WorldWideScience

Sample records for sars-cov nucleocapsid protein

  1. Ribonucleocapsid Formation of SARS-COV Through Molecular Action of the N-Terminal Domain of N Protein

    Energy Technology Data Exchange (ETDEWEB)

    Saikatendu, K.S.; Joseph, J.S.; Subramanian, V.; Neuman, B.W.; Buchmeier, M.J.; Stevens, R.C.; Kuhn, P.; /Scripps Res. Inst.

    2007-07-12

    Conserved amongst all coronaviruses are four structural proteins, the matrix (M), small envelope (E) and spike (S) that are embedded in the viral membrane and the nucleocapsid phosphoprotein (N), which exists in a ribonucleoprotein complex in their lumen. The N terminal domain of coronaviral N proteins (N-NTD) provides a scaffold for RNA binding while the C-terminal domain (N-CTD) mainly acts as oligomerization modules during assembly. The C-terminus of N protein anchors it to the viral membrane by associating with M protein. We characterized the structures of N-NTD from severe acute respiratory syndrome coronavirus (SARS-CoV) in two crystal forms, at 1.17A (monoclinic) and 1.85 A (cubic) respectively, solved by molecular replacement using the homologous avian infectious bronchitis virus (IBV) structure. Flexible loops in the solution structure of SARS-CoV N-NTD are now shown to be well ordered around the beta-sheet core. The functionally important positively charged beta-hairpin protrudes out of the core and is oriented similar to that in the IBV N-NTD and is involved in crystal packing in the monoclinic form. In the cubic form, the monomers form trimeric units that stack in a helical array. Comparison of crystal packing of SARS-CoV and IBV N-NTDs suggest a common mode of RNA recognition, but probably associate differently in vivo during the formation of the ribonucleoprotein complex. Electrostatic potential distribution on the surface of homology models of related coronaviral N-NTDs hints that they employ different modes of both RNA recognition as well as oligomeric assembly, perhaps explaining why their nucleocapsids have different morphologies.

  2. Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers

    NARCIS (Netherlands)

    Cong, Yingying; Kriegenburg, Franziska; de Haan, Cornelis A. M.; Reggiori, Fulvio

    2017-01-01

    Coronaviruses (CoV) are enveloped viruses and rely on their nucleocapsid N protein to incorporate the positive-stranded genomic RNA into the virions. CoV N proteins form oligomers but the mechanism and relevance underlying their multimerization remain to be fully understood. Using in vitro pull-down

  3. Elucidating the Interacting Domains of Chandipura Virus Nucleocapsid Protein

    Directory of Open Access Journals (Sweden)

    Kapila Kumar

    2013-01-01

    Full Text Available The nucleocapsid (N protein of Chandipura virus (CHPV plays a crucial role in viral life cycle, besides being an important structural component of the virion through proper organization of its interactions with other viral proteins. In a recent study, the authors had mapped the associations among CHPV proteins and shown that N protein interacts with four of the viral proteins: N, phosphoprotein (P, matrix protein (M, and glycoprotein (G. The present study aimed to distinguish the regions of CHPV N protein responsible for its interactions with other viral proteins. In this direction, we have generated the structure of CHPV N protein by homology modeling using SWISS-MODEL workspace and Accelrys Discovery Studio client 2.55 and mapped the domains of N protein using PiSQRD. The interactions of N protein fragments with other proteins were determined by ZDOCK rigid-body docking method and validated by yeast two-hybrid and ELISA. The study revealed a unique binding site, comprising of amino acids 1–30 at the N terminus of the nucleocapsid protein (N1 that is instrumental in its interactions with N, P, M, and G proteins. It was also observed that N2 associates with N and G proteins while N3 interacts with N, P, and M proteins.

  4. Baculovirus AC102 is a nucleocapsid protein that is crucial for nuclear actin polymerization and nucleocapsid morphogenesis.

    Science.gov (United States)

    Hepp, Susan E; Borgo, Gina M; Ticau, Simina; Ohkawa, Taro; Welch, Matthew D

    2018-03-14

    The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the type species of alphabaculoviruses, is an enveloped DNA virus that infects lepidopteran insects and is commonly known as a vector for protein expression and cell transduction. AcMNPV belongs to a diverse group of viral and bacterial pathogens that target the host cell actin cytoskeleton during infection. AcMNPV is unusual, however, in that it absolutely requires actin translocation into the nucleus early in infection, and actin polymerization within the nucleus late in infection coincident with viral replication. Of the six viral factors that are sufficient, when coexpressed, to induce the nuclear localization of actin, only AC102 is essential for viral replication and the nuclear accumulation of actin. We therefore sought to better understand the role of AC102 in actin mobilization in the nucleus early and late in infection. Although AC102 was proposed to function early in infection, we found that AC102 is predominantly expressed as a late protein. In addition, we observed that AC102 is required for F-actin assembly in the nucleus during late infection, as well as for proper formation of viral replication structures and nucleocapsid morphogenesis. Finally, we found that AC102 is a nucleocapsid protein and a newly recognized member of a complex consisting of the viral proteins EC27, C42, and the actin polymerization protein P78/83. Taken together, our findings suggest that AC102 is necessary for nucleocapsid morphogenesis and actin assembly during late infection through its role as a component of the P78/83-C42-EC27-AC102 protein complex. IMPORTANCE The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an important biotechnological tool for protein expression and cell transduction, and related nucleopolyhedroviruses are also employed as environmentally benign insecticides. One impact of our work is to better understand the fundamental mechanisms through

  5. HSV-1 nucleocapsid egress mediated by UL31 in association with UL34 is impeded by cellular transmembrane protein 140

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Ying [Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical College, Kunming 650118 (China); Yunnan Academy of Tobacco Science, Kunming, Yunnan 650106 (China); Guo, Lei; Yang, Erxia; Liao, Yun; Liu, Longding; Che, Yanchun; Zhang, Ying; Wang, Lichun; Wang, Jingjing [Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical College, Kunming 650118 (China); Li, Qihan, E-mail: imbcams.lq@gmail.com [Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical College, Kunming 650118 (China)

    2014-09-15

    During HSV-1 infection, the viral UL31 protein forms a complex with the UL34 protein at the cellular nuclear membrane, where both proteins play important roles in the envelopment of viral nucleocapsids and their egress into the cytoplasm. To characterize the mechanism of HSV-1 nucleocapsid egress, we screened host proteins to identify proteins that interacted with UL31 via yeast two-hybrid analysis. Transmembrane protein 140 (TMEM140), was identified and confirmed to bind to and co-localize with UL31 during viral infection. Further studies indicated that TMEM140 inhibits HSV-1 proliferation through selectively blocking viral nucleocapsid egress during the viral assembly process. The blockage function of TMEM140 is mediated by impeding the formation of the UL31–UL34 complex due to competitive binding to UL31. Collectively, these data suggest the essentiality of the UL31–UL34 interaction in the viral nucleocapsid egress process and provide a new anti-HSV-1 strategy in viral assembly process of nucleocapsid egress. - Highlights: • Cellular TMEM140 protein interacts with HSV-1 UL31 protein during viral infection. • Increasing expression of TMEM140 leads to inhibition of HSV-1 proliferation. • Increasing expression of TMEM140 blocks HSV-1 nucleocapsid egress process. • Binding to UL31 of TMEM140 impedes formation of HSV-1 UL31–UL34 complex.

  6. Profiling of external metabolites during production of hantavirus nucleocapsid protein with recombinant Saccharomyces cerevisiae

    OpenAIRE

    Antoniukas, Linas; Grammel, Hartmut; Sasnauskas, Kestutis; Reichl, Udo

    2007-01-01

    Recombinant strains of Saccharomyces cerevisiae, producing hantavirus Puumala nucleocapsid protein for diagnostics and as a candidate vaccine were analyzed for uptake and excretion of intermediary metabolites during process optimization studies of fed-batch bioreactor cultures. Concentrations of glucose, maltose, galactose, pyruvate, acetaldehyde, ethanol, acetate, succinate and formaldehyde (used as a selection agent) were measured in the culture medium in order to find a metabolite pattern,...

  7. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine

    International Nuclear Information System (INIS)

    Zhao Ping; Cao Jie; Zhao Lanjuan; Qin Zhaolin; Ke Jinshan; Pan Wei; Ren Hao; Yu Jianguo; Qi Zhongtian

    2005-01-01

    The nucleocapsid (N) protein of SARS-coronavirus (SARS-CoV) is the key protein for the formation of the helical nucleocapsid during virion assembly. This protein is believed to be more conserved than other proteins of the virus, such as spike and membrane glycoprotein. In this study, the N protein of SARS-CoV was expressed in Escherichia coli DH5α and identified with pooled sera from patients in the convalescence phase of SARS. A plasmid pCI-N, encoding the full-length N gene of SARS-CoV, was constructed. Expression of the N protein was observed in COS1 cells following transfection with pCI-N. The immune responses induced by intramuscular immunization with pCI-N were evaluated in a murine model. Serum anti-N immunoglobulins and splenocytes proliferative responses against N protein were observed in immunized BALB/c mice. The major immunoglobulin G subclass recognizing N protein was immunoglobulin G2a, and stimulated splenocytes secreted high levels of gamma interferon and IL-2 in response to N protein. More importantly, the immunized mice produced strong delayed-type hypersensitivity (DTH) and CD8 + CTL responses to N protein. The study shows that N protein of SARS-CoV not only is an important B cell immunogen, but also can elicit broad-based cellular immune responses. The results indicate that the N protein may be of potential value in vaccine development for specific prophylaxis and treatment against SARS

  8. Recombinant protein-based assays for detection of antibodies to severe acute respiratory syndrome coronavirus spike and nucleocapsid proteins.

    Science.gov (United States)

    Haynes, Lia M; Miao, Congrong; Harcourt, Jennifer L; Montgomery, Joel M; Le, Mai Quynh; Dryga, Sergey A; Kamrud, Kurt I; Rivers, Bryan; Babcock, Gregory J; Oliver, Jennifer Betts; Comer, James A; Reynolds, Mary; Uyeki, Timothy M; Bausch, Daniel; Ksiazek, Thomas; Thomas, William; Alterson, Harold; Smith, Jonathan; Ambrosino, Donna M; Anderson, Larry J

    2007-03-01

    Recombinant severe acute respiratory syndrome (SARS) nucleocapsid and spike protein-based immunoglobulin G immunoassays were developed and evaluated. Our assays demonstrated high sensitivity and specificity to the SARS coronavirus in sera collected from patients as late as 2 years postonset of symptoms. These assays will be useful not only for routine SARS coronavirus diagnostics but also for epidemiological and antibody kinetic studies.

  9. RNA-binding domain in the nucleocapsid protein of gill-associated nidovirus of penaeid shrimp.

    Directory of Open Access Journals (Sweden)

    Chumporn Soowannayan

    Full Text Available Gill-associated virus (GAV infects Penaeus monodon shrimp and is the type species okavirus in the Roniviridae, the only invertebrate nidoviruses known currently. Electrophoretic mobility shift assays (EMSAs using His(6-tagged full-length and truncated proteins were employed to examine the nucleic acid binding properties of the GAV nucleocapsid (N protein in vitro. The EMSAs showed full-length N protein to bind to all synthetic single-stranded (ssRNAs tested independent of their sequence. The ssRNAs included (+ and (- sense regions of the GAV genome as well as a (+ sense region of the M RNA segment of Mourilyan virus, a crustacean bunya-like virus. GAV N protein also bound to double-stranded (dsRNAs prepared to GAV ORF1b gene regions and to bacteriophage M13 genomic ssDNA. EMSAs using the five N protein constructs with variable-length N-terminal and/or C-terminal truncations localized the RNA binding domain to a 50 amino acid (aa N-terminal sequence spanning Met(11 to Arg(60. Similarly to other RNA binding proteins, the first 16 aa portion of this sequence was proline/arginine rich. To examine this domain in more detail, the 18 aa peptide (M(11PVRRPLPPQPPRNARLI(29 encompassing this sequence was synthesized and found to bind nucleic acids similarly to the full-length N protein in EMSAs. The data indicate a fundamental role for the GAV N protein proline/arginine-rich domain in nucleating genomic ssRNA to form nucleocapsids. Moreover, as the synthetic peptide formed higher-order complexes in the presence of RNA, the domain might also play some role in protein/protein interactions stabilizing the helical structure of GAV nucleocapsids.

  10. The use of fluorescence microscopy to visualise homotypic interactions of tomato spotted wilt virus nucleocapsid protein in living cells

    NARCIS (Netherlands)

    Snippe, M.; Borst, J.W.; Goldbach, R.W.; Kormelink, R.J.M.

    2005-01-01

    Fluorescence resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) were employed to study homotypic protein¿protein interactions in living cells. To this end, the nucleocapsid (N) protein of tomato spotted wilt virus (TSWV) was expressed as a fusion protein with either

  11. The nucleocapsid protein of measles virus blocks host interferon response

    International Nuclear Information System (INIS)

    Takayama, Ikuyo; Sato, Hiroki; Watanabe, Akira; Omi-Furutani, Mio; Sugai, Akihiro; Kanki, Keita; Yoneda, Misako; Kai, Chieko

    2012-01-01

    Measles virus (MV) belongs to the genus Morbillivirus of the family Paramyxoviridae. A number of paramyxoviruses inhibit host interferon (IFN) signaling pathways in host immune systems by various mechanisms. Inhibition mechanisms have been described for many paramyxoviruses. Although there are inconsistencies among previous reports concerning MV, it appears that P/V/C proteins interfere with the pathways. In this study, we confirmed the effects of MV P gene products of a wild MV strain on IFN pathways and examined that of other viral proteins on it. Interestingly, we found that N protein acts as an IFN-α/β and γ-antagonist as strong as P gene products. We further investigated the mechanisms of MV-N inhibition, and revealed that MV-N blocks the nuclear import of activated STAT without preventing STAT and Jak activation or STAT degradation, and that the nuclear translocation of MV-N is important for the inhibition. The inhibitory effect of the N protein was observed as a common feature of other morbilliviruses. The results presented in this report suggest that N protein of MV as well as P/V/C proteins is involved in the inhibition of host IFN signaling pathways.

  12. The nucleocapsid protein of measles virus blocks host interferon response

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, Ikuyo; Sato, Hiroki; Watanabe, Akira; Omi-Furutani, Mio; Sugai, Akihiro; Kanki, Keita; Yoneda, Misako; Kai, Chieko, E-mail: ckai@ims.u-tokyo.ac.jp

    2012-03-01

    Measles virus (MV) belongs to the genus Morbillivirus of the family Paramyxoviridae. A number of paramyxoviruses inhibit host interferon (IFN) signaling pathways in host immune systems by various mechanisms. Inhibition mechanisms have been described for many paramyxoviruses. Although there are inconsistencies among previous reports concerning MV, it appears that P/V/C proteins interfere with the pathways. In this study, we confirmed the effects of MV P gene products of a wild MV strain on IFN pathways and examined that of other viral proteins on it. Interestingly, we found that N protein acts as an IFN-{alpha}/{beta} and {gamma}-antagonist as strong as P gene products. We further investigated the mechanisms of MV-N inhibition, and revealed that MV-N blocks the nuclear import of activated STAT without preventing STAT and Jak activation or STAT degradation, and that the nuclear translocation of MV-N is important for the inhibition. The inhibitory effect of the N protein was observed as a common feature of other morbilliviruses. The results presented in this report suggest that N protein of MV as well as P/V/C proteins is involved in the inhibition of host IFN signaling pathways.

  13. Antibody study in canine distemper virus nucleocapsid protein gene-immunized mice.

    Science.gov (United States)

    Yuan, B; Li, X Y; Zhu, T; Yuan, L; Hu, J P; Chen, J; Gao, W; Ren, W Z

    2015-04-10

    The gene for the nucleocapsid (N) protein of canine distemper virus was cloned into the pMD-18T vector, and positive recombinant plasmids were obtained by enzyme digestion and sequencing. After digestion by both EcoRI and KpnI, the plasmid was directionally cloned into the eukaryotic expression vector pcDNA; the positive clone pcDNA-N was screened by electrophoresis and then transfected into COS-7 cells. Immunofluorescence analysis results showed that the canine distemper virus N protein was expressed in the cytoplasm of transfected COS-7 cells. After emulsification in Freund's adjuvant, the recombinant plasmid pcDNA-N was injected into the abdominal cavity of 8-week-old BABL/c mice, with the pcDNA original vector used as a negative control. Mice were immunized 3 times every 2 weeks. The blood of immunized mice was drawn 2 weeks after completing the immunizations to measure titer levels. The antibody titer in the pcDNA-N test was 10(1.62 ± 0.164), while in the control group this value was 10(0.52 ± 0.56), indicating that specific humoral immunity was induced in canine distemper virus nucleocapsid protein-immunized mice.

  14. First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses.

    Science.gov (United States)

    Darlix, J L; Lapadat-Tapolsky, M; de Rocquigny, H; Roques, B P

    1995-12-08

    Retroviruses are a family of widespread small animal viruses about 110 nm in diameter, composed of an inner core surrounded by an outer envelope formed of a lipid bilayer of cellular origin in which are anchored viral glycoproteins. The inner core is formed by an outer shell of capsid protein molecules (CA protein) surrounding the dimeric RNA genome in close association with about 2000 molecules of nucleocapsid protein (NC protein) and molecules of reverse transcriptase (RT) and integrase (IN). Conversion of the genomic single-stranded RNA into a double-stranded proviral DNA by RT takes place in the nucleocapsid substructure and involves two DNA strand transfers to generate the long terminal repeats (LTR) required for IN-mediated integration of the proviral DNA into the cellular genome and its expression. In this review we have summarized some of the properties and functions of the nucleocapsid protein of the most intensely studied oncoretroviruses (MuLV and ASLV) and lentiviruses (HIV-1). Recent biochemical and genetic data on retroviral NC proteins have shown that this small viral protein endowed with a strong affinity for nucleic acids exhibits nucleic acid annealing and strand transfer activities and is required for the formation of infectious viral particles. These new activities of NC protein are most probably necessary at the early steps of proviral DNA synthesis. The 3-D structures of HIV-1 and MoMuLV NC proteins, deduced from NMR studies, are characterized by a central globular domain with one (MoMuLV) or two (HIV-1) zinc fingers. This should facilitate a rational approach of new anti-HIV therapies based on inhibition of NC protein functions. Due to space limitations and the very abundant literature on retroviruses, references to articles prior to the publication of the second volume of RNA Tumor Viruses in 1985 (Weiss et al., 1985) will be minimal. We also direct the reader to an excellent review which summarizes recent insights into biochemical and

  15. Profiling of external metabolites during production of hantavirus nucleocapsid protein with recombinant Saccharomyces cerevisiae.

    Science.gov (United States)

    Antoniukas, Linas; Grammel, Hartmut; Sasnauskas, Kestutis; Reichl, Udo

    2008-03-01

    Recombinant strains of Saccharomyces cerevisiae, producing hantavirus Puumala nucleocapsid protein for diagnostics and as a candidate vaccine were analyzed for uptake and excretion of intermediary metabolites during process optimization studies of fed-batch bioreactor cultures. Concentrations of glucose, maltose, galactose, pyruvate, acetaldehyde, ethanol, acetate, succinate and formaldehyde (used as a selection agent) were measured in the culture medium in order to find a metabolite pattern, indicative for the physiological state of the producer culture. When the inducer galactose was employed as a growth substrate, the metabolite profile of recombinant yeast cells was different from those of the non-recombinant original strain which excreted considerable amounts of metabolites with this substrate. In contrast, galactose-induced heterologous gene expression was indicated by the absence of excreted intermediary metabolites, except succinate. A model strain expressing a GFP fusion of hantavirus nucleocapsid protein differed in the excretion of metabolites from strains without GFP. In addition, the influence of alkali ions, employed for pH control is also demonstrated.

  16. Antigenic structure of the nucleocapsid protein of porcine reproductive and respiratory syndrome virus.

    Science.gov (United States)

    Wootton, S K; Nelson, E A; Yoo, D

    1998-11-01

    A collection of 12 monoclonal antibodies (MAbs) raised against porcine reproductive and respiratory syndrome (PRRS) virus was used to study the antigenic structure of the virus nucleocapsid protein (N). The full-length N gene, encoded by open reading frame 7, was cloned from the Canadian PRRS virus, PA-8. Deletions were introduced into the N gene to produce a series of nine overlapping protein fragments ranging in length from 25 to 112 amino acids. The individual truncated genes were cloned as glutathione S-transferase fusions into a eukaryotic expression vector downstream of the T7 RNA polymerase promoter. HeLa cells infected with recombinant vaccinia virus expressing T7 RNA polymerase were transfected with plasmid DNA encoding the N protein fragments, and the antigenicity of the synthesized proteins was analyzed by immunoprecipitation. Based on the immunoreactivities of the N protein deletion mutants with the panel of N-specific MAbs, five domains of antigenic importance were identified. MAbs SDOW17, SR30, and 5H2.3B12.1C9 each identified independent domains defined by amino acids 30 to 52, 69 to 123, and 37 to 52, respectively. Seven of the MAbs tested specifically recognized the local protein conformation formed in part by the amino acid residues 52 to 69. Furthermore, deletion of 11 amino acids from the carboxy terminus of the nucleocapsid protein disrupted the epitope configuration recognized by all of the conformation-dependent MAbs, suggesting that the carboxy-terminal region plays an important role in maintaining local protein conformation.

  17. HIV-1 nucleocapsid protein localizes efficiently to the nucleus and nucleolus

    International Nuclear Information System (INIS)

    Yu, Kyung Lee; Lee, Sun Hee; Lee, Eun Soo; You, Ji Chang

    2016-01-01

    The HIV-1 nucleocapsid (NC) is an essential viral protein containing two highly conserved retroviral-type zinc finger (ZF) motifs, which functions in multiple stages of the HIV-1 life cycle. Although a number of functions for NC either in its mature form or as a domain of Gag have been revealed, little is known about the intracellular localization of NC and, moreover, its role in Gag protein trafficking. Here, we have investigated various forms of HIV-1 NC protein for its cellular localization and found that the NC has a strong nuclear and nucleolar localization activity. The linker region, composed of a stretch of basic amino acids between the two ZF motifs, was necessary and sufficient for the activity. - Highlights: • HIV-1 NC possess a NLS and leads to nuclear and nucleolus localization. • Mutations in basic residues between two ZFs in NC decrease the nucleus localization. • ZFs of NC affect cytoplasmic organelles localization rather than nucleus localization.

  18. Generation of Recombinant Schmallenberg Virus Nucleocapsid Protein in Yeast and Development of Virus-Specific Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Justas Lazutka

    2014-01-01

    Full Text Available Schmallenberg virus (SBV, discovered in continental Europe in late 2011, causes mild clinical signs in adult ruminants, including diarrhoea and reduced milk yield. However, fetal infection can lead to severe malformation in newborn offspring. To develop improved reagents for SBV serology, a high-level yeast expression system was employed to produce recombinant SBV nucleocapsid (N protein. Recombinant SBV N protein was investigated as an antigen in SBV-specific IgG enzyme immunoassay and used for generation of monoclonal antibodies (MAbs. Yeast-expressed SBV N protein was reactive with anti-SBV IgG-positive cow serum specimens collected from different farms of Lithuania. After immunization of mice with recombinant SBV N protein, four MAbs were generated. The MAbs raised against recombinant SBV N protein reacted with native viral nucleocapsids in SBV-infected BHK cells by immunofluorescence assay. The reactivity of recombinant N protein with SBV-positive cow serum specimens and the ability of the MAbs to recognize virus-infected cells confirm the antigenic similarity between yeast-expressed SBV N protein and native viral nucleocapsids. Our study demonstrates that yeast expression system is suitable for high-level production of recombinant SBV N protein and provides the first evidence on the presence of SBV-specific antibodies in cow serum specimens collected in Lithuania.

  19. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling.

    Science.gov (United States)

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-03-07

    Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. A spatio-temporal analysis of matrix protein and nucleocapsid trafficking during vesicular stomatitis virus uncoating.

    Directory of Open Access Journals (Sweden)

    Chad E Mire

    2010-07-01

    Full Text Available To study VSV entry and the fate of incoming matrix (M protein during virus uncoating we used recombinant viruses encoding M proteins with a C-terminal tetracysteine tag that could be fluorescently labeled using biarsenical (Lumio compounds. We found that uncoating occurs early in the endocytic pathway and is inhibited by expression of dominant-negative (DN Rab5, but is not inhibited by DN-Rab7 or DN-Rab11. Uncoating, as defined by the separation of nucleocapsids from M protein, occurred between 15 and 20 minutes post-entry and did not require microtubules or an intact actin cytoskeleton. Unexpectedly, the bulk of M protein remained associated with endosomal membranes after uncoating and was eventually trafficked to recycling endosomes. Another small, but significant fraction of M distributed to nuclear pore complexes, which was also not dependent on microtubules or polymerized actin. Quantification of fluorescence from high-resolution confocal micrographs indicated that after membrane fusion, M protein diffuses across the endosomal membrane with a concomitant increase in fluorescence from the Lumio label which occurred soon after the release of RNPs into the cytoplasm. These data support a new model for VSV uncoating in which RNPs are released from M which remains bound to the endosomal membrane rather than the dissociation of M protein from RNPs after release of the complex into the cytoplasm following membrane fusion.

  1. Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization.

    Science.gov (United States)

    Ariza, Antonio; Tanner, Sian J; Walter, Cheryl T; Dent, Kyle C; Shepherd, Dale A; Wu, Weining; Matthews, Susan V; Hiscox, Julian A; Green, Todd J; Luo, Ming; Elliott, Richard M; Fooks, Anthony R; Ashcroft, Alison E; Stonehouse, Nicola J; Ranson, Neil A; Barr, John N; Edwards, Thomas A

    2013-06-01

    All orthobunyaviruses possess three genome segments of single-stranded negative sense RNA that are encapsidated with the virus-encoded nucleocapsid (N) protein to form a ribonucleoprotein (RNP) complex, which is uncharacterized at high resolution. We report the crystal structure of both the Bunyamwera virus (BUNV) N-RNA complex and the unbound Schmallenberg virus (SBV) N protein, at resolutions of 3.20 and 2.75 Å, respectively. Both N proteins crystallized as ring-like tetramers and exhibit a high degree of structural similarity despite classification into different orthobunyavirus serogroups. The structures represent a new RNA-binding protein fold. BUNV N possesses a positively charged groove into which RNA is deeply sequestered, with the bases facing away from the solvent. This location is highly inaccessible, implying that RNA polymerization and other critical base pairing events in the virus life cycle require RNP disassembly. Mutational analysis of N protein supports a correlation between structure and function. Comparison between these crystal structures and electron microscopy images of both soluble tetramers and authentic RNPs suggests the N protein does not bind RNA as a repeating monomer; thus, it represents a newly described architecture for bunyavirus RNP assembly, with implications for many other segmented negative-strand RNA viruses.

  2. Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization

    Science.gov (United States)

    Ariza, Antonio; Tanner, Sian J.; Walter, Cheryl T.; Dent, Kyle C.; Shepherd, Dale A.; Wu, Weining; Matthews, Susan V.; Hiscox, Julian A.; Green, Todd J.; Luo, Ming; Elliott, Richard M.; Fooks, Anthony R.; Ashcroft, Alison E.; Stonehouse, Nicola J.; Ranson, Neil A.; Barr, John N.; Edwards, Thomas A.

    2013-01-01

    All orthobunyaviruses possess three genome segments of single-stranded negative sense RNA that are encapsidated with the virus-encoded nucleocapsid (N) protein to form a ribonucleoprotein (RNP) complex, which is uncharacterized at high resolution. We report the crystal structure of both the Bunyamwera virus (BUNV) N–RNA complex and the unbound Schmallenberg virus (SBV) N protein, at resolutions of 3.20 and 2.75 Å, respectively. Both N proteins crystallized as ring-like tetramers and exhibit a high degree of structural similarity despite classification into different orthobunyavirus serogroups. The structures represent a new RNA-binding protein fold. BUNV N possesses a positively charged groove into which RNA is deeply sequestered, with the bases facing away from the solvent. This location is highly inaccessible, implying that RNA polymerization and other critical base pairing events in the virus life cycle require RNP disassembly. Mutational analysis of N protein supports a correlation between structure and function. Comparison between these crystal structures and electron microscopy images of both soluble tetramers and authentic RNPs suggests the N protein does not bind RNA as a repeating monomer; thus, it represents a newly described architecture for bunyavirus RNP assembly, with implications for many other segmented negative-strand RNA viruses. PMID:23595147

  3. Production of hantavirus Puumala nucleocapsid protein in Saccharomyces cerevisiae for vaccine and diagnostics.

    Science.gov (United States)

    Antoniukas, L; Grammel, H; Reichl, U

    2006-07-13

    The production of hantavirus Puumala nucleocapsid (N) protein for potential applications as a vaccine and for diagnostic purposes was investigated with Saccharomyces cerevisiae as a recombinant host. The N protein gene and the hexahistidine tagged N (h-N) protein gene were expressed intracellular from a 2-microm plasmid vectors under the control of a fused galactose inducible GAL10-PYK promoter. For monitoring the recombinant gene expression, a h-N and a GFP fusion protein was used. Different cultivation strategies and growth media compositions were tested in shake flasks and a 5 l bioreactor. When using defined YNB growth medium, we found the biomass yield to be unsatisfactorily low. Higher concentrated YNB medium, promoted cell growth but showed a pronounced inhibitory effect on heterologous gene expression. This phenomenon could not be attributed to plasmid losses, as we could demonstrate high stability of the vector under the applied cultivation conditions. Supplementation of YNB medium with extracts of plant origin resulted in increased biomass yields with concomitant high expression levels of the recombinant gene. The modified medium was used for fed-batch cultivations where basic metabolic features as well as growth parameters were determined in addition to recombinant gene expression. The maximal volumetric yield of N protein was 316 mg l(-1), the respective yield of h-N protein was 284 mg l(-1). Our study provides a basis for large-scale production of hantavirus vaccines, which satisfies economic efficiency as well as biosafety regulations for human applications.

  4. Mechanisms of HIV-1 Nucleocapsid Protein Inhibition by Lysyl-Peptidyl-Anthraquinone Conjugates.

    Science.gov (United States)

    Sosic, Alice; Sinigaglia, Laura; Cappellini, Marta; Carli, Ilaria; Parolin, Cristina; Zagotto, Giuseppe; Sabatino, Giuseppina; Rovero, Paolo; Fabris, Dan; Gatto, Barbara

    2016-01-20

    The Nucleocapsid protein NCp7 (NC) is a nucleic acid chaperone responsible for essential steps of the HIV-1 life cycle and an attractive candidate for drug development. NC destabilizes nucleic acid structures and promotes the formation of annealed substrates for HIV-1 reverse transcription elongation. Short helical nucleic acid segments bordered by bulges and loops, such as the Trans-Activation Response element (TAR) of HIV-1 and its complementary sequence (cTAR), are nucleation elements for helix destabilization by NC and also preferred recognition sites for threading intercalators. Inspired by these observations, we have recently demonstrated that 2,6-disubstituted peptidyl-anthraquinone-conjugates inhibit the chaperone activities of recombinant NC in vitro, and that inhibition correlates with the stabilization of TAR and cTAR stem-loop structures. We describe here enhanced NC inhibitory activity by novel conjugates that exhibit longer peptidyl chains ending with a conserved N-terminal lysine. Their efficient inhibition of TAR/cTAR annealing mediated by NC originates from the combination of at least three different mechanisms, namely, their stabilizing effects on nucleic acids dynamics by threading intercalation, their ability to target TAR RNA substrate leading to a direct competition with the protein for the same binding sites on TAR, and, finally, their effective binding to the NC protein. Our results suggest that these molecules may represent the stepping-stone for the future development of NC-inhibitors capable of targeting the protein itself and its recognition site in RNA.

  5. Nucleocapsid Protein from Fig Mosaic Virus Forms Cytoplasmic Agglomerates That Are Hauled by Endoplasmic Reticulum Streaming

    Science.gov (United States)

    Ishikawa, Kazuya; Miura, Chihiro; Maejima, Kensaku; Komatsu, Ken; Hashimoto, Masayoshi; Tomomitsu, Tatsuya; Fukuoka, Misato; Yusa, Akira; Yamaji, Yasuyuki

    2014-01-01

    ABSTRACT Although many studies have demonstrated intracellular movement of viral proteins or viral replication complexes, little is known about the mechanisms of their motility. In this study, we analyzed the localization and motility of the nucleocapsid protein (NP) of Fig mosaic virus (FMV), a negative-strand RNA virus belonging to the recently established genus Emaravirus. Electron microscopy of FMV-infected cells using immunogold labeling showed that NPs formed cytoplasmic agglomerates that were predominantly enveloped by the endoplasmic reticulum (ER) membrane, while nonenveloped NP agglomerates also localized along the ER. Likewise, transiently expressed NPs formed agglomerates, designated NP bodies (NBs), in close proximity to the ER, as was the case in FMV-infected cells. Subcellular fractionation and electron microscopic analyses of NP-expressing cells revealed that NBs localized in the cytoplasm. Furthermore, we found that NBs moved rapidly with the streaming of the ER in an actomyosin-dependent manner. Brefeldin A treatment at a high concentration to disturb the ER network configuration induced aberrant accumulation of NBs in the perinuclear region, indicating that the ER network configuration is related to NB localization. Dominant negative inhibition of the class XI myosins, XI-1, XI-2, and XI-K, affected both ER streaming and NB movement in a similar pattern. Taken together, these results showed that NBs localize in the cytoplasm but in close proximity to the ER membrane to form enveloped particles and that this causes passive movements of cytoplasmic NBs by ER streaming. IMPORTANCE Intracellular trafficking is a primary and essential step for the cell-to-cell movement of viruses. To date, many studies have demonstrated the rapid intracellular movement of viral factors but have failed to provide evidence for the mechanism or biological significance of this motility. Here, we observed that agglomerates of nucleocapsid protein (NP) moved rapidly

  6. Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein

    OpenAIRE

    Theo Luiz Ferraz de Souza; Sheila Maria Barbosa de Lima; Vanessa L. de Azevedo Braga; David S. Peabody; Davis Fernandes Ferreira; M. Lucia Bianconi; Andre Marco de Oliveira Gomes; Jerson Lima Silva; Andréa Cheble de Oliveira

    2016-01-01

    Background Hepatitis C virus (HCV) core protein, in addition to its structural role to form the nucleocapsid assembly, plays a critical role in HCV pathogenesis by interfering in several cellular processes, including microRNA and mRNA homeostasis. The C-terminal truncated HCV core protein (C124) is intrinsically unstructured in solution and is able to interact with unspecific nucleic acids, in the micromolar range, and to assemble into nucleocapsid-like particles (NLPs) in vitro. The specific...

  7. Identification of novel 2-benzoxazolinone derivatives with specific inhibitory activity against the HIV-1 nucleocapsid protein.

    Science.gov (United States)

    Gamba, Elia; Mori, Mattia; Kovalenko, Lesia; Giannini, Alessia; Sosic, Alice; Saladini, Francesco; Fabris, Dan; Mély, Yves; Gatto, Barbara; Botta, Maurizio

    2018-02-10

    In this report, we present a new benzoxazole derivative endowed with inhibitory activity against the HIV-1 nucleocapsid protein (NC). NC is a 55-residue basic protein with nucleic acid chaperone properties, which has emerged as a novel and potential pharmacological target against HIV-1. In the pursuit of novel NC-inhibitor chemotypes, we performed virtual screening and in vitro biological evaluation of a large library of chemical entities. We found that compounds sharing a benzoxazolinone moiety displayed putative inhibitory properties, which we further investigated by considering a series of chemical analogues. This approach provided valuable information on the structure-activity relationships of these compounds and, in the process, demonstrated that their anti-NC activity could be finely tuned by the addition of specific substituents to the initial benzoxazolinone scaffold. This study represents the starting point for the possible development of a new class of antiretroviral agents targeting the HIV-1 NC protein. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Recombinant Protein-Based Assays for Detection of Antibodies to Severe Acute Respiratory Syndrome Coronavirus Spike and Nucleocapsid Proteins▿

    Science.gov (United States)

    Haynes, Lia M.; Miao, Congrong; Harcourt, Jennifer L.; Montgomery, Joel M.; Le, Mai Quynh; Dryga, Sergey A.; Kamrud, Kurt I.; Rivers, Bryan; Babcock, Gregory J.; Oliver, Jennifer Betts; Comer, James A.; Reynolds, Mary; Uyeki, Timothy M.; Bausch, Daniel; Ksiazek, Thomas; Thomas, William; Alterson, Harold; Smith, Jonathan; Ambrosino, Donna M.; Anderson, Larry J.

    2007-01-01

    Recombinant severe acute respiratory syndrome (SARS) nucleocapsid and spike protein-based immunoglobulin G immunoassays were developed and evaluated. Our assays demonstrated high sensitivity and specificity to the SARS coronavirus in sera collected from patients as late as 2 years postonset of symptoms. These assays will be useful not only for routine SARS coronavirus diagnostics but also for epidemiological and antibody kinetic studies. PMID:17229882

  9. Reactivity of the HIV-1 nucleocapsid protein p7 zinc finger domains from the perspective of density-functional theory

    OpenAIRE

    Maynard, A. T.; Huang, M.; Rice, W. G.; Covell, D. G.

    1998-01-01

    The reaction of the human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein p7 (NCp7) with a variety of electrophilic agents was investigated by experimental measurements of Trp37 fluorescence decay and compared with theoretical measures of reactivity based on density-functional theory in the context of the hard and soft acids and bases principle. Statistically significant correlations were found between rates of reaction and the ability of these agents to function as soft electrophi...

  10. Identification of Rift Valley Fever Virus Nucleocapsid Protein-RNA Binding Inhibitors Using a High-Throughput Screening Assay

    OpenAIRE

    Ellenbecker, Mary; Lanchy, Jean-Marc; Lodmell, J. Stephen

    2012-01-01

    Rift Valley fever virus (RVFV) is an emerging infectious pathogen that causes severe disease in humans and livestock and has the potential for global spread. Currently, there is no proven effective treatment for RVFV infection and there is no licensed vaccine. Inhibition of RNA binding to the essential viral nucleocapsid (N) protein represents a potential anti-viral therapeutic strategy because all of the functions performed by N during infection involve RNA binding. To target this interactio...

  11. Intrinsic nucleic acid dynamics modulates HIV-1 nucleocapsid protein binding to its targets.

    Directory of Open Access Journals (Sweden)

    Ali Bazzi

    Full Text Available HIV-1 nucleocapsid protein (NC is involved in the rearrangement of nucleic acids occurring in key steps of reverse transcription. The protein, through its two zinc fingers, interacts preferentially with unpaired guanines in single-stranded sequences. In mini-cTAR stem-loop, which corresponds to the top half of the cDNA copy of the transactivation response element of the HIV-1 genome, NC was found to exhibit a clear preference for the TGG sequence at the bottom of mini-cTAR stem. To further understand how this site was selected among several potential binding sites containing unpaired guanines, we probed the intrinsic dynamics of mini-cTAR using (13C relaxation measurements. Results of spin relaxation time measurements have been analyzed using the model-free formalism and completed by dispersion relaxation measurements. Our data indicate that the preferentially recognized guanine in the lower part of the stem is exempt of conformational exchange and highly mobile. In contrast, the unrecognized unpaired guanines of mini-cTAR are involved in conformational exchange, probably related to transient base-pairs. These findings support the notion that NC preferentially recognizes unpaired guanines exhibiting a high degree of mobility. The ability of NC to discriminate between close sequences through their dynamic properties contributes to understanding how NC recognizes specific sites within the HIV genome.

  12. Intrinsic Nucleic Acid Dynamics Modulates HIV-1 Nucleocapsid Protein Binding to Its Targets

    Science.gov (United States)

    Bazzi, Ali; Zargarian, Loussiné; Chaminade, Françoise; De Rocquigny, Hugues; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2012-01-01

    HIV-1 nucleocapsid protein (NC) is involved in the rearrangement of nucleic acids occurring in key steps of reverse transcription. The protein, through its two zinc fingers, interacts preferentially with unpaired guanines in single-stranded sequences. In mini-cTAR stem-loop, which corresponds to the top half of the cDNA copy of the transactivation response element of the HIV-1 genome, NC was found to exhibit a clear preference for the TGG sequence at the bottom of mini-cTAR stem. To further understand how this site was selected among several potential binding sites containing unpaired guanines, we probed the intrinsic dynamics of mini-cTAR using 13C relaxation measurements. Results of spin relaxation time measurements have been analyzed using the model-free formalism and completed by dispersion relaxation measurements. Our data indicate that the preferentially recognized guanine in the lower part of the stem is exempt of conformational exchange and highly mobile. In contrast, the unrecognized unpaired guanines of mini-cTAR are involved in conformational exchange, probably related to transient base-pairs. These findings support the notion that NC preferentially recognizes unpaired guanines exhibiting a high degree of mobility. The ability of NC to discriminate between close sequences through their dynamic properties contributes to understanding how NC recognizes specific sites within the HIV genome. PMID:22745685

  13. Parental influenza virion nucleocapsids are efficiently transported into the nuclei of murine cells expressing the nuclear interferon-induced Mx protein.

    OpenAIRE

    Broni, B; Julkunen, I; Condra, J H; Davies, M E; Berry, M J; Krug, R M

    1990-01-01

    The interferon-induced murine Mx1 protein, which is localized in the nucleus, most likely specifically blocks influenza virus replication by inhibiting nuclear viral mRNA synthesis, including the mRNA synthesis catalyzed by inoculum (parental) virion nucleocapsids (R. M. Krug, M. Shaw, B. Broni, G. Shapiro, and O. Haller, J. Virol. 56:201-206, 1985). We tested two possible mechanisms for this inhibition. First, we determined whether the transport of parental nucleocapsids into the nucleus was...

  14. Identification of a High Affinity Nucleocapsid Protein Binding Element from The Bovine Leukemia Virus Genome

    Science.gov (United States)

    Yildiz, F. Zehra; Babalola, Kathleen; Summers, Michael F.

    2012-01-01

    Retroviral genome recognition is mediated by interactions between the nucleocapsid (NC) domain of the virally encoded Gag polyprotein and cognate RNA packaging elements that, for most retroviruses, appear to reside primarily within the 5′-untranslated region (5′-UTR) of the genome. Recent studies suggest that a major packaging determinant of Bovine Leukemia Virus (BLV), a member of the human T-cell leukemia virus (HTLV)/BLV family and a non-primate animal model for HTLV-induced leukemogenesis, resides within the gag open reading frame. We have prepared and purified the recombinant BLV NC protein and conducted electrophoretic mobility shift and isothermal titration calorimetry studies with RNA fragments corresponding to these proposed packaging elements. The gag-derived RNAs did not exhibit significant affinity for NC, suggesting an alternate role in packaging. However, an 83-nucleotide fragment of the 5′-UTR that resides just upstream of the gag start codon binds NC stoichiometrically and with high affinity (Kd = 136 ± 21 nM). These nucleotides were predicted to form tandem hairpin structures, and studies with smaller fragments indicate that the NC binding site resides exclusively within the distal hairpin (residues G369- U399, Kd = 67 ± 8 nM at physiological ionic strength). Unlike all other structurally characterized retroviral NC binding RNAs, this fragment is not expected to contain exposed guanosines, suggesting that RNA binding may be mediated by a previously uncharacterized mechanism. PMID:22846919

  15. Roles of TNF-α gene polymorphisms in the occurrence and progress of SARS-Cov infection: A case-control study

    Directory of Open Access Journals (Sweden)

    Su Bing

    2008-02-01

    Full Text Available Abstract Background Host genetic factors may play a role in the occurrence and progress of SARS-Cov infection. This study was to investigate the relationship between tumor necrosis factor (TNF-α gene polymorphisms with the occurrence of SARS-CoV infection and its role in prognosis of patients with lung interstitial fibrosis and femoral head osteonecrosis. Methods The association between genetic polymorphisms of TNF-α gene and susceptibility to severe acute respiratory syndromes (SARS was conducted in a hospital-based case-control study including 75 SARS patients, 41 health care workers and 92 healthy controls. Relationships of TNF-α gene polymorphisms with interstitial lung fibrosis and femoral head osteonecrosis were carried out in two case-case studies in discharged SARS patients. PCR sequencing based typing (PCR-SBT method was used to determine the polymorphisms of TNF-α gene in locus of the promoter region and univariate logistic analysis was conducted in analyzing the collected data. Results Compared to TT genotype, the CT genotype at the -204 locus was found associated with a protective effect on SARS with OR(95%CI of 0.95(0.90–0.99. Also, TT genotype, CT and CC were found associated with a risk effect on femoral head necrosis with ORs(95%CI of 5.33(1.39–20.45 and 5.67(2.74–11.71, respectively and the glucocorticoid adjusted OR of CT was 5.25(95%CI 1.18–23.46 and the combined (CT and CC genotype OR was 6.0 (95%CI 1.60–22.55 at -1031 site of TNF-α gene. At the same time, the -863 AC genotype was manifested as another risk effect associated with femoral head necrosis with OR(95%CI of 6.42(1.53–26.88 and the adjusted OR was 8.40(95%CI 1.76–40.02 in cured SARS patients compared to CC genotype. Conclusion SNPs of TNF-α gene of promoter region may not associate with SARS-CoV infection. And these SNPs may not affect interstitial lung fibrosis in cured SARS patients. However, the -1031CT/CC and -863 AC genotypes may be risk

  16. Recombinant human immunodeficiency virus type 1 nucleocapsid (NCp7) protein unwinds tRNA.

    Science.gov (United States)

    Khan, R; Giedroc, D P

    1992-04-05

    The nucleocapsid protein (NC) of all animal retroviruses, encoded by the gag gene, is the major structural protein of the core ribonucleoprotein complex, bound to genomic RNA in mature virions. NC is also thought to play one or more accessory roles in reverse transcription. Mature NC (p7NC) from human immunodeficiency virus type 1 (HIV-1) is a 71-amino acid, basic protein which contains two Cys3His Zn(II) retroviral-type zinc finger domains. Herein, we describe the subcloning and expression of HIV-1 NC, denoted NC71, from an inducible phage T7 RNA polymerase promoter in Escherichia coli. Purified NC71 can be reversibly reconstituted with 2 g.at Zn(II) determined by atomic absorption. Ultraviolet circulation dichroism spectroscopy has been used to characterize the complexes between highly purified NC71 and the RNA homopolynucleotide poly(A) and E. coli tRNA(mixed). On poly(A), Zn2 NC71 is characterized by an apparent site size n = 15 +/- 3 nucleotides and high affinity (Kapp = 3 x 10(7) M-1) and moderately cooperative (omega approximately 170 +/- 25) binding. A mixture of E. coli tRNA species (tRNA(mixed) was used to probe the conformational changes induced in tRNA upon binding of HIV-1 NC71. Two structural forms of tRNA(mixed), which differ in their degree of tertiary structure, were assayed for their susceptibility to denaturation by NC71. Five molar monomer equivalents of NC71 are required to denature the "inactive" tRNA in the absence of Mg2+. A Zn(II)-free, oxidized form of NC71 was also shown to unwind inactive tRNA with the same efficiency and stoichiometry. The detailed spectral changes which occur on NC-induced denaturation closely mimic temperature-induced denaturation of inactive tRNA(mixed). The prototype helix-destabilizing protein, T4 gene 32 protein, is unable to unwind this form of tRNA under the same conditions. The stoichiometry of unwinding of inactive tRNA by NC71 is consistent with the site size determined with poly(A). An "active" form of t

  17. Mutations in human immunodeficiency virus type 1 nucleocapsid protein zinc fingers cause premature reverse transcription.

    Science.gov (United States)

    Thomas, James A; Bosche, William J; Shatzer, Teresa L; Johnson, Donald G; Gorelick, Robert J

    2008-10-01

    Human immunodeficiency virus type 1 (HIV-1) requires that its genome be reverse transcribed into double-stranded DNA for productive infection of cells. This process requires not only reverse transcriptase but also the nucleocapsid protein (NC), which functions as a nucleic acid chaperone. Reverse transcription generally begins once the core of the virion enters the cytoplasm of a newly infected cell. However, some groups have reported the presence of low levels of viral DNA (vDNA) within particles prior to infection, the significance and function of which is controversial. We report here that several HIV-1 NC mutants, which we previously identified as being replication defective, contain abnormally high levels of intravirion DNA. These findings were further reinforced by the inability of these NC mutants to perform endogenous reverse transcription (ERT), in contrast to the readily measurable ERT activity in wild-type HIV-1. When either of the NC mutations is combined with a mutation that inactivates the viral protease, we observed a significant reduction in the amount of intravirion DNA. Interestingly, we also observed high levels of intravirion DNA in the context of wild-type NC when we delayed budding by means of a PTAP((-)) (Pro-Thr-Ala-Pro) mutation. Premature reverse transcription is most probably occurring before these mutant virions bud from producer cells, but we fail to see any evidence that the NC mutations alter the timing of Pr55(Gag) processing. Critically, our results also suggest that the presence of intravirion vDNA could serve as a diagnostic for identifying replication-defective HIV-1.

  18. Bovine leukemia virus nucleocapsid protein is an efficient nucleic acid chaperone

    International Nuclear Information System (INIS)

    Qualley, Dominic F.; Sokolove, Victoria L.; Ross, James L.

    2015-01-01

    Nucleocapsid proteins (NCs) direct the rearrangement of nucleic acids to form the most thermodynamically stable structure, and facilitate many steps throughout the life cycle of retroviruses. NCs bind strongly to nucleic acids (NAs) and promote NA aggregation by virtue of their cationic nature; they also destabilize the NA duplex via highly structured zinc-binding motifs. Thus, they are considered to be NA chaperones. While most retroviral NCs are structurally similar, differences are observed both within and between retroviral genera. In this work, we compare the NA binding and chaperone activity of bovine leukemia virus (BLV) NC to that of two other retroviral NCs: human immunodeficiency virus type 1 (HIV-1) NC, which is structurally similar to BLV NC but from a different retrovirus genus, and human T-cell leukemia virus type 1 (HTLV-1) NC, which possesses several key structural differences from BLV NC but is from the same genus. Our data show that BLV and HIV-1 NCs bind to NAs with stronger affinity in relation to HTLV-1 NC, and that they also accelerate the annealing of complementary stem-loop structures to a greater extent. Analysis of kinetic parameters derived from the annealing data suggests that while all three NCs stimulate annealing by a two-step mechanism as previously reported, the relative contributions of each step to the overall annealing equilibrium are conserved between BLV and HIV-1 NCs but are different for HTLV-1 NC. It is concluded that while BLV and HTLV-1 belong to the same genus of retroviruses, processes that rely on NC may not be directly comparable. - Highlights: • BLV NC binds strongly to DNA and RNA. • BLV NC promotes mini-TAR annealing as well as HIV-1 NC. • Annealing kinetics suggest a low degree of similarity between BLV NC and HTLV-1 NC

  19. Parental influenza virion nucleocapsids are efficiently transported into the nuclei of murine cells expressing the nuclear interferon-induced Mx protein.

    Science.gov (United States)

    Broni, B; Julkunen, I; Condra, J H; Davies, M E; Berry, M J; Krug, R M

    1990-12-01

    The interferon-induced murine Mx1 protein, which is localized in the nucleus, most likely specifically blocks influenza virus replication by inhibiting nuclear viral mRNA synthesis, including the mRNA synthesis catalyzed by inoculum (parental) virion nucleocapsids (R. M. Krug, M. Shaw, B. Broni, G. Shapiro, and O. Haller, J. Virol. 56:201-206, 1985). We tested two possible mechanisms for this inhibition. First, we determined whether the transport of parental nucleocapsids into the nucleus was inhibited in murine cells expressing the nuclear Mx1 protein. To detect the Mx1 protein, we prepared rabbit antibodies against the Mx1 protein with a CheY-Mx fusion protein expressed in bacteria. The fate of parental nucleocapsids was monitored by immunofluorescence with an appropriate dilution of monoclonal antibody to the nucleocapsid protein. The protein synthesis inhibitor anisomycin was added to the cells 30 min prior to infection, so that the only nucleocapsids protein molecules in the cells were those associated with nucleocapsids of the parental virus. These nucleocapsids were efficiently transported into the nuclei of murine cells expressing the Mx1 protein, indicating that this protein most likely acts after the parental nucleocapsids enter the nucleus. The second possibility was that the murine Mx1 protein might act in the nucleus to inhibit viral mRNA synthesis indirectly via new cap-binding activities that sequestered cellular capped RNAs away from the viral RNA transcriptase. We show that the same array of nuclear cap-binding proteins was present in Mx-positive and Mx-negative cells treated with interferon. Interestingly, a large amount of a 43-kDa cap-binding activity appeared after interferon treatment of both Mx-positive and Mx-negative cells. Hence, the appearance of new cap-binding activities was unlikely to account for the Mx-specific inhibition of viral mRNA synthesis. These results are most consistent with the possibility that the Mx1 protein acts

  20. Crimean-Congo Hemorrhagic Fever Virus Nucleocapsid Protein Augments mRNA Translation.

    Science.gov (United States)

    Jeeva, Subbiah; Cheng, Erdong; Ganaie, Safder S; Mir, Mohammad A

    2017-08-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne Nairovirus of the Bunyaviridae family, causing severe illness with high mortality rates in humans. Here, we demonstrate that CCHFV nucleocapsid protein (CCHFV-NP) augments mRNA translation. CCHFV-NP binds to the viral mRNA 5' untranslated region (UTR) with high affinity. It facilitates the translation of reporter mRNA both in vivo and in vitro with the assistance of the viral mRNA 5' UTR. CCHFV-NP equally favors the translation of both capped and uncapped mRNAs, demonstrating the independence of this translation strategy on the 5' cap. Unlike the canonical host translation machinery, inhibition of eIF4F complex, an amalgam of three initiation factors, eIF4A, eIF4G, and eIF4E, by the chemical inhibitor 4E1RCat did not impact the CCHFV-NP-mediated translation mechanism. However, the proteolytic degradation of eIF4G alone by the human rhinovirus 2A protease abrogated this translation strategy. Our results demonstrate that eIF4F complex formation is not required but eIF4G plays a critical role in this translation mechanism. Our results suggest that CCHFV has adopted a unique translation mechanism to facilitate the translation of viral mRNAs in the host cell cytoplasm where cellular transcripts are competing for the same translation apparatus. IMPORTANCE Crimean-Congo hemorrhagic fever, a highly contagious viral disease endemic to more than 30 countries, has limited treatment options. Our results demonstrate that NP favors the translation of a reporter mRNA harboring the viral mRNA 5' UTR. It is highly likely that CCHFV uses an NP-mediated translation strategy for the rapid synthesis of viral proteins during the course of infection. Shutdown of this translation mechanism might selectively impact viral protein synthesis, suggesting that an NP-mediated translation strategy is a target for therapeutic intervention against this viral disease. Copyright © 2017 American Society for Microbiology.

  1. Single aromatic residue location alters nucleic acid binding and chaperone function of FIV nucleocapsid protein

    Science.gov (United States)

    Wu, Hao; Wang, Wei; Naiyer, Nada; Fichtenbaum, Eric; Qualley, Dominic F.; McCauley, Micah J.; Gorelick, Robert J.; Rouzina, Ioulia; Musier-Forsyth, Karin; Williams, Mark C.

    2014-01-01

    Feline immunodeficiency virus (FIV) is a retrovirus that infects domestic cats, and is an excellent animal model for human immunodeficiency virus type 1 (HIV-1) pathogenesis. The nucleocapsid (NC) protein is critical for replication in both retroviruses. FIV NC has several structural features that differ from HIV-1 NC. While both NC proteins have a single conserved aromatic residue in each of the two zinc fingers, the aromatic residue on the second finger of FIV NC is located on the opposite C-terminal side relative to its location in HIV-1 NC. In addition, whereas HIV-1 NC has a highly charged cationic N-terminal tail and a relatively short C-terminal extension, the opposite is true for FIV NC. To probe the impact of these differences on the nucleic acid (NA) binding and chaperone properties of FIV NC, we carried out ensemble and single-molecule assays with wild-type (WT) and mutant proteins. The ensemble studies show that FIV NC binding to DNA is strongly electrostatic, with a higher effective charge than that observed for HIV-1 NC. The C-terminal basic domain contributes significantly to the NA binding capability of FIV NC. In addition, the non-electrostatic component of DNA binding is much weaker for FIV NC than for HIV-1 NC. Mutation of both aromatic residues in the zinc fingers to Ala (F12A/W44A) further increases the effective charge of FIV NC and reduces its non-electrostatic binding affinity. Interestingly, switching the location of the C-terminal aromatic residue to mimic the HIV-1 NC sequence (N31W/W44A) reduces the effective charge of FIV NC and increases its non-electrostatic binding affinity to values similar to HIV-1 NC. Consistent with the results of these ensemble studies, single-molecule DNA stretching studies show that while WT FIV NC has reduced stacking capability relative to HIV-1 NC, the aromatic switch mutant recovers the ability to intercalate between the DNA bases. Our results demonstrate that altering the position of a single aromatic

  2. Effect of the HIV-1 nucleocapsid protein on reverse transcriptase pause sites revealed by single molecule microscopy

    Science.gov (United States)

    Jouonang, A.; Przybilla, F.; Godet, J.; Sharma, K. K.; Restlé, T.; de Rocquigny, H.; Darlix, J.-L.; Kenfack, C.; Didier, P.; Mély, Y.

    2013-02-01

    During reverse transcription, the HIV-1 RNA is converted by the reverse transcriptase (RT) into proviral DNA. RT is assisted by the HIV-1 nucleocapsid (NCp7) protein that notably increases the ability of RT to synthesize DNA through pause sites. Using single molecule FRET, we monitored the NCp7 effect on the binding of RT to nucleic acid sequences corresponding to two different pause sites. NCp7 was found to modify the distribution of RT orientations on the oligonucleotides and decrease the residence time of RT on one of the pause sites. These results give direct insight into the NCp7 molecular mechanism in reverse transcription.

  3. Mass Spectrometry Analysis Coupled with de novo Sequencing Reveals Amino Acid Substitutions in Nucleocapsid Protein from Influenza A Virus

    Directory of Open Access Journals (Sweden)

    Zijian Li

    2014-02-01

    Full Text Available Amino acid substitutions in influenza A virus are the main reasons for both antigenic shift and virulence change, which result from non-synonymous mutations in the viral genome. Nucleocapsid protein (NP, one of the major structural proteins of influenza virus, is responsible for regulation of viral RNA synthesis and replication. In this report we used LC-MS/MS to analyze tryptic digestion of nucleocapsid protein of influenza virus (A/Puerto Rico/8/1934 H1N1, which was isolated and purified by SDS poly-acrylamide gel electrophoresis. Thus, LC-MS/MS analyses, coupled with manual de novo sequencing, allowed the determination of three substituted amino acid residues R452K, T423A and N430T in two tryptic peptides. The obtained results provided experimental evidence that amino acid substitutions resulted from non-synonymous gene mutations could be directly characterized by mass spectrometry in proteins of RNA viruses such as influenza A virus.

  4. Intracellular Localization of the Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein: Absence of Nucleolar Accumulation during Infection and after Expression as a Recombinant Protein in Vero Cells

    OpenAIRE

    Rowland, Raymond R. R.; Chauhan, Vinita; Fang, Ying; Pekosz, Andrew; Kerrigan, Maureen; Burton, Miriam D.

    2005-01-01

    The nucleocapsid (N) protein of several members within the order Nidovirales localizes to the nucleolus during infection and after transfection of cells with N genes. However, confocal microscopy of N protein localization in Vero cells infected with the severe acute respiratory syndrome coronavirus (SARS-CoV) or transfected with the SARS-CoV N gene failed to show the presence of N in the nucleoplasm or nucleolus. Amino acids 369 to 389, which contain putative nuclear localization signal (NLS)...

  5. Molecular characterisation of the nucleocapsid protein gene, glycoprotein gene and gene junctions of rhabdovirus 903/87, a novel fish pathogenic rhabdovirus

    DEFF Research Database (Denmark)

    Johansson, Tove; Nylund, S.; Olesen, Niels Jørgen

    2001-01-01

    The sequences of the nucleocapsid and glycoprotein genes and the gene junctions of the fish pathogenic rhabdovirus 903/87 were determined from cDNA and PCR clones. The mRNA of the nucleocapsid is most likely 1492 nucleotides long and encodes a protein of 426 amino acids, whereas the mRNA of the g......The sequences of the nucleocapsid and glycoprotein genes and the gene junctions of the fish pathogenic rhabdovirus 903/87 were determined from cDNA and PCR clones. The mRNA of the nucleocapsid is most likely 1492 nucleotides long and encodes a protein of 426 amino acids, whereas the m......, M, G and L genes it was determined that transcription start and stop codons were conserved between virus 903/87 and the vesiculo viruses. Virus 903/87 has no open reading frame coding for a non-virion gene between the glycoprotein and the polymerase gene. Phylogenetic studies based on rhabdovirus...... nucleocapsid and glycoprotein genes suggested that virus 903/87 is related to viruses in the Vesiculovirus genus....

  6. A model for the dynamic nuclear/nucleolar/cytoplasmic trafficking of the porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid protein based on live cell imaging

    International Nuclear Information System (INIS)

    You, Jae-Hwan; Howell, Gareth; Pattnaik, Asit K.; Osorio, Fernando A.; Hiscox, Julian A.

    2008-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus, in common with many other positive strand RNA viruses, encodes a nucleocapsid (N) protein which can localise not only to the cytoplasm but also to the nucleolus in virus-infected cells and cells over-expressing N protein. The dynamic trafficking of positive strand RNA virus nucleocapsid proteins and PRRSV N protein in particular between the cytoplasm and nucleolus is unknown. In this study live imaging of permissive and non-permissive cell lines, in conjunction with photo-bleaching (FRAP and FLIP), was used to investigate the trafficking of fluorescent labeled (EGFP) PRRSV-N protein. The data indicated that EGFP-PRRSV-N protein was not permanently sequestered to the nucleolus and had equivalent mobility to cellular nucleolar proteins. Further the nuclear import of N protein appeared to occur faster than nuclear export, which may account for the observed relative distribution of N protein between the cytoplasm and the nucleolus

  7. Novel fused tetrathiocines as antivirals that target the nucleocapsid zinc finger containing protein of the feline immunodeficiency virus (FIV) as a model of HIV infection.

    Science.gov (United States)

    Asquith, Christopher R M; Meli, Marina L; Konstantinova, Lidia S; Laitinen, Tuomo; Poso, Antti; Rakitin, Oleg A; Hofmann-Lehmann, Regina; Allenspach, Karin; Hilton, Stephen T

    2015-03-15

    A novel series of fused tetrathiocines were prepared for evaluation of activity against the nucleocapsid protein of the feline immunodeficiency virus (FIV) in an in vitro cell culture approach. The results demonstrated that the compounds display potent nanomolar activity and low toxicity against this key model of HIV infection. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  8. Cloning and characterization of DNA complementary to the canine distemper virus mRNA encoding matrix, phosphoprotein, and nucleocapsid protein

    Energy Technology Data Exchange (ETDEWEB)

    Rozenblatt, S.; Eizenberg, O.; Englund, G.; Bellini, W.J.

    1985-02-01

    Double-stranded cDNA synthesized from total polyadenylate-containing mRNA, extracted from monkey kidney cells infected with canine distemper virus (CDV), has been cloned into the PstI site of Escherichia coli plasmid pBR322. Clones containing canine distemper virus DNA were identified by hybridization to a canine distemper virus-specific, /sup 32/P-labeled cDNA. Four specific clones containing different classes of sequences have been identified. The cloned plasmids contain inserts of 800 (clone 44-80), 960 (clone 74-16), 1700 (clone 364), and 950 (clone 40-9) base pairs. The sizes of the mRNA species complementary to these inserts are 1500, 1850, 1850 and 2500 nucleotides, respectively, as determined by the Northern technique. Three of the cloned DNA fragments were further identified as the reverse transcripts of the mRNA coding for the matrix, phosphoprotein, and nucleocapsid protein of CDV.

  9. Cloning and characterization of DNA complementary to the canine distemper virus mRNA encoding matrix, phosphoprotein, and nucleocapsid protein

    International Nuclear Information System (INIS)

    Rozenblatt, S.; Eizenberg, O.; Englund, G.; Bellini, W.J.

    1985-01-01

    Double-stranded cDNA synthesized from total polyadenylate-containing mRNA, extracted from monkey kidney cells infected with canine distemper virus (CDV), has been cloned into the PstI site of Escherichia coli plasmid pBR322. Clones containing canine distemper virus DNA were identified by hybridization to a canine distemper virus-specific, 32 P-labeled cDNA. Four specific clones containing different classes of sequences have been identified. The cloned plasmids contain inserts of 800 (clone 44-80), 960 (clone 74-16), 1700 (clone 364), and 950 (clone 40-9) base pairs. The sizes of the mRNA species complementary to these inserts are 1500, 1850, 1850 and 2500 nucleotides, respectively, as determined by the Northern technique. Three of the cloned DNA fragments were further identified as the reverse transcripts of the mRNA coding for the matrix, phosphoprotein, and nucleocapsid protein of CDV

  10. Identification of Rift Valley fever virus nucleocapsid protein-RNA binding inhibitors using a high-throughput screening assay.

    Science.gov (United States)

    Ellenbecker, Mary; Lanchy, Jean-Marc; Lodmell, J Stephen

    2012-09-01

    Rift Valley fever virus (RVFV) is an emerging infectious pathogen that causes severe disease in humans and livestock and has the potential for global spread. Currently, there is no proven effective treatment for RVFV infection, and there is no licensed vaccine. Inhibition of RNA binding to the essential viral nucleocapsid (N) protein represents a potential antiviral therapeutic strategy because all of the functions performed by N during infection involve RNA binding. To target this interaction, we developed a fluorescence polarization-based high-throughput drug-screening assay and tested 26 424 chemical compounds for their ability to disrupt an N-RNA complex. From libraries of Food and Drug Administration-approved drugs, druglike molecules, and natural product extracts, we identified several lead compounds that are promising candidates for medicinal chemistry.

  11. Characterization of Two Monoclonal Antibodies That Recognize Linker Region and Carboxyl Terminal Domain of Coronavirus Nucleocapsid Protein.

    Science.gov (United States)

    Zhang, Xin; Zhao, Xin; Dong, Hui; Zhu, Yunnuan; Shi, Hongyan; Chen, Jianfei; Shi, Da; Feng, Li

    The transmissible gastroenteritis virus (TGEV) nucleocapsid (N) protein plays important roles in the replication and translation of viral RNA. The present study provides the first description of two monoclonal antibodies (mAbs) (5E8 and 3D7) directed against the TGEV N protein linker region (LKR) and carboxyl terminal domain (CTD). The mAbs 5E8 and 3D7 reacted with native N protein in western blotting and immunofluorescence assay (IFA). Two linear epitopes, 189SVEQAVLAALKKLG202 and 246VTRFYGARSSSA257, located in the LKR and CTD of TGEV N protein, respectively, were identified after truncating the protein and applying a peptide scanning technique. Using mAb 5E8, we observed that the N protein was expressed in the cytoplasm during TGEV replication and that the protein could be immunoprecipitated from TGEV-infected PK-15 cells. The mAb 5E8 can be applied for different approaches to diagnosis of TGEV infection. In addition, the antibodies represent useful tools for investigating the antigenic properties of the N protein.

  12. Characterization of Two Monoclonal Antibodies That Recognize Linker Region and Carboxyl Terminal Domain of Coronavirus Nucleocapsid Protein.

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    Full Text Available The transmissible gastroenteritis virus (TGEV nucleocapsid (N protein plays important roles in the replication and translation of viral RNA. The present study provides the first description of two monoclonal antibodies (mAbs (5E8 and 3D7 directed against the TGEV N protein linker region (LKR and carboxyl terminal domain (CTD. The mAbs 5E8 and 3D7 reacted with native N protein in western blotting and immunofluorescence assay (IFA. Two linear epitopes, 189SVEQAVLAALKKLG202 and 246VTRFYGARSSSA257, located in the LKR and CTD of TGEV N protein, respectively, were identified after truncating the protein and applying a peptide scanning technique. Using mAb 5E8, we observed that the N protein was expressed in the cytoplasm during TGEV replication and that the protein could be immunoprecipitated from TGEV-infected PK-15 cells. The mAb 5E8 can be applied for different approaches to diagnosis of TGEV infection. In addition, the antibodies represent useful tools for investigating the antigenic properties of the N protein.

  13. C-terminal Domain Modulates the Nucleic Acid Chaperone Activity of Human T-cell Leukemia Virus Type 1 Nucleocapsid Protein via an Electrostatic Mechanism*

    OpenAIRE

    Qualley, Dominic F.; Stewart-Maynard, Kristen M.; Wang, Fei; Mitra, Mithun; Gorelick, Robert J.; Rouzina, Ioulia; Williams, Mark C.; Musier-Forsyth, Karin

    2009-01-01

    Retroviral nucleocapsid (NC) proteins are molecular chaperones that facilitate nucleic acid (NA) remodeling events critical in viral replication processes such as reverse transcription. Surprisingly, the NC protein from human T-cell leukemia virus type 1 (HTLV-1) is an extremely poor NA chaperone. Using bulk and single molecule methods, we find that removal of the anionic C-terminal domain (CTD) of HTLV-1 NC results in a protein with chaperone properties comparable with that of other retrovir...

  14. Critical epitopes in the nucleocapsid protein of SFTS virus recognized by a panel of SFTS patients derived human monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Li Yu

    Full Text Available BACKGROUND: SFTS virus (SFTSV is a newly discovered pathogen to cause severe fever with thrombocytopenia syndrome (SFTS in human. Successful control of SFTSV epidemic requires better understanding of the antigen target in humoral immune responses to the new bunyavirus infection. METHODOLOGY/PRINCIPAL FINDINGS: We have generated a combinatorial Fab antibody phage library from two SFTS patients recovered from SFTSV infection. To date, 94 unique human antibodies have been generated and characterized from over 1200 Fab antibody clones obtained by screening the library with SFTS purified virions. All those monoclonal antibodies (MAbs recognized the nucleocapsid (N protein of SFTSV while none of them were reactive to the viral glycoproteins Gn or Gc. Furthermore, over screening 1000 mouse monoclonal antibody clones derived from SFTSV virions immunization, 462 clones reacted with N protein, while only 16 clones were reactive to glycoprotein. Furthermore, epitope mapping of SFTSV N protein was performed through molecular simulation, site mutation and competitive ELISA, and we found that at least 4 distinct antigenic epitopes within N protein were recognized by those human and mouse MAbs, in particular mutation of Glu10 to Ala10 abolished or significantly reduced the binding activity of nearly most SFTS patients derived MAbs. CONCLUSIONS/SIGNIFICANCE: The large number of human recombinant MAbs derived from SFTS patients recognized the viral N protein indicated the important role of the N protein in humoral responses to SFTSV infection, and the critical epitopes we defined in this study provided molecular basis for detection and diagnosis of SFTSV infection.

  15. Identification of a novel canine distemper virus B-cell epitope using a monoclonal antibody against nucleocapsid protein.

    Science.gov (United States)

    Yi, Li; Cheng, Yuening; Zhang, Miao; Cao, Zhigang; Tong, Mingwei; Wang, Jianke; Zhao, Hang; Lin, Peng; Cheng, Shipeng

    2016-02-02

    Canine distemper virus (CDV) is a member of the genus Morbillivirus within the family Paramyxoviridae and has caused severe economic losses in China. Nucleocapsid protein (N) is the major structural viral protein and can be used to diagnose CDV and other morbilliviruses. In this study, a specific monoclonal antibody, 1N8, was produced against the CDV N protein (amino acids 277-471). A linear N protein epitope was identified by subjecting a series of partially overlapping synthesized peptides to enzyme-linked immunosorbent assay (ELISA) analysis. The results indicated that (350)LNFGRSYFDPA(360) was the minimal linear epitope that could be recognized by mAb 1N8. ELISA assays revealed that mouse anti-CDV sera could also recognize the minimal linear epitope. Alignment analysis of the amino acid sequences indicated that the epitope was highly conserved among CDV strains. Furthermore, the epitope was conserved among other morbilliviruses, which was confirmed with PRRV using western blotting. Taken together, the results of this study may have potential applications in the development of suitable diagnostic techniques for CDV or other morbilliviruses. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Intracellular localization of rice stripe virus RNA-dependent RNA polymerase and its interaction with nucleocapsid protein.

    Science.gov (United States)

    Zhao, Shuling; Hao, Jiahui; Xue, Yanan; Liang, Changyong

    2015-12-01

    The RNA-dependent RNA polymerase (RdRp) of rice stripe virus (RSV) is critical for both the transcription and replication of the viral genome. Despite its importance, little is known about how it functions in cells. In the present study, RSV RdRp was split into three pieces, since expression of the full protein could not be achieved. Then, the intracellular localization of these three RdRp fragments and their interactions with nucleocapsid protein (NP) were investigated, which is another viral protein required for viral RNA synthesis. The data showed that all three RdRp fragments displayed punctuate staining patterns in the cytoplasm, and the C-terminal fragment co-localized with NP in the perinuclear region. Both bimolecular fluorescence complementation and co-immunoprecipitation experiments demonstrated that of the three RdRp fragments, only the C-terminal fragment could interact with NP. Further analysis using a series of truncated NPs identified the N-terminal 50-amino-acid region within NP as the determinant for its interaction with the C-terminus of RdRp.

  17. Structural characterization by transmission electron microscopy and immunoreactivity of recombinant Hendra virus nucleocapsid protein expressed and purified from Escherichia coli.

    Science.gov (United States)

    Pearce, Lesley A; Yu, Meng; Waddington, Lynne J; Barr, Jennifer A; Scoble, Judith A; Crameri, Gary S; McKinstry, William J

    2015-12-01

    Hendra virus (family Paramyxoviridae) is a negative sense single-stranded RNA virus (NSRV) which has been found to cause disease in humans, horses, and experimentally in other animals, e.g. pigs and cats. Pteropid bats commonly known as flying foxes have been identified as the natural host reservoir. The Hendra virus nucleocapsid protein (HeV N) represents the most abundant viral protein produced by the host cell, and is highly immunogenic with naturally infected humans and horses producing specific antibodies towards this protein. The purpose of this study was to express and purify soluble, functionally active recombinant HeV N, suitable for use as an immunodiagnostic reagent to detect antibodies against HeV. We expressed both full-length HeV N, (HeV NFL), and a C-terminal truncated form, (HeV NCORE), using a bacterial heterologous expression system. Both HeV N constructs were engineered with an N-terminal Hisx6 tag, and purified using a combination of immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC). Purified recombinant HeV N proteins self-assembled into soluble higher order oligomers as determined by SEC and negative-stain transmission electron microscopy. Both HeV N proteins were highly immuno-reactive with sera from animals and humans infected with either HeV or the closely related Nipah virus (NiV), but displayed no immuno-reactivity towards sera from animals infected with a non-pathogenic paramyxovirus (CedPV), or animals receiving Equivac® (HeV G glycoprotein subunit vaccine), using a Luminex-based multiplexed microsphere assay. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  18. Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein

    Directory of Open Access Journals (Sweden)

    Theo Luiz Ferraz de Souza

    2016-11-01

    Full Text Available Background Hepatitis C virus (HCV core protein, in addition to its structural role to form the nucleocapsid assembly, plays a critical role in HCV pathogenesis by interfering in several cellular processes, including microRNA and mRNA homeostasis. The C-terminal truncated HCV core protein (C124 is intrinsically unstructured in solution and is able to interact with unspecific nucleic acids, in the micromolar range, and to assemble into nucleocapsid-like particles (NLPs in vitro. The specificity and propensity of C124 to the assembly and its implications on HCV pathogenesis are not well understood. Methods Spectroscopic techniques, transmission electron microscopy and calorimetry were used to better understand the propensity of C124 to fold or to multimerize into NLPs when subjected to different conditions or in the presence of unspecific nucleic acids of equivalent size to cellular microRNAs. Results The structural analysis indicated that C124 has low propensity to self-folding. On the other hand, for the first time, we show that C124, in the absence of nucleic acids, multimerizes into empty NLPs when subjected to a pH close to its isoelectric point (pH ≈ 12, indicating that assembly is mainly driven by charge neutralization. Isothermal calorimetry data showed that the assembly of NLPs promoted by nucleic acids is enthalpy driven. Additionally, data obtained from fluorescence correlation spectroscopy show that C124, in nanomolar range, was able to interact and to sequester a large number of short unspecific nucleic acids into NLPs. Discussion Together, our data showed that the charge neutralization is the major factor for the nucleocapsid-like particles assembly from C-terminal truncated HCV core protein. This finding suggests that HCV core protein may physically interact with unspecific cellular polyanions, which may correspond to microRNAs and mRNAs in a host cell infected by HCV, triggering their confinement into infectious particles.

  19. Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein.

    Science.gov (United States)

    de Souza, Theo Luiz Ferraz; de Lima, Sheila Maria Barbosa; Braga, Vanessa L de Azevedo; Peabody, David S; Ferreira, Davis Fernandes; Bianconi, M Lucia; Gomes, Andre Marco de Oliveira; Silva, Jerson Lima; de Oliveira, Andréa Cheble

    2016-01-01

    Hepatitis C virus (HCV) core protein, in addition to its structural role to form the nucleocapsid assembly, plays a critical role in HCV pathogenesis by interfering in several cellular processes, including microRNA and mRNA homeostasis. The C-terminal truncated HCV core protein (C124) is intrinsically unstructured in solution and is able to interact with unspecific nucleic acids, in the micromolar range, and to assemble into nucleocapsid-like particles (NLPs) in vitro . The specificity and propensity of C124 to the assembly and its implications on HCV pathogenesis are not well understood. Spectroscopic techniques, transmission electron microscopy and calorimetry were used to better understand the propensity of C124 to fold or to multimerize into NLPs when subjected to different conditions or in the presence of unspecific nucleic acids of equivalent size to cellular microRNAs. The structural analysis indicated that C124 has low propensity to self-folding. On the other hand, for the first time, we show that C124, in the absence of nucleic acids, multimerizes into empty NLPs when subjected to a pH close to its isoelectric point (pH ≈ 12), indicating that assembly is mainly driven by charge neutralization. Isothermal calorimetry data showed that the assembly of NLPs promoted by nucleic acids is enthalpy driven. Additionally, data obtained from fluorescence correlation spectroscopy show that C124, in nanomolar range, was able to interact and to sequester a large number of short unspecific nucleic acids into NLPs. Together, our data showed that the charge neutralization is the major factor for the nucleocapsid-like particles assembly from C-terminal truncated HCV core protein. This finding suggests that HCV core protein may physically interact with unspecific cellular polyanions, which may correspond to microRNAs and mRNAs in a host cell infected by HCV, triggering their confinement into infectious particles.

  20. Open reading frame 122 of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus encodes a novel structurual protein of occlusion-derived virions

    NARCIS (Netherlands)

    Long, G.; Chen Xinwen,; Peters, D.; Vlak, J.M.; Hu, Z.

    2003-01-01

    Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HaSNPV) and its closely related variant H. zea SNPV (HzSNPV) contain 20 open reading frames (ORFs) unique among baculoviruses. In this report, the function of HaSNPV ORF 122 (Ha122) is investigated. Ha122 was transcribed as a

  1. Crystal Structure of the Core Region of Hantavirus Nucleocapsid Protein Reveals the Mechanism for Ribonucleoprotein Complex Formation

    Science.gov (United States)

    Guo, Yu; Wang, Wenming; Sun, Yuna; Ma, Chao; Wang, Xu; Wang, Xin; Liu, Pi; Shen, Shu; Li, Baobin; Lin, Jianping; Deng, Fei

    2015-01-01

    ABSTRACT Hantaviruses, which belong to the genus Hantavirus in the family Bunyaviridae, infect mammals, including humans, causing either hemorrhagic fever with renal syndrome (HFRS) or hantavirus cardiopulmonary syndrome (HCPS) in humans with high mortality. Hantavirus encodes a nucleocapsid protein (NP) to encapsidate the genome and form a ribonucleoprotein complex (RNP) together with viral polymerase. Here, we report the crystal structure of the core domains of NP (NPcore) encoded by Sin Nombre virus (SNV) and Andes virus (ANDV), which are two representative members that cause HCPS in the New World. The constructs of SNV and ANDV NPcore exclude the N- and C-terminal portions of full polypeptide to obtain stable proteins for crystallographic study. The structure features an N lobe and a C lobe to clamp RNA-binding crevice and exhibits two protruding extensions in both lobes. The positively charged residues located in the RNA-binding crevice play a key role in RNA binding and virus replication. We further demonstrated that the C-terminal helix and the linker region connecting the N-terminal coiled-coil domain and NPcore are essential for hantavirus NP oligomerization through contacts made with two adjacent protomers. Moreover, electron microscopy (EM) visualization of native RNPs extracted from the virions revealed that a monomer-sized NP-RNA complex is the building block of viral RNP. This work provides insight into the formation of hantavirus RNP and provides an understanding of the evolutionary connections that exist among bunyaviruses. IMPORTANCE Hantaviruses are distributed across a wide and increasing range of host reservoirs throughout the world. In particular, hantaviruses can be transmitted via aerosols of rodent excreta to humans or from human to human and cause HFRS and HCPS, with mortalities of 15% and 50%, respectively. Hantavirus is therefore listed as a category C pathogen. Hantavirus encodes an NP that plays essential roles both in RNP formation and

  2. The Herpes Simplex Virus Protein pUL31 Escorts Nucleocapsids to Sites of Nuclear Egress, a Process Coordinated by Its N-Terminal Domain.

    Directory of Open Access Journals (Sweden)

    Christina Funk

    2015-06-01

    Full Text Available Progeny capsids of herpesviruses leave the nucleus by budding through the nuclear envelope. Two viral proteins, the membrane protein pUL34 and the nucleo-phosphoprotein pUL31 form the nuclear egress complex that is required for capsid egress out of the nucleus. All pUL31 orthologs are composed of a diverse N-terminal domain with 1 to 3 basic patches and a conserved C-terminal domain. To decipher the functions of the N-terminal domain, we have generated several Herpes simplex virus mutants and show here that the N-terminal domain of pUL31 is essential with basic patches being critical for viral propagation. pUL31 and pUL34 entered the nucleus independently of each other via separate routes and the N-terminal domain of pUL31 was required to prevent their premature interaction in the cytoplasm. Unexpectedly, a classical bipartite nuclear localization signal embedded in this domain was not required for nuclear import of pUL31. In the nucleus, pUL31 associated with the nuclear envelope and newly formed capsids. Viral mutants lacking the N-terminal domain or with its basic patches neutralized still associated with nucleocapsids but were unable to translocate them to the nuclear envelope. Replacing the authentic basic patches with a novel artificial one resulted in HSV1(17+Lox-UL31-hbpmp1mp2, that was viable but delayed in nuclear egress and compromised in viral production. Thus, while the C-terminal domain of pUL31 is sufficient for the interaction with nucleocapsids, the N-terminal domain was essential for capsid translocation to sites of nuclear egress and a coordinated interaction with pUL34. Our data indicate an orchestrated sequence of events with pUL31 binding to nucleocapsids and escorting them to the inner nuclear envelope. We propose a common mechanism for herpesviral nuclear egress: pUL31 is required for intranuclear translocation of nucleocapsids and subsequent interaction with pUL34 thereby coupling capsid maturation with primary

  3. Laboratory safe detection of nucleocapsid protein of Rift Valley fever virus in human and animal specimens by a sandwich ELISA.

    Science.gov (United States)

    Jansen van Vuren, P; Paweska, J T

    2009-04-01

    A safe laboratory procedure, based on a sandwich ELISA (sAg-ELISA), was developed and evaluated for the detection of nucleocapsid protein (NP) of Rift Valley fever virus (RVFV) in specimens inactivated at 56 degrees C for 1h in the presence of 0.5% Tween-20 (v/v) before testing. Polyclonal capture and detection immune sera were generated respectively in sheep and rabbits immunized with recombinant NP antigen. The assay was highly repeatable and specific; it detected strains of RVFV from the entire distributional range of the disease, isolated over a period of 53 years; no cross-reactivity with genetically related African phleboviruses or other members of the family Bunyaviridae was observed. In specimens spiked with RVFV, including human and animal sera, homogenates of liver and spleen tissues of domestic ruminants, and Anopheles mosquito homogenates, the sAg-ELISA detection limit ranged from log(10)10(2.2) to 10(3.2) TCID(50)/reaction volume. The ELISA detected NP antigen in spiked bovine and sheep liver homogenates up to at least 8 days of incubation at 37 degrees C whereas infectious virus could not be detected at 48h incubation in these adverse conditions. Compared to virus isolation from sera from RVF patients and sheep infected experimentally, the ELISA had 67.7% and 70% sensitivity, and 97.97% and 100% specificity, respectively. The assay was 100% accurate when testing tissues of various organs from mice infected experimentally and buffalo foetuses infected naturally. The assay was able to detect NP antigen in infective culture supernatants 16-24h before cytopathic effects were observed microscopically and as early as 8h after inoculation with 10(5.8) TCID(50)/ml of RVFV. This ability renders the assay for rapid identification of the virus when its primary isolation is attempted in vitro. As a highly specific, safe and simple assay format, the sAg-ELISA represents a valuable diagnostic tool for use in less equipped laboratories in Africa, and for routine

  4. Carbonyl J Acid Derivatives Block Protein Priming of Hepadnaviral P Protein and DNA-Dependent DNA Synthesis Activity of Hepadnaviral Nucleocapsids

    Science.gov (United States)

    Wang, Yong-Xiang; Wen, Yu-Mei

    2012-01-01

    Current treatments for chronic hepatitis B are effective in only a fraction of patients. All approved directly antiviral agents are nucleos(t)ide analogs (NAs) that target the DNA polymerase activity of the hepatitis B virus (HBV) P protein; resistance and cross-resistance may limit their long-term applicability. P protein is an unusual reverse transcriptase that initiates reverse transcription by protein priming, by which a Tyr residue in the unique terminal protein domain acts as an acceptor of the first DNA nucleotide. Priming requires P protein binding to the ε stem-loop on the pregenomic RNA (pgRNA) template. This interaction also mediates pgRNA encapsidation and thus provides a particularly attractive target for intervention. Exploiting in vitro priming systems available for duck HBV (DHBV) but not HBV, we demonstrate that naphthylureas of the carbonyl J acid family, in particular KM-1, potently suppress protein priming by targeting P protein and interfering with the formation of P-DHBV ε initiation complexes. Quantitative evaluation revealed a significant increase in complex stability during maturation, yet even primed complexes remained sensitive to KM-1 concentrations below 10 μM. Furthermore, KM-1 inhibited the DNA-dependent DNA polymerase activity of both DHBV and HBV nucleocapsids, including from a lamivudine-resistant variant, directly demonstrating the sensitivity of human HBV to the compound. Activity against viral replication in cells was low, likely due to low intracellular availability. KM-1 is thus not yet a drug candidate, but its distinct mechanism of action suggests that it is a highly useful lead for developing improved, therapeutically applicable derivatives. PMID:22787212

  5. Identification of three antigen epitopes on the nucleocapsid protein of the genotype C of bovine parainfluenza virus type 3.

    Science.gov (United States)

    Ren, Jian-Le; Zhu, Yuan-Mao; Zhou, Yue-Hui; Lv, Chuang; Yan, Hao; Ma, Lei; Shi, Hong-Fei; Xue, Fei

    2015-07-09

    Bovine parainfluenza virus type 3 (BPIV3) is an important respiratory tract pathogen for both young and adult cattle. So far, three genotypes A, B and C of BPIV3 have been described on the basis of genetic and phylogenetic analysis. But fine mapping of epitopes of BPIV3 is scant and the antigenic variations among the three genotypes of BPIV3 have not been reported. Nucleocapsid protein (NP) is the most abundant protein in the virion and highly conserved in BPIV3, which is crucial for the induction of protective immunity in host. To identify antigenic determinants of BPIV3 NP, a panel of monoclonal antibodies (mAbs) was tested against a series of overlapping recombinant NP fragments expressed in Escherichia coli. Firstly, six monoclonal antibodies (mAbs) against NP of the genotype C of BPIV3 (BPIV3c) were generated by using the purified BPIV3c strain SD0835 as immunogen and the recombinant NP of SD0835 as screening antigen. Then three antigen epitopes were identified with the six mAbs. One epitope (91)GNNADVKYVIYM(102) was recognized by mAb 5E5. The mAbs 7G5, 7G8, 7G9, and 7H5 were reactive with another epitope (407)FYKPTGG(413). The third epitope (428)ESRGDQDQ(435) was reactive with mAb 6F8. Further analysis showed that the epitope (91-102 amino acids [aa]) was the most conserved and reactive with mAb 5E5 for all three genotypes of BPIV3 and HPIV3. The epitope (407-413 aa) was relatively conserved and reactive with mAbs 7G5, 7G8, 7G9, and 7H5 for BPIV3a, BPIV3c and HPIV3, but not reactive with BPIV3b. The epitope (428-435 aa) was less conserved and was reactive only with mAb 6F8 for BPIV3a and BPIV3c. These results suggested that there were evident antigenic variations among the three genotypes of BPIV3 and HPIV3. The mAb 6F8 could be used to detect BPIV3a and BPIV3c. The mAbs 7G5, 7G8, 7G9, and 7H5 might be used for differentiate BPIV3a, BPIV3c and HPIV3 from BPIV3b. The mAb 5E5 might be used for detecting all three types of BPIV3 and HPIV3. The results in this

  6. Nucleocapsid protein VP15 is the basic DNA binding protein of white spot syndrome virus of shrimp

    NARCIS (Netherlands)

    Witteveldt, J.; Vermeesch, A.M.G.; Langenhof, M.; Lang, de A.; Vlak, J.M.; Hulten, van M.C.W.

    2005-01-01

    White spot syndrome virus (WSSV) is type species of the genus Whispovirus of the new family Nimaviridae. Despite the elucidation of its genomic sequence, very little is known about the virus as only 6% of its ORFs show homology to known genes. One of the structural virion proteins, VP15, is part of

  7. Generation of human antibody fragments recognizing distinct epitopes of the nucleocapsid (N SARS-CoV protein using a phage display approach

    Directory of Open Access Journals (Sweden)

    Grasso Felicia

    2005-09-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS-CoV is a newly emerging virus that causes SARS with high mortality rate in infected people. Successful control of the global SARS epidemic will require rapid and sensitive diagnostic tests to monitor its spread, as well as, the development of vaccines and new antiviral compounds including neutralizing antibodies that effectively prevent or treat this disease. Methods The human synthetic single-chain fragment variable (scFv ETH-2 phage antibody library was used for the isolation of scFvs against the nucleocapsid (N protein of SARS-CoV using a bio panning-based strategy. The selected scFvs were characterized under genetics-molecular aspects and for SARS-CoV N protein detection in ELISA, western blotting and immunocytochemistry. Results Human scFv antibodies to N protein of SARS-CoV can be easily isolated by selecting the ETH-2 phage library on immunotubes coated with antigen. These in vitro selected human scFvs specifically recognize in ELISA and western blotting studies distinct epitopes in N protein domains and detect in immunohistochemistry investigations SARS-CoV particles in infected Vero cells. Conclusion The human scFv antibodies isolated and described in this study represent useful reagents for rapid detection of N SARS-CoV protein and SARS virus particles in infected target cells.

  8. Generation of human antibody fragments recognizing distinct epitopes of the nucleocapsid (N) SARS-CoV protein using a phage display approach

    Science.gov (United States)

    Flego, Michela; Di Bonito, Paola; Ascione, Alessandro; Zamboni, Silvia; Carattoli, Alessandra; Grasso, Felicia; Cassone, Antonio; Cianfriglia, Maurizio

    2005-01-01

    Background Severe acute respiratory syndrome (SARS)-CoV is a newly emerging virus that causes SARS with high mortality rate in infected people. Successful control of the global SARS epidemic will require rapid and sensitive diagnostic tests to monitor its spread, as well as, the development of vaccines and new antiviral compounds including neutralizing antibodies that effectively prevent or treat this disease. Methods The human synthetic single-chain fragment variable (scFv) ETH-2 phage antibody library was used for the isolation of scFvs against the nucleocapsid (N) protein of SARS-CoV using a bio panning-based strategy. The selected scFvs were characterized under genetics-molecular aspects and for SARS-CoV N protein detection in ELISA, western blotting and immunocytochemistry. Results Human scFv antibodies to N protein of SARS-CoV can be easily isolated by selecting the ETH-2 phage library on immunotubes coated with antigen. These in vitro selected human scFvs specifically recognize in ELISA and western blotting studies distinct epitopes in N protein domains and detect in immunohistochemistry investigations SARS-CoV particles in infected Vero cells. Conclusion The human scFv antibodies isolated and described in this study represent useful reagents for rapid detection of N SARS-CoV protein and SARS virus particles in infected target cells. PMID:16171519

  9. An amino-terminal segment of hantavirus nucleocapsid protein presented on hepatitis B virus core particles induces a strong and highly cross-reactive antibody response in mice

    International Nuclear Information System (INIS)

    Geldmacher, Astrid; Skrastina, Dace; Petrovskis, Ivars; Borisova, Galina; Berriman, John A.; Roseman, Alan M.; Crowther, R. Anthony; Fischer, Jan; Musema, Shamil; Gelderblom, Hans R.; Lundkvist, Aake; Renhofa, Regina; Ose, Velta; Krueger, Detlev H.; Pumpens, Paul; Ulrich, Rainer

    2004-01-01

    Previously, we have demonstrated that hepatitis B virus (HBV) core particles tolerate the insertion of the amino-terminal 120 amino acids (aa) of the Puumala hantavirus nucleocapsid (N) protein. Here, we demonstrate that the insertion of 120 amino-terminal aa of N proteins from highly virulent Dobrava and Hantaan hantaviruses allows the formation of chimeric core particles. These particles expose the inserted foreign protein segments, at least in part, on their surface. Analysis by electron cryomicroscopy of chimeric particles harbouring the Puumala virus (PUUV) N segment revealed 90% T = 3 and 10% T = 4 shells. A map computed from T = 3 shells shows additional density splaying out from the tips of the spikes producing the effect of an extra shell of density at an outer radius compared with wild-type shells. The inserted Puumala virus N protein segment is flexibly linked to the core spikes and only partially icosahedrally ordered. Immunisation of mice of two different haplotypes (BALB/c and C57BL/6) with chimeric core particles induces a high-titered and highly cross-reactive N-specific antibody response in both mice strains

  10. Mutations in the basic region of the Mason-Pfizer monkey virus nucleocapsid protein affect reverse transcription, gRNA packaging and the site of viral assembly.

    Science.gov (United States)

    Dostálková, Alžběta; Kaufman, Filip; Křížová, Ivana; Kultová, Anna; Strohalmová, Karolína; Hadravová, Romana; Ruml, Tomáš; Rumlová, Michaela

    2018-02-28

    In addition to specific RNA-binding zinc finger domains, retroviral Gag polyprotein contains clusters of basic amino acid residues thought to support Gag-viral genomic RNA (gRNA) interactions. One of these clusters is the basic K 16 NK 18 EK 20 region, located upstream of the first zinc finger of the Mason-Pfizer monkey virus (M-PMV) nucleocapsid protein (NC). To investigate the role of this basic region in the M-PMV life cycle, we used a combination of in vivo and in vitro methods to study a series of mutants in which the overall charge of this region was more positive (RNRER), more negative (AEAEA), or neutral (AAAAA). The mutations markedly affected gRNA incorporation and the onset of reverse transcription. Introducing a more negative charge (AEAEA) significantly reduced the incorporation of M-PMV gRNA into nascent particles. Moreover, the assembly of immature particles of the AEAEA Gag mutant was relocated from the perinuclear region to the plasma membrane. In contrast, enhancing the basicity of this region of M-PMV NC (RNRER) caused substantially more efficient incorporation of gRNA, subsequently resulting in an increase in M-PMV RNRER infectivity. Nevertheless, despite the higher amount of gRNA packaged by the RNRER mutant, the onset of reverse transcription was delayed in comparison to that of the wild type. Our data clearly show the requirement for certain positively charged amino acid residues upstream of the first zinc finger for proper gRNA incorporation, assembly of immature particles and proceeding of reverse transcription. Importance: We identified a short sequence within Gag polyprotein that, together with the zinc finger domains and previously identified RKK motif, contributes to packaging of genomic RNA (gRNA) of Mason-Pfizer monkey virus (M-PMV). Importantly, in addition to gRNA incorporation this basic region (KNKEK) at the N-terminus of nucleocapsid protein is crucial for an onset of reverse transcription. The mutations changing the positive

  11. Structural insights into the cTAR DNA recognition by the HIV-1 nucleocapsid protein: role of sugar deoxyriboses in the binding polarity of NC

    Science.gov (United States)

    Bazzi, Ali; Zargarian, Loussiné; Chaminade, Françoise; Boudier, Christian; De Rocquigny, Hughes; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2011-01-01

    An essential step of the reverse transcription of the HIV-1 genome is the first strand transfer that requires the annealing of the TAR RNA hairpin to the cTAR DNA hairpin. HIV-1 nucleocapsid protein (NC) plays a crucial role by facilitating annealing of the complementary hairpins. Using nuclear magnetic resonance and gel retardation assays, we investigated the interaction between NC and the top half of the cTAR DNA (mini-cTAR). We show that NC(11-55) binds the TGG sequence in the lower stem that is destabilized by the adjacent internal loop. The 5′ thymine interacts with residues of the N-terminal zinc knuckle and the 3′ guanine is inserted in the hydrophobic plateau of the C-terminal zinc knuckle. The TGG sequence is preferred relative to the apical and internal loops containing unpaired guanines. Investigation of the DNA–protein contacts shows the major role of hydrophobic interactions involving nucleobases and deoxyribose sugars. A similar network of hydrophobic contacts is observed in the published NC:DNA complexes, whereas NC contacts ribose differently in NC:RNA complexes. We propose that the binding polarity of NC is related to these contacts that could be responsible for the preferential binding to single-stranded nucleic acids. PMID:21227929

  12. Effects of the Nature and Concentration of Salt on the Interaction of the HIV-1 Nucleocapsid Protein with SL3 RNA§

    Science.gov (United States)

    Athavale, Shreyas S.; Ouyang, Wei; McPike, Mark P.; Hudson, Bruce S.

    2010-01-01

    The mature nucleocapsid protein of HIV-1, NCp7, and the NC-domains in gag-precursors are attractive targets for anti-AIDS drug discovery. The stability of the 1:1 complex of NCp7 with a 20mer mimic of stem-loop 3 RNA (SL3, also called psi-RNA, in the packaging domain of genomic RNA) is strongly affected by changes in ionic strength. NC-domains recognize and specifically package genomic HIV-1 RNA, while electrostatic attractions and high concentrations of protein and RNA drive NCp7 to completely coat the RNA in the mature virion. The specific interactions from NCp7-binding to loop bases of SL3 produce 1:1 complexes in solutions that have [NaCl] at or above 0.2 M, while the electrostatic interactions can dominate at and below 0.15 M NaCl, leading to complexes that have mainly 1:2 RNA:protein. Persistent, non-equilibrium mixtures of 1:1 and protein-excess complexes can exist at these lower salt concentrations, where the distribution of complexes depends on the order of addition of RNA and protein. Adding salt causes rapid rearrangement of metastable multi-protein complexes to 1:1. The stability of complexes is also affected by the nature of the added salt, with 0.018 M MgCl2 and 0.200 M added NaCl producing the same Kd (21 ± 2 nM); acetate ion stabilizes the 1:1 complex by more than a factor of two compared to the same concentration of chloride ion. Maintaining a salt concentration of 0.2 M NaCl or 18 mM MgCl2 is sufficient for experiments to distinguish drug candidates that disrupt the specific SL3-NCp7 interactions in the 1:1 complex. PMID:20359247

  13. C-terminal domain modulates the nucleic acid chaperone activity of human T-cell leukemia virus type 1 nucleocapsid protein via an electrostatic mechanism.

    Science.gov (United States)

    Qualley, Dominic F; Stewart-Maynard, Kristen M; Wang, Fei; Mitra, Mithun; Gorelick, Robert J; Rouzina, Ioulia; Williams, Mark C; Musier-Forsyth, Karin

    2010-01-01

    Retroviral nucleocapsid (NC) proteins are molecular chaperones that facilitate nucleic acid (NA) remodeling events critical in viral replication processes such as reverse transcription. Surprisingly, the NC protein from human T-cell leukemia virus type 1 (HTLV-1) is an extremely poor NA chaperone. Using bulk and single molecule methods, we find that removal of the anionic C-terminal domain (CTD) of HTLV-1 NC results in a protein with chaperone properties comparable with that of other retroviral NCs. Increasing the ionic strength of the solution also improves the chaperone activity of full-length HTLV-1 NC. To determine how the CTD negatively modulates the chaperone activity of HTLV-1 NC, we quantified the thermodynamics and kinetics of wild-type and mutant HTLV-1 NC/NA interactions. The wild-type protein exhibits very slow dissociation kinetics, and removal of the CTD or mutations that eliminate acidic residues dramatically increase the protein/DNA interaction kinetics. Taken together, these results suggest that the anionic CTD interacts with the cationic N-terminal domain intramolecularly when HTLV-1 NC is not bound to nucleic acids, and similar interactions occur between neighboring molecules when NC is NA-bound. The intramolecular N-terminal domain-CTD attraction slows down the association of the HTLV-1 NC with NA, whereas the intermolecular interaction leads to multimerization of HTLV-1 NC on the NA. The latter inhibits both NA/NC aggregation and rapid protein dissociation from single-stranded DNA. These features make HTLV-1 NC a poor NA chaperone, despite its robust duplex destabilizing capability.

  14. Site-selective probing of cTAR destabilization highlights the necessary plasticity of the HIV-1 nucleocapsid protein to chaperone the first strand transfer

    Science.gov (United States)

    Godet, Julien; Kenfack, Cyril; Przybilla, Frédéric; Richert, Ludovic; Duportail, Guy; Mély, Yves

    2013-01-01

    The HIV-1 nucleocapsid protein (NCp7) is a nucleic acid chaperone required during reverse transcription. During the first strand transfer, NCp7 is thought to destabilize cTAR, the (−)DNA copy of the TAR RNA hairpin, and subsequently direct the TAR/cTAR annealing through the zipping of their destabilized stem ends. To further characterize the destabilizing activity of NCp7, we locally probe the structure and dynamics of cTAR by steady-state and time resolved fluorescence spectroscopy. NC(11–55), a truncated NCp7 version corresponding to its zinc-finger domain, was found to bind all over the sequence and to preferentially destabilize the penultimate double-stranded segment in the lower part of the cTAR stem. This destabilization is achieved through zinc-finger–dependent binding of NC to the G10 and G50 residues. Sequence comparison further revealed that C•A mismatches close to the two G residues were critical for fine tuning the stability of the lower part of the cTAR stem and conferring to G10 and G50 the appropriate mobility and accessibility for specific recognition by NC. Our data also highlight the necessary plasticity of NCp7 to adapt to the sequence and structure variability of cTAR to chaperone its annealing with TAR through a specific pathway. PMID:23511968

  15. HIV-1 nucleocapsid protein switches the pathway of transactivation response element RNA/DNA annealing from loop-loop "kissing" to "zipper".

    Science.gov (United States)

    Vo, My-Nuong; Barany, George; Rouzina, Ioulia; Musier-Forsyth, Karin

    2009-02-27

    The chaperone activity of HIV-1 (human immunodeficiency virus type 1) nucleocapsid protein (NC) facilitates multiple nucleic acid rearrangements that are critical for reverse transcription of the single-stranded RNA genome into double-stranded DNA. Annealing of the transactivation response element (TAR) RNA hairpin to a complementary TAR DNA hairpin is an essential step in the minus-strand transfer step of reverse transcription. Previously, we used truncated 27-nt mini-TAR RNA and DNA constructs to investigate this annealing reaction pathway in the presence and in the absence of HIV-1 NC. In this work, full-length 59-nt TAR RNA and TAR DNA constructs were used to systematically study TAR hairpin annealing kinetics. In the absence of NC, full-length TAR hairpin annealing is approximately 10-fold slower than mini-TAR annealing. Similar to mini-TAR annealing, the reaction pathway for TAR in the absence of NC involves the fast formation of an unstable "kissing" loop intermediate, followed by a slower conversion to an extended duplex. NC facilitates the annealing of TAR by approximately 10(5)-fold by stabilizing the bimolecular intermediate ( approximately 10(4)-fold) and promoting the subsequent exchange reaction ( approximately 10-fold). In contrast to the mini-TAR annealing pathway, wherein NC-mediated annealing can initiate through both loop-loop kissing and a distinct "zipper" pathway involving nucleation at the 3'-/5'-terminal ends, full-length TAR hairpin annealing switches predominantly to the zipper pathway in the presence of saturated NC.

  16. Packaging of a unit-length viral genome: the role of nucleotides and the gpD decoration protein in stable nucleocapsid assembly in bacteriophage lambda.

    Science.gov (United States)

    Yang, Qin; Maluf, Nasib Karl; Catalano, Carlos Enrique

    2008-11-28

    The developmental pathways for a variety of eukaryotic and prokaryotic double-stranded DNA viruses include packaging of viral DNA into a preformed procapsid structure, catalyzed by terminase enzymes and fueled by ATP hydrolysis. In most instances, a capsid expansion process accompanies DNA packaging, which significantly increases the volume of the capsid to accommodate the full-length viral genome. "Decoration" proteins add to the surface of the expanded capsid lattice, and the terminase motors tightly package DNA, generating up to approximately 20 atm of internal capsid pressure. Herein we describe biochemical studies on genome packaging using bacteriophage lambda as a model system. Kinetic analysis suggests that the packaging motor possesses at least four ATPase catalytic sites that act cooperatively to effect DNA translocation, and that the motor is highly processive. While not required for DNA translocation into the capsid, the phage lambda capsid decoration protein gpD is essential for the packaging of the penultimate 8-10 kb (15-20%) of the viral genome; virtually no DNA is packaged in the absence of gpD when large DNA substrates are used, most likely due to a loss of capsid structural integrity. Finally, we show that ATP hydrolysis is required to retain the genome in a packaged state subsequent to condensation within the capsid. Presumably, the packaging motor continues to "idle" at the genome end and to maintain a positive pressure towards the packaged state. Surprisingly, ADP, guanosine triphosphate, and the nonhydrolyzable ATP analog 5'-adenylyl-beta,gamma-imidodiphosphate (AMP-PNP) similarly stabilize the packaged viral genome despite the fact that they fail to support genome packaging. In contrast, the poorly hydrolyzed ATP analog ATP-gammaS only partially stabilizes the nucleocapsid, and a DNA is released in "quantized" steps. We interpret the ensemble of data to indicate that (i) the viral procapsid possesses a degree of plasticity that is required to

  17. Strong resistance against Rice grassy stunt virus is induced in transgenic rice plants expressing double-stranded RNA of the viral genes for nucleocapsid or movement proteins as targets for RNA interference.

    Science.gov (United States)

    Shimizu, Takumi; Ogamino, Takumi; Hiraguri, Akihiro; Nakazono-Nagaoka, Eiko; Uehara-Ichiki, Tamaki; Nakajima, Masami; Akutsu, Katsumi; Omura, Toshihiro; Sasaya, Takahide

    2013-05-01

    Rice grassy stunt virus (RGSV), a member of the genus Tenuivirus, causes significant economic losses in rice production in South, Southeast, and East Asian countries. Growing resistant varieties is the most efficient method to control RGSV; however, suitable resistance genes have not yet been found in natural rice resources. One of the most promising methods to confer resistance against RGSV is the use of RNA interference (RNAi). It is important to target viral genes that play important roles in viral infection and proliferation at an early stage of viral replication. Our recent findings obtained from an RNAi experiment with Rice stripe virus (RSV), a tenuivirus, revealed that the genes for nucleocapsid and movement proteins were appropriate targets for RNAi to confer resistance against RSV. In this study, we transformed rice plants by introducing an RNAi construct of the RGSV genes for the nucelocapsid protein pC5 or movement protein pC6. All progenies from self-fertilized transgenic plants had strong resistance against RGSV infection and did not allow the proliferation of RGSV. Thus, our strategy to target genes for nucleocapsid and movement proteins for conferring viral resistance might be applicable to the plant viruses in the genus Tenuivirus.

  18. Transport of Ebolavirus Nucleocapsids Is Dependent on Actin Polymerization: Live-Cell Imaging Analysis of Ebolavirus-Infected Cells.

    Science.gov (United States)

    Schudt, Gordian; Dolnik, Olga; Kolesnikova, Larissa; Biedenkopf, Nadine; Herwig, Astrid; Becker, Stephan

    2015-10-01

    Transport of ebolavirus (EBOV) nucleocapsids from perinuclear viral inclusions, where they are formed, to the site of budding at the plasma membrane represents an obligatory step of virus assembly. Until now, no live-cell studies on EBOV nucleocapsid transport have been performed, and participation of host cellular factors in this process, as well as the trajectories and speed of nucleocapsid transport, remain unknown. Live-cell imaging of EBOV-infected cells treated with different inhibitors of cellular cytoskeleton was used for the identification of cellular proteins involved in the nucleocapsid transport. EBOV nucleocapsids were visualized by expression of green fluorescent protein (GFP)-labeled nucleocapsid viral protein 30 (VP30) in EBOV-infected cells. Incorporation of the fusion protein VP30-GFP into EBOV nucleocapsids was confirmed by Western blot and indirect immunofluorescence analyses. Importantly, VP30-GFP fluorescence was readily detectable in the densely packed nucleocapsids inside perinuclear viral inclusions and in the dispersed rod-like nucleocapsids located outside of viral inclusions. Live-cell imaging of EBOV-infected cells revealed exit of single nucleocapsids from the viral inclusions and their intricate transport within the cytoplasm before budding at the plasma membrane. Nucleocapsid transport was arrested upon depolymerization of actin filaments (F-actin) and inhibition of the actin-nucleating Arp2/3 complex, and it was not altered upon depolymerization of microtubules or inhibition of N-WASP. Actin comet tails were often detected at the rear end of nucleocapsids. Marginally located nucleocapsids entered filopodia, moved inside, and budded from the tip of these thin cellular protrusions. Live-cell imaging of EBOV-infected cells revealed actin-dependent long-distance transport of EBOV nucleocapsids before budding at the cell surface. These findings provide useful insights into EBOV assembly and have potential application in the development

  19. The nucleocapsid proteins of mouse hepatitis virus and severe acute respiratory syndrome coronavirus share the same IFN-β antagonizing mechanism: attenuation of PACT-mediated RIG-I/ MDA5 activation.

    Science.gov (United States)

    Ding, Zhen; Fang, Liurong; Yuan, Shuangling; Zhao, Ling; Wang, Xunlei; Long, Siwen; Wang, Mohan; Wang, Dang; Foda, Mohamed Frahat; Xiao, Shaobo

    2017-07-25

    Coronaviruses (CoVs) are a huge threat to both humans and animals and have evolved elaborate mechanisms to antagonize interferons (IFNs). Nucleocapsid (N) protein is the most abundant viral protein in CoV-infected cells, and has been identified as an innate immunity antagonist in several CoVs, including mouse hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV. However, the underlying molecular mechanism(s) remain unclear. In this study, we found that MHV N protein inhibited Sendai virus and poly(I:C)-induced IFN-β production by targeting a molecule upstream of retinoic acid-induced gene I (RIG-I) and melanoma differentiation gene 5 (MDA5). Further studies showed that both MHV and SARS-CoV N proteins directly interacted with protein activator of protein kinase R (PACT), a cellular dsRNA-binding protein that can bind to RIG-I and MDA5 to activate IFN production. The N-PACT interaction sequestered the association of PACT and RIG-I/MDA5, which in turn inhibited IFN-β production. However, the N proteins from porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV), which are also classified in the order Nidovirales, did not interact and counteract with PACT. Taken together, our present study confirms that both MHV and SARS-CoV N proteins can perturb the function of cellular PACT to circumvent the innate antiviral response. However, this strategy does not appear to be used by all CoVs N proteins.

  20. Hantaan Virus Nucleocapsid Protein Binds to Importin alpha Proteins and Inhibits Tumor Necrosis Factor Alpha-Induced Activation of Nuclear Factor Kappa B

    Science.gov (United States)

    2008-11-19

    bipartite) stretches of the basic amino acids arginine and lysine (21). There are some reports of viral proteins, including VP24 of Ebola virus and ORF6...nucleus by importin 3 and importin 4. J. Biol. Chem. 280:15942–15951. 7. Fagerlund, R., K. Melen, L. Kinnunen, and I. Julkunen. 2002. Arginine / lysine ...out- comes correlate with the levels of TNF- (24). Recently, studies have begun to focus on the ability of han- taviruses to antagonize the innate

  1. In vitro assembly of Ebola virus nucleocapsid-like complex expressed in E. coli

    Directory of Open Access Journals (Sweden)

    Ruchao Peng

    2016-09-01

    Full Text Available Abstract Ebola virus (EBOV harbors an RNA genome encapsidated by nucleoprotein (NP along with other viral proteins to form a nucleocapsid complex. Previous Cryo-eletron tomography and biochemical studies have shown the helical structure of EBOV nucleocapsid at nanometer resolution and the first 450 amino-acid of NP (NPΔ451–739 alone is capable of forming a helical nucleocapsid-like complex (NLC. However, the structural basis for NP-NP interaction and the dynamic procedure of the nucleocapsid assembly is yet poorly understood. In this work, we, by using an E. coli expression system, captured a series of images of NPΔ451–739 conformers at different stages of NLC assembly by negative-stain electron microscopy, which allowed us to picture the dynamic procedure of EBOV nucleocapsid assembly. Along with further biochemical studies, we showed the assembly of NLC is salt-sensitive, and also established an indispensible role of RNA in this process. We propose the diverse modes of NLC elongation might be the key determinants shaping the plasticity of EBOV virions. Our findings provide a new model for characterizing the self-oligomerization of viral nucleoproteins and studying the dynamic assembly process of viral nucleocapsid in vitro.

  2. TROUBLESHOOTING IN EXPRESSION AND PURIFICATION OF RECOMBINANT SEVERE ACUTE RESPIRATORY SYNDROME-ASSOCIATED CORONAVIRUS NUCLEOCAPSID PROTEIN IN Escherichia coli BL21

    Directory of Open Access Journals (Sweden)

    Budiman Bela

    2010-11-01

    Full Text Available Considering importance of N protein for study of viral pathogenesis or development of immunodiagnostic assay, wereported effects of several conditions on purity and homogeneity of recombinant SARS-CoV N protein expressed in E.coli BL21. The SARS-CoV N gene was reverse transcribed and amplified by the reverse transcription-polymerase chainreaction (RT-PCR technique. The amplicons were cloned into pGEX-6P1 and followed by subcloning of the targetgene into pQE-80L. After inserting the recombinant plasmid (pQE80-N into E. coli, the recombinant protein (6 x Histag-N protein fusion was expressed by inducing the bacterial cells with 0.1-0.5 mM isopropyl-1-thio-Dgalactopyranoside(IPTG for 1-5 h. The protein recombinant were extracted from the bacterial cells by NTT buffercontaining 0-20 mM imidazol, and followed by Ni-NTA affinity resin purification. The results showed that induction ofE. coli BL21 with 0.2 mM IPTG for 4 h and followed with lysis of bacterial cells in NTT buffer containing 10 mMimidazol were optimal conditions to obtain the pure recombinant SARS-CoV N protein.

  3. The viral nucleocapsid protein of transmissible gastroenteritis coronavirus (TGEV) is cleaved by caspase-6 and -7 during TGEV-induced apoptosis.

    Science.gov (United States)

    Eléouët, J F; Slee, E A; Saurini, F; Castagné, N; Poncet, D; Garrido, C; Solary, E; Martin, S J

    2000-05-01

    The transmissible gastroenteritis coronavirus (TGEV), like many other viruses, exerts much of its cytopathic effect through the induction of apoptosis of its host cell. Apoptosis is coordinated by a family of cysteine proteases, called caspases, that are activated during apoptosis and participate in dismantling the cell by cleaving key structural and regulatory proteins. We have explored the caspase activation events that are initiated upon infection of the human rectal tumor cell line HRT18 with TGEV. We show that TGEV infection results in the activation of caspase-3, -6, -7, -8, and -9 and cleavage of the caspase substrates eIF4GI, gelsolin, and alpha-fodrin. Surprisingly, the TGEV nucleoprotein (N) underwent proteolysis in parallel with the activation of caspases within the host cell. Cleavage of the N protein was inhibited by cell-permeative caspase inhibitors, suggesting that this viral structural protein is a target for host cell caspases. We show that the TGEV nucleoprotein is a substrate for both caspase-6 and -7, and using site-directed mutagenesis, we have mapped the cleavage site to VVPD(359) downward arrow. These data demonstrate that viral proteins can be targeted for destruction by the host cell death machinery.

  4. Mesodynamics in the SARS nucleocapsid measured by NMR field cycling

    Energy Technology Data Exchange (ETDEWEB)

    Clarkson, Michael W.; Lei Ming; Eisenmesser, Elan Z.; Labeikovsky, Wladimir [MS009 Brandeis University, Department of Biochemistry and Howard Hughes Medical Institute (United States); Redfield, Alfred [MS009 Brandeis University, Department of Biochemistry (United States)], E-mail: redfield@brandeis.edu; Kern, Dorothee [MS009 Brandeis University, Department of Biochemistry and Howard Hughes Medical Institute (United States)], E-mail: dkern@brandeis.edu

    2009-09-15

    Protein motions on all timescales faster than molecular tumbling are encoded in the spectral density. The dissection of complex protein dynamics is typically performed using relaxation rates determined at high and ultra-high field. Here we expand this range of the spectral density to low fields through field cycling using the nucleocapsid protein of the SARS coronavirus as a model system. The field-cycling approach enables site-specific measurements of R{sub 1} at low fields with the sensitivity and resolution of a high-field magnet. These data, together with high-field relaxation and heteronuclear NOE, provide evidence for correlated rigid-body motions of the entire {beta}-hairpin, and corresponding motions of adjacent loops with a time constant of 0.8 ns (mesodynamics). MD simulations substantiate these findings and provide direct verification of the time scale and collective nature of these motions.

  5. Virions and intracellular nucleocapsids produced during mixed heterotypic influenza infection of MDCK cells

    International Nuclear Information System (INIS)

    Sklyanskaya, E.I.; Varich, N.L.; Amvrosieva, T.V.; Kaverin, N.V.

    1985-01-01

    Phenotypically mixed virus yields, obtained by coinfection of MDCK cells with influenza A/WSN/33 and B/Lee/40 viruses, contained both A/WSN/33 and B/Lee/40 NP proteins, as revealed by polyacrylamide gel electrophoresis of the purified 14 C-amino acids-labeled virus. Virions were lysed with 0.6 M KCl-Triton X-100 buffer, and nucleocapsids were immunoprecipitated with antibodies against NP protein of influenza A virus. Polyacrylamide gel electrophoresis of the immunoprecipitate revealed NP protein of A/WSN/33 but not of B/Lee/40 virus. However, in similar experiments with the lysates of doubly infected cells, the band of B/Lee/40 NP protein was revealed in the polyacrylamide gel electrophoresis patterns of the immunoprecipitates. In an attempt to analyze the RNA content of the immune complexes, the authors absorbed the lysates of doubly infected [ 3 H]uridine-labeled cells with protein A-containing Staphylococcus aureus covered with antibodies against the NP protein of influenza A virus. RNA extracted from the immune complexes contained genomic RNA segments of both A/WSN/33 and B/Lee/40 viruses. In control samples containing an artificial mixture of cell lysates separately infected with each virus, the analysis revealed homologous components (i.e., A/WSN/33 NP protein or RNA segments) in the immune complexes. The results suggest the presence of phenotypically mixed nucleocapsids in the cells doubly infected with influenza A and B viruses; in the course of the virion formation, the nucleocapsids lacking the heterologous NP protein are selected

  6. Probing Mercaptobenzamides as HIV Inactivators via Nucleocapsid Protein 7.

    Science.gov (United States)

    Saha, Mrinmoy; Scerba, Michael T; Shank, Nathaniel I; Hartman, Tracy L; Buchholz, Caitlin A; Buckheit, Robert W; Durell, Stewart R; Appella, Daniel H

    2017-05-22

    Human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein 7 (NCp7), a zinc finger protein, plays critical roles in viral replication and maturation and is an attractive target for drug development. However, the development of drug-like molecules that inhibit NCp7 has been a significant challenge. In this study, a series of novel 2-mercaptobenzamide prodrugs were investigated for anti-HIV activity in the context of NCp7 inactivation. The molecules were synthesized from the corresponding thiosalicylic acids, and they are all crystalline solids and stable at room temperature. Derivatives with a range of amide side chains and aromatic substituents were synthesized and screened for anti-HIV activity. Wide ranges of antiviral activity were observed, with IC 50 values ranging from 1 to 100 μm depending on subtle changes to the substituents on the aromatic ring and side chain. Results from these structure-activity relationships were fit to a probable mode of intracellular activation and interaction with NCp7 to explain variations in antiviral activity. Our strategy to make a series of mercaptobenzamide prodrugs represents a general new direction to make libraries that can be screened for anti-HIV activity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Sub-nucleocapsid nanoparticles: a nasal vaccine against respiratory syncytial virus.

    Directory of Open Access Journals (Sweden)

    Xavier Roux

    Full Text Available BACKGROUND: Bronchiolitis caused by the respiratory syncytial virus (RSV in infants less than two years old is a growing public health concern worldwide, and there is currently no safe and effective vaccine. A major component of RSV nucleocapsid, the nucleoprotein (N, has been so far poorly explored as a potential vaccine antigen, even though it is a target of protective anti-viral T cell responses and is remarkably conserved between human RSV A and B serotypes. We recently reported a method to produce recombinant N assembling in homogenous rings composed of 10-11 N subunits enclosing a bacterial RNA. These nanoparticles were named sub-nucleocapsid ring structure (N SRS. METHODOLOGY AND PRINCIPAL FINDINGS: The vaccine potential of N SRS was evaluated in a well-characterized and widely acknowledged mouse model of RSV infection. BALB/c adult mice were immunized intranasally with N SRS adjuvanted with the detoxified E. coli enterotoxin LT(R192G. Upon RSV challenge, vaccinated mice were largely protected against virus replication in the lungs, with a mild inflammatory lymphocytic and neutrophilic reaction in their airways. Mucosal immunization with N SRS elicited strong local and systemic immunity characterized by high titers of IgG1, IgG2a and IgA anti-N antibodies, antigen-specific CD8(+ T cells and IFN-gamma-producing CD4(+ T cells. CONCLUSIONS/SIGNIFICANCE: This is the first report of using nanoparticles formed by the recombinant nucleocapsid protein as an efficient and safe intra-nasal vaccine against RSV.

  8. Autographa californica multiple nucleopolyhedrovirus ac53 plays a role in nucleocapsid assembly

    International Nuclear Information System (INIS)

    Liu Chao; Li Zhaofei; Wu Wenbi; Li Lingling; Yuan Meijin; Pan Lijing; Yang Kai; Pang Yi

    2008-01-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf53 (ac53) is a highly conserved gene existing in all sequenced Lepidoptera and Hymenoptera baculoviruses, but its function remains unknown. To investigate its role in the baculovirus life cycle, an ac53 deletion virus (vAc ac53KO-PH-GFP ) was generated through homologous recombination in Escherichia coli. Fluorescence and light microscopy and titration analysis revealed that vAc ac53KO-PH-GFP could not produce infectious budded virus in infected Sf9 cells. Real-time PCR demonstrated that the ac53 deletion did not affect the levels of viral DNA replication. Electron microscopy showed that many lucent tubular shells devoid of the nucleoprotein core are present in the virogenic stroma and ring zone, indicating that the ac53 knockout affected nucleocapsid assembly. With a recombinant virus expressing an Ac53-GFP fusion protein, we observed that Ac53 was distributed within the cytoplasm and nucleus at 24 h post-infection, but afterwards accumulated predominantly near the nucleus-cytoplasm boundary. These data demonstrate that ac53 is involved in nucleocapsid assembly and is an essential gene for virus production

  9. In Vitro-Assembled Alphavirus Core-Like Particles Maintain a Structure Similar to That of Nucleocapsid Cores in Mature Virus

    OpenAIRE

    Mukhopadhyay, Suchetana; Chipman, Paul R.; Hong, Eunmee M.; Kuhn, Richard J.; Rossmann, Michael G.

    2002-01-01

    In vitro-assembled core-like particles produced from alphavirus capsid protein and nucleic acid were studied by cryoelectron microscopy. These particles were found to have a diameter of 420 Å with 240 copies of the capsid protein arranged in a T=4 icosahedral surface lattice, similar to the nucleocapsid core in mature virions. However, when the particles were subjected to gentle purification procedures, they were damaged, preventing generation of reliable structural information. Similarly, pu...

  10. High-resolution structure of HLA-A*1101 in complex with SARS nucleocapsid peptide

    DEFF Research Database (Denmark)

    Blicher, Thomas; Kastrup, Jette Sandholm; Buus, Søren

    2005-01-01

    The structure of the human MHC-I molecule HLA-A*1101 in complex with a nonameric peptide (KTFPPTEPK) has been determined by X-ray crystallography to 1.45 A resolution. The peptide is derived from the SARS-CoV nucleocapsid protein positions 362-370 (SNP362-370). It is conserved in all known isolates...... of SARS-CoV and has been verified by in vitro peptide-binding studies to be a good to intermediate binder to HLA-A*0301 and HLA-A*1101, with IC50 values of 70 and 186 nM, respectively [Sylvester-Hvid et al. (2004), Tissue Antigens, 63, 395-400]. In terms of the residues lining the peptide-binding groove...

  11. Why Enveloped Viruses Need Cores—The Contribution of a Nucleocapsid Core to Viral Budding

    Science.gov (United States)

    Lázaro, Guillermo R.; Mukhopadhyay, Suchetana; Hagan, Michael F.

    2018-02-01

    During the alphavirus lifecycle, a nucleocapsid core buds through the cell membrane to acquire an outer envelope of lipid membrane and viral glycoproteins. However, the presence of a nucleocapsid core is not required for assembly of infectious particles. To determine the role of the nucleocapsid core, we develop a coarse-grained computational model with which we investigate budding dynamics as a function of glycoprotein and nucleocapsid interactions, as well as budding in the absence of a nucleocapsid. We find that there is a transition between glycoprotein-directed budding and nucleocapsid-directed budding which occurs above a threshold strength of nucleocapsid interactions. The simulations predict that glycoprotein-directed budding leads to significantly increased size polydispersity and particle polymorphism. This polydispersity can be qualitatively explained by a theoretical model accounting for the competition between bending energy of the membrane and the glycoprotein shell. The simulations also show that the geometry of a budding particle leads to a barrier to subunit diffusion, which can result in a stalled, partially budded state. We present a phase diagram for this and other morphologies of budded particles. Comparison of these structures against experiments could establish bounds on whether budding is directed by glycoprotein or nucleocapsid interactions. Although our model is motivated by alphaviruses, we discuss implications of our results for other enveloped viruses.

  12. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways

    Science.gov (United States)

    Guo, Fang; Zhao, Qiong; Cheng, Junjun; Qi, Yonghe; Su, Qing; Wei, Lai; Li, Wenhui; Chang, Jinhong

    2017-01-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or “empty” capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B. PMID:28945802

  13. Synthesis of human parainfluenza virus 4 nucleocapsid-like particles in yeast and their use for detection of virus-specific antibodies in human serum.

    Science.gov (United States)

    Bulavaitė, Aistė; Lasickienė, Rita; Tamošiūnas, Paulius Lukas; Simanavičius, Martynas; Sasnauskas, Kęstutis; Žvirblienė, Aurelija

    2017-04-01

    The aim of this study was to produce human parainfluenza virus type 4 (HPIV4) nucleocapsid (N) protein in yeast Saccharomyces cerevisiae expression system, to explore its structural and antigenic properties and to evaluate its applicability in serology. The use of an optimized gene encoding HPIV4 N protein amino acid (aa) sequence GenBank AGU90031.1 allowed high yield of recombinant N protein forming nucleocapsid-like particles (NLPs) in yeast. A substitution L332D disrupted self-assembly of NLPs, confirming the role of this position in the N proteins of Paramyxovirinae. Three monoclonal antibodies (MAbs) were generated against the NLP-forming HPIV4 N protein. They recognised HPIV4-infected cells, demonstrating the antigenic similarity between the recombinant and virus-derived N proteins. HPIV4 N protein was used as a coating antigen in an indirect IgG ELISA with serum specimens of 154 patients with respiratory tract infection. The same serum specimens were tested with previously generated N protein of a closely related HPIV2, another representative of genus Rubulavirus. Competitive ELISA was developed using related yeast-produced viral antigens to deplete the cross-reactive serum antibodies. In the ELISA either without or with competition using heterologous HPIV (2 or 4) N or mumps virus N proteins, the seroprevalence of HPIV4 N-specific IgG was, respectively, 46.8, 39.6 and 40.3% and the seroprevalence of HPIV2 N-specific IgG-47.4, 39.0 and 37.7%. In conclusion, yeast-produced HPIV4 N protein shares structural and antigenic properties of the native virus nucleocapsids. Yeast-produced HPIV4 and HPIV2 NLPs are prospective tools in serology.

  14. Rab33B Controls Hepatitis B Virus Assembly by Regulating Core Membrane Association and Nucleocapsid Processing.

    Science.gov (United States)

    Bartusch, Christina; Döring, Tatjana; Prange, Reinhild

    2017-06-21

    Many viruses take advantage of cellular trafficking machineries to assemble and release new infectious particles. Using RNA interference (RNAi), we demonstrate that the Golgi/autophagosome-associated Rab33B is required for hepatitis B virus (HBV) propagation in hepatoma cell lines. While Rab33B is dispensable for the secretion of HBV subviral envelope particles, its knockdown reduced the virus yield to 20% and inhibited nucleocapsid (NC) formation and/or NC trafficking. The overexpression of a GDP-restricted Rab33B mutant phenocopied the effect of deficit Rab33B, indicating that Rab33B-specific effector proteins may be involved. Moreover, we found that HBV replication enhanced Rab33B expression. By analyzing HBV infection cycle steps, we identified a hitherto unknown membrane targeting module in the highly basic C-terminal domain of the NC-forming core protein. Rab33B inactivation reduced core membrane association, suggesting that membrane platforms participate in HBV assembly reactions. Biochemical and immunofluorescence analyses provided further hints that the viral core, rather than the envelope, is the main target for Rab33B intervention. Rab33B-deficiency reduced core protein levels without affecting viral transcription and hampered core/NC sorting to envelope-positive, intracellular compartments. Together, these results indicate that Rab33B is an important player in intracellular HBV trafficking events, guiding core transport to NC assembly sites and/or NC transport to budding sites.

  15. A Polyamide Inhibits Replication of Vesicular Stomatitis Virus by Targeting RNA in the Nucleocapsid

    Energy Technology Data Exchange (ETDEWEB)

    Gumpper, Ryan H.; Li, Weike; Castañeda, Carlos H.; Scuderi, M. José; Bashkin, James K.; Luo, Ming; Dutch, Rebecca Ellis

    2018-02-07

    Polyamides have been shown to bind double-stranded DNA by complementing the curvature of the minor groove and forming various hydrogen bonds with DNA. Several polyamide molecules have been found to have potent antiviral activities against papillomavirus, a double-stranded DNA virus. By analogy, we reason that polyamides may also interact with the structured RNA bound in the nucleocapsid of a negative-strand RNA virus. Vesicular stomatitis virus (VSV) was selected as a prototype virus to test this possibility since its genomic RNA encapsidated in the nucleocapsid forms a structure resembling one strand of an A-form RNA duplex. One polyamide molecule, UMSL1011, was found to inhibit infection of VSV. To confirm that the polyamide targeted the nucleocapsid, a nucleocapsid-like particle (NLP) was incubated with UMSL1011. The encapsidated RNA in the polyamide-treated NLP was protected from thermo-release and digestion by RNase A. UMSL1011 also inhibits viral RNA synthesis in the intracellular activity assay for the viral RNA-dependent RNA polymerase. The crystal structure revealed that UMSL1011 binds the structured RNA in the nucleocapsid. The conclusion of our studies is that the RNA in the nucleocapsid is a viable antiviral target of polyamides. Since the RNA structure in the nucleocapsid is similar in all negative-strand RNA viruses, polyamides may be optimized to target the specific RNA genome of a negative-strand RNA virus, such as respiratory syncytial virus and Ebola virus.

    IMPORTANCENegative-strand RNA viruses (NSVs) include several life-threatening pathogens, such as rabies virus, respiratory syncytial virus, and Ebola virus. There are no effective antiviral drugs against these viruses. Polyamides offer an exceptional opportunity because they may be optimized to target each NSV. Our studies on vesicular stomatitis virus, an NSV, demonstrated that a polyamide molecule could specifically target the viral RNA in the nucleocapsid and inhibit

  16. The respiratory syncytial virus nucleoprotein-RNA complex forms a left-handed helical nucleocapsid.

    Science.gov (United States)

    Bakker, Saskia E; Duquerroy, Stéphane; Galloux, Marie; Loney, Colin; Conner, Edward; Eléouët, Jean-François; Rey, Félix A; Bhella, David

    2013-08-01

    Respiratory syncytial virus (RSV) is an important human pathogen. Its nucleocapsid (NC), which comprises the negative sense RNA viral genome coated by the viral nucleoprotein N, is a critical assembly that serves as template for both mRNA synthesis and genome replication. We have previously described the X-ray structure of an NC-like structure: a decameric ring formed of N-RNA that mimics one turn of the helical NC. In the absence of experimental data we had hypothesized that the NC helix would be right-handed, as the N-N contacts in the ring appeared to more easily adapt to that conformation. We now unambiguously show that the RSV NC is a left-handed helix. We further show that the contacts in the ring can be distorted to maintain key N-N-protein interactions in a left-handed helix, and discuss the implications of the resulting atomic model of the helical NC for viral replication and transcription.

  17. Component tree analysis of cystovirus φ6 nucleocapsid Cryo-EM single particle reconstructions.

    Directory of Open Access Journals (Sweden)

    Lucas M Oliveira

    Full Text Available The 3-dimensional structure of the nucleocapsid (NC of bacteriophage φ6 is described utilizing component tree analysis, a topological and geometric image descriptor. The component trees are derived from density maps of cryo-electron microscopy single particle reconstructions. Analysis determines position and occupancy of structure elements responsible for RNA packaging and transcription. Occupancy of the hexameric nucleotide triphosphorylase (P4 and RNA polymerase (P2 are found to be essentially complete in the NC. The P8 protein lattice likely fixes P4 and P2 in place during maturation. We propose that the viral procapsid (PC is a dynamic structural intermediate where the P4 and P2 can attach and detach until held in place in mature NCs. During packaging, the PC expands to accommodate the RNA, and P2 translates from its original site near the inner 3-fold axis (20 sites to the inner 5-fold axis (12 sites with excess P2 positioned inside the central region of the NC.

  18. The metastable state of nucleocapsids of enveloped viruses as probed by high hydrostatic pressure.

    Science.gov (United States)

    Gaspar, L P; Terezan, A F; Pinheiro, A S; Foguel, D; Rebello, M A; Silva, J L

    2001-03-09

    Enveloped viruses fuse their membranes with cellular membranes to transfer their genomes into cells at the beginning of infection. What is not clear, however, is the role of the envelope (lipid bilayer and glycoproteins) in the stability of the viral particle. To address this question, we compared the stability between enveloped and nucleocapsid particles of the alphavirus Mayaro using hydrostatic pressure and urea. The effects were monitored by intrinsic fluorescence, light scattering, and binding of fluorescent dyes, including bis(8-anilinonaphthalene-1-sulfonate) and ethidium bromide. Pressure caused a drastic dissociation of the nucleocapsids as determined by tryptophan fluorescence, light scattering, and gel filtration chromatography. Pressure-induced dissociation of the nucleocapsids was poorly reversible. In contrast, when the envelope was present, pressure effects were much less marked and were highly reversible. Binding of ethidium bromide occurred when nucleocapsids were dissociated under pressure, indicating exposure of the nucleic acid, whereas enveloped particles underwent no changes. Overall, our results demonstrate that removal of the envelope with the glycoproteins leads the particle to a metastable state and, during infection, may serve as the trigger for disassembly and delivery of the genome. The envelope acts as a "Trojan horse," gaining entry into the host cell to allow release of a metastable nucleocapsid prone to disassembly.

  19. The sf32 unique gene of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV is a non-essential gene that could be involved in nucleocapsid organization in occlusion-derived virions.

    Directory of Open Access Journals (Sweden)

    Inés Beperet

    Full Text Available A recombinant virus lacking the sf32 gene (Sf32null, unique to the Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV, was generated by homologous recombination from a bacmid comprising the complete viral genome (Sfbac. Transcriptional analysis revealed that sf32 is an early gene. Occlusion bodies (OBs of Sf32null contained 62% more genomic DNA than viruses containing the sf32 gene, Sfbac and Sf32null-repair, although Sf32null DNA was three-fold less infective when injected in vivo. Sf32null OBs were 18% larger in diameter and contained 17% more nucleocapsids within ODVs than those of Sfbac. No significant differences were detected in OB pathogenicity (50% lethal concentration, speed-of-kill or budded virus production in vivo. In contrast, the production of OBs/larva was reduced by 39% in insects infected by Sf32null compared to those infected by Sfbac. The SF32 predicted protein sequence showed homology (25% identity, 44% similarity to two adhesion proteins from Streptococcus pyogenes and a single N-mirystoylation site was predicted. We conclude that SF32 is a non-essential protein that could be involved in nucleocapsid organization during ODV assembly and occlusion, resulting in increased numbers of nucleocapsids within ODVs.

  20. Trafficking of Sendai virus nucleocapsids is mediated by intracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Raychel Chambers

    2010-06-01

    Full Text Available Paramyxoviruses are assembled at the plasma membrane budding sites after synthesis of all the structural components in the cytoplasm. Although viral ribonuclocapsid (vRNP is an essential component of infectious virions, the process of vRNP translocation to assembly sites is poorly understood.To analyze real-time trafficking of vRNPs in live infected cells, we created a recombinant Sendai virus (SeV, rSeVLeGFP, which expresses L protein fused to enhanced green fluorescent protein (eGFP. The rSeVLeGFP showed similar growth kinetics compared to wt SeV, and newly synthesized LeGFP could be detected as early as 8 h postinfection. The majority of LeGFP co-localized with other components of vRNPs, NP and P proteins, suggesting the fluorescent signals of LeGFP represent the locations of vRNPs. Analysis of LeGFP movement using time-lapse digital video microscopy revealed directional and saltatory movement of LeGFP along microtubules. Treatment of the cells with nocodazole restricted vRNP movement and reduced progeny virion production without affecting viral protein synthesis, suggesting the role of microtubules in vRNP trafficking and virus assembly. Further study with an electron microscope showed close association of vRNPs with intracellular vesicles present in infected cells. In addition, the vRNPs co-localized with Rab11a protein, which is known to regulate the recycling endocytosis pathway and Golgi-to-plasma membrane trafficking. Simultaneous movement between LeGFP and Rab11a was also observed in infected cells, which constitutively express mRFP-tagged Rab11a. Involvement of recycling endosomes in vRNP translocation was also suggested by the fact that vRNPs move concomitantly with recycling transferrin labeled with Alexa 594.Collectively, our results strongly suggest a previously unrecognized involvement of the intracellular vesicular trafficking pathway in vRNP translocation and provide new insights into the transport of viral structural

  1. Nucleocapsid-like structures of Ebola virus reconstructed using electron tomography

    International Nuclear Information System (INIS)

    Noda, T.; Aoyama, K.; Sagara, H.; Kida, H.; Kawaoka, Y.

    2005-01-01

    Electron tomography (ET) is a new technique for high resolution, three-dimensional (3D) reconstruction of pleiomocphic mac. n)molecular complexes, such as virus components. By employing this technique, we resolved the 3D structure of Ebola virus nucleocapsid-like (NC-like) structures in the cytoplasm of cells expressing NP, VP24, and VP35: the minimum components required to form these NC-like structures. Reconstruction of these tubular NC-like structures of Ebola virus showed them to be composed of left-handed helices spaced at short intervals, which is structurally consistent with other non-segmented negative-strand RNA viruses

  2. Nucleocapsid gene analysis from an imported case of Middle East respiratory syndrome coronavirus, Malaysia

    Directory of Open Access Journals (Sweden)

    Nor-Aziyah Mat-Rahim

    2015-07-01

    Full Text Available Objective: To describe the complete nucleocapsid (N gene region of Middle East respiratory syndrome coronavirus (MERS-CoV from imported case in Malaysia and the relations with human- and camel-derived MERS-CoV. Methods: Combination of throat and nasal swab specimens was subjected to viral RNA extraction. For screening, the extracted RNA was subjected to real-time RT-PCR targeting upstream of E gene, open reading frame 1b and open reading frame 1a. For confirmation, the RNA was subjected to RT-PCR targeting partial part of the RNA-dependent RNA polymerase and nucleocapsid, followed by amplification of complete N gene region. Nucleotide sequencing of the first Malaysian case of MERS-CoV was performed following the confirmation with real-time RT-PCR detection. Results: Initial analysis of partial RNA-dependent RNA polymerase and N gene revealed that the nucleotides had high similarity to Jeddah_1_2013 strain. Analysis of complete N gene region (1 242 nucleotides from the case showed high similarity and yet distinct to the nucleotide sequences of camel-derived MERS-CoV. Conclusions: From the finding, there are possibilities that the patient acquired the infection from zoonotic transmission from dromedary camels.

  3. Development of a novel hepatitis B virus encapsidation detection assay by viral nucleocapsid-captured quantitative RT-PCR.

    Science.gov (United States)

    Ryu, Dong-Kyun; Ahn, Yeji; Ryu, Wang-Shick; Windisch, Marc P

    2015-11-01

    After encapsidation, where pregenomic RNA (pgRNA) is packaged into viral nucleocapsids, hepatitis B virus (HBV) uses the pgRNA as a template to replicate its DNA genome by reverse transcription. To date, there are only two encapsidation detection methods for evaluating the amount of pgRNA packaged into nucleocapsids: (i) the RNase protection assay and (ii) the native agarose gel electrophoresis assay. However, these methods are complex and laborious because they require multiple pgRNA purification steps followed by detection via an isotope-labeled probe. Moreover, both assays are unsuitable for evaluating a large number of antiviral agents in a dose-dependent manner. To overcome these limitations, we devised a novel HBV encapsidation assay in a 96-well plate format using nucleocapsid capture plates coated with an anti-HBV core (HBc) antibody, usually employed in enzyme-linked immunosorbent assays, to immobilize viral nucleocapsids. Viral pgRNA is then detected by quantitative RT-PCR (RT-qPCR). This strategy allows fast, convenient, and quantitative analysis of multiple viral RNA samples to evaluate encapsidation inhibitors. Furthermore, our protocol is potentially suitable for high-throughput screening (HTS) of compounds targeting HBV pgRNA encapsidation.

  4. A Tetravalent Formulation Based on Recombinant Nucleocapsid-like Particles from Dengue Viruses Induces a Functional Immune Response in Mice and Monkeys.

    Science.gov (United States)

    Gil, Lázaro; Cobas, Karem; Lazo, Laura; Marcos, Ernesto; Hernández, Laura; Suzarte, Edith; Izquierdo, Alienys; Valdés, Iris; Blanco, Aracelys; Puentes, Pedro; Romero, Yaremis; Pérez, Yusleidi; Guzmán, María G; Guillén, Gerardo; Hermida, Lisset

    2016-11-01

    Despite the considerable effort that has been invested in elucidating the mechanisms of protection and immunopathogenesis associated with dengue virus infections, a reliable correlate of protection against the disease remains to be found. Neutralizing Abs, long considered the prime component of a protective response, can exacerbate disease severity when present at subprotective levels, and a growing body of data is challenging the notion that their titers are positively correlated with disease protection. Consequently, the protective role of cell-mediated immunity in the control of dengue infections has begun to be studied. Although earlier research implicated cellular immunity in dengue immunopathogenesis, a wealth of newer data demonstrated that multifunctional CD8 + T cell responses are instrumental for avoiding the more severe manifestations of dengue disease. In this article, we describe a new tetravalent vaccine candidate based on recombinant dengue virus capsid proteins, efficiently produced in Escherichia coli and purified using a single ion-exchange chromatography step. After aggregation to form nucleocapsid-like particles upon incubation with an oligodeoxynucleotide containing immunostimulatory CpG motifs, these Ags induce, in mice and monkeys, an IFN-γ-secreting cell response that significantly reduces viral load after challenge without the contribution of antiviral Abs. Therefore, this new vaccine candidate may not carry the risk for disease enhancement associated with Ab-based formulations. Copyright © 2016 by The American Association of Immunologists, Inc.

  5. The nucleocapsid domain is responsible for the ability of spleen necrosis virus (SNV) Gag polyprotein to package both SNV and murine leukemia virus RNA.

    Science.gov (United States)

    Certo, J L; Kabdulov, T O; Paulson, M L; Anderson, J A; Hu, W S

    1999-11-01

    Murine leukemia virus (MLV)-based vector RNA can be packaged and propagated by the proteins of spleen necrosis virus (SNV). We recently demonstrated that MLV proteins cannot support the replication of an SNV-based vector; RNA analysis revealed that MLV proteins cannot efficiently package SNV-based vector RNA. The domain in Gag responsible for the specificity of RNA packaging was identified using chimeric gag-pol expression constructs. A competitive packaging system was established by generating a cell line that expresses one viral vector RNA containing the MLV packaging signal (Psi) and another viral vector RNA containing the SNV packaging signal (E). The chimeric gag-pol expression constructs were introduced into the cells, and vector titers as well as the efficiency of RNA packaging were examined. Our data confirm that Gag is solely responsible for the selection of viral RNAs. Furthermore, the nucleocapsid (NC) domain in the SNV Gag is responsible for its ability to interact with both SNV E and MLV Psi. Replacement of the SNV NC with the MLV NC generated a chimeric Gag that could not package SNV RNA but retained its ability to package MLV RNA. A construct expressing SNV gag-MLV pol supported the replication of both MLV and SNV vectors, indicating that the gag and pol gene products from two different viruses can functionally cooperate to perform one cycle of retroviral replication. Viral titer data indicated that SNV cis-acting elements are not ideal substrates for MLV pol gene products since infectious viruses were generated at a lower efficiency. These results indicate that the nonreciprocal recognition between SNV and MLV extends beyond the Gag-RNA interaction and also includes interactions between Pol and other cis-acting elements.

  6. Enrichment of measles virus-like RNA in the nucleocapsid fraction isolated from subacute sclerosing panencephalitis brains

    International Nuclear Information System (INIS)

    Bedows, E.; Payne, F.E.; Kohne, D.E.; Tourtellotte, W.W.

    1982-01-01

    A procedure has been developed which facilitates the detection of measles virus RNA sequences in human brains. The procedure involves isolating subviral components (nucleocapsids) from brain tissues prior to RNA purification, followed by hybridization of these RNAs to cDNA synthesized from measles virus 50 S RNA template. Using these techniques we were able to obtain an RNA fraction which was manyfold enriched in measles virus-specific RNA, relative to unfractionated subacute sclerosing panencephalitis (SSPE) brain RNAs. 70-100% of the measles virus-specific RNA present in these SSPE brain samples were recovered in this enriched fraction. (Auth.)

  7. The nucleocapsid region of HIV-1 Gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding.

    Directory of Open Access Journals (Sweden)

    Vincent Dussupt

    2009-03-01

    Full Text Available HIV-1 release is mediated through two motifs in the p6 region of Gag, PTAP and LYPX(nL, which recruit cellular proteins Tsg101 and Alix, respectively. The Nucleocapsid region of Gag (NC, which binds the Bro1 domain of Alix, also plays an important role in HIV-1 release, but the underlying mechanism remains unclear. Here we show that the first 202 residues of the Bro1 domain (Bro(i are sufficient to bind Gag. Bro(i interferes with HIV-1 release in an NC-dependent manner and arrests viral budding at the plasma membrane. Similar interrupted budding structures are seen following over-expression of a fragment containing Bro1 with the adjacent V domain (Bro1-V. Although only Bro1-V contains binding determinants for CHMP4, both Bro(i and Bro1-V inhibited release via both the PTAP/Tsg101 and the LYPX(nL/Alix pathways, suggesting that they interfere with a key step in HIV-1 release. Remarkably, we found that over-expression of Bro1 rescued the release of HIV-1 lacking both L domains. This rescue required the N-terminal region of the NC domain in Gag and the CHMP4 binding site in Bro1. Interestingly, release defects due to mutations in NC that prevented Bro1 mediated rescue of virus egress were rescued by providing a link to the ESCRT machinery via Nedd4.2s over-expression. Our data support a model in which NC cooperates with PTAP in the recruitment of cellular proteins necessary for its L domain activity and binds the Bro1-CHMP4 complex required for LYPX(nL-mediated budding.

  8. Biological activity and field efficacy of a genetically modified Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus expressing an insect-selective toxin from a chimeric promoter

    NARCIS (Netherlands)

    Sun, X.; Wang, H.; Sun, X.C.; Chen Xinwen,; Peng, C.; Pan, D.; Jehle, J.A.; Werf, van der W.; Vlak, J.M.; Hu, Z.

    2004-01-01

    A recombinant baculovirus (HaSNPV-AaIT) with improved insecticidal properties was constructed for the control of the cotton bollworm (Helicoverpa armigera). A chimeric promoter of the p6.9 and polyhedrin gene of H. armigera single-nucleocapsid nucleopolyhedrovirus (HaSNPV) was used to drive the

  9. Detection of eight different tospovirus species by a monoclonal antibody against the common epitope of NSs protein

    NARCIS (Netherlands)

    Chen, T.C.; Lu, Y.Y.; Kang, Y.C.; Li, J.T.; Yeh, Y.C.; Kormelink, R.J.M.; Yeh, S.D.

    2008-01-01

    Rabbit antisera against the nucleocapsid protein (NP) have been commonly used for detection of tospoviruses and classification into serogroups or serotypes. Mouse monoclonal antibodies (MAbs) with high specificity to the NPs have also been widely used to identify tospovirus species. Recently, a

  10. Autographa californica multiple nucleopolyhedrovirus ac66 is required for the efficient egress of nucleocapsids from the nucleus, general synthesis of preoccluded virions and occlusion body formation

    International Nuclear Information System (INIS)

    Ke Jianhao; Wang Jinwen; Deng Riqiang; Wang Xunzhang

    2008-01-01

    Although orf66 (ac66) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is conserved in all sequenced lepidopteran baculovirus genomes, its function is not known. This paper describes generation of an ac66 knockout AcMNPV bacmid mutant and analyses of the influence of ac66 deletion on the virus replication in Sf-9 cells so as to determine the role of ac66 in the viral life cycle. Results indicated that budded virus (BV) yields were reduced over 99% in ac66-null mutant infected cells in comparison to that in wild-type virus infected cells. Optical microscopy revealed that occlusion body synthesis was significantly reduced in the ac66 knockout bacmid-transfected cells. In addition, ac66 deletion interrupted preoccluded virion synthesis. The mutant phenotype was rescued by an ac66 repair bacmid. On the other hand, real-time PCR analysis indicated that ac66 deletion did not affect the levels of viral DNA replication. Electron microscopy revealed that ac66 is not essential for nucleocapsid assembly, but for the efficient transport of nucleocapsids from the nucleus to the cytoplasm. These results suggested that ac66 plays an important role for the efficient exit of nucleocapsids from the nucleus to the cytoplasm for BV synthesis as well as for preoccluded virion and occlusion synthesis

  11. Overlapping CD8+ and CD4+ T-cell epitopes identification for the progression of epitope-based peptide vaccine from nucleocapsid and glycoprotein of emerging Rift Valley fever virus using immunoinformatics approach.

    Science.gov (United States)

    Adhikari, Utpal Kumar; Rahman, M Mizanur

    2017-12-01

    Rift Valley fever virus (RVFV) is an emergent arthropod-borne zoonotic infectious viral pathogen which causes fatal diseases in the humans and ruminants. Currently, no effective and licensed vaccine is available for the prevention of RVFV infection in endemic as well as in non-endemic regions. So, an immunoinformatics-driven genome-wide screening approach was performed for the identification of overlapping CD8+ and CD4+ T-cell epitopes and also linear B-cell epitopes from the conserved sequences of the nucleocapsid (N) and glycoprotein (G) of RVFV. We identified overlapping 99.39% conserved 1 CD8+ T-cell epitope (MMHPSFAGM) from N protein and 100% conserved 7 epitopes (AVFALAPVV, LAVFALAPV, FALAPVVFA, VFALAPVVF, IAMTVLPAL, FFDWFSGLM, and FLLIYLGRT) from G protein and also identified IL-4 and IFN-γ induced (99.39% conserved) 1 N protein CD4+ T-cell epitope (HMMHPSFAGMVDPSL) and 100% conserved 5 G protein CD4+ T-cell epitopes (LPALAVFALAPVVFA, PALAVFALAPVVFAE, GIAMTVLPALAVFAL, GSWNFFDWFSGLMSW, and FFLLIYLGRTGLSKM). The overlapping CD8+ and CD4+ T-cell epitopes were bound with most conserved HLA-C*12:03 and HLA-DRB1*01:01, respectively with the high binding affinity (kcal/mol). The combined population coverage analysis revealed that the allele frequencies of these epitopes are high in endemic and non-endemic regions. Besides, we found 100% conserved and non-allergenic 2 decamer B-cell epitopes, GVCEVGVQAL and RVFNCIDWVH of G protein had the sequence similarity with the nonamer CD8+ T-cell epitopes, VCEVGVQAL and RVFNCIDWV, respectively. Consequently, these epitopes may be used for the development of epitope-based peptide vaccine against emerging RVFV. However, in vivo and in vitro experiments are required for their efficient use as a vaccine. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Functional and Structural Characterization of Novel Type of Linker Connecting Capsid and Nucleocapsid Protein Domains in Murine Leukemia Virus

    Czech Academy of Sciences Publication Activity Database

    Doležal, Michal; Hadravová, Romana; Kožíšek, Milan; Bednárová, Lucie; Langerová, H.; Ruml, T.; Rumlová, Michaela

    2016-01-01

    Roč. 291, č. 39 (2016), s. 20630-20642 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA14-15326S; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : circular dichroism (CD) * electron microscopy (EM) * nuclear magnetic resonance (NMR) * retrovirus * virus assembly Subject RIV: CE - Biochemistry Impact factor: 4.125, year: 2016

  13. A Chrysodeixis chalcites single-nucleocapsid nucleopolyhedrovirus population from the Canary Islands is genotypically structured to maximize survival.

    Science.gov (United States)

    Bernal, Alexandra; Simón, Oihane; Williams, Trevor; Muñoz, Delia; Caballero, Primitivo

    2013-12-01

    A Chrysodeixis chalcites single-nucleocapsid nucleopolyhedrovirus wild-type isolate from the Canary Islands, Spain, named ChchSNPV-TF1 (ChchTF1-wt), appears to have great potential as the basis for a biological insecticide for control of the pest. An improved understanding of the genotypic structure of this wild-type strain population should facilitate the selection of genotypes for inclusion in a bioinsecticidal product. Eight genetically distinct genotypes were cloned in vitro: ChchTF1-A to ChchTF1-H. Quantitative real-time PCR (qPCR) analysis confirmed that ChchTF1-A accounted for 36% of the genotypes in the wild-type population. In bioassays, ChchTF1-wt occlusion bodies (OBs) were significantly more pathogenic than any of the component single-genotype OBs, indicating that genotype interactions were likely responsible for the pathogenicity phenotype of wild-type OBs. However, the wild-type population was slower killing and produced higher OB yields than any of the single genotypes alone. These results strongly suggested that the ChchTF1-wt population is structured to maximize its transmission efficiency. Experimental OB mixtures and cooccluded genotype mixtures containing the most abundant and the rarest genotypes, at frequencies similar to those at which they were isolated, revealed a mutualistic interaction that restored the pathogenicity of OBs. In OB and cooccluded mixtures containing only the most abundant genotypes, ChchTF1-ABC, OB pathogenicity was even greater than that of wild-type OBs. The ChchTF1-ABC cooccluded mixture killed larvae 33 h faster than the wild-type population and remained genotypically and biologically stable throughout five successive passages in vivo. In conclusion, the ChchTF1-ABC mixture shows great potential as the active ingredient of a bioinsecticide to control C. chalcites in the Canary Islands.

  14. Does a cdc2 kinase-like recognition motif on the core protein of hepadnaviruses regulate assembly and disintegration of capsids?

    Science.gov (United States)

    Barrasa, M I; Guo, J T; Saputelli, J; Mason, W S; Seeger, C

    2001-02-01

    Hepadnaviruses are enveloped viruses, each with a DNA genome packaged in an icosahedral nucleocapsid, which is the site of viral DNA synthesis. In the presence of envelope proteins, DNA-containing nucleocapsids are assembled into virions and secreted, but in the absence of these proteins, nucleocapsids deliver viral DNA into the cell nucleus. Presumably, this step is identical to the delivery of viral DNA during the initiation of an infection. Unfortunately, the mechanisms triggering the disintegration of subviral core particles and delivery of viral DNA into the nucleus are not yet understood. We now report the identification of a sequence motif resembling a serine- or threonine-proline kinase recognition site in the core protein at a location that is required for the assembly of core polypeptides into capsids. Using duck hepatitis B virus, we demonstrated that mutations at this sequence motif can have profound consequences for RNA packaging, DNA replication, and core protein stability. Furthermore, we found a mutant with a conditional phenotype that depended on the cell type used for virus replication. Our results support the hypothesis predicting that this motif plays a role in assembly and disassembly of viral capsids.

  15. Protein Composition of the Bovine Herpesvirus 1.1 Virion.

    Science.gov (United States)

    Barber, Kaley A; Daugherty, Hillary C; Ander, Stephanie E; Jefferson, Victoria A; Shack, Leslie A; Pechan, Tibor; Nanduri, Bindu; Meyer, Florencia

    2017-02-20

    Bovine herpesvirus (BoHV) type 1 is an important agricultural pathogen that infects cattle and other ruminants worldwide. Acute infection of the oro-respiratory tract leads to immune suppression and allows commensal bacteria to infect an otherwise healthy lower respiratory tract. This condition is known as the Bovine Respiratory Disease (BRD). BoHV-1 latently infects the host for life and periodical stress events re-initiate BRD, translating into high morbidity and large economic losses. To gain a better understanding of the biology of BoHV-1 and the disease it causes, we elucidated the protein composition of extracellular virions using liquid chromatography-mass spectrometry analysis. We detected 33 viral proteins, including the expected proteins of the nucleocapsid and envelope as well as other regulatory proteins present in the viral tegument. In addition to viral proteins, we have also identified packaged proteins of host origin. This constitutes the first proteomic characterization of the BoHV virion.

  16. Evaluation of the antiviral efficacy of bis[1,2]dithiolo[1,4]thiazines and bis[1,2]dithiolopyrrole derivatives against the nucelocapsid protein of the Feline Immunodeficiency Virus (FIV) as a model for HIV infection.

    Science.gov (United States)

    Asquith, Christopher R M; Meli, Marina L; Konstantinova, Lidia S; Laitinen, Tuomo; Peräkylä, Mikael; Poso, Antti; Rakitin, Oleg A; Allenspach, Karin; Hofmann-Lehmann, Regina; Hilton, Stephen T

    2014-06-15

    A diverse library of bis[1,2]dithiolo[1,4]thiazines and bis[1,2]dithiolopyrrole derivatives were prepared for evaluation of activity against the nucleocapsid protein of the Feline Immunodeficiency Virus (FIV) as a model for HIV, using an in vitro cell culture approach, yielding nanomolar active compounds with low toxicity. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  17. dUTPase and nucleocapsid polypeptides of the Mason-Pfizer monkey virus form a fusion protein in the virion with homotrimeric organization and low catalytic efficiency

    Czech Academy of Sciences Publication Activity Database

    Barabás, O.; Rumlová, Michaela; Erdei, A.; Pongrácz, V.; Pichová, Iva; Vértessy, B. G.

    2003-01-01

    Roč. 278, č. 40 (2003), s. 38803-38812 ISSN 0021-9258 R&D Projects: GA AV ČR IAA4055304 Grant - others:HNRF(HU) T034120; HNRF(HU) TS044730; HNRF(HU) M27852; HHMI(US) 55000342 Institutional research plan: CEZ:AV0Z4055905 Keywords : dUTPase * M-PMV * pyrophosphatase Subject RIV: CE - Biochemistry Impact factor: 6.482, year: 2003

  18. Baculovirus Expression of the Small Genome Segment of Hantaan Virus and Potential Use of the Expressed Nucleocapsid Protein as a Diagnostic Antigen

    Science.gov (United States)

    1988-01-01

    observed (LeDuc et al., 1986a). Hantavirus infection of rodents is apparently non-pathogenic and persistent, and transmission to humans is believed to...occur via aerosols of infectious virus from the animals’ urine, faeces and saliva (Lee, 1982). Such viral persistence in naturally infected...100 gl aliquots of each were dried onto wells of standard, flat-bottom ELISA microtitre plates. ELISA. Sera from rabbits, rats and humans were tested in

  19. Evaluation of Substituted 1,2,3-Dithiazoles as Inhibitors of the Feline Immunodeficiency Virus (FIV) Nucleocapsid Protein via a Proposed Zinc Ejection Mechanism.

    Science.gov (United States)

    Asquith, Christopher R M; Konstantinova, Lidia S; Laitinen, Tuomo; Meli, Marina L; Poso, Antti; Rakitin, Oleg A; Hofmann-Lehmann, Regina; Hilton, Stephen T

    2016-10-06

    A diverse library of 5-thieno-, 5-oxo-, and 5-imino-1,2,3-dithiazole derivatives was synthesized and evaluated for efficacy against the feline immunodeficiency virus (FIV) as a model for HIV in cells. Several diverse compounds from this series displayed nanomolar activity and low toxicity, representing a potential new class of compounds for the treatment of FIV and HIV. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Persistence of the protective immunity and kinetics of the isotype specific antibody response against the viral nucleocapsid protein after experimental Schmallenberg virus infection of sheep.

    Science.gov (United States)

    Poskin, Antoine; Verite, Stephanie; Comtet, Loic; Van der Stede, Yves; Cay, Brigitte; De Regge, Nick

    2015-10-15

    Schmallenberg virus (SBV) is an Orthobunyavirus that induces abortion, stillbirths and congenital malformations in ruminants. SBV infection induces a long lasting seroconversion under natural conditions. The persistence of the protective immunity and the isotype specific antibody response upon SBV infection of sheep has however not been studied in detail. Five sheep were kept in BSL3 facilities for more than 16 months and subjected to repeated SBV infections. Blood was regularly sampled and organs were collected at euthanasia. The presence of SBV RNA in serum and organs was measured with quantitative real-time PCR. The appearance and persistence of neutralizing and SBV nucleoprotein (N) isotype specific antibodies was determined with virus neutralization tests (VNT) and ELISAs. The primo SBV infection protected ewes against clinical signs, viraemia and virus replication in organs upon challenge infections more than 15 months later. Production of neutralizing SBV specific antibodies was first detected around 6 days post primo-inoculation with VNT and correlated with the appearance of SBV-N specific IgM antibodies. These IgM antibodies remained present for 2 weeks. SBV-N specific IgG antibodies were first detected between 10 and 21 dpi and reached a plateau at 28 dpi. This plateau remained consistently high and no significant decrease in titre was found over a period of more than 1 year. Similar results were found for the neutralising antibody response. In conclusion, the SBV specific IgM response probably eliminates SBV from the blood and the protective immunity induced by SBV infection protects sheep against reinfection for at least 16 months.

  1. Characterization of Hepatitis C Virus Core Protein Dimerization by Atomic Force Microscopy.

    Science.gov (United States)

    Li, Wenhui; Kou, Xiaolong; Xu, Jiachao; Zhou, Wei; Zhao, Rong; Zhang, Zhen; Fang, Xiaohong

    2018-03-14

    Dimerization of core protein is a crucial step in the formation of the hepatitis C virus (HCV) nucleocapsid, and inhibition of dimer formation is regarded as an attractive approach to design anti-HCV drugs. In this work, we developed the atomic force microscopy based single molecular force spectroscopy (AFM-SMFS) method for the characterization of core protein dimerization with the advantages of small amount of sample consumption and no need of labeling. Interaction force of the core protein with its antibody or aptamer was analyzed to investigate its stoichiometry and binding property. The two specific binding forces were detected due to the probing of dimeric and monomeric core protein, respectively. Moreover, the binding property of protein dimer was different from the monomer. Our work offers a new approach to study the dimerization of core protein, as well as other proteins, and to screen the HCV candidate inhibitors.

  2. Labeling of multiple HIV-1 proteins with the biarsenical-tetracysteine system.

    Directory of Open Access Journals (Sweden)

    Cândida F Pereira

    Full Text Available Due to its small size and versatility, the biarsenical-tetracysteine system is an attractive way to label viral proteins for live cell imaging. This study describes the genetic labeling of the human immunodeficiency virus type 1 (HIV-1 structural proteins (matrix, capsid and nucleocapsid, enzymes (protease, reverse transcriptase, RNAse H and integrase and envelope glycoprotein 120 with a tetracysteine tag in the context of a full-length virus. We measure the impact of these modifications on the natural virus infection and, most importantly, present the first infectious HIV-1 construct containing a fluorescently-labeled nucleocapsid protein. Furthermore, due to the high background levels normally associated with the labeling of tetracysteine-tagged proteins we have also optimized a metabolic labeling system that produces infectious virus containing the natural envelope glycoproteins and specifically labeled tetracysteine-tagged proteins that can easily be detected after virus infection of T-lymphocytes. This approach can be adapted to other viral systems for the visualization of the interplay between virus and host cell during infection.

  3. Immune modulation by the hepatitis C virus core protein.

    Science.gov (United States)

    Fernández-Ponce, C; Dominguez-Villar, M; Muñoz-Miranda, J P; Arbulo-Echevarria, M M; Litrán, R; Aguado, E; García-Cozar, F

    2017-05-01

    Hepatitis C virus (HCV) infection is currently the most important cause of chronic viral hepatitis in the world and one of the most frequent indications for liver transplantation. HCV uses different strategies to evade the innate and adaptive immune response, and this evasion plays a key role in determining viral persistence. Several HCV viral proteins have been described as immune modulators. In this review, we will focus on the effect of HCV nucleocapsid core protein in the function of immune cells and its correlation with the findings observed in HCV chronically infected patients. Effects on immune cell function related to both extracellular and intracellular HCV core localization will be considered. This review provides an updated perspective on the mechanisms involved in HCV evasion related to one single HCV protein, which could become a key tool in the development of new antiviral strategies able to control and/or eradicate HCV infection. © 2017 John Wiley & Sons Ltd.

  4. Immediate-Early Protein ME53 Forms Foci and Colocalizes with GP64 and the Major Capsid Protein VP39 at the Cell Membranes of Autographa californica Multiple Nucleopolyhedrovirus-Infected Cells ▿ †

    Science.gov (United States)

    de Jong, Jondavid; Theilmann, David A.; Arif, Basil M.; Krell, Peter J.

    2011-01-01

    me53 is an immediate-early/late gene found in all lepidopteran baculoviruses sequenced to date. Deletion of me53 results in a greater-than-1,000-fold reduction in budded-virus production in tissue culture (J. de Jong, B. M. Arif, D. A. Theilmann, and P. J. Krell, J. Virol. 83:7440-7448, 2009). We investigated the localization of ME53 using an ME53 construct fused to green fluorescent protein (GFP). ME53:GFP adopted a primarily cytoplasmic distribution at early times postinfection and a primarily nuclear distribution at late times postinfection. Additionally, at late times ME53:GFP formed distinct foci at the cell periphery. These foci colocalized with the major envelope fusion protein GP64 and frequently with VP39 capsid protein, suggesting that these cell membrane regions may represent viral budding sites. Deletion of vp39 did not influence the distribution of ME53:GFP; however, deletion of gp64 abolished ME53:GFP foci at the cell periphery, implying an association between ME53 and GP64. Despite the association of ME53 and GP64, ME53 fractionated with the nucleocapsid only after budded-virus fractionation. Together these findings suggest that ME53 may be providing a scaffold that bridges the viral envelope and nucleocapsid. PMID:21775466

  5. Proteomic Analysis of Interaction between a Plant Virus and Its Vector Insect Reveals New Functions of Hemipteran Cuticular Protein.

    Science.gov (United States)

    Liu, Wenwen; Gray, Stewart; Huo, Yan; Li, Li; Wei, Taiyun; Wang, Xifeng

    2015-08-01

    Numerous viruses can be transmitted by their corresponding vector insects; however, the molecular mechanisms enabling virus transmission by vector insects have been poorly understood, especially the identity of vector components interacting with the virus. Here, we used the yeast two-hybrid system to study proteomic interactions of a plant virus (Rice stripe virus, RSV, genus Tenuivirus) with its vector insect, small brown planthopper (Laodelphax striatellus). Sixty-six proteins of L. striatellus that interacted with the nucleocapsid protein (pc3) of RSV were identified. A virus-insect interaction network, constructed for pc3 and 29 protein homologs of Drosophila melanogaster, suggested that nine proteins might directly interact with pc3. Of the 66 proteins, five (atlasin, a novel cuticular protein, jagunal, NAC domain protein, and vitellogenin) were most likely to be involved in viral movement, replication, and transovarial transmission. This work also provides evidence that the novel cuticular protein, CPR1, from L. striatellus is essential for RSV transmission by its vector insect. CPR1 binds the nucleocapsid protein (pc3) of RSV both in vivo and in vitro and colocalizes with RSV in the hemocytes of L. striatellus. Knockdown of CPR1 transcription using RNA interference resulted in a decrease in the concentration of RSV in the hemolymph, salivary glands and in viral transmission efficiency. These data suggest that CPR1 binds RSV in the insect and stabilizes the viral concentration in the hemolymph, perhaps to protect the virus or to help move the virus to the salivary tissues. Our studies provide direct experimental evidence that viruses can use existing vector proteins to aid their survival in the hemolymph. Identifying these putative vector molecules should lead to a better understanding of the interactions between viruses and vector insects. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Searching for cellular partners of hantaviral nonstructural protein NSs: Y2H screening of mouse cDNA library and analysis of cellular interactome.

    Directory of Open Access Journals (Sweden)

    Tuomas Rönnberg

    Full Text Available Hantaviruses (Bunyaviridae are negative-strand RNA viruses with a tripartite genome. The small (S segment encodes the nucleocapsid protein and, in some hantaviruses, also the nonstructural protein (NSs. The aim of this study was to find potential cellular partners for the hantaviral NSs protein. Toward this aim, yeast two-hybrid (Y2H screening of mouse cDNA library was performed followed by a search for potential NSs protein counterparts via analyzing a cellular interactome. The resulting interaction network was shown to form logical, clustered structures. Furthermore, several potential binding partners for the NSs protein, for instance ACBD3, were identified and, to prove the principle, interaction between NSs and ACBD3 proteins was demonstrated biochemically.

  7. The Nucleocapsid Domain Is Responsible for the Ability of Spleen Necrosis Virus (SNV) Gag Polyprotein To Package both SNV and Murine Leukemia Virus RNA

    OpenAIRE

    Certo, Jeanine L.; Kabdulov, Timur O.; Paulson, Michelle L.; Anderson, Jeffrey A.; Hu, Wei-Shau

    1999-01-01

    Murine leukemia virus (MLV)-based vector RNA can be packaged and propagated by the proteins of spleen necrosis virus (SNV). We recently demonstrated that MLV proteins cannot support the replication of an SNV-based vector; RNA analysis revealed that MLV proteins cannot efficiently package SNV-based vector RNA. The domain in Gag responsible for the specificity of RNA packaging was identified using chimeric gag-pol expression constructs. A competitive packaging system was established by generati...

  8. Expression and diagnostic use of recombinant M protein of the porcine reproductive and respiratory syndrome virus

    Directory of Open Access Journals (Sweden)

    Jitka Frölichová

    2017-01-01

    Full Text Available Matrix M protein combined with nucleocapsid N protein could be a promising combination of virus antigens for diagnosing the porcine reproductive and respiratory syndrome. The goal of this work was to express the recombinant M protein of the porcine reproductive and respiratory syndrome virus in Escherichia coli cells and compare its serological reactivity with the N protein of the virus. The gene coding for the M protein was cloned into the pDest17 vector. The resulting protein was purified by metalochelating affinity chromatography. Recombinant M protein was applied as an antigen in immunoblot test and compared on a panel of porcine sera with N protein based IDEXX test. Of 120 examined samples, the majority (78.3% gave identical results using both compared tests. From the group of discrepant results, IDEXX test identified considerably more positive sera (17.5% than M protein based test (4.2%. The main contribution of the work is finding that although IDEXX test proved to be more sensitive than M protein based test, 4.2% of sera would escape detection by serological test based on N protein. Further development and purification of the M protein for the use in Enzyme Linked Immunosorbent Assay format test could increase the performance of serological testing.

  9. The heterogeneous nuclear ribonucleoprotein K (hnRNP K) interacts with dengue virus core protein.

    Science.gov (United States)

    Chang, C J; Luh, H W; Wang, S H; Lin, H J; Lee, S C; Hu, S T

    2001-09-01

    Heterogeneous nuclear ribonucleoprotein K (hnRNP K), a component of hnRNP particles, is involved in several steps of gene expression regulation. Dengue (DEN) virus, a member of the Flaviviridae, is the primary cause of illnesses such as dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. In mature DEN virus particles, the core protein is a structural protein that forms a nucleocapsid complex with genomic RNA. Very little of its biologic functions is known. Here, using an in vitro binding assay and coimmunoprecipitation analysis, we report a protein-protein interaction between the DEN virus core protein and hnRNP K. The C-terminal hydrophilic region of the DEN virus core protein, spanning amino acid residues 73 to 100, is required for such interaction. Results of glutathione-S transferase binding assays indicated that the core protein-hnRNP K interaction might be abolished in the presence of hnRNP K cognate nucleic acids. Furthermore, in a cotransfection experiment, the repressive effect of hnRNP K on C/EBPbeta-mediated transcription activation could be reversed by full-length DEN virus core protein but not by a truncated form containing amino acids 1-72. Our results suggest that, on DEN virus infection, the multiple functions of cellular hnRNP K may be affected by the virus core protein.

  10. Feline immunodeficiency virus Gag is a nuclear shuttling protein.

    Science.gov (United States)

    Kemler, Iris; Saenz, Dyana; Poeschla, Eric

    2012-08-01

    Lentiviral genomic RNAs are encapsidated by the viral Gag protein during virion assembly. The intracellular location of the initial Gag-RNA interaction is unknown. We previously observed feline immunodeficiency virus (FIV) Gag accumulating at the nuclear envelope during live-cell imaging, which suggested that trafficking of human immunodeficiency virus type 1 (HIV-1) and FIV Gag may differ. Here we analyzed the nucleocytoplasmic transport properties of both Gag proteins. We discovered that inhibition of the CRM1 nuclear export pathway with leptomycin B causes FIV Gag but not HIV-1 Gag to accumulate in the nucleus. Virtually all FIV Gag rapidly became intranuclear when the CRM1 export pathway was blocked, implying that most if not all FIV Gag normally undergoes nuclear cycling. In FIV-infected feline cells, some intranuclear Gag was detected in the steady state without leptomycin B treatment. When expressed individually, the FIV matrix (MA), capsid (CA), and nucleocapsid-p2 (NC-p2) domains were not capable of mediating leptomycin B-sensitive nuclear export of a fluorescent protein. In contrast, CA-NC-p2 did mediate nuclear export, with MA being dispensable. We conclude that HIV-1 and FIV Gag differ strikingly in a key intracellular trafficking property. FIV Gag is a nuclear shuttling protein that utilizes the CRM1 nuclear export pathway, while HIV-1 Gag is excluded from the nucleus. These findings expand the spectrum of lentiviral Gag behaviors and raise the possibility that FIV genome encapsidation may initiate in the nucleus.

  11. The nonstructural protein 8 (nsp8) of the SARS coronavirus interacts with its ORF6 accessory protein

    International Nuclear Information System (INIS)

    Kumar, Purnima; Gunalan, Vithiagaran; Liu Boping; Chow, Vincent T.K.; Druce, Julian; Birch, Chris; Catton, Mike; Fielding, Burtram C.; Tan, Yee-Joo; Lal, Sunil K.

    2007-01-01

    Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a severe outbreak in several regions of the world in 2003. The SARS-CoV genome is predicted to contain 14 functional open reading frames (ORFs). The first ORF (1a and 1b) encodes a large polyprotein that is cleaved into nonstructural proteins (nsp). The other ORFs encode for four structural proteins (spike, membrane, nucleocapsid and envelope) as well as eight SARS-CoV-specific accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b and 9b). In this report we have cloned the predicted nsp8 gene and the ORF6 gene of the SARS-CoV and studied their abilities to interact with each other. We expressed the two proteins as fusion proteins in the yeast two-hybrid system to demonstrate protein-protein interactions and tested the same using a yeast genetic cross. Further the strength of the interaction was measured by challenging growth of the positive interaction clones on increasing gradients of 2-amino trizole. The interaction was then verified by expressing both proteins separately in-vitro in a coupled-transcription translation system and by coimmunoprecipitation in mammalian cells. Finally, colocalization experiments were performed in SARS-CoV infected Vero E6 mammalian cells to confirm the nsp8-ORF6 interaction. To the best of our knowledge, this is the first report of the interaction between a SARS-CoV accessory protein and nsp8 and our findings suggest that ORF6 protein may play a role in virus replication

  12. Crystallization and preliminary X-ray analysis of Ebola VP35 interferon inhibitory domain mutant proteins

    International Nuclear Information System (INIS)

    Leung, Daisy W.; Borek, Dominika; Farahbakhsh, Mina; Ramanan, Parameshwaran; Nix, Jay C.; Wang, Tianjiao; Prins, Kathleen C.; Otwinowski, Zbyszek; Honzatko, Richard B.; Helgeson, Luke A.; Basler, Christopher F.; Amarasinghe, Gaya K.

    2010-01-01

    Three mutant forms of Ebola VP35 interferon inhibitory domain were crystallized in three different space groups. VP35 is one of seven structural proteins encoded by the Ebola viral genome and mediates viral replication, nucleocapsid formation and host immune suppression. The C-terminal interferon inhibitory domain (IID) of VP35 is critical for dsRNA binding and interferon inhibition. The wild-type VP35 IID structure revealed several conserved residues that are important for dsRNA binding and interferon antagonism. Here, the expression, purification and crystallization of recombinant Zaire Ebola VP35 IID mutants R312A, K319A/R322A and K339A in space groups P6 1 22, P2 1 2 1 2 1 and P2 1 , respectively, are described. Diffraction data were collected using synchrotron sources at the Advanced Light Source and the Advanced Photon Source

  13. Crystal Structure of the Capsid Protein from Zika Virus.

    Science.gov (United States)

    Shang, Zifang; Song, Hao; Shi, Yi; Qi, Jianxun; Gao, George F

    2018-03-30

    Recently, Zika virus (ZIKV) emerged as a global public health concern and is distinct from other flaviviruses in many aspects, for example, causing transplacental infection, fetal abnormalities and vector-independent transmission through body fluids in humans. The capsid (C) protein is a multifunctional protein, since it binds to viral RNA in the process of nucleocapsid assembly and plays important roles in virus infection processes by interacting with cellular proteins, modulating cellular metabolism, apoptosis and immune response. Here we solved the crystal structure of ZIKV C protein at a resolution of 1.9Å. The ZIKV C protein structure contains four α helices with a long pre-α1 loop and forms dimers. The unique long pre-α1 loop in ZIKV C contributes to the tighter association of dimeric assembly and renders a divergent hydrophobic feature at the lipid bilayer interface in comparison with the known C structures of West Nile and dengue viruses. We reported the interaction between the ZIKV C protein and lipid droplets through confocal microscopy analysis. Substitutions of key amino acids in the pre-α1 loop of ZIKV C disrupted the interaction with lipid droplets, indicating that the loop is critical for membrane association. We also recognized that ZIKV C protein possesses broad binding capability to different nucleotide types, including single-stranded and double-stranded RNAs or DNAs. Furthermore, the highly positively charged interface, mainly formed by α4 helix, is proposed to be responsible for nucleotide binding. These findings will greatly enhance our understanding of ZIKV C protein, providing information for anti-ZIKV drug design targeting the C protein. Copyright © 2018. Published by Elsevier Ltd.

  14. Gene expression and population polymorphism of maize Iranian mosaic virus in Zea mays, and intracellular localization and interactions of viral N, P, and M proteins in Nicotiana benthamiana.

    Science.gov (United States)

    Ghorbani, Abozar; Izadpanah, Keramatollah; Dietzgen, Ralf G

    2018-02-15

    Maize Iranian mosaic virus (MIMV; Mononegavirales, Rhabdoviridae, Nucleorhabdovirus) infects maize and several other poaceous plants. MIMV encodes six proteins, i.e., nucleocapsid protein (N), polymerase cofactor phosphoprotein (P), putative movement protein (P3), matrix protein (M), glycoprotein (G), and large RNA-dependent RNA polymerase (L). In the present study, MIMV gene expression and genetic polymorphism of an MIMV population in maize were determined. N, P, P3, and M protein genes were more highly expressed than the 5' terminal G and L genes. Twelve single nucleotide polymorphisms were identified across the genome within a MIMV population in maize from RNA-Seq read data pooled from three infected plants indicating genomic variations of potential importance to evolution of the virus. MIMV N, P, and M proteins that are known to be involved in rhabdovirus replication and transcription were characterized as to their intracellular localization and interactions. N protein accumulated exclusively in the nucleus and interacted with itself and with P protein. P protein accumulated in both the nucleus and cell periphery and interacted with itself, N and M proteins in the nucleus. M protein was localized in the cell periphery and on endomembranes, and interacted with P protein in the nucleus. MIMV proteins show a distinctive combination of intracellular localizations and interactions.

  15. Single molecule DNA interaction kinetics of retroviral nucleic acid chaperone proteins

    Science.gov (United States)

    Williams, Mark

    2010-03-01

    Retroviral nucleocapsid (NC) proteins are essential for several viral replication processes including specific genomic RNA packaging and reverse transcription. The nucleic acid chaperone activity of NC facilitates the latter process. In this study, we use single molecule biophysical methods to quantify the DNA interactions of wild type and mutant human immunodeficiency virus type 1 (HIV-1) NC and Gag and human T-cell leukemia virus type 1 (HTLV-1) NC. We find that the nucleic acid interaction properties of these proteins differ significantly, with HIV-1 NC showing rapid protein binding kinetics, significant duplex destabilization, and strong DNA aggregation, all properties that are critical components of nucleic acid chaperone activity. In contrast, HTLV-1 NC exhibits significant destabilization activity but extremely slow DNA interaction kinetics and poor aggregating capability, which explains why HTLV-1 NC is a poor nucleic acid chaperone. To understand these results, we developed a new single molecule method for quantifying protein dissociation kinetics, and applied this method to probe the DNA interactions of wild type and mutant HIV-1 and HTLV-1 NC. We find that mutations to aromatic and charged residues strongly alter the proteins' nucleic acid interaction kinetics. Finally, in contrast to HIV-1 NC, HIV-1 Gag, the nucleic acid packaging protein that contains NC as a domain, exhibits relatively slow binding kinetics, which may negatively impact its ability to act as a nucleic acid chaperone.

  16. Hepatitis B core protein as a therapeutic target.

    Science.gov (United States)

    Mak, Lung-Yi; Wong, Danny Ka-Ho; Seto, Wai-Kay; Lai, Ching-Lung; Yuen, Man Fung

    2017-12-01

    Chronic hepatitis B virus (HBV) infection is difficult to cure, due to the presence of covalently-closed-circular DNA and virus-mediated blunting of host immune response. Existing therapies with nucleos(t)ide analogue or pegylated-interferon are not sufficient to achieve a high rate of HBV surface antigen seroclearance, a more desirable treatment outcome. Novel therapeutic agents targeting alternative viral replication steps are being developed. In this review, we will discuss the hepatitis B core antigen (HBcAg) as a therapeutic target. Areas covered: The basic structure and fundamental functions of HBcAg including nucleocapsid assembly, pre-genomic RNA encapsidation, reverse transcription, virion formation, cccDNA amplification, immune response regulation, and HBx protein interaction will be reviewed. Most of these are identified as therapeutic targets and tested in in vitro and in vivo studies, although clinical trials are scanty. Among the different components, the core protein allosteric modulators (CpAM) have been most widely investigated and appear promising in clinical trials. Expert opinion: The multiple and essential functions of HBcAg for HBV life cycle are important and attractive targets for HBV therapeutic interventions. Controlled trials involving CpAM are awaited. Apart from CpAM, drugs directed against different functions of HBcAg may be further explored to maximize the chance of cure.

  17. Protein Foods

    Science.gov (United States)

    ... Text Size: A A A Listen En Español Protein Foods Foods high in protein such as fish, ... for the vegetarian proteins, whether they have carbohydrate. Protein Choices Plant-Based Proteins Plant-based protein foods ...

  18. The kinase inhibitor SFV785 dislocates dengue virus envelope protein from the replication complex and blocks virus assembly.

    Directory of Open Access Journals (Sweden)

    Azlinda Anwar

    Full Text Available Dengue virus (DENV is the etiologic agent for dengue fever, for which there is no approved vaccine or specific anti-viral drug. As a remedy for this, we explored the use of compounds that interfere with the action of required host factors and describe here the characterization of a kinase inhibitor (SFV785, which has selective effects on NTRK1 and MAPKAPK5 kinase activity, and anti-viral activity on Hepatitis C, DENV and yellow fever viruses. SFV785 inhibited DENV propagation without inhibiting DENV RNA synthesis or translation. The compound did not cause any changes in the cellular distribution of non-structural 3, a protein critical for DENV RNA synthesis, but altered the distribution of the structural envelope protein from a reticulate network to enlarged discrete vesicles, which altered the co-localization with the DENV replication complex. Ultrastructural electron microscopy analyses of DENV-infected SFV785-treated cells showed the presence of viral particles that were distinctly different from viable enveloped virions within enlarged ER cisternae. These viral particles were devoid of the dense nucleocapsid. The secretion of the viral particles was not inhibited by SFV785, however a reduction in the amount of secreted infectious virions, DENV RNA and capsid were observed. Collectively, these observations suggest that SFV785 inhibited the recruitment and assembly of the nucleocapsid in specific ER compartments during the DENV assembly process and hence the production of infectious DENV. SFV785 and derivative compounds could be useful biochemical probes to explore the DENV lifecycle and could also represent a new class of anti-virals.

  19. Quantitative analysis of Nipah virus proteins released as virus-like particles reveals central role for the matrix protein

    Directory of Open Access Journals (Sweden)

    Eaton Bryan T

    2007-01-01

    Full Text Available Abstract Background Nipah virus (NiV is an emerging paramyxovirus distinguished by its ability to cause fatal disease in both animal and human hosts. Together with Hendra virus (HeV, they comprise the genus Henipavirus in the Paramyxoviridae family. NiV and HeV are also restricted to Biosafety Level-4 containment and this has hampered progress towards examining details of their replication and morphogenesis. Here, we have established recombinant expression systems to study NiV particle assembly and budding through the formation of virus-like particles (VLPs. Results When expressed by recombinant Modified Vaccinia virus Ankara (rMVA or plasmid transfection, individual NiV matrix (M, fusion (F and attachment (G proteins were all released into culture supernatants in a membrane-associated state as determined by sucrose density gradient flotation and immunoprecipitation. However, co-expression of F and G along with M revealed a shift in their distribution across the gradient, indicating association with M in VLPs. Protein release was also altered depending on the context of viral proteins being expressed, with F, G and nucleocapsid (N protein reducing M release, and N release dependent on the co-expression of M. Immunoelectron microscopy and density analysis revealed VLPs that were similar to authentic virus. Differences in the budding dynamics of NiV proteins were also noted between rMVA and plasmid based strategies, suggesting that over-expression by poxvirus may not be appropriate for studying the details of recombinant virus particle assembly and release. Conclusion Taken together, the results indicate that NiV M, F, and G each possess some ability to bud from expressing cells, and that co-expression of these viral proteins results in a more organized budding process with M playing a central role. These findings will aid our understanding of paramyxovirus particle assembly in general and could help facilitate the development of a novel vaccine

  20. Complete genome sequence and intracellular protein localization of Datura yellow vein nucleorhabdovirus.

    Science.gov (United States)

    Dietzgen, Ralf G; Innes, David J; Bejerman, Nicolas

    2015-07-02

    A limited number of plant rhabdovirus genomes have been fully sequenced, making taxonomic classification, evolutionary analysis and molecular characterization of this virus group difficult. We have for the first time determined the complete genome sequence of 13,188 nucleotides of Datura yellow vein nucleorhabdovirus (DYVV). DYVV genome organization resembles that of its closest relative, Sonchus yellow net virus (SYNV), with six ORFs in antigenomic orientation, separated by highly conserved intergenic regions and flanked by complementary 3' leader and 5' trailer sequences. As is typical for nucleorhabdoviruses, all viral proteins, except the glycoprotein, which is targeted to the endoplasmic reticulum, are localized to the nucleus. Nucleocapsid (N) protein, matrix (M) protein and polymerase, as components of nuclear viroplasms during replication, have predicted strong canonical nuclear localization signals, and N and M proteins exclusively localize to the nucleus when transiently expressed as GFP fusions. As in all nucleorhabdoviruses studied so far, N and phosphoprotein P interact when co-expressed, significantly increasing P nuclear localization in the presence of N protein. This research adds to the list of complete genomes of plant-infecting rhabdoviruses, provides molecular tools for further characterization and supports classification of DYVV as a nucleorhabdovirus closely related to but with some distinct differences from SYNV. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Transient oligomerization of the SARS-CoV N protein--implication for virus ribonucleoprotein packaging.

    Science.gov (United States)

    Chang, Chung-ke; Chen, Chia-Min Michael; Chiang, Ming-hui; Hsu, Yen-lan; Huang, Tai-huang

    2013-01-01

    The nucleocapsid (N) phosphoprotein of the severe acute respiratory syndrome coronavirus (SARS-CoV) packages the viral genome into a helical ribonucleocapsid and plays a fundamental role during viral self-assembly. The N protein consists of two structural domains interspersed between intrinsically disordered regions and dimerizes through the C-terminal structural domain (CTD). A key activity of the protein is the ability to oligomerize during capsid formation by utilizing the dimer as a building block, but the structural and mechanistic bases of this activity are not well understood. By disulfide trapping technique we measured the amount of transient oligomers of N protein mutants with strategically located cysteine residues and showed that CTD acts as a primary transient oligomerization domain in solution. The data is consistent with the helical oligomer packing model of N protein observed in crystal. A systematic study of the oligomerization behavior revealed that altering the intermolecular electrostatic repulsion through changes in solution salt concentration or phosphorylation-mimicking mutations affects oligomerization propensity. We propose a biophysical mechanism where electrostatic repulsion acts as a switch to regulate N protein oligomerization.

  2. Transient oligomerization of the SARS-CoV N protein--implication for virus ribonucleoprotein packaging.

    Directory of Open Access Journals (Sweden)

    Chung-ke Chang

    Full Text Available The nucleocapsid (N phosphoprotein of the severe acute respiratory syndrome coronavirus (SARS-CoV packages the viral genome into a helical ribonucleocapsid and plays a fundamental role during viral self-assembly. The N protein consists of two structural domains interspersed between intrinsically disordered regions and dimerizes through the C-terminal structural domain (CTD. A key activity of the protein is the ability to oligomerize during capsid formation by utilizing the dimer as a building block, but the structural and mechanistic bases of this activity are not well understood. By disulfide trapping technique we measured the amount of transient oligomers of N protein mutants with strategically located cysteine residues and showed that CTD acts as a primary transient oligomerization domain in solution. The data is consistent with the helical oligomer packing model of N protein observed in crystal. A systematic study of the oligomerization behavior revealed that altering the intermolecular electrostatic repulsion through changes in solution salt concentration or phosphorylation-mimicking mutations affects oligomerization propensity. We propose a biophysical mechanism where electrostatic repulsion acts as a switch to regulate N protein oligomerization.

  3. Comparative analysis of hepatitis B virus polymerase sequences required for viral RNA binding, RNA packaging, and protein priming.

    Science.gov (United States)

    Jones, Scott A; Clark, Daniel N; Cao, Feng; Tavis, John E; Hu, Jianming

    2014-02-01

    Hepatitis B virus replicates a DNA genome through reverse transcription of a pregenomic RNA (pgRNA) by using a multifunctional polymerase (HP). A critical function of HP is its specific association with a viral RNA signal, termed ε (Hε), located on pgRNA, which is required for specific packaging of pgRNA into viral nucleocapsids and initiation of viral reverse transcription. HP initiates reverse transcription by using itself as a protein primer (protein priming) and Hε as the obligatory template. HP is made up of four domains, including the terminal protein (TP), the spacer, the reverse transcriptase (RT), and the RNase H domains. A recently developed, Hε-dependent, in vitro protein priming assay was used in this study to demonstrate that almost the entire TP and RT domains and most of the RNase H domain were required for protein priming. Specific residues within TP, RT, and the spacer were identified as being critical for HP-Hε binding and/or protein priming. Comparison of HP sequence requirements for Hε binding, pgRNA packaging, and protein priming allowed the classification of the HP mutants into five groups, each with distinct effects on these complex and related processes. Detailed characterization of HP requirements for these related and essential functions of HP will further elucidate the mechanisms of its multiple functions and aid in the targeting of these functions for antiviral therapy.

  4. Dual Function of the pUL7-pUL51 Tegument Protein Complex in Herpes Simplex Virus 1 Infection.

    Science.gov (United States)

    Albecka, Anna; Owen, Danielle J; Ivanova, Lyudmila; Brun, Juliane; Liman, Rukayya; Davies, Laura; Ahmed, M Firoz; Colaco, Susanna; Hollinshead, Michael; Graham, Stephen C; Crump, Colin M

    2017-01-15

    The tegument of herpesviruses is a highly complex structural layer between the nucleocapsid and the envelope of virions. Tegument proteins play both structural and regulatory functions during replication and spread, but the interactions and functions of many of these proteins are poorly understood. Here we focus on two tegument proteins from herpes simplex virus 1 (HSV-1), pUL7 and pUL51, which have homologues in all other herpesviruses. We have now identified that HSV-1 pUL7 and pUL51 form a stable and direct protein-protein interaction, their expression levels rely on the presence of each other, and they function as a complex in infected cells. We demonstrate that expression of the pUL7-pUL51 complex is important for efficient HSV-1 assembly and plaque formation. Furthermore, we also discovered that the pUL7-pUL51 complex localizes to focal adhesions at the plasma membrane in both infected cells and in the absence of other viral proteins. The expression of pUL7-pUL51 is important to stabilize focal adhesions and maintain cell morphology in infected cells and cells infected with viruses lacking pUL7 and/or pUL51 round up more rapidly than cells infected with wild-type HSV-1. Our data suggest that, in addition to the previously reported functions in virus assembly and spread for pUL51, the pUL7-pUL51 complex is important for maintaining the attachment of infected cells to their surroundings through modulating the activity of focal adhesion complexes. Herpesviridae is a large family of highly successful human and animal pathogens. Virions of these viruses are composed of many different proteins, most of which are contained within the tegument, a complex structural layer between the nucleocapsid and the envelope within virus particles. Tegument proteins have important roles in assembling virus particles as well as modifying host cells to promote virus replication and spread. However, little is known about the function of many tegument proteins during virus

  5. HCV Core Protein Uses Multiple Mechanisms to Induce Oxidative Stress in Human Hepatoma Huh7 Cells

    Science.gov (United States)

    Ivanov, Alexander V.; Smirnova, Olga A.; Petrushanko, Irina Y.; Ivanova, Olga N.; Karpenko, Inna L.; Alekseeva, Ekaterina; Sominskaya, Irina; Makarov, Alexander A.; Bartosch, Birke; Kochetkov, Sergey N.; Isaguliants, Maria G.

    2015-01-01

    Hepatitis C virus (HCV) infection is accompanied by the induction of oxidative stress, mediated by several virus proteins, the most prominent being the nucleocapsid protein (HCV core). Here, using the truncated forms of HCV core, we have delineated several mechanisms by which it induces the oxidative stress. The N-terminal 36 amino acids of HCV core induced TGFβ1-dependent expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases 1 and 4, both of which independently contributed to the production of reactive oxygen species (ROS). The same fragment also induced the expression of cyclo-oxygenase 2, which, however, made no input into ROS production. Amino acids 37–191 of HCV core up-regulated the transcription of a ROS generating enzyme cytochrome P450 2E1. Furthermore, the same fragment induced the expression of endoplasmic reticulum oxidoreductin 1α. The latter triggered efflux of Ca2+ from ER to mitochondria via mitochondrial Ca2+ uniporter, leading to generation of superoxide anions, and possibly also H2O2. Suppression of any of these pathways in cells expressing the full-length core protein led to a partial inhibition of ROS production. Thus, HCV core causes oxidative stress via several independent pathways, each mediated by a distinct region of the protein. PMID:26035647

  6. HCV Core Protein Uses Multiple Mechanisms to Induce Oxidative Stress in Human Hepatoma Huh7 Cells

    Directory of Open Access Journals (Sweden)

    Alexander V. Ivanov

    2015-05-01

    Full Text Available Hepatitis C virus (HCV infection is accompanied by the induction of oxidative stress, mediated by several virus proteins, the most prominent being the nucleocapsid protein (HCV core. Here, using the truncated forms of HCV core, we have delineated several mechanisms by which it induces the oxidative stress. The N-terminal 36 amino acids of HCV core induced TGF\\(\\upbeta\\1-dependent expression of nicotinamide adenine dinucleotide phosphate (NADPH oxidases 1 and 4, both of which independently contributed to the production of reactive oxygen species (ROS. The same fragment also induced the expression of cyclo-oxygenase 2, which, however, made no input into ROS production. Amino acids 37–191 of HCV core up-regulated the transcription of a ROS generating enzyme cytochrome P450 2E1. Furthermore, the same fragment induced the expression of endoplasmic reticulum oxidoreductin 1\\(\\upalpha\\. The latter triggered efflux of Ca2+ from ER to mitochondria via mitochondrial Ca2+ uniporter, leading to generation of superoxide anions, and possibly also H2O2. Suppression of any of these pathways in cells expressing the full-length core protein led to a partial inhibition of ROS production. Thus, HCV core causes oxidative stress via several independent pathways, each mediated by a distinct region of the protein.

  7. An integrated protein localization and interaction map for Potato yellow dwarf virus, type species of the genus Nucleorhabdovirus

    International Nuclear Information System (INIS)

    Bandyopadhyay, Anindya; Kopperud, Kristin; Anderson, Gavin; Martin, Kathleen; Goodin, Michael

    2010-01-01

    The genome of Potato yellow dwarf virus (PYDV; Nucleorhabdovirus type species) was determined to be 12,875 nucleotides (nt). The antigenome is organized into seven open reading frames (ORFs) ordered 3'-N-X-P-Y-M-G-L-5', which likely encode the nucleocapsid, phospho, movement, matrix, glyco and RNA-dependent RNA polymerase proteins, respectively, except for X, which is of unknown function. The ORFs are flanked by a 3' leader RNA of 149 nt and a 5' trailer RNA of 97 nt, and are separated by conserved intergenic junctions. Phylogenetic analyses indicated that PYDV is closely related to other leafhopper-transmitted rhabdoviruses. Functional protein assays were used to determine the subcellular localization of PYDV proteins. Surprisingly, the M protein was able to induce the intranuclear accumulation of the inner nuclear membrane in the absence of any other viral protein. Finally, bimolecular fluorescence complementation was used to generate the most comprehensive protein interaction map for a plant-adapted rhabdovirus to date.

  8. Intracellular Localization, Interactions and Functions of Capsicum Chlorosis Virus Proteins.

    Science.gov (United States)

    Widana Gamage, Shirani M K; Dietzgen, Ralf G

    2017-01-01

    Tospoviruses are among the most devastating viruses of horticultural and field crops. Capsicum chlorosis virus (CaCV) has emerged as an important pathogen of capsicum and tomato in Australia and South-east Asia. Present knowledge about CaCV protein functions in host cells is lacking. We determined intracellular localization and interactions of CaCV proteins by live plant cell imaging to gain insight into the associations of viral proteins during infection. Proteins were transiently expressed as fusions to autofluorescent proteins in leaf epidermal cells of Nicotiana benthamiana and capsicum. All viral proteins localized at least partially in the cell periphery suggestive of cytoplasmic replication and assembly of CaCV. Nucleocapsid (N) and non-structural movement (NSm) proteins localized exclusively in the cell periphery, while non-structural suppressor of silencing (NSs) protein and Gc and Gn glycoproteins accumulated in both the cell periphery and the nucleus. Nuclear localization of CaCV Gn and NSs is unique among tospoviruses. We validated nuclear localization of NSs by immunofluorescence in protoplasts. Bimolecular fluorescence complementation showed self-interactions of CaCV N, NSs and NSm, and heterotypic interactions of N with NSs and Gn. All interactions occurred in the cytoplasm, except NSs self-interaction was exclusively nuclear. Interactions of a tospoviral NSs protein with itself and with N had not been reported previously. Functionally, CaCV NSs showed strong local and systemic RNA silencing suppressor activity and appears to delay short-distance spread of silencing signal. Cell-to-cell movement activity of NSm was demonstrated by trans -complementation of a movement-defective tobamovirus replicon. CaCV NSm localized at plasmodesmata and its transient expression led to the formation of tubular structures that protruded from protoplasts. The D 155 residue in the 30K-like movement protein-specific LxD/N 50-70 G motif of NSm was critical for

  9. Hepatitis C Virus Core Protein Decreases Lipid Droplet Turnover

    Science.gov (United States)

    Harris, Charles; Herker, Eva; Farese, Robert V.; Ott, Melanie

    2011-01-01

    Steatosis is a frequent complication of hepatitis C virus infection. In mice, this condition is recapitulated by the expression of a single viral protein, the nucleocapsid core. Core localizes to the surface of lipid droplets (LDs) in infected liver cells through a process dependent on host diacylglycerol acyltransferase 1 (DGAT1), an enzyme that synthesizes triglycerides in the endoplasmic reticulum. Whether DGAT1 also plays a role in core-induced steatosis is uncertain. Here, we show that mouse embryonic fibroblasts isolated from DGAT1−/− mice are protected from core-induced steatosis, as are livers of DGAT1−/− mice expressing core, demonstrating that the steatosis is DGAT1-dependent. Surprisingly, core expression did not increase DGAT1 activity or triglyceride synthesis, thus excluding the possibility that core activates DGAT1 to cause steatosis. Instead, we find that DGAT1-dependent localization of core to LDs is a prerequisite for the steatogenic properties of the core. Using biochemical and immunofluorescence microscopy techniques, we show that the turnover of lipids in core-coated droplets is decreased, providing a physiological mechanism for core-induced steatosis. Our results support a bipartite model in which core first requires DGAT1 to gain access to LDs, and then LD-localized core interferes with triglyceride turnover, thus stabilizing lipid droplets and leading to steatosis. PMID:21984835

  10. Protein-protein interactions

    DEFF Research Database (Denmark)

    Byron, Olwyn; Vestergaard, Bente

    2015-01-01

    Responsive formation of protein:protein interaction (PPI) upon diverse stimuli is a fundament of cellular function. As a consequence, PPIs are complex, adaptive entities, and exist in structurally heterogeneous interplays defined by the energetic states of the free and complexed protomers......, are reported. The aim is to depict how the elucidation of the interplay of structures requires the interplay of methods....

  11. Optical tweezers reveal how proteins alter replication

    Science.gov (United States)

    Chaurasiya, Kathy

    acids. We use single molecule DNA stretching to show that the nucleocapsid protein (NC) of the yeast retrotransposon Ty3, which is likely to be an ancestor of HIV NC, has optimal nucleic acid chaperone activity with only a single zinc finger. We also show that the chaperone activity of the ORF1 protein is responsible for successful replication of the mouse LINE-1 retrotransposon. LINE-1 is also 17% of the human genome, where it generates insertion mutations and alters gene expression. Retrotransposons such as LINE-1 and Ty3 are likely to be ancestors of retroviruses such as HIV. Human APOBEC3G (A3G) inhibits HIV-1 replication via cytidine deamination of the viral ssDNA genome, as well as via a distinct deamination-independent mechanism. Efficient deamination requires rapid on-off binding kinetics, but a slow dissociation rate is required for the proposed deaminase-independent mechanism. We resolve this apparent contradiction with a new quantitative single molecule method, which shows that A3G initially binds ssDNA with fast on-off rates and subsequently converts to a slow binding mode. This suggests that oligomerization transforms A3G from a fast enzyme to a slow binding protein, which is the biophysical mechanism that allows A3G to inhibit HIV replication. A complete understanding of the mechanism of A3G-mediated antiviral activity is required to design drugs that disrupt the viral response to A3G, enhance A3G packaging inside the viral core, and other potential strategies for long-term treatment of HIV infection. We use single molecule biophysics to explore the function of proteins involved in bacterial DNA replication, endogenous retrotransposition of retroelements in eukaryotic hosts such yeast and mice, and HIV replication in human cells. Our quantitative results provide insight into protein function in a range of complex biological systems and have wide-ranging implications for human health.

  12. Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells.

    Directory of Open Access Journals (Sweden)

    Tonya M Colpitts

    Full Text Available Dengue virus (DENV is a member of the Flaviviridae and a globally (reemerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection.

  13. Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells.

    Science.gov (United States)

    Colpitts, Tonya M; Barthel, Sebastian; Wang, Penghua; Fikrig, Erol

    2011-01-01

    Dengue virus (DENV) is a member of the Flaviviridae and a globally (re)emerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C) is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection.

  14. Dengue Virus Capsid Protein Binds Core Histones and Inhibits Nucleosome Formation in Human Liver Cells

    Science.gov (United States)

    Colpitts, Tonya M.; Barthel, Sebastian; Wang, Penghua; Fikrig, Erol

    2011-01-01

    Dengue virus (DENV) is a member of the Flaviviridae and a globally (re)emerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C) is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection. PMID:21909430

  15. Identification of a functional, CRM-1-dependent nuclear export signal in hepatitis C virus core protein.

    Science.gov (United States)

    Cerutti, Andrea; Maillard, Patrick; Minisini, Rosalba; Vidalain, Pierre-Olivier; Roohvand, Farzin; Pecheur, Eve-Isabelle; Pirisi, Mario; Budkowska, Agata

    2011-01-01

    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS), but no nuclear export signal (NES) has yet been identified.We show here that the aa(109-133) region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126) in the identified NES or in the sequence encoding the mature core aa(1-173) significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication.Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection.

  16. Coordination of Hepatitis C Virus Assembly by Distinct Regulatory Regions in Nonstructural Protein 5A.

    Directory of Open Access Journals (Sweden)

    Margarita Zayas

    2016-01-01

    Full Text Available Hepatitis C virus (HCV nonstructural protein (NS5A is a RNA-binding protein composed of a N-terminal membrane anchor, a structured domain I (DI and two intrinsically disordered domains (DII and DIII interacting with viral and cellular proteins. While DI and DII are essential for RNA replication, DIII is required for assembly. How these processes are orchestrated by NS5A is poorly understood. In this study, we identified a highly conserved basic cluster (BC at the N-terminus of DIII that is critical for particle assembly. We generated BC mutants and compared them with mutants that are blocked at different stages of the assembly process: a NS5A serine cluster (SC mutant blocked in NS5A-core interaction and a mutant lacking the envelope glycoproteins (ΔE1E2. We found that BC mutations did not affect core-NS5A interaction, but strongly impaired core-RNA association as well as virus particle envelopment. Moreover, BC mutations impaired RNA-NS5A interaction arguing that the BC might be required for loading of core protein with viral RNA. Interestingly, RNA-core interaction was also reduced with the ΔE1E2 mutant, suggesting that nucleocapsid formation and envelopment are coupled. These findings argue for two NS5A DIII determinants regulating assembly at distinct, but closely linked steps: (i SC-dependent recruitment of replication complexes to core protein and (ii BC-dependent RNA genome delivery to core protein, triggering encapsidation that is tightly coupled to particle envelopment. These results provide a striking example how a single viral protein exerts multiple functions to coordinate the steps from RNA replication to the assembly of infectious virus particles.

  17. Identification of a functional, CRM-1-dependent nuclear export signal in hepatitis C virus core protein.

    Directory of Open Access Journals (Sweden)

    Andrea Cerutti

    Full Text Available Hepatitis C virus (HCV infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS, but no nuclear export signal (NES has yet been identified.We show here that the aa(109-133 region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126 in the identified NES or in the sequence encoding the mature core aa(1-173 significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication.Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection.

  18. Nuclear export signal-interacting protein forms complexes with lamin A/C-Nups to mediate the CRM1-independent nuclear export of large hepatitis delta antigen.

    Science.gov (United States)

    Huang, Cheng; Jiang, Jia-Yin; Chang, Shin C; Tsay, Yeou-Guang; Chen, Mei-Ru; Chang, Ming-Fu

    2013-02-01

    Nuclear export is an important process that not only regulates the functions of cellular factors but also facilitates the assembly of viral nucleoprotein complexes. Chromosome region maintenance 1 (CRM1) that mediates the transport of proteins bearing the classical leucine-rich nuclear export signal (NES) is the best-characterized nuclear export receptor. Recently, several CRM1-independent nuclear export pathways were also identified. The nuclear export of the large form of hepatitis delta antigen (HDAg-L), a nucleocapsid protein of hepatitis delta virus (HDV), which contains a CRM1-independent proline-rich NES, is mediated by the host NES-interacting protein (NESI). The mechanism of the NESI protein in mediating nuclear export is still unknown. In this study, NESI was characterized as a highly glycosylated membrane protein. It interacted and colocalized well in the nuclear envelope with lamin A/C and nucleoporins. Importantly, HDAg-L could be coimmunoprecipitated with lamin A/C and nucleoporins. In addition, binding of the cargo HDAg-L to the C terminus of NESI was detected for the wild-type protein but not for the nuclear export-defective HDAg-L carrying a P205A mutation [HDAg-L(P205A)]. Knockdown of lamin A/C effectively reduced the nuclear export of HDAg-L and the assembly of HDV. These data indicate that by forming complexes with lamin A/C and nucleoporins, NESI facilitates the CRM1-independent nuclear export of HDAg-L.

  19. Interfacial Protein-Protein Associations

    OpenAIRE

    Langdon, Blake B.; Kastantin, Mark; Walder, Robert; Schwartz, Daniel K.

    2013-01-01

    While traditional models of protein adsorption focus primarily on direct protein-surface interactions, recent findings suggest that protein-protein interactions may play a central role. Using high-throughput intermolecular resonance energy transfer (RET) tracking, we directly observed dynamic, protein-protein associations of bovine serum albumin on poly(ethylene glycol) modified surfaces. The associations were heterogeneous and reversible, and associating molecules resided on the surface for ...

  20. Annexin A2 Mediates the Localization of Measles Virus Matrix Protein at the Plasma Membrane.

    Science.gov (United States)

    Koga, Ritsuko; Kubota, Marie; Hashiguchi, Takao; Yanagi, Yusuke; Ohno, Shinji

    2018-02-28

    Annexins are a family of structurally related proteins that bind negatively charged membrane phospholipids in a Ca 2+ -dependent manner. Annexin A2 (AnxA2), a member of the family, has been implicated in a variety of cellular functions including the organization of membrane domains, vesicular trafficking and cell-cell adhesion. AnxA2 generally forms the heterotetrameric complex with a small Ca 2+ -binding protein S100A10. Measles virus (MV), a member of the family Paramyxoviridae , is an enveloped virus with a nonsegmented negative strand RNA genome. Knockdown of AnxA2 greatly reduced MV growth in cells, without affecting its entry and viral RNA production. In MV-infected, AnxA2-knockdown cells, the expression level of the matrix (M) protein, but not other viral proteins, was reduced compared with that in control cells, and the distribution of the M protein at the plasma membrane was decreased. The M protein lines the inner surface of the envelope and plays an important role in virus assembly by connecting the nucleocapsid to the envelope proteins. The M protein bound to AnxA2 independently of AnxA2's phosphorylation or its association with S100A10, and was co-localized with AnxA2 within cells. Truncation of the N-terminal 10 amino acid residues, but not the N-terminal 5 residues, compromised the ability of the M protein to interact with AnxA2 and localize at the plasma membrane. These results indicate that AnxA2 mediates the localization of the MV M protein at the plasma membrane by interacting with its N-terminal region (especially residues at positions 6-10), thereby aiding in MV assembly. IMPORTANCE Measles virus (MV) is an important human pathogen, still claiming ∼ 100,000 lives per year despite the presence of effective vaccines, and causes occasional outbreaks even in developed countries. Replication of viruses largely relies on the functions of host cells. Our study revealed that the reduction of the host protein annexin A2 compromises the replication of

  1. Gene order for rubella virus structural proteins is NH/sub 2/-C-E2-E1-COOH

    Energy Technology Data Exchange (ETDEWEB)

    Oker-Blom, C.

    1984-08-01

    The order of translation in vivo of the genes coding for rubella virus structural proteins was studied in infected B-Vero cells. The proteins were sequentially pulse-chase labeled with (/sup 35/S)methionine after synchronization of translation initiation with hypertonic salt treatment. A sequential labeling procedure (window-labeling) to specifically label defined segments of the structural proteins was also used. The labeled proteins were identified by sodium dodecyl sulfate-gel electrophoresis after immunoprecipitation with specific antisera directed against the two virion glycoproteins (E1 and E2a/E2b) and the nucleocapsid (C) protein. The order of translation was found to be NH/sub 2/-C-E2-E1-COOH. We have previously shown that the structural proteins are synthesized in vitro from a cytoplasmic 24S subgenomic mRNA as a 110,000-dalton (p110) precursor. Here, it is shown that p110 is precipitated with anti-C, anti-E2, and anti-E1 sera, indicating that p110 is the precursor of all three structural proteins. Two major in vitro translation products (M/sub r/s, 66,000 and 62,000) that could represent preterminated polypeptide chains or proteolytic cleavage products were precipitated with anti-C and anti-Es sera, but not with anti-E1 serum, indicating, in conformity with the in vivo results, that the genes for the C and E2 proteins are adjacent to each other. Using these specific antisera, we have also confirmed the identity of the unglycosylated forms of E1 (M/sub r/, 53,000) and E2 (M/sub r/ 30,000) immunoprecipitated from tunicamycin-treated infected cells. 18 references, 6 figures.

  2. Gene order for rubella virus structural proteins is NH2-C-E2-E1-COOH

    International Nuclear Information System (INIS)

    Oker-Blom, C.

    1984-01-01

    The order of translation in vivo of the genes coding for rubella virus structural proteins was studied in infected B-Vero cells. The proteins were sequentially pulse-chase labeled with [ 35 S]methionine after synchronization of translation initiation with hypertonic salt treatment. A sequential labeling procedure (window-labeling) to specifically label defined segments of the structural proteins was also used. The labeled proteins were identified by sodium dodecyl sulfate-gel electrophoresis after immunoprecipitation with specific antisera directed against the two virion glycoproteins (E1 and E2a/E2b) and the nucleocapsid (C) protein. The order of translation was found to be NH 2 -C-E2-E1-COOH. We have previously shown that the structural proteins are synthesized in vitro from a cytoplasmic 24S subgenomic mRNA as a 110,000-dalton (p110) precursor. Here, it is shown that p110 is precipitated with anti-C, anti-E2, and anti-E1 sera, indicating that p110 is the precursor of all three structural proteins. Two major in vitro translation products (M/sub r/s, 66,000 and 62,000) that could represent preterminated polypeptide chains or proteolytic cleavage products were precipitated with anti-C and anti-Es sera, but not with anti-E1 serum, indicating, in conformity with the in vivo results, that the genes for the C and E2 proteins are adjacent to each other. Using these specific antisera, we have also confirmed the identity of the unglycosylated forms of E1 (M/sub r/, 53,000) and E2 (M/sub r/ 30,000) immunoprecipitated from tunicamycin-treated infected cells. 18 references, 6 figures

  3. Reactivity of Porcine Epidemic Diarrhea Virus Structural Proteins to Antibodies against Porcine Enteric Coronaviruses: Diagnostic Implications.

    Science.gov (United States)

    Gimenez-Lirola, Luis Gabriel; Zhang, Jianqiang; Carrillo-Avila, Jose Antonio; Chen, Qi; Magtoto, Ronaldo; Poonsuk, Korakrit; Baum, David H; Piñeyro, Pablo; Zimmerman, Jeffrey

    2017-05-01

    The development of porcine epidemic diarrhea virus (PEDV) antibody-based assays is important for detecting infected animals, confirming previous virus exposure, and monitoring sow herd immunity. However, the potential cross-reactivity among porcine coronaviruses is a major concern for the development of pathogen-specific assays. In this study, we used serum samples ( n = 792) from pigs of precisely known infection status and a multiplex fluorescent microbead-based immunoassay and/or enzyme-linked immunoassay platform to characterize the antibody response to PEDV whole-virus (WV) particles and recombinant polypeptides derived from the four PEDV structural proteins, i.e., spike (S), nucleocapsid (N), membrane (M), and envelope (E). Antibody assay cutoff values were selected to provide 100% diagnostic specificity for each target. The earliest IgG antibody response, mainly directed against S1 polypeptides, was observed at days 7 to 10 postinfection. With the exception of nonreactive protein E, we observed similar antibody ontogenies and patterns of seroconversion for S1, N, M, and WV antigens. Recombinant S1 provided the best diagnostic sensitivity, regardless of the PEDV strain, with no cross-reactivity detected against transmissible gastroenteritis virus (TGEV), porcine respiratory coronavirus (PRCV), or porcine deltacoronavirus (PDCoV) pig antisera. The WV particles showed some cross-reactivity to TGEV Miller and TGEV Purdue antisera, while N protein presented some cross-reactivity to TGEV Miller. The M protein was highly cross-reactive to TGEV and PRCV antisera. Differences in the antibody responses to specific PEDV structural proteins have important implications in the development and performance of antibody assays for the diagnosis of PEDV enteric disease. Copyright © 2017 American Society for Microbiology.

  4. Sequence analysis and expression of the M1 and M2 matrix protein genes of hirame rhabdovirus (HIRRV)

    Science.gov (United States)

    Nishizawa, T.; Kurath, G.; Winton, J.R.

    1997-01-01

    We have cloned and sequenced a 2318 nucleotide region of the genomic RNA of hirame rhabdovirus (HIRRV), an important viral pathogen of Japanese flounder Paralichthys olivaceus. This region comprises approximately two-thirds of the 3' end of the nucleocapsid protein (N) gene and the complete matrix protein (M1 and M2) genes with the associated intergenic regions. The partial N gene sequence was 812 nucleotides in length with an open reading frame (ORF) that encoded the carboxyl-terminal 250 amino acids of the N protein. The M1 and M2 genes were 771 and 700 nucleotides in length, respectively, with ORFs encoding proteins of 227 and 193 amino acids. The M1 gene sequence contained an additional small ORF that could encode a highly basic, arginine-rich protein of 25 amino acids. Comparisons of the N, M1, and M2 gene sequences of HIRRV with the corresponding sequences of the fish rhabdoviruses, infectious hematopoietic necrosis virus (IHNV) or viral hemorrhagic septicemia virus (VHSV) indicated that HIRRV was more closely related to IHNV than to VHSV, but was clearly distinct from either. The putative consensus gene termination sequence for IHNV and VHSV, AGAYAG(A)(7), was present in the N-M1, M1-M2, and M2-G intergenic regions of HIRRV as were the putative transcription initiation sequences YGGCAC and AACA. An Escherichia coli expression system was used to produce recombinant proteins from the M1 and M2 genes of HIRRV. These were the same size as the authentic M1 and M2 proteins and reacted with anti-HIRRV rabbit serum in western blots. These reagents can be used for further study of the fish immune response and to test novel control methods.

  5. The Replacement of 10 Non-Conserved Residues in the Core Protein of JFH-1 Hepatitis C Virus Improves Its Assembly and Secretion.

    Directory of Open Access Journals (Sweden)

    Loïc Etienne

    Full Text Available Hepatitis C virus (HCV assembly is still poorly understood. It is thought that trafficking of the HCV core protein to the lipid droplet (LD surface is essential for its multimerization and association with newly synthesized HCV RNA to form the viral nucleocapsid. We carried out a mapping analysis of several complete HCV genomes of all genotypes, and found that the genotype 2 JFH-1 core protein contained 10 residues different from those of other genotypes. The replacement of these 10 residues of the JFH-1 strain sequence with the most conserved residues deduced from sequence alignments greatly increased virus production. Confocal microscopy of the modified JFH-1 strain in cell culture showed that the mutated JFH-1 core protein, C10M, was present mostly at the endoplasmic reticulum (ER membrane, but not at the surface of the LDs, even though its trafficking to these organelles was possible. The non-structural 5A protein of HCV was also redirected to ER membranes and colocalized with the C10M core protein. Using a Semliki forest virus vector to overproduce core protein, we demonstrated that the C10M core protein was able to form HCV-like particles, unlike the native JFH-1 core protein. Thus, the substitution of a few selected residues in the JFH-1 core protein modified the subcellular distribution and assembly properties of the protein. These findings suggest that the early steps of HCV assembly occur at the ER membrane rather than at the LD surface. The C10M-JFH-1 strain will be a valuable tool for further studies of HCV morphogenesis.

  6. Proteins engineering

    International Nuclear Information System (INIS)

    2000-01-01

    At the - Departement d'Ingenierie et d'etudes de proteines (Deip) of the CEA more than seventy researchers are working hard to understand the function of proteins. For that they use the molecular labelling technique (F.M.)

  7. Total protein

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  8. Infection of porcine precision cut intestinal slices by transmissible gastroenteritis coronavirus demonstrates the importance of the spike protein for enterotropism of different virus strains.

    Science.gov (United States)

    Krimmling, Tanja; Beineke, Andreas; Schwegmann-Weßels, Christel

    2017-06-01

    TGEV is a coronavirus that is still widely spread in pig farming. On molecular level this virus has been studied in detail. However, studying TGEV infection within the complexity of the porcine intestinal epithelium reveals difficulties due to limiting infection models. Here we established a new ex vivo model to analyze the enterotropism of TGEV in porcine intestinal tissue. Precision cut intestinal slices (PCIS) were produced and ATP level was measured to proof vitality of the slices. ATP measurements and HE staining revealed living tissue in culture for up to 24h. PCIS were infected with three different TGEV strains. TGEV PUR 46-MAD is a commonly used TGEV strain that is known to be attenuated. TGEV Miller was passaged in piglets several times to reveal high infection. Finally, TGEV GFP is a recombinant strain that obtained its main body from TGEV PUR 46-MAD, but its spike protein from TGEV PUR-C11 that showed high mortality in piglets in vivo. Our results were in complete consensus of these statements. TGEV Miller mildly and TGEV GFP extensively infected the cells in the jejunum based on the amount of positive stained epithelial cells. However, for TGEV PUR 46-MAD no nucleocapsid protein was detected in the epithelial cells of the tissue. This shows that differences in TGEV strains and their infectious potential are highly dependent on their S protein. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Protein Extractability

    African Journals Online (AJOL)

    Results showed that protein extractability was dependent on pH, type of salt, salt concentrations and extraction time. Salts extracted more proteins from the moringa seed flour than water. Maximum extraction of protein was. 85.06% and 84.72% with 0.5 M CaCl and 0.75 M NaCl respectively. On varying the pH, maximum ...

  10. Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingzhan; Shi, Kaichuang; Yoo, Dongwan, E-mail: dyoo@illinois.edu

    2016-02-15

    Type I interferons (IFN-α/β) are the major components of the innate immune response of hosts, and in turn many viruses have evolved to modulate the host response during infection. We found that the IFN-β production was significantly suppressed during PEDV infection in cells. To identify viral IFN antagonists and to study their suppressive function, viral coding sequences for the entire structural and nonstructural proteins were cloned and expressed. Of 16 PEDV nonstructural proteins (nsps), nsp1, nsp3, nsp7, nsp14, nsp15 and nsp16 were found to inhibit the IFN-β and IRF3 promoter activities. The sole accessory protein ORF3, structure protein envelope (E), membrane (M), and nucleocapsid (N) protein were also shown to inhibit such activities. PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP) by degrading CBP. A further study showed that the CBP degradation by nsp1 was proteasome-dependent. Our data demonstrate that PEDV modulates the host innate immune responses by degrading CBP and suppressing ISGs expression. - Highlights: • PEDV modulates the host innate immune system by suppressing the type I interferon production and ISGs expression. • Ten viral proteins were identified as IFN antagonists, and nsp1 was the most potent viral IFN antagonist. • PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP). • PEDV nsp1 caused the CBP degradation in the nucleus, which may be the key mechanism for PEDV-mediated IFN downregulation.

  11. Protein politics

    NARCIS (Netherlands)

    Vijver, Marike

    2005-01-01

    This study is part of the program of the interdisciplinary research group Profetas (protein foods, environment, technology and society). Profetas consists of technological, environmental and socio-economic research projects on protein food systems which result in the development of scenarios and

  12. Whey Protein

    Science.gov (United States)

    ... Fraction de Lactosérum, Fraction de Petit-Lait, Goat Milk Whey, Goat Whey, Isolat de Protéine de Lactosérum, Isolat de Protéine de Petit-Lait, Lactosérum de Lait de Chèvre, MBP, Milk Protein, Milk Protein Isolate, Mineral Whey Concentrate, Proteínas ...

  13. Protein adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda F. Lorenz

    2018-01-01

    Nature uses a wide variety of chemicals for providing adhesion internally (e.g., cell to cell) and externally (e.g., mussels to ships and piers). This adhesive bonding is chemically and mechanically complex, involving a variety of proteins, carbohydrates, and other compounds.Consequently,the effect of protein structures on adhesive properties is only partially...

  14. Dimerization Efficiency of Canine Distemper Virus Matrix Protein Regulates Membrane-Budding Activity.

    Science.gov (United States)

    Bringolf, Fanny; Herren, Michael; Wyss, Marianne; Vidondo, Beatriz; Langedijk, Johannes P; Zurbriggen, Andreas; Plattet, Philippe

    2017-08-15

    Paramyxoviruses rely on the matrix (M) protein to orchestrate viral assembly and budding at the plasma membrane. Although the mechanistic details remain largely unknown, structural data suggested that M dimers and/or higher-order oligomers may facilitate membrane budding. To gain functional insights, we employed a structure-guided mutagenesis approach to investigate the role of canine distemper virus (CDV) M protein self-assembly in membrane-budding activity. Three six-alanine-block (6A-block) mutants with mutations located at strategic oligomeric positions were initially designed. While the first one includes residues potentially residing at the protomer-protomer interface, the other two display amino acids located within two distal surface-exposed α-helices proposed to be involved in dimer-dimer contacts. We further focused on the core of the dimeric interface by mutating asparagine 138 (N138) to several nonconservative amino acids. Cellular localization combined with dimerization and coimmunopurification assays, performed under various denaturing conditions, revealed that all 6A-block mutants were impaired in self-assembly and cell periphery accumulation. These phenotypes correlated with deficiencies in relocating CDV nucleocapsid proteins to the cell periphery and in virus-like particle (VLP) production. Conversely, all M-N138 mutants remained capable of self-assembly, though to various extents, which correlated with proper accumulation and redistribution of nucleocapsid proteins at the plasma membrane. However, membrane deformation and VLP assays indicated that the M-N138 variants exhibiting the most reduced dimerization propensity were also defective in triggering membrane remodeling and budding, despite proper plasma membrane accumulation. Overall, our data provide mechanistic evidence that the efficiency of CDV M dimerization/oligomerization governs both cell periphery localization and membrane-budding activity. IMPORTANCE Despite the availability of

  15. Tau protein

    DEFF Research Database (Denmark)

    Frederiksen, Jette Lautrup Battistini; Kristensen, Kim; Bahl, Jmc

    2011-01-01

    Background: Tau protein has been proposed as biomarker of axonal damage leading to irreversible neurological impairment in MS. CSF concentrations may be useful when determining risk of progression from ON to MS. Objective: To investigate the association between tau protein concentration and 14......-3-3 protein in the cerebrospinal fluid (CSF) of patients with monosymptomatic optic neuritis (ON) versus patients with monosymptomatic onset who progressed to multiple sclerosis (MS). To evaluate results against data found in a complete literature review. Methods: A total of 66 patients with MS and/or ON from...... the Department of Neurology of Glostrup Hospital, University of Copenhagen, Denmark, were included. CSF samples were analysed for tau protein and 14-3-3 protein, and clinical and paraclinical information was obtained from medical records. Results: The study shows a significantly increased concentration of tau...

  16. Enhanced protection in mice induced by immunization with inactivated whole viruses compare to spike protein of middle east respiratory syndrome coronavirus.

    Science.gov (United States)

    Deng, Yao; Lan, Jiaming; Bao, Linlin; Huang, Baoying; Ye, Fei; Chen, Yingzhu; Yao, Yanfeng; Wang, Wenling; Qin, Chuan; Tan, Wenjie

    2018-04-04

    The persistent public health threat of infection with Middle East respiratory syndrome coronavirus (MERS-CoV) highlights the need for an effective and safe MERS-CoV vaccine. In this study, we prepared and vaccinated mice with either a Spike (S) protein or inactivated whole MERS-CoV (IV) with a combined adjuvant (alum+CpG) as a vaccine formulation. Similar levels of the anti-S protein IgG response and neutralizing activity were induced by both the S protein and IV vaccines. In addition, immune responses against three other structural proteins, the envelope (E), membrane (M), and nucleocapsid (N) proteins, were also detected in sera of mice that received IV. No antigen-specific T-cell immunity was detected after vaccination based on the interferon-γ ELISpot assay. Mice were transduced with Ad5-hDPP4 after the final immunization and were then challenged with MERS-CoV (1 × 10 5 plaque-forming units). Compared with the control group (adjuvant alone), mice immunized with the S protein or IV showed slightly lower pathological damage in the lung, as well as reduced antigen expression and lung virus titers. Mice that received IV formulations also showed increased protective immunity (almost no live virus was isolated from the lung). In conclusion, our data indicate that immunization with our IV formulation induced enhanced protection in mice compared to immunization with the S protein against MERS-CoV, which should be further tested in camels and clinical trials.

  17. Protein-Protein Interaction Databases

    DEFF Research Database (Denmark)

    Szklarczyk, Damian; Jensen, Lars Juhl

    2015-01-01

    of research are explored. Here we present an overview of the most widely used protein-protein interaction databases and the methods they employ to gather, combine, and predict interactions. We also point out the trade-off between comprehensiveness and accuracy and the main pitfall scientists have to be aware...

  18. Live cell visualization of the interactions between HIV-1 Gag and the cellular RNA-binding protein Staufen1

    Directory of Open Access Journals (Sweden)

    Mouland Andrew J

    2010-05-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 uses cellular proteins and machinery to ensure transmission to uninfected cells. Although the host proteins involved in the transport of viral components toward the plasma membrane have been investigated, the dynamics of this process remain incompletely described. Previously we showed that the double-stranded (dsRNA-binding protein, Staufen1 is found in the HIV-1 ribonucleoprotein (RNP that contains the HIV-1 genomic RNA (vRNA, Gag and other host RNA-binding proteins in HIV-1-producing cells. Staufen1 interacts with the nucleocapsid domain (NC domain of Gag and regulates Gag multimerization on membranes thereby modulating HIV-1 assembly. The formation of the HIV-1 RNP is dynamic and likely central to the fate of the vRNA during the late phase of the HIV-1 replication cycle. Results Detailed molecular imaging of both the intracellular trafficking of virus components and of virus-host protein complexes is critical to enhance our understanding of factors that contribute to HIV-1 pathogenesis. In this work, we visualized the interactions between Gag and host proteins using bimolecular and trimolecular fluorescence complementation (BiFC and TriFC analyses. These methods allow for the direct visualization of the localization of protein-protein and protein-protein-RNA interactions in live cells. We identified where the virus-host interactions between Gag and Staufen1 and Gag and IMP1 (also known as VICKZ1, IGF2BP1 and ZBP1 occur in cells. These virus-host interactions were not only detected in the cytoplasm, but were also found at cholesterol-enriched GM1-containing lipid raft plasma membrane domains. Importantly, Gag specifically recruited Staufen1 to the detergent insoluble membranes supporting a key function for this host factor during virus assembly. Notably, the TriFC experiments showed that Gag and Staufen1 actively recruited protein partners when tethered to mRNA. Conclusions The

  19. [Key role of Asp16 in proteolysis of influenza A NP protein by caspases in infected cells].

    Science.gov (United States)

    Zhirnov, O P; Vorob'eva, I V; Veselovskiĭ, E M; Klenk, N

    2003-01-01

    The main nucleocapsid protein NP (molecular weight--56 kD) of human influenza A virus (IAV) was found to be subject to the N-terminal proteolysis in position Asp16 with production of aNP (molecular weight--53 kD) in the infected cells' apoptosis. It was assumed that NP of avian and animal influenza viruses was not subject to proteolysis since it has Gly16. To verify the above assumption the NP chimeric gene of human influenza virus was developed; Asp16 was replaced by Gly by means of "site-oriented" mutagenesis in the above gene, after that, the A/WSN/33 (H1N1) mutant of human influenza virus with "avian" NP and with point mutation (Gly16) was developed by using the method of "reverse genetics". The "human" influenza virus with "avian" chimeric NP/Gly16 turned out to be viable but had a lower replication velocity versus its wild-nature counterpart. It is noteworthy, that the mutant virus caused the cellular apoptosis in the remote infection period the way the wild virus did; however, NP of the former was found to be resistant to cellular caspasas and was not subject to proteolysis in infected cells. The conclusion is that Asp16 in NP molecule of human IAV is involved into the regulation process of virus replication and is the key element in NP proteolysis by cellular caspasas in cells' apoptosis.

  20. Protein deamidation

    OpenAIRE

    Robinson, Noah E.

    2002-01-01

    A completely automatic computerized technique for the quantitative estimation of the deamidation rates of any protein for which the three-dimensional structure is known has been developed. Calculations of the specific deamidation rates of 170,014 asparaginyl residues in 13,335 proteins have been carried out. The calculated values have good quantitative reliability when compared with experimental measurements. These rates demonstrate that deamidation may be a biologically ...

  1. CHARACTERISTICS OF VIRAL PROTEIN, VP-15, OF WHITESPOT SYNDROME VIRUS ISOLATED FROM INFECTED TIGER SHRIMP Penaeus monodon (Fabricius, 1798

    Directory of Open Access Journals (Sweden)

    Andi Parenrengi

    2017-12-01

    Full Text Available White spot syndrome virus (WSSV has caused mass mortality on tiger shrimp (Penaeus monodon culture and adversely affects prawn industry worldwide including Indonesia. It is well known that the protein structure of WSSV plays an important role in the virus infection and morphogenesis process. A viral protein structure called VP-15 is located in the nucleocapsid of virion virus. The protein structure involves in the life cycle of WSSV in host cells. A gene encoding VP-15 could be involved in constructing the RNA interference (RNAi, so it is needed to isolate and characterize for RNAi technology purpose. The study was aimed to isolate and characterize the VP-15 from the infected WSSV tiger shrimp. The characterization of VP-15 was undertaken through assessment of nucleotide sequence, amino acid deduction, alignment nucleotide/protein searches using Genetyx and BLAST program, and dendrogram construction analysis. The results showed that VP-15 was successfully isolated in form of ORFDNA with a fragment size of 243 bp. The phylogenetic tree analysis revealed three clusters corresponding to the time (year of isolates collection. The VP-15 consisted of 80 amino acids, two start codons (ATG, one stop codon (TAA, and one Kozak context (AAAATGG. Hydrophilic amino acid was the highest composition (44.2%, followed by neutral (31.2% and hydrophobic (24.6% amino acid groups. The VP-15 was rich in amino acid of lysine (21.3%, arginine (22.9% and serine (24.6%. The successful isolation of VP-15 is a very important step in providing a basic yet suitable material in constructing the dsRNA vaccine to control shrimp diseases in aquaculture.

  2. Proteomic analysis of Frankliniella occidentalis and differentially expressed proteins in response to tomato spotted wilt virus infection.

    Science.gov (United States)

    Badillo-Vargas, I E; Rotenberg, D; Schneweis, D J; Hiromasa, Y; Tomich, J M; Whitfield, A E

    2012-08-01

    Tomato spotted wilt virus (TSWV) is transmitted by Frankliniella occidentalis in a persistent propagative manner. Despite the extensive replication of TSWV in midgut and salivary glands, there is little to no pathogenic effect on F. occidentalis. We hypothesize that the first-instar larva (L1) of F. occidentalis mounts a response to TSWV that protects it from pathogenic effects caused by virus infection and replication in various insect tissues. A partial thrips transcriptome was generated using 454-Titanium sequencing of cDNA generated from F. occidentalis exposed to TSWV. Using these sequences, the L1 thrips proteome that resolved on a two-dimensional gel was characterized. Forty-seven percent of the resolved protein spots were identified using the thrips transcriptome. Real-time quantitative reverse transcriptase PCR (RT-PCR) analysis of virus titer in L1 thrips revealed a significant increase in the normalized abundance of TSWV nucleocapsid RNA from 2 to 21 h after a 3-h acquisition access period on virus-infected plant tissue, indicative of infection and accumulation of virus. We compared the proteomes of infected and noninfected L1s to identify proteins that display differential abundances in response to virus. Using four biological replicates, 26 spots containing 37 proteins were significantly altered in response to TSWV. Gene ontology assignments for 32 of these proteins revealed biological roles associated with the infection cycle of other plant- and animal-infecting viruses and antiviral defense responses. Our findings support the hypothesis that L1 thrips display a complex reaction to TSWV infection and provide new insights toward unraveling the molecular basis of this interaction.

  3. Intracellular localization of the pseudorabies virus large tegument protein pUL36.

    Science.gov (United States)

    Möhl, Britta S; Böttcher, Sindy; Granzow, Harald; Kuhn, Jana; Klupp, Barbara G; Mettenleiter, Thomas C

    2009-10-01

    Homologs of the essential large tegument protein pUL36 of herpes simplex virus 1 are conserved throughout the Herpesviridae, complex with pUL37, and form part of the capsid-associated "inner" tegument. pUL36 is crucial for transport of the incoming capsid to and docking at the nuclear pore early after infection as well as for virion maturation in the cytoplasm. Its extreme C terminus is essential for pUL36 function interacting with pUL25 on nucleocapsids to start tegumentation (K. Coller, J. Lee, A. Ueda, and G. Smith, J. Virol. 81:11790-11797, 2007). However, controversy exists about the cellular compartment in which pUL36 is added to the nascent virus particle. We generated monospecific rabbit antisera against four different regions spanning most of pUL36 of the alphaherpesvirus pseudorabies virus (PrV). By immunofluorescence and immunoelectron microscopy, we then analyzed the intracellular location of pUL36 after transient expression and during PrV infection. While reactivities of all four sera were comparable, none of them showed specific intranuclear staining during PrV infection. In immunoelectron microscopy, neither of the sera stained primary enveloped virions in the perinuclear cleft, whereas extracellular mature virus particles were extensively labeled. However, transient expression of pUL36 alone resulted in partial localization to the nucleus, presumably mediated by nuclear localization signals (NLS) whose functionality was demonstrated by fusion of the putative NLS to green fluorescent protein (GFP) and GFP-tagged pUL25. Since PrV pUL36 can enter the nucleus when expressed in isolation, the NLS may be masked during infection. Thus, our studies show that during PrV infection pUL36 is not detectable in the nucleus or on primary enveloped virions, correlating with the notion that the tegument of mature virus particles, including pUL36, is acquired in the cytosol.

  4. Protein Crystallizability.

    Science.gov (United States)

    Smialowski, Pawel; Wong, Philip

    2016-01-01

    Obtaining diffracting quality crystals remains a major challenge in protein structure research. We summarize and compare methods for selecting the best protein targets for crystallization, construct optimization and crystallization condition design. Target selection methods are divided into algorithms predicting the chance of successful progression through all stages of structural determination (from cloning to solving the structure) and those focusing only on the crystallization step. We tried to highlight pros and cons of different approaches examining the following aspects: data size, redundancy and representativeness, overfitting during model construction, and results evaluation. In summary, although in recent years progress was made and several sequence properties were reported to be relevant for crystallization, the successful prediction of protein crystallization behavior and selection of corresponding crystallization conditions continue to challenge structural researchers.

  5. Protein nanoparticles for therapeutic protein delivery.

    Science.gov (United States)

    Herrera Estrada, L P; Champion, J A

    2015-06-01

    Therapeutic proteins can face substantial challenges to their activity, requiring protein modification or use of a delivery vehicle. Nanoparticles can significantly enhance delivery of encapsulated cargo, but traditional small molecule carriers have some limitations in their use for protein delivery. Nanoparticles made from protein have been proposed as alternative carriers and have benefits specific to therapeutic protein delivery. This review describes protein nanoparticles made by self-assembly, including protein cages, protein polymers, and charged or amphipathic peptides, and by desolvation. It presents particle fabrication and delivery characterization for a variety of therapeutic and model proteins, as well as comparison of the features of different protein nanoparticles.

  6. Recombinant protein production technology

    Science.gov (United States)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  7. Aquaporin Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Jennifer Virginia Roche

    2017-10-01

    Full Text Available Aquaporins are tetrameric membrane-bound channels that facilitate transport of water and other small solutes across cell membranes. In eukaryotes, they are frequently regulated by gating or trafficking, allowing for the cell to control membrane permeability in a specific manner. Protein–protein interactions play crucial roles in both regulatory processes and also mediate alternative functions such as cell adhesion. In this review, we summarize recent knowledge about aquaporin protein–protein interactions; dividing the interactions into three types: (1 interactions between aquaporin tetramers; (2 interactions between aquaporin monomers within a tetramer (hetero-tetramerization; and (3 transient interactions with regulatory proteins. We particularly focus on the structural aspects of the interactions, discussing the small differences within a conserved overall fold that allow for aquaporins to be differentially regulated in an organism-, tissue- and trigger-specific manner. A deep knowledge about these differences is needed to fully understand aquaporin function and regulation in many physiological processes, and may enable design of compounds targeting specific aquaporins for treatment of human disease.

  8. Protein immobilization strategies for protein biochips

    NARCIS (Netherlands)

    Rusmini, F.; Rusmini, Federica; Zhong, Zhiyuan; Feijen, Jan

    2007-01-01

    In the past few years, protein biochips have emerged as promising proteomic and diagnostic tools for obtaining information about protein functions and interactions. Important technological innovations have been made. However, considerable development is still required, especially regarding protein

  9. Identifying SARS-CoV membrane protein amino acid residues linked to virus-like particle assembly.

    Directory of Open Access Journals (Sweden)

    Ying-Tzu Tseng

    Full Text Available Severe acute respiratory syndrome coronavirus (SARS-CoV membrane (M proteins are capable of self-assembly and release in the form of membrane-enveloped vesicles, and of forming virus-like particles (VLPs when coexpressed with SARS-CoV nucleocapsid (N protein. According to previous deletion analyses, M self-assembly involves multiple M sequence regions. To identify important M amino acid residues for VLP assembly, we coexpressed N with multiple M mutants containing substitution mutations at the amino-terminal ectodomain, carboxyl-terminal endodomain, or transmembrane segments. Our results indicate that a dileucine motif in the endodomain tail (218LL219 is required for efficient N packaging into VLPs. Results from cross-linking VLP analyses suggest that the cysteine residues 63, 85 and 158 are not in close proximity to the M dimer interface. We noted a significant reduction in M secretion due to serine replacement for C158, but not for C63 or C85. Further analysis suggests that C158 is involved in M-N interaction. In addition to mutations of the highly conserved 107-SWWSFNPE-114 motif, substitutions at codons W19, W57, P58, W91, Y94 or F95 all resulted in significantly reduced VLP yields, largely due to defective M secretion. VLP production was not significantly affected by a tryptophan replacement of Y94 or F95 or a phenylalanine replacement of W19, W57 or W91. Combined, these results indicate the involvement of specific M amino acids during SARS-CoV virus assembly, and suggest that aromatic residue retention at specific positions is critical for M function in terms of directing virus assembly.

  10. Learning about Proteins

    Science.gov (United States)

    ... Videos for Educators Search English Español Learning About Proteins KidsHealth / For Kids / Learning About Proteins What's in ... from the foods you eat. Different Kinds of Protein Protein from animal sources, such as meat and ...

  11. Fusion-protein-assisted protein crystallization.

    Science.gov (United States)

    Kobe, Bostjan; Ve, Thomas; Williams, Simon J

    2015-07-01

    Fusion proteins can be used directly in protein crystallization to assist crystallization in at least two different ways. In one approach, the `heterologous fusion-protein approach', the fusion partner can provide additional surface area to promote crystal contact formation. In another approach, the `fusion of interacting proteins approach', protein assemblies can be stabilized by covalently linking the interacting partners. The linker connecting the proteins plays different roles in the two applications: in the first approach a rigid linker is required to reduce conformational heterogeneity; in the second, conversely, a flexible linker is required that allows the native interaction between the fused proteins. The two approaches can also be combined. The recent applications of fusion-protein technology in protein crystallization from the work of our own and other laboratories are briefly reviewed.

  12. Membrane bending by protein-protein crowding.

    Science.gov (United States)

    Stachowiak, Jeanne C; Schmid, Eva M; Ryan, Christopher J; Ann, Hyoung Sook; Sasaki, Darryl Y; Sherman, Michael B; Geissler, Phillip L; Fletcher, Daniel A; Hayden, Carl C

    2012-09-01

    Curved membranes are an essential feature of dynamic cellular structures, including endocytic pits, filopodia protrusions and most organelles. It has been proposed that specialized proteins induce curvature by binding to membranes through two primary mechanisms: membrane scaffolding by curved proteins or complexes; and insertion of wedge-like amphipathic helices into the membrane. Recent computational studies have raised questions about the efficiency of the helix-insertion mechanism, predicting that proteins must cover nearly 100% of the membrane surface to generate high curvature, an improbable physiological situation. Thus, at present, we lack a sufficient physical explanation of how protein attachment bends membranes efficiently. On the basis of studies of epsin1 and AP180, proteins involved in clathrin-mediated endocytosis, we propose a third general mechanism for bending fluid cellular membranes: protein-protein crowding. By correlating membrane tubulation with measurements of protein densities on membrane surfaces, we demonstrate that lateral pressure generated by collisions between bound proteins drives bending. Whether proteins attach by inserting a helix or by binding lipid heads with an engineered tag, protein coverage above ~20% is sufficient to bend membranes. Consistent with this crowding mechanism, we find that even proteins unrelated to membrane curvature, such as green fluorescent protein (GFP), can bend membranes when sufficiently concentrated. These findings demonstrate a highly efficient mechanism by which the crowded protein environment on the surface of cellular membranes can contribute to membrane shape change.

  13. EDITORIAL: Precision proteins Precision proteins

    Science.gov (United States)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  14. Protein docking prediction using predicted protein-protein interface

    Directory of Open Access Journals (Sweden)

    Li Bin

    2012-01-01

    Full Text Available Abstract Background Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. Results We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm, is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. Conclusion We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  15. Shotgun protein sequencing.

    Energy Technology Data Exchange (ETDEWEB)

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  16. Our interests in protein-protein interactions

    Indian Academy of Sciences (India)

    protein interactions. Evolution of P-P partnerships. Evolution of P-P structures. Evolutionary dynamics of P-P interactions. Dynamics of P-P interaction network. Host-pathogen interactions. CryoEM mapping of gigantic protein assemblies.

  17. Evolution of protein-protein interactions

    Indian Academy of Sciences (India)

    Evolution of protein-protein interactions · Our interests in protein-protein interactions · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Slide 20.

  18. Ontological visualization of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Hill David P

    2005-02-01

    Full Text Available Abstract Background Cellular processes require the interaction of many proteins across several cellular compartments. Determining the collective network of such interactions is an important aspect of understanding the role and regulation of individual proteins. The Gene Ontology (GO is used by model organism databases and other bioinformatics resources to provide functional annotation of proteins. The annotation process provides a mechanism to document the binding of one protein with another. We have constructed protein interaction networks for mouse proteins utilizing the information encoded in the GO annotations. The work reported here presents a methodology for integrating and visualizing information on protein-protein interactions. Results GO annotation at Mouse Genome Informatics (MGI captures 1318 curated, documented interactions. These include 129 binary interactions and 125 interaction involving three or more gene products. Three networks involve over 30 partners, the largest involving 109 proteins. Several tools are available at MGI to visualize and analyze these data. Conclusions Curators at the MGI database annotate protein-protein interaction data from experimental reports from the literature. Integration of these data with the other types of data curated at MGI places protein binding data into the larger context of mouse biology and facilitates the generation of new biological hypotheses based on physical interactions among gene products.

  19. 24-hour urine protein

    Science.gov (United States)

    Urine protein - 24 hour; Chronic kidney disease - urine protein; Kidney failure - urine protein ... Heart failure High blood pressure during pregnancy ( preeclampsia ) Kidney disease caused by diabetes, high blood pressure, autoimmune disorders, ...

  20. Protein-losing enteropathy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007338.htm Protein-losing enteropathy To use the sharing features on this page, please enable JavaScript. Protein-losing enteropathy is an abnormal loss of protein ...

  1. Protein in diet

    Science.gov (United States)

    Diet - protein ... Protein foods are broken down into parts called amino acids during digestion. The human body needs a ... to eat animal products to get all the protein you need in your diet. Amino acids are ...

  2. Oligomeric protein structure networks: insights into protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Brinda KV

    2005-12-01

    Full Text Available Abstract Background Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues with special emphasis to protein interfaces. Results A variety of interactions such as hydrogen bond, salt bridges, aromatic and hydrophobic interactions, which occur at the interfaces are identified in a consolidated manner as amino acid clusters at the interface, from this study. Moreover, the characterization of the highly connected hub-forming residues at the interfaces and their comparison with the hubs from the non-interface regions and the non-hubs in the interface regions show that there is a predominance of charged interactions at the interfaces. Further, strong and weak interfaces are identified on the basis of the interaction strength between amino acid residues and the sizes of the interface clusters, which also show that many protein interfaces are stronger than their monomeric protein cores. The interface strengths evaluated based on the interface clusters and hubs also correlate well with experimentally determined dissociation constants for known complexes. Finally, the interface hubs identified using the present method correlate very well with experimentally determined hotspots in the interfaces of protein complexes obtained from the Alanine Scanning Energetics database (ASEdb. A few predictions of interface hot

  3. Genome sequence variation in the constricta strain dramatically alters the protein interaction and localization map of Potato yellow dwarf virus

    Science.gov (United States)

    The genome sequence of the constricta strain of Potato yellow dwarf virus (CYDV) was determined to be 12,792 nucleotides long and organized into seven open reading frames with the gene order 3’-N-X-P-Y-M-G-L-5’, which encodes the nucleocapsid, phosphoprotein, movement, matrix, glycoprotein and RNA-d...

  4. Genetic variability of attachment (G and Fusion (F protein genes of human metapneumovirus strains circulating during 2006-2009 in Kolkata, Eastern India

    Directory of Open Access Journals (Sweden)

    Chawla-Sarkar Mamta

    2011-02-01

    Full Text Available Abstract Background Human metapneumovirus (hMPV is associated with the acute respiratory tract infection (ARTI in all the age groups. However, there is limited information on prevalence and genetic diversity of human metapneumovirus (hMPV strains circulating in India. Objective To study prevalence and genomic diversity of hMPV strains among ARTI patients reporting in outpatient departments of hospitals in Kolkata, Eastern India. Methods Nasal and/or throat swabs from 2309 patients during January 2006 to December 2009, were screened for the presence of hMPV by RT-PCR of nucleocapsid (N gene. The G and F genes of representative hMPV positive samples were sequenced. Results 118 of 2309 (5.11% clinical samples were positive for hMPV. The majority (≈80% of the positive cases were detected during July−November all through the study period. Genetic analysis revealed that 77% strains belong to A2 subgroup whereas rest clustered in B1 subgroup. G sequences showed higher diversity at the nucleotide and amino acid level. In contrast, less than 10% variation was observed in F gene of representative strains of all four years. Sequence analysis also revealed changes in the position of stop codon in G protein, which resulted in variable length (217-231 aa polypeptides. Conclusion The study suggests that approximately 5% of ARTI in the region were caused by hMPV. This is the first report on the genetic variability of G and F gene of hMPV strains from India which clearly shows that the G protein of hMPV is continuously evolving. Though the study partially fulfills lacunae of information, further studies from other regions are necessary for better understanding of prevalence, epidemiology and virus evolution in Indian subcontinent.

  5. Protein surface shielding agents in protein crystallization

    International Nuclear Information System (INIS)

    Hašek, J.

    2011-01-01

    The crystallization process can be controlled by protein surface shielding agents blocking undesirable competitive adhesion modes during non-equilibrium processes of deposition of protein molecules on the surface of growing crystalline blocks. The hypothesis is based on a number of experimental proofs from diffraction experiments and also retrieved from the Protein Data Bank. The molecules adhering temporarily on the surface of protein molecules change the propensity of protein molecules to deposit on the crystal surface in a definite position and orientation. The concepts of competitive adhesion modes and protein surface shielding agents acting on the surface of molecules in a non-equilibrium process of protein crystallization provide a useful platform for the control of crystallization. The desirable goal, i.e. a transient preference of a single dominating adhesion mode between protein molecules during crystallization, leads to uniform deposition of proteins in a crystal. This condition is the most important factor for diffraction quality and thus also for the accuracy of protein structure determination. The presented hypothesis is a generalization of the experimentally well proven behaviour of hydrophilic polymers on the surface of protein molecules of other compounds

  6. Nanotechnologies in protein microarrays.

    Science.gov (United States)

    Krizkova, Sona; Heger, Zbynek; Zalewska, Marta; Moulick, Amitava; Adam, Vojtech; Kizek, Rene

    2015-01-01

    Protein microarray technology became an important research tool for study and detection of proteins, protein-protein interactions and a number of other applications. The utilization of nanoparticle-based materials and nanotechnology-based techniques for immobilization allows us not only to extend the surface for biomolecule immobilization resulting in enhanced substrate binding properties, decreased background signals and enhanced reporter systems for more sensitive assays. Generally in contemporarily developed microarray systems, multiple nanotechnology-based techniques are combined. In this review, applications of nanoparticles and nanotechnologies in creating protein microarrays, proteins immobilization and detection are summarized. We anticipate that advanced nanotechnologies can be exploited to expand promising fields of proteins identification, monitoring of protein-protein or drug-protein interactions, or proteins structures.

  7. Protein sequence comparison and protein evolution

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, W.R. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Biochemistry

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  8. Protein digestion in ruminants

    African Journals Online (AJOL)

    digestibility, or the contribution of endogenous protein to the indigestible feed .... endogenous protein fractions. Alternatively, Stern & Satter (1984) suggested a method whereby the increased protein outflow to the small intestine, resulting from the incremental addition of ..... definition of the various protein fractions. Finally ...

  9. The Protein Model Portal

    OpenAIRE

    Arnold, Konstantin; Kiefer, Florian; Kopp, J?rgen; Battey, James N. D.; Podvinec, Michael; Westbrook, John D.; Berman, Helen M.; Bordoli, Lorenza; Schwede, Torsten

    2008-01-01

    Structural Genomics has been successful in determining the structures of many unique proteins in a high throughput manner. Still, the number of known protein sequences is much larger than the number of experimentally solved protein structures. Homology (or comparative) modeling methods make use of experimental protein structures to build models for evolutionary related proteins. Thereby, experimental structure determination efforts and homology modeling complement each other in the exploratio...

  10. Photoswitchable cyan fluorescent protein for protein tracking.

    Science.gov (United States)

    Chudakov, Dmitriy M; Verkhusha, Vladislav V; Staroverov, Dmitry B; Souslova, Ekaterina A; Lukyanov, Sergey; Lukyanov, Konstantin A

    2004-11-01

    In recent years diverse photolabeling techniques using green fluorescent protein (GFP)-like proteins have been reported, including photoactivatable PA-GFP, photoactivatable protein Kaede, the DsRed 'greening' technique and kindling fluorescent proteins. So far, only PA-GFP, which is monomeric and gives 100-fold fluorescence contrast, could be applied for protein tracking. Here we describe a dual-color monomeric protein, photoswitchable cyan fluorescent protein (PS-CFP). PS-CFP is capable of efficient photoconversion from cyan to green, changing both its excitation and emission spectra in response to 405-nm light irradiation. Complete photoactivation of PS-CFP results in a 1,500-fold increase in the green-to-cyan fluorescence ratio, making it the highest-contrast monomeric photoactivatable fluorescent protein described to date. We used PS-CFP as a photoswitchable tag to study trafficking of human dopamine transporter in living cells. At moderate excitation intensities, PS-CFP can be used as a pH-stable cyan label for protein tagging and fluorescence resonance energy transfer applications.

  11. Protein- protein interaction detection system using fluorescent protein microdomains

    Science.gov (United States)

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  12. Comparing side chain packing in soluble proteins, protein-protein interfaces, and transmembrane proteins.

    Science.gov (United States)

    Gaines, J C; Acebes, S; Virrueta, A; Butler, M; Regan, L; O'Hern, C S

    2018-05-01

    We compare side chain prediction and packing of core and non-core regions of soluble proteins, protein-protein interfaces, and transmembrane proteins. We first identified or created comparable databases of high-resolution crystal structures of these 3 protein classes. We show that the solvent-inaccessible cores of the 3 classes of proteins are equally densely packed. As a result, the side chains of core residues at protein-protein interfaces and in the membrane-exposed regions of transmembrane proteins can be predicted by the hard-sphere plus stereochemical constraint model with the same high prediction accuracies (>90%) as core residues in soluble proteins. We also find that for all 3 classes of proteins, as one moves away from the solvent-inaccessible core, the packing fraction decreases as the solvent accessibility increases. However, the side chain predictability remains high (80% within 30°) up to a relative solvent accessibility, rSASA≲0.3, for all 3 protein classes. Our results show that ≈40% of the interface regions in protein complexes are "core", that is, densely packed with side chain conformations that can be accurately predicted using the hard-sphere model. We propose packing fraction as a metric that can be used to distinguish real protein-protein interactions from designed, non-binding, decoys. Our results also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the computational methods we are developing for the analysis of the effect of hydrophobic core mutations in soluble proteins will be equally applicable to analyses of mutations in membrane proteins. © 2018 Wiley Periodicals, Inc.

  13. IGSF9 Family Proteins

    DEFF Research Database (Denmark)

    Hansen, Maria; Walmod, Peter Schledermann

    2013-01-01

    The Drosophila protein Turtle and the vertebrate proteins immunoglobulin superfamily (IgSF), member 9 (IGSF9/Dasm1) and IGSF9B are members of an evolutionarily ancient protein family. A bioinformatics analysis of the protein family revealed that invertebrates contain only a single IGSF9 family gene......, whereas vertebrates contain two to four genes. In cnidarians, the gene appears to encode a secreted protein, but transmembrane isoforms of the protein have also evolved, and in many species, alternative splicing facilitates the expression of both transmembrane and secreted isoforms. In most species......, the longest isoforms of the proteins have the same general organization as the neural cell adhesion molecule family of cell adhesion molecule proteins, and like this family of proteins, IGSF9 family members are expressed in the nervous system. A review of the literature revealed that Drosophila Turtle...

  14. Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction network. Based on different complex sets detected by various algorithms, we can obtain different prediction sets of protein-protein interactions. The reliability of the predicted interaction sets is proved by using estimations with statistical tests and direct confirmation of the biological data. In comparison with the approaches which predict the interactions based on the cliques, the overlap of the predictions is small. Similarly, the overlaps among the predicted sets of interactions derived from various complex sets are also small. Thus, every predicted set of interactions may complement and improve the quality of the original network data. Meanwhile, the predictions from the proposed method replenish protein-protein interactions associated with protein complexes using only the network topology.

  15. Personalizing Protein Nourishment

    Science.gov (United States)

    DALLAS, DAVID C.; SANCTUARY, MEGAN R.; QU, YUNYAO; KHAJAVI, SHABNAM HAGHIGHAT; VAN ZANDT, ALEXANDRIA E.; DYANDRA, MELISSA; FRESE, STEVEN A.; BARILE, DANIELA; GERMAN, J. BRUCE

    2016-01-01

    Proteins are not equally digestible—their proteolytic susceptibility varies by their source and processing method. Incomplete digestion increases colonic microbial protein fermentation (putrefaction), which produces toxic metabolites that can induce inflammation in vitro and have been associated with inflammation in vivo. Individual humans differ in protein digestive capacity based on phenotypes, particularly disease states. To avoid putrefaction-induced intestinal inflammation, protein sources and processing methods must be tailored to the consumer’s digestive capacity. This review explores how food processing techniques alter protein digestibility and examines how physiological conditions alter digestive capacity. Possible solutions to improving digestive function or matching low digestive capacity with more digestible protein sources are explored. Beyond the ileal digestibility measurements of protein digestibility, less invasive, quicker and cheaper techniques for monitoring the extent of protein digestion and fermentation are needed to personalize protein nourishment. Biomarkers of protein digestive capacity and efficiency can be identified with the toolsets of peptidomics, metabolomics, microbial sequencing and multiplexed protein analysis of fecal and urine samples. By monitoring individual protein digestive function, the protein component of diets can be tailored via protein source and processing selection to match individual needs to minimize colonic putrefaction and, thus, optimize gut health. PMID:26713355

  16. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn

    2013-05-01

    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  17. Protein Data Bank (PDB)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Protein Data Bank (PDB) archive is the single worldwide repository of information about the 3D structures of large biological molecules, including proteins and...

  18. Protein electrophoresis - urine

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003589.htm Urine protein electrophoresis test To use the sharing features on this page, please enable JavaScript. The urine protein electrophoresis (UPEP) test is used to estimate how much ...

  19. Protein electrophoresis - serum

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003540.htm Protein electrophoresis - serum To use the sharing features on ... JavaScript. This lab test measures the types of protein in the fluid (serum) part of a blood ...

  20. Effects of Inner Nuclear Membrane Proteins SUN1/UNC-84A and SUN2/UNC-84B on the Early Steps of HIV-1 Infection.

    Science.gov (United States)

    Schaller, Torsten; Bulli, Lorenzo; Pollpeter, Darja; Betancor, Gilberto; Kutzner, Juliane; Apolonia, Luis; Herold, Nikolas; Burk, Robin; Malim, Michael H

    2017-10-01

    Human immunodeficiency virus type 1 (HIV-1) infection of dividing and nondividing cells involves regulatory interactions with the nuclear pore complex (NPC), followed by translocation to the nucleus and preferential integration into genomic areas in proximity to the inner nuclear membrane (INM). To identify host proteins that may contribute to these processes, we performed an overexpression screen of known membrane-associated NE proteins. We found that the integral transmembrane proteins SUN1/UNC84A and SUN2/UNC84B are potent or modest inhibitors of HIV-1 infection, respectively, and that suppression corresponds to defects in the accumulation of viral cDNA in the nucleus. While laboratory strains (HIV-1 NL4.3 and HIV-1 IIIB ) are sensitive to SUN1-mediated inhibition, the transmitted founder viruses RHPA and ZM247 are largely resistant. Using chimeric viruses, we identified the HIV-1 capsid (CA) protein as a major determinant of sensitivity to SUN1, and in vitro -assembled capsid-nucleocapsid (CANC) nanotubes captured SUN1 and SUN2 from cell lysates. Finally, we generated SUN1 -/- and SUN2 -/- cells by using CRISPR/Cas9 and found that the loss of SUN1 had no effect on HIV-1 infectivity, whereas the loss of SUN2 had a modest suppressive effect. Taken together, these observations suggest that SUN1 and SUN2 may function redundantly to modulate postentry, nuclear-associated steps of HIV-1 infection. IMPORTANCE HIV-1 causes more than 1 million deaths per year. The life cycle of HIV-1 has been studied extensively, yet important steps that occur between viral capsid release into the cytoplasm and the expression of viral genes remain elusive. We propose here that the INM components SUN1 and SUN2, two members of the linker of nucleoskeleton and cytoskeleton (LINC) complex, may interact with incoming HIV-1 replication complexes and affect key steps of infection. While overexpression of these proteins reduces HIV-1 infection, disruption of the individual SUN2 and SUN1 genes

  1. CSF total protein

    Science.gov (United States)

    CSF total protein is a test to determine the amount of protein in your spinal fluid, also called cerebrospinal fluid (CSF). ... The normal protein range varies from lab to lab, but is typically about 15 to 60 milligrams per deciliter (mg/dL) ...

  2. PCR

    African Journals Online (AJOL)

    Administrator

    2006-10-02

    Oct 2, 2006 ... RP-N (15941482) ..... Cloning of the nucleocapsid protein gene of peste des petits ruminants virus: relationship to other Morbillivuruses. J. General Virol. 75:233-237. Diallo A, Barrett T, Barbron M, Shaila MS, Taylor WP ...

  3. Protein sequence databases.

    Science.gov (United States)

    Apweiler, Rolf; Bairoch, Amos; Wu, Cathy H

    2004-02-01

    A variety of protein sequence databases exist, ranging from simple sequence repositories, which store data with little or no manual intervention in the creation of the records, to expertly curated universal databases that cover all species and in which the original sequence data are enhanced by the manual addition of further information in each sequence record. As the focus of researchers moves from the genome to the proteins encoded by it, these databases will play an even more important role as central comprehensive resources of protein information. Several the leading protein sequence databases are discussed here, with special emphasis on the databases now provided by the Universal Protein Knowledgebase (UniProt) consortium.

  4. Protein hydration and dynamics

    International Nuclear Information System (INIS)

    Nakagawa, Hiroshi; Kataoka, Mikio

    2015-01-01

    Inelastic neutron scattering can measure the protein thermal fluctuations under the physiological aqueous environment, especially it is powerful to observe the low-energy protein dynamics in THz region, which are revealed theoretically to be coupled with solvations. Neutron enables the selective observation of protein and hydration water by deuteration. The complementary analysis with molecular dynamics simulation is also effective for the study of protein hydration. Some examples of the application toward the understanding of molecular basis of protein functions will be introduced. (author)

  5. Highly thermostable fluorescent proteins

    Science.gov (United States)

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  6. Targeting proteins for degradation.

    Science.gov (United States)

    Schrader, Erin K; Harstad, Kristine G; Matouschek, Andreas

    2009-11-01

    Protein degradation plays a central role in many cellular functions. Misfolded and damaged proteins are removed from the cell to avoid toxicity. The concentrations of regulatory proteins are adjusted by degradation at the appropriate time. Both foreign and native proteins are digested into small peptides as part of the adaptive immune response. In eukaryotic cells, an ATP-dependent protease called the proteasome is responsible for much of this proteolysis. Proteins are targeted for proteasomal degradation by a two-part degron, which consists of a proteasome binding signal and a degradation initiation site. Here we describe how both components contribute to the specificity of degradation.

  7. Protein supplementation with aging.

    Science.gov (United States)

    Bauer, Juergen M; Diekmann, Rebecca

    2015-01-01

    To highlight the recent evicence for optimal protein intake and protein supplementation in older adults. A special focus has been placed on the effects on muscle protein synthesis, strength and overall performance in this population. Although for older adults, some additional evidence on the benefits of a higher protein intake than 0.8 g/kg body weight per day has been provided, the results of studies focusing on the timing of protein intake over the day have been contradictory. Supplementation with so-called 'fast' proteins, which are also rich in leucine, for example whey protein, proved superior with regard to muscle protein synthesis. First studies in frail older persons showed increased strength after supplementation with milk protein, whereas the combination with physical exercise increased muscle mass without additional benefit for strength or functionality. Recent evidence suggests positive effects of protein supplementation on muscle protein synthesis, muscle mass and muscle strength. However, as most studies included only small numbers of participants for short treatment periods, larger studies with longer duration are necessary to support the clinical relevance of these observations.

  8. Racemic protein crystallography.

    Science.gov (United States)

    Yeates, Todd O; Kent, Stephen B H

    2012-01-01

    Although natural proteins are chiral and are all of one "handedness," their mirror image forms can be prepared by chemical synthesis. This opens up new opportunities for protein crystallography. A racemic mixture of the enantiomeric forms of a protein molecule can crystallize in ways that natural proteins cannot. Recent experimental data support a theoretical prediction that this should make racemic protein mixtures highly amenable to crystallization. Crystals obtained from racemic mixtures also offer advantages in structure determination strategies. The relevance of these potential advantages is heightened by advances in synthetic methods, which are extending the size limit for proteins that can be prepared by chemical synthesis. Recent ideas and results in the area of racemic protein crystallography are reviewed.

  9. Intracellular protein breakdown. 8

    International Nuclear Information System (INIS)

    Bohley, P.; Kirschke, H.; Langner, J.; Wiederanders, B.; Ansorge, S.

    1976-01-01

    Double-labelled proteins from rat liver cytosol ( 14 C in long-lived, 3 H in short-lived proteins after in-vivo-labelling) are used as substrates for unlabelled proteinases in vitro. Differences in the degradation rates of short-lived and long-lived proteins in vitro by different proteinases and after addition of different effectors allow conclusions concerning their importance for the in-vivo-turnover of substrate proteins. The main activity (>90%) of soluble lysosomal proteinases at pH 6.1 and pH 6.9 is caused by thiolproteinases, which degrade preferentially short-lived cytosol proteins. These proteinases are inhibited by leupeptin. Autolysis of double-labelled cell fractions shows a remarkably faster breakdown of short-lived substrate proteins only in the soluble part of lysosomes. Microsomal fractions degrade in vitro preferentially long-lived substrate proteins. (author)

  10. Protein solubility modeling

    Science.gov (United States)

    Agena, S. M.; Pusey, M. L.; Bogle, I. D.

    1999-01-01

    A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.

  11. High-titer preparation of Bombyx mori nucleopolyhedrovirus (BmNPV displaying recombinant protein in silkworm larvae by size exclusion chromatography and its characterization

    Directory of Open Access Journals (Sweden)

    Tanaka Shigeyasu

    2009-06-01

    Full Text Available Abstract Background Budded baculoviruses are utilized for vaccine, the production of antibody and functional analysis of transmembrane proteins. In this study, we tried to produce and purify the recombinant Bombyx mori nucleopolyhedrovirus (rBmNPV-hPRR that displayed human (prorenin receptor (hPRR connected with FLAG peptide sequence on its own surface. These particles were used for further binding analysis of hPRR to human prorenin. The rBmNPV-hPRR was produced in silkworm larvae and purified from its hemolymph using size exclusion chromatography (SEC. Results A rapid method of BmNPV titer determination in hemolymph was performed using quantitative real-time PCR (Q-PCR. A correlation coefficient of BmNPV determination between end-point dilution and Q-PCR methods was found to be 0.99. rBmNPV-hPRR bacmid-injected silkworm larvae produced recombinant baculovirus of 1.31 × 108 plaque forming unit (pfu in hemolymph, which was 2.8 × 104 times higher than transfection solution in Bm5 cells. Its purification yield by Sephacryl S-1000 SF column chromatography was 264 fold from larval hemolymph at 4 days post-injection (p.i., but 35 or 39 fold at 4.5 or 5 days p.i., respectively. Protein patterns of rBmNPV-hPRR purified at 4 and 5 days were the same and ratio of envelope proteins (76, 45 and 35 kDa to VP39, one of nucleocapsid proteins, increased at 5 days p.i. hPRR was detected in only purified rBmNPV-hPRR at 5 days p.i.. Conclusion The successful purification of rBmNPV-hPRR indicates that baculovirus production using silkworm larvae and its purification from hemolymph by Sephacryl S-1000 SF column chromatography can provide an economical approach in obtaining the purified BmNPV stocks with high titer for large-scale production of hPRR. Also, it can be utilized for further binding analysis and screening of inhibitors of hPRR.

  12. Production and purification of immunologically active core protein p24 from HIV-1 fused to ricin toxin B subunit in E. coli

    Directory of Open Access Journals (Sweden)

    Gómez-Lim Miguel A

    2009-02-01

    Full Text Available Abstract Background Gag protein from HIV-1 is a polyprotein of 55 kDa, which, during viral maturation, is cleaved to release matrix p17, core p24 and nucleocapsid proteins. The p24 antigen contains epitopes that prime helper CD4 T-cells, which have been demonstrated to be protective and it can elicit lymphocyte proliferation. Thus, p24 is likely to be an integral part of any multicomponent HIV vaccine. The availability of an optimal adjuvant and carrier to enhance antiviral responses may accelerate the development of a vaccine candidate against HIV. The aim of this study was to investigate the adjuvant-carrier properties of the B ricin subunit (RTB when fused to p24. Results A fusion between ricin toxin B subunit and p24 HIV (RTB/p24 was expressed in E. coli. Affinity chromatography was used for purification of p24 alone and RTB/p24 from cytosolic fractions. Biological activity of RTB/p24 was determined by ELISA and affinity chromatography using the artificial receptor glycoprotein asialofetuin. Both assays have demonstrated that RTB/p24 is able to interact with complex sugars, suggesting that the chimeric protein retains lectin activity. Also, RTB/p24 was demonstrated to be immunologically active in mice. Two weeks after intraperitoneal inoculation with RTB/p24 without an adjuvant, a strong anti-p24 immune response was detected. The levels of the antibodies were comparable to those found in mice immunized with p24 alone in the presence of Freund adjuvant. RTB/p24 inoculated intranasally in mice, also elicited significant immune responses to p24, although the response was not as strong as that obtained in mice immunized with p24 in the presence of the mucosal adjuvant cholera toxin. Conclusion In this work, we report the expression in E. coli of HIV-1 p24 fused to the subunit B of ricin toxin. The high levels of antibodies obtained after intranasal and intraperitoneal immunization of mice demonstrate the adjuvant-carrier properties of RTB when

  13. Protein kinesis: The dynamics of protein trafficking and stability

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  14. PROTEIN - WHICH IS BEST?

    Directory of Open Access Journals (Sweden)

    Michael J. Falvo

    2004-09-01

    Full Text Available Protein intake that exceeds the recommended daily allowance is widely accepted for both endurance and power athletes. However, considering the variety of proteins that are available much less is known concerning the benefits of consuming one protein versus another. The purpose of this paper is to identify and analyze key factors in order to make responsible recommendations to both the general and athletic populations. Evaluation of a protein is fundamental in determining its appropriateness in the human diet. Proteins that are of inferior content and digestibility are important to recognize and restrict or limit in the diet. Similarly, such knowledge will provide an ability to identify proteins that provide the greatest benefit and should be consumed. The various techniques utilized to rate protein will be discussed. Traditionally, sources of dietary protein are seen as either being of animal or vegetable origin. Animal sources provide a complete source of protein (i.e. containing all essential amino acids, whereas vegetable sources generally lack one or more of the essential amino acids. Animal sources of dietary protein, despite providing a complete protein and numerous vitamins and minerals, have some health professionals concerned about the amount of saturated fat common in these foods compared to vegetable sources. The advent of processing techniques has shifted some of this attention and ignited the sports supplement marketplace with derivative products such as whey, casein and soy. Individually, these products vary in quality and applicability to certain populations. The benefits that these particular proteins possess are discussed. In addition, the impact that elevated protein consumption has on health and safety issues (i.e. bone health, renal function are also reviewed

  15. Protein oxidation and peroxidation

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard...... and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals...... and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function...

  16. Protein Misfolding Diseases.

    Science.gov (United States)

    Hartl, F Ulrich

    2017-06-20

    The majority of protein molecules must fold into defined three-dimensional structures to acquire functional activity. However, protein chains can adopt a multitude of conformational states, and their biologically active conformation is often only marginally stable. Metastable proteins tend to populate misfolded species that are prone to forming toxic aggregates, including soluble oligomers and fibrillar amyloid deposits, which are linked with neurodegeneration in Alzheimer and Parkinson disease, and many other pathologies. To prevent or regulate protein aggregation, all cells contain an extensive protein homeostasis (or proteostasis) network comprising molecular chaperones and other factors. These defense systems tend to decline during aging, facilitating the manifestation of aggregate deposition diseases. This volume of the Annual Review of Biochemistry contains a set of three articles addressing our current understanding of the structures of pathological protein aggregates and their associated disease mechanisms. These articles also discuss recent insights into the strategies cells have evolved to neutralize toxic aggregates by sequestering them in specific cellular locations.

  17. Computational Protein Design

    DEFF Research Database (Denmark)

    Johansson, Kristoffer Enøe

    with a novel method based on probability theory. With the aim of assembling a complete pipeline for protein design, this work touches upon several aspects of protein design. The presented work is the computational half of a design project where the other half is dedicated to the experimental part......Proteins are the major functional group of molecules in biology. The impact of protein science on medicine and chemical productions is rapidly increasing. However, the greatest potential remains to be realized. The fi eld of protein design has advanced computational modeling from a tool of support...... to a central method that enables new developments. For example, novel enzymes with functions not found in natural proteins have been de novo designed to give enough activity for experimental optimization. This thesis presents the current state-of-the-art within computational design methods together...

  18. Computational Protein Design

    DEFF Research Database (Denmark)

    Johansson, Kristoffer Enøe

    Proteins are the major functional group of molecules in biology. The impact of protein science on medicine and chemical productions is rapidly increasing. However, the greatest potential remains to be realized. The fi eld of protein design has advanced computational modeling from a tool of support...... to a central method that enables new developments. For example, novel enzymes with functions not found in natural proteins have been de novo designed to give enough activity for experimental optimization. This thesis presents the current state-of-the-art within computational design methods together...... with a novel method based on probability theory. With the aim of assembling a complete pipeline for protein design, this work touches upon several aspects of protein design. The presented work is the computational half of a design project where the other half is dedicated to the experimental part...

  19. Specificity and affinity quantification of protein-protein interactions.

    Science.gov (United States)

    Yan, Zhiqiang; Guo, Liyong; Hu, Liang; Wang, Jin

    2013-05-01

    Most biological processes are mediated by the protein-protein interactions. Determination of the protein-protein structures and insight into their interactions are vital to understand the mechanisms of protein functions. Currently, compared with the isolated protein structures, only a small fraction of protein-protein structures are experimentally solved. Therefore, the computational docking methods play an increasing role in predicting the structures and interactions of protein-protein complexes. The scoring function of protein-protein interactions is the key responsible for the accuracy of the computational docking. Previous scoring functions were mostly developed by optimizing the binding affinity which determines the stability of the protein-protein complex, but they are often lack of the consideration of specificity which determines the discrimination of native protein-protein complex against competitive ones. We developed a scoring function (named as SPA-PP, specificity and affinity of the protein-protein interactions) by incorporating both the specificity and affinity into the optimization strategy. The testing results and comparisons with other scoring functions show that SPA-PP performs remarkably on both predictions of binding pose and binding affinity. Thus, SPA-PP is a promising quantification of protein-protein interactions, which can be implemented into the protein docking tools and applied for the predictions of protein-protein structure and affinity. The algorithm is implemented in C language, and the code can be downloaded from http://dl.dropbox.com/u/1865642/Optimization.cpp.

  20. Successful Protein Production

    OpenAIRE

    Culp, J.

    2011-01-01

    Successful production of functional proteins is more than an immunoreactive band on a Western blot. Availability of multiple expression vectors make accessible a variety of expression systems and parallel expression approaches can speed results and increase chance of success. The next hurdle is isolation of the protein target in sufficient amounts and with sufficient purity to support subsequent experimental work. Occasionally, protein refolding is the only method available to achieve the des...

  1. Pressure cryocooling protein crystals

    Science.gov (United States)

    Kim, Chae Un [Ithaca, NY; Gruner, Sol M [Ithaca, NY

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  2. Protein intakes in India.

    Science.gov (United States)

    Swaminathan, Sumathi; Vaz, Mario; Kurpad, Anura V

    2012-08-01

    Indian diets derive almost 60 % of their protein from cereals with relatively low digestibility and quality. There have been several surveys of diets and protein intakes in India by the National Nutrition Monitoring Board (NNMB) over the last 25 years, in urban and rural, as well as in slum dwellers and tribal populations. Data of disadvantaged populations from slums, tribals and sedentary rural Indian populations show that the protein intake (mainly from cereals) is about 1 gm/kg/day. However, the protein intake looks less promising in terms of the protein digestibility corrected amino acid score (PDCAAS), using lysine as the first limiting amino acid, where all populations, particularly rural and tribal, appear to have an inadequate quality to their protein intake. The protein: energy (PE) ratio is a measure of dietary quality, and has been used in the 2007 WHO/FAO/UNU report to define reference requirement values with which the adequacy of diets can be evaluated in terms of a protein quality corrected PE ratio. It is likely that about one third of this sedentary rural population is at risk of not meeting their requirements. These levels of risk of deficiency are in a population with relatively low BMI populations, whose diets are also inadequate in fruits and vegetables. Therefore, while the burden of enhancing the quality of protein intake in rural India exists, the quality of the diet, in general, represents a challenge that must be met.

  3. Protein carbonylation in plants

    DEFF Research Database (Denmark)

    Møller, Ian Max; Havelund, Jesper; Rogowska-Wrzesinska, Adelina

    2017-01-01

    This chapter provides an overview of the current knowledge on protein carbonylation in plants and its role in plant physiology. It starts with a brief outline of the turnover and production sites of reactive oxygen species (ROS) in plants and the causes of protein carbonylation. This is followed...... by a description of the methods used to study protein carbonylation in plants, which is also very brief as the methods are similar to those used in studies on animals. The chapter also focuses on protein carbonylation in plants in general and in mitochondria and in seeds in particular, as case stories where...

  4. MicroProteins

    DEFF Research Database (Denmark)

    Eguen, Teinai Ebimienere; Straub, Daniel; Graeff, Moritz

    2015-01-01

    MicroProteins (miPs) are short, usually single-domain proteins that, in analogy to miRNAs, heterodimerize with their targets and exert a dominant-negative effect. Recent bioinformatic attempts to identify miPs have resulted in a list of potential miPs, many of which lack the defining characterist......MicroProteins (miPs) are short, usually single-domain proteins that, in analogy to miRNAs, heterodimerize with their targets and exert a dominant-negative effect. Recent bioinformatic attempts to identify miPs have resulted in a list of potential miPs, many of which lack the defining...

  5. Acanthamoeba castellanii STAT protein.

    Science.gov (United States)

    Kicinska, Anna; Leluk, Jacek; Jarmuszkiewicz, Wieslawa

    2014-01-01

    STAT (signal transducers and activators of transcription) proteins are one of the important mediators of phosphotyrosine-regulated signaling in metazoan cells. We described the presence of STAT protein in a unicellular, free-living amoebae with a simple life cycle, Acanthamoeba castellanii. A. castellanii is the only, studied to date, Amoebozoan that does not belong to Mycetozoa but possesses STATs. A sequence of the A. castellanii STAT protein includes domains similar to those of the Dictyostelium STAT proteins: a coiled coil (characteristic for Dictyostelium STAT coiled coil), a STAT DNA-binding domain and a Src-homology domain. The search for protein sequences homologous to A. castellanii STAT revealed 17 additional sequences from lower eukaryotes. Interestingly, all of these sequences come from Amoebozoa organisms that belong to either Mycetozoa (slime molds) or Centramoebida. We showed that there are four separated clades within the slime mold STAT proteins. The A. castellanii STAT protein branches next to a group of STATc proteins from Mycetozoa. We also demonstrate that Amoebozoa form a distinct monophyletic lineage within the STAT protein world that is well separated from the other groups.

  6. Acanthamoeba castellanii STAT protein.

    Directory of Open Access Journals (Sweden)

    Anna Kicinska

    Full Text Available STAT (signal transducers and activators of transcription proteins are one of the important mediators of phosphotyrosine-regulated signaling in metazoan cells. We described the presence of STAT protein in a unicellular, free-living amoebae with a simple life cycle, Acanthamoeba castellanii. A. castellanii is the only, studied to date, Amoebozoan that does not belong to Mycetozoa but possesses STATs. A sequence of the A. castellanii STAT protein includes domains similar to those of the Dictyostelium STAT proteins: a coiled coil (characteristic for Dictyostelium STAT coiled coil, a STAT DNA-binding domain and a Src-homology domain. The search for protein sequences homologous to A. castellanii STAT revealed 17 additional sequences from lower eukaryotes. Interestingly, all of these sequences come from Amoebozoa organisms that belong to either Mycetozoa (slime molds or Centramoebida. We showed that there are four separated clades within the slime mold STAT proteins. The A. castellanii STAT protein branches next to a group of STATc proteins from Mycetozoa. We also demonstrate that Amoebozoa form a distinct monophyletic lineage within the STAT protein world that is well separated from the other groups.

  7. What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae?

    OpenAIRE

    Ekman, Diana; Light, Sara; Bj?rklund, ?sa K; Elofsson, Arne

    2006-01-01

    Background Most proteins interact with only a few other proteins while a small number of proteins (hubs) have many interaction partners. Hub proteins and non-hub proteins differ in several respects; however, understanding is not complete about what properties characterize the hubs and set them apart from proteins of low connectivity. Therefore, we have investigated what differentiates hubs from non-hubs and static hubs (party hubs) from dynamic hubs (date hubs) in the protein-protein interact...

  8. Allosteric Regulation of Proteins

    Indian Academy of Sciences (India)

    For example, the structural changes that allowed for allosteric regulation of haemoglobin were re- vealed through structural elucidation of the protein in free and oxygen-bound forms by X-ray crystallography. Following this,. X-ray crystallography has been utilized to study a variety of al- losteric proteins including ATCase. 2.

  9. Modular protein domains

    National Research Council Canada - National Science Library

    Cesareni, Giovanni

    2005-01-01

    ... encodes not only sequence, but somehow explicitly specifies folding, structure, and biological function as well. How, then, can one learn to read this 'language of proteins'? One of the most powerful approaches to 'cracking the protein code' has involved sequence comparisons between and within species, a task now greatly simplified by the ever...

  10. Amino acids and proteins

    NARCIS (Netherlands)

    van Goudoever, Johannes B.; Vlaardingerbroek, Hester; van den Akker, Chris H.; de Groof, Femke; van der Schoor, Sophie R. D.

    2014-01-01

    Amino acids and protein are key factors for growth. The neonatal period requires the highest intake in life to meet the demands. Those demands include amino acids for growth, but proteins and amino acids also function as signalling molecules and function as neurotransmitters. Often the nutritional

  11. MODELS OF PROTEIN FOLDING

    Directory of Open Access Journals (Sweden)

    Unnati Ahluwalia

    2012-12-01

    Full Text Available In an attempt to explore the understanding of protein folding mechanism, various models have been proposed in the literature. Advances in recent experimental and computational techniques rationalized our understanding on some of the fundamental features of the protein folding pathways. The goal of this review is to revisit the various models and outline the essential aspects of the folding reaction.

  12. Green fluorescent protein.

    Science.gov (United States)

    Chalfie, M

    1995-10-01

    Several bioluminescent coelenterates use a secondary fluorescent protein, the green fluorescent protein (GFP), in an energy transfer reaction to produce green light. The most studied of these proteins have been the GFPs from the jellyfish Aequorea victoria and the sea pansy Renilla reniformis. Although the proteins from these organisms are not identical, they are thought to have the same chromophore, which is derived from the primary amino acid sequence of GFP. The differences are thought to be due to changes in the protein environment of the chromophore. Recent interest in these molecules has arisen from the cloning of the Aequorea gfp cDNA and the demonstration that its expression in the absence of other Aequorea proteins results in a fluorescent product. This demonstration indicated that GFP could be used as a marker of gene expression and protein localization in living and fixed tissues. Bacterial, plant and animal (including mammalian) cells all express GFP. The heterologous expression of the gfp cDNA has also meant that it could be mutated to produce proteins with different fluorescent properties. Variants with more intense fluorescence or alterations in the excitation and emission spectra have been produced.

  13. Proteins at surfaces

    NARCIS (Netherlands)

    Efimova, Y.M.

    2006-01-01

    Understanding protein adsorption is of vital importance in many fields of medicine and industry that can be divided into two categories: those in which it is desired to minimize adsorption, and those in which protein adsorption is desired. The first category covers materials for kidney dialysis

  14. Protein Attachment on Nanodiamonds.

    Science.gov (United States)

    Lin, Chung-Lun; Lin, Cheng-Huang; Chang, Huan-Cheng; Su, Meng-Chih

    2015-07-16

    A recent advance in nanotechnology is the scale-up production of small and nonaggregated diamond nanoparticles suitable for biological applications. Using detonation nanodiamonds (NDs) with an average diameter of ∼4 nm as the adsorbents, we have studied the static attachment of three proteins (myoglobin, bovine serum albumin, and insulin) onto the nanoparticles by optical spectroscopy, mass spectrometry, and dynamic light scattering, and electrophoretic zeta potential measurements. Results show that the protein surface coverage is predominantly determined by the competition between protein-protein and protein-ND interactions, giving each protein a unique and characteristic structural configuration in its own complex. Specifically, both myoglobin and bovine serum albumin show a Langmuir-type adsorption behavior, forming 1:1 complexes at saturation, whereas insulin folds into a tightly bound multimer before adsorption. The markedly different adsorption patterns appear to be independent of the protein concentration and are closely related to the affinity of the individual proteins for the NDs. The present study provides a fundamental understanding for the use of NDs as a platform for nanomedical drug delivery.

  15. Poxviral Ankyrin Proteins

    Directory of Open Access Journals (Sweden)

    Michael H. Herbert

    2015-02-01

    Full Text Available Multiple repeats of the ankyrin motif (ANK are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range.

  16. Advances in Protein Precipitation

    NARCIS (Netherlands)

    Golubovic, M.

    2009-01-01

    Proteins are biological macromolecules, which are among the key components of all living organisms. Proteins are nowadays present in all fields of biotech industry, such as food and feed, synthetic and pharmaceutical industry. They are isolated from their natural sources or produced in different

  17. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    Unknown

    2005-01-03

    Jan 3, 2005 ... emerged as the sole, most powerful technique to help characterize these disordered protein systems. In ... tion of a protein is related to its significant and ...... This is likely to allow a number of both charged and hydrophobic groups to be presented to fibronectin for highly spe- cific binding.76. 5.3 Lysozyme.

  18. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    In the post-genomic era, as more and more genome sequences are becoming known and hectic efforts are underway to decode the information content in them, it is becoming increasingly evident that flexibility in proteins plays a crucial role in many of the biological functions. Many proteins have intrinsic disorder either ...

  19. Brushes and proteins

    NARCIS (Netherlands)

    Bosker, W.T.E.

    2011-01-01

      Brushes and Proteins   Wouter T. E. Bosker         Protein adsorption at solid surfaces can be prevented by applying a polymer brush at the surface. A polymer brush consists of polymer chains end-grafted to the surface at such a grafting density that

  20. Artificially Engineered Protein Polymers.

    Science.gov (United States)

    Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D

    2017-06-07

    Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.

  1. Protein restriction and cancer.

    Science.gov (United States)

    Yin, Jie; Ren, Wenkai; Huang, Xingguo; Li, Tiejun; Yin, Yulong

    2018-03-26

    Protein restriction without malnutrition is currently an effective nutritional intervention known to prevent diseases and promote health span from yeast to human. Recently, low protein diets are reported to be associated with lowered cancer incidence and mortality risk of cancers in human. In murine models, protein restriction inhibits tumor growth via mTOR signaling pathway. IGF-1, amino acid metabolic programing, FGF21, and autophagy may also serve as potential mechanisms of protein restriction mediated cancer prevention. Together, dietary intervention aimed at reducing protein intake can be beneficial and has the potential to be widely adopted and effective in preventing and treating cancers. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Sensitizing properties of proteins

    DEFF Research Database (Denmark)

    Poulsen, Lars K.; Ladics, Gregory S; McClain, Scott

    2014-01-01

    The scope of allergy risk is diverse considering the myriad ways in which protein allergenicity is affected by physiochemical characteristics of proteins. The complexity created by the matrices of foods and the variability of the human immune system add additional challenges to understanding...... the relationship between sensitization potential and allergy disease. To address these and other issues, an April 2012 international symposium was held in Prague, Czech Republic, to review and discuss the state-of-the-science of sensitizing properties of protein allergens. The symposium, organized by the Protein...... Allergenicity Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, featured presentations on current methods, test systems, research trends, and unanswered questions in the field of protein sensitization. A diverse group of over 70 interdisciplinary...

  3. The Protein Model Portal.

    Science.gov (United States)

    Arnold, Konstantin; Kiefer, Florian; Kopp, Jürgen; Battey, James N D; Podvinec, Michael; Westbrook, John D; Berman, Helen M; Bordoli, Lorenza; Schwede, Torsten

    2009-03-01

    Structural Genomics has been successful in determining the structures of many unique proteins in a high throughput manner. Still, the number of known protein sequences is much larger than the number of experimentally solved protein structures. Homology (or comparative) modeling methods make use of experimental protein structures to build models for evolutionary related proteins. Thereby, experimental structure determination efforts and homology modeling complement each other in the exploration of the protein structure space. One of the challenges in using model information effectively has been to access all models available for a specific protein in heterogeneous formats at different sites using various incompatible accession code systems. Often, structure models for hundreds of proteins can be derived from a given experimentally determined structure, using a variety of established methods. This has been done by all of the PSI centers, and by various independent modeling groups. The goal of the Protein Model Portal (PMP) is to provide a single portal which gives access to the various models that can be leveraged from PSI targets and other experimental protein structures. A single interface allows all existing pre-computed models across these various sites to be queried simultaneously, and provides links to interactive services for template selection, target-template alignment, model building, and quality assessment. The current release of the portal consists of 7.6 million model structures provided by different partner resources (CSMP, JCSG, MCSG, NESG, NYSGXRC, JCMM, ModBase, SWISS-MODEL Repository). The PMP is available at http://www.proteinmodelportal.org and from the PSI Structural Genomics Knowledgebase.

  4. Protein trapping of nanoparticles

    International Nuclear Information System (INIS)

    Ang, Joo C.; Lin, Jack M.; Yaron, Peter N.; White, John W.

    2009-01-01

    Full text: We have observed the formation of protein-nanoparticle complexes at the air-water interfaces from three different methods of presenting the nanoparticles to proteins. The structures formed resemble the 'protein-nanoparticle corona' proposed by Lynch et al. [1-3) in relation to a possible route for nanoparticle entry into living cells. To do this, the methods of x-ray and neutron reflectivity (with isotopic contrast variation between the protein and nanoparticles) have been used to study the structures formed at the air-water interface of l 3 - casein presented to silica nanoparticle dispersions. Whilst the silica dispersions showed no observable reflectivity, strong signals appear in the reflectivity when protein is present. Drop-wise spreading of a small amount of protein at the air-silica sol interface and presentation of the silica sol to an isolated monomolecular protein film (made by the 'flow-trough' method [4]) gave an immediate signal. Mixing the components in solution only produces a slow response but in all cases a similar structure is formed. The different responses are interpreted in structural and stoichiometric ways.

  5. Anchored design of protein-protein interfaces.

    Directory of Open Access Journals (Sweden)

    Steven M Lewis

    Full Text Available Few existing protein-protein interface design methods allow for extensive backbone rearrangements during the design process. There is also a dichotomy between redesign methods, which take advantage of the native interface, and de novo methods, which produce novel binders.Here, we propose a new method for designing novel protein reagents that combines advantages of redesign and de novo methods and allows for extensive backbone motion. This method requires a bound structure of a target and one of its natural binding partners. A key interaction in this interface, the anchor, is computationally grafted out of the partner and into a surface loop on the design scaffold. The design scaffold's surface is then redesigned with backbone flexibility to create a new binding partner for the target. Careful choice of a scaffold will bring experimentally desirable characteristics into the new complex. The use of an anchor both expedites the design process and ensures that binding proceeds against a known location on the target. The use of surface loops on the scaffold allows for flexible-backbone redesign to properly search conformational space.This protocol was implemented within the Rosetta3 software suite. To demonstrate and evaluate this protocol, we have developed a benchmarking set of structures from the PDB with loop-mediated interfaces. This protocol can recover the correct loop-mediated interface in 15 out of 16 tested structures, using only a single residue as an anchor.

  6. Intercellular protein-protein interactions at synapses.

    Science.gov (United States)

    Yang, Xiaofei; Hou, Dongmei; Jiang, Wei; Zhang, Chen

    2014-06-01

    Chemical synapses are asymmetric intercellular junctions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion channels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.

  7. Protein oxidation in aquatic foods

    DEFF Research Database (Denmark)

    Baron, Caroline P.

    2014-01-01

    The chapter discusses general considerations about protein oxidation and reviews the mechanisms involved in protein oxidation and consequences of protein oxidation on fish proteins. It presents two case studies, the first deals with protein and lipid oxidation in frozen rainbow trout......, and the second with oxidation in salted herring. The mechanisms responsible for initiation of protein oxidation are unclear, but it is generally accepted that free radical species initiating lipid oxidation can also initiate protein oxidation. The chapter focuses on interaction between protein and lipid...... oxidation. The protein carbonyl group measurement is the widely used method for estimating protein oxidation in foods and has been used in fish muscle. The chapter also talks about the impact of protein oxidation on protein functionality, fish muscle texture, and food nutritional value. Protein oxidation...

  8. Protein oxidation and ageing

    DEFF Research Database (Denmark)

    Linton, S; Davies, Michael Jonathan; Dean, R T

    2001-01-01

    of redox-active metal ions that could catalyse oxidant formation. As a result of this decrease in antioxidant defences, and increased rate of ROS formation, it is possible that the impact of ROS increases with age. ROS are known to oxidise biological macromolecules, with proteins an important target....... If the argument that the impact of ROS increases with age is true, then proteins would be expected to accumulate oxidised materials with age, and the rate of such accumulation should increase with time, reflecting impaired inefficiency of homeostasis. Here we review the evidence for the accumulation of oxidised......, or modified, extra- and intra-cellular proteins in vivo....

  9. Protein crystallography prescreen kit

    Science.gov (United States)

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard

    2005-07-12

    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  10. Sound of proteins

    DEFF Research Database (Denmark)

    2007-01-01

    In my group we work with Molecular Dynamics to model several different proteins and protein systems. We submit our modelled molecules to changes in temperature, changes in solvent composition and even external pulling forces. To analyze our simulation results we have so far used visual inspection...... and statistical analysis of the resulting molecular trajectories (as everybody else!). However, recently I started assigning a particular sound frequency to each amino acid in the protein, and by setting the amplitude of each frequency according to the movement amplitude we can "hear" whenever two aminoacids...

  11. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    2009-01-01

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  12. Protein Crystal Malic Enzyme

    Science.gov (United States)

    1992-01-01

    Malic Enzyme is a target protein for drug design because it is a key protein in the life cycle of intestinal parasites. After 2 years of effort on Earth, investigators were unable to produce any crystals that were of high enough quality and for this reason the structure of this important protein could not be determined. Crystals obtained from one STS-50 were of superior quality allowing the structure to be determined. This is just one example why access to space is so vital for these studies. Principal Investigator is Larry DeLucas.

  13. Designing microcapsules based on protein fibrils and protein - polysaccharide complexes

    NARCIS (Netherlands)

    Hua, K.N.P.

    2012-01-01

    Keywords: encapsulation, microcapsule, protein, fibril, protein-polysaccharide complex, controlled release, interfacial rheology, lysozyme, ovalbumin This thesis describes the design of encapsulation systems using mesostructures from proteins and polysaccharides. The approach was to first

  14. Designing microcapsules based on protein fibrils and protein - polysaccharide complexes

    NARCIS (Netherlands)

    Hua, K.N.P.

    2012-01-01

    Keywords: encapsulation, microcapsule, protein, fibril, protein-polysaccharide complex, controlled release, interfacial rheology, lysozyme, ovalbumin

    This thesis describes the design of encapsulation systems using mesostructures from proteins and polysaccharides. The approach

  15. Clustered epitopes within the Gag-Pol fusion protein DNA vaccine enhance immune responses and protection against challenge with recombinant vaccinia viruses expressing HIV-1 Gag and Pol antigens

    International Nuclear Information System (INIS)

    Bolesta, Elizabeth; Gzyl, Jaroslaw; Wierzbicki, Andrzej; Kmieciak, Dariusz; Kowalczyk, Aleksandra; Kaneko, Yutaro; Srinivasan, Alagarsamy; Kozbor, Danuta

    2005-01-01

    We have generated a codon-optimized hGagp17p24-Polp51 plasmid DNA expressing the human immunodeficiency virus type 1 (HIV-1) Gag-Pol fusion protein that consists of clusters of highly conserved cytotoxic T lymphocyte (CTL) epitopes presented by multiple MHC class I alleles. In the hGagp17p24-Polp51 construct, the ribosomal frameshift site had been deleted together with the potentially immunosuppressive Gag nucleocapsid (p15) as well as Pol protease (p10) and integrase (p31). Analyses of the magnitude and breadth of cellular responses demonstrated that immunization of HLA-A2/K b transgenic mice with the hGagp17p24-Polp51 construct induced 2- to 5-fold higher CD8 + T-cell responses to Gag p17-, p24-, and Pol reverse transcriptase (RT)-specific CTL epitopes than the full-length hGag-PolΔFsΔPr counterpart. The increases were correlated with higher protection against challenge with recombinant vaccinia viruses (rVVs) expressing gag and pol gene products. Consistent with the profile of Gag- and Pol-specific CD8 + T cell responses, an elevated level of type 1 cytokine production was noted in p24- and RT-stimulated splenocyte cultures established from hGagp17p24-Polp51-immunized mice compared to responses induced with the hGag-PolΔFsΔPr vaccine. Sera of mice immunized with the hGagp17p24-Polp51 vaccine also exhibited an increased titer of p24- and RT-specific IgG2 antibody responses. The results from our studies provide insights into approaches for boosting the breadth of Gag- and Pol-specific immune responses

  16. Integral UBL domain proteins: a family of proteasome interacting proteins

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2004-01-01

    The family of ubiquitin-like (UBL) domain proteins (UDPs) comprises a conserved group of proteins involved in a multitude of different cellular activities. However, recent studies on UBL-domain proteins indicate that these proteins appear to share a common property in their ability to interact......-domain proteins catalyse the formation of ubiquitin-protein conjugates, whereas others appear to target ubiquitinated proteins for degradation and interact with chaperones. Hence, by binding to the 26S proteasome the UBL-domain proteins seem to tailor and direct the basic proteolytic functions of the particle...

  17. Interactive protein manipulation

    Energy Technology Data Exchange (ETDEWEB)

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  18. Retinoblastoma protein partners.

    Science.gov (United States)

    Morris, E J; Dyson, N J

    2001-01-01

    Studies of the retinoblastoma gene (Rb) have shown that its protein product (pRb) acts to restrict cell proliferation, inhibit apoptosis, and promote cell differentiation. The frequent mutation of the Rb gene, and the functional inactivation of pRb in tumor cells, have spurred interest in the mechanism of pRb action. Recently, much attention has focused on pRb's role in the regulation of the E2F transcription factor. However, biochemical studies have suggested that E2F is only one of many pRb-targets and, to date, at least 110 cellular proteins have been reported to associate with pRb. The plethora of pRb-binding proteins raises several important questions. How many functions does pRb possess, which of these functions are important for development, and which contribute to tumor suppression? The goal of this review is to summarize the current literature of pRb-associated proteins.

  19. Interactive protein manipulation

    International Nuclear Information System (INIS)

    2003-01-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures

  20. The Pentapeptide Repeat Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Vetting,M.; Hegde, S.; Fajardo, J.; Fiser, A.; Roderick, S.; Takiff, H.; Blanchard, J.

    2006-01-01

    The Pentapeptide Repeat Protein (PRP) family has over 500 members in the prokaryotic and eukaryotic kingdoms. These proteins are composed of, or contain domains composed of, tandemly repeated amino acid sequences with a consensus sequence of [S, T,A, V][D, N][L, F]-[S, T,R][G]. The biochemical function of the vast majority of PRP family members is unknown. The three-dimensional structure of the first member of the PRP family was determined for the fluoroquinolone resistance protein (MfpA) from Mycobacterium tuberculosis. The structure revealed that the pentapeptide repeats encode the folding of a novel right-handed quadrilateral {beta}-helix. MfpA binds to DNA gyrase and inhibits its activity. The rod-shaped, dimeric protein exhibits remarkable size, shape and electrostatic similarity to DNA.

  1. Protein Colloidal Aggregation Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  2. The protein protocols handbook

    National Research Council Canada - National Science Library

    Walker, John M

    2002-01-01

    .... The new chapters cover with many rapidly developing areas, particularly the application of mass spectrometry in protein characterization, as well as the now well-established 2-D PAGE technique in proteomics...

  3. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut

    2014-01-01

    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  4. Recombinant Collagenlike Proteins

    Science.gov (United States)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  5. Protein targeting protocols

    National Research Council Canada - National Science Library

    Clegg, Roger A

    1998-01-01

    ... of intracellular environment. Because the concept of protein targeting is intuitive rather than explicitly defined, it has been variously used by different groups of researchers in cell biology, biochemistry, and molecular biology. For those working in the field of intracellular signaling, an influential introduction to the topic was the seminal article by Hubbard & Cohen (TIBS [1993] 18, 172- 177), which was based on the work of Cohen's laboratory on protein phosphatases. Subsequently, the ideas that t...

  6. Protein conducting nanopores

    International Nuclear Information System (INIS)

    Harsman, Anke; Krueger, Vivien; Bartsch, Philipp; Honigmann, Alf; Wagner, Richard; Schmidt, Oliver; Rao, Sanjana; Meisinger, Christof

    2010-01-01

    About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40 SC as well as a mutant Tom40 SC (S 54 →E) containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40 SC corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40 SC S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with t-bar off ≅1.1 ms for the wildtype, whereas the mutant Tom40 SC S54E displayed a biphasic dwelltime distribution ( t-bar off 1 ≅0.4 ms; t-bar off 2 ≅4.6 ms).

  7. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  8. Similarity measures for protein ensembles

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Ferkinghoff-Borg, Jesper

    2009-01-01

    Analyses of similarities and changes in protein conformation can provide important information regarding protein function and evolution. Many scores, including the commonly used root mean square deviation, have therefore been developed to quantify the similarities of different protein conformatio...

  9. Similarity measures for protein ensembles

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Ferkinghoff-Borg, Jesper

    2009-01-01

    Analyses of similarities and changes in protein conformation can provide important information regarding protein function and evolution. Many scores, including the commonly used root mean square deviation, have therefore been developed to quantify the similarities of different protein conformations...

  10. Protein: MPA1 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA1 TLR signaling molecules RSAD2 CIG5 Radical S-adenosyl methionine domain-containing protein 2 Cytomegalo...virus-induced gene 5 protein, Viperin, Virus inhibitory protein, endoplasmic reticu

  11. More protein in cereals?

    International Nuclear Information System (INIS)

    1969-01-01

    Ways in which the protein content of plant crops may be raised by the use of nuclear radiation are to be discussed at a symposium in Vienna in June next year, organized by the joint Food and Agriculture Organization/Agency Division of Atomic Energy in Food and Agriculture. Plant crops - especially cereal grains - are the basic food and protein source of most of the world's population, particularly in less-developed countries. But their natural protein content is low; increasing the quantity and nutritional quality of plant protein is potentially the most feasible way to combat widespread protein malnutrition. This improvement in seed stock can be achieved by plant breeding methods in which nuclear irradiation techniques are used to induce mutations in grain, and other isotopic techniques can be used to select only those mutants which have the desired properties. The scientists who attend the symposium will have an opportunity to review what mutation plant breeders have achieved, the application of nuclear techniques to screening for protein and amino-acid content and nutritional value, and isotopic methods which contribute to research in plant nutrition and physiology. (author)

  12. Disease specific protein corona

    Science.gov (United States)

    Rahman, M.; Mahmoudi, M.

    2015-03-01

    It is now well accepted that upon their entrance into the biological environments, the surface of nanomaterials would be covered by various biomacromolecules (e.g., proteins and lipids). The absorption of these biomolecules, so called `protein corona', onto the surface of (nano)biomaterials confers them a new `biological identity'. Although the formation of protein coronas on the surface of nanoparticles has been widely investigated, there are few reports on the effect of various diseases on the biological identity of nanoparticles. As the type of diseases may tremendously changes the composition of the protein source (e.g., human plasma/serum), one can expect that amount and composition of associated proteins in the corona composition may be varied, in disease type manner. Here, we show that corona coated silica and polystyrene nanoparticles (after interaction with in the plasma of the healthy individuals) could induce unfolding of fibrinogen, which promotes release of the inflammatory cytokines. However, no considerable releases of inflammatory cytokines were observed for corona coated graphene sheets. In contrast, the obtained corona coated silica and polystyrene nanoparticles from the hypofibrinogenemia patients could not induce inflammatory cytokine release where graphene sheets do. Therefore, one can expect that disease-specific protein coronas can provide a novel approach for applying nanomedicine to personalized medicine, improving diagnosis and treatment of different diseases tailored to the specific conditions and circumstances.

  13. Electrophoretic transfer protein zymography.

    Science.gov (United States)

    Pan, Daniel; Hill, Adam P; Kashou, Anthony; Wilson, Karl A; Tan-Wilson, Anna

    2011-04-15

    Zymography detects and characterizes proteolytic enzymes by electrophoresis of protease-containing samples into a nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel containing a copolymerized protein substrate. The usefulness of zymography for molecular weight determination and proteomic analysis is hampered by the fact that some proteases exhibit slower migration through a gel that contains substrate protein. This article introduces electrophoretic transfer protein zymography as one solution to this problem. In this technique, samples containing proteolytic enzymes are first resolved in nonreducing SDS-PAGE on a gel without protein substrate. The proteins in the resolving gel are then electrophoretically transferred to a receiving gel previously prepared with a copolymerized protein substrate. The receiving gel is then developed as a zymogram to visualize clear or lightly stained bands in a dark background. Band intensities are linearly related to the amount of protease, extending the usefulness of the technique so long as conditions for transfer and development of the zymogram are kept constant. Conditions of transfer, such as the pore sizes of resolving and receiving gels and the transfer time relative to the molecular weight of the protease, are explored. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Modelling of proteins in membranes

    DEFF Research Database (Denmark)

    Sperotto, Maria Maddalena; May, S.; Baumgaertner, A.

    2006-01-01

    This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly...... oppositely charged lipid membranes, lipid-induced tilting of proteins embedded in lipid bilayers, protein-induced bilayer deformations, protein insertion and assembly, and lipid-controlled functioning of membrane proteins....

  15. Peptide Signals Encode Protein Localization▿

    OpenAIRE

    Russell, Jay H.; Keiler, Kenneth C.

    2007-01-01

    Many bacterial proteins are localized to precise intracellular locations, but in most cases the mechanism for encoding localization information is not known. Screening libraries of peptides fused to green fluorescent protein identified sequences that directed the protein to helical structures or to midcell. These peptides indicate that protein localization can be encoded in 20-amino-acid peptides instead of complex protein-protein interactions and raise the possibility that the location of a ...

  16. Protein hydrolysates in sports nutrition

    Directory of Open Access Journals (Sweden)

    Manninen Anssi H

    2009-09-01

    Full Text Available Abstract It has been suggested that protein hydrolysates providing mainly di- and tripeptides are superior to intact (whole proteins and free amino acids in terms of skeletal muscle protein anabolism. This review provides a critical examination of protein hydrolysate studies conducted in healthy humans with special reference to sports nutrition. The effects of protein hydrolysate ingestion on blood amino acid levels, muscle protein anabolism, body composition, exercise performance and muscle glycogen resynthesis are discussed.

  17. Modeling Mercury in Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeremy C [ORNL; Parks, Jerry M [ORNL

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.

  18. Protein quality control and cancerogenesis.

    Science.gov (United States)

    Trcka, F; Vojtesek, B; Muller, P

    2012-01-01

    Both nascent and mature proteins are prone to damaging changes induced by either external or internal stimuli. Dysfunctional or misfolded proteins cause direct physiological risk in crowded cellular environment and must be readily and efficiently eliminated. To ensure protein homeostasis, eukaryotic cells have evolved several protein quality control machineries. Protein quality control plays a special role in cancer cells. Genetic instability causing increased production of damaged and/or deregulated proteins is a hallmark of cancer cells. Therefore, intrinsic genetic instability together with hostile tumour microenvironment represents a demanding task for protein quality control machineries in tumours. Regulation of general protein turnover as well as degradation of tumour-promoting/suppressing proteins by protein quality control machineries thus represent an important processes involved in cancer development and progression. The review focuses on the description of three major protein quality control pathways and their roles in cancer.

  19. Purine inhibitors of protein kinases, G proteins and polymerases

    Science.gov (United States)

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  20. Measuring protein breakdown rate in individual proteins in vivo

    DEFF Research Database (Denmark)

    Holm, Lars; Kjaer, Michael

    2010-01-01

    To outline different approaches of how protein breakdown can be quantified and to present a new approach to determine the fractional breakdown rate of individual slow turnover proteins in vivo.......To outline different approaches of how protein breakdown can be quantified and to present a new approach to determine the fractional breakdown rate of individual slow turnover proteins in vivo....

  1. Integral UBL domain proteins: a family of proteasome interacting proteins

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2004-01-01

    The family of ubiquitin-like (UBL) domain proteins (UDPs) comprises a conserved group of proteins involved in a multitude of different cellular activities. However, recent studies on UBL-domain proteins indicate that these proteins appear to share a common property in their ability to interact wi...

  2. Protein Correlation Profiles Identify Lipid Droplet Proteins with High Confidence*

    Science.gov (United States)

    Krahmer, Natalie; Hilger, Maximiliane; Kory, Nora; Wilfling, Florian; Stoehr, Gabriele; Mann, Matthias; Farese, Robert V.; Walther, Tobias C.

    2013-01-01

    Lipid droplets (LDs) are important organelles in energy metabolism and lipid storage. Their cores are composed of neutral lipids that form a hydrophobic phase and are surrounded by a phospholipid monolayer that harbors specific proteins. Most well-established LD proteins perform important functions, particularly in cellular lipid metabolism. Morphological studies show LDs in close proximity to and interacting with membrane-bound cellular organelles, including the endoplasmic reticulum, mitochondria, peroxisomes, and endosomes. Because of these close associations, it is difficult to purify LDs to homogeneity. Consequently, the confident identification of bona fide LD proteins via proteomics has been challenging. Here, we report a methodology for LD protein identification based on mass spectrometry and protein correlation profiles. Using LD purification and quantitative, high-resolution mass spectrometry, we identified LD proteins by correlating their purification profiles to those of known LD proteins. Application of the protein correlation profile strategy to LDs isolated from Drosophila S2 cells led to the identification of 111 LD proteins in a cellular LD fraction in which 1481 proteins were detected. LD localization was confirmed in a subset of identified proteins via microscopy of the expressed proteins, thereby validating the approach. Among the identified LD proteins were both well-characterized LD proteins and proteins not previously known to be localized to LDs. Our method provides a high-confidence LD proteome of Drosophila cells and a novel approach that can be applied to identify LD proteins of other cell types and tissues. PMID:23319140

  3. Utilization of soya protein as an alternative protein source in ...

    African Journals Online (AJOL)

    The effect of replacing fish protein with soya protein in tilapia (Oreochromis niloticus) diets was examined. Three isoproteic (35%) diets containing 0% (FD); 50% (MD) and 100% (SD) fish protein substituted by soya protein were formulated. Fish (initial weight = 11.56 ± 4.22 g) was fed with experimental diets for 180 days.

  4. Changes in protein composition and protein phosphorylation during ...

    African Journals Online (AJOL)

    Changes in protein profiles and protein phosphorylation were studied in various stages of germinating somatic and zygotic embryos. Many proteins, which were expressed in cotyledonary stage somatic embryos, were also present in the zygotic embryos obtained from mature dry seed. The intensity of 22 kDa protein was ...

  5. A Stevedore's protein knot.

    Directory of Open Access Journals (Sweden)

    Daniel Bölinger

    2010-04-01

    Full Text Available Protein knots, mostly regarded as intriguing oddities, are gradually being recognized as significant structural motifs. Seven distinctly knotted folds have already been identified. It is by and large unclear how these exceptional structures actually fold, and only recently, experiments and simulations have begun to shed some light on this issue. In checking the new protein structures submitted to the Protein Data Bank, we encountered the most complex and the smallest knots to date: A recently uncovered alpha-haloacid dehalogenase structure contains a knot with six crossings, a so-called Stevedore knot, in a projection onto a plane. The smallest protein knot is present in an as yet unclassified protein fragment that consists of only 92 amino acids. The topological complexity of the Stevedore knot presents a puzzle as to how it could possibly fold. To unravel this enigma, we performed folding simulations with a structure-based coarse-grained model and uncovered a possible mechanism by which the knot forms in a single loop flip.

  6. Thermal hysteresis proteins.

    Science.gov (United States)

    Barrett, J

    2001-02-01

    Extreme environments present a wealth of biochemical adaptations. Thermal hysteresis proteins (THPs) have been found in vertebrates, invertebrates, plants, bacteria and fungi and are able to depress the freezing point of water (in the presence of ice crystals) in a non-colligative manner by binding to the surface of nascent ice crystals. The THPs comprise a disparate group of proteins with a variety of tertiary structures and often no common sequence similarities or structural motifs. Different THPs bind to different faces of the ice crystal, and no single mechanism has been proposed to account for THP ice binding affinity and specificity. Experimentally THPs have been used in the cryopreservation of tissues and cells and to induce cold tolerance in freeze susceptible organisms. THPs represent a remarkable example of parallel and convergent evolution with different proteins being adapted for an anti-freeze role.

  7. Protein Polymers and Amyloids

    DEFF Research Database (Denmark)

    Risør, Michael Wulff

    2014-01-01

    Several human disorders are caused by a common general disease mechanism arising from abnormal folding and aggregation of the underlying protein. These include the prevalent dementias like Alzheimer’s and Parkinson’s, where accumulation of protein fibrillar structures, known as amyloid fibrils...... that inhibits its target protease through a large conformational change but mutations compromise this function and cause premature structural collapse into hyperstable polymers. Understanding the conformational disorders at a molecular level is not only important for our general knowledge on protein folding......, underlining the importance of understanding this relationship. The monomeric C-36 peptide was investigated by liquid-state NMR spectroscopy and found to be intrinsically disordered with minor propensities towards β-sheet structure. The plasticity of such a peptide makes it suitable for a whole range...

  8. Polarizable protein packing

    KAUST Repository

    Ng, Albert H.

    2011-01-24

    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol -1] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 Copyright © 2011 Wiley Periodicals, Inc.

  9. Trisulfides in Proteins

    DEFF Research Database (Denmark)

    Nielsen, Rasmus W.; Tachibana, Christine; Hansen, Niels Erik

    2011-01-01

    Trisulfides and other oligosulfides are widely distributed in the biological world. In plants, e.g., garlic, trisulfides are associated with potentially beneficial properties. However, an extra neutral sulfur atom covalently bound between the two sulfur atoms of a pair of cysteines is not a commo...... post-translational modification, and the number of proteins in which a trisulfide has been unambiguously identified is small. Nevertheless, we believe that its prevalence may be underestimated, particularly with the increasing evidence for significant pools of sulfides in living tissues...... and their possible roles in cellular metabolism. This review focuses on examples of proteins that are known to contain a trisulfide bridge, and gives an overview of the chemistry of trisulfide formation, and the methods by which it is detected in proteins....

  10. Accessory Proteins at ERES

    DEFF Research Database (Denmark)

    Klinkenberg, Rafael David

    proteins. Together these components co‐operate in cargo‐selection as well as forming, loading and releasing budding vesicles from specific regions on the membrane surface of the ER. Coat components furthermore convey vesicle targeting towards the Golgi. However, not much is known about the mechanisms...... that regulate the COPII assembly at the vesicle bud site. This thesis provides the first regulatory mechanism of COPII assembly in relation to ER‐membrane lipid‐signal recognition by the accessory protein p125A (Sec23IP). The aim of the project was to characterize p125A function by dissecting two main domains...... in the protein; a putative lipid‐associating domain termed the DDHD domain that is defined by the four amino acid motif that gives the domain its name; and a ubiquitously found domain termed Sterile α‐motif (SAM), which is mostly associated with oligomerization and polymerization. We first show, that the DDHD...

  11. Vibrational spectroscopy of proteins

    International Nuclear Information System (INIS)

    Schwaighofer, A.

    2013-01-01

    Two important steps for the development of a biosensor are the immobilization of the biological component (e.g. protein) on a surface and the enhancement of the signal to improve the sensitivity of detection. To address these subjects, the present work describes Fourier transform infrared (FTIR) investigations of several proteins bound to the surface of an attenuated total reflection (ATR) crystal. Furthermore, new nanostructured surfaces for signal enhancement were developed for use in FTIR microscopy. The mitochondrial redox-protein cytochrome c oxidase (CcO) was incorporated into a protein-tethered bilayer lipid membrane (ptBLM) on an ATR crystal featuring a roughened two-layer gold surface for signal enhancement. Electrochemical excitation by periodic potential pulses at different modulation frequencies was followed by time-resolved FTIR spectroscopy. Phase sensitive detection was used for deconvolution of the IR spectra into vibrational components. A model based on protonation-dependent chemical reaction kinetics could be fitted to the time evolution of IR bands attributed to several different redox centers of the CcO. Further investigations involved the odorant binding protein 14 (OBP14) of the honey bee (Apis mellifera), which was studied using ATR-FTIR spectroscopy and circular dichroism. OBP14 was found to be thermally stable up to 45 °C, thus permitting the potential application of this protein for the fabrication of biosensors. Thermal denaturation measurements showed that odorant binding increases the thermal stability of the OBP-odorant complex. In another project, plasmonic nanostructures were fabricated that enhance the absorbance in FTIR microscopy measurements. The nanostructures are composed of an array of round-shaped insulator and gold discs on top of a continuous gold layer. Enhancement factors of up to ⁓125 could be observed with self-assembled monolayers of dodecanethiol molecules immobilized on the gold surface (author) [de

  12. Can infrared spectroscopy provide information on protein-protein interactions?

    Science.gov (United States)

    Haris, Parvez I

    2010-08-01

    For most biophysical techniques, characterization of protein-protein interactions is challenging; this is especially true with methods that rely on a physical phenomenon that is common to both of the interacting proteins. Thus, for example, in IR spectroscopy, the carbonyl vibration (1600-1700 cm(-1)) associated with the amide bonds from both of the interacting proteins will overlap extensively, making the interpretation of spectral changes very complicated. Isotope-edited infrared spectroscopy, where one of the interacting proteins is uniformly labelled with (13)C or (13)C,(15)N has been introduced as a solution to this problem, enabling the study of protein-protein interactions using IR spectroscopy. The large shift of the amide I band (approx. 45 cm(-1) towards lower frequency) upon (13)C labelling of one of the proteins reveals the amide I band of the unlabelled protein, enabling it to be used as a probe for monitoring conformational changes. With site-specific isotopic labelling, structural resolution at the level of individual amino acid residues can be achieved. Furthermore, the ability to record IR spectra of proteins in diverse environments means that isotope-edited IR spectroscopy can be used to structurally characterize difficult systems such as protein-protein complexes bound to membranes or large insoluble peptide/protein aggregates. In the present article, examples of application of isotope-edited IR spectroscopy for studying protein-protein interactions are provided.

  13. Protein: FBA7 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA7 claudin-zona occluden TJP1 ZO1 TJP1 Tight junction protein ZO-1 Tight junction pro...tein 1, Zona occludens protein 1, Zonula occludens protein 1 9606 Homo sapiens Q07157 7082 2H2C, 2H2B, 3

  14. Protein: FBA7 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA7 claudin-zona occluden Tjp1 Zo1 Tight junction protein ZO-1 Tight junction protein 1, Zona occludens pr...otein 1, Zonula occludens protein 1 10090 Mus musculus 21872 P39447 2RRM P39447 21431884 ...

  15. Protein: FEA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FEA3 AREB pathway: Signaling proteins At4g11890/T26M18_100 At4g11890, Protein kinase family pr...otein, Putative uncharacterized protein At4g11890/T26M18_100 3702 Arabidopsis thaliana 826796 Q8GY82 22225700 ...

  16. Ubiquitin domain proteins in disease

    DEFF Research Database (Denmark)

    Klausen, Louise Kjær; Schulze, Andrea; Seeger, Michael

    2007-01-01

    The human genome encodes several ubiquitin-like (UBL) domain proteins (UDPs). Members of this protein family are involved in a variety of cellular functions and many are connected to the ubiquitin proteasome system, an essential pathway for protein degradation in eukaryotic cells. Despite...... and cancer. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com)....

  17. Protein–protein interactions

    OpenAIRE

    Janin, J.; Bonvin, A.M.J.J.

    2013-01-01

    We are proud to present the first edition of the Protein–protein interactions Section of Current Opinion in Structural Biology. The Section is new, but the topic has been present in the journal from the very start. Volume 1, Issue 1, dated February 1991, had a review by Janin entitled Protein–protein interactions and assembly, and others by Bode and Huber on Proteinase–inhibitor interaction, and by Chothia on Antigen recognition. The Editorial Overview, signed by TE Creighton and PS Kim, note...

  18. Heme Sensor Proteins*

    Science.gov (United States)

    Girvan, Hazel M.; Munro, Andrew W.

    2013-01-01

    Heme is a prosthetic group best known for roles in oxygen transport, oxidative catalysis, and respiratory electron transport. Recent years have seen the roles of heme extended to sensors of gases such as O2 and NO and cell redox state, and as mediators of cellular responses to changes in intracellular levels of these gases. The importance of heme is further evident from identification of proteins that bind heme reversibly, using it as a signal, e.g. to regulate gene expression in circadian rhythm pathways and control heme synthesis itself. In this minireview, we explore the current knowledge of the diverse roles of heme sensor proteins. PMID:23539616

  19. Protein production and purification.

    Science.gov (United States)

    Gräslund, Susanne; Nordlund, Pär; Weigelt, Johan; Hallberg, B Martin; Bray, James; Gileadi, Opher; Knapp, Stefan; Oppermann, Udo; Arrowsmith, Cheryl; Hui, Raymond; Ming, Jinrong; dhe-Paganon, Sirano; Park, Hee-won; Savchenko, Alexei; Yee, Adelinda; Edwards, Aled; Vincentelli, Renaud; Cambillau, Christian; Kim, Rosalind; Kim, Sung-Hou; Rao, Zihe; Shi, Yunyu; Terwilliger, Thomas C; Kim, Chang-Yub; Hung, Li-Wei; Waldo, Geoffrey S; Peleg, Yoav; Albeck, Shira; Unger, Tamar; Dym, Orly; Prilusky, Jaime; Sussman, Joel L; Stevens, Ray C; Lesley, Scott A; Wilson, Ian A; Joachimiak, Andrzej; Collart, Frank; Dementieva, Irina; Donnelly, Mark I; Eschenfeldt, William H; Kim, Youngchang; Stols, Lucy; Wu, Ruying; Zhou, Min; Burley, Stephen K; Emtage, J Spencer; Sauder, J Michael; Thompson, Devon; Bain, Kevin; Luz, John; Gheyi, Tarun; Zhang, Fred; Atwell, Shane; Almo, Steven C; Bonanno, Jeffrey B; Fiser, Andras; Swaminathan, Sivasubramanian; Studier, F William; Chance, Mark R; Sali, Andrej; Acton, Thomas B; Xiao, Rong; Zhao, Li; Ma, Li Chung; Hunt, John F; Tong, Liang; Cunningham, Kellie; Inouye, Masayori; Anderson, Stephen; Janjua, Heleema; Shastry, Ritu; Ho, Chi Kent; Wang, Dongyan; Wang, Huang; Jiang, Mei; Montelione, Gaetano T; Stuart, David I; Owens, Raymond J; Daenke, Susan; Schütz, Anja; Heinemann, Udo; Yokoyama, Shigeyuki; Büssow, Konrad; Gunsalus, Kristin C

    2008-02-01

    In selecting a method to produce a recombinant protein, a researcher is faced with a bewildering array of choices as to where to start. To facilitate decision-making, we describe a consensus 'what to try first' strategy based on our collective analysis of the expression and purification of over 10,000 different proteins. This review presents methods that could be applied at the outset of any project, a prioritized list of alternate strategies and a list of pitfalls that trip many new investigators.

  20. Protein energy malnutrition.

    Science.gov (United States)

    Grover, Zubin; Ee, Looi C

    2009-10-01

    Protein energy malnutrition (PEM) is a common problem worldwide and occurs in both developing and industrialized nations. In the developing world, it is frequently a result of socioeconomic, political, or environmental factors. In contrast, protein energy malnutrition in the developed world usually occurs in the context of chronic disease. There remains much variation in the criteria used to define malnutrition, with each method having its own limitations. Early recognition, prompt management, and robust follow up are critical for best outcomes in preventing and treating PEM.

  1. Stability of Hyperthermophilic Proteins

    DEFF Research Database (Denmark)

    Stiefler-Jensen, Daniel

    to life at high temperatures so are their enzymes, as a result the high stability is accompanied by low activity at moderate temperatures. Thus, much effort had been put into decoding the mechanisms behind the high stability of the thermophilic enzymes. The hope is to enable scientist to design enzymes...... in the high stability of hyperthermophilic enzymes. The thesis starts with an introduction to the field of protein and enzyme stability with special focus on the thermophilic and hyperthermophilic enzymes and proteins. After the introduction three original research manuscripts present the experimental data...

  2. A simple dependence between protein evolution rate and the number of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Hirsh Aaron E

    2003-05-01

    Full Text Available Abstract Background It has been shown for an evolutionarily distant genomic comparison that the number of protein-protein interactions a protein has correlates negatively with their rates of evolution. However, the generality of this observation has recently been challenged. Here we examine the problem using protein-protein interaction data from the yeast Saccharomyces cerevisiae and genome sequences from two other yeast species. Results In contrast to a previous study that used an incomplete set of protein-protein interactions, we observed a highly significant correlation between number of interactions and evolutionary distance to either Candida albicans or Schizosaccharomyces pombe. This study differs from the previous one in that it includes all known protein interactions from S. cerevisiae, and a larger set of protein evolutionary rates. In both evolutionary comparisons, a simple monotonic relationship was found across the entire range of the number of protein-protein interactions. In agreement with our earlier findings, this relationship cannot be explained by the fact that proteins with many interactions tend to be important to yeast. The generality of these correlations in other kingdoms of life unfortunately cannot be addressed at this time, due to the incompleteness of protein-protein interaction data from organisms other than S. cerevisiae. Conclusions Protein-protein interactions tend to slow the rate at which proteins evolve. This may be due to structural constraints that must be met to maintain interactions, but more work is needed to definitively establish the mechanism(s behind the correlations we have observed.

  3. Transport of Proteins through Nanopores

    Science.gov (United States)

    Luan, Binquan

    In biological cells, a malfunctioned protein (such as misfolded or damaged) is degraded by a protease in which an unfoldase actively drags the protein into a nanopore-like structure and then a peptidase cuts the linearized protein into small fragments (i.e. a recycling process). Mimicking this biological process, many experimental studies have focused on the transport of proteins through a biological protein pore or a synthetic solid-state nanopore. Potentially, the nanopore-based sensors can provide a platform for interrogating proteins that might be disease-related or be targeted by a new drug molecule. The single-profile of a protein chain inside an extremely small nanopore might even permit the sequencing of the protein. Here, through all-atom molecular dynamics simulations, I will show various types of protein transport through a nanopore and reveal the nanoscale mechanics/energetics that plays an important role governing the protein transport.

  4. Truly Absorbed Microbial Protein Synthesis, Rumen Bypass Protein, Endogenous Protein, and Total Metabolizable Protein from Starchy and Protein-Rich Raw Materials

    NARCIS (Netherlands)

    Parand, Ehsan; Vakili, Alireza; Mesgaran, Mohsen Danesh; Duinkerken, Van Gert; Yu, Peiqiang

    2015-01-01

    This study was carried out to measure truly absorbed microbial protein synthesis, rumen bypass protein, and endogenous protein loss, as well as total metabolizable protein, from starchy and protein-rich raw feed materials with model comparisons. Predictions by the DVE2010 system as a more

  5. Accessory proteins for heterotrimeric G-proteins in the kidney.

    Science.gov (United States)

    Park, Frank

    2015-01-01

    Heterotrimeric G-proteins play a fundamentally important role in regulating signal transduction pathways in the kidney. Accessory proteins are being identified as direct binding partners for heterotrimeric G-protein α or βγ subunits to promote more diverse mechanisms by which G-protein signaling is controlled. In some instances, accessory proteins can modulate the signaling magnitude, localization, and duration following the activation of cell membrane-associated receptors. Alternatively, accessory proteins complexed with their G-protein α or βγ subunits can promote non-canonical models of signaling activity within the cell. In this review, we will highlight the expression profile, localization and functional importance of these newly identified accessory proteins to control the function of select G-protein subunits under normal and various disease conditions observed in the kidney.

  6. Complementarity of structure ensembles in protein-protein binding.

    Science.gov (United States)

    Grünberg, Raik; Leckner, Johan; Nilges, Michael

    2004-12-01

    Protein-protein association is often accompanied by changes in receptor and ligand structure. This interplay between protein flexibility and protein-protein recognition is currently the largest obstacle both to our understanding of and to the reliable prediction of protein complexes. We performed two sets of molecular dynamics simulations for the unbound receptor and ligand structures of 17 protein complexes and applied shape-driven rigid body docking to all combinations of representative snapshots. The crossdocking of structure ensembles increased the likelihood of finding near-native solutions. The free ensembles appeared to contain multiple complementary conformations. These were in general not related to the bound structure. We suggest that protein-protein binding follows a three-step mechanism of diffusion, free conformer selection, and refolding. This model combines previously conflicting ideas and is in better agreement with the current data on interaction forces, time scales, and kinetics.

  7. Interaction between plate make and protein in protein crystallisation screening.

    Directory of Open Access Journals (Sweden)

    Gordon J King

    Full Text Available BACKGROUND: Protein crystallisation screening involves the parallel testing of large numbers of candidate conditions with the aim of identifying conditions suitable as a starting point for the production of diffraction quality crystals. Generally, condition screening is performed in 96-well plates. While previous studies have examined the effects of protein construct, protein purity, or crystallisation condition ingredients on protein crystallisation, few have examined the effect of the crystallisation plate. METHODOLOGY/PRINCIPAL FINDINGS: We performed a statistically rigorous examination of protein crystallisation, and evaluated interactions between crystallisation success and plate row/column, different plates of same make, different plate makes and different proteins. From our analysis of protein crystallisation, we found a significant interaction between plate make and the specific protein being crystallised. CONCLUSIONS/SIGNIFICANCE: Protein crystal structure determination is the principal method for determining protein structure but is limited by the need to produce crystals of the protein under study. Many important proteins are difficult to crystallize, so that identification of factors that assist crystallisation could open up the structure determination of these more challenging targets. Our findings suggest that protein crystallisation success may be improved by matching a protein with its optimal plate make.

  8. Fragments of protein A eluted during protein A affinity chromatography.

    Science.gov (United States)

    Carter-Franklin, Jayme N; Victa, Corazon; McDonald, Paul; Fahrner, Robert

    2007-09-07

    Protein A affinity chromatography is a common method for process scale purification of monoclonal antibodies. During protein A affinity chromatography, protein A ligand co-elutes with the antibody (commonly called leaching), which is a potential disadvantage since the leached protein A may need to be cleared for pharmaceutical antibodies. To determine the mechanism of protein A leaching and characterize the leached protein A, we fluorescently labeled the protein A ligand in situ on protein A affinity chromatography media. We found that intact protein A leaches when loading either purified antibody or unpurified antibody in harvested cell culture fluid (HCCF), and that additionally fragments of protein A leach when loading HCCF. The leaching of protein A fragments can be reduced by EDTA, suggesting that proteinases contribute to the generation of protein A fragments. We found that protein A fragments larger than about 6000 Da can be measured by enzyme linked immunosorbent assay, and that they can be more difficult to clear than whole protein A by cation-exchange chromatography.

  9. Mobility of photosynthetic proteins

    Czech Academy of Sciences Publication Activity Database

    Kaňa, Radek

    2013-01-01

    Roč. 116, 2-3 (2013), s. 465-479 ISSN 0166-8595 R&D Projects: GA ČR GAP501/12/0304; GA MŠk(CZ) ED2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : Photosynthesis * Protein mobility * FRAP Subject RIV: EE - Microbiology, Virology Impact factor: 3.185, year: 2013

  10. Combinable protein crop production

    OpenAIRE

    Wright, Isobel

    2008-01-01

    This research topic review aims to summarise research knowledge and observational experience of combinable protein crop production in organic farming systems for the UK. European research on peas, faba beans and lupins is included; considering their role in the rotation, nitrogen fixation, varieties, establishment, weed control, yields, problems experienced and intercropping with cereals.

  11. Antifreeze Proteins of Bacteria

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 12. Antifreeze Proteins of Bacteria. M K Chattopadhyay. General Article Volume 12 Issue 12 December 2007 pp 25-30. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/012/12/0025-0030 ...

  12. Protein oxidation and ageing

    DEFF Research Database (Denmark)

    Linton, S; Davies, Michael Jonathan; Dean, R T

    2001-01-01

    of redox-active metal ions that could catalyse oxidant formation. As a result of this decrease in antioxidant defences, and increased rate of ROS formation, it is possible that the impact of ROS increases with age. ROS are known to oxidise biological macromolecules, with proteins an important target...

  13. Protein thin film machines.

    Science.gov (United States)

    Federici, Stefania; Oliviero, Giulio; Hamad-Schifferli, Kimberly; Bergese, Paolo

    2010-12-01

    We report the first example of microcantilever beams that are reversibly driven by protein thin film machines fueled by cycling the salt concentration of the surrounding solution. We also show that upon the same salinity stimulus the drive can be completely reversed in its direction by introducing a surface coating ligand. Experimental results are throughout discussed within a general yet simple thermodynamic model.

  14. Tuber Storage Proteins

    Science.gov (United States)

    SHEWRY, PETER R.

    2003-01-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits activity as an acylhydrolase and esterase, sporamin from sweet potato is an inhibitor of trypsin, and dioscorin from yam is a carbonic anhydrase. Both sporamin and dioscorin also exhibit antioxidant and radical scavenging activity. Taro differs from the other three crops in that it contains two major types of storage protein: a trypsin inhibitor related to sporamin and a mannose‐binding lectin. These characteristics indicate that tuber storage proteins have evolved independently in different species, which contrasts with the highly conserved families of storage proteins present in seeds. Furthermore, all exhibit biological activities which could contribute to resistance to pests, pathogens or abiotic stresses, indicating that they may have dual roles in the tubers. PMID:12730067

  15. Electron transfer in proteins

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1991-01-01

    Electron migration between and within proteins is one of the most prevalent forms of biological energy conversion processes. Electron transfer reactions take place between active centers such as transition metal ions or organic cofactors over considerable distances at fast rates and with remarkable...

  16. Antifreeze Proteins of Bacteria

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 12. Antifreeze Proteins of Bacteria. M K Chattopadhyay. General Article Volume 12 Issue 12 December 2007 pp 25-30. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/012/12/0025-0030. Keywords.

  17. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    Unknown

    2005-01-03

    Jan 3, 2005 ... out' response to environmental changes with structural complexity ... of 3D structure at atomic resolution of folded proteins ...... 5.14 HIV-1 protease. NMR identification of local structural preferences in. HIV-1 protease in the 'unfolded state' at 6 M gua- nidine hydrochloride has been reported.49 Analyses.

  18. Thermodynamics of meat proteins

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2012-01-01

    We describe the water activity of meat, being a mixture of proteins, salts and water, by the Free-Volume-Flory–Huggins (FVFH) theory augmented with the equation. Earlier, the FVFH theory is successfully applied to describe the thermodynamics to glucose homopolymers like starch, dextrans and

  19. and heat shock proteins

    African Journals Online (AJOL)

    concentrations of Cu and tributylin in zebra mussels in the laboratory. The time period of sampling appears to have had no signifi- cant relationship with enzyme activity, protein quantity and metal concentration in this study. Metal bioaccumulation and bioconcentration values were different in the pectoral muscles.

  20. Tuber storage proteins.

    Science.gov (United States)

    Shewry, Peter R

    2003-06-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits activity as an acylhydrolase and esterase, sporamin from sweet potato is an inhibitor of trypsin, and dioscorin from yam is a carbonic anhydrase. Both sporamin and dioscorin also exhibit antioxidant and radical scavenging activity. Taro differs from the other three crops in that it contains two major types of storage protein: a trypsin inhibitor related to sporamin and a mannose-binding lectin. These characteristics indicate that tuber storage proteins have evolved independently in different species, which contrasts with the highly conserved families of storage proteins present in seeds. Furthermore, all exhibit biological activities which could contribute to resistance to pests, pathogens or abiotic stresses, indicating that they may have dual roles in the tubers.

  1. Allosteric Regulation of Proteins

    Indian Academy of Sciences (India)

    triguingly, the substrate or the product of the inhibited enzyme can be structurally different from the inhibitor. ... ulation of proteins in this fashion as 'allosteric' in the year 1961. [9]. The word allostery originated from the ..... flux occurs via the conformational selec- tion pathway at low concentrations of the ligand, while the trend.

  2. Allosteric Regulation of Proteins

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 1. Allosteric Regulation of Proteins: A Historical Perspective on the Development of Concepts and Techniques. General Article Volume 22 Issue 1 January 2017 pp 37-50 ...

  3. Protein Sorting Prediction

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2017-01-01

    Many computational methods are available for predicting protein sorting in bacteria. When comparing them, it is important to know that they can be grouped into three fundamentally different approaches: signal-based, global-property-based and homology-based prediction. In this chapter, the strengths...

  4. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling.

    Science.gov (United States)

    Woodard, Geoffrey E; Jardín, Isaac; Berna-Erro, A; Salido, Gines M; Rosado, Juan A

    2015-01-01

    Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  6. Inferring protein function by domain context similarities in protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    Sun Zhirong

    2009-12-01

    Full Text Available Abstract Background Genome sequencing projects generate massive amounts of sequence data but there are still many proteins whose functions remain unknown. The availability of large scale protein-protein interaction data sets makes it possible to develop new function prediction methods based on protein-protein interaction (PPI networks. Although several existing methods combine multiple information resources, there is no study that integrates protein domain information and PPI networks to predict protein functions. Results The domain context similarity can be a useful index to predict protein function similarity. The prediction accuracy of our method in yeast is between 63%-67%, which outperforms the other methods in terms of ROC curves. Conclusion This paper presents a novel protein function prediction method that combines protein domain composition information and PPI networks. Performance evaluations show that this method outperforms existing methods.

  7. In Situ Protein Binding Assay Using Fc-Fusion Proteins.

    Science.gov (United States)

    Padmanabhan, Nirmala; Siddiqui, Tabrez J

    2017-01-01

    This protocol describes an in situ protein-protein interaction assay between tagged recombinant proteins and cell-surface expressed synaptic proteins. The assay is arguably more sensitive than other traditional protein binding assays such as co-immunoprecipitation and pull-downs and provides a visual readout for binding. This assay has been widely used to determine the dissociation constant of binding of trans-synaptic adhesion proteins. The step-wise description in the protocol should facilitate the adoption of this method in other laboratories.

  8. High quality protein microarray using in situ protein purification

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2009-08-01

    Full Text Available Abstract Background In the postgenomic era, high throughput protein expression and protein microarray technologies have progressed markedly permitting screening of therapeutic reagents and discovery of novel protein functions. Hexa-histidine is one of the most commonly used fusion tags for protein expression due to its small size and convenient purification via immobilized metal ion affinity chromatography (IMAC. This purification process has been adapted to the protein microarray format, but the quality of in situ His-tagged protein purification on slides has not been systematically evaluated. We established methods to determine the level of purification of such proteins on metal chelate-modified slide surfaces. Optimized in situ purification of His-tagged recombinant proteins has the potential to become the new gold standard for cost-effective generation of high-quality and high-density protein microarrays. Results Two slide surfaces were examined, chelated Cu2+ slides suspended on a polyethylene glycol (PEG coating and chelated Ni2+ slides immobilized on a support without PEG coating. Using PEG-coated chelated Cu2+ slides, consistently higher purities of recombinant proteins were measured. An optimized wash buffer (PBST composed of 10 mM phosphate buffer, 2.7 mM KCl, 140 mM NaCl and 0.05% Tween 20, pH 7.4, further improved protein purity levels. Using Escherichia coli cell lysates expressing 90 recombinant Streptococcus pneumoniae proteins, 73 proteins were successfully immobilized, and 66 proteins were in situ purified with greater than 90% purity. We identified several antigens among the in situ-purified proteins via assays with anti-S. pneumoniae rabbit antibodies and a human patient antiserum, as a demonstration project of large scale microarray-based immunoproteomics profiling. The methodology is compatible with higher throughput formats of in vivo protein expression, eliminates the need for resin-based purification and circumvents

  9. Dairy Proteins and Energy Balance

    DEFF Research Database (Denmark)

    Bendtsen, Line Quist

    High protein diets affect energy balance beneficially through decreased hunger, enhanced satiety and increased energy expenditure. Dairy products are a major source of protein. Dairy proteins are comprised of two classes, casein (80%) and whey proteins (20%), which are both of high quality......, but casein is absorbed slowly and whey is absorbed rapidly. The present PhD study investigated the effects of total dairy proteins, whey, and casein, on energy balance and the mechanisms behind any differences in the effects of the specific proteins. The results do not support the hypothesis that dairy...... proteins, whey or casein are more beneficial than other protein sources in the regulation of energy balance, and suggest that dairy proteins, whey or casein seem to play only a minor role, if any, in the prevention and treatment of obesity....

  10. Regulation of protein turnover by heat shock proteins.

    Science.gov (United States)

    Bozaykut, Perinur; Ozer, Nesrin Kartal; Karademir, Betul

    2014-12-01

    Protein turnover reflects the balance between synthesis and degradation of proteins, and it is a crucial process for the maintenance of the cellular protein pool. The folding of proteins, refolding of misfolded proteins, and also degradation of misfolded and damaged proteins are involved in the protein quality control (PQC) system. Correct protein folding and degradation are controlled by many different factors, one of the most important of which is the heat shock protein family. Heat shock proteins (HSPs) are in the class of molecular chaperones, which may prevent the inappropriate interaction of proteins and induce correct folding. On the other hand, these proteins play significant roles in the degradation pathways, including endoplasmic reticulum-associated degradation (ERAD), the ubiquitin-proteasome system, and autophagy. This review focuses on the emerging role of HSPs in the regulation of protein turnover; the effects of HSPs on the degradation machineries ERAD, autophagy, and proteasome; as well as the role of posttranslational modifications in the PQC system. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Circular dichroism spectroscopy of fluorescent proteins

    NARCIS (Netherlands)

    Visser, N.V.; Hink, M.A.; Borst, J.W.; Krogt, van der G.N.M.; Visser, A.J.W.G.

    2002-01-01

    Circular dichroism (CD) spectra have been obtained from several variants of green fluorescent protein: blue fluorescent protein (BFP), enhanced cyan fluorescent protein (CFP), enhanced green fluorescent protein (GFP), enhanced yellow fluorescent protein (YFP), all from Aequorea victoria, and the red

  12. Markers of protein oxidation

    DEFF Research Database (Denmark)

    Headlam, Henrietta A; Davies, Michael Jonathan

    2004-01-01

    Exposure of proteins to radicals in the presence of O2 gives both side-chain oxidation and backbone fragmentation. These processes can be interrelated, with initial side-chain oxidation giving rise to backbone damage via transfer reactions. We have shown previously that alkoxyl radicals formed...... on the C-3 carbons of Ala, Val, Leu, and Asp residues undergo beta-scission to give backbone alpha-carbon radicals, with the release of the side- chain as a carbonyl compound. We now show that this is a general mechanism that occurs with a wide range of oxidants. The quantitative significance...... of this process depends on the extent of oxidation at C-3 compared with other sites. HO*, generated by gamma radiolysis, gave the highest total carbonyl yield, with protein-bound carbonyls predominating over released. In contrast, metal ion/H2O2 systems, gave more released than bound carbonyls, with this ratio...

  13. Problems in Protein Biosynthesis

    Science.gov (United States)

    Lengyel, Peter

    1966-01-01

    Outline of the steps in protein synthesis. Nature of the genetic code. The use of synthetic oligo- and polynucleotides in deciphering the code. Structure of the code: relatedness of synonym codons. The wobble hypothesis. Chain initiation and N-formyl-methionine. Chain termination and nonsense codons. Mistakes in translation: ambiguity in vitro. Suppressor mutations resulting in ambiguity. Limitations in the universality of the code. Attempts to determine the particular codons used by a species. Mechanisms of suppression, caused by (a) abnormal aminoacyl-tRNA, (b) ribosomal malfunction. Effect of streptomycin. The problem of "reading" a nucleic acid template. Different ribosomal mutants and DNA polymerase mutants might cause different mistakes. The possibility of involvement of allosteric proteins in template reading. PMID:5338560

  14. Immunostimulatory mouse granuloma protein.

    Science.gov (United States)

    Fontan, E; Fauve, R M; Hevin, B; Jusforgues, H

    1983-10-01

    Earlier studies have shown that from subcutaneous talc-induced granuloma in mice, a fraction could be extracted that fully protected mice against Listeria monocytogenes. Using standard biochemical procedures--i.e., ammonium sulfate fractionation, preparative electrophoresis, gel filtration chromatography, isoelectric focusing, and preparative polyacrylamide gel electrophoresis--we have now purified an active factor to homogeneity. A single band was obtained in NaDodSO4/polyacrylamide gel with an apparent Mr of 55,000. It migrated with alpha 1-globulins and the isoelectric point was 5 +/- 0.1. The biological activity was destroyed with Pronase but not with trypsin and a monospecific polyclonal rabbit antiserum was obtained. The intravenous injection of 5 micrograms of this "mouse granuloma protein" fully protects mice against a lethal inoculum of L. monocytogenes. Moreover, after their incubation with 10 nM mouse granuloma protein, mouse peritoneal cells became cytostatic against Lewis carcinoma cells.

  15. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  16. PDBTM: Protein Data Bank of transmembrane proteins after 8 years

    OpenAIRE

    Kozma, D?niel; Simon, Istv?n; Tusn?dy, G?bor E.

    2012-01-01

    The PDBTM database (available at http://pdbtm.enzim.hu), the first comprehensive and up-to-date transmembrane protein selection of the Protein Data Bank, was launched in 2004. The database was created and has been continuously updated by the TMDET algorithm that is able to distinguish between transmembrane and non-transmembrane proteins using their 3D atomic coordinates only. The TMDET algorithm can locate the spatial positions of transmembrane proteins in lipid bilayer as well. During the la...

  17. A Mesoscopic Model for Protein-Protein Interactions in Solution

    OpenAIRE

    Lund, Mikael; Jönsson, Bo

    2003-01-01

    Protein self-association may be detrimental in biological systems, but can be utilized in a controlled fashion for protein crystallization. It is hence of considerable interest to understand how factors like solution conditions prevent or promote aggregation. Here we present a computational model describing interactions between protein molecules in solution. The calculations are based on a molecular description capturing the detailed structure of the protein molecule using x-ray or nuclear ma...

  18. Mapping Protein-Protein Interactions by Quantitative Proteomics

    DEFF Research Database (Denmark)

    Dengjel, Joern; Kratchmarova, Irina; Blagoev, Blagoy

    2010-01-01

    Proteins exert their function inside a cell generally in multiprotein complexes. These complexes are highly dynamic structures changing their composition over time and cell state. The same protein may thereby fulfill different functions depending on its binding partners. Quantitative mass...... to characterize protein interaction networks. In this chapter we describe in detail the use of stable isotope labeling by amino acids in cell culture (SILAC) for the quantitative analysis of stimulus-dependent dynamic protein interactions....

  19. Prion Protein and Aging

    Directory of Open Access Journals (Sweden)

    Lisa eGasperini

    2014-08-01

    Full Text Available The cellular prion protein (PrPC has been widely investigated ever since its conformational isoform, the prion (or PrPSc, was identified as the etiological agent of prion disorders. The high homology shared by the PrPC-encoding gene among mammals, its high turnover rate and expression in every tissue strongly suggest that PrPC may possess key physiological functions. Therefore, defining PrPC roles, properties and fate in the physiology of mammalian cells would be fundamental to understand its pathological involvement in prion diseases. Since the incidence of these neurodegenerative disorders is enhanced in aging, understanding PrPC functions in this life phase may be of crucial importance. Indeed, a large body of evidence suggests that PrPC plays a neuroprotective and antioxidant role. Moreover, it has been suggested that PrPC is involved in Alzheimer disease, another neurodegenerative pathology that develops predominantly in the aging population. In prion diseases, PrPC function is likely lost upon protein aggregation occurring in the course of the disease. Additionally, the aging process may alter PrPC biochemical properties, thus influencing its propensity to convert into PrPSc. Both phenomena may contribute to the disease development and progression. In Alzheimer disease, PrPC has a controversial role because its presence seems to mediate β-amyloid toxicity, while its down-regulation correlates with neuronal death. The role of PrPC in aging has been investigated from different perspectives, often leading to contrasting results. The putative protein functions in aging have been studied in relation to memory, behavior and myelin maintenance. In aging mice, PrPC changes in subcellular localization and post-translational modifications have been explored in an attempt to relate them to different protein roles and propensity to convert into PrPSc. Here we provide an overview of the most relevant studies attempting to delineate PrPC functions and

  20. Urinary Protein Biomarker Analysis

    Science.gov (United States)

    2017-10-01

    associated protein biomarkers were identified by transcriptomic comparison of cancer cells vs. normal luminal cells; cancer-associated stromal cells vs...analysis; (C) correction with PSA, P = 0.012); (D) ROC curve analysis. 4-1. Use of PSA levels for marker level normalization Other organs along the...Copyright: Shi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which

  1. Redox meets protein trafficking.

    Science.gov (United States)

    Bölter, Bettina; Soll, Jürgen; Schwenkert, Serena

    2015-09-01

    After the engulfment of two prokaryotic organisms, the thus emerged eukaryotic cell needed to establish means of communication and signaling to properly integrate the acquired organelles into its metabolism. Regulatory mechanisms had to evolve to ensure that chloroplasts and mitochondria smoothly function in accordance with all other cellular processes. One essential process is the post-translational import of nuclear encoded organellar proteins, which needs to be adapted according to the requirements of the plant. The demand for protein import is constantly changing depending on varying environmental conditions, as well as external and internal stimuli or different developmental stages. Apart from long-term regulatory mechanisms such as transcriptional/translation control, possibilities for short-term acclimation are mandatory. To this end, protein import is integrated into the cellular redox network, utilizing the recognition of signals from within the organelles and modifying the efficiency of the translocon complexes. Thereby, cellular requirements can be communicated throughout the whole organism. This article is part of a Special Issue entitled: Chloroplast Biogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Neutron protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    X-ray diffraction of single crystal has enriched the knowledge of various biological molecules such as proteins, DNA, t-RNA, viruses, etc. It is difficult to make structural analysis of hydrogen atoms in a protein using X-ray crystallography, whereas neutron diffraction seems usable to directly determine the location of those hydrogen atoms. Here, neutron diffraction method was applied to structural analysis of hen egg-white lysozyme. Since the crystal size of a protein to analyze is generally small (5 mm{sup 3} at most), the neutron beam at the sample position in monochromator system was set to less than 5 x 5 mm{sup 2} and beam divergence to 0.4 degree or less. Neutron imaging plate with {sup 6}Li or Gd mixed with photostimulated luminescence material was used and about 2500 Bragg reflections were recorded in one crystal setting. A total of 38278 reflections for 2.0 A resolution were collected in less than 10 days. Thus, stereo views of Trp-111 omit map around the indol ring of Trp-111 was presented and the three-dimensional arrangement of 696H and 264D atoms in the lysozyme molecules was determined using the omit map. (M.N.)

  3. Protein engineering techniques gateways to synthetic protein universe

    CERN Document Server

    Poluri, Krishna Mohan

    2017-01-01

    This brief provides a broad overview of protein-engineering research, offering a glimpse of the most common experimental methods. It also presents various computational programs with applications that are widely used in directed evolution, computational and de novo protein design. Further, it sheds light on the advantages and pitfalls of existing methodologies and future perspectives of protein engineering techniques.

  4. Analysis of protein folds using protein contact networks

    Indian Academy of Sciences (India)

    Proteins are important biomolecules, which perform diverse structural and functional roles in living systems. Starting from a .... even be extended up to the level of protein secondary structural elements, as seen in protein topology cartoons [13]. Even though ... chemical interactions [8]. This distance map is a 2D symmetric, ...

  5. Recent excitements in protein NMR: Large proteins and biologically ...

    Indian Academy of Sciences (India)

    The advent of Transverse Relaxation Optimized SpectroscopY (TROSY) and perdeuteration allowed biomolecularNMR spectroscopists to overcome the size limitation barrier (~20 kDa) in de novo structure determination of proteins.The utility of these techniques was immediately demonstrated on large proteins and protein ...

  6. Ontology integration to identify protein complex in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Yang Zhihao

    2011-10-01

    Full Text Available Abstract Background Protein complexes can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of protein complexes detection algorithms. Methods We have developed novel semantic similarity method, which use Gene Ontology (GO annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. Following the approach of that of the previously proposed clustering algorithm IPCA which expands clusters starting from seeded vertices, we present a clustering algorithm OIIP based on the new weighted Protein-Protein interaction networks for identifying protein complexes. Results The algorithm OIIP is applied to the protein interaction network of Sacchromyces cerevisiae and identifies many well known complexes. Experimental results show that the algorithm OIIP has higher F-measure and accuracy compared to other competing approaches.

  7. Protein-ECE MEtallopincer Hybrids

    NARCIS (Netherlands)

    Kruithof, C.A.

    2007-01-01

    Modification of proteins with metal complexes is a promising and a relatively new field which conceals many challenges and potential applications. The field is a balance of contributions from the biological (protein engineering, bioconjugation) and chemical sciences (organic, inorganic and

  8. Protein: FEA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FEA3 AREB pathway: AREB transcription factors ABF2 AREB1, BZIP36 ABSCISIC ACID-INSENSITIVE 5-like pro...tein 5 ABA-responsive element-binding protein 1, Abscisic acid responsive elements-binding

  9. Protein folding and wring resonances

    DEFF Research Database (Denmark)

    Bohr, Jakob; Bohr, Henrik; Brunak, Søren

    1997-01-01

    The polypeptide chain of a protein is shown to obey topological contraints which enable long range excitations in the form of wring modes of the protein backbone. Wring modes of proteins of specific lengths can therefore resonate with molecular modes present in the cell. It is suggested that prot......The polypeptide chain of a protein is shown to obey topological contraints which enable long range excitations in the form of wring modes of the protein backbone. Wring modes of proteins of specific lengths can therefore resonate with molecular modes present in the cell. It is suggested...... that protein folding takes place when the amplitude of a wring excitation becomes so large that it is energetically favorable to bend the protein backbone. The condition under which such structural transformations can occur is found, and it is shown that both cold and hot denaturation (the unfolding...

  10. Chemical Protein Modification through Cysteine.

    Science.gov (United States)

    Gunnoo, Smita B; Madder, Annemieke

    2016-04-01

    The modification of proteins with non-protein entities is important for a wealth of applications, and methods for chemically modifying proteins attract considerable attention. Generally, modification is desired at a single site to maintain homogeneity and to minimise loss of function. Though protein modification can be achieved by targeting some natural amino acid side chains, this often leads to ill-defined and randomly modified proteins. Amongst the natural amino acids, cysteine combines advantageous properties contributing to its suitability for site-selective modification, including a unique nucleophilicity, and a low natural abundance--both allowing chemo- and regioselectivity. Native cysteine residues can be targeted, or Cys can be introduced at a desired site in a protein by means of reliable genetic engineering techniques. This review on chemical protein modification through cysteine should appeal to those interested in modifying proteins for a range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Protein Precipitation Using Ammonium Sulfate

    OpenAIRE

    Wingfield, Paul T.

    2001-01-01

    The basic theory of protein precipitation by addition of ammonium sulfate is presented and the most common applications are listed, Tables are provided for calculating the appropriate amount of ammonium sulfate to add to a particular protein solution.

  12. Protein Linked to Atopic Dermatitis

    Science.gov (United States)

    ... Research Matters NIH Research Matters January 14, 2013 Protein Linked to Atopic Dermatitis Normal skin from a ... in mice suggests that lack of a certain protein may trigger atopic dermatitis, the most common type ...

  13. Functional aspects of protein flexibility

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan G; Kragelund, Birthe B

    2009-01-01

    . The thermodynamics involved are reviewed, and examples of structure-function studies involving experimentally determined flexibility descriptions are presented. While much remains to be understood about protein flexibility, it is clear that it is encoded within their amino acid sequence and should be viewed......Proteins are dynamic entities, and they possess an inherent flexibility that allows them to function through molecular interactions within the cell, among cells and even between organisms. Appreciation of the non-static nature of proteins is emerging, but to describe and incorporate...... this into an intuitive perception of protein function is challenging. Flexibility is of overwhelming importance for protein function, and the changes in protein structure during interactions with binding partners can be dramatic. The present review addresses protein flexibility, focusing on protein-ligand interactions...

  14. Protein kinase substrate identification on functional protein arrays

    Directory of Open Access Journals (Sweden)

    Zhou Fang

    2008-02-01

    Full Text Available Abstract Background Over the last decade, kinases have emerged as attractive therapeutic targets for a number of different diseases, and numerous high throughput screening efforts in the pharmaceutical community are directed towards discovery of compounds that regulate kinase function. The emerging utility of systems biology approaches has necessitated the development of multiplex tools suitable for proteomic-scale experiments to replace lower throughput technologies such as mass spectroscopy for the study of protein phosphorylation. Recently, a new approach for identifying substrates of protein kinases has applied the miniaturized format of functional protein arrays to characterize phosphorylation for thousands of candidate protein substrates in a single experiment. This method involves the addition of protein kinases in solution to arrays of immobilized proteins to identify substrates using highly sensitive radioactive detection and hit identification algorithms. Results To date, the factors required for optimal performance of protein array-based kinase substrate identification have not been described. In the current study, we have carried out a detailed characterization of the protein array-based method for kinase substrate identification, including an examination of the effects of time, buffer compositions, and protein concentration on the results. The protein array approach was compared to standard solution-based assays for assessing substrate phosphorylation, and a correlation of greater than 80% was observed. The results presented here demonstrate how novel substrates for protein kinases can be quickly identified from arrays containing thousands of human proteins to provide new clues to protein kinase function. In addition, a pooling-deconvolution strategy was developed and applied that enhances characterization of specific kinase-substrate relationships and decreases reagent consumption. Conclusion Functional protein microarrays are an

  15. A Novel Approach for Protein-Named Entity Recognition and Protein-Protein Interaction Extraction

    Directory of Open Access Journals (Sweden)

    Meijing Li

    2015-01-01

    Full Text Available Many researchers focus on developing protein-named entity recognition (Protein-NER or PPI extraction systems. However, the studies about these two topics cannot be merged well; then existing PPI extraction systems’ Protein-NER still needs to improve. In this paper, we developed the protein-protein interaction extraction system named PPIMiner based on Support Vector Machine (SVM and parsing tree. PPIMiner consists of three main models: natural language processing (NLP model, Protein-NER model, and PPI discovery model. The Protein-NER model, which is named ProNER, identifies the protein names based on two methods: dictionary-based method and machine learning-based method. ProNER is capable of identifying more proteins than dictionary-based Protein-NER model in other existing systems. The final discovered PPIs extracted via PPI discovery model are represented in detail because we showed the protein interaction types and the occurrence frequency through two different methods. In the experiments, the result shows that the performances achieved by our ProNER and PPI discovery model are better than other existing tools. PPIMiner applied this protein-named entity recognition approach and parsing tree based PPI extraction method to improve the performance of PPI extraction. We also provide an easy-to-use interface to access PPIs database and an online system for PPIs extraction and Protein-NER.

  16. Proteins: Chemistry, Characterization, and Quality

    NARCIS (Netherlands)

    Sforza, S.; Tedeschi, T.; Wierenga, P.A.

    2016-01-01

    Proteins are one of the major macronutrients in food, and several traditional food commodities are good sources of proteins (meat, egg, milk and dairy products, fish, and soya). Proteins are polymers made by 20 different amino acids. They might undergo desired or undesired chemical or enzymatic

  17. Protein: FBA6 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA6 vesicular transport ARFGAP2 ZNF289 ADP-ribosylation factor GTPase-activating pro...tein 2 GTPase-activating protein ZNF289, Zinc finger protein 289 9606 Homo sapiens Q8N6H7 84364 2P57 ...

  18. Transient interactions between photosynthetic proteins

    NARCIS (Netherlands)

    Hulsker, Rinske

    2008-01-01

    The biological processes that are the basis of all life forms are mediated largely by protein-protein interactions. The protein complexes involved in these interactions can be categorised by their affinity, which results in a range from static to transient complexes. Electron transfer complexes,

  19. Protein: FBA8 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA8 LUBAC (linear ubiquitin chain-assembly complex) RNF31 ZIBRA RNF31 RING finger pr...otein 31 HOIL-1-interacting protein, Zinc in-between-RING-finger ubiquitin-associated domain protein 9606 Homo sapiens Q96EP0 55072 2CT7 55072 Q96EP0 ...

  20. Protein: MPA1 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA1 TLR signaling molecules MAVS IPS1, KIAA1271, VISA VISA_(gene) Mitochondrial antiviral-signaling pr...otein CARD adapter inducing interferon beta, Interferon beta promoter stimulator protein... 1, Putative NF-kappa-B-activating protein 031N, Virus-induced-signaling adapter 9606 Homo sapiens Q7Z434 57506 2VGQ 57506 ...

  1. Protein: FBA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA3 Ubiquitination CBLB RNF56 CBLB E3 ubiquitin-protein ligase CBL-B Casitas B-lineage lymphoma pr...oto-oncogene b, RING finger protein 56, SH3-binding protein CBL-B, Signal transduction prote

  2. Protein: MPB2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB2 Ubiquitin ligases WWP1 WWP1 NEDD4-like E3 ubiquitin-protein ligase WWP1 Atrophin-1-interacting pr...otein 5, WW domain-containing protein 1 9606 Homo sapiens Q9H0M0 11059 2OP7, 1ND7 11059 ...

  3. Functional Foods Containing Whey Proteins

    Science.gov (United States)

    Whey proteins, modified whey proteins, and whey components are useful as nutrients or supplements for health maintenance. Extrusion modified whey proteins can easily fit into new products such as beverages, confectionery items (e.g., candies), convenience foods, desserts, baked goods, sauces, and in...

  4. Protein Supplements: Pros and Cons.

    Science.gov (United States)

    Samal, Jay Rabindra Kumar; Samal, Indira R

    2018-05-04

    To provide a comprehensive analysis of the literature examining the pros and cons of protein supplementation, various articles on protein supplementation were obtained from Google Scholar, PubMed, and National Center for Biotechnology Information. Over the past few years, protein supplementation has become commonplace for gym-goers as well as for the public. A large segment of the general population relies on protein supplementation for meal replacement, weight reduction, and purported health benefits. These protein supplements have varying pros and cons associated with them, which are often overlooked by the public. This review aims to assimilate existing studies and form a consensus regarding the benefits and disadvantages of protein supplementation. The purported health benefits of protein supplementation have led to overuse by both adults and adolescents. Although the pros and cons of protein supplementation is a widely debated topic, not many studies have been conducted regarding the same. The few studies that exist either provide insufficient evidence or have not employed proper conditions for the conduct of the tests. It should be considered that protein supplements are processed materials and often do not contain other essential nutrients required for the sustenance of a healthy lifestyle. It is suggested that the required protein intake should be obtained from natural food sources and protein supplementation should be resorted to only if sufficient protein is not available in the normal diet.

  5. Protein Misfolding and Human Disease

    DEFF Research Database (Denmark)

    Gregersen, Niels; Bross, Peter Gerd; Vang, Søren

    2006-01-01

    Protein misfolding is a common event in living cells. In young and healthy cells, the misfolded protein load is disposed of by protein quality control (PQC) systems. In aging cells and in cells from certain individuals with genetic diseases, the load may overwhelm the PQC capacity, resulting in a...

  6. Modeling complexes of modeled proteins.

    Science.gov (United States)

    Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A

    2017-03-01

    Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C α RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Protein-protein interactions and cancer: targeting the central dogma.

    Science.gov (United States)

    Garner, Amanda L; Janda, Kim D

    2011-01-01

    Between 40,000 and 200,000 protein-protein interactions have been predicted to exist within the human interactome. As these interactions are of a critical nature in many important cellular functions and their dysregulation is causal of disease, the modulation of these binding events has emerged as a leading, yet difficult therapeutic arena. In particular, the targeting of protein-protein interactions relevant to cancer is of fundamental importance as the tumor-promoting function of several aberrantly expressed proteins in the cancerous state is directly resultant of its ability to interact with a protein-binding partner. Of significance, these protein complexes play a crucial role in each of the steps of the central dogma of molecular biology, the fundamental processes of genetic transmission. With the many important discoveries being made regarding the mechanisms of these genetic process, the identification of new chemical probes are needed to better understand and validate the druggability of protein-protein interactions related to the central dogma. In this review, we provide an overview of current small molecule-based protein-protein interaction inhibitors for each stage of the central dogma: transcription, mRNA splicing and translation. Importantly, through our analysis we have uncovered a lack of necessary probes targeting mRNA splicing and translation, thus, opening up the possibility for expansion of these fields.

  8. The Proteins API: accessing key integrated protein and genome information.

    Science.gov (United States)

    Nightingale, Andrew; Antunes, Ricardo; Alpi, Emanuele; Bursteinas, Borisas; Gonzales, Leonardo; Liu, Wudong; Luo, Jie; Qi, Guoying; Turner, Edd; Martin, Maria

    2017-07-03

    The Proteins API provides searching and programmatic access to protein and associated genomics data such as curated protein sequence positional annotations from UniProtKB, as well as mapped variation and proteomics data from large scale data sources (LSS). Using the coordinates service, researchers are able to retrieve the genomic sequence coordinates for proteins in UniProtKB. This, the LSS genomics and proteomics data for UniProt proteins is programmatically only available through this service. A Swagger UI has been implemented to provide documentation, an interface for users, with little or no programming experience, to 'talk' to the services to quickly and easily formulate queries with the services and obtain dynamically generated source code for popular programming languages, such as Java, Perl, Python and Ruby. Search results are returned as standard JSON, XML or GFF data objects. The Proteins API is a scalable, reliable, fast, easy to use RESTful services that provides a broad protein information resource for users to ask questions based upon their field of expertise and allowing them to gain an integrated overview of protein annotations available to aid their knowledge gain on proteins in biological processes. The Proteins API is available at (http://www.ebi.ac.uk/proteins/api/doc). © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Biophysics of protein evolution and evolutionary protein biophysics

    Science.gov (United States)

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  10. The Proteins API: accessing key integrated protein and genome information

    Science.gov (United States)

    Antunes, Ricardo; Alpi, Emanuele; Gonzales, Leonardo; Liu, Wudong; Luo, Jie; Qi, Guoying; Turner, Edd

    2017-01-01

    Abstract The Proteins API provides searching and programmatic access to protein and associated genomics data such as curated protein sequence positional annotations from UniProtKB, as well as mapped variation and proteomics data from large scale data sources (LSS). Using the coordinates service, researchers are able to retrieve the genomic sequence coordinates for proteins in UniProtKB. This, the LSS genomics and proteomics data for UniProt proteins is programmatically only available through this service. A Swagger UI has been implemented to provide documentation, an interface for users, with little or no programming experience, to ‘talk’ to the services to quickly and easily formulate queries with the services and obtain dynamically generated source code for popular programming languages, such as Java, Perl, Python and Ruby. Search results are returned as standard JSON, XML or GFF data objects. The Proteins API is a scalable, reliable, fast, easy to use RESTful services that provides a broad protein information resource for users to ask questions based upon their field of expertise and allowing them to gain an integrated overview of protein annotations available to aid their knowledge gain on proteins in biological processes. The Proteins API is available at (http://www.ebi.ac.uk/proteins/api/doc). PMID:28383659

  11. Recombinant protein hydrazides: application to site-specific protein PEGylation.

    Science.gov (United States)

    Thom, Jennifer; Anderson, David; McGregor, Joanne; Cotton, Graham

    2011-06-15

    Here, we describe a novel method for the site-specific C-terminal PEGylation of recombinant proteins. This general approach exploits chemical cleavage of precursor intein-fusion proteins with hydrazine to directly produce recombinant protein hydrazides. This unique functionality within the protein sequence then facilitates site-specific C-terminal modification by hydrazone-forming ligation reactions. This approach was used to generate folded, site-specifically C-terminal PEGylated IFNalpha2b and IFNbeta1b, which retained excellent antiviral activity, demonstrating the utility of this technology in the PEGylation of therapeutic proteins. As this methodology is straightforward to perform, is compatible with disulfide bonds, and is exclusively selective for the protein C-terminus, it shows great potential as general technology for the site-specific engineering and labeling of recombinant proteins.

  12. Protein subcellular localization assays using split fluorescent proteins

    Science.gov (United States)

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  13. Diffusion of Integral Membrane Proteins in Protein-Rich Membranes

    DEFF Research Database (Denmark)

    Javanainen, Matti; Martinez-Seara, Hector; Metzler, Ralf

    2017-01-01

    -like dependence D ∝ 1/R. We propose that this 1/R law mainly arises due to geometrical factors: smaller proteins are able to avoid confinement effects much better than their larger counterparts. The results highlight that the lateral dynamics in the crowded setting found in native membranes is radically different......The lateral diffusion of embedded proteins along lipid membranes in protein-poor conditions has been successfully described in terms of the Saffman-Delbrück (SD) model, which predicts that the protein diffusion coefficient D is weakly dependent on its radius R as D ∝ ln(1/R). However, instead...... of being protein-poor, native cell membranes are extremely crowded with proteins. On the basis of extensive molecular simulations, we here demonstrate that protein crowding of the membrane at physiological levels leads to deviations from the SD relation and to the emergence of a stronger Stokes...

  14. Protein homeostasis and aging: role of ubiquitin protein ligases.

    Science.gov (United States)

    Jana, Nihar Ranjan

    2012-04-01

    Protein homeostasis is fundamental in normal cellular function and cell survival. The ubiquitin-proteasome system (UPS) plays a central role in maintaining the protein homeostasis network through selective elimination of misfolded and damaged proteins. Impaired function of UPS is implicated in normal aging process and also in several age-related neurodegenerative disorders that are characterized by increased accumulation oxidatively modified proteins and protein aggregates. Growing literature also indicate the potential role of various ubiquitin protein ligases in the regulation of aging process by enhancing the degradation of either central lifespan regulators or abnormally folded and damaged proteins. This review mainly focuses on our current understanding of the importance of UPS function in the regulation of normal aging process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Exploiting amino acid composition for predicting protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Sushmita Roy

    2009-11-01

    Full Text Available Computational prediction of protein interactions typically use protein domains as classifier features because they capture conserved information of interaction surfaces. However, approaches relying on domains as features cannot be applied to proteins without any domain information. In this paper, we explore the contribution of pure amino acid composition (AAC for protein interaction prediction. This simple feature, which is based on normalized counts of single or pairs of amino acids, is applicable to proteins from any sequenced organism and can be used to compensate for the lack of domain information.AAC performed at par with protein interaction prediction based on domains on three yeast protein interaction datasets. Similar behavior was obtained using different classifiers, indicating that our results are a function of features and not of classifiers. In addition to yeast datasets, AAC performed comparably on worm and fly datasets. Prediction of interactions for the entire yeast proteome identified a large number of novel interactions, the majority of which co-localized or participated in the same processes. Our high confidence interaction network included both well-studied and uncharacterized proteins. Proteins with known function were involved in actin assembly and cell budding. Uncharacterized proteins interacted with proteins involved in reproduction and cell budding, thus providing putative biological roles for the uncharacterized proteins.AAC is a simple, yet powerful feature for predicting protein interactions, and can be used alone or in conjunction with protein domains to predict new and validate existing interactions. More importantly, AAC alone performs at par with existing, but more complex, features indicating the presence of sequence-level information that is predictive of interaction, but which is not necessarily restricted to domains.

  16. NMR Studies of Protein Hydration and Protein-Ligand Interactions

    Science.gov (United States)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be

  17. Nucleic acid binding properties and intermediates of HCV core protein multimerization in Pichia pastoris

    International Nuclear Information System (INIS)

    Acosta-Rivero, Nelson; Rodriguez, Armando; Musacchio, Alexis; Falcon, Viviana; Suarez, Viana M.; Chavez, Liudmila; Morales-Grillo, Juan; Duenas-Carrera, Santiago

    2004-01-01

    Little is known about the in vivo assembly pathway or structure of the hepatitis C virus nucleocapsid. In this work the intermediates of HCcAg multimerization in Pichia pastoris cells and the nucleic acid binding properties of structured nucleocapsid-like particles (NLPs) were studied. Extensive cross-linking was observed for HCcAg after glutaraldehyde treatment. Data suggest that HCcAg exists in dimeric forms probably representing P21-P21, P21-P23, and P23-P23 dimers. In addition, the presence of HCcAg species that might represent trimers and multimers was observed. After sucrose equilibrium density gradient purification and nuclease digestion, NLPs were shown to contain both RNA and DNA molecules. Finally, the analysis by electron microscopy indicated that native NLPs were resistant to nuclease treatment. These results indicated that HCcAg assembles through dimers, trimers, and multimers' intermediates into capsids in P. pastoris cells. Assembly of NLPs in its natural environment might confer stability to these particles by adopting a compact structure

  18. Essential Protein Detection by Random Walk on Weighted Protein-Protein Interaction Networks.

    Science.gov (United States)

    Xu, Bin; Guan, Jihong; Wang, Yang; Wang, Zewei

    2017-05-12

    Essential proteins are critical to the development and survival of cells. Identification of essential proteins is helpful for understanding the minimal set of required genes in a living cell and for designing new drugs. To detect essential proteins, various computational methods have been proposed based on protein-protein interaction (PPI) networks. However, protein interaction data obtained by highthroughput experiments usually contain high false positives, which negatively impacts the accuracy of essential protein detection. Moreover, most existing studies focused on the local information of proteins in PPI networks, while ignoring the influence of indirect protein interactions on essentiality. In this paper, we propose a novel method, called Essentiality Ranking (EssRank in short), to boost the accuracy of essential protein detection. To deal with the inaccuracy of PPI data, confidence scores of interactions are evaluated by integrating various biological information. Weighted edge clustering coefficient (WECC), considering both interaction confidence scores and network topology, is proposed to calculate edge weights in PPI networks. The weight of each node is evaluated by the sum of WECC values of its linking edges. A random walk method, making use of both direct and indirect protein interactions, is then employed to calculate protein essentiality iteratively. Experimental results on the yeast PPI network show that EssRank outperforms most existing methods, including the most commonly-used centrality measures (SC, DC, BC, CC, IC, EC), topology based methods (DMNC and NC) and the data integrating method IEW.

  19. Detection of protein complex from protein-protein interaction network using Markov clustering

    International Nuclear Information System (INIS)

    Ochieng, P J; Kusuma, W A; Haryanto, T

    2017-01-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks. (paper)

  20. Protein-protein interaction network-based detection of functionally similar proteins within species.

    Science.gov (United States)

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.

  1. Human cancer protein-protein interaction network: a structural perspective.

    Directory of Open Access Journals (Sweden)

    Gozde Kar

    2009-12-01

    Full Text Available Protein-protein interaction networks provide a global picture of cellular function and biological processes. Some proteins act as hub proteins, highly connected to others, whereas some others have few interactions. The dysfunction of some interactions causes many diseases, including cancer. Proteins interact through their interfaces. Therefore, studying the interface properties of cancer-related proteins will help explain their role in the interaction networks. Similar or overlapping binding sites should be used repeatedly in single interface hub proteins, making them promiscuous. Alternatively, multi-interface hub proteins make use of several distinct binding sites to bind to different partners. We propose a methodology to integrate protein interfaces into cancer interaction networks (ciSPIN, cancer structural protein interface network. The interactions in the human protein interaction network are replaced by interfaces, coming from either known or predicted complexes. We provide a detailed analysis of cancer related human protein-protein interfaces and the topological properties of the cancer network. The results reveal that cancer-related proteins have smaller, more planar, more charged and less hydrophobic binding sites than non-cancer proteins, which may indicate low affinity and high specificity of the cancer-related interactions. We also classified the genes in ciSPIN according to phenotypes. Within phenotypes, for breast cancer, colorectal cancer and leukemia, interface properties were found to be discriminating from non-cancer interfaces with an accuracy of 71%, 67%, 61%, respectively. In addition, cancer-related proteins tend to interact with their partners through distinct interfaces, corresponding mostly to multi-interface hubs, which comprise 56% of cancer-related proteins, and constituting the nodes with higher essentiality in the network (76%. We illustrate the interface related affinity properties of two cancer-related hub

  2. Protein folding and wring resonances

    DEFF Research Database (Denmark)

    Bohr, Jakob; Bohr, Henrik; Brunak, Søren

    1997-01-01

    The polypeptide chain of a protein is shown to obey topological contraints which enable long range excitations in the form of wring modes of the protein backbone. Wring modes of proteins of specific lengths can therefore resonate with molecular modes present in the cell. It is suggested...... that protein folding takes place when the amplitude of a wring excitation becomes so large that it is energetically favorable to bend the protein backbone. The condition under which such structural transformations can occur is found, and it is shown that both cold and hot denaturation (the unfolding...... of proteins) are natural consequences of the suggested wring mode model. Native (folded) proteins are found to possess an intrinsic standing wring mode....

  3. Metagenomics and the protein universe

    Science.gov (United States)

    Godzik, Adam

    2011-01-01

    Metagenomics sequencing projects have dramatically increased our knowledge of the protein universe and provided over one-half of currently known protein sequences; they have also introduced a much broader phylogenetic diversity into the protein databases. The full analysis of metagenomic datasets is only beginning, but it has already led to the discovery of thousands of new protein families, likely representing novel functions specific to given environments. At the same time, a deeper analysis of such novel families, including experimental structure determination of some representatives, suggests that most of them represent distant homologs of already characterized protein families, and thus most of the protein diversity present in the new environments are due to functional divergence of the known protein families rather than the emergence of new ones. PMID:21497084

  4. Protein Adsorption in Three Dimensions

    Science.gov (United States)

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  5. Protein stability, flexibility and function

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan G; Kragelund, Birthe B

    2011-01-01

    Proteins rely on flexibility to respond to environmental changes, ligand binding and chemical modifications. Potentially, a perturbation that changes the flexibility of a protein may interfere with its function. Millions of mutations have been performed on thousands of proteins in quests...... for a delineation of the molecular details of their function. Several of these mutations interfered with the binding of a specific ligand with a concomitant effect on the stability of the protein scaffold. It has been ambiguous and not straightforward to recognize if any relationships exist between the stability...... of a protein and the affinity for its ligand. In this review, we present examples of proteins where changes in stability results in changes in affinity and of proteins where stability and affinity are uncorrelated. We discuss the possibility for a relationship between stability and binding. From the data...

  6. Protein-protein interaction based on pairwise similarity

    Directory of Open Access Journals (Sweden)

    Zaki Nazar

    2009-05-01

    Full Text Available Abstract Background Protein-protein interaction (PPI is essential to most biological processes. Abnormal interactions may have implications in a number of neurological syndromes. Given that the association and dissociation of protein molecules is crucial, computational tools capable of effectively identifying PPI are desirable. In this paper, we propose a simple yet effective method to detect PPI based on pairwise similarity and using only the primary structure of the protein. The PPI based on Pairwise Similarity (PPI-PS method consists of a representation of each protein sequence by a vector of pairwise similarities against large subsequences of amino acids created by a shifting window which passes over concatenated protein training sequences. Each coordinate of this vector is typically the E-value of the Smith-Waterman score. These vectors are then used to compute the kernel matrix which will be exploited in conjunction with support vector machines. Results To assess the ability of the proposed method to recognize the difference between "interacted" and "non-interacted" proteins pairs, we applied it on different datasets from the available yeast saccharomyces cerevisiae protein interaction. The proposed method achieved reasonable improvement over the existing state-of-the-art methods for PPI prediction. Conclusion Pairwise similarity score provides a relevant measure of similarity between protein sequences. This similarity incorporates biological knowledge about proteins and it is extremely powerful when combined with support vector machine to predict PPI.

  7. General introduction: recombinant protein production and purification of insoluble proteins.

    Science.gov (United States)

    Ferrer-Miralles, Neus; Saccardo, Paolo; Corchero, José Luis; Xu, Zhikun; García-Fruitós, Elena

    2015-01-01

    Proteins are synthesized in heterologous systems because of the impossibility to obtain satisfactory yields from natural sources. The production of soluble and functional recombinant proteins is among the main goals in the biotechnological field. In this context, it is important to point out that under stress conditions, protein folding machinery is saturated and this promotes protein misfolding and, consequently, protein aggregation. Thus, the selection of the optimal expression organism and the most appropriate growth conditions to minimize the formation of insoluble proteins should be done according to the protein characteristics and downstream requirements. Escherichia coli is the most popular recombinant protein expression system despite the great development achieved so far by eukaryotic expression systems. Besides, other prokaryotic expression systems, such as lactic acid bacteria and psychrophilic bacteria, are gaining interest in this field. However, it is worth mentioning that prokaryotic expression system poses, in many cases, severe restrictions for a successful heterologous protein production. Thus, eukaryotic systems such as mammalian cells, insect cells, yeast, filamentous fungus, and microalgae are an interesting alternative for the production of these difficult-to-express proteins.

  8. Protein oxidation in aging and the removal of oxidized proteins.

    Science.gov (United States)

    Höhn, Annika; König, Jeannette; Grune, Tilman

    2013-10-30

    Reactive oxygen species (ROS) are generated constantly within cells at low concentrations even under physiological conditions. During aging the levels of ROS can increase due to a limited capacity of antioxidant systems and repair mechanisms. Proteins are among the main targets for oxidants due to their high rate constants for several reactions with ROS and their abundance in biological systems. Protein damage has an important influence on cellular viability since most protein damage is non-repairable, and has deleterious consequences on protein structure and function. In addition, damaged and modified proteins can form cross-links and provide a basis for many senescence-associated alterations and may contribute to a range of human pathologies. Two proteolytic systems are responsible to ensure the maintenance of cellular functions: the proteasomal (UPS) and the lysosomal system. Those degrading systems provide a last line of antioxidative protection, removing irreversible damaged proteins and recycling amino acids for the continuous protein synthesis. But during aging, both systems are affected and their proteolytic activity declines significantly. Here we highlight the recent advantages in the understanding of protein oxidation and the fate of these damaged proteins during aging. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Bioinformatic Prediction of WSSV-Host Protein-Protein Interaction

    Directory of Open Access Journals (Sweden)

    Zheng Sun

    2014-01-01

    Full Text Available WSSV is one of the most dangerous pathogens in shrimp aquaculture. However, the molecular mechanism of how WSSV interacts with shrimp is still not very clear. In the present study, bioinformatic approaches were used to predict interactions between proteins from WSSV and shrimp. The genome data of WSSV (NC_003225.1 and the constructed transcriptome data of F. chinensis were used to screen potentially interacting proteins by searching in protein interaction databases, including STRING, Reactome, and DIP. Forty-four pairs of proteins were suggested to have interactions between WSSV and the shrimp. Gene ontology analysis revealed that 6 pairs of these interacting proteins were classified into “extracellular region” or “receptor complex” GO-terms. KEGG pathway analysis showed that they were involved in the “ECM-receptor interaction pathway.” In the 6 pairs of interacting proteins, an envelope protein called “collagen-like protein” (WSSV-CLP encoded by an early virus gene “wsv001” in WSSV interacted with 6 deduced proteins from the shrimp, including three integrin alpha (ITGA, two integrin beta (ITGB, and one syndecan (SDC. Sequence analysis on WSSV-CLP, ITGA, ITGB, and SDC revealed that they possessed the sequence features for protein-protein interactions. This study might provide new insights into the interaction mechanisms between WSSV and shrimp.

  10. Role for protein-protein interaction databases in human genetics.

    Science.gov (United States)

    Pattin, Kristine A; Moore, Jason H

    2009-12-01

    Proteomics and the study of protein-protein interactions are becoming increasingly important in our effort to understand human diseases on a system-wide level. Thanks to the development and curation of protein-interaction databases, up-to-date information on these interaction networks is accessible and publicly available to the scientific community. As our knowledge of protein-protein interactions increases, it is important to give thought to the different ways that these resources can impact biomedical research. In this article, we highlight the importance of protein-protein interactions in human genetics and genetic epidemiology. Since protein-protein interactions demonstrate one of the strongest functional relationships between genes, combining genomic data with available proteomic data may provide us with a more in-depth understanding of common human diseases. In this review, we will discuss some of the fundamentals of protein interactions, the databases that are publicly available and how information from these databases can be used to facilitate genome-wide genetic studies.

  11. Introduction: G Protein-coupled Receptors and RGS Proteins.

    Science.gov (United States)

    Stewart, Adele; Fisher, Rory A

    2015-01-01

    Here, we provide an overview of the role of regulator of G protein-signaling (RGS) proteins in signaling by G protein-coupled receptors (GPCRs), the latter of which represent the largest class of cell surface receptors in humans responsible for transducing diverse extracellular signals into the intracellular environment. Given that GPCRs regulate virtually every known physiological process, it is unsurprising that their dysregulation plays a causative role in many human diseases and they are targets of 40-50% of currently marketed pharmaceuticals. Activated GPCRs function as GTPase exchange factors for Gα subunits of heterotrimeric G proteins, promoting the formation of Gα-GTP and dissociated Gβγ subunits that regulate diverse effectors including enzymes, ion channels, and protein kinases. Termination of signaling is mediated by the intrinsic GTPase activity of Gα subunits leading to reformation of the inactive Gαβγ heterotrimer. RGS proteins determine the magnitude and duration of cellular responses initiated by many GPCRs by functioning as GTPase-accelerating proteins (GAPs) for specific Gα subunits. Twenty canonical mammalian RGS proteins, divided into four subfamilies, act as functional GAPs while almost 20 additional proteins contain nonfunctional RGS homology domains that often mediate interaction with GPCRs or Gα subunits. RGS protein biochemistry has been well elucidated in vitro, but the physiological functions of each RGS family member remain largely unexplored. This book summarizes recent advances employing modified model organisms that reveal RGS protein functions in vivo, providing evidence that RGS protein modulation of G protein signaling and GPCRs can be as important as initiation of signaling by GPCRs. © 2015 Elsevier Inc. All rights reserved.

  12. Prion protein in milk.

    Directory of Open Access Journals (Sweden)

    Nicola Franscini

    Full Text Available BACKGROUND: Prions are known to cause transmissible spongiform encephalopathies (TSE after accumulation in the central nervous system. There is increasing evidence that prions are also present in body fluids and that prion infection by blood transmission is possible. The low concentration of the proteinaceous agent in body fluids and its long incubation time complicate epidemiologic analysis and estimation of spreading and thus the risk of human infection. This situation is particularly unsatisfactory for food and pharmaceutical industries, given the lack of sensitive tools for monitoring the infectious agent. METHODOLOGY/PRINCIPAL FINDINGS: We have developed an adsorption matrix, Alicon PrioTrap, which binds with high affinity and specificity to prion proteins. Thus we were able to identify prion protein (PrP(C--the precursor of prions (PrP(Sc--in milk from humans, cows, sheep, and goats. The absolute amount of PrP(C differs between the species (from microg/l range in sheep to ng/l range in human milk. PrP(C is also found in homogenised and pasteurised off-the-shelf milk, and even ultrahigh temperature treatment only partially diminishes endogenous PrP(C concentration. CONCLUSIONS/SIGNIFICANCE: In view of a recent study showing evidence of prion replication occurring in the mammary gland of scrapie infected sheep suffering from mastitis, the appearance of PrP(C in milk implies the possibility that milk of TSE-infected animals serves as source for PrP(Sc.

  13. IGF binding proteins.

    Science.gov (United States)

    Bach, Leon A

    2017-12-18

    Insulin-like growth factor binding proteins (IGFBPs) 1-6 bind IGFs but not insulin with high affinity. They were initially identified as serum carriers and passive inhibitors of IGF actions. However, subsequent studies showed that, although IGFBPs inhibit IGF actions in many circumstances, they may also potentiate these actions. IGFBPs are widely expressed in most tissues, and they are flexible endocrine and autocrine/paracrine regulators of IGF activity, which is essential for this important physiological system. More recently, individual IGFBPs have been shown to have IGF-independent actions. Mechanisms underlying these actions include (i) interaction with non-IGF proteins in compartments including the extracellular space and matrix, the cell surface and intracellularly; (ii) interaction with and modulation of other growth factor pathways including EGF, TGF- and VEGF; and (iii) direct or indirect transcriptional effects following nuclear entry of IGFBPs. Through these IGF-dependent and IGF-independent actions, IGFBPs modulate essential cellular processes including proliferation, survival, migration, senescence, autophagy and angiogenesis. They have been implicated in a range of disorders including malignant, metabolic, neurological and immune diseases. A more complete understanding of their cellular roles may lead to the development of novel IGFBP-based therapeutic opportunities.

  14. The netrin protein family.

    Science.gov (United States)

    Rajasekharan, Sathyanath; Kennedy, Timothy E

    2009-01-01

    The name netrin is derived from the Sanskrit Netr, meaning 'guide'. Netrins are a family of extracellular proteins that direct cell and axon migration during embryogenesis. Three secreted netrins (netrins 1, 3 and 4), and two glycosylphosphatidylinositol (GPI)-anchored membrane proteins, netrins G1 and G2, have been identified in mammals. The secreted netrins are bifunctional, acting as attractants for some cell types and repellents for others. Receptors for the secreted netrins include the Deleted in Colorectal Cancer (DCC) family, the Down's syndrome cell adhesion molecule (DSCAM), and the UNC-5 homolog family: Unc5A, B, C and D in mammals. Netrin Gs do not appear to interact with these receptors, but regulate synaptic interactions between neurons by binding to the transmembrane netrin G ligands NGL1 and 2. The chemotropic function of secreted netrins has been best characterized with regard to axon guidance during the development of the nervous system. Extending axons are tipped by a flattened, membranous structure called the growth cone. Multiple extracellular guidance cues direct axonal growth cones to their ultimate targets where synapses form. Such cues can be locally derived (short-range), or can be secreted diffusible cues that allow target cells to signal axons from a distance (long-range). The secreted netrins function as short-range and long-range guidance cues in different circumstances. In addition to directing cell migration, functional roles for netrins have been identified in the regulation of cell adhesion, the maturation of cell morphology, cell survival and tumorigenesis.

  15. Introduction to protein crystallization

    Science.gov (United States)

    McPherson, Alexander; Gavira, Jose A.

    2014-01-01

    Protein crystallization was discovered by chance about 150 years ago and was developed in the late 19th century as a powerful purification tool and as a demonstration of chemical purity. The crystallization of proteins, nucleic acids and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by the manipulation of various parameters that include temperature, ionic strength and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch and liquid–liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years owing to the advent of practical, easy-to-use screening kits and the application of laboratory robotics. A brief review will be given here of the most popular methods, some guiding principles and an overview of current technologies. PMID:24419610

  16. On the role of electrostatics on protein-protein interactions

    Science.gov (United States)

    Zhang, Zhe; Witham, Shawn; Alexov, Emil

    2011-01-01

    The role of electrostatics on protein-protein interactions and binding is reviewed in this article. A brief outline of the computational modeling, in the framework of continuum electrostatics, is presented and basic electrostatic effects occurring upon the formation of the complex are discussed. The role of the salt concentration and pH of the water phase on protein-protein binding free energy is demonstrated and indicates that the increase of the salt concentration tends to weaken the binding, an observation that is attributed to the optimization of the charge-charge interactions across the interface. It is pointed out that the pH-optimum (pH of optimal binding affinity) varies among the protein-protein complexes, and perhaps is a result of their adaptation to particular subcellular compartment. At the end, the similarities and differences between hetero- and homo-complexes are outlined and discussed with respect to the binding mode and charge complementarity. PMID:21572182

  17. Duchenne Muscular Dystrophy (DMD) Protein-Protein Interaction Mapping.

    Science.gov (United States)

    Rezaei Tavirani, Mostafa; OkHOVATIAN, Farshad; Zamanian Azodi, Mona; Rezaei Tavirani, Majid

    2017-01-01

    Duchenne muscular dystrophy (DMD) is one of the mortal diseases, subjected to study in terms of molecular investigation. In this study, the protein interaction map of this muscle-wasting condition was generated to gain a better knowledge of interactome profile of DMD. Applying Cytoscape and String Database, the protein-protein interaction network was constructed and the gene ontology of the constructed network was analyzed for biological process, molecular function, and cellular component annotations. Among 100 proteins related to DMD, dystrophin, utrophin, caveolin 3, and myogenic differentiation 1 play key roles in DMD network. In addition, the gene ontology analysis showed that regulation processes, kinase activity, and sarcoplasmic reticulum were the highlighted biological processes, molecular function, and cell component enrichments respectively for the proteins related to DMD. The central proteins and the enriched ontologies can be suggested as possible prominent agents in DMD; however, the validation studies may be required.

  18. Enhanced protein production by engineered zinc finger proteins.

    Science.gov (United States)

    Reik, Andreas; Zhou, Yuanyue; Collingwood, Trevor N; Warfe, Lyndon; Bartsevich, Victor; Kong, Yanhong; Henning, Karla A; Fallentine, Barrett K; Zhang, Lei; Zhong, Xiaohong; Jouvenot, Yann; Jamieson, Andrew C; Rebar, Edward J; Case, Casey C; Korman, Alan; Li, Xiao-Yong; Black, Amelia; King, David J; Gregory, Philip D

    2007-08-01

    Increasing the yield of therapeutic proteins from mammalian production cell lines reduces costs and decreases the time to market. To this end, we engineered a zinc finger protein transcription factor (ZFP TF) that binds a DNA sequence within the promoter driving transgene expression. This ZFP TF enabled >100% increase in protein yield from CHO cells in transient, stable, and fermentor production run settings. Expression vectors engineered to carry up to 10 ZFP binding sites further enhanced ZFP-mediated increases in protein production up to approximately 500%. The multimerized ZFP binding sites function independently of the promoter, and therefore across vector platforms. CHO cell lines stably expressing ZFP TFs demonstrated growth characteristics similar to parental cell lines. ZFP TF expression and gains in protein production were stable over >30 generations in the absence of antibiotic selection. Our results demonstrate that ZFP TFs can rapidly and stably increase protein production in mammalian cells. (c) 2006 Wiley Periodicals, Inc.

  19. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  20. On the role of electrostatics in protein-protein interactions

    Science.gov (United States)

    Zhang, Zhe; Witham, Shawn; Alexov, Emil

    2011-06-01

    The role of electrostatics in protein-protein interactions and binding is reviewed in this paper. A brief outline of the computational modeling, in the framework of continuum electrostatics, is presented and the basic electrostatic effects occurring upon the formation of the complex are discussed. The effect of the salt concentration and pH of the water phase on protein-protein binding free energy is demonstrated which indicates that the increase of the salt concentration tends to weaken the binding, an observation that is attributed to the optimization of the charge-charge interactions across the interface. It is pointed out that the pH-optimum (pH of optimal binding affinity) varies among the protein-protein complexes, and perhaps is a result of their adaptation to particular subcellular compartments. The similarities and differences between hetero- and homo-complexes are outlined and discussed with respect to the binding mode and charge complementarity.

  1. Proteins interacting with cloning scars: a source of false positive protein-protein interactions.

    Science.gov (United States)

    Banks, Charles A S; Boanca, Gina; Lee, Zachary T; Florens, Laurence; Washburn, Michael P

    2015-02-23

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected.

  2. Information assessment on predicting protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Gerstein Mark

    2004-10-01

    Full Text Available Abstract Background Identifying protein-protein interactions is fundamental for understanding the molecular machinery of the cell. Proteome-wide studies of protein-protein interactions are of significant value, but the high-throughput experimental technologies suffer from high rates of both false positive and false negative predictions. In addition to high-throughput experimental data, many diverse types of genomic data can help predict protein-protein interactions, such as mRNA expression, localization, essentiality, and functional annotation. Evaluations of the information contributions from different evidences help to establish more parsimonious models with comparable or better prediction accuracy, and to obtain biological insights of the relationships between protein-protein interactions and other genomic information. Results Our assessment is based on the genomic features used in a Bayesian network approach to predict protein-protein interactions genome-wide in yeast. In the special case, when one does not have any missing information about any of the features, our analysis shows that there is a larger information contribution from the functional-classification than from expression correlations or essentiality. We also show that in this case alternative models, such as logistic regression and random forest, may be more effective than Bayesian networks for predicting interactions. Conclusions In the restricted problem posed by the complete-information subset, we identified that the MIPS and Gene Ontology (GO functional similarity datasets as the dominating information contributors for predicting the protein-protein interactions under the framework proposed by Jansen et al. Random forests based on the MIPS and GO information alone can give highly accurate classifications. In this particular subset of complete information, adding other genomic data does little for improving predictions. We also found that the data discretizations used in the

  3. Protein Adaptations in Archaeal Extremophiles

    Science.gov (United States)

    Reed, Christopher J.; Lewis, Hunter; Trejo, Eric; Winston, Vern; Evilia, Caryn

    2013-01-01

    Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity. PMID:24151449

  4. Protein Adaptations in Archaeal Extremophiles

    Directory of Open Access Journals (Sweden)

    Christopher J. Reed

    2013-01-01

    Full Text Available Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity.

  5. Protein complexes predictions within protein interaction networks using genetic algorithms.

    Science.gov (United States)

    Ramadan, Emad; Naef, Ahmed; Ahmed, Moataz

    2016-07-25

    Protein-protein interaction networks are receiving increased attention due to their importance in understanding life at the cellular level. A major challenge in systems biology is to understand the modular structure of such biological networks. Although clustering techniques have been proposed for clustering protein-protein interaction networks, those techniques suffer from some drawbacks. The application of earlier clustering techniques to protein-protein interaction networks in order to predict protein complexes within the networks does not yield good results due to the small-world and power-law properties of these networks. In this paper, we construct a new clustering algorithm for predicting protein complexes through the use of genetic algorithms. We design an objective function for exclusive clustering and overlapping clustering. We assess the quality of our proposed clustering algorithm using two gold-standard data sets. Our algorithm can identify protein complexes that are significantly enriched in the gold-standard data sets. Furthermore, our method surpasses three competing methods: MCL, ClusterOne, and MCODE in terms of the quality of the predicted complexes. The source code and accompanying examples are freely available at http://faculty.kfupm.edu.sa/ics/eramadan/GACluster.zip .

  6. Noninvasive imaging of protein-protein interactions in living animals

    Science.gov (United States)

    Luker, Gary D.; Sharma, Vijay; Pica, Christina M.; Dahlheimer, Julie L.; Li, Wei; Ochesky, Joseph; Ryan, Christine E.; Piwnica-Worms, Helen; Piwnica-Worms, David

    2002-05-01

    Protein-protein interactions control transcription, cell division, and cell proliferation as well as mediate signal transduction, oncogenic transformation, and regulation of cell death. Although a variety of methods have been used to investigate protein interactions in vitro and in cultured cells, none can analyze these interactions in intact, living animals. To enable noninvasive molecular imaging of protein-protein interactions in vivo by positron-emission tomography and fluorescence imaging, we engineered a fusion reporter gene comprising a mutant herpes simplex virus 1 thymidine kinase and green fluorescent protein for readout of a tetracycline-inducible, two-hybrid system in vivo. By using micro-positron-emission tomography, interactions between p53 tumor suppressor and the large T antigen of simian virus 40 were visualized in tumor xenografts of HeLa cells stably transfected with the imaging constructs. Imaging protein-binding partners in vivo will enable functional proteomics in whole animals and provide a tool for screening compounds targeted to specific protein-protein interactions in living animals.

  7. Cry protein crystals: a novel platform for protein delivery.

    Science.gov (United States)

    Nair, Manoj S; Lee, Marianne M; Bonnegarde-Bernard, Astrid; Wallace, Julie A; Dean, Donald H; Ostrowski, Michael C; Burry, Richard W; Boyaka, Prosper N; Chan, Michael K

    2015-01-01

    Protein delivery platforms are important tools in the development of novel protein therapeutics and biotechnologies. We have developed a new class of protein delivery agent based on sub-micrometer-sized Cry3Aa protein crystals that naturally form within the bacterium Bacillus thuringiensis. We demonstrate that fusion of the cry3Aa gene to that of various reporter proteins allows for the facile production of Cry3Aa fusion protein crystals for use in subsequent applications. These Cry3Aa fusion protein crystals are efficiently taken up and retained by macrophages and other cell lines in vitro, and can be delivered to mice in vivo via multiple modes of administration. Oral delivery of Cry3Aa fusion protein crystals to C57BL/6 mice leads to their uptake by MHC class II cells, including macrophages in the Peyer's patches, supporting the notion that the Cry3Aa framework can be used to stabilize cargo protein against degradation for delivery to gastrointestinal lymphoid tissues.

  8. Cry protein crystals: a novel platform for protein delivery.

    Directory of Open Access Journals (Sweden)

    Manoj S Nair

    Full Text Available Protein delivery platforms are important tools in the development of novel protein therapeutics and biotechnologies. We have developed a new class of protein delivery agent based on sub-micrometer-sized Cry3Aa protein crystals that naturally form within the bacterium Bacillus thuringiensis. We demonstrate that fusion of the cry3Aa gene to that of various reporter proteins allows for the facile production of Cry3Aa fusion protein crystals for use in subsequent applications. These Cry3Aa fusion protein crystals are efficiently taken up and retained by macrophages and other cell lines in vitro, and can be delivered to mice in vivo via multiple modes of administration. Oral delivery of Cry3Aa fusion protein crystals to C57BL/6 mice leads to their uptake by MHC class II cells, including macrophages in the Peyer's patches, supporting the notion that the Cry3Aa framework can be used to stabilize cargo protein against degradation for delivery to gastrointestinal lymphoid tissues.

  9. Modular protein switches derived from antibody mimetic proteins.

    Science.gov (United States)

    Nicholes, N; Date, A; Beaujean, P; Hauk, P; Kanwar, M; Ostermeier, M

    2016-02-01

    Protein switches have potential applications as biosensors and selective protein therapeutics. Protein switches built by fusion of proteins with the prerequisite input and output functions are currently developed using an ad hoc process. A modular switch platform in which existing switches could be readily adapted to respond to any ligand would be advantageous. We investigated the feasibility of a modular protein switch platform based on fusions of the enzyme TEM-1 β-lactamase (BLA) with two different antibody mimetic proteins: designed ankyrin repeat proteins (DARPins) and monobodies. We created libraries of random insertions of the gene encoding BLA into genes encoding a DARPin or a monobody designed to bind maltose-binding protein (MBP). From these libraries, we used a genetic selection system for β-lactamase activity to identify genes that conferred MBP-dependent ampicillin resistance to Escherichia coli. Some of these selected genes encoded switch proteins whose enzymatic activity increased up to 14-fold in the presence of MBP. We next introduced mutations into the antibody mimetic domain of these switches that were known to cause binding to different ligands. To different degrees, introduction of the mutations resulted in switches with the desired specificity, illustrating the potential modularity of these platforms. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Cry Protein Crystals: A Novel Platform for Protein Delivery

    Science.gov (United States)

    Bonnegarde-Bernard, Astrid; Wallace, Julie A.; Dean, Donald H.; Ostrowski, Michael C.; Burry, Richard W.; Boyaka, Prosper N.; Chan, Michael K.

    2015-01-01

    Protein delivery platforms are important tools in the development of novel protein therapeutics and biotechnologies. We have developed a new class of protein delivery agent based on sub-micrometer-sized Cry3Aa protein crystals that naturally form within the bacterium Bacillus thuringiensis. We demonstrate that fusion of the cry3Aa gene to that of various reporter proteins allows for the facile production of Cry3Aa fusion protein crystals for use in subsequent applications. These Cry3Aa fusion protein crystals are efficiently taken up and retained by macrophages and other cell lines in vitro, and can be delivered to mice in vivo via multiple modes of administration. Oral delivery of Cry3Aa fusion protein crystals to C57BL/6 mice leads to their uptake by MHC class II cells, including macrophages in the Peyer’s patches, supporting the notion that the Cry3Aa framework can be used to stabilize cargo protein against degradation for delivery to gastrointestinal lymphoid tissues. PMID:26030844

  11. Protein degradation and protection against misfolded or damaged proteins

    Science.gov (United States)

    Goldberg, Alfred L.

    2003-12-01

    The ultimate mechanism that cells use to ensure the quality of intracellular proteins is the selective destruction of misfolded or damaged polypeptides. In eukaryotic cells, the large ATP-dependent proteolytic machine, the 26S proteasome, prevents the accumulation of non-functional, potentially toxic proteins. This process is of particular importance in protecting cells against harsh conditions (for example, heat shock or oxidative stress) and in a variety of diseases (for example, cystic fibrosis and the major neurodegenerative diseases). A full understanding of the pathogenesis of the protein-folding diseases will require greater knowledge of how misfolded proteins are recognized and selectively degraded.

  12. Protein (Cyanobacteria): 500468482 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available othetical protein Synechococcus sp. RCC307 MRLLCFAVPLAGTLSLLASSSLFAAAKAHPNHHWQNRRAALQEMPVVRDYPDGYGTAAQLPVRRASLRNVARSGQLLDPQAAQRRCNIGRLIGGLAGGGLGYAASRQDGRAWAIPLGALLGSQVGCPVAQGQGPFGGLGY

  13. Protein (Cyanobacteria): 553734844 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hypothetical protein Lyngbya aestuarii METEYQPHFSRHEYFWKIHSAFLAADFWLISKGSREQLGRPIQEYKKRELATWRFPSRAKFAREGCFGMLTPKCLDPKYSYYLCEFIWQSGLWQTYSCGAITWQHLRINDVRNVFKPGSYFLTTEGNAILIAPVKLQAATAFMD

  14. Protein (Cyanobacteria): 493031649 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hypothetical protein Coleofasciculus chthonoplastes MNPFKRVLAFSRNFSSRLSARLSVYHQWFNIYSKDSATTNLTRHNINPFKRVLAFSRNFSSRLSARLS...VYHQWFNIYSKDSATTNLTGHNMNPFKRVLAFSRNFSSRLSARLSVYHQWFNIYSKDSATTNLTGHNMNPFKRVLAFSRNFSSRLSARLSVYHQWFNIYSKDSATTNLTGHNMNPFKRVLAFSRNFSSRLDARLSVYHQ

  15. How do Proteins Misfold and Aggregate?

    Indian Academy of Sciences (India)

    samrat

    Brain. Alzheimer's disease. Intrinsically disordered. Tau protein. Brain. Transmissible spongiform encephalopathy α-helical. Prion protein. Protein deposit. Disease. Type of structure. Amyloido- genic proteins. Skin & muscle. Injection-localized amyloidosis. Largely α - helical. Insulin. Brain. Parkinson's disease. Intrinsically.

  16. Protein (Viridiplantae): 159472102 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 4474 predicted protein, partial Chlamydomonas reinhardtii PPSPAPPSPEPGSPPPSPAPPSPQPPSPAPPSPEPGSPPPSPAPPSPKPPSPAPPSPEQPGSPPPSPPPPRPQPPSPAPPSPEPGSPPPSPAPPSPQPPSPAPPSPEPGSPPPSPAPTQP ...

  17. Protein (Cyanobacteria): 652325626 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hetical protein Fischerella sp. PCC 9431 MQRRCERNRKRSKRRAIYCPIHGCYLDSVSQKYPLFADRPGQLQQRGIGRQTALLLVAHKTAVPLEGEWLEAFWCDQCQEKKWYHLKKRDRVYEVSIAAPELWQQAMGVIYPEGNPSVGEFTRRHARMVGCKSSKDFGFIG

  18. Protein (Cyanobacteria): 129527 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ing protein Oscillatoriales cyanobacterium JSC-12 MLLIDTSVWISVFRDRTGQVRQKLETLIDARDIFLTRFTQLKLLQGSLNEKEWTLLSTYLETQDYVEPVGNSWRAAARIYYDLRRRGLTVRSPIDCCIAQAALENDLLLIHNDRDFETIAQVRSLQHFRFQP ...

  19. Protein (Cyanobacteria): 516358569 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available tical protein Scytonema hofmanni MEDIVPKQTTLCPSARPESADGVVFGIVGGTATVPRVAYLKQLLPVTNELMAKTGSVKPAEIFRTAASCVESGCQHFDGKDCRLSMRIVEKLPAVVEELPACSIRRNCRWWQQEGKAACMRCPQIVTDNYSSSEQLRQAADPSVYFQT

  20. Protein detection system

    Science.gov (United States)

    Fruetel, Julie A [Livermore, CA; Fiechtner, Gregory J [Bethesda, MD; Kliner, Dahv A. V. [San Ramon, CA; McIlroy, Andrew [Livermore, CA

    2009-05-05

    The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.

  1. [Fillagrin - Multifunctional Protein].

    Science.gov (United States)

    2016-04-01

    Effective physical, chemical, biochemical and immune function of the skin requires a corresponding structure of the epidermis. Filaggrin, one of epidermal proteins, is essential for the formation of corneocytes and intracellular metabolites, which in turn contribute to maintaining the stratum corneum humidity and acidic pH of the skin surface. However, a number of profilaggrin gene mutations have been described, as well as different inflammatory conditions and different external factors that all resulted in filaggrin deficiency. Filaggrin deficiency is recorded in different skin diseases and discoveries related to metabolic processing of filaggrin point to new goals in therapeutic strategies. In this preview, the main properties of the formation and metabolism of filaggrin are described, as well as clinical implications of filaggrin deficiency in the etiopathogenesis of some skin diseases.

  2. Protein Hormones and Immunity‡

    Science.gov (United States)

    Kelley, Keith W.; Weigent, Douglas A.; Kooijman, Ron

    2007-01-01

    A number of observations and discoveries over the past 20 years support the concept of important physiological interactions between the endocrine and immune systems. The best known pathway for transmission of information from the immune system to the neuroendocrine system is humoral in the form of cytokines, although neural transmission via the afferent vagus is well documented also. In the other direction, efferent signals from the nervous system to the immune system are conveyed by both the neuroendocrine and autonomic nervous systems. Communication is possible because the nervous and immune systems share a common biochemical language involving shared ligands and receptors, including neurotransmitters, neuropeptides, growth factors, neuroendocrine hormones and cytokines. This means that the brain functions as an immune-regulating organ participating in immune responses. A great deal of evidence has accumulated and confirmed that hormones secreted by the neuroendocrine system play an important role in communication and regulation of the cells of the immune system. Among protein hormones, this has been most clearly documented for prolactin (PRL), growth hormone (GH), and insulin-like growth factor-1 (IGF-I), but significant influences on immunity by thyroid stimulating hormone (TSH) have also been demonstrated. Here we review evidence obtained during the past 20 years to clearly demonstrate that neuroendocrine protein hormones influence immunity and that immune processes affect the neuroendocrine system. New findings highlight a previously undiscovered route of communication between the immune and endocrine systems that is now known to occur at the cellular level. This communication system is activated when inflammatory processes induced by proinflammatory cytokines antagonize the function of a variety of hormones, which then causes endocrine resistance in both the periphery and brain. Homeostasis during inflammation is achieved by a balance between cytokines and

  3. Drosophila Protein interaction Map (DPiM)

    OpenAIRE

    Guruharsha, K.G.; Obar, Robert A.; Mintseris, Julian; Aishwarya, K.; Krishnan, R.T.; VijayRaghavan, K.; Artavanis-Tsakonas, Spyros

    2012-01-01

    Proteins perform essential cellular functions as part of protein complexes, often in conjunction with RNA, DNA, metabolites and other small molecules. The genome encodes thousands of proteins but not all of them are expressed in every cell type; and expressed proteins are not active at all times. Such diversity of protein expression and function accounts for the level of biological intricacy seen in nature. Defining protein-protein interactions in protein complexes, and establishing the when,...

  4. Heterogeneity in recombinant protein production

    DEFF Research Database (Denmark)

    Schalén, Martin; Johanson, Ted; Lundin, Luisa

    2012-01-01

    contribute to make a population in a fermenter heterogeneous, resulting in cell-to-cell variation in physiological parameters of the microbial culture. Our study aims at investigating how population heterogeneity and recombinant protein production is affected by environmental gradients in bioreactors....... For this purpose, a Saccharomyces cerevisiae strain, that functions as a protein production reporter, has been developed. A heterologous protein has been tagged with a fluorescent protein providing a way to measure the amount of heterologous protein produced by the cells on single cell level. Gradients...... are simulated in small bioreactors and the population heterogeneity can be visualised by analysing single cells with flow cytometry. This can give new insights to cell physiology and recombinant protein production at the industrial scale....

  5. Mechanical Protein Unfolding and Degradation.

    Science.gov (United States)

    Olivares, Adrian O; Baker, Tania A; Sauer, Robert T

    2018-02-10

    AAA+ proteolytic machines use energy from ATP hydrolysis to degrade damaged, misfolded, or unneeded proteins. Protein degradation occurs within a barrel-shaped self-compartmentalized peptidase. Before protein substrates can enter this peptidase, they must be unfolded and then translocated through the axial pore of an AAA+ ring hexamer. An unstructured region of the protein substrate is initially engaged in the axial pore, and conformational changes in the ring, powered by ATP hydrolysis, generate a mechanical force that pulls on and denatures the substrate. The same conformational changes in the hexameric ring then mediate mechanical translocation of the unfolded polypeptide into the peptidase chamber. For the bacterial ClpXP and ClpAP AAA+ proteases, the mechanical activities of protein unfolding and translocation have been directly visualized by single-molecule optical trapping. These studies in combination with structural and biochemical experiments illuminate many principles that underlie this universal mechanism of ATP-fueled protein unfolding and subsequent destruction.

  6. Multiple protonation equilibria in electrostatics of protein-protein binding.

    Science.gov (United States)

    Piłat, Zofia; Antosiewicz, Jan M

    2008-11-27

    All proteins contain groups capable of exchanging protons with their environment. We present here an approach, based on a rigorous thermodynamic cycle and the partition functions for energy levels characterizing protonation states of the associating proteins and their complex, to compute the electrostatic pH-dependent contribution to the free energy of protein-protein binding. The computed electrostatic binding free energies include the pH of the solution as the variable of state, mutual "polarization" of associating proteins reflected as changes in the distribution of their protonation states upon binding and fluctuations between available protonation states. The only fixed property of both proteins is the conformation; the structure of the monomers is kept in the same conformation as they have in the complex structure. As a reference, we use the electrostatic binding free energies obtained from the traditional Poisson-Boltzmann model, computed for a single macromolecular conformation fixed in a given protonation state, appropriate for given solution conditions. The new approach was tested for 12 protein-protein complexes. It is shown that explicit inclusion of protonation degrees of freedom might lead to a substantially different estimation of the electrostatic contribution to the binding free energy than that based on the traditional Poisson-Boltzmann model. This has important implications for the balancing of different contributions to the energetics of protein-protein binding and other related problems, for example, the choice of protein models for Brownian dynamics simulations of their association. Our procedure can be generalized to include conformational degrees of freedom by combining it with molecular dynamics simulations at constant pH. Unfortunately, in practice, a prohibitive factor is an enormous requirement for computer time and power. However, there may be some hope for solving this problem by combining existing constant pH molecular dynamics

  7. Protein: FBB5 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBB5 RNA silencing EIF2C2 AGO2 EIF2C2 Protein argonaute-2 Eukaryotic translation in...itiation factor 2C 2, PAZ Piwi domain protein, Protein slicer 9606 Homo sapiens Q9UKV8 27161 3LUK, 3LUH, 3LUG, 3QX8, 3QX9, 3LUD, 3LUJ, 3LUC 27161 Q9UKV8 18524951 ...

  8. Microfluidic Methods for Protein Microarrays

    OpenAIRE

    Hartmann, Michael

    2010-01-01

    Protein microarray technology has an enormous potential for in vitro diagnostics (IVD)1. Miniaturized and parallelized immunoassays are powerful tools to measure dozens of parameters from minute amounts of sample, whilst only requiring small amounts of reagent. Protein microarrays have become well-established research tools in basic and applied research and the first diagnostic products are already released on the market. However, in order for protein microarrays to become broadly accepted to...

  9. Epicutaneous sensitization with protein antigen

    Directory of Open Access Journals (Sweden)

    I-Lin Liu

    2012-12-01

    Full Text Available In the past few decades there has been a progressive understanding that epicutaneous sensitization with protein antigen is an important sensitization route in patients with atopic dermatitis. A murine protein-patch model has been established, and an abundance of data has been obtained from experiments using this model. This review discusses the characteristics of epicutaneous sensitization with protein antigen, the induced immune responses, the underlying mechanisms, and the therapeutic potential.

  10. Scientist prepare Lysozyme Protein Crystal

    Science.gov (United States)

    1996-01-01

    Dan Carter and Charles Sisk center a Lysozyme Protein crystal grown aboard the USML-2 shuttle mission. Protein isolated from hen egg-white and functions as a bacteriostatic enzyme by degrading bacterial cell walls. First enzyme ever characterized by protein crystallography. It is used as an excellent model system for better understanding parameters involved in microgravity crystal growth experiments. The goal is to compare kinetic data from microgravity experiments with data from laboratory experiments to study the equilibrium.

  11. Developing algorithms for predicting protein-protein interactions of homology modeled proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Shawn Bryan; Sale, Kenneth L.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2006-01-01

    The goal of this project was to examine the protein-protein docking problem, especially as it relates to homology-based structures, identify the key bottlenecks in current software tools, and evaluate and prototype new algorithms that may be developed to improve these bottlenecks. This report describes the current challenges in the protein-protein docking problem: correctly predicting the binding site for the protein-protein interaction and correctly placing the sidechains. Two different and complementary approaches are taken that can help with the protein-protein docking problem. The first approach is to predict interaction sites prior to docking, and uses bioinformatics studies of protein-protein interactions to predict theses interaction site. The second approach is to improve validation of predicted complexes after docking, and uses an improved scoring function for evaluating proposed docked poses, incorporating a solvation term. This scoring function demonstrates significant improvement over current state-of-the art functions. Initial studies on both these approaches are promising, and argue for full development of these algorithms.

  12. Protein aggregation kinetics during Protein A chromatography. Case study for an Fc fusion protein.

    Science.gov (United States)

    Shukla, Abhinav A; Gupta, Priyanka; Han, Xuejun

    2007-11-09

    Protein A chromatography has come to be widely adopted for large-scale purification of monoclonal antibodies and Fc fusion proteins. The low pH conditions required for Protein A elution can often lead to aggregation issues for these products. A concerted study of the kinetics of aggregate formation and their relation to chromatography on Protein A media has been lacking. This paper provides a framework to describe aggregation kinetics for an Fc fusion protein that was highly susceptible to aggregate formation under low pH conditions. In contrast to what is usually expected to be a higher order reaction, first order aggregation kinetics were observed for this protein over a wide range of conditions. A comparison of the rate constants of aggregation forms an effective means of comparing various stabilizing additives to the elution buffer with one another. Inclusion of urea in the elution buffer at moderate concentrations (Protein A column were both found to be effective solutions to the aggregation issue. Elution from the Protein A resin was found to increase the aggregation rate constants over and above what would be expected from exposure to low pH conditions in solution alone. This demonstrates that Protein A-Fc interactions can destabilize product structure and increase the tendency to aggregate. The results presented here are anticipated to assist the development of Protein A process conditions for products that are prone to form high molecular weight aggregates during column elution.

  13. Protein function prediction using neighbor relativity in protein-protein interaction network.

    Science.gov (United States)

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The clinical expression of hereditary protein C and protein S deficiency: : a relation to clinical thrombotic risk-factors and to levels of protein C and protein S

    NARCIS (Netherlands)

    Henkens, C. M. A.; van der Meer, J.; Hillege, J. L.; Bom, V. J. J.; Halie, M. R.; van der Schaaf, W.

    We investigated 103 first-degree relatives of 13 unrelated protein C or protein S deficient patients to assess the role of additional thrombotic risk factors and of protein C and protein S levels in the clinical expression of hereditary protein C and protein S deficiency. Fifty-seven relatives were

  15. Building protein-protein interaction networks for Leishmania species through protein structural information.

    Science.gov (United States)

    Dos Santos Vasconcelos, Crhisllane Rafaele; de Lima Campos, Túlio; Rezende, Antonio Mauro

    2018-03-06

    Systematic analysis of a parasite interactome is a key approach to understand different biological processes. It makes possible to elucidate disease mechanisms, to predict protein functions and to select promising targets for drug development. Currently, several approaches for protein interaction prediction for non-model species incorporate only small fractions of the entire proteomes and their interactions. Based on this perspective, this study presents an integration of computational methodologies, protein network predictions and comparative analysis of the protozoan species Leishmania braziliensis and Leishmania infantum. These parasites cause Leishmaniasis, a worldwide distributed and neglected disease, with limited treatment options using currently available drugs. The predicted interactions were obtained from a meta-approach, applying rigid body docking tests and template-based docking on protein structures predicted by different comparative modeling techniques. In addition, we trained a machine-learning algorithm (Gradient Boosting) using docking information performed on a curated set of positive and negative protein interaction data. Our final model obtained an AUC = 0.88, with recall = 0.69, specificity = 0.88 and precision = 0.83. Using this approach, it was possible to confidently predict 681 protein structures and 6198 protein interactions for L. braziliensis, and 708 protein structures and 7391 protein interactions for L. infantum. The predicted networks were integrated to protein interaction data already available, analyzed using several topological features and used to classify proteins as essential for network stability. The present study allowed to demonstrate the importance of integrating different methodologies of interaction prediction to increase the coverage of the protein interaction of the studied protocols, besides it made available protein structures and interactions not previously reported.

  16. High throughput protein production screening

    Science.gov (United States)

    Beernink, Peter T [Walnut Creek, CA; Coleman, Matthew A [Oakland, CA; Segelke, Brent W [San Ramon, CA

    2009-09-08

    Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.

  17. Computational protein design: a review

    International Nuclear Information System (INIS)

    Coluzza, Ivan

    2017-01-01

    Proteins are one of the most versatile modular assembling systems in nature. Experimentally, more than 110 000 protein structures have been identified and more are deposited every day in the Protein Data Bank. Such an enormous structural variety is to a first approximation controlled by the sequence of amino acids along the peptide chain of each protein. Understanding how the structural and functional properties of the target can be encoded in this sequence is the main objective of protein design. Unfortunately, rational protein design remains one of the major challenges across the disciplines of biology, physics and chemistry. The implications of solving this problem are enormous and branch into materials science, drug design, evolution and even cryptography. For instance, in the field of drug design an effective computational method to design protein-based ligands for biological targets such as viruses, bacteria or tumour cells, could give a significant boost to the development of new therapies with reduced side effects. In materials science, self-assembly is a highly desired property and soon artificial proteins could represent a new class of designable self-assembling materials. The scope of this review is to describe the state of the art in computational protein design methods and give the reader an outline of what developments could be expected in the near future. (topical review)

  18. Protein intrinsic disorder in plants.

    Science.gov (United States)

    Pazos, Florencio; Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto

    2013-09-12

    To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional) form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously) with different partners. Similarly, they also serve as signal integrators in signaling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms cannot escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  19. Computational protein design: a review

    Science.gov (United States)

    Coluzza, Ivan

    2017-04-01

    Proteins are one of the most versatile modular assembling systems in nature. Experimentally, more than 110 000 protein structures have been identified and more are deposited every day in the Protein Data Bank. Such an enormous structural variety is to a first approximation controlled by the sequence of amino acids along the peptide chain of each protein. Understanding how the structural and functional properties of the target can be encoded in this sequence is the main objective of protein design. Unfortunately, rational protein design remains one of the major challenges across the disciplines of biology, physics and chemistry. The implications of solving this problem are enormous and branch into materials science, drug design, evolution and even cryptography. For instance, in the field of drug design an effective computational method to design protein-based ligands for biological targets such as viruses, bacteria or tumour cells, could give a significant boost to the development of new therapies with reduced side effects. In materials science, self-assembly is a highly desired property and soon artificial proteins could represent a new class of designable self-assembling materials. The scope of this review is to describe the state of the art in computational protein design methods and give the reader an outline of what developments could be expected in the near future.

  20. Protein-stabilized magnetic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Soenen, S.J.H. [Interdisciplinary Research Center, Katholieke Universiteit Leuven-Campus Kortrijk, University Campus, B-8500 Kortrijk (Belgium); Hodenius, M.; Schmitz-Rode, T. [Helmholtz Institute, Applied Medical Engineering, RWTH Aachen University, Aachen (Germany); De Cuyper, M. [Interdisciplinary Research Center, Katholieke Universiteit Leuven-Campus Kortrijk, University Campus, B-8500 Kortrijk (Belgium)], E-mail: Marcel.DeCuyper@KULeuven-Kortrijk.be

    2008-03-15

    The adsorption of bovine serum albumin (BSA) and egg yolk phosvitin on magnetic fluid particles was investigated. Incubation mixtures were prepared by mixing an alkaline suspension of tetramethylammonium-coated magnetite cores with protein solutions at various protein/Fe{sub 3}O{sub 4} ratios, followed by dialysis against a 5 mM TES buffer (pH 7.0), after which separation of bound and non-bound protein by high-gradient magnetophoresis was executed. Both the kinetic profiles as well as the isotherms of adsorption strongly differed for both proteins. In case of the spherical BSA, initially, abundant adsorption occurred, then it decreased and-at high protein concentrations-it slowly raised again. In contrast, with the highly phosphorylated phosvitin, binding slowly started and the extent of protein adsorption remained unchanged both as a function of time and phosvitin concentration. Competition binding studies, using binary protein mixtures composed of equal weight amounts of BSA and phosvitin, showed that binding of the latter protein is 'unrealistically' high. Based on the geometry of the two proteins, putative pictures on their orientation on the particle's surface in the various experimental conditions were deduced.

  1. Protein intrinsic disorder in plants

    Directory of Open Access Journals (Sweden)

    Florencio ePazos

    2013-09-01

    Full Text Available To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously with different partners. Similarly, they also serve as signal integrators in signalling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms can not escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  2. Membrane fission by protein crowding.

    Science.gov (United States)

    Snead, Wilton T; Hayden, Carl C; Gadok, Avinash K; Zhao, Chi; Lafer, Eileen M; Rangamani, Padmini; Stachowiak, Jeanne C

    2017-04-18

    Membrane fission, which facilitates compartmentalization of biological processes into discrete, membrane-bound volumes, is essential for cellular life. Proteins with specific structural features including constricting rings, helical scaffolds, and hydrophobic membrane insertions are thought to be the primary drivers of fission. In contrast, here we report a mechanism of fission that is independent of protein structure-steric pressure among membrane-bound proteins. In particular, random collisions among crowded proteins generate substantial pressure, which if unbalanced on the opposite membrane surface can dramatically increase membrane curvature, leading to fission. Using the endocytic protein epsin1 N-terminal homology domain (ENTH), previously thought to drive fission by hydrophobic insertion, our results show that membrane coverage correlates equally with fission regardless of the hydrophobicity of insertions. Specifically, combining FRET-based measurements of membrane coverage with multiple, independent measurements of membrane vesiculation revealed that fission became spontaneous as steric pressure increased. Further, fission efficiency remained equally potent when helices were replaced by synthetic membrane-binding motifs. These data challenge the view that hydrophobic insertions drive membrane fission, suggesting instead that the role of insertions is to anchor proteins strongly to membrane surfaces, amplifying steric pressure. In line with these conclusions, even green fluorescent protein (GFP) was able to drive fission efficiently when bound to the membrane at high coverage. Our conclusions are further strengthened by the finding that intrinsically disordered proteins, which have large hydrodynamic radii yet lack a defined structure, drove fission with substantially greater potency than smaller, structured proteins.

  3. Update on protein structure prediction

    DEFF Research Database (Denmark)

    Hubbard, T; Tramontano, A; Barton, G

    1996-01-01

    Computational tools for protein structure prediction are of great interest to molecular, structural and theoretical biologists due to a rapidly increasing number of protein sequences with no known structure. In October 1995, a workshop was held at IRBM to predict as much as possible about a number...... of proteins of biological interest using ab initio pre!diction of fold recognition methods. 112 protein sequences were collected via an open invitation for target submissions. 17 were selected for prediction during the workshop and for 11 of these a prediction of some reliability could be made. We believe...

  4. Toxic Proteins in Neurodegenerative Disease

    Science.gov (United States)

    Taylor, J. Paul; Hardy, John; Fischbeck, Kenneth H.

    2002-06-01

    A broad range of neurodegenerative disorders is characterized by neuronal damage that may be caused by toxic, aggregation-prone proteins. As genes are identified for these disorders and cell culture and animal models are developed, it has become clear that a major effect of mutations in these genes is the abnormal processing and accumulation of misfolded protein in neuronal inclusions and plaques. Increased understanding of the cellular mechanisms for disposal of abnormal proteins and of the effects of toxic protein accumulation on neuronal survival may allow the development of rational, effective treatment for these disorders.

  5. Protein stability: a crystallographer’s perspective

    International Nuclear Information System (INIS)

    Deller, Marc C.; Kong, Leopold; Rupp, Bernhard

    2016-01-01

    An understanding of protein stability is essential for optimizing the expression, purification and crystallization of proteins. In this review, discussion will focus on factors affecting protein stability on a somewhat practical level, particularly from the view of a protein crystallographer. Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed

  6. Protein-Protein Interaction Reagents | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory University has a library of genes used to study protein-protein interactions in mammalian cells. These genes are cloned in different mammalian expression vectors. A list of available cancer-associated genes can be accessed below. Emory_CTD^2_PPI_Reagents.xlsx Contact: Haian Fu

  7. Human Serum Protein-Bound iodine and Protein Fractions at ...

    African Journals Online (AJOL)

    Iodine profile of Nigerians at different ages in both sexes and in pregnant women, and under narcotic influence, such as alcoholism, cigarette smoking and marijuana addiction were studied. Their serum total protein, albumin and globulin concentrations were also determined. Results of the study showed that serum protein ...

  8. Vaccinia complement control protein: Multi-functional protein and a ...

    Indian Academy of Sciences (India)

    Unknown

    molecule and potential drug. [Jha P and Kotwal G J 2003 Vaccinia complement control protein: Multi-functional protein and a potential wonder drug; J. Biosci. 28 265–271]. 1. Introduction. The pathogen-host interaction is a dynamic phenomenon which involves generation of defense mechanism by host and its evasion by ...

  9. Analysis of protein folds using protein contact networks

    Indian Academy of Sciences (India)

    Proteins are important biomolecules, which perform diverse structural and functional roles in living systems. Starting from a linear chain of amino acids, proteins fold to different secondary structures, which then fold through short- and long-range interactions to give rise to the final three-dimensional shapes useful to carry out ...

  10. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes

    Directory of Open Access Journals (Sweden)

    Heike Angerer

    2015-02-01

    Full Text Available In eukaryotic cells, mitochondria host ancient essential bioenergetic and biosynthetic pathways. LYR (leucine/tyrosine/arginine motif proteins (LYRMs of the Complex1_LYR-like superfamily interact with protein complexes of bacterial origin. Many LYR proteins function as extra subunits (LYRM3 and LYRM6 or novel assembly factors (LYRM7, LYRM8, ACN9 and FMC1 of the oxidative phosphorylation (OXPHOS core complexes. Structural insights into complex I accessory subunits LYRM6 and LYRM3 have been provided by analyses of EM and X-ray structures of complex I from bovine and the yeast Yarrowia lipolytica, respectively. Combined structural and biochemical studies revealed that LYRM6 resides at the matrix arm close to the ubiquinone reduction site. For LYRM3, a position at the distal proton-pumping membrane arm facing the matrix space is suggested. Both LYRMs are supposed to anchor an acyl-carrier protein (ACPM independently to complex I. The function of this duplicated protein interaction of ACPM with respiratory complex I is still unknown. Analysis of protein-protein interaction screens, genetic analyses and predicted multi-domain LYRMs offer further clues on an interaction network and adaptor-like function of LYR proteins in mitochondria.

  11. Protein linguistics - a grammar for modular protein assembly?

    Science.gov (United States)

    Gimona, Mario

    2006-01-01

    The correspondence between biology and linguistics at the level of sequence and lexical inventories, and of structure and syntax, has fuelled attempts to describe genome structure by the rules of formal linguistics. But how can we define protein linguistic rules? And how could compositional semantics improve our understanding of protein organization and functional plasticity?

  12. Inactivation of Tor proteins affects the dynamics of endocytic proteins ...

    Indian Academy of Sciences (India)

    Tor2 is an activator of the Rom2/Rho1 pathway that regulates -factor internalization. Since the recruitment of endocytic proteins such as actin-binding proteins and the amphiphysins precedes the internalization of -factor, we hypothesized that loss of Tor function leads to an alteration in the dynamics of the endocytic ...

  13. Website on Protein Interaction and Protein Structure Related Work

    Science.gov (United States)

    Samanta, Manoj; Liang, Shoudan; Biegel, Bryan (Technical Monitor)

    2003-01-01

    In today's world, three seemingly diverse fields - computer information technology, nanotechnology and biotechnology are joining forces to enlarge our scientific knowledge and solve complex technological problems. Our group is dedicated to conduct theoretical research exploring the challenges in this area. The major areas of research include: 1) Yeast Protein Interactions; 2) Protein Structures; and 3) Current Transport through Small Molecules.

  14. Utilization of soya protein as an alternative protein source in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-05

    Jan 5, 2009 ... source in Oreochromis niloticus diet: Growth performance ... The effect of replacing fish protein with soya protein in tilapia (Oreochromis niloticus) diets was ..... Thomassen MS, Rosjo C (1989). Different fats in feed for salmon: influence on sensory parameters, growth rate and fatty acids in muscle and heart.

  15. Protein-Protein Interactions (PPI) reagents: | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory University has a library of genes used to study protein-protein interactions in mammalian cells. These genes are cloned in different mammalian expression vectors. A list of available cancer-associated genes can be accessed below.

  16. Protein scissors: Photocleavage of proteins at specific locations

    Indian Academy of Sciences (India)

    Unknown

    The current design of protein cleavage reagents combines the structural features that are needed for the recognition of the ... (MW = 18,365) were purchased from Sigma Chemical Co. Protein solutions were pre- ... photocleavage properties of Py-Phe, containing a six-atom tether, are described here. 3.1 Absorption studies.

  17. Dark proteins disturb multichromophore coupling in tetrameric fluorescent proteins

    NARCIS (Netherlands)

    Blum, Christian; Meixner, Alfred J.; Subramaniam, Vinod

    2011-01-01

    DsRed is representative of the tetrameric reef coral fluorescent proteins that constitute particularly interesting coupled multichromophoric systems. Either a green emitting or a red emitting chromophore can form within each of the monomers of the protein tetramer. Within the tetramers the

  18. Imaging protein-protein interactions in living cells

    NARCIS (Netherlands)

    Hink, M.A.; Bisseling, T.; Visser, A.J.W.G.

    2002-01-01

    The complex organization of plant cells makes it likely that the molecular behaviour of proteins in the test tube and the cell is different. For this reason, it is essential though a challenge to study proteins in their natural environment. Several innovative microspectroscopic approaches provide

  19. The Protein 4.1 family: hub proteins in animals for organizing membrane proteins.

    Science.gov (United States)

    Baines, Anthony J; Lu, Hui-Chun; Bennett, Pauline M

    2014-02-01

    Proteins of the 4.1 family are characteristic of eumetazoan organisms. Invertebrates contain single 4.1 genes and the Drosophila model suggests that 4.1 is essential for animal life. Vertebrates have four paralogues, known as 4.1R, 4.1N, 4.1G and 4.1B, which are additionally duplicated in the ray-finned fish. Protein 4.1R was the first to be discovered: it is a major mammalian erythrocyte cytoskeletal protein, essential to the mechanochemical properties of red cell membranes because it promotes the interaction between spectrin and actin in the membrane cytoskeleton. 4.1R also binds certain phospholipids and is required for the stable cell surface accumulation of a number of erythrocyte transmembrane proteins that span multiple functional classes; these include cell adhesion molecules, transporters and a chemokine receptor. The vertebrate 4.1 proteins are expressed in most tissues, and they are required for the correct cell surface accumulation of a very wide variety of membrane proteins including G-Protein coupled receptors, voltage-gated and ligand-gated channels, as well as the classes identified in erythrocytes. Indeed, such large numbers of protein interactions have been mapped for mammalian 4.1 proteins, most especially 4.1R, that it appears that they can act as hubs for membrane protein organization. The range of critical interactions of 4.1 proteins is reflected in disease relationships that include hereditary anaemias, tumour suppression, control of heartbeat and nervous system function. The 4.1 proteins are defined by their domain structure: apart from the spectrin/actin-binding domain they have FERM and FERM-adjacent domains and a unique C-terminal domain. Both the FERM and C-terminal domains can bind transmembrane proteins, thus they have the potential to be cross-linkers for membrane proteins. The activity of the FERM domain is subject to multiple modes of regulation via binding of regulatory ligands, phosphorylation of the FERM associated domain and

  20. Restrictions to protein folding determined by the protein size.

    Science.gov (United States)

    Finkelstein, Alexei V; Bogatyreva, Natalya S; Garbuzynskiy, Sergiy O

    2013-06-27

    Experimentally measured rates of spontaneous folding of single-domain globular proteins range from microseconds to hours: the difference (11 orders of magnitude!) is akin to the difference between the life span of a mosquito and the age of the Universe. We show that physical theory with biological constraints outlines the possible range of folding rates for single-domain globular proteins of various size and stability, and that the experimentally measured folding rates fall within this narrow "golden triangle" built without any adjustable parameters, filling it almost completely. This "golden triangle" also successfully predicts the maximal allowed size of the "foldable" protein domains, as well as the maximal size of protein domains that fold under solely thermodynamic (rather than kinetic) control. In conclusion, we give a phenomenological formula for dependence of the folding rate on the size, shape and stability of the protein fold. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Detecting protein-protein interactions in living cells

    DEFF Research Database (Denmark)

    Gottschalk, Marie; Bach, Anders; Hansen, Jakob Lerche

    2009-01-01

    -terminal of the NMDA receptor and PDZ2 of PSD-95 were fused to green fluorescent protein (GFP) and Renilla luciferase (Rluc) and expressed in COS7 cells. A robust and specific BRET signal was obtained by expression of the appropriate partner proteins and subsequently, the assay was used to evaluate a Tat......The PDZ domain mediated interaction between the NMDA receptor and its intracellular scaffolding protein, PSD-95, is a potential target for treatment of ischemic brain diseases. We have recently developed a number of peptide analogues with improved affinity for the PDZ domains of PSD-95 compared...... to the endogenous C-terminal peptide of the NMDA receptor, as evaluated by a cell-free protein-protein interaction assay. However, it is important to address both membrane permeability and effect in living cells. Therefore a bioluminescence resonance energy transfer (BRET) assay was established, where the C...

  2. Understanding protein evolution: from protein physics to Darwinian selection.

    Science.gov (United States)

    Zeldovich, Konstantin B; Shakhnovich, Eugene I

    2008-01-01

    Efforts in whole-genome sequencing and structural proteomics start to provide a global view of the protein universe, the set of existing protein structures and sequences. However, approaches based on the selection of individual sequences have not been entirely successful at the quantitative description of the distribution of structures and sequences in the protein universe because evolutionary pressure acts on the entire organism, rather than on a particular molecule. In parallel to this line of study, studies in population genetics and phenomenological molecular evolution established a mathematical framework to describe the changes in genome sequences in populations of organisms over time. Here, we review both microscopic (physics-based) and macroscopic (organism-level) models of protein-sequence evolution and demonstrate that bridging the two scales provides the most complete description of the protein universe starting from clearly defined, testable, and physiologically relevant assumptions.

  3. Composition of Overlapping Protein-Protein and Protein-Ligand Interfaces.

    Directory of Open Access Journals (Sweden)

    Ruzianisra Mohamed

    Full Text Available Protein-protein interactions (PPIs play a major role in many biological processes and they represent an important class of targets for therapeutic intervention. However, targeting PPIs is challenging because often no convenient natural substrates are available as starting point for small-molecule design. Here, we explored the characteristics of protein interfaces in five non-redundant datasets of 174 protein-protein (PP complexes, and 161 protein-ligand (PL complexes from the ABC database, 436 PP complexes, and 196 PL complexes from the PIBASE database and a dataset of 89 PL complexes from the Timbal database. In all cases, the small molecule ligands must bind at the respective PP interface. We observed similar amino acid frequencies in all three datasets. Remarkably, also the characteristics of PP contacts and overlapping PL contacts are highly similar.

  4. Text Mining for Protein Docking.

    Directory of Open Access Journals (Sweden)

    Varsha D Badal

    2015-12-01

    Full Text Available The rapidly growing amount of publicly available information from biomedical research is readily accessible on the Internet, providing a powerful resource for predictive biomolecular modeling. The accumulated data on experimentally determined structures transformed structure prediction of proteins and protein complexes. Instead of exploring the enormous search space, predictive tools can simply proceed to the solution based on similarity to the existing, previously determined structures. A similar major paradigm shift is emerging due to the rapidly expanding amount of information, other than experimentally determined structures, which still can be used as constraints in biomolecular structure prediction. Automated text mining has been widely used in recreating protein interaction networks, as well as in detecting small ligand binding sites on protein structures. Combining and expanding these two well-developed areas of research, we applied the text mining to structural modeling of protein-protein complexes (protein docking. Protein docking can be significantly improved when constraints on the docking mode are available. We developed a procedure that retrieves published abstracts on a specific protein-protein interaction and extracts information relevant to docking. The procedure was assessed on protein complexes from Dockground (http://dockground.compbio.ku.edu. The results show that correct information on binding residues can be extracted for about half of the complexes. The amount of irrelevant information was reduced by conceptual analysis of a subset of the retrieved abstracts, based on the bag-of-words (features approach. Support Vector Machine models were trained and validated on the subset. The remaining abstracts were filtered by the best-performing models, which decreased the irrelevant information for ~ 25% complexes in the dataset. The extracted constraints were incorporated in the docking protocol and tested on the Dockground unbound

  5. Protein-protein interactions within late pre-40S ribosomes.

    Directory of Open Access Journals (Sweden)

    Melody G Campbell

    2011-01-01

    Full Text Available Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps.

  6. Influence of protein abundance on high-throughput protein-protein interaction detection.

    Directory of Open Access Journals (Sweden)

    Joseph Ivanic

    2009-06-01

    Full Text Available Experimental protein-protein interaction (PPI networks are increasingly being exploited in diverse ways for biological discovery. Accordingly, it is vital to discern their underlying natures by identifying and classifying the various types of deterministic (specific and probabilistic (nonspecific interactions detected. To this end, we have analyzed PPI networks determined using a range of high-throughput experimental techniques with the aim of systematically quantifying any biases that arise from the varying cellular abundances of the proteins. We confirm that PPI networks determined using affinity purification methods for yeast and Escherichia coli incorporate a correlation between protein degree, or number of interactions, and cellular abundance. The observed correlations are small but statistically significant and occur in both unprocessed (raw and processed (high-confidence data sets. In contrast, the yeast two-hybrid system yields networks that contain no such relationship. While previously commented based on mRNA abundance, our more extensive analysis based on protein abundance confirms a systematic difference between PPI networks determined from the two technologies. We additionally demonstrate that the centrality-lethality rule, which implies that higher-degree proteins are more likely to be essential, may be misleading, as protein abundance measurements identify essential proteins to be more prevalent than nonessential proteins. In fact, we generally find that when there is a degree/abundance correlation, the degree distributions of nonessential and essential proteins are also disparate. Conversely, when there is no degree/abundance correlation, the degree distributions of nonessential and essential proteins are not different. However, we show that essentiality manifests itself as a biological property in all of the yeast PPI networks investigated here via enrichments of interactions between essential proteins. These findings provide

  7. Influence of protein abundance on high-throughput protein-protein interaction detection.

    Science.gov (United States)

    Ivanic, Joseph; Yu, Xueping; Wallqvist, Anders; Reifman, Jaques

    2009-06-05

    Experimental protein-protein interaction (PPI) networks are increasingly being exploited in diverse ways for biological discovery. Accordingly, it is vital to discern their underlying natures by identifying and classifying the various types of deterministic (specific) and probabilistic (nonspecific) interactions detected. To this end, we have analyzed PPI networks determined using a range of high-throughput experimental techniques with the aim of systematically quantifying any biases that arise from the varying cellular abundances of the proteins. We confirm that PPI networks determined using affinity purification methods for yeast and Escherichia coli incorporate a correlation between protein degree, or number of interactions, and cellular abundance. The observed correlations are small but statistically significant and occur in both unprocessed (raw) and processed (high-confidence) data sets. In contrast, the yeast two-hybrid system yields networks that contain no such relationship. While previously commented based on mRNA abundance, our more extensive analysis based on protein abundance confirms a systematic difference between PPI networks determined from the two technologies. We additionally demonstrate that the centrality-lethality rule, which implies that higher-degree proteins are more likely to be essential, may be misleading, as protein abundance measurements identify essential proteins to be more prevalent than nonessential proteins. In fact, we generally find that when there is a degree/abundance correlation, the degree distributions of nonessential and essential proteins are also disparate. Conversely, when there is no degree/abundance correlation, the degree distributions of nonessential and essential proteins are not different. However, we show that essentiality manifests itself as a biological property in all of the yeast PPI networks investigated here via enrichments of interactions between essential proteins. These findings provide valuable insights

  8. Radioimmunoassay of platelet proteins

    International Nuclear Information System (INIS)

    Pepper, D.S.

    1987-01-01

    The radioimmunoassay of platelet-specific proteins has proven to be an excellent way of monitoring platelet activation in vivo. In contrast to earlier methods such as aggregometry, which has been the major tool used in the evaluation of antiplatelet drugs, the RIAs are capable of working with samples which have been subjected to physiological conditions such as haematocrit, oxygen tension, shear rate and ionized calcium concentration. Also, in contrast to aggregometry, no choice of agonist is necessary. Thus, for the first time it has been possible to monitor the effects of therapeutic intervention with drugs upon the platelet release reaction in vivo. It seems reasonable to equate the release reaction in vivo with activation in vivo, though the stimuli necessarily remain unknown. Nevertheless, the fact that a significant number of the compounds mentioned in Table 3 are indeed capable of reducing platelet activation in vivo and that this effect can be measured objectively is a major step forward in our understanding of platelet pharmacology. Two important goals remain to be achieved, however, the establishment of nonhuman animal models for the evaluation of newer compounds in vivo and longer-term goal of proving in the clinical setting the relevance or otherwise of platelet activation per se to the clinical outcome of a particular disease. In this respect, the availability of accurate, reliable and specific radioimmunoassays has a central role

  9. Accessory Proteins at ERES

    DEFF Research Database (Denmark)

    Klinkenberg, Rafael David

    The components of the COPII machinery, which are essential in establishing an effective Endoplasmic Reticulum (ER) to Golgi transport from ER exit sites (ERES), have been identified and characterized within the last 25 years. These consist of the essential Sec12, Sec23, Sec24, Sec13, Sec31 and Sar1...... domain of p125A utilizes a stretch of positively charged residues (KGRKR) to bind lipid membranes that are enriched in Phosphatidylinositol‐4‐phosphates (PI(4)P). The specificity of the DDHD domain lipid recognition is demonstrated to be enhanced through p125A oligomerization mediated by the upstream SAM...... at a later stage of the ER export. The temperature‐dependent block of ER export is shown to cause a clear segregation of ERES composed of Sec31A, Sec23 and p125A from the known COPII‐associating ERES nucleation scaffold protein mSec16A. The temperature block furthermore causes mSec16A to collect on the ER...

  10. Annotating the protein-RNA interaction sites in proteins using evolutionary information and protein backbone structure.

    Science.gov (United States)

    Li, Tao; Li, Qian-Zhong

    2012-11-07

    RNA-protein interactions play important roles in various biological processes. The precise detection of RNA-protein interaction sites is very important for understanding essential biological processes and annotating the function of the proteins. In this study, based on various features from amino acid sequence and structure, including evolutionary information, solvent accessible surface area and torsion angles (φ, ψ) in the backbone structure of the polypeptide chain, a computational method for predicting RNA-binding sites in proteins is proposed. When the method is applied to predict RNA-binding sites in three datasets: RBP86 containing 86 protein chains, RBP107 containing 107 proteins chains and RBP109 containing 109 proteins chains, better sensitivities and specificities are obtained compared to previously published methods in five-fold cross-validation tests. In order to make further examination for the efficiency of our method, the RBP107 dataset is used as training set, RBP86 and RBP109 datasets are used as the independent test sets. In addition, as examples of our prediction, RNA-binding sites in a few proteins are presented. The annotated results are consistent with the PDB annotation. These results show that our method is useful for annotating RNA binding sites of novel proteins.

  11. Atomic resolution description of the interaction between the nucleoprotein and phosphoprotein of Hendra virus.

    Directory of Open Access Journals (Sweden)

    Guillaume Communie

    Full Text Available Hendra virus (HeV is a recently emerged severe human pathogen that belongs to the Henipavirus genus within the Paramyxoviridae family. The HeV genome is encapsidated by the nucleoprotein (N within a helical nucleocapsid. Recruitment of the viral polymerase onto the nucleocapsid template relies on the interaction between the C-terminal domain, N(TAIL, of N and the C-terminal X domain, XD, of the polymerase co-factor phosphoprotein (P. Here, we provide an atomic resolution description of the intrinsically disordered N(TAIL domain in its isolated state and in intact nucleocapsids using nuclear magnetic resonance (NMR spectroscopy. Using electron microscopy, we show that HeV nucleocapsids form herringbone-like structures typical of paramyxoviruses. We also report the crystal structure of XD of P that consists of a three-helix bundle. We study the interaction between N(TAIL and XD using NMR titration experiments and provide a detailed mapping of the reciprocal binding sites. We show that the interaction is accompanied by α-helical folding of the molecular recognition element of N(TAIL upon binding to a hydrophobic patch on the surface of XD. Finally, using solution NMR, we investigate the interaction between intact nucleocapsids and XD. Our results indicate that monomeric XD binds to N(TAIL without triggering an additional unwinding of the nucleocapsid template. The present results provide a structural description at the atomic level of the protein-protein interactions required for transcription and replication of HeV, and the first direct observation of the interaction between the X domain of P and intact nucleocapsids in Paramyxoviridae.

  12. Atomic resolution description of the interaction between the nucleoprotein and phosphoprotein of Hendra virus.

    Science.gov (United States)

    Communie, Guillaume; Habchi, Johnny; Yabukarski, Filip; Blocquel, David; Schneider, Robert; Tarbouriech, Nicolas; Papageorgiou, Nicolas; Ruigrok, Rob W H; Jamin, Marc; Jensen, Malene Ringkjøbing; Longhi, Sonia; Blackledge, Martin

    2013-01-01

    Hendra virus (HeV) is a recently emerged severe human pathogen that belongs to the Henipavirus genus within the Paramyxoviridae family. The HeV genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid. Recruitment of the viral polymerase onto the nucleocapsid template relies on the interaction between the C-terminal domain, N(TAIL), of N and the C-terminal X domain, XD, of the polymerase co-factor phosphoprotein (P). Here, we provide an atomic resolution description of the intrinsically disordered N(TAIL) domain in its isolated state and in intact nucleocapsids using nuclear magnetic resonance (NMR) spectroscopy. Using electron microscopy, we show that HeV nucleocapsids form herringbone-like structures typical of paramyxoviruses. We also report the crystal structure of XD of P that consists of a three-helix bundle. We study the interaction between N(TAIL) and XD using NMR titration experiments and provide a detailed mapping of the reciprocal binding sites. We show that the interaction is accompanied by α-helical folding of the molecular recognition element of N(TAIL) upon binding to a hydrophobic patch on the surface of XD. Finally, using solution NMR, we investigate the interaction between intact nucleocapsids and XD. Our results indicate that monomeric XD binds to N(TAIL) without triggering an additional unwinding of the nucleocapsid template. The present results provide a structural description at the atomic level of the protein-protein interactions required for transcription and replication of HeV, and the first direct observation of the interaction between the X domain of P and intact nucleocapsids in Paramyxoviridae.

  13. Validation of protein carbonyl measurement

    DEFF Research Database (Denmark)

    Augustyniak, Edyta; Adam, Aisha; Wojdyla, Katarzyna

    2015-01-01

    protein carbonyl analysis across Europe. ELISA and Western blotting techniques detected an increase in protein carbonyl formation between 0 and 5min of UV irradiation irrespective of method used. After irradiation for 15min, less oxidation was detected by half of the laboratories than after 5min...

  14. Direct electrochemistry of redox proteins

    NARCIS (Netherlands)

    Heering, H.A.

    1995-01-01

    The goal of the project was to obtain more detailed insight in interactions between redox proteins and solid electrodes and the mechanisms of electron transfer. In addition to this, the influence of the protein environment on the redox properties of the active site and the possible

  15. Modelling of proteins in membranes

    DEFF Research Database (Denmark)

    Sperotto, Maria Maddalena; May, S.; Baumgaertner, A.

    2006-01-01

    This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly...

  16. Protein: MPA1 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA1 TLR signaling molecules Zc3h12a Mcpip, Mcpip1 Ribonuclease ZC3H12A MCP-induced pro...tein 1, Zinc finger CCCH domain-containing protein 12A 10090 Mus musculus 230738 Q5D1E7 Q5D1E7 19322177 ...

  17. Protein: FBA5 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA5 VSOP(voltage sensor-only protein1) Hvcn1 Bts, Vsop Voltage-gated hydrogen channel 1 Hydro...gen voltage-gated channel 1, Voltage sensor domain-only protein 10090 Mus musculus 74096 Q3U2S8 Q3U2S8 20018719 ...

  18. Protein: FBA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA3 Atg8 conjugation sysytem ATG8 APG8, AUT7, CVT5 Autophagy-related protein 8 Aut...ophagy-related ubiquitin-like modifier ATG8, Cytoplasm to vacuole targeting protein 5 559292 Saccharomyces c

  19. Characterization of carrot arabinogalactan proteins

    NARCIS (Netherlands)

    Immerzeel, P.

    2005-01-01

    Arabinogalactan proteins (AGPs) are highly glycosylated proteins. Besides galactose and arabinose the carbohydrate part of AGPs contains other neutral sugars and uronic acids. AGPs are widely distributed in the plant kingdom, probably occurring in all tissues of every plant. Yariv phenylglycoside is

  20. Protein: MPA1 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA1 TLR signaling molecules Rsad2 Vig1 Radical S-adenosyl methionine domain-containing pr...otein 2 Viperin, Virus inhibitory protein, endoplasmic reticulum-associated, interferon-inducible 10090 Mus musculus 58185 Q8CBB9 21435586 ...