δ13C and nitrogen (δ 15N isotope ratios in feathers to better understand the molt origin and food habits of Red-winged Blackbirds (Agelaius phoeniceus near sunflower production in the Upper Midwest and rice production in the Mid-South of the United States. Outer primary feathers were used from 661 after-second-year (ASY male blackbirds collected in Minnesota, Montana, North Dakota and South Dakota (spring collection, and Arkansas, Louisiana, Mississippi, Missouri and Texas (winter collection. The best-fit model indicated that the combination of feather δ2H, δ13C and δ15N best predicted the state of sample collections and thus supported the use of this approach for tracing molt origins in Red-winged Blackbirds. When considering only birds collected in spring, 56% of birds were classified to their collection state on the basis of δ2H and δ13C alone. We then developed feather isoscapes for δ13C based upon these data and for δ2H based upon continental patterns of δ2H in precipitation. We used 81 birds collected at the ten independent sites for model validation. The spatially-explicit assignment of these 81 birds to the δ2H isoscape resulted in relatively high rates (~77% of accurate assignment to collection states. We also modeled the spatial extent of C3 (e.g. rice, sunflower and C4 (corn, millet, sorghum agricultural crops grown throughout the Upper Midwest and Mid-South United States to predict the relative use of C3- versus C4-based foodwebs among sampled blackbirds. Estimates of C3 inputs to diet ranged from 50% in Arkansas to 27% in Minnesota. As a novel contribution to blackbird conservation and management, we demonstrate how such feather isoscapes can be used to predict the molt origin and interstate movements of migratory blackbirds for subsequent investigations of breeding biology (e.g. sex-specific philopatry, agricultural depredation, feeding ecology, physiology of migration and

  2. Multi-Isotopic2H, δ13C, δ15N) Tracing of Molt Origin for Red-Winged Blackbirds Associated with Agro-Ecosystems.

    Science.gov (United States)

    Werner, Scott J; Hobson, Keith A; Van Wilgenburg, Steven L; Fischer, Justin W

    2016-01-01

    We analyzed stable-hydrogen (δ2H), carbon (δ13C) and nitrogen (δ 15N) isotope ratios in feathers to better understand the molt origin and food habits of Red-winged Blackbirds (Agelaius phoeniceus) near sunflower production in the Upper Midwest and rice production in the Mid-South of the United States. Outer primary feathers were used from 661 after-second-year (ASY) male blackbirds collected in Minnesota, Montana, North Dakota and South Dakota (spring collection), and Arkansas, Louisiana, Mississippi, Missouri and Texas (winter collection). The best-fit model indicated that the combination of feather δ2H, δ13C and δ15N best predicted the state of sample collections and thus supported the use of this approach for tracing molt origins in Red-winged Blackbirds. When considering only birds collected in spring, 56% of birds were classified to their collection state on the basis of δ2H and δ13C alone. We then developed feather isoscapes for δ13C based upon these data and for δ2H based upon continental patterns of δ2H in precipitation. We used 81 birds collected at the ten independent sites for model validation. The spatially-explicit assignment of these 81 birds to the δ2H isoscape resulted in relatively high rates (~77%) of accurate assignment to collection states. We also modeled the spatial extent of C3 (e.g. rice, sunflower) and C4 (corn, millet, sorghum) agricultural crops grown throughout the Upper Midwest and Mid-South United States to predict the relative use of C3- versus C4-based foodwebs among sampled blackbirds. Estimates of C3 inputs to diet ranged from 50% in Arkansas to 27% in Minnesota. As a novel contribution to blackbird conservation and management, we demonstrate how such feather isoscapes can be used to predict the molt origin and interstate movements of migratory blackbirds for subsequent investigations of breeding biology (e.g. sex-specific philopatry), agricultural depredation, feeding ecology, physiology of migration and sensitivity to

  3. Isotope (δ13C, δ15N, δ2H) diet-tissue discrimination in African grey parrot Psittacus erithacus: implications for forensic studies.

    Science.gov (United States)

    Symes, Craig; Skhosana, Felix; Butler, Mike; Gardner, Brett; Woodborne, Stephan

    2017-12-01

    Diet-tissue isotopic relationships established under controlled conditions are informative for determining the dietary sources and geographic provenance of organisms. We analysed δ 13 C, δ 15 N, and non-exchangeable δ 2 H values of captive African grey parrot Psittacus erithacus feathers grown on a fixed mixed-diet and borehole water. Diet-feather Δ 13 C and Δ 15 N discrimination values were +3.8 ± 0.3 ‰ and +6.3 ± 0.7 ‰ respectively; significantly greater than expected. Non-exchangeable δ 2 H feather values (-62.4 ± 6.4 ‰) were more negative than water (-26.1 ± 2.5 ‰) offered during feather growth. There was no positive relationship between the δ 13 C and δ 15 N values of the samples along each feather with the associated samples of food offered, or the feather non-exchangeable hydrogen isotope values with δ 2 H values of water, emphasising the complex processes involved in carbohydrate, protein, and income water routing to feather growth. Understanding the isotopic relationship between diet and feathers may provide greater clarity in the use of stable isotopes in feathers as a tool in determining origins of captive and wild-caught African grey parrots, a species that is widespread in aviculture and faces significant threats to wild populations. We suggest that these isotopic results, determined even in controlled laboratory conditions, be used with caution.

  4. 2H isotope effect on 13C chemical shifts of Nitro-Benzo-9-Crown-3

    International Nuclear Information System (INIS)

    Moghimi, A.; Rastegar, M.; Ghandi, M.; Bijanzadeh, H. R.

    2002-01-01

    Deuterium substitution on two ortho-substituted-OCH 2 fragments in Nitro-Benzo-9 Crown-3 induces low frequency shifts, positive m ''nΔC j, in all 13 C NMR resonances which is an indication of the increased shielding in this crown ether. The magnitude of these shifts vary from 15 ΔC 7=716 to 54 ΔC 3=15 ppb for C 7 and C 3 carbons directly attached to 2 H, respectively. The influences of concentration and solvent, CDCl 3 CD 3 COCD 3 , and C 6 D 6 , on mn ΔC j values were investigated. The mn ΔC j values depended more on the nature of the solvent than on the concentration. The order of induced isotope shifts is 15 Δ, 51 Δ > 24 Δ, 42 Δ> 34 Δ, 43 Δ > 56 Δ, 65 Δ> 45 Δ, 54 Δ. The isotope shifts observed are suggested to be a sum of contributions from low frequency shift due to inductive-type and negative hyperconjugation perturbations. The C-D bond, as a poorer electron acceptor than a C-H bond induced less positive charge on directly attached oxygens O 1 and O 2. This, in turn, causes shielding of C 1 and C 2 in C1O1CD 2 and C 2 0 2 CD 2 fragments. The difference in 34 ΔC 1 and 43 ΔC 2 values is attributed to the conformational dependence of the negative hyperconjugation. The C 1 and C 2, are in fact, not equally affected by the two CD 2 groups by negative hyperconjugation because of the existence of NO 2 group attached to the benzene ring

  5. Oxygen isotopes and volatile contents of the Gorgona komatiites, Colombia: A confirmation of the deep mantle origin of H2O

    Science.gov (United States)

    Gurenko, Andrey A.; Kamenetsky, Vadim S.; Kerr, Andrew C.

    2016-11-01

    We report O isotopes in olivine grains (Fo89-93) and volatile contents (CO2, H2O, F, S, Cl) in olivine-hosted melt inclusions from one Gorgona picrite and five komatiites with the aim of constraining the origin of H2O in these magmas. These samples have previously been analysed for major and trace elements and volatile concentrations (H2O, S, Cl) and B isotopes in melt inclusions. A distinctive feature of the included melts is relatively high contents of volatile components and boron, which show positive anomalies in, otherwise depleted, primitive mantle normalised trace and rare earth element patterns and range in δ11 B from -11.5 to 15.6‰. In this study, the olivines were systematically analysed for O isotopes (1) in the centre of grains, (2) near the grain boundaries and, (3) as close as possible to the studied melt inclusions. The majority of olivines (∼66%) are ;mantle;-like, 4.8 ‰ ≤δ18 O ≤ 5.5 ‰, with a subordinate but still significant number (∼33%) above, and only 2 grains below, this range. There is no systematic difference between the central and marginal parts of the grains. Higher than ;mantle; δ18OOl values are ascribed to low-T (Gorgona mafic and ultramafic magmas.

  6. Competition H(D) kinetic isotope effects in the autoxidation of hydrocarbons.

    Science.gov (United States)

    Muchalski, Hubert; Levonyak, Alexander J; Xu, Libin; Ingold, Keith U; Porter, Ned A

    2015-01-14

    Hydrogen atom transfer is central to many important radical chain sequences. We report here a method for determination of both the primary and secondary isotope effects for symmetrical substrates by the use of NMR. Intramolecular competition reactions were carried out on substrates having an increasing number of deuterium atoms at symmetry-related sites. Products that arise from peroxyl radical abstraction at each position of the various substrates reflect the competition rates for H(D) abstraction. The primary KIE for autoxidation of tetralin was determined to be 15.9 ± 1.4, a value that exceeds the maximum predicted by differences in H(D) zero-point energies (∼7) and strongly suggests that H atom abstraction by the peroxyl radical occurs with substantial quantum mechanical tunneling.

  7. Synthesis of [methine-3H]DDT and its nitro-analog, and isotope effects in their enzyme-catalyzed dehydrochlorination

    International Nuclear Information System (INIS)

    Kurihara, N.; Ikemoto, Y.; Okutani, S.; Clark, A.G.

    1989-01-01

    [methine- 3 H]1,1-Di-(4-chlorophenyl)-2,2,2-trichloroethane ([methine- 3 H]DDT) and its di-(4-nitrophenyl) analog, both of high purity with a moderately high specific activity were prepared. Chloro-benzene was condensed with [1- 3 H]1-(4-chlorophenyl)-2,2,2-trichloro-ethanol, which has been synthesized by sodium boro[ 3 H]hydride reduction of 4-chlorophenyl trichloromethyl ketone. The purified [ 3 H]DDT had a specific activity of 0.77 Ci/mmol (28.49 GBq/mmol). [methine- 3 H]1,1-Diphenyl-2,2,2-trichloroethane was similarly synthesized and was nitrated to give [methine- 3 H]1,1-di-(4-nitrophenyl)-2,2,2-trichloro-ethane of 1.63 Ci/mmol (60.31 GBq/mmol). Dehydrochlorination with housefly enzyme (glutathione-dependent DDT dehydrochlorinase) showed a remarkable isotope effect. For DDT, the observed tritium isotope effect on V max /K m was 11.51±0.52. For the nitro-analog, the value was 11.3±1.2. We measured deuterium isotope effect on V max /K m for DDT in a competitive mode and obtained the value 4.19±0.34. Based on these values, the magnitude of intrinsic isotope effect values on DDT-dehydrochlorination reaction was discussed. (author)

  8. Isotope effects of reactions in quantum solids initiated by IR + UV lasers: quantum model simulations for Cl((2)P(3/2)) + X(2)(ν) → XCl + X in X(2) matrices (X = H, D).

    Science.gov (United States)

    Korolkov, M V; Manz, J; Schild, A

    2010-09-16

    , compared to that for reaction 1 . (vi) For a given value of the UV frequency, the translational energy E(trans) increases with mass M(X). Again, this effect supports tunneling of the heavier isotopomer. The isotope effects (i)-(iii), (iv)-(v), and (vi) may be classified as energetic, translational amplitude, and kinematic, respectively. Specifically, the effects (iv)-(v) are due to a systematic decrease of the amplitudes of translational motions of the reactant molecules, from quasi infinite in the gas via still rather large values of para-H(2)(ν) and smaller values for ortho-D(2)(ν) to very small values in classical solids. These isotope effects are special phenomena in quantum solids, which do not occur, neither in the gas phase nor in classical solids. Quantitative predictions, e.g., for the effects of increasing UV frequency on the ratio of reactions probabilities for the UV only versus IR + UV experiments, must account for the interplay of various isotope effects, e.g., (vi) combined with the antagonistic effects (iii) versus (iv) and (v).

  9. SAS2: Guide sur la recherche collaborative et l'engagement social

    International Development Research Centre (IDRC) Digital Library (Canada)

    À l'encontre de cette façon de voir, les SAS2 favorisent l'« ancrage social » et la ..... les organismes communautaires, les médias, les fondations philanthropiques, ...... Portez attention aux différences qui peuvent influencer la manière dont les ...

  10. Regional origin assignment of red wines from Valencia (Spain) by (2)H NMR and (13)C IRMS stable isotope analysis of fermentative ethanol.

    Science.gov (United States)

    Giménez-Miralles, J E; Salazar, D M; Solana, I

    1999-07-01

    The use of the stable hydrogen and carbon isotope ratios of fermentative ethanol as suitable environmental fingerprints for the regional origin identification of red wines from Valencia (Spain) has been explored. Monovarietal Vitis vinifera L. cvs. Bobal, Tempranillo, and Monastrell wines have been investigated by (2)H NMR and (13)C IRMS for the natural ranges of site-specific (2)H/(1)H ratios and global delta(13)C values of ethanol over three vintage years. Statistically significant interregional and interannual (2)H and (13)C abundance differences have been noticed, which are interpreted in terms of environmental and ecophysiological factors of isotope content variation. Multivariate discriminant analysis is shown to provide a convenient means for integration of the classifying information, high discriminating abilities being demonstrated for the (2)H and (13)C fingerprints of ethanol. Reasonable differentiation results are achieved at a microregional scale in terms of geographic provenance and even grapevine genotypic features.

  11. Labile pools of Pb in vegetable-growing soils investigated by an isotope dilution method and its influence on soil pH.

    Science.gov (United States)

    Xie, Hong; Huang, Zhi-Yong; Cao, Ying-Lan; Cai, Chao; Zeng, Xiang-Cheng; Li, Jian

    2012-08-01

    Pollution of Pb in the surface of agricultural soils is of increasing concern due to its serious impact on the plant growth and the human health through the food chain. However, the mobility, activity and bioavailability of Pb rely mainly on its various chemical species in soils. In the present study, E and L values, the labile pools of isotopically exchangeable Pb, were estimated using the method of isotope dilution in three vegetable-growing soils. The experiments involved adding a stable enriched isotope ((206)Pb > 96%) to a soil suspension and to soils in which plants are subsequently grown, the labile pools of Pb were then estimated by measuring the isotopic composition of Pb in soil solutions and in the plant tissues, respectively. In addition, the correlation of E values and soil pH was investigated at the ranges of pH 4.5-7.0. The amount of labile Pb in soils was also estimated using different single chemical extractants and a modified BCR approach. The results showed that after spiking the enriched isotopes of (206)Pb (>96%) for 24 hours an equilibration of isotopic exchanges in soil suspensions was achieved, and the isotope ratios of (208)Pb/(206)Pb measured at that time was used for calculating the E(24 h) values. The labile pools of Pb by %E(24 h) values, ranging from 53.2% to 61.7% with an average 57%, were found to be significantly higher (p soil pH was found in the tested soil sample. The results indicate that the %E(24 h) value can more rapidly and easily predict the labile pools of Pb in soils compared with L values, but it might be readily overestimated because of the artificial soil acidity derived from the spiked isotopic tracer and the excess of spiked enriched isotopes. The results also suggest that the amounts of Pb extracted with EDTA and the Σ(BCR) values extracted with the modified BCR approach are helpful to detect the labile pools of Pb in soils. In addition, the negative correlation between soil pH and the labile pools of Pb in soils

  12. Stable isotope (2H, 17O, 18O) and hydro chemical patterns of precipitation collected in weekly resolution at Hannover, Germany

    Science.gov (United States)

    Koeniger, Paul; Himmelsbach, Thomas

    2016-04-01

    Long-term observations of stable isotopes (δ18O and δ2H) in precipitation were initiated in May 2008 at the Federal Institute of Geosciences and Natural Resources (BGR) in Hannover, Germany. In 2014 all precipitation samples were re-analyzed because a purchase of a new laser spectrometer (Picarro L2140-i) now allowed measurements of δ17O and a calculation of the 17O-excess parameter. Starting in October 2015 a routine analysis of hydro chemical parameters was added whenever enough sample aliquot was available (major ions, trace elements). A discussion of the stable isotope data of the seven year series of weekly precipitation samples (n = 370) will be presented. Beneath general patterns (seasonality and trends) we also focus on importance of amount weighing procedures, corrections for minor rain amounts, aspects of sample storage and re-analyzes, as well as impacts through changes in analytical equipment (IRMS, CRD spectroscopy) which is visible from the data. For stable isotopes a Thermo Fisher delta plus IRMS (Gasbench and H-Device) was used until 2011 and from 2012 on a Picarro L2120-i water vapor analyzer with long-term accuracies for quality check samples better than 0.2‰ and 0.8‰ for δ18O and δ2H, respectively.

  13. Eddy Covariance measurements of stable CO2 and H2O isotopologues

    Science.gov (United States)

    Braden-Behrens, Jelka; Knohl, Alexander

    2015-04-01

    The analysis of the stable isotope composition of CO2 and H2O fluxes (such as 13C, 18O and 2H in H2O and CO2) has provided valuable insights into ecosystem gas exchange. The approach builds on differences in the isotope signature of different ecosystem components that are primarily caused by the preference for or the discrimination against respective isotope species by important processes within the ecosystem (e.g. photosynthesis or leaf water diffusion). With the ongoing development of laser spectrometric methods, fast and precise measurements of isotopologue mixing ratios became possible, hence also enabling Eddy Covariance (EC) based approaches to directly measure the isotopic composition of CO2 and H2Ov net fluxes on ecosystem scale. During an eight month long measurement campaign in 2015, we plan to simultaneously measure CO2 and H2Ov isotopologue fluxes using an EC approach in a managed beech forest in Thuringia, Germany. For this purpose, we will use two different laser spectrometers for high frequency measurements of isotopic compositions: For H2Ov measurements, we will use an off axis cavity output water vapour isotope analyser (WVIA, Los Gatos Research Inc.) with 5 Hz response; and for CO2 measurements, we will use a quantum cascade laser-based system (QCLAS, Aerodyne Research Inc.) with thermoelectrically cooled detectors and up to 10 Hz measurement capability. The resulting continuous isotopologue flux measurements will be accompanied by intensive sampling campaigns on the leaf scale: Water from leaf, twig, soil and precipitation samples will be analysed in the lab using isotope ratio mass spectrometry. During data analysis we will put a focus on (i) the influence of carbon and oxygen discrimination on the isotopic signature of respective net ecosystem exchange, (ii) on the relationship between evapotranspiration and leaf water enrichment, and (iii) on the 18O exchange between carbon dioxide and water. At present, we already carried out extensive

  14. Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis

    Directory of Open Access Journals (Sweden)

    J. N. Crowley

    2012-01-01

    Full Text Available The oxidation of SO2 to sulfate is a key reaction in determining the role of sulfate in the environment through its effect on aerosol size distribution and composition. Sulfur isotope analysis has been used to investigate sources and chemical processes of sulfur dioxide and sulfate in the atmosphere, however interpretation of measured sulfur isotope ratios is challenging due to a lack of reliable information on the isotopic fractionation involved in major transformation pathways. This paper presents laboratory measurements of the fractionation factors for the major atmospheric oxidation reactions for SO2: Gas-phase oxidation by OH radicals, and aqueous oxidation by H2O2, O3 and a radical chain reaction initiated by iron. The measured fractionation factor for 34S/32S during the gas-phase reaction is αOH = (1.0089±0.0007−((4±5×10−5 T(°C. The measured fractionation factor for 34S/32S during aqueous oxidation by H2O2 or O3 is αaq = (1.0167±0.0019−((8.7±3.5 ×10−5T(°C. The observed fractionation during oxidation by H2O2 and O3 appeared to be controlled primarily by protonation and acid-base equilibria of S(IV in solution, which is the reason that there is no significant difference between the fractionation produced by the two oxidants within the experimental error. The isotopic fractionation factor from a radical chain reaction in solution catalysed by iron is αFe = (0.9894±0.0043 at 19 °C for 34S/32S. Fractionation was mass-dependent with regards to 33S/32S for all the reactions investigated. The radical chain reaction mechanism was the only measured reaction that had a faster rate for the light isotopes. The results presented in this study will be particularly useful to determine the importance of the transition metal-catalysed oxidation pathway compared to other oxidation pathways, but other main oxidation pathways can not be distinguished based on stable sulfur isotope measurements alone.

  15. pH-Dependent isotope exchange and hydrogenation catalysed by water-soluble NiRu complexes as functional models for [NiFe]hydrogenases

    OpenAIRE

    Kure, Bunsho; Matsumoto, Takahiro; Ichikawa, Koji; Fukuzumi, Shunichi; Higuchi, Yoshiki; Yagi, Tatsuhiko; Ogo, Seiji

    2008-01-01

    The pH-dependent hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes and hydrogenation of the carbonyl compounds have been investigated with water-soluble bis(mu-thiolate)(mu-hydride)NiRu complexes, Ni(II)(mu-SR)(2)(mu-H)Ru(II) {(mu-SR)(2) = N,N'-dimethyl-N,N'-bis(2-mercaptoethyl)-1,3-propanediamine}, as functional models for [NiFe]hydrogenases. In acidic media (at pH 4-6), the mu-H ligand of the Ni(II)(mu-SR)(2)(mu-H)Ru(II) complexes has H(+) properties, and the c...

  16. A ring polymer molecular dynamics study of the isotopologues of the H + H2 reaction.

    Science.gov (United States)

    Suleimanov, Yury V; de Tudela, Ricardo Pérez; Jambrina, Pablo G; Castillo, Jesús F; Sáez-Rábanos, Vicente; Manolopoulos, David E; Aoiz, F Javier

    2013-03-14

    The inclusion of Quantum Mechanical (QM) effects such as zero point energy (ZPE) and tunneling in simulations of chemical reactions, especially in the case of light atom transfer, is an important problem in computational chemistry. In this respect, the hydrogen exchange reaction and its isotopic variants constitute an excellent benchmark for the assessment of approximate QM methods. In particular, the recently developed ring polymer molecular dynamics (RPMD) technique has been demonstrated to give very good results for bimolecular chemical reactions in the gas phase. In this work, we have performed a detailed RPMD study of the H + H(2) reaction and its isotopologues Mu + H(2), D + H(2) and Heμ + H(2), at temperatures ranging from 200 to 1000 K. Thermal rate coefficients and kinetic isotope effects have been computed and compared with exact QM calculations as well as with quasiclassical trajectories and experiment. The agreement with the QM results is good for the heaviest isotopologues, with errors ranging from 15% to 45%, and excellent for Mu + H(2), with errors below 15%. We have seen that RPMD is able to capture the ZPE effect very accurately, a desirable feature of any method based on molecular dynamics. We have also verified Richardson and Althorpe's prediction [J. O. Richardson and S. C. Althorpe, J. Chem. Phys., 2009, 131, 214106] that RPMD will overestimate thermal rates for asymmetric reactions and underestimate them for symmetric reactions in the deep tunneling regime. The ZPE effect along the reaction coordinate must be taken into account when assigning the reaction symmetry in the multidimensional case.

  17. Soil, the orphan hydrological compartment: evidence from O and H stable isotopes?

    Science.gov (United States)

    Hissler, Christophe; Legout, Arnaud; Barnich, François; Pfister, Laurent

    2015-04-01

    O and H stable isotopes have been successfully used for decades for studying the exchange of waters between the hydrosphere, the pedosphere and the biosphere. They greatly contribute to improve our understanding of soil-water-plant interactions. In particular, the recent hydrological concept of "two water worlds" (separation of meteoric water that infiltrates the soil as (i) mobile water, which can reach the groundwater and can enter the stream, and as (ii) tightly bound water, which is trapped in the soil microporosity and used by plants) calls for a substantial revision of our perceptual models of runoff generation. Nevertheless, there is a need for testing the applicability of this concept over a large range of ecosystemic contexts (i.e.soil and vegetation types). To date, many investigations have focused on the relationship between the various processes triggering isotope fractionation within soils. So far, the dominating perception is that the isotope profile of water observed in soils is solely due to evaporative fractionation and its shape is dependent on climate and soil parameters. However, as of today the influence of biogeochemical processes on the spatio-temporal variability of δ18O and δD of the soil solutions has been rarely quantified. O and H exchanges between soil water and other soil compartments (living organisms, minerals, exchange capacity, organic matter) remain poorly known and require deeper investigations. Eventually, we need to better understand the distribution of O and H isotopes throughout the soil matrix. In order to address these issues, we have designed and carried out two complementary isotope experiments that use one liter soil columns of a 2mm-sieved and air-dried soil. Our objectives were (1) to observe the temporal evolution of the water O and H isotopic composition starting from the field capacity to the complete drying of the soil and (2) to determine the impact of soil biogeochemical properties on the isotopic composition

  18. Tree-ring C-H-O isotope variability and sampling

    International Nuclear Information System (INIS)

    Leavitt, Steven W.

    2010-01-01

    In light of the proliferation of tree-ring isotope studies, the magnitude and cause of variability of tree-ring δ 13 C, δ 18 O and δ 2 H within individual trees (circumferential) and among trees at a site is examined in reference to field and laboratory sampling requirements and strategies. Within this framework, this paper provides a state-of-knowledge summary of the influence of 'juvenile' isotope effects, ageing effects, and genetic effects, as well as the interchangeability of species, choice of ring segment to analyze (whole ring, earlywood or latewood), and the option of sample pooling. The range of isotopic composition of the same ring among trees at a site is ca. 1-3 per mille for δ 13 C, 1-4 per mille δ 18 O, and 5-30 per mille for δ 2 H, whereas the circumferential variability within a tree is lower. A standard prescription for sampling and analysis does not exist because of differences in field environmental circumstances and mixed findings represented in relevant published literature. Decisions in this regard will usually be tightly constrained by goals of the study and project resources. Sampling 4-6 trees at a site while avoiding juvenile effects in rings near the pith seems to be the most commonly used methodology, and although there are some reasoned arguments for analyzing only latewood and developing separate isotope records from each tree, the existence of some contradictory findings together with efforts to reduce cost and effort have prompted alternate strategies (e.g., most years pooled with occasional analysis of rings in the sequence separately for each tree) that have produced useful results in many studies.

  19. Assessment of insulin action in insulin-dependent diabetes mellitus using [6(14)C]glucose, [3(3)H]glucose, and [2(3)H]glucose. Differences in the apparent pattern of insulin resistance depending on the isotope used

    International Nuclear Information System (INIS)

    Bell, P.M.; Firth, R.G.; Rizza, R.A.

    1986-01-01

    To determine whether [2(3)H], [3(3)H], and [6(14)C]glucose provide an equivalent assessment of glucose turnover in insulin-dependent diabetes mellitus (IDDM) and nondiabetic man, glucose utilization rates were measured using a simultaneous infusion of these isotopes before and during hyperinsulinemic euglycemic clamps. In the nondiabetic subjects, glucose turnover rates determined with [6(14)C]glucose during insulin infusion were lower (P less than 0.02) than those determined with [2(3)H]glucose and higher (P less than 0.01) than those determined with [3(3)H]glucose. In IDDM, glucose turnover rates measured with [6(14)C]glucose during insulin infusion were lower (P less than 0.05) than those determined with [2(3)H]glucose, but were not different from those determined with [3(3)H]glucose. All three isotopes indicated the presence of insulin resistance. However, using [3(3)H]glucose led to the erroneous conclusion that glucose utilization was not significantly decreased at high insulin concentrations in the diabetic patients. [6(14)C] and [3(3)H]glucose but not [2(3)H]glucose indicated impairment in insulin-induced suppression of glucose production. These results indicate that tritiated isotopes do not necessarily equally reflect the pattern of glucose metabolism in diabetic and nondiabetic man

  20. Hydrogeological and hydrochemical investigation of groundwater using environmental isotopes (18O, 2H, 3H, 14C) and chemical tracers: a case study of the intermediate aquifer, Sfax, southeastern Tunisia

    Science.gov (United States)

    Ayadi, Rahma; Trabelsi, Rim; Zouari, Kamel; Saibi, Hakim; Itoi, Ryuichi; Khanfir, Hafedh

    2017-12-01

    Major element concentrations and stable (δ18O and δ2H) and radiogenic (3H and 14C) isotopes in groundwater have proved useful tracers for understanding the geochemical processes that control groundwater mineralization and for identifying recharge sources in the semi-arid region of Sfax (southeastern Tunisia). Major-ion chemical data indicate that the origins of the salinity in the groundwater are the water-rock interactions, mainly the dissolution of evaporitic minerals, as well as the cation exchange with clay minerals. The δ18O and δ2H relationships suggest variations in groundwater recharge mechanisms. Strong evaporation during recharge with limited rapid water infiltration is evident in the groundwater of the intermediate aquifer. The mixing with old groundwater in some areas explains the low stable isotope values of some groundwater samples. Groundwaters from the intermediate aquifer are classified into two main water types: Ca-Na-SO4 and Ca-Na-Cl-SO4. The high nitrate concentrations suggest an anthropogenic source of nitrogen contamination caused by intensive agricultural activities in the area. The stable isotopic signatures reveal three water groups: non-evaporated waters that indicate recharge by recent infiltrated water; evaporated waters that are characterized by relatively enriched δ18O and δ2H contents; and mixed groundwater (old/recent) or ancient groundwater, characterized by their depleted isotopic composition. Tritium data support the existence of recent limited recharge; however, other low tritium values are indicative of pre-nuclear recharge and/or mixing between pre-nuclear and contemporaneous recharge. The carbon-14 activities indicate that the groundwaters were mostly recharged under different climatic conditions during the cooler periods of the late Pleistocene and Holocene.

  1. Comparison of ArcGIS and SAS Geostatistical Analyst to Estimate Population-Weighted Monthly Temperature for US Counties.

    Science.gov (United States)

    Xiaopeng, Q I; Liang, Wei; Barker, Laurie; Lekiachvili, Akaki; Xingyou, Zhang

    Temperature changes are known to have significant impacts on human health. Accurate estimates of population-weighted average monthly air temperature for US counties are needed to evaluate temperature's association with health behaviours and disease, which are sampled or reported at the county level and measured on a monthly-or 30-day-basis. Most reported temperature estimates were calculated using ArcGIS, relatively few used SAS. We compared the performance of geostatistical models to estimate population-weighted average temperature in each month for counties in 48 states using ArcGIS v9.3 and SAS v 9.2 on a CITGO platform. Monthly average temperature for Jan-Dec 2007 and elevation from 5435 weather stations were used to estimate the temperature at county population centroids. County estimates were produced with elevation as a covariate. Performance of models was assessed by comparing adjusted R 2 , mean squared error, root mean squared error, and processing time. Prediction accuracy for split validation was above 90% for 11 months in ArcGIS and all 12 months in SAS. Cokriging in SAS achieved higher prediction accuracy and lower estimation bias as compared to cokriging in ArcGIS. County-level estimates produced by both packages were positively correlated (adjusted R 2 range=0.95 to 0.99); accuracy and precision improved with elevation as a covariate. Both methods from ArcGIS and SAS are reliable for U.S. county-level temperature estimates; However, ArcGIS's merits in spatial data pre-processing and processing time may be important considerations for software selection, especially for multi-year or multi-state projects.

  2. Cross-cultural adaptation of the Sport Anxiety Scale-2 (SAS-2 for the Brazilian context

    Directory of Open Access Journals (Sweden)

    Viviane Vedovato Silva-Rocha

    Full Text Available Abstract Objective To present the process of cross-cultural adaptation of the Sport Anxiety Scale-2 (SAS-2 for the Brazilian context. Method The following stages were used: translation into Brazilian Portuguese by independent translators, elaboration of a synthesis version, back-translation, evaluation by experts and pretest with target population. Results All the stages of cross-cultural adaptation were completed, and in the majority of items evaluated, good concordance between experts was obtained (≥ 80%. Suggested adjustments were compiled into the consensus version by the two authors, with the resulting material being considered adequate in the pretest (and thus no further changes were needed. Termed as “Escala de Ansiedade Esportiva-2,” the final version was considered by the main author of the original scale as an official version in Brazilian Portuguese. Conclusions In view of the fulfilment of all steps suggested for the cross-cultural adaptation process, the SAS-2 is now available in Brazilian Portuguese to be tested for its psychometric qualities.

  3. Synthesis and spectroscopic stereospecificity assay of the deuterated quinolizidine alkaloids (2S)-[2H]- and (2R)-[2H]-sparteine

    International Nuclear Information System (INIS)

    Ebner, T.; Meese, C.O.; Rebell, J.

    1989-01-01

    Borohydride reduction of the (+)-1,2-dehydrosparteinium salts proceeds almost exclusively from the Si side, yielding, respectively, the stereoselectively (2S)(β)-deuterated (-)-sparteine and the (2R)(α)-deuterated (-)-sparteine. Stereo-chemistry and isotopic purity of the deuterium label (≥98%) are established unequivocally by 1 H, 2 H and 13 C NMR spectroscopy. (author)

  4. Isotope effects in aqueous systems. Excess thermodynamic properties of 1,3-dimethylurea solutions in H2O and D2O

    International Nuclear Information System (INIS)

    Jakli, G.; Hook, W.A. Van

    1997-01-01

    The osmotic coefficients of 1,3-dimethylurea-h 2 (DMUh 2 )/H 2 O and 1,3-dimethylurea-d 2 (DMUd 2 )/D 2 O solutions (1, 2, 4, 12, and 20 m aq , 15 < t/degree C < 80) were obtained from differential vapor pressure measurements. Excess partial molar free energies, enthalpies, and entropies for the solvent and their isotope effects were calculated from the temperature derivatives of the osmotic coefficients. New partial molar volume data are reported at 25 C at low and intermediate concentrations. The thermodynamic properties of solution are compared with those of urea and discussed using the cage model of hydrophobic hydration. The results support the mixed (polar-apolar) character of this compound and show that its structural effect on water changes with temperature and concentration

  5. Conducting Meta-Analysis Using SAS

    CERN Document Server

    Arthur, Winfried; Huffcutt, Allen I; Arthur, Winfred

    2001-01-01

    Conducting Meta-Analysis Using SAS reviews the meta-analysis statistical procedure and shows the reader how to conduct one using SAS. It presents and illustrates the use of the PROC MEANS procedure in SAS to perform the data computations called for by the two most commonly used meta-analytic procedures, the Hunter & Schmidt and Glassian approaches. This book serves as both an operational guide and user's manual by describing and explaining the meta-analysis procedures and then presenting the appropriate SAS program code for computing the pertinent statistics. The practical, step-by-step instru

  6. Cross sections of the O++H2→OH++H ion-molecule reaction and isotopic variants (D2, HD): Quasiclassical trajectory study and comparison with experiments

    International Nuclear Information System (INIS)

    Martinez, Rodrigo; Sierra, Jose Daniel; Gonzalez, Miguel

    2005-01-01

    A dynamics study [cross section and microscopic mechanism versus collision energy (E T )] of the reaction O + +H 2 →OH + +H, which plays an important role in Earth's ionosphere and interstellar chemistry, was conducted using the quasiclassical trajectory method, employing an analytical potential energy surface (PES) recently derived by our group [R. Martinez et al., J. Chem. Phys. 120, 4705 (2004)]. Experimental excitation functions for the title reaction, as well as its isotopic variants with D 2 and HD, were near-quantitatively reproduced in the calculations in the very broad collision energy range explored (E T =0.01-6.0 eV). Intramolecular and intermolecular isotopic effects were also examined, yielding data in good agreement with experimental results. The reaction occurs via two microscopic mechanisms (direct and nondirect abstraction). The results were satisfactorily interpreted based on the reaction probability and the maximum impact parameter dependences with E T , and considering the influence of the collinear [OHH] + absolute minimum of the PES on the evolution from reactants to products. The agreement between theory and experiment suggests that the reaction mainly occurs through the lowest energy PES and nonadiabatic processes are not very important in the wide collision energy range analyzed. Hence, the PES used to describe this reaction is suitable for both kinetics and dynamics studies

  7. Isotope effect in the organic superconductor β_H-(BEDT-TTF)2I3 where BEDT-TTF is bis (ethylenedithiotetrathiafulvalene)

    Science.gov (United States)

    Auban-Senzier, P.; Bourbonnais, C.; Jérome, D.; Lenoir, C.; Batail, P.; Canadell, E.; Buisson, J. P.; Lefrant, S.

    1993-03-01

    We have performed the simultaneous investigation of the isotope effect on the superconducting transition and on the Raman spectra in the organic superconductor β_H-(BEDT-TTF)2I3 (T_c = 8 K). For this purpose, we substitute ^{13}C for ^{12}C on the carbon sites of the central double bond of BEDT-TTF molecule. The isotope shifts measured by Raman experiments can be fairly well explained by standard molecular dynamics. However, the critical temperature is lowered by 0.2 K in the ^{13}C enriched material. We analyse the possible sources of this remarkable downward shift which leads to an isotope coefficient higher than the BCS value. The extended-Hückel calculations of the density of states for the two HOMO bands of β_H-(BEDT-TTF)2I3 do show that, within the framework of a weak coupling theory, its sizeable variation on the scale of ω_D cannot account for the observed isotope effect. On the other hand, we discuss how inelastic electronic scattering observed in resistivity measurements just above T_c can lead through a pair breaking mechanism to a sizeable increase of the isotope coefficient. Nous présentons une étude simultanée d'effet isotopique sur la transition supraconductrice et les spectres Raman dans le supraconducteur organique β_H-(BEDT-TTF)2I3 (T_c = 8 K). Pour cela, nous avons synthétisé le composé dans lequel les atomes de carbone de la double liaison centrale de la molécule BEDT-TTF sont substitués par l'isotope ^{13}C. Les déplacements isotopiques mesurés par spectroscopie Raman sont bien expliqués par la dynamique moléculaire standard. Cependant, la température critique est abaissée de 0.2 K dans le matériau enrichi en ^{13}C. Nous étudions les origines possibles de cet effet qui permet d'obtenir un coefficient isotopique supérieur à la valeur BCS. Des calculs de la densité d'états effectués par la méthode de Hückel étendue pour les deux bandes HOMO du composé montrent que, dans le cadre d'une théorie de couplage faible

  8. Time dependent quantum dynamics study of the O++H2(v=0,j=0)→OH++H ion-molecule reaction and isotopic variants (D2,HD)

    International Nuclear Information System (INIS)

    Martinez, Rodrigo; Sierra, Jose Daniel; Gray, Stephen K.; Gonzalez, Miguel

    2006-01-01

    The time dependent real wave packet method using the helicity decoupling approximation was used to calculate the cross section evolution with collision energy (excitation function) of the O + +H 2 (v=0,j=0)→OH + +H reaction and its isotopic variants with D 2 and HD, using the best available ab initio analytical potential energy surface. The comparison of the calculated excitation functions with exact quantum results and experimental data showed that the present quantum dynamics approach is a very useful tool for the study of the selected and related systems, in a quite wide collision energy interval (approximately 0.0-1.1 eV), involving a much lower computational cost than the quantum exact methods and without a significant loss of accuracy in the cross sections

  9. pH-dependent equilibrium isotope fractionation associated with the compound specific nitrogen and carbon isotope analysis of substituted anilines by SPME-GC/IRMS.

    Science.gov (United States)

    Skarpeli-Liati, Marita; Turgeon, Aurora; Garr, Ashley N; Arnold, William A; Cramer, Christopher J; Hofstetter, Thomas B

    2011-03-01

    Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry (GC/IRMS) was used to elucidate the effects of N-atom protonation on the analysis of N and C isotope signatures of selected aromatic amines. Precise and accurate isotope ratios were measured using polydimethylsiloxane/divinylbenzene (PDMS/DVB) as the SPME fiber material at solution pH-values that exceeded the pK(a) of the substituted aniline's conjugate acid by two pH-units. Deviations of δ(15)N and δ(13)C-values from reference measurements by elemental analyzer IRMS were small (IRMS. Under these conditions, the detection limits for accurate isotope ratio measurements were between 0.64 and 2.1 mg L(-1) for δ(15)N and between 0.13 and 0.54 mg L(-1) for δ(13)C, respectively. Substantial inverse N isotope fractionation was observed by SPME-GC/IRMS as the fraction of protonated species increased with decreasing pH leading to deviations of -20‰ while the corresponding δ(13)C-values were largely invariant. From isotope ratio analysis at different solution pHs and theoretical calculations by density functional theory, we derived equilibrium isotope effects, EIEs, pertinent to aromatic amine protonation of 0.980 and 1.001 for N and C, respectively, which were very similar for all compounds investigated. Our work shows that N-atom protonation can compromise accurate compound-specific N isotope analysis of aromatic amines.

  10. SASWeave: Literate Programming Using SAS

    Directory of Open Access Journals (Sweden)

    Russell V. Lenth

    2007-05-01

    Full Text Available SASweave is a collection of scripts that allow one to embed SAS code into a LATEX document, and automatically incorporate the results as well. SASweave is patterned after Sweave, which does the same thing for code written in R. In fact, a document may contain both SAS and R code. Besides the convenience of being able to easily incorporate SAS examples in a document, SASweave facilitates the concept of “literate programming”: having code, documentation, and results packaged together. Among other things, this helps to ensure that the SAS output in the document is in concordance with the code.

  11. SASWeave: Literate Programming Using SAS

    DEFF Research Database (Denmark)

    Lenth, Russell V; Højsgaard, Søren

    2007-01-01

    SASweave is a collection of scripts that allow one to embed SAS code into a LATEX document, and automatically incorporate the results as well. SASweave is patterned after Sweave, which does the same thing for code written in R. In fact, a document may contain both SAS and R code. Besides...... the convenience of being able to easily incorporate SAS examples in a document, SASweave facilitates the concept of "literate programming": having code, documentation, and results packaged together. Among other things, this helps to ensure that the SAS output in the document is in concordance with the code...

  12. Determination of Isotopic Abundance of 2H, 13C, 18O, and 37Cl in Biofield Energy Treated Dichlorophenol Isomers

    OpenAIRE

    Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Trivedi, Mahendra; Saikia, Gunin; Jana, Snehasis

    2016-01-01

    2,4-Dichlorophenol (2,4-DCP) and 2,6-dichlorophenol (2,6-DCP) are two isomers of dichlorophenols, have been used as preservative agents for wood, paints, vegetable fibers and as intermediates in the production of pharmaceuticals and dyes. The aim of the study was to evaluate the impact of biofield energy treatment on the isotopic abundance ratios of 2H/1H or 13C/12C, and 18O/16O or 37Cl/35Cl, in dichlorophenol isomers using gas chromatography-mass spectrometry (GC-MS). The 2,4-DCP and 2,6-DCP...

  13. Application and validation of isotope dilution method (IDM) for predicting bioavailability of hydrophobic organic contaminants in soil.

    Science.gov (United States)

    Wang, Jie; Taylor, Allison; Schlenk, Daniel; Gan, Jay

    2018-05-01

    Risk assessment of hydrophobic organic contaminants (HOCs) using the total chemical concentration following exhaustive extraction may overestimate the actual availability of HOCs to non-target organisms. Existing methods for estimating HOC bioavailability in soil have various operational limitations. In this study, we explored the application of isotope dilution method (IDM) to quantify the accessible fraction (E) of DDTs and PCBs in both historically-contaminated and freshly-spiked soils. After addition of 13 C or deuterated analogues to a soil sample, the phase distribution of isotope-labeled and native chemicals reached an apparent equilibrium within 48 h of mixing. The derived E values in the three soils ranged from 0.19 to 0.82, depending on the soil properties and also the contact time of HOCs (i.e., aging). The isotope dilution method consistently predicted greater accumulation into earthworm (Eisenia fetida) than that by polyethylene (PE) or solid phase microextraction (SPME) sampler, likely because desorption in the gut enhanced bioavailability of soil-borne HOCs. A highly significant linear regression (R 2  = 0.91) was found between IDM and 24-h Tenax desorption, with a slope statistically identical to 1. The IDM-derived accessible concentration (C e ) was further shown to accurately predict tissue residues in earthworm exposed in the same soils. Given the relatively short duration and simple steps, IDM has the potential to be readily adopted for measuring HOC bioaccessibility in soil and for improving risk assessment and evaluation of remediation efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Quantum-tunneling isotope-exchange reaction H2+D-→HD +H-

    Science.gov (United States)

    Yuen, Chi Hong; Ayouz, Mehdi; Endres, Eric S.; Lakhamanskaya, Olga; Wester, Roland; Kokoouline, Viatcheslav

    2018-02-01

    The tunneling reaction H2+D-→HD +H- was studied in a recent experimental work at low temperatures (10, 19, and 23 K) by Endres et al. [Phys. Rev. A 95, 022706 (2017), 10.1103/PhysRevA.95.022706]. An upper limit of the rate coefficient was found to be about 10-18cm3 /s. In the present study, reaction probabilities are determined using the ABC program developed by Skouteris et al. [Comput. Phys. Commun. 133, 128 (2000), 10.1016/S0010-4655(00)00167-3]. The probabilities for ortho-H2 and para-H2 in their ground rovibrational states are obtained numerically at collision energies above 50 meV with the total angular momentum J =0 -15 and extrapolated below 50 meV using a WKB approach. Thermally averaged rate coefficients for ortho- and para-H2 are obtained; the largest one, for ortho-H2, is about 3.1 ×10-20cm3 /s, which agrees with the experimental results.

  15. Some measurements of H/D polarizability isotope effects using differential refractometry

    Energy Technology Data Exchange (ETDEWEB)

    Foster Smith, M; Van Hook, W A [Tennessee Univ., Knoxville (USA). Dept. of Chemistry

    1989-05-01

    Refractive index differences between the H and D isomers of some common molecules in the liquid phase were measured between 404.7 and 690.0 nm. The data are combined with information on molar volume isotope effects to yield values for H/D isotope effects on the static polarizability, the vibrational contribution to the static and frequency dependent parts of the polarizability, and the H/D isotope effect on the second moment of the electronic charge distribution. The present results suffice to demonstrate the practicability of this technique to measure the components of the polarizability listed above. However for accurate resolution of the vibrational and second moment contributions, refractive index data of still greater precision will be required. (orig.).

  16. Some measurements of H/D polarizability isotope effects using differential refractometry

    International Nuclear Information System (INIS)

    Foster Smith, M.; Van Hook, W.A.

    1989-01-01

    Refractive index differences between the H and D isomers of some common molecules in the liquid phase were measured between 404.7 and 690.0 nm. The data are combined with information on molar volume isotope effects to yield values for H/D isotope effects on the static polarizability, the vibrational contribution to the static and frequency dependent parts of the polarizability, and the H/D isotope effect on the second moment of the electronic charge distribution. The present results suffice to demonstrate the practicability of this technique to measure the components of the polarizability listed above. However for accurate resolution of the vibrational and second moment contributions, refractive index data of still greater precision will be required. (orig.)

  17. Investigating Unsaturated Zone Travel Times with Tritium and Stable Isotopes

    Science.gov (United States)

    Visser, A.; Thaw, M.; Van der Velde, Y.

    2017-12-01

    Travel times in the unsaturated zone are notoriously difficult to assess. Travel time tracers relying on the conservative transport of dissolved (noble) gases (tritium-helium, CFCs or SF6) are not applicable. Large water volume requirements of other cosmogenic radioactive isotopes (sulfur-35, sodium-22) preclude application in the unsaturated zone. Prior investigations have relied on models, introduced tracers, profiles of stable isotopes or tritium, or a combination of these techniques. Significant unsaturated zone travel times (UZTT) complicate the interpretation of stream water travel time tracers by ranked StorAge Selection (rSAS) functions. Close examination of rSAS functions in a sloping soil lysimeter[1] show the effect of the UZTT on the shape of the rSAS cumulative distribution function. We studied the UZTT at the Southern Sierra Critical Zone Observatory (SS-CZO) using profiles of tritium and stable isotopes (18O and 2H) in the unsaturated zone, supported by soil water content data. Tritium analyses require 100-500 mL of soil water and therefore large soil samples (1-5L), and elaborate laboratory procedures (oven drying, degassing and noble gas mass spectrometry). The high seasonal and interannual variability in precipitation of the Mediterranean climate, variable snow pack and high annual ET/P ratios lead to a dynamic hydrology in the deep unsaturated soils and regolith and highly variable travel time distributions. Variability of the tritium concentration in precipitation further complicates direct age estimates. Observed tritium profiles (>3 m deep) are interpreted in terms of advective and dispersive vertical transport of the input variability and radioactive decay of tritium. Significant unsaturated zone travel times corroborate previously observed low activities of short-lived cosmogenic radioactive nuclides in stream water. Under these conditions, incorporating the UZTT is critical to adequately reconstruct stream water travel time distributions. 1

  18. Uranium Isotopes in Calcium Carbonate: A Possible Proxy for Paleo-pH and Carbonate Ion Concentration?

    Science.gov (United States)

    Chen, X.; Romaniello, S. J.; Herrmann, A. D.; Wasylenki, L. E.; Anbar, A. D.

    2015-12-01

    Natural variations of 238U/235U in marine carbonates are being explored as a paleoredox proxy. However, in order for this proxy to be robust, it is important to understand how pH and alkalinity affect the fractionation of 238U/235U during coprecipitation with calcite and aragonite. Recent work suggests that the U/Ca ratio of foraminiferal calcite may vary with seawater [CO32-] concentration due to changes in U speciation[1]. Here we explore analogous isotopic consequences in inorganic laboratory co-precipitation experiments. Uranium coprecipitation experiments with calcite and aragonite were performed at pH 8.5 ± 0.1 and 7.5 ± 0.1 using a constant addition method [2]. Dissolved U in the remaining solution was periodically collected throughout the experiments. Samples were purified with UTEVA resin and 238U/235U was determined using a 233U-236U double-spike and MC-ICP-MS, attaining a precision of ± 0.10 ‰ [3]. Small but resolvable U isotope fractionation was observed in aragonite experiments at pH ~8.5, preferentially enriching heavier U isotopes in the solid phase. 238U/235U of the dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00002 - 1.00009. In contrast, no resolvable U isotope fractionation was detected in an aragonite experiment at pH ~7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among dissolved U species is the most likely mechanism driving these isotope effects. Our quantitative model of this process assumes that charged U species are preferentially incorporated into CaCO3 relative to the neutral U species Ca2UO2(CO3)3(aq), which we hypothesize to have a lighter equilibrium U isotope composition than the charged U species. According to this model, the magnitude of U isotope fractionation should scale with the fraction of the neutral U species in the solution, in agreement with our experimental results. These findings suggest that U isotope variations in

  19. The evaluation of isotopic composition for TRIGA 14 MW spent fuel

    International Nuclear Information System (INIS)

    Covaci, St.; Toma, C.; Preda, M.

    2008-01-01

    In the summer of 1999 year, a first shipment of TRIGA HEU spent fuel to INEEL U.S.A. has taken place. he TRIGA HEU fuel was burned in the TRIGA steady state 14 MW reactor between 1980 and 1996 years. At the moment of prepared documentation for the shipment (July 1999), the evaluation of isotopic composition was calculated with ORIGEN-2 code with an irradiation history adequately prepared. Subsequently (May - June 2000), the evaluation was repeated with SAS2H module of SCALE 4.4a system. In the paper the results and the comparisons of the codes are presented, and the accuracy and convenient application of SCALE 4.4a system are emphasized. (authors)

  20. Auto-inducing media for uniform isotope labeling of proteins with {sup 15}N, {sup 13}C and {sup 2}H

    Energy Technology Data Exchange (ETDEWEB)

    Guthertz, Nicolas [Institute of Cancer Research, Division of Structural Biology (United Kingdom); Klopp, Julia; Winterhalter, Aurélie; Fernández, César; Gossert, Alvar D., E-mail: alvar.gossert@novartis.com [Novartis Institutes for BioMedical Research (Switzerland)

    2015-06-15

    Auto-inducing media for protein expression offer many advantages like robust reproducibility, high yields of soluble protein and much reduced workload. Here, an auto-inducing medium for uniform isotope labelling of proteins with {sup 15}N, {sup 13}C and/or {sup 2}H in E. coli is presented. So far, auto-inducing media have not found widespread application in the NMR field, because of the prohibitively high cost of labeled lactose, which is an essential ingredient of such media. Here, we propose using lactose that is only selectively labeled on the glucose moiety. It can be synthesized from inexpensive and readily available substrates: labeled glucose and unlabeled activated galactose. With this approach, uniformly isotope labeled proteins were expressed in unattended auto-inducing cultures with incorporation of {sup 13}C, {sup 15}N of 96.6 % and {sup 2}H, {sup 15}N of 98.8 %. With the present protocol, the NMR community could profit from the many advantages that auto-inducing media offer.

  1. Synthesis and spectroscopic stereospecificity assay of the deuterated quinolizidine alkaloids (2S)-( sup 2 H)- and (2R)-( sup 2 H)-sparteine

    Energy Technology Data Exchange (ETDEWEB)

    Ebner, T.; Meese, C.O. (Fischer-Bosch Inst. fuer Klinische Pharmakologie, Stuttgart (Germany, F.R.)); Rebell, J. (Stuttgart Univ. (Germany, F.R.). Inst. fuer Organische Chemie); Fischer, P. (Stuttgart Univ. (Germany, F.R.). Inst. fuer Organische Chemie Fischer-Bosch Inst. fuer Klinische Pharmakologie, Stuttgart (Germany, F.R.))

    1989-04-01

    Borohydride reduction of the (+)-1,2-dehydrosparteinium salts proceeds almost exclusively from the Si side, yielding, respectively, the stereoselectively (2S)({beta})-deuterated (-)-sparteine and the (2R)({alpha})-deuterated (-)-sparteine. Stereo-chemistry and isotopic purity of the deuterium label ({>=}98%) are established unequivocally by {sup 1}H, {sup 2}H and {sup 13}C NMR spectroscopy. (author).

  2. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 8 AND 9 CRYSTAL RIVER UNIT 3

    International Nuclear Information System (INIS)

    Wilson, Michael L.

    2001-01-01

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 8 and 9 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies

  3. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 4 AND 5 OF CRYSTAL RIVER UNIT 3

    International Nuclear Information System (INIS)

    Wright, Kenneth D.

    1997-01-01

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 4 and 5 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies

  4. Correlation between precipitation and geographical location of the δ2H values of the fatty acids in milk and bulk milk powder

    Science.gov (United States)

    Ehtesham, E.; Baisden, W. T.; Keller, E. D.; Hayman, A. R.; Van Hale, R.; Frew, R. D.

    2013-06-01

    Hydrogen isotope ratios (δ2H) have become a tool for food traceability and authentication of agricultural products. The principle is that the isotopic composition of the produce is influenced by environmental and biological factors and hence exhibits a spatial differentiation of δ2H. This study investigates the variation in δ2H values of New Zealand milk, both in the bulk powder and individual fatty acids extracted from milk samples from dairy factories across New Zealand. Multivariate statistical analyses were used to test for relationships between δ2H of bulk milk powder, milk fatty acid and geographical location. Milk powder samples from different regions of New Zealand were found to exhibit patterns in isotopic composition similar to the corresponding regional precipitation associated with their origin. A model of δ2H in precipitation was developed based on measurements between 2007 and 2010 at 51 stations across New Zealand (Frew and Van Hale, 2011). The model uses multiple linear regressions to predict daily δ2H from 2 geographic and 5 rain-weighted climate variables from the 5 × 5 km New Zealand Virtual Climate Station Network (VCSN). To approximate collection radius for a drying facility the modelled values were aggregated within a 50 km radius of each dairy factory and compared to observed δ2H values of precipitation and bulk milk powder. Daily δ2H predictions for the period from August to December for the area surrounding the sample collection sites were highly correlated with the δ2H values of bulk milk powder. Therefore the δ2H value of milk fatty acids demonstrates promise as a tool for determining the provenance of milk powders and products where milk powder is an ingredient. Separation of milk powder origin to geographic sub-regions within New Zealand was achieved. Hydrogen isotope measurements could be used to complement traditional tracking systems in verifying point of origin.

  5. State-to-state dynamics of the H{sup *}(n) + HD → D{sup *}(n{sup ′}) + H{sub 2} reactive scattering

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shengrui; Su, Shu; Dai, Dongxu; Yuan, Kaijun, E-mail: kjyuan@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn; Yang, Xueming, E-mail: kjyuan@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China)

    2014-01-21

    The state-to-state dynamics of the H{sup *}(n) + HD → D{sup *}(n{sup ′}) + H{sub 2} reactive scattering at the collision energy of 0.5 eV have been carried out for the first time by using H-atom Rydberg tagging time-of-flight technique. Experimental results show that the angular distribution of the total H{sub 2} products presents clearly forward-backward asymmetric, which considerably differs from that of the corresponding H{sup +} + HD → D{sup +} + H{sub 2} reaction predicted by previously theoretical calculations. Such disagreement between these two processes suggests that the Fermi independent-collider model is also not valid in describing the dynamics of isotopic variants of the H{sup *} + H{sub 2} reaction. The rotational state distribution of the H{sub 2} products demonstrates a saw-toothed distribution with odd-j{sup ′} > even-j{sup ′}. This interesting observation is strongly influenced by nuclear spin statistics.

  6. Hydrogen (H) Isotope Composition of Type II Kerogen Extracted by Pyrolysis-GC-MS-IRMS: Terrestrial Shale Deposits as Martian Analogs

    Science.gov (United States)

    Socki, Richard A.; Pernia, Denet; Evans, Michael; Fu, Qi; Bissada, Kadry K.; Curiale, Joseph A.; Niles, Paul B.

    2014-01-01

    Described here is a technique for H isotope analysis of organic compounds pyrolyzed from kerogens isolated from gas- and liquids-rich shales. Application of this technique will progress the understanding of the use of H isotopes not only in potential kerogen occurrences on Mars, but also in terrestrial oil and gas resource plays. H isotope extraction and analyses were carried out utilizing a CDS 5000 Pyroprobe connected to a Thermo Trace GC interfaced with a Thermo MAT 253 IRMS. Also, a split of GC-separated products was sent to a DSQ II quadrupole MS to make qualitative and semi-quantitative compositional measurements of these products. Kerogen samples from five different basins (type II and II-S) were dehydrated (heated to 80 C overnight under vacuum) and analyzed for their H isotope compositions by Pyrolysis-GC-MS-TC-IRMS. This technique takes pyrolysis products separated via GC and reacts them in a high temperature conversion furnace (1450 C), which quantitatively forms H2. Samples ranging from 0.5 to 1.0mg in size, were pyrolyzed at 800 C for 30s. and separated on a Poraplot Q GC column. H isotope data from all kerogen samples typically show enrichment in D from low to high molecular weight. H2O average delta D = -215.2 per mille (V-SMOW), ranging from - 271.8 per mille for the Marcellus Shale to -51.9 per mille for a Polish shale. Higher molecular weight compounds like toluene (C7H8) have an average delta D of -89.7 per mille, ranging from -156.0 per mille for the Barnett Shale to -50.0 per mille for the Monterey Shale. We interpret these data as representative of potential H isotope exchange between hydrocarbons and sediment pore water during basin formation. Since hydrocarbon H isotopes readily exchange with water, these data may provide some useful information on gas-water or oil-water interaction in resource plays, and further as a possible indicator of paleoenvironmental conditions. Alternatively, our data may be an indication of H isotope exchange with

  7. Modeling study of vibrational photochemical isotope enrichment. [HBr + Cl/sub 2/; HCl + Br/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Badcock, C.C.; Hwang, W.C.; Kalsch, J.F.

    1978-09-29

    Chemical kinetic modeling studies of vibrational-photochemical isotope enrichment have been performed on two systems: Model (I), H/sup 79/Br(H/sup 81/Br) + Cl/sub 2/ and, Model (II), H/sup 37/Cl(H/sup 35/Cl) + Br. Pulsed laser excitation was modeled to the first excited vibrational level of H/sup 79/Br in Model I and the first and second excited vibrational levels of both HCl isotopes in Model II. These are prototype systems of exoergic (Model I) and endoergic (Model II) reactions. The effects on enrichment of varying the external parameters (pressure, laser intensity) and the internal parameters (rate constants for V-V exchange and excited-state reactions) were examined. Studies of these prototype systems indicate that a favorable reaction for enrichment, with isotopically-specific excitation and a significantly accelerated vibrationally-excited-state reaction should have the following properties: the reaction from v = 0 should be only moderately exoergic, and the most favorable coreactant should be a polyatomic species, such as alkyl radical. Direct excitation of the reacting vibrational level is at least an order of magnitude more favorable for enrichment than is population by energy transfer. Enrichment of the minor isotope by these processes is more effective than is major isotope enrichment. Within limits, increased laser intensity is beneficial. However, for sequential excitation of a second vibrational level, major isotope enrichment can be diminished by high populations of the first vibrational level.

  8. Application of natural isotopes ("1"8O, "2H and "1"4C) to study the dynamics of ground water in connection with river water in Bandung area

    International Nuclear Information System (INIS)

    Evarista Ristin Pujiindiyati and Satrio

    2013-01-01

    Water table in the center of Bandung basin has been decreased around 1-2 m/year since 1990 whereas in the slope has been decreased at higher level of 15 m. Water level decreasing are going to increase continuously because of increasing number of deep wells (>40 m). In 1970, there were 96 deep wells which have been registered, but now number of deep wells is estimated of more than 4700. Therefore, a study of interrelationship between groundwater and surface water, and determination of recharge area for Bandung basin are crucial research to be conducted. Stable isotopes in nature such as "2H and "1"8O, and radioactive isotope of "1"4C can give important information about groundwater dynamic pattern. In this research, 24 deep groundwater samples, 28 shallow groundwater and river water samples (Citarum, Cikapundung, Cikeruh and Citarik rivers) and shallow groundwater along the rivers were collected. Results from plotting δ"1"8O and δ"2H showed that most of shallow groundwater did not relate to river water except three locations, they are Loteng Sumbersari and Bojong Mas groundwater near to Citarum river, and groundwater near to Cikapundung river. Isotope "1"4C analysis indicated that deep groundwater of Bandung basin did not show relationship either by shallow groundwater or river water. Its iso-age line contour determined that dynamic pattern of deep groundwater in Bandung basin comes from northern and southern hills to direction of north-west area such that both areas are suggested as conservation zone. Rate of deep groundwater movement predicted from iso-age contour is around 0.25 to 3 m/year. (author)

  9. Isotopic dependences of the dielectric strength of gases: new observations, classification, and possible origins

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Rodrigo, H.; Marode, E.; Bastien, F.

    1985-01-01

    In this paper we report: (1) the finding that the CH 4 /CD 4 nonuniform field behavior is polarity dependent (i.e., the V/sub s/ of CD 4 is lower than the V/sub s/ of CH 4 for negative polarity which is just the opposite of that observed for positive polarity); (2) discuss the origins of the observed isotope effects and predict new isotopic dependences of V/sub s/; and (3) report results on the V/sub s/ of H 2 S and D 2 S for negative polarity which confirm their predicted isotopic behavior

  10. Adaptive beamforming for low frequency SAS imagery and bathymetry

    NARCIS (Netherlands)

    Hayes, M.P.; Hunter, A.J.

    2012-01-01

    Synthetic aperture side-scan sonar (SAS) is a mature technology for high-resolution sea floor imaging [1]. Interferometric synthetic aperture sonars (InSAS) use additional hydrophones in a vertical array for bathymetric mapping [2]. This has created high-resolution bathymetry in deep water

  11. Melatonin labeled with hydrogen isotopes

    International Nuclear Information System (INIS)

    Dmitrevskaya, L.I.; Smushkevich, Yu.I.; Kurkovskaya, L.N.; Ponomarenko, N.K.; Suvorov, N.N.

    1989-01-01

    A study has been made of isotope exchange between melatonin and deuterium (D 2 O) or tritium (HTO) oxide under different conditions. The ease of isotope exchange for the indole ring hydrogens of melatonin in an acidic medium decreases over the series H 4 > H 2 H 6 >> H 7 , enabling the authors to process a route for production of melatonin labeled with hydrogen isotopes at positions 4,6, and 2 of the indole ring. A method has been suggested for producing melatonin labeled with hydrogen isotopes at position 2 by desulfurization of 2-(2,4-dinitro-phenylsulfenyl)melatonin at Ni(Re) (D)

  12. Melatonin labelled by hydrogen isotopes

    International Nuclear Information System (INIS)

    Dmitrevskaya, L.I.; Smushkevich, Yu.I.; Kurkovskaya, L.N.; Ponomarenko, N.K.; Suvorov, N.N.

    1988-01-01

    Isotope exchange of melatonin with deuterium (D 2 O) and tritium (HTO) oxides under different conditions is studied. Simplicity of isotope exchange of hydrogens of the indole ring of melatonin in the acidic medium decreases in series H 4 >H 2 >H 6 >>H 7 , that permits to suggest the way of melatonin preparation labelled by hydrogen isotopes in positions 4,6 and 2 of the indole ring. The way of melatonin preparation labelled by hydrogen isotopes in position 2 according to the reaction of desulfation 2-(2,4-dinitrophenylsulphenyl) melatonin at catalyst Ni(Re)(D) is suggested

  13. Predictive isotopic biogeochemistry of lipids from the Black Sea and Cariaco Trench

    International Nuclear Information System (INIS)

    Freeman, K.H.; Hayes, J.M.; Wakeham, S.G.

    1991-01-01

    Carbon isotopic compositions of autotrophic organisms can be predicted based on recently established relationships between [CO 2 (aq)] and var-epsilon p , the isotopic fractionation accompanying carbon fixation. In both the Black Sea and the Cariaco Trench, where [CO 2 (aq)] values are known and δ values for hydrocarbons were recently determined, predicted biomass δ values can be compared to those of biomarkers extracted from POM and sediment samples. The agreement is good, although a 5 per-thousand range in δ values is observed for the lipids, which may be due to ecological factors or to contributions from organisms that assimilate HCO 3 -. Lycopane and pentamethyleicosane apparently derive from planktonic organisms. Diploptene in the Black Sea apparently is derived from chemoautotrophic bacteria living at the oxic/anoxic interface. Some odd-C, long-chain n-alkanes have planktonic δ values, and the authors suggest they are not strict terrestrial indicators

  14. Protective effect of Dendrobium officinale polysaccharides on H2O2-induced injury in H9c2 cardiomyocytes.

    Science.gov (United States)

    Zhao, Xiaoyan; Dou, Mengmeng; Zhang, Zhihao; Zhang, Duoduo; Huang, Chengzhi

    2017-10-01

    The preliminary studies have shown that Dendrobium officinale possessed therapeutic effects on hypertension and atherosclerosis. Studies also reported that Dendrobium officinale polysaccharides showed antioxidant capabilities. However, little is known about its effects on myocardial cells under oxidative stress. The present study was designed to study the protective effect of Dendrobium officinale polysaccharides against H 2 O 2 -induced oxidative stress in H9c2 cells. MTT assay was carried out to determine the cell viability of H9c2 cells when pretreated with Dendrobium officinale polysaccharides. Fluorescent microscopy measurements were performed for evaluating the apoptosis in H9c2 cells. Furthermore, effects of Dendrobium officinale polysaccharides on the activities of antioxidative indicators (malondialdehyde, superoxide dismutase), reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) levels were analyzed. Dendrobium officinale polysaccharides attenuated H 2 O 2 -induced cell death, as determined by the MTT assay. Dendrobium officinale polysaccharides decreased malondialdehyde levels, increased superoxide dismutase activities, and inhibited the generation of intracellular ROS. Moreover, pretreatment with Dendrobium officinale polysaccharides also inhibited apoptosis and increased the MMP levels in H9c2 cells. These results suggested the protective effects of Dendrobium officinale polysaccharides against H 2 O 2 -induced injury in H9c2 cells. The results also indicated the anti-oxidative capability of Dendrobium officinale polysaccharides. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Comparison between IRMS and CRDS methods in the determination of isotopic ratios 2H/1H and 18O/16O in water

    International Nuclear Information System (INIS)

    Santos, T. H. R.; Zucchi, M. R.; Lemaire, T.; Azevedo, A. E. G.

    2013-01-01

    Traditionally, the method used for measuring the isotope ratios is the Isotope Ratio Mass Spectrometers (IRMS). A new method has been used to determine the isotopic abundances, the Cavity Ring-Down Spectroscopy (CRDS). It consists of a technique of direct absorption, of high sensitivity, which is based on measuring the absorption ratio, as a function of time, of the light confined in a high finesse optical cavity, instead of the magnitude of light beam absorption. The values of 18 O/ 16 O and D/H ratios are determined with respect to international standards VSMOW, GISP and SLAP from the International Atomic Energy Agency (IAEA). In this work, the IRMS and CRDS techniques are compared, verifying that the CRDS technique is promising and has some advantages compared to IRMS. It uses a smaller amount of sample, the isotope measurements are made simultaneously from the steam, reducing the analysis time. It also shows good reproducibility and accuracy, and it does not require a preliminary sample preparation.

  16. 2 H-fractionations during the biosynthesis of carbohydrates and lipids imprint a metabolic signal on the δ2 H values of plant organic compounds.

    Science.gov (United States)

    Cormier, Marc-André; Werner, Roland A; Sauer, Peter E; Gröcke, Darren R; Leuenberger, Markus C; Wieloch, Thomas; Schleucher, Jürgen; Kahmen, Ansgar

    2018-04-01

    Hydrogen (H) isotope ratio (δ 2 H) analyses of plant organic compounds have been applied to assess ecohydrological processes in the environment despite a large part of the δ 2 H variability observed in plant compounds not being fully elucidated. We present a conceptual biochemical model based on empirical H isotope data that we generated in two complementary experiments that clarifies a large part of the unexplained variability in the δ 2 H values of plant organic compounds. The experiments demonstrate that information recorded in the δ 2 H values of plant organic compounds goes beyond hydrological signals and can also contain important information on the carbon and energy metabolism of plants. Our model explains where 2 H-fractionations occur in the biosynthesis of plant organic compounds and how these 2 H-fractionations are tightly coupled to a plant's carbon and energy metabolism. Our model also provides a mechanistic basis to introduce H isotopes in plant organic compounds as a new metabolic proxy for the carbon and energy metabolism of plants and ecosystems. Such a new metabolic proxy has the potential to be applied in a broad range of disciplines, including plant and ecosystem physiology, biogeochemistry and palaeoecology. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  17. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 4 AND 5 OF CRYSTAL RIVER UNIT 3

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth D. Wright

    1997-07-30

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 4 and 5 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies.

  18. Modelling the Spatial Isotope Variability of Precipitation in Syria

    Energy Technology Data Exchange (ETDEWEB)

    Kattan, Z.; Kattaa, B. [Department of Geology, Atomic Energy Commission of Syria (AECS), Damascus (Syrian Arab Republic)

    2013-07-15

    Attempts were made to model the spatial variability of environmental isotope ({sup 18}O, {sup 2}H and {sup 3}H) compositions of precipitation in syria. Rainfall samples periodically collected on a monthly basis from 16 different stations were used for processing and demonstrating the spatial distributions of these isotopes, together with those of deuterium excess (d) values. Mathematically, the modelling process was based on applying simple polynomial models that take into consideration the effects of major geographic factors (Lon.E., Lat.N., and altitude). The modelling results of spatial distribution of stable isotopes ({sup 18}O and {sup 2}H) were generally good, as shown from the high correlation coefficients (R{sup 2} = 0.7-0.8), calculated between the observed and predicted values. In the case of deuterium excess and tritium distributions, the results were most likely approximates (R{sup 2} = 0.5-0.6). Improving the simulation of spatial isotope variability probably requires the incorporation of other local meteorological factors, such as relative air humidity, precipitation amount and vapour pressure, which are supposed to play an important role in such an arid country. (author)

  19. THE MAGNESIUM ISOTOPOLOGUES OF MgH IN THE A 2Π-X 2Σ+ SYSTEM

    International Nuclear Information System (INIS)

    Hinkle, Kenneth H.; Wallace, Lloyd; Ram, Ram S.; Bernath, Peter F.; Sneden, Christopher; Lucatello, Sara

    2013-01-01

    Using laboratory hollow cathode spectra we have identified lines of the less common magnesium isotopologues of MgH, 25 MgH and 26 MgH, in the A 2 Π-X 2 Σ + system. Based on the previous analysis of 24 MgH, molecular lines have been measured and molecular constants derived for 25 MgH and 26 MgH. Term values and linelists, in both wavenumber and wavelength units, are presented. The A 2 Π-X 2 Σ + system of MgH is important for measuring the magnesium isotope ratios in stars. Examples of analysis using the new linelists to derive the Mg isotope ratio in a metal poor dwarf and giant are shown

  20. Zeolite encapsulation of H2

    International Nuclear Information System (INIS)

    Cooper, S.; Lakner, J.F.

    1982-08-01

    Experiments with H 2 have shown that it is possible to encapsulate gases in the structure of certain molecular sieves. This method may offer a better means of temporarily storing and disposing of tritium over some others presently in use. The method may also prove safer, and may enable isotope separation, and removal of 3 He. Initial experiments were performed with H 2 to screen potential candidates for use with tritium

  1. Long-Term Precipitation Isotope Ratios (δ18O, δ2H, d-excess) in the Northeast US Reflect Atlantic Ocean Warming and Shifts in Moisture Sources

    Science.gov (United States)

    Puntsag, T.; Welker, J. M.; Mitchell, M. J.; Klein, E. S.; Campbell, J. L.; Likens, G.

    2014-12-01

    The global water cycle is exhibiting dramatic changes as global temperatures increase resulting in increases in: drought extremes, flooding, alterations in storm track patterns with protracted winter storms, and greater precipitation variability. The mechanisms driving these changes can be difficult to assess, but the spatial and temporal patterns of precipitation water isotopes (δ18O, δ2H, d-excess) provide a means to help understand these water cycle changes. However, extended temporal records of isotope ratios in precipitation are infrequent, especially in the US. In our study we analyzed precipitation isotope ratio data from the Hubbard Brook Experimental Forest in New Hampshire that has the longest US precipitation isotope record, to determine: 1) the monthly composited averages and trends from 1967 to 2012 (45 years); ; 2) the relationships between abiotic properties such as local temperatures, precipitation type, storm tracks and isotope ratio changes; and 3) the influence of regional shifts in moisture sources and/or changes in N Atlantic Ocean water conditions on isotope values. The seasonal variability of Hubbard Brook precipitation isotope ratios is consistent with other studies, as average δ18O values are ~ -15‰ in January and ~ -5 ‰ in July. However, over the 45 year record there is a depletion trend in the δ 18O values (becoming isotopically lighter with a greater proportion of 16O), which coupled with less change in δ 2H leads to increases in d-excess values from ~ -10‰ around 1970 to greater than 10‰ in 2009. These changes occurred during a period of warming as opposed to cooling local temperatures indicating other processes besides temperature are controlling long-term water isotope traits in this region. We have evidence that these changes in precipitation isotope traits are controlled in large part by an increases in moisture being sourced from a warming N Atlantic Ocean that is providing evaporated, isotopically

  2. Chemical and oxygen isotopic properties of ordinary chondrites (H5, L6) from Oman: Signs of isotopic equilibrium during thermal metamorphism

    Science.gov (United States)

    Ali, Arshad; Nasir, Sobhi J.; Jabeen, Iffat; Al Rawas, Ahmed; Banerjee, Neil R.; Osinski, Gordon R.

    2017-10-01

    Mean bulk chemical data of recently found H5 and L6 ordinary chondrites from the deserts of Oman generally reflect isochemical features which are consistent with the progressive thermal metamorphism of a common, unequilibrated starting material. Relative differences in abundances range from 0.5-10% in REE (Eu = 14%), 6-13% in siderophile elements (Co = 48%), and >10% in lithophile elements (exceptions are Ba, Sr, Zr, Hf, U = >30%) between H5 and L6 groups. These differences may have accounted for variable temperature conditions during metamorphism on their parent bodies. The CI/Mg-normalized mean abundances of refractory lithophile elements (Al, Ca, Sm, Yb, Lu, V) show no resolvable differences between H5 and L6 suggesting that both groups have experienced the same fractionation. The REE diagram shows subtle enrichment in LREE with a flat HREE pattern. Furthermore, overall mean REE abundances are 0.6 × CI with enriched La abundance ( 0.9 × CI) in both groups. Precise oxygen isotope compositions demonstrate the attainment of isotopic equilibrium by progressive thermal metamorphism following a mass-dependent isotope fractionation trend. Both groups show a slope-1/2 line on a three-isotope plot with subtle negative deviation in Δ17O associated with δ18O enrichment relative to δ17O. These deviations are interpreted as the result of liberation of water from phyllosilicates and evaporation of a fraction of the water during thermal metamorphism. The resultant isotope fractionations caused by the water loss are analogous to those occurring between silicate melt and gas phase during CAI and chondrule formation in chondrites and are controlled by cooling rates and exchange efficiency.

  3. Radiochemical studies of neutron deficient actinide isotopes

    International Nuclear Information System (INIS)

    Williams, K.E.

    1978-04-01

    The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, 242 Bk, was produced with a cross-section of approximately 10 μb in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, αxn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,αxn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z 1 + Z 2 = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,αxn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of 228 Pu, 230 Pu, 232 Cm, or 238 Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes

  4. Environmental isotopes (18O, 2H, and 87Sr/86Sr) as a tool in groundwater investigations in the Keta Basin, Ghana

    Science.gov (United States)

    Jørgensen, Niels; Banoeng-Yakubo, Bruce

    2001-03-01

    Analyses of environmental isotopes (18O, 2H, and 87Sr/86Sr) are applied to groundwater studies with emphasis on saline groundwater in aquifers in the Keta Basin, Ghana. The 87Sr/86Sr ratios of groundwater and surface water of the Keta Basin primarily reflect the geology and the mineralogical composition of the formations in the catchments and recharge areas. The isotopic compositions of 18O and 2H of deep groundwater have small variations and plot close to the global meteoric water line. Shallow groundwater and surface water have considerably larger variations in isotopic compositions, which reflect evaporation and preservation of seasonal fluctuations. A significant excess of chloride in shallow groundwater in comparison to the calculated evaporation loss is the result of a combination of evaporation and marine sources. Groundwaters from deep wells and dug wells in near-coastal aquifers are characterized by relatively high chloride contents, and the significance of marine influence is evidenced by well-defined mixing lines for strontium isotopes, and hydrogen and oxygen stable isotopes, with isotopic compositions of seawater as one end member. The results derived from environmental isotopes in this study demonstrate that a multi-isotope approach is a useful tool to identify the origin and sources of saline groundwater. Résumé. L'analyse des isotopes du milieu (18O, 2H, et 87Sr/86Sr) a été mise en œuvre pour des études hydrogéologiques portant sur des eaux souterraines salées des aquifères du bassin de Keta (Ghana). Les rapports isotopiques 87Sr/86Sr de l'eau souterraine et de l'eau de surface du bassin de Keta reflètent principalement la géologie et la composition minéralogique des formations des bassins d'alimentation et des zones de recharge. Les compositions isotopiques en 18O et en 2H des eaux souterraines profondes présentent de faibles variations et se placent près de la droite des eaux météoriques mondiales. Les eaux des nappes peu profondes

  5. Steric effects on the primary isotope dependence of secondary kinetic isotope effects in hydride transfer reactions in solution: caused by the isotopically different tunneling ready state conformations?

    Science.gov (United States)

    Maharjan, Binita; Raghibi Boroujeni, Mahdi; Lefton, Jonathan; White, Ormacinda R; Razzaghi, Mortezaali; Hammann, Blake A; Derakhshani-Molayousefi, Mortaza; Eilers, James E; Lu, Yun

    2015-05-27

    The observed 1° isotope effect on 2° KIEs in H-transfer reactions has recently been explained on the basis of a H-tunneling mechanism that uses the concept that the tunneling of a heavier isotope requires a shorter donor-acceptor distance (DAD) than that of a lighter isotope. The shorter DAD in D-tunneling, as compared to H-tunneling, could bring about significant spatial crowding effect that stiffens the 2° H/D vibrations, thus decreasing the 2° KIE. This leads to a new physical organic research direction that examines how structure affects the 1° isotope dependence of 2° KIEs and how this dependence provides information about the structure of the tunneling ready states (TRSs). The hypothesis is that H- and D-tunneling have TRS structures which have different DADs, and pronounced 1° isotope effect on 2° KIEs should be observed in tunneling systems that are sterically hindered. This paper investigates the hypothesis by determining the 1° isotope effect on α- and β-2° KIEs for hydride transfer reactions from various hydride donors to different carbocationic hydride acceptors in solution. The systems were designed to include the interactions of the steric groups and the targeted 2° H/D's in the TRSs. The results substantiate our hypothesis, and they are not consistent with the traditional model of H-tunneling and 1°/2° H coupled motions that has been widely used to explain the 1° isotope dependence of 2° KIEs in the enzyme-catalyzed H-transfer reactions. The behaviors of the 1° isotope dependence of 2° KIEs in solution are compared to those with alcohol dehydrogenases, and sources of the observed "puzzling" 2° KIE behaviors in these enzymes are discussed using the concept of the isotopically different TRS conformations.

  6. Existing and emerging technologies for measuring stable isotope labelled retinol in biological samples: isotope dilution analysis of body retinol stores.

    Science.gov (United States)

    Preston, Tom

    2014-01-01

    This paper discusses some of the recent improvements in instrumentation used for stable isotope tracer measurements in the context of measuring retinol stores, in vivo. Tracer costs, together with concerns that larger tracer doses may perturb the parameter under study, demand that ever more sensitive mass spectrometric techniques are developed. GCMS is the most widely used technique. It has high sensitivity in terms of sample amount and uses high resolution GC, yet its ability to detect low isotope ratios is limited by background noise. LCMSMS may become more accessible for tracer studies. Its ability to measure low level stable isotope tracers may prove superior to GCMS, but it is isotope ratio MS (IRMS) that has been designed specifically for low level stable isotope analysis through accurate analysis of tracer:tracee ratios (the tracee being the unlabelled species). Compound-specific isotope analysis, where GC is interfaced to IRMS, is gaining popularity. Here, individual 13C-labelled compounds are separated by GC, combusted to CO2 and transferred on-line for ratiometric analysis by IRMS at the ppm level. However, commercially-available 13C-labelled retinol tracers are 2 - 4 times more expensive than deuterated tracers. For 2H-labelled compounds, GC-pyrolysis-IRMS has now become more generally available as an operating mode on the same IRMS instrument. Here, individual compounds are separated by GC and pyrolysed to H2 at high temperature for analysis by IRMS. It is predicted that GC-pyrolysis-IRMS will facilitate low level tracer procedures to measure body retinol stores, as has been accomplished in the case of fatty acids and amino acids. Sample size requirements for GC-P-IRMS may exceed those of GCMS, but this paper discusses sample preparation procedures and predicts improvements, particularly in the efficiency of sample introduction.

  7. CRC DEPLETION CALCULATIONS FOR THE RODDED ASSEMBLIES IN BATCHES 1, 2, 3, AND 1X OF CRYSTAL RIVER UNIT 3

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth D. Wright

    1997-09-03

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain rodded fuel assemblies from batches 1, 2, 3, and 1X of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A rodded assembly is one that contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) for some period of time during its irradiation history. The objective of this analysis is to provide SAS2H calculated isotopic compositions of depleted fuel and depleted burnable poison for each fuel assembly to be used in subsequent CRC reactivity calculations containing the fuel assemblies.

  8. CRC DEPLETION CALCULATIONS FOR THE RODDED ASSEMBLIES IN BATCHES 1, 2, 3, AND 1X OF CRYSTAL RIVER UNIT 3

    International Nuclear Information System (INIS)

    Wright, Kenneth D.

    1997-01-01

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain rodded fuel assemblies from batches 1, 2, 3, and 1X of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A rodded assembly is one that contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) for some period of time during its irradiation history. The objective of this analysis is to provide SAS2H calculated isotopic compositions of depleted fuel and depleted burnable poison for each fuel assembly to be used in subsequent CRC reactivity calculations containing the fuel assemblies

  9. Preparation of Pt-SDB hydrophobic catalyst used in H2-H2O isotope exchange reaction

    International Nuclear Information System (INIS)

    Li Junhua; Kang Yi; Ruan Hao; Dou Qincheng; Han Yande; Hu Shilin

    2001-01-01

    The preparation of Pt-SDB hydrophobic catalyst is studied, in which platinum as active metal and polystyrene divinylbenzene (SDB) as the carrier. Hydrogen isotope exchange reaction is carried out with Pt-SDB catalyst in counter-current in the trickle bed. The effect of preparing condition on the activity of catalyst is discussed. The results show that the excellent catalyst is obtained by reduced at the temperature of 200 degree C over 8 hours. Hydrophobic catalyst is high activity and stability as the amount of platinum content is 3%, the platinum can reach the economic use with the content of (1-2)%

  10. Tritium isotopic exchange in air detritiation dryers

    International Nuclear Information System (INIS)

    Everatt, A.E.; Johnson, R.E.; Senohrabek, J.A.; Shultz, C.M.

    1989-02-01

    Isotopic exchange between tritiated and non-tritiated water species in a molecular sieve bed has been demonstrated. At high humidities (+6 degrees Celsius dew point) the rate of tritium isotopic exchange in a 2.4 L molecular sieve bed has been demonstrated to be at least 50% of published exchange rates. In an industrial-sized air detritiation dryer, utilizing the pretreatment technique of H 2 O steam washing to elute the residual tritium, a DF of 12 600 has been demonstrated when operating at an inlet vapor tritium concentration of 14 Ci/kg and at inlet and outlet dew points of 4.8 and -54 degrees Celsius, respectively. In the NPD dryer bed studied, which was not optimally designed for full benefit from isotopic exchange, at least one order of magnitude in additional detritiation is attributed to isotopic exchange in the unsaturated zone. The technique of eluting the residual tritium from an industrial sized bed by H 2 O washing at high temperature, high humidity and low bed loading has been demonstrated to be a fast and effective way of removing tritium from a molecular sieve bed during regeneration. The isotopic exchange model accurately predicted the exchange between tritiated and non-tritiated water species in a molecular sieve bed where there is no net adsorption or desorption. The model's prediction of the tritium breakthrough trend observed in the NPD tests was poor; however, a forced fit can be achieved if the exchange rates in the MTZ and the unsaturated zone are manipulated. More experiments are needed to determine the relative rates of tritium exchange in the saturated, mass transfer, and unsaturated zones of a dryer bed

  11. Applications of stable isotopes of 2H, 13C and 15N to clinical problems

    International Nuclear Information System (INIS)

    Klein, P.D.; Szczepanik, P.A.; Hachey, D.L.

    1974-01-01

    The function of the Argonne Program is to provide synthetic, analytical instrumental capability in a core facility for the clinical investigator who needs to use 2 H, 13 C, or 15 N labelled compounds for metabolic or clinical research on pregnant women, newborn infants, young children, or for mass screening. To carry out such application development, there were six stages which were recurrent steps in every application. Five fundamental strategies should be adopted to establish the use of stable isotopes in clinical work. The instrument required for measurements was a combined gas chromatograph-mass spectrometer, and its use was schematically illustrated. Some of the successful experiences with compounds labelled by stable isotopes, such as deuterium labelled chenodeoxycholic acid, and respective 13 C and 15 N-labelled glycine were described. Deutrium labelled bile acid enabled easy and safe determination of the size of the bile acid pool and the replacement rate, providing clearer diagnoses for cholestatic liver disease and gallstones. 13 C and 15 N labelled compounds were used in clinical studies, of children with genetic disorders of amino acid metabolism, i.e., non ketotic hyperflycinemia, B 12 -responsive methyl malonic acidemia, and Lesch-Nyhan syndrome. 15 N-labelled glycine was also studied in a child with Lesch-Nyhan syndrome. (Mukohata, S.)

  12. Synergistic effect of the simultaneous chemometric analysis of {sup 1}H NMR spectroscopic and stable isotope (SNIF-NMR, {sup 18}O, {sup 13}C) data: Application to wine analysis

    Energy Technology Data Exchange (ETDEWEB)

    Monakhova, Yulia B., E-mail: yul-monakhova@mail.ru [Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, Karlsruhe 76187 (Germany); Bruker Biospin GmbH, Silberstreifen, Rheinstetten 76287 (Germany); Department of Chemistry, Saratov State University, Astrakhanskaya Street 83, Saratov 410012 (Russian Federation); Godelmann, Rolf [Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, Karlsruhe 76187 (Germany); Hermann, Armin [Landesuntersuchungsamt -Institut für Lebensmittelchemie und Arzneimittelprüfung, Emy-Roeder-Straße 1, Mainz 55129 (Germany); Kuballa, Thomas [Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, Karlsruhe 76187 (Germany); Cannet, Claire; Schäfer, Hartmut; Spraul, Manfred [Bruker Biospin GmbH, Silberstreifen, Rheinstetten 76287 (Germany); Rutledge, Douglas N. [AgroParisTech, UMR 1145, Ingénierie Procédés Aliments, 16 rue Claude Bernard, Paris F-75005 (France)

    2014-06-23

    Highlights: • {sup 1}H NMR profilings of 718 wines were fused with stable isotope analysis data (SNIF-NMR, {sup 18}O, {sup 13}C). • The best improvement was obtained for prediction of the geographical origin of wine. • Certain enhancement was also obtained for the year of vintage (from 88 to 97% for {sup 1}H NMR to 99% for the fused data). • Independent component analysis was used as an alternative chemometric tool for classification. - Abstract: It is known that {sup 1}H NMR spectroscopy represents a good tool for predicting the grape variety, the geographical origin, and the year of vintage of wine. In the present study we have shown that classification models can be improved when {sup 1}H NMR profiles are fused with stable isotope (SNIF-NMR, {sup 18}O, {sup 13}C) data. Variable selection based on clustering of latent variables was performed on {sup 1}H NMR data. Afterwards, the combined data of 718 wine samples from Germany were analyzed using linear discriminant analysis (LDA), partial least squares-discriminant analysis (PLS-DA), factorial discriminant analysis (FDA) and independent components analysis (ICA). Moreover, several specialized multiblock methods (common components and specific weights analysis (ComDim), consensus PCA and consensus PLS-DA) were applied to the data. The best improvement in comparison with {sup 1}H NMR data was obtained for prediction of the geographical origin (up to 100% for the fused data, whereas stable isotope data resulted only in 60–70% correct prediction and {sup 1}H NMR data alone in 82–89% respectively). Certain enhancement was obtained also for the year of vintage (from 88 to 97% for {sup 1}H NMR to 99% for the fused data), whereas in case of grape varieties improved models were not obtained. The combination of {sup 1}H NMR data with stable isotope data improves efficiency of classification models for geographical origin and vintage of wine and can be potentially used for other food products as well.

  13. Hydrogenation and Deuteration of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} on Cold Grains: A Clue to the Formation Mechanism of C{sub 2}H{sub 6} with Astronomical Interest

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hitomi; Kawakita, Hideyo [Koyama Astronomical Observatory, Kyoto Sangyo University Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Hidaka, Hiroshi; Hama, Tetsuya; Watanabe, Naoki [Institute of Low Temperature Science, Hokkaido University N19-W8, Kita-ku, Sapporo, Hokkaido 060-0819 (Japan); Lamberts, Thanja; Kästner, Johannes, E-mail: h_kobayashi@kyoto-nijikoubou.com [Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)

    2017-03-10

    We quantitatively investigated the hydrogen addition reactions of acetylene (C{sub 2}H{sub 2}) and ethylene (C{sub 2}H{sub 4}) on amorphous solid water (ASW) at 10 and 20 K relevant to the formation of ethane (C{sub 2}H{sub 6}) on interstellar icy grains. We found that the ASW surface enhances the reaction rates for C{sub 2}H{sub 2} and C{sub 2}H{sub 4} by approximately a factor of 2 compared to those on the pure-solid C{sub 2}H{sub 2} and C{sub 2}H{sub 4} at 10 K, probably due to an increase in the sticking coefficient and adsorption energy of the H atoms on ASW. In contrast to the previous proposal that the hydrogenation rate of C{sub 2}H{sub 4} is orders of magnitude larger than that of C{sub 2}H{sub 2}, the present results show that the difference in hydrogenation rates of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} is only within a factor of 3 on both the surfaces of pure solids and ASW. In addition, we found the small kinetic isotope effect for hydrogenation/deuteration of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} at 10 K, despite the requirement of quantum tunneling. At 20 K, the reaction rate of deuteration becomes even larger than that of hydrogenation. These unusual isotope effects might originate from a slightly larger number density of D atoms than H atoms on ASW at 20 K. The hydrogenation of C{sub 2}H{sub 2} is four times faster than CO hydrogenation and can produce C{sub 2}H{sub 6} efficiently through C{sub 2}H{sub 4} even in the environment of a dark molecular cloud.

  14. Predictions and Verification of an Isotope Marine Boundary Layer Model

    Science.gov (United States)

    Feng, X.; Posmentier, E. S.; Sonder, L. J.; Fan, N.

    2017-12-01

    A one-dimensional (1D), steady state isotope marine boundary layer (IMBL) model is constructed. The model includes meteorologically important features absent in Craig and Gordon type models, namely height-dependent diffusion/mixing and convergence of subsiding external air. Kinetic isotopic fractionation results from this height-dependent diffusion which starts as pure molecular diffusion at the air-water interface and increases linearly with height due to turbulent mixing. The convergence permits dry, isotopically depleted air subsiding adjacent to the model column to mix into ambient air. In δD-δ18O space, the model results fill a quadrilateral, of which three sides represent 1) vapor in equilibrium with various sea surface temperatures (SSTs) (high d18O boundary of quadrilateral); 2) mixture of vapor in equilibrium with seawater and vapor in the subsiding air (lower boundary depleted in both D and 18O); and 3) vapor that has experienced the maximum possible kinetic fractionation (high δD upper boundary). The results can be plotted in d-excess vs. δ18O space, indicating that these processes all cause variations in d-excess of MBL vapor. In particular, due to relatively high d-excess in the descending air, mixing of this air into the MBL causes an increase in d-excess, even without kinetic isotope fractionation. The model is tested by comparison with seven datasets of marine vapor isotopic ratios, with excellent correspondence; >95% of observational data fall within the quadrilateral area predicted by the model. The distribution of observations also highlights the significant influence of vapor from the nearby converging descending air on isotopic variations in the MBL. At least three factors may explain the affect the isotopic composition of precipitation. The model can be applied to modern as well as paleo- climate conditions.

  15. Statistical data analysis using SAS intermediate statistical methods

    CERN Document Server

    Marasinghe, Mervyn G

    2018-01-01

    The aim of this textbook (previously titled SAS for Data Analytics) is to teach the use of SAS for statistical analysis of data for advanced undergraduate and graduate students in statistics, data science, and disciplines involving analyzing data. The book begins with an introduction beyond the basics of SAS, illustrated with non-trivial, real-world, worked examples. It proceeds to SAS programming and applications, SAS graphics, statistical analysis of regression models, analysis of variance models, analysis of variance with random and mixed effects models, and then takes the discussion beyond regression and analysis of variance to conclude. Pedagogically, the authors introduce theory and methodological basis topic by topic, present a problem as an application, followed by a SAS analysis of the data provided and a discussion of results. The text focuses on applied statistical problems and methods. Key features include: end of chapter exercises, downloadable SAS code and data sets, and advanced material suitab...

  16. Predicting the solubility and lability of Zn, Cd, and Pb in soils from a minespoil-contaminated catchment by stable isotopic exchange

    Science.gov (United States)

    Marzouk, E. R.; Chenery, S. R.; Young, S. D.

    2013-12-01

    The Rookhope catchment of Weardale, England, has a diverse legacy of contaminated soils due to extensive lead mining activity over four centuries. We measured the isotopically exchangeable content of Pb, Cd and Zn (E-values) in a large representative subset of the catchment soils (n = 246) using stable isotope dilution. All three metals displayed a wide range of %E-values (c. 1-100%) but relative lability followed the sequence Cd > Pb > Zn. A refinement of the stable isotope dilution approach also enabled detection of non-reactive metal contained within suspended sub-micron (dilution, in a diverse range of soil ecosystems within the catchment of an old Pb/Zn mining area. Assess the controlling influences of soil properties on metal lability and develop predictive algorithms for metal lability in the contaminated catchment based on simple soil properties (such as pH, organic matter (LOI), and total metal content). Examine the incidence of non-isotopically-exchangeable metal held within suspended colloidal particles (SCP-metal) in filtered soil solutions (<0.22 μm) by comparing E-values from isotopic abundance in solutions equilibrated with soil and in a resin phase equilibrated with the separated solution. Assess the ability of a geochemical speciation model, WHAM(VII), to predict metal solubility using isotopically exchangeable metal as an input variable.

  17. Linking Isotopes and Panmixia: High Within-Colony Variation in Feather δ2H, δ13C, and δ15N across the Range of the American White Pelican.

    Directory of Open Access Journals (Sweden)

    Matthew W Reudink

    Full Text Available Complete panmixia across the entire range of a species is a relatively rare phenomenon; however, this pattern may be found in species that have limited philopatry and frequent dispersal. American white pelicans (Pelecanus erythrorhyncos provide a unique opportunity to examine the role of long-distance dispersal in facilitating gene flow in a species recently reported as panmictic across its broad breeding range. This species is also undergoing a range expansion, with new colonies arising hundreds of kilometers outside previous range boundaries. In this study, we use a multiple stable isotope2H, δ13C, δ15N approach to examine feather isotopic structuring at 19 pelican colonies across North America, with the goal of establishing an isotopic basemap that could be used for assigning individuals at newly established breeding sites to source colonies. Within-colony isotopic variation was extremely high, exceeding 100‰ in δ2H within some colonies (with relatively high variation also observed for δ13C and δ15N. The high degree of within-site variation greatly limited the utility of assignment-based approaches (42% cross-validation success rate; range: 0-90% success. Furthermore, clustering algorithms identified four likely isotopic clusters; however, those clusters were generally unrelated to geographic location. Taken together, the high degree of within-site isotopic variation and lack of geographically-defined isotopic clusters preclude the establishment of an isotopic basemap for American white pelicans, but may indicate that a high incidence of long-distance dispersal is facilitating gene flow, leading to genetic panmixia.

  18. Radiochemical studies of neutron deficient actinide isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.E.

    1978-04-01

    The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, /sup 242/Bk, was produced with a cross-section of approximately 10 ..mu..b in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, ..cap alpha..xn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,..cap alpha..xn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z/sub 1/ + Z/sub 2/ = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,..cap alpha..xn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of /sup 228/Pu, /sup 230/Pu, /sup 232/Cm, or /sup 238/Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes.

  19. Land-use change effects on fluxes and isotopic composition of CO2 and CH4 in Panama, and possible insights into the atmospheric H2 cycle

    Science.gov (United States)

    Pendall, E.; Schwendenmann, L.; Potvin, C.

    2003-12-01

    Land-use changes in tropical regions are believed to release a quantity of C to the atmosphere which is similar in magnitude to the entire "missing" sink for anthropogenic CO2. Our research attempts to evaluate carbon cycling in three land-cover systems in central Panama: cow pasture, native tree plantation, and undisturbed moist forest. In this ongoing project, we are collecting samples of air from profiles in the stable, nocturnal boundary layer, which is dominated by ecosystem respiration. Samples are analyzed for CO2 and its isotopes, CH4 and its C isotopic composition, N2O, H2, CO, and SF6. We use a flux-gradient method to estimate ecosystem-scale fluxes of trace gases from soil to the atmosphere. Keeling plot intercepts reflect the respiratory contribution of C3 and C4 biomass under contrasting land cover systems, and how this varies with pronounced wet-dry seasonal cycles. C isotopes of methane and gradients of molecular hydrogen provide insight into the source of methane production from pasture and plantation soils. Rainforest soils, in contrast, are sinks for both atmospheric methane and hydrogen. The process oriented nature of this field experiment will contribute to parameterization of carbon cycle models at a variety of spatial scales.

  20. Hydrogen and oxygen stable isotope ratios of milk in the United States.

    Science.gov (United States)

    Chesson, Lesley A; Valenzuela, Luciano O; O'Grady, Shannon P; Cerling, Thure E; Ehleringer, James R

    2010-02-24

    Models of hydrogen and oxygen incorporation in human tissues recognize the impact of geographic location on the isotopic composition of fluid intake, but inputs can include nonlocal beverages, such as milk. Milk and cow drinking water were collected from dairies, and commercially available milk was purchased from supermarkets and fast food restaurants. It was hypothesized that milk water delta(2)H and delta(18)O values record geographic location information. Correlations between milk water isotope ratios and purchase location tap water were significant. However, the amount of variation in milk delta(2)H and delta(18)O values explained by tap water was low, suggesting a single estimation of fluid input isotope ratios may not always be adequate in studies. The delta(2)H and delta(18)O values of paired milk and cow drinking water were related, suggesting potential for geographical origin assignment using stable isotope analysis. As an application example, milk water delta(18)O values were used to predict possible regions of origin for restaurant samples.

  1. Inferring the source of evaporated waters using stable H and O isotopes

    Science.gov (United States)

    Stable isotope ratios of H and O are widely used to identify the source of water, e.g., in aquifers, river runoff, soils, plant xylem, and plant-based beverages. In situations where the sampled water is partially evaporated, its isotope values will have evolved along an evaporati...

  2. Fitting polytomous Rasch models in SAS

    DEFF Research Database (Denmark)

    Christensen, Karl Bang

    2006-01-01

    The item parameters of a polytomous Rasch model can be estimated using marginal and conditional approaches. This paper describes how this can be done in SAS (V8.2) for three item parameter estimation procedures: marginal maximum likelihood estimation, conditional maximum likelihood estimation, an...

  3. The synthesis of 7-chloro-5-pentadeuteriophenyl-1-methyl-1H-1, 5-benzodiazepine-2,4(3H, 5H)dione ([2H5]clobazam)

    International Nuclear Information System (INIS)

    Borel, A.G.; Abbott, F.S.

    1990-01-01

    Pentadeuteriophenyl clobazam was synthesized in essentially quantitative isotopic purity, and characterized by 1 H-NMR and mass spectroscopy. The title compound was found to be >98% pure by HPLC, and its retention time (t R 6.17 min) was less than that of an authentic clobazam standard (t R 6.32 min). Of the five steps in the synthesis of clobazam, the most susceptible to deuterium exchange was the nucleophilic substitution of 2,4-dichloronitrobenzene by aniline-d 7 to form N-(5-chloro-2-nitrophenyl)penta-deuteriophenylamine. In this step, the isotopic impurity aniline-2,3,4,5-d 5 introduced protons from nitrogen into the ortho and para positions of the deuteriophenyl ring of N-(5-chloro-2-nitrophenyl)pentadeuteriophenylamine. (author)

  4. Isotopic ratios D/H and 15N/14N in giant planets

    Science.gov (United States)

    Marboeuf, Ulysse; Thiabaud, Amaury; Alibert, Yann; Benz, Willy

    2018-04-01

    The determination of isotopic ratios in planets is important since it allows us to investigate the origins and initial composition of materials. The present work aims to determine the possible range of values for isotopic ratios D/H and 15N/14N in giant planets. The main objective is to provide valuable theoretical assumptions on the isotopic composition of giant planets, their internal structure, and the main reservoirs of species. We use models of ice formation and planet formation that compute the composition of ices and gas accreted in the core and the envelope of planets. Assuming a single initial value for isotopic ratios in volatile species, and disruption of planetesimals in the envelope of gaseous planets, we obtain a wide variety of D/H and 15N/14N ratios in low-mass planets (≤100 Mearth) due to the migration pathway of planets, the accretion time of gas species whose relative abundance evolves with time, and isotope exchanges among species. If giant planets with mass greater than 100 Mearth have solar isotopic ratios such as Jupiter and Saturn due to their higher envelope mass, Neptune-type planets present values ranging between one and three times the solar value. It seems therefore difficult to use isotopic ratios in the envelope of these planets to get information about their formation in the disc. For giant planets, the ratios allow us to constrain the mass fraction of volatile species in the envelope needed to reproduce the observational data by assuming initial values for isotopic ratios in volatile species.

  5. Calculation of Site-specific Carbon-isotope Fractionation in Pedogenic Oxide Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Rustad, James R.; Zarzycki, Piotr

    2008-07-29

    Ab initio molecular dynamics and quantum chemistry techniques are used to calculate the structure, vibrational frequencies, and carbon-isotope fractionation factors of the carbon dioxide component [CO2(m)] of soil (oxy)hydroxide minerals goethite, diaspore, and gibbsite. We have identified two possible pathways of incorporation of CO2(m) into (oxy)hydroxide crystal structures: one in which the C4+ substitutes for four H+ [CO2(m)A] and another in which C4+ substitutes for (Al3+,Fe3+) + H+ [CO2(m)B]. Calculations of isotope fractionation factors give large differences between the two structures, with the CO2(m)A being isotopically lighter than CO2(m)B by ≈10 per mil in the case of gibbsite and nearly 20 per mil in the case of goethite. The reduced partition function ratio of CO2(m)B structure in goethite differs from CO2(g) by <1 per mil. The predicted fractionation for gibbsite is >10 per mil higher, close to those measured for calcite and aragonite. The surprisingly large difference in the carbon-isotope fractionation factor between the CO2(m)A and CO2(m)B structures within a given mineral suggests that the isotopic signatures of soil (oxy)hydroxide could be heterogeneous.

  6. Human-Induced Long-Term Shifts in Gull Diet from Marine to Terrestrial Sources in North America's Coastal Pacific: More Evidence from More Isotopes2H, δ34S).

    Science.gov (United States)

    Hobson, Keith A; Blight, Louise K; Arcese, Peter

    2015-09-15

    Measurements of naturally occurring stable isotopes in tissues of seabirds and their prey are a powerful tool for investigating long-term changes in marine foodwebs. Recent isotopic (δ(15)N, δ(13)C) evidence from feathers of Glaucous-winged Gulls (Larus glaucescens) has shown that over the last 150 years, this species shifted from a midtrophic marine diet to one including lower trophic marine prey and/or more terrestrial or freshwater foods. However, long-term isotopic patterns of δ(15)N and δ(13)C cannot distinguish between the relative importance of lower trophic-level marine foods and terrestrial sources. We examined 48 feather stable-hydrogen (δ(2)H) and -sulfur (δ(34)S) isotope values from this same 150-year feather set and found additional isotopic evidence supporting the hypothesis that gulls shifted to terrestrial and/or freshwater prey. Mean feather δ(2)H and δ(34)S values (± SD) declined from the earliest period (1860-1915; n = 12) from -2.5 ± 21.4 ‰ and 18.9 ± 2.7 ‰, respectively, to -35.5 ± 15.5 ‰ and 14.8 ± 2.4 ‰, respectively, for the period 1980-2009 (n = 12). We estimated a shift of ∼ 30% increase in dependence on terrestrial/freshwater sources. These results are consistent with the hypothesis that gulls increased terrestrial food inputs in response to declining forage fish availability.

  7. Defining an absolute reference frame for 'clumped' isotope studies of CO 2

    Science.gov (United States)

    Dennis, Kate J.; Affek, Hagit P.; Passey, Benjamin H.; Schrag, Daniel P.; Eiler, John M.

    2011-11-01

    We present a revised approach for standardizing and reporting analyses of multiply substituted isotopologues of CO 2 (i.e., 'clumped' isotopic species, especially the mass-47 isotopologues). Our approach standardizes such data to an absolute reference frame based on theoretical predictions of the abundances of multiply-substituted isotopologues in gaseous CO 2 at thermodynamic equilibrium. This reference frame is preferred over an inter-laboratory calibration of carbonates because it enables all laboratories measuring mass 47 CO 2 to use a common scale that is tied directly to theoretical predictions of clumping in CO 2, regardless of the laboratory's primary research field (carbonate thermometry or CO 2 biogeochemistry); it explicitly accounts for mass spectrometric artifacts rather than convolving (and potentially confusing) them with chemical fractionations associated with sample preparation; and it is based on a thermodynamic equilibrium that can be experimentally established in any suitably equipped laboratory using commonly available materials. By analyzing CO 2 gases that have been subjected to established laboratory procedures known to promote isotopic equilibrium (i.e., heated gases and water-equilibrated CO 2), and by reference to thermodynamic predictions of equilibrium isotopic distributions, it is possible to construct an empirical transfer function that is applicable to data with unknown clumped isotope signatures. This transfer function empirically accounts for the fragmentation and recombination reactions that occur in electron impact ionization sources and other mass spectrometric artifacts. We describe the protocol necessary to construct such a reference frame, the method for converting gases with unknown clumped isotope compositions to this reference frame, and suggest a protocol for ensuring that all reported isotopic compositions (e.g., Δ 47 values; Eiler and Schauble, 2004; Eiler, 2007) can be compared among different laboratories and

  8. Oxygen isotopic tracing study of the dry thermal oxidation of 6H SiC

    International Nuclear Information System (INIS)

    Vickridge, I.C.; Ganem, J.-J.; Battistig, G.; Szilagyi, E.

    2000-01-01

    The (0 0 0 1) and (0 0 0 1-bar) faces of 6H SiC have been oxidised sequentially at 1100 deg. C and 100 mbar in ultra-dry oxygen of natural isotopic concentration and in ultra-dry oxygen highly enriched in 18 O. Measurement of the 18 O isotopic concentration profiles by nuclear resonance profiling with the narrow resonance at 151 keV in 18 O(p,α) 15 N shows that on the carbon-terminated face (0 0 0 1-bar) the oxidation mechanism is rather similar to that observed on Si(1 0 0), but that on the silicon-terminated face (0 0 0 1) the surface isotopic exchange and oxide formation are superposed. The surface exchange observed during a third dry oxidation, in 16 O 2 , is very similar in magnitude and spatial extent on Si(1 0 0), and the two 6H SiC faces, suggesting that at least near the surface the nature and composition of the three oxides are very similar

  9. Oxygen isotopic tracing study of the dry thermal oxidation of 6H SiC

    Energy Technology Data Exchange (ETDEWEB)

    Vickridge, I.C. E-mail: vickridge@gps.jussieu.fr; Ganem, J.-J.; Battistig, G.; Szilagyi, E

    2000-03-01

    The (0 0 0 1) and (0 0 0 1-bar) faces of 6H SiC have been oxidised sequentially at 1100 deg. C and 100 mbar in ultra-dry oxygen of natural isotopic concentration and in ultra-dry oxygen highly enriched in {sup 18}O. Measurement of the {sup 18}O isotopic concentration profiles by nuclear resonance profiling with the narrow resonance at 151 keV in {sup 18}O(p,{alpha}){sup 15}N shows that on the carbon-terminated face (0 0 0 1-bar) the oxidation mechanism is rather similar to that observed on Si(1 0 0), but that on the silicon-terminated face (0 0 0 1) the surface isotopic exchange and oxide formation are superposed. The surface exchange observed during a third dry oxidation, in {sup 16}O{sub 2}, is very similar in magnitude and spatial extent on Si(1 0 0), and the two 6H SiC faces, suggesting that at least near the surface the nature and composition of the three oxides are very similar.

  10. Criticality reference benchmark calculations for burnup credit using spent fuel isotopics

    International Nuclear Information System (INIS)

    Bowman, S.M.

    1991-04-01

    To date, criticality analyses performed in support of the certification of spent fuel casks in the United States do not take credit for the reactivity reduction that results from burnup. By taking credit for the fuel burnup, commonly referred to as ''burnup credit,'' the fuel loading capacity of these casks can be increased. One of the difficulties in implementing burnup credit in criticality analyses is that there have been no critical experiments performed with spent fuel which can be used for computer code validation. In lieu of that, a reference problem set of fresh fuel critical experiments which model various conditions typical of light water reactor (LWR) transportation and storage casks has been identified and used in the validation of SCALE-4. This report documents the use of this same problem set to perform spent fuel criticality benchmark calculations by replacing the actual fresh fuel isotopics from the experiments with six different sets of calculated spent fuel isotopics. The SCALE-4 modules SAS2H and CSAS4 were used to perform the analyses. These calculations do not model actual critical experiments. The calculated k-effectives are not supposed to equal unity and will vary depending on the initial enrichment and burnup of the calculated spent fuel isotopics. 12 refs., 11 tabs

  11. Use of Multiple Linear Regression Method for Modelling Seasonal Changes in Stable Isotopes of 18O and 2H in 30 Pouns in Gilan Province

    Directory of Open Access Journals (Sweden)

    M.A. Mousavi Shalmani

    2014-08-01

    Full Text Available In order to assessment of water quality and characterize seasonal variation in 18O and 2H in relation with different chemical and physiographical parameters and modelling of effective parameters, an study was conducted during 2010 to 2011 in 30 different ponds in the north of Iran. Samples were collected at three different seasons and analysed for chemical and isotopic components. Data shows that highest amounts of δ18O and δ2H were recorded in the summer (-1.15‰ and -12.11‰ and the lowest amounts were seen in the winter (-7.50‰ and -47.32‰ respectively. Data also reveals that there is significant increase in d-excess during spring and summer in ponds 20, 21, 22, 24, 25 and 26. We can conclude that residual surface runoff (from upper lands is an important source of water to transfer soluble salts in to these ponds. In this respect, high retention time may be the main reason for movements of light isotopes in to the ponds. This has led d-excess of pond 12 even greater in summer than winter. This could be an acceptable reason for ponds 25 and 26 (Siyahkal county with highest amount of d-excess and lowest amounts of δ18O and δ2H. It seems light water pumped from groundwater wells with minor source of salt (originated from sea deep percolation in to the ponds, could may be another reason for significant decrease in the heavy isotopes of water (18O and 2H for ponds 2, 12, 14 and 25 from spring to summer. Overall conclusion of multiple linear regression test indicate that firstly from 30 variables (under investigation only a few cases can be used for identifying of changes in 18O and 2H by applications. Secondly, among the variables (studied, phytoplankton content was a common factor for interpretation of 18O and 2H during spring and summer, and also total period (during a year. Thirdly, the use of water in the spring was recommended for sampling, for 18O and 2H interpretation compared with other seasons. This is because of function can be

  12. An Experimental and Theoretical Study on the Kinetic Isotope Effect of C2H6 and C2D6 Reaction with OH

    KAUST Repository

    Khaled, Fathi; Giri, Binod; Szőri, Milá n; Viskolcz, Bé la; Farooq, Aamir

    2015-01-01

    We report experimental and theoretical results for the deuterated kinetic isotope effect (DKIE) of the reaction of OH with ethane (C2H6) and deuterated ethane (C2D6). The reactions were investigated behind reflected shock waves over 800–1350 K by monitoring OH radicals near 306.69 nm using laser absorption. In addition, high level CCSD(T)/cc-pV(T,Q)Z//MP2/cc-pVTZ quantum chemical and statistical rate theory calculations were performed which agreed very well with the experimental findings. The results reported herein provide the first experimental evidence that DKIE for alkanes asymptotes to a value of 1.4 at high temperatures.

  13. An Experimental and Theoretical Study on the Kinetic Isotope Effect of C2H6 and C2D6 Reaction with OH

    KAUST Repository

    Khaled, Fathi

    2015-10-30

    We report experimental and theoretical results for the deuterated kinetic isotope effect (DKIE) of the reaction of OH with ethane (C2H6) and deuterated ethane (C2D6). The reactions were investigated behind reflected shock waves over 800–1350 K by monitoring OH radicals near 306.69 nm using laser absorption. In addition, high level CCSD(T)/cc-pV(T,Q)Z//MP2/cc-pVTZ quantum chemical and statistical rate theory calculations were performed which agreed very well with the experimental findings. The results reported herein provide the first experimental evidence that DKIE for alkanes asymptotes to a value of 1.4 at high temperatures.

  14. Extending and Enhancing SAS (Static Analysis Suite)

    CERN Document Server

    Ho, David

    2016-01-01

    The Static Analysis Suite (SAS) is an open-source software package used to perform static analysis on C and C++ code, helping to ensure safety, readability and maintainability. In this Summer Student project, SAS was enhanced to improve ease of use and user customisation. A straightforward method of integrating static analysis into a project at compilation time was provided using the automated build tool CMake. The process of adding checkers to the suite was streamlined and simplied by developing an automatic code generator. To make SAS more suitable for continuous integration, a reporting mechanism summarising results was added. This suitability has been demonstrated by inclusion of SAS in the Future Circular Collider Software nightly build system. Scalability of the improved package was demonstrated by using the tool to analyse the ROOT code base.

  15. The effect of carbonic anhydrase on the kinetics and equilibrium of the oxygen isotope exchange in the CO2-H2O system: Implications for δ18O vital effects in biogenic carbonates

    Science.gov (United States)

    Uchikawa, Joji; Zeebe, Richard E.

    2012-10-01

    Interpretations of the primary paleoceanographic information recorded in stable oxygen isotope values (δ18O) of biogenic CaCO3 can be obscured by disequilibrium effects. CaCO3 is often depleted in 18O relative to the δ18O values expected for precipitation in thermodynamic equilibrium with ambient seawater as a result of vital effects. Vital effects in δ18O have been explained in terms of the influence of fluid pH on the overall δ18O of the sum of dissolved inorganic carbon (DIC) species (often referred to as "pH model") and in terms of 18O depletion as a result of the kinetic effects associated with CO2 hydration (CO2 + H2O ↔ H2CO3 ↔ HCO3- + H+) and CO2 hydroxylation (CO2 + OH- ↔ HCO3-) in the calcification sites (so-called "kinetic model"). This study addresses the potential role of an enzyme, carbonic anhydrase (CA), that catalyzes inter-conversion of CO2 and HCO3- in relation to the underlying mechanism of vital effects. We performed quantitative inorganic carbonate precipitation experiments in order to examine the changes in 18O equilibration rate as a function of CA concentration. Experiments were performed at pH 8.3 and 8.9. These pH values are comparable to the average surface ocean pH and elevated pH levels observed in the calcification sites of some coral and foraminiferal species, respectively. The rate of uncatalyzed 18O exchange in the CO2-H2O system is governed by the pH-dependent DIC speciation and the kinetic rate constant for CO2 hydration and hydroxylation, which can be summarized by a simple mathematical expression. The results from control experiments (no CA addition) are in agreement with this expression. The results from control experiments also suggest that the most recently published kinetic rate constant for CO2 hydroxylation has been overestimated. When CA is present, the 18O equilibration process is greatly enhanced at both pH levels due to the catalysis of CO2 hydration by the enzyme. For example, the time required for 18O

  16. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    Science.gov (United States)

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as

  17. H-superconducting cyclotron for PET isotope production

    International Nuclear Information System (INIS)

    Smirnov, V.L.; Vorozhtsov, S.B.; Vincent, J.

    2014-01-01

    The scientific design of a 14-MeV H - compact superconducting cyclotron for producing of the 18 F and 13 N isotopes has been developed. Main requirements to the facility as a medical accelerator are met in the design. In particular, the main requirement for the cyclotron was the smallest possible size due to the superconducting magnet. The calculations show that the proposed cyclotron allows extracted beam intensity over 500 μA. To increase system reliability and production rates, an external H - ion source is applied. The choice of the cyclotron concept, design of the structure elements, calculation of the electromagnetic fields and beam dynamics from the ion source to the extraction system were performed.

  18. Homework Solutions S.A.S.

    OpenAIRE

    Acero Mora, Mariluz; Hernández Laguna, Liliana

    2012-01-01

    Homework Solutions S.A.S, será una empresa de servicios dedicada a brindar asesorías de tareas y trabajos bilingües con soluciones al instante sin que los padres de familia tengan que pagar por meses o semestres. Está previsto que dicha empresa empiece operaciones en el mes de Enero de 2013. Homework Solutions S.A.S, trabajará a domicilio, en los colegios que requieran sus servicios y en su sede principal ubicada al norte de la ciudad de Bogotá.

  19. Prediction, Detection, and Validation of Isotope Clusters in Mass Spectrometry Data

    Directory of Open Access Journals (Sweden)

    Hendrik Treutler

    2016-10-01

    Full Text Available Mass spectrometry is a key analytical platform for metabolomics. The precise quantification and identification of small molecules is a prerequisite for elucidating the metabolism and the detection, validation, and evaluation of isotope clusters in LC-MS data is important for this task. Here, we present an approach for the improved detection of isotope clusters using chemical prior knowledge and the validation of detected isotope clusters depending on the substance mass using database statistics. We find remarkable improvements regarding the number of detected isotope clusters and are able to predict the correct molecular formula in the top three ranks in 92 % of the cases. We make our methodology freely available as part of the Bioconductor packages xcms version 1.50.0 and CAMERA version 1.30.0.

  20. Isotopic evidence for the infiltration of mantle and metamorphic CO2-H2O fluids from below in faulted rocks from the San Andreas Fault System

    Energy Technology Data Exchange (ETDEWEB)

    Pili, E.; Kennedy, B.M.; Conrad, M.E.; Gratier, J.-P.

    2010-12-15

    To characterize the origin of the fluids involved in the San Andreas Fault (SAF) system, we carried out an isotope study of exhumed faulted rocks from deformation zones, vein fillings and their hosts and the fluid inclusions associated with these materials. Samples were collected from segments along the SAF system selected to provide a depth profile from upper to lower crust. In all, 75 samples from various structures and lithologies from 13 localities were analyzed for noble gas, carbon, and oxygen isotope compositions. Fluid inclusions exhibit helium isotope ratios ({sup 3}He/{sup 4}He) of 0.1-2.5 times the ratio in air, indicating that past fluids percolating through the SAF system contained mantle helium contributions of at least 35%, similar to what has been measured in present-day ground waters associated with the fault (Kennedy et al., 1997). Calcite is the predominant vein mineral and is a common accessory mineral in deformation zones. A systematic variation of C- and O-isotope compositions of carbonates from veins, deformation zones and their hosts suggests percolation by external fluids of similar compositions and origin with the amount of fluid infiltration increasing from host rocks to vein to deformation zones. The isotopic trend observed for carbonates in veins and deformation zones follows that shown by carbonates in host limestones, marbles, and other host rocks, increasing with increasing contribution of deep metamorphic crustal volatiles. At each crustal level, the composition of the infiltrating fluids is thus buffered by deeper metamorphic sources. A negative correlation between calcite {delta}{sup 13}C and fluid inclusion {sup 3}He/{sup 4}He is consistent with a mantle origin for a fraction of the infiltrating CO{sub 2}. Noble gas and stable isotope systematics show consistent evidence for the involvement of mantle-derived fluids combined with infiltration of deep metamorphic H{sub 2}O and CO{sub 2} in faulting, supporting the involvement of

  1. Saturation and isotopic replacement of deuterium in low-Z material

    International Nuclear Information System (INIS)

    Doyle, B.L.; Wampler, W.R.; Brice, D.K.; Picraux, S.T.

    1980-01-01

    The saturation and replacement of hydrogen isotopes implanted into TiC, TiB 2 , VB 2 , B 4 C, B, Si, and C has been examined experimentally and modeled theoretically. The deuterium saturation concentrations for these materials varied from .16 to .57. A new isotopic replacement model is presented which predicts isotopic trapping and exchange on the basis of the depth dependence of the implanted ions and the experimentally determined hydrogen saturation concentration. Our results indicate that, for these materials used as coatings on components in a D-T fueled tokamak, T recovery by ion induced replacement with H or D should be feasible and that T buildup will be at tolerable levels

  2. Limits on the expression of enzyme-mediated solvent isotope effects

    International Nuclear Information System (INIS)

    Northrop, D.B.

    1981-01-01

    Steady-state analysis of primary solvent isotope effects on enzyme-catalyzed reactions, mediated by solvent-shielded di- or triprotic groups on the enzyme, yields equations describing the upper limit of intramolecular isotopic discrimation. For diprotic groups [P/sub H]/[P/sub D/] = 3k/sub H//k/sub D/ + 3), and for triprotic groups [P/sub H/]/[P/sub D/] = [7(k/sub H//k/sub D/ 2 = 10k/sub H/k/sub D/ + 1]/[(k/sub H//k/sub D/) 2 + 10k/sub H//k/sub D/ + 7]. Given a normal intrinsic isotope effect of k/sub H//k/sub D/ = 7, maximal isotopic discrimation in 50:50 H 2 O:D 2 O is therefore 2.2 and 3.3, respectively, versus 1.0 for a monoprotic group. Intermediate values of isotope discrimination may be interpreted with respect to distinguishing enzyme-mediated catalytic mechanisms from those of direct transfer between solvent and substrate, and to identifying mediating groups, by comparisons of isotopic discrimination at high and low concentrations of substrates and by reference to intrinsic and intermolecular isotope effects

  3. Laser ablation molecular isotopic spectrometry of water for {sub 1}D{sup 2}/{sub 1}H{sup 1} ratio analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Arnab [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mao, Xianglei; Chan, George C.-Y. [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Russo, Richard E., E-mail: rerusso@lbl.gov [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2013-10-01

    Laser Ablation Molecular Isotopic Spectrometry (LAMIS) has been investigated for optical isotopic analysis of the deuterium to protium ratio in enriched water samples in ambient air at atmospheric pressure. Multivariate PLSR (Partial Least Squares Regression) based calibrations were carried out and validated using multiple statistical parameters. Comparisons of results are reported using two spectrometers having two orders of magnitude difference in spectral resolution. The accuracy and precision of isotopic analysis depends on the spectral resolution and the inherent isotope shift of the elements. The requirements for spectral resolution of the measurement system can be significantly relaxed when the isotopic abundance ratio is determined using chemometric processing of the spectra. Large isotopic shifts in the individual rotational branches of OH/OD molecular emission spectra were measured. Optimized temporal conditions for LAMIS measurements were established. Several sub-regions of spectra were used for PLSR calibration and the results demonstrate that both the emission intensity and degree of spectral differentiation affect the quality of the PLSR calibration. LAMIS results also were compared with traditional LIBS results obtained using PLSR and a spectral deconvolution method, demonstrating the advantages of LAMIS over LIBS with respect to isotopic composition determination. - Highlights: • D/H isotopic ratio in water over a large dynamic range was measured by LAMIS. • PLSR based multivariate calibration was used for construction of calibrations. • Region of interest significantly affects the analytical results of isotopic ratio. • LAMIS has improved results over LIBS irrespective of the spectrometer resolution. • The superiority is more prominent in the case using low resolution spectrometer.

  4. Isotope exchange reaction in Li2ZrO3 packed bed

    International Nuclear Information System (INIS)

    Kawamura, Y.; Enoeda, M.; Okuno, K.

    1998-01-01

    To understand the release behavior of bred tritium in a solid breeder blanket, the tritium transfer rate and tritium inventory for various mass transfer processes should be investigated. The contribution of the surface reactions (adsorption, desorption and two kinds of isotope exchange reactions) to the release process cannot be ignored. It is believed that two kinds of isotope exchange reactions (gaseous hydrogen-tritiated water and water vapor-tritiated water) occur on the surface of the solid breeder materials when hydrogen is added to the sweep gas to enhance the tritium release rate. The isotope exchange reaction study in H-D systems was carried out using a Li 2 ZrO 3 packed bed. The exchange reaction between gaseous hydrogen and water was the rate controlling step among the two kinds of exchange reactions. The reaction rate constants were quantified, and experimental equations were proposed. The equilibrium constant of the isotope exchange reaction in the H-D system was obtained from experimental data and was found to be 1.17. (orig.)

  5. ARP: A PC-compatible scheme for generating ORIGEN-S cross section library

    International Nuclear Information System (INIS)

    Leal, L.C.; Hermann, O.W.; Parks, C.V.

    1995-01-01

    The SAS2H sequence of the SCALE code system has been widely used for treating problems related to the characterization of nuclear systems for disposal, storage, and shipment. The calculations, in general, consist of determining the isotope compositions of the different materials present in the problem as a function of time, which subsequently enable determination of the heat generation and radiation source terms. In the SAS2H scheme, time-dependent material concentrations are obtained using the ORIGEN-S code based on a point-depletion calculation that utilizes problem-dependent cross-section libraries generated by distinct codes of the SAS2H sequence. In this paper we will be concerned with the methodology utilized in the SAS2H control module to create cross-section libraries for point-depletion calculations with the ORIGEN-S code. A brief description of the SAS2H scheme will be given, and a new capability, the automatic rapid processing (ARP), for generating problem-dependent ORIGEN-S cross-section libraries will be presented. Use of ARP can enable execution of ORIGEN-S on a personal computer with identical accuracy to that obtained with SAS2H

  6. Modeling Equilibrium Fe Isotope Fractionation in Fe-Organic Complexes: Implications for the use of Fe Isotopes as a Biomarker and Trends Based on the Properties of Bound Ligands

    Science.gov (United States)

    Domagal-Goldman, S.; Kubicki, J. D.

    2006-05-01

    Fe Isotopes have been proposed as a useful tracer of biological and geochemical processes. Key to understanding the effects these various processes have on Fe isotopes is accurate modeling of the reactions responsible for the isotope fractionations. In this study, we examined the theoretical basis for the claims that Fe isotopes can be used as a biomarker. This was done by using molecular orbital/density functional theory (MO/DFT) calculations to predict the equilibrium fractionation of Fe isotopes due to changes in the redox state and the bonding environment of Fe. Specifically, we predicted vibrational frequencies for iron desferrioxamine (Fe-DFOB), iron triscatechol (Fe(cat)3), iron trisoxalate (Fe(ox)3), and hexaaquo iron (Fe(H2O)6) for complexes containing both ferrous (Fe2+) and ferric (Fe3+) iron. Using these vibrational frequencies, we then predicted fractionation factors between these six complexes. The predicted fractionation factors resulting from changes in the redox state of Fe fell in the range 2.5- 3.5‰. The fractionation factors resulting from changes in the bonding environment of Fe ranged from 0.2 to 1.4‰. These results indicate that changes in the bonding strength of Fe ligands are less important to Fe isotope fractionation processes than are changes to the redox state of Fe. The implications for use of Fe as a tracer of biological processes is clear: abiological redox changes must be ruled out in a sample before Fe isotopes are considered as a potential biomarker. Furthermore, the use of Fe isotopes to measure the redox state of the Earths surface environment through time is supported by this work, since changes in the redox state of Fe appear to be the more important driver of isotopic fractionations. In addition to the large differences between redox-driven fractionations and ligand-driven fractionations, we will also show general trends in the demand for heavy Fe isotopes as a function of properties of the bound ligand. This will help the

  7. Understanding H isotope adsorption and absorption of Al-alloys using modeling and experiments (LDRD: #165724)

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Donald K. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Zhou, Xiaowang [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Karnesky, Richard A. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Kolasinski, Robert [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Foster, Michael E. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Thurmer, Konrad [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Chao, Paul [Carnegie Mellon University, Pittsburgh, PA (United States); Epperly, Ethan Nicholas [Livermore Valley Charter Preparatory High School, Livermore, CA (United States); Zimmerman, Jonathan A. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Wong, Bryan M. [Univ. of California, Riverside, CA (United States); Sills, Ryan B. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-09-01

    Current austenitic stainless steel storage reservoirs for hydrogen isotopes (e.g. deuterium and tritium) have performance and operational life-limiting interactions (e.g. embrittlement) with H-isotopes. Aluminum alloys (e.g.AA2219), alternatively, have very low H-isotope solubilities, suggesting high resistance towards aging vulnerabilities. This report summarizes the work performed during the life of the Lab Directed Research and Development in the Nuclear Weapons investment area (165724), and provides invaluable modeling and experimental insights into the interactions of H isotopes with surfaces and bulk AlCu-alloys. The modeling work establishes and builds a multi-scale framework which includes: a density functional theory informed bond-order potential for classical molecular dynamics (MD), and subsequent use of MD simulations to inform defect level dislocation dynamics models. Furthermore, low energy ion scattering and thermal desorption spectroscopy experiments are performed to validate these models and add greater physical understanding to them.

  8. Comparison of force fields and calculation methods for vibration intervals of isotopic H+3 molecules

    International Nuclear Information System (INIS)

    Carney, G.D.; Adler-Golden, S.M.; Lesseski, D.C.

    1986-01-01

    This paper reports (a) improved values for low-lying vibration intervals of H + 3 , H 2 D + , D 2 H + , and D + 3 calculated using the variational method and Simons--Parr--Finlan representations of the Carney--Porter and Dykstra--Swope ab initio H + 3 potential energy surfaces, (b) quartic normal coordinate force fields for isotopic H + 3 molecules, (c) comparisons of variational and second-order perturbation theory, and (d) convergence properties of the Lai--Hagstrom internal coordinate vibrational Hamiltonian. Standard deviations between experimental and ab initio fundamental vibration intervals of H + 3 , H 2 D + , D 2 H + , and D + 3 for these potential surfaces are 6.9 (Carney--Porter) and 1.2 cm -1 (Dykstra--Swope). The standard deviations between perturbation theory and exact variational fundamentals are 5 and 10 cm -1 for the respective surfaces. The internal coordinate Hamiltonian is found to be less efficient than the previously employed ''t'' coordinate Hamiltonian for these molecules, except in the case of H 2 D +

  9. Measurement of the D/H, 18O/16O, and 17O/16O Isotope Ratios in Water by Laser Absorption Spectroscopy at 2.73 μm

    Directory of Open Access Journals (Sweden)

    Tao Wu

    2014-05-01

    Full Text Available A compact isotope ratio laser spectrometry (IRLS instrument was developed for simultaneous measurements of the D/H, 18O/16O and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm. Special attention is paid to the spectral data processing and implementation of a Kalman adaptive filtering to improve the measurement precision. Reduction of up to 3-fold in standard deviation in isotope ratio determination was obtained by the use of a Fourier filtering to remove undulation structure from spectrum baseline. Application of Kalman filtering enables isotope ratio measurement at 1 s time intervals with a precision (<1‰ better than that obtained by conventional 30 s averaging, while maintaining a fast system response. The implementation of the filter is described in detail and its effects on the accuracy and the precision of the isotope ratio measurements are investigated.

  10. Isotopic equilibrium constants of the deuterium exchange between HDO and H{sub 2}S, H{sub 2}Se and H{sub 2}Te; Etude des constantes des equilibres isotopiques du deuterium entre l'eau et les hydrures des metalloides de la deuxieme famille

    Energy Technology Data Exchange (ETDEWEB)

    Marx, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-11-15

    We have determined experimentally the equilibrium constant K of each of the following isotope exchanges: SH{sub 2} + OHD {r_reversible} SHD + OH{sub 2}; SeH{sub 2} + OHD {r_reversible} SeHD + OH{sub 2}; TeH{sub 2} + OHD {r_reversible} TeHD + OH{sub 2}. In gaseous phase, statistical thermodynamics leads to the expression: K (Z{sub OHD} x Z{sub RH{sub 2}})/(Z{sub OH{sub 2}} x Z{sub RHD}) x e{sup W/T} (R being the elements S, Se or Te). Z, the partition functions, have been calculated and, through our experimental results, the constant W has been determined. Having obtained W, the equilibrium constant K has been calculated for a series of temperatures. (author) [French] Nous avons determine experimentalement la constante K de chacun des equilibres isotopiques suivants: SH{sub 2} + OHD {r_reversible} SHD + OH{sub 2}; SeH{sub 2} + OHD {r_reversible} SeHD + OH{sub 2}; TeH{sub 2} + OHD {r_reversible} TeHD + OH{sub 2}. En phase gazeuse, la thermodynamique donne l'expression: K = (Z{sub OHD} x Z{sub RH{sub 2}})/(Z{sub OH{sub 2}} x Z{sub RHD}) x e{sup W/T} (R representant un atome de soufre, selenium ou tellure). Les fonctions de partition Z de chacune des molecules ont ete calculees et, grace a nos resultats experimentaux, nous avons determine la constante W. Connaissant W, la constante d'equilibre K a pu etre tabulee en fonction de la temperature. (auteur)

  11. A demonstration of the 'isotope wind tunnel principle' in JET and its use in predicting reactor performance

    International Nuclear Information System (INIS)

    Cordey, J.; Alper, B.; Budny, R.

    2000-01-01

    ELMy H-mode pulses have been obtained with different hydrogenic isotopes (H and D) but having the same profiles of the dimensionless parameters ρ*, β*, ν* and q, to test whether the confinement scale invariance principle is valid in a tokamak. The fact that the confinement times, the ELM and sawtooth frequencies in the two pulses all scale as expected suggests that the invariance principle is satisfied through the plasma radial extent, in spite of the differing physical processes taking place in the plasma centre, core and edge regions. An application of this 'isotope windtunnel technique' to predicting D-T performance of next step devices is discussed. In tokamak discharges, such as the steady state ELMy H-mode, the physical processes change dramatically as one moves out in minor radius. In the central region the temperature gradient is controlled by MHD modes (sawteeth), whilst outside in what is known as the core confinement region the transport is thought to be due to small scale Larmor radius (r i ) size turbulence, such as that caused by the ion temperature gradient instability. Finally in the edge region the transport is almost neoclassical with intermittent MHD events (ELMs) controlling the steepness of the gradients in this region. From theoretical analysis, in particular the confinement scale invariance principle, it should be possible to describe the transport properties in all three regions in terms of the profiles of the basic dimensionless plasma physics parameters ρ*(∝(MT) 1/2 /aB), β(∝ nT/B 2 ), ν* (∝ na/T 2 ) and q (∝Bκ/Rj). The thermal diffusivity should have the form χ ∝ Ba 2 /M F(ρ*, β, ν*, q, ...) where the form of the function F will be different in each of the three regions. One method of checking whether the invariance principle is correct is to complete wind tunnel or identity experiments on different tokamaks. This involves setting up discharges on different tokamaks with the same profiles of ρ*, β, ν* and q and

  12. Relative mobility of 1-H atoms of carbohydrates in heterogeneous isotope exchange reactions

    International Nuclear Information System (INIS)

    Akulov, G.P.; Snetkova, E.V.; Kayumov, V.G.; Kaminskii, Yu.L.

    1988-01-01

    The method of competitive reactions was used to determine the relative mobilities of the 1-H atoms of carbohydrates in reactions of heterogeneous isotope exchange, using various reference standards, catalysts, and buffer systems. On the basis of the results obtained, the investigated carbohydrates are ranged in a series of decreasing mobility of the hydrogen atoms exchanged in heterogeneous isotope exchange reactions. It was demonstrated that the mobility of the 1-H atoms is related to the concentration of the acyclic forms of the carbohydrates

  13. Utilization of stable isotopes for characterizing an underground gas generator; Utilisation des isotopes stables pour caracteriser un gazogene souterrain

    Energy Technology Data Exchange (ETDEWEB)

    Pirard, J P; Antenucci, D; Renard, X [Liege Univ. (Belgium); Letolle, R [Paris-6 Univ., 75 (France)

    1994-12-31

    The principles of isotopic exchange and isotope ratio result interpretation are first reviewed; then, in the framework of an underground coal gasification project in Belgium, experiments and modelling of the underground gas generator have been carried out: isotopic abundances of carbon, hydrogen and oxygen have been measured in the gasifying agent (O{sub 2}, H{sub 2}O) and in the effluent (CO{sub 2}, CO, H{sub 2}, H{sub 2}O, CH{sub 4}, O{sub 2}, heavy oils and various organic and mineral substances). Gasification kinetics and temperatures have been evaluated and isotope application to thermometry is discussed. 1 fig., 9 refs.

  14. Isotope effects accompanying evaporation of water from leaky containers.

    Science.gov (United States)

    Rozanski, Kazimierz; Chmura, Lukasz

    2008-03-01

    Laboratory experiments aimed at quantifying isotope effects associated with partial evaporation of water from leaky containers have been performed under three different settings: (i) evaporation into dry atmosphere, performed in a dynamic mode, (ii) evaporation into dry atmosphere, performed in a static mode, and (iii) evaporation into free laboratory atmosphere. The results demonstrate that evaporative enrichment of water stored in leaky containers can be properly described in the framework of the Craig-Gordon evaporation model. The key parameter controlling the degree of isotope enrichment is the remaining fraction of water in the leaking containers. Other factors such as temperature, relative humidity, or extent of kinetic fractionation play only minor roles. Satisfactory agreement between observed and predicted isotope enrichments for both (18)O and (2)H in experiments for the case of evaporation into dry atmosphere could be obtained only when molecular diffusivity ratios of isotope water molecules as suggested recently by Cappa et al. [J. Geophys. Res., 108, 4525-4535, (2003).] were adopted. However, the observed and modelled isotope enrichments for (2)H and (18)O could be reconciled also for the ratios of molecular diffusivities obtained by Merlivat [J. Chem. Phys., 69, 2864-2871 (1978).], if non-negligible transport resistance in the viscous liquid sub-layer adjacent to the evaporating surface is considered. The evaporation experiments revealed that the loss of mass of water stored in leaky containers in the order of 1%, will lead to an increase of the heavy isotope content in this water by ca. 0.35 and 1.1 per thousand, for delta (18)O and delta (2)H, respectively.

  15. Laser spectrometry applied to the simultaneous determination of the δ2H, δ17O, and δ18O isotope abundances in water

    International Nuclear Information System (INIS)

    Kerstel, E.R.T.; Trigt, R. van; Dam, N.; Reuss, J.; Meijer, H.A.J.

    2001-01-01

    We demonstrate the first successful application of infrared laser spectrometry to the accurate, simultaneous determination of the relative 2 H/ 1 H, 17 O/ 16 O, and 18 O/ 16 O isotope abundance ratios in natural water. The method uses a narrow line width color center laser to record the direct absorption spectrum of low-pressure gas-phase water samples (presently 10 μl liquid) in the 3μm spectral region. The precision of the spectroscopic technique is shown to be 0.7 per mille for δ 2 H and 0.5 per mille for δ 17 O and δ 18 O, while the calibrated accuracy for natural waters amounts to about 3 per mille and 1 per mille, respectively. (author)

  16. Predicting rates of isotopic turnover across the animal kingdom: a synthesis of existing data.

    Science.gov (United States)

    Thomas, Stephen M; Crowther, Thomas W

    2015-05-01

    The stable isotopes of carbon ((12)C, (13)C) and nitrogen ((14)N, (15)N) represent powerful tools in food web ecology, providing a wide range of dietary information in animal consumers. However, identifying the temporal window over which a consumer's isotopic signature reflects its diet requires an understanding of elemental incorporation, a process that varies from days to years across species and tissue types. Though theory predicts body size and temperature are likely to control incorporation rates, this has not been tested empirically across a morphologically and phylogenetically diverse range of taxa. Readily available estimates of this relationship would, however, aid in the design of stable isotope food web investigations and improve the interpretation of isotopic data collected from natural systems. Using literature-derived turnover estimates from animal species ranging in size from 1 mg to 2000 kg, we develop a predictive tool for stable isotope ecologists, allowing for estimation of incorporation rates in the structural tissues of entirely novel taxa. In keeping with metabolic scaling theory, we show that isotopic turnover rates of carbon and nitrogen in whole organisms and muscle tissue scale allometrically with body mass raised approximately to the power -0.19, an effect modulated by body temperature. This relationship did not, however, apply to incorporation rates in splanchnic tissues, which were instead dependent on the thermoregulation tactic employed by an organism, being considerably faster in endotherms than ectotherms. We believe the predictive turnover equations we provide can improve the design of experiments and interpretation of results obtained in future stable isotopic food web studies. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  17. The synthesis of 7-chloro-5-pentadeuteriophenyl-1-methyl-1H-1, 5-benzodiazepine-2,4(3H, 5H)dione (( sup 2 H sub 5 )clobazam)

    Energy Technology Data Exchange (ETDEWEB)

    Borel, A.G.; Abbott, F.S. (British Columbia Univ., Vancouver, BC (Canada). Dept. of Pharmaceutical Sciences)

    1990-07-01

    Pentadeuteriophenyl clobazam was synthesized in essentially quantitative isotopic purity, and characterized by {sup 1}H-NMR and mass spectroscopy. The title compound was found to be >98% pure by HPLC, and its retention time (t{sub R} 6.17 min) was less than that of an authentic clobazam standard (t{sub R} 6.32 min). Of the five steps in the synthesis of clobazam, the most susceptible to deuterium exchange was the nucleophilic substitution of 2,4-dichloronitrobenzene by aniline-d{sub 7} to form N-(5-chloro-2-nitrophenyl)penta-deuteriophenylamine. In this step, the isotopic impurity aniline-2,3,4,5-d{sub 5} introduced protons from nitrogen into the ortho and para positions of the deuteriophenyl ring of N-(5-chloro-2-nitrophenyl)pentadeuteriophenylamine. (author).

  18. H, C, N and S stable isotopes and mineral profiles to objectively guarantee the authenticity of grated hard cheeses

    International Nuclear Information System (INIS)

    Camin, Federica; Wehrens, Ron; Bertoldi, Daniela; Bontempo, Luana; Ziller, Luca; Perini, Matteo; Nicolini, Giorgio; Nocetti, Marco; Larcher, Roberto

    2012-01-01

    Graphical abstract: Random Forest model based on δ 13 C, δ 2 H, δ 15 N, δ 34 S and the content of Sr, Cu, Mo, Re, Na, U, Bi, Ni, Fe, Mn, Ga, Se, Er, Dy, Pb, Li, usable for the protection of PDO Parmigiano Reggiano cheese from mislabelling. The correct classification rate in cross-validation is 98.6%. Highlights: ► The isotopic and elemental profile of over 260 hard cheese samples are discussed. ► Two validated and immediately applicable statistical models are presented. ► One model is able to predict the origin of seven types of European hard cheeses. ► The other one allows to discriminate the PDO Parmigiano Reggiano cheese from imitators. ► The most significant variables are δ 13 C, δ 2 H, δ 15 N, δ 34 S and the content of 16 elements. - Abstract: In compliance with the European law (EC No. 510/2006), geographical indications and designations of origin for agricultural products and foodstuffs must be protected against mislabelling. This is particularly important for PDO hard cheeses, as Parmigiano Reggiano, that can cost up to the double of the no-PDO competitors. This paper presents two statistical models, based on isotopic and elemental composition, able to trace the origin of cheese also in grated and shredded forms, for which it is not possible to check the logo fire-marked on the rind. One model is able to predict the origin of seven types of European hard cheeses (in a validation step, 236 samples out of 240 are correctly recognised) and the other specifically to discriminate the PDO Parmigiano Reggiano cheese from 9 European and 2 extra-European imitators (260 out of 264 correct classifications). Both models are based on Random Forests. The most significant variables for cheese traceability common in both models are δ 13 C, δ 2 H, δ 15 N, δ 34 S and Sr, Cu, Mo, Re, Na, U, Bi, Ni, Fe, Mn, Ga, Se, and Li. These variables are linked not only to geography, but also to cow diet and cheese making processes.

  19. Deuterium isotope effects on 13C chemical shifts of 10-Hydroxybenzo[h]quinolines

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Kamounah, Fadhil S.; Gryko, Daniel T.

    2013-01-01

    Deuterium isotope effects on 13C-NMR chemical shifts are investigated in a series of 10-hydroxybenzo[h]quinolines (HBQ’s) The OH proton is deuteriated. The isotope effects on 13C chemical shifts in these hydrogen bonded systems are rather unusual. The formal four-bond effects are found to be nega...

  20. A numerical model for the movement of H 2O, H 218O, and 2HHO in the unsaturated zone

    Science.gov (United States)

    Shurbaji, Abdel-Rahman M.; Phillips, Fred M.

    1995-09-01

    Vertical profiles of H 218O and 2HHO concentrations have yielded useful information on evaporation and infiltration processes in soils. However, in the field, quantitative interpretation of such profiles has been limited by the restrictions inherent in the quasi-steady-state and transient analytical models available to describe the physical processes. This study presents a flexible numerical model that simulates transient fluxes of heat, liquid water, water vapor, and isotopic species. The model can simulate both infiltration and evaporation under fluctuating meteorological conditions and thus should be useful in reproducing changes in field isotope profiles. A transition factor is introduced in the isotope transport equation. This factor combines hydrologic and isotopic parameters and changes slowly with depth in the soil profile but strongly in the evaporation zone, owing to the rapid change in the dominant phase of water from liquid to vapor. Using the transition factor in the isotope transport equation facilitates obtaining the typical shape of the isotope profile (bulge at the evaporation zone). This factor also facilitates producing broad isotope enrichment peaks that may be seen in very dry soils.

  1. Mars Atmospheric Escape Recorded by H, C and O Isotope Ratios in Carbon Dioxide and Water Measured by the Sam Tunable Laser Spectrometer on the Curiosity Rover

    Science.gov (United States)

    Webster, C. R.; Mahaffy, P. R.; Leshin, L. A.; Atreya, S. K.; Flesch, G. J.; Stern, J.; Christensen, L. E.; Vasavada, A. R.; Owen, T.; Niles, P. B.; hide

    2013-01-01

    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biological activity [2]. For Mars, measurements to date have indicated enrichment in all the heavier isotopes consistent with atmospheric escape processes, but with uncertainty too high to tie the results with the more precise isotopic ratios achieved from SNC meteoritic analyses. We will present results to date of H, C and O isotope ratios in CO2 and H2O made to high precision (few per mil) using the Tunable Laser Spectrometer (TLS) that is part of the Sample Analysis at Mars (SAM) instrument suite on MSL s Curiosity Rover.

  2. Kinetics of isotopic exchange of [1-3H]saccharides with hydrogen using palladium catalysts

    International Nuclear Information System (INIS)

    Akulov, G.P.; Kayumov, V.G.; Snetkova, E.V.; Kaminskij, Yu.L.

    1988-01-01

    The kinetics was studied of the isotopic exchange of [1- 3 H]saccharides with hydrogen on palladium catalysts. The effect was studied of different factors on the rate of isotopic exchange, e.g., of the composition and structure of saccharides, their concentration in the solution (C), the type of catalyst and of the buffer solution. It was found that by reduced rate of isotopic exchange with hydrogen, all studied saccharides may be arranged into a series independent of the type of catalyst in accordance with the sequence of declining coefficient of relative mobility of l-H atoms during the reaction. Linear dependence was found to exist between the rate constant of the isotopic exchange reaction (r) and the coefficient of relative lability. It was also found that in the range of low concentrations the observed rate constants of isotopic exchange were not dependent on concentration and in the range of higher concentrations, r decreased with increasing C. This character of dependence is justified by the side effect of the processes of sorption on the catalyst. (author). 3 figs., 1 tab., 4 refs

  3. Particle and particle systems characterization small-angle scattering (SAS) applications

    CERN Document Server

    Gille, Wilfried

    2016-01-01

    Small-angle scattering (SAS) is the premier technique for the characterization of disordered nanoscale particle ensembles. SAS is produced by the particle as a whole and does not depend in any way on the internal crystal structure of the particle. Since the first applications of X-ray scattering in the 1930s, SAS has developed into a standard method in the field of materials science. SAS is a non-destructive method and can be directly applied for solid and liquid samples. Particle and Particle Systems Characterization: Small-Angle Scattering (SAS) Applications is geared to any scientist who might want to apply SAS to study tightly packed particle ensembles using elements of stochastic geometry. After completing the book, the reader should be able to demonstrate detailed knowledge of the application of SAS for the characterization of physical and chemical materials.

  4. 2H Kinetic Isotope Effects and pH Dependence of Catalysis as Mechanistic Probes of Rat Monoamine Oxidase A: Comparisons with the Human Enzyme‡

    Science.gov (United States)

    Wang, Jin; Edmondson, Dale E.

    2011-01-01

    Monoamine oxidase A (MAO A) is a mitochondrial outer membrane-bound flavoenzyme important in the regulation of serotonin and dopamine levels. Since the rat is extensively used as an animal model in drug studies, it is important to understand how rat MAO A behaves in comparison with the more extensively studied human enzyme. For many reversible inhibitors, rat MAO A exhibits Ki values similar to those of human MAO A. The pH profile of kcat for rat MAO A shows a pKa of 8.2±0.1 for the benzylamine ES complex and pKa values of 7.5±0.1 and 7.6±0.1 for the respective ES complexes with p-CF3-1H and p-CF3-2H-benzylamine. In contrast to the human enzyme, the rat enzyme exhibits a single pKa value (8.3±0.1) with kcat/Km benzylamine vs. pH and pKa values of 7.8±0.1 and 8.1±0.2 are found for the ascending limbs, respectively, of kcat/Km vs. pH profiles for p-CF3-1H and p-CF3-2H-benzylamine and 9.3±0.1 and 9.1±0.2 for their respective descending limbs. The oxidation of para-substituted benzylamine substrate analogues by rat MAO A exhibit large deuterium kinetic isotope effects on kcat and on kcat/Km. These effects are pH-independent, and range from 7 to 14, demonstrating a rate-limiting α-C-H bond cleavage step in catalysis. Quantitative structure-activity correlations of log kcat with the electronic substituent parameter (σ) at pH 7.5 and at 9.0 show a dominant contribution with positive ρ values (+1.2 – 1.3) and a pH-independent negative contribution from the steric term. Quantitative structure-activity relationship analysis of the binding affinities of the para-substituted benzylamine analogues to rat MAO A show an increased van der Waals volumes (Vw) increases the affinity of the deprotonated amine for the enzyme. These results demonstrate that rat MAO A exhibits similar but not identical functional properties with the human enzyme and provide additional support for C-H bond cleavage via a polar nucleophilic mechanism. PMID:21819071

  5. Positional enrichment by proton analysis (PEPA). A one-dimensional "1H-NMR approach for "1"3C stable isotope tracer studies in metabolomics

    International Nuclear Information System (INIS)

    Vinaixa, Maria; Yanes, Oscar; Rodriguez, Miguel A.; Capellades, Jordi; Aivio, Suvi; Stracker, Travis H.; Gomez, Josep; Canyellas, Nicolau

    2017-01-01

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of "1"3C-satellite peaks using 1D-"1H-NMR spectra. In comparison with "1"3C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of "1"3C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of "1H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts. (copyright 2017 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  6. Does age matter? Controls on the spatial organization of age and life expectancy in hillslopes, and implications for transport parameterization using rSAS

    Science.gov (United States)

    Kim, M.; Harman, C. J.; Troch, P. A. A.

    2017-12-01

    Hillslopes have been extensively explored as a natural fundamental unit for spatially-integrated hydrologic models. Much of this attention has focused on their use in predicting the quantity of discharge, but hillslope-based models can potentially be used to predict the composition of discharge (in terms of age and chemistry) if they can be parameterized terms of measurable physical properties. Here we present advances in the use of rank StorAge Selection (rSAS) functions to parameterize transport through hillslopes. These functions provide a mapping between the distribution of water ages in storage and in outfluxes in terms of a probability distribution over storage. It has previously been shown that rSAS functions are related to the relative partitioning and arrangement of flow pathways (and variabilities in that arrangement), while separating out the effect of changes in the overall rate of fluxes in and out. This suggests that rSAS functions should have a connection to the internal organization of flow paths in a hillslope.Using a combination of numerical modeling and theoretical analysis we examined: first, the controls of physical properties on internal spatial organization of age (time since entry), life expectancy (time to exit), and the emergent transit time distribution and rSAS functions; second, the possible parameterization of the rSAS function using the physical properties. The numerical modeling results showed the clear dependence of the rSAS function forms on the physical properties and relations between the internal organization and the rSAS functions. For the different rates of the exponential saturated hydraulic conductivity decline with depth the spatial organization of life expectancy varied dramatically and determined the rSAS function forms, while the organizaiton of the age showed less qualitative differences. Analytical solutions predicting this spatial organization and the resulting rSAS function were derived for simplified systems. These

  7. Aging of nickel added to soils as predicted by soil pH and time.

    Science.gov (United States)

    Ma, Yibing; Lombi, Enzo; McLaughlin, Mike J; Oliver, Ian W; Nolan, Annette L; Oorts, Koen; Smolders, Erik

    2013-08-01

    Although aging processes are important in risk assessment for metals in soils, the aging of Ni added to soils has not been studied in detail. In this study, after addition of water soluble Ni to soils, the changes over time in isotopic exchangeability, total concentrations and free Ni(2+) activity in soil pore water, were investigated in 16 European soils incubated outdoors for 18 months. The results showed that after Ni addition, concentrations of Ni in soil pore water and isotopic exchangeability of Ni in soils initially decreased rapidly. This phase was followed by further decreases in the parameters measured but these occurred at slower rates. Increasing soil pH increased the rate and extent of aging reactions. Semi-mechanistic models, based on Ni precipitation/nucleation on soil surfaces and micropore diffusion, were developed and calibrated. The initial fast processes, which were attributed to precipitation/nucleation, occurred over a short time (e.g. 1h), afterwards the slow processes were most likely controlled by micropore diffusion processes. The models were validated by comparing predicted and measured Ni aging in three additional, widely differing soils aged outdoors for periods up to 15 months in different conditions. These models could be used to scale ecotoxicological data generated in short-term studies to longer aging times. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Observation of Isotope Ratios (δ2H, δ18O, 87Sr/86Sr) of Tap Water in Urban Environments

    Science.gov (United States)

    Mancuso, C. J.; Tipple, B. J.; Ehleringer, J. R.

    2014-12-01

    Urban environments are centers for rapidly growing populations. In order to meet the culinary water needs of these areas, municipal water departments use water from multiple locations and/or sources, often piped differentially to different locations within a municipality. This practice creates isotopically distinct locations within an urban area and therefore provides insight to urban water management practices. In our study we selected urban locations in the Salt Lake Valley, UT (SLV) and San Francisco Bay Area, CA (SFB) where we hypothesized geographically distinct water isotopic ratio differences existed. Within the SLV, municipal waters come from the same mountainous region, but are derived from different geologically distinct watersheds. In contrast, SFB waters are derived from regionally distinct water sources. We hypothesized that the isotope ratios of tap waters would differ based upon known municipal sources. To test this, tap water samples were collected throughout the urban regions in SLV and SFB and analyzed for δ2H, δ18O and 87Sr/86Sr isotope ratios. Seasonal collections were also made to assess if isotope ratios differed throughout the year. Within SLV and SFB, different regions were characterized by distinct paired δ18O and 87Sr/86Sr values. These different realms also agreed with known differences in municipal water supplies within the general geographic region. Waters from different cities within Marin County showed isotopic differences, consistent with water derived from different local reservoirs. Seasonal variation was observed in paired δ18O and 87Sr/86Sr values of tap water for some locations within SLV and SFB, indicating management decisions to shift from one water source to another depending on demand and available resources. Our study revealed that the δ18O and 87Sr/86Sr values of tap waters in an urban region can exhibit significant differences despite close spatial proximity if districts differ in their use of local versus

  9. A SAS IML Macro for Loglinear Smoothing

    Science.gov (United States)

    Moses, Tim; von Davier, Alina

    2011-01-01

    Polynomial loglinear models for one-, two-, and higher-way contingency tables have important applications to measurement and assessment. They are essentially regarded as a smoothing technique, which is commonly referred to as loglinear smoothing. A SAS IML (SAS Institute, 2002a) macro was created to implement loglinear smoothing according to…

  10. Melnās krāsas iespējas interjerā

    OpenAIRE

    Lapkovska, Ērika

    2016-01-01

    Diplomdarbā “Melnās krāsas iespējas interjerā”, analizējot pieejamo literatūru, tiek apskatīta melnās krāsas izpratne, nozīme un lietojums vēsturiskā skatījumā, kā arī melnās krāsas izmantojuma principi interjerā. Empīriskajā daļā tiek veikts salīdzinošais pētījums, analizējot dažādus kafejnīcu un bāru interjerus Latvijā un pasaulē, kuros ir melnās krāsas klātbūtne. Diplomdarba apjoms – 75 lpp., kurās iekļauts ievads, 4 nodaļas, 7 apakšnodaļas, literatūras saraksts ar 53 vienībām, 2 pielikum...

  11. Regression modeling methods, theory, and computation with SAS

    CERN Document Server

    Panik, Michael

    2009-01-01

    Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.The text presents the popular ordinary least squares (OLS) approach before introducing many alternative regression methods. It covers nonparametric regression, logistic regression (including Poisson regression), Bayesian regression, robust regression, fuzzy regression, random coefficients regression,

  12. The Global Network of Isotopes in Precipitation after 55 years: assessing past, present and future developments

    Science.gov (United States)

    Terzer, Stefan; Araguas-Araguas, Luis; Wassenaar, Leonard I.; Aggarwal, Pradeep K.

    2015-04-01

    The Global Network of Isotopes in Precipitation (GNIP) is a global observation programme operated by the International Atomic Energy Agency (IAEA), in cooperation with the World Meteorological Organization (WMO) and more than 100 contributing institutions worldwide. GNIP has been the primary repository for baseline stable (δ18O, δ2H) and radioactive (3H) isotope data since its foundation in 1960. The impetus for GNIP was the monitoring of radioactive fallout from atmospheric thermonuclear testing and resulting tritium levels of precipitation, but tritium together with stable isotopes was recognized as a key to understanding hydrological processes. Later, new applications were developed focusing on hydrometeorology and paleoclimatic research. Increasingly, GNIP data are being used more widely in ecological and forensic investigations, e.g. for tracking of migratory animals. The GNIP database comprises more than 135,000 isotopic records (δ18O: 63,000; δ2H: 55,000; 3H: 63,000) of monthly composite precipitation samples from more than 1,000 stations worldwide. About 300 stations are currently active for stable isotopes and ca. 100 for tritium. Data for most of the active stations is available up to 2013. Several national isotopic observation networks (e.g. in Austria, Australia, China or the United States of America) exist besides GNIP, complementing precipitation isotope data at national levels. The spatially and temporally discrete nature of the GNIP dataset induces coverage gaps. Recently, highly-resolved gridded datasets were established to help overcome this deficiency through geostatistical prediction models. These 'isoscape' (isotopic landscapes) are based on combinations of multiple regression and interpolation methods, with a range of parameterization available at regional and global levels. Attempts to bridge the gap between 'one-size-fits-all' global parameterization and improved predictions at regional and local levels led to the establishment of a

  13. Effects of hyperglycemia on glucose production and utilization in humans. Measurement with [3H]-2-, [3H]-3-, and [14C]-6-glucose

    International Nuclear Information System (INIS)

    Bell, P.M.; Firth, R.G.; Rizza, R.A.

    1986-01-01

    Studies with tritiated isotopes of glucose have demonstrated that hyperglycemia per se stimulates glucose utilization and suppresses glucose production in humans. These conclusions rely on the assumption that tritiated glucose provides an accurate measure of glucose turnover. However, if in the presence of hyperglycemia the isotope either loses its label during futile cycling or retains its label during cycling through glycogen, then this assumption is not valid. To examine this question, glucose utilization and glucose production rates were measured in nine normal subjects with a simultaneous infusion of [ 3 H]-2-glucose, an isotope that may undergo futile cycling but does not cycle through glycogen; [ 14 C]-6-glucose, an isotope that may cycle through glycogen but does not futile cycle; and [ 3 H]-3-glucose, an isotope that can both undergo futile cycling and cycle through glycogen. In the postabsorptive state at plasma glucose concentration of 95 mg X dl-1, glucose turnover determined with [ 14 C]-6-glucose (2.3 +/- 0.1 mg X kg-1 X min-1) was greater than that determined with [3 3 H]glucose (2.1 +/- 0.1 mg X kg-1 X min-1, P = 0.002) and slightly less than that determined with [ 3 H]-2-glucose (2.7 +/- 0.2 mg X kg-1 X min-1, P = 0.08). Plasma glucose was then raised from 95 to 135 to 175 mg X dl-1 while insulin secretion was inhibited, and circulating insulin, glucagon, and growth hormone concentrations were maintained constant by infusion of these hormones and somatostatin. Glucose production and utilization rates determined with [ 14 C]-6-glucose continued to be less than those determined with [ 3 H]-2-glucose and greater than those seen with [ 3 H]-3-glucose

  14. Deuterium isotopic effects connected with unimolecular and concerted mechanisms. The case of 1-deutero-2-chloro alcohols

    International Nuclear Information System (INIS)

    Jambon, C.

    1962-01-01

    After a bibliographic analysis of the probable causes of isotopic effects and their comparison, with the simplifications provided by the athermal model, a discussion of the isotopic effect of deuterium in organic molecules in terms of structural influences is presented, showing the important role of the C-D bond length which is shorter than the C-H bond length, and of the D atom's Van der Waals radius, shorter than that of the H atom. Kinetic measurements were carried out on some reactions involving the mechanisms proposed: unimolecular ionizations and halogen concentrates. The structural models chosen are: 2-chloro-cyclo-hexanols cis and trans 1-H and 2-D; 2-chloro-cyclo-pentanols cis trans 1-H and 1-D; 1-phenyl-l-chloro-2-propanol threo 2-H and 2-D. (author) [fr

  15. Effects of variation in background mixing ratios of N2, O2, and Ar on the measurement of δ18O-H2O and δ2H-H2O values by cavity ring-down spectroscopy

    Science.gov (United States)

    Johnson, Jennifer E.; Rella, Chris W.

    2017-08-01

    Cavity ring-down spectrometers have generally been designed to operate under conditions in which the background gas has a constant composition. However, there are a number of observational and experimental situations of interest in which the background gas has a variable composition. In this study, we examine the effect of background gas composition on a cavity ring-down spectrometer that measures δ18O-H2O and δ2H-H2O values based on the amplitude of water isotopologue absorption features around 7184 cm-1 (L2120-i, Picarro, Inc.). For background mixtures balanced with N2, the apparent δ18O values deviate from true values by -0.50 ± 0.001 ‰ O2 %-1 and -0.57 ± 0.001 ‰ Ar %-1, and apparent δ2H values deviate from true values by 0.26 ± 0.004 ‰ O2 %-1 and 0.42 ± 0.004 ‰ Ar %-1. The artifacts are the result of broadening, narrowing, and shifting of both the target absorption lines and strong neighboring lines. While the background-induced isotopic artifacts can largely be corrected with simple empirical or semi-mechanistic models, neither type of model is capable of completely correcting the isotopic artifacts to within the inherent instrument precision. The development of strategies for dynamically detecting and accommodating background variation in N2, O2, and/or Ar would facilitate the application of cavity ring-down spectrometers to a new class of observations and experiments.

  16. [A SAS marco program for batch processing of univariate Cox regression analysis for great database].

    Science.gov (United States)

    Yang, Rendong; Xiong, Jie; Peng, Yangqin; Peng, Xiaoning; Zeng, Xiaomin

    2015-02-01

    To realize batch processing of univariate Cox regression analysis for great database by SAS marco program. We wrote a SAS macro program, which can filter, integrate, and export P values to Excel by SAS9.2. The program was used for screening survival correlated RNA molecules of ovarian cancer. A SAS marco program could finish the batch processing of univariate Cox regression analysis, the selection and export of the results. The SAS macro program has potential applications in reducing the workload of statistical analysis and providing a basis for batch processing of univariate Cox regression analysis.

  17. Dike intrusions into bituminous coal, Illinois Basin: H, C, N, O isotopic responses to rapid and brief heating

    Science.gov (United States)

    Schimmelmann, A.; Mastalerz, Maria; Gao, L.; Sauer, P.E.; Topalov, K.

    2009-01-01

    Unlike long-term heating in subsiding sedimentary basins, the near-instantaneous thermal maturation of sedimentary organic matter near magmatic intrusions is comparable to artificial thermal maturation in the laboratory in terms of short duration and limited extent. This study investigates chemical and H, C, N, O isotopic changes in high volatile bituminous coal near two Illinois dike contacts and compares observed patterns and trends with data from other published studies and from artificial maturation experiments. Our study pioneers in quantifying isotopically exchangeable hydrogen and measuring the D/H (i.e., 2H/1H) ratio of isotopically non-exchangeable organic hydrogen in kerogen near magmatic contacts. Thermal stress in coal caused a reduction of isotopically exchangeable hydrogen in kerogen from 5% to 6% in unaltered coal to 2-3% at contacts, mostly due to elimination of functional groups (e.g., {single bond}OH, {single bond}COOH, {single bond}NH2). In contrast to all previously published data on D/H in thermally matured organic matter, the more mature kerogen near the two dike contacts is D-depleted, which is attributed to (i) thermal elimination of D-enriched functional groups, and (ii) thermal drying of hydrologically isolated coal prior to the onset of cracking reactions, thereby precluding D-transfer from relatively D-enriched water into kerogen. Maxima in organic nitrogen concentration and in the atomic N/C ratio of kerogen at a distance of ???2.5 to ???3.5 m from the thicker dike indicate that reactive N-compounds had been pyrolytically liberated at high temperature closer to the contact, migrated through the coal seam, and recombined with coal kerogen in a zone of lower temperature. The same principle extends to organic carbon, because a strong ??13Ckerogen vs. ??15Nkerogen correlation across 5.5 m of coal adjacent to the thicker dike indicates that coal was functioning as a flow-through reactor along a dynamic thermal gradient facilitating back

  18. Study of peculiarities of hydrogen isotopes mixture permeation through low activated steel F82H

    International Nuclear Information System (INIS)

    Kenzhin, Ye.A.; Tazhibayeva, I.L; Kulsartov, T.V.; Shestakov, V.P.; Chikhray, Ye.V.; Afanasev, S.E.; Zheldak, Yu.L.

    2003-01-01

    Full text: The problem of diffusion tritium leakage through blanket materials of future fusion device makes some constructive difficulties concerned with protection of personnel and environment and also with losses of tritium, which is planned to be used in the same device. One of the little-studied problems in the tritium leakage process in Fusion Power Plant is that in fact tritium will penetrate through materials while other hydrogen isotopes are present. These are deuterium and hydrogen which always are present in metals. Therefore, for evaluation of tritium leakage in future Fusion Power Plant under such conditions it is necessary to have experimental data about permeation of these hydrogen isotopes through the structure materials.One of proposed structure materials of fusion reactor blanket is low activated steel F82H. The experiment results on evaluation of .hydrogen, deuterium and its mixture interaction parameters with steel F82H are shown in this work. The tests were carried out within temperature range 273-973 K under inlet hydrogen pressure of 100-2000 Pa. Diffusivity, deuterium and hydrogen permeation constants for low activated steel F82H was determined from experiment results. Those experimental results were used for created phenomenology model which describes hydrogen isotope penetration through tube sample from hydrogen isotopes mixture. That model was used so determining the ratios of desorption rates (D-D, D-H, H-H) on outlet side of sample. Using of so obtained results, we can correctly evaluate, the titanium leakage from blanket of fusion machine which will be constructed using low activated steel F82H

  19. A new package: MySAS for small angle scattering data analysis

    International Nuclear Information System (INIS)

    Huang Chaoqiang; Xia Qingzhong; Yan Guanyun; Sun Guang'ai; Chen Bo

    2010-01-01

    In this paper, A MySAS package, which is verified on Windows XP, can easily convert two-dimensional data in small angle neutron and X-ray scattering analysis, operate individually and execute one particular operation as numerical data reduction or analysis, and graphical visualization. This MySAS package can implement the input and output routines via scanning certain properties, thus recalling completely sets of repetition input and selecting the input files. On starting from the two-dimensional files, the MySAS package can correct the anisotropic or isotropic data for physical interpretation and select the relevant pixels. Over 50 model functions are fitted by the POWELL code using χ 2 as the figure of merit function. (authors)

  20. Positional enrichment by proton analysis (PEPA). A one-dimensional {sup 1}H-NMR approach for {sup 13}C stable isotope tracer studies in metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Vinaixa, Maria; Yanes, Oscar [Department of Electronic Engineering-Universitat Rovira i Virgili, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus (Spain); Rodriguez, Miguel A.; Capellades, Jordi [Universitat Rovira i Virgili, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus (Spain); Aivio, Suvi; Stracker, Travis H. [Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (Spain); Gomez, Josep; Canyellas, Nicolau [Department of Electronic Engineering-, Universitat Rovira i Virgili, Tarragona (Spain)

    2017-03-20

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of {sup 13}C-satellite peaks using 1D-{sup 1}H-NMR spectra. In comparison with {sup 13}C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of {sup 13}C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of {sup 1}H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts. (copyright 2017 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  1. pH-Free Measurement of Relative Acidities, Including Isotope Effects.

    Science.gov (United States)

    Perrin, Charles L

    2017-01-01

    A powerful pH-free multicomponent NMR titration method can measure relative acidities, even of closely related compounds, with excellent accuracy. The history of the method is presented, along with details of its implementation and a comparison with earlier NMR titrations using a pH electrode. Many of its areas of applicability are described, especially equilibrium isotope effects. The advantages of the method, some practical considerations, and potential pitfalls are considered. © 2017 Elsevier Inc. All rights reserved.

  2. Tracing and quantifying lake water and groundwater fluxes in the area under mining dewatering pressure using coupled O and H stable isotope approach.

    Science.gov (United States)

    Lewicka-Szczebak, Dominika; Jędrysek, Mariusz-Orion

    2013-01-01

    Oxygen and hydrogen stable isotopic compositions of precipitation, lake water and groundwater were used to quantitatively asses the water budget related to water inflow and water loss in natural lakes, and mixing between lake water and aquifer groundwater in a mining area of the Lignite Mine Konin, central Poland. While the isotopic composition of precipitation showed large seasonal variations (δ(2)H from-140 to+13 ‰ and δ(18)O from-19.3 to+7.6 ‰), the lake waters were variously affected by evaporation (δ(2)H from-44 to-21 ‰ and δ(18)O from-5.2 to-1.7 ‰) and the groundwater showed varying contribution from mixing with surface water (δ(2)H from-75 to-39 ‰ and δ(18)O from-10.4 to-4.8 ‰). The lake water budget was estimated using a Craig-Gordon model and isotopic mass balance constraint, which enabled us to identify various water sources and to quantify inflow and outflow for each lake. Moreover, we documented that a variable recharge of lake water into the Tertiary aquifer was dependent on mining drainage intensity. A comparison of coupled δ(2)H-δ(18)O data with hydrogeological results indicated better precision of the δ(2)H-based calculations.

  3. Genesis of fumarolic emissions as inferred by isotope mass balances: CO 2 and water at Vulcano Island, Italy

    Science.gov (United States)

    Paonita, A.; Favara, R.; Nuccio, P. M.; Sortino, F.

    2002-03-01

    We have developed a quantitative model of CO2 and H2O isotopic mixing between magmatic and hydrothermal gases for the fumarolic emissions of the La Fossa crater (Vulcano Island, Italy). On the basis of isotope balance equations, the model takes into account the isotope equilibrium between H2O and CO2 and extends the recent model of chemical and energy two-end-member mixing by Nuccio et al. (1999). As a result, the H2O and CO2 content and the δD, δ18O, and δ13C isotope compositions for both magmatic and hydrothermal end-members have been assessed. Low contributions of meteoric steam, added at a shallow depth, have been also recognized and quantified in the fumaroles throughout the period from 1988 to 1998. Nonequilibrium oxygen isotope exchange also seems to be occurring between ascending gases and wall rocks along some fumarolic conduits. The δ13CCO2 of the magmatic gases varies around -3 to 1‰ vs. Peedee belemnite (PDB), following a perfect synchronism with the variations of the CO2 concentration in the magmatic gases. This suggests a process of isotope fractionation because of vapor exsolution caused by magma depressurization. The hydrogen isotopes in the magmatic gases (-1 to -‰ vs. standard mean ocean water [SMOW]), as well as the above δ13CCO2 value, are coherent with a convergent tectonic setting of magma generation, where the local mantle is widely contaminated by fluids released from the subducted slab. Magma contamination in the crust probably amplifies this effect. The computed isotope composition of carbon and hydrogen in the hydrothermal vapors has been used to calculate the δD and δ13C of the entire hydrothermal system, including mixed H2O-CO2 vapor, liquid water, and dissolved carbon. We have computed values of about 10‰ vs. SMOW for water and -2 to -6.5‰ vs. PDB for CO2. On these grounds, we think that Mediterranean marine water (δDH2O ≈ 10‰) feeds the hydrothermal system. It infiltrates at depth throughout the local rocks

  4. Calculation of intermolecular potentials for H2H2 and H2−O2 dimers ab initio and prediction of second virial coefficients

    International Nuclear Information System (INIS)

    Pham Van, Tat; Deiters, Ulrich K.

    2015-01-01

    Highlights: • We construct the angular orientations of dimers H 2H 2 and H 2 −O 2 . • We calculate the ab initio intermolecular interaction energies for all built orientations. • Extrapolating the interaction energies to the complete basis set limit aug-cc-pV23Z. • We develop two 5-site ab initio intermolecular potentials of dimers H 2H 2 , H 2 −O 2 . • Calculating the virial coefficients of dimer H 2H 2 and H 2 −O 2 . - Abstract: The intermolecular interaction potentials of the dimers H 2H 2 and H 2 −O 2 were calculated from quantum mechanics, using coupled-cluster theory CCSD(T) and correlation-consistent basis sets aug-cc-pVmZ (m = 2, 3); the results were extrapolated to the basis set limit aug-cc-pV23Z. The interaction energies were corrected for the basis set superposition error with the counterpoise scheme. For comparison also Møller–Plesset perturbation theory (at levels 2–4) with the basis sets aug-cc-pVTZ were considered, but the results proved inferior. The quantum mechanical results were used to construct analytical pair potential functions. From these functions the second virial coefficients of hydrogen and the cross virial coefficients of the hydrogen–oxygen system were obtained by integration; in both cases corrections for quantum effects were included. The results agree well with experimental data, if available, or with empirical correlations

  5. Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements

    Science.gov (United States)

    Xie, Xueshu; Zubarev, Roman A.

    2015-03-01

    Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to progressively slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous. Instead, at some ``resonance'' isotopic compositions, the kinetics increases, while at ``off-resonance'' compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error +/-0.05%) experiment that measures the parameters of bacterial growth in minimal media with varying isotopic composition. A number of predicted resonance conditions were tested, with significant enhancements in kinetics discovered at these conditions. The combined statistics extremely strongly supports the validity of the isotopic resonance phenomenon (p biotechnology, medicine, chemistry and other areas.

  6. Molybdenum isotope fractionation during adsorption to organic matter

    Science.gov (United States)

    King, Elizabeth K.; Perakis, Steven; Pett-Ridge, Julie C.

    2018-01-01

    Organic matter is of emerging interest as a control on molybdenum (Mo) biogeochemistry, and information on isotope fractionation during adsorption to organic matter can improve interpretations of Mo isotope variations in natural settings. Molybdenum isotope fractionation was investigated during adsorption onto insolubilized humic acid (IHA), a surrogate for organic matter, as a function of time (2–170 h) and pH (2–7). For the time series experiment performed at pH 4.2, the average Mo isotope fractionation between the solution and the IHA (Δ98Mosolution-IHA) was 1.39‰ (± 0.16‰, 2σ, based on 98Mo/95Mo relative to the NIST 3134 standard) at steady state. For the pH series experiment, Mo adsorption decreased as pH increased from 2.0 to 6.9, and the Δ98Mosolution-IHA increased from 0.82‰ to 1.79‰. We also evaluated natural Mo isotope patterns in precipitation, foliage, organic horizon, surface mineral soil, and bedrock from 12 forested sites in the Oregon Coast Range. The average Mo isotope offset observed between precipitation and organic (O) horizon soil was 2.1‰, with light Mo isotopes adsorbing preferentially to organic matter. Fractionation during adsorption to organic matter is similar in magnitude and direction to prior observations of Mo fractionation during adsorption to Fe- and Mn- (oxyhydr)oxides. Our finding that organic matter influences Mo isotope composition has important implications for the role of organic matter as a driver of trace metal retention and isotopic fractionation.

  7. Patterns of predicted T-cell epitopes associated with antigenic drift in influenza H3N2 hemagglutinin.

    Directory of Open Access Journals (Sweden)

    E Jane Homan

    Full Text Available Antigenic drift allowing escape from neutralizing antibodies is an important feature of transmission and survival of influenza viruses in host populations. Antigenic drift has been studied in particular detail for influenza A H3N2 and well defined antigenic clusters of this virus documented. We examine how host immunogenetics contributes to determination of the antibody spectrum, and hence the immune pressure bringing about antigenic drift. Using uTOPE™ bioinformatics analysis of predicted MHC binding, based on amino acid physical property principal components, we examined the binding affinity of all 9-mer and 15-mer peptides within the hemagglutinin 1 (HA1 of 447 H3N2 virus isolates to 35 MHC-I and 14 MHC-II alleles. We provide a comprehensive map of predicted MHC-I and MHC-II binding affinity for a broad array of HLA alleles for the H3N2 influenza HA1 protein. Each HLA allele exhibited a characteristic predicted binding pattern. Cluster analysis for each HLA allele shows that patterns based on predicted MHC binding mirror those described based on antibody binding. A single amino acid mutation or position displacement can result in a marked difference in MHC binding and hence potential T-helper function. We assessed the impact of individual amino acid changes in HA1 sequences between 10 virus isolates from 1968-2002, representative of antigenic clusters, to understand the changes in MHC binding over time. Gain and loss of predicted high affinity MHC-II binding sites with cluster transitions were documented. Predicted high affinity MHC-II binding sites were adjacent to antibody binding sites. We conclude that host MHC diversity may have a major determinant role in the antigenic drift of influenza A H3N2.

  8. Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water.

    Science.gov (United States)

    Schultz, Natalie M; Griffis, Timothy J; Lee, Xuhui; Baker, John M

    2011-11-15

    Plant water extracts typically contain organic materials that may cause spectral interference when using isotope ratio infrared spectroscopy (IRIS), resulting in errors in the measured isotope ratios. Manufacturers of IRIS instruments have developed post-processing software to identify the degree of contamination in water samples, and potentially correct the isotope ratios of water with known contaminants. Here, the correction method proposed by an IRIS manufacturer, Los Gatos Research, Inc., was employed and the results were compared with those obtained from isotope ratio mass spectrometry (IRMS). Deionized water was spiked with methanol and ethanol to create correction curves for δ(18)O and δ(2)H. The contamination effects of different sample types (leaf, stem, soil) and different species from agricultural fields, grasslands, and forests were compared. The average corrections in leaf samples ranged from 0.35 to 15.73‰ for δ(2)H and 0.28 to 9.27‰ for δ(18)O. The average corrections in stem samples ranged from 1.17 to 13.70‰ for δ(2)H and 0.47 to 7.97‰ for δ(18)O. There was no contamination observed in soil water. Cleaning plant samples with activated charcoal had minimal effects on the degree of spectral contamination, reducing the corrections, by on average, 0.44‰ for δ(2)H and 0.25‰ for δ(18)O. The correction method eliminated the discrepancies between IRMS and IRIS for δ(18)O, and greatly reduced the discrepancies for δ(2)H. The mean differences in isotope ratios between IRMS and the corrected IRIS method were 0.18‰ for δ(18)O, and -3.39‰ for δ(2)H. The inability to create an ethanol correction curve for δ(2)H probably caused the larger discrepancies. We conclude that ethanol and methanol are the primary compounds causing interference in IRIS analyzers, and that each individual analyzer will probably require customized correction curves. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Inter- and intramolecular deuterium isotope effects on the cytochrome P-450-catalyzed oxidative dehalogenation of 1,1,2,2-tetrachloroethane

    International Nuclear Information System (INIS)

    Hales, D.B.; Ho, B.; Thompson, J.A.

    1987-01-01

    The oxidation of 1,1,2,2-tetrachloroethane to dichloroacetic acid was investigated with rat liver microsomes and purified cytochrome P-450. Deuterium substitution had no effect on Km values, but both the inter- and intramolecular isotope effects (kH/kD) on Vmax were in the range 5.7-6.1. The equivalence of the inter- and intramolecular values indicates that 6.0 may be a good estimate of the intrinsic isotope effect. The intermolecular kH/kD value for the conversion of 1,1,2,2-trichloroethane and its 1- 2 H analog to chloroacetic acid was 5.5. These data, and the finding that 1 atom of 18 O was incorporated into the product when TCEA was oxidized in an 18 O 2 atmosphere, support an oxidative dechlorination mechanism that involves hydrogen atom abstraction by the P-450 intermediate oxo complex

  10. Novel proxies for reconstructing paleohydrology from ombrotrophic peatlands: biomarker and compound-specific H and C stable isotope ratios

    Science.gov (United States)

    Wang, J.; Nichols, J. E.; Huang, Y.

    2008-12-01

    Ombrotrophic peatlands are excellent archives for paleohydrologic information because they are hydrologically isolated from their surroundings. However, quantitative proxies for deciphering peatland archives are lacking. Here, we present development and application of novel organic geochemical methods for quantitative reconstruction of paleohydrology from the ombrotrophic sediments, and comparison of organic geochemical data with conventional paleoecological proxies. Application of these methods to the sediments of several North American and European peatlands has revealed significant changes in the hydroclimate throughout the Holocene. The plant assemblage living at the surface of the peatland is tightly controlled by surface moisture. Under wet conditions, Sphagnum mosses, with no active mechanism for drawing water from below the surface of the peatland, are dominant. During dry conditions, vascular plants are more productive relative to Sphagnum. A ratio of the abundance of two biomarkers representing Sphagnum and vascular plants sensitively records changes in hydrologic balance (Nichols et al., 2006, Org. Geochem. 37, 1505-1513). We have further developed stable isotope models to compute climate parameters from compound-specific H and C isotope ratios of biomarkers to create a more comprehensive climate reconstruction. Vascular plant leaf waxes carry the D/H ratio signature of precipitation that is little affected by evaporation, whereas the Sphagnum biomarker records isotopic ratios of the water at the peatland surface, which is strongly enriched by evaporation. Evaporation amount can be calculated using the differences between D/H ratios of the two types of biomarkers. C isotope ratios of Sphagnum biomarkers can also be used to quantify surface wetness. Methanotrophic bacteria live symbiotically with Sphagnum, providing isotopically light carbon for photosynthesis. These bacteria are more active when the Sphagnum is wet, thus providing more 13C-depleted CO2

  11. Isotope effects in pericyclic reactions, ch. 2

    International Nuclear Information System (INIS)

    Dolbier, W.R. Jr.

    1975-01-01

    A distinction is made between primary and secondary isotope effects, the primary ones being based on the relative large vibrational frequencies and ensuing large zeroprint energies for C-H vibrations whereas the secondary effects are observed in systems where the vibrational modes of the isotopically labelled site are perturbed during transformation from reactant to product. Both effects are utilised in the elucidation of mechanism in pericyclic processes. The main processes dealt with in this chapter are cycloadditions of all types and sigmatropic rearrangements

  12. 2. Workshop 'Isotopes in Nature'. 1

    International Nuclear Information System (INIS)

    1979-11-01

    The workshop was aimed at discussing in detail the following problems: (1) distribution of stable and radioactive isotopes in nature, (2) theoretical and experimental studies of isotopic effects in natural processes, (3) problems of sample preparation and sample measurement in determining the relative abundance of stable isotopes or radioactive isotopes in nature, (4) age estimations of samples from different areas of the geosphere, (5) contributions to the specification of global and regional substance cycles in nature with the aid of isotopic and geochemical studies. 75 summaries are included

  13. Improve accuracy and sensibility in glycan structure prediction by matching glycan isotope abundance

    International Nuclear Information System (INIS)

    Xu Guang; Liu Xin; Liu Qingyan; Zhou Yanhong; Li Jianjun

    2012-01-01

    Highlights: ► A glycan isotope pattern recognition strategy for glycomics. ► A new data preprocessing procedure to detect ion peaks in a giving MS spectrum. ► A linear soft margin SVM classification for isotope pattern recognition. - Abstract: Mass Spectrometry (MS) is a powerful technique for the determination of glycan structures and is capable of providing qualitative and quantitative information. Recent development in computational method offers an opportunity to use glycan structure databases and de novo algorithms for extracting valuable information from MS or MS/MS data. However, detecting low-intensity peaks that are buried in noisy data sets is still a challenge and an algorithm for accurate prediction and annotation of glycan structures from MS data is highly desirable. The present study describes a novel algorithm for glycan structure prediction by matching glycan isotope abundance (mGIA), which takes isotope masses, abundances, and spacing into account. We constructed a comprehensive database containing 808 glycan compositions and their corresponding isotope abundance. Unlike most previously reported methods, not only did we take into count the m/z values of the peaks but also their corresponding logarithmic Euclidean distance of the calculated and detected isotope vectors. Evaluation against a linear classifier, obtained by training mGIA algorithm with datasets of three different human tissue samples from Consortium for Functional Glycomics (CFG) in association with Support Vector Machine (SVM), was proposed to improve the accuracy of automatic glycan structure annotation. In addition, an effective data preprocessing procedure, including baseline subtraction, smoothing, peak centroiding and composition matching for extracting correct isotope profiles from MS data was incorporated. The algorithm was validated by analyzing the mouse kidney MS data from CFG, resulting in the identification of 6 more glycan compositions than the previous annotation

  14. C, Cl and H compound-specific isotope analysis to assess natural versus Fe(0) barrier-induced degradation of chlorinated ethenes at a contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Audí-Miró, Carme, E-mail: carmeaudi@ub.edu [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028, Barcelona (Spain); Cretnik, Stefan [Institute of Groundwater Ecology, Helmholtz Zentrum München-National Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg (Germany); Torrentó, Clara; Rosell, Mònica [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028, Barcelona (Spain); Shouakar-Stash, Orfan [Department of Earth & Environmental Sciences, 200 University Ave. W, N2L 3G1 Waterloo, Ontario (Canada); Otero, Neus [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028, Barcelona (Spain); Palau, Jordi [Université de Neuchâtel, CHYN - Centre d' Hydrogéologie, Rue Emile-Argand 11, CH-2000 Neuchâtel (Switzerland); and others

    2015-12-15

    Highlights: • {sup 13}C to evaluate natural chlorinated ethenes biodegradation. • {sup 13}C to evaluate the efficiency of a zero-valent iron-permeable reactive barrier. • {sup 13}C-{sup 37}Cl to discriminate biotic from abiotic degradation of cis-dichloroethene. • {sup 13}C-{sup 37}Cl-{sup 2}H of cis-DCE and TCE to elucidate different contaminant sources. - Abstract: Compound-specific isotopic analysis of multiple elements (C, Cl, H) was tested to better assess the effect of a zero-valent iron-permeable reactive barrier (ZVI-PRB) installation at a site contaminated with tetrachloroethene (PCE) and trichloroethene (TCE). The focus was on (1) using {sup 13}C to evaluate natural chlorinated ethene biodegradation and the ZVI-PRB efficiency; (2) using dual element {sup 13}C-{sup 37}Cl isotopic analysis to distinguish biotic from abiotic degradation of cis-dichloroethene (cis-DCE); and (3) using {sup 13}C-{sup 37}Cl-{sup 2}H isotopic analysis of cis-DCE and TCE to elucidate different contaminant sources. Both biodegradation and degradation by ZVI-PRB were indicated by the metabolites that were detected and the {sup 13}C data, with a quantitative estimate of the ZVI-PRB efficiency of less than 10% for PCE. Dual element {sup 13}C-{sup 37}Cl isotopic plots confirmed that biodegradation was the main process at the site including the ZVI-PRB area. Based on the carbon isotope data, approximately 45% and 71% of PCE and TCE, respectively, were estimated to be removed by biodegradation. {sup 2}H combined with {sup 13}C and {sup 37}Cl seems to have identified two discrete sources contributing to the contaminant plume, indicating the potential of δ{sup 2}H to discriminate whether a compound is of industrial origin, or whether a compound is formed as a daughter product during degradation.

  15. C, Cl and H compound-specific isotope analysis to assess natural versus Fe(0) barrier-induced degradation of chlorinated ethenes at a contaminated site

    International Nuclear Information System (INIS)

    Audí-Miró, Carme; Cretnik, Stefan; Torrentó, Clara; Rosell, Mònica; Shouakar-Stash, Orfan; Otero, Neus; Palau, Jordi

    2015-01-01

    Highlights: • 13 C to evaluate natural chlorinated ethenes biodegradation. • 13 C to evaluate the efficiency of a zero-valent iron-permeable reactive barrier. • 13 C- 37 Cl to discriminate biotic from abiotic degradation of cis-dichloroethene. • 13 C- 37 Cl- 2 H of cis-DCE and TCE to elucidate different contaminant sources. - Abstract: Compound-specific isotopic analysis of multiple elements (C, Cl, H) was tested to better assess the effect of a zero-valent iron-permeable reactive barrier (ZVI-PRB) installation at a site contaminated with tetrachloroethene (PCE) and trichloroethene (TCE). The focus was on (1) using 13 C to evaluate natural chlorinated ethene biodegradation and the ZVI-PRB efficiency; (2) using dual element 13 C- 37 Cl isotopic analysis to distinguish biotic from abiotic degradation of cis-dichloroethene (cis-DCE); and (3) using 13 C- 37 Cl- 2 H isotopic analysis of cis-DCE and TCE to elucidate different contaminant sources. Both biodegradation and degradation by ZVI-PRB were indicated by the metabolites that were detected and the 13 C data, with a quantitative estimate of the ZVI-PRB efficiency of less than 10% for PCE. Dual element 13 C- 37 Cl isotopic plots confirmed that biodegradation was the main process at the site including the ZVI-PRB area. Based on the carbon isotope data, approximately 45% and 71% of PCE and TCE, respectively, were estimated to be removed by biodegradation. 2 H combined with 13 C and 37 Cl seems to have identified two discrete sources contributing to the contaminant plume, indicating the potential of δ 2 H to discriminate whether a compound is of industrial origin, or whether a compound is formed as a daughter product during degradation.

  16. HERSCHEL/HIFI SEARCH FOR H{sub 2}{sup 17}O AND H{sub 2}{sup 18}O IN IRC+10216: CONSTRAINTS ON MODELS FOR THE ORIGIN OF WATER VAPOR

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, David A. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Tolls, Volker; Melnick, Gary J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Agundez, Marcelino [LAB, Universite de Bordeaux, UMR 5804, F-33270 Floirac (France); Gonzalez-Alfonso, Eduardo [Universidad de Alcala de Henares, Departamento de Fisica y Matematicas, Campus Universitario, E-28871 Alcala de Henares, Madrid (Spain); Decin, Leen [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium); Daniel, Fabien; Cernicharo, Jose [Departamento de Astrofisica, Centro de Astrobiologia, CSIC-INTA, Ctra. de Torrejon a Ajalvir km 4, E-28850 Madrid (Spain); Schmidt, Miroslaw; Szczerba, Ryszard [Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Rabianska 8, 87-100 Torun (Poland)

    2013-04-10

    We report the results of a sensitive search for the minor isotopologues of water, H{sub 2}{sup 17}O and H{sub 2}{sup 18}O, toward the carbon-rich asymptotic giant branch star IRC+10216 (a.k.a. CW Leonis) using the HIFI instrument on the Herschel Space Observatory. This search was motivated by the fact that any detection of isotopic enhancement in the H{sub 2}{sup 17}O and H{sub 2}{sup 18}O abundances would have strongly implicated CO photodissociation as the source of the atomic oxygen needed to produce water in a carbon-rich circumstellar envelope. Our observations place an upper limit of 1/470 on the H{sub 2}{sup 17}O/H{sub 2}{sup 16}O abundance ratio. Given the isotopic {sup 17}O/{sup 16}O ratio of 1/840 inferred previously for the photosphere of IRC+10216, this result places an upper limit of a factor 1.8 on the extent of any isotope-selective enhancement of H{sub 2}{sup 17}O in the circumstellar material, and provides an important constraint on any model that invokes CO photodissociation as the source of O for H{sub 2}O production. In the context of the clumpy photodissociation model proposed previously for the origin of water in IRC+10216, our limit implies that {sup 12}C{sup 16}O (not {sup 13}C{sup 16}O or SiO) must be the dominant source of {sup 16}O for H{sub 2}O production, and that the effects of self-shielding can only have reduced the {sup 12}C{sup 16}O photodissociation rate by at most a factor {approx}2.

  17. Mechanistic deductions from kinetic isotope effects and pH studies of pyridoxal phosphate dependent carbon-carbon lyases: Erwinia herbicola and Citrobacter freundii tyrosine phenol-lyase

    International Nuclear Information System (INIS)

    Kiick, D.M.; Phillips, R.S.

    1988-01-01

    The pH dependence of the kinetic parameters and primary deuterium isotope effects have been determined for tyrosine phenol-lyase from both Erwinia herbicola and Citrobacter freundii. The primary deuterium isotope effects indicate that proton abstraction from the 2-position of the substrate is partially rate-limiting for both enzymes. The C. freundii enzyme primary deuterium isotope effects [DV = 3.5 and D(V/Ktyr) = 2.5] are pH independent, indicating that tyrosine is not sticky (i.e., does not dissociate slower than it reacts to give products). Since Vmax for both tyrosine and the alternate substrate S-methyl-L-cysteine is also pH independent, substrate binds only to the correctly protonated form of the enzyme. For the E. herbicola enzyme, both Vmax and V/K for tyrosine or S-methyl-L-cysteine are pH dependent, as well as both DV and D(V/Ktyr). Thus, while both the protonated and unprotonated enzyme can bind substrate, and may be interconverted directly, only the unprotonated Michaelis complex is catalytically competent. At pH 9.5, DV = 2.5 and D(V/Ktyr) = 1.5. However, at pH 6.4 the isotope effect on both parameters is equal to 4.1. From these data, the forward commitment factor (cf = 5.2) and catalytic ratio (cvf = 1.1) for tyrosine and S-methyl-L-cysteine (cf = 2.2, cvf = 24) are calculated. Also, the Michaelis complex partition ratio (cf/cvf) for substrate and products is calculated to be 4.7 for tyrosine and 0.1 for S-methyl-L-cysteine

  18. Deuterium isotope shifts for backbone {sup 1}H, {sup 15}N and {sup 13}C nuclei in intrinsically disordered protein {alpha}-synuclein

    Energy Technology Data Exchange (ETDEWEB)

    Maltsev, Alexander S.; Ying Jinfa; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2012-10-15

    Intrinsically disordered proteins (IDPs) are abundant in nature and characterization of their potential structural propensities remains a widely pursued but challenging task. Analysis of NMR secondary chemical shifts plays an important role in such studies, but the output of such analyses depends on the accuracy of reference random coil chemical shifts. Although uniform perdeuteration of IDPs can dramatically increase spectral resolution, a feature particularly important for the poorly dispersed IDP spectra, the impact of deuterium isotope shifts on random coil values has not yet been fully characterized. Very precise {sup 2}H isotope shift measurements for {sup 13}C{sup {alpha}}, {sup 13}C{sup {beta}}, {sup 13}C Prime , {sup 15}N, and {sup 1}H{sup N} have been obtained by using a mixed sample of protonated and uniformly perdeuterated {alpha}-synuclein, a protein with chemical shifts exceptionally close to random coil values. Decomposition of these isotope shifts into one-bond, two-bond and three-bond effects as well as intra- and sequential residue contributions shows that such an analysis, which ignores conformational dependence, is meaningful but does not fully describe the total isotope shift to within the precision of the measurements. Random coil {sup 2}H isotope shifts provide an important starting point for analysis of such shifts in structural terms in folded proteins, where they are known to depend strongly on local geometry.

  19. The movement ecology of the straw-colored fruit bat, Eidolon helvum, in sub-Saharan Africa assessed by stable isotope ratios.

    Directory of Open Access Journals (Sweden)

    Gonzalo Ossa

    Full Text Available Flying foxes (Pteropodidae are key seed dispersers on the African continent, yet their migratory behavior is largely unknown. Here, we studied the movement ecology of the straw-colored fruit bat, Eidolon helvum, and other fruit bats by analyzing stable isotope ratios in fur collected from museum specimens. In a triple-isotope approach based on samples of two ecologically similar non-migratory pteropodids, we first confirmed that a stable isotope approach is capable of delineating between geographically distinct locations in Sub-Saharan Africa. A discriminant function analysis assigned 84% of individuals correctly to their capture site. Further, we assessed how well hydrogen stable isotope ratios (δ(2H of fur keratin collected from non-migratory species (n = 191 individuals records variation in δ(2H of precipitation water in sub-Saharan Africa. Overall, we found positive, negative and no correlations within the six studied species. We then developed a reduced major axis regression equation based on individual data of non-migratory species to predict where potentially migratory E. helvum (n = 88 would come from based on their keratin δ(2H. Across non-migratory species, δ(2H of keratin and local water correlated positively. Based on the isoscape origin model, 22% of E. helvum were migratory, i.e. individuals had migrated over at least 250 km prior to their capture. Migratory individuals came from locations at a median distance of about 860 km from the collection site, four even from distances of at least 2,000 km. Ground-truthing of our isoscape origin model based on keratin δ(2H of extant E. helvum (n = 76 supported a high predictive power of assigning the provenance of African flying foxes. Our study highlights that stable isotope ratios can be used to explain the migratory behavior of flying foxes, even on the isotopically relatively homogenous African continent, and with material collected by museums many decades or more than a century ago.

  20. The movement ecology of the straw-colored fruit bat, Eidolon helvum, in sub-Saharan Africa assessed by stable isotope ratios.

    Science.gov (United States)

    Ossa, Gonzalo; Kramer-Schadt, Stephanie; Peel, Alison J; Scharf, Anne K; Voigt, Christian C

    2012-01-01

    Flying foxes (Pteropodidae) are key seed dispersers on the African continent, yet their migratory behavior is largely unknown. Here, we studied the movement ecology of the straw-colored fruit bat, Eidolon helvum, and other fruit bats by analyzing stable isotope ratios in fur collected from museum specimens. In a triple-isotope approach based on samples of two ecologically similar non-migratory pteropodids, we first confirmed that a stable isotope approach is capable of delineating between geographically distinct locations in Sub-Saharan Africa. A discriminant function analysis assigned 84% of individuals correctly to their capture site. Further, we assessed how well hydrogen stable isotope ratios (δ(2)H) of fur keratin collected from non-migratory species (n = 191 individuals) records variation in δ(2)H of precipitation water in sub-Saharan Africa. Overall, we found positive, negative and no correlations within the six studied species. We then developed a reduced major axis regression equation based on individual data of non-migratory species to predict where potentially migratory E. helvum (n = 88) would come from based on their keratin δ(2)H. Across non-migratory species, δ(2)H of keratin and local water correlated positively. Based on the isoscape origin model, 22% of E. helvum were migratory, i.e. individuals had migrated over at least 250 km prior to their capture. Migratory individuals came from locations at a median distance of about 860 km from the collection site, four even from distances of at least 2,000 km. Ground-truthing of our isoscape origin model based on keratin δ(2)H of extant E. helvum (n = 76) supported a high predictive power of assigning the provenance of African flying foxes. Our study highlights that stable isotope ratios can be used to explain the migratory behavior of flying foxes, even on the isotopically relatively homogenous African continent, and with material collected by museums many decades or more than a century ago.

  1. Gallium isotope fractionation during Ga adsorption on calcite and goethite

    Science.gov (United States)

    Yuan, Wei; Saldi, Giuseppe D.; Chen, JiuBin; Vetuschi Zuccolini, Marino; Birck, Jean-Louis; Liu, Yujie; Schott, Jacques

    2018-02-01

    Gallium (Ga) isotopic fractionation during its adsorption on calcite and goethite was investigated at 20 °C as a function of the solution pH, Ga aqueous concentration and speciation, and the solid to solution ratio. In all experiments Ga was found to be enriched in light isotopes at the solid surface with isotope fractionation △71Gasolid-solution up to -1.27‰ and -0.89‰ for calcite and goethite, respectively. Comparison of Ga isotopic data of this study with predictions for 'closed system' equilibrium and 'Rayleigh fractionation' models indicates that the experimental data are consistent with a 'closed system' equilibrium exchange between the fluid and the solid. The results of this study can be interpreted based on Ga aqueous speciation and the structure of Ga complexes formed at the solid surfaces. For calcite, Ga isotope fractionation is mainly triggered by increased Ga coordination and Ga-O bond length, which vary respectively from 4 and 1.84 Å in Ga(OH)4- to 6 and 1.94 Å in the >Ca-O-GaOH(OH2)4+ surface complex. For goethite, despite the formation of Ga hexa-coordinated >FeOGa(OH)20 surface complexes (Ga-O distances of 1.96-1.98 Å) both at acid and alkaline pH, a similar extent of isotope fractionation was found at acid and alkaline pH, suggesting that Ga(OH)4- is preferentially adsorbed on goethite for all investigated pH conditions. In addition, the observed decrease of Ga isotope fractionation magnitude observed with increasing Ga surface coverage for both calcite and goethite is likely related to the formation of Ga surface polymers and/or hydroxides with reduced Ga-O distances. This first study of Ga isotope fractionation during solid-fluid interactions suggests that the adsorption of Ga by oxides, carbonates or clay minerals could yield significant Ga isotope fractionation between secondary minerals and surficial fluids including seawater. Ga isotopes thus should help to better characterize the surficial biogeochemical cycles of gallium and its

  2. Repositioning the substrate activity screening (SAS) approach as a fragment-based method for identification of weak binders.

    Science.gov (United States)

    Gladysz, Rafaela; Cleenewerck, Matthias; Joossens, Jurgen; Lambeir, Anne-Marie; Augustyns, Koen; Van der Veken, Pieter

    2014-10-13

    Fragment-based drug discovery (FBDD) has evolved into an established approach for "hit" identification. Typically, most applications of FBDD depend on specialised cost- and time-intensive biophysical techniques. The substrate activity screening (SAS) approach has been proposed as a relatively cheap and straightforward alternative for identification of fragments for enzyme inhibitors. We have investigated SAS for the discovery of inhibitors of oncology target urokinase (uPA). Although our results support the key hypotheses of SAS, we also encountered a number of unreported limitations. In response, we propose an efficient modified methodology: "MSAS" (modified substrate activity screening). MSAS circumvents the limitations of SAS and broadens its scope by providing additional fragments and more coherent SAR data. As well as presenting and validating MSAS, this study expands existing SAR knowledge for the S1 pocket of uPA and reports new reversible and irreversible uPA inhibitor scaffolds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Hydrogen constituents of the mesosphere inferred from positive ions - H2O, CH4, H2CO, H2O2, and HCN

    Science.gov (United States)

    Kopp, E.

    1990-01-01

    The concentrations in the mesosphere of H2O, CH4, H2CO, H2O2, and HCN were inferred from data on positive ion compositions, obtained from one mid-latitude and four high-latitude rocket flights. The inferred concentrations were found to agree only partially with the ground-based microwave measurements and/or model prediction by Garcia and Solomon (1985). The CH4 concentration was found to vary between 70 and 4 ppb in daytime and 900 and 100 ppbv at night, respectively. Unexpectedly high H2CO concentrations were obtained, with H2CO/H2O ratios between 0.0006 and 0.1, and a mean HCN volume mixing ratio of 6 x 10 to the -10th was inferred.

  4. Shell-model-based deformation analysis of light cadmium isotopes

    Science.gov (United States)

    Schmidt, T.; Heyde, K. L. G.; Blazhev, A.; Jolie, J.

    2017-07-01

    Large-scale shell-model calculations for the even-even cadmium isotopes 98Cd-108Cd have been performed with the antoine code in the π (2 p1 /2;1 g9 /2) ν (2 d5 /2;3 s1 /2;2 d3 /2;1 g7 /2;1 h11 /2) model space without further truncation. Known experimental energy levels and B (E 2 ) values could be well reproduced. Taking these calculations as a starting ground we analyze the deformation parameters predicted for the Cd isotopes as a function of neutron number N and spin J using the methods of model independent invariants introduced by Kumar [Phys. Rev. Lett. 28, 249 (1972), 10.1103/PhysRevLett.28.249] and Cline [Annu. Rev. Nucl. Part. Sci. 36, 683 (1986), 10.1146/annurev.ns.36.120186.003343].

  5. CO2-dependent carbon isotope fractionation in the dinoflagellate Alexandrium tamarense

    Science.gov (United States)

    Wilkes, Elise B.; Carter, Susan J.; Pearson, Ann

    2017-09-01

    The carbon isotopic composition of marine sedimentary organic matter is used to resolve long-term histories of pCO2 based on studies indicating a CO2-dependence of photosynthetic carbon isotope fractionation (εP). It recently was proposed that the δ13C values of dinoflagellates, as recorded in fossil dinocysts, might be used as a proxy for pCO2. However, significant questions remain regarding carbon isotope fractionation in dinoflagellates and how such fractionation may impact sedimentary records throughout the Phanerozoic. Here we investigate εP as a function of CO2 concentration and growth rate in the dinoflagellate Alexandrium tamarense. Experiments were conducted in nitrate-limited chemostat cultures. Values of εP were measured on cells having growth rates (μ) of 0.14-0.35 d-1 and aqueous carbon dioxide concentrations of 10.2-63 μmol kg-1 and were found to correlate linearly with μ/[CO2(aq)] (r2 = 0.94) in accord with prior, analogous chemostat investigations with eukaryotic phytoplankton. A maximum fractionation (εf) value of 27‰ was characterized from the intercept of the experiments, representing the first value of εf determined for an algal species employing Form II RubisCO-a structurally and catalytically distinct form of the carbon-fixing enzyme. This value is larger than theoretical predictions for Form II RubisCO and not significantly different from the ∼25‰ εf values observed for taxa employing Form ID RubisCO. We also measured the carbon isotope contents of dinosterol, hexadecanoic acid, and phytol from each experiment, finding that each class of biomarker exhibits different isotopic behavior. The apparent CO2-dependence of εP values in our experiments strengthens the proposal to use dinocyst δ13C values as a pCO2 proxy. Moreover, the similarity between the εf value for A. tamarense and the consensus value of ∼25‰ indicates that the CO2-sensitivity of carbon isotope fractionation saturates at similar CO2 levels across all three

  6. Utilization of stable isotopes for characterizing an underground gas generator

    International Nuclear Information System (INIS)

    Pirard, J.P.; Antenucci, D.; Renard, X.; Letolle, R.

    1994-01-01

    The principles of isotopic exchange and isotope ratio result interpretation are first reviewed; then, in the framework of an underground coal gasification project in Belgium, experiments and modelling of the underground gas generator have been carried out: isotopic abundances of carbon, hydrogen and oxygen have been measured in the gasifying agent (O 2 , H 2 O) and in the effluent (CO 2 , CO, H 2 , H 2 O, CH 4 , O 2 , heavy oils and various organic and mineral substances). Gasification kinetics and temperatures have been evaluated and isotope application to thermometry is discussed. 1 fig., 9 refs

  7. Validity of Simpson-Angus Scale (SAS) in a naturalistic schizophrenia population.

    Science.gov (United States)

    Janno, Sven; Holi, Matti M; Tuisku, Katinka; Wahlbeck, Kristian

    2005-03-17

    Simpson-Angus Scale (SAS) is an established instrument for neuroleptic-induced parkinsonism (NIP), but its statistical properties have been studied insufficiently. Some shortcomings concerning its content have been suggested as well. According to a recent report, the widely used SAS mean score cut-off value 0.3 of for NIP detection may be too low. Our aim was to evaluate SAS against DSM-IV diagnostic criteria for NIP and objective motor assessment (actometry). Ninety-nine chronic institutionalised schizophrenia patients were evaluated during the same interview by standardised actometric recording and SAS. The diagnosis of NIP was based on DSM-IV criteria. Internal consistency measured by Cronbach's alpha, convergence to actometry and the capacity for NIP case detection were assessed. Cronbach's alpha for the scale was 0.79. SAS discriminated between DSM-IV NIP and non-NIP patients. The actometric findings did not correlate with SAS. ROC-analysis yielded a good case detection power for SAS mean score. The optimal threshold value of SAS mean score was between 0.65 and 0.95, i.e. clearly higher than previously suggested threshold value. We conclude that SAS seems a reliable and valid instrument. The previously commonly used cut-off mean score of 0.3 has been too low resulting in low specificity, and we suggest a new cut-off value of 0.65, whereby specificity could be doubled without loosing sensitivity.

  8. Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated UO{sub 2} nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Piro, M.H.A., E-mail: markuspiro@gmail.com [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Banfield, J. [Nuclear Engineering Department, University of Tennessee, Knoxville, TN (United States); Clarno, K.T., E-mail: clarnokt@ornl.gov [Reactor and Nuclear Systems Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Simunovic, S. [Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Besmann, T.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Lewis, B.J.; Thompson, W.T. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON (Canada)

    2013-10-15

    Predictive capabilities for simulating irradiated nuclear fuel behavior are enhanced in the current work by coupling thermochemistry, isotopic evolution and heat transfer. Thermodynamic models that are incorporated into this framework not only predict the departure from stoichiometry of UO{sub 2}, but also consider dissolved fission and activation products in the fluorite oxide phase, noble metal inclusions, secondary oxides including uranates, zirconates, molybdates and the gas phase. Thermochemical computations utilize the spatial and temporal evolution of the fission and activation product inventory in the pellet, which is typically neglected in nuclear fuel performance simulations. Isotopic computations encompass the depletion, decay and transmutation of more than 2000 isotopes that are calculated at every point in space and time. These computations take into consideration neutron flux depression and the increased production of fissile plutonium near the fuel pellet periphery (i.e., the so-called “rim effect”). Thermochemical and isotopic predictions are in very good agreement with reported experimental measurements of highly irradiated UO{sub 2} fuel with an average burnup of 102 GW d t(U){sup −1}. Simulation results demonstrate that predictions are considerably enhanced when coupling thermochemical and isotopic computations in comparison to empirical correlations. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  9. Cerebral scintigraphy by 99mTc-HMPAO in sleep apnea syndromes (SAS) during the wakeful state

    International Nuclear Information System (INIS)

    Tainturier, C.; Benamor, M.; Hausser-Hauw, C.; Rakotonanahary, D.; Fleury, B.

    1997-01-01

    The SAS is associated to cerebral hemodynamic modifications and to a high frequency of cerebro-vascular accidents. The aim of this study was to verify, during wakeful state, the cerebral hemodynamic in 14 patients afflicted with SAS of various intensity (Apnea Index = 5-120/h). 555 MBq of 99m Tc-HMPAO were injected in patients maintained awake. The images were obtained 20 minutes after injection by mean of a double-head chamber equipped with fan-beam collimators. They were interpreted visually by two independent readers. Anomalies of cerebral fixation were observed in 12/14 patients. They were small sores of diffuse hypo-fixations, with a 'riddly' aspect (4 cases), sores of bi-temporal hypo-fixation with a right- or left- hemispheric predominance (6 cases), or right fronto-temporal hypo-fixations (2 cases). The cerebral fixation anomalies were reported in the SASs. Ficker et al (1997) have shown in-sleep frontal hypo-perfusions in 5/14 apneic patients, reversible under continuous positive airing pressure (CPAP). In conclusion, anomalies of cerebral fixation exist in SAS-carrying patients, even in the wakeful state. Questions about hypoperfusion, pre-lacunar syndrome, atrophy still remain. A check of this study is planned after the CPAP treatment to determine the hemodynamic or anatomic origin and the anomaly reversibility

  10. Density functional theory calculations of H/D isotope effects on polymer electrolyte membrane fuel cell operations

    Energy Technology Data Exchange (ETDEWEB)

    Yanase, Satoshi; Oi, Takao [Sophia Univ., Tokyo (Japan). Faculty of Science and Technology

    2015-10-01

    To elucidate hydrogen isotope effects observed between fuel and exhaust hydrogen gases during polymer electrolyte membrane fuel cell operations, H-to-D reduced partition function ratios (RPFRs) for the hydrogen species in the Pt catalyst phase of the anode and the electrolyte membrane phase of the fuel cell were evaluated by density functional theory calculations on model species of the two phases. The evaluation yielded 3.2365 as the value of the equilibrium constant of the hydrogen isotope exchange reaction between the two phases at 39 C, which was close to the experimentally estimated value of 3.46-3.99 at the same temperature. It was indicated that H{sup +} ions on the Pt catalyst surface of the anode and H species in the electrolyte membrane phase were isotopically in equilibrium with one another during fuel cell operations.

  11. Production of Long-Lived H2-, HD-, and D2- during Grazing Scattering Collisions of H2+, H3+, D2+, D3+ and D2H+ Ions with KBr, KCl, and LiF Surfaces

    International Nuclear Information System (INIS)

    Seely, D. G.; Meyer, F. W.; Zhang, H.; Havener, C. C.

    2009-01-01

    We have investigated atomic and molecular anion production from singly charged atomic and molecular hydrogen, deuterium, and mixed isotope beams during grazing interactions with large area KBr, KCl, and LiF single crystal targets in the incident energy range 4-22.5 keV. Electron capture and, in the case of incident molecular ions, dissociation occur during the grazing interactions without appreciable angular straggling or change in velocity. As a result, atomic and molecular cation and anion interaction products are strongly peaked in the specular reflection direction, and, in case of dissociation products, at the fractional kinetic energies determined by the product fragment mass to incident mass ratios. A large-acceptance electrostatic analysis and detection system is used to collect the charged scattering products with high efficiency. Of particular interest is the production of metastable molecular ions H 2 - , HD - , and D 2 - . By comparing molecular anion yields obtained from incident hydrogen, deuterium and mixed isotope molecular ions, effects arising from isobaric contamination are seen for some incident molecular species.

  12. Method of preparing mercury with an arbitrary isotopic distribution

    Science.gov (United States)

    Grossman, M.W.; George, W.A.

    1986-12-16

    This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg[sub 2]Cl[sub 2], corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H[sub 2]O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H[sub 2]O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered. 1 fig.

  13. Quantum Dynamics Study of the Isotopic Effect on Capture Reactions: HD, D2 + CH3

    Science.gov (United States)

    Wang, Dunyou; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Time-dependent wave-packet-propagation calculations are reported for the isotopic reactions, HD + CH3 and D2 + CH3, in six degrees of freedom and for zero total angular momentum. Initial state selected reaction probabilities for different initial rotational-vibrational states are presented in this study. This study shows that excitations of the HD(D2) enhances the reactivities; whereas the excitations of the CH3 umbrella mode have the opposite effects. This is consistent with the reaction of H2 + CH3. The comparison of these three isotopic reactions also shows the isotopic effects in the initial-state-selected reaction probabilities. The cumulative reaction probabilities (CRP) are obtained by summing over initial-state-selected reaction probabilities. The energy-shift approximation to account for the contribution of degrees of freedom missing in the six dimensionality calculation is employed to obtain approximate full-dimensional CRPs. The rate constant comparison shows H2 + CH3 reaction has the biggest reactivity, then HD + CH3, and D2 + CH3 has the smallest.

  14. [Analysis of hydrogen isotopes by gas chromatography using a MnCl2 coated γ-Al2O3 capillary packed column].

    Science.gov (United States)

    Chen, Ping; Fu, Xiaolong; Hu, Peng; Xiao, Chengjian; Ren, Xingbi; Xia, Xiulong; Wang, Heyi

    2017-07-08

    The conventional packed column gas chromatographic analysis of hydrogen isotopes has low column efficiency, broad peak and long retention time. In this work, a γ -Al 2 O 3 with MnCl 2 coated capillary packed column was tested at cryogenic temperature. The systematic column efficiency analysis and the hydrogen isotopes analytical technique research had been carried out. The results showed that, the γ -Al 2 O 3 with MnCl 2 coating could greatly improve the surface degree of order, pore structure and adsorption properties. Also the o -H 2 peak and p -H 2 peak were eluted in a single area. The γ -Al 2 O 3 with MnCl 2 coating was packed into a 0.53 mm inner diameter and 1.0 m long fused silica capillary column. It had a good linear relationship used this column with thermal conductivity detector (TCD) to detect the volume concentrations of hydrogen isotopes from 1 to 10 mL/L, and the relative error was less than 5% for low concentration sample testing. For H 2 , HD and D 2 , the retention times can be shortened to 39, 46 and 60 s, respectively. The limits of detection were reduced to 0.046, 0.067 and 0.072 mL/L, respectively. Compared with conventional packed column, capillary packed column had sharper peak form, higher separation degree of adjacent components, shorter retention time and lower detection limits. The above results indicate that the capillary packed column with TCD detector can be used for fast detection of low concentration of hydrogen isotopes and their online analysis.

  15. Isotope ratio in stellar atmospheres and nucleosynthesis

    International Nuclear Information System (INIS)

    Barbuy, B.L.S.

    1987-01-01

    The determination of isotopic ratios in stellar atmospheres is studied. The isotopic shift of atomic and molecular lines of different species of a certain element is examined. CH and MgH lines are observed in order to obtain the 12 C: 13 C and 24 Mg: 25 Mg: 26 Mg isotpic ratios. The formation of lines in stellar atmospheres is computed and the resulting synthetic spectra are employed to determine the isotopic abundances. The results obtained for the isotopic ratios are compared to predictions of nucleosynthesis theories. Finally, the concept of primary and secondary element is discussed, and these definitions are applied to the observed variations in the abundance of elements as a function of metallicity. (author) [pt

  16. Cerebral scintigraphy by {sup 99m}Tc-HMPAO in sleep apnea syndromes (SAS) during the wakeful state; Scintigraphie cerebrale au Tc99m-HMPAO dans les syndromes d`apnees du sommeil (SAS) pendant l`etat de veille

    Energy Technology Data Exchange (ETDEWEB)

    Tainturier, C.; Benamor, M.; Hausser-Hauw, C.; Rakotonanahary, D.; Fleury, B. [CMC FOCH 92150 SURESNES (France)

    1997-12-31

    The SAS is associated to cerebral hemodynamic modifications and to a high frequency of cerebro-vascular accidents. The aim of this study was to verify, during wakeful state, the cerebral hemodynamic in 14 patients afflicted with SAS of various intensity (Apnea Index = 5-120/h). 555 MBq of {sup 99m}Tc-HMPAO were injected in patients maintained awake. The images were obtained 20 minutes after injection by mean of a double-head chamber equipped with fan-beam collimators. They were interpreted visually by two independent readers. Anomalies of cerebral fixation were observed in 12/14 patients. They were small sores of diffuse hypo-fixations, with a `riddly` aspect (4 cases), sores of bi-temporal hypo-fixation with a right- or left- hemispheric predominance (6 cases), or right fronto-temporal hypo-fixations (2 cases). The cerebral fixation anomalies were reported in the SASs. Ficker et al (1997) have shown in-sleep frontal hypo-perfusions in 5/14 apneic patients, reversible under continuous positive airing pressure (CPAP). In conclusion, anomalies of cerebral fixation exist in SAS-carrying patients, even in the wakeful state. Questions about hypoperfusion, pre-lacunar syndrome, atrophy still remain. A check of this study is planned after the CPAP treatment to determine the hemodynamic or anatomic origin and the anomaly reversibility

  17. 5-Hydroxypyrido[2,3-b]pyrazin-6(5H)-one derivatives as novel dual inhibitors of HIV-1 reverse transcriptase-associated ribonuclease H and integrase.

    Science.gov (United States)

    Sun, Lin; Gao, Ping; Dong, Guanyu; Zhang, Xujie; Cheng, Xiqiang; Ding, Xiao; Wang, Xueshun; Daelemans, Dirk; De Clercq, Erik; Pannecouque, Christophe; Menéndez-Arias, Luis; Zhan, Peng; Liu, Xinyong

    2018-06-18

    We reported herein the design, synthesis and biological evaluation of a series of 5-hydroxypyrido[2,3-b]pyrazin-6(5H)-one derivatives as HIV-1 reverse transcriptase (RT) ribonuclease H (RNase H) inhibitors using a privileged structure-guided scaffold refining strategy. In view of the similarities between the pharmacophore model of RNase H and integrase (IN) inhibitors as well as their catalytic sites, we also performed IN inhibition assays. Notably, the majority of these derivatives inhibited RNase H and IN at micromolar concentrations. Among them, compound 7a exhibited similar inhibitory activity against RNase H and IN (IC 50 RNase H  = 1.77 μM, IC 50 IN  = 1.18 μM, ratio = 1.50). To the best of our knowledge, this is the first reported dual HIV-1 RNase H-IN inhibitor based on a 5-hydroxypyrido[2,3-b]pyrazin-6(5H)-one structure. Molecular modeling has been used to predict the binding mode of 7a in complex with the catalytic cores of HIV-1 RNase H and IN. Taken together these results strongly support the feasibility of developing HIV-1 dual inhibitors from analog-based optimization of divalent metal ion chelators. Recently, the identification of dual inhibitors proved to be a highly effective strategy for novel antivirals discovery. Therefore, these compounds appear to be useful leads that can be further modified to develop more valuable anti-HIV-1 molecules with suitable drug profiles. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Validity of Simpson-Angus Scale (SAS in a naturalistic schizophrenia population

    Directory of Open Access Journals (Sweden)

    Tuisku Katinka

    2005-03-01

    Full Text Available Abstract Background Simpson-Angus Scale (SAS is an established instrument for neuroleptic-induced parkinsonism (NIP, but its statistical properties have been studied insufficiently. Some shortcomings concerning its content have been suggested as well. According to a recent report, the widely used SAS mean score cut-off value 0.3 of for NIP detection may be too low. Our aim was to evaluate SAS against DSM-IV diagnostic criteria for NIP and objective motor assessment (actometry. Methods Ninety-nine chronic institutionalised schizophrenia patients were evaluated during the same interview by standardised actometric recording and SAS. The diagnosis of NIP was based on DSM-IV criteria. Internal consistency measured by Cronbach's α, convergence to actometry and the capacity for NIP case detection were assessed. Results Cronbach's α for the scale was 0.79. SAS discriminated between DSM-IV NIP and non-NIP patients. The actometric findings did not correlate with SAS. ROC-analysis yielded a good case detection power for SAS mean score. The optimal threshold value of SAS mean score was between 0.65 and 0.95, i.e. clearly higher than previously suggested threshold value. Conclusion We conclude that SAS seems a reliable and valid instrument. The previously commonly used cut-off mean score of 0.3 has been too low resulting in low specificity, and we suggest a new cut-off value of 0.65, whereby specificity could be doubled without loosing sensitivity.

  19. Sulfur and selenium isotope separation by distillation

    International Nuclear Information System (INIS)

    Mills, T. R.; McInteer, B. B.; Montoya, J. G.

    1988-01-01

    Sulfur and selenium isotopes are used for labeled compounds and as precursors for radioisotope production; however, both limited availability and high costs are problems. A new method is needed for large-scale separation of these isotopes. Experimental distillation columns were used to measure isotopic separations for sulfur and selenium compounds. The maximum total isotope separation of 32 S vs. 34 S were 1.127 for H 2 S, 1.048 for COS, 0.838 for SF 4 , and 1.058 for CH 3 SH. Relative volatilities of 32 S vs. 34 S are 1.0006 for COS and 0.9976 for SF 4 . There is a reverse isotope effect for carbon in COS. No isotopic separation was observed for dimethyl selenide. The lower mass selenium isotopes in H 2 Se are more volatile. Distillation is a promising method for separating sulfur isotopes on a production scale. Existing distillation technology produced separated isotopes with an effect similar to that found for sulfur in SF 4 . 8 refs., 2 tabs

  20. Sulfur and selenium isotope separation by distillation

    International Nuclear Information System (INIS)

    Mills, T.R.; McInteer, B.B.; Montoya, J.G.

    1989-01-01

    Sulfur and selenium isotopes are used for labeled compounds and as precursors for radioisotope production; however, both limited availability and high costs are problems. A new method is needed for large-scale separation of theses isotopes. Experimental distillation columns were used to measure isotopic separations for sulfur and selenium compounds. The maximum total isotope separations of 32 S vs. 34 S were 1.127 for H 2 S, 1.048 for COS, 0.838 for SF 4 , and 1.058 for CH 3 SH. Relative volatilities of 32 S and 34 S are 1.0006 for COS and 0.9976 for SF 4 . There is a reverse isotope effect for carbon in COS. No isotopic separation was observed for dimethyl selenide. The lower mass selenium isotopes in H 2 Se are more volatile. Distillation is a promising method for separating sulfur isotopes on a production scale. Existing distillation technology produces separated isotopes with an effect similar to that found for sulfur in SF 4 . (author). 8 refs.; 2 tabs

  1. SAS3DC - A computer program to describe accidents in LMFBRs

    International Nuclear Information System (INIS)

    Angerer, G.; Arnecke, G.; Polch, A.

    1981-02-01

    The code system SAS3D - developed in the ANL - is at present the most adequate instrument for simulating accidents in the LMFBRs. SAS3DC is an improved version of this code system: the routine CLAZAS - modelling in SAS3D the motion of the fuel cladding - is replaced in the SAS3DC by the routine CMOT. CMOT describes the moving material not in the Lagrangian - as CLAZAS - but in the Eulerian system and is so able to register even small cladding-displacements. To complete the description of the SAS3DC-code the results of some sample problems are included. (orig.) [de

  2. Hydrogen isotope exchange reaction rates in tritium, hydrogen and deuterium mixed gases

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko

    1992-01-01

    Hydrogen isotope exchange reaction rates in H 2 +T 2 , D 2 +T 2 and H 2 +D 2 +T 2 mixed gases, as induced by tritium decay and beta radiation, were experimentally measured by laser Raman spectrometry. Initially a glass cell was filled with T 2 gas to a pressure of 30-40 kPa, and an equivalent partial pressure of H 2 and/or D 2 was added. The first-order hydrogen isotope exchange reaction rates were 5.54x10 -2 h -1 for H 2 +T 2 mixed gas and 4.76x10 -2 h -1 for D 2 +T 2 . The actual HT producing rate was nearly equivalent to the rate of DT, but the reverse reaction rate of HT was faster than that of DT. The exchange reaction rates between H, D and T showed the isotope effect, HD>HT>DT. The hydrogen isotope exchange reaction rates observed were about twenty times larger than ion formation rates by beta radiation. This result suggests that a free radical chain reaction in hydrogen isotopes is occurring. (orig.)

  3. [Standardization of the Greek version of Zung's Self-rating Anxiety Scale (SAS)].

    Science.gov (United States)

    Samakouri, M; Bouhos, G; Kadoglou, M; Giantzelidou, A; Tsolaki, K; Livaditis, M

    2012-01-01

    Self-rating Anxiety Scale (SAS), introduced by Zung, has been widely used in research and in clinical practice for the detection of anxiety. The present study aims at standardizing the Greek version of SAS. SAS consists of 20 items rated on a 1-4 likert type scale. The total SAS score may vary from 20 (no anxiety at all) to 80 (severe anxiety). Two hundred and fifty four participants (114 male and 140 female), psychiatric patients, physically ill and general population individuals, aged 45.40±11.35 years, completed the following: (a) a demographic characteristics' questionnaire, (b) the SAS Greek version, (c) the Spielberg's Modified Greek State-Trait Anxiety Scale (STAI-Gr.-X) and (d) the Zung Depression Rating Scale (ZDRS). Seventy six participants answered the SAS twice within a 12th-day median period of time. The following parameters were calculated: (a) internal consistency of the SAS in terms of Cronbach's α co-efficient, (b) its test-retest reliability in terms of the Intraclass Correlation Coefficient (ICC) and (c) its concurrent and convergent validities through its score's Spearman's rho correlations with both the state and trait subscales of STAI-Gr X and the ZDRS. In addition, in order to evaluate SAS' discriminant validity, the scale's scores of the three groups of participants (psychiatric patients, physically ill and general population individuals) were compared among each other, in terms of Kruskall Wallis and Mann Whitney U tests. SAS Cronbach's alpha equals 0.897 while ICC regarding its test-retest reliability equals 0.913. Spearman's rho concerning validity: (a) when SAS is compared to STAI-Gr.-X (state), equals it 0.767, (b) when SAS is compared to STAI-Gr. X (trait), it equals 0.802 and (c) when SAS is compared to ZDRS, it equals 0.835. The mentally ill scored significantly higher in SAS compared to both the healthy and the general population. In conclusion, the SAS Greek version presents very satisfactory psychometric properties regarding

  4. Carbon isotope exchange between gaseous CO2 and thin solution films: Artificial cave experiments and a complete diffusion-reaction model

    Science.gov (United States)

    Hansen, Maximilian; Scholz, Denis; Froeschmann, Marie-Louise; Schöne, Bernd R.; Spötl, Christoph

    2017-08-01

    Speleothem stable carbon isotope (δ13C) records provide important paleoclimate and paleo-environmental information. However, the interpretation of these records in terms of past climate or environmental change remains challenging because of various processes affecting the δ13C signals. A process that has only been sparsely discussed so far is carbon isotope exchange between the gaseous CO2 of the cave atmosphere and the dissolved inorganic carbon (DIC) contained in the thin solution film on the speleothem, which may be particularly important for strongly ventilated caves. Here we present a novel, complete reaction diffusion model describing carbon isotope exchange between gaseous CO2 and the DIC in thin solution films. The model considers all parameters affecting carbon isotope exchange, such as diffusion into, out of and within the film, the chemical reactions occurring within the film as well as the dependence of diffusion and the reaction rates on isotopic mass and temperature. To verify the model, we conducted laboratory experiments under completely controlled, cave-analogue conditions at three different temperatures (10, 20, 30 °C). We exposed thin (≈0.1 mm) films of a NaHCO3 solution with four different concentrations (1, 2, 5 and 10 mmol/l, respectively) to a nitrogen atmosphere containing a specific amount of CO2 (1000 and 3000 ppmV). The experimentally observed temporal evolution of the pH and δ13C values of the DIC is in good agreement with the model predictions. The carbon isotope exchange times in our experiments range from ca. 200 to ca. 16,000 s and strongly depend on temperature, film thickness, atmospheric pCO2 and the concentration of DIC. For low pCO2 (between 500 and 1000 ppmV, as for strongly ventilated caves), our time constants are substantially lower than those derived in a previous study, suggesting a potentially stronger influence of carbon isotope exchange on speleothem δ13C values. However, this process should only have an

  5. Ion-molecule interactions in crossed-beams. [N/sup +/-H/sub 2/; F/sup +/-H; CO/sub 2//sup +/-D/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, S.G.

    1980-09-01

    Interactions of the ions N/sup +/, F/sup +/, and CO/sub 2//sup +/ with H/sub 2/ and/or its isotopes were examined using the crossed-beam technique in the low (< 4 eV) initial relative energy. For the reaction N/sup +/(/sup 3/P) + H/sub 2/ ..-->.. NH/sup +/ + H, complex formation dominates up to 1.9 eV and a substantial interaction occurs between all collision partners up to 3.6 eV. The distribution of N/sup +/ scattered nonreactively from H/sub 2/ also showed a long-lived complex channel below 1.9 eV. The reaction F/sup +/(/sup 3/P) + H/sub 2/ ..-->..FH/sup +/ + H proceeded by a direct reaction mechanism at 0.20 to 1.07 eV. The reaction CO/sub 2//sup +/ + D/sub 2/ ..-->.. DCO/sub 2//sup +/ + D gives asymmetric product distributions at 0.27 eV and above, indicating a direct reaction mechanism. Results indicated that there are probably barriers in the exit channels for DCO/sub 2//sup +/, DCO/sup +/, and D/sub 2/O/sup +/ products. The electronic state distributions of the N/sup +/, F/sup +/, and CO/sub 2//sup +/ beams was investigated using beam attenuation and total luminescence techniques.

  6. Isotopic geothermometers in geothermal areas. A comparative experimental study in Larderella, Italy

    International Nuclear Information System (INIS)

    Nuti, S.; Panichi, C.

    1979-06-01

    The stable isotope composition of some geothermal fluid components has been determined in view of evaluating the temperature at depth in Italian geothermal fields (Larderello, Mt. Amiata, Travale). The isotopic systems used are: 13 C(CO 2 -CH 4 ), 18 O(CO 2 -H 2 O), D(H 2 -CH 4 ) and D(H 2 O-H 2 ), for which the isotopic equilibrium variation with temperature are known either experimentally or theoretically. The 18 O(CO 2 -H 2 O) geothermometer gives temperatures similar to those observed at the well-head, and provides therefore useful information on the physical state of water (steam or evaporating liquid water) at the well bottom. On the contrary, all other geothermometers produce too high temperatures which can be explained by incomplete equilibration or lack of equilibrium between components and, perhaps in some cases, by the insufficient knowledge of the fractionation factors. The comparison between the different isotopic geothermometers, along with some chemical and physico-chemical evidence, suggests that the reaction already proposed, i.e. CO 2 +4H 2 =CH 4 +2H 2 O, is unable to explain the isotopic composition observed. On the contrary, the water dissociation reaction (H 2 O=H 2 +1/2O 2 ) and the synthesis reaction of methane (C+2H 2 =CH 4 ) and carbon dioxide (C+O 2 =CO 2 ) seem able to provide an appropriate explanation of the isotopic behaviour of the geothermal field fluid components

  7. SAS and R data management, statistical analysis, and graphics

    CERN Document Server

    Kleinman, Ken

    2009-01-01

    An All-in-One Resource for Using SAS and R to Carry out Common TasksProvides a path between languages that is easier than reading complete documentationSAS and R: Data Management, Statistical Analysis, and Graphics presents an easy way to learn how to perform an analytical task in both SAS and R, without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy software documentation. The book covers many common tasks, such as data management, descriptive summaries, inferential procedures, regression analysis, and the creation of graphics, along with more complex applicat

  8. Equation-of-state for fluids at high densities-hydrogen isotope measurements and thermodynamic derivations

    International Nuclear Information System (INIS)

    Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.

    1977-01-01

    Hydrogen isotopes play an important role in energy technologies, in particular, the compression to high densities for initiation of controlled thermonuclear fusion energy. At high densities the properties of the compressed hydrogen isotopes depart drastically from ideal thermodynamic predictions. The measurement of accurate data including the author's own recent measurements of n-H 2 and n-D 2 in the range 75 to 300 K and 0.2 to 2.0 GPa (2 to 20 kbar) is reviewed. An equation-of-state of the Benedict type is fit to these data with a double-process least-squares computer program. The results are reviewed and compared with existing data and with a variety of theoretical work reported for fluid hydrogens. A new heuristic correlation is presented for simplicity in predicting volumes and sound velocity at high pressures. 9 figures, 1 table

  9. Infrared spectra of 4HeH+, 4HeD+, 3HeH+, and 3HeD+

    International Nuclear Information System (INIS)

    Crofton, M.W.; Altman, R.S.; Haese, N.N.; Oka, T.

    1989-01-01

    Isotopic species of the HeH + molecular ion provide an excellent testing ground for studying isotopic dependence of vibration--rotation constants because of the small masses of He and H isotopes. We have observed infrared spectra of the hot band v=2 left-arrow 1 of HeH + and fundamental bands of isotopic species HeD + , 3 HeH + , and 3 HeD + , and obtained the Dunham coefficients Y kl , and the isotopically independent parameters U kl , Δ He kl , and Δ H kl

  10. Spanish Network for Isotopes in Precipitation: Isotope Spatial distribution and contribution to the knowledge of the hydrological cycle

    International Nuclear Information System (INIS)

    Diaz-Teijeiro, M. F.; Rodriguez-Arevalo, J.; Castano, S.

    2009-01-01

    The results of seven years of operation of the Spanish Network for Isotopes ( 2 H, 1 8O y 3 H) in Precipitation (REVIP) are shown. this Network is managed since 2000 by the Centro de Estudios de Tecnicas Aplicadas of the Centro de Estudios y Experimentacion de Obras Publicas (CEDEX) in collaboration with the Agencia Estatal de Meteorologia (AEMET). The results of REVIP are sent to the International Atomic Energy Agency (IAEA) in order to be integrated in the Global Network for Isotopes in Precipitation (GNIP). The spatial distribution of stable isotopes ( 1 8O h 2 H) in precipitation in Spain follows a multiple regression model, based on two geographic factors: latitude and elevation, which is strongly correlated with temperature, an important factor controlling isotope fractionation. This information on 1 8O and 2 H is useful to trace surface and ground waters and, combined with the information, about the spatial and temporal distribution of the Tritium ( 3 H) concentration in precipitation, allows to date these waters in order to estimate flow directions and velocities, and to evaluate the residence time of water resources and aquifer vulnerability. (Author)

  11. 13CO2/12CO2 isotope ratio analysis in human breath using a 2 μm diode laser

    Science.gov (United States)

    Sun, Mingguo; Cao, Zhensong; Liu, Kun; Wang, Guishi; Tan, Tu; Gao, Xiaoming; Chen, Weidong; Yinbo, Huang; Ruizhong, Rao

    2015-04-01

    The bacterium H. pylori is believed to cause peptic ulcer. H. pylori infection in the human stomach can be diagnosed through a CO2 isotope ratio measure in exhaled breath. A laser spectrometer based on a distributed-feedback semiconductor diode laser at 2 μm is developed to measure the changes of 13CO2/12CO2 isotope ratio in exhaled breath sample with the CO2 concentration of ~4%. It is characterized by a simplified optical layout, in which a single detector and associated electronics are used to probe CO2 spectrum. A new type multi-passes cell with 12 cm long base length , 29 m optical path length in total and 280 cm3 volume is used in this work. The temperature and pressure are well controlled at 301.15 K and 6.66 kPa with fluctuation amplitude of 25 mK and 6.7 Pa, respectively. The best 13δ precision of 0.06o was achieved by using wavelet denoising and Kalman filter. The application of denoising and Kalman filter not only improved the signal to noise ratio, but also shorten the system response time.

  12. Pharmaceuticals labelled with stable isotopes

    International Nuclear Information System (INIS)

    Krumbiegel, P.

    1986-11-01

    The relatively new field of pharmaceuticals labelled with stable isotopes is reviewed. Scientific, juridical, and ethical questions are discussed concerning the application of these pharmaceuticals in human medicine. 13 C, 15 N, and 2 H are the stable isotopes mainly utilized in metabolic function tests. Methodical contributions are given to the application of 2 H, 13 C, and 15 N pharmaceuticals showing new aspects and different states of development in the field under discussion. (author)

  13. Stable Oxygen-18 and Deuterium Isotopes

    DEFF Research Database (Denmark)

    Müller, Sascha

    The application of stable Oxygen-18 (18O) and Deuterium (2H) isotopes, as a tracer for fluxes between different compartments of the water cycle was subject of the present PhD-thesis. During a three year period, temporal data from a wide range of water cycle constituents was collected from...... the Skjern River catchment, Denmark. The presented applications focused on studying the isotopic 'input signal' to the hydrosphere in the form of precipitation, the isotopic 'output signal' with its related dynamic processes at a coastal saltwater-freshwater interface (groundwater isotopes) and the temporal...... development within a given lowland headwater catchment (stream water isotopes). Based on our investigations on the precipitation isotopic composition a local meteoric water line (LMWL) was constructed and expressed as: δ2H=7.4 δ18O + 5.36‰. Moreover, we showed that under maritime temperature climate influence...

  14. Mirror suspension system for the TAMA SAS

    CERN Document Server

    Takamori, A; Bertolini, A; Cella, G; DeSalvo, R; Fukushima, M; Iida, Y; Jacquier, F; Kawamura, S; Marka, S; Nishi, Y; Numata, K; Sannibale, V; Somiya, K; Takahashi, R; Tariq, H; Tsubono, K; Ugas, J; Viboud, N; Yamamoto, H; Yoda, T; Wang Chen Yang

    2002-01-01

    Several R and D programmes are ongoing to develop the next generation of interferometric gravitational wave detectors providing the superior sensitivity desired for refined astronomical observations. In order to obtain a wide observation band at low frequencies, the optics need to be isolated from the seismic noise. The TAMA SAS (seismic attenuation system) has been developed within an international collaboration between TAMA, LIGO, and some European institutes, with the main objective of achieving sufficient low-frequency seismic attenuation (-180 dB at 10 HZ). The system suppresses seismic noise well below the other noise levels starting at very low frequencies above 10 Hz. It also includes an active inertial damping system to decrease the residual motion of the optics enough to allow a stable operation of the interferometer. The TAMA SAS also comprises a sophisticated mirror suspension subsystem (SUS). The SUS provides support for the optics and vibration isolation complementing the SAS performance. The SU...

  15. Syngas (CO-H2) production using high temperature micro-tubular solid oxide electrolysers

    International Nuclear Information System (INIS)

    Kleiminger, L.; Li, T.; Li, K.; Kelsall, G.H.

    2015-01-01

    Highlights: • CO 2 and/or H 2 O reduced to CO/H 2 in micro-tubular solid oxide electrolyser (MT-SOE). • MT-SOE: CO 2 , H 2 O | Ni-(ZrO 2 ) 0.92 (Y 2 O 3 ) 0.08 (YSZ) | YSZ | YSZ- La 0.8 Sr 0.2 MnO 3-δ |O 2. • −0.76 A cm −2 achieved at 1.5V and ca. 820°C for H 2 O electrolysis. • Ni wire cathode current collector gave better performance than (Ag wire+Ag paste). • C 18 O 2 in co-electrolysis could not distinguish cathodic and chemical reduction. - Abstract: CO 2 and/or H 2 O were reduced to CO/H 2 in micro-tubular solid oxide electrolysers with yttria-stabilized zirconia (YSZ) electrolyte, Ni-YSZ cermet cathode and strontium(II)-doped lanthanum manganite (LSM) oxygen-evolving anode. At 822 °C, the kinetics of CO 2 reduction were slower (ca. −0.49 A cm −2 at 1.8 V) than H 2 O reduction or co-reduction of CO 2 and H 2 O, which were comparable (ca. −0.83 to −0.77 A cm −2 at 1.8 V). Performances were improved (−0.85 and −1.1 A cm −2 for CO 2 and H 2 O electrolysis, respectively) by substituting the silver current collector with nickel and avoiding blockage of entrances to pores on the inner lumen of micro-tubes induced by silver paste applied previously to decrease contact losses. The change in current collector materials increased ohmic potential losses due to substituting the lower resistance Ag with Ni wire, but decreased electrode polarization losses by 80–93%. For co-electrolysis of CO 2 and H 2 O, isotopically-labelled C 18 O 2 was used to try to distinguish between direct cathodic reduction of CO 2 and its Ni-catalysed chemical reaction with hydrogen from reduction of steam. Unfortunately, oxygen was exchanged between C 18 O 2 and H 2 16 O, enriching oxygen-18 in the steam and substituting oxygen-16 in the carbon dioxide, so the anode off-gas isotopic fractions were meaningless. This occurred even in alumina and YSZ tubes without the micro-tubular reactor, i.e. in the absence of Ni catalyst, though not in quartz tubes

  16. Calculations of kinetic isotope effects in the Hofmann eliminations of substituted (2-phenylethyl)trimethylammonium ions

    International Nuclear Information System (INIS)

    Lewis, D.E.; Sims, L.B.; Yamataka, H.; McKenna, J.

    1980-01-01

    Theoretical calculations of kinetic isotope effects (KIE) for the Hofmann elimination of the (2-phenylethyl)trimethylammonium ion (I,Z = H) have been carried out for an extensive series of transition-state models encompassing the Elcb-like region of the E2 mechanistic spectrum. The reaction coordinate employed corresponded to the irreversible fragmentation of the base-H'-C/sub β/-C/sub α/-N system, with proton transfer being the dominant contributor. Structural parameters (bond distances and angles) were related to the independent bond orders n/sub α-N/ and n/sub β-H'/ by empirical and semiempirical relationships. The most probable transition-state structure for the reaction was determined by interpolation of the experimental values for the β-D 2 and 15 N KIE into plots of the trends of the calculated KIE. The nonsolvated models obtained in this manner gave only poor agreement between calculated and experimental secondary deuterium (α-D 2 ) and leaving group deuterium [N(CD 3 )/sub x/(CH 3 )/sub 3-x/, x = 1 to 3) KIE; explicit consideration of differential solvation of the reactant and transition state afforded the most chemically reasonable resolution of these discrepancies. Using solvated models, transition-state structures were also determined for the Hofmann elimination of parasubstituted derivatives of I (Z = OCH 3 , Cl, CF 3 ). These transition states are related by a shift parallel to the central E2 diagogonal of an O'Ferrall-Jencks reaction diagram, as predicted by Thorton, indicating that, in the absence of other factors (differing solvent or base, etc.), the extent to which negative charge is accumulated at Cβ in the transition state is solely a factor of the leaving group. Both independent bond orders (n/sub α-N/ and n/sub β-H'/) exhibit a linear dependence on the sigma value of the substituent, allowing for the first time prediction of transition states

  17. Surface anatomy scanning (SAS) in intracranial tumours: comparison with surgical findings

    International Nuclear Information System (INIS)

    Sumida, M.; Uozumi, T.; Kiya, K.; Arita, K.; Kurisu, K.; Onda, J.; Satoh, H.; Ikawa, F.; Yukawa, O.; Migita, K.; Hada, H.; Katada, K.

    1995-01-01

    We evaluated the usefulness of surface anatomy scanning (SAS) in intracranial tumours, comparing it with surgical findings. We examined 31 patients with brain tumours preoperatively. The tumours included 16 meningiomas, 8 gliomas, 4 metastases and 3 others. SAS clearly demonstrated the tumours, allowing them to be distinguished from the structures of the brain surface, including oedema, except in cases of metastasis. SAS clearly demonstrated large cortical veins. SAS is useful for three-dimensional delineation of the brain surface before surgery. (orig.)

  18. Cellular localization of 2-[3H]deoxy-D-glucose from paraffin-embedded brains

    International Nuclear Information System (INIS)

    Durham, D.; Woolsey, T.A.; Kruger, L.

    1981-01-01

    Results of experiments in which regional neuronal activity is revealed by a 2-[ 3 H]deoxy-D-glucose ( 3 H-2-DG)-paraffin section-emulsion autoradiography method are described. The trigeminal pathway of freely behaving mice was activated differentially by selective patterns of whisker removal. One hour after injection of concentrated 3 H-2-DG, the animals were perfused systemically with a periodate/lysine/paraformaldehyde mixture the brains were embedded in paraffin, and serial sections were taken and coated with emulsion for autoradiography. Diffusion of the isotope out of the tissue was assessed visually and by liquid scintillation counting. While substantial loss of 3 H isotope into the embedding fluids (about 95%) was found, the scintillation counts and the autoradiograms showed good fixation of the isotope in situ, no evidence of isotope movement into the emulsion, and no gradients of diffusion in the sectioned material. Patterns of regional labeling were similar to those reported from brains prepared by conventional 2-[ 14 C]deoxy-D-glucose ( 14 C-2-DG) autoradiography; Trigeminal structures associated with the intact (stimulated) whiskers were labeled relatively heavily, indicating that label uptake is specific with respect to neuronal activity. In the cortex, the patterns of label corresponded directly and precisely to those barrels known to receive inputs from the intact whiskers. Distribution of silver grains in the cortex and in the brainstem was correlated directly with neuronal profiles. Clearly, this approach offers considerable technical advantages, in particular, the ease with which the histological material is prepared. The resolution of the autoradiograms and the quality of the histology are excellent

  19. Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures

    International Nuclear Information System (INIS)

    Chiba, H.; Sakai, H.

    1985-01-01

    Oxygen isotope exchange rate between dissolved sulfate and water was experimentally determined at 100, 200 and 300 deg C. The isotope exchange rate is strongly dependent on temperature and pH of the solution. Combining the temperature and pH dependence of the reaction rate, the exchange reaction was estimated to be first-order with respect to sulfate. The logarithm of apparent rate constant of exchange reaction at a given temperature is a function of the pH calculated at the experimental temperatures. From the pH dependence of the apparent rate constant, it was deduced that the isotope exchange reaction between dissolved sulfate and water proceeds through collision between H 2 SO 4 0 and H 2 O at low pH, and between HSO 4 - and H 2 O at intermediate pH. The isotope exchange rate obtained indicates that oxygen isotope geothermometry utilizing the studied isotope exchange is suitable for temperature estimation of geothermal reservoirs. The extrapolated half-life of this reaction to oceanic temperature is about 10 9 years, implying that exchange between oceanic sulfate and water cannot control the oxygen isotope ratio of oceanic sulfates. (author)

  20. Continuous measurements of stable isotopes of carbon dioxide and water vapour in an urban atmosphere: isotopic variations associated with meteorological conditions.

    Science.gov (United States)

    Wada, Ryuichi; Matsumi, Yutaka; Nakayama, Tomoki; Hiyama, Tetsuya; Fujiyoshi, Yasushi; Kurita, Naoyuki; Muramoto, Kenichiro; Takanashi, Satoru; Kodama, Naomi; Takahashi, Yoshiyuki

    2017-12-01

    Isotope ratios of carbon dioxide and water vapour in the near-surface air were continuously measured for one month in an urban area of the city of Nagoya in central Japan in September 2010 using laser spectroscopic techniques. During the passages of a typhoon and a stationary front in the observation period, remarkable changes in the isotope ratios of CO 2 and water vapour were observed. The isotope ratios of both CO 2 and water vapour decreased during the typhoon passage. The decreases can be attributed to the air coming from an industrial area and the rainout effects of the typhoon, respectively. During the passage of the stationary front, δ 13 C-CO 2 and δ 18 O-CO 2 increased, while δ 2 H-H 2 Ov and δ 18 O-H 2 Ov decreased. These changes can be attributed to the air coming from rural areas and the air surrounding the observational site changing from a subtropical air mass to a subpolar air mass during the passage of the stationary front. A clear relationship was observed between the isotopic CO 2 and water vapour and the meteorological phenomena. Therefore, isotopic information of CO 2 and H 2 Ov could be used as a tracer of meteorological information.

  1. First report of sasX-positive methicillin-resistant Staphylococcus aureus in Japan.

    Science.gov (United States)

    Nakaminami, Hidemasa; Ito, Teruyo; Han, Xiao; Ito, Ayumu; Matsuo, Miki; Uehara, Yuki; Baba, Tadashi; Hiramatsu, Keiichi; Noguchi, Norihisa

    2017-09-01

    SasX is a known virulence factor of Staphylococcus aureus involved in colonisation and immune evasion of the bacterium. The sasX gene, which is located on the ϕSPβ prophage, is frequently found in the sequence type (ST) 239 S. aureus lineage, which is the predominant healthcare-associated clone in Asian countries. In Japan, ST239 clones have rarely been identified, and sasX-positive strains have not been reported to date. Here, we report the first identification of 18 sasX-positive methicillin-resistant S. aureus (MRSA) strains in Japanese hospitals between 2009 and 2011. All sasX-positive isolates belonged to an ST239-staphylococcal cassette chromosome mec type III (ST239-III) lineage. However, we were unable to identify additional sasX-positive MRSA strains from 2012 to 2016, indicating that the small epidemic of sasX-positive isolates observed in this study was temporary. The sequence surrounding sasX in the strain TOHH628 lacked 51 genes that encode phage packaging and structural proteins, and no bacteriophage was induced by mitomycin C. Additionally, in the TOHH628 strain, the region (64.6 kb) containing sasX showed high identity to the ϕSPβ-like element (71.3 kb) of the Taiwanese MRSA strain Z172. The data strongly suggest that the present sasX-positive isolates found in Japanese hospitals were transmitted incidentally from other countries. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Development and validation of a smartphone addiction scale (SAS.

    Directory of Open Access Journals (Sweden)

    Min Kwon

    Full Text Available OBJECTIVE: The aim of this study was to develop a self-diagnostic scale that could distinguish smartphone addicts based on the Korean self-diagnostic program for Internet addiction (K-scale and the smartphone's own features. In addition, the reliability and validity of the smartphone addiction scale (SAS was demonstrated. METHODS: A total of 197 participants were selected from Nov. 2011 to Jan. 2012 to accomplish a set of questionnaires, including SAS, K-scale, modified Kimberly Young Internet addiction test (Y-scale, visual analogue scale (VAS, and substance dependence and abuse diagnosis of DSM-IV. There were 64 males and 133 females, with ages ranging from 18 to 53 years (M = 26.06; SD = 5.96. Factor analysis, internal-consistency test, t-test, ANOVA, and correlation analysis were conducted to verify the reliability and validity of SAS. RESULTS: Based on the factor analysis results, the subscale "disturbance of reality testing" was removed, and six factors were left. The internal consistency and concurrent validity of SAS were verified (Cronbach's alpha = 0.967. SAS and its subscales were significantly correlated with K-scale and Y-scale. The VAS of each factor also showed a significant correlation with each subscale. In addition, differences were found in the job (p<0.05, education (p<0.05, and self-reported smartphone addiction scores (p<0.001 in SAS. CONCLUSIONS: This study developed the first scale of the smartphone addiction aspect of the diagnostic manual. This scale was proven to be relatively reliable and valid.

  3. Rate-controlling two-proton transfer coupled with heavy-atom motion in the 2-pyridinone-catalyzed mutarotation of tetramethylglucose. Experimental and calculated deuterium isotope effects

    International Nuclear Information System (INIS)

    Engdahl, K.A.; Bivehed, H.; Ahlberg, P.; Saunders, W.H. Jr.

    1983-01-01

    Primary and secondary deuterium isotope effects have been measured by polarimetry, and primary isotope effects have been calculated for the classical bifunctional catalysis: 2-pyridinone-catalyzed mutarotation of 2,3,4,6-tetra-O-methyl-α-D-glucopyranose (α-TMG) in benzene. From the positively curved plot of the specific rate of epimerization vs. the mole fraction of 2 H in the ''pool'' of OH and NH hydrogens, the isotope effects k/sub HH//k/sub DD/ = 3.66 +/- 0.09, k/sub HH//k/sub DH/ = 1.5, and k/sub HH//k/sub HD/ = 2.4 have been calculated. A secondary isotope effect of 1.14 +/- 0.02 has been measured by using α-TMG and (1- 2 H)-2,3,4,6-tetra-O-methyl-α-D-glucopyranose [(l- 2 H)-α-TMG], the synthesis of which is described in detail, together with those for (N- 2 H)-2-pyridinone and (1-O- 2 H)-2,3,4,6-tetra-O-methyl-α-D-glucopyranose [(1-O- 2 H)-α-TMG]. The rate data obtained have also been analyzed by fractionation theory, yielding approximately equal fractionation factors (0.5). The interpretation of the results has been assisted by calculations of the primary deuterium isotope effects using the BEBOVIB IV program. Two models involving small and considerable coupling, respectively, of the transferring protons to heavy-atom motion have been considered. In the favored structure for the transition state of the rate-limiting step, two protons are in transit, and their motion is governed either by a potential with a barrier or by one without. Their motion is considerably coupled to the heavy-atom motion (i.e., the breakage of the ring C-O bond), and tunnel corrections to the isotope effects are found to be negligible

  4. Hotelli Radisson SAS mantra : jah, ma saan! / Kai Vare

    Index Scriptorium Estoniae

    Vare, Kai, 1968-

    2004-01-01

    Radisson SAS hotell Tallinnas on kliendirahulolu-uuringute järgi keti hotellide seas esimeste hulgas. Hotelli direktor Kaido Ojaperv ja müügijuht Ann-Kai Tõrs Radisson SAS-i standarditest, kliendi sajaprotsendilise rahulolu tagamise põhimõtetest, personali valikust, koolitusest. Kommenteerib Sandra Dimitrovich

  5. SAS validation and analysis of in-pile TUCOP experiments

    International Nuclear Information System (INIS)

    Morman, J.A.; Tentner, A.M.; Dever, D.J.

    1985-01-01

    The validation of the SAS4A accident analysis code centers on its capability to calculate the wide range of tests performed in the TREAT (Transient Reactor Test Facility) in-pile experiments program. This paper presents the SAS4A analysis of a simulated TUCOP (Transient-Under-Cooled-Over-Power) experiment using seven full-length PFR mixed oxide fuel pins in a flowing sodium loop. Calculations agree well with measured thermal-hydraulic, pin failure time and post-failure fuel motion data. The extent of the agreement confirms the validity of the models used in the SAS4A code to describe TUCOP accidents

  6. Isotope effects and their implications for the covalent binding of inhaled [3H]- and [14C]formaldehyde in the rat nasal mucosa

    International Nuclear Information System (INIS)

    Heck Hd'; Casanova, M.

    1987-01-01

    DNA-protein crosslinks were formed in the nasal respiratory mucosa of Fischer-344 rats exposed for 3 hr to selected concentrations of [ 3 H]- and [ 14 C]formaldehyde ( 3 HCHO and H 14 CHO). In rats depleted of glutathione (GSH) and exposed to 10 ppm of 3 HCHO and H 14 CHO, the 3 H/ 14 C ratio of the fraction of the DNA that was crosslinked to proteins was significantly (39 +/- 6%) higher than that of the inhaled gas. This suggests an isotope effect, either on the formation of DNA-protein crosslinks by labeled HCHO or on the oxidation of labeled HCHO catalyzed by formaldehyde (FDH) or aldehyde dehydrogenase (AldDH). The possibility of an isotope effect on the formation of crosslinks was investigated using rat hepatic nuclei incubated with [ 3 H]- and [ 14 C]formaldehyde (0.1 mM, 37 degrees C). A small (3.4 +/- 0.9%) isotope effect was detected on this reaction, which slightly favored 3 HCHO over H 14 CHO in binding to DNA. The magnitude of this isotope effect cannot account for the high isotope ratio observed in the crosslinked DNA in vivo. The possibility of an isotope effect on the oxidation of 3 HCHO and H 14 CHO catalyzed by FDH was investigated using homogenates of the rat nasal mucosa incubated with [ 3 H]- and [ 14 C]formaldehyde at total formaldehyde concentrations ranging from 0.1 to 11 microM, NAD+ (1 mM), GSH (15 mM), and pyrazole (1 mM). The experiments showed that 3 HCHO is oxidized significantly more slowly than H 14 CHO under these conditions (Vmax/Km (H 14 CHO) divided by Vmax/Km ( 3 HCHO) = 1.82 +/- 0.11). A similar isotope effect was observed in the absence of GSH, presumably due to the oxidation of 3 HCHO and H 14 CHO catalyzed by AldDH

  7. Isotopically labelled pyrimidines and purines

    International Nuclear Information System (INIS)

    Balaban, A.T.; Bally, I.

    1987-01-01

    Among the three diazines, pyrimidine is by far the most important one because its derivatives uracil, thymine and cytosine are constituents of the ubiquitous deoxynucleic acids (DNA) and ribonucleic acids (RNA). Other derivatives of pyrimidine without condensed rings include barbiturates, alloxan, orotic acid and thiamine or vitamin B 1 . From the polycyclic derivatives of pyrimidine such as pteridine, alloxazine, and purine, the latter, through its derivatives adenine and guanine complete the list of bases which occur in DNA and RNA: in addition, other purine derivatives such as hypoxanthine, xanthine, theobromine, theophylline, caffeine and uric acid are important natural products with biological activity. The paper presents methods for preparing isotopically labeled pyrimidines as well as purine derivatives. For convenience, the authors describe separately carbon-labeled with radioisotopes 11 C (T 1/2 = 20.3 min) and 14 C (T 1/2 = 5736 years) or the stable isotope 13 C (natural abundance 1.1%) and then hydrogen-labeled systems with the radioisotope 3 H ≡ T (T 1/2 = 12.346 years) or with the stable isotope 2 H ≡ D (natural abundance 0.015%). We do not separate stable from radioactive isotopes because the synthetic methods are identical for the same element; however, the introduction of hydrogen isotopes into organic molecules is often performed by reactions such as isotope exchange which cannot take place in the case of carbon isotopes

  8. Dynamic isotope effect on the product energy partitioning in CH2OH+→CHO++H2

    Science.gov (United States)

    Rhee, Young Min; Kim, Myung Soo

    1998-10-01

    The deuterium isotope effect on the product energy partitioning in the title reaction was investigated both experimentally and theoretically. The measured kinetic energy release (KER) showed a significant dependence on the position of deuteration. A reliable potential energy surface of the reaction was constructed from ab initio results using the recently developed interpolation algorithm. The classical trajectory calculation on this surface well reproduced the experimental finding. Close inspection of the potential energy surface revealed that the isotope effect on KER and the product rotations arose from the alteration of the symmetry of the reaction path near the transition state induced by the mass change upon isotopic substitution. The product vibrations were found to be affected by the change in the coupling constants which also arose from the mass-dependent change in the reaction path. Possibility of the quantum mechanical tunneling was also considered. Tunneling-corrected classical trajectory results were in excellent agreement with the experimental ones, indicating that the reaction proceeds via barrier penetration below the threshold.

  9. Copper isotope fractionation between aqueous compounds relevant to low temperature geochemistry and biology

    Science.gov (United States)

    Fujii, Toshiyuki; Moynier, Frédéric; Abe, Minori; Nemoto, Keisuke; Albarède, Francis

    2013-06-01

    Isotope fractionation between the common Cu species present in solution (Cu+, Cu2+, hydroxide, chloride, sulfide, carbonate, oxalate, and ascorbate) has been investigated using both ab initio methods and experimental solvent extraction techniques. In order to establish unambiguously the existence of equilibrium isotope fractionation (as opposed to kinetic isotope fractionation), we first performed laboratory-scale liquid-liquid distribution experiments. Upon exchange between HCl medium and a macrocyclic complex, the 65Cu/63Cu ratio fractionated by -1.06‰ to -0.39‰. The acidity dependence of the fractionation was appropriately explained by ligand exchange reactions between hydrated H2O and Cl- via intramolecular vibrations. The magnitude of the Cu isotope fractionation among important Cu ligands was also estimated by ab initio methods. The magnitude of the nuclear field shift effect to the Cu isotope fractionation represents only ˜3% of the mass-dependent fractionation. The theoretical estimation was expanded to chlorides, hydroxides, sulfides, sulfates, and carbonates under different conditions of pH. Copper isotope fractionation of up to 2‰ is expected for different forms of Cu present in seawater and for different sediments (carbonates, hydroxides, and sulfides). We found that Cu in dissolved carbonates and sulfates is isotopically much heavier (+0.6‰) than free Cu. Isotope fractionation of Cu in hydroxide is minimal. The relevance of these new results to the understanding of metabolic processes was also discussed. Copper is an essential element used by a large number of proteins for electron transfer. Further theoretical estimates of δ65Cu in hydrated Cu(I) and Cu(II) ions, Cu(II) ascorbates, and Cu(II) oxalate predict Cu isotope fractionation during the breakdown of ascorbate into oxalate and account for the isotopically heavy Cu found in animal kidneys.

  10. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    Directory of Open Access Journals (Sweden)

    Hannah B Vander Zanden

    2016-03-01

    Full Text Available The measurement of stable carbon (δ13C and nitrogen (δ15N isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H and oxygen (δ18O isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applications using δ2H and, to a lesser extent, δ18O values have demonstrated potential for these elements to provide novel insights in modern food web studies. We explore the advantages and challenges associated with three applications of δ2H and δ18O values in food web studies. First, large δ2H differences between aquatic and terrestrial ecosystem end members can permit the quantification of energy inputs and nutrient fluxes between these two sources, with potential applications for determining allochthonous vs. autochthonous nutrient sources in freshwater systems and relative aquatic habitat utilization by terrestrial organisms. Next, some studies have identified a relationship between δ2H values and trophic position, which suggests that this marker may serve as a trophic indicator, in addition to the more commonly used δ15N values. Finally, coupled measurements of δ2H and δ18O values are increasing as a result of reduced analytical challenges to measure both simultaneously and may provide additional ecological information over single element measurements. In some organisms, the isotopic ratios of these two elements are tightly coupled, whereas the isotopic disequilibrium in other organisms may offer insight into the diet and physiology of individuals. Although a coherent framework for interpreting δ2H and δ18O data in the context of food web studies is emerging, many fundamental uncertainties remain. We highlight directions for targeted research that

  11. On the isotope effects of ZrCoX3 (X = H, D and T): a first-principles study

    International Nuclear Information System (INIS)

    Chattaraj, D.; Parida, S.C.; Dash, Smruti; Majumder, C.

    2013-01-01

    In the ITER project, the ZrCo-X (X= H, D and T) systems have gained considerable attention because of its use in the hydrogen isotope storage. The isotopic effects on the ZrCoX 3 (X= H, D and T) compounds have been studied in terms of the variation of the thermodynamic parameters using the DFT and frozen phonon approach. A significant difference between the ZrCoH 3 and its isotopic analogues has been noticed in terms of zero point energy (ZPE) and phonon frequencies. The zero point energies are 65.47 kJ/mol, 48.07 kJ/mol and 39.32 kJ/mol for ZrCoH 3 , ZrCoD 3 and ZrCoT 3 , respectively. The enthalpy of formation of ZrCoX 3 compounds, including the ZPE contributions, are -124.84, -142.24 and -150.99 kJ/(mole of compound) for X = H, D and T, respectively. (author)

  12. 35Cl/37Cl isotope effects in 103Rh NMR of [RhCln(H2O)6−n]3−n complex anions in hydrochloric acid solution as a unique ‘NMR finger-print’ for unambiguous speciation

    International Nuclear Information System (INIS)

    Geswindt, Theodor E.; Gerber, Wilhelmus J.; Brand, D. Jacobus; Koch, Klaus R.

    2012-01-01

    Graphical abstract: 35 Cl/ 37 Cl isotope effects in 103 Rh NMR as a unique ‘NMR-fingerprints’ leading to the unambiguous assignment of [RhCl n (H 2 O) 6−n ] 3−n (n = 3–6) complexes without reliance on accurate δ( 103 Rh) chemical shifts. Highlights: ► Direct 103 Rh NMR (19.11 MHz) spectroscopic method of speciation of [RhCl n (H 2 O) 6−n ] 3−n in HCl. ► 35 Cl/ 37 Cl isotope effects in 103 Rh NMR of [RhCl n (H 2 O) 6−n ] 3−n anions isotopologue and isotopomer induced 103 Rh NMR ‘finger-print’ for unambiguous identification. ► 103 Rh NMR identification of stereoisomers without a need for accurate chemical shifts. - Abstract: A detailed analysis of the 35 Cl/ 37 Cl isotope effects observed in the 19.11 MHz 103 Rh NMR resonances of [RhCl n (H 2 O) 6−n ] 3−n complexes (n = 3–6) in acidic solution at 292.1 K, shows that the ‘fine structure’ of each 103 Rh resonance can be understood in terms of the unique isotopologue and in certain instances the isotopomer distribution in each complex. These 35 Cl/ 37 Cl isotope effects in the 103 Rh NMR resonance of the [Rh 35/37 Cl 6 ] 3− species manifest only as a result of the statistically expected 35 Cl/ 37 Cl isotopologues, whereas for the aquated species such as for example [Rh 35/37 Cl 5 (H 2 O)] 2− , cis-[Rh 35/37 Cl 4 (H 2 O) 2 ] − as well as the mer-[Rh 35/37 Cl 3 (H 2 O) 3 ] complexes, additional fine-structure due to the various possible isotopomers within each class of isotopologues, is visible. Of interest is the possibility of the direct identification of stereoisomers cis-[RhCl 4 (H 2 O) 2 ] − , trans-[RhCl 4 (H 2 O) 2 ] − , fac-[RhCl 3 (H 2 O) 3 ] and mer-[RhCl 3 (H 2 O) 3 ] based on the 103 Rh NMR line shape, other than on the basis of their very similar δ( 103 Rh) chemical shift. The 103 Rh NMR resonance structure thus serves as a novel and unique ‘NMR-fingerprint’ leading to the unambiguous assignment of [RhCl n (H 2 O) 6−n ] 3−n complexes (n = 3–6

  13. Symbiotic N2 fixation by legumes growing in pots. 2. Uptake of VN-labelled NO3 , C2H2 reduction and H2 evolution by Trifolium subterraneum L. , Medicago truncatula Gaertn. and Acacia dealbata Link

    Energy Technology Data Exchange (ETDEWEB)

    Hopmans, P.; Chalk, P.M.; Douglas, L.A.

    1983-01-01

    The objectives of this study were to estimate symbiotic nitrogen fixation by two common pasture legumes, Trifolium subterraneum L. and Medicago truncatula Gaertn., and an Australian native legume, Acacia dealbata Link, growing in pots using an indirect isotopic method. This method was also used to calibrate the C2H2 reduction assay of the intact plants. In addition, hydrogen evolution was measured in an attempt to explain the variations in C2H2:N2 ratios between the species. 25 refs.; 1 figure; 4 tabs.

  14. H-isotope retention and thermal/ion-induced release in boronized films

    International Nuclear Information System (INIS)

    Walsh, D.S.; Doyle, B.L.; Wampler, W.R.; Hays, A.K.

    1990-01-01

    Over the past decade, it has been clearly demonstrated that the composition of the very near surface (∼100nm) of plasma-interactive components plays a determinant role in most processes which occur in the plasma-edge of Tokamaks. Two very successful techniques to effect control of the plasma-wall interaction are (1) in-situ deposition of amorphous carbon or boron-carbon films and (2) the use of He/C conditioning discharges or He glow discharge cleaning to modify the near surface of bulk graphite components. We have deposited boronized layers into Si using plasma-assisted CVD and sputter deposition. The PCVD deposition conditions were as close as possible to those used in TFTR, and some films deposited in TFTR have also been studied. Using these two deposition techniques, B x CH y films have been produced with x varying from 1/2 -- 4, and y from ∼1 (sputtered) to ∼3 (PCVD). Most films also contained significant amounts of 0. Thermal and ion-induced release of H-isotopes from BC films is qualitatively similar to that measured for graphite. Implanted H saturates in these films at a H/host atom ratio of 0.7 which is considerably higher than that of graphite(∼0.4). As-deposited PCVD films are already saturated with H, while sputtered films are not. Sputtered BC films therefore possess an inherent H-pumping capability which could prove to be extremely beneficial to TFTR. 16 refs., 5 figs., 1 tab

  15. Permeation of a H2 + HD + D2 gas mixture through a polymer membrane

    International Nuclear Information System (INIS)

    Mercea, P.; Cuna, S.; Kreibik, S.; Ursu, I.

    1990-01-01

    The selective permeation of a H 2 + HD + D 2 gas mixture through a polyethylene terephthalate membrane was studied at T 20 0 C. It was found that the permeation of the HD through the membrane leads to a smaller overall hydrogen-deuterium separation factor than that determined in the permeation experiments with pure H 2 and D 2 . On the other hand, a process of isotopic exchange between deuterium atoms from the penetrant gas stream and hydrogen atoms from the polymer membrane is assumed and discussed in order to explain temporal variations of the H 2 , HD and D 2 concentrations of the permanent gas stream. (author)

  16. Pull-push mechanism for the 1,2-hydrogen rearrangement of carbenes. Substituent and deuterium isotope effects for thermal decomposition of 1-phenyl-2-diazopropanes

    International Nuclear Information System (INIS)

    Su, D.T.T.; Thornton, E.R.

    1978-01-01

    Intramolecular and intermolecular deuterium isotope effects have been measured for the thermal carbene H rearrangements of three substituted 1-phenyl-2-diazopropanes-1-d in hexane at 25 0 C. The isotope effects, k/sub H//k/sub D/, vary from ca. 1.2 to 1.5, increasing with electron-withdrawing substituents, for the formation of both cis- and trans-β-methylstyrenes. Product ratios were determined for these compounds as well as the corresponding undeuterated ones, permitting calculation of intermolecular primary and secondary isotope effects. In addition, the competition among the cis and trans products and the product of H migration from the terminal methyl group permitted determination of Hammett rho values of ca. -1 for the competition between benzylic and terminal migration. The results strongly indicate a ''pull-push'' mechanism, which can be pictured roughly as electrophilic attack on the C--H bond by the phantom p orbital of the carbene along with backside nucleophilic attack by the carbene unshared electron pair to push the H away and form the π bond. The data are believed to be consistent only with a nonzero barrier for the carbene hydrogen rearrangement

  17. A carbon isotope budget for an anoxic marine sediment

    International Nuclear Information System (INIS)

    Boehme, S.E.; Blair, N.E.

    1991-01-01

    A carbon isotope budget has been determined for the coastal marine site, Cape Lookout Bight, NC. Isotope measurements of methane and σCO 2 fluxing out and buried in these sediments were applied to previously measured flux data (Martens et al., in press) to predict the isotopic composition of the incoming metabolizable organic matter. Methane leaves the sediment predominantly via ebullition with an isotopic composition of -60 per mil. Less than 2% of the methane produced is buried with an average diffusional flux value of -17 per mil and a burial value of +11 per mil. The isotope budget predicts a metabolizable organic carbon isotope signature of -19.3 per mil which is in excellent agreement with the measured total organic carbon value of -19.2 ± 0.3 per mil implying that the dominant remineralization processes have been identified

  18. Simultaneous analysis of 17O/16O, 18O/16O and 2H/1H of gypsum hydration water by cavity ring‐down laser spectroscopy

    Science.gov (United States)

    Mather, Ian; Rolfe, James; Evans, Nicholas P.; Herwartz, Daniel; Staubwasser, Michael; Hodell, David A.

    2015-01-01

    Rationale The recent development of cavity ring‐down laser spectroscopy (CRDS) instruments capable of measuring 17O‐excess in water has created new opportunities for studying the hydrologic cycle. Here we apply this new method to studying the triple oxygen (17O/16O, 18O/16O) and hydrogen (2H/1H) isotope ratios of gypsum hydration water (GHW), which can provide information about the conditions under which the mineral formed and subsequent post‐depositional interaction with other fluids. Methods We developed a semi‐automated procedure for extracting GHW by slowly heating the sample to 400°C in vacuo and cryogenically trapping the evolved water. The isotopic composition (δ17O, δ18O and δ2H values) of the GHW is subsequently measured by CRDS. The extraction apparatus allows the dehydration of five samples and one standard simultaneously, thereby increasing the long‐term precision and sample throughput compared with previous methods. The apparatus is also useful for distilling brines prior to isotopic analysis. A direct comparison is made between results of 17O‐excess in GHW obtained by CRDS and fluorination followed by isotope ratio mass spectrometry (IRMS) of O2. Results The long‐term analytical precision of our method of extraction and isotopic analysis of GHW by CRDS is ±0.07‰ for δ17O values, ±0.13‰ for δ18O values and ±0.49‰ for δ2H values (all ±1SD), and ±1.1‰ and ±8 per meg for the deuterium‐excess and 17O‐excess, respectively. Accurate measurement of the 17O‐excess values of GHW, of both synthetic and natural samples, requires the use of a micro‐combustion module (MCM). This accessory removes contaminants (VOCs, H2S, etc.) from the water vapour stream that interfere with the wavelengths used for spectroscopic measurement of water isotopologues. CRDS/MCM and IRMS methods yield similar isotopic results for the analysis of both synthetic and natural gypsum samples within analytical error of the two methods. Conclusions We

  19. Tunneling in the CH{sub 3} + H{sub 2} {yields} CH{sub 4} + H reaction and its isotopic analog: an anomalous isotope effect

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Yuzuru; Takayanagi, Toshiyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    Vibrationally adiabatic ground-state potential curves for the CH{sub 3} + H{sub 2} {yields} CH{sub 4} + H (I) and CD{sub 3} + H{sub 2} {yields} CD{sub 4}H + H (II) reactions were obtained by adding zero-point energies of harmonic vibrations orthogonal to intrinsic reaction coordinate (IRC) to bare potential curves along IRC. It was clarified that both the barrier height and barrier width of reaction II are smaller than those of reaction I. This computational result qualitatively explains the experimental observation of Momose et al. (J. Chem. Phys. 108 (1998) 7334) that reaction II occurs but reaction I does not occur in solid parahydrogen at 5 K. (author)

  20. Structures of SAS-6 suggest its organization in centrioles.

    Science.gov (United States)

    van Breugel, Mark; Hirono, Masafumi; Andreeva, Antonina; Yanagisawa, Haru-aki; Yamaguchi, Shoko; Nakazawa, Yuki; Morgner, Nina; Petrovich, Miriana; Ebong, Ima-Obong; Robinson, Carol V; Johnson, Christopher M; Veprintsev, Dmitry; Zuber, Benoît

    2011-03-04

    Centrioles are cylindrical, ninefold symmetrical structures with peripheral triplet microtubules strictly required to template cilia and flagella. The highly conserved protein SAS-6 constitutes the center of the cartwheel assembly that scaffolds centrioles early in their biogenesis. We determined the x-ray structure of the amino-terminal domain of SAS-6 from zebrafish, and we show that recombinant SAS-6 self-associates in vitro into assemblies that resemble cartwheel centers. Point mutations are consistent with the notion that centriole formation in vivo depends on the interactions that define the self-assemblies observed here. Thus, these interactions are probably essential to the structural organization of cartwheel centers.

  1. Constraining the role of iron in environmental nitrogen transformations. Dual stable isotope systematics of abiotic NO2- reduction by Fe(II) and its production of N2O

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, David [Harvard Univ., Cambridge, MA (United States); Wankel, Scott David [Woods Hole Oceanographic Inst., MA (United States); Buchwald, Carolyn [Woods Hole Oceanographic Inst., MA (United States); Hansel, Colleen [Woods Hole Oceanographic Inst., MA (United States)

    2015-09-16

    Redox reactions involving nitrogen and iron have been shown to have important implications for mobilization of priority contaminants. Thus, an understanding of the linkages between their biogeochemical cycling is critical for predicting subsurface mobilization of radionuclides such as uranium. Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our understanding of their environmental importance remains limited. Here we present an investigation of abiotic nitrite (NO2-) reduction by Fe(II) or ‘chemodenitrification,’ and its relevance to the production of nitrous oxide (N2O), specifically focusing on dual (N and O) isotope systematics under a variety of environmentally relevant conditions. We observe a range of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (~8), higher concentrations of Fe(II) and in the presence of mineral surfaces. A clear non-linear relationship between rate constant and kinetic isotope effects of NO2- reduction was evident (with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of Fe(II)-N reaction intermediates. N and O isotopic composition of product N2O also suggests a complex network of parallel and/or competing pathways. Our findings suggest that NO2- reduction by Fe(II) may represent an important abiotic source of environmental N2O, especially in iron-rich environments experiencing dynamic redox variations. This study provides a multi-compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO2- reduction and N2O formation, helping future studies constrain the relative roles of abiotic and biological N2O production pathways.

  2. Using isotopes to improve impact and hydrological predictions of land-surface schemes in global climate models

    International Nuclear Information System (INIS)

    McGuffie, K.; Henderson-Sellers, A.

    2002-01-01

    Global climate model (GCM) predictions of the impact of large-scale land-use change date back to 1984 as do the earliest isotopic studies of large-basin hydrology. Despite this coincidence in interest and geography, with both papers focussed on the Amazon, there have been few studies that have tried to exploit isotopic information with the goal of improving climate model simulations of the land-surface. In this paper we analyze isotopic results from the IAEA global data base specifically with the goal of identifying signatures of potential value for improving global and regional climate model simulations of the land-surface. Evaluation of climate model predictions of the impacts of deforestation of the Amazon has been shown to be of significance by recent results which indicate impacts occurring distant from the Amazon i.e. tele-connections causing climate change elsewhere around the globe. It is suggested that these could be similar in magnitude and extent to the global impacts of ENSO events. Validation of GCM predictions associated with Amazonian deforestation are increasingly urgently required because of the additional effects of other aspects of climate change, particularly synergies occurring between forest removal and greenhouse gas increases, especially CO 2 . Here we examine three decades distributions of deuterium excess across the Amazon and use the results to evaluate the relative importance of the fractionating (partial evaporation) and non-fractionating (transpiration) processes. These results illuminate GCM scenarios of importance to the regional climate and hydrology: (i) the possible impact of increased stomatal resistance in the rainforest caused by higher levels of atmospheric CO2 [4]; and (ii) the consequences of the combined effects of deforestation and global warming on the regions climate and hydrology

  3. Development and validation of a smartphone addiction scale (SAS).

    Science.gov (United States)

    Kwon, Min; Lee, Joon-Yeop; Won, Wang-Youn; Park, Jae-Woo; Min, Jung-Ah; Hahn, Changtae; Gu, Xinyu; Choi, Ji-Hye; Kim, Dai-Jin

    2013-01-01

    The aim of this study was to develop a self-diagnostic scale that could distinguish smartphone addicts based on the Korean self-diagnostic program for Internet addiction (K-scale) and the smartphone's own features. In addition, the reliability and validity of the smartphone addiction scale (SAS) was demonstrated. A total of 197 participants were selected from Nov. 2011 to Jan. 2012 to accomplish a set of questionnaires, including SAS, K-scale, modified Kimberly Young Internet addiction test (Y-scale), visual analogue scale (VAS), and substance dependence and abuse diagnosis of DSM-IV. There were 64 males and 133 females, with ages ranging from 18 to 53 years (M = 26.06; SD = 5.96). Factor analysis, internal-consistency test, t-test, ANOVA, and correlation analysis were conducted to verify the reliability and validity of SAS. Based on the factor analysis results, the subscale "disturbance of reality testing" was removed, and six factors were left. The internal consistency and concurrent validity of SAS were verified (Cronbach's alpha = 0.967). SAS and its subscales were significantly correlated with K-scale and Y-scale. The VAS of each factor also showed a significant correlation with each subscale. In addition, differences were found in the job (psmartphone addiction scores (psmartphone addiction aspect of the diagnostic manual. This scale was proven to be relatively reliable and valid.

  4. H-O isotopic and chemical characteristics of a precipitation-lake water-groundwater system in a desert area

    Science.gov (United States)

    Jin, Ke; Rao, Wenbo; Tan, Hongbing; Song, Yinxian; Yong, Bin; Zheng, Fangwen; Chen, Tangqing; Han, Liangfeng

    2018-04-01

    The recharge mechanism of groundwater in the Badain Jaran Desert, North China has been a focus of research and still disputable in the past two decades. In this study, the chemical and hydrogen (H) and oxygen (O) isotopic characteristics of shallow groundwater, lake water and local precipitation in the Badain Jaran Desert and neighboring areas were investigated to reveal the relationships between various water bodies and the recharge source of shallow groundwater. Isotopic and hydrogeochemical results show that (1) shallow groundwater was associated with local precipitation in the Ayouqi and Yabulai regions, (2) lake water was mainly recharged by groundwater in the desert hinterland, (3) shallow groundwater of the desert hinterland, Yabulai Mountain and Gurinai Grassland had a common recharge source. Shallow groundwater of the desert hinterland had a mean recharge elevation of 1869 m a.s.l. on the basis of the isotope-altitude relationship and thus originated chiefly from lateral infiltration of precipitation in the Yabulai Mountain. It is further concluded that shallow groundwater flowed towards the Gurinai Grassland according to the groundwater table contour map. Along the flow pathway, the H-O isotopic variations were primarily caused by the evaporation effect but chemical variations of shallow groundwater were affected by multiple factors, e.g., evaporation effect, dilution effect of occasional heavy-precipitation and dissolution of aquifer evaporites. Our findings provide new insight into the groundwater cycle and benefit the management of the limited water resources in the arid desert area.

  5. Napojení .NET / Java technologie na SAS BI

    OpenAIRE

    Jandák, Miroslav

    2009-01-01

    This thesis is focused on SAS Enterprise Intelligence Platform product and it's capabilities to integrate within a Business Intelligence solution. The aim of the thesis is to describe integration technolgies that the platform features, as well as to determine their application field and compare them, eventually add usage examples. The first part of the thesis explains the general concept and architecture of Business Intelligence, afterwards the reader gets familiar with the SAS Enterprise Int...

  6. Relative importance of H2 and H2S as energy sources for primary production in geothermal springs.

    Science.gov (United States)

    D'Imperio, Seth; Lehr, Corinne R; Oduro, Harry; Druschel, Greg; Kühl, Michael; McDermott, Timothy R

    2008-09-01

    Geothermal waters contain numerous potential electron donors capable of supporting chemolithotrophy-based primary production. Thermodynamic predictions of energy yields for specific electron donor and acceptor pairs in such systems are available, although direct assessments of these predictions are rare. This study assessed the relative importance of dissolved H(2) and H(2)S as energy sources for the support of chemolithotrophic metabolism in an acidic geothermal spring in Yellowstone National Park. H(2)S and H(2) concentration gradients were observed in the outflow channel, and vertical H(2)S and O(2) gradients were evident within the microbial mat. H(2)S levels and microbial consumption rates were approximately three orders of magnitude greater than those of H(2). Hydrogenobaculum-like organisms dominated the bacterial component of the microbial community, and isolates representing three distinct 16S rRNA gene phylotypes (phylotype = 100% identity) were isolated and characterized. Within a phylotype, O(2) requirements varied, as did energy source utilization: some isolates could grow only with H(2)S, some only with H(2), while others could utilize either as an energy source. These metabolic phenotypes were consistent with in situ geochemical conditions measured using aqueous chemical analysis and in-field measurements made by using gas chromatography and microelectrodes. Pure-culture experiments with an isolate that could utilize H(2)S and H(2) and that represented the dominant phylotype (70% of the PCR clones) showed that H(2)S and H(2) were used simultaneously, without evidence of induction or catabolite repression, and at relative rate differences comparable to those measured in ex situ field assays. Under in situ-relevant concentrations, growth of this isolate with H(2)S was better than that with H(2). The major conclusions drawn from this study are that phylogeny may not necessarily be reliable for predicting physiology and that H(2)S can dominate over H(2

  7. Statistical hypothesis testing with SAS and R

    CERN Document Server

    Taeger, Dirk

    2014-01-01

    A comprehensive guide to statistical hypothesis testing with examples in SAS and R When analyzing datasets the following questions often arise:Is there a short hand procedure for a statistical test available in SAS or R?If so, how do I use it?If not, how do I program the test myself? This book answers these questions and provides an overview of the most commonstatistical test problems in a comprehensive way, making it easy to find and performan appropriate statistical test. A general summary of statistical test theory is presented, along with a basicdescription for each test, including the

  8. Simulation of dual carbon-bromine stable isotope fractionation during 1,2-dibromoethane degradation.

    Science.gov (United States)

    Jin, Biao; Nijenhuis, Ivonne; Rolle, Massimo

    2018-06-01

    We performed a model-based investigation to simultaneously predict the evolution of concentration, as well as stable carbon and bromine isotope fractionation during 1,2-dibromoethane (EDB, ethylene dibromide) transformation in a closed system. The modelling approach considers bond-cleavage mechanisms during different reactions and allows evaluating dual carbon-bromine isotopic signals for chemical and biotic reactions, including aerobic and anaerobic biological transformation, dibromoelimination by Zn(0) and alkaline hydrolysis. The proposed model allowed us to accurately simulate the evolution of concentrations and isotope data observed in a previous laboratory study and to successfully identify different reaction pathways. Furthermore, we illustrated the model capabilities in degradation scenarios involving complex reaction systems. Specifically, we examined (i) the case of sequential multistep transformation of EDB and the isotopic evolution of the parent compound, the intermediate and the reaction product and (ii) the case of parallel competing abiotic pathways of EDB transformation in alkaline solution.

  9. Predicting CO2-H2O Interfacial Tension Using COSMO-RS

    DEFF Research Database (Denmark)

    Silvestri, Alessandro; Stipp, Susan Louise Svane; Andersson, Martin Peter

    2017-01-01

    us interpret results and gain insight under conditions where experiments are difficult or impossible. Here, we report predictions for CO2–water interfacial tension performed using density functional theory (DFT) combined with the COSMO-RS implicit solvent model. We predicted the IFT dependence...

  10. Modelling of phase equilibria in CH4–C2H6–C3H8–nC4H10–NaCl–H2O systems

    International Nuclear Information System (INIS)

    Li, Jun; Zhang, Zhigang; Luo, Xiaorong; Li, Xiaochun

    2015-01-01

    Highlights: • A new model was established for the phase equilibria of C1–C2–C3–nC4–brine systems. • The model can reproduce of hydrocarbon–brine equilibria to high T&P and salinity. • The model can well predict H 2 O solubility in light hydrocarbon rich phases. - Abstract: A thermodynamic model is presented for the mutual solubility of CH 4 –C 2 H 6 –C 3 H 8 –nC 4 H 10 –brine systems up to high temperature, pressure and salinity. The Peng–Robinson model is used for non-aqueous phase fugacity calculations, and the Pitzer model is used for aqueous phase activity calculations. The model can accurately reproduce the experimental solubilities of CH 4 , C 2 H 6 , C 3 H 8 and nC 4 H 10 in water or NaCl solutions and H 2 O solubility in the non-aqueous phase. The experimental data of mutual solubility for the CH 4 –brine subsystem are sufficient for temperatures exceeding 250 °C, pressures exceeding 1000 bar and NaCl molalities greater than 6 molal. Compared to the CH 4 –brine system, the mutual solubility data of C 2 H 6 –brine, C 3 H 8 –brine and nC 4 H 10 –brine are not sufficient. Based on the comparison with the experimental data of H 2 O solubility in C 2 H 6 -, C 3 H 8 - or nC 4 H 10 -rich phases, the model has an excellent capability for the prediction of H 2 O solubility in hydrocarbon-rich phases, as these experimental data were not used in the modelling. Predictions of hydrocarbon solubility (at temperatures up to 200 °C, pressures up to 1000 bar and NaCl molalities greater than 6 molal) were made for the C 2 H 6 –brine, C 3 H 8 –brine and nC 4 H 10 –brine systems. The predictions suggest that increasing pressure generally increases the hydrocarbon solubility in water or brine, especially in the lower-pressure region. Increasing temperature usually decreases the hydrocarbon solubility at lower temperatures but increases the hydrocarbon solubility at higher temperatures. Increasing water salinity dramatically decreases

  11. A new route of oxygen isotope exchange in the solid phase: demonstration in CuSO4.5H2O.

    Science.gov (United States)

    Danon, Albert; Saig, Avraham; Finkelstein, Yacov; Koresh, Jacob E

    2005-11-10

    Temperature-programmed desorption mass spectrometry (TPD-MS) measurements on [(18)O]water-enriched copper sulfate pentahydrate (CuSO(4).5H(2)(18)O) reveal an unambiguous occurrence of efficient oxygen isotope exchange between the water of crystallization and the sulfate in its CuSO(4) solid phase. To the best of our knowledge, the occurrence of such an exchange was never observed in a solid phase. The exchange process was observed during the stepwise dehydration (50-300 degrees C) of the compound. Specifically, the exchange promptly occurs somewhere between 160 and 250 degrees C; however, the exact temperature could not be resolved conclusively. It is shown that only the fifth, sulfate-associated, anionic H(2)O molecule participates in the exchange process and that the exchange seems to occur in a preferable fashion with, at the most, one oxygen atom in SO(4). Such an exchange, occurring below 250 degrees C, questions the common conviction of unfeasible oxygen exchange under geothermic conditions. This new oxygen exchange phenomenon is not exclusive to copper sulfate but is unambiguously observed also in other sulfate- and nitrate-containing minerals.

  12. Identification of the new isotope sup 2 sup 4 sup 1 Bk

    CERN Document Server

    Asai, M; Ichikawa, S; Nagame, Y; Nishinaka, I; Akiyama, K; Toyoshima, A; Kaneko, T; Sakama, M; Haba, H; Oura, Y; Kojima, Y; Shibata, M

    2003-01-01

    A new neutron-deficient berkelium isotope sup 2 sup 4 sup 1 Bk produced in the sup 2 sup 3 sup 9 Pu( sup 6 Li, 4n) reaction has been identified using a gas-jet coupled on-line isotope separator. Cm K and L X-rays associated with the EC decay of sup 2 sup 4 sup 1 Bk were observed in the mass-241 fraction, and three gamma transitions were attributed to the EC decay of sup 2 sup 4 sup 1 Bk through X-gamma coincidences. The half-life of sup 2 sup 4 sup 1 Bk was determined to be 4.6+-0.4 min which is 1/2-1/4 of that of theoretical predictions. The half-life value and the observed gamma transitions can be consistently explained as a consequence of the allowed EC transition of pi 7/2 sup + [633] -> nu 7/2 sup + [624]. (orig.)

  13. The δ2H and δ18O of tap water from 349 sites in the United States and selected territories

    Science.gov (United States)

    Coplen, Tyler B.; Landwehr, Jurate M.; Qi, Haiping; Lorenz, Jennifer M.

    2013-01-01

    Because the stable isotopic compositions of hydrogen (δ2H) and oxygen (δ18O) of animal (including human) tissues, such as hair, nail, and urine, reflect the δ2H and δ18O of water and food ingested by an animal or a human and because the δ2H and δ18O of environmental waters vary geographically, δ2H and δ18O values of tap water samples collected in 2007-2008 from 349 sites in the United States and three selected U.S. territories have been measured in support of forensic science applications, creating one of the largest databases of tap water δ2H and δ18O values to date. The results of replicate isotopic measurements for these tap water samples confirm that the expanded uncertainties (U = 2μc) obtained over a period of years by the Reston Stable Isotope Laboratory from δ2H and δ18O dual-inlet mass spectrometric measurements are conservative, at ±2‰ and ±0.2 ‰, respectively. These uncertainties are important because U.S. Geological Survey data may be needed for forensic science applications, including providing evidence in court cases. Half way through the investigation, an isotope-laser spectrometer was acquired, enabling comparison of dual-inlet isotope-ratio mass spectrometric results with isotope-laser spectrometric results. The uncertainty of the laser-based δ2H measurement results for these tap water samples is comparable to the uncertainty of the mass spectrometric method, with the laser-based method having a slightly lower uncertainty. However, the δ18O uncertainty of the laser-based method is more than a factor of ten higher than that of the dual-inlet isotoperatio mass spectrometric method.

  14. A new high-quality set of singly (H-2) and doubly (H-2 and O-18) stable isotope labeled reference waters for biomedical and other isotope-labeled research

    NARCIS (Netherlands)

    Faghihi, V.; Verstappen-Dumoulin, B. M. A. A.; Jansen, H. G.; van Dijk, G.; Aerts-Bijma, A. T.; Kerstel, E. R. T.; Groening, M.; Meijer, H. A. J.

    2015-01-01

    RATIONALE: Research using water with enriched levels of the rare stable isotopes of hydrogen and/or oxygen requires well-characterized enriched reference waters. The International Atomic Energy Agency (IAEA) did have such reference waters available, but these are now exhausted. New reference waters

  15. Coupled MCNP - SAS-SFR calculations for sodium fast reactor core at steady-state - 15460

    International Nuclear Information System (INIS)

    Ponomarev, A.; Travleev, A.; Pfrang, W.; Sanchez, V.

    2015-01-01

    The prediction of core parameters at steady state is the first step when studying core accident transient behaviour. At this step thermal hydraulics (TH) and core geometry parameters are calculated corresponding to initial operating conditions. In this study we present the coupling of the SAS-SFR code to the Monte-Carlo neutron transport code MCNP at steady state together with application to the European Sodium Fast Reactor (ESFR). The SAS-SFR code employs a multi-channel core representation where each channel represents subassemblies with similar power, thermal-hydraulics and pin mechanics conditions. For every axial node of every channel the individual geometry and material compositions parameters are calculated in accord with power and cooling conditions. This requires supplying the SAS-SFR-code with nodal power values which should be calculated by neutron physics code with given realistic core parameters. In the conventional approach the neutron physics model employs some core averaged TH and geometry data (fuel temperature, coolant density, core axial and radial expansion). In this study we organize a new approach coupling the MCNP neutron physics models and the SAS-SFR models, so that calculations of power can be improved by using distributed core parameters (TH and geometry) taken from SAS-SFR. The MCNP code is capable to describe cores with distributed TH parameters and even to model non-uniform axial expansion of fuel subassemblies. In this way, core TH and geometrical data calculated by SAS-SFR are taken into account accurately in the neutronics model. The coupling implementation is done by data exchange between two codes with help of processing routines managed by driver routine. Currently it is model-specific and realized for the ESFR 'Reference Oxide' core. The Beginning-Of-Life core state is considered with 10 channel representation for fuel subassemblies. For this model several sets of coupled calculations are performed, in which different

  16. Hydrogen Isotopic Composition of Apatite in Northwest Africa 7034: A Record of the "Intermediate" H-Isotopic Reservoir in the Martian Crust?

    Science.gov (United States)

    McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.

    2016-01-01

    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to visible-infrared reflectance spectra of the martian surface measured from orbit [2]. The composition of the fine-grained matrix within NWA 7034 bears a striking resemblance to the major element composition estimated for the martian crust, with several exceptions. The NWA 7034 matrix is depleted in Fe, Ti, and Cr and enriched in Al, Na, and P [3]. The differences in Al and Fe are the most substantial, but the Fe content of NWA 7034 matrix falls within the range reported for the southern highlands crust [6]. It was previously suggested by [4] that NWA 7034 was sourced from the southern highlands based on the ancient 4.4 Ga ages recorded in NWA 7034/7533 zircons [4, 5]. In addition, the NWA 7034 matrix material is enriched in incompatible trace elements by a factor of 1.2-1.5 [7] relative to estimates of the bulk martian crust. The La/Yb ratio of the bulk martian crust is estimated to be approximately 3 [7], and the La/Yb of the NWA 7034 matrix materials ranges from approximately 3.9 to 4.4 [3, 8], indicating a higher degree of LREE enrichment in the NWA 7034 matrix materials. This elevated La/Yb ratio and enrichment in incompatible lithophile trace elements is consistent with NWA 7034 representing a more geochemically enriched crustal terrain than is represented by the bulk martian crust, which would be expected if NWA 7034 represents the bulk crust from the southern highlands. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the composition of the martian crust, particularly the ancient highlands. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034. Usui et al., [9] recently proposed that a H isotopic reservoir exists within the martian crust that has

  17. Predictions on the modes of decay of even Z superheavy isotopes within the range 104 ≤ Z ≤ 136

    Science.gov (United States)

    Santhosh, K. P.; Nithya, C.

    2018-01-01

    The decay modes and half lives of all the even Z isotopes of superheavy elements within the range 104 ≤ Z ≤ 136 have been predicted by comparing the alpha decay half-lives with the spontaneous fission half-lives. The Coulomb and proximity potential model for deformed nuclei (CPPMDN) and the shell-effect-dependent formula of Santhosh et al. are used to calculate the alpha half-lives and spontaneous fission half-lives respectively. For theoretical comparison the alpha decay half-lives are also calculated using Coulomb and proximity potential model (CPPM), the Viola-Seaborg-Sobiczewski semi-empirical (VSS) relation, the universal (UNIV) curve of Poenaru et al., the analytical formula of Royer and the universal decay law (UDL) of Qi et al. Another tool used for the evaluation of spontaneous fission half-lives is the semi-empirical formula of Xu et al. The nuclei with alpha decay half-lives less than spontaneous fission half-lives will survive fission and hence decay through alpha emission. The predicted half lives and decay modes are compared with the available experimental results. The one-proton and two-proton separation energies of all the isotopes are calculated to find nuclei which lie beyond the proton drip line. Among 1119 even Z nuclei within the range 104 ≤ Z ≤ 136, 164 nuclei show sequential alpha emission followed by subsequent spontaneous fission. Since the isotopes decay through alpha decay chain and the half-lives are in measurable range, these isotopes are predicted to be synthesized and detected in laboratory via alpha decay. 2 nuclei will decay by alpha decay followed by proton emission, 54 nuclei show full alpha chains, 642 nuclei will decay through spontaneous fission, 166 nuclei exhibit proton decay and 91 isotopes are found to be stable against alpha decay. All the isotopes are tabulated according to their decay modes. The study is intended to enhance further experimental investigations in superheavy region.

  18. Population variation in isotopic composition of shorebird feathers: Implications for determining molting grounds

    Science.gov (United States)

    Torres-Dowdall, J.; Farmer, A.H.; Bucher, E.H.; Rye, R.O.; Landis, G.

    2009-01-01

    Stable isotope analyses have revolutionized the study of migratory connectivity. However, as with all tools, their limitations must be understood in order to derive the maximum benefit of a particular application. The goal of this study was to evaluate the efficacy of stable isotopes of C, N, H, O and S for assigning known-origin feathers to the molting sites of migrant shorebird species wintering and breeding in Argentina. Specific objectives were to: 1) compare the efficacy of the technique for studying shorebird species with different migration patterns, life histories and habitat-use patterns; 2) evaluate the grouping of species with similar migration and habitat use patterns in a single analysis to potentially improve prediction accuracy; and 3) evaluate the potential gains in prediction accuracy that might be achieved from using multiple stable isotopes. The efficacy of stable isotope ratios to determine origin was found to vary with species. While one species (White-rumped Sandpiper, Calidris fuscicollis) had high levels of accuracy assigning samples to known origin (91% of samples correctly assigned), another (Collared Plover, Charadrius collaris) showed low levels of accuracy (52% of samples correctly assigned). Intra-individual variability may account for this difference in efficacy. The prediction model for three species with similar migration and habitat-use patterns performed poorly compared with the model for just one of the species (71% versus 91% of samples correctly assigned). Thus, combining multiple sympatric species may not improve model prediction accuracy. Increasing the number of stable isotopes in the analyses increased the accuracy of assigning shorebirds to their molting origin, but the best combination - involving a subset of all the isotopes analyzed - varied among species.

  19. H-Isotopic Composition of Apatite in Northwest Africa 7034

    Science.gov (United States)

    McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.

    2016-01-01

    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to estimates of Mars' bulk crust composition [1]. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the crustal composition of components that cannot be measured directly by remote sensing. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034.

  20. Sensitivity of mitochondrial DNA depleted ρ0 cells to H2O2 depends on the plasma membrane status.

    Science.gov (United States)

    Tomita, Kazuo; Kuwahara, Yoshikazu; Takashi, Yuko; Tsukahara, Takao; Kurimasa, Akihiro; Fukumoto, Manabu; Nishitani, Yoshihiro; Sato, Tomoaki

    2017-08-19

    To clarify the relationship between mitochondrial DNA (mtDNA)-depleted ρ0 cells and the cellular sensitivity to hydrogen peroxide (H 2 O 2 ), we established HeLa and SAS ρ0 cell lines and investigated their survival rate in H 2 O 2 , radical scavenging enzymes, plasma membrane potential status, and chronological change in intracellular H 2 O 2 amount under the existence of extracellular hydrogen peroxide compared with the parental cells. The results revealed that ρ0 cells had higher sensitivity to H 2 O 2 than their parental cells, even though the catalase activity of ρ0 cells was up-regulated, and the membrane potential of the ρ0 cells was lower than their parental cells. Furthermore, the internal H 2 O 2 amount significantly increased only in ρ0 cells after 50 μM H 2 O 2 treatment for 1 h. These results suggest that plasma membrane status of ρ0 cells may cause degradation, and the change could lead to enhanced membrane permeability to H 2 O 2 . As a consequence, ρ0 cells have a higher H 2 O 2 sensitivity than the parental cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A thoroughly validated spreadsheet for calculating isotopic abundances (H-2, O-17, O-18) for mixtures of waters with different isotopic compositions

    NARCIS (Netherlands)

    Faghihi, V.; Meijer, H. A. J.; Groening, Manfred

    2015-01-01

    RationaleOxygen and hydrogen stable isotopes are widely used tracers for studies on naturally occurring and laboratory mixtures of isotopically different waters. Although the mixing calculations are straightforward to perform, there are ample possibilities to make mistakes, especially when dealing

  2. Estimation of Physical Properties for Hydrogen Isotopes Using Aspen Plus Simulator

    International Nuclear Information System (INIS)

    Cho, Jung Ho; Yun, Sei Hun; Cho, Seung Yon; Chang, Min Ho; Kang, Hyun Goo; Jung, Ki Jung; Kim, Dong Min

    2009-01-01

    Hydrogen isotopes are H 2 , HD, D 2 , H 2 , HD, D 2 , HT, DT and T 2 . Among the hydrogen isotopes, the physical properties of H2, HD and D+2 are included in the Aspen Plus, however HT, D T and T 2 are not included. In this study, various thermodynamic properties were estimated for six components of isotopes by use of the fixed properties and temperature-dependent properties. To estimate thermodynamic properties, Soave modified Redlich-Kwong equation of state and Aspenplus simulator was used. The results were verified and compared with by PRO/II with PROVISION of Invensys

  3. Optimizing GC Injections when Analyzing δ2H of Vanillin for Traceability Studies

    DEFF Research Database (Denmark)

    Hansen, Anne-Mette Sølvbjerg; Fromberg, Arvid; Frandsen, Henrik Lauritz

    Column overloading is a problem when analyzing δ2H, due to the low natural abundance of deuterium and poor ionization efficiency of H2. This problem can be overcome by using split injections instead of splitless. In this study we have compared the influence upon the measured isotopic ratios when ...

  4. Mirror suspension system for the TAMA SAS

    International Nuclear Information System (INIS)

    Takamori, Akiteru; Ando, Masaki; Bertolini, Alessandro; Cella, Giancarlo; DeSalvo, Riccardo; Fukushima, Mitsuhiro; Iida, Yukiyoshi; Jacquier, Florian; Kawamura, Seiji; Marka, Szabolcs; Nishi, Yuhiko; Numata, Kenji; Sannibale, Virginio; Somiya, Kentaro; Takahashi, Ryutaro; Tariq, Hareem; Tsubono, Kimio; Ugas, Jose; Viboud, Nicolas; Yamamoto, Hiroaki; Yoda, Tatsuo; Wang Chenyang

    2002-01-01

    Several R and D programmes are ongoing to develop the next generation of interferometric gravitational wave detectors providing the superior sensitivity desired for refined astronomical observations. In order to obtain a wide observation band at low frequencies, the optics need to be isolated from the seismic noise. The TAMA SAS (seismic attenuation system) has been developed within an international collaboration between TAMA, LIGO, and some European institutes, with the main objective of achieving sufficient low-frequency seismic attenuation (-180 dB at 10 HZ). The system suppresses seismic noise well below the other noise levels starting at very low frequencies above 10 Hz. It also includes an active inertial damping system to decrease the residual motion of the optics enough to allow a stable operation of the interferometer. The TAMA SAS also comprises a sophisticated mirror suspension subsystem (SUS). The SUS provides support for the optics and vibration isolation complementing the SAS performance. The SUS is equipped with a totally passive magnetic damper to suppress internal resonances without degrading the thermal noise performance. In this paper we discuss the SUS details and present prototype results

  5. Liquid-liquid extraction to lithium isotope separation based on room-temperature ionic liquids containing 2,2'-binaphthyldiyl-17-crown-5

    International Nuclear Information System (INIS)

    Sun Xiaoli; Zhou Wen; Gu Lin; Qiu Dan; Ren Donghong; Gu Zhiguo; Li Zaijun

    2015-01-01

    A novel liquid-liquid extraction system was investigated for the selective separation of lithium isotopes using ionic liquids (ILs = C 8 mim + PF 6 - , C 8 mim + BF 4 - , and C 8 mim + NTf 2 - ) as extraction solvent and 2,2'-binaphthyldiyl-17-crown-5 (BN-17-5) as extractant. The effects of the concentration of lithium salt, counter anion of lithium salt, initial pH of aqueous phase, extraction temperature, and time on the lithium isotopes separation were discussed. Under optimized conditions, the maximum single-stage separation factor α of 6 Li/ 7 Li obtained in the present study was 1.046 ± 0.002, indicating the lighter isotope 6 Li was enriched in IL phase while the heavier isotope 7 Li was concentrated in the solution phase. The formation of 1:1 complex Li(BN-17-5) + in the IL phase was determined on the basis of slope analysis method. The large value of the free energy change (-ΔG° = 92.89 J mol -1 ) indicated the high separation capability of the Li isotopes by BN-17-5/IL system. Lithium in Li(BN-17-5) + complex was stripped by 1 mol L -1 HCl solution. The extraction system offers high efficiency, simplicity, and green application prospect to lithium isotope separation. (author)

  6. Separation and preparation of "6"2Ni isotope

    International Nuclear Information System (INIS)

    Ren Xiuyan; Mi Yajing; Zeng Ziqiang; Li Gongliang; Tu Rui

    2014-01-01

    Micro nuclear battery is the perfect power of space craft equipment. "6"3Ni is the core operation material of the "6"3Ni battery. It can produce radioisotope "6"3Ni while high abundance "6"2Ni is irradiated in the reactor. In order to meet the requirements of the abundance and the purity, research of the separation for "6"2Ni isotope was developed. The magnetic field and beam transmission status were simulated. The improvement designs of the ion source and the collector pocket were carried out. The process flow of high abundance "6"2Ni using electromagnetic separation method was established. The experiment of "6"2Ni isotope was developed by using electromagnetism isotope separator. The results show that the enrichment of "6"2Ni isotope is more than 90%. (authors)

  7. Isotopic mixing in carbon monoxide catalyzed by zinc oxide

    International Nuclear Information System (INIS)

    Carnisio, G.; Garbassi, F.; Petrini, G.; Parravano, G.

    1978-01-01

    The rate of the isotopic mixing in CO has been studied at 300 0 C, for CO partial pressures from 6 to 100 Torr and a total pressure of 250 Torr on ZnO catalysts. Significant deviations from a first-order rate in p/sub co/ were found. The rate of oxygen exchange between ZnO and gas-phase CO was also measured and the results were employed to calculate the fraction of surface sites active for the CO isotopic mixing. Values on the order of 0.001 were found. The turnover rate and surface collision efficiency varied between 0.7 and 107 min -1 and 0.13 and 2.24 x 10 -8 , respectively. H 2 additions to CO increased the rate of isotopic mixing, whereas the rate of H 2 + D 2 was decreased by the presence of CO. The H 2 + D 2 rate was faster than that of isotopic mixing in CO, but as the ratio p/sub H 2 //p/sub co/ decreased the rates became about equal. It is argued that on ZnO samples, in which the rate of CO isotopic mixing and the rate of ZnO--CO oxygen exchange were influenced in a similar manner by the CO pressure, the isotopic mixing in CO took place via the ZnO oxygen, while oxide oxygen participation was not kinetically significant for ZnO samples in which the two reactions had different kinetics. The crucial factor controlling the path followed by the isotopic mixing in CO seems to be the surface Zn/O ratio, since a close correlation was found between the former and the reaction kinetics of the CO isotopic mixing reaction. Solid-state conditions which may vary the Zn/O surface ratio (foreign additions) are indicated. The implications of these findings to the problem of product selectivity from CO-H 2 mixtures reacting on metal oxide surfaces are discussed

  8. Fluorescence of RbH and RbD formed by irradiating the mixed gases Rb + H2 and Rb + D2 with laser light

    International Nuclear Information System (INIS)

    Kato, Hajime; Toyosaka, Yukiko; Suzuki, Tomonari

    1985-01-01

    When a mixture of 85 Rb, 85 Rb 2 , and D 2 was irradiated by laser light at 5145 or 4880 A, small visible particles appeared and the fluorescence spectra were observed. By analyzing these spectra, we determined the rotational constants B v and the centrifugal distortion constants D v and H v for the X 1 Σ + and A 1 Σ + states of 85 RbD. By considering the isotopic dependence of the Dunham coefficients, we determined various molecular constants of 85 RbH whose values were in good agreement with the observed fluorescence spectra of 85 RbH excited by laser lines at 4762, 4765, and 4880 A. The process of RbH formation is discussed. (author)

  9. Diffusion Monte Carlo simulations of gas phase and adsorbed D2-(H2)n clusters

    Science.gov (United States)

    Curotto, E.; Mella, M.

    2018-03-01

    We have computed ground state energies and analyzed radial distributions for several gas phase and adsorbed D2(H2)n and HD(H2)n clusters. An external model potential designed to mimic ionic adsorption sites inside porous materials is used [M. Mella and E. Curotto, J. Phys. Chem. A 121, 5005 (2017)]. The isotopic substitution lowers the ground state energies by the expected amount based on the mass differences when these are compared with the energies of the pure clusters in the gas phase. A similar impact is found for adsorbed aggregates. The dissociation energy of D2 from the adsorbed clusters is always much higher than that of H2 from both pure and doped aggregates. Radial distributions of D2 and H2 are compared for both the gas phase and adsorbed species. For the gas phase clusters, two types of hydrogen-hydrogen interactions are considered: one based on the assumption that rotations and translations are adiabatically decoupled and the other based on nonisotropic four-dimensional potential. In the gas phase clusters of sufficiently large size, we find the heavier isotopomer more likely to be near the center of mass. However, there is a considerable overlap among the radial distributions of the two species. For the adsorbed clusters, we invariably find the heavy isotope located closer to the attractive interaction source than H2, and at the periphery of the aggregate, H2 molecules being substantially excluded from the interaction with the source. This finding rationalizes the dissociation energy results. For D2-(H2)n clusters with n ≥12 , such preference leads to the desorption of D2 from the aggregate, a phenomenon driven by the minimization of the total energy that can be obtained by reducing the confinement of (H2)12. The same happens for (H2)13, indicating that such an effect may be quite general and impact on the absorption of quantum species inside porous materials.

  10. THz spectroscopy of liquid H2O and D2O

    DEFF Research Database (Denmark)

    Rønne, C.; Åstrand, P.-O.; Keiding, S.R.

    1999-01-01

    We have measured and analyzed the dielectric (0.1-2 THz) response of liquid H2O and D2O from 270 to 365 K. The response has been modeled using a Debye model with a fast and a slow decay time. By shifting the temperature scale for the slow decay time of D2O by 7.2 K we find identical behavior for D2......O and H2O. The temperature dependence and isotope shift of the intermolecular structural relaxation characterized by the slow decay time can be modeled with a singular point at 228 K for H2O and 235 K for D2O. [S0031-9007(99)08896-1]....

  11. The diagnostic value of specific IgE to Ara h 2 to predict peanut allergy in children is comparable to a validated and updated diagnostic prediction model.

    Science.gov (United States)

    Klemans, Rob J B; Otte, Dianne; Knol, Mirjam; Knol, Edward F; Meijer, Yolanda; Gmelig-Meyling, Frits H J; Bruijnzeel-Koomen, Carla A F M; Knulst, André C; Pasmans, Suzanne G M A

    2013-01-01

    A diagnostic prediction model for peanut allergy in children was recently published, using 6 predictors: sex, age, history, skin prick test, peanut specific immunoglobulin E (sIgE), and total IgE minus peanut sIgE. To validate this model and update it by adding allergic rhinitis, atopic dermatitis, and sIgE to peanut components Ara h 1, 2, 3, and 8 as candidate predictors. To develop a new model based only on sIgE to peanut components. Validation was performed by testing discrimination (diagnostic value) with an area under the receiver operating characteristic curve and calibration (agreement between predicted and observed frequencies of peanut allergy) with the Hosmer-Lemeshow test and a calibration plot. The performance of the (updated) models was similarly analyzed. Validation of the model in 100 patients showed good discrimination (88%) but poor calibration (P original model: sex, skin prick test, peanut sIgE, and total IgE minus sIgE. When building a model with sIgE to peanut components, Ara h 2 was the only predictor, with a discriminative ability of 90%. Cutoff values with 100% positive and negative predictive values could be calculated for both the updated model and sIgE to Ara h 2. In this way, the outcome of the food challenge could be predicted with 100% accuracy in 59% (updated model) and 50% (Ara h 2) of the patients. Discrimination of the validated model was good; however, calibration was poor. The discriminative ability of Ara h 2 was almost comparable to that of the updated model, containing 4 predictors. With both models, the need for peanut challenges could be reduced by at least 50%. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  12. Barrier widths, barrier heights, and the origins of anomalous kinetic H/D isotope effects

    International Nuclear Information System (INIS)

    Wolfe, S.; Hoz, Shmaryahu; Kim, Chankyung; Yang, Kiyull

    1990-01-01

    Proton transfer between MeO - and HOMe has been studied using ab initio molecular orbital theory. At the highest level employed (MP2/6-31+G(d)//6-31G(d)+ZPE), -ΔH 298 and -ΔG 298 for the formation of the ion-molecule complex MeO - hor-ellipsis HOMe from the separated reactants are 26.3 and 15.2 kcal/mol, respectively. At the 6-31G(d)//6-31G(d) level of theory, the (MeO-H-OMe) - transition structure is 2.19 kcal/mol higher in energy than the ion-molecule complex (ΔE double-dagger = 2.19), but this barrier disappears when zero-point energies are taken into account. The performance of AM1 on this system is quantitatively different (-ΔH 298 = 13.3; -ΔG 298 = 6.9; ΔE double-dagger = 4.91; k H /k D = 5.13, increasing to 5.79 when quantum mechanical tunneling is invoked) but appears to be acceptable for the research envisaged in the title. The effect of an enforced separation of the heavy atoms upon proton transfer barriers and isotope effects (which simulates steric effects) has been studied briefly at the 6-31G(d) level and in some detail using AM1

  13. Noncovalent Hydrogen Isotope Effects

    Science.gov (United States)

    Buchachenko, A. L.; Breslavskaya, N. N.

    2018-02-01

    Zero-point energies (ZPE) and isotope effects, induced by intermolecular, noncovalent vibrations, are computed and tested by experimental data. The ZPE differences of H- and D-complexes of water with hydrogen, methane, and water molecules are about 100-300 cal/mol; they result to isotope effects IE of 1.20-1.70. Semi-ionic bonds between metal ions and water ligands in M(H2O) 6 2+ complexes are much stronger; their ZPEs are about 12-14 kcal/mol per molecule and result to IE of 1.9-2.1 at 300 K. Protonated (deuterated) water and biwater exhibit the largest ZPE differences and isotope effects; the latter are 25-28 and 12-13 for water and biwater, respectively. Noncovalent IEs contribute markedly into the experimentally measured effects and explain many anomalous and even magic properties of the effects, such as the dependence of IE on the solvents and on the presence of the third substances, enormously large isotope effects at the mild conditions, the difference between IEs measured in the reactions of individual protiated and deuterated compounds and those measured in their mixture. Noncovalent IEs are not negligible and should be taken into account to make correct and substantiated conclusions on the reaction mechanisms. The kinetic equations are derived for the total isotope effects, which include noncovalent IEs as additive factors.

  14. A new cavity model for SAS4A

    International Nuclear Information System (INIS)

    Moxon, D.; Camous, F.

    1994-01-01

    The SAS4 code is the fourth generation of the SAS series developed at the ANL to study the initiating phase of hypothetical core disruptive accidents in LMFBRs. It was made available to the CEA in order to obtain more validation studies and model developments. The new cavity model described and incorporated in the code was first developed as a stand-alone code. It was thoroughly tested numerically and found to be quick and stable. Tis paper describes only the physical phenomena taken into account

  15. Theoretical Study of H/D Isotope Effects on Nuclear Magnetic Shieldings Using an ab initio Multi-Component Molecular Orbital Method

    Directory of Open Access Journals (Sweden)

    Masanori Tachikawa

    2013-05-01

    Full Text Available We have theoretically analyzed the nuclear quantum effect on the nuclear magnetic shieldings for the intramolecular hydrogen-bonded systems of σ-hydroxy acyl aromatic species using the gauge-including atomic orbital technique combined with our multi-component density functional theory. The effect of H/D quantum nature for geometry and nuclear magnetic shielding changes are analyzed. Our study clearly demonstrated that the geometrical changes of hydrogen-bonds induced by H/D isotope effect (called geometrical isotope effect: GIE is the dominant factor of deuterium isotope effect on 13C chemical shift.

  16. Assessing the importance of different exposure metrics and time-activity data to predict 24-H personal PM2.5 exposures.

    Science.gov (United States)

    Chang, Li-Te; Koutrakis, Petros; Catalano, Paul J; Suh, Helen H

    Personal PM(2.5) data from two recent exposure studies, the Scripted Activity Study and the Older Adults Study, were used to develop models predicting 24-h personal PM(2.5) exposures. Both studies were conducted concurrently in the summer of 1998 and the winter of 1999 in Baltimore, MD. In the Scripted Activity Study, 1-h personal PM(2.5) exposures were measured. Data were used to identify significant factors affecting personal exposures and to develop 1-h personal exposure models for five different micro-environments. By incorporating the time-activity diary data, these models were then combined to develop a time-weighted microenvironmental personal model (model M1AD) to predict the 24-h PM(2.5) exposures measured for individuals in the Older Adults Study. Twenty-four-hour time-weighted models were also developed using 1-h ambient PM(2.5) levels and time-activity data (model A1AD) or using 24-h ambient PM(2.5) levels and time-activity data (model A24AD). The performance of these three models was compared to that using 24-h ambient concentrations alone (model A24). Results showed that factors affecting 1-h personal PM(2.5) exposures included air conditioning status and the presence of environmental tobacco smoke (ETS) for indoor micro-environments, consistent with previous studies. ETS was identified as a significant contributor to measured 24-h personal PM(2.5) exposures. Staying in an ETS-exposed microenvironment for 1 h elevated 24-h personal PM(2.5) exposures by approximately 4 microg/m 3 on average. Cooking and washing activities were identified in the winter as significant contributors to 24-h personal exposures as well, increasing 24-h personal PM(2.5) exposures by about 4 and 5 microg/m 3 per hour of activity, respectively. The ability of 3 microenvironmental personal exposure models to estimate 24-h personal PM(2.5) exposures was generally comparable to and consistently greater than that of model A24. Results indicated that using time-activity data with 1

  17. An Investigation into the Relationship Between Distillate Yield and Stable Isotope Fractionation

    Science.gov (United States)

    Sowers, T.; Wagner, A. J.

    2016-12-01

    Recent breakthroughs in laser spectrometry have allowed for faster, more efficient analyses of stable isotopic ratios in water samples. Commercially available instruments from Los Gatos Research and Picarro allow users to quickly analyze a wide range of samples, from seawater to groundwater, with accurate isotope ratios of D/H to within ± 0.2 ‰ and 18O/16O to within ± 0.03 ‰. While these instruments have increased the efficiency of stable isotope laboratories, they come with some major limitations, such as not being able to analyze hypersaline waters. The Los Gatos Research Liquid Water Isotope Analyzer (LWIA) can accurately and consistently measure the stable isotope ratios in waters with salinities ranging from 0 to 4 grams per liter (0 to 40 parts per thousand). In order to analyze water samples with salinities greater than 4 grams per liter, however, it was necessary to develop a consistent method through which to reduce salinity while causing as little fractionation as possible. Using a consistent distillation method, predictable fractionation of δ 18O and δ 2 H values was found to occur. This fractionation occurs according to a linear relationship with respect to the percent yield of the water in the sample. Using this method, samples with high salinity can be analyzed using laser spectrometry instruments, thereby enabling laboratories with Los Gatos or Picarro instruments to analyze those samples in house without having to dilute them using labor-intensive in-house standards or expensive premade standards.

  18. Discrimination of geographical origin of lentils (Lens culinaris Medik.) using isotope ratio mass spectrometry combined with chemometrics.

    Science.gov (United States)

    Longobardi, F; Casiello, G; Cortese, M; Perini, M; Camin, F; Catucci, L; Agostiano, A

    2015-12-01

    The aim of this study was to predict the geographic origin of lentils by using isotope ratio mass spectrometry (IRMS) in combination with chemometrics. Lentil samples from two origins, i.e. Italy and Canada, were analysed obtaining the stable isotope ratios of δ(13)C, δ(15)N, δ(2)H, δ(18)O, and δ(34)S. A comparison between median values (U-test) highlighted statistically significant differences (porigin but with overlapping zones; consequently, two supervised discriminant techniques, i.e. partial least squares discriminant analysis and k-nearest neighbours algorithm were used. Both models showed good performances with external prediction abilities of about 93% demonstrating the suitability of the methods developed. Subsequently, isotopic determinations were also performed on the protein and starch fractions and the relevant results are reported. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. No influence of CO2 on stable isotope analyses of soil waters with off-axis integrated cavity output spectroscopy (OA-ICOS).

    Science.gov (United States)

    Sprenger, Matthias; Tetzlaff, Doerthe; Soulsby, Chris

    2017-03-15

    It was recently shown that the presence of CO 2 affects the stable isotope2 H and δ 18 O values) analysis of water vapor via Wavelength-Scanned Cavity Ring-Down Spectroscopy. Here, we test how much CO 2 is emitted from soil samples and if the CO 2 in the headspace influences the isotope analysis with the direct equilibration method by Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS). The headspace above different amounts of sparkling water was sampled, and its stable isotopic composition (δ 2 H and δ 18 O values) and CO 2 concentration were measured by direct equilibration and by gas chromatography, respectively. In addition, the headspace above soil samples was analyzed in the same way. Furthermore, the gravimetric water content and the loss on ignition were measured for the soil samples. The experiment with the sparkling water showed that CO 2 does not influence the stable isotope analysis by OA-ICOS. CO 2 was emitted from the soil samples and correlated with the isotopic fractionation signal, but no causal relationship between the two was determined. Instead, the fractionation signal in pore water isotopes can be explained by soil evaporation and the CO 2 can be related to soil moisture and organic matter which both enhance microbial activity. We found, despite the high CO 2 emissions from soil samples, no need for a post-correction of the pore water stable isotope analysis results, since there is no relation between CO 2 concentrations and the stable isotope results of vapor samples obtained with OA-ICOS. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.

  20. Calculations of kinetic isotope effects in the syn-eliminations of (2-phenylethyl)dimethylamine oxides

    International Nuclear Information System (INIS)

    Shafiei-Kermani, H.R.

    1987-01-01

    Transition state theory (TST) calculations of kinetic isotope effects (KIE) for the syn-elimination of (2-phenylethyl)dimethylamine oxides have been carried out for a series of transition state (TS) models encompassing both E1-like and E1cB-like regions of the E2 mechanistic spectrum. A large number of different reaction coordinates were explored for both unsolvated and for coordination of solvent dimethylsulfoxide in the cyclic transition state models. The models of reaction for both solvated and unsolvated models of proton transfer are presented. A simplified method for easier initial screening of reaction coordinate contributions is developed, discussed, and found to produce accurate approximations to the full model KIE values. Both unsolvated and solvated models show E1-like E2 mechanism and the calculated values from both models are in extremely good agreement with experimentally measured KIE. Both models were used to investigate para-substituted derivatives (Z = CL, OCH 3 ) of the parent compound (Z = H). The transition states are related by a shift in structure parallel to the central E2 diagonal of an O'Ferrall-Jencks-Fry reaction diagram, as predicted by Thornton, indicating that in the absence of other factors, the extent to which negative charge is accumulated at C/sub β/ in the transition state is a function primarily of the leaving group. All of the structural parameters such as bond distances and bond angles were related to independent bond orders. Beta-deuterium isotope effects produced by both solvated and nonsolvated models are temperature dependent

  1. Use of environmental isotope techniques in groundwater hydrology

    International Nuclear Information System (INIS)

    Tirumalesh, K.; Shivanna, K.

    2009-01-01

    Environmental isotopes (stable and radioactive) have been used as tracers for investigating various hydrological problems. Wide variation in isotopic distribution ( 2 H, 13 C, 18 O, 15 N, 35 S, 3 H and 14 C) in the environment help in identifying the source, origin, pathways and processes affecting the system under consideration. In this article, a few Indian case studies covering some of the very important isotope applications in groundwater hydrology are briefly summarized. (author)

  2. Separation of 15N by isotopic exchange in NO, NO2-HNO3 system under pressure

    International Nuclear Information System (INIS)

    Axente, D.; Baldea, A.; Teaca, C.; Horga, R.; Abrudean, M.

    1998-01-01

    One of the most used method for production of 15 N with 99% at. concentration is the isotopic exchange between gaseous nitrogen oxides and HNO 3 solution 10M: ( 15 NO, 15 NO 2 ) g + H 14 NO 3,l = ( 14 NO, 14 NO 2 ) g + H 15 NO 3,l . The isotopic exchange is characterized by an elemental separation factor α=1.055 at 25 deg. C and atmospheric pressure. Recently, kinetics data pointed to the linear dependence of the exchange rate 15 N/ 14 N(R) on the nitrogen oxide pressure with a rate law R = k[HNO 3 ] 2 · [N 2 O 3 ]. In this work, the influence of the nitrogen oxide pressure on the 15 N separation efficiency was determined by the use of a laboratory equipment with a separation column pack of Helipack type, with dimensions 1.8 mm x 1.8 mm x 0.2 mm. The increase of nitrogen oxide pressure led to a better isotopic transfer between the two counter-flow phases in the column pack. The HETP (Height Equivalent to a Theoretical Plate) determined for a 3.14 ml ·cm -2 · min -1 load is equal to that obtained at atmospheric pressure for a two times lower load. The operation of the equipment for isotopic separation of 15 N at 1.8 atm instead of atmospheric pressure allows doubling the HNO 3 10 M load of the column and consequently, doubling the production rate. A better performance of the separation process at higher pressure is essential for the industrial production of 15 N isotope which is used for the production of uranium nitride in FBR type reactors. (authors)

  3. First time-dependent study of H{sub 2} and H{sub 3}{sup +} ortho-para chemistry in the diffuse interstellar medium: Observations meet theoretical predictions

    Energy Technology Data Exchange (ETDEWEB)

    Albertsson, T.; Semenov, D.; Henning, Th. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Indriolo, N. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Kreckel, H. [Max-Planck-Institut für Kernphysik, D-69117 Heidelberg (Germany); Crabtree, K. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-05-20

    The chemistry in the diffuse interstellar medium (ISM) initiates the gradual increase of molecular complexity during the life cycle of matter. A key molecule that enables build-up of new molecular bonds and new molecules via proton donation is H{sub 3}{sup +}. Its evolution is tightly related to molecular hydrogen and thought to be well understood. However, recent observations of ortho and para lines of H{sub 2} and H{sub 3}{sup +} in the diffuse ISM showed a puzzling discrepancy in nuclear spin excitation temperatures and populations between these two key species. H{sub 3}{sup +}, unlike H{sub 2}, seems to be out of thermal equilibrium, contrary to the predictions of modern astrochemical models. We conduct the first time-dependent modeling of the para-fractions of H{sub 2} and H{sub 3}{sup +} in the diffuse ISM and compare our results to a set of line-of-sight observations, including new measurements presented in this study. We isolate a set of key reactions for H{sub 3}{sup +} and find that the destruction of the lowest rotational states of H{sub 3}{sup +} by dissociative recombination largely controls its ortho/para ratio. A plausible agreement with observations cannot be achieved unless a ratio larger than 1:5 for the destruction of (1, 1)- and (1, 0)-states of H{sub 3}{sup +} is assumed. Additionally, an increased cosmic-ray ionization rate to 10{sup –15} s{sup –1} further improves the fit whereas variations of other individual physical parameters, such as density and chemical age, have only a minor effect on the predicted ortho/para ratios. Thus, our study calls for new laboratory measurements of the dissociative recombination rate and branching ratio of the key ion H{sub 3}{sup +} under interstellar conditions.

  4. Stable isotopes (2H, 18O and 13C) in groundwaters from the northwestern portion of the Guarani Aquifer System (Brazil)

    Science.gov (United States)

    Gastmans, Didier; Chang, Hung Kiang; Hutcheon, Ian

    2010-09-01

    The groundwater flow pattern of the western part of the Guarani Aquifer System (GAS), Brazil, is characterized by three regional recharge areas in the north, and a potentiometric divide in the south, which trends north-south approximately. Groundwater flow is radial from these regional recharge areas toward the center of Paraná Sedimentary Basin and toward the western outcrop areas at the border of the Pantanal Matogrossense, because of the potentiometric divide. The isotopic composition of GAS groundwater leads to understanding the paleoclimatic conditions in the regional recharge areas. The δ18O and δ2H isotopic ratios of GAS groundwaters vary, respectively, from -9.1 to -4.8‰ V-SMOW and -58.4 to -21.7‰ V-SMOW. In the recharge zones, enriched δ18O values are observed, while in the confined zone lighter δ18O values are observed. These suggest that climatic conditions were 10°C cooler than the present during the recharge of these waters. The δ13C ratios in groundwater of GAS, in the study area, vary from -19.5 to -6.5‰ VPDB, increasing along the regional flow lines toward the confined zone. This variation is related to dissolution of carbonate cement in the sandstones.

  5. Mechanistic Insights into Catalytic Ethanol Steam Reforming Using Isotope-Labeled Reactants.

    Science.gov (United States)

    Crowley, Stephen; Castaldi, Marco J

    2016-08-26

    The low-temperature ethanol steam reforming (ESR) reaction mechanism over a supported Rh/Pt catalyst has been investigated using isotope-labeled EtOH and H2 O. Through strategic isotope labeling, all nonhydrogen atoms were distinct from one another, and allowed an unprecedented level of understanding of the dominant reaction pathways. All combinations of isotope- and non-isotope-labeled atoms were detected in the products, thus there are multiple pathways involved in H2 , CO, CO2 , CH4 , C2 H4 , and C2 H6 product formation. Both the recombination of C species on the surface of the catalyst and preservation of the C-C bond within ethanol are responsible for C2 product formation. Ethylene is not detected until conversion drops below 100 % at t=1.25 h. Also, quantitatively, 57 % of the observed ethylene is formed directly through ethanol dehydration. Finally there is clear evidence to show that oxygen in the SiO2 -ZrO2 support constitutes 10 % of the CO formed during the reaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Deformation properties of lead isotopes

    International Nuclear Information System (INIS)

    Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.; Saperstein, E. E.

    2016-01-01

    The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF 0 Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes. The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, 180 Pb and 184 Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF 0 functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF 0 functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron-rich lead isotopes undergo

  7. Structural investigation of liquid formic acid by neutron diffraction. II: Isotopic substitution for DCOO[H/D

    International Nuclear Information System (INIS)

    Bako, Imre; Schubert, Gabor; Megyes, Tuende; Palinkas, Gabor; Swan, Geoffrey I.; Dore, John; Bellisent-Funel, Marie-Claire

    2004-01-01

    New measurements of neutron diffraction data for four samples involving H/D isotopic substitution on the hydroxyl hydrogen of liquid formic acid at 20 deg C are reported. The results are combined with earlier measurements on [H/D]COOD to provide a full range of data. The determination of molecular conformation and bond-lengths has been made with a partial form-factor formalism and also using the 'Monte Carlo determination of g(r)' technique. The partial real-space correlation functions, RR, RH and HH are evaluated in each case and compared with existing computer simulations. The results confirm the strongly hydrogen-bonded nature of the liquid, but show that current molecular dynamics predictions based on transferable potentials do not give a very good representation of the structure. The observations provide a basis for a more detailed investigation and work is currently in progress. Ab initio quantum chemical calculations showed that the non-planar configuration suggested by Bertagnolli et al. [Ber. Bunsen. Phys. Chem. 88 (1984) 977; Ber. Bunsen. Phys. Chem. 89 (1985) 500], is very unlikely both for formic acid dimers and monomers

  8. Stringent DDI-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.

    Science.gov (United States)

    Zhou, Hufeng; Rezaei, Javad; Hugo, Willy; Gao, Shangzhi; Jin, Jingjing; Fan, Mengyuan; Yong, Chern-Han; Wozniak, Michal; Wong, Limsoon

    2013-01-01

    H. sapiens-M. tuberculosis H37Rv protein-protein interaction (PPI) data are very important information to illuminate the infection mechanism of M. tuberculosis H37Rv. But current H. sapiens-M. tuberculosis H37Rv PPI data are very scarce. This seriously limits the study of the interaction between this important pathogen and its host H. sapiens. Computational prediction of H. sapiens-M. tuberculosis H37Rv PPIs is an important strategy to fill in the gap. Domain-domain interaction (DDI) based prediction is one of the frequently used computational approaches in predicting both intra-species and inter-species PPIs. However, the performance of DDI-based host-pathogen PPI prediction has been rather limited. We develop a stringent DDI-based prediction approach with emphasis on (i) differences between the specific domain sequences on annotated regions of proteins under the same domain ID and (ii) calculation of the interaction strength of predicted PPIs based on the interacting residues in their interaction interfaces. We compare our stringent DDI-based approach to a conventional DDI-based approach for predicting PPIs based on gold standard intra-species PPIs and coherent informative Gene Ontology terms assessment. The assessment results show that our stringent DDI-based approach achieves much better performance in predicting PPIs than the conventional approach. Using our stringent DDI-based approach, we have predicted a small set of reliable H. sapiens-M. tuberculosis H37Rv PPIs which could be very useful for a variety of related studies. We also analyze the H. sapiens-M. tuberculosis H37Rv PPIs predicted by our stringent DDI-based approach using cellular compartment distribution analysis, functional category enrichment analysis and pathway enrichment analysis. The analyses support the validity of our prediction result. Also, based on an analysis of the H. sapiens-M. tuberculosis H37Rv PPI network predicted by our stringent DDI-based approach, we have discovered some

  9. Synthesis of 13C and 2H labelled retinals: spectroscopic investigations on isotopically labelled rhodopsin and bacteriorhodopsin

    International Nuclear Information System (INIS)

    Pardoen, J.A.

    1986-01-01

    In order to develop probes of the structure of chromophores, the author introduces isotopic modifications at specific chromophoric positions as structural probes. To obtain bacteriorhodopsin, rhodopsin and their photoproducts labelled in the chromophore at selected positions, bacterioopsin and opsin were reacted with the appropriate labelled a11-trans and 11-cis retinals. The author describes the synthesis of a11-trans retinal selectively 13 C labelled at different positions. The characterization of these labelled a11-trans retinals by mass spectrometry, 300 MHz 1 H NMR and 75 MHz 13 C NMR spectroscopy is given. The photochemical preparation and isolation of the pure 9-, 11- and 13-cis forms is described in the experimental part. (Auth.)

  10. Olev Schults : SAS vajab Estonian Airi rahvusliku lennufirmana / Olev Schults ; interv. Andres Reimer

    Index Scriptorium Estoniae

    Schults, Olev

    2008-01-01

    Estonian Airi nõukogu esimees vastab küsimustele, kas SAS arendas Läti airBalticut Estonian SAS-i arvel, mis mõte on rahvuslikul lennukompaniil, kui riik ei tohi seda finantseerida, kuidas mõjutab investorite meeleolu SAS-i Eestis tabanud poliitikute kriitika tulv

  11. Pressure dependent isotopic fractionation in the photolysis of formaldehyde-d2

    DEFF Research Database (Denmark)

    Nilsson, E.J.K.; Schmidt, Johan Albrecht; Johnson, Matthew Stanley

    2014-01-01

    role in the observed pressure dependent photolytic fractionation of deuterium. The model shows that part of the fractionation is a result of competition between the isotopologue dependent rates of unimolecular dissociation and collisional relaxation. We suggest that the remaining fractionation is due......The isotope effects in formaldehyde photolysis are the key link between the δD of methane emissions and the δD of atmospheric in situ hydrogen production. A few recent studies have suggested that a pressure dependence in the isotopic fractionation can partly explain enrichment of deuterium...... with altitude in the atmosphere. The mechanism and the extent of this pressure dependency is, however, not adequately described. In the present work D2CO and H2CO were photolyzed in a static reaction chamber at bath gas pressures of 50, 200, 400, 600 and 1000 mbar; these experiments compliment and extend our...

  12. Expression of DNA Damage Response Molecules PARP1, γH2AX, BRCA1, and BRCA2 Predicts Poor Survival of Breast Carcinoma Patients

    Directory of Open Access Journals (Sweden)

    See-Hyoung Park

    2015-08-01

    Full Text Available BACKGROUND: Poly(ADP-ribose polymerase 1 (PARP1, γH2AX, BRCA1, and BRCA2 are conventional molecular indicators of DNA damage in cells and are often overexpressed in various cancers. In this study, we aimed, using immunohistochemical detection, whether the co-expression of PARP1, γH2AX, BRCA1, and BRCA2 in breast carcinoma (BCA tissue can provide more reliable prediction of survival of BCA patients. MATERIALS AND METHODS: We investigated immunohistochemical expression and prognostic significance of the expression of PARP1, γH2AX, BRCA1, and BRCA2 in 192 cases of BCAs. RESULTS: The expression of these four molecules predicted earlier distant metastatic relapse, shorter overall survival (OS, and relapse-free survival (RFS by univariate analysis. Multivariate analysis revealed the expression of PARP1, γH2AX, and BRCA2 as independent poor prognostic indicators of OS and RFS. In addition, the combined expressional pattern of BRCA1, BRCA2, PARP1, and γH2AX (CSbbph was an additional independent prognostic predictor for OS (P < .001 and RFS (P < .001. The 10-year OS rate was 95% in the CSbbph-low (CSbbph scores 0 and 1 subgroup, but that was only 35% in the CSbbph-high (CSbbph score 4 subgroup. CONCLUSION: This study has demonstrated that the individual and combined expression patterns of PARP1, γH2AX, BRCA1, and BRCA2 could be helpful in determining an accurate prognosis for BCA patients and for the selection of BCA patients who could potentially benefit from anti-PARP1 therapy with a combination of genotoxic chemotherapeutic agents.

  13. Reconstruction of pH and partial pressure of carbon dioxide during the Mesozoic era period using boron and oxygen isotopic compositions of fresh ammonoids & nautiloids

    Science.gov (United States)

    Kawahata, Hodaka; Fukushima, Ayaka; Moriya, Kazuyori; Ishikawa, Tsuyoshi; Suzuki, Atsushi; Tanabe, Kazushige

    2013-04-01

    The increase of partial pressure of carbon dioxide (pCO2) in the atmosphere induces global warming and ocean acidification at the modern condition. The reconstruction of pCO2 during the geological time is required together with proxy calibration by laboratory experiments to predict the future environments. Boron isotopic ratio is an excellent proxy for pH and the relevant partial pressure of carbon dioxide in the seawater (PCO2). This study is the first to quantify pH dependence of delta 11B of the ammonoids and nautiloids mainly in the Cretaceous and in Jurassic (70-162 Ma), which are expected to be much warmer due to higher PCO2. However, no reliable reconstruction data using foraminiferal delta 11B before Cenozoic era has been reported. We used the very fresh aragonite shells of ammonoids and nautiloids by big advantages. Since aragonite changes into secondary calcite by diagenesis, it is easy and effective to identify the degree of alteration at each sample by measuring calcite/aragonite ratio. Also we carefully conducted the assessment of secondary alteration from three perspectives: 1) Determination of calcite/aragonite ratio by X-ray diffraction (XRD), 2) Observation of microstructures of the nacreous layers by scanning electron microscope (SEM), and 3) Measurement of trace element contents and stable isotope ratios. We conducted high precision boron isotope analysis of biogenic carbonates with +/- 0.1 per mil reproducibility by adopting positive thermal ionization mass spectrometry (P-TIMS) methods. Also we analyzed delta 18O to estimate paleo-temperature, at which biogenic aragonite was formed. Combination of delta 11B and delta 18O of biogenic aragonite in 80 Ma and 86 Ma revealed that deeper dwellers showed lower delta 11B values, which corresponded to lower pH. This feature is consistent with those observed in the modern vertical water column. The respective shallow water temperature was 19.7 and 19.1 centigrade. Based on these results, the

  14. Isotope exchange reaction on solid breeder materials

    International Nuclear Information System (INIS)

    Baba, A.; Nishikawa, M.; Eguchi, T.; Kawagoe, T.

    2000-01-01

    Lithium ceramic materials such as Li 2 O, LiAlO 2 , Li 2 ZrO 3 , Li 2 TiO 3 and Li 4 SiO 4 are considered to be as candidate for the tritium breeding material in a deuterium-tritium (D-T) fusion reactor. In the recent blanket designs, helium gas with hydrogen or deuterium is planned to be used as the blanket purge gas to reduce tritium inventory and promote tritium release from the breeding material. In addition, the rate of isotope exchange reaction between hydrogen isotopes in the purge gas and tritium on the surface of the breeding material is necessary to analyze the tritium release behavior from the breeding materials. However, the rate of isotope exchange reactions between hydrogen isotopes in the purge gas and tritium on the surface of those materials has not been quantified until recently. Recently, the present authors quantified the rate of isotope exchange reaction on Li 2 O and Li 2 ZrO 3 . The overall mass transfer coefficients representing the isotope exchange reaction between H 2 and D 2 O on breeding materials or the same between D 2 and H 2 O are experimentally obtained in this study. Comparison to isotope exchange reaction rates on various breeding materials is also performed in this study. Discussions about the effects of temperature, concentration of hydrogen in the purge gas or flow rate of the purge gas on the conversion of tritiated water to tritium gas are also performed

  15. Ab initio analytical potential energy surface and quasiclassical trajectory study of the O+(4S)+H2(X 1Σg+)→OH+(X 3Σ-)+H(2S) reaction and isotopic variants

    International Nuclear Information System (INIS)

    Martinez, Rodrigo; Millan, Judith; Gonzalez, Miguel

    2004-01-01

    An analytical potential energy surface (PES) representation of the O + ( 4 S)+H 2 (X 1 Σ g + ) system was developed by fitting around 600 CCSD(T)/cc-pVQZ ab initio points. Rate constant calculations for this reaction and its isotopic variants (D 2 and HD) were performed using the quasiclassical trajectory (QCT) method, obtaining a good agreement with experimental data. Calculations conducted to determine the cross section of the title reaction, considering collision energies (E T ) below 0.3 eV, also led to good accord with experiments. This PES appears to be suitable for kinetics and dynamics studies. Moreover, the QCT results show that, although the hypotheses of a widely used capture model are not satisfied, the resulting expression for the cross section can be applied within a suitable E T interval, due to errors cancellation. This could be a general situation regarding the application of this simple model to ion-molecule processes

  16. Stable hydrogen, oxygen and sulfur isotopes composition in different tissues of cattle

    International Nuclear Information System (INIS)

    Sun Fengmei; Shi Guangyu; Wang Huiwen; Yang Shuming

    2012-01-01

    In order to research on stable hydrogen, oxygen, sulfur isotopes composition in different tissues of cattle, as well as the breed, δ 2 H and δ 34 S values of different defatted muscle, cattle tail hair, blood, liver, also δ 2h and δ 18 O values of water from muscle were determined by isotope ratio mass spectrometry. The stable sulfur isotope composition was not affected by cattle variety, meanwhile the hydrogen was uncertain; the δ 2 H and δ 34 S values between different defatted muscle, blood, liver, cattle hair were significantly different, at the same time the δ 34 S and δ 2 H values between each tissue were not significantly correlated; the δ 2 H values were strongly correlated with the δ 18 O values of muscle water. The above results indicated that stable sulfur and hydrogen isotopes fractionation in the various tissues were discrepant, thus the proper tissue should be selected according to the purpose and object in the beef traceability. (authors)

  17. High-precision dual-inlet IRMS measurements of the stable isotopes of CO2 and the N2O / CO2 ratio from polar ice core samples

    Directory of Open Access Journals (Sweden)

    T. K. Bauska

    2014-11-01

    Full Text Available An important constraint on mechanisms of past carbon cycle variability is provided by the stable isotopic composition of carbon in atmospheric carbon dioxide (δ13C-CO2 trapped in polar ice cores, but obtaining very precise measurements has proven to be a significant analytical challenge. Here we describe a new technique to determine the δ13C of CO2 at very high precision, as well as measuring the CO2 and N2O mixing ratios. In this method, ancient air is extracted from relatively large ice samples (~400 g with a dry-extraction "ice grater" device. The liberated air is cryogenically purified to a CO2 and N2O mixture and analyzed with a microvolume-equipped dual-inlet IRMS (Thermo MAT 253. The reproducibility of the method, based on replicate analysis of ice core samples, is 0.02‰ for δ13C-CO2 and 2 ppm and 4 ppb for the CO2 and N2O mixing ratios, respectively (1σ pooled standard deviation. Our experiments show that minimizing water vapor pressure in the extraction vessel by housing the grating apparatus in a ultralow-temperature freezer (−60 °C improves the precision and decreases the experimental blank of the method to −0.07 ± 0.04‰. We describe techniques for accurate calibration of small samples and the application of a mass-spectrometric method based on source fragmentation for reconstructing the N2O history of the atmosphere. The oxygen isotopic composition of CO2 is also investigated, confirming previous observations of oxygen exchange between gaseous CO2 and solid H2O within the ice archive. These data offer a possible constraint on oxygen isotopic fractionation during H2O and CO2 exchange below the H2O bulk melting temperature.

  18. Modeling developments for the SAS4A and SASSYS computer codes

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Wei, T.Y.C.

    1990-01-01

    The SAS4A and SASSYS computer codes are being developed at Argonne National Laboratory for transient analysis of liquid metal cooled reactors. The SAS4A code is designed to analyse severe loss-of-coolant flow and overpower accidents involving coolant boiling, Cladding failures, and fuel melting and relocation. Recent SAS4A modeling developments include extension of the coolant boiling model to treat sudden fission gas release upon pin failure, expansion of the DEFORM fuel behavior model to handle advanced cladding materials and metallic fuel, and addition of metallic fuel modeling capability to the PINACLE and LEVITATE fuel relocation models. The SASSYS code is intended for the analysis of operational and beyond-design-basis transients, and provides a detailed transient thermal and hydraulic simulation of the core, the primary and secondary coolant circuits, and the balance-of-plant, in addition to a detailed model of the plant control and protection systems. Recent SASSYS modeling developments have resulted in detailed representations of the balance of plant piping network and components, including steam generators, feedwater heaters and pumps, and the turbine. 12 refs., 2 tabs

  19. δ2H isotopic flux partitioning of evapotranspiration over a grass field following a water pulse and subsequent dry down

    Science.gov (United States)

    Good, Stephen P.; Soderberg, Keir; Guan, Kaiyu; King, Elizabeth G.; Scanlon, Todd M.; Caylor, Kelly K.

    2014-02-01

    The partitioning of surface vapor flux (FET) into evaporation (FE) and transpiration (FT) is theoretically possible because of distinct differences in end-member stable isotope composition. In this study, we combine high-frequency laser spectroscopy with eddy covariance techniques to critically evaluate isotope flux partitioning of FET over a grass field during a 15 day experiment. Following the application of a 30 mm water pulse, green grass coverage at the study site increased from 0 to 10% of ground surface area after 6 days and then began to senesce. Using isotope flux partitioning, transpiration increased as a fraction of total vapor flux from 0% to 40% during the green-up phase, after which this ratio decreased while exhibiting hysteresis with respect to green grass coverage. Daily daytime leaf-level gas exchange measurements compare well with daily isotope flux partitioning averages (RMSE = 0.0018 g m-2 s-1). Overall the average ratio of FT to FET was 29%, where uncertainties in Keeling plot intercepts and transpiration composition resulted in an average of uncertainty of ˜5% in our isotopic partitioning of FET. Flux-variance similarity partitioning was partially consistent with the isotope-based approach, with divergence occurring after rainfall and when the grass was stressed. Over the average diurnal cycle, local meteorological conditions, particularly net radiation and relative humidity, are shown to control partitioning. At longer time scales, green leaf area and available soil water control FT/FET. Finally, we demonstrate the feasibility of combining isotope flux partitioning and flux-variance similarity theory to estimate water use efficiency at the landscape scale.

  20. Isotopic fractionation associated with [NiFe]- and [FeFe]-hydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Gandhi, Hasand; Cornish, Adam J.; Moran, James J.; Kreuzer, Helen W.; Ostrom, Nathaniel; Hegg, Eric L.

    2016-01-30

    Hydrogenases catalyze the reversible formation of H2 from electrons and protons with high efficiency. Understanding the relationships between H2 production, H2 uptake, and H2-H2O exchange can provide insight into the metabolism of microbial communities in which H2 is an essential component in energy cycling. In this manuscript, we used stable H isotopes (1H and 2H) to probe the isotope effects associated with three [FeFe]-hydrogenases and three [NiFe]-hydrogenases. All six hydrogenases displayed fractionation factors for H2 formation that were significantly less than 1, producing H2 that was severely depleted in 2H relative to the substrate, water. Consistent with differences in their active site structure, the fractionation factors for each class appear to cluster, with the three [NiFe]-hydrogenases (α = 0.27-0.40) generally having smaller values than the three [FeFe]-hydrogenases (α = 0.41-0.55). We also obtained isotopic fractionation factors associated with H2 uptake and H2-H2O exchange under conditions similar to those utilized for H2 production, providing us with a more complete picture of the three reactions catalyzed by hydrogenases. The fractionation factors determined in our studies can be used as signatures for different hydrogenases to probe their activity under different growth conditions and to ascertain which hydrogenases are most responsible for H2 production and/or uptake in complex microbial communities.

  1. Investigation of phenomena which with diffusion can control metals permeability to H isotopes

    International Nuclear Information System (INIS)

    Tison, Paul; Fidelle, J.-P.

    1981-10-01

    Permeation-diffusion tests are carried out with D and T on various construction steels and SS, between 900 and - 20 deg C. They enable to specify the influence of trapping and surface films under typical instances. H-induced surface modifications are monitored by mass spectrometry. The joint or successive use of H and D isotopes, on a same side or on the opposite side of a membrane bring to evidence a new kind of deep trapping and the influence of H concentration on permeation flux. Finally, results are compared with previous data, including ones on Co, Ni, Pt-base alloys [fr

  2. The scale analysis sequence for LWR fuel depletion

    International Nuclear Information System (INIS)

    Hermann, O.W.; Parks, C.V.

    1991-01-01

    The SCALE (Standardized Computer Analyses for Licensing Evaluation) code system is used extensively to perform away-from-reactor safety analysis (particularly criticality safety, shielding, heat transfer analyses) for spent light water reactor (LWR) fuel. Spent fuel characteristics such as radiation sources, heat generation sources, and isotopic concentrations can be computed within SCALE using the SAS2 control module. A significantly enhanced version of the SAS2 control module, which is denoted as SAS2H, has been made available with the release of SCALE-4. For each time-dependent fuel composition, SAS2H performs one-dimensional (1-D) neutron transport analyses (via XSDRNPM-S) of the reactor fuel assembly using a two-part procedure with two separate unit-cell-lattice models. The cross sections derived from a transport analysis at each time step are used in a point-depletion computation (via ORIGEN-S) that produces the burnup-dependent fuel composition to be used in the next spectral calculation. A final ORIGEN-S case is used to perform the complete depletion/decay analysis using the burnup-dependent cross sections. The techniques used by SAS2H and two recent applications of the code are reviewed in this paper. 17 refs., 5 figs., 5 tabs

  3. Mechanistic studies on the bovine liver mitochondrial dihydroorotate dehydrogenase using kinetic deuterium isotope effects

    International Nuclear Information System (INIS)

    Hines, V.; Johnston, M.

    1989-01-01

    Dihydroorotates deuteriated at both C 5 and C 6 have been prepared and used to probe the mechanism of the bovine liver mitochondrial dihydroorotate dehydrogenase. Primary deuterium isotope effects on k cat are observed with both (6RS)-[5(S)- 2 H]- and (6RS)-[6- 2 H]dihydroorotates (3 and 6, respectively); these effects are maximal at low pH. At pH 6.6, D V = 3.4 for the C 5 -deuteriated dihydroorotate (3), and D V = 2.3 for the C 6 -deuteriated compound (6). The isotope effects approach unity at pH 8.8. Analysis of the pH dependence of the isotope effects on k cat reveals a shift in the rate-determining step of the enzyme mechanism as a function of pH. Dihydroorotate oxidation appears to require general base catalysis; this step is completely rate-determining at low pH and isotopically sensitive. Reduction of the cosubstrate, coenzyme Q 6 , is rate-limiting at high pH and is isotopically insensitive; this step appears to require general acid catalysis. The results of double isotope substitution studies and analysis for substrate isotope exchange with solvent point toward a concerted mechanism for oxidation of dihydroorotate. This finding serves to distinguish further the mammalian dehydrogenase from its parasitic cognate, which catalyzes a stepwise oxidation reaction

  4. Deuterium isotope differences in 2-propanone (CH3)2CO/(CD3)2CO: a high-pressure sound-speed, density, and heat capacities study

    International Nuclear Information System (INIS)

    Szydlowski, J.; Gomes de Azevedo, R.; Rebelo, L.P.N.; Esperanca, J.M.S.S.; Guedes, H.J.R.

    2005-01-01

    A new high-pressure, non-intrusive ultrasonic microcell [J. Chem. Thermodyn. 36 (2004) 211-222] was used to carry out sound-speed measurements in deuteriated 2-propanone (acetone-d 6 ) in broad ranges of temperature (288 6 . (p, ρ, T) data for acetone-d 6 were also determined but in a narrower T, p range (298 to 333 K; 0.1 to 60 MPa). In this interval, several thermodynamic properties were thus determined, such as: isentropic (κ s ) and isothermal (κ T ) compressibility, isobaric thermal expansivity (α p ), isobaric (c p ) and isochoric (c v ) specific heat capacity, and the thermal pressure coefficient (γ v ). Comparisons with our data for acetone-h 6 enabled us to establish the magnitude and sign of deuterium isotope effects for identical properties. These effects are a consequence of distinct vibrational mode frequencies in an isotope-invariant force constants' field. Molar heat capacities and their isotope effects were theoretically determined by employing an Einstein-like model for the vibrational frequencies of acetone-h 6 and acetone-d 6

  5. Ice-liquid isotope fractionation factors for O-18 and H-2 deduced from the isotopic correction constants for the triple point of water

    NARCIS (Netherlands)

    Wang, Xing; Meijer, Harro A. J.

    2018-01-01

    The stable isotopes of water are extensively used as tracers in many fields of research. For this use, it is essential to know the isotope fractionation factors connected to various processes, the most important of which being phase changes. Many experimental studies have been performed on phase

  6. Isotopes as validation tools for predictions of the impact of Amazonian deforestation on climate and regional hydrology

    International Nuclear Information System (INIS)

    Henderson-Sellers, A.; Chambers, S.; McGuffie, K.

    2002-01-01

    Isotopic analysis and modelling of the Amazon Basin have both been reported for about thirty years. Isotopic data have been used to explain important characteristics of Amazonian hydrologic cycling by means of simple models. To date there has been no attempt to use isotopic data to evaluate global climate models employed to predict the possible impacts of Amazonian deforestation. This paper reviews the history of isotopic analysis and simulations of deforestation in the Amazon and initiates isotopic evaluation of GCMs. It is shown that one widely reported simulation set gives seasonal transpiration and re-evaporated canopy interception budgets different from those derived from isotopic analysis. It is found that temporal changes (1965 to 1990) in wet season deuterium excess differences between Belem and Manaus are consistent with GCM results only if there has been a relative increase in evaporation from non-fractionating water sources over this period. We propose synergistic future interactions among the climate/hydrological modelling and isotopic analysis communities in order to improve confidence in simulations of Amazonian deforestation. (author)

  7. Recycling of Oceanic Lithosphere: Water, fO2 and Fe-isotope Constraints

    Science.gov (United States)

    Bizmis, M.; Peslier, A. H.; McCammon, C. A.; Keshav, S.; Williams, H. M.

    2014-01-01

    Spinel peridotite and garnet pyroxenite xenoliths from Hawaii provide important clues about the composition of the oceanic lithosphere, and can be used to assess its contribution to mantle heterogeneity upon recycling. The peridotites have lower bulk H2O (approximately 70-114 ppm) than the MORB source, qualitatively consistent with melt depletion. The garnet pyroxenites (high pressure cumulates) have higher H2O (200-460 ppm, up to 550 ppm accounting for phlogopite) and low H2O/Ce ratios (less than 100). The peridotites have relatively light Fe-isotopes (delta Fe -57 = -0.34 to 0.13) that decrease with increasing depletion, while the pyroxenites are significantly heavier (delta Fe-57 up to 0.3). The observed xenolith, as well as MORB and OIB total Fe-isotope variability is larger that can be explained by existing melting models. The high H2O and low H2O/Ce ratios of pyroxenites are similar to estimates of EM-type OIB sources, while their heavy delta Fe-57 are similar to some Society and Cook-Austral basalts. Therefore, recycling of mineralogically enriched oceanic lithosphere (i.e. pyroxenites) may contribute to OIB sources and mantle heterogeneity. The Fe(3+)/Sigma? systematics of these xenoliths also suggest that there might be lateral redox gradients within the lithosphere, between juxtaposed oxidized spinel peridotites (deltaFMQ = -0.7 to 1.6, at 15 kb) and more reduced pyroxenites (deltaFMQ = -2 to -0.4, at 20-25kb). Such mineralogically and compositionally imposed fO2 gradients may generate local redox melting due to changes in fluid speciation (e.g. reduced fluids from pyroxenite encountering more oxidized peridotite). Formation of such incipient, small degree melts could further contribute to metasomatic features seen in peridotites, mantle heterogeneity, as well as the low velocity and high electrical conductivity structures near the base of the lithosphere and upper mantle.

  8. Reorientation measurements on tungsten isotopes

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, J J; Saladin, J X; Baktash, C; Alessi, J G [Pittsburgh Univ., Pa. (USA)

    1977-11-14

    In a particle-..gamma.. coincidence experiment, a thick tungsten target, of natural isotopic abundance, was bombarded with ..cap alpha.. and /sup 16/O beams. From analysis of the deexcitation ..gamma..-rays following Coulomb excitation, the spectroscopic quadrupole moment of the second 2/sup +/ state (the 2/sup +/' state) was determined for /sup 186/W and /sup 184/W. In a separate Coulomb excitation experiment a thin, isotopically enriched /sup 186/W target was bombarded with /sup 16/O ions. From analysis of projectiles scattered elastically and inelastically the quadrupole moment of the 2/sup +/' state of /sup 186/W was extracted. The results of the two experiments are in good agreement. The quadrupole moment of the 2/sup +/' state is found to be opposite in sign to that of the first 2/sup +/ state for both isotopes studied. However, its magnitude decreases rapidly in going from /sup 186/W to /sup 184/W, in contrast to the predictions of the rotation-vibration of asymmetric rotor models. The microscopic theory of Kumar and Baranger does predict the experimental trend, qualitatively. Thus the present results are interpreted as being evidence of strong coupling between ..beta.. and ..gamma.. degrees of freedom in the tungsten isotopes, which, according to the theory of Kumar and Baranger, is the source of the reduced value of the quadrupole moment.

  9. Mo isotope fractionation during hydrothermal evolution of porphyry Cu systems

    Science.gov (United States)

    Shafiei, Behnam; Shamanian, GholamHossein; Mathur, Ryan; Mirnejad, Hassan

    2015-03-01

    We present Mo isotope compositions of molybdenite types from three successive stages of ore deposition in several porphyry copper deposits of the Kerman region, Iran. The data provide new insights into controlling processes on Mo isotope fractionation during the hydrothermal evolution of porphyry systems. The Mo isotope compositions of 27 molybdenite samples show wide variations in δ97Mo ranging from -0.37 to +0.92 ‰. The data reveal that molybdenites in the early and transitional stages of mineralization (preferentially 2H polytypes; δ97Mo mean = 0.35 ‰) have higher δ97Mo values than late stage (mainly 3R polytypes; δ97Mo mean = 0.02 ‰) molybdenites. This trend suggests that fractionation of Mo isotopes occurred in high-temperature stages of mineralization and that hydrothermal systems generally evolve towards precipitation of molybdenite with lower δ97Mo values. Taking into account the genetic models proposed for porphyry Cu deposits along with the temperature-dependent fractionation of Mo isotope ratios, it is proposed that large variations of Mo isotopes in the early and the transitional stages of ore deposition could be controlled by the separation of the immiscible ore-forming fluid phases with different density, pH, and ƒO2 properties (i.e., brine and vapor). The fractionation of Mo isotopes during fluid boiling and Rayleigh distillation processes likely dominates the Mo isotope budget of the remaining ore-forming fluids for the late stage of mineralization. The lower δ97Mo values in the late stage of mineralization can be explained by depletion of the late ore-forming hydrothermal solutions in 97Mo, as these fluids have moved to considerable distance from the source. Finally, the relationship observed between MoS2 polytypes (2H and 3R) and their Mo isotopic compositions can be explained by the molecular vibration theory, in which heavier isotopes are preferentially partitioned into denser primary 2H MoS2 crystals.

  10. Simultaneous determination of stable carbon, oxygen, and hydrogen isotopes in cellulose.

    Science.gov (United States)

    Loader, N J; Street-Perrott, F A; Daley, T J; Hughes, P D M; Kimak, A; Levanič, T; Mallon, G; Mauquoy, D; Robertson, I; Roland, T P; van Bellen, S; Ziehmer, M M; Leuenberger, M

    2015-01-06

    A technological development is described through which the stable carbon-, oxygen-, and nonexchangeable hydrogen-isotopic ratios (δ(13)C, δ(18)O, δ(2)H) are determined on a single carbohydrate (cellulose) sample with precision equivalent to conventional techniques (δ(13)C 0.15‰, δ(18)O 0.30‰, δ(2)H 3.0‰). This triple-isotope approach offers significant new research opportunities, most notably in physiology and medicine, isotope biogeochemistry, forensic science, and palaeoclimatology, when isotopic analysis of a common sample is desirable or when sample material is limited.

  11. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    Science.gov (United States)

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N

  12. FIRST MEASUREMENTS OF {sup 15}N FRACTIONATION IN N{sub 2}H{sup +} TOWARD HIGH-MASS STAR-FORMING CORES

    Energy Technology Data Exchange (ETDEWEB)

    Fontani, F. [INAF-Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, I-50125 Firenze (Italy); Caselli, P.; Bizzocchi, L. [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany); Palau, A. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, P.O. Box 3-72, 58090 Morelia, Michoacán, México (Mexico); Ceccarelli, C. [Univ. Grenoble Alpes, IPAG, F-38000 Grenoble (France)

    2015-08-01

    We report on the first measurements of the isotopic ratio {sup 14}N/{sup 15}N in N{sub 2}H{sup +} toward a statistically significant sample of high-mass star-forming cores. The sources belong to the three main evolutionary categories of the high-mass star formation process: high-mass starless cores, high-mass protostellar objects, and ultracompact H ii regions. Simultaneous measurements of the {sup 14}N/{sup 15}N ratio in CN have been made. The {sup 14}N/{sup 15}N ratios derived from N{sub 2}H{sup +} show a large spread (from ∼180 up to ∼1300), while those derived from CN are in between the value measured in the terrestrial atmosphere (∼270) and that of the proto-solar nebula (∼440) for the large majority of the sources within the errors. However, this different spread might be due to the fact that the sources detected in the N{sub 2}H{sup +} isotopologues are more than those detected in the CN ones. The {sup 14}N/{sup 15}N ratio does not change significantly with the source evolutionary stage, which indicates that time seems to be irrelevant for the fractionation of nitrogen. We also find a possible anticorrelation between the {sup 14}N/{sup 15}N (as derived from N{sub 2}H{sup +}) and the H/D isotopic ratios. This suggests that {sup 15}N enrichment could not be linked to the parameters that cause D enrichment, in agreement with the prediction by recent chemical models. These models, however, are not able to reproduce the observed large spread in {sup 14}N/{sup 15}N, pointing out that some important routes of nitrogen fractionation could be still missing in the models.

  13. MAGNESIUM ISOTOPE RATIOS IN ω CENTAURI RED GIANTS

    International Nuclear Information System (INIS)

    Da Costa, G. S.; Norris, John E.; Yong, David

    2013-01-01

    We have used the high-resolution observations obtained at the Anglo-Australian Telescope with Ultra-High Resolution Facility (R ∼ 100,000) and at Gemini-S with b-HROS (R ∼ 150,000) to determine magnesium isotope ratios for seven ω Cen red giants that cover a range in iron abundance from [Fe/H] = –1.78 to –0.78 dex, and for two red giants in M4 (NGC 6121). The ω Cen stars sample both the ''primordial'' (i.e., O-rich, Na- and Al-poor) and the ''extreme'' (O-depleted, Na- and Al-rich) populations in the cluster. The primordial population stars in both ω Cen and M4 show ( 25 Mg, 26 Mg)/ 24 Mg isotopic ratios that are consistent with those found for the primordial population in other globular clusters with similar [Fe/H] values. The isotopic ratios for the ω Cen extreme stars are also consistent with those for extreme population stars in other clusters. The results for the extreme population stars studied indicate that the 26 Mg/ 24 Mg ratio is highest at intermediate metallicities ([Fe/H] 26 Mg in the extreme population stars is notably higher than that of 25 Mg, in contrast to model predictions. The 25 Mg/ 24 Mg isotopic ratio in fact does not show any obvious dependence on either [Fe/H] or [Al/Fe] nor, intriguingly, any obvious difference between the primordial and extreme population stars.

  14. Isotope ratio mass spectrometry in combination with chemometrics for characterization of geographical origin and agronomic practices of table grape.

    Science.gov (United States)

    Longobardi, Francesco; Casiello, Grazia; Centonze, Valentina; Catucci, Lucia; Agostiano, Angela

    2017-08-01

    Although table grape is one of the most cultivated and consumed fruits worldwide, no study has been reported on its geographical origin or agronomic practice based on stable isotope ratios. This study aimed to evaluate the usefulness of isotopic ratios (i.e. 2 H/ 1 H, 13 C/ 12 C, 15 N/ 14 N and 18 O/ 16 O) as possible markers to discriminate the agronomic practice (conventional versus organic farming) and provenance of table grape. In order to quantitatively evaluate which of the isotopic variables were more discriminating, a t test was carried out, in light of which only δ 13 C and δ 18 O provided statistically significant differences (P ≤ 0.05) for the discrimination of geographical origin and farming method. Principal component analysis (PCA) showed no good separation of samples differing in geographical area and agronomic practice; thus, for classification purposes, supervised approaches were carried out. In particular, general discriminant analysis (GDA) was used, resulting in prediction abilities of 75.0 and 92.2% for the discrimination of farming method and origin respectively. The present findings suggest that stable isotopes (i.e. δ 18 O, δ 2 H and δ 13 C) combined with chemometrics can be successfully applied to discriminate the provenance of table grape. However, the use of bulk nitrogen isotopes was not effective for farming method discrimination. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Compound-Specific Carbon, Nitrogen, and Hydrogen Isotopic Ratios for Amino Acids in CM and CR Chondrites and their use in Evaluating Potential Formation Pathways

    Science.gov (United States)

    Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Stable hydrogen, carbon, and nitrogen isotopic ratios (oD, 013C, and olSN) of organic compounds can revcal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1I2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CRZ Graves Nunataks (GRA) 95229, CRZ Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing ODC and increasing oD with increasing carbon number in the aH, (l-NH2 amino acids that correspond to predictions made for formation via Streckercyanohydrin synthesis. We also observe light ODC signatures for -alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ro-amino acids). Higher deuterium enrichments are observed in amethyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than CM chondrites, reflecting different parent-body chemistry.

  16. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    OpenAIRE

    Hannah B Vander Zanden; David X Soto; Gabriel J Bowen; Keith A Hobson; Keith A Hobson

    2016-01-01

    The measurement of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H) and oxygen (δ18O) isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applicat...

  17. Expanding the Isotopic Toolbox: Applications of Hydrogen and Oxygen Stable Isotope Ratios to Food Web Studies

    OpenAIRE

    Vander Zanden, Hannah B.; Soto, David X.; Bowen, Gabriel J.; Hobson, Keith A.

    2016-01-01

    The measurement of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H) and oxygen (δ18O) isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applicatio...

  18. Densities, viscosities, and refractive indexes for {C2H5CO2(CH2)2CH3+C6H13OH+C6H6} at T=308.15 K

    International Nuclear Information System (INIS)

    Casas, Herminio; Garcia-Garabal, Sandra; Segade, Luisa; Cabeza, Oscar.; Franjo, Carlos; Jimenez, Eulogio

    2003-01-01

    In this work we present densities, kinematic viscosities, and refractive indexes of the ternary system {C 2 H 5 CO 2 (CH 2 ) 2 CH 3 +C 6 H 13 OH+C 6 H 6 } and the corresponding binary mixtures {C 2 H 5 CO 2 (CH 2 ) 2 CH 3 +C 6 H 6 }, {C 2 H 5 CO 2 (CH 2 ) 2 CH 3 +C 6 H 13 OH}, and {C 6 H 13 OH+C 6 H 6 }. All data have been measured at T=308.15 K and atmospheric pressure over the whole composition range. The excess molar volumes, dynamic viscosity deviations, and changes of the refractive index on mixing were calculated from experimental measurements. The results for binary mixtures were fitted to a polynomial relationship to estimate the coefficients and standard deviations. The Cibulka equation has been used to correlate the experimental values of ternary mixtures. Also, the experimental values obtained for the ternary mixture were used to test the empirical methods of Kohler, Jacob and Fitzner, Colinet, Tsao and Smith, Toop, Scatchard et al., and Hillert. These methods predict excess properties of the ternary mixtures from those of the involved binary mixtures. The results obtained for dynamic viscosities of the binary mixtures were used to test the semi-empirical relations of Grunberg-Nissan, McAllister, Auslaender, and Teja-Rice. Finally, the experimental refractive indexes were compared with the predicted results for the Lorentz-Lorenz, Gladstone-Dale, Wiener, Heller, and Arago-Biot equations. In all cases, we give the standard deviation between the experimental data and that calculated with the above named relations

  19. Contribution of NAD 2D-NMR in liquid crystals to the determination of hydrogen isotope profile of methyl groups in miliacin

    Science.gov (United States)

    Berdagué, Philippe; Lesot, Philippe; Jacob, Jérémy; Terwilliger, Valery J.; Le Milbeau, Claude

    2016-01-01

    The hydrogen isotopic composition (δD or (D/H) value) of molecular biomarkers preserved in sedimentary archives is increasingly used to provide clues about the evolution of past climatic conditions. The rationale is that intact biomarkers retain isotopic information related to the climatic conditions that prevailed at the time of their synthesis. Some of these biomarkers may be degraded during diagenesis, however. The extent to which these degradations alter the original δD value of the source biomarker is presently debated and the capacity to resolve this question by determination of compound-specific δD values alone is limited. The ;bulk; or ;global; δD value of any molecule is in fact a composite of δD values at each site within this molecule (δDi or (D/H)i with i = number of hydrogen/deuterium atoms in the considered molecule). Determination of this site-specific δDi value in biomarkers could not only yield outstanding paleoenvironmental information but also help forecast the impacts of diagenesis and define essential steps in biosynthetic pathways. This task is analytically challenging. Here, we examined the capabilities of natural abundance deuterium 2D-NMR (NAD 2D-NMR) using homopolypeptide liquid crystals as an NMR solvent to: (i) analyze the NAD spectra of biomakers; (ii) determine the site-specific distribution of hydrogen in the nine methyl groups (δDMei with i = 23-31) of miliacin, a pentacyclic triterpene of the amyrin family and key biomarker for broomcorn millet in sedimentary archives. Relative (D/H)Mei values were established by anisotropic NAD 2D-NMR. Then absolute δDMei values were obtained by determining δDMei value of the methoxy group of miliacin using two independent approaches: isotropic NAD NMR (SNIF-NMR™) and GC-irMS. The resulting isotope profile for miliacin shows, for the first time, large variations in δDMei values that can directly be explained by biosynthetic processes. This approach has also the potential to permit

  20. Isotopic analysis of boron by thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Kakazu, M.H.; Sarkis, J.E.S.; Souza, I.M.S.

    1991-07-01

    This paper presents a methodology for isotopic analysis of boron by thermal ionization mass spectrometry technique through the ion intensity measurement of Na 2 BO + 2 in H 3 BO 3 , B o and B 4 C. The samples were loaded on single tantalum filaments by different methods. In the case of H 3 BO 3 , the method of neutralization with NaOH was used. For B 4 C the alcaline fusion with Na 2 CO 3 and for B o dissolution with 1:1 nitric sulfuric acid mixture followed by neutralization with NaOH was used. The isotopic ratio measurements were obtained by the use of s Faraday cup detector with external precision of ±0,4% and accuracy of ±0,1%, relative to H 3 BO 3 isotopic standard NBS 951. The effects of isotopic fractionation was studied in function of the time during the analyses and the different chemical forms of deposition. (author)

  1. Fast neutron spectroscopy with tensioned metastable fluid detectors

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, T.F.; Taleyarkhan, R.P., E-mail: rusi@purdue.edu

    2016-09-11

    This paper describes research into development of a rapid-turnaround, neutron-spectroscopy capable (gamma-beta blind), high intrinsic efficiency sensor system utilizing the tensioned metastable fluid detector (TMFD) architecture. The inability of prevailing theoretical models (developed successfully for the classical bubble chamber) to adequately predict detection thresholds for tensioned metastable fluid conditions is described. Techniques are presented to overcome these inherent shortcomings, leading thereafter, to allow successful neutron spectroscopy using TMFDs – via the newly developed Single Atom Spectroscopy (SAS) approach. SAS also allows for a unique means for rapidly determining neutron energy thresholds with TMFDs. This is accomplished by simplifying the problem of determining Cavitation Detection Events (CDEs) arising from neutron interactions with one in which several recoiling atom species contribute to CDEs, to one in which only one dominant recoil atom need be considered. The chosen fluid is Heptane (C{sub 7}H{sub 16}) for which only recoiling C atoms contribute to CDEs. Using the SAS approach, the threshold curve for Heptane was derived using isotope neutron source data, and then validated against experiments with mono-energetic (2.45/14 MeV) neutrons from D-D and D-T accelerators. Thereafter the threshold curves were used to produce the response matrix for various geometries. The response matrices were in turn combined with experimental data to recover the continuous spectra of fission (Cf-252) and (α,n) Pu–Be isotopic neutron sources via an unfolding algorithm. A generalized algorithm is also presented for performing neutron spectroscopy using any other TMFD fluid that meets the SAS approach assumptions.

  2. SAS-6 engineering reveals interdependence between cartwheel and microtubules in determining centriole architecture.

    Science.gov (United States)

    Hilbert, Manuel; Noga, Akira; Frey, Daniel; Hamel, Virginie; Guichard, Paul; Kraatz, Sebastian H W; Pfreundschuh, Moritz; Hosner, Sarah; Flückiger, Isabelle; Jaussi, Rolf; Wieser, Mara M; Thieltges, Katherine M; Deupi, Xavier; Müller, Daniel J; Kammerer, Richard A; Gönczy, Pierre; Hirono, Masafumi; Steinmetz, Michel O

    2016-04-01

    Centrioles are critical for the formation of centrosomes, cilia and flagella in eukaryotes. They are thought to assemble around a nine-fold symmetric cartwheel structure established by SAS-6 proteins. Here, we have engineered Chlamydomonas reinhardtii SAS-6-based oligomers with symmetries ranging from five- to ten-fold. Expression of a SAS-6 mutant that forms six-fold symmetric cartwheel structures in vitro resulted in cartwheels and centrioles with eight- or nine-fold symmetries in vivo. In combination with Bld10 mutants that weaken cartwheel-microtubule interactions, this SAS-6 mutant produced six- to eight-fold symmetric cartwheels. Concurrently, the microtubule wall maintained eight- and nine-fold symmetries. Expressing SAS-6 with analogous mutations in human cells resulted in nine-fold symmetric centrioles that exhibited impaired length and organization. Together, our data suggest that the self-assembly properties of SAS-6 instruct cartwheel symmetry, and lead us to propose a model in which the cartwheel and the microtubule wall assemble in an interdependent manner to establish the native architecture of centrioles.

  3. Sas-4 proteins are required during basal body duplication in Paramecium

    Science.gov (United States)

    Gogendeau, Delphine; Hurbain, Ilse; Raposo, Graca; Cohen, Jean; Koll, France; Basto, Renata

    2011-01-01

    Centrioles and basal bodies are structurally related organelles composed of nine microtubule (MT) triplets. Studies performed in Caenorhabditis elegans embryos have shown that centriole duplication takes place in sequential way, in which different proteins are recruited in a specific order to assemble a procentriole. ZYG-1 initiates centriole duplication by triggering the recruitment of a complex of SAS-5 and SAS-6, which then recruits the final player, SAS-4, to allow the incorporation of MT singlets. It is thought that a similar mechanism (that also involves additional proteins) is present in other animal cells, but it remains to be investigated whether the same players and their ascribed functions are conserved during basal body duplication in cells that exclusively contain basal bodies. To investigate this question, we have used the multiciliated protist Paramecium tetraurelia. Here we show that in the absence of PtSas4, two types of defects in basal body duplication can be identified. In the majority of cases, the germinative disk and cartwheel, the first structures assembled during duplication, are not detected. In addition, if daughter basal bodies were formed, they invariably had defects in MT recruitment. Our results suggest that PtSas4 has a broader function than its animal orthologues. PMID:21289083

  4. Validation of GC-IRMS techniques for δ13C and δ2H CSIA of organophosphorus compounds and their potential for studying the mode of hydrolysis in the environment.

    Science.gov (United States)

    Wu, Langping; Kümmel, Steffen; Richnow, Hans H

    2017-04-01

    Compound-specific stable isotope analysis (CSIA) is among the most promising tools for studying the fate of organic pollutants in the environment. However, the feasibility of multidimensional CSIA was limited by the availability of a robust method for precise isotope analysis of heteroatom-bearing organic compounds. We developed a method for δ 13 C and δ 2 H analysis of eight organophosphorus compounds (OPs) with different chemical properties. In particular, we aimed to compare high-temperature conversion (HTC) and chromium-based HTC (Cr/HTC) units to explore the limitations of hydrogen isotope analysis of heteroatom-bearing compounds. Analysis of the amount dependency of the isotope values (linearity analysis) of OPs indicated that the formation of HCl was a significant isotope fractionation process leading to inaccurate δ 2 H analysis in HTC. In the case of nonchlorinated OPs, by-product formation of HCN, H 2 S, or PH 3 in HTC was observed but did not affect the dynamic range of reproducible isotope values above the limit of detection. No hydrogen-containing by-products were found in the Cr/HTC process by use of ion trap mass spectrometry analysis. The accuracy of gas chromatography - isotope ratio mass spectrometry was validated in comparison with elemental analyzer - isotope ratio mass spectrometry. Dual-isotope fractionation yielded Λ values of 0 ± 0 at pH 7, 7 ± 1 at pH 9, and 30 ± 6 at pH 12, indicating the potential of 2D CSIA to characterize the hydrolysis mechanisms of OPs. This is the first report on the combination of δ 2 H and δ 13 C isotope analysis of OPs, and this is the first study providing a systematic evaluation of HTC and Cr/HTC for hydrogen isotope analysis using OPs as target compounds. Graphical Abstract Comparison of δ 2 H measurement of non-chlorinated and chlorinated OPs via GC-Cr/HTC-IRMS and GC-HTC-IRMS system.

  5. SAS-6 assembly templated by the lumen of cartwheel-less centrioles precedes centriole duplication.

    Science.gov (United States)

    Fong, Chii Shyang; Kim, Minhee; Yang, T Tony; Liao, Jung-Chi; Tsou, Meng-Fu Bryan

    2014-07-28

    Centrioles are 9-fold symmetric structures duplicating once per cell cycle. Duplication involves self-oligomerization of the centriolar protein SAS-6, but how the 9-fold symmetry is invariantly established remains unclear. Here, we found that SAS-6 assembly can be shaped by preexisting (or mother) centrioles. During S phase, SAS-6 molecules are first recruited to the proximal lumen of the mother centriole, adopting a cartwheel-like organization through interactions with the luminal wall, rather than via their self-oligomerization activity. The removal or release of luminal SAS-6 requires Plk4 and the cartwheel protein STIL. Abolishing either the recruitment or the removal of luminal SAS-6 hinders SAS-6 (or centriole) assembly at the outside wall of mother centrioles. After duplication, the lumen of engaged mother centrioles becomes inaccessible to SAS-6, correlating with a block for reduplication. These results lead to a proposed model that centrioles may duplicate via a template-based process to preserve their geometry and copy number. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. isotopic characteristics of aquifers in sinai

    International Nuclear Information System (INIS)

    Al-Gamal, S.A.

    2004-01-01

    the environmental isotopes data (expressed as δ 2 d and δ 18 O) of different aquifers in sinai were treated using correlation and regression techniques. whereas, rain water isotopic data were treated using empirical orthogonal functions (EOF) techniques. environmental isotopes for different aquifers expressed in terms of O-18 and H-2, were taken to represent the isotopic characteristics. regression equations using the highly correlated variables of δ 2 d and δ 18 O were constructed for each aquifer. the latitudinal variations (of rainwater in sinai and selected climatic stations east mediterranean ) versus rainwater isotopic compositions were analyzed using the normalized variables. it was found that the latitudinal variations of the rainwater isotopic compositions ( δ 2 D, δ 18 O), vapor pressure, and surface temperature occurred in parallel and decreased with latitude. in the east mediterranean, empirical linear relationship between altitude and δ 2 D has indicted that the rate of change of δ 2 D with height is comparable with the dry lapse rate in the atmosphere.The obtained regression equations of environmental isotopes data have impacted on different slopes and different constants expressing the non-homogeneity in the isotopic composition of rainwater recharging the aquifers of sinai , due to the presence of different air masses

  7. Stringent homology-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.

    Science.gov (United States)

    Zhou, Hufeng; Gao, Shangzhi; Nguyen, Nam Ninh; Fan, Mengyuan; Jin, Jingjing; Liu, Bing; Zhao, Liang; Xiong, Geng; Tan, Min; Li, Shijun; Wong, Limsoon

    2014-04-08

    H. sapiens-M. tuberculosis H37Rv protein-protein interaction (PPI) data are essential for understanding the infection mechanism of the formidable pathogen M. tuberculosis H37Rv. Computational prediction is an important strategy to fill the gap in experimental H. sapiens-M. tuberculosis H37Rv PPI data. Homology-based prediction is frequently used in predicting both intra-species and inter-species PPIs. However, some limitations are not properly resolved in several published works that predict eukaryote-prokaryote inter-species PPIs using intra-species template PPIs. We develop a stringent homology-based prediction approach by taking into account (i) differences between eukaryotic and prokaryotic proteins and (ii) differences between inter-species and intra-species PPI interfaces. We compare our stringent homology-based approach to a conventional homology-based approach for predicting host-pathogen PPIs, based on cellular compartment distribution analysis, disease gene list enrichment analysis, pathway enrichment analysis and functional category enrichment analysis. These analyses support the validity of our prediction result, and clearly show that our approach has better performance in predicting H. sapiens-M. tuberculosis H37Rv PPIs. Using our stringent homology-based approach, we have predicted a set of highly plausible H. sapiens-M. tuberculosis H37Rv PPIs which might be useful for many of related studies. Based on our analysis of the H. sapiens-M. tuberculosis H37Rv PPI network predicted by our stringent homology-based approach, we have discovered several interesting properties which are reported here for the first time. We find that both host proteins and pathogen proteins involved in the host-pathogen PPIs tend to be hubs in their own intra-species PPI network. Also, both host and pathogen proteins involved in host-pathogen PPIs tend to have longer primary sequence, tend to have more domains, tend to be more hydrophilic, etc. And the protein domains from both

  8. Deuteriation of an asymmetric short hydrogen bond. X-ray crystal structure of KF.(CH2CO2D)2

    International Nuclear Information System (INIS)

    Emsley, J.; Jones, D.J.; Kuroda, R.

    1981-01-01

    Deuteriation of the strong hydrogen bonds of KF.(CH 2 CO 2 H) 2 shows no isotope effect on the bond lengths. The only significant change is in the bond angle at the fluoride ion which widens to 128.5 from 116 0 . The i.r. spectrum shows very little change. Since the O-H ... F - hydrogen bonds are highly asymmetric, these observations challenge previous predictions about the effects of deuteriation on such bonds. (author)

  9. Deformation properties of lead isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.; Saperstein, E. E., E-mail: saper43-7@mail.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-01-15

    The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF{sup 0} Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes. The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, {sup 180}Pb and {sup 184}Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF{sup 0} functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF{sup 0} functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron

  10. Isotopic equilibria between sulphur solute species at high temperature

    International Nuclear Information System (INIS)

    Robinson, B.W.

    1978-01-01

    Sulphur solute species in ore solutions and geothermal discharges include HSO 4 - , SO 4 2- , H 2 S, and HS - , as well as the ion-paired species, NaHS 0 , NaHSO 4 - and Na 2 SO 4 0 . Observed sulphate-sulphide fractionation factors and the rates of attainment of isotopic equilibrium are likely to depend on the nature of the sulphur species actually taking part in these isotopic equilibria. Preliminary experiments in alkaline solution (pH 10.1 at 20 0 C) were carried out in a gold cell. No significant isotope fractionation was observed between the SO 4 2- and HS - in 29 days at 200 0 C, 63days at 300 0 C, or 90 days at 250 0 C. However, similar experiments at 350 0 C in sealed gold capsules at room temperature pH 8.5 showed slow exchange(t( 1 / 2 ) was calculated to be 510 days for the SO 4 2- -HS - exchange reaction using the theoretical fractionation of 20.2 0 / 00 ). The addition of NaCl appeared to have no affect on the exchange. However, pH strongly controls the reaction rate, and exchange probably involves H 2 S and the HSO 4 - ion. Additional preliminary experiments were conducted with a fivefold increase in the sulphur concentration; a decrease in t( 1 / 2 ) to 142 days resulted. Some inter-relationship between sulphur concentration and exchange rate thus exists. The important controlling parameters of isotope exchange (temperature, pH, and ΣS) can be seen to have influenced exchange in natural systems.(auth.)

  11. Apparent molar volumes for dilute solutions of NaClO4 and [Co(en) 3](ClO4)3 in D2O and H2O at 278-318 K

    International Nuclear Information System (INIS)

    Bottomley, G.A.; Glossop, L.G.

    1981-01-01

    Apparent molar volumes for dilute solutions of NaClO 4 and [Co(en) 3 ](ClO 4 ) 3 in D 2 O and H 2 O were measured by using a dilatometry technique at 278, 298 and 318K. Comparison of limiting slopes with the Debye-Huckel predictions from the dielectric constant and compressibility of H 2 O and D 2 O is complicated by ion pairing. The apparent molar volumes for NaClO 4 were less in D 2 O than in H 2 O. The complex [Co(en) 3 ](ClO 4 ) 3 when studied in D 2 O had its amine protons exchanged by deuterium; this did not allow a direct comparison of the apparent molar volumes of the protonated complex in each solvent system, but revealed a large isotope effect. The apparent molar volumes of the [Co(en) 3 ](ClO 4 ) 3 showed a much larger temperature dependence than that of NaClO 4

  12. Isotope effect study of κ-(BEDT-TTF)2Cu(NCS)2: Labeling in the anion

    International Nuclear Information System (INIS)

    Kini, A.M.; Wang, H.H.; Schlueter, J.A.

    1995-01-01

    Since the initial discovery of organic superconductivity in 1979, a large number of organic superconductors have now been synthesized. However, the mechanism of electron-pairing in these novel superconductors has remained largely unresolved. Isotope effect studies constitute an important experimental tool for the investigation of whether or not the electron-pairing mechanism in organic superconductors is phonon-mediated, as in conventional superconductors. Recent isotope effect studies in the authors' laboratory, involving seven different isotopically labeled BEDT-TTF (or ET) derivatives, have demonstrated the following: (1) intramolecular phonon modes involving C double-bond C and Csingle bondS stretching vibrations in the ET donor molecule are not the dominant mediators of electron-pairing, and (2) in κ-(ET) 2 Cu(NCS) 2 , there exist two competing isotope effects--a normal mass effect, i.e., lowering of T c upon isotopic labeling, when the ET molecular mass is increased by concurrent 13 C and 34 S labeling, in addition to an inverse isotope effect upon deuterium labeling in ET. It is of great interest to investigate if there is an isotope effect when the charge-compensating anions, which are also located within the non-conducting layer in the superconducting cation-radical salts, are isotopically labeled. The existence of an isotope effect when the anions are labeled would be indicative of electron-pairing with the mediation of vibrational frequencies associated with the anions. In this paper, the authors present the results of the first isotope effect study in which isotopic labeling in the anion portion of κ-(ET) 2 Cu(NCS) 2 is carried out. The authors find no isotope effect when the carbon and nitrogen atoms of the thiocyanate groups in the anion are replaced with 13 C and 15 N isotopes

  13. The isotopic composition of CO in vehicle exhaust

    NARCIS (Netherlands)

    Naus, S.; Röckmann, T.; Popa, M.E.

    2018-01-01

    We investigated the isotopic composition of CO in the exhaust of individual vehicles. Additionally, the CO 2 isotopes, and the CO:CO 2 , CH 4 :CO 2 and H 2 :CO gas ratios were measured. This was done under idling and revving conditions, and for three vehicles in a full driving cycle on a testbench.

  14. A nine-dimensional ab initio global potential energy surface for the H2O+ + H2H3O+ + H reaction

    Science.gov (United States)

    Li, Anyang; Guo, Hua

    2014-06-01

    An accurate full-dimensional global potential energy surface (PES) is developed for the title reaction. While the long-range interactions in the reactant asymptote are represented by an analytical expression, the interaction region of the PES is fit to more than 81 000 of ab initio points at the UCCSD(T)-F12b/AVTZ level using the permutation invariant polynomial neural network approach. Fully symmetric with respect to permutation of all four hydrogen atoms, the PES provides a faithful representation of the ab initio points, with a root mean square error of 1.8 meV or 15 cm-1. The reaction path for this exoergic reaction features an attractive and barrierless entrance channel, a submerged saddle point, a shallow H4O+ well, and a barrierless exit channel. The rate coefficients for the title reaction and kinetic isotope effect have been determined on this PES using quasi-classical trajectories, and they are in good agreement with available experimental data. It is further shown that the H2O+ rotational enhancement of reactivity observed experimentally can be traced to the submerged saddle point. Using our recently proposed Sudden Vector Projection model, we demonstrate that a rotational degree of freedom of the H2O+ reactant is strongly coupled with the reaction coordinate at this saddle point, thus unraveling the origin of the pronounced mode specificity in this reaction.

  15. A nine-dimensional ab initio global potential energy surface for the H2O+ + H2H3O+ + H reaction

    International Nuclear Information System (INIS)

    Li, Anyang; Guo, Hua

    2014-01-01

    An accurate full-dimensional global potential energy surface (PES) is developed for the title reaction. While the long-range interactions in the reactant asymptote are represented by an analytical expression, the interaction region of the PES is fit to more than 81 000 of ab initio points at the UCCSD(T)-F12b/AVTZ level using the permutation invariant polynomial neural network approach. Fully symmetric with respect to permutation of all four hydrogen atoms, the PES provides a faithful representation of the ab initio points, with a root mean square error of 1.8 meV or 15 cm −1 . The reaction path for this exoergic reaction features an attractive and barrierless entrance channel, a submerged saddle point, a shallow H 4 O + well, and a barrierless exit channel. The rate coefficients for the title reaction and kinetic isotope effect have been determined on this PES using quasi-classical trajectories, and they are in good agreement with available experimental data. It is further shown that the H 2 O + rotational enhancement of reactivity observed experimentally can be traced to the submerged saddle point. Using our recently proposed Sudden Vector Projection model, we demonstrate that a rotational degree of freedom of the H 2 O + reactant is strongly coupled with the reaction coordinate at this saddle point, thus unraveling the origin of the pronounced mode specificity in this reaction

  16. Deglacial Western Equatorial Pacific pCO2 Reconstruction Using Boron Isotopes of Planktonic Foraminiferas

    Science.gov (United States)

    Kubota, K.; Yokoyama, Y.; Ishikawa, T.; Sagawa, T.; Ikehara, M.; Yamazaki, T.

    2017-12-01

    During the last deglaciation (ca. 19 - 11 ka), partial pressure of CO2 (pCO2) of the atmosphere increased by 80 μatm. Many paleoceanographers point out that the ocean had played an important role in atmospheric CO2 rise, since the ocean have 60 times larger capacity to store carbon compared to the atmosphere. However, evidence on where carbon was transferred from the ocean to the atmosphere is still lacking, hampering our understanding of global carbon cycles in glacial-interglacial timescales. Boron isotope of skeletons of marine calcifying organisms such as corals and foraminiferas can pin down where CO2 source/sink existed, because boron isotopes of marine calcium carbonates is dependent on seawater pH, from which pCO2 of the past seawater can be reconstructed. In previous studies using the boron isotope teqnique, Martinez-Boti et al. (2015, Nature) and Kubota et al. (2014, Scientific Reports) revealed that central and eastern parts of the equatorial Pacific acted as a CO2 source (i.e., CO2 emission) during the last deglaciation, suggesting the equatorial Pacific's contribution to atmospheric CO2 rise. However, some conflicting results have been confirmed in a marine sediment record from the western part of the equatorial Pacific (Palmer & Pearson, 2003, Science), making the conclusion elusive. In this presentation, we will show new results of Mg/Ca, oxygen isotope, and boron isotope measurements during the last 35 ka on two species of surface dwelling foraminiferas (Globigerinoides ruber and G. sacculifer) which was hand-picked separatedly from a well-dated marine sediment core recovered from the West Caroline Basin (KR05-15 PC01) (Yamazaki et al., 2008, GRL). From the new records, we will discuss how the equatorial Pacific behaved during the last deglaciation and how it related to the global carbon cycles.

  17. Effect of hyperbaric oxygen therapy on SAS and SDS in children with ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Pei-Yun Li

    2017-08-01

    Full Text Available Objective: To study and analyze the effect of early psychological intervention on the scores of SAS and SDS in children with hypoxic-ischemic encephalopathy undergoing hyperbaric oxygen therapy. Methods: A total of 64 children with hypoxic - ischemic encephalopathy enrolled in our hospital from July 2015 to July 2016 and their parents were selected as study subjects. The patients were treated with hyperbaric oxygen therapy, while their parents were given early psychological intervention. By the way of increasing parents’ awareness of the disease, helping parents build confidence in their children’s treatment and encouraging them to participate in daily training for their children to relieve their anxiety and depression. The parents' knowledge of the disease before and during treatment, the treatment of hyperbaric oxygen therapy and the change of SAS and SDS were observed. Results: After effective intervention, the scores of SAS and SDS of 64 patients’ parents were significantly lower than those before treatment. After 1 courses of intervention, the score of SAS was (43.36 ± 1.27 points, and the score of SDS was (45.22 ± 8.13 points. After 2 courses of intervention, the score of SAS was (41.07 ± 1.21 and the score of SDS was (42.35 ± 7.44 points, and parents' awareness of hypoxic-ischemic encephalopathy was significantly increased, and the differences between the two groups were statistically significant. Conclusion: Early psychological intervention on parents of children with hypoxic-ischemic encephalopathy can effectively improve the awareness of parents on the disease, so as to improve their acceptance of hyperbaric oxygen therapy; significantly reduce the parents’ SAS, SDS score. It is beneficial to build a good doctor-patient and nurse-patient relationship, improve the treatment effect and shorten the treatment time.

  18. Measuring gluconeogenesis using a low dose of 2H2O: advantage of isotope fractionation during gas chromatography.

    Science.gov (United States)

    Katanik, Jill; McCabe, Brendan J; Brunengraber, Daniel Z; Chandramouli, Visvanathan; Nishiyama, Fumie J; Anderson, Vernon E; Previs, Stephen F

    2003-05-01

    The contribution of gluconeogenesis to glucose production can be measured by enriching body water with (2)H(2)O to approximately 0.5% (2)H and determining the ratio of (2)H that is bound to carbon-5 vs. carbon-2 of blood glucose. This labeling ratio can be measured using gas chromatography-mass spectrometry after the corresponding glucose carbons are converted to formaldehyde and then to hexamethylenetetramine (HMT). We present a technique for integrating ion chromatograms that allows one to use only 0.05% (2)H in body water (i.e., 10 times less than the current dose). This technique takes advantage of the difference in gas chromatographic retention times of naturally labeled HMT and [(2)H]HMT. We discuss the advantage(s) of using a low dose of (2)H(2)O to quantify the contribution of gluconeogenesis.

  19. Using multiple linear regression and physicochemical changes of amino acid mutations to predict antigenic variants of influenza A/H3N2 viruses.

    Science.gov (United States)

    Cui, Haibo; Wei, Xiaomei; Huang, Yu; Hu, Bin; Fang, Yaping; Wang, Jia

    2014-01-01

    Among human influenza viruses, strain A/H3N2 accounts for over a quarter of a million deaths annually. Antigenic variants of these viruses often render current vaccinations ineffective and lead to repeated infections. In this study, a computational model was developed to predict antigenic variants of the A/H3N2 strain. First, 18 critical antigenic amino acids in the hemagglutinin (HA) protein were recognized using a scoring method combining phi (ϕ) coefficient and information entropy. Next, a prediction model was developed by integrating multiple linear regression method with eight types of physicochemical changes in critical amino acid positions. When compared to other three known models, our prediction model achieved the best performance not only on the training dataset but also on the commonly-used testing dataset composed of 31878 antigenic relationships of the H3N2 influenza virus.

  20. 2S protein Ara h 7.0201 has unique epitopes compared to other Ara h 7 isoforms and is comparable to 2S proteins Ara h 2 and 6 in basophil degranulation capacity.

    Science.gov (United States)

    Hayen, S M; Ehlers, A M; den Hartog Jager, C F; Garssen, J; Knol, E F; Knulst, A C; Suer, W; Willemsen, L E M; Otten, H G

    2018-07-01

    Screening for specific IgE against 2S albumin proteins Ara h 2 and 6 has good positive predictive value in diagnosing peanut allergy. From the third 2S member Ara h 7, 3 isoforms have been identified. Their allergenicity has not been elucidated. This study investigated the allergenicity of Ara h 7 isoforms compared to Ara h 2 and 6. Sensitization of 15 DBPCFC-confirmed peanut-allergic patients to recombinant Ara h 2.0201, Ara h 6.01 and isoforms of recombinant Ara h 7 was determined by IgE immunoblotting strips. A basophil activation test (BAT) was performed in 9 patients to determine IgE-cross-linking capacities of the allergens. Sensitivity to the allergens was tested in 5 patients who were sensitized to at least 1 Ara h 7 isoform, by a concentration range in the BAT. 3D prediction models and sequence alignments were used to visualize differences between isoforms and to predict allergenic epitope regions. Sensitization to Ara h 7.0201 was most frequent (80%) and showed to be equally potent as Ara h 2.0201 and 6.01 in inducing basophil degranulation. Sensitization to Ara h 7.0201 together with Ara h 2.0201 and/or 6.01 was observed, indicating the presence of unique epitopes compared to the other 2 isoforms. Differences between the 3 Ara h 7 isoforms were observed in C-terminal cysteine residues, pepsin and trypsin cleavage sites and 3 single amino acid substitutions. The majority of peanut-allergic patients are sensitized to isoform Ara h 7.0201, which is functionally as active as Ara h 2.0201 and 6.01. Unique epitopes are most likely located in the C-terminus or an allergenic loop region which is a known allergenic epitope region for Ara h 2.0201 and 6.01. Due to its unique epitopes and allergenicity, it is an interesting candidate to improve the diagnostic accuracy for peanut allergy. © 2018 The Authors. Clinical & Experimental Allergy Published by John Wiley & Sons Ltd.

  1. Biogeochemistry of the stable hydrogen isotopes

    International Nuclear Information System (INIS)

    Estep, M.F.; Hoering, T.C.

    1980-01-01

    The fractionation of H isotopes between the water in the growth medium and the organically bonded H from microalgae cultured under conditions, where light intensity and wavelength, temperature, nutrient availability, and the H isotope ratio of the water were controlled, is reproducible and light dependent. All studies were based either on the H isotope ratios of the total organic H or on the lipids, where most of the H is firmly bonded to C. H bonded into other macromolecules, proteins, carbohydrates and nucleic acids, does not exchange with water, when algae are incubated in water enriched with deuterium. Only after the destruction of quaternary H bonds are labile hydrogens in macromolecules free to exchange with water. By growing algae (18 strains), including blue-green algae, green algae and diatoms, in continuous light, the isotope fractionations in photosynthesis were reproducibly -93 to -178 per thousand, depending on the organism tested. This fractionation was not temperature dependent. Microalgae grown in total darkness with an organic substrate did not show the isotope fractionation seen in cells grown in light. In both light- and dark-grown algae, however, additional depletion of deuterium (-30 to -60 per thousand) in cellular organic matter occurs during the metabolism of carbohydrates to form lipids. Plants from several natural populations also fractionated isotopes during photosynthesis by an average of -90 to -110 per thousand. In addition, the organically bonded H in nonsaponifiable lipids was further fractionated by -80 per thousand from that in saponifiable lipids, isolated from two geographically distinct populations of marsh plants. This difference between H isotope ratios of these two groups of lipids provides an endogenous isotopic marker. (author)

  2. Biogeochemistry of the stable hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Estep, M F; Hoering, T C [Carnegie Institution of Washington, DC (USA)

    1980-08-01

    The fractionation of H isotopes between the water in the growth medium and the organically bonded H from microalgae cultured under conditions, where light intensity and wavelength, temperature, nutrient availability, and the H isotope ratio of the water were controlled, is reproducible and light dependent. All studies were based either on the H isotope ratios of the total organic H or on the lipids, where most of the H is firmly bonded to C. H bonded into other macromolecules, proteins, carbohydrates and nucleic acids, does not exchange with water, when algae are incubated in water enriched with deuterium. Only after the destruction of quaternary H bonds are labile hydrogens in macromolecules free to exchange with water. By growing algae (18 strains), including blue-green algae, green algae and diatoms, in continuous light, the isotope fractionations in photosynthesis were reproducibly -93 to -178 per thousand, depending on the organism tested. This fractionation was not temperature dependent. Microalgae grown in total darkness with an organic substrate did not show the isotope fractionation seen in cells grown in light. In both light- and dark-grown algae, however, additional depletion of deuterium (-30 to -60 per thousand) in cellular organic matter occurs during the metabolism of carbohydrates to form lipids. Plants from several natural populations also fractionated isotopes during photosynthesis by an average of -90 to -110 per thousand. In addition, the organically bonded H in nonsaponifiable lipids was further fractionated by -80 per thousand from that in saponifiable lipids, isolated from two geographically distinct populations of marsh plants. This difference between H isotope ratios of these two groups of lipids provides an endogenous isotopic marker.

  3. On the controls of leaf-water oxygen isotope ratios in the atmospheric Crassulacean acid metabolism epiphyte Tillandsia usneoides.

    Science.gov (United States)

    Helliker, Brent R

    2011-04-01

    Previous theoretical work showed that leaf-water isotope ratio (δ(18)O(L)) of Crassulacean acid metabolism epiphytes was controlled by the δ(18)O of atmospheric water vapor (δ(18)O(a)), and observed δ(18)O(L) could be explained by both a non-steady-state model and a "maximum enrichment" steady-state model (δ(18)O(L-M)), the latter requiring only δ(18)O(a) and relative humidity (h) as inputs. δ(18)O(L), therefore, should contain an extractable record of δ(18)O(a). Previous empirical work supported this hypothesis but raised many questions. How does changing δ(18)O(a) and h affect δ(18)O(L)? Do hygroscopic trichomes affect observed δ(18)O(L)? Are observations of changes in water content required for the prediction of δ(18)O(L)? Does the leaf need to be at full isotopic steady state for observed δ(18)O(L) to equal δ(18)O(L-M)? These questions were examined with a climate-controlled experimental system capable of holding δ(18)O(a) constant for several weeks. Water adsorbed to trichomes required a correction ranging from 0.5‰ to 1‰. δ(18)O(L) could be predicted using constant values of water content and even total conductance. Tissue rehydration caused a transitory change in δ(18)O(L), but the consequent increase in total conductance led to a tighter coupling with δ(18)O(a). The non-steady-state leaf water models explained observed δ(18)O(L) (y = 0.93*x - 0.07; r(2) = 0.98) over a wide range of δ(18)O(a) and h. Predictions of δ(18)O(L-M) agreed with observations of δ(18)O(L) (y = 0.87*x - 0.99; r(2) = 0.92), and when h > 0.9, the leaf did not need to be at isotopic steady state for the δ(18)O(L-M) model to predict δ(18)O(L) in the Crassulacean acid metabolism epiphyte Tillandsia usneoides.

  4. H2RM: A Hybrid Rough Set Reasoning Model for Prediction and Management of Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Rahman Ali

    2015-07-01

    Full Text Available Diabetes is a chronic disease characterized by high blood glucose level that results either from a deficiency of insulin produced by the body, or the body’s resistance to the effects of insulin. Accurate and precise reasoning and prediction models greatly help physicians to improve diagnosis, prognosis and treatment procedures of different diseases. Though numerous models have been proposed to solve issues of diagnosis and management of diabetes, they have the following drawbacks: (1 restricted one type of diabetes; (2 lack understandability and explanatory power of the techniques and decision; (3 limited either to prediction purpose or management over the structured contents; and (4 lack competence for dimensionality and vagueness of patient’s data. To overcome these issues, this paper proposes a novel hybrid rough set reasoning model (H2RM that resolves problems of inaccurate prediction and management of type-1 diabetes mellitus (T1DM and type-2 diabetes mellitus (T2DM. For verification of the proposed model, experimental data from fifty patients, acquired from a local hospital in semi-structured format, is used. First, the data is transformed into structured format and then used for mining prediction rules. Rough set theory (RST based techniques and algorithms are used to mine the prediction rules. During the online execution phase of the model, these rules are used to predict T1DM and T2DM for new patients. Furthermore, the proposed model assists physicians to manage diabetes using knowledge extracted from online diabetes guidelines. Correlation-based trend analysis techniques are used to manage diabetic observations. Experimental results demonstrate that the proposed model outperforms the existing methods with 95.9% average and balanced accuracies.

  5. H2RM: A Hybrid Rough Set Reasoning Model for Prediction and Management of Diabetes Mellitus.

    Science.gov (United States)

    Ali, Rahman; Hussain, Jamil; Siddiqi, Muhammad Hameed; Hussain, Maqbool; Lee, Sungyoung

    2015-07-03

    Diabetes is a chronic disease characterized by high blood glucose level that results either from a deficiency of insulin produced by the body, or the body's resistance to the effects of insulin. Accurate and precise reasoning and prediction models greatly help physicians to improve diagnosis, prognosis and treatment procedures of different diseases. Though numerous models have been proposed to solve issues of diagnosis and management of diabetes, they have the following drawbacks: (1) restricted one type of diabetes; (2) lack understandability and explanatory power of the techniques and decision; (3) limited either to prediction purpose or management over the structured contents; and (4) lack competence for dimensionality and vagueness of patient's data. To overcome these issues, this paper proposes a novel hybrid rough set reasoning model (H2RM) that resolves problems of inaccurate prediction and management of type-1 diabetes mellitus (T1DM) and type-2 diabetes mellitus (T2DM). For verification of the proposed model, experimental data from fifty patients, acquired from a local hospital in semi-structured format, is used. First, the data is transformed into structured format and then used for mining prediction rules. Rough set theory (RST) based techniques and algorithms are used to mine the prediction rules. During the online execution phase of the model, these rules are used to predict T1DM and T2DM for new patients. Furthermore, the proposed model assists physicians to manage diabetes using knowledge extracted from online diabetes guidelines. Correlation-based trend analysis techniques are used to manage diabetic observations. Experimental results demonstrate that the proposed model outperforms the existing methods with 95.9% average and balanced accuracies.

  6. The use of O, H and Sr isotopes and carbamazepine to identify the origin of water bodies supplying a shallow alluvial aquifer

    Science.gov (United States)

    Sassine, Lara; Le Gal La Salle, Corinne; Lancelot, Joël; Verdoux, Patrick

    2014-05-01

    Alluvial aquifers are of great socio-economic importance in France since they supply 82% of drinking water production, though they reveal to be very vulnerable to pesticides and emerging organic contaminants. The aim of this work is to identify the origin of water bodies which contribute to the recharge of an alluvial aquifer for a better understanding of its hydrochemistry and transfer of contaminants therein. The study is based on an isotopic and geochemical tracers approach, including major elements, trace elements (Br, Sr),and isotopes (δ18O, δ2H, 87Sr/86Sr), as well as organic molecules. Indeed, organic molecules such as pharmaceutical compounds, more precisely carbamazepine and caffeine, have shown their use as indicators of surface water in groundwater. The study area is a partially-confined shallow alluvial aquifer, the so-called Vistrenque aquifer, located at 15 km from the Mediterranean Sea, in the Quaternary alluviums deposited by an ancient arm of the Rhône River, in Southern France. This aquifer constitutes a shallow alluvial layer in a NE-SW graben structure. It is situated between a karst aquifer in lower Cretaceous limestones, on the NW border, and the Costières Plateau, on the SE border, having a similar geology as the Vistrenque. The alluvial plain is crossed by a surface water network with the Vistre as the main stream, and a canal used for irrigation essentially, the BRL canal, which is fed by the Rhône River. δ18O and δ2H allowed to differentiate the BRL canal water, depleted in heavy isotopes2H = -71.5o vs V-SMOW), and the more enriched local rainwater (δ2H = -35.5o vs V-SMOW). In the Vistre surface water a binary mixing were evidenced with the BRL canal water and the rainwater, as end members. Then, in the Vistrenque groundwater both the BRL and the Vistre contributions could be identified, as they still show contrasting signature with local recharge. This allows to highlight the surface water contribution to a heavily exploited

  7. Predicting the bioavailability of phosphorus in soil amended with phosphate rocks using isotopic exchange kinetics

    International Nuclear Information System (INIS)

    Mohammad Edwin Syah Lubis; Zaharah Abd Rahman; Sharifuddin Abd Hamid

    1997-01-01

    Investigations on plant responses to applications of various forms and rates of P fertilizers usually involve glasshouse and/or field experiments. This traditional procedure assumes that whatever the soil-fertilizer-plant system, increase in total P uptake by plant between no P treatment (control) and fertilizer treatment equals the plant P uptake from fertilizer. This study uses the isotopic exchange techniques in the laboratory to predict bioavailability of P fertilizers without the need to conduct glasshouse or field experiments. Serdang series soil (Typic Paleudult) was incubated with 7 sources of P fertilizers comprising of triple superhosphate (TSP) and phosphate rocks from North Carolina (NCPR), Algeria (APR), Tunisia (TPR), Jordan (JPR), Christmas Island (CIPR) and China (CPR) at the rates of 0, 2, 4, 6 and 8g Kg-' soil with 20% moisture content at room temperature in three replications. The soils were sampled at 1, 3, 6 and 9 months after incubation and isotopically exchangeable p determined by the method of Fardeau and Jappe (1976). Intensity, quantity and capacity factors of soil P were calculated and the residual availability of these fertilizers were predicted. Phosphorus in solution was highest in TSP treated soil for all treatments. Among the phosphate rocks, NCPR at rate 8g kg-' soil gave the highest value while, CPR at rate 2 gave the lowest value. Thus showing that these PRs have different reactivities in this soil, where NCPR, APR, TPR and JPR were the reactive PR, while CIPR and CPR were the unreactive ones. The isotopically exchangeable P at one minute (1) in the soil sampled 9 months after incubation was found to correlate very well with plant P uptake by oil palm seedlings grown under the same conditions. Calculations made on the percentage of P derived from these fertilizers up to a period of more than one year after application showed that the reactive PRs to have more residual P made available to plants than the unreactive PR

  8. MEASUREMENTS OF COSMIC-RAY HYDROGEN AND HELIUM ISOTOPES WITH THE PAMELA EXPERIMENT

    International Nuclear Information System (INIS)

    Adriani, O.; Bongi, M.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bruno, A.; Boezio, M.; Bonvicini, V.; Formato, V.; Bogomolov, E. A.; Bottai, S.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Santis, C. De; Castellini, G.; Donato, C. De; Simone, N. De; Felice, V. Di

    2016-01-01

    The cosmic-ray hydrogen and helium ( 1 H, 2 H, 3 He, 4 He) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on board the Resurs-DK1 satellite on 2006 June 15. The rare isotopes 2 H and 3 He in cosmic rays are believed to originate mainly from the interaction of high-energy protons and helium with the galactic interstellar medium. The isotopic composition was measured between 100 and 1100 MeV/n for hydrogen and between 100 and 1400 MeV/n for helium isotopes using two different detector systems over the 23rd solar minimum from 2006 July to 2007 December

  9. Coupling the System Analysis Module with SAS4A/SASSYS-1

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, T. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Hu, R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-30

    SAS4A/SASSYS-1 is a simulation tool used to perform deterministic analysis of anticipated events as well as design basis and beyond design basis accidents for advanced reactors, with an emphasis on sodium fast reactors. SAS4A/SASSYS-1 has been under development and in active use for nearly forty-five years, and is currently maintained by the U.S. Department of Energy under the Office of Advanced Reactor Technology. Although SAS4A/SASSYS-1 contains a very capable primary and intermediate system modeling component, PRIMAR-4, it also has some shortcomings: outdated data management and code structure makes extension of the PRIMAR-4 module somewhat difficult. The user input format for PRIMAR-4 also limits the number of volumes and segments that can be used to describe a given system. The System Analysis Module (SAM) is a fairly new code development effort being carried out under the U.S. DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. SAM is being developed with advanced physical models, numerical methods, and software engineering practices; however, it is currently somewhat limited in the system components and phenomena that can be represented. For example, component models for electromagnetic pumps and multi-layer stratified volumes have not yet been developed. Nor is there support for a balance of plant model. Similarly, system-level phenomena such as control-rod driveline expansion and vessel elongation are not represented. This report documents fiscal year 2016 work that was carried out to couple the transient safety analysis capabilities of SAS4A/SASSYS-1 with the system modeling capabilities of SAM under the joint support of the ART and NEAMS programs. The coupling effort was successful and is demonstrated by evaluating an unprotected loss of flow transient for the Advanced Burner Test Reactor (ABTR) design. There are differences between the stand-alone SAS4A/SASSYS-1 simulations and the coupled SAS/SAM simulations, but these are mainly

  10. A conceptual prediction model for seasonal drought processes using atmospheric and oceanic standardized anomalies: application to regional drought processes in China

    Science.gov (United States)

    Liu, Zhenchen; Lu, Guihua; He, Hai; Wu, Zhiyong; He, Jian

    2018-01-01

    Reliable drought prediction is fundamental for water resource managers to develop and implement drought mitigation measures. Considering that drought development is closely related to the spatial-temporal evolution of large-scale circulation patterns, we developed a conceptual prediction model of seasonal drought processes based on atmospheric and oceanic standardized anomalies (SAs). Empirical orthogonal function (EOF) analysis is first applied to drought-related SAs at 200 and 500 hPa geopotential height (HGT) and sea surface temperature (SST). Subsequently, SA-based predictors are built based on the spatial pattern of the first EOF modes. This drought prediction model is essentially the synchronous statistical relationship between 90-day-accumulated atmospheric-oceanic SA-based predictors and SPI3 (3-month standardized precipitation index), calibrated using a simple stepwise regression method. Predictor computation is based on forecast atmospheric-oceanic products retrieved from the NCEP Climate Forecast System Version 2 (CFSv2), indicating the lead time of the model depends on that of CFSv2. The model can make seamless drought predictions for operational use after a year-to-year calibration. Model application to four recent severe regional drought processes in China indicates its good performance in predicting seasonal drought development, despite its weakness in predicting drought severity. Overall, the model can be a worthy reference for seasonal water resource management in China.

  11. Use of isotope effects to characterize intermediates in mechanism-based inactivation of dopamine beta-monooxygenase by beta-chlorophenethylamine

    International Nuclear Information System (INIS)

    Bossard, M.J.; Klinman, J.P.

    1990-01-01

    A mechanism for beta-chlorophenethylamine inhibition of dopamine beta-monooxygenase has been postulated in which bound alpha-aminoacetophenone is generated followed by an intramolecular redox reaction to yield a ketone-derived radical cation as the inhibitory species. Based on the assumption that the ketone radical is the inhibitory intermediate, an analogous system was predicted and verified. In the present study, the role of alpha-aminoacetophenone as the proposed intermediate in the inactivation by beta-chlorophenethylamine was examined in greater detail. From the interdependence of tyramine and alpha-aminoacetophenone concentrations, ketone inactivation is concluded to occur at the substrate site as opposed to potential binding at the reductant-binding site. Using beta-[2-1H]- and beta-[2-2H]chlorophenethylamine, the magnitude of the deuterium isotope effect on inactivation under second-order conditions has been found to be identical to that observed under catalytic turnover, D(kappa inact/Ki) = D(kappa cat/Km) = 6-7. By contrast, the isotope effect on inactivation under conditions of substrate and oxygen saturation, D kappa inact = 2, is 3-fold smaller than that seen on catalytic turnover, D kappa cat = 6. This reduced isotope effect for inactivation is attributed to a normal isotope effect on substrate hydroxylation followed by an inverse isotope effect on the partitioning of the enol of alpha-aminoacetophenone between oxidation to a radical cation versus protonation to regenerate ketone. These findings are unusual in that two isotopically sensitive steps are present in the inactivation pathway whereas only one is observable in turnover

  12. Simple, rapid method for the preparation of isotopically labeled formaldehyde

    Science.gov (United States)

    Hooker, Jacob Matthew [Port Jefferson, NY; Schonberger, Matthias [Mains, DE; Schieferstein, Hanno [Aabergen, DE; Fowler, Joanna S [Bellport, NY

    2011-10-04

    Isotopically labeled formaldehyde (*C.sup..sctn.H.sub.2O) is prepared from labeled methyl iodide (*C.sup..sctn.H.sub.3I) by reaction with an oxygen nucleophile having a pendant leaving group. The mild and efficient reaction conditions result in good yields of *C.sup..sctn.H.sub.2O with little or no *C isotopic dilution. The simple, efficient production of .sup.11CH.sub.2O is described. The use of the .sup.11CH.sub.2O for the formation of positron emission tomography tracer compounds is described. The reaction can be incorporated into automated equipment available to radiochemistry laboratories. The isotopically labeled formaldehyde can be used in a variety of reactions to provide radiotracer compounds for imaging studies as well as for scintillation counting and autoradiography.

  13. Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs: 2. Animal products.

    Science.gov (United States)

    Inácio, Caio T; Chalk, Phillip M

    2017-01-02

    In this review, we examine the variation in stable isotope signatures of the lighter elements (δ 2 H, δ 13 C, δ 15 N, δ 18 O, and δ 34 S) of tissues and excreta of domesticated animals, the factors affecting the isotopic composition of animal tissues, and whether stable isotopes may be used to differentiate organic and conventional modes of animal husbandry. The main factors affecting the δ 13 C signatures of livestock are the C3/C4 composition of the diet, the relative digestibility of the diet components, metabolic turnover, tissue and compound specificity, growth rate, and animal age. δ 15 N signatures of sheep and cattle products have been related mainly to diet signatures, which are quite variable among farms and between years. Although few data exist, a minor influence in δ 15 N signatures of animal products was attributed to N losses at the farm level, whereas stocking rate showed divergent findings. Correlations between mode of production and δ 2 H and δ 18 O have not been established, and only in one case of an animal product was δ 34 S a satisfactory marker for mode of production. While many data exist on diet-tissue isotopic discrimination values among domesticated animals, there is a paucity of data that allow a direct and statistically verifiable comparison of the differences in the isotopic signatures of organically and conventionally grown animal products. The few comparisons are confined to beef, milk, and egg yolk, with no data for swine or lamb products. δ 13 C appears to be the most promising isotopic marker to differentiate organic and conventional production systems when maize (C4) is present in the conventional animal diet. However, δ 13 C may be unsuitable under tropical conditions, where C4 grasses are abundant, and where grass-based husbandry is predominant in both conventional and organic systems. Presently, there is no universal analytical method that can be applied to differentiate organic and conventional animal products.

  14. Direct analysis of δ2H and δ18O in natural and enriched human urine using laser-based, Off-Axis Integrated Cavity Output Spectroscopy

    Science.gov (United States)

    Berman, Elena S.F.; Fortsona, Susan L.; Snaith, Steven P.; Gupta, Manish; Baer, Douglas S.; Chery, Isabelle; Blanc, Stephane; Melanson, Edward L.; Thomson, Peter J; Speakman, John R.

    2012-01-01

    The stable isotopes of hydrogen (δ2H) and oxygen (δ18O) in human urine are measured during studies of total energy expenditure by the doubly labeled water method, measurement of total body water, and measurement of insulin resistance by glucose disposal among other applications. An ultrasensitive laser absorption spectrometer based on off-axis integrated cavity output spectroscopy was demonstrated for simple and inexpensive measurement of stable isotopes in natural isotopic abundance and isotopically enriched human urine. Preparation of urine for analysis was simple and rapid (approx. 25 samples per hour), requiring no decolorizing or distillation steps. Analysis schemes were demonstrated to address sample-to-sample memory while still allowing analysis of 45 natural or 30 enriched urine samples per day. The instrument was linear over a wide range of water isotopes2H = −454 to +1702 ‰ and δ18O= −58.3 to +265 ‰). Measurements of human urine were precise to better than 0.65 ‰ 1σ for δ2H and 0.09 ‰ 1σ for δ18O for natural urines, 1.1 ‰ 1σ for δ2H and 0.13 ‰ 1σ for δ18O for low enriched urines, and 1.0 ‰ 1σ for δ2H and 0.08 ‰ 1σ for δ18O for high enriched urines. Furthermore, the accuracy of the isotope measurements of human urines was verified to better than ±0.81 ‰ in δ2H and ±0.13 ‰ in δ18O (average deviation) against three independent IRMS laboratories. The ability to immediately and inexpensively measure the stable isotopes of water in human urine is expected to increase the number and variety of experiments which can be undertaken. PMID:23075099

  15. New Organic Stable Isotope Reference Materials for Distribution through the USGS and the IAEA

    Science.gov (United States)

    Schimmelmann, Arndt; Qi, Haiping

    2014-05-01

    The widespread adoption of relative stable isotope-ratio measurements in organic matter by diverse scientific disciplines is at odds with the dearth of international organic stable isotopic reference materials (RMs). Only two of the few carbon (C) and nitrogen (N) organic RMs, namely L-glutamic acids USGS40 and USGS41 [1], both available from the U.S. Geological Survey (USGS) and the International Atomic Energy Agency (IAEA), provide an isotopically contrasting pair of organic RMs to enable essential 2-point calibrations for δ-scale normalization [2, 3]. The supply of hydrogen (H) organic RMs is even more limited. Numerous stable isotope laboratories have resorted to questionable practices, for example by using 'CO2, N2, and H2 reference gas pulses' for isotopic calibrations, which violates the principle of identical treatment of sample and standard (i.e., organic unknowns should be calibrated directly against chemically similar organic RMs) [4], or by using only 1 anchor instead of 2 for scale calibration. The absence of international organic RMs frequently serves as an excuse for indefensible calibrations. In 2011, the U.S. National Science Foundation (NSF) funded an initiative of 10 laboratories from 7 countries to jointly develop much needed new organic RMs for future distribution by the USGS and the IAEA. The selection of targeted RMs attempts to cover various common compound classes of broad technical and scientific interest. We had to accept compromises to approach the ideal of high chemical stability, lack of toxicity, and low price of raw materials. Hazardous gases and flammable liquids were avoided in order to facilitate international shipping of future RMs. With the exception of polyethylene and vacuum pump oil, all organic RMs are individual, chemically-pure substances, which can be used for compound-specific isotopic measurements in conjunction with liquid and gas chromatographic interfaces. The compounds listed below are under isotopic calibration by

  16. Comparisons of multiple isotope systems in the aragonitic shells of cultured Arctica islandica clams

    Science.gov (United States)

    Liu, Y. W.; Aciego, S.; Wanamaker, A. D.

    2014-12-01

    Previous work using oxygen and stable carbon isotopes from Arctica islandica shells has shown that this archive can provide information on past seawater temperatures, carbon cycling and ocean circulation. However, relatively less attention has been devoted to other "non-traditional" isotope systems within this proxy archive. In this study, we report the boron (δ11B) and strontium isotopic values (87Sr/86Sr and δ88/86Sr) from A. islandicashells collected and cultured from the Gulf of Maine. The long-lived ocean quahog, A. islandica was collected and cultured in the Gulf of Maine for 8 months. Our high-resolution δ11B records from the experiment show 5-7‰ of increase through the culture, with low values from January to May and higher values after May. The 87Sr/86Sr ratios from both tank water and shell samples suggest that the shell material reflects ambient ocean chemistry without interferences from terrestrial sources. Although It has been suggested that stable Sr isotopic ratios (δ88/86Sr) in biogenic carbonates are influenced by the temperature of the precipitating fluid, our nearly identical δ88/86Sr data do not support this hypothesis despite a 15 °C temperature change during the experiment. Based on the in-situ measurements of culture seawater temperature, salinity and pH, and two commonly used fractionation factors (α3-4) for corals and forams, we predicted the range in shell δ11B values for the experiment. Our boron results are at the extreme ends of the two prediction lines suggesting the potential usage of the bivalve shells as seawater pH indicator. However, the wider range in δ11B in this experiment than the predictions based on other carbonate organisms (only 2 to 3‰) suggests that a species-specific fractionation factor may be required. Recent work from an additional constant temperature experiment (10 and 15 °C) in the Gulf of Maine will allow us to further evaluate temperature influences and potential vital effects on the shell boron

  17. Isotope effect studies of chicken liver NADP malic enzyme: role of the metal ion and viscosity dependence

    International Nuclear Information System (INIS)

    Grissom, C.B.; Cleland, W.W.

    1988-01-01

    The role of the metal ion in the oxidative decarboxylation of malate by chicken liver NADP malic enzyme and details of the reaction mechanism have been investigated by 13 C isotope effects. With saturating NADP and the indicated metal ion at a total concentration 10-fold higher than its K/sub m/, the following primary 13 C kinetic isotope effects at C 4 of malate [ 13 (VK/sub mal/)] were observed at pH 8.0: Mg 2+ , 1.0336; Mn 2+ , 1.0365; Cd 2+ , 1.0366; Zn 2+ , 1.0337; Co 2+ , 1.0283; Ni 2+ , 1.025. Knowing the partitioning of the intermediate oxalacetate between decarboxylation to pyuvate and reduction to malate allows calculation of the intrinsic carbon isotope effect for decarboxylation to pyuvate and reduction to malate allows calculation of the intrinsic carbon isotope effect for decarboxylation. For Mg 2+ as activator, this was 1.049 with NADP and 1.046 with 3-acetylpyridine adenine dinucleotide phosphate, although the intrinsic primary deuterium isotope effects on dehydrogenation were 5.6 and 4.2, and the partition ratios of the oxalacetate intermediate for decarboxylation as opposed to hydride transfer were 0.11 and 3.96. It was not possible to calculate reasonable intrinsic carbon isotope effects with the other metal ions by use of the partitioning ratio of oxalacetate because of decarboxylation by another mechanism. The variation of 13 (VK/sub mal/) with pH was used to dissect the total forward and external components. When the authors attempted to use the variation of 13 (VK/sub mal/) with solution viscosity to determine the internal and external commitments, incorrect values were obtained because of a specific effect of the viscosogen in decreasing the K/sub m/ for malate, so that VK/sub mal/ actually increased with viscosity instead of decreasing, as theory predicts

  18. Rate of oxygen isotope exchange between selenate and water.

    Science.gov (United States)

    Kaneko, Masanori; Poulson, Simon R

    2012-04-17

    The rate of oxygen isotope exchange between selenate and water was investigated at conditions of 10 to 80 °C and pH -0.6 to 4.4. Oxygen isotope exchange proceeds as a first-order reaction, and the exchange rate is strongly affected by reaction temperature and pH, with increased rates of isotope exchange at higher temperature and lower pH. Selenate speciation (HSeO(4)(-) vs SeO(4)(2-)) also has a significant effect on the rate of isotope exchange. The half-life for isotope exchange at example natural conditions (25 °C and pH 7) is estimated to be significantly in excess of 10(6) years. The very slow rate of oxygen isotope exchange between selenate and water under most environmental conditions demonstrates that selenate-δ(18)O signatures produced by biogeochemical processes will be preserved and hence that it will be possible to use the value of selenate-δ(18)O to investigate the biogeochemical behavior of selenate, in an analogous fashion to the use of sulfate-δ(18)O to study the biogeochemical behavior of sulfate.

  19. Implementation of Surface Detector Option in SCALE SAS4 Shielding Module

    International Nuclear Information System (INIS)

    Broadhead, B.L.; Emmett, M.B.; Tang, J.S.

    1999-01-01

    The Shielding Analysis Sequence No. 4 (SAS4) in the Standardized Cask Analysis and Licensing Evaluation System (SCALE) is designed to aid the novice user in the preparation of detailed three-dimensional models and radiation protection studies of transportation or storage packages containing spent fuel from a nuclear reactor facility. The underlying methodology in these analyses is the Monte Carlo particle-tracking approach as incorporated into the MORSE-SGC computer code. The use of these basic procedures is enhanced via the automatic generation of the biasing parameters in the SAS4 sequence, which dramatically increases the calculational efficiency of most standard shielding problems. Until recently the primary mechanism for dose estimates in SAS4 was the use of point detectors, which were effective for single-dose locations, but inefficient for quantification of dose-rate profiles. This paper describes the implementation of a new surface detector option for SAS4 with automatic discretization of the detector surface into multiple segments or subdetectors. Results from several sample problems are given and discussed

  20. Separation of calcium isotopes with cryptand complexes

    International Nuclear Information System (INIS)

    Heumann, K.G.; Schiefer, H.P.

    1981-01-01

    The calcium isotope separation in the liquid-liquid extraction system H 2 O/CHCl 3 is investigated using and cryptands for complex formation as well as without complexing agent. An extraction procedure is used which allows the transfer of larger amounts of calcium in the H 2 O phase. Without complexing agent in the extraction system, enrichment of the lighter calcium isotopes is already evident in the CHCl 3 phase which is just the same as when using cryptand. In the case of cryptand as a complexing agent, the isotope separation is higher. The separation factor is calculated to be a = 1 + epsilon = 1.011 for 40 Ca/ 48 Ca without complexing agent or with cryptand and a = 1.015 in the system with cryptand. For 40 Ca/ 44 Ca the epsilon-value is smaller by nearly a factor of two. These separation factors are the highest which are determined in chemical systems for calcium isotopes. (orig.)

  1. Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and 2H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey

    International Nuclear Information System (INIS)

    Cotte, J.F.; Casabianca, H.; Lheritier, J.; Perrucchietti, C.; Sanglar, C.; Waton, H.; Grenier-Loustalot, M.F.

    2007-01-01

    Honey samples were analyzed by stable carbon isotopic ratio analysis by mass spectrometry (SCIRA-MS) and site-specific natural isotopic fractionation measured by nuclear magnetic resonance (SNIF-NMR) to first determine their potentials for characterizing the substance and then to combat adulteration. Honey samples from several geographic and botanical origins were analyzed. The δ 13 C parameter was not significant for characterizing an origin, while the (D/H) I ratio could be used to differentiate certain single-flower varieties. Application of the official control method of adding a C 4 syrup (AOAC official method 998.12) to our authentic samples revealed anomalies resulting from SCIRA indices that were more negative than -1 per mille (permil). A filtration step was added to the experimental procedure and provided results that were compliant with Natural origin of our honey samples. In addition, spiking with a C 4 syrup could be detected starting at 9-10%. The use of SNIF-NMR is limited by the detection of a syrup spike starting only at 20%, which is far from satisfying

  2. Sulfur isotope fractionation between fluid and andesitic melt: An experimental study

    Science.gov (United States)

    Fiege, Adrian; Holtz, François; Shimizu, Nobumichi; Mandeville, Charles W.; Behrens, Harald; Knipping, Jaayke L.

    2014-01-01

    Glasses produced from decompression experiments conducted by Fiege et al. (2014a) were used to investigate the fractionation of sulfur isotopes between fluid and andesitic melt upon magma degassing. Starting materials were synthetic glasses with a composition close to a Krakatau dacitic andesite. The glasses contained 4.55–7.95 wt% H2O, ∼140 to 2700 ppm sulfur (S), and 0–1000 ppm chlorine (Cl). The experiments were carried out in internally heated pressure vessels (IHPV) at 1030 °C and oxygen fugacities (fO2) ranging from QFM+0.8 log units up to QFM+4.2 log units (QFM: quartz–fayalite–magnetite buffer). The decompression experiments were conducted by releasing pressure (P) continuously from ∼400 MPa to final P of 150, 100, 70 and 30 MPa. The decompression rate (r) ranged from 0.01 to 0.17 MPa/s. The samples were annealed for 0–72 h (annealing time, tA) at the final P and quenched rapidly from 1030 °C to room temperature (T).The decompression led to the formation of a S-bearing aqueous fluid phase due to the relatively large fluid–melt partitioning coefficients of S. Secondary ion mass spectrometry (SIMS) was used to determine the isotopic composition of the glasses before and after decompression. Mass balance calculations were applied to estimate the gas–melt S isotope fractionation factor αg-m.No detectable effect of r and tA on αg-m was observed. However, SIMS data revealed a remarkable increase of αg-m from ∼0.9985 ± 0.0007 at >QFM+3 to ∼1.0042 ± 0.0042 at ∼QFM+1. Noteworthy, the isotopic fractionation at reducing conditions was about an order of magnitude larger than predicted by previous works. Based on our experimental results and on previous findings for S speciation in fluid and silicate melt a new model predicting the effect of fO2 on αg-m (or Δ34Sg–m) in andesitic systems at 1030 °C is proposed. Our experimental results as well as our modeling are of high importance for the interpretation of S isotope

  3. (N,2N) cross-sections of tungsten and its isotopes

    International Nuclear Information System (INIS)

    Garg, S.B.

    1995-01-01

    We have been utilizing various nuclear model schemes and based on several analyses, we are of the opinion that the multistep Hauser-Feshbach scheme with a provision for the pre-equilibrium decay process reproduces the measured data rather well and it qualifies for adoption as a data prediction tool. To provide a further test of this hypothesis and to generate the desired data for technological applications in the energy range extending up to 30 MeV we have computed multiparticle reaction cross-sections of Tungsten isotopes by accounting for neutron, proton, alpha-particle and gamma-rays in the outgoing channels. (N,2N) cross-sections of natural tungsten have been inferred and are given. 10 refs, 2 figs

  4. Intracrystalline oxygen isotope effects in CuSO4.5H2O and their dependence on crystallization temperature

    International Nuclear Information System (INIS)

    Heinzinger, K.

    1976-01-01

    In copper sulphate pentahydrate the water molecules occupy three different sites, connected with different oxygen isotope ratios. Results of measurements of the change of these isotope ratios with crystallization temperature are reported. The temperature dependence found here provides the basis for the determination of crystallization temperatures of hydrated crystals from such intracrystalline oxygen isotope fractionation. Suppositions necessary for the application of this method are discussed. (author)

  5. The Prospects of SAS Interferometry for Detection and Classification (SAS Interferometrie voor Detectie en Classificatie)

    Science.gov (United States)

    2008-10-01

    DV2008A176 Opdrachtnummer Datum October 2008 Auteur (s) dr. R. van Vossen B.A.J. Quesson dr.ir. J.C. Sabel Rubricering rapport Ongerubriceerd TH9...TNO report | TNO-DV 2008 A176 4/44 Summary This report presents an overview of the theory and implementation of interferometric SAS processing at TNO... theory in software has been tested on two types of data, simulated and measured. Chapter 3 presents results obtained with simulated data; Chapter 4

  6. Indexing molecules for their hERG liability.

    Science.gov (United States)

    Rayan, Anwar; Falah, Mizied; Raiyn, Jamal; Da'adoosh, Beny; Kadan, Sleman; Zaid, Hilal; Goldblum, Amiram

    2013-07-01

    The human Ether-a-go-go-Related-Gene (hERG) potassium (K(+)) channel is liable to drug-inducing blockage that prolongs the QT interval of the cardiac action potential, triggers arrhythmia and possibly causes sudden cardiac death. Early prediction of drug liability to hERG K(+) channel is therefore highly important and preferably obligatory at earlier stages of any drug discovery process. In vitro assessment of drug binding affinity to hERG K(+) channel involves substantial expenses, time, and labor; and therefore computational models for predicting liabilities of drug candidates for hERG toxicity is of much importance. In the present study, we apply the Iterative Stochastic Elimination (ISE) algorithm to construct a large number of rule-based models (filters) and exploit their combination for developing the concept of hERG Toxicity Index (ETI). ETI estimates the molecular risk to be a blocker of hERG potassium channel. The area under the curve (AUC) of the attained model is 0.94. The averaged ETI of hERG binders, drugs from CMC, clinical-MDDR, endogenous molecules, ACD and ZINC, were found to be 9.17, 2.53, 3.3, -1.98, -2.49 and -3.86 respectively. Applying the proposed hERG Toxicity Index Model on external test set composed of more than 1300 hERG blockers picked from chEMBL shows excellent performance (Matthews Correlation Coefficient of 0.89). The proposed strategy could be implemented for the evaluation of chemicals in the hit/lead optimization stages of the drug discovery process, improve the selection of drug candidates as well as the development of safe pharmaceutical products. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane.

    Science.gov (United States)

    Mulat, Daniel Girma; Mosbæk, Freya; Ward, Alastair James; Polag, Daniela; Greule, Markus; Keppler, Frank; Nielsen, Jeppe Lund; Feilberg, Anders

    2017-10-01

    Biological reduction of CO 2 into CH 4 by exogenous addition of H 2 is a promising technology for upgrading biogas into higher CH 4 content. The aim of this work was to study the feasibility of exogenous H 2 addition for an in situ biogas upgrading through biological conversion of the biogas CO 2 into CH 4. Moreover, this study employed systematic study with isotope analysis for providing comprehensive evidence on the underlying pathways of CH 4 production and upstream processes. Batch reactors were inoculated with digestate originating from a full-scale biogas plant and fed once with maize leaf substrate. Periodic addition of H 2 into the headspace resulted in a completely consumption of CO 2 and a concomitant increase in CH 4 content up to 89%. The microbial community and isotope analysis shows an enrichment of hydrogenotrophic Methanobacterium and the key role of hydrogenotrophic methanogenesis for biogas upgrading to higher CH 4 content. Excess H 2 was also supplied to evaluate its effect on overall process performance. The results show that excess H 2 addition resulted in accumulation of H 2 , depletion of CO 2 and inhibition of the degradation of acetate and other volatile fatty acids (VFA). A systematic isotope analysis revealed that excess H 2 supply led to an increase in dissolved H 2 to the level that thermodynamically inhibit the degradation of VFA and stimulate homo-acetogens for production of acetate from CO 2 and H 2 . The inhibition was a temporary effect and acetate degradation resumed when the excess H 2 was removed as well as in the presence of stoichiometric amount of H 2 and CO 2 . This inhibition mechanism underlines the importance of carefully regulating the H 2 addition rate and gas retention time to the CO 2 production rate, H 2 -uptake rate and growth of hydrogenotrophic methanogens in order to achieve higher CH 4 content without the accumulation of acetate and other VFA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. NMR investigation on isotope effect of glycinium phosphite H sub 3 NCH sub 2 COOH centre dot H sub 2 PO sub 3

    CERN Document Server

    Ishibashi, T

    2003-01-01

    The motions of the phosphite anions and glycinium cations in H sub 3 NCH sub 2 COOH centre dot H sub 2 PO sub 3 (GPI) and its deuterated analogue (DGPI) were investigated by sup 1 H, sup 1 sup 3 C and sup 3 sup 1 P spin-lattice relaxation times T sub 1. For both GPI and DGPI, T sub 1 's of the sup 1 H, sup 1 sup 3 C and sup 3 sup 1 P nuclei reflect the amino rotation, methylene libration and motion of the phosphite anions, respectively. Activation energies obtained from T sub 1 's of sup 1 H, sup 1 sup 3 C and sup 3 sup 1 P nuclei are 28.6(2), 26.0(4) and 26.2(4) kJ/mol for GPI and are 34.9(6), 27(1), 47(2) kJ/mol for DGPI, respectively. The deuterium substitution increases E sub a for the motion influenced by the hydrogen bonding. In all the observed motions, correlation times of DGPI are larger than those of GPI. (author)

  9. Longitudinal dispersion coefficient depending on superficial velocity of hydrogen isotopes flowing in column packed with zeolite pellets at 77.4 K

    Energy Technology Data Exchange (ETDEWEB)

    Kotoh, K. [Faculty of Engineering, Kyushu University, Nishi-ku, Fukuoka (Japan); Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka (Japan); Kubo, K.; Takashima, S.; Moriyama, S.T. [Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka (Japan); Tanaka, M. [National Institute for Fusion Science, Oroshi-cho, Toki, Gifu (Japan); Sugiyama, T. [Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya (Japan)

    2015-03-15

    Authors have been developing a cryogenic pressure swing adsorption system for hydrogen isotope separation. In the problem of its design and operation, it is necessary to predict the concentration profiles developing in packed beds of adsorbent pellets. The profiling is affected by the longitudinal dispersion of gas flowing in packed beds, in addition to the mass transfer resistance in porous media of adsorbent pellets. In this work, an equation is derived for estimating the packed-bed dispersion coefficient of hydrogen isotopes, by analyzing the breakthrough curves of trace D{sub 2} or HD replacing H{sub 2} adsorbed in synthetic zeolite particles packed columns at the liquefied nitrogen temperature 77.4 K. Since specialized for hydrogen isotopes, this equation can be considered to estimate the dispersion coefficients more reliable for the cryogenic hydrogen isotope adsorption process, than the existing equations. (authors)

  10. Water stable isotopes: application to the water cycle and climate variations study

    International Nuclear Information System (INIS)

    Risi, C.

    2009-12-01

    The stable isotopic composition of water (H 2 16 , HDO, H 2 18 , H 2 17 ) is a promising tracer of the present day water cycle and past climates. While the isotopic composition recorded in polar ice core have long been used to reconstruct past temperatures, however, what controls the isotopic composition of the tropical precipitation is more complex. The goal of this thesis is thus to better understand the processes that affect the isotopic composition of tropical precipitation and atmospheric water, more particularly in the tropics. Since most of the tropical precipitation arises from atmospheric convection, and most isotopic archives are on land, we focus more particularly on the impact of convective and land surface processes. In turn, what can be learned about convection and land surface processes using isotopic measurements? Can they help constrain their representation in models? At the inter-annual to climate change scale, what information about the tropical climate variability is recorded in isotopic signals observed in archives? First, we investigate the influence of convection on water stable isotopes. We use both (1) numerical modeling, with a hierarchy of models (single column model, two-dimensional model of squall lines, general circulation model) and (2) data analysis, using isotopic data from rain collected in the Sahel during the African Monsoon Multidisciplinary Analysis campaign, at the event and intra-event scales. These studies highlight the strong impact of convection on the precipitation composition, and stress the importance of rain evaporation and convective or meso-scale subsidence in controlling the rain isotopic composition. Convection also plays an important role on isotopic profiles in the upper troposphere-lower stratosphere. Second, we study what information about climatic variability is recorded by water stable isotopes in precipitation. We analyze simulations of present day and past climates with LMDZ, and evaluate to what extent

  11. Line broadening mechanisms of the orth-H2 pair spectrum

    International Nuclear Information System (INIS)

    Statt, B.W.; Hardy, W.N.

    1980-01-01

    Three broadening mechanisms for the ortho pair spectrum in solid hydrogen are investigated. First, theoretical predictions of the phonon induced lifetime broadening are presented. Next a theory is developed which gives the inhomogeneous broadening due to the presence of ortho molecules surrounding the pairs. An unexpected result is that certain lines remain unbroadened, at least to within the approximation made. Strain effects due to isotopic mass defect impurities are also considered. These predictions are then compared with experimental results. No temperature dependence of the lineshapes is observed, setting an upper limit on the phonon broadening contribution to the linewidth. This limit is an order of magnitude lower than the theory predicts. The predictions of the ortho broadening theory, on the other hand, are in good agreement with experiment. Samples doped with isotopic impurities are also investigated. (auth)

  12. Sub-Doppler slit jet infrared spectroscopy of astrochemically relevant cations: Symmetric (ν1) and antisymmetric (ν6) NH stretching modes in ND2H2+

    Science.gov (United States)

    Chang, Chih-Hsuan; Nesbitt, David J.

    2018-01-01

    Sub-Doppler infrared rovibrational transitions in the symmetric (v1) and antisymmetric (v6) NH stretch modes of the isotopomerically substituted ND2H2+ ammonium cation are reported for the first time in a slit jet discharge supersonic expansion spectrometer. The partially H/D substituted cation is generated by selective isotopic exchange of ND3 with H2O to form NHD2, followed by protonation with H3+ formed in the NHD2/H2/Ne slit-jet discharge expansion environment. Rotational assignment for ND2H2+ is confirmed rigorously by four line ground state combination differences, which agree to be within the sub-Doppler precision in the slit jet (˜9 MHz). Observation of both b-type (ν1) and c-type (ν6) bands enables high precision determination of the ground and vibrationally excited state rotational constants. From an asymmetric top Watson Hamiltonian analysis, the ground state constants are found to be A″ = 4.856 75(4) cm-1, B″ = 3.968 29(4) cm-1, and C″ = 3.446 67(6) cm-1, with band origins at 3297.5440(1) and 3337.9050(1) cm-1 for the v1 and v6 modes, respectively. This work permits prediction of precision microwave/mm-wave transitions, which should be invaluable in facilitating ongoing spectroscopic searches for partially deuterated ammonium cations in interstellar clouds and star-forming regions of the interstellar medium.

  13. Kinetic tritium isotopic effects in the position 2 for 5'-hydroxy-L-tryptophane

    International Nuclear Information System (INIS)

    Boroda, E.; Kanska, M.

    2006-01-01

    Tryptophanase converts 5'-hydroxy-L-tryptophane to pyrogronic acid and ammonia, however there are known conditions for the reversed reaction. Mechanism of the processes are not known till now. Kinetic isotopic effect (KIE) permits finding the rate determining stage in the multistage process. In presented communication, 5'-hydroxy-[2- 3 H]-L-tryptophane was synthesized and the KIE in the room temperature determined for different reaction stages

  14. Cytochrome P-450 dependent ethanol oxidation. Kinetic isotope effects and absence of stereoselectivity

    International Nuclear Information System (INIS)

    Ekstroem, G.; Norsten, C.; Cronholm, T.; Ingelman-Sundberg, M.

    1987-01-01

    Deuterium isotope effects [/sup D/(V/K)] and stereoselectivity of ethanol oxidation in cytochrome P-450 containing systems and in the xanthine-xanthine oxidase system were compared with those of yeast alcohol dehydrogenase. The isotope effects were determined by using both a noncompetitive method, including incubation of unlabeled of [1,1- 2 H 2 ] ethanol at various concentrations, and a competitive method, where 1:1 mixtures of [1- 13 C]- and [ 2 H 6 ] ethanol or [2,2,2- 2 H 3 ]- and [1,1- 2 H 2 ] ethanol were incubated and the acetaldehyde formed was analyzed by gas chromatography/mass spectrometry. The /sup D/(V/K) isotope effects of the cytochrome P-450 dependent ethanol oxidation were about 4 with liver microsomes from imidazole-, phenobarbital- or acetone-treated rabbits or with microsomes from acetone- or ethanol-treated rats. Similar isotope effects were reached with reconstituted membranes containing the rabbit ethanol-inducible cytochrome P-450 (LMeb), whereas control rat microsomes and membranes containing rabbit phenobarbital-inducible P-450 LM 2 oxidized the alcohol with /sup D/(V/K) of about 2.8 and 1.8, respectively. Addition of Fe/sup III/EDTA either to microsomes from phenobarbital-treated rabbits or to membranes containing P-450 LMeb significantly lowered the isotope effect. Incubations of all cytochrome P-450 containing systems of the xanthine-xanthine oxidase systems with (1R)- and (1S)-[1- 2 H] ethanol, revealed, taking the isotope effects into account, that 44-66% of the ethanol oxidized had lost the 1-pro-R hydrogen. The data indicate that cytochrome P-450 dependent ethanol oxidation is not stereospecific and that cleavage of the C 1 -H bond appears to be a rate-determining step in the catalysis by the ethanol-inducible form of P-450. The contribution of hydroxyl radicals in ethanol oxidation by the various enzymic systems is discussed

  15. Effects of variation in background mixing ratios of N2, O2, and Ar on the measurement of δ18O–H2O and δ2H–H2O values by cavity ring-down spectroscopy

    Directory of Open Access Journals (Sweden)

    J. E. Johnson

    2017-08-01

    Full Text Available Cavity ring-down spectrometers have generally been designed to operate under conditions in which the background gas has a constant composition. However, there are a number of observational and experimental situations of interest in which the background gas has a variable composition. In this study, we examine the effect of background gas composition on a cavity ring-down spectrometer that measures δ18O–H2O and δ2H–H2O values based on the amplitude of water isotopologue absorption features around 7184 cm−1 (L2120-i, Picarro, Inc.. For background mixtures balanced with N2, the apparent δ18O values deviate from true values by −0.50 ± 0.001 ‰ O2 %−1 and −0.57 ± 0.001 ‰ Ar %−1, and apparent δ2H values deviate from true values by 0.26 ± 0.004 ‰ O2 %−1 and 0.42 ± 0.004 ‰ Ar  %−1. The artifacts are the result of broadening, narrowing, and shifting of both the target absorption lines and strong neighboring lines. While the background-induced isotopic artifacts can largely be corrected with simple empirical or semi-mechanistic models, neither type of model is capable of completely correcting the isotopic artifacts to within the inherent instrument precision. The development of strategies for dynamically detecting and accommodating background variation in N2, O2, and/or Ar would facilitate the application of cavity ring-down spectrometers to a new class of observations and experiments.

  16. Isotope effect on superconductivity and Raman phonons of Pyrochlore Cd2Re2O7

    Science.gov (United States)

    Razavi, F. S.; Hajialamdari, M.; Reedyk, M.; Kremer, R. K.

    2018-06-01

    Cd2Re2O7 is the only α-Pyrochlore exhibiting superconductivity with a transition temperature (Tc) of ∼ 1 K. In this study, we present the effect of oxygen isotope (18O) as well as combined 18O and cadmium isotope (116Cd) substitution on the superconductivity and Raman scattering spectrum of Cd2Re2O7. The change of Tc and the energy gap Δ(T) are reported using various techniques including point contact spectroscopy. The shift in Raman phonon frequencies upon isotope substitution will be compared with measurement of the isotope effect on the superconducting transition temperature.

  17. MEASUREMENTS OF COSMIC-RAY HYDROGEN AND HELIUM ISOTOPES WITH THE PAMELA EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Bongi, M. [University of Florence, Department of Physics, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [University of Naples “Federico II,” Department of Physics, I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991, Moscow (Russian Federation); Bellotti, R.; Bruno, A. [University of Bari, Department of Physics, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Formato, V. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Casolino, M.; Santis, C. De [University of Rome “Tor Vergata,” Department of Physics, I-00133 Rome (Italy); Castellini, G. [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); Donato, C. De; Simone, N. De; Felice, V. Di [INFN, Sezione di Rome “Tor Vergata,” I-00133 Rome (Italy); and others

    2016-02-10

    The cosmic-ray hydrogen and helium ({sup 1}H, {sup 2}H, {sup 3}He, {sup 4}He) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on board the Resurs-DK1 satellite on 2006 June 15. The rare isotopes {sup 2}H and {sup 3}He in cosmic rays are believed to originate mainly from the interaction of high-energy protons and helium with the galactic interstellar medium. The isotopic composition was measured between 100 and 1100 MeV/n for hydrogen and between 100 and 1400 MeV/n for helium isotopes using two different detector systems over the 23rd solar minimum from 2006 July to 2007 December.

  18. SAS- Semantic Annotation Service for Geoscience resources on the web

    Science.gov (United States)

    Elag, M.; Kumar, P.; Marini, L.; Li, R.; Jiang, P.

    2015-12-01

    There is a growing need for increased integration across the data and model resources that are disseminated on the web to advance their reuse across different earth science applications. Meaningful reuse of resources requires semantic metadata to realize the semantic web vision for allowing pragmatic linkage and integration among resources. Semantic metadata associates standard metadata with resources to turn them into semantically-enabled resources on the web. However, the lack of a common standardized metadata framework as well as the uncoordinated use of metadata fields across different geo-information systems, has led to a situation in which standards and related Standard Names abound. To address this need, we have designed SAS to provide a bridge between the core ontologies required to annotate resources and information systems in order to enable queries and analysis over annotation from a single environment (web). SAS is one of the services that are provided by the Geosematnic framework, which is a decentralized semantic framework to support the integration between models and data and allow semantically heterogeneous to interact with minimum human intervention. Here we present the design of SAS and demonstrate its application for annotating data and models. First we describe how predicates and their attributes are extracted from standards and ingested in the knowledge-base of the Geosemantic framework. Then we illustrate the application of SAS in annotating data managed by SEAD and annotating simulation models that have web interface. SAS is a step in a broader approach to raise the quality of geoscience data and models that are published on the web and allow users to better search, access, and use of the existing resources based on standard vocabularies that are encoded and published using semantic technologies.

  19. Authentication of origins of fermentive ethanol in Philippine-made beverages by C,H,O isotope abundances

    International Nuclear Information System (INIS)

    Sucgang, Raymond J.; Morco, Ryan; Bautista, Angel; Laguitan, Arlin; Sevilla III, Fortunato

    2010-01-01

    This paper demonstrates the expediency of radiocarbon liquid scintillation counting for detection of synthetic ethanol adulteration in Philippine-manufactured wines/alcoholic beverages. The impure wines are distinguished from the pure beverages by radiocarbon assay, taking advantage of the anticipated minor 1 4Carbon content of synthetic ethyl alcohol in comparison with the natural 1 4C abundance of the plant-derived, biogenic products. Biogenic samples give 12-15 dpm/g C activities, while synthetic samples exhibits 0-2 dpm/g C activities. The research moreover explores the utility of Deuterium, Oxygen 16 and 1 3Carbon/ 1 2Carbon isotope ratio analysis in the authentication of the botanical and geographical origins of beverages. Initial investigations revealed the mean of δ 1 8O in the Metro Manila area for precipitation, surface waters and ground waters to be -6.09 ± 2.9, -1.59 ± 2.2, and -6.64 ± 0.7 per mil.respectively. δ 2 H in Metro Manila for precipitation, surface waters and ground waters were -43.8 ± 1.2,-11.9 ± 16.2, -45.0 ± 4.8 per mil respectively. Vital information such as detection of illegal dilution with water, or enrichment using other sugars before and after fermentation, misrepresentation of geographical origin, and adulteration with petroleum-derived ethanol can be generated from the isotopic data. (author)

  20. Obtention of agricultural gypsum traced on 34 S (Ca34 SO4.2H2O), by chemical reaction between H234 SO4 and Ca(OH)2

    International Nuclear Information System (INIS)

    Rossete, Alessandra L.R.M.; Bendassolli, Jose A.; Ignoto, Raquel de Fatima; Batagello, Hugo Henrique

    2002-01-01

    The gypsum (CaSO 4 .2H 2 O) has double function in the soil: as source of calcium and sulfur and reducing agent of aluminum saturation. The sulfur for the plants has acting in the vital functions and it is proven fact increase of the S deficiency in Brazilian soils. The isotope tracer 34 S can elucidate important aspects in the sulfur cycle. The Ca 34 SO 4 .2H 2 O was obtained by chemical reaction between Ca(OH) 2 and H 2 34 SO 4 solution. The acid was obtained by chromatography ionic change, using cationic resin Dowex 50WX8 and Na 2 34 SO 4 solution. The reaction was realized under slow agitation. After the reaction, the precipitate was separated and dried in ventilated stove at 60 deg C temperature. The Mass of the Ca 34 SO 4 .2H 2 O produced was determined by method gravimetric. This way, a system contends resin 426 cm 3 , considering volume of 2.2 liters can be obtained a solution contends 44.2 g of H 2 34 SO 4 , theoretically could be produced 78.0 g of Ca 34 SO 4 .2H 2 O approximately. With results of the tests were verified that there was not total precipitation of the Ca 34 SO 4 .2H 2 O. Were produced 73.7± 0.6 g of Ca 34 SO 4 .2H 2 O representing average income 94.6±0.8 %. The purity of the produced CaSO 4 .2H 2 O was 98%. (author)

  1. Analysis of plutonium isotopes in marine samples by radiometric, ICP-MS and AMS techniques

    International Nuclear Information System (INIS)

    Lee, S.H.; Gastaud, J.; La Rosa, J.J.; Liong Wee Kwong, L.; Povinec, P.P.; Wyse, E.

    2001-01-01

    IAEA reference materials (radionuclides in the marine environment) collected in areas affected by nuclear reprocessing plants and nuclear weapons tests have been analysed by semiconductor alpha-spectrometry (SAS), liquid scintillation spectrometry (LSS) and mass spectrometric techniques (high resolution ICP-MS and AMS) with the aim of developing analytical procedures and to study the geochemical behavior of plutonium in the marine environment. The Pu results obtained by SAS, ICP-MS and AMS were in reasonably good agreement (R 2 = 0.99). The mean atom ratios of 240 Pu/ 239 Pu in IAEA reference materials, IAEA-134, 135 and 381 were (0.212±0.010), (0.211±0.004) and (0.242±0.004), respectively. IAEA-384 (Fangataufa Lagoon Sediment) gave a 240 Pu/ 239 Pu mean atom ratio of 0.051±0.001. The results of 241 Pu obtained buy ICP-MS and LSS also show reasonable agreement (R 2 = 0.91). Pu isotopic signatures were useful in tracing Pu origin and in interpreting biogeochemical processes involving Pu in the marine environment. (author)

  2. Investigation of isotopes and hydrological processes in Indus river system, Pakistan

    International Nuclear Information System (INIS)

    Manzoor Ahmad, M; Latif, Z.; Tariq, J.A.; Akram, W.; Rafique, M.

    2009-11-01

    Indus River, one of the longest rivers in the World, has five major eastern tributaries viz. Bias, Sutlej, Ravi, Chenab and Jhelum) while many small rivers join it from the right side among which Kabul River is the biggest with its main tributaries, the Swat, Panjkora and Kunar. All these main rivers are perennial and originate from the mountains. Basic sources of these rivers are snow melt, rainfall and under certain conditions seepage from the formations. Different water sources are labeled with different isotope signatures which are used as fingerprints for identifying source and movement of water, geochemical and/or hydrological processes, and dynamics (age of water). Monitoring of isotopes in rivers can also enhance understanding of the water cycle of large river basins and to assess impacts of environmental and climatic changes on the water cycle. Therefore, a national network of suitable stations was established for isotopic monitoring of river waters in Indus Basin with specific objectives to study temporal variations of isotopes (/sup 2/H, /sup 18/O and /sup 3/H), understand water cycles and hydrological processes in the catchments of these rivers, and to develop comprehensive database to support future isotope-based groundwater studies in the basin on recharge mechanism, water balance and monitoring of ongoing environmental changes. Water samples were collected during 2002-2006 on monthly basis from more than 20 stations at the major rivers and analyzed for /sup 18/O, /sup 2/H and /sup 3/H isotopes. Headwaters of main Indus River (Hunza, Gilgit and Kachura tributaries), which are generally snow melt, have the most depleted values of delta /sup 18/O (-14.5 to -11.0%) and delta /sup 2/H ( 106.1 to -72.6%) due to precipitation at very high altitude and very low temperatures. Generally these waters have low d-excess showing that the moisture source is from Indian Ocean. High d-excess of some winter (November-February) samples from Hunza and Gilgit indicates

  3. Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, J.M.; DePaolo, D.J.; Ryerson, F.J.; Peterson, B.

    2011-03-01

    }/D{sub Si}. Cations diffusing in aqueous solutions display a similar relationship between isotopic separation efficiency and D{sub cation} =D{sub H 2 O} , although the efficiencies are smaller than in silicate liquids. Our empirical relationship provides a tool for predicting the magnitude of diffusive isotopic effects in many geologic environments and a basis for a more comprehensive theory of isotope separation in liquid solutions. We present a conceptual model for the relationship between diffusivity and liquid structure that is consistent with available data.

  4. In Folio Respiratory Fluxomics Revealed by 13C Isotopic Labeling and H/D Isotope Effects Highlight the Non-cyclic Nature of the Tricarboxylic Acid 'Cycle' in Illuminated Leaves

    International Nuclear Information System (INIS)

    Tcherkez, G.; Mahe, A.; Gauthier, P.; Hodges, M.; Tcherkez, G.; Mauve, C.; Cornic, G.; Gout, E.; Bligny, R.

    2009-01-01

    While the possible importance of the tricarboxylic acid (TCA) cycle reactions for leaf photosynthesis operation has been recognized, many uncertainties remain on whether TCA cycle biochemistry is similar in the light compared with the dark. It is widely accepted that leaf day respiration and the metabolic commitment to TCA decarboxylation are down-regulated in illuminated leaves. However, the metabolic basis (i.e. the limiting steps involved in such a down-regulation) is not well known. Here, we investigated the in vivo metabolic fluxes of individual reactions of the TCA cycle by developing two isotopic methods, 13 C tracing and fluxomics and the use of H/D isotope effects, with Xanthium strumarium leaves. We provide evidence that the TCA 'cycle' does not work in the forward direction like a proper cycle but, rather, operates in both the reverse and forward directions to produce fumarate and glutamate, respectively. Such a functional division of the cycle plausibly reflects the compromise between two contrasted forces: (1) the feedback inhibition by NADH and ATP on TCA enzymes in the light, and (2) the need to provide pH-buffering organic acids and carbon skeletons for nitrate absorption and assimilation. (authors)

  5. Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry.

    Science.gov (United States)

    Wassenaar, L I; Terzer-Wassmuth, S; Douence, C; Araguas-Araguas, L; Aggarwal, P K; Coplen, T B

    2018-03-15

    Water stable isotope ratios (δ 2 H and δ 18 O values) are widely used tracers in environmental studies; hence, accurate and precise assays are required for providing sound scientific information. We tested the analytical performance of 235 international laboratories conducting water isotope analyses using dual-inlet and continuous-flow isotope ratio mass spectrometers and laser spectrometers through a water isotope inter-comparison test. Eight test water samples were distributed by the IAEA to international stable isotope laboratories. These consisted of a core set of five samples spanning the common δ-range of natural waters, and three optional samples (highly depleted, enriched, and saline). The fifth core sample contained unrevealed trace methanol to assess analyst vigilance to the impact of organic contamination on water isotopic measurements made by all instrument technologies. For the core and optional samples ~73 % of laboratories gave acceptable results within 0.2 ‰ and 1.5 ‰ of the reference values for δ 18 O and δ 2 H, respectively; ~27 % produced unacceptable results. Top performance for δ 18 O values was dominated by dual-inlet IRMS laboratories; top performance for δ 2 H values was led by laser spectrometer laboratories. Continuous-flow instruments yielded comparatively intermediate results. Trace methanol contamination of water resulted in extreme outlier δ-values for laser instruments, but also affected reactor-based continuous-flow IRMS systems; however, dual-inlet IRMS δ-values were unaffected. Analysis of the laboratory results and their metadata suggested inaccurate or imprecise performance stemmed mainly from skill- and knowledge-based errors including: calculation mistakes, inappropriate or compromised laboratory calibration standards, poorly performing instrumentation, lack of vigilance to contamination, or inattention to unreasonable isotopic outcomes. To counteract common errors, we recommend that laboratories include 1-2 'known

  6. Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry

    Science.gov (United States)

    Wassenaar, L. I.; Terzer-Wassmuth, S.; Douence, C.; Araguas-Araguas, L.; Aggarwal, P. K.; Coplen, Tyler B.

    2018-01-01

    RationaleWater stable isotope ratios (δ2H and δ18O values) are widely used tracers in environmental studies; hence, accurate and precise assays are required for providing sound scientific information. We tested the analytical performance of 235 international laboratories conducting water isotope analyses using dual-inlet and continuous-flow isotope ratio mass spectrometers and laser spectrometers through a water isotope inter-comparison test.MethodsEight test water samples were distributed by the IAEA to international stable isotope laboratories. These consisted of a core set of five samples spanning the common δ-range of natural waters, and three optional samples (highly depleted, enriched, and saline). The fifth core sample contained unrevealed trace methanol to assess analyst vigilance to the impact of organic contamination on water isotopic measurements made by all instrument technologies.ResultsFor the core and optional samples ~73 % of laboratories gave acceptable results within 0.2 ‰ and 1.5 ‰ of the reference values for δ18O and δ2H, respectively; ~27 % produced unacceptable results. Top performance for δ18O values was dominated by dual-inlet IRMS laboratories; top performance for δ2H values was led by laser spectrometer laboratories. Continuous-flow instruments yielded comparatively intermediate results. Trace methanol contamination of water resulted in extreme outlier δ-values for laser instruments, but also affected reactor-based continuous-flow IRMS systems; however, dual-inlet IRMS δ-values were unaffected.ConclusionsAnalysis of the laboratory results and their metadata suggested inaccurate or imprecise performance stemmed mainly from skill- and knowledge-based errors including: calculation mistakes, inappropriate or compromised laboratory calibration standards, poorly performing instrumentation, lack of vigilance to contamination, or inattention to unreasonable isotopic outcomes. To counteract common errors, we recommend that

  7. The interaction of soil phototrophs and fungi with pH and their impact on soil CO2, CO18O and OCS exchange.

    Science.gov (United States)

    Sauze, Joana; Ogée, Jérôme; Maron, Pierre-Alain; Crouzet, Olivier; Nowak, Virginie; Wohl, Steven; Kaisermann, Aurore; Jones, Sam P; Wingate, Lisa

    2017-12-01

    The stable oxygen isotope composition of atmospheric CO 2 and the mixing ratio of carbonyl sulphide (OCS) are potential tracers of biospheric CO 2 fluxes at large scales. However, the use of these tracers hinges on our ability to understand and better predict the activity of the enzyme carbonic anhydrase (CA) in different soil microbial groups, including phototrophs. Because different classes of the CA family (α, β and γ) may have different affinities to CO 2 and OCS and their expression should also vary between different microbial groups, differences in the community structure could impact the 'community-integrated' CA activity differently for CO 2 and OCS. Four soils of different pH were incubated in the dark or with a diurnal cycle for forty days to vary the abundance of native phototrophs. Fluxes of CO 2 , CO 18 O and OCS were measured to estimate CA activity alongside the abundance of bacteria, fungi and phototrophs. The abundance of soil phototrophs increased most at higher soil pH. In the light, the strength of the soil CO 2 sink and the CA-driven CO 2 -H 2 O isotopic exchange rates correlated with phototrophs abundance. OCS uptake rates were attributed to fungi whose abundance was positively enhanced in alkaline soils but only in the presence of increased phototrophs. Our findings demonstrate that soil-atmosphere CO 2 , OCS and CO 18 O fluxes are strongly regulated by the microbial community structure in response to changes in soil pH and light availability and supports the idea that different members of the microbial community express different classes of CA, with different affinities to CO 2 and OCS.

  8. Carbon isotopic fractionation in live benthic foraminifera -comparison with inorganic precipitate studies

    Energy Technology Data Exchange (ETDEWEB)

    Grossmann, E L [University of Southern California, Los Angeles (USA). Dept. of Geological Sciences

    1984-07-01

    Carbon and oxygen isotopic analyses have been performed on live-stained aragonitic and calcitic benthic foraminifera and dissolved inorganic carbon from the Southern California Borderland to examine carbon isotopic fractionation in foraminifera. Temperature, salinity and pH data have also been collected to permit accurate determination of the delta/sup 13/C of bicarbonate ion and thus aragonite-HCO/sub 3//sup -/ and calcite-HCO/sub 3//sup -/ isotopic enrichment factors (epsilonsub(ar-b) and epsilonsub(cl-b), respectively). Only species which precipitate in /sup 18/O equilibrium have been considered. epsilonsub (ar-b) values based on Hoeglundina elegans range from 1.9 per mille at 2.7 deg C to 1.1 per mille at 9.5 deg C. The temperature dependence of epsilonsub(ar-b) is considerably greater than the equilibrium equation would predict and may be due to a vital effect. The calcitic foraminifera Cassidulina tortuosa, Cassidulina braziliensis, and Cassidulina limbata, Bank and Terrace dwellers, have s

  9. Isotopic exchange of carbon-bound hydrogen over geologic timescales

    Science.gov (United States)

    Sessions, Alex L.; Sylva, Sean P.; Summons, Roger E.; Hayes, John M.

    2004-04-01

    The increasing popularity of compound-specific hydrogen isotope (D/H) analyses for investigating sedimentary organic matter raises numerous questions about the exchange of carbon-bound hydrogen over geologic timescales. Important questions include the rates of isotopic exchange, methods for diagnosing exchange in ancient samples, and the isotopic consequences of that exchange. This article provides a review of relevant literature data along with new data from several pilot studies to investigate such issues. Published experimental estimates of exchange rates between organic hydrogen and water indicate that at warm temperatures (50-100°C) exchange likely occurs on timescales of 104 to 108 yr. Incubation experiments using organic compounds and D-enriched water, combined with compound-specific D/H analyses, provide a new and highly sensitive method for measuring exchange at low temperatures. Comparison of δD values for isoprenoid and n-alkyl carbon skeletons in sedimentary organic matter provides no evidence for exchange in young (exchange in ancient (>350 Ma) rocks. Specific rates of exchange are probably influenced by the nature and abundance of organic matter, pore-water chemistry, the presence of catalytic mineral surfaces, and perhaps even enzymatic activity. Estimates of equilibrium fractionation factors between organic H and water indicate that typical lipids will be depleted in D relative to water by ∼75 to 140‰ at equilibrium (30°C). Thus large differences in δD between organic molecules and water cannot be unambiguously interpreted as evidence against hydrogen exchange. A better approach may be to use changes in stereochemistry as a proxy for hydrogen exchange. For example, estimated rates of H exchange in pristane are similar to predicted rates for stereochemical inversion in steranes and hopanes. The isotopic consequences of this exchange remain in question. Incubations of cholestene with D2O indicate that the number of D atoms incorporated during

  10. Theoretical isotopic fractionation between structural boron in carbonates and aqueous boric acid and borate ion

    Science.gov (United States)

    Balan, Etienne; Noireaux, Johanna; Mavromatis, Vasileios; Saldi, Giuseppe D.; Montouillout, Valérie; Blanchard, Marc; Pietrucci, Fabio; Gervais, Christel; Rustad, James R.; Schott, Jacques; Gaillardet, Jérôme

    2018-02-01

    The 11B/10B ratio in calcite and aragonite is an important proxy of oceanic water pH. However, the physico-chemical mechanisms underpinning this approach are still poorly known. In the present study, we theoretically determine the equilibrium isotopic fractionation properties of structural boron species in calcium carbonates, BO33-, BO2(OH)2- and B(OH)4- anions substituted for carbonate groups, as well as those of B(OH)4- and B(OH)3 species in vacuum. Significant variability of equilibrium isotopic fractionation properties is observed among these structural species which is related to their contrasted coordination state, Bsbnd O bond lengths and atomic-scale environment. The isotopic composition of structural boron does not only depend on its coordination number but also on its medium range environment, i.e. farther than its first coordination shell. The isotopic fractionation between aqueous species and their counterparts in vacuum are assessed using previous investigations based on similar quantum-mechanical modeling approaches. At 300 K, the equilibrium isotope composition of structural trigonal species is 7-15‰ lighter than that of aqueous boric acid molecules, whereas substituted tetrahedral borate ions are heavier than their aqueous counterparts by 10-13‰. Although significant uncertainties are known to affect the theoretical prediction of fractionation factors between solids and solutions, the usually assumed lack of isotopic fractionation during borate incorporation in carbonates is challenged by these theoretical results. The present theoretical equilibrium fractionation factors between structural boron and aqueous species differ from those inferred from experiments which may indicate that isotopic equilibrium, unlike chemical equilibrium, was not reached in most experiments. Further research into the isotopic fractionation processes at the interface between calcium carbonates and aqueous solution as well as long duration experiments aimed at

  11. SAS3A analysis of natural convection boiling behavior in the Sodium Boiling Test Facility

    International Nuclear Information System (INIS)

    Klein, G.A.

    1979-01-01

    An analysis of natural convection boiling behavior in the Sodium Boiling Test (SBT) Facility has been performed using the SAS3A computer code. The predictions from this analysis indicate that stable boiling can be achieved for extensive periods of time for channel powers less than 1.4 kW and indicate intermittent dryout at higher powers up to at least 1.7 kW. The results of this anaysis are in reasonable agreement with the SBT Facility test results

  12. Cloning, overexpression, purification, crystallization and preliminary X-ray diffraction analysis of an inositol monophosphatase family protein (SAS2203) from Staphylococcus aureus MSSA476

    International Nuclear Information System (INIS)

    Bhattacharyya, Sudipta; Dutta, Debajyoti; Ghosh, Ananta Kumar; Das, Amit Kumar

    2011-01-01

    The cloning, overexpression, purification, crystallization and preliminary X-ray diffraction analysis of an inositol monophosphatase family protein (SAS2203) from S. aureus MSSA476 is reported. The gene product of the sas2203 ORF of Staphylococcus aureus MSSA476 encodes a 30 kDa molecular-weight protein with a high sequence resemblance (29% identity) to tetrameric inositol monophosphatase from Thermotoga maritima. The protein was cloned, expressed, purified to homogeneity and crystallized. Crystals appeared in several conditions and good diffraction-quality crystals were obtained from 0.2 M Li 2 SO 4 , 20% PEG 3350, 0.1 M HEPES pH 7.0 using the sitting-drop vapour-diffusion method. A complete diffraction data set was collected to 2.6 Å resolution using a Rigaku MicroMax-007 HF Cu Kα X-ray generator and a Rigaku R-AXIS IV ++ detector. The diffraction data were consistent with the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 49.98, b = 68.35, c = 143.79 Å, α = β = γ = 90°, and the crystal contained two molecules in the asymmetric unit

  13. Stable Isotopes (O, H, and S) in the Muteh Gold Deposit, Golpaygan Area, Iran

    International Nuclear Information System (INIS)

    Abdollahi, M. J.; Karimpour, M. H.; Kheradmand, A.; Zarasvandi, A. R.

    2009-01-01

    The Muteh gold district with nine gold deposits is located in the Sanandaj-Sirjan metamorphic zone. Gold mineralization occurs in a pre-Permian complex which mainly consists of green schists, meta-volcanics, and gneiss rocks. Shear zones are the host of gold mineralization. Gold paragenesis minerals include pyrite, chalcopyrite, pyrrhotite, and secondary minerals. Pyrites occur as pre-, syn-, and post-metamorphism minerals. To determine the source of the ore-bearing fluids, fifty samples were selected for petrographical and stable isotope studies. The mean values of 12.4 per mille , and -42 per mille for δ 18 O and δD isotopes, respectively, and a mean value of 7.75 per mille of calculated fractionation factors for δ 18 O H 2 O, from quartz veins indicate that metamorphic host rocks are the most important source for the fluids and gold mineralization. Three generations of pyrite can be distinguished showing a wide range of δ 34 S. Gold mineralization is closely associated with intense hydrothermal alteration along the ductile shear zones. The characteristics of the gold mineralization in the study area are similar to those of orogenic gold deposits elsewhere

  14. Correction of mass spectrometric isotope ratio measurements for isobaric isotopologues of O2, CO, CO2, N2O and SO2.

    Science.gov (United States)

    Kaiser, Jan; Röckmann, Thomas

    2008-12-01

    Gas isotope ratio mass spectrometers usually measure ion current ratios of molecules, not atoms. Often several isotopologues contribute to an ion current at a particular mass-to-charge ratio (m/z). Therefore, corrections have to be applied to derive the desired isotope ratios. These corrections are usually formulated in terms of isotope ratios (R), but this does not reflect the practice of measuring the ion current ratios of the sample relative to those of a reference material. Correspondingly, the relative ion current ratio differences (expressed as delta values) are first converted into isotopologue ratios, then into isotope ratios and finally back into elemental delta values. Here, we present a reformulation of this data reduction procedure entirely in terms of delta values and the 'absolute' isotope ratios of the reference material. This also shows that not the absolute isotope ratios of the reference material themselves, but only product and ratio combinations of them, are required for the data reduction. These combinations can be and, for carbon and oxygen have been, measured by conventional isotope ratio mass spectrometers. The frequently implied use of absolute isotope ratios measured by specially calibrated instruments is actually unnecessary. Following related work on CO2, we here derive data reduction equations for the species O2, CO, N2O and SO2. We also suggest experiments to measure the required absolute ratio combinations for N2O, SO2 and O2. As a prelude, we summarise historic and recent measurements of absolute isotope ratios in international isotope reference materials. Copyright 2008 John Wiley & Sons, Ltd.

  15. No oxygen isotope exchange between water and APS-sulfate at surface temperature: Evidence from quantum chemical modeling and triple-oxygen isotope experiments

    Science.gov (United States)

    Kohl, Issaku E.; Asatryan, Rubik; Bao, Huiming

    2012-10-01

    In both laboratory experiments and natural environments where microbial dissimilatory sulfate reduction (MDSR) occurs in a closed system, the δ34S ((34S/32S)sample/(34S/32S)standard - 1) for dissolved SO42- has been found to follow a typical Rayleigh-Distillation path. In contrast, the corresponding δ18O ((18O/16O)sample/(18O/16O)standard) - 1) is seen to plateau with an apparent enrichment of between 23‰ and 29‰ relative to that of ambient water under surface conditions. This apparent steady-state in the observed difference between δ18O and δ18OO can be attributed to any of these three steps: (1) the formation of adenosine-5'-phosphosulfate (APS) from ATP and SO42-, (2) oxygen exchange between sulfite (or other downstream sulfoxy-anions) and water later in the MDSR reaction chain and its back reaction to APS and sulfate, and (3) the re-oxidation of produced H2S or precursor sulfoxy-anions to sulfate in environments containing Fe(III) or O2. This study examines the first step as a potential pathway for water oxygen incorporation into sulfate. We examined the structures and process of APS formation using B3LYP/6-31G(d,p) hybrid density functional theory, implemented in the Gaussian-03 program suite, to predict the potential for oxygen exchange. We conducted a set of in vitro, enzyme-catalyzed, APS formation experiments (with no further reduction to sulfite) to determine the degree of oxygen isotope exchange between the APS-sulfate and water. Triple-oxygen-isotope labeled water was used in the reactor solutions to monitor oxygen isotope exchange between water and APS sulfate. The formation and hydrolysis of APS were identified as potential steps for oxygen exchange with water to occur. Quantum chemical modeling indicates that the combination of sulfate with ATP has effects on bond strength and symmetry of the sulfate. However, these small effects impart little influence on the integrity of the SO42- tetrahedron due to the high activation energy required for

  16. Predicting and measurement of pH of seawater reverse osmosis concentrates

    KAUST Repository

    Waly, Tarek

    2011-10-01

    The pH of seawater reverse osmosis plants (SWRO) is the most influential parameter in determining the degree of supersaturation of CaCO3 in the concentrate stream. For this, the results of pH measurements of the concentrate of a seawater reverse osmosis pilot plant were compared with pH calculations based on the CO2-HCO3 --CO3 2- system equilibrium equations. Results were compared with two commercial software programs from membrane suppliers and also the software package Phreeqc. Results suggest that the real concentrate pH is lower than that of the feed and that none of the used programs was able to predict correctly real pH values. In addition, the effect of incorporating the acidity constant calculated for NaCl medium or seawater medium showed a great influence on the concentrate pH determination. The HCO3 - and CO3 2- equilibrium equation using acidity constants developed for seawater medium was the only method able to predict correctly the concentrate pH. The outcome of this study indicated that the saturation level of the concentrate was lower than previously anticipated. This was confirmed by shutting down the acid and the antiscalants dosing without any signs of scaling over a period of 12 months. © 2011 Elsevier B.V.

  17. Application of ion exchange to isotope separation. 2. Isotope separation of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Makoto; Fujii, Yasuhiko; Aida, Masao; Nomura, Masao; Aoyama, Taku

    1985-10-01

    Research work on the uranium isotope separation by ion exchange chromatography done by the ahthors was reviewed and summarized in the present paper. Specifically described are the determination of separation coefficients of uranium isotopes in various chemical systems involving uranium ions and complexes. The chemical systems are classifield into three main categories; (1) uranyl, U (VI), complex formation system, (2) uranous, U (IV), complex formation system and (3) U (IV) - U (VI) redox system. The redox system showed the largest separation coefficient of approx. 7 x 10/sup -4/, while the uranyl and uranous complex systems showed the separation coefficients of -- 2 x 10/sup -4/ and approx. 6 x 10/sup -5/, respectively.

  18. The Use of Stable Water Isotopes as Tracers in Soil Aquifer Treatment (SAT and in Regional Water Systems

    Directory of Open Access Journals (Sweden)

    Ido Negev

    2017-01-01

    Full Text Available This study examines the feasibility of tracing and quantifying the progress of different water sources along the water–effluent–SAT (Soil Aquifer Treatment chain using 2H and 18O isotopes. The research was conducted at the Dan Region Reclamation Plant (Shafdan, which reclaims ~135 MCM/year of effluent for irrigation. Water samples representing different stages along the chain were taken in two surveys during 2010–2011 and 2014. δ18O and δ2H values were used for mixing ratios (MR calculations, and compared with calculated MRs using chloride and carbamazepine concentrations. The results showed a relative enrichment of 18O and 2H in the Israeli water system compared to the regional groundwater, due to the addition of massive quantities of desalinated water. A linear correlation for δ2H vs. δ18O with a slope of 4.5 was found for the different freshwater sources and their mixing products, suggesting evaporation-mixing effects. MR values indicate on the spreading of new type of effluent originating from desalinated water in the aquifer. A dilution model explains the isotopic compositions in the water system and of the Shafdan effluents. Water isotopes have an advantage over other tracers, due to the ability to predict their ratio in the supply system and in the effluent, based on mass balance calculations and on knowledge of water supply volumes.

  19. An automated technique for measuring deltaD and delta18O values of porewater by direct CO2 and H2 equilibration.

    Science.gov (United States)

    Koehler, G; Wassenaar, L I; Hendry, M J

    2000-11-15

    The stable-oxygen and -hydrogen isotopic values (deltaD, delta18O) of porewater in geologic media are commonly determined on water obtained by extraction techniques such as centrifugation, mechanical squeezing, vacuum heating and cryogenic microdistillation, and azeotropic distillation. Each of these techniques may cause isotopic fractionation as part the extraction process and each is laborious. Here we demonstrate a new approach to obtain automated, high-precision deltaD and delta18O measurements of porewater in geologic sediments by direct H2- and CO2-porewater equilibration using a modified commercial CO2-water equilibrator. This technique provides an important and cost-effective improvement over current extraction methods, because many samples can be rapidly analyzed with minimal handling, thereby reducing errors and potential for isotopic fractionation. The precision and accuracy of direct H2- and CO2-porewater equilibration is comparable to or better than current porewater extraction methods. Finally, the direct equilibration technique allows investigators to obtain high-resolution (cm scale) porewater deltaD and delta18O profiles using cores from individual boreholes, eliminating the need for costly piezometers or conventional porewater extractions.

  20. A 30 MeV H- cyclotron for isotope production

    International Nuclear Information System (INIS)

    Milton, B.F.; Dawson, R.; Erdman, K.L.

    1989-05-01

    Because of an expanding market for radioisotopes there is a need for a new generation of cyclotrons designed specifically for this purpose. TRIUMF is cooperating with a local industrial company in designing and constructing such a cyclotron. It will be a four sector H - cyclotron, exploiting the newly developed high brightness multicusp ion source. This source with H - current capability in excess of 5 mA makes feasible accelerated H - beam intensities of up to 500 μA. Beam extraction is by stripping to H + in a thin graphite foil. Extraction of two high-intensity beams, with energy variable from 15 to 30 MeV is planned. The use of an external ion source, provision of a good vacuum in the acceleration region, and the careful choice of materials for components in the median plane leads to a cyclotron that will have low activation and can be easily serviced in spite of the very high operating beam intensities. A design extension to 70 MeV using many of the design features of the 30 MeV cyclotron can be easily made. Such a machine with a good quality variable energy beam is a highly desirable source of protons for isotope production, injection into higher energy high intensity acceleration, injection into higher energy high intensity accelerators, and as an irradiation facility for ocular melanomas. Design of the 30 MeV cyclotron is well advanced and construction is in progress

  1. Disentangling Seasonality and Mean Annual Precipitation in the Indo-Pacific Warm Pool: Insights from Coupled Plant Wax C and H Isotope Measurements

    Science.gov (United States)

    Galy, V.; Oppo, D.; Dubois, N.; Arbuszewski, J. A.; Mohtadi, M.; Schefuss, E.; Rosenthal, Y.; Linsley, B. K.

    2016-12-01

    There is ample evidence suggesting that rainfall distribution across the Indo-Pacific Warm Pool (IPWP) - a key component of the global climate system - has substantially varied over the last deglaciation. Yet, the precise nature of these hydroclimate changes remains to be elucidated. In particular, the relative importance of variations in precipitation seasonality versus annual precipitation amount is essentially unknown. Here we use a set of surface sediments from the IPWP covering a wide range of modern hydroclimate conditions to evaluate how plant wax stable isotope composition records rainfall distribution in the area. We focus on long chain fatty acids, which are exclusively produced by vascular plants living on nearby land and delivered to the ocean by rivers. We relate the C (δ13C) and H (δD) isotope composition of long chain fatty acids preserved in surface sediments to modern precipitation distribution and stable isotope composition in their respective source area. We show that: 1) δ13C values reflect vegetation distribution (in particular the relative abundance of C3 and C4 plants) and are primarily recording precipitation seasonality (Dubois et al., 2014) and, 2) once corrected for plant fractionation effects, δD values reflect the amount-weighted average stable isotope composition of precipitation and are primarily recording annual precipitation amounts. We propose that combining the C and H isotope composition of long chain fatty acids thus allows independent reconstructions of precipitation seasonality and annual amounts in the IPWP. The practical implications for reconstructing past hydroclimate in the IPWP will be discussed.

  2. 2H and 18O Freshwater Isoscapes of Scotland

    Science.gov (United States)

    Meier-Augenstein, Wolfram; Hoogewerff, Jurian; Kemp, Helen; Frew, Danny

    2013-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwaters by the Scottish Environment Protection Agency (SEPA) fulfils legislative requirements with regards to water quality but new scientific methods involving stable isotope analysis present an opportunity combining these mandatory monitoring schemes with fundamental research to inform and deliver on current and nascent government policies [1] through gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and food security. For example, 2H and 18O isoscapes of Scottish freshwater could be used to underpin research and its applications in: • Climate change - Using longitudinal changes in the characteristic isotope composition of freshwater lochs and reservoirs as proxy, isoscapes will provide a means to assess if and how changes in temperature and weather patterns might impact on precipitation patterns and amount. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish soft fruit and Scottish Whisky. During 2011 and 2012, with the support of SEPA more than 110 samples from freshwater lochs and reservoirs were collected from 127 different locations across Scotland including the Highlands and Islands. Here we present the results of this sampling and analysis exercise isotope analyses in form of 2H and 18O isoscapes with an unprecedented grid resolution of 26.5 × 26.5 km (or 16.4 × 16.4 miles). [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland

  3. APPLICATION OF O-H-B-Sr ISOTOPE SYSTEMATICS TO THE EXPLORATION OF SALINIZATION AND FLUSHING IN COASTAL AQUIFERS : PRELIMINARY DATA FROM THE PIALASSA BAIONA ECOSYSTEM (ADRIATIC SEA

    Directory of Open Access Journals (Sweden)

    Riccardo Petrini

    2009-07-01

    Full Text Available O, H, B and Sr isotopes were identified from surface-waters, ground-waters and waters percolating in soils at the Pialassa Baiona lagoon and nearby inland areas. The preliminary data demonstrate the occurrence of both conservative mixtures between seawater and freshwaters and cation exchange at the salt/fresh water interface during the intrusion. The O and H isotopes indicate that the freshwater component in the binary mixing had the isotopic features of the rainwater from Apennine catchments. Coupled O-H-B isotopes also show that the major contribution of the moving seawater was confined to the deeper aquifers and some of the soil waters. The Sr isotopes highlight the role of cation exchanges when seawater flushes freshwater aquifers, and allow the recognition of the different components of the solute. Deviations from these processes as revealed by B isotopes are interpreted as the evidence of possible anthropogenic inputs.

  4. Evaluation of the efficiency of Pd/H2 -catalyzed benzylic H/D exchange of dehydroabietinal with D(2) O and synthesis of a tritium-labeled analogue.

    Science.gov (United States)

    Petros, Robby A; Shah, Jyoti

    2014-01-01

    Dehydroabietinal (DA) has been identified as an important signaling molecule in systemic acquired resistance in plants. Deuterium and tritium-labeled DA were synthesized to confirm its role in signaling and to further elucidate the mechanism by which DA induces systemic acquired resistance. Pd/H2 -catalyzed exchange of benzylic hydrogen atoms of DA with (2) H-H2 O or (3) H-H2 O was conducted with >97% label incorporation for (2) H-DA and a specific activity of 12.6 mCi/mmol for (3) H-DA synthesized from 90 mCi/mmol (3) H-H2 O. The extent of deuterium labeling at each benzylic position was determined via an inverse-gated (13) C NMR experiment. C7 and C15 were 87% and 81% labeled, respectively. Isotope-induced chemical shift changes at C6 were used to approximate the amount of singly (66%) and doubly (17%) labeled (2) H-DA at C7. Results also indicated that two of the three benzylic protons in DA underwent facile exchange. Exchange at the remaining position was likely hampered by steric interactions of nearby methyl groups at the surface of the Pd catalyst. Copyright © 2013 John Wiley & Sons, Ltd.

  5. First field-based observations of δ2H and δ18O values of precipitation and other water bodies in the Mongolian Gobi desert

    Science.gov (United States)

    Burnik Šturm, Martina; Ganbaatar, Oyunsaikhan; Voigt, Christian C.; Kaczensky, Petra

    2017-04-01

    Hydrogen (δ2H) and oxygen (δ18O) isotope values of water are widely used to track the global hydrological cycle and the global δ2H and δ18O patterns of precipitation are increasingly used in studies on animal migration, forensics, food authentication and traceability studies. However, δ2H and δ18O values of precipitation spanning one or more years are available for only a few 100 locations worldwide and for many remote areas such as Mongolia data are still scarce. We obtained the first field-based δ2H and δ18O isotope data of event-based precipitation, rivers and other water bodies in the extreme environment of the Dzungarian Gobi desert in SW Mongolia, covering a period of 16 months (1). Our study area is located over 450 km north-east from the nearest IAEA GNIP station (Fukang station, China) from which it is separated by a mountain range at the international border between China and Mongolia. Isotope values of the collected event-based precipitation showed and extreme range and a high seasonal variability with higher and more variable values in summer and lower in winter. The high variability could not be explained by different origin of air masses alone (i.e. NW polar winds over Russia or westerlies over Central Asia; analyzed using back-trajectory HYSPLIT model), but is likely a result of a combination of different processes affecting the isotope values of precipitation in this area. The calculated field-based local meteoric water line (LMWL, δ2H=(7.42±0.16)δ18O-(23.87±3.27)) showed isotopic characteristics of precipitation in an arid region. We observed a slight discrepancy between the filed based and modelled (Online Isotope in Precipitation Calculator, OIPC) LMWL which highlighted the difficulty of modelling the δ2H and δ18O values for areas with extreme climatic conditions and thus emphasized the importance of collecting long-term field-based data. The collected isotopic data of precipitation and other water bodies provide a basis for future

  6. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6

    Directory of Open Access Journals (Sweden)

    H. Graven

    2017-12-01

    Full Text Available The isotopic composition of carbon (Δ14C and δ13C in atmospheric CO2 and in oceanic and terrestrial carbon reservoirs is influenced by anthropogenic emissions and by natural carbon exchanges, which can respond to and drive changes in climate. Simulations of 14C and 13C in the ocean and terrestrial components of Earth system models (ESMs present opportunities for model evaluation and for investigation of carbon cycling, including anthropogenic CO2 emissions and uptake. The use of carbon isotopes in novel evaluation of the ESMs' component ocean and terrestrial biosphere models and in new analyses of historical changes may improve predictions of future changes in the carbon cycle and climate system. We compile existing data to produce records of Δ14C and δ13C in atmospheric CO2 for the historical period 1850–2015. The primary motivation for this compilation is to provide the atmospheric boundary condition for historical simulations in the Coupled Model Intercomparison Project 6 (CMIP6 for models simulating carbon isotopes in the ocean or terrestrial biosphere. The data may also be useful for other carbon cycle modelling activities.

  7. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6

    Science.gov (United States)

    Graven, Heather; Allison, Colin E.; Etheridge, David M.; Hammer, Samuel; Keeling, Ralph F.; Levin, Ingeborg; Meijer, Harro A. J.; Rubino, Mauro; Tans, Pieter P.; Trudinger, Cathy M.; Vaughn, Bruce H.; White, James W. C.

    2017-12-01

    The isotopic composition of carbon (Δ14C and δ13C) in atmospheric CO2 and in oceanic and terrestrial carbon reservoirs is influenced by anthropogenic emissions and by natural carbon exchanges, which can respond to and drive changes in climate. Simulations of 14C and 13C in the ocean and terrestrial components of Earth system models (ESMs) present opportunities for model evaluation and for investigation of carbon cycling, including anthropogenic CO2 emissions and uptake. The use of carbon isotopes in novel evaluation of the ESMs' component ocean and terrestrial biosphere models and in new analyses of historical changes may improve predictions of future changes in the carbon cycle and climate system. We compile existing data to produce records of Δ14C and δ13C in atmospheric CO2 for the historical period 1850-2015. The primary motivation for this compilation is to provide the atmospheric boundary condition for historical simulations in the Coupled Model Intercomparison Project 6 (CMIP6) for models simulating carbon isotopes in the ocean or terrestrial biosphere. The data may also be useful for other carbon cycle modelling activities.

  8. Geochemistry of the Congo and Amazon river systems. Boron isotopic geochemistry in corals. Continental erosion and ocean pH

    International Nuclear Information System (INIS)

    Gaillardet, J.

    1995-01-01

    Two main geological processes control the CO 2 concentration in the atmosphere at a geological time scale: CO 2 outgasing from the interior of the Earth and CO 2 consumption by continental weathering. In the thesis, we initiate two different directions that can be useful to constraint the past climate evolution models. The first one is the extensive study of the largest rivers of the world using the classical geochemical analyses (major and trace elements, Sr-Nd-Pb isotopes) and modelling approaches. The study case of this thesis are the Congo and Amazon Basin. In particular, the coupling between chemical and physical erosion is examined and related to the hydrologic and tectonic parameters. Relief, thus tectonics appear to best control CO 2 consumption by rock weathering. The second part of the work is devoted to the measurement of boron isotopic ratio in corals because it may be used as a proxy for paleo-ocean pH. It could thus bring important pieces of information on the global C cycle and climate evolution. The technical part is extensively described and the method applied to the corals from the last interglacial period. Our conclusion is that corals are likely to be influence by early diagenetic changes that modify the boron isotopic composition of corals. We thus propose a test to select the samples. (author)

  9. Utility of γH2AX as a molecular marker of DNA double-strand breaks in nuclear medicine: applications to radionuclide therapy employing auger electron-emitting isotopes.

    Science.gov (United States)

    Mah, Li-Jeen; Orlowski, Christian; Ververis, Katherine; El-Osta, Assam; Karagiannis, Tom C

    2011-01-01

    There is an intense interest in the development of radiopharmaceuticals for cancer therapy. In particular, radiopharmaceuticals which involve targeting radionuclides specifically to cancer cells with the use of monoclonal antibodies (radioimmunotherapy) or peptides (targeted radiotherapy) are being widely investigated. For example, the ultra-short range Auger electron-emitting isotopes, which are discussed in this review, are being considered in the context of DNAtargeted radiotherapy. The efficient quantitative evaluation of the levels of damage caused by such potential radiopharmaceuticals is required for assessment of therapeutic efficacy and determination of relevant doses for successful treatment. The DNA double-strand break surrogate marker, γH2AX, has emerged as a useful biomonitor of damage and thus effectiveness of treatment, offering a highly specific and sensitive means of assessment. This review will cover the potential applications of γH2AX in nuclear medicine, in particular radionuclide therapy.

  10. Effect of salinity on 2H/1H fractionation in lipids from continuous cultures of the coccolithophorid Emiliania huxleyi

    Science.gov (United States)

    Sachs, Julian P.; Maloney, Ashley E.; Gregersen, Josh; Paschall, Christopher

    2016-09-01

    Salinity and temperature dictate the buoyancy of seawater, and by extension, ocean circulation and heat transport. Yet there remain few widely applicable proxies for salinity with the precision necessary to infer all but the largest hydrographic variations in the past. In the last decade the hydrogen isotope composition (2H/1H or δ2H) of microalgal lipids has been shown to increase systematically with salinity, providing a foundation for its use as a paleosalinity proxy. Culture and field studies have indicated a wide range of sensitivities for this response, ranging from about 0.6-3.3‰ ppt-1 depending on the lipid, location and/or culturing conditions. Lacking in these studies has been the controlled conditions necessary to isolate the response to salinity while keeping all other growth parameters constant. Here we show that the hydrogen isotope composition of lipids in the marine coccolithophorid Emiliania huxleyi grown in chemostats increased by 1.6 ± 0.3‰ ppt-1 (p huxleyi, which can be attributed to the fact that previous experiments were performed with batch cultures in which growth rates and other parameters differed between salinity treatments. The underlying cause of this response to salinity remains unknown, but may result from changes in (1) the proportion of lipid hydrogen derived from NADPH versus water, (2) the proportion of lipid hydrogen derived from NADPH from Photosystem I versus the oxidative pentose phosphate pathway (and other metabolic sources), or (3) the δ2H value of intracellular water.

  11. Isotopic evidence for climatic conditions in Southeast Asia at the last glacial maximum

    International Nuclear Information System (INIS)

    Aggarwal, P.K.; Gibson, J.J.; Kulkarni, K.M.; Froehlich, K.

    2002-01-01

    Stable isotope composition of dated groundwater archives from the Philippines, Vietnam, Thailand and Bangladesh trace changes in monsoon conditions, primarily rainout processes between the Last Glacial Maximum (LGM) and present day in southeast Asia. Today, isotope-climate relations are well established by the IAEA/WMO Global Network of Isotopes in Precipitation survey which reveals more depleted δ 18 O and δ 2 H for the Pacific Ocean monsoon regime than for the Indian Ocean monsoon regime, primarily due to proximal ocean sources and subdued continental moisture recycling for the latter region. Groundwater archives, reflecting past isotopic composition of precipitation, strongly suggest that this distinction was preserved or slightly enhanced at the time of the LGM, despite an apparent weakening of the summer monsoon and associated rainout processes. Overall, precipitation and moisture recycling, and enhanced continental effects are inferred to be the primary controls on δ 18 O signals in groundwater in southeast Asia. Comparison of groundwater isotope signatures and an ECHAM4 model simulation of the isotopic distribution in precipitation at 21ka reveal similar patterns, but the impacts of increased air mass contributions from high latitudes and reduced Eurasian moisture recycling at the LGM are shown to be potentially greater for the Pacific region than predicted by the model. (author)

  12. The 2-nd Conference on Isotopic and Molecular Processes. Abstracts

    International Nuclear Information System (INIS)

    Bogdan, Mircea

    2001-01-01

    The proceedings of the 2-nd Conference on Isotopic and Molecular Processes held on September 27 - 29, 2001 in Cluj - Napoca, Romania, contains contributions presented as: 11 plenary lectures, 24 oral presentations and 103 posters in two sections, namely, isotopic processes and molecular processes. The main topics treated in this conference were isotope production, separation and enrichment as well as stable isotope applications. Also, studies on isotope effects in different fields are reported. Besides reports on isotope effects, exchange and separation, new methods of preparation and labelling compounds used particularly in nuclear medicine are presented. Environmental studies by means of stable isotope and radon monitoring are described. Applications of radiation effects and different nuclear methods in medicine are also addressed

  13. [Sentinel node detection using optonuclear probe (gamma and fluorescence) after green indocyanine and radio-isotope injections].

    Science.gov (United States)

    Poumellec, M-A; Dejode, M; Figl, A; Darcourt, J; Haudebourg, J; Sabah, Y; Voury, A; Martaens, A; Barranger, E

    2016-04-01

    Assess the biopsy's feasibility of the sentinel lymph node biopsy (SLNB) using optonuclear probe after of indocyanine green (ICG) and radio-isotope (RI) injections. Twenty-one patients with a localized breast cancer and unsuspicious axillary nodes underwent a SLNB after both injections of ICG and radio-isotope. One or more SLN were identified on the 21 patients (identification rate of 100%). The median number SLN was 2 (1-3). Twenty SLN were both radio-actives and fluorescents (54.1%), 11 fluorescent only (29.7%) and 6 were only radio-actives (16.2%). Seven patients had a metastatic SLN (8 SLN overall). Among them, only one had a micrometastasic SLN, 5 others had a macrometastatic SLN and one patient had two macrometastatic SLNs. Among the 8 metastatic SLN, 5 were both fluorescent and radioactive, 2 were only fluorescent and 1 was only radioactive. Detection SLN using optonuclear probe after indocyanine green and radio-isotope injections is effective and could be, after validation by randomized trial, a reliable alternative to the blue dye injection for teams who consider that combined detection as the reference. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Want independent validation and assurance? Ask for a SAS-70.

    Science.gov (United States)

    Boutin, Christopher C

    2008-08-01

    The AICPA's Statement on Auditing Standards No.70, Service Organizations addresses CPA audits of service providers conducted to verify that a provider has adequate controls over its operations. Hospitals should request a SAS-70, the report produced by such an audit, from all of their third-party service providers. SAS-70s can be issued for a specific date or for a six-month period, and they typically consist of three sections: a CPA opinion, a description of controls, and information about the design of the controls.

  15. Stable isotope signatures of gases liberated from fluid inclusions in bedrock at Olkiluoto

    International Nuclear Information System (INIS)

    Eichinger, F.; Meier, D.; Haemmerli, J.; Diamond, L.

    2010-12-01

    Fluid inclusions in quartzes of the Olkiluoto bedrock contain gaseous N 2 , CO 2 , H 2 , CH 4 , and higher hydrocarbons in varying proportions. Stable carbon and hydrogen isotope signatures of the gas phases give valuable information on their origin and the formation conditions. In previous studies, a method to liberate and quantify the gases trapped in fluid inclusions was developed. It allowed determining the carbon isotope signatures of liberated CO 2 , CH 4 and higher hydrocarbons (HHC), but no hydrogen isotope data were acquired. The method was advanced and, in this study, also stable hydrogen isotopes of CH 4 and H 2 liberated from fluid inclusions could be analysed. The stable carbon signatures of methane and higher hydrocarbons, as well as the hydrogen isotope signatures of methane indicate a predominant thermogenic provenance for those gases. (orig.)

  16. Proteomic analysis of cellular response induced by boron neutron capture reaction in human squamous cell carcinoma SAS cells

    International Nuclear Information System (INIS)

    Sato, Akira; Itoh, Tasuku; Imamichi, Shoji; Kikuhara, Sota; Fujimori, Hiroaki; Hirai, Takahisa; Saito, Soichiro; Sakurai, Yoshinori; Tanaka, Hiroki; Nakamura, Hiroyuki; Suzuki, Minoru

    2015-01-01

    To understand the mechanism of cell death induced by boron neutron capture reaction (BNCR), we performed proteome analyses of human squamous tumor SAS cells after BNCR. Cells were irradiated with thermal neutron beam at KUR after incubation under boronophenylalanine (BPA)(+) and BPA(−) conditions. BNCR mainly induced typical apoptosis in SAS cells 24 h post-irradiation. Proteomic analysis in SAS cells suggested that proteins functioning in endoplasmic reticulum, DNA repair, and RNA processing showed dynamic changes at early phase after BNCR and could be involved in the regulation of cellular response to BNCR. We found that the BNCR induces fragments of endoplasmic reticulum-localized lymphoid-restricted protein (LRMP). The fragmentation of LRMP was also observed in the rat tumor graft model 20 hours after BNCT treatment carried out at the National Nuclear Center of the Republic of Kazakhstan. These data suggest that dynamic changes of LRMP could be involved during cellular response to BNCR. - Highlights: • BNCR in human squamous carcinoma cells caused typical apoptotic features. • BNCR induced fragments of LRMP, in human squamous carcinoma and rat tumor model. • The fragmentation of LRMP could be involved in cellular response to BNCR.

  17. Isotope effect on the zero point energy shift upon condensation. I. Formulation and application to ethylene, methane, and fluoromethanes

    International Nuclear Information System (INIS)

    Kornblum, Z.C.; Ishida, T.

    1978-01-01

    A method of evaluating the isotope effect (IE) on the zero point energy (ZPE) shift upon condensation due to the London dispersion forces in the liquid has been formulated. It is expressed to the first order, as a product of an isotope-independent liquid factor and a factor of isotopic differences in gas-phase properties. The theory has been tested by calculating the effective atomic charges for carbon and hydrogen in ethylene, according to the CNDO/2 molecular orbital algorithm, and it correctly predicts the magnitude of the IE on the ZPE shift and the first-order sum rules involving the isotopic ethylenes. However, it fails to explain the difference in vapor pressures of isotopic isomers. The theory has also been applied to the D/H and to the 13 C/ 12 C isotope effects in methane and fluoromethanes. The results obtained from the CNDO/2 calculations have been compared with the experimental values of the total infrared absorption intensities and of the IE on the ZPE shift of isotopic methanes. Based on these calculations, the molecular properties that enhance the stronger dispersion forces in the liquid phase between the lighter molecules than between the isotopically heavier molecules, and hence favor a large IE on the ZPE shift, have been deduced

  18. Multiple S and O isotope constraints on O2 at 2.25 Ga

    Science.gov (United States)

    Killingsworth, B.; Sansjofre, P.; Philippot, P.; Thomazo, C.; Cartigny, P.; Lalonde, S.

    2017-12-01

    The composition of Earth's atmosphere around the time of the Great Oxidation Event (GOE) at the Archean-Proterozoic boundary is of great interest for reconstructing the redox evolution of the Earth. Sulfate has been shown to be a valuable recorder of isotopic signals of atmospheric O2 but its records are sparse around the time of the GOE. To constrain O2 around the GOE, we have measured quadruple sulfur and triple oxygen isotopes of sulfate from barite in sedimentary drill core from the Turee Creek Group, Australia from 2.25 Ga. A combined sulfur and oxygen approach for estimating the triple oxygen isotope composition of O2 at 2.25 Ga will be presented and its implications for the Paleoproterozoic atmosphere will be discussed.

  19. Isotope effect and isotope separation. A chemist's view

    International Nuclear Information System (INIS)

    Ishida, Takanobu

    2002-01-01

    What causes the isotope effects (IE)? This presentation will be centered around the equilibrium isotope effects due to the differences in the nuclear masses. The occurrence of the equilibrium constant, K, of isotope exchange reactions which differ from the values predicted by the classical theory of statistical mechanics, K cl , is explored. The non-classical K corresponds to the unit-stage separation factor, α, that is different from unity and forms a basis of an isotope separation process involving the chemical exchange reaction. Here, the word 'chemical exchange' includes not only the isotope exchange chemical reactions between two or more chemical species but also the isotope exchanges involving the equilibria between liquid and vapor phases and liquid-gas, liquid solution-gas, liquid-liquid, and solid-liquid phases. In Section I, origins of the isotope effect phenomena will be explored and, in the process, various quantities used in discussions of isotope effect that have often caused confusions will be unambiguously defined. This Section will also correlate equilibrium constant with separation factor. In Section II, various forms of temperature-dependence of IE and separation factor will be discussed. (author)

  20. Reactive carbon-chain molecules: synthesis of 1-diazo-2,4-pentadiyne and spectroscopic characterization of triplet pentadiynylidene (H-C[triple bond]C-:C-C[triple bond]C-H).

    Science.gov (United States)

    Bowling, Nathan P; Halter, Robert J; Hodges, Jonathan A; Seburg, Randal A; Thomas, Phillip S; Simmons, Christopher S; Stanton, John F; McMahon, Robert J

    2006-03-15

    1-Diazo-2,4-pentadiyne (6a), along with both monodeuterio isotopomers 6b and 6c, has been synthesized via a route that proceeds through diacetylene, 2,4-pentadiynal, and 2,4-pentadiynal tosylhydrazone. Photolysis of diazo compounds 6a-c (lambda > 444 nm; Ar or N2, 10 K) generates triplet carbenes HC5H (1) and HC5D (1-d), which have been characterized by IR, EPR, and UV/vis spectroscopy. Although many resonance structures contribute to the resonance hybrid for this highly unsaturated carbon-chain molecule, experiment and theory reveal that the structure is best depicted in terms of the dominant resonance contributor of penta-1,4-diyn-3-ylidene (diethynylcarbene, H-C[triple bond]C-:C-C[triple bond]C-H). Theory predicts an axially symmetric (D(infinity h)) structure and a triplet electronic ground state for 1 (CCSD(T)/ANO). Experimental IR frequencies and isotope shifts are in good agreement with computed values. The triplet EPR spectrum of 1 (absolute value(D/hc) = 0.6157 cm(-1), absolute value(E/hc) = 0.0006 cm(-1)) is consistent with an axially symmetric structure, and the Curie law behavior confirms that the triplet state is the ground state. The electronic absorption spectrum of 1 exhibits a weak transition near 400 nm with extensive vibronic coupling. Chemical trapping of triplet HC5H (1) in an O2-doped matrix affords the carbonyl oxide 16 derived exclusively from attack at the central carbon.