WorldWideScience

Sample records for sars-cov nsp14-exonuclease mutant

  1. Infidelity of SARS-CoV Nsp14-Exonuclease Mutant Virus Replication Is Revealed by Complete Genome Sequencing

    Science.gov (United States)

    Eckerle, Lance D.; Becker, Michelle M.; Halpin, Rebecca A.; Li, Kelvin; Venter, Eli; Lu, Xiaotao; Scherbakova, Sana; Graham, Rachel L.; Baric, Ralph S.; Stockwell, Timothy B.; Spiro, David J.; Denison, Mark R.

    2010-01-01

    Most RNA viruses lack the mechanisms to recognize and correct mutations that arise during genome replication, resulting in quasispecies diversity that is required for pathogenesis and adaptation. However, it is not known how viruses encoding large viral RNA genomes such as the Coronaviridae (26 to 32 kb) balance the requirements for genome stability and quasispecies diversity. Further, the limits of replication infidelity during replication of large RNA genomes and how decreased fidelity impacts virus fitness over time are not known. Our previous work demonstrated that genetic inactivation of the coronavirus exoribonuclease (ExoN) in nonstructural protein 14 (nsp14) of murine hepatitis virus results in a 15-fold decrease in replication fidelity. However, it is not known whether nsp14-ExoN is required for replication fidelity of all coronaviruses, nor the impact of decreased fidelity on genome diversity and fitness during replication and passage. We report here the engineering and recovery of nsp14-ExoN mutant viruses of severe acute respiratory syndrome coronavirus (SARS-CoV) that have stable growth defects and demonstrate a 21-fold increase in mutation frequency during replication in culture. Analysis of complete genome sequences from SARS-ExoN mutant viral clones revealed unique mutation sets in every genome examined from the same round of replication and a total of 100 unique mutations across the genome. Using novel bioinformatic tools and deep sequencing across the full-length genome following 10 population passages in vitro, we demonstrate retention of ExoN mutations and continued increased diversity and mutational load compared to wild-type SARS-CoV. The results define a novel genetic and bioinformatics model for introduction and identification of multi-allelic mutations in replication competent viruses that will be powerful tools for testing the effects of decreased fidelity and increased quasispecies diversity on viral replication, pathogenesis, and

  2. Ribonucleocapsid Formation of SARS-COV Through Molecular Action of the N-Terminal Domain of N Protein

    Energy Technology Data Exchange (ETDEWEB)

    Saikatendu, K.S.; Joseph, J.S.; Subramanian, V.; Neuman, B.W.; Buchmeier, M.J.; Stevens, R.C.; Kuhn, P.; /Scripps Res. Inst.

    2007-07-12

    Conserved amongst all coronaviruses are four structural proteins, the matrix (M), small envelope (E) and spike (S) that are embedded in the viral membrane and the nucleocapsid phosphoprotein (N), which exists in a ribonucleoprotein complex in their lumen. The N terminal domain of coronaviral N proteins (N-NTD) provides a scaffold for RNA binding while the C-terminal domain (N-CTD) mainly acts as oligomerization modules during assembly. The C-terminus of N protein anchors it to the viral membrane by associating with M protein. We characterized the structures of N-NTD from severe acute respiratory syndrome coronavirus (SARS-CoV) in two crystal forms, at 1.17A (monoclinic) and 1.85 A (cubic) respectively, solved by molecular replacement using the homologous avian infectious bronchitis virus (IBV) structure. Flexible loops in the solution structure of SARS-CoV N-NTD are now shown to be well ordered around the beta-sheet core. The functionally important positively charged beta-hairpin protrudes out of the core and is oriented similar to that in the IBV N-NTD and is involved in crystal packing in the monoclinic form. In the cubic form, the monomers form trimeric units that stack in a helical array. Comparison of crystal packing of SARS-CoV and IBV N-NTDs suggest a common mode of RNA recognition, but probably associate differently in vivo during the formation of the ribonucleoprotein complex. Electrostatic potential distribution on the surface of homology models of related coronaviral N-NTDs hints that they employ different modes of both RNA recognition as well as oligomeric assembly, perhaps explaining why their nucleocapsids have different morphologies.

  3. ATM mutants

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. ATM mutants. ATM (Ataxia Telangiectasia Mutated). AT2BE and AT5B1 cells – fibroblast cell lines from Ataxia telangiectasia patients. Deletion mutants expressing truncated ATM protein which is inactive. Have been used in studies looking at the role of ATM in DNA damage ...

  4. Clearance of mutant huntingtin.

    Science.gov (United States)

    Li, Xiao-Jiang; Li, He; Li, Shihua

    2010-07-01

    Mutant huntingtin (htt) carries an expanded polyglutamine (polyQ) repeat (> 36 glutamines) in its N-terminal region, which leads htt to become misfolded and kill neuronal cells in Huntington disease (HD). The cytotoxicity of N-terminal mutant htt fragments is evident by severe neurological phenotypes of transgenic mice that express these htt fragments. Clearance of mutant htt is primarily mediated by the ubiquitin-proteasomal sysmtem (UPS) and autophagy. However, the relative efficiency of these two systems to remove toxic forms of mutant htt has not been rigorously compared. Using cellular and mouse models of HD, we found that inhibiting the UPS leads to a greater accumulation of mutant htt than inhibiting autophagy. Moreover, N-terminal mutant htt fragments, but not full-length mutant htt, accumulate in the HD mouse brains after inhibiting the UPS. These findings suggest that the UPS is more efficient than autophagy to remove N-terminal mutant htt.

  5. Saccharomyces cerevisiae aldolase mutants.

    OpenAIRE

    Lobo, Z

    1984-01-01

    Six mutants lacking the glycolytic enzyme fructose 1,6-bisphosphate aldolase have been isolated in the yeast Saccharomyces cerevisiae by inositol starvation. The mutants grown on gluconeogenic substrates, such as glycerol or alcohol, and show growth inhibition by glucose and related sugars. The mutations are recessive, segregate as one gene in crosses, and fall in a single complementation group. All of the mutants synthesize an antigen cross-reacting to the antibody raised against yeast aldol...

  6. Morphological mutants of garlic

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, A.D.; Dnyansagar, V.R. (Nagpur Univ. (India). Dept. of Botany)

    1982-01-01

    Cloves of garlic (Allium sativuum Linn.) were exposed to gamma rays with various doses and different concentrations of ethylmethane sulphonate (EMS), diethyl sulphate (dES) and ethylene imine (EI). In the second and third generations, 16 types of morphological mutants were recorded with varied frequencies. Of all the mutagens used, gamma rays were found to be the most effective in inducing the maximum number of mutations followed EI, EMS and dES in that order.

  7. Connexin mutants and cataracts

    Directory of Open Access Journals (Sweden)

    Eric C Beyer

    2013-04-01

    Full Text Available The lens is a multicellular, but avascular tissue that must stay transparent to allow normal transmission of light and focusing of it on the retina. Damage to lens cells and/or proteins can cause cataracts, opacities that disrupt these processes. The normal survival of the lens is facilitated by an extensive network of gap junctions formed predominantly of connexin46 and connexin50. Mutations of the genes that encode these connexins (GJA3 and GJA8 have been identified and linked to inheritance of cataracts in human families and mouse lines. In vitro expression studies of several of these mutants have shown that they exhibit abnormalities that may lead to disease. Many of the mutants reduce or modify intercellular communication due to channel alterations (including loss of function or altered gating or due to impaired cellular trafficking which reduces the number of gap junction channels within the plasma membrane. However, the abnormalities detected in studies of other mutants suggest that they cause cataracts through other mechanisms including gain of hemichannel function (leading to cell injury and death and formation of cytoplasmic accumulations (that may act as light scattering particles. These observations and the anticipated results of ongoing studies should elucidate the mechanisms of cataract development due to mutations of lens connexins and abnormalities of other lens proteins. They may also contribute to our understanding of the mechanisms of disease due to connexin mutations in other tissues.

  8. Aequorin mutants with increased thermostability.

    Science.gov (United States)

    Qu, Xiaoge; Rowe, Laura; Dikici, Emre; Ensor, Mark; Daunert, Sylvia

    2014-09-01

    Bioluminescent labels can be especially useful for in vivo and live animal studies due to the negligible bioluminescence background in cells and most animals, and the non-toxicity of bioluminescent reporter systems. Significant thermal stability of bioluminescent labels is essential, however, due to the longitudinal nature and physiological temperature conditions of many bioluminescent-based studies. To improve the thermostability of the bioluminescent protein aequorin, we employed random and rational mutagenesis strategies to create two thermostable double mutants, S32T/E156V and M36I/E146K, and a particularly thermostable quadruple mutant, S32T/E156V/Q168R/L170I. The double aequorin mutants, S32T/E156V and M36I/E146K, retained 4 and 2.75 times more of their initial bioluminescence activity than wild-type aequorin during thermostability studies at 37 °C. Moreover, the quadruple aequorin mutant, S32T/E156V/Q168R/L170I, exhibited more thermostability at a variety of temperatures than either double mutant alone, producing the most thermostable aequorin mutant identified thus far.

  9. Wild Accessions and Mutant Resources

    DEFF Research Database (Denmark)

    Kawaguchi, Masayoshi; Sandal, Niels Nørgaard

    2014-01-01

    Lotus japonicus, Lotus burttii, and Lotus filicaulis are species of Lotus genus that are utilized for molecular genetic analysis such as the construction of a linkage map and QTL analysis. Among them, a number of mutants have been isolated from two wild accessions: L. japonicus Gifu B-129 and Miy...

  10. Problem-Solving Test: Tryptophan Operon Mutants

    Science.gov (United States)

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  11. Sharing mutants and experimental information prepublication using FgMutantDb (https://scabusa.org/FgMutantDb).

    Science.gov (United States)

    Baldwin, Thomas T; Basenko, Evelina; Harb, Omar; Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E; Bregitzer, Phil P

    2018-02-02

    There is no comprehensive storage for generated mutants of Fusarium graminearum or data associated with these mutants. Instead, researchers relied on several independent and non-integrated databases. FgMutantDb was designed as a simple spreadsheet that is accessible globally on the web that will function as a centralized source of information on F. graminearum mutants. FgMutantDb aids in the maintenance and sharing of mutants within a research community. It will serve also as a platform for disseminating prepublication results as well as negative results that often go unreported. Additionally, the highly curated information on mutants in FgMutantDb will be shared with other databases (FungiDB, Ensembl, PhytoPath, and PHI-base) through updating reports. Here we describe the creation and potential usefulness of FgMutantDb to the F. graminearum research community, and provide a tutorial on its use. This type of database could be easily emulated for other fungal species. Published by Elsevier Inc.

  12. Incomplete flagellar structures in Escherichia coli mutants.

    OpenAIRE

    Suzuki, T; Komeda, Y

    1981-01-01

    Escherichia coli mutants with defects in 29 flagellar genes identified so far were examined by electron microscopy for possession of incomplete flagellar structures in membrane-associated fractions. The results are discussed in consideration of the known transcriptional interaction of flagellar genes. Hook-basal body structures were detected in flaD, flaS, flaT, flbC, and hag mutants. The flaE mutant had a polyhook-basal body structure. An intact basal body appeared in flaK mutants. Putative ...

  13. Generation and characterization of pigment mutants of ...

    African Journals Online (AJOL)

    The induced mutagenesis method for deriving pigment mutants of a green microalga, Chlamydomonas reinhardtii CC-124 and their pigment composition as well as ability to assess mutability of contaminated aquatic ecosystems were studied. In the present study, 14086 mutants (colonies) were obtained by exposure of the ...

  14. Cadmium-Sensitive Mutants of Arabidopsis thaliana.

    Science.gov (United States)

    Howden, R; Cobbett, C S

    1992-09-01

    A screening procedure for identifying Cd-sensitive mutants of Arabidopsis thaliana is described. With this procedure, two Cd-sensitive mutants were isolated. These represent independent mutations in the same locus, referred to as CAD1. Genetic analysis has shown that the sensitive phenotype is recessive to the wild type and segregates as a single Mendelian locus. Crosses of the mutant to marker strains showed that the mutation is closely linked to the tt3 locus on chromosome 5. In addition to Cd, the mutants are also significantly more sensitive to mercuric ions and only slightly more sensitive to Cu and Zn, while being no more sensitive than the wild type to Mn, thus indicating a degree of specificity in the mechanism affected by the mutation. Undifferentiated callus tissue is also Cd sensitive, suggesting that the mutant phenotype is expressed at the cellular level. Both wild-type and mutant plants showed increased sensitivity to Cd in the presence of buthionine sulfoximine, an inhibitor of the biosynthesis of the cadmium-binding (gamma-glutamylcysteine)(n)-glycine peptides, suggesting that the mutant is still able to synthesize these peptides. However, the effects of a cad1 mutation and buthionine sulfoximine together on cadmium sensitivity are essentially nonadditive, indicating that they may affect different aspects of the same detoxification mechanism. Assays of Cd uptake by intact plants indicate that the mutant is deficient in its ability to sequester Cd.

  15. Induced High Lysine Mutants in Barley

    DEFF Research Database (Denmark)

    Doll, Hans; Køie, B.; Eggum, B. O.

    1974-01-01

    Screening of mutagenically treated materials by combined Kjeldahl nitrogen and dye-binding capacity determinations disclosed fourteen barley mutants, which have from a few to about 40 per cent more lysine in the protein and one mutant with 10 per cent less lysine in the protein than the parent...

  16. Los mutantes de la escuela

    Directory of Open Access Journals (Sweden)

    Diego Armando Jaramillo-Ocampo

    2013-01-01

    Full Text Available El presente artículo muestra los resultados parciales del estudio “Juegos en el recreo escolar: un escenario para la formación ciudadana”, cuya pretensión fue comprender los imaginarios sociales de juego en el recreo escolar y su relación con la convivencia social desde la proximidad del enfoque de complementariedad y el diseño de investigación emergente, planteado por Murcia y Jaramillo (2008. Se presentan los desarrollos logrados en dos categorías centrales del estudio: el patio y el cuerpo; dos categorías que mutan constantemente como entidades vivas en la escuela, hacia la configuración de sujetos que reconocen en el otro y lo otro su posibilidad. La escuela viva, donde es posible “ser en relación con”… se reduce a un espacio temporal y físico, limitado por la campana, “el recreo”. El texto muestra, desde la voz de los actores, esa vida que se da y se quita en la escuela y que se posiciona como una más de las imposiciones normalizadas para controlar. Reconoce, finalmente, una propuesta desde la posibilidad que estos dos mutantes propician para una escuela libre y dinámica.

  17. Responses to novelty in staggerer mutant mice.

    Science.gov (United States)

    Misslin, R; Cigrang, M; Guastavino, J M

    1986-01-01

    Responses to novelty in normal C57BL/6 and staggerer mutant mice were recorded. The normal mice confronted a novel object in their familiar environment showed avoidance and burying responses while the staggerer mutant mice contacted it. When given the opportunity to move around freely in simultaneously presented novel and familiar environments, the mutant mice more quickly entered the novel areas than normal animals. these data reveal a significant decrease in the neophobic components of the neotic behaviour in the staggerer mice. However, since the mutant mice did not show a locomotor deficit, the impairment of neophobia seems not to be due to the gait abnormalities of these animals. The results support the view that the cerebellum may contribute to the organization of complex behaviours. Copyright © 1986. Published by Elsevier B.V.

  18. Robust mutant strain design by pessimistic optimization.

    Science.gov (United States)

    Apaydin, Meltem; Xu, Liang; Zeng, Bo; Qian, Xiaoning

    2017-10-03

    Flux Balance Analysis (FBA) based mathematical modeling enables in silico prediction of systems behavior for genome-scale metabolic networks. Computational methods have been derived in the FBA framework to solve bi-level optimization for deriving "optimal" mutant microbial strains with targeted biochemical overproduction. The common inherent assumption of these methods is that the surviving mutants will always cooperate with the engineering objective by overproducing the maximum desired biochemicals. However, it has been shown that this optimistic assumption may not be valid in practice. We study the validity and robustness of existing bi-level methods for strain optimization under uncertainty and non-cooperative environment. More importantly, we propose new pessimistic optimization formulations: P-ROOM and P-OptKnock, aiming to derive robust mutants with the desired overproduction under two different mutant cell survival models: (1) ROOM assuming mutants have the minimum changes in reaction fluxes from wild-type flux values, and (2) the one considered by OptKnock maximizing the biomass production yield. When optimizing for desired overproduction, our pessimistic formulations derive more robust mutant strains by considering the uncertainty of the cell survival models at the inner level and the cooperation between the outer- and inner-level decision makers. For both P-ROOM and P-OptKnock, by converting multi-level formulations into single-level Mixed Integer Programming (MIP) problems based on the strong duality theorem, we can derive exact optimal solutions that are highly scalable with large networks. Our robust formulations P-ROOM and P-OptKnock are tested with a small E. coli core metabolic network and a large-scale E. coli iAF1260 network. We demonstrate that the original bi-level formulations (ROOM and OptKnock) derive mutants that may not achieve the predicted overproduction under uncertainty and non-cooperative environment. The knockouts obtained by the

  19. Characterization of MarR Superrepressor Mutants

    OpenAIRE

    Alekshun, Michael N.; Levy, Stuart B.

    1999-01-01

    MarR negatively regulates expression of the multiple antibiotic resistance (mar) locus in Escherichia coli. Superrepressor mutants, generated in order to study regions of MarR required for function, exhibited altered inducer recognition properties in whole cells and increased DNA binding to marO in vitro. Mutations occurred in three areas of the relatively small MarR protein (144 amino acids). It is surmised that superrepression results from increased DNA binding activities of these mutant pr...

  20. Patulin degradation in saccharomyces cerevisiae: Sensitive mutants.

    Science.gov (United States)

    Thonart, P; Sumbu, Z L; Bechet, J

    1985-03-01

    The present experiments (sensitive mutants and transient inhibition of growth) are compatible with the synthesis of an inductible detoxifying substance in the wild type strain. This substance could be glutathione because glutathione detoxification scheme essentially involves properties of the SH group and it is well known that patulin reacts with sulfhy dril groups.Studies are presently being carried out with sensitive mutants to establish definitively the relation between intracellular pool of glutathone and the resistance mechanism of a yeast to patulin.

  1. Copper-sensitive mutant of Arabidopsis thaliana.

    Science.gov (United States)

    van Vliet, C; Anderson, C R; Cobbett, C S

    1995-11-01

    A Cu-sensitive mutant, cup1-1, of Arabidopsis thaliana has a pattern of heavy-metal sensitivity different from that of the cad1 and cad2 mutants, which are deficient in phytochelatin biosynthesis. The latter are significantly sensitive to Cd and Hg and only slightly sensitive to Cu, whereas the cup1-1 mutant is significantly sensitive to Cu, slightly sensitive to Cd, and not more sensitive to Hg, compared to the wild type. Genetic analysis has shown that the sensitive phenotype is recessive to the wild type and segregates as a single Mendelian locus, which has been mapped to chromosome 1. Genetic and biochemical studies demonstrate that the cup1-1 mutant is not affected in phytochelatin biosynthesis or function. The sensitive phenotype of the cup1-1 mutant is associated with, and probably due to, increased accumulation of higher levels of Cd and Cu compared with the wild type. Consistent with this, a Cu-inducible, root-specific metallothionein gene, MT2a, is expressed in cup1-1 roots under conditions in which it is not expressed in the wild type. Undifferentiated cup1-1 callus tissue did not show the Cu-sensitive phenotype, suggesting that the mutant phenotype, in contrast to cad1 and cad2, is not expressed at the cellular level.

  2. Plasmodium berghei: in vivo generation and selection of karyotype mutants and non-gametocyte producer mutants

    NARCIS (Netherlands)

    Janse, C. J.; Ramesar, J.; van den Berg, F. M.; Mons, B.

    1992-01-01

    We previously reported that karyotype and gametocyte-producer mutants spontaneously arose during in vivo asexual multiplication of Plasmodium berghei. Here we studied the rate of selection of these mutants in vivo. Gametocyte production and karyotype pattern were established at regular intervals

  3. Escherichia coli mutants with a temperature-sensitive alcohol dehydrogenase.

    OpenAIRE

    Lorowitz, W; CLARK, D.

    1982-01-01

    Mutants of Escherichia coli resistant to allyl alcohol were selected. Such mutants were found to lack alcohol dehydrogenase. In addition, mutants with temperature-sensitive alcohol dehydrogenase activity were obtained. These mutations, designated adhE, are all located at the previously described adh regulatory locus. Most adhE mutants were also defective in acetaldehyde dehydrogenase activity.

  4. Targeting mutant NRAS signaling pathways in melanoma.

    Science.gov (United States)

    Vu, Ha Linh; Aplin, Andrew E

    2016-05-01

    Cutaneous melanoma is a devastating form of skin cancer and its incidence is increasing faster than any other preventable cancer in the United States. The mutant NRAS subset of melanoma is more aggressive and associated with poorer outcomes compared to non-NRAS mutant melanoma. The aggressive nature and complex molecular signaling conferred by this transformation has evaded clinically effective treatment options. This review examines the major downstream effectors of NRAS relevant in melanoma and the associated advances made in targeted therapies that focus on these effector pathways. We outline the history of MEK inhibition in mutant NRAS melanoma and recent advances with newer MEK inhibitors. Since MEK inhibitors will likely be optimized when combined with other targeted therapies, we focus on recently identified targets that can be used in combination with MEK inhibitors. Published by Elsevier Ltd.

  5. High Persister Mutants in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Heather L Torrey

    Full Text Available Mycobacterium tuberculosis forms drug-tolerant persister cells that are the probable cause of its recalcitrance to antibiotic therapy. While genetically identical to the rest of the population, persisters are dormant, which protects them from killing by bactericidal antibiotics. The mechanism of persister formation in M. tuberculosis is not well understood. In this study, we selected for high persister (hip mutants and characterized them by whole genome sequencing and transcriptome analysis. In parallel, we identified and characterized clinical isolates that naturally produce high levels of persisters. We compared the hip mutants obtained in vitro with clinical isolates to identify candidate persister genes. Genes involved in lipid biosynthesis, carbon metabolism, toxin-antitoxin systems, and transcriptional regulators were among those identified. We also found that clinical hip isolates exhibited greater ex vivo survival than the low persister isolates. Our data suggest that M. tuberculosis persister formation involves multiple pathways, and hip mutants may contribute to the recalcitrance of the infection.

  6. Native Mutant Huntingtin in Human Brain

    Science.gov (United States)

    Sapp, Ellen; Valencia, Antonio; Li, Xueyi; Aronin, Neil; Kegel, Kimberly B.; Vonsattel, Jean-Paul; Young, Anne B.; Wexler, Nancy; DiFiglia, Marian

    2012-01-01

    Huntington disease (HD) is caused by polyglutamine expansion in the N terminus of huntingtin (htt). Analysis of human postmortem brain lysates by SDS-PAGE and Western blot reveals htt as full-length and fragmented. Here we used Blue Native PAGE (BNP) and Western blots to study native htt in human postmortem brain. Antisera against htt detected a single band broadly migrating at 575–850 kDa in control brain and at 650–885 kDa in heterozygous and Venezuelan homozygous HD brains. Anti-polyglutamine antisera detected full-length mutant htt in HD brain. There was little htt cleavage even if lysates were pretreated with trypsin, indicating a property of native htt to resist protease cleavage. A soluble mutant htt fragment of about 180 kDa was detected with anti-htt antibody Ab1 (htt-(1–17)) and increased when lysates were treated with denaturants (SDS, 8 m urea, DTT, or trypsin) before BNP. Wild-type htt was more resistant to denaturants. Based on migration of in vitro translated htt fragments, the 180-kDa segment terminated ≈htt 670–880 amino acids. If second dimension SDS-PAGE followed BNP, the 180-kDa mutant htt was absent, and 43–50 kDa htt fragments appeared. Brain lysates from two HD mouse models expressed native full-length htt; a mutant fragment formed if lysates were pretreated with 8 m urea + DTT. Native full-length mutant htt in embryonic HD140Q/140Q mouse primary neurons was intact during cell death and when cell lysates were exposed to denaturants before BNP. Thus, native mutant htt occurs in brain and primary neurons as a soluble full-length monomer. PMID:22375012

  7. Aging Kit mutant mice develop cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Lei Ye

    Full Text Available Both bone marrow (BM and myocardium contain progenitor cells expressing the c-Kit tyrosine kinase. The aims of this study were to determine the effects of c-Kit mutations on: i. myocardial c-Kit(+ cells counts and ii. the stability of left ventricular (LV contractile function and structure during aging. LV structure and contractile function were evaluated (echocardiography in two groups of Kit mutant (W/Wv and W41/W42 and in wild type (WT mice at 4 and 12 months of age and the effects of the mutations on LV mass, vascular density and the numbers of proliferating cells were also determined. In 4 month old Kit mutant and WT mice, LV ejection fractions (EF and LV fractional shortening rates (FS were comparable. At 12 months of age EF and FS were significantly decreased and LV mass was significantly increased only in W41/W42 mice. Myocardial vascular densities and c-Kit(+ cell numbers were significantly reduced in both mutant groups when compared to WT hearts. Replacement of mutant BM with WT BM at 4 months of age did not prevent these abnormalities in either mutant group although they were somewhat attenuated in the W/Wv group. Notably BM transplantation did not prevent the development of cardiomyopathy in 12 month W41/W42 mice. The data suggest that decreased numbers and functional capacities of c-Kit(+ cardiac resident progenitor cells may be the basis of the cardiomyopathy in W41/W42 mice and although defects in mutant BM progenitor cells may prove to be contributory, they are not causal.

  8. Ovarian abnormalities in the staggerer mutant mouse.

    Science.gov (United States)

    Guastavino, Jean-Marie; Boufares, Salima; Crusio, Wim E

    2005-08-24

    Disturbances in several reproductive functions of the staggerer cerebellar mutant mouse have been observed. In this study, reproductive efficiency of staggerer mice was compared to normal mice by recording the number of pups produced and the number of oocytes occurring. It was found that staggerer mothers produced smaller litters than controls and the number of oocytes produced in their ovaries was reduced by the staggerer mutation. These results indicate a pleiotropic effect on fertility of the Rora(sg) gene underlying the cerebellar abnormalities of the staggerer mutant.

  9. Ovarian Abnormalities in the Staggerer Mutant Mouse

    Directory of Open Access Journals (Sweden)

    Jean-Marie Guastavino

    2005-01-01

    Full Text Available Disturbances in several reproductive functions of the staggerer cerebellar mutant mouse have been observed. In this study, reproductive efficiency of staggerer mice was compared to normal mice by recording the number of pups produced and the number of oocytes occurring. It was found that staggerer mothers produced smaller litters than controls and the number of oocytes produced in their ovaries was reduced by the staggerer mutation. These results indicate a pleiotropic effect on fertility of the Rorasg gene underlying the cerebellar abnormalities of the staggerer mutant.

  10. Novel Two-Step Hierarchical Screening of Mutant Pools Reveals Mutants under Selection in Chicks

    Science.gov (United States)

    Yang, Hee-Jeong; Bogomolnaya, Lydia M.; Elfenbein, Johanna R.; Endicott-Yazdani, Tiana; Reynolds, M. Megan; Porwollik, Steffen; Cheng, Pui; Xia, Xiao-Qin

    2016-01-01

    Contaminated chicken/egg products are major sources of human salmonellosis, yet the strategies used by Salmonella to colonize chickens are poorly understood. We applied a novel two-step hierarchical procedure to identify new genes important for colonization and persistence of Salmonella enterica serotype Typhimurium in chickens. A library of 182 S. Typhimurium mutants each containing a targeted deletion of a group of contiguous genes (for a total of 2,069 genes deleted) was used to identify regions under selection at 1, 3, and 9 days postinfection in chicks. Mutants in 11 regions were under selection at all assayed times (colonization mutants), and mutants in 15 regions were under selection only at day 9 (persistence mutants). We assembled a pool of 92 mutants, each deleted for a single gene, representing nearly all genes in nine regions under selection. Twelve single gene deletion mutants were under selection in this assay, and we confirmed 6 of 9 of these candidate mutants via competitive infections and complementation analysis in chicks. STM0580, STM1295, STM1297, STM3612, STM3615, and STM3734 are needed for Salmonella to colonize and persist in chicks and were not previously associated with this ability. One of these key genes, STM1297 (selD), is required for anaerobic growth and supports the ability to utilize formate under these conditions, suggesting that metabolism of formate is important during infection. We report a hierarchical screening strategy to interrogate large portions of the genome during infection of animals using pools of mutants of low complexity. Using this strategy, we identified six genes not previously known to be needed during infection in chicks, and one of these (STM1297) suggests an important role for formate metabolism during infection. PMID:26857572

  11. Nicotinamide ribosyl uptake mutants in Haemophilus influenzae.

    Science.gov (United States)

    Herbert, Mark; Sauer, Elizabeta; Smethurst, Graeme; Kraiss, Anita; Hilpert, Anna-Karina; Reidl, Joachim

    2003-09-01

    The gene for the nicotinamide riboside (NR) transporter (pnuC) was identified in Haemophilus influenzae. A pnuC mutant had only residual NR uptake and could survive in vitro with high concentrations of NR, but could not survive in vivo. PnuC may represent a target for the development of inhibitors for preventing H. influenzae disease.

  12. Generation and characterization of pigment mutants of ...

    African Journals Online (AJOL)

    acer

    The result of bio-test, using the resulting pigment mutant of C. reinhardtii 124y-1 showed that mutagenic activity was observed significantly in both Tekeli River and Pavlodar Oil Refinery in Kazakhstan; the waste water of the. Pavlodar Oil Refinery had high-toxicity while the water of the Tekeli River had medium-toxicity.

  13. Avirulent mutants of Macrophomina phaseolina and Aspergillus ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 25; Issue 1. Avirulent mutants of Macrophomina phaseolina and Aspergillus fumigatus initiate infection in Phaseolus mungo in the presence of phaseo-linone; levamisole gives protection. Suchandra Sett Santosh K Mishra Kazia I Siddiqui. Articles Volume 25 Issue 1 March ...

  14. Ethanol production using engineered mutant E. coli

    Science.gov (United States)

    Ingram, Lonnie O.; Clark, David P.

    1991-01-01

    The subject invention concerns novel means and materials for producing ethanol as a fermentation product. Mutant E. coli are transformed with a gene coding for pyruvate decarboxylase activity. The resulting system is capable of producing relatively large amounts of ethanol from a variety of biomass sources.

  15. Flocculation phenomenon of a mutant flocculent Saccharomyces ...

    African Journals Online (AJOL)

    Flocculation phenomenon of a mutant flocculent Saccharomyces cerevisiae strain: Effects of metal ions, sugars, temperature, pH, protein-denaturants and ... was in the early stationary growth phase, which coincided with glucose depletion in the batch fermentation for the production of ethanol from kitchen refuse medium.

  16. Mutant PTEN in Cancer : Worse Than Nothing

    NARCIS (Netherlands)

    Leslie, Nick R; den Hertog, Jeroen

    2014-01-01

    Tumor suppressors block the development of cancer and are often lost during tumor development. Papa et al. show that partial loss of normal PTEN tumor suppressor function can be compounded by additional disruption caused by the expression of inactive mutant PTEN protein. This has significant

  17. Fibrinolytic Activity of Recombinant Mutant Streptokinase

    Directory of Open Access Journals (Sweden)

    Mahboobeh Mobarrez

    2015-04-01

    Full Text Available Background: Streptokinase is a bacterial protein produced by different beta hemolytic streptococci and widely used in thrombolytic treatment. The main disadvantage of using streptokinase is antibody formation which causes allergic reaction to neutralize effects of streptokinase therapy. Aim of this study was investigate of recombinant mutant streptokinase fibrinolytic activity.Materials and Methods: In this study recombinant mutant streptokinase without 42 amino acids from the C terminal region was purified by affinity S-Tag column chromatography and its fibrinolytic activity was studied.Results: The concentration of expressed and purified protein was 10 mg/ml. Its enzyme activity was assayed using zymography, radial caseinolytic activity and fibrin plate test methods and estimated quantitatively by casein digestion method compared to a commercial form.Conclusion: It was found that this product had the more volume and more enzymatic activity.

  18. Characterization of a Legionella micdadei mip mutant

    DEFF Research Database (Denmark)

    O'Connell, W A; Bangsborg, Jette Marie; Cianciotto, N P

    1995-01-01

    The pathogenesis of Legionella micdadei is dependent upon its ability to infect alveolar phagocytes. To better understand the basis of intracellular infection by this organism, we examined the importance of its Mip surface protein. In Legionella pneumophila, Mip promotes infection of both human m...... Mip. Although unimpaired in its ability to grow in bacteriologic media, this Mip mutant was defective in its capacity to infect U937 cells, a human macrophage-like cell line. Most significantly, the Mip- organism displayed a 24-fold reduction in survivability immediately after its entry...... into the phagocyte. Similarly, the mutant was less able to parasitize Hartmannella amoebae. Taken together, these data argue that Mip specifically potentiates intracellular growth by L. micdadei....

  19. A new neurological rat mutant "mutilated foot".

    OpenAIRE

    Jacobs, J M; Scaravilli, F; Duchen, L W; Mertin, J

    1981-01-01

    A new autosomal recessive mutant rat (mutilated foot) with a neurological disorder is described. Affected animals become ataxic and the feet, generally of the hind limbs, are mutilated. Quantitative studies show a severe reduction in numbers of sensory ganglion cells and fibres, including unmyelinated fibres. The numbers of ventral root fibres, particularly those of small diameter, are also reduced. Markedly decreased numbers of spindles are found in the limb muscles. These quantitative abnor...

  20. Courtship song analysis of Drosophila muscle mutants.

    Science.gov (United States)

    Chakravorty, Samya; Wajda, Mathew P; Vigoreaux, Jim O

    2012-01-01

    As part of the mating ritual, males of Drosophila species produce species-specific courtship songs through wing vibrations generated by the thoracic musculature. While previous studies have shown that indirect flight muscles (IFM) are neurally activated during courtship song production, the precise role of these muscles in song production has not been investigated. Fortunately, IFM mutants abound in Drosophila melanogaster and studies spanning several decades have shed light on the role of muscle proteins in IFM-powered flight. Analysis of courtship songs in these mutants offers the opportunity to uncover the role of the IFM in a behavior distinct than flight and subject to different evolutionary selection regimes. Here, we describe protocols for the recording and analysis of courtship behavior and mating song of D. melanogaster muscle transgenic and mutant strains. To record faint acoustic signal of courtship songs, an insulated mating compartment was used inside a recording device (INSECTAVOX) equipped with a modified electret microphone, a low-noise power supply, and noise filters. Songs recorded in the INSECTAVOX are digitized using Goldwave, whose several features enable extraction of critical song parameters, including carrier frequencies for pulse song and sine song. We demonstrate the utility of this approach by showing that deletion of the N-terminal region of the myosin regulatory light chain, a mutation known to decrease wing beat frequency and flight power, affects courtship song parameters. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Agrobacterium rhizogenes mutants that fail to bind to plant cells.

    OpenAIRE

    Crews, J L; Colby, S; Matthysse, A G

    1990-01-01

    Transposon insertion mutants of Agrobacterium rhizogenes were screened to obtain mutant bacteria that failed to bind to carrot suspension culture cells. A light microscope binding assay was used. The bacterial isolates that were reduced in binding to carrot cells were all avirulent on Bryophyllum diagremontiana leaves and on carrot root disks. The mutants did not appear to be altered in cellulose production. The composition of the medium affected the ability of the parent and mutant bacteria ...

  2. Isolation and Characterization of Sexual Sporulation Mutants of Aspergillus nidulans

    NARCIS (Netherlands)

    Swart, K.; Heemst, van D.; Slakhorst, M.; Debets, A.J.M.; Heyting, C.

    2001-01-01

    For the genetic dissection of sexual sporulation in Aspergillus nidulans, we started a collection of ascosporeless mutants. After mutagenization of conidiospores with high doses of UV, we isolated 20 mutants with defects in ascospore formation. We crossed these mutants in two successive rounds with

  3. Isolation and characterization of gallium resistant Pseudomonas aeruginosa mutants

    NARCIS (Netherlands)

    García-Contreras, R; Lira-Silva, E; Jasso-Chávez, R; Hernández-González, I.L.; Maeda, T.; Hashimoto, T.; Boogerd, F.C.; Sheng, L; Wood, TK; Moreno-Sánchez, R

    2013-01-01

    Pseudomonas aeruginosa PA14 cells resistant to the novel antimicrobial gallium nitrate (Ga) were developed using transposon mutagenesis and by selecting spontaneous mutants. The mutants showing the highest growth in the presence of Ga were selected for further characterization. These mutants showed

  4. Strain improvement in dye decolourising mutants of Mucor mucedo ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... The amounts of protoplasts obtained in the developed mutants of M. mucedo MMM1 (U.V. irradiated mutant) and MMM2 (ethyl methyl sulfonate treated mutant) which are very effective decolourisers were. 5.23 x 106 and 5.65 x 106 protoplasts/ml respectively. Among the 385 colonies isolated after ...

  5. Characterization of a novel curled-cotyledons mutant in soybean ...

    African Journals Online (AJOL)

    ... some organelles degradation, and membranous multilamellar appear at different stages. Protein and amino acid contents in seeds of mutant are higher than those of the wild type, especially methionine and cysteine. These results suggest that the curled-cotyledons mutant is a novel cotyledon development mutant, which ...

  6. Arabinose Kinase-Deficient Mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Dolezal, O; Cobbett, C S

    1991-08-01

    A mutant of Arabidopsis thaliana that is sensitive to exogenous l-arabinose has been isolated. Comparisons of growth of the wild type, mutant, and F1 and F2 progeny of crosses showed the arabinose-sensitive phenotype is semidominant and segregates as a single Mendelian locus. Crosses of the mutant to marker strains showed the mutation is linked to the eceriferum-2 locus on chromosome 4. In vivo incorporation of exogenous labeled l-arabinose into ethanol-insoluble polysaccharides was greatly reduced in the mutant with a concomitant accumulation of free labeled arabinose. Enzyme assays of crude plant extracts demonstrated a defect in arabinose kinase activity in the mutant.

  7. Distribution of soluble amino acids in maize endosperm mutants

    Directory of Open Access Journals (Sweden)

    Toro Alejandro Alberto

    2003-01-01

    Full Text Available For human nutrition the main source of vegetable proteins are cereal and legume seeds. The content of total soluble amino acids in mature endosperm of wild-type, opaque and floury maize (Zea mays L. mutants were determined by HPLC. The total absolute concentration of soluble amino acids among the mutants varied depending on the mutant. The o11 and o13 mutants exhibited the highest average content, whereas o10, fl3 and fl1 exhibited the lowest average content. In general, the mutants exhibited similar concentrations of total soluble amino acids when compared to the wild-type lines, with the clear exception of mutants o11 and fl1, with the o11 mutant exhibiting a higher concentration of total soluble amino acids when compared to its wild-type counterpart W22 and the fl1 mutant a lower concentration when compared to its wild-type counterpart Oh43. For methionine, the mutants o2 and o11 and wild-type Oh43 exhibited the highest concentrations of this amino acid. Significant differences were not observed between mutants for other amino acids such as lysine and threonine. The high lysine concentrations obtained originally for these mutants may be due to the amino acids incorporated into storage proteins, but not those present in the soluble form.

  8. Using of AFLP to evaluate gamma-irradiated amaranth mutants

    Directory of Open Access Journals (Sweden)

    Labajová Mária

    2013-01-01

    Full Text Available To determine which of several gamma-irradiated mutants of amaranth Ficha cultivar and K-433 hybrid are most genetically similar to their non-irradiated control genotypes, we performed amplified fragment length polymorphism (AFLP based analysis. A total of 40 selective primer combinations were used in reported analyses. First analyses of gamma-irradiated amaranth mutant lines were done used the AFLP. In the study, primers with the differentiation ability for all analysed mutant lines are reported. The very specific changes in the mutant lines´ non-coding regions based on AFLP length polymorphism were analysed. Mutant lines of the Ficha cultivar (C15, C26, C27, C82, C236 shared a genetic dissimilarity of 0,11 and their ISSR profiles are more similar to the Ficha than those of K-433 hybrid mutant lines. The K-433 mutant lines (D54, D279, D282 shared genetic dissimilarity of 0,534 but are more distinct to their control plant as a whole, as those of the Ficha mutant lines. Different AFLP fingerprints patters of the mutant lines when compared to the Ficha cultivar and K-433 hybrid AFLP profiles may be a consequence of the complex response of the intergenic space of mutant lines to the gamma-radiance. Although a genetic polymorphism was detected within accessions, the AFLP markers successfully identified all the accessions. The AFLP results are discussed by a combination of biochemical characteristics of mutant lines and their control genotypes.

  9. Ribosylurea accumulates in yeast urc4 mutants.

    Science.gov (United States)

    Björnberg, O; Vodnala, M; Domkin, V; Hofer, A; Rasmussen, A; Andersen, G; Piskur, J

    2010-06-01

    Yeast Saccharomyces (Lachancea) kluyveri urc4 mutants, unable to grow on uracil, biotransformed (14)C(2)-uracil into two labeled compounds, as detected by high performance liquid chromatography (HPLC). These two compounds could also be obtained following organic synthesis of ribosylurea. This finding demonstrates that in the URC pyrimidine degradation pathway, the opening of the uracil ring takes place when uracil is attached to the ribose moiety. Ribosylurea has not been reported in the cell metabolism before and the two observed compounds likely represent an equilibrium mixture of the pyranosyl and furanosyl forms.

  10. Auxin physiology of the tomato mutant diageotropica

    Science.gov (United States)

    Daniel, S. G.; Rayle, D. L.; Cleland, R. E.

    1989-01-01

    The tomato (Lycopersicon esculentum, Mill.) mutant diageotropica (dgt) exhibits biochemical, physiological, and morphological abnormalities that suggest the mutation may have affected a primary site of auxin perception or action. We have compared two aspects of the auxin physiology of dgt and wild-type (VFN8) seedlings: auxin transport and cellular growth parameters. The rates of basipetal indole-3-acetic acid (IAA) polar transport are identical in hypocotyl sections of the two genotypes, but dgt sections have a slightly greater capacity for IAA transport. 2,3,5-Triiodobenzoic acid and ethylene reduce transport in both mutant and wild-type sections. The kinetics of auxin uptake into VFN8 and dgt sections are nearly identical. These results make it unlikely that an altered IAA efflux carrier or IAA uptake symport are responsible for the pleiotropic effects resulting from the dgt mutation. The lack of auxin-induced cell elongation in dgt plants is not due to insufficient turgor, as the osmotic potential of dgt cell sap is less (more negative) than that of VFN8. An auxin-induced increase in wall extensibility, as measured by the Instron technique, only occurs in the VFN8 plants. These data suggest dgt hypocotyls suffer a defect in the sequence of events culminating in auxin-induced cell wall loosening.

  11. Indy mutants: live long and prosper

    Directory of Open Access Journals (Sweden)

    Stewart eFrankel

    2012-02-01

    Full Text Available Indy encodes the fly homologue of a mammalian transporter of di and tricarboxylatecomponents of the Krebs cycle. Reduced expression of fly Indy or two of the C. elegansIndy homologs leads to an increase in life span. Fly and worm tissues that play key roles inintermediary metabolism are also the places where Indy genes are expressed. One of themouse homologs of Indy (mIndy is mainly expressed in the liver. It has been hypothesizedthat decreased INDY activity creates a state similar to caloric restriction (CR. Thishypothesis is supported by the physiological similarities between Indy mutant flies on highcalorie food and control flies on CR, such as increased physical activity and decreases inweight, egg production, triglyceride levels, starvation resistance, and insulin signaling. Inaddition, Indy mutant flies undergo changes in mitochondrial biogenesis also observed inCR animals. Recent findings with mIndy knockout mice support and extend the findingsfrom flies. mIndy-/- mice display an increase in hepatic mitochondrial biogenesis, lipidoxidation and decreased hepatic lipogenesis. When mIndy-/- mice are fed high calorie foodthey are protected from adiposity and insulin resistance. These findings point to INDY as apotential drug target for the treatment of metabolic syndrome, type 2 diabetes and obesity.

  12. Allosteric Mutant IDH1 Inhibitors Reveal Mechanisms for IDH1 Mutant and Isoform Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoling; Baird, Daniel; Bowen, Kimberly; Capka, Vladimir; Chen, Jinyun; Chenail, Gregg; Cho, YoungShin; Dooley, Julia; Farsidjani, Ali; Fortin, Pascal; Kohls, Darcy; Kulathila, Raviraj; Lin, Fallon; McKay, Daniel; Rodrigues, Lindsey; Sage, David; Touré, B. Barry; van der Plas, Simon; Wright, Kirk; Xu, Ming; Yin, Hong; Levell, Julian; Pagliarini, Raymond A.

    2017-03-01

    Oncogenic IDH1 and IDH2 mutations contribute to cancer via production of R-2-hydroxyglutarate (2-HG). Here, we characterize two structurally distinct mutant- and isoform-selective IDH1 inhibitors that inhibit 2-HG production. Both bind to an allosteric pocket on IDH1, yet shape it differently, highlighting the plasticity of this site. Oncogenic IDH1R132H mutation destabilizes an IDH1 “regulatory segment,” which otherwise restricts compound access to the allosteric pocket. Regulatory segment destabilization in wild-type IDH1 promotes inhibitor binding, suggesting that destabilization is critical for mutant selectivity. We also report crystal structures of oncogenic IDH2 mutant isoforms, highlighting the fact that the analogous segment of IDH2 is not similarly destabilized. This intrinsic stability of IDH2 may contribute to observed inhibitor IDH1 isoform selectivity. Moreover, discrete residues in the IDH1 allosteric pocket that differ from IDH2 may also guide IDH1 isoform selectivity. These data provide a deeper understanding of how IDH1 inhibitors achieve mutant and isoform selectivity.

  13. Neurobehavioral Mutants Identified in an ENU Mutagenesis Project

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Melloni N. [University of Memphis; Dunning, Jonathan P [University of Memphis; Wiley, Ronald G [Vanderbilt University and Veterans Administration, Nashville, TN; Chesler, Elissa J [ORNL; Johnson, Dabney K [ORNL; Goldowitz, Daniel [University of Tennessee Health Science Center, Memphis

    2007-01-01

    We report on a behavioral screening test battery that successfully identified several neurobehavioral mutants among a large-scale ENU-mutagenized mouse population. Large numbers of ENU mutagenized mice were screened for abnormalities in central nervous system function based on abnormal performance in a series of behavior tasks. We developed and employed a high-throughput screen of behavioral tasks to detect behavioral outliers. Twelve mutant pedigrees, representing a broad range of behavioral phenotypes, have been identified. Specifically, we have identified two open field mutants (one displaying hyper-locomotion, the other hypo-locomotion), four tail suspension mutants (all displaying increased immobility), one nociception mutant (displaying abnormal responsiveness to thermal pain), two prepulse inhibition mutants (displaying poor inhibition of the startle response), one anxiety-related mutant (displaying decreased anxiety in the light/dark test), and one learning and memory mutant (displaying reduced response to the conditioned stimulus) These findings highlight the utility of a set of behavioral tasks used in a high throughput screen to identify neurobehavioral mutants. Further analysis (i.e., behavioral and genetic mapping studies) of mutants is in progress with the ultimate goal of identification of novel genes and mouse models relevant to human disorders as well as the identification of novel therapeutic targets.

  14. Forward genetic screen for auxin-deficient mutants by cytokinin.

    Science.gov (United States)

    Wu, Lei; Luo, Pan; Di, Dong-Wei; Wang, Li; Wang, Ming; Lu, Cheng-Kai; Wei, Shao-Dong; Zhang, Li; Zhang, Tian-Zi; Amakorová, Petra; Strnad, Miroslav; Novák, Ondřej; Guo, Guang-Qin

    2015-07-06

    Identification of mutants with impairments in auxin biosynthesis and dynamics by forward genetic screening is hindered by the complexity, redundancy and necessity of the pathways involved. Furthermore, although a few auxin-deficient mutants have been recently identified by screening for altered responses to shade, ethylene, N-1-naphthylphthalamic acid (NPA) or cytokinin (CK), there is still a lack of robust markers for systematically isolating such mutants. We hypothesized that a potentially suitable phenotypic marker is root curling induced by CK, as observed in the auxin biosynthesis mutant CK-induced root curling 1 / tryptophan aminotransferase of Arabidopsis 1 (ckrc1/taa1). Phenotypic observations, genetic analyses and biochemical complementation tests of Arabidopsis seedlings displaying the trait in large-scale genetic screens showed that it can facilitate isolation of mutants with perturbations in auxin biosynthesis, transport and signaling. However, unlike transport/signaling mutants, the curled (or wavy) root phenotypes of auxin-deficient mutants were significantly induced by CKs and could be rescued by exogenous auxins. Mutants allelic to several known auxin biosynthesis mutants were re-isolated, but several new classes of auxin-deficient mutants were also isolated. The findings show that CK-induced root curling provides an effective marker for discovering genes involved in auxin biosynthesis or homeostasis.

  15. Google: a narrativa de uma marca mutante

    Directory of Open Access Journals (Sweden)

    Elizete de Azevedo Kreutz

    2010-01-01

    Full Text Available As marcas mutantes já fazem parte de nossa realidade, embora ainda não totalmente percebidas e/ou aceitas como tal. O presente artigo busca refletir sobre a relevância dessas novas estratégias de comunicação e branding, identificando suas principais características. Para isso, utilizamos o método de estudo de caso, o Google, ancorado nos métodos de pesquisa bibliográfica e de internet. A escolha foi intencional, posto que a organização é referência em sua categoria, mecanismo de busca, e reflete essa estratégia comunicacional contemporânea. Como resultado, as informações obtidas nos possibilitam compreender essa tendência de comportamento de marca que busca a interação com seus públicos.

  16. Studies on mutant breeding of Hibiscus syriacus

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hi Sup; Kim, Jin Kyu; Lee, Ki Un; Kim, Young Taik

    1997-01-01

    Hibiscus has been known as a national flower of Korea. Hibiscus has such a characteristic of self-incompatibility that all the plant exist as natural hybrids and have heterogeneous genes. Many domestic 91 varieties of Hibiscus syriacus were collected. Radiosensitivity of H. Syriacus irradiated with {gamma}-ray was investigated in plant cuttings. The plant height was reduced by 45% in 5KR irradiated group, compared to control group. The radiation dose of 5KR could be recommended for mutation breeding of Hibiscus cuttings. Radiosensitivity of {gamma}-ray irradiated Hibiscus seed were investigated. The germination rate, survival rate and plant height was better in the 4KR irradiation plot than control. The radiation dose of 10{approx}12KR are recommended for mutation breeding of Hibiscus. Promising mutant lines were selected form the varieties of Hwarang, Wolsan no. 176, Ilpyondansim, Emille, Hanol, Yongkwang, Saeyongkwang, Chungmu, Imjinhong, Arang, Hungdansim-1 and Hongdansim-2. (author). 66 refs., 16 tabs., 13 figs.

  17. Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer

    Science.gov (United States)

    2016-11-01

    AWARD NUMBER: W81XWH-14-1-0177 TITLE: Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer PRINCIPAL INVESTIGATOR: Katerina...5a. CONTRACT NUMBER Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer 5b. GRANT NUMBER W81XWH-14-1-0177 5c. PROGRAM ELEMENT NUMBER...epigenomic landscape of EGFR mutant SCLCs and their corresponding pre- treatment LUADs. These are very rare specimens. Through our Yale rebiopsy program

  18. Mutant-specific gene programs in the zebrafish

    OpenAIRE

    Weber, Gerhard J.; Choe, Sung E; Dooley, Kimberly A.; Paffett-Lugassy, Noëlle N.; Zhou, Yi; Zon, Leonard I.

    2005-01-01

    Hematopoiesis involves the production of stem cells, followed by the orchestrated differentiation of the blood lineages. Genetic screens in zebrafish have identified mutants with defects that disrupt specific stages of hematopoiesis and vasculogenesis, including the cloche, spadetail (tbx16), moonshine (tif1g), bloodless, and vlad tepes (gata1) mutants. To better characterize the blood program, gene expression profiling was carried out in these mutants and in scl-morphants (scl mo). Distinct ...

  19. Mutant p53 in Cancer: New Functions and Therapeutic Opportunities

    Science.gov (United States)

    Muller, Patricia A.J.; Vousden, Karen H.

    2014-01-01

    Many different types of cancer show a high incidence of TP53 mutations, leading to the expression of mutant p53 proteins. There is growing evidence that these mutant p53s have both lost wild-type p53 tumor suppressor activity and gained functions that help to contribute to malignant progression. Understanding the functions of mutant p53 will help in the development of new therapeutic approaches that may be useful in a broad range of cancer types. PMID:24651012

  20. Growth and development of maize that contains mutant tubulin genes

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Wick

    2004-07-23

    Mutant maize plants containing a Mu transposon disrupting one of the five beta tubulin genes of interest were followed for several generations and hybridized with each other to produce plants containing disruptions in both copies of a single gene or disruption of more than one tubulin gene. Seedlings of some of these plants were grown under chilling conditions for a few weeks. After DOE funding ended, plants have been assessed to see whether mutant are more or less tolerant to chilling. Other mutant plants will be assessed for their male and female fertility relative to non-mutant siblings or other close relatives.

  1. Sphingolipid synthesis deficiency in a mutant of Bacteroides levii

    Energy Technology Data Exchange (ETDEWEB)

    Brumleve, B.; Lev, M.

    1986-05-01

    Bacteroides levii, an anaerobic bacterium, synthesizes two sphingolipids; the sphingomyelin analogue, ceramide phosphorylethanolamine (CPE), and also ceramide phosphorylglycerol (CPG). The first enzyme in the sphingolipid pathway, 3-ketodihydro-sphingosine (3KDS) synthase, has been partially purified previously. To study subsequent steps in the pathways, mutants defective in sphingolipid synthesis were derived by ethyl methanesulfonate and nitrosoguanidine mutagenesis. Extracts of the mutant, 1075BB, show synthase activity although the cells do not synthesize CPE or CPG. The mutant differs from the wild type in that: (1) synthase activity was much diminished in the mutant, (2) sphingolipid synthesis does not occur in the mutant as evidenced by the absence of spots at sites where CPE and CPG migrate following two-dimensional thin layer chromatography, (3) incorporation of uniformly-labelled (/sup 14/C)serine carbon or (/sup 14/C)3KDS into sphingolipids was not observed in the mutant, (4) following incubation with (/sup 14/C)3KDS, radioactivity corresponding to dihydrosphingosine (DHS) and ceramide were observed in the mutant; no (/sup 14/C)DHS was detected in the wild type, and (5) enhanced incorporation of (/sup 14/C)serine carbon into two lipids not containing phosphorus was found in the mutant. The authors conclude, therefore, that this mutant, 1075BB, has a metabolic block at the terminal biosynthetic steps of sphingolipid synthesis.

  2. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others.

    Science.gov (United States)

    Sabapathy, Kanaga; Lane, David P

    2017-09-26

    TP53, which encodes the tumour-suppressor protein p53, is the most frequently mutated gene across all cancer types. The presence of mutant p53 predisposes to cancer development, promotes the survival of cancer cells, and is associated with ineffective therapeutic responses and unfavourable prognoses. Despite these effects, no drug that abrogates the oncogenic functions of mutant p53 has yet been approved for the treatment of cancer. Current investigational therapeutic strategies are mostly aimed at restoring the wild-type activity of mutant p53, based on the assumption that all p53 mutants are functionally equal. Our increasing knowledge of mutant forms of p53, however, supports the antithetical hypothesis that not all p53 mutants have equivalent cellular effects; hence, a judicious approach to therapeutic targeting of mutant p53 is required. In this Review, we propose a categorization of the major classes of p53 mutants based on their functionality in tumour suppression and response to therapy. The emerging picture is that the mutations across TP53 form a 'rainbow of mutants', with varying degrees of functionality and different pathobiological consequences, necessitating the use of diverse therapeutic strategies to selectively target specific classes of mutation. The utility of this knowledge of TP53 mutations in developing selective therapeutic options, and in facilitating clinical decision-making is discussed.

  3. Prevacuolar compartment morphology in vps mutants of Saccharomyces cerevisiae.

    Science.gov (United States)

    Hedman, Jamie M; Eggleston, Matthew D; Attryde, Amanda L; Marshall, Pamela A

    2007-10-01

    Over 60 genes have been identified that affect protein sorting to the lysosome-like vacuole in Saccharomyces cerevisiae. Cells with mutations in these vacuolar protein sorting (vps) genes fall into seven general classes based upon their vacuolar morphology. Class A mutants have a morphologically wild type vacuole, while Class B mutants have a fragmented vacuole. There is no discernable vacuolar structure in Class C mutants. Class D mutants have a slightly enlarged vacuole, but Class E mutants have a normal looking vacuole with an enlarged prevacuolar compartment (PVC), which is analogous to the mammalian late endosome. Class F mutants have a wild type appearing vacuole as well as fragmented vacuolar structures. vps mutants have also been found with a tubulo-vesicular vacuole structure. vps mutant morphology is pertinent, as mutants of the same class may work together and/or have a block in the same general step in the vacuolar protein sorting pathway. We probed PVC morphology and location microscopically in live cells of several null vps mutants using a GFP fusion protein of Nhx1p, an Na(+)/H(+) exchanger normally localized to the PVC. We show that cell strains deleted for VPS proteins that have been previously shown to work together, regardless of VPS Class, have the same PVC morphology. Cell strains lacking VPS genes that have not been implicated in the same pathway show different PVC morphologies, even if the mutant strains are in the same VPS Class. These new studies indicate that PVC morphology is another tier of classification that may more accurately identify proteins that function together in vacuolar protein sorting than the original vps mutation classes.

  4. Isolation and characterization of stable mutants of Streptomyces ...

    Indian Academy of Sciences (India)

    Daunorubicin and its derivative doxorubicin are antitumour anthracycline antibiotics produced by Streptomyces peucetius. In this study we report isolation of stable mutants of S. peucetius blocked in different steps of the daunorubicin biosynthesis pathway. Mutants were screened on the basis of colony colour since producer ...

  5. Differentially expressed genes in white egg 2 mutant of silkworm ...

    African Journals Online (AJOL)

    These pathways were related to amino acid metabolism, sugar metabolism, and series of major physiological metabolism. Our results hopefully shed light on the further study of molecular mechanism of white egg 2 mutant. Key words: Bombyx mori, white egg 2 mutant, microarray, embryo, differentially expressed gene.

  6. Genomic diversity among Basmati rice ( Oryza sativa L) mutants ...

    African Journals Online (AJOL)

    Genomic diversity among Basmati rice ( Oryza sativa L) mutants obtained through 60 Co gamma radiations using AFLP markers. ... In order to obtain new varieties of rice with improved agronomic and grain characteristics, gamma radiation (60Co) has been used to generate novel mutants of the Basmati rice. In this study ...

  7. Enhanced production of glucose oxidase from UV- mutant of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-19

    Jan 19, 2009 ... UV rays were used as mutagen in wild type strain of Aspergillus niger for enhanced production of glucose oxidase. After mutangenization and selection, mutant A. niger strains, resistant to 2-deoxy-D- glucose were obtained. The mutants showed 1.57 and 1.98 fold increase in activities of extra and intra.

  8. Comparison of lignin deposition in three ectopic lignification mutants.

    Science.gov (United States)

    Rogers, Louisa A; Dubos, Christian; Surman, Christine; Willment, Janet; Cullis, Ian F; Mansfield, Shawn D; Campbell, Malcolm M

    2005-10-01

    The Arabidopsis thaliana mutants de-etiolated3 (det3), pom-pom1 (pom1) and ectopic lignification1 (eli1) all deposit lignins in cells where these polymers would not normally be found. Comparison of these mutants provides an opportunity to determine if the shared mutant phenotype arose by perturbing a common regulatory mechanism in each of the mutants. The mutants were compared using a combination of genetics, histochemistry, chemical profiling, transcript profiling using both Northern blots and microarrays, and bioinformatics. The subset of cells that ectopically lignified was shared between all three mutants, but clear differences in cell wall chemistry were evident between the mutants. Northern blot analysis of lignin biosynthetic genes over diurnal and circadian cycles revealed that transcript abundance of several key genes was clearly altered in all three mutants. Microarray analysis suggests that changes in the expression of specific members of the R2R3-MYB and Dof transcription factor families may contribute to the ectopic lignification phenotypes. This comparative analysis provides a suite of hypotheses that can be tested to examine the control of lignin biosynthesis.

  9. Molecularly targeted therapies for p53-mutant cancers.

    Science.gov (United States)

    Zhao, Dekuang; Tahaney, William M; Mazumdar, Abhijit; Savage, Michelle I; Brown, Powel H

    2017-11-01

    The tumor suppressor p53 is lost or mutated in approximately half of human cancers. Mutant p53 not only loses its anti-tumor transcriptional activity, but also often acquires oncogenic functions to promote tumor proliferation, invasion, and drug resistance. Traditional strategies have been taken to directly target p53 mutants through identifying small molecular compounds to deplete mutant p53, or to restore its tumor suppressive function. Accumulating evidence suggest that cancer cells with mutated p53 often exhibit specific functional dependencies on secondary genes or pathways to survive, providing alternative targets to indirectly treat p53-mutant cancers. Targeting these genes or pathways, critical for survival in the presence of p53 mutations, holds great promise for cancer treatment. In addition, mutant p53 often exhibits novel gain-of-functions to promote tumor growth and metastasis. Here, we review and discuss strategies targeting mutant p53, with focus on targeting the mutant p53 protein directly, and on the progress of identifying genes and pathways required in p53-mutant cells.

  10. Unfolding intermediates of the mutant His-107-Tyr of human ...

    Indian Academy of Sciences (India)

    The mutant His-107-Tyr of human carbonic anhydrase II (HCA II) is highly unstable and has long been linked to a misfolding disease known as carbonic anhydrase deficiency syndrome (CADS). High temperature unfolding trajectories of the mutant are obtained from classical molecular dynamics simulationsand analyzed in ...

  11. Assessment of Genetic diversity in mutant cowpea lines using ...

    African Journals Online (AJOL)

    FKOLADE

    2016-11-09

    Nov 9, 2016 ... for crop improvement, hence the need to broaden the genetic base of any crop. This study was done in order to further enhance this in cowpea. While assessing diversity and phylogenetic relationship with other mutants and their parents, each unique mutant was also characterized. Randomly amplified ...

  12. Cadmium-Sensitive Mutants of Arabidopsis thaliana1

    Science.gov (United States)

    Howden, Ross; Cobbett, Christopher S.

    1992-01-01

    A screening procedure for identifying Cd-sensitive mutants of Arabidopsis thaliana is described. With this procedure, two Cd-sensitive mutants were isolated. These represent independent mutations in the same locus, referred to as CAD1. Genetic analysis has shown that the sensitive phenotype is recessive to the wild type and segregates as a single Mendelian locus. Crosses of the mutant to marker strains showed that the mutation is closely linked to the tt3 locus on chromosome 5. In addition to Cd, the mutants are also significantly more sensitive to mercuric ions and only slightly more sensitive to Cu and Zn, while being no more sensitive than the wild type to Mn, thus indicating a degree of specificity in the mechanism affected by the mutation. Undifferentiated callus tissue is also Cd sensitive, suggesting that the mutant phenotype is expressed at the cellular level. Both wild-type and mutant plants showed increased sensitivity to Cd in the presence of buthionine sulfoximine, an inhibitor of the biosynthesis of the cadmium-binding (γ-glutamylcysteine)n-glycine peptides, suggesting that the mutant is still able to synthesize these peptides. However, the effects of a cad1 mutation and buthionine sulfoximine together on cadmium sensitivity are essentially nonadditive, indicating that they may affect different aspects of the same detoxification mechanism. Assays of Cd uptake by intact plants indicate that the mutant is deficient in its ability to sequester Cd. Images Figure 1 Figure 7 PMID:16652930

  13. Differentially expressed genes in white egg 2 mutant of silkworm ...

    African Journals Online (AJOL)

    use

    2011-12-21

    Dec 21, 2011 ... egg 2 (w-2) has the same phenotypes as white egg 1 and white egg 3 mutants with white egg color, but its mechanism is more complicated than white egg 1 and white egg 3 mutants based on recent report (Tatematsu et al., 2011) which suggest that the silkworm w-2 locus existed multi-allelic mutations.

  14. Characterization of human glucocerebrosidase from different mutant alleles

    NARCIS (Netherlands)

    Ohashi, T.; Hong, C. M.; Weiler, S.; Tomich, J. M.; Aerts, J. M.; Tager, J. M.; Barranger, J. A.

    1991-01-01

    Human cDNA was mutagenized to duplicate six naturally occurring mutations in the gene for glucocere-brosidase. The mutant genes were expressed in NIH 3T3 cells. The abnormal human enzymes were purified by immunoaffinity chromatography and characterized. The Asn370----Ser mutant protein differed from

  15. Photosynthetic characterization of a rolled leaf mutant of rice ( Oryza ...

    African Journals Online (AJOL)

    A new rolling leaf rice mutant was identified which showed an apparently straighter longitudinal shape normal transverse rolling characters at all developing stages. The chlorophyll contents per fresh weight of this mutant leaves were lower than those of wild-type. The electron transfer rate (ETR) and photochemical ...

  16. Unfolding intermediates of the mutant His-107-Tyr of human ...

    Indian Academy of Sciences (India)

    Srabani Taraphder

    Abstract. The mutant His-107-Tyr of human carbonic anhydrase II (HCA II) is highly unstable and has long been linked to a misfolding disease known as carbonic anhydrase deficiency syndrome (CADS). High temperature unfolding trajectories of the mutant are obtained from classical molecular dynamics simulations.

  17. Decreased cariogenicity of a mutant of Streptococcus mutans

    NARCIS (Netherlands)

    Stoppelaar, J.D.; König, K.G.; Plasschaert, A.J.M.; Hoeven, J.S. van der

    A strain of Streptococcus mutans was treated with a mutagenic agent. This resulted in isolation of a mutant which, compared to the original strain, had lost the ability to form sticky deposits on hard surfaces in sucrose medium. Apart from colonial morphology, the mutant had not changed in any other

  18. Mutants of Cre recombinase with improved accuracy

    Science.gov (United States)

    Eroshenko, Nikolai; Church, George M.

    2013-01-01

    Despite rapid advances in genome engineering technologies, inserting genes into precise locations in the human genome remains an outstanding problem. It has been suggested that site-specific recombinases can be adapted towards use as transgene delivery vectors. The specificity of recombinases can be altered either with directed evolution or via fusions to modular DNA-binding domains. Unfortunately, both wildtype and altered variants often have detectable activities at off-target sites. Here we use bacterial selections to identify mutations in the dimerization surface of Cre recombinase (R32V, R32M, and 303GVSdup) that improve the accuracy of recombination. The mutants are functional in bacteria, in human cells, and in vitro (except for 303GVSdup, which we did not purify), and have improved selectivity against both model off-target sites and the entire E. coli genome. We propose that destabilizing binding cooperativity may be a general strategy for improving the accuracy of dimeric DNA-binding proteins. PMID:24056590

  19. Induction and characterization of Arabidopsis mutants by Ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Y. H.; Choi, J. D.; Park, J. Y.; Lee, J. R.; Sohn, H. S. [Gyeongbuk Institute for Bio Industry, Andong (Korea, Republic of)

    2008-03-15

    This study was conducted to search the proper conditions and times for irradiating proton beam to seeds generally used for induction of mutant. Arabidopsis as model plants has good characters that is a short generation time, producing a lot of seeds, sequenced genome, developed maker. This points were the best materials for plant breeding for this study. The data of inducing mutants of Arabidopsis is used to be applicate to crops have more longer generation that is the final goals of this study. The goals of this project were to inducing and characterizing arabidopsis mutants by the proton ion beam and {gamma}-ray. As well as, the purpose of this study was securing more than 10 lines of arabidopsis mutants in this project and also to know the changed DNA structure of the mutants using the basic data for applying to the more study

  20. Misfolded opsin mutants display elevated β-sheet structure.

    Science.gov (United States)

    Miller, Lisa M; Gragg, Megan; Kim, Tae Gyun; Park, Paul S-H

    2015-10-07

    Mutations in rhodopsin can cause misfolding and aggregation of the receptor, which leads to retinitis pigmentosa, a progressive retinal degenerative disease. The structure adopted by misfolded opsin mutants and the associated cell toxicity is poorly understood. Förster resonance energy transfer (FRET) and Fourier transform infrared (FTIR) microspectroscopy were utilized to probe within cells the structures formed by G188R and P23H opsins, which are misfolding mutants that cause autosomal dominant retinitis pigmentosa. Both mutants formed aggregates in the endoplasmic reticulum and exhibited altered secondary structure with elevated β-sheet and reduced α-helical content. The newly formed β-sheet structure may facilitate the aggregation of misfolded opsin mutants. The effects observed for the mutants were unrelated to retention of opsin molecules in the endoplasmic reticulum itself. Copyright © 2015 Federation of European Biochemical Societies. All rights reserved.

  1. Arabinose Kinase-Deficient Mutant of Arabidopsis thaliana 1

    Science.gov (United States)

    Dolezal, Olan; Cobbett, Christopher S.

    1991-01-01

    A mutant of Arabidopsis thaliana that is sensitive to exogenous l-arabinose has been isolated. Comparisons of growth of the wild type, mutant, and F1 and F2 progeny of crosses showed the arabinose-sensitive phenotype is semidominant and segregates as a single Mendelian locus. Crosses of the mutant to marker strains showed the mutation is linked to the eceriferum-2 locus on chromosome 4. In vivo incorporation of exogenous labeled l-arabinose into ethanol-insoluble polysaccharides was greatly reduced in the mutant with a concomitant accumulation of free labeled arabinose. Enzyme assays of crude plant extracts demonstrated a defect in arabinose kinase activity in the mutant. ImagesFigure 2Figure 3 PMID:16668327

  2. Isolation and characterization of gallium resistant Pseudomonas aeruginosa mutants.

    Science.gov (United States)

    García-Contreras, Rodolfo; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Hernández-González, Ismael L; Maeda, Toshinari; Hashimoto, Takahiro; Boogerd, Fred C; Sheng, Lili; Wood, Thomas K; Moreno-Sánchez, Rafael

    2013-12-01

    Pseudomonas aeruginosa PA14 cells resistant to the novel antimicrobial gallium nitrate (Ga) were developed using transposon mutagenesis and by selecting spontaneous mutants. The mutants showing the highest growth in the presence of Ga were selected for further characterization. These mutants showed 4- to 12-fold higher Ga minimal inhibitory growth concentrations and a greater than 8-fold increase in the minimum biofilm eliminating Ga concentration. Both types of mutants produced Ga resistant biofilms whereas the formation of wild-type biofilms was strongly inhibited by Ga. The gene interrupted in the transposon mutant was hitA, which encodes a periplasmic iron binding protein that delivers Fe³⁺ to the HitB iron permease; complementation of the mutant with the hitA gene restored the Ga sensitivity. This hitA mutant showed a 14-fold decrease in Ga internalization versus the wild-type strain, indicating that the HitAB system is also involved in the Ga uptake. Ga uptake in the spontaneous mutant was also lower, although no mutations were found in the hitAB genes. Instead, this mutant harbored 64 non-silent mutations in several genes including those of the phenazine pyocyanin biosynthesis. The spontaneous mutant produced 2-fold higher pyocyanin basal levels than the wild-type; the addition of this phenazine to wild-type cultures protected them from the Ga bacteriostatic effect. The present data indicate that mutations affecting Ga transport and probably pyocyanin biosynthesis enable cells to develop resistance to Ga. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. Human liver cell trafficking mutants: characterization and whole exome sequencing.

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    Full Text Available The HuH7 liver cell mutant Trf1 is defective in membrane trafficking and is complemented by the casein kinase 2α subunit CK2α''. Here we identify characteristic morphologies, trafficking and mutational changes in six additional HuH7 mutants Trf2-Trf7. Trf1 cells were previously shown to be severely defective in gap junction functions. Using a Lucifer yellow transfer assay, remarkable attenuation of gap junction communication was revealed in each of the mutants Trf2-Trf7. Electron microscopy and light microscopy of thiamine pyrophosphatase showed that several mutants exhibited fragmented Golgi apparatus cisternae compared to parental HuH7 cells. Intracellular trafficking was investigated using assays of transferrin endocytosis and recycling and VSV G secretion. Surface binding of transferrin was reduced in all six Trf2-Trf7 mutants, which generally correlated with the degree of reduced expression of the transferrin receptor at the cell surface. The mutants displayed the same transferrin influx rates as HuH7, and for efflux rate, only Trf6 differed, having a slower transferrin efflux rate than HuH7. The kinetics of VSV G transport along the exocytic pathway were altered in Trf2 and Trf5 mutants. Genetic changes unique to particular Trf mutants were identified by exome sequencing, and one was investigated in depth. The novel mutation Ile34Phe in the GTPase RAB22A was identified in Trf4. RNA interference knockdown of RAB22A or overexpression of RAB22AI34F in HuH7 cells caused phenotypic changes characteristic of the Trf4 mutant. In addition, the Ile34Phe mutation reduced both guanine nucleotide binding and hydrolysis activities of RAB22A. Thus, the RAB22A Ile34Phe mutation appears to contribute to the Trf4 mutant phenotype.

  4. PedonnanceofE3rly MatUring MutantS Derived from ''SuPa'~ Rice ...

    African Journals Online (AJOL)

    sig"ificant di.ffere-"~s between the mutants and their'parent for 'ail the maraders testeiiexcept 1 (j()(J grains weight and ~ipe weight The mutants .... reported in earlier rice improvement programmes

  5. Mapping pathological phenotypes in Reelin mutant mice

    Directory of Open Access Journals (Sweden)

    Caterina eMichetti

    2014-09-01

    Full Text Available Autism Spectrum Disorders (ASD are neurodevelopmental disorders with multifactorial origin characterized by social communication and behavioural perseveration deficits. Several studies showed an association between the reelin gene mutation and increased risk of ASD and a reduced reelin expression in some brain regions of ASD subjects, suggesting a role for reelin deficiency in ASD etiology. Reelin is a large extracellular matrix glycoprotein playing important roles during development of the central nervous system. To deeply investigate the role of reelin dysfunction as vulnerability factor in ASD, we investigated the behavioural, neurochemical and brain morphological features of reeler male mice. We recently reported a genotype-dependent deviation in ultrasonic vocal repertoire and a general delay in motor development in reeler pups. We now report that adult male heterozygous reeler mice did not show social behaviour and communication deficits during male-female social interactions. Wildtype and heterozygous mice also showed a typical light/dark locomotor activity profile, with a peak during the central interval of the dark phase. However, when faced with a mild stressful stimulus (a saline injection only heterozygous mice showed an over response to stress. At the end of the behavioural studies, we conducted high performance liquid chromatography and magnetic resonance imaging and spectroscopy to investigate whether reelin mutation influences brain monoamine and metabolites levels in regions involved in ASD. Low levels of dopamine in cortex and high levels of glutamate and taurine in hippocampus were detected in heterozygous mice, in line with clinical data collected on ASD children. Altogether, our data detected subtle but relevant neurochemical abnormalities in reeler mice supporting this mutant line, particularly male subjects, as a valid experimental model to estimate the contribution played by reelin deficiency in the global ASD

  6. Mutant Resources for the Functional Analysis of the Rice Genome

    National Research Council Canada - National Science Library

    Nili Wang Tuan Long Wen Yao Lizhong Xiong Qifa Zhang Changyin Wu

    2013-01-01

    .... In order to systematically assign functions to all predicted genes in the rice genome, a large number of rice mutant lines, including those created by T-DNA insertion, Ds/dSpm tagging, Tos17 tagging...

  7. Hole poking and motor coordination in lurcher mutant mice.

    Science.gov (United States)

    Lalonde, R; Joyal, C C; Guastavino, J M; Botez, M I

    1993-07-01

    Lurcher mutant mice, a cerebellar mutant displaying ataxia and equilibrium deficits, had fewer hole pokes in a 16-hole matrix than normal mice. Lurcher mutants also took longer to reach a platform from a grid and to begin to climb a grid from the floor. However, the lurchers climbed as high as normal mice on the grid and their exploratory patterns of the holeboard were similar in many respects to normal mice, such as the ratio of center to peripheral hole exploration. In a wooden beam test, although lurchers did not differ from normal mice in terms of the amount of time spent on the beam or in the distance travelled, the mutants were found more often in unstable positions.

  8. Enhanced Cellulase Production by a Mutant of Sclerotium rolfsii.

    Science.gov (United States)

    Sadana, J C; Shewale, J G; Deshpande, M V

    1979-10-01

    A mutant of Sclerotium rolfsii CPC 142 that secretes about two times more filter paper-degrading activity in NM-2 growth medium in submerged cultures than the parent strain was obtained by ultraviolet mutagenesis of crushed sclerotia. The production of endo-beta-glucanase in the mutant was affected to a lesser extent. With the parent strain, the addition of 3% rice bran to NM-2 medium was essential for optimal formation of cellulase, including filter paper-degrading activity. However, with the mutant the addition of rice bran to NM-2 medium increased the formation of endo-beta-glucanase but not filter paper-degrading or cellobiase activity. An altered control mechanism for the production of filter paper-degrading enzymes is suggested. The genome(s) controlling the cellulase complex of enzymes in the UV-8 mutant is not under coordinate control.

  9. Enhanced Cellulase Production by a Mutant of Sclerotium rolfsii†

    Science.gov (United States)

    Sadana, J. C.; Shewale, J. G.; Deshpande, M. V.

    1979-01-01

    A mutant of Sclerotium rolfsii CPC 142 that secretes about two times more filter paper-degrading activity in NM-2 growth medium in submerged cultures than the parent strain was obtained by ultraviolet mutagenesis of crushed sclerotia. The production of endo-β-glucanase in the mutant was affected to a lesser extent. With the parent strain, the addition of 3% rice bran to NM-2 medium was essential for optimal formation of cellulase, including filter paper-degrading activity. However, with the mutant the addition of rice bran to NM-2 medium increased the formation of endo-β-glucanase but not filter paper-degrading or cellobiase activity. An altered control mechanism for the production of filter paper-degrading enzymes is suggested. The genome(s) controlling the cellulase complex of enzymes in the UV-8 mutant is not under coordinate control. Images PMID:16345449

  10. Globulin gene expression in embryos of maize viviparous mutants

    Energy Technology Data Exchange (ETDEWEB)

    Kriz, A.R.; Wallace, M.S.; Paiva, R. (Univ. of Illinois, Urbana (USA))

    1990-02-01

    Expression of genes encoding the major Zea mays embryo globulins was examined in the maize precocious germination viviparous (vp) mutants. Comparison of globulin protein profiles of precociously germinating mutant embryos with those of normally germinating mature embryos revealed substantial differences with respect to the proteins encoded by the Glb1 gene. Analysis of Glb1 transcript levels in vp/vp embryos suggests that these mutants do not fully switch from a program of embryo maturation to one of germination. These preliminary studies indicate that the vp mutants provide an excellent system for the study of embryo maturation in maize. We also provide evidence for the positive regulation of Glb1 expression by the plant growth regulator abscisic acid.

  11. Phosphoribosylpyrophosphate synthetase of Escherichia coli, Identification of a mutant enzyme

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Nygaard, Per

    1982-01-01

    , stimulated the mutant enzyme. The activity of PRib-PP synthetase in crude extract was higher in the mutant than in the parent. When starved for purines an accumulation of PRib-PP was observed in the parent strain, while the pool decreased in the mutant. During pyrimidine starvation derepression of PRib....... Kinetic analysis of the mutant PRib-PP synthetase revealed an apparent Km for ATP and ribose 5-phosphate of 1.0 mM and 240 μM respectively, compared to 60 μM and 45 μM respectively for the wild-type enzyme. ADP, which inhibits the wild-type enzyme at a concentration of 0.5 mM ribose 5-phosphate...

  12. Characterization of Glutamine-Requiring Mutants of Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Janssen, Dick B.; Joosten, Han M.L.J.; Herst, Patricia M.; Drift, Chris van der

    1982-01-01

    Revertants were isolated from a glutamine-requiring mutant of Pseudomonas aeruginosa PAO. One strain showed thermosensitive glutamine requirement and formed thermolabile glutamine synthetase, suggesting the presence of a mutation in the structural gene for glutamine synthetase. The mutation

  13. Characterization of Pasteurella multocida mutants of low virulence.

    Science.gov (United States)

    Lee, M D; Glisson, J R; Wooley, R E; Brown, J

    1990-01-01

    Ten temperature-sensitive mutants of the Clemson University (CU) vaccine strain of Pasteurella multocida have been developed and were characterized by phenotypic attributes such as carbohydrate fermentation, antibiotic resistance, and membrane protein profiles. Some mutants were found to have lost the ability to utilize some substrates, notably xylose and gluconate, whereas others were able to ferment additional carbohydrates such as arabinose and rhamnose. CU was found to be resistant to sulfisoxazole, of intermediate resistance to bacitracin, and sensitive to rifampin; the sensitivity to these three antibiotics varied among the mutant strains, but 60% were resistant to rifampin. Membrane protein profiles demonstrated some changes in major bands, and there was variation in 50% of the mutants in proteins in the 31 kilodalton range. All strains were assayed for the presence of several virulence factors, and many were found to produce siderophore and to exhibit some degree of complement resistance.

  14. Selection of mutants of capsicum annuum induced by gamma ray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. I.; Lee, Y. B. [Korea Atomic Energy Research Institute, Taejeon (Korea, Republic of); Lee, E. K. [Chungnam National Univ., Taejeon (Korea, Republic of)

    1998-06-01

    For induction and selection of mutations of Capsicum annuum L., dry seeds of pure lines No.1 and No.2 were irradiated with gamma ray of 150Gy, 200Gy and 250Gy. Various mutants were selected such as showing early maturity, short plant height, long fruit and chlorophyll mutations. Mutation frequency of No.1 line was 3.4% in the dose of 150Gy, while the frequency of No.2 line was 2.7% in the dose of 250Gy. For selection of resistant mutant to amino acid analog, the optimum concentration of 5-methyltryptophan (5-MT) and S-(2-aminoethyl)-L-cysteine were 25 ppm and 30 ppm, respectively. Four resistant mutant lines to 5-MT were selected among 400 mutant lines.

  15. Uv- and Gamma-Radiation Sensitive Mutants of Arabidopsis Thaliana

    OpenAIRE

    Jiang, C Z; Yen, C. N.; Cronin, K; Mitchell, D.; Britt, A B

    1997-01-01

    Arabidopsis seedlings repair UV-induced DNA damage via light-dependent and -independent pathways. The mechanism of the ``dark repair'' pathway is still unknown. To determine the number of genes required for dark repair and to investigate the substrate-specificity of this process we isolated mutants with enhanced sensitivity to UV radiation in the absence of photoreactivating light. Seven independently derived UV sensitive mutants were isolated from an EMS-mutagenized population. These fell in...

  16. [The behavioral development of the mutant "staggerer" mouse].

    Science.gov (United States)

    Guastavino, J M

    1978-01-01

    The behavioural study, in particular rearing environmental conditions, of the mutant mouse staggerer has shown that such animals may live more than 90 days. (he behavioural diagnosis of this mutation has been possible from the second week of life, using specific tests. A typical "bat posture" permits one to recognize the mutant from the normal Mouse. Locomotory and feeding behaviours also present late and various qualitatige particularities.

  17. Structure prediction of subtilisin BPN' mutants using molecular dynamics methods

    OpenAIRE

    Heiner, Andreas P.; Berendsen, Herman J.C.; van Gunsteren, Wilfred F.

    2017-01-01

    In this paper we describe the achievements and pitfalls encountered in doing structure predictions of protein mutants using molecular dynamics simulation techniques in which properties of atoms are slowly changed as a function of time. Basically the method consists of a thermodynamic integration (slow growth) calculation used for free energy determination, but aimed at structure prediction; this allows for a fast determination of the mutant structure. We compared the calculated structure of t...

  18. Fate of peptides in peptidase mutants of Lactococcus lactis

    NARCIS (Netherlands)

    Kunji, E.R S; Mierau, I; Poolman, B.; Konings, W.N; Venema, G; Kok, J.

    The utilization of exogenous peptides was studied in mutants of Lactococcus lactis in which combinations of the peptidase genes pepN, pepC, pepO, pepX and pepT were deleted, Multiple mutants lacking PepN, PepC, PepT plus PepX could not grow on peptides such as Leu-Gly-Gly, Gly-Phe-Leu, Leu-Gly-Pro,

  19. Ozone-Sensitive Arabidopsis Mutants with Deficiencies in Photorespiratory Enzymes.

    Science.gov (United States)

    Saji, Shoko; Bathula, Srinivas; Kubo, Akihiro; Tamaoki, Masanori; Aono, Mitsuko; Sano, Tomoharu; Tobe, Kazuo; Timm, Stefan; Bauwe, Hermann; Nakajima, Nobuyoshi; Saji, Hikaru

    2017-05-01

    An ozone-sensitive mutant was isolated from T-DNA-tagged lines of Arabidopsis thaliana. The T-DNA was inserted at a locus on chromosome 3, where two genes encoding glycolate oxidases, GOX1 and GOX2, peroxisomal enzymes involved in photorespiration, reside contiguously. The amounts of the mutant's foliar transcripts for these genes were reduced, and glycolate oxidase activity was approximately 60% of that of the wild-type plants. No difference in growth and appearance was observed between the mutant and the wild-type plants under normal conditions with ambient air under a light intensity of 100 µmol photons m-2 s-1. However, signs of severe damage, such as chlorosis and ion leakage from the tissue, rapidly appeared in mutant leaves in response to ozone treatment at a concentration of 0.2 µl l-1 under a higher light intensity of 350 µmol photons m-2 s-1 that caused no such symptoms in the wild-type plant. The mutant also exhibited sensitivity to sulfur dioxide and long-term high-intensity light. Arabidopsis mutants with deficiencies in other photorespiratory enzymes such as glutamate:glyoxylate aminotransferase and hydroxypyruvate reductase also exhibited ozone sensitivities. Therefore, photorespiration appears to be involved in protection against photooxidative stress caused by ozone and other abiotic factors under high-intensity light. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. In vitro exploration of latent prothrombin mutants conveying antithrombin resistance.

    Science.gov (United States)

    Tamura, Shogo; Murata-Kawakami, Moe; Takagi, Yuki; Suzuki, Sachiko; Katsumi, Akira; Takagi, Akira; Kojima, Tetsuhito

    2017-09-20

    Antithrombin resistance (ATR) prothrombinemia is an inherited thrombophilic disorder caused by missense mutations in prothrombin gene (F2) at Arg596 of the sodium-binding region. Previously, prothrombin mutants Yukuhashi (Arg596Leu), Belgrade (Arg596Gln), and Padua 2 (Arg596Trp) were reported as ATR-prothrombins possessing a risk of familial venous thrombosis. To identify additional F2 mutations causing the ATR-phenotype, we investigated the coagulant properties of recombinant prothrombins mutated at amino acid residues within the sodium-binding region by single nucleotide substitutions (Thr540, Arg541, Glu592, and Lys599). We constructed expression vectors of prothrombin mutants, established stably transfected HEK293 cells, and isolated the recombinant prothrombin proteins. We evaluated procoagulant activity and ATR-phenotypes of those mutants in reconstituted plasma by mixing with prothrombin deficient plasma. The secreted quantity of all prothrombin mutants was the same as that of the wild-type prothrombin. Procoagulant activity of each mutant varied from 1.7% to 79.5% in a one-stage clotting assay and from 2.0% to 104.5% in a two-stage chromogenic assay. Most prothrombin mutants tested presented with a severe ATR-phenotype. To estimate the thrombosis risk of these mutations, we determined the residual clotting activity (RCA) after 30min inactivation with antithrombin. RCA scores, normalized to the wild-type, revealed that prothrombin mutants Lys599Arg (5.35) and Glu592Gln (4.71) had high scores, which were comparable with prothrombins Yukuhashi (4.36) and Belgrade (5.19). Mutation of prothrombin at the sodium-binding site caused ATR-phenotypes. Of those tested, Lys599Arg and Glu592Gln may possess a thrombosis risk as large as the known pathogenic prothrombins Yukuhashi and Belgrade. Copyright © 2017. Published by Elsevier Ltd.

  1. NRAS-mutant melanoma: current challenges and future prospect

    Directory of Open Access Journals (Sweden)

    Muñoz-Couselo E

    2017-08-01

    Full Text Available Eva Muñoz-Couselo,1,2 Ester Zamora Adelantado,1,2 Carolina Ortiz,1,2 Jesús Soberino García,3 José Perez-Garcia31Medical Oncology Department, Vall d’Hebron Hospital, Barcelona, Spain; 2Vall d’Hebron Institute of Oncology (VHIO, Barcelona, Spain; 3Baselga Institute of Oncology, Hospital Quirón, Barcelona, SpainAbstract: Melanoma is one of the most common cutaneous cancers worldwide. Activating mutations in RAS oncogenes are found in a third of all human cancers and NRAS mutations are found in 15%–20% of melanomas. The NRAS-mutant subset of melanoma is more aggressive and associated with poorer outcomes, compared to non-NRAS-mutant melanoma. Although immune checkpoint inhibitors and targeted therapies for BRAF-mutant melanoma are transforming the treatment of metastatic melanoma, the ideal treatment for NRAS-mutant melanoma remains unknown. Despite promising preclinical data, current therapies for NRAS-mutant melanoma remain limited, showing a modest increase in progression-free survival but without any benefit in overall survival. Combining MEK inhibitors with agents inhibiting cell cycling and the PI3K–AKT pathway appears to provide additional benefit; in particular, a strategy of MEK inhibition and CDK4/6 inhibition is likely to be a viable treatment option in the future. Patients whose tumors had NRAS mutations had better response to immunotherapy and better outcomes than patients whose tumors had other genetic subtypes, suggesting that immune therapies – especially immune checkpoint inhibitors – may be particularly effective as treatment options for NRAS-mutant melanoma. Improved understanding of NRAS-mutant melanoma will be essential to develop new treatment strategies for this subset of patients with melanoma.Keywords: metastatic melanoma, NRAS mutation, MEK inhibitor, immunotherapy, trametinib, binimetinib

  2. Defective glycinergic synaptic transmission in zebrafish motility mutants

    Directory of Open Access Journals (Sweden)

    Hiromi Hirata

    2010-01-01

    Full Text Available Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs.

  3. Altered protein dynamics of disease-associated lamin A mutants

    Directory of Open Access Journals (Sweden)

    Worman Howard J

    2004-12-01

    Full Text Available Abstract Background Recent interest in the function of the nuclear lamina has been provoked by the discovery of lamin A/C mutations in the laminopathy diseases. However, it is not understood why mutations in lamin A give such a range of tissue-specific phenotypes. Part of the problem in rationalising genotype-phenotype correlations in the laminopathies is our lack of understanding of the function of normal and mutant lamin A. To investigate this we have used photobleaching in human cells to analyse the dynamics of wild-type and mutant lamin A protein at the nuclear periphery. Results We have found that a large proportion of wild-type lamin A at the nuclear periphery is immobile, but that there is some slow movement of lamin A within the nuclear lamina. The mobility of an R482W mutant lamin A was indistinguishable from wild-type, but increased mobility of L85R and L530P mutant proteins within the nuclear lamina was found. However, the N195K mutant shows the most enhanced protein mobility, both within the nucleoplasm and within the lamina. Conclusion The slow kinetics of lamin A movement is compatible with its incorporation into a stable polymer that only exchanges subunits very slowly. All of the myopathy-associated lamin A mutants that we have studied show increased protein movement compared with wild-type. In contrast, the dynamic behaviour of the lipodystrophy-associated lamin A mutant was indistinguishable from wild-type. This supports the hypothesis that the underlying defect in lamin A function is quite distinct in the laminopathies that affect striated muscle, compared to the diseases that affect adipose tissue. Our data are consistent with an alteration in the stability of the lamin A molecules within the higher-order polymer at the nuclear lamina in myopathies.

  4. PIK3CA mutant tumors depend on oxoglutarate dehydrogenase

    Science.gov (United States)

    Ilic, Nina; Birsoy, Kıvanç; Aguirre, Andrew J.; Kory, Nora; Pacold, Michael E.; Singh, Shambhavi; Moody, Susan E.; DeAngelo, Joseph D.; Spardy, Nicole A.; Freinkman, Elizaveta; Weir, Barbara A.; Cowley, Glenn S.; Root, David E.; Asara, John M.; Vazquez, Francisca; Widlund, Hans R.; Sabatini, David M.; Hahn, William C.

    2017-01-01

    Oncogenic PIK3CA mutations are found in a significant fraction of human cancers, but therapeutic inhibition of PI3K has only shown limited success in clinical trials. To understand how mutant PIK3CA contributes to cancer cell proliferation, we used genome scale loss-of-function screening in a large number of genomically annotated cancer cell lines. As expected, we found that PIK3CA mutant cancer cells require PIK3CA but also require the expression of the TCA cycle enzyme 2-oxoglutarate dehydrogenase (OGDH). To understand the relationship between oncogenic PIK3CA and OGDH function, we interrogated metabolic requirements and found an increased reliance on glucose metabolism to sustain PIK3CA mutant cell proliferation. Functional metabolic studies revealed that OGDH suppression increased levels of the metabolite 2-oxoglutarate (2OG). We found that this increase in 2OG levels, either by OGDH suppression or exogenous 2OG treatment, resulted in aspartate depletion that was specifically manifested as auxotrophy within PIK3CA mutant cells. Reduced levels of aspartate deregulated the malate–aspartate shuttle, which is important for cytoplasmic NAD+ regeneration that sustains rapid glucose breakdown through glycolysis. Consequently, because PIK3CA mutant cells exhibit a profound reliance on glucose metabolism, malate–aspartate shuttle deregulation leads to a specific proliferative block due to the inability to maintain NAD+/NADH homeostasis. Together these observations define a precise metabolic vulnerability imposed by a recurrently mutated oncogene. PMID:28396387

  5. Characterization of Leber Congenital Amaurosis-associated NMNAT1 Mutants.

    Science.gov (United States)

    Sasaki, Yo; Margolin, Zachary; Borgo, Benjamin; Havranek, James J; Milbrandt, Jeffrey

    2015-07-10

    Leber congenital amaurosis 9 (LCA9) is an autosomal recessive retinal degeneration condition caused by mutations in the NAD(+) biosynthetic enzyme NMNAT1. This condition leads to early blindness but no other consistent deficits have been reported in patients with NMNAT1 mutations despite its central role in metabolism and ubiquitous expression. To study how these mutations affect NMNAT1 function and ultimately lead to the retinal degeneration phenotype, we performed detailed analysis of LCA-associated NMNAT1 mutants, including the expression, nuclear localization, enzymatic activity, secondary structure, oligomerization, and promotion of axonal and cellular integrity in response to injury. In many assays, most mutants produced results similar to wild type NMNAT1. Indeed, NAD(+) synthetic activity is unlikely to be a primary mechanism underlying retinal degeneration as most LCA-associated NMNAT1 mutants had normal enzymatic activity. In contrast, the secondary structure of many NMNAT1 mutants was relatively less stable as they lost enzymatic activity after heat shock, whereas wild type NMNAT1 retains significant activity after this stress. These results suggest that LCA-associated NMNAT1 mutants are more vulnerable to stressful conditions that lead to protein unfolding, a potential contributor to the retinal degeneration observed in this syndrome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Development of Bacillus subtilis mutants to produce tryptophan in pigs.

    Science.gov (United States)

    Bjerre, Karin; Cantor, Mette D; Nørgaard, Jan V; Poulsen, Hanne D; Blaabjerg, Karoline; Canibe, Nuria; Jensen, Bent B; Stuer-Lauridsen, Birgitte; Nielsen, Bea; Derkx, Patrick M F

    2017-02-01

    To generate tryptophan-overproducing Bacillus subtilis strains for in situ use in pigs, to reduce the feed cost for farmers and nitrogen pollution. A novel concept has been investigated-to generate B. subtilis strains able to produce tryptophan (Trp) in situ in pigs. Mutagenesis by UV was combined with selection on Trp and purine analogues in an iterative process. Two mutants from different wild types were obtained, mutant 1 (M1) produced 1 mg Trp/l and mutant 2 (M2) 14 mg Trp/l. Genome sequence analysis revealed that M1 had three single nuclear polymorphisms (SNPs) and M2 had two SNPs compared to the wild type strains. In both mutants SNPs were found in genes regulating tryptophan synthesis. Reverse transcription PCR confirmed up-regulation of the tryptophan synthesis genes in both mutants, the expression was up to 3 times higher in M2 than in M1. Tryptophan-excreting B. subtilis strains were obtained with UV-mutagenesis and analogue selection and can be used in animal feed applications.

  7. Analysis of AtCry1 and Mutants

    Science.gov (United States)

    Burdick, Derek; Purvis, Adam; Ahmad, Margaret; Link, Justin J.; Engle, Dorothy

    Cryptochrome is an incredibly versatile protein that influences numerous biological processes such as plant growth, bird migration, and sleep cycles. Due to the versatility of this protein, understanding the mechanism would allow for advances in numerous fields such as crop growth, animal behavior, and sleep disorders. It is known that cryptochrome requires blue light to function, but the exact processes in the regulation of biological activity are still not fully understood. It is believed that the c-terminal domain of the protein undergoes a conformational change when exposed to blue light which allows for biological function. Three different non-functioning mutants were tested during this study to gain insight on the mechanism of cryptochrome. Absorbance spectra showed a difference between two of the mutants and the wild type with one mutant showing little difference. Immunoprecipitation experiments were also conducted to identify the different c-terminal responses of the mutants. By studying non functioning mutants of this protein, the mechanism of the protein can be further characterized. This two-month research experience in Paris allowed us to experience international and interdisciplinary collaborations in science and immerse in a different culture. The Borcer Fund for Student Research, Xavier University, Cincinnati, OH, and John Hauck Foundation.

  8. Normal aging modulates the neurotoxicity of mutant huntingtin.

    Directory of Open Access Journals (Sweden)

    Elsa Diguet

    Full Text Available Aging likely plays a role in neurodegenerative disorders. In Huntington's disease (HD, a disorder caused by an abnormal expansion of a polyglutamine tract in the protein huntingtin (Htt, the role of aging is unclear. For a given tract length, the probability of disease onset increases with age. There are mainly two hypotheses that could explain adult onset in HD: Either mutant Htt progressively produces cumulative defects over time or "normal" aging renders neurons more vulnerable to mutant Htt toxicity. In the present study, we directly explored whether aging affected the toxicity of mutant Htt in vivo. We studied the impact of aging on the effects produced by overexpression of an N-terminal fragment of mutant Htt, of wild-type Htt or of a beta-Galactosidase (beta-Gal reporter gene in the rat striatum. Stereotaxic injections of lentiviral vectors were performed simultaneously in young (3 week and old (15 month rats. Histological evaluation at different time points after infection demonstrated that the expression of mutant Htt led to pathological changes that were more severe in old rats, including an increase in the number of small Htt-containing aggregates in the neuropil, a greater loss of DARPP-32 immunoreactivity and striatal neurons as assessed by unbiased stereological counts.The present results support the hypothesis that "normal" aging is involved in HD pathogenesis, and suggest that age-related cellular defects might constitute potential therapeutic targets for HD.

  9. Purkinje Cell Compartmentation in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant Mouse (Nax - Naked-Ataxia Mutant Mouse)

    Science.gov (United States)

    Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R.; Marzban, Hassan

    2014-01-01

    The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation. PMID:24722417

  10. Generation and Characterization of dickkopf3 Mutant Mice

    Science.gov (United States)

    del Barco Barrantes, Ivan; Montero-Pedrazuela, Ana; Guadaño-Ferraz, Ana; Obregon, Maria-Jesus; Martinez de Mena, Raquel; Gailus-Durner, Valérie; Fuchs, Helmut; Franz, Tobias J.; Kalaydjiev, Svetoslav; Klempt, Martina; Hölter, Sabine; Rathkolb, Birgit; Reinhard, Claudia; Morreale de Escobar, Gabriella; Bernal, Juan; Busch, Dirk H.; Wurst, Wolfgang; Wolf, Eckhard; Schulz, Holger; Shtrom, Svetlana; Greiner, Erich; Hrabé de Angelis, Martin; Westphal, Heiner; Niehrs, Christof

    2006-01-01

    dickkopf (dkk) genes encode a small family of secreted Wnt antagonists, except for dkk3, which is divergent and whose function is poorly understood. Here, we describe the generation and characterization of dkk3 mutant mice. dkk3-deficient mice are viable and fertile. Phenotypic analysis shows no major alterations in organ morphology, physiology, and most clinical chemistry parameters. Since Dkk3 was proposed to function as thyroid hormone binding protein, we have analyzed deiodinase activities, as well as thyroid hormone levels. Mutant mice are euthyroid, and the data do not support a relationship of dkk3 with thyroid hormone metabolism. Altered phenotypes in dkk3 mutant mice were observed in the frequency of NK cells, immunoglobulin M, hemoglobin, and hematocrit levels, as well as lung ventilation. Furthermore, dkk3-deficient mice display hyperactivity. PMID:16508007

  11. Some enzyme activities of acetate mutants of Yarrowia lypolytica

    Energy Technology Data Exchange (ETDEWEB)

    Robak, M.; Wojtatowicz, M.; Rymowicz, W. [Akademia Rolnicza, Wroclaw (Poland)

    1994-12-31

    Activity at the following enzymes: CS (oxaloacetate-lyase citrate), AH (citrate (isocitrate) hydrolyase), ICDH (threo-Ds-isocitrate: NADP oxidoreductase) and ICL (threo-Ds-isocitrate glyoxyglate-lyase) was measured at subsequent stages of citrate fermentation on glucose by wild type strain `Y, lipolytica A-101` and 2 acetate defective mutants, in order to recognize metabolic disorders in those mutants, which resulted in markedly improved homogeneity of citric acid production. Mutants did not show significant changes in activity of TCA cycle enzymes and ICL. Thus suggests that the control of citric:isocitric acid ratio is more difficult and it can also depend on transportation systems of both acids. (author). 19 refs, 3 figs, 2 tabs.

  12. The swimming activity of the staggerer mutant mouse.

    Science.gov (United States)

    Goodall, G; Guastavino, J M; Gheusi, G

    1986-09-01

    Four experiments investigated the swimming behaviour of staggerer mutant mice. The results partially confirmed previous reports that a mouse's swimming is unaffected by the staggerer mutation. In terms of speed and distance there are indeed no measurable differences between normal and staggerer mice, when first placed in the water. The stagger's resistance was however shown to be much lower than a normal's and the genetic difference was also associated with different styles of swimming. Furthermore, whereas the normal mouse's swimming behaviour evolves with increased time in the water, the staggerer's remains constant. The differences are interpreted on the basis of abnormal novelty reactions by the staggerer mutants. Thus, swimming appears to be a better tool for investigating the higher-level cognitive functions of this mutant than terrestrial locomotion. Copyright © 1986. Published by Elsevier B.V.

  13. Sensorimotor learning in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Lalonde, R; Strazielle, C

    2011-04-15

    Homozygous Dab1(scm) mouse mutants with cell ectopias in cerebellar cortex and neocortex were compared with non-ataxic controls on two tests of motor coordination: rotorod and grid climbing. Even at the minimal speed of 4 rpm and unlike controls, none of the Dab1(scm) mutants reached criterion on the constant speed rotorod. In contrast, Dab1(scm) mutants improved their performances on the vertical grid over the course of the same number of trials. Thus, despite massive cerebellar degeneration, sensorimotor learning for equilibrium is still possible, indicating the potential usefulness of the grid-climbing test in determining residual functions in mice with massive cerebellar damage. Copyright © 2010. Published by Elsevier B.V.

  14. Biochemical Analysis of Two Single Mutants that Give Rise to a Polymorphic G6PD A-Double Mutant

    Directory of Open Access Journals (Sweden)

    Edson Jiovany Ramírez-Nava

    2017-10-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is a key regulatory enzyme that plays a crucial role in the regulation of cellular energy and redox balance. Mutations in the gene encoding G6PD cause the most common enzymopathy that drives hereditary nonspherocytic hemolytic anemia. To gain insights into the effects of mutations in G6PD enzyme efficiency, we have investigated the biochemical, kinetic, and structural changes of three clinical G6PD variants, the single mutations G6PD A+ (Asn126AspD and G6PD Nefza (Leu323Pro, and the double mutant G6PD A− (Asn126Asp + Leu323Pro. The mutants showed lower residual activity (≤50% of WT G6PD and displayed important kinetic changes. Although all Class III mutants were located in different regions of the three-dimensional structure of the enzyme and were not close to the active site, these mutants had a deleterious effect over catalytic activity and structural stability. The results indicated that the G6PD Nefza mutation was mainly responsible for the functional and structural alterations observed in the double mutant G6PD A−. Moreover, our study suggests that the G6PD Nefza and G6PD A− mutations affect enzyme functions in a similar fashion to those reported for Class I mutations.

  15. Genetic interactions among homologous recombination mutants in Candida albicans.

    Science.gov (United States)

    Bellido, Alberto; Andaluz, Encarnación; Gómez-Raja, Jonathan; Álvarez-Barrientos, Alberto; Larriba, Germán

    2015-01-01

    rad52-ΔΔ and, to a lesser extent, rad51-ΔΔ deletants of Candidaalbicans displayed slow growth and aberrant filamentous morphology whereas rad59-ΔΔ mutants, both by growth rate and morphology resembled wild type. In this study, we have constructed pair-wise double deletants to analyze genetic interactions among these homologous recombination (HR) proteins that affect growth and morphology traits. When grown in liquid YPD medium, double mutant rad51-ΔΔ rad59-ΔΔ exhibited growth rates, cell and colony morphologies, and plating efficiencies that were not significantly different from those observed for rad51-ΔΔ. The same was true for rad52-ΔΔ rad59-ΔΔ compared to rad52-ΔΔ. Slow growth and decreased plating efficiency were caused, at least in part, by a decreased viability, as deduced from FUN1 staining. Flow cytometry and microscopic studies of filamentous mutant populations revealed major changes in cell ploidy, size and morphology, whereas DAPI staining identified complex nuclear rearrangements in yeast and filamentous cells. These phenotypes were not observed in the rad59-ΔΔ mutant populations. Our results show that abolishing Rad51 functions induces the appearance of a subpopulation of aberrant yeast and filamentous forms with increased cell size and ploidy. The size of this complex subpopulation was exacerbated in rad52-ΔΔ mutants. The combination of filamentous cell morphology and viability phenotypes was reflected on the colony morphology of the respective mutants. We conclude that the rad52 mutation is epistatic to rad51 for all the morphological traits analyzed. We discuss these results in the light of the several functions of these recombination genes. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. RFLP mapping of the barley homeotic mutant lax-a.

    Science.gov (United States)

    Laurie, D A; Pratchett, N; Allen, R L; Hantke, S S

    1996-07-01

    The lax-a homeotic mutant of barley has flowers in which lodicules are replaced by stamens (giving five stamens per flower). RFLP mapping of an F2 population from a Bonus lax-a (1) x H. spontaneum cross showed that the mutation was on the short arm of chromosome 7(5H), closely linked to the centromere. An additional F2 population was used to show that the lax-a mutation gave the five-stamen phenotype in all flowers of 6-rowed spikes and that hoods were elevated and reduced in size in lax-a/Hooded double-mutant plants.

  17. Mutant E. coli strain with increased succinic acid production

    Science.gov (United States)

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2001-09-25

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  18. Forward and reverse genetics: The LORE1 retrotransposon insertion mutants

    DEFF Research Database (Denmark)

    Fukai, Eigo; Malolepszy, Anna; Sandal, Niels Nørgaard

    2014-01-01

    The endogenous Lotus retrotransposon 1 (LORE1) transposes in the germ line of Lotus japonicus plants that carry an active element. This feature of LORE1 has been exploited for generation of a large non-transgenic insertion mutant population, where insertions have been annotated using next......-generation sequencing approaches. The LORE1 mutant lines are freely available and can be ordered online. Endogenous retrotransposons are also active in many other plant species. Based on the methods developed for LORE1 mutagenesis, it should be simple to establish similar systems in other species, once an appropriate...

  19. Mutant E. coli strain with increased succinic acid production

    Science.gov (United States)

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1998-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  20. Characterization of Sugar Insensitive (sis) Mutants of Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Susan I.

    2009-06-08

    Despite the fact that soluble sugar levels have been postulated to play an important role in the control of a wide variety of plant metabolic and developmental pathways, the mechanisms by which plants respond to soluble sugar levels remain poorly understood. Plant responses to soluble sugar levels are also important in bioenergy production, as plant sugar responses are believed to help regulate both carbon fixation and carbon partitioning. For example, accumulation of soluble sugars, such as sucrose and glucose, in source tissues leads to feedback inhibition of photosynthesis, thereby decreasing rates of carbon fixation. Soluble sugar levels can also affect sink strengths, affecting the rates of accumulation of carbon-based compounds into both particular molecular forms (e.g. carbohydrates versus lipids versus proteins) and particular plant organs and tissues. Mutants of Arabidopsis that are defective in the ability to respond to soluble sugar levels were isolated and used as tools to identify some of the factors involved in plant sugar response. These sugar insensitive (sis) mutants were isolated by screening mutagenized seeds for those that were able to germinate and develop relatively normal shoot systems on media containing 0.3 M glucose or 0.3 M sucrose. At these sugar concentrations, wild-type Arabidopsis germinate and produce substantial root systems, but show little to no shoot development. Twenty-eight sis mutants were isolated during the course of four independent mutant screens. Based on a preliminary characterization of all of these mutants, sis3 and sis6 were chosen for further study. Both of these mutations appear to lie in previously uncharacterized loci. Unlike many other sugar-response mutants, sis3 mutants exhibit a wild-type or near wild-type response in all phytohormone-response assays conducted to date. The sis6-1 mutation is unusual in that it appears to be due to overexpression of a gene, rather than representing a loss of function mutation

  1. Clear Plaque Mutants of Lactococcal Phage TP901-1

    DEFF Research Database (Denmark)

    Kot, Witold; Kilstrup, Mogens; Vogensen, Finn K.

    2016-01-01

    We report a method for obtaining turbid plaques of the lactococcal bacteriophage TP901-1 and its derivative TP901-BC1034. We have further used the method to isolate clear plaque mutants of this phage. Analysis of 8 such mutants that were unable to lysogenize the host included whole genome...... protein involved in the DNA binding. The conclusion is that cI is the only gene involved in clear plaque formation i.e. the CI protein is the determining factor for the lysogenic pathway and its maintenance in the lactococcal phage TP901-1....

  2. A male sterile pepper (C. annuum L.) mutant.

    Science.gov (United States)

    Daskaloff, S

    1968-08-01

    1. After treatment of dry seeds of red pepperCapsicum annuum L. with X-rays a male-sterile mutant was discovered in the M2. 2. The male-sterile mutant segregates in a ratio of 3.28:1 (χ(2)=3.148, probability 0.07). 3. After an alternative cultivation of male-sterile plants and of a variety with good combining ability relatively good fruit-setting and seed production was obtained. 4. Grafting of male-sterile scions to normal stocks does not affect the male-sterile phenotype.

  3. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    Science.gov (United States)

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  4. Mutant connexin 50 (S276F) inhibits channel and hemichannel ...

    Indian Academy of Sciences (India)

    The mutant and wild-type Cx50 were expressed in equal levels and could efficiently localize to the plasma membrane without transportation and assembly ... Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan, Hubei 430071, People's Republic of China; Hubei Cancer ...

  5. Evaluation of high yielding mutants of Hordeumvulgare cultivar Izgrev

    Directory of Open Access Journals (Sweden)

    B. Dyulgerova

    2017-06-01

    Full Text Available Abstract. Seeds of Hordeum vulgare L. cultivar Izgrev were treated with different concentrations of sodium azide to induce genetic variability for the selection of genotypes with improved traits. After passing through different stages of selection, 18 promising mutants were selected for further studies. Eighteen mutants and their parent and national standard cultivar Veslets were evaluated in Complete Block Design with four replications. The research was conducted in 2013 – 2014 and 2014 – 2015 growing seasons in the experimental field of the Institute of Agriculture Karnobat, Southeastern Bulgaria. The characters studied included days to heading, plant height, lodging, peduncle length, spike length, awn length, spikelet number per spike, grain number per spike, grain weight per spike, 1000 grains weight and grain yield. Wide variation among mutant lines was observed for different traits. Mutant lines M4/16 and M 3/14 produced significantly greater grain yield than the parent and standard cultivar. Positive changes in lodging tolerance, grain number per spike, grain weight per spike, 1000 grains weightwere also observed. This study showed positive effects in the use of mutation in inducing improvement for grain yield and some yield related traits.

  6. Locating a modifier gene of Ovum mutant through crosses between ...

    Indian Academy of Sciences (India)

    RESEARCH ARTICLE Volume 95 Issue 2 June 2016 pp 297-302 ... mouse; DDK syndrome; ovum mutant; modifier gene; quantitative trait loci ... Previously, some research groups reported that the embryonic mortality deviated from the semilethal rate in backcrosses between heterozygous (Om/+) females and males of other ...

  7. Characterization of a novel curled-cotyledons mutant in soybean ...

    African Journals Online (AJOL)

    ARL

    mutant, the embryo sac becomes smaller and bulbous, and ultrastructure of developing cotyledons exhibits ... has higher protein and oil content, and has altered seed ultrastructure. The purpose of this experiment is to evaluate the features of soybean curled-cotyledons ..... mitochondria of soybean seedling cotyledons.

  8. Enhanced longevity in tau mutant Syrian hamsters, Mesocricetus auratus

    NARCIS (Netherlands)

    Oklejewicz, Malgorzata; Daan, Serge

    The single-gene mutation tau in the Syrian hamster shortens the circadian period by about 20% in the homozygous mutant and simultaneously increases the mass-specific metabolic rate by about 20%. Both effects might be expected to lead to a change in longevity. To test such expectations, the life span

  9. Molecular analysis of sex chromosome-linked mutants in the ...

    Indian Academy of Sciences (India)

    2010-09-06

    Sep 6, 2010 ... In B. mori, polyploid individuals with different sex chromo- some constitutions can be ... RNA was extracted from the ovary, testis, and fat body of a fifth-instar larva, and from the an- tennae of 10 moths. The primer set .... For example, the body of sk. (stick, 4–25.8) mutant larvae is firm to the touch, while that.

  10. Characterization of resistant tomato mutants to bacterial canker ...

    African Journals Online (AJOL)

    Yomi

    2012-04-19

    Apr 19, 2012 ... A small scale ethylmethanesulfonate (EMS) mutation was used to obtain resistant mutant plants to bacterial canker disease caused by Clavibacter michiganensis subsp. michiganensis isolate 2 (Cmm2). Susceptible EBR3 tomato line (200) seeds were mutagenised with the chemical EMS. Of the ...

  11. Growth properties of Cellulomonas flavigena mutants affected in cellulose utilization.

    Science.gov (United States)

    Béguin, P; Eisen, H

    1978-01-01

    The role of cellobiose metabolism in cellulose utilization by Cellulomonas flavigena was investigated by studying mutants unable to grow on cellobiose or cellulose. The results show that the ability to utilize cellulose is strictly dependent on the ability to utilize cellobiose. PMID:415038

  12. Fusion genetic analysis of jasmonate-signalling mutants in Arabidopsis

    DEFF Research Database (Denmark)

    Jensen, Anders Bøgh; Raventos, D.; Mundy, John Williams

    2002-01-01

    Jasmonates induce plant-defence responses and act to regulate defence-related genes including positive feedback of the lipoxygenase 2 (LOX2) gene involved in jasmonate synthesis. To identify jasmonate-signalling mutants, we used a fusion genetic strategy in which the firefly luciferase (FLUC...

  13. Molecular analysis of mutants of the Neurospora adenylosuccinate ...

    Indian Academy of Sciences (India)

    2012-08-07

    Aug 7, 2012 ... Abstract. The ad-8 gene of Neurospora crassa, in addition to being used for the study of purine biology, has been extensively studied as a model for gene structure, mutagenesis and intralocus recombination. Because of this there is an extensive collection of well- characterized N. crassa ad-8 mutants in the ...

  14. Performance of early maturing mutants derived from 'supa' rice ...

    African Journals Online (AJOL)

    Days to 50% flowering and 1000 grain weight exerted negative direct effect on yield. Changes in grain quality were also observed emphasizing the importance of conducting cooking and taste panel tests. Keywords: Early maturity, grain guality, rice mutants, Oryza saliva, path coefficient. Tanzania J. Agri. Sc. (2001) Vol 4, ...

  15. Isolation and partial characterization of carotenoid mutants of ...

    African Journals Online (AJOL)

    Global Journal of Pure and Applied Sciences ... Three major pigments isolated by high performance liquid chromatography (HPLC) were characterized by their absorption maxima, partition ratios in light ... High performance liquid chromatography was used to compare pigments of the wild-type with those of the mutants.

  16. Dynamics of Mutant Cells in Hierarchical Organized Tissues

    Science.gov (United States)

    Werner, Benjamin; Dingli, David; Lenaerts, Tom; Pacheco, Jorge M.; Traulsen, Arne

    2011-01-01

    Most tissues in multicellular organisms are maintained by continuous cell renewal processes. However, high turnover of many cells implies a large number of error-prone cell divisions. Hierarchical organized tissue structures with stem cell driven cell differentiation provide one way to prevent the accumulation of mutations, because only few stem cells are long lived. We investigate the deterministic dynamics of cells in such a hierarchical multi compartment model, where each compartment represents a certain stage of cell differentiation. The dynamics of the interacting system is described by ordinary differential equations coupled across compartments. We present analytical solutions for these equations, calculate the corresponding extinction times and compare our results to individual based stochastic simulations. Our general compartment structure can be applied to different tissues, as for example hematopoiesis, the epidermis, or colonic crypts. The solutions provide a description of the average time development of stem cell and non stem cell driven mutants and can be used to illustrate general and specific features of the dynamics of mutant cells in such hierarchically structured populations. We illustrate one possible application of this approach by discussing the origin and dynamics of PIG-A mutant clones that are found in the bloodstream of virtually every healthy adult human. From this it is apparent, that not only the occurrence of a mutant but also the compartment of origin is of importance. PMID:22144884

  17. Characterization of mutant cowpea [ Vigna unguiculata (L) Walp ...

    African Journals Online (AJOL)

    Phylogenetic relationship and polymorphism was detected in 10 cowpea lines comprising of leaf, flower and stem mutants, their putative parents and an exotic accession using 10 random ... Genetic distance ranged from 0.05 to 0.30 based on AFLP markers, while it ranged between 0.13 and 0.44 for RAPD markers. Cluster ...

  18. Clustering common bean mutants based on heterotic groupings ...

    African Journals Online (AJOL)

    The objective of this study was to cluster bean mutants from a bean mutation breeding programme, based on heterotic groupings. This was achieved by genotyping 16 bean genotypes, using 21 Simple Sequence Repeats (SSR) bean markers. From the results, three different clusters A, B and C, were obtained suggesting ...

  19. Insulator dysfunction and oncogene activation in IDH mutant gliomas.

    Science.gov (United States)

    Flavahan, William A; Drier, Yotam; Liau, Brian B; Gillespie, Shawn M; Venteicher, Andrew S; Stemmer-Rachamimov, Anat O; Suvà, Mario L; Bernstein, Bradley E

    2016-01-07

    Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas. Mutant IDH protein produces a new onco-metabolite, 2-hydroxyglutarate, which interferes with iron-dependent hydroxylases, including the TET family of 5'-methylcytosine hydroxylases. TET enzymes catalyse a key step in the removal of DNA methylation. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP), although the functional importance of this altered epigenetic state remains unclear. Here we show that human IDH mutant gliomas exhibit hypermethylation at cohesin and CCCTC-binding factor (CTCF)-binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to interact aberrantly with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with a demethylating agent partially restores insulator function and downregulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wild-type gliomaspheres upregulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression.

  20. IGFBP2 expression predicts IDH-mutant glioma patient survival.

    Science.gov (United States)

    Huang, Lin Eric; Cohen, Adam L; Colman, Howard; Jensen, Randy L; Fults, Daniel W; Couldwell, William T

    2017-01-03

    Mutations of the isocitrate dehydrogenase (IDH) 1 and 2 genes occur in ~80% of lower-grade (WHO grade II and grade III) gliomas. Mutant IDH produces (R)-2-hydroxyglutarate, which induces DNA hypermethylation and presumably drives tumorigenesis. Interestingly, IDH mutations are associated with improved survival in glioma patients, but the underlying mechanism for the difference in survival remains unclear. Through comparative analyses of 286 cases of IDH-wildtype and IDH-mutant lower-grade glioma from a TCGA data set, we report that IDH-mutant gliomas have increased expression of tumor-suppressor genes (NF1, PTEN, and PIK3R1) and decreased expression of oncogenes(AKT2, ARAF, ERBB2, FGFR3, and PDGFRB) and glioma progression genes (FOXM1, IGFBP2, and WWTR1) compared with IDH-wildtype gliomas. Furthermore, each of these genes is prognostic in overall gliomas; however, within the IDH-mutant group, none remains prognostic except IGFBP2 (encodinginsulin-like growth factor binding protein 2). Through validation in an independent cohort, we show that patients with low IGFBP2 expressiondisplay a clear advantage in overall and disease-free survival, whereas those with high IGFBP2 expressionhave worse median survival than IDH-wildtype patients. These observations hold true across different histological and molecular subtypes of lower-grade glioma. We propose therefore that an unexpected biological consequence of IDH mutations in glioma is to ameliorate patient survival by promoting tumor-suppressor signaling while inhibiting that of oncogenes, particularly IGFBP2.

  1. Isolation and characterization of Escherichia coli mutants lacking inducible cyanase.

    Science.gov (United States)

    Guilloton, M; Karst, F

    1987-03-01

    To determine the physiological role of cyanate aminohydrolase (cyanase, EC 3.5.5.3) in bacteria, mutants of Escherichia coli K12 devoid of this inducible activity were isolated and their properties investigated. Five independent mutations were localized next to lac; three of them lay between lacY and codA. Thus cyanase activity could depend on the integrity of one gene or set of clustered genes; we propose for this locus the symbol cnt. Growth of the mutant stains was more sensitive to cyanate than growth of wild-type strains. This difference was noticeable in synthetic medium in the presence of low concentrations of cyanate (less than or equal to 1 mM). Higher concentrations inhibited growth of both wild-type and mutant strains. Urea in aqueous solutions dissociates slowly into ammonium cyanate. Accordingly wild-type strains were able to grow on a synthetic medium containing 0.5 M-urea whereas mutants lacking cyanase were not. We conclude that cyanase could play a role in destroying exogenous cyanate originating from the dissociation of carbamoyl compounds such as urea; alternatively cyanate might constitute a convenient nitrogen source for bacteria able to synthesize cyanase in an inducible way.

  2. Development and evaluation of drought resistant mutant germ ...

    African Journals Online (AJOL)

    terms of relative water content, free proline concentration and yield. The yield ... are suitable for boiling and canning. .... definition the permanent wilting point is the soil water content at which plants do not recover turgor overnight, but will recover if water is applied. Selected mutant and control plants were planted in pots in a.

  3. Complementation of sweet corn mutants: a method for grouping ...

    Indian Academy of Sciences (India)

    accumulate sugars at the expense of starch and have low total carbohydrate at the mature kernel stage (Boyer and. Shannon 1984). At 18–21 days after pollination (harvest stage of sweet corn), these mutants have four to eight times higher total sugar than the normal corn (Holder et al. 1974). Due to comparative high sugar ...

  4. Characterization of resistant tomato mutants to bacterial canker ...

    African Journals Online (AJOL)

    A small scale ethylmethanesulfonate (EMS) mutation was used to obtain resistant mutant plants to bacterial canker disease caused by Clavibacter michiganensis subsp. michiganensis isolate 2 (Cmm2). Susceptible EBR3 tomato line (200) seeds were mutagenised with the chemical EMS. Of the constructed M2 population, ...

  5. A dwarf wheat mutant is associated with increased drought ...

    African Journals Online (AJOL)

    Owner

    'Green revolution' genes encode mutant gibberellin response modulators. Nature 400 (6741):. 256-61. Zhang et al. 1057. Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP,. Harberd NP (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses Genes Dev.

  6. Let-7 Sensitizes KRAS Mutant Tumor Cells to Chemotherapy.

    Directory of Open Access Journals (Sweden)

    Xin Dai

    Full Text Available KRAS is the most commonly mutated oncogene in human cancers and is associated with poor prognosis and drug resistance. Let-7 is a family of tumor suppressor microRNAs that are frequently suppressed in solid tumors, where KRAS mutations are highly prevalent. In this study, we investigated the potential use of let-7 as a chemosensitizer. We found that let-7b repletion selectively sensitized KRAS mutant tumor cells to the cytotoxicity of paclitaxel and gemcitabine. Transfection of let-7b mimic downregulated the expression of mutant but not wild-type KRAS. Combination of let-7b mimic with paclitaxel or gemcitabine diminished MEK/ERK and PI3K/AKT signaling concurrently, triggered the onset of apoptosis, and reverted the epithelial-mesenchymal transition in KRAS mutant tumor cells. In addition, let-7b repletion downregulated the expression of β-tubulin III and ribonucleotide reductase subunit M2, two proteins known to mediate tumor resistance to paclitaxel and gemcitabine, respectively. Let-7 may represent a new class of chemosensitizer for the treatment of KRAS mutant tumors.

  7. Modelling the evolution and spread of HIV immune escape mutants.

    Science.gov (United States)

    Fryer, Helen R; Frater, John; Duda, Anna; Roberts, Mick G; Phillips, Rodney E; McLean, Angela R

    2010-11-18

    During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level.

  8. Enhanced sporulation and toxin production by a mutant derivative of ...

    African Journals Online (AJOL)

    fatima

    based medium. Maximum spore and crystal proteins were produced at 40°C with corn steep liquor as nitrogen source and hydrol as a carbon source. The best mutant MUV7 supported .... containing 10 L of culture medium as described earlier (Ghribi et al.,. 2004). ..... Saccharomyces cerevisiae ITV strain (Ortiz-Muniz et al.,.

  9. nitrosoguanidine-induced cadmium resistant mutants of Aspergillus ...

    Indian Academy of Sciences (India)

    Unknown

    of S. cerevisiae (Inouhe et al 1989) were used for under- standing the molecular genetics of cadmium toxicity and ... The pH of the medium was adjusted to 6⋅4 before autoclaving. Cadmium-resistant mutants after isolation ..... Saccharomyces cerevisiae; Biochem. Biophys. Acta 993 51–55. Kimura M, Otaki N and Imano M ...

  10. Development of a mutant strain of Bacillus subtilis showing ...

    African Journals Online (AJOL)

    Through fermentation experiments, it was confirmed that the mutant strain, TH-49, was not capable of using acetoin accumulated in broth as its energy sources for growth after glucose was consumed. This phenomenon was inconsistent with that the majorities of bacteria accumulate acetoin as stored energy sources and ...

  11. Transcriptional Analysis of serk1 and serk3 coreceptor mutants

    NARCIS (Netherlands)

    Esse, van Wilma; Hove, ten Colette A.; Guzzonato, Francesco; Esse, van Peter; Boekschoten, Mark; Ridder, Lars; Vervoort, Jacques; Vries, de Sacco C.

    2016-01-01

    Somatic embryogenesis receptor kinases (SERKs) are ligand-binding coreceptors that are able to combine with different ligandperceiving receptors such as BRASSINOSTEROID INSENSITIVE1 (BRI1) and FLAGELLIN-SENSITIVE2. Phenotypical analysis of serk single mutants is not straightforward because

  12. Screening of allyl alcohol resistant mutant of Rhizopus oryzae and ...

    African Journals Online (AJOL)

    Ethanol is a main by-product in the fermentation broth of Rhizopus oryzae during the production of high-optical purity L-lactic acid. By screening the lower activity of alcohol dehydrogenase (ADH) mutant, thus decreasing the flux of pyruvic acid to ethanol may be a virtual method for increasing the conversion rate of glucose ...

  13. Abnormal grooming activity in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Strazielle, C; Lefevre, A; Jacquelin, C; Lalonde, R

    2012-07-15

    Dab1(scm) mutant mice, characterized by cell ectopias and degeneration in cerebellum, hippocampus, and neocortex, were compared to non-ataxic controls for different facets of grooming caused by brief water immersions, as well as some non-grooming behaviors. Dab1(scm) mutants were strongly affected in their quantitative functional parameters, exhibiting higher starting latencies before grooming relative to non-ataxic littermates of the A/A strain, fewer grooming bouts, and grooming components of shorter duration, with an unequal regional distribution targeting almost totally the rostral part (head washing and forelimb licking) of the animal. Only bouts of a single grooming element were preserved. The cephalocaudal order of grooming elements appeared less disorganized, mutant and control mice initiating the grooming with head washing and forelimb licking prior to licking posterior parts. However, mutants differed from controls in that all their bouts were incomplete but uninterrupted, although intergroup difference for percentage of the incorrect transitions was not significant. In contrast to grooming, Dab1(scm) mice ambulated for a longer time. During walking episodes, they exhibited more body scratching than controls, possibly to compensate for the lack of licking different body parts. In conjunction with studies with other ataxic mice, these results indicate that the cerebellar cortex affects grooming activity and is consequently involved in executing various components, but not in its sequential organization, which requires other brain regions such as cerebral cortices or basal ganglia. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. A dwarf wheat mutant is associated with increased drought ...

    African Journals Online (AJOL)

    ... was significantly higher than Jingdong 6. Most of the s-dwarf seedlings survived in recovering experiement after water loss. The stalk of s-dwarf seedling also showed reduced gravitropism. This is the first report about a new dwarf wheat mutant associated with increased drought resistance and altered stalk gravitropism.

  15. Ultradian rhythm unmasked in the Pdf clock mutant of Drosophila

    Indian Academy of Sciences (India)

    2014-07-20

    Jul 20, 2014 ... from the mutation. As a result, Pdf01 mutant flies locomote with precise rhythmicity generated by one ultradian oscilla- tor. In future studies, we would like to dissect this system using genetic tools available in Drosophila, for example by silencing a particular set of Pdf-positive neurons. Circadian rhythms are ...

  16. Dynamics of mutant cells in hierarchical organized tissues.

    Directory of Open Access Journals (Sweden)

    Benjamin Werner

    2011-12-01

    Full Text Available Most tissues in multicellular organisms are maintained by continuous cell renewal processes. However, high turnover of many cells implies a large number of error-prone cell divisions. Hierarchical organized tissue structures with stem cell driven cell differentiation provide one way to prevent the accumulation of mutations, because only few stem cells are long lived. We investigate the deterministic dynamics of cells in such a hierarchical multi compartment model, where each compartment represents a certain stage of cell differentiation. The dynamics of the interacting system is described by ordinary differential equations coupled across compartments. We present analytical solutions for these equations, calculate the corresponding extinction times and compare our results to individual based stochastic simulations. Our general compartment structure can be applied to different tissues, as for example hematopoiesis, the epidermis, or colonic crypts. The solutions provide a description of the average time development of stem cell and non stem cell driven mutants and can be used to illustrate general and specific features of the dynamics of mutant cells in such hierarchically structured populations. We illustrate one possible application of this approach by discussing the origin and dynamics of PIG-A mutant clones that are found in the bloodstream of virtually every healthy adult human. From this it is apparent, that not only the occurrence of a mutant but also the compartment of origin is of importance.

  17. Siim Nestor soovitab : Mutant Disco. Azymuth. Klubis Hollywood / Siim Nestor

    Index Scriptorium Estoniae

    Nestor, Siim, 1974-

    2003-01-01

    Mutant Disco klubis Prive 4. juulil. Brasiilia jazz-trio Azmuth klubis BonBon 5. juulil. Pidustuste sarja Hip Hop Cafe sünnipäeva tähistamisest klubis Hollywood 4. juulil, üritusest Ibiza Night 5. juulil

  18. Photophysics and optical switching in green fluorescent protein mutants

    NARCIS (Netherlands)

    Creemers, T.M.H.; Lock, A.J.; Subramaniam, V.; Jovin, T.M.; Völker, S.

    2000-01-01

    We demonstrate by using low-temperature high-resolution spectroscopy that red-shifted mutants of green fluorescent protein are photo- interconverted among three conformations and are, therefore, not photostable 'one-color' systems as previously believed. From our experiments we have further derived

  19. Genetic characterization of glossy-leafed mutant broccoli lines

    Science.gov (United States)

    Glossy mutants of Brassica oleracea L. have reduced or altered epicuticular wax on the surface of their leaves as compared to wild-type plants, conveying a shiny green appearance. Mutations conferring glossiness are common and have been found in most B. oleracea crop varieties, including cauliflower...

  20. Mutant p53 as a target for cancer treatment.

    Science.gov (United States)

    Duffy, Michael J; Synnott, Naoise C; Crown, John

    2017-09-01

    TP53 (p53) is the single most frequently altered gene in human cancers, with mutations being present in approximately 50% of all invasive tumours. However, in some of the most difficult-to-treat cancers such as high-grade serous ovarian cancers, triple-negative breast cancers, oesophageal cancers, small-cell lung cancers and squamous cell lung cancers, p53 is mutated in at least 80% of samples. Clearly, therefore, mutant p53 protein is an important candidate target against which new anticancer treatments could be developed. Although traditionally regarded as undruggable, several compounds such as p53 reactivation and induction of massive apoptosis-1 (PRIMA-1), a methylated derivative and structural analogue of PRIMA-1, i.e. APR-246, 2-sulfonylpyrimidines such as PK11007, pyrazoles such as PK7088, zinc metallochaperone-1 (ZMC1), a third generation thiosemicarbazone developed by Critical Outcome Techonologies Inc. (COTI-2) as well as specific peptides have recently been reported to reactive mutant p53 protein by converting it to a form exhibiting wild-type properties. Consistent with the reactivation of mutant p53, these compounds have been shown to exhibit anticancer activity in preclinical models expressing mutant p53. To date, two of these compounds, i.e. APR-246 and COTI-2 have progressed to clinical trials. A phase I/IIa clinical trial with APR-246 reported no major adverse effect. Currently, APR-246 is undergoing a phase Ib/II trial in patients with advanced serous ovarian cancer, while COTI-2 is being evaluated in a phase I trial in patients with advanced gynaecological cancers. It remains to be shown however, whether any mutant p53 reactivating compound has efficacy for the treatment of human cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants.

    Science.gov (United States)

    Chachoua, Ilyas; Pecquet, Christian; El-Khoury, Mira; Nivarthi, Harini; Albu, Roxana-Irina; Marty, Caroline; Gryshkova, Vitalina; Defour, Jean-Philippe; Vertenoeil, Gaëlle; Ngo, Anna; Koay, Ann; Raslova, Hana; Courtoy, Pierre J; Choong, Meng Ling; Plo, Isabelle; Vainchenker, William; Kralovics, Robert; Constantinescu, Stefan N

    2016-03-10

    Mutations in the calreticulin gene (CALR) represented by deletions and insertions in exon 9 inducing a -1/+2 frameshift are associated with a significant fraction of myeloproliferative neoplasms (MPNs). The mechanisms by which CALR mutants induce MPN are unknown. Here, we show by transcriptional, proliferation, biochemical, and primary cell assays that the pathogenic CALR mutants specifically activate the thrombopoietin receptor (TpoR/MPL). No activation is detected with a battery of type I and II cytokine receptors, except granulocyte colony-stimulating factor receptor, which supported only transient and weak activation. CALR mutants induce ligand-independent activation of JAK2/STAT/phosphatydylinositol-3'-kinase (PI3-K) and mitogen-activated protein (MAP) kinase pathways via TpoR, and autonomous growth in Ba/F3 cells. In these transformed cells, no synergy is observed between JAK2 and PI3-K inhibitors in inhibiting cytokine-independent proliferation, thus showing a major difference from JAK2V617F cells where such synergy is strong. TpoR activation was dependent on its extracellular domain and its N-glycosylation, especially at N117. The glycan binding site and the novel C-terminal tail of the mutant CALR proteins were required for TpoR activation. A soluble form of TpoR was able to prevent activation of full-length TpoR provided that it was N-glycosylated. By confocal microscopy and subcellular fractionation, CALR mutants exhibit different intracellular localization from that of wild-type CALR. Finally, knocking down either MPL/TpoR or JAK2 in megakaryocytic progenitors from patients carrying CALR mutations inhibited cytokine-independent megakaryocytic colony formation. Taken together, our study provides a novel signaling paradigm, whereby a mutated chaperone constitutively activates cytokine receptor signaling. © 2016 by The American Society of Hematology.

  2. Metabolic reprogramming in mutant IDH1 glioma cells.

    Directory of Open Access Journals (Sweden)

    Jose L Izquierdo-Garcia

    Full Text Available Mutations in isocitrate dehydrogenase (IDH 1 have been reported in over 70% of low-grade gliomas and secondary glioblastomas. IDH1 is the enzyme that catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate while mutant IDH1 catalyzes the conversion of α-ketoglutarate into 2-hydroxyglutarate. These mutations are associated with the accumulation of 2-hydroxyglutarate within the tumor and are believed to be one of the earliest events in the development of low-grade gliomas. The goal of this work was to determine whether the IDH1 mutation leads to additional magnetic resonance spectroscopy (MRS-detectable changes in the cellular metabolome.Two genetically engineered cell models were investigated, a U87-based model and an E6/E7/hTERT immortalized normal human astrocyte (NHA-based model. For both models, wild-type IDH1 cells were generated by transduction with a lentiviral vector coding for the wild-type IDH1 gene while mutant IDH1 cells were generated by transduction with a lentiviral vector coding for the R132H IDH1 mutant gene. Metabolites were extracted from the cells using the dual-phase extraction method and analyzed by 1H-MRS. Principal Component Analysis was used to analyze the MRS data.Principal Component Analysis clearly discriminated between wild-type and mutant IDH1 cells. Analysis of the loading plots revealed significant metabolic changes associated with the IDH1 mutation. Specifically, a significant drop in the concentration of glutamate, lactate and phosphocholine as well as the expected elevation in 2-hydroxyglutarate were observed in mutant IDH1 cells when compared to their wild-type counterparts.The IDH1 mutation leads to several, potentially translatable MRS-detectable metabolic changes beyond the production of 2-hydroxyglutarate.

  3. Elevation of Urinary 2-Hydroxyglutarate in IDH-Mutant Glioma.

    Science.gov (United States)

    Fathi, Amir T; Nahed, Brian V; Wander, Seth A; Iafrate, A John; Borger, Darrell R; Hu, Ranliang; Thabet, Ashraf; Cahill, Daniel P; Perry, Ashley M; Joseph, Christelle P; Muzikansky, Alona; Chi, Andrew S

    2016-02-01

    Recurrent mutations in the isocitrate dehydrogenase 1 (IDH1) and IDH2 genes, which are frequent in gliomas, result in marked accumulation of the metabolic by-product 2-hydroxyglutarate (2-HG) within tumors. In other malignancies, such as acute myeloid leukemia, presence of IDH mutation is associated with elevated 2-HG levels in serum or urine compartments. Circulating 2-HG in patients with glial malignancies has not been thoroughly investigated. In this study, we analyzed 2-HG levels in the serum and urine of a large set of patients with IDH-mutant and IDH-wild-type glioma, and the cerebrospinal fluid (CSF) from a subset of this cohort. We found that 2-HG was elevated in the urine of patients with IDH-mutant versus IDH-wild-type glioma, although no significant differences in 2-HG levels were observed in the serum or the small set of CSF samples obtained. Among patients with IDH-mutant glioma, 2-HG levels did not differ based on the histopathologic grade, genetic subtype (TP53 mutant or 1p/19q codeleted), presence of a canonical (IDH1 R132H) or noncanonical (any other IDH variant) mutation, or treatment type. Our finding suggests that urinary 2-HG is increased among patients with IDH-mutant gliomas, and may represent a future surrogate, noninvasive biomarker to aid in diagnosis, prognosis, and management. Patients with glioma who harbor mutations in isocitrate dehydrogenase genes showed selective elevation of the oncometabolite 2-hydroxyglutarate in the urine. Similar elevations were not identified in the serum or cerebrospinal fluid. 2-Hydroxyglutarate may serve as a useful, noninvasive biomarker to stratify patients newly diagnosed with glioma with regard to prognosis and management. ©AlphaMed Press.

  4. Arabidopsis mutant bik1 exhibits strong resistance to Plasmodiophora brassicae

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2016-09-01

    Full Text Available Botrytis-induced kinase1 (BIK1, a receptor-like cytoplasmic kinase, plays an important role in resistance against pathogens and insects in Arabidopsis thaliana. However, it remains unknown whether BIK1 functions against Plasmodiophora brassicae, an obligate biotrophic protist that attacks cruciferous plants and induces gall formation on roots. Here, we investigated the potential roles of receptors FLS2, BAK1 and BIK1 in the infection of P. brassicae cruciferous plants. Wild-type plants, fls2 and bak1 mutants showed typical symptom on roots, and the galls were filled with large quantities of resting spores, while bik1 mutant plants exhibited strong resistance to P. brassicae. Compared with that of the wild-type plants, the root hair and cortical infection rate of bik1 mutant were significantly reduced by about 40-50%. A considerable portion of bik1 roots failed to form typical galls. Even if some small galls were formed, they were filled with multinucleate secondary plasmodia. The bik1 plants accumulated less reactive oxygen species (ROS at infected roots than other mutants and wild-type plants. Exogenous salicylic acid (SA treatment alleviated the clubroot symptoms in wild-type plants, and the expression of the SA signaling marker gene PR1 was significantly increased in bik1. Both sid2 (salicylic acid induction-deficient 2 and npr1-1 (non-expresser of PR genes that regulate systemic acquired resistance (SAR mutants showed increased susceptibility to P. brassicae compared with wild-type plants. These results suggest that the resistance of bik1 to P. brassicae is possibly mediated by SA inducible mechanisms enhance the resistance to clubroot disease.

  5. Analysis of Mycobacterium avium subsp. paratuberculosis mutant libraries reveals loci-dependent transcription biases and strategies to novel mutant discovery

    Science.gov (United States)

    Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne’s disease in ruminants and it has been implicated as a cause of Crohn’s disease in humans. The generation of comprehensive random mutant banks by transposon mutagenesis is a fundamental wide genomic technology utilized...

  6. Human GLTP and mutant forms of ACD11 suppress cell death in the Arabidopsis acd11 mutant

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; McKinney, Lea V; Pike, Helen

    2008-01-01

    The Arabidopsis acd11 mutant exhibits runaway, programmed cell death due to the loss of a putative sphingosine transfer protein (ACD11) with homology to mammalian GLTP. We demonstrate that transgenic expression in Arabidopsis thaliana of human GLTP partially suppressed the phenotype of the acd11...

  7. Vestigial mutants of Drosophila melanogaster live better in the presence of aminopterin: increased level of dihydrofolate reductase in a mutant.

    Science.gov (United States)

    Silber, J; Bazin, C; Le Menn, A

    1989-09-01

    Vestigial (vg) mutants of Drosophila melanogaster are characterized by atrophied wings. In this paper we show that: (1) aminopterin an inhibitor of dihydrofolate reductase (DHFR) and fluorodeoxyuridine (FUdR), an inhibitor of thymidylate synthetase induce nicks in the wings of wild-type flies and phenocopies of the vg mutant phenotype when vg/+ and vgB/+ flies are reared on these substances (vgB is a deficiency of the vg locus). Only thymidine and thymidylate can rescue the flies from the effect of aminopterin. We propose that the vg phenotype is due to a decrease in the dTMP pool in the wings. (2) Mutant vg strains yield more offspring on medium containing aminopterin than on normal medium. The resistance of vg larvae to the inhibitor seems specific to the gene. This is the first case of aminopterin resistance in living eucaryotes. In contrast sensitivity of the vg larvae to FUdR is observed. (3) An increase in the activity and amount of DHFR is observed in mutant strains as compared with the wild-type flies. Our data suggest that the vg+ gene is a regulatory gene acting on the DHFR gene or a structural gene involved in the same metabolic pathway.

  8. Efficient transduction of LEDGF/p75 mutant cells by complementary gain-of-function HIV-1 integrase mutant viruses

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2014-01-01

    Full Text Available Controlling the specificity of retroviral DNA integration could improve the safety of gene therapy vectors, and fusions of heterologous chromatin binding modules to the integrase (IN–binding domain from the lentiviral integration host cofactor lens epithelium–derived growth factor (LEDGF/p75 are a promising retargeting strategy. We previously proposed the utility of IN mutant lentiviral vectors that are selectively activated by complementary LEDGF/p75 variants, and our initial modifications in human immunodeficiency virus type 1 IN and LEDGF/p75 supported about 13% of wild-type vector transduction activity. Here we describe the selection and characterization of the K42E gain-of-function mutation in IN, which greatly improves the efficiency of this system. Both K42E and initial reverse-charge mutations in IN negatively affected reverse transcription and integration, yet when combined together boosted viral transduction efficiency to ∼75% of the wild-type vector in a manner dependent on a complementary LEDGF/p75 variant. Although the K42E mutation conferred functional gains to IN mutant viral reverse transcription and integration, only the integration boost depended on the engineered LEDGF/p75 mutant. We conclude that the specificity of lentiviral retargeting strategies based on heterologous LEDGF/p75 fusion proteins will benefit from our optimized system that utilizes the unique complementation properties of reverse-charge IN mutant viral and LEDGF/p75 host proteins.

  9. Enhancement of yellow pigment production by intraspecific protoplast fusion of Monascus spp. yellow mutant (ade(-)) and white mutant (prototroph).

    Science.gov (United States)

    Klinsupa, Worawan; Phansiri, Salak; Thongpradis, Panida; Yongsmith, Busaba; Pothiratana, Chetsada

    2016-01-10

    To breed industrially useful strains of a slow-growing, yellow pigment producing strain of Monascus sp., protoplasts of Monascus purpureus yellow mutant (ade(-)) and rapid-growing M. purpureus white mutant (prototroph) were fused and fusants were selected on minimal medium (MM). Preliminary conventional protoplast fusion of the two strains was performed and the result showed that only white colonies were detected on MM. It was not able to differentiate the fusants from the white parental prototroph. To solve this problem, the white parental prototroph was thus pretreated with 20mM iodoacetamide (IOA) for cytoplasm inactivation and subsequently taken into protoplast fusion with slow-growing Monascus yellow mutant. Under this development technique, only the fusants, with viable cytoplasm from Monascus yellow mutant (ade(-)), could thus grow on MM, whereas neither IOA pretreated white parental prototroph nor yellow auxotroph (ade(-)) could survive. Fifty-three fusants isolated from yellow colonies obtained through this developed technique were subsequently inoculated on complete medium (MY agar). Fifteen distinguished yellow colonies from their parental yellow mutant were then selected for biochemical, morphological and fermentative properties in cassava starch and soybean flour (SS) broth. Finally, three most stable fusants (F7, F10 and F43) were then selected and compared in rice solid culture. Enhancement of yellow pigment production over the parental yellow auxotroph was found in F7 and F10, while enhanced glucoamylase activity was found in F43. The formation of fusants was further confirmed by monacolin K content, which was intermediate between the two parents (monacolin K-producing yellow auxotroph and non-monacolin K producing white prototroph). Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Mutants of GABA transaminase (POP2 suppress the severe phenotype of succinic semialdehyde dehydrogenase (ssadh mutants in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Frank Ludewig

    Full Text Available BACKGROUND: The gamma-aminubutyrate (GABA shunt bypasses two steps of the tricarboxylic acid cycle, and is present in both prokaryotes and eukaryotes. In plants, the pathway is composed of the calcium/calmodulin-regulated cytosolic enzyme glutamate decarboxylase (GAD, the mitochondrial enzymes GABA transaminase (GABA-T; POP2 and succinic semialdehyde dehydrogenase (SSADH. We have previously shown that compromising the function of the GABA-shunt, by disrupting the SSADH gene of Arabidopsis, causes enhanced accumulation of reactive oxygen intermediates (ROIs and cell death in response to light and heat stress. However, to date, genetic investigations of the relationships between enzymes of the GABA shunt have not been reported. PRINCIPAL FINDINGS: To elucidate the role of succinic semialdehyde (SSA, gamma-hydroxybutyrate (GHB and GABA in the accumulation of ROIs, we combined two genetic approaches to suppress the severe phenotype of ssadh mutants. Analysis of double pop2 ssadh mutants revealed that pop2 is epistatic to ssadh. Moreover, we isolated EMS-generated mutants suppressing the phenotype of ssadh revealing two new pop2 alleles. By measuring thermoluminescence at high temperature, the peroxide contents of ssadh and pop2 mutants were evaluated, showing that only ssadh plants accumulate peroxides. In addition, pop2 ssadh seedlings are more sensitive to exogenous SSA or GHB relative to wild type, because GHB and/or SSA accumulate in these plants. SIGNIFICANCE: We conclude that the lack of supply of succinate and NADH to the TCA cycle is not responsible for the oxidative stress and growth retardations of ssadh mutants. Rather, we suggest that the accumulation of SSA, GHB, or both, produced downstream of the GABA-T transamination step, is toxic to the plants, resulting in high ROI levels and impaired development.

  11. Overproduction of delta-endotoxins by sporeless Bacillus thuringiensis mutants obtained by nitrous acid mutagenesis.

    Science.gov (United States)

    Ben Khedher, Saoussen; Zouari, Nabil; Messaddeq, Nadia; Schultz, Patrick; Jaoua, Samir

    2011-01-01

    Asporogenic and oligosporogenic Bacillus thuringiensis mutants having the ability to overproduce insecticidal crystal protein were generated by using nitrous acid (50 mg/ml), as chemical mutagenic agent. Insecticidal crystal proteins produced by asporogenic mutants remained encapsulated within the cells. Delta-endotoxin production by most of mutants was improved compared to the corresponding wild strains BNS3 and a mutant M26. The overproduction by asporogenic and oligosporogenic mutants was attributed to defect in genes involved in sporulation and to random mutations affecting cell metabolism at different pathways and delta-endotoxin synthesis. Sporeless bioinsecticides could be developed based on stable and environmentally safe Bacillus thuringiensis mutants.

  12. A sorghum (Sorghum bicolor mutant with altered carbon isotope ratio.

    Directory of Open Access Journals (Sweden)

    Govinda Rizal

    Full Text Available Recent efforts to engineer C4 photosynthetic traits into C3 plants such as rice demand an understanding of the genetic elements that enable C4 plants to outperform C3 plants. As a part of the C4 Rice Consortium's efforts to identify genes needed to support C4 photosynthesis, EMS mutagenized sorghum populations were generated and screened to identify genes that cause a loss of C4 function. Stable carbon isotope ratio (δ13C of leaf dry matter has been used to distinguishspecies with C3 and C4 photosynthetic pathways. Here, we report the identification of a sorghum (Sorghum bicolor mutant with a low δ13C characteristic. A mutant (named Mut33 with a pale phenotype and stunted growth was identified from an EMS treated sorghum M2 population. The stable carbon isotope analysis of the mutants showed a decrease of 13C uptake capacity. The noise of random mutation was reduced by crossing the mutant and its wildtype (WT. The back-cross (BC1F1 progenies were like the WT parent in terms of 13C values and plant phenotypes. All the BC1F2 plants with low δ13C died before they produced their 6th leaf. Gas exchange measurements of the low δ13C sorghum mutants showed a higher CO2 compensation point (25.24 μmol CO2.mol-1air and the maximum rate of photosynthesis was less than 5μmol.m-2.s-1. To identify the genetic determinant of this trait, four DNA pools were isolated; two each from normal and low δ13C BC1F2 mutant plants. These were sequenced using an Illumina platform. Comparison of allele frequency of the single nucleotide polymorphisms (SNPs between the pools with contrasting phenotype showed that a locus in Chromosome 10 between 57,941,104 and 59,985,708 bps had an allele frequency of 1. There were 211 mutations and 37 genes in the locus, out of which mutations in 9 genes showed non-synonymous changes. This finding is expected to contribute to future research on the identification of the causal factor differentiating C4 from C3 species that can be used

  13. Ultradian rhythm unmasked in the Pdf clock mutant of Drosophila.

    Science.gov (United States)

    Seki, Yuuichi; Tanimura, Teiichi

    2014-09-01

    A diverse range of organisms shows physiological and behavioural rhythms with various periods. Extensive studies have been performed to elucidate the molecular mechanisms of circadian rhythms with an approximately 24 h period in both Drosophila and mammals, while less attention has been paid to ultradian rhythms with shorter periods. We used a video-tracking method to monitor the movement of single flies, and clear ultradian rhythms were detected in the locomotor behaviour of wild type and clock mutant flies kept under constant dark conditions. In particular, the Pigment-dispersing factor mutant (Pdf 01) demonstrated a precise and robust ultradian rhythmicity, which was not temperature compensated. Our results suggest that Drosophila has an endogenous ultradian oscillator that is masked by circadian rhythmic behaviours.

  14. Dynamic void distribution in myoglobin and five mutants

    Science.gov (United States)

    Jiang, Yingying; Kirmizialtin, Serdal; Sanchez, Isaac C.

    2014-02-01

    Globular proteins contain cavities/voids that play specific roles in controlling protein function. Elongated cavities provide migration channels for the transport of ions and small molecules to the active center of a protein or enzyme. Using Monte Carlo and Molecular Dynamics on fully atomistic protein/water models, a new computational methodology is introduced that takes into account the protein's dynamic structure and maps all the cavities in and on the surface. To demonstrate its utility, the methodology is applied to study cavity structure in myoglobin and five of its mutants. Computed cavity and channel size distributions reveal significant differences relative to the wild type myoglobin. Computer visualization of the channels leading to the heme center indicates restricted ligand access for the mutants consistent with the existing interpretations. The new methodology provides a quantitative measure of cavity structure and distributions and can become a valuable tool for the structural characterization of proteins.

  15. Characterizing visible and invisible cell wall mutant phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Carpita, Nicholas C.; McCann, Maureen C.

    2015-04-06

    About 10% of a plant's genome is devoted to generating the protein machinery to synthesize, remodel, and deconstruct the cell wall. High-throughput genome sequencing technologies have enabled a reasonably complete inventory of wall-related genes that can be assembled into families of common evolutionary origin. Assigning function to each gene family member has been aided immensely by identification of mutants with visible phenotypes or by chemical and spectroscopic analysis of mutants with ‘invisible’ phenotypes of modified cell wall composition and architecture that do not otherwise affect plant growth or development. This review connects the inference of gene function on the basis of deviation from the wild type in genetic functional analyses to insights provided by modern analytical techniques that have brought us ever closer to elucidating the sequence structures of the major polysaccharide components of the plant cell wall.

  16. Butyric acid tolerance of rice mutant M4 families

    Directory of Open Access Journals (Sweden)

    Mauricio Marini Kopp

    2007-01-01

    Full Text Available Hydromorphic soils have a low drainage capacity and are used mainly for the cultivation of irrigated rice.This condition favors the development of anaerobic microorganisms that produce phytotoxic substances. The objective of thisstudy was to evaluate the response of rice mutants to the phytotoxicity caused by butyric acid under anaerobic conditions. Theexperiment consisted of four treatments arranged in a randomized block design. Plants of 40 families were grown in ahydroponic system and the measured variables were root length and length of aerial part (LAP, number of roots (NR androot dry matter (RDM and aerial part dry matter (DMAP. The analysis of variance was performed, the relative performancecalculated and linear regressions were fitted. Only the treatment effect for NR and effect of interaction for LAP were notsignificant. Root length was most affected by the acid and the regressions expressed positive as well as negative effects for acidtolerance in the mutant families.

  17. An apoptotic cell cycle mutant in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Villadsen, Ingrid

    1996-01-01

    The simple eukaryote Saccharomyces cerevisiae has proved to be a useful organism for elucidating the mechanisms that govern cell cycle progression in eukaryotic cells. The excellent in vivo system permits a cell cycle study using temperature sensitive mutants. In addition, it is possible to study...... processes.Programmmed cell death with apoptosis plays a major role in development and homeostatis in most, if not all, animal cells. Apoptosis is a morphologically distinct form of death, that requires the activation of a highly regulated suicide program. Saccharomyces cerevisiae provides a new system...... in which apoptosis can be studied using the novel, temperature sensitive mutant, cdc77. The cdc77 cells are defective in a G1 process, and die show the characteristc signs of apoptosis: condensation of the chromatin, degradation of the inner nuclear membrane, dilation of the space between the nuclear...

  18. Development and evaluation of drought resistant mutant germ ...

    African Journals Online (AJOL)

    The aim of this project was to select cowpea plants with improved levels of drought resistance without alteration to the colour of the testa or the growth form. Seed from M2 to M5 generations (M = mutant) were used in the study. The M2 to M4 seeds were planted and evaluated in wooden boxes in the greenhouse and in the ...

  19. Rhodopsin mutant P23H destabilizes rod photoreceptor disk membranes.

    Directory of Open Access Journals (Sweden)

    Mohammad Haeri

    Full Text Available Mutations in rhodopsin cause retinitis pigmentosa in humans and retinal degeneration in a multitude of other animals. We utilized high-resolution live imaging of the large rod photoreceptors from transgenic frogs (Xenopus to compare the properties of fluorescently tagged rhodopsin, Rho-EGFP, and Rho(P23H-EGFP. The mutant was abnormally distributed both in the inner and outer segments (OS, accumulating in the OS to a concentration of ∼0.1% compared to endogenous opsin. Rho(P23H-EGFP formed dense fluorescent foci, with concentrations of mutant protein up to ten times higher than other regions. Wild-type transgenic Rho-EGFP did not concentrate in OS foci when co-expressed in the same rod with Rho(P23H-EGFP. Outer segment regions containing fluorescent foci were refractory to fluorescence recovery after photobleaching, while foci in the inner segment exhibited recovery kinetics similar to OS regions without foci and Rho-EGFP. The Rho(P23H-EGFP foci were often in older, more distal OS disks. Electron micrographs of OS revealed abnormal disk membranes, with the regular disk bilayers broken into vesiculotubular structures. Furthermore, we observed similar OS disturbances in transgenic mice expressing Rho(P23H, suggesting such structures are a general consequence of mutant expression. Together these results show that mutant opsin disrupts OS disks, destabilizing the outer segment possibly via the formation of aggregates. This may render rods susceptible to mechanical injury or compromise OS function, contributing to photoreceptor loss.

  20. Dihydrodipicolinate synthase in opaque and floury maize mutants

    NARCIS (Netherlands)

    Varisi, V.A.; Medici, L.O.; Meer, van der I.M.; Lea, P.J.; Azevedo, J.L.

    2007-01-01

    Dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) was isolated and studied in four high-lysine maize mutants (Oh43o1, Oh43o2, Oh43fl1 and Oh43fl2). The activity of DHDPS was analyzed at 16, 20, and 24 DAP and characterized in the presence of the amino acids, lysine, S-(2-aminoethyl)-l-cysteine

  1. Lactate dehydrogenase A silencing in IDH mutant gliomas.

    Science.gov (United States)

    Chesnelong, Charles; Chaumeil, Myriam M; Blough, Michael D; Al-Najjar, Mohammad; Stechishin, Owen D; Chan, Jennifer A; Pieper, Russell O; Ronen, Sabrina M; Weiss, Samuel; Luchman, H Artee; Cairncross, J Gregory

    2014-05-01

    Mutations of the isocitrate dehydrogenase 1 and 2 gene (IDH1/2) were initially thought to enhance cancer cell survival and proliferation by promoting the Warburg effect. However, recent experimental data have shown that production of 2-hydroxyglutarate by IDH mutant cells promotes hypoxia-inducible factor (HIF)1α degradation and, by doing so, may have unexpected metabolic effects. We used human glioma tissues and derived brain tumor stem cells (BTSCs) to study the expression of HIF1α target genes in IDH mutant ((mt)) and IDH wild-type ((wt)) tumors. Focusing thereafter on the major glycolytic enzyme, lactate dehydrogenase A (LDHA), we used standard molecular methods and pyrosequencing-based DNA methylation analysis to identify mechanisms by which LDHA expression was regulated in human gliomas. We found that HIF1α-responsive genes, including many essential for glycolysis (SLC2A1, PDK1, LDHA, SLC16A3), were underexpressed in IDH(mt) gliomas and/or derived BTSCs. We then demonstrated that LDHA was silenced in IDH(mt) derived BTSCs, including those that did not retain the mutant IDH1 allele (mIDH(wt)), matched BTSC xenografts, and parental glioma tissues. Silencing of LDHA was associated with increased methylation of the LDHA promoter, as was ectopic expression of mutant IDH1 in immortalized human astrocytes. Furthermore, in a search of The Cancer Genome Atlas, we found low expression and high methylation of LDHA in IDH(mt) glioblastomas. To our knowledge, this is the first demonstration of downregulation of LDHA in cancer. Although unexpected findings, silencing of LDHA and downregulation of several other glycolysis essential genes raise the intriguing possibility that IDH(mt) gliomas have limited glycolytic capacity, which may contribute to their slow growth and better prognosis.

  2. Wheat ABA-insensitive mutants result in reduced grain dormancy

    Science.gov (United States)

    Schramm, Elizabeth C.; Nelson, Sven K.

    2014-01-01

    This paper describes the isolation of wheat mutants in the hard red spring Scarlet resulting in reduced sensitivity to the plant hormone abscisic acid (ABA) during seed germination. ABA induces seed dormancy during embryo maturation and inhibits the germination of mature seeds. Wheat sensitivity to ABA gradually decreases with dry after-ripening. Scarlet grain normally fails to germinate when fully dormant, shows ABA sensitive germination when partially after-ripened, and becomes ABA insensitive when after-ripened for 8–12 months. Scarlet ABA-insensitive (ScABI) mutants were isolated based on the ability to germinate on 5 µM ABA after only 3 weeks of after-ripening, a condition under which Scarlet would fail to germinate. Six independent seed-specific mutants were recovered. ScABI 1, ScABI2, ScABI3 and ScABI4 are able to germinate more efficiently than Scarlet at up to 25 µM ABA. The two strongest ABA insensitive lines, ScABI3 and ScABI4, both proved to be partly dominant suggesting that they result from gain-of-function mutations. The ScABI1, ScABI2, ScABI3, ScABI4, and ScABI5 mutants after-ripen more rapidly than Scarlet. Thus, ABA insensi-tivity is associated with decreased grain dormancy in Scarlet wheat. This suggests that ABA sensitivity is an important factor controlling grain dormancy in wheat, a trait that impacts seedling emergence and pre-harvest sprouting resistance. PMID:25431501

  3. Xylitol production by a Pichia stipitis D-xylulokinase mutant

    Science.gov (United States)

    Yong-Su Jin; Jose Cruz; Thomas W. Jeffries

    2005-01-01

    Xylitol production by Pichia stipitis FPL-YS30, a xyl3-Ä1 mutant that metabolizes xylose using an alternative metabolic pathway, was investigated under aerobic and oxygen-limited culture conditions. Under both culture conditions, FPL-YS30 (xyl3-Ä1) produced a negligible amount of ethanol and converted xylose mainly into xylitol with comparable yields (0.30 and 0.27 g...

  4. Temperature Sensitivity of Neural Tube Defects in Zoep Mutants.

    Science.gov (United States)

    Ma, Phyo; Swartz, Morgan R; Kindt, Lexy M; Kangas, Ashley M; Liang, Jennifer Ostrom

    2015-12-01

    Neural tube defects (NTD) occur when the flat neural plate epithelium fails to fold into the neural tube, the precursor to the brain and spinal cord. Squint (Sqt/Ndr1), a Nodal ligand, and One-eyed pinhead (Oep), a component of the Nodal receptor, are required for anterior neural tube closure in zebrafish. The NTD in sqt and Zoep mutants are incompletely penetrant. The penetrance of several defects in sqt mutants increases upon heat or cold shock. In this project, undergraduate students tested whether temperature influences the Zoep open neural tube phenotype. Single pairs of adults were spawned at 28.5°C, the normal temperature for zebrafish, and one half of the resulting embryos were moved to 34°C at different developmental time points. Analysis of variance indicated temperature and clutch/genetic background significantly contributed to the penetrance of the open neural tube phenotype. Heat shock affected the embryos only at or before the midblastula stage. Many factors, including temperature changes in the mother, nutrition, and genetic background, contribute to NTD in humans. Thus, sqt and Zoep mutants may serve as valuable models for studying the interactions between genetics and the environment during neurulation.

  5. Genes and Alcohol Consumption: Studies with Mutant Mice

    Science.gov (United States)

    Mayfield, Jody; Arends, Michael A.; Harris, R. Adron; Blednov, Yuri A.

    2017-01-01

    In this chapter, we review the effects of global null mutant and overexpressing transgenic mouse lines on voluntary self-administration of alcohol. We examine approximately 200 publications pertaining to the effects of 155 mouse genes on alcohol consumption in different drinking models. The targeted genes vary in function and include neurotransmitter, ion channel, neuroimmune, and neuropeptide signaling systems. The alcohol self-administration models include operant conditioning, two- and four-bottle choice continuous and intermittent access, drinking in the dark limited access, chronic intermittent ethanol, and scheduled high alcohol consumption tests. Comparisons of different drinking models using the same mutant mice are potentially the most informative, and we will highlight those examples. More mutants have been tested for continuous two-bottle choice consumption than any other test; of the 137 mouse genes examined using this model, 97 (72%) altered drinking in at least one sex. Overall, the effects of genetic manipulations on alcohol drinking often depend on the sex of the mice, alcohol concentration and time of access, genetic background, as well as the drinking test. PMID:27055617

  6. Drosophila melanogaster White Mutant w1118 Undergo Retinal Degeneration

    Directory of Open Access Journals (Sweden)

    María José Ferreiro

    2018-01-01

    Full Text Available Key scientific discoveries have resulted from genetic studies of Drosophila melanogaster, using a multitude of transgenic fly strains, the majority of which are constructed in a genetic background containing mutations in the white gene. Here we report that white mutant flies from w1118 strain undergo retinal degeneration. We observed also that w1118 mutants have progressive loss of climbing ability, shortened life span, as well as impaired resistance to various forms of stress. Retinal degeneration was abolished by transgenic expression of mini-white+ in the white null background w1118. We conclude that beyond the classical eye-color phenotype, mutations in Drosophila white gene could impair several biological functions affecting parameters like mobility, life span and stress tolerance. Consequently, we suggest caution and attentiveness during the interpretation of old experiments employing white mutant flies and when planning new ones, especially within the research field of neurodegeneration and neuroprotection. We also encourage that the use of w1118 strain as a wild-type control should be avoided.

  7. Characterization of tryptophan synthase alpha subunit mutants of Arabidopsis thaliana.

    Science.gov (United States)

    Radwanski, E R; Barczak, A J; Last, R L

    1996-12-13

    Three mutations in the Arabidopsis thaliana gene encoding the alpha subunit of tryptophan synthase were isolated by selection for resistance to 5-methylanthranilate or 5-fluoroindole, toxic analogs of tryptophan pathway intermediates. Plants homozygous for trp3-1 and trp3-2 are light-conditional tryptophan auxotrophs, while trp3-100 is a more leaky mutant. Genetic complementation crosses demonstrated that the three mutations are allelic to each other, and define a new complementation group. All three mutants have decreased steady-state levels of tryptophan synthase alpha protein, and the trp3-100 polypeptide exhibits altered electrophoretic mobility. All three mutations were shown to be in the TSA1 (tryptophan synthase alpha subunit) structural gene by several criteria. Firstly, the trp3-1 mutation is linked to TSA1 on the bottom of chromosome 3. Secondly, the trp3-1 mutation was complemented when transformed with the wild-type TSA1 gene. Finally, DNA sequence analysis of the TSA1 gene revealed a single transition mutation in each trp3 mutant.

  8. Allele-selective suppression of mutant genes in polyglutamine diseases.

    Science.gov (United States)

    Liu, Chia-Rung; Cheng, Tzu-Hao

    2015-01-01

    Polyglutamine (polyQ) diseases are heritable dominant neurological disorders, caused by abnormal CAG tri-nucleotide expansion in the coding sequence of affected genes. Extension of CAG repeats results in the production of aberrant gene products that are deleterious to neurons, such as transcripts with a CAG stem-loop secondary structure, and proteins containing a long stretch of polyQ residues. Thus, determining methods for the prevention or elimination of these mutant gene products from neuronal cells and translating this knowledge to clinical application are currently important goals in the fields of neurology and neurogenetics. Recently, several studies have revealed intriguing findings related to the allele-selective regulation of CAG-expanded genes, and have proposed novel designs to selectively diminish the mutant polyQ proteins. In this review, we focus on the genes, genetically engineered proteins, and oligonucleotides that show potential to modulate the expression of mutant genes. We also discuss their respective molecular functions at the levels of transcription, translation, and post-translation.

  9. Coloboma hyperactive mutant exhibits delayed neurobehavioral developmental milestones.

    Science.gov (United States)

    Heyser, C J; Wilson, M C; Gold, L H

    1995-11-21

    The coloboma mutation (Cm) is a neutron-irradiation induced gene deletion located on the distal portion of mouse chromosome 2. This deletion region includes a gene encoding the synaptic vesicle docking fusion protein, synaptosomal-associated protein of 25 kDa (SNAP-25). The resulting mutation is semi-dominant with heterozygote mice exhibiting a triad of phenotypic abnormalities that comprise profound spontaneous hyperactivity, head bobbing and a prominent eye dysmorphology. Because the expression pattern of two SNAP-25 isoforms begins to change during the first postnatal week, neurobehavioral developmental milestones were examined in order to determine if the expression of the coloboma behavioral phenotype could be detected during this period of postnatal development. The early classification of coloboma mutant offspring may help to further describe the penetrance of this mutation as well as the contribution of developmental changes to the adult behavioral phenotype. The coloboma mutation resulted in delays in some tests of complex motor skills including righting reflex and bar holding. In addition, coloboma mutants were characterized by body weight differences (first appearance day 7) and hyperreactivity to touch (day 11) and head bobbing (day 14). These data demonstrate disruptions in the time course of attaining developmental milestones in coloboma mutants and provide further evidence supporting the hypotheses that alterations in Snap gene expression are associated with functional behavioral consequences in developing offspring.

  10. Molecular Imaging Of Metabolic Reprogramming In Mutant IDH Cells

    Directory of Open Access Journals (Sweden)

    Pavithra eViswanath

    2016-03-01

    Full Text Available Mutations in the metabolic enzyme isocitrate dehydrogenase (IDH have recently been identified as drivers in the development of several tumor types. Most notably, cytosolic IDH1 is mutated in 70-90% of low-grade gliomas and upgraded glioblastomas, and mitochondrial IDH2 is mutated in ~20% of acute myeloid leukemia cases. Wild-type IDH catalyzes the interconversion of isocitrate to α-ketoglutarate (α-KG. Mutations in the enzyme lead to loss of wild-type enzymatic activity and a neomorphic activity that converts α-KG to 2-hydroxyglutarate (2-HG. In turn, 2-HG, which has been termed an oncometabolite, inhibits key α-KG- dependent enzymes, resulting in alterations of the cellular epigenetic profile and, subsequently, inhibition of differentiation and initiation of tumorigenesis. In addition, it is now clear that the IDH mutation also induces a broad metabolic reprogramming that extends beyond 2-HG production, and this reprogramming often differs from what has been previously reported in other cancer types. In this review we will discuss in detail what is known to date about the metabolic reprogramming of mutant IDH cells and how this reprogramming has been investigated using molecular metabolic imaging. We will describe how metabolic imaging has helped shed light on the basic biology of mutant IDH cells and how this information can be leveraged to identify new therapeutic targets and to develop new clinically translatable imaging methods to detect and monitor mutant IDH tumors in vivo.

  11. Molecular Imaging of Metabolic Reprograming in Mutant IDH Cells.

    Science.gov (United States)

    Viswanath, Pavithra; Chaumeil, Myriam M; Ronen, Sabrina M

    2016-01-01

    Mutations in the metabolic enzyme isocitrate dehydrogenase (IDH) have recently been identified as drivers in the development of several tumor types. Most notably, cytosolic IDH1 is mutated in 70-90% of low-grade gliomas and upgraded glioblastomas, and mitochondrial IDH2 is mutated in ~20% of acute myeloid leukemia cases. Wild-type IDH catalyzes the interconversion of isocitrate to α-ketoglutarate (α-KG). Mutations in the enzyme lead to loss of wild-type enzymatic activity and a neomorphic activity that converts α-KG to 2-hydroxyglutarate (2-HG). In turn, 2-HG, which has been termed an "oncometabolite," inhibits key α-KG-dependent enzymes, resulting in alterations of the cellular epigenetic profile and, subsequently, inhibition of differentiation and initiation of tumorigenesis. In addition, it is now clear that the IDH mutation also induces a broad metabolic reprograming that extends beyond 2-HG production, and this reprograming often differs from what has been previously reported in other cancer types. In this review, we will discuss in detail what is known to date about the metabolic reprograming of mutant IDH cells, and how this reprograming has been investigated using molecular metabolic imaging. We will describe how metabolic imaging has helped shed light on the basic biology of mutant IDH cells, and how this information can be leveraged to identify new therapeutic targets and to develop new clinically translatable imaging methods to detect and monitor mutant IDH tumors in vivo.

  12. Functional Analysis of Jasmonates in Rice through Mutant Approaches

    Directory of Open Access Journals (Sweden)

    Rohit Dhakarey

    2016-03-01

    Full Text Available Jasmonic acid, one of the major plant hormones, is, unlike other hormones, a lipid-derived compound that is synthesized from the fatty acid linolenic acid. It has been studied intensively in many plant species including Arabidopsis thaliana, in which most of the enzymes participating in its biosynthesis were characterized. In the past 15 years, mutants and transgenic plants affected in the jasmonate pathway became available in rice and facilitate studies on the functions of this hormone in an important crop. Those functions are partially conserved compared to other plant species, and include roles in fertility, response to mechanical wounding and defense against herbivores. However, new and surprising functions have also been uncovered by mutant approaches, such as a close link between light perception and the jasmonate pathway. This was not only useful to show a phenomenon that is unique to rice but also helped to establish this role in plant species where such links are less obvious. This review aims to provide an overview of currently available rice mutants and transgenic plants in the jasmonate pathway and highlights some selected roles of jasmonate in this species, such as photomorphogenesis, and abiotic and biotic stress.

  13. Ambroxol as a pharmacological chaperone for mutant glucocerebrosidase.

    Science.gov (United States)

    Bendikov-Bar, Inna; Maor, Gali; Filocamo, Mirella; Horowitz, Mia

    2013-02-01

    Gaucher disease (GD) is characterized by accumulation of glucosylceramide in lysosomes due to mutations in the GBA1 gene encoding the lysosomal hydrolase β-glucocerebrosidase (GCase). The disease has a broad spectrum of phenotypes, which were divided into three different Types; Type 1 GD is not associated with primary neurological disease while Types 2 and 3 are associated with central nervous system disease. GCase molecules are synthesized on endoplasmic reticulum (ER)-bound polyribosomes, translocated into the ER and following modifications and correct folding, shuttle to the lysosomes. Mutant GCase molecules, which fail to fold correctly, undergo ER associated degradation (ERAD) in the proteasomes, the degree of which is one of the factors that determine GD severity. Several pharmacological chaperones have already been shown to assist correct folding of mutant GCase molecules in the ER, thus facilitating their trafficking to the lysosomes. Ambroxol, a known expectorant, is one such chaperone. Here we show that ambroxol increases both the lysosomal fraction and the enzymatic activity of several mutant GCase variants in skin fibroblasts derived from Type 1 and Type 2 GD patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Genes and Alcohol Consumption: Studies with Mutant Mice.

    Science.gov (United States)

    Mayfield, J; Arends, M A; Harris, R A; Blednov, Y A

    2016-01-01

    In this chapter, we review the effects of global null mutant and overexpressing transgenic mouse lines on voluntary self-administration of alcohol. We examine approximately 200 publications pertaining to the effects of 155 mouse genes on alcohol consumption in different drinking models. The targeted genes vary in function and include neurotransmitter, ion channel, neuroimmune, and neuropeptide signaling systems. The alcohol self-administration models include operant conditioning, two- and four-bottle choice continuous and intermittent access, drinking in the dark limited access, chronic intermittent ethanol, and scheduled high alcohol consumption tests. Comparisons of different drinking models using the same mutant mice are potentially the most informative, and we will highlight those examples. More mutants have been tested for continuous two-bottle choice consumption than any other test; of the 137 mouse genes examined using this model, 97 (72%) altered drinking in at least one sex. Overall, the effects of genetic manipulations on alcohol drinking often depend on the sex of the mice, alcohol concentration and time of access, genetic background, as well as the drinking test. © 2016 Elsevier Inc. All rights reserved.

  15. Virulence of Burkholderia mallei quorum-sensing mutants.

    Science.gov (United States)

    Majerczyk, Charlotte; Kinman, Loren; Han, Tony; Bunt, Richard; Greenberg, E Peter

    2013-05-01

    Many Proteobacteria use acyl-homoserine lactone-mediated quorum-sensing (QS) to activate specific sets of genes as a function of cell density. QS often controls the virulence of pathogenic species, and in fact a previous study indicated that QS was important for Burkholderia mallei mouse lung infections. To gain in-depth information on the role of QS in B. mallei virulence, we constructed and characterized a mutant of B. mallei strain GB8 that was unable to make acyl-homoserine lactones. The QS mutant showed virulence equal to that of its wild-type parent in an aerosol mouse infection model, and growth in macrophages was indistinguishable from that of the parent strain. Furthermore, we assessed the role of QS in B. mallei ATCC 23344 by constructing and characterizing a mutant strain producing AiiA, a lactonase enzyme that degrades acyl-homoserine lactones. Although acyl-homoserine lactone levels in cultures of this strain are very low, it showed full virulence. Contrary to the previous report, we conclude that QS is not required for acute B. mallei infections of mice. QS may be involved in some stage of chronic infections in the natural host of horses, or the QS genes may be remnants of the QS network in B. pseudomallei from which this host-adapted pathogen evolved.

  16. Histological Characterization of the Dicer1 Mutant Zebrafish Retina

    Directory of Open Access Journals (Sweden)

    Saeed Akhtar

    2015-01-01

    Full Text Available DICER1, a multidomain RNase III endoribonuclease, plays a critical role in microRNA (miRNA and RNA-interference (RNAi functional pathways. Loss of Dicer1 affects different developmental processes. Dicer1 is essential for retinal development and maintenance. DICER1 was recently shown to have another function of silencing the toxicity of Alu RNAs in retinal pigment epithelium (RPE cells, which are involved in the pathogenesis of age related macular degeneration. In this study, we characterized a Dicer1 mutant fish line, which carries a nonsense mutation (W1457Ter induced by N-ethyl-N-nitrosourea mutagenesis. Zebrafish DICER1 protein is highly conserved in the evolution. Zebrafish Dicer1 is expressed at the earliest stages of zebrafish development and persists into late developmental stages; it is widely expressed in adult tissues. Homozygous Dicer1 mutant fish (DICER1W1457Ter/W1457Ter have an arrest in early growth with significantly smaller eyes and are dead at 14–18 dpf. Heterozygous Dicer1 mutant fish have similar retinal structure to that of control fish; the retinal pigment epithelium (RPE cells are normal with no sign of degeneration at the age of 20 months.

  17. Recombination Phenotypes of Escherichia coli greA Mutants

    Directory of Open Access Journals (Sweden)

    Poteete Anthony R

    2011-03-01

    Full Text Available Abstract Background The elongation factor GreA binds to RNA polymerase and modulates transcriptional pausing. Some recent research suggests that the primary role of GreA may not be to regulate gene expression, but rather, to promote the progression of replication forks which collide with RNA polymerase, and which might otherwise collapse. Replication fork collapse is known to generate dsDNA breaks, which can be recombinogenic. It follows that GreA malfunction could have consequences affecting homologous recombination. Results Escherichia coli mutants bearing substitutions of the active site acidic residues of the transcription elongation factor GreA, D41N and E44K, were isolated as suppressors of growth inhibition by a toxic variant of the bacteriophage lambda Red-beta recombination protein. These mutants, as well as a D41A greA mutant and a greA deletion, were tested for proficiency in recombination events. The mutations were found to increase the efficiency of RecA-RecBCD-mediated and RecA-Red-mediated recombination, which are replication-independent, and to decrease the efficiency of replication-dependent Red-mediated recombination. Conclusion These observations provide new evidence for a role of GreA in resolving conflicts between replication and transcription.

  18. Biochemical characterization of a fructokinase mutant of Rhizobium meliloti.

    Science.gov (United States)

    Gardiol, A; Arias, A; Cerveñansky, C; Gaggero, C; Martínez-Drets, G

    1980-10-01

    A double mutant strain (UR3) of Rhizobium meliloti L5-30 was isolated from a phosphoglucose isomerase mutant (UR1) on the basis of its resistance to fructose inhibition when grown on fructose-rich medium. UR3 lacked both phosphoglucose isomerase and fructokinase activity. A mutant strain (UR4) lacking only the fructokinase activity was derived from UR3; it grew on the same carbon sources as the parent strain, but not on fructose, mannitol, or sorbitol. A spontaneous revertant (UR5) of normal growth phenotype contained fructokinase activity. A fructose transport system was found in L5-30, UR4, and UR5 grown in arabinose-fructose minimal medium. No fructose uptake activity was detected when L5-30 and UR5 were grown on arabinose minimal medium, but this activity was present in strain UR4. Free fructose was concentrated intracellularly by UR4 > 200-fold above the external level. A partial transformation of fructose into mannitol and sorbitol was detected by enzymatic analysis of the uptake products. Polyol dehydrogenase activity was detected in UR4 grown in arabinose-fructose minimal medium. The induction pattern of polyol dehydrogenase activities in this strain might be due to slight intracellular fructose accumulation.

  19. Pattern formation mechanisms in motility mutants of Myxococcus xanthus

    CERN Document Server

    Starruss, Joern; Jakovljevic, Vladimir; Sogaard-Andersen, Lotte; Deutsch, Andreas; Baer, Markus

    2016-01-01

    Formation of spatial patterns of cells is a recurring theme in biology and often depends on regulated cell motility. Motility of M. xanthus depends on two motility machineries: the S-engine and A-engine. Moving M. xanthus cells can organize into spreading colonies or spore-filled fruiting bodies depending on their nutritional status. To understand these two pattern formation processes and the contributions by the two motility machineries, as well as cell reversal, we analyze spatial self-organization in 3 strains: i) a mutant that moves unidirectionally without reversing by the A-motility system only, ii) a unidirectional mutant that is also equipped with the S-motility system, and iii) the wild-type that, in addition to the two motility systems, reverses its direction of movement. The mutant moving by the A-engine illustrates that collective motion in the form of large moving clusters can arise in gliding bacteria due to steric interactions of the rod-shaped cells, without the need of invoking any biochemica...

  20. Inhibition of Rhizobium etli Polysaccharide Mutants by Phaseolus vulgaris Root Compounds

    OpenAIRE

    Eisenschenk, Linda; Diebold, Ronald; Perez-Lesher, Jeanett; Peterson, Andrew C.; Kent Peters, N.; Noel, K. Dale

    1994-01-01

    Crude bean root extracts of Phaseolus vulgaris were tested for inhibition of the growth of several polysaccharide mutants of Rhizobium etli biovar phaseoli CE3. Mutants deficient only in exopolysaccharide and some mutants deficient only in the O-antigen of the lipopolysaccharide were no more sensitive than the wild-type strain to the extracts, whereas mutants defective in both lipopolysaccharide and exopolysaccharide were much more sensitive. The inhibitory activity was found at much higher l...

  1. Bacterial adherence to eucaryotic cells: isolation of lymphocyte-binding mutants.

    Science.gov (United States)

    Mayer, E P; Teodorescu, M

    1980-01-01

    A procedure for obtaining bacterial mutants that bind to eucaryotic cells is described. This procedure takes advantage of the ability of the mutants to obtain a required nutrient from the eucaryotic cells. We used this procedure to isolate mutants of Escherichia coli that bind to mouse lymphocytes. We show that the mutants identify some immunoglobulin-bearing lymphocytes and some non-immunoglobulin-bearing lymphocytes. PMID:6995342

  2. Bacterial adherence to eucaryotic cells: isolation of lymphocyte-binding mutants.

    OpenAIRE

    Mayer, E P; Teodorescu, M

    1980-01-01

    A procedure for obtaining bacterial mutants that bind to eucaryotic cells is described. This procedure takes advantage of the ability of the mutants to obtain a required nutrient from the eucaryotic cells. We used this procedure to isolate mutants of Escherichia coli that bind to mouse lymphocytes. We show that the mutants identify some immunoglobulin-bearing lymphocytes and some non-immunoglobulin-bearing lymphocytes.

  3. Selection of 5-fluorocytosine-resistant mutants from an Aspergillus niger citric acid-producing strain

    Directory of Open Access Journals (Sweden)

    Conte Ana Paula de F.

    2003-01-01

    Full Text Available Mutants of Aspergillus niger N402, induced by UV mutagenesis, were selected and tested for resistance or sensitivity to 5-fluorocytosine. Some mutants showed increased citric acid production, which did not correlate with the intracellular amount of protein or ammonium ion. The resistance to 5-fluorocytosine proved to be a rational approach for isolation of new mutants with improved production of citric acid. The best mutant (FR13 accumulated double the amount of citric acid produced by the parental strain.

  4. Gγ1 + Gγ2 ≠ Gβ: Heterotrimeric G Protein Gγ-Deficient Mutants Do Not Recapitulate All Phenotypes of Gβ-Deficient Mutants1[C][W][OA

    Science.gov (United States)

    Trusov, Yuri; Zhang, Wei; Assmann, Sarah M.; Botella, José Ramón

    2008-01-01

    Heterotrimeric G proteins are signaling molecules ubiquitous among all eukaryotes. The Arabidopsis (Arabidopsis thaliana) genome contains one Gα (GPA1), one Gβ (AGB1), and two Gγ subunit (AGG1 and AGG2) genes. The Gβ requirement of a functional Gγ subunit for active signaling predicts that a mutant lacking both AGG1 and AGG2 proteins should phenotypically resemble mutants lacking AGB1 in all respects. We previously reported that Gβ- and Gγ-deficient mutants coincide during plant pathogen interaction, lateral root development, gravitropic response, and some aspects of seed germination. Here, we report a number of phenotypic discrepancies between Gβ- and Gγ-deficient mutants, including the double mutant lacking both Gγ subunits. While Gβ-deficient mutants are hypersensitive to abscisic acid inhibition of seed germination and are hyposensitive to abscisic acid inhibition of stomatal opening and guard cell inward K+ currents, none of the available Gγ-deficient mutants shows any deviation from the wild type in these responses, nor do they show the hypocotyl elongation and hook development defects that are characteristic of Gβ-deficient mutants. In addition, striking discrepancies were observed in the aerial organs of Gβ- versus Gγ-deficient mutants. In fact, none of the distinctive traits observed in Gβ-deficient mutants (such as reduced size of cotyledons, leaves, flowers, and siliques) is present in any of the Gγ single and double mutants. Despite the considerable amount of phenotypic overlap between Gβ- and Gγ-deficient mutants, confirming the tight relationship between Gβ and Gγ subunits in plants, considering the significant differences reported here, we hypothesize the existence of new and as yet unknown elements in the heterotrimeric G protein signaling complex. PMID:18441222

  5. Inverse polymerase chain reaction for rapid gene isolation in Arabidopsis thaliana insertion mutants

    NARCIS (Netherlands)

    Vanderhaeghen, R.; Scheres, B.J.G.; Montagu, M. van; Lijsebetten, M. van

    1992-01-01

    Recently, many mutants have been isolated in the model plant Arabidopsis thaliana by the insertion of the Agrobacterium tumefaciens T-DNA into the plant genome. Instead of applying Southern analysis on these insertion mutants and to avoid the construction of mutant- derived genomic libraries,

  6. Blue ghosts: a new method for isolating amber mutants defective in essential genes of Escherichia coli

    DEFF Research Database (Denmark)

    Brown, S; Brickman, E R; Beckwith, J

    1981-01-01

    We describe a technique which permits an easy screening for amber mutants defective in essential genes of Escherichia coli. Using this approach, we have isolated three amber mutants defective in the rho gene. An extension of the technique allows the detection of ochre mutants and transposon inser...

  7. Heterotropic and homotropic cooperativity by a drug-metabolising mutant of cytochrome P450 BM3

    NARCIS (Netherlands)

    van Vugt-Lussenburg, B.M.A.; Damsten, M.C.; Maasdijk, D.M.; Vermeulen, N.P.E.; Commandeur, J.N.M.

    2006-01-01

    Recently, we described a triple mutant of the bacterial cytochrome P450 BM3 as the first mutant with affinity for drug-like compounds. In this paper, we show that this mutant, but not wild-type BM3, is able to metabolise testosterone and several drug-like molecules such as amodiaquine,

  8. Identification of a novel Lymantria dispar nucleopolyhedrovirus mutant that exhibits abnormal polyhedron formation and virion occlusion

    Science.gov (United States)

    James M. Slavicek; Melissa J. Mercer; Dana Pohlman; Mary Ellen Kelly; David S. Bischoff

    1998-01-01

    In previous studies on the formation of Lymantria dispar nuclear polyhedrosis virus (LdMNPV) few polyhedra (FP) mutants, several polyhedron formation mutants (PFM) were identified that appeared to be unique. These viral mutants are being characterized to investigate the processes of polyhedron formation and virion occlusion. Ld

  9. Differential analysis in Proteome of Space Induced Rice and Soybean Mutants

    Science.gov (United States)

    Wang, W.; Lu, B.; Gu, D.; Han, S.; Gao, Y.; Sun, Y.

    To investigate the change trends of proteome induced in space environment we chose 3 Rice mutants 2 Soybean mutants and the seeds which were selected as high yields high tillering rice blast resistance soybean insect pest resistance and wider leaf shape individually after abroad Recoverable Satellite JB-1 for 15 days in 1996 and their corresponding controls Two-dimensional gel electrophoresis 2-D with Coomassie Brilliant Blue staining and PDQuest TM software analysis found that In 6 rice samples 329 pm 35 protein spots were detected in controls whereas 298 pm 37 protein spots detected in mutants representing a 9 decrease 69 pm 27 protein spots were lost in mutants while 37 pm 14 protein spots appeared additionally showing 11 protein spots were lost in mutants 58 protein spots were significantly regulated in mutants with 16 pm 7 up- and 42 pm 18 down-regulated which occupied 5 and 14 of the total average mutants spots separately In 3 soybean leaf samples 263 pm 12 protein spots were detected in controls whereas 255 pm 20 protein spots detected in mutants representing a 3 decrease 49 pm 10 protein spots were lost in mutants while 36 pm 16 protein spots appeared additionally showing 5 protein spots lost in mutants 51 protein spots were significantly regulated in mutants with 25 pm 7 up- and 26 pm 15 down-regulated which occupied 9 8 and 10 2 of the total average mutants spots separately In 3 soybean seed samples 208 pm 41 protein spots were

  10. Isolation, characterization, and expression analyses of tryptophan aminotransferase genes in a maize dek18 mutant

    Science.gov (United States)

    The dek18 mutant of maize has decreased auxin content in kernels. Molecular and functional characterization of this mutant line offers the possibility to better understand auxin biology in maize seed development. Seeds of the dek18 mutants are smaller compared to wild type seeds and the vegetative d...

  11. Grain product of 34 soya mutant lines;Rendimiento de grano de 34 lineas mutantes de soya

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron E, J.; Mastache L, A. A.; Valencia E, F.; Diaz V, G. E. [Colegio Superior Agropecuario del Estado de Guerrero, Vicente Guerrero No. 81, Col. Centro, 40000 Iguala, Guerrero (Mexico); Cervantes S, T. [Instituto de Recursos Geneticos y Productividad, Colegio de Posgraduados, Carretera Mexico-Texcoco Km. 36.5, Montecillo, 56230 Texcoco, Estado de Mexico (Mexico); De la Cruz T, E.; Garcia A, J. M.; Falcon B, T.; Gatica T, M. A. [ININ, Departamento de Biologia, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-07-01

    This work was development with the objective of obtaining information of the agronomic behavior of 34 soya mutant lines (R{sub 4}M{sub 18}) for human consumption and this way to select the 2 better lines. The genetic materials were obtained starting from the variety ISAAEG-B M2 by means of the application of recurrent radiation with Co{sup 60} gammas, to a dose of 350 Gray for the first two generations and both later to 200 Gray and selection during 17 cycles, being obtained the 34 better lines mutants with agronomic characteristic wanted and good flavor. The obtained results were that the mutant lines L{sub 25} and L{sub 32} produced the major quantity in branches/plant number with 7.5 and 7.25, pods/plant number with 171.25 and 167, grains/plant number with 350.89 and 333.07 and grain product (ton/ha) to 15% of humidity 5.15 and 4.68 ton/ha, respectively. (Author)

  12. The global translation profile in a ribosomal protein mutant resembles that of an eIF3 mutant.

    Science.gov (United States)

    Tiruneh, Bayu Sisay; Kim, Byung-Hoon; Gallie, Daniel R; Roy, Bijoyita; von Arnim, Albrecht G

    2013-12-30

    Genome-wide assays performed in Arabidopsis and other organisms have revealed that the translation status of mRNAs responds dramatically to different environmental stresses and genetic lesions in the translation apparatus. To identify additional features of the global landscape of translational control, we used microarray analysis of polysomal as well as non-polysomal mRNAs to examine the defects in translation in a poly(A) binding protein mutant, pab2 pab8, as well as in a mutant of a large ribosomal subunit protein, rpl24b/shortvalve1. The mutation of RPL24B stimulated the ribosome occupancy of mRNAs for nuclear encoded ribosomal proteins. Detailed analysis yielded new insights into the translational regulon containing the ribosomal protein mRNAs. First, the ribosome occupancy defects in the rpl24b mutant partially overlapped with those in a previously analyzed initiation factor mutant, eif3h. Second, a group of mRNAs with incomplete coding sequences appeared to be uncoupled from the regulon, since their dependence on RPL24B differed from regular mRNAs. Third, different sister paralogs of the ribosomal proteins differed in their translation state in the wild-type. Some sister paralogs also differed in their response to the rpl24b mutation. In contrast to rpl24b, the pab2 pab8 mutant revealed few gene specific translational defects, but a group of seed storage protein mRNAs were stimulated in their ribosome occupancy. In the course of this work, while optimizing the statistical analysis of ribosome occupancy data, we collected 12 biological replicates of translation states from wild-type seedlings. We defined 20% of mRNAs as having a high variance in their translation state. Many of these mRNAs were functionally associated with responses to the environment, suggesting that subtle variation in the environmental conditions is sensed by plants and transduced to affect the translational efficiency of hundreds of mRNAs. These data represent the first genome

  13. New mutants and their chromosome assignment in the fly Megaselia scalaris.

    Science.gov (United States)

    Traut, W; Traut, G; Mertl, H G; Egelhaaf, A

    1994-01-01

    We describe six new mutants, spontaneous or EMS-induced, and a previously isolated radiation-induced mutant of Megaselia scalaris Loew (Diptera, Phoridae). Five are eye-color mutants, one affects the segmentation of the abdomen, and one disturbs the regular form and arrangement of ommatidia in the compound eye. A complementation test exposed two pairs of alleles among the five eye-color mutants, leaving three different loci that affect eye pigmentation. Two of them influence the amount of xanthommatin synthesized, and one blocks the ommochrome pathway at the kynurenine step. We established chromosome assignment of the mutants by crossbreeding them with Y chromosome-autosome translocation strains.

  14. Xanthine Dehydrogenase (XDH) cross-reacting material in mutants of Drosophila melanogaster deficient in XDH activity.

    Science.gov (United States)

    Browder, L W; Tucker, L; Wilkes, J

    1982-02-01

    Rocket immunoelectrophoresis was used to estimate xanthine dehydrogenase cross-reacting material (XDH-CRM) in strains containing the cin and cin mutant genes, which are deficient in XDH enzymatic activity. CRM levels were determined as percentages of CRM in the Oregon-R wild-type strain. The mutant strains contain 72 and 76% of Oregon-R CRM, respectively. CRM levels in strains containing the XDH-deficient mutant genes lxd and mal are 93 and 105%, respectively. The high levels of CRM in these four mutant strains indicate that the primary effects of the mutant genes are on the function of XDH protein rather than its accumulation.

  15. Identification of An Arsenic Tolerant Double Mutant With a Thiol-Mediated Component And Increased Arsenic Tolerance in PhyA Mutants

    Energy Technology Data Exchange (ETDEWEB)

    Sung, D.Y.; Lee, D.; Harris, H.; Raab, A.; Feldmann, J.; Meharg, A.; Kumabe, B.; Komives, E.A.; Schroeder, J.I.; /SLAC, SSRL /Sydney U. /Aberdeen U. /UC, San Diego

    2007-04-06

    A genetic screen was performed to isolate mutants showing increased arsenic tolerance using an Arabidopsis thaliana population of activation tagged lines. The most arsenic-resistant mutant shows increased arsenate and arsenite tolerance. Genetic analyses of the mutant indicate that the mutant contains two loci that contribute to arsenic tolerance, designated ars4 and ars5. The ars4ars5 double mutant contains a single T-DNA insertion, ars4, which co-segregates with arsenic tolerance and is inserted in the Phytochrome A (PHYA) gene, strongly reducing the expression of PHYA. When grown under far-red light conditions ars4ars5 shows the same elongated hypocotyl phenotype as the previously described strong phyA-211 allele. Three independent phyA alleles, ars4, phyA-211 and a new T-DNA insertion allele (phyA-t) show increased tolerance to arsenate, although to a lesser degree than the ars4ars5 double mutant. Analyses of the ars5 single mutant show that ars5 exhibits stronger arsenic tolerance than ars4, and that ars5 is not linked to ars4. Arsenic tolerance assays with phyB-9 and phot1/phot2 mutants show that these photoreceptor mutants do not exhibit phyA-like arsenic tolerance. Fluorescence HPLC analyses show that elevated levels of phytochelatins were not detected in ars4, ars5 or ars4ars5, however increases in the thiols cysteine, gamma-glutamylcysteine and glutathione were observed. Compared with wild type, the total thiol levels in ars4, ars5 and ars4ars5 mutants were increased up to 80% with combined buthionine sulfoximine and arsenic treatments, suggesting the enhancement of mechanisms that mediate thiol synthesis in the mutants. The presented findings show that PHYA negatively regulates a pathway conferring arsenic tolerance, and that an enhanced thiol synthesis mechanism contributes to the arsenic tolerance of ars4ars5.

  16. Resveratrol Antagonizes Antimicrobial Lethality and Stimulates Recovery of Bacterial Mutants.

    Directory of Open Access Journals (Sweden)

    Yuanli Liu

    Full Text Available Reactive oxygen species (ROS; superoxide, peroxide, and hydroxyl radical are thought to contribute to the rapid bactericidal activity of diverse antimicrobial agents. The possibility has been raised that consumption of antioxidants in food may interfere with the lethal action of antimicrobials. Whether nutritional supplements containing antioxidant activity are also likely to interfere with antimicrobial lethality is unknown. To examine this possibility, resveratrol, a popular antioxidant dietary supplement, was added to cultures of Escherichia coli and Staphylococcus aureus that were then treated with antimicrobial and assayed for bacterial survival and the recovery of mutants resistant to an unrelated antimicrobial, rifampicin. Resveratrol, at concentrations likely to be present during human consumption, caused a 2- to 3-fold reduction in killing during a 2-hr treatment with moxifloxacin or kanamycin. At higher, but still subinhibitory concentrations, resveratrol reduced antimicrobial lethality by more than 3 orders of magnitude. Resveratrol also reduced the increase in reactive oxygen species (ROS characteristic of treatment with quinolone (oxolinic acid. These data support the general idea that the lethal activity of some antimicrobials involves ROS. Surprisingly, subinhibitory concentrations of resveratrol promoted (2- to 6-fold the recovery of rifampicin-resistant mutants arising from the action of ciprofloxacin, kanamycin, or daptomycin. This result is consistent with resveratrol reducing ROS to sublethal levels that are still mutagenic, while the absence of resveratrol allows ROS levels to high enough to kill mutagenized cells. Suppression of antimicrobial lethality and promotion of mutant recovery by resveratrol suggests that the antioxidant may contribute to the emergence of resistance to several antimicrobials, especially if new derivatives and/or formulations of resveratrol markedly increase bioavailability.

  17. Analysis of Escherichia coli mutants with a linear respiratory chain.

    Directory of Open Access Journals (Sweden)

    Sonja Steinsiek

    Full Text Available The respiratory chain of E. coli is branched to allow the cells' flexibility to deal with changing environmental conditions. It consists of the NADH:ubiquinone oxidoreductases NADH dehydrogenase I and II, as well as of three terminal oxidases. They differ with respect to energetic efficiency (proton translocation and their affinity to the different quinone/quinol species and oxygen. In order to analyze the advantages of the branched electron transport chain over a linear one and to assess how usage of the different terminal oxidases determines growth behavior at varying oxygen concentrations, a set of isogenic mutant strains was created, which lack NADH dehydrogenase I as well as two of the terminal oxidases, resulting in strains with a linear respiratory chain. These strains were analyzed in glucose-limited chemostat experiments with defined oxygen supply, adjusting aerobic, anaerobic and different microaerobic conditions. In contrast to the wild-type strain MG1655, the mutant strains produced acetate even under aerobic conditions. Strain TBE032, lacking NADH dehydrogenase I and expressing cytochrome bd-II as sole terminal oxidase, showed the highest acetate formation rate under aerobic conditions. This supports the idea that cytochrome bd-II terminal oxidase is not able to catalyze the efficient oxidation of the quinol pool at higher oxygen conditions, but is functioning mainly under limiting oxygen conditions. Phosphorylation of ArcA, the regulator of the two-component system ArcBA, besides Fnr the main transcription factor for the response towards different oxygen concentrations, was studied. Its phosphorylation pattern was changed in the mutant strains. Dephosphorylation and therefore inactivation of ArcA started at lower aerobiosis levels than in the wild-type strain. Notably, not only the micro- and aerobic metabolism was affected by the mutations, but also the anaerobic metabolism, where the respiratory chain should not be important.

  18. The antiandrogenic effect of finasteride against a mutant androgen receptor

    Science.gov (United States)

    Chhipa, Rishi Raj; Zhang, Haitao; Ip, Clement

    2011-01-01

    Finasteride is known to inhibit Type 2 5α-reductase and thus block the conversion of testosterone to dihydrotestosterone (DHT). The structural similarity of finasteride to DHT raises the possibility that finasteride may also interfere with the function of the androgen receptor (AR). Experiments were carried out to evaluate the antiandrogenic effect of finasteride in LNCaP, C4-2 and VCaP human prostate cancer cells. Finasteride decreased DHT binding to AR, and DHT-stimulated AR activity and cell growth in LNCaP and C4-2 cells, but not in VCaP cells. LNCaP and C4-2 (derived from castration-resistant LNCaP) cells express the T877A mutant AR, while VCaP cells express the wild-type AR. When PC-3 cells, which are AR-null, were transfected with either the wild-type or the T877A mutant AR, only the mutant AR-expressing cells were sensitive to finasteride inhibition of DHT binding. Peroxiredoxin-1 (Prx1) is a novel endogenous facilitator of AR binding to DHT. In Prx1-rich LNCaP cells, the combination of Prx1 knockdown and finasteride was found to produce a greater inhibitory effect on AR activity and cell growth than either treatment alone. The observation suggests that cells with a low expression of Prx1 are likely to be more responsive to the antiandrogenic effect of finasteride. Additional studies showed that the efficacy of finasteride was comparable to that of bicalutamide (a widely used non-steroidal antiandrogen). The implication of the above findings is discussed in the context of developing strategies to improve the outcome of androgen deprivation therapy. PMID:21386657

  19. A sialidase mutant displaying trans-sialidase activity.

    Science.gov (United States)

    Paris, Gastón; Ratier, Laura; Amaya, María Fernanda; Nguyen, Tong; Alzari, Pedro M; Frasch, Alberto Carlos C

    2005-01-28

    Trypanosoma cruzi, the agent of Chagas disease, expresses a modified sialidase, the trans-sialidase, which transfers sialic acid from host glycoconjugates to beta-galactose present in parasite mucins. Another American trypanosome, Trypanosoma rangeli, expresses a homologous protein that has sialidase activity but is devoid of transglycosidase activity. Based on the recently determined structures of T.rangeli sialidase (TrSA) and T.cruzi trans-sialidase (TcTS), we have now constructed mutants of TrSA with the aim of studying the relevant residues in transfer activity. Five mutations, Met96-Val, Ala98-Pro, Ser120-Tyr, Gly249-Tyr and Gln284-Pro, were enough to obtain a sialidase mutant (TrSA(5mut)) with trans-sialidase activity; and a sixth mutation increased the activity to about 10% that of wild-type TcTS. The crystal structure of TrSA(5mut) revealed the formation of a trans-sialidase-like binding site for the acceptor galactose, primarily defined by the phenol group of Tyr120 and the indole ring of Trp313, which adopts a new conformation, similar to that in TcTS, induced by the Gln284-Pro mutation. The transition state analogue 2,3-didehydro-2-deoxy-N-acetylneuraminic acid (DANA), which inhibits sialidases but is a poor inhibitor of trans-sialidase, was used to probe the active site conformation of mutant enzymes. The results show that the presence of a sugar acceptor binding-site, the fine-tuning of protein-substrate interactions and the flexibility of crucial active site residues are all important to achieve transglycosidase activity from the TrSA sialidase scaffold.

  20. Regulation of chloroplast biogenesis: the immutans mutant of Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Rodermel, Steven

    2015-11-16

    The immutans (im) variegation mutant of Arabidopsis is an ideal model to gain insight into factors that control chloroplast biogenesis. im defines the gene for PTOX, a plastoquinol terminal oxidase that participates in control of thylakoid redox. Here, we report that the im defect can be suppressed during the late stages of plant development by gigantea (gi2), which defines the gene for GIGANTEA (GI), a central component of the circadian clock that plays a poorly-understood role in diverse plant developmental processes. imgi2 mutants are late-flowering and display other well-known phenotypes associated with gi2, such as starch accumulation and resistance to oxidative stress. We show that the restoration of chloroplast biogenesis in imgi2 is caused by a developmental-specific de-repression of cytokinin signaling that involves crosstalk with signaling pathways mediated by gibberellin (GA) and SPINDLY (SPY), a GA response inhibitor. Suppression of the plastid defect in imgi2 is likely caused by a relaxation of excitation pressures in developing plastids by factors contributed by gi2, including enhanced rates of photosynthesis and increased resistance to oxidative stress. Interestingly, the suppression phenotype of imgi can be mimicked by crossing im with the starch accumulation mutant, sex1, perhaps because sex1 utilizes pathways similar to gi. We conclude that our studies provide a direct genetic linkage between GIGANTEA and chloroplast biogenesis, and we construct a model of interactions between signaling pathways mediated by gi, GA, SPY, cytokinins, and sex1 that are required for chloroplast biogenesis.

  1. Mutant prevention concentrations of daptomycin for Enterococcus faecium clinical isolates.

    Science.gov (United States)

    Sinel, Clara; Jaussaud, Clara; Auzou, Michel; Giard, Jean-Christophe; Cattoir, Vincent

    2016-10-01

    Owing to the emergence of vancomycin-resistant Enterococcus faecium, treatment of enterococcal infections has become challenging. Although spontaneous in vitro resistance frequencies are low, the emergence of resistance is increasingly reported during daptomycin therapy. The mutant selection window (MSW), comprised between the minimum inhibitory concentration (MIC) and the mutant prevention concentration (MPC), corresponds to the concentration range within which resistant mutants may be selected. Since no data are available for enterococci, the aim of this study was to determine MPCs and MSWs for 12 representative E. faecium clinical isolates. MICs and MPCs were determined by broth microdilution and agar dilution methods, respectively. A basic MSW-derived pharmacodynamic analysis was also performed using mean maximum plasma concentration (Cmax) values obtained with dosages from 4 to 12 mg/kg. MICs and MPCs of daptomycin ranged from 0.5 to 4 mg/L and from 2 to 32 mg/L, respectively, with no correlation between them. The wideness of MSWs ranged from 2× to 32× MIC. Mean plasma Cmax values of daptomycin were calculated from 55 to 174.5 mg/L when using a dosage from 4 to 12 mg/kg. All Cmax values were above the MPCs whatever the dosage. Taking into account the protein binding of daptomycin (ca. 90%), the unbound fraction Cmax was just within the MSW in 67-92% of strains at recommended dosages (4-6 mg/kg) and was above the MPC for the majority of strains only with the highest dosage (12 mg/kg). This study shows that free daptomycin Cmax values usually fell into MSWs when using lower dosages (<10 mg/kg). Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  2. clustering common bean mutants based on heterotic groupings ...

    African Journals Online (AJOL)

    ACSS

    diversité génétique entre les haricots mutants, ces groupes (A, B et C) peuvent être considérés comme des groupements hétérotiques. Selon le trait phénotypique considéré, le croisement de deux des génotypes appartenant à des groupes différents peut générer de la vigueur hybride. Par ailleurs, pour créer une variabilité ...

  3. Using PATIMDB to create bacterial transposon insertion mutant libraries.

    Science.gov (United States)

    Urbach, Jonathan M; Wei, Tao; Liberati, Nicole; Grenfell-Lee, Daniel; Villanueva, Jacinto; Wu, Gang; Ausubel, Frederick M

    2009-04-01

    PATIMDB is a software package for facilitating the generation of transposon mutant insertion libraries. The software has two main functions: process tracking and automated sequence analysis. The process tracking function specifically includes recording the status and fates of multiwell plates and samples in various stages of library construction. Automated sequence analysis refers specifically to the pipeline of sequence analysis starting with ABI files from a sequencing facility and ending with insertion location identifications. The protocols in this unit describe installation and use of PATIMDB software.

  4. Environmental features determining successful rearing in the mutant mouse staggerer.

    Science.gov (United States)

    Guastavino, J M

    1984-02-01

    The mutant mouse staggerer is unable to rear her pups to weaning unless special precautions are taken. The following environmental conditions were found to contribute to compensate for the maternal behavioral deficits of the staggerer: (1) the foster pups used in a constraining box to stimulate the lactating staggerer mother are 4 days old. (2) The mother is enforced to stay in close physical contact with these pups for at least 12 hours immediately after delivery. (3) The staggerer pups are transferred to a normal lactating mother to suckle her for the first 12 hours of life.

  5. p21-ras effector domain mutants constructed by "cassette" mutagenesis

    DEFF Research Database (Denmark)

    Stone, J C; Vass, W C; Willumsen, B M

    1988-01-01

    A series of mutations encoding single-amino-acid substitutions within the v-rasH effector domain were constructed, and the ability of the mutants to induce focal transformation of NIH 3T3 cells was studied. The mutations, which spanned codons 32 to 40, were made by a "cassette" mutagenesis...... technique that involved replacing this portion of the v-rasH effector domain with a linker carrying two BspMI sites in opposite orientations. Since BspMI cleaves outside its recognition sequence, BspMI digestion of the plasmid completely removed the linker, creating a double-stranded gap whose missing ras...

  6. Características fisiológicas de microtomateiros fitocromo-mutantes Physiological characteristics of micro-tomato (Lycopersicon esculentum P. Miller) phytochrome-mutants

    National Research Council Canada - National Science Library

    Hyrandir Cabral de Melo; Evaristo Mauro de Castro; Ângela Maria Soares; Cynthia de Oliveira; Sílvio Júnio Ramos

    2009-01-01

    ... (Lycopersicon esculentum P. Miller cv. Micro-Tom) fitocromo-mutantes. A cultivar Micro-Tom e os mutantes aurea (deficiente na biossíntese do cromóforo dos fitocromos), atroviolacea (atv) e high pigment1 (hp1...

  7. AFM images of complexes between amylose and Aspergillus niger glucoamylase mutants, native and mutant starch binding domains: a model for the action of glucoamylase

    DEFF Research Database (Denmark)

    Morris, V. M.; Gunning, A. P.; Faults, C. B.

    2005-01-01

    Atomic force microscopy has been used to investigate the complexes formed between high molecular weight amylose chains and Aspergillus niger glucoamylase mutants (E400Q and W52F), wild-type A. niger starch binding domains (SBDS), and mutant SBDs (W563K and W590K) lacking either of the two starch ...

  8. Fitness of Salmonella mutants resistant to antimicrobial peptides.

    Science.gov (United States)

    Lofton, Hava; Anwar, Naeem; Rhen, Mikael; Andersson, Dan I

    2015-02-01

    To examine the effects of mutations in the waaY, phoP and pmrB genes, which confer resistance to antimicrobial peptides (AMPs), on fitness of Salmonella Typhimurium. Survival during low pH, oxidative stress, stationary-phase incubation, exposure to serum and bile and growth in mice and laboratory media were determined by time-kills, disc inhibition assays, competition experiments and optical density measurements. Individual mutations in the waaY gene (involved in LPS core biosynthesis) and in the phoP and pmrB genes (part of two different two-component regulatory systems, phoPQ and pmrAB) conferred no or minor effects on bacterial survival during stressful in vitro conditions or in mice. In contrast, a waaY-phoP-pmrB triple mutant was compromised under most assay conditions. Results from this study show that AMP resistance can be cost-free, as assessed by several assays that attempt to mimic the conditions a bacterium might encounter within a host. Our findings imply that future therapeutic use of AMPs could select for fit mutants with cross-resistance to human defence peptides and that potential resistance development in response to therapeutic use of AMPs needs to be carefully monitored. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Direct Isolation of Seamless Mutant Bacterial Artificial Chromosomes.

    Science.gov (United States)

    Lyozin, George T; Kosaka, Yasuhiro; Bhattacharje, Gourab; Yost, H Joseph; Brunelli, Luca

    2017-04-03

    Seamless (i.e., without unwanted DNA sequences) mutant bacterial artificial chromosomes (BACs) generated via recombination-mediated genetic engineering (recombineering) are better suited to study gene function compared to complementary DNA (cDNA) because they contain only the specific mutation and provide all the regulatory sequences required for in vivo gene expression. However, precisely mutated BACs are typically rare (∼1:1,000 to 1:100,000), making their isolation quite challenging. Although these BACs have been classically isolated by linking the mutation to additional genes, i.e., selectable markers, this approach is prone to false positives and is labor-intensive because it requires the subsequent removal of the selectable marker. We created Founder Principle-driven Enrichment (FPE), a method based on the population genetics "founder principle," to directly isolate rare mutant BACs, without any selectable marker, from liquid cultures via the polymerase chain reaction (PCR). Here, we provide a detailed description of FPE, including protocols for BAC recombineering and PCR screening. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  10. Nonselective enrichment for yeast adenine mutants by flow cytometry

    Science.gov (United States)

    Bruschi, C. V.; Chuba, P. J.

    1988-01-01

    The expression of certain adenine biosynthetic mutations in the yeast Saccharomyces cerevisiae results in a red colony color. This phenomenon has historically provided an ideal genetic marker for the study of mutation, recombination, and aneuploidy in lower eukaryotes by classical genetic analysis. In this paper, it is reported that cells carrying ade1 and/or ade2 mutations exhibit primary fluorescence. Based on this observation, the nonselective enrichment of yeast cultures for viable adenine mutants by using the fluorescence-activated cell sorter has been achieved. The advantages of this approach over conventional genetic analysis of mutation, recombination, and mitotic chromosomal stability include speed and accuracy in acquiring data for large numbers of clones. By using appropriate strains, the cell sorter has been used for the isolation of both forward mutations and chromosomal loss events in S. cerevisiae. The resolving power of this system and its noninvasiveness can easily be extended to more complex organisms, including mammalian cells, in which analogous metabolic mutants are available.

  11. Treatment of MDR1 Mutant Dogs with Macrocyclic Lactones

    Science.gov (United States)

    Geyer, Joachim; Janko, Christina

    2012-01-01

    P-glycoprotein, encoded by the multidrug resistance gene MDR1, is an ATP-driven drug efflux pump which is highly expressed at the blood-brain barrier of vertebrates. Drug efflux of macrocyclic lactones by P-glycoprotein is highly relevant for the therapeutic safety of macrocyclic lactones, as thereby GABA-gated chloride channels, which are confined to the central nervous system in vertebrates, are protected from high drug concentrations that otherwise would induce neurological toxicity. A 4-bp deletion mutation exists in the MDR1 gene of many dog breeds such as the Collie and the Australian Shepherd, which results in the expression of a non-functional P-glycoprotein and is associated with multiple drug sensitivity. Accordingly, dogs with homozygous MDR1 mutation are in general prone to neurotoxicity by macrocyclic lactones due to their increased brain penetration. Nevertheless, treatment of these dogs with macrocyclic lactones does not inevitably result in neurological symptoms, since, the safety of treatment highly depends on the treatment indication, dosage, route of application, and the individual compound used as outlined in this review. Whereas all available macrocyclic lactones can safely be administered to MDR1 mutant dogs at doses usually used for heartworm prevention, these dogs will experience neurological toxicity following a high dose regimen which is common for mange treatment in dogs. Here, we review and discuss the neurotoxicological potential of different macrocyclic lactones as well as their treatment options in MDR1 mutant dogs. PMID:22039792

  12. Neonatal vestibular stimulation and mating in cerebellar mutants.

    Science.gov (United States)

    Guastavino, J M; Larsson, K; Allain, C; Jaisson, P

    1993-05-01

    Two cerebellar mutants, staggerer and reeler, and their congenic nonmutants were used in this experiment. Experimental animals were subjected to intense rotational stimulation on a tilted plane during the first 3 weeks of life, while controls were left nonstimulated. The capacity for mating, as evidenced by vaginal plugs or the occurrence of pregnancy, was assayed during two periods: between 36 and 89 days of age (Experiment A) and between 90 and 120 days of age (Experiment B). During Experiment A the mutants as well as the normals were caged inter se with partners of the opposite sex. During Experiment B the animals were caged with intact, sexually experienced partners. The animals were examined daily for evidence of mating. During Experiment A, only 3 of the 89 couples participating in this study showed evidence of mating. During Experiment B, the number of males of both strains which had mated increased significantly. The staggerer females showed a relatively high level of mating activity, whether stimulated or not. The reeler females, in contrast, rarely mated, although early stimulation significantly increased the level of sexual efficiency. The majority of the normal males and females mated, whether stimulated or not. It was concluded that massive motor-sensory stimulation in infancy, improving gait and body balance in staggerer and reeler mice, may also improve mating efficiency.

  13. Flavonoid accumulation patterns of transparent testa mutants of arabidopsis

    Science.gov (United States)

    Peer, W. A.; Brown, D. E.; Tague, B. W.; Muday, G. K.; Taiz, L.; Murphy, A. S.

    2001-01-01

    Flavonoids have been implicated in the regulation of auxin movements in Arabidopsis. To understand when and where flavonoids may be acting to control auxin movement, the flavonoid accumulation pattern was examined in young seedlings and mature tissues of wild-type Arabidopsis. Using a variety of biochemical and visualization techniques, flavonoid accumulation in mature plants was localized in cauline leaves, pollen, stigmata, and floral primordia, and in the stems of young, actively growing inflorescences. In young Landsberg erecta seedlings, aglycone flavonols accumulated developmentally in three regions, the cotyledonary node, the hypocotyl-root transition zone, and the root tip. Aglycone flavonols accumulated at the hypocotyl-root transition zone in a developmental and tissue-specific manner with kaempferol in the epidermis and quercetin in the cortex. Quercetin localized subcellularly in the nuclear region, plasma membrane, and endomembrane system, whereas kaempferol localized in the nuclear region and plasma membrane. The flavonoid accumulation pattern was also examined in transparent testa mutants blocked at different steps in the flavonoid biosynthesis pathway. The transparent testa mutants were shown to have precursor accumulation patterns similar to those of end product flavonoids in wild-type Landsberg erecta, suggesting that synthesis and end product accumulation occur in the same cells.

  14. Family feud in chemosensitvity: p73 and mutant p53.

    Science.gov (United States)

    Irwin, Meredith S

    2004-03-01

    The importance of p53 in chemotherapy-induced apoptosis of cancer cells is well established. p53 plays a critical role in the cellular response to DNA damage by regulating genes involved in cell cycle progression, apoptosis, and genomic stability. As a result, p53 tumor status is a critical determinant of both responses to anti-cancer treatment and clinical prognosis. Interestingly, tumors expressing certain mutant forms of p53 ("gain of function") are particularly resistant to chemotherapy, even when compared to cells that lack any detectable p53. Until recently, the explanation for this enhanced chemoresistance was not clear. Recent studies have shown that the p53 homologues, p73 and p63, are also activated by chemotherapies, leading to tumor cell death. Now the discovery that mutant p53 interacts with p73, and that regulation of this interaction by a p53 polymorphism can modulate chemosensitvity provide a new model for how p53-family interactions can influence the response of tumors to anti-cancer therapies. Since p53 mutations are found in more than 50% of human tumors, strategies aimed at manipulating these interactions may prove useful in enhancing the chemotherapy response, and perhaps, overcoming chemoresistance.

  15. Structural dataset for the PPARγ V290M mutant

    Directory of Open Access Journals (Sweden)

    Ana C. Puhl

    2016-06-01

    Full Text Available Loss-of-function mutation V290M in the ligand-binding domain of the peroxisome proliferator activated receptor γ (PPARγ is associated with a ligand resistance syndrome (PLRS, characterized by partial lipodystrophy and severe insulin resistance. In this data article we discuss an X-ray diffraction dataset that yielded the structure of PPARγ LBD V290M mutant refined at 2.3 Å resolution, that allowed building of 3D model of the receptor mutant with high confidence and revealed continuous well-defined electron density for the partial agonist diclofenac bound to hydrophobic pocket of the PPARγ. These structural data provide significant insights into molecular basis of PLRS caused by V290M mutation and are correlated with the receptor disability of rosiglitazone binding and increased affinity for corepressors. Furthermore, our structural evidence helps to explain clinical observations which point out to a failure to restore receptor function by the treatment with a full agonist of PPARγ, rosiglitazone.

  16. Identification and Characterization of Spontaneous Auxotrophic Mutants in Fusarium langsethiae

    Directory of Open Access Journals (Sweden)

    Olga Gavrilova

    2017-03-01

    Full Text Available Analysis of 49 strains of Fusarium langsethiae originating from northern Europe (Russia, Finland, Sweden, UK, Norway, and Latvia revealed the presence of spontaneous auxotrophic mutants that reflect natural intraspecific diversity. Our investigations detected that 49.0% of F. langsethiae strains were auxotrophic mutants for biotin, and 8.2% of the strains required thiamine as a growth factor. They failed to grow on vitamin-free media. For both prototrophic and auxotrophic strains, no growth defect was observed in rich organic media. Without essential vitamins, a significant reduction in the growth of the auxotrophic strains results in a decrease of the formation of T-2 toxin and diacetoxyscirpenol. In addition, all analysed F. langsethiae strains were distinguished into two subgroups based on PCR product sizes. According to our results, 26 and 23 strains of F. langsethiae belong to subgroups I and II respectively. We determined that the deletion in the intergenic spacer (IGS region of the rDNA of F. langsethiae belonging to subgroup II is linked with temperature sensitivity and causes a decrease in strain growth at 30 °C. Four thiamine auxotrophic strains were found in subgroup I, while 21 biotin auxotrophic strains were detected in subgroups II. To the best of our knowledge, the spontaneous mutations in F. langsethiae observed in the present work have not been previously reported.

  17. Radiometric prescreen for antitumor activity with Saccharomyces cerevisiae mutant strain.

    Science.gov (United States)

    Speedie, M K; Fique, D V; Blomster, R N

    1980-07-01

    After modification, a technique for radiometrically measuring bacterial growth has been applied to a mutant strain of Saccharomyces cerevisiae. The assay is based on inhibition of 14CO2 release from [14C]glucose, which provides an extremely sensitive measure of cellular respiratory activity and growth. The criterion for antitumor activity is the differential inhibition of wild-type and mutant (distorted cell membrane) strains of the yeast. The system was optimized for medium, time of incubation, temperature, and size of inoculum. Known antitumor agents, including bleomycin, actinomycin D, adriamycin, and ellipticine were tested in the system, and differential inhibition was observed. Vincristine showed no inhibitory effects at the concentrations tried. The sensitivity for 20% inhibition ranged from 0.8 micrograms of adriamycin per ml to 0.14 mg of ellipticine per ml. Antifungal agents such as amphotericin B exhibited no differential inhibition. Antibacterial agents were inactive. This method may provide a rapid, sensitive, in vitro quantitative assay for antitumor agents which could be applied to a variety of assay needs and which can be run with facilities and equipment available in most laboratories.

  18. Analysis of Stomatal Patterning in Selected Mutants of MAPK Pathways

    KAUST Repository

    Felemban, Abrar

    2016-05-01

    Stomata are cellular valves in plants that play an essential role in the regulation of gas exchange and are distributed in the epidermis of aerial organs. In Arabidopsis thaliana, stomatal production and development are coordinated by the mitogen-activated protein kinase (MAPK) signalling pathway, which modulates a variety of other processes, including cell proliferation, regulation of cytokinesis, programed cell death, and response to abiotic and biotic stress. The environment also plays a role in stomatal development, by influencing the frequency at which stomata develop in leaves. This thesis presents an analysis of stomatal development in Arabidopsis mutants in two MAPK pathways: MEKK1-MKK1/MKK2-MPK4, and MAP3K17/18-MKK3. Obtained results demonstrate the effect of stress conditions on stomatal development and specify the involvement of analysed MAPK in stomatal patterning. First, both analysed pathways modulate stomatal patterning in Arabidopsis cotyledons. Second, plant growth-promoting bacteria tested enhance stomatal density and affect guard cell morphology. Third, the sucrose or mannitol treatment increases defects in stomatal patterning. Finally, salt stress or high temperature can suppress stomatal defects in mutants of the MEKK1-MKK1/MKK2-MPK4 pathway.

  19. Computational identification of adaptive mutants using the VERT system

    Directory of Open Access Journals (Sweden)

    Winkler James

    2012-04-01

    Full Text Available Background Evolutionary dynamics of microbial organisms can now be visualized using the Visualizing Evolution in Real Time (VERT system, in which several isogenic strains expressing different fluorescent proteins compete during adaptive evolution and are tracked using fluorescent cell sorting to construct a population history over time. Mutations conferring enhanced growth rates can be detected by observing changes in the fluorescent population proportions. Results Using data obtained from several VERT experiments, we construct a hidden Markov-derived model to detect these adaptive events in VERT experiments without external intervention beyond initial training. Analysis of annotated data revealed that the model achieves consensus with human annotation for 85-93% of the data points when detecting adaptive events. A method to determine the optimal time point to isolate adaptive mutants is also introduced. Conclusions The developed model offers a new way to monitor adaptive evolution experiments without the need for external intervention, thereby simplifying adaptive evolution efforts relying on population tracking. Future efforts to construct a fully automated system to isolate adaptive mutants may find the algorithm a useful tool.

  20. Analyses of Tomato Fruit Brightness Mutants Uncover Both Cutin-Deficient and Cutin-Abundant Mutants and a New Hypomorphic Allele of GDSL Lipase[C][W][OPEN

    Science.gov (United States)

    Petit, Johann; Bres, Cécile; Just, Daniel; Garcia, Virginie; Mauxion, Jean-Philippe; Marion, Didier; Bakan, Bénédicte; Joubès, Jérôme; Domergue, Frédéric; Rothan, Christophe

    2014-01-01

    The cuticle is a protective layer synthesized by epidermal cells of the plants and consisting of cutin covered and filled by waxes. In tomato (Solanum lycopersicum) fruit, the thick cuticle embedding epidermal cells has crucial roles in the control of pathogens, water loss, cracking, postharvest shelf-life, and brightness. To identify tomato mutants with modified cuticle composition and architecture and to further decipher the relationships between fruit brightness and cuticle in tomato, we screened an ethyl methanesulfonate mutant collection in the miniature tomato cultivar Micro-Tom for mutants with altered fruit brightness. Our screen resulted in the isolation of 16 glossy and 8 dull mutants displaying changes in the amount and/or composition of wax and cutin, cuticle thickness, and surface aspect of the fruit as characterized by optical and environmental scanning electron microscopy. The main conclusions on the relationships between fruit brightness and cuticle features were as follows: (1) screening for fruit brightness is an effective way to identify tomato cuticle mutants; (2) fruit brightness is independent from wax load variations; (3) glossy mutants show either reduced or increased cutin load; and (4) dull mutants display alterations in epidermal cell number and shape. Cuticle composition analyses further allowed the identification of groups of mutants displaying remarkable cuticle changes, such as mutants with increased dicarboxylic acids in cutin. Using genetic mapping of a strong cutin-deficient mutation, we discovered a novel hypomorphic allele of GDSL lipase carrying a splice junction mutation, thus highlighting the potential of tomato brightness mutants for advancing our understanding of cuticle formation in plants. PMID:24357602

  1. Analyses of tomato fruit brightness mutants uncover both cutin-deficient and cutin-abundant mutants and a new hypomorphic allele of GDSL lipase.

    Science.gov (United States)

    Petit, Johann; Bres, Cécile; Just, Daniel; Garcia, Virginie; Mauxion, Jean-Philippe; Marion, Didier; Bakan, Bénédicte; Joubès, Jérôme; Domergue, Frédéric; Rothan, Christophe

    2014-02-01

    The cuticle is a protective layer synthesized by epidermal cells of the plants and consisting of cutin covered and filled by waxes. In tomato (Solanum lycopersicum) fruit, the thick cuticle embedding epidermal cells has crucial roles in the control of pathogens, water loss, cracking, postharvest shelf-life, and brightness. To identify tomato mutants with modified cuticle composition and architecture and to further decipher the relationships between fruit brightness and cuticle in tomato, we screened an ethyl methanesulfonate mutant collection in the miniature tomato cultivar Micro-Tom for mutants with altered fruit brightness. Our screen resulted in the isolation of 16 glossy and 8 dull mutants displaying changes in the amount and/or composition of wax and cutin, cuticle thickness, and surface aspect of the fruit as characterized by optical and environmental scanning electron microscopy. The main conclusions on the relationships between fruit brightness and cuticle features were as follows: (1) screening for fruit brightness is an effective way to identify tomato cuticle mutants; (2) fruit brightness is independent from wax load variations; (3) glossy mutants show either reduced or increased cutin load; and (4) dull mutants display alterations in epidermal cell number and shape. Cuticle composition analyses further allowed the identification of groups of mutants displaying remarkable cuticle changes, such as mutants with increased dicarboxylic acids in cutin. Using genetic mapping of a strong cutin-deficient mutation, we discovered a novel hypomorphic allele of GDSL lipase carrying a splice junction mutation, thus highlighting the potential of tomato brightness mutants for advancing our understanding of cuticle formation in plants.

  2. Pectin lyase overproduction by Penicillium griseoroseum mutants resistant to catabolite repression

    Directory of Open Access Journals (Sweden)

    Juliana Oliveira Lima

    Full Text Available Abstract Expression of pectinolytic genes is regulated by catabolic repression limiting the production of pectin lyase (PL if the natural inducer, pectin, is missing from the growth medium. Here, we report the isolation of Penicillium griseoroseum mutants resistant to 2-deoxy-d-glucose (DG that show resistance to catabolite repression and overproduce PL. Three spontaneous and nine UV-induced mutants were obtained. Some mutants produced sectors (segments morphologically different that were also studied. The mutants were analyzed for pectinases production on pectinase-agar plates and five mutants and two sectors showing larger clearing zones than the wild type were selected for quantitative assay. Although PL production higher than the wild type has been found, phenotype instability was observed for most of the mutants and, after transfers to nonselective medium, the DG resistance was no longer present. Only mutants M03 and M04 were stable maintaining the DG-resistance phenotype. When growing for 120 h in liquid medium containing glucose with or without pectin, both mutants showed higher PL production. In the presence of glucose as sole carbon source, the mutant M03 produced 7.8-fold more PL than the wild type. Due its phenotypic stability and PL overproduction, the mutant M03 presents potential for industrial applications.

  3. Alcohol-tolerant mutants of cyanobacterium Synechococcus elongatus PCC 7942 obtained by single-cell mutant screening system.

    Science.gov (United States)

    Arai, Sayuri; Hayashihara, Kayoko; Kanamoto, Yuki; Shimizu, Kazunori; Hirokawa, Yasutaka; Hanai, Taizo; Murakami, Akio; Honda, Hiroyuki

    2017-08-01

    Enhancement of alcohol tolerance in microorganisms is an important strategy for improving bioalcohol productivity. Although cyanobacteria can be used as a promising biocatalyst to produce various alcohols directly from CO2 , low productivity, and low tolerance against alcohols are the main issues to be resolved. Nevertheless, to date, a mutant with increasing alcohol tolerance has rarely been reported. In this study, we attempted to select isopropanol (IPA)-tolerant mutants of Synechococcus elongatus PCC 7942 using UV-C-induced random mutagenesis, followed by enrichment of the tolerant candidates in medium containing 10 g/L IPA and screening of the cells with a high growth rate in the single cell culture system in liquid medium containing 10 g/L IPA. We successfully acquired the most tolerant strain, SY1043, which maintains the ability to grow in medium containing 30 g/L IPA. The photosynthetic oxygen-evolving activities of SY1043 were almost same in cells after 72 h incubation under light with or without 10 g/L IPA, while the activity of the wild-type was remarkably decreased after the incubation with IPA. SY1043 also showed higher tolerance to ethanol, 1-butanol, isobutanol, and 1-pentanol than the wild type. These results suggest that SY1043 would be a promising candidate to improve alcohol production using cyanobacteria. Biotechnol. Bioeng. 2017;114: 1771-1778. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Mutant Parkin impairs mitochondrial function and morphology in human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Anne Grünewald

    Full Text Available BACKGROUND: Mutations in Parkin are the most common cause of autosomal recessive Parkinson disease (PD. The mitochondrially localized E3 ubiquitin-protein ligase Parkin has been reported to be involved in respiratory chain function and mitochondrial dynamics. More recent publications also described a link between Parkin and mitophagy. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the impact of Parkin mutations on mitochondrial function and morphology in a human cellular model. Fibroblasts were obtained from three members of an Italian PD family with two mutations in Parkin (homozygous c.1072delT, homozygous delEx7, compound-heterozygous c.1072delT/delEx7, as well as from two relatives without mutations. Furthermore, three unrelated compound-heterozygous patients (delEx3-4/duplEx7-12, delEx4/c.924C>T and delEx1/c.924C>T and three unrelated age-matched controls were included. Fibroblasts were cultured under basal or paraquat-induced oxidative stress conditions. ATP synthesis rates and cellular levels were detected luminometrically. Activities of complexes I-IV and citrate synthase were measured spectrophotometrically in mitochondrial preparations or cell lysates. The mitochondrial membrane potential was measured with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide. Oxidative stress levels were investigated with the OxyBlot technique. The mitochondrial network was investigated immunocytochemically and the degree of branching was determined with image processing methods. We observed a decrease in the production and overall concentration of ATP coinciding with increased mitochondrial mass in Parkin-mutant fibroblasts. After an oxidative insult, the membrane potential decreased in patient cells but not in controls. We further determined higher levels of oxidized proteins in the mutants both under basal and stress conditions. The degree of mitochondrial network branching was comparable in mutants and

  5. Biocontrol potential of salinity tolerant mutants of Trichoderma harzianum against Fusarium oxysporum Potencial de biocontrole de mutantes sal-tolerantes de Trichoderma harzianum contra Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Hassan Abdel-Latif A. Mohamed

    2006-06-01

    Full Text Available Exposing a wild-type culture of Trichoderma harzianum to gamma irradiation induced two stable salt-tolerant mutants (Th50M6 and Th50M11. Under saline conditions, both mutants greatly surpassed their wild type strain in growth rate, sporulation and biological proficiency against Fusarium oxysporum, the causal agent of tomato wilt disease. Tolerant T. harzianum mutants detained a capability to grow and convinced sporulation in growth media containing up to 69 mM NaCl. In comparison with their parent strain, characterization of both mutants confirmed that they have reinforced contents of proline and hydroxyproline, relatively higher sodium content compared to potassium, calcium or magnesium contents, higher level of total phenols. Electrophoretic analysis of total soluble proteins in the salt tolerance mutant Th50M6 showed different bands accumulated in response to 69 mM NaCl. Data also showed that mutants produce certain active metabolites, such as chitinases, cellulases, beta-galactosidases, as well as, some antibiotics i.e., trichodermin, gliotoxin and gliovirin. Trichoderma mutants significantly reduced wilt disease incidence and improved yield and mineral contents of tomato plants under both saline and non-saline soil conditions, as well as, under infested and natural conditions. T. harzianum mutants were also more efficient in dropping the F. oxysporum growth in rhizosphere compared to the wild type strain. Population density of both mutants in rhizosphere far exceeded that of T. harzianum wild type strain.A exposição de uma cepa selvagem de Trichoderma harzianum à irradiação gama induziu dois mutantes tolerantes a sal (Th50M6 e Th50M11. Em condições salinas, os dois mutantes foram muito superiores à cepa selvagem em relação à velocidade de multiplicação, esporulação e eficiência contra Fusarium oxysporum, o agente causador da doença wilt do tomate. Os mutantes tolerantes foram capazes de multiplicação e esporulação em

  6. Mutant pso8-1 of Saccharomyces cerevisiae, sensitive to photoactivated psoralens, UV radiation, and chemical mutagens, contains a rad6 missense mutant allele.

    Science.gov (United States)

    Rolla, H; Grey, M; Schmidt, C L; Niegemann, E; Brendel, M; Henriques, J A P

    2002-07-01

    A novel mutant isolate of Saccharomyces cerevisiae, sensitive to photoactivated mono- and bi-functional psoralens, to UV at 254 nm (UVC), and to nitrosoguanidine, was found to complement the photoactivated psoralen-sensitivity phenotype conferred by the pso1- pso7 mutations and was therefore named pso8-1. A constructed pso8-1 rad4-4 double mutant was super-sensitive to UVC, thus indicating a synergistic interaction of the two mutant alleles. Molecular cloning via complementation of the pso8 mutant's sensitivity phenotype and genetic studies revealed that pso8 is allelic to RAD6. While a pso8-1 mutant had low mutagen-induced mutability, homoallelic diploids showed nearly wild-type sporulation. Sequence analysis of the mutant allele showed pso8-1 to contain a novel, hitherto undescribed T-->C transition in nucleotide position 191, leading to a substitution by leucine of a highly conserved proline at position 64, Rad6-[P64L], which may have severe consequences for the tertiary structure (and hence binding to Rad18p) of the mutant protein.

  7. Integrative genome analysis of somatic p53 mutant osteosarcomas identifies Ets2-dependent regulation of small nucleolar RNAs by mutant p53 protein.

    Science.gov (United States)

    Pourebrahim, Rasoul; Zhang, Yun; Liu, Bin; Gao, Ruli; Xiong, Shunbin; Lin, Patrick P; McArthur, Mark J; Ostrowski, Michael C; Lozano, Guillermina

    2017-09-15

    TP53 is the most frequently mutated gene in human cancer. Many mutant p53 proteins exert oncogenic gain-of-function (GOF) properties that contribute to metastasis, but the mechanisms mediating these functions remain poorly defined in vivo. To elucidate how mutant p53 GOF drives metastasis, we developed a traceable somatic osteosarcoma mouse model that is initiated with either a single p53 mutation (p53R172H) or p53 loss in osteoblasts. Our study confirmed that p53 mutant mice developed osteosarcomas with increased metastasis as compared with p53-null mice. Comprehensive transcriptome RNA sequencing (RNA-seq) analysis of 16 tumors identified a cluster of small nucleolar RNAs (snoRNAs) that are highly up-regulated in p53 mutant tumors. Regulatory element analysis of these deregulated snoRNA genes identified strong enrichment of a common Ets2 transcription factor-binding site. Homozygous deletion of Ets2 in p53 mutant mice resulted in strong down-regulation of snoRNAs and reversed the prometastatic phenotype of mutant p53 but had no effect on osteosarcoma development, which remained 100% penetrant. In summary, our studies identify Ets2 inhibition as a potential therapeutic vulnerability in p53 mutant osteosarcomas. © 2017 Pourebrahim et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Mutant p53 accumulates in cycling and proliferating cells in the normal tissues of p53 R172H mutant mice

    Science.gov (United States)

    Leushacke, Marc; Li, Ling; Wong, Julin S.; Chiam, Poh Cheang; Rahmat, Siti Aishah Binte; Mann, Michael B.; Mann, Karen M.; Barker, Nick; Lozano, Guillermina; Terzian, Tamara; Lane, David P.

    2015-01-01

    The tumour suppressor p53 is regulated primarily at the protein level. In normal tissues its levels are maintained at a very low level by the action of specific E3 ligases and the ubiquitin proteosome pathway. The mutant p53 protein contributes to transformation, metastasis and drug resistance. High levels of mutant p53 can be found in tumours and the accumulation of mutant p53 has previously been reported in pathologically normal cells in human skin. We show for the first time that similarly elevated levels of mutant p53 can be detected in apparently normal cells in a mutant p53 knock-in mouse model. In fact, in the small intestine, mutant p53 spontaneously accumulates in a manner dependent on gene dosage and cell type. Mutant p53 protein is regulated similarly to wild type p53, which can accumulate rapidly after induction by ionising radiation or Mdm2 inhibitors, however, the clearance of mutant p53 protein is much slower than wild type p53. The accumulation of the protein in the murine small intestine is limited to the cycling, crypt base columnar cells and proliferative zone and is lost as the cells differentiate and exit the cell cycle. Loss of Mdm2 results in even higher levels of p53 expression but p53 is still restricted to proliferating cells in the small intestine. Therefore, the small intestine of these p53 mutant mice is an experimental system in which we can dissect the molecular pathways leading to p53 accumulation, which has important implications for cancer prevention and therapy. PMID:26255629

  9. Enhanced N2-fixing ability of a deletion mutant of arctic rhizobia with sainfoin (Onobrychis viciifolia).

    Science.gov (United States)

    Jain, D K; Bordeleau, L M

    1990-12-01

    Mutagenesis provoked by exposure at elevated temperature of the cold-adapted, arctic Rhizobium strain N31 resulted in the generation of five deletion mutants, which exhibited loss of their smaller plasmid (200 kb), whereas the larger plasmid (> 500 kb) was still present in all mutants. Deletion mutants did not show differences from the wild type in the antibiotic resistance pattern, the carbohydrates and organic acids utilization, and the growth rate at low temperature. However, deletion mutants differed from the wild type and among themselves in the ex planta nitrogenase activity, the nodulation index, and the symbiotic effectiveness. The deletion mutant N31.6rif (r) showed higher nodulation index and exhibited higher nitrogenase activity and symbiotic efficiency than the other deletion mutants and the wild type. The process of deletion mutation resulted in the improvement of an arctic Rhizobium strain having an earlier and higher symbiotic nitrogen fixation efficiency than the wild type.

  10. Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient.

    Science.gov (United States)

    Howden, R; Goldsbrough, P B; Andersen, C R; Cobbett, C S

    1995-04-01

    An allelic series of cad1, cadmium-sensitive mutants of Arabidopsis thaliana, was isolated. These mutants were sensitive to cadmium to different extents and were deficient in their ability to form cadmium-peptide complexes as detected by gel-filtration chromatography. Each mutant was deficient in its ability to accumulate phytochelatins (PCs) as detected by high-performance liquid chromatography and the amount of PCs accumulated by each mutant correlated with its degree of sensitivity to cadmium. The mutants had wild-type levels of glutathione, the substrate for PC biosynthesis, and in vitro assays demonstrated that each of the mutants was deficient in PC synthase activity. These results demonstrate conclusively the importance of PCs for cadmium tolerance in plants.

  11. Isolation of pigmentation mutants of the green filamentous photosynthetic bacterium Chloroflexus aurantiacus

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, B.K.; Keith, L.M.; Leovy, J.G.

    1984-07-01

    Mutants deficient in the production of bateriochlorophyll c (Bchl c) and one mutant lacking colored carotenoids were isolated from the filamentous gliding bacterium Chloroflexus aurantiacus, Mutagenesis was achieved by using UV radiation or N-methyl-N'-nitro-N-nitrosoguanidine. Several clones were isolated that were deficient in Bchl c synthesis. All reverted. One double mutant deficient both in Bchl c synthesis and in the synthesis of colored carotenoids under anaerobic conditions was isolated. Isolation of a revertant in Bchl c synthesis from this double mutant produced a mutant strain of Chloroflexus that grew photosynthetically under anaerobic conditions and lacked colored carotenoids. Analysis of pigment contents and growth rates of the mutants revealed a positive association between growth rate and content of Bchl c under light-limiting conditions. 11 references, 4 figures, 3 tables.

  12. Cloning, preparation and preliminary crystallographic studies of penicillin V acylase autoproteolytic processing mutants

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, P. Manish [Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008 (India); Brannigan, James A., E-mail: jab@ysbl.york.ac.uk [York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW (United Kingdom); Prabhune, Asmita; Pundle, Archana [Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008 (India); Turkenburg, Johan P.; Dodson, G. Guy [York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW (United Kingdom); Suresh, C. G., E-mail: jab@ysbl.york.ac.uk [Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008 (India)

    2005-01-01

    The production, crystallization and characterization of three inactive mutants of penicillin V acylase from B. sphaericus in their respective precursor and processed forms are reported. The space groups are different for the native enzyme and the mutants. The crystallization of three catalytically inactive mutants of penicillin V acylase (PVA) from Bacillus sphaericus in precursor and processed forms is reported. The mutant proteins crystallize in different primitive monoclinic space groups that are distinct from the crystal forms for the native enzyme. Directed mutants and clone constructs were designed to study the post-translational autoproteolytic processing of PVA. The catalytically inactive mutants will provide three-dimensional structures of precursor PVA forms, plus open a route to the study of enzyme–substrate complexes for this industrially important enzyme.

  13. Novel polyketide metabolites from Streptomyces rimosus mutant strain R1059.

    Science.gov (United States)

    Deseo, Myrna A; Hunter, lain S; Waterman, Peter G

    2005-12-01

    Three novel polyketide metabolites were isolated from laboratory-scale fermentation of the Streptomyces rimosus mutant strain R1059. Structural elucidation of the compounds was based on NMR experiments. The compounds were characterized as naphthalene derivatives: (rel)-4beta,8-dihydroxy-3alpha-hydroxymethyl-4alpha-methyl-1,2,3,4-tetrahydronaphthalene1-one (1), 4xi8-dihydroxy-3-hydroxymethyl-4xi-methyl-1,4-dihydronaphthalene-1-one (2) and (rel)-4beta,8-dihydroxy-3alpha-O-[alpha-glucopyranosyl]hydroxymethyl-4alpha-methyl-1,2,3,4-tetrahydronaphthalene-1-one (3). The compounds isolated appear to be derived via a shorter polyketide backbone than oxytetracycline (4), the normal end-product made by the parent of this strain. Compound 3 was the glucoside of 1 and must be formed as a post-PKS reaction by the activation of a glycosyl transferase, which has not been reported in this species before.

  14. Induction of Male sterile mutants in vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Nobuhiko (Hokkaido National Agricultural Experiment Station, Sapporo (Japan))

    1982-03-01

    The cultivars of vegetable crops in Japan are almost all F/sub 1/ hybrid lines. These hybrid cultivars are superior in yield, quality and uniformity by heterosis, and play an important role in the protection of breeder's rights. Utilization of male sterile mutants has such advantages as the reduction of cost for F/sub 1/ production by saving labor, production of better seeds, that is, pollination without emasculation and avoidance of contamination caused by self pollination. Male sterility must be used for some species in which seed production is difficult because of tiny flowers and meager seed production by artificial crossing such as carrot and onion, and those in which pollination by bag or emasculation is expensive such as tomato, and sweet pepper. However, for vegetable crop breeeding, the induction and use of genetic male sterility are more difficult than for other crops, considering the economy and efficiency of research because the type of cultivars needed changes rapidly.

  15. Characterization Of Laccase T-DNA Mutants In Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Andersen, Jeppe R; Asp, Torben; Mansfield, Shawn

    Laccases (P-diphenol:O2 oxidoreductase; EC 1.10.3.2), also termed laccase-like multicopper oxidases, are blue copper-containing oxidases which comprise multigene families in plants. In the Arabidopsis thaliana genome, 17 laccase genes (LAC1 to LAC17) have been annotated. To identify laccases...... involved in cell wall biosynthesis in Arabidopsis primary stems we have developed homozygous T-DNA mutants for 14 individual laccases. Six laccases are highly expressed in the wild type primary stem, four of which (LAC2, LAC4, LAC12, and LAC17) show correlated gene expression with one to several genes (e...... different and distinct biochemical pathways and that laccases might be involved in polymerization of both polysaccharides and monolignols in the Arabidopsis cell wall....

  16. Longevity mutants do not establish any "new science" of ageing.

    Science.gov (United States)

    Holliday, Robin; Rattan, Suresh I S

    2010-08-01

    The biological reasons for ageing are now well known, so it is no longer an unsolved problem in biology. Furthermore, there is only one science of ageing, which is continually advancing. The significance and importance of the mutations that lengthen the lifespan of invertebrates can be assessed only in relationship to previous well-established studies of ageing. The mutant strains of model organisms that increase longevity have altered nutrient signalling pathways similar to the effects of dietary restriction, and so it is likely that there is a shift in the trade-off between reproduction and maintenance of the soma. To believe that the isolation and characterisation of a few invertebrate mutations (as well as those in yeast) will "galvanise" the field and provide new insights into human ageing is an extreme point of view which does not recognize the huge progress in ageing research that has been made in the last 50 years or so.

  17. Validating regulatory predictions from diverse bacteria with mutant fitness data.

    Directory of Open Access Journals (Sweden)

    Shiori Sagawa

    Full Text Available Although transcriptional regulation is fundamental to understanding bacterial physiology, the targets of most bacterial transcription factors are not known. Comparative genomics has been used to identify likely targets of some of these transcription factors, but these predictions typically lack experimental support. Here, we used mutant fitness data, which measures the importance of each gene for a bacterium's growth across many conditions, to test regulatory predictions from RegPrecise, a curated collection of comparative genomics predictions. Because characterized transcription factors often have correlated fitness with one of their targets (either positively or negatively, correlated fitness patterns provide support for the comparative genomics predictions. At a false discovery rate of 3%, we identified significant cofitness for at least one target of 158 TFs in 107 ortholog groups and from 24 bacteria. Thus, high-throughput genetics can be used to identify a high-confidence subset of the sequence-based regulatory predictions.

  18. Boc modifies the holoprosencephaly spectrum of Cdo mutant mice

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2011-05-01

    Holoprosencephaly (HPE is caused by a failure to form the midline of the forebrain and/or midface. It is one of the most common human birth defects, but clinical expression is extremely variable. HPE is associated with mutations in the sonic hedgehog (SHH pathway. Mice lacking the Shh pathway regulator Cdo (also called Cdon display HPE with strain-dependent penetrance and expressivity, implicating silent modifier genes as one cause of the variability. However, the identities of potential HPE modifiers of this type are unknown. We report here that whereas mice lacking the Cdo paralog Boc do not have HPE, Cdo;Boc double mutants on a largely Cdo-resistant genetic background have lobar HPE with strong craniofacial anomalies and defects in Shh target gene expression in the developing forebrain. Boc is therefore a silent HPE modifier gene in mice. Furthermore, Cdo and Boc have specific, selective roles in Shh signaling in mammals, because Cdo;Boc double-mutant mice do not display the most severe HPE phenotype seen in Shh-null mice, nor do they have major defects in digit patterning or development of vertebrae, which are also Shh-dependent processes. This is in contrast to reported observations in Drosophila, where genetic removal of the Cdo and Boc orthologs Ihog and Boi results in a complete loss of response to the hedgehog ligand. Therefore, there is evolutionary divergence between mammals and insects in the requirement of the hedgehog pathway for Cdo/Ihog family members, with mammalian development involving additional factors and/or distinct mechanisms at this level of pathway regulation.

  19. HCN channels in the heart: lessons from mouse mutants.

    Science.gov (United States)

    Herrmann, S; Hofmann, F; Stieber, J; Ludwig, A

    2012-05-01

    Hyperpolarization-activated cation channels generate the I(f) current in the heart. In the sino-atrial node (SAN), I(f) is thought to play an essential role in setting the heart rate and mediating its autonomic control. This review focuses on the role of I(f) in pacemaking and non-pacemaking cardiomyocytes and the resulting therapeutic implications. HCN4 represents the principal isoform underlying sino-atrial I(f) , but other isoforms may also be of importance. To examine the functional role of cardiac channels, several mouse mutants, most of them targeting HCN4, have been generated by different groups. Unexpectedly, these lines display greatly different and as yet unexplained phenotypes. We provide an overview about these HCN mutants and suggest an interpretation of the functional significance of I(f) in the SAN in light of these studies. HCN channels are also present in ventricular myocytes, and an up-regulation of I(f) in the hypertrophic and failing heart may contribute to arrhythmogenesis. Inhibition of I(f) by HCN channel blockers is a novel approach in the treatment of cardiac disorders, and ivabradine is approved for treatment of stable angina pectoris. Remarkably, a recent clinical trial assessing this substance in heart failure showed a significantly improved outcome. The mechanism underlying this beneficial effect is not yet clear and might lie beyond heart rate slowing. Thus, the growing knowledge about cardiac HCN channels will undoubtedly promote the development of the promising class of HCN channel blockers. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  20. [Establishment of a mutant Lumican transgenic mouse model].

    Science.gov (United States)

    Song, Yanzheng; Zhao, Yanyan; Zhang, Fengju; Yu, Yanqiu; Ma, Ling

    2014-01-01

    Pathological myopia (PM) is a hereditary ocular disease leading to severe loss of visual acuity and blindness. Lumican gene (LUM) is one of those candidate genes of PM. The purpose of this study was to establish a mutant Lumican transgenic mouse model, and to prepare for the further study of the pathogenesis of PM. Experimental study. Mutation of LUM gene was created by site-directed mutagenesis. Recombinant DNA techniques were used for the construction of the pRP. EX3d-EF1A>LUM/flag>IRES/hrGFP transgene. The gene fragments were microinjected into the zygote male pronuclei of BDF1 mice, and then the zygote cells alive were transplanted into the oviduct of acceptor pregnant female ICR mice. The F0 generation transgenic mice obtained were named C57-TgN (LUM)CCMU. Genome DNA from mice tail was detected by PCR and Western blotting. Six of 31 F0 generation mice were positive transgenic mice. The western blotting study showed that the flag-tag was expressed in the mouse tail tissue. Sixty-eight of 128 mice (F1 to F3 generation) were positive transgenic mice, the positive rate is 53.13%. The mutant Lumican (cDNA 596T>C) transgenic mouse model has been established. This model will provide fundamental conditions for studies of the pathogenesis of PM. Also it will be the basis of further studies about the effect of Lumican mutation on the development of PM and structure and function of the extra cellular matrix.

  1. Mutant HSP70 Reverses Autoimmune Depigmentation in Vitiligo

    Science.gov (United States)

    Mosenson, Jeffrey A.; Zloza, Andrew; Nieland, John D.; Garrett-Mayer, Elizabeth; Eby, Jonathan M.; Huelsmann, Erica J.; Kumar, Previn; Denman, Cecele J.; Lacek, Andrew T.; Kohlhapp, Frederick J.; Alamiri, Ahmad; Hughes, Tasha; Bines, Steven D.; Kaufman, Howard L.; Overbeck, Andreas; Mehrotra, Shikhar; Hernandez, Claudia; Nishimura, Michael I.; Guevara-Patino, Jose A.; Le Poole, I. Caroline

    2013-01-01

    Vitiligo is an autoimmune disease characterized by destruction of melanocytes, leaving 0.5% of the population with progressive depigmentation. Current treatments offer limited efficacy. We report that modified inducible heat shock protein 70 (HSP70i) prevents T cell–mediated depigmentation. HSP70i is the molecular link between stress and the resultant immune response. We previously showed that HSP70i induces an inflammatory dendritic cell (DC) phenotype and is necessary for depigmentation in vitiligo mouse models. Here, we observed a similar DC inflammatory phenotype in vitiligo patients. In a mouse model of depigmentation, DNA vaccination with a melanocyte antigen and the carboxyl terminus of HSP70i was sufficient to drive autoimmunity. Mutational analysis of the HSP70i substrate-binding domain established the peptide QPGVLIQVYEG as invaluable for DC activation, and mutant HSP70i could not induce depigmentation. Moreover, mutant HSP70iQ435A bound human DCs and reduced their activation, as well as induced a shift from inflammatory to tolerogenic DCs in mice. HSP70iQ435A-encoding DNA applied months before spontaneous depigmentation prevented vitiligo in mice expressing a transgenic, melanocyte-reactive T cell receptor. Furthermore, use of HSP70iQ435A therapeutically in a different, rapidly depigmenting model after loss of differentiated melanocytes resulted in 76% recovery of pigmentation. Treatment also prevented relevant T cells from populating mouse skin. In addition, ex vivo treatment of human skin averted the disease-related shift from quiescent to effector T cell phenotype. Thus, HSP70iQ435A DNA delivery may offer potent treatment opportunities for vitiligo. PMID:23447019

  2. Glycine receptor mouse mutants: model systems for human hyperekplexia.

    Science.gov (United States)

    Schaefer, Natascha; Langlhofer, Georg; Kluck, Christoph J; Villmann, Carmen

    2013-11-01

    Human hyperekplexia is a neuromotor disorder caused by disturbances in inhibitory glycine-mediated neurotransmission. Mutations in genes encoding for glycine receptor subunits or associated proteins, such as GLRA1, GLRB, GPHN and ARHGEF9, have been detected in patients suffering from hyperekplexia. Classical symptoms are exaggerated startle attacks upon unexpected acoustic or tactile stimuli, massive tremor, loss of postural control during startle and apnoea. Usually patients are treated with clonazepam, this helps to dampen the severe symptoms most probably by up-regulating GABAergic responses. However, the mechanism is not completely understood. Similar neuromotor phenotypes have been observed in mouse models that carry glycine receptor mutations. These mouse models serve as excellent tools for analysing the underlying pathomechanisms. Yet, studies in mutant mice looking for postsynaptic compensation of glycinergic dysfunction via an up-regulation in GABAA receptor numbers have failed, as expression levels were similar to those in wild-type mice. However, presynaptic adaptation mechanisms with an unusual switch from mixed GABA/glycinergic to GABAergic presynaptic terminals have been observed. Whether this presynaptic adaptation explains the improvement in symptoms or other compensation mechanisms exist is still under investigation. With the help of spontaneous glycine receptor mouse mutants, knock-in and knock-out studies, it is possible to associate behavioural changes with pharmacological differences in glycinergic inhibition. This review focuses on the structural and functional characteristics of the various mouse models used to elucidate the underlying signal transduction pathways and adaptation processes and describes a novel route that uses gene-therapeutic modulation of mutated receptors to overcome loss of function mutations. © 2013 The British Pharmacological Society.

  3. A mutant gene that increases gibberellin production in Brassica

    Energy Technology Data Exchange (ETDEWEB)

    Rood, S.B. (Univ. of Lethbridge, Alberta (Canada)); Williams, P.H. (Univ. of Wisconsin, Madison (USA)); Pearce, D.; Pharis, R.P. (Univ. of Calgary, Alberta (Canada)); Murofushi, Noboru (Univ. of Tokyo (Japan)); Mander, L.N. (Australian National Univ., Canberra (Australia))

    1990-07-01

    A single gene mutant (elongated internode (ein/ein)) with accelerated shoot elongation was identified from a rapid cycling line of Brassica rapa. Relative to normal plants, mutant plants had slightly accelerated floral development, greater stem dry weights, and particularly, increased internode and inflorescence elongation. The application of the triazole plant growth retardant, paclobutrazol, inhibited shoot elongation, returning ein to a more normal phenotype. Conversely, exogenous gibberellin A{sub 3} (GA{sub 3}) can convert normal genotypes to a phenotype resembling ein. The content of endogenous GA{sub 1} and GA{sub 3} were estimated by gas chromatography-selected ion monitoring using ({sup 2}H)GA{sub 1} as a quantitative internal standard and at day 14 were 1.5- and 12.1-fold higher per stem, respectively, in ein than in normal plants, although GA concentrations were more similar. The endogenous levels of GA{sub 20} and GA{sub 1}, and the rate of GA{sub 19} metabolism were simultaneously analyzed. Levels of GA{sub 1} and GA{sub 20} were 4.6- and 12.9-fold higher, respectively, and conversions to GA{sub 20} and GA{sub 1} were 8.3 and 1.3 times faster in ein than normal plants. Confirming the enhanced rate of GA{sub 1} biosynthesis in ein, the conversion of ({sup 3}H)GA{sub 20} to ({sup 3}H) GA{sub 1} was also faster in ein than in the normal genotype. Thus, the ein allele results in accelerated GA{sub 1} biosynthesis and an elevated content of endogenous GAs, including the dihydroxylated GAs A{sub 1} and A{sub 3}.

  4. Drosophila deoxyribonucleoside kinase mutants with enhanced ability to phosphorylate purine analogs

    DEFF Research Database (Denmark)

    Knecht, Wolfgang; Rozpedowska, E.; Le Breton, C.

    2007-01-01

    to create Dm-dNK mutants with increased specificity for several nucleoside analogs (NAs) used as anticancer or antiviral drugs. Four mutants were characterized for the ability to sensitize Escherichia coli toward analogs and for their substrate specificity and kinetic parameters. The mutants had a reduced...... that a choice of the selection and screening system plays a crucial role when optimizing suicide genes by directed evolution....

  5. Filtration enrichment method for isolation of auxotrophic mutants of Trichoderma harzianum rifai

    Directory of Open Access Journals (Sweden)

    Cassiolato Ana Maria R.

    1999-01-01

    Full Text Available The isolation of genetic markers, like drug resistance and auxotrophy, is a laborious but important step in genetic research. The isolation of auxotrophic mutants of Trichoderma harzianum using the filtration enrichment technique was more effective than using the total isolation technique. Most of 12 auxotrophic mutants exhibited similar growth rate and higher sporulation when compared with the wild type, but only two mutants (TWS-410 and TW5-523 could grow in 500µg/L of benomyl.

  6. Pectin lyase overproduction by Penicillium griseoroseum mutants resistant to catabolite repression

    OpenAIRE

    Lima,Juliana de Oliveira; Pereira, Jorge Fernando; Araújo,Elza Fernandes; Queiroz, Marisa Vieira de

    2017-01-01

    Expression of pectinolytic genes is regulated by catabolic repression limiting the production of pectin lyase (PL) if the natural inducer, pectin, is missing from the growth medium. Here, we report the isolation of Penicillium griseoroseum mutants resistant to 2-deoxy-d-glucose (DG) that show resistance to catabolite repression and overproduce PL. Three spontaneous and nine UV-induced mutants were obtained. Some mutants produced sectors (segments morphologically different) that were also stud...

  7. Pectin lyase overproduction by Penicillium griseoroseum mutants resistant to catabolite repression

    OpenAIRE

    Lima,Juliana de Oliveira; Pereira, Jorge Fernando; Araújo,Elza Fernandes; Queiroz, Marisa Vieira de

    2017-01-01

    Abstract Expression of pectinolytic genes is regulated by catabolic repression limiting the production of pectin lyase (PL) if the natural inducer, pectin, is missing from the growth medium. Here, we report the isolation of Penicillium griseoroseum mutants resistant to 2-deoxy-d-glucose (DG) that show resistance to catabolite repression and overproduce PL. Three spontaneous and nine UV-induced mutants were obtained. Some mutants produced sectors (segments morphologically different) that were ...

  8. Mutant p53 promotes cell spreading and migration via ARHGAP44.

    Science.gov (United States)

    Xu, Jinjin; Jiao, Jian; Xu, Wei; Ji, Lei; Jiang, Dongjie; Xie, Shaofang; Kubra, Syeda; Li, Xiaotao; Fu, Junjiang; Xiao, Jianru; Zhang, Bianhong

    2017-09-01

    The tumor suppressor p53 protein is either lost or mutated in about half of all human cancers. Loss of p53 function is well known to influence cell spreading, migration and invasion. While expression of mutant p53 is not equivalent to p53 loss, mutant p53 can acquire new functions to drive cell spreading and migration via different mechanisms. In our study, we found that mutant p53 significantly increased cell spreading and migration when comparing with p53-null cells. RNA-Seq analysis suggested that Rho GTPase activating protein 44 (ARHGAP44) is a new target of mutant p53, which suppressed ARHGAP44 transcription. ARHGAP44 has GAP activity and catalyze GTP hydrolysis on Cdc42. Higher level of GTP-Cdc42 was correlated with increase expression of mutant p53 and reduced ARHGAP44. Importantly, wt-ARHGAP44 but not mutant ARHGAP44 (R291A) suppressed mutant p53 mediated cell spreading and migration. Bioinformatics analysis indicated lower expression of ARHGAP44 in lung carcinoma compared with normal tissues, which was verified by RT-qPCR using specimens from patients. More interestingly, ARHGAP44 mRNA level was lower in tumors with mutant p53 than those with normal p53. Collectively, our results disclose a new mechanism by which mutant p53 stimulates cell spreading and migration.

  9. Mutant frequency of radiotherapy technicians appears to be associated with recent dose of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Messing, K.; Ferraris, J.; Bradley, W.E.; Swartz, J.; Seifert, A.M. (Universite du Quebec a Montreal (Canada))

    1989-10-01

    The frequency of hypoxanthine phosphoribosyl transferase (HPRT) mutants among peripheral T-lymphocytes of radiotherapy technicians primarily exposed to 60Co was measured by the T-cell cloning method. Mutant frequencies of these technicians in 1984 and 1986 were significantly higher than those of physiotherapy technicians who worked in a neighboring service, and correlated significantly with thermoluminescence dosimeter readings recorded during the 6 mo preceding mutant frequency determination. Correlations decreased when related to dose recorded over longer time intervals. HPRT mutant frequency determination in peripheral lymphocytes is a good measure of recently received biologically effective radiation dose in an occupationally exposed population.

  10. The Electrogenic Bacterium Shewanella Oneidensis MR-1 and its Mutants with Increased Reducing Capacity

    Science.gov (United States)

    Voeikova, T. A.; Emelyanova, L. K.; Novikova, L. M.; Mordkovich, N. N.; Shakulov, R. S.; Debabov, V. G.

    2013-02-01

    Mutants of Shewanella oneidensis MR-1 resistant to fosfomycin, a toxic analogue of phosphoenolpyruvate, were obtained. The mutants exhibited an increased reducing activity and a higher rate of lactate utilization. A correlation was shown between the rates of metabolism of oxidized substrates and the rate of reduction of methylene blue, a mediator of electron transport. The mutants of S.oneidensis MR-1 will be used in microbial fuel cells (MFC) to enhance energy production from organic compounds. The strain S. oneidensis MR-1 and its mutants with an increased electron production will be used as a good source of bioelectricity in MFC in the experiments on the International Space Station.

  11. Construction and pilot screening of a signature-tagged mutant library of Sinorhizobium fredii.

    Science.gov (United States)

    Wang, Dan; Wang, Yuan Chun; Wu, Li Juan; Liu, Jian Xin; Zhang, Pan; Jiao, Jian; Yan, Hui; Liu, Tao; Tian, Chang Fu; Chen, Wen Xin

    2016-03-01

    Sinorhizobium fredii is well known for its ability to establish symbiosis with diverse legumes such as Glycine max (soybean, determinate nodules) and Cajanus cajan (pigeon pea, indeterminate nodules). In order to make screening of S. fredii genes related to symbiosis cost-effective, we constructed a large Tn5 insertion mutant library of S. fredii CCBAU45436 using the signature-tagged mutagenesis (STM) technique. This STM library contains a total of 25,500 independent mutants distributed in 17 sublibraries tagged by corresponding distinct DNA bar-code sequences. After the pilot screening of 255 mutants in 15 batches, Tag85-4, Tag4-17, Tag4-11 and Tag10-13 were found to have attenuated competitiveness (0-30 % in nodule occupation) compared to the wild-type strain when inoculated on soybean. Further characterization of these mutants suggests that Tag4-11 (a pyrC mutant) and Tag10-13 (a nrdJ mutant) are defective in establishing symbiosis with soybean. The pyrC mutant induced uninfected pseudonodules while the nrdJ mutant formed significantly more nodules containing bacteroids with poor persistence ability. When these two mutants were tested on pigeon pea, host-specific symbiotic defects were found. These results demonstrated the STM library as a valuable resource for identifying S. fredii genes relevant to symbiosis.

  12. Altered desferrioxamine-mediated iron utilization is a common trait of bald mutants of Streptomyces coelicolor.

    Science.gov (United States)

    Lambert, Stéphany; Traxler, Matthew F; Craig, Matthias; Maciejewska, Marta; Ongena, Marc; van Wezel, Gilles P; Kolter, Roberto; Rigali, Sébastien

    2014-08-01

    Streptomyces coelicolor is an important model organism for developmental studies of filamentous GC-rich actinobacteria. The genetic characterization of mutants of S. coelicolor blocked at the vegetative mycelium stage, the so-called bald (bld) mutants that are unable to erect spore-forming aerial hyphae, has opened the way to discovering the molecular basis of development in actinomycetes. Desferrioxamine (DFO) production and import of ferrioxamines (FO; iron-complexed DFO) are key to triggering morphogenesis of S. coelicolor and we show here that growth of S. coelicolor on the reference medium for Streptomyces developmental studies is fully dependent on DFO biosynthesis. UPLC-ESI-MS analysis revealed that all bld mutants tested are affected in DFO biosynthesis, with bldA, bldJ, and ptsH mutants severely impaired in DFO production, while bldF, bldK, crr and ptsI mutants overproduce DFO. Morphogenesis of bldK and bldJ mutants was recovered by supplying exogenous iron. Transcript analysis showed that the bldJ mutant is impaired in expression of genes involved in the uptake of FO, whereas transcription of genes involved in both DFO biosynthesis and FO uptake is increased in bldK mutants. Our study allows proposing altered DFO production and/or FO uptake as a novel phenotypic marker of many S. coelicolor bld mutants, and strengthens the role of siderophores and iron acquisition in morphological development of actinomycetes.

  13. Spontaneous alternation, motor activity, and spatial learning in hot-foot mutant mice.

    Science.gov (United States)

    Filali, M; Lalonde, R; Bensoula, A N; Guastavino, J M; Lestienne, F

    1996-01-01

    Hot-foot mutant mice, characterized by defective innervation of Purkinje cells and an ataxic gait, were less active than normal mice in a T-maze. In spontaneous alternation testing with either single or multiple trials, hot-foot mutants, contrary to normal mice, did not alternate above chance. Moreover, the mutants had a higher number of errors and higher escape latencies in a water-filled Z-maze. These results indicate that in addition to motor coordination deficits, these cerebellar mutants have deficits in spatial learning and perseverate choices of maze arms.

  14. A comparison of direct infusion MS and GC-MS for metabolic footprinting of yeast mutants

    DEFF Research Database (Denmark)

    Mass, S.; Villas-Bôas, Silas Granato; Hansen, Michael Adsetts Edberg

    2007-01-01

    with glucose as the carbon source. The mutants evaluated were cat8, gln3, ino2, opi1, and nil1, all with deletion of genes involved in nutrient sensing and regulation. From the analysis, we found that both methods can be used to classify mutants, but the classification depends on which metabolites are measured....... Thus, the GC-MS method is good for classification of mutants with altered nitrogen regulation as it primarily measures amino acids, whereas this method cannot classify mutants involved in regulation of phospholipids metabolism as well as the direct infusion MS (DI-MS) method. From the analysis, we find...

  15. Caenorhabditis elegans mutants having altered preference of chemotaxis behavior during simultaneous presentation of two chemoattractants.

    Science.gov (United States)

    Lin, Lin; Wakabayashi, Tokumitsu; Oikawa, Tomohiro; Sato, Tsutomu; Ogurusu, Tarou; Shingai, Ryuzo

    2006-11-01

    Upon presentation of two distinct chemoattractants such as sodium acetate and diacetyl simultaneously, the nematode Caenorhabditis elegans was preferentially attracted by one of these chemoattractants. We isolated two mutants having altered preference of chemotaxis behavior toward simultaneous presentation of sodium acetate and diacetyl. The chep-1(qr1) (CHEmosensory Preference) mutant preferred sodium acetate to diacetyl, while the chep-2(qr2) mutant preferred diacetyl to sodium acetate in simultaneous presentation of these chemoattractants. The chemotaxis behavior of chep-2(qr2) mutant in simultaneous presentation suggests a function of chep-2 gene products within the chemosensory informational integration pathway as well as in the chemosensory pathway.

  16. Membrane function in lipid mutants of Arabidopsis. First year progress report

    Energy Technology Data Exchange (ETDEWEB)

    Browse, J.A.

    1993-06-01

    Progress on the biochemical characterization of the fad3 mutants deficient in 18:3 fatty acid synthesis and the fab2 mutant that accumulates increased amounts of 18:0 is described. Studies of the cell biology and physiology of the fab2 and fad2 mutants have provided evidence for some of the critical roles played by unsaturated fatty acids as components of plant membranes. Finally, the fab2 mutant has allowed us to carry out the first isolation and characterization of intergenic suppressor mutations in a higher plant.

  17. Spectroscopic studies of Synechococcus sp PCC 7002 phycobilisome core mutants

    Energy Technology Data Exchange (ETDEWEB)

    Gindt, Yvonne Marie [Univ. of California, Berkeley, CA (United States)

    1993-04-01

    The role of the Lcm (I), β18 (II), and αAP-B (III) chromoproteins in the phycobilisome (PBS) core was investigated using genetically engineered strains of Synechococcus missing different polypeptides. Intact cells, isolated PBS, and subcore preparations for each mutant were studied to determine the effect of that mutation on energy transfer within the PBS core and to the reaction centers. Three mutants lacked the II and/or III polypeptides, while the I chromophore was altered in others. A lower energy absorbing chromophore, Amax = 695 nm, was substituted for the I chromophore. The deletion of the II and III subunits had no discernible effect on energy transfer from the PBS to PSII. In cells and isolated PBS, the altered I chromophore acts to quench the PBS complex and to redirect the energy which would be transferred to PSII. In the PBS and subcore preparations, deletion of the III subunit did not alter energy transfer within the core. The deletion of the II subunit from the PBS caused a small decrease in the excited state lifetimes of the final emitters indicating more disorder within the core. The I chromophore was found to absorb at 670nm and to emit at 683nm within the intact PBS. The II chromophore emits at 679nm while the III chromophore emits at 682nm. A strong interaction exists between the I chromophore and the II subunit. Upon deletion of the II subunit from the PBS core, the I chromophore emits at a higher energy. The II subunit could act to stabilize the I chromophore-binding pocket, or exciton coupling could be occurring between the two. The role of the III chromophore is still unclear at this time. The III chromophore does contribute to the RT emission of the isolated PBS, but it transfers energy to I at 77 K. One can conclude that the III subunit is adjacent to the trimer containing the I polypeptide.

  18. Spectroscopic studies of Synechococcus sp PCC 7002 phycobilisome core mutants

    Energy Technology Data Exchange (ETDEWEB)

    Gindt, Y.M.

    1993-04-01

    The role of the L[sub cm] (I), [beta][sup 18] (II), and [alpha][sup AP-B] (III) chromoproteins in the phycobilisome (PBS) core was investigated using genetically engineered strains of Synechococcus missing different polypeptides. Intact cells, isolated PBS, and subcore preparations for each mutant were studied to determine the effect of that mutation on energy transfer within the PBS core and to the reaction centers. Three mutants lacked the II and/or III polypeptides, while the I chromophore was altered in others. A lower energy absorbing chromophore, A[sub max] = 695 nm, was substituted for the I chromophore. The deletion of the II and III subunits had no discernible effect on energy transfer from the PBS to PSII. In cells and isolated PBS, the altered I chromophore acts to quench the PBS complex and to redirect the energy which would be transferred to PSII. In the PBS and subcore preparations, deletion of the III subunit did not alter energy transfer within the core. The deletion of the II subunit from the PBS caused a small decrease in the excited state lifetimes of the final emitters indicating more disorder within the core. The I chromophore was found to absorb at 670nm and to emit at 683nm within the intact PBS. The II chromophore emits at 679nm while the III chromophore emits at 682nm. A strong interaction exists between the I chromophore and the II subunit. Upon deletion of the II subunit from the PBS core, the I chromophore emits at a higher energy. The II subunit could act to stabilize the I chromophore-binding pocket, or exciton coupling could be occurring between the two. The role of the III chromophore is still unclear at this time. The III chromophore does contribute to the RT emission of the isolated PBS, but it transfers energy to I at 77 K. One can conclude that the III subunit is adjacent to the trimer containing the I polypeptide.

  19. Isolation and phenotypic characterization of Lactobacillus casei and Lactobacillus paracasei bacteriophage-resistant mutants.

    Science.gov (United States)

    Capra, M L; Mercanti, D J; Rossetti, L C; Reinheimer, J A; Quiberoni, A

    2011-08-01

    To isolate and characterize bacterial strains derived from Lactobacillus casei and Lactobacillus paracasei strains and resistant to phage MLC-A. Two of nine assayed strains rendered resistant mutants with recovery efficiencies of 83% (Lact. paracasei ATCC 27092) and 100% (Lact. casei ATCC 27139). DNA similarity coefficients (RAPD-PCR) confirmed that no significant genetic changes occurred while obtaining resistant mutants. Neither parent nor mutant strains spontaneously released phages. Phage-resistant mutants were tested against phages PL-1, J-1, A2 and MLC-A8. Lactobacillus casei ATCC 27092 mutants showed, overall, lower phage resistance than Lact. paracasei ATCC 27092 ones, but still higher than that of the parent strain. Lactobacillus paracasei ATCC 27092 mutants moderately adsorbed phage MLC-A only in calcium presence, although their parent strain successfully did it with or without calcium. Adsorption rates for Lact. casei ATCC 27139 and its mutants were highly influenced by calcium. Again, phage adsorption was higher on the original strain. Several isolates derived from two Lact. casei and Lact. paracasei strains showed resistance to phage MLC-A but also to other Lact. casei and Lact. paracasei phages. This study highlights isolation of spontaneous bacteriophage-resistant mutants from Lact. casei and Lact. paracasei as a good choice for use in industrial rotation schemes. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  20. A Nearly Non-Functional Mutant Allele of the Storage Protein Locus Hor2 in Barley

    DEFF Research Database (Denmark)

    Doll, Hans

    1980-01-01

    The low content of the storage protein fraction hordein-2 in the high-lysine mutant Risø 56 is due to a mutation at or near the locus Hor2 coding for hordein-2 polypeptides. The mutant gene is recessive in its qualitative effect on the electrophoretic banding pattern of hordein-2, but co-dominant...

  1. Ethanol metabolism in a peroxisome-deficient mutant of the yeast Hansenula polymorpha

    NARCIS (Netherlands)

    Sulter, G.J.; Klei, I.J. van der; Schanstra, J.P.; Harder, W.; Veenhuis, M.

    1991-01-01

    This paper describes ethanol metabolism in a peroxisome-deficient (PER) mutant of Hansenula polymorpha. The PER mutant was able to use ethanol as sole-carbon source but showed reduced growth rates compared to wild-type cells together with a reduced rate of ethanol utilization under µmax conditions.

  2. Bridging the gap between chemistry, physiology, and evolution: Quantifying the functionality of sperm whale myoglobin mutants

    DEFF Research Database (Denmark)

    Dasmeh, Pouria; Kepp, Kasper Planeta

    2011-01-01

    This work merges a large set of previously reported thermochemical data for myoglobin (Mb) mutants with a physiological model of O2-transport and -storage. The model allows a quantification of the functional proficiency of myoglobin (Mb) mutants under various physiological conditions, i.e. O2-con...

  3. In silico screening of 393 mutants facilitates enzyme engineering of amidase activity in CalB

    DEFF Research Database (Denmark)

    Hediger, Martin Robert; De Vico, Luca; Rannes, Julie Bille

    2013-01-01

    Our previously presented method for high throughput computational screening of mutant activity (Hediger et al., 2012) is benchmarked against experimentally measured amidase activity for 22 mutants of Candida antarctica lipase B (CalB). Using an appropriate cutoff criterion for the computed barrie...

  4. Lipase production from a wild (LPF-5) and a mutant (HN1) strain of ...

    African Journals Online (AJOL)

    Lipase production from a wild (LPF-5) and a mutant (HN1) strain of Aspergillus niger. Arun Kumar Sharma, Vinay Sharma, Jyoti Saxena, Arindam Kuila. Abstract. In this study, a wild (LPF-5) and a mutant (HN1) strain of A. niger were compared for lipase production. Several physical parameters (carbon source, nitrogen ...

  5. A Ten-Week Biochemistry Lab Project Studying Wild-Type and Mutant Bacterial Alkaline Phosphatase

    Science.gov (United States)

    Witherow, D. Scott

    2016-01-01

    This work describes a 10-week laboratory project studying wild-type and mutant bacterial alkaline phosphatase, in which students purify, quantitate, and perform kinetic assays on wild-type and selected mutants of the enzyme. Students also perform plasmid DNA purification, digestion, and gel analysis. In addition to simply learning important…

  6. Biofilm formation by exopolysaccharide mutants of Leuconostoc mesenteroides strain NRRL B-1355

    Science.gov (United States)

    Leuconostoc mesenteroides strain NRRL B-1355 produces the soluble exopolysaccharides alternan and dextran in planktonic cultures. A set of mutants of this strain are available that are deficient in the production of alternan, dextran, or both. Another mutant of NRRL B-1355, strain R1510, produces ...

  7. A Laboratory Exercise for Isolation and Characterizing Microbial Mutants with Metabolic Defects.

    Science.gov (United States)

    Doe, Frank J.; Leslie, John F.

    1993-01-01

    Describes science experiments for undergraduate biology instruction on the concepts of mutation and characterization of the resulting mutant strains. The filamentous fungi "Fusarium moniliforme" is used to illustrate the induction of mutants (mutagenesis), identification of the mutated gene, construction of a biochemical pathway, and…

  8. Comparison of arabidopsis stomatal density mutants indicates variation in water stress responses and potential epistatic effects

    Science.gov (United States)

    Shaneka S. Lawson; Paula M. Pijut; Charles H. Michler

    2014-01-01

    Recent physiological analysis of Arabidopsis stomatal density (SD) mutants indicated that SD was not the major factor controlling aboveground biomass accumulation. Despite the general theory that plants with fewer stomata have limited biomass acquisition capabilities, epf1 and several other Arabidopsis mutants varied significantly in leaf fresh...

  9. Occurrence of toxicity among protease, amylase, and color mutants of a nontoxic soy sauce koji mold

    Energy Technology Data Exchange (ETDEWEB)

    Kalayanamitr, A.; Bhumiratana, A.; Flegel, T.W.; Glinsukon, T.; Shinmyo, A.

    1987-08-01

    A soy sauce koji mold, Aspergillus flavus var. columnaris Raper and Fennel (ATCC 44310), was treated with UV irradiation to obtain mutant strains possessing high protease activities, high amylase activities, and light-colored conidia. Selected mutant strains were tested for toxicity, and some were found acutely toxic to weanling rats, although all were negative for aflatoxin production.

  10. Occurrence of toxicity among protease, amylase, and color mutants of a nontoxic soy sauce koji mold.

    Science.gov (United States)

    Kalayanamitr, A; Bhumiratana, A; Flegel, T W; Glinsukon, T; Shinmyo, A

    1987-01-01

    A soy sauce koji mold, Aspergillus flavus var. columnaris Raper and Fennel (ATCC 44310), was treated with UV irradiation to obtain mutant strains possessing high protease activities, high amylase activities, and light-colored conidia. Selected mutant strains were tested for toxicity, and some were found acutely toxic to weanling rats, although all were negative for aflatoxin production. PMID:2444160

  11. Sexual behavior of mutant strains of the medfly Ceratitis capitata (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    R.D Briceño

    2003-09-01

    Full Text Available Males of the mutant strains (blind, vestigal-winged of the Mediterranean fruit fly (medfly, Ceratits capitata (Wiedmann showed differences in behavior compared with control (mass-reared males. Mutant males made fewer mating attempts and achieved fewer matings than control males. Vestigal-winged females copulated less frequently with both mutants. Blind males climbed rather than jumped onto females and copulated in very low numbers compared with control and vestigal males. Blind females copulated normally with control, males and in very low numbers with both types of mutant malesMachos mutantes (ciegos, alas vestigiales de la mosca del mediterráneo Ceratitis capitata (Wiedmann mostraron diferencias en conducta comparados con los machos testigo (cría masiva. Los machos mutantes, realizaron menos intentos por aparearse y lograron menos apareamientos que los machos testigo. Las hembras con alas vestigiales, copularon menos con ambas clases de mutantes. Los machos ciegos, subieron en lugar de saltar sobre las hembras y copularon en números muy bajos comparados con los machos testigo y con los de alas vestigiales. Las hembras ciegas, copularon de forma normal con los machos testigo y en números muy bajos con ambos tipos de machos mutantes

  12. Phenotypic comparison of samdc and spe mutants reveals complex relationships of polyamine metabolism in Ustilago maydis.

    Science.gov (United States)

    Valdés-Santiago, Laura; Cervantes-Chávez, José Antonio; Winkler, Robert; León-Ramírez, Claudia G; Ruiz-Herrera, José

    2012-03-01

    Synthesis of spermidine involves the action of two enzymes, spermidine synthase (Spe) and S-adenosylmethionine decarboxylase (Samdc). Previously we cloned and disrupted the gene encoding Spe as a first approach to unravel the biological function of spermidine in Ustilago maydis. With this background, the present study was designed to provide a better understanding of the role played by Samdc in the regulation of the synthesis of this polyamine. With this aim we proceeded to isolate and delete the gene encoding Samdc from U. maydis, and made a comparative analysis of the phenotypes of samdc and spe mutants. Both spe and samdc mutants behaved as spermidine auxotrophs, and were more sensitive than the wild-type strain to different stress conditions. However, the two mutants displayed significant differences: in contrast to spe mutants, samdc mutants were more sensitive to LiCl stress, high spermidine concentrations counteracted their dimorphic deficiency, and they were completely avirulent. It is suggested that these differences are possibly related to differences in exogenous spermidine uptake or the differential location of the respective enzymes in the cell. Alternatively, since samdc mutants accumulate higher levels of S-adenosylmethionine (SAM), whereas spe mutants accumulate decarboxylated SAM, the known opposite roles of these metabolites in the processes of methylation and differentiation offer an additional attractive hypothesis to explain the phenotypic differences of the two mutants, and provide insights into the additional roles of polyamine metabolism in the physiology of the cell.

  13. RECEPTOR POTENTIAL AND LIGHT-INDUCED MITOCHONDRIAL ACTIVATION IN BLOWFLY PHOTORECEPTOR MUTANTS

    NARCIS (Netherlands)

    MOJET, MH; TINBERGEN, J; STAVENGA, DG

    1991-01-01

    1. Simultaneous measurements of the receptor potential and the light-induced mitochondrial activation were performed in white-eyed blowflies Calliphora vicina, mutant chalky, and Lucilia cuprina, mutants w(F) and w'nss. The intensity dependence and the temporal dynamics were investigated. 2. The

  14. Elevated poly(3-hydroxybutyrate) synthesis in mutants of Ralstonia eutropha H16 defective in lipopolysaccharide biosynthesis

    NARCIS (Netherlands)

    Brandt, U.; Raberg, M.; Voigt, B.; Hecker, M.; Steinbuchel, A.

    2012-01-01

    Several independent transposon Tn5-induced mutants of Ralstonia eutropha H16 exhibited a poly(3-hydroxybutyric acid) (PHB) elevated phenotype and accumulated substantial amounts of PHB already in the exponential growth phase. The insertion loci of Tn5 in these six mutants were mapped in the genes

  15. Isolation and Characterization of Mutants of Thiophene Synthesis in Tagetes erecta.

    Science.gov (United States)

    Jacobs, J. J.; Arroo, R. R.; De Koning, E. A.; Klunder, A. J.; Croes, A. F.; Wullems, G. J.

    1995-01-01

    Two mutants of Tagetes erecta displaying aberrant thiophene composition were identified by screening more than 300 plants from a mutagenized M2 population using high-performance liquid chromatography analysis of root extracts. Both mutants, which may have originated from the same mutational event, contained high amounts of the C13 monothiophene 2-(but-3-en-1-ynyl)-5-(penta-1,3-diynyl)-thiophene that was previously not found in T. erecta and also high amounts of two C13 bithienyls that were absent or present at low concentrations in the wild type. The mutant phenotype was also expressed in 21 Agrobacterium rhizogenes transformed root clones derived from both mutants. Feeding experiments with root cultures derived from one mutant and from the wild type indicated that the monothiophene accumulating in the mutant is the common precursor for all bithienyl thiophenes in wild-type and mutant Tagetes erecta. These experiments also showed that one mutant is deficient in demethylation of the monothiophene. PMID:12228405

  16. Ensemble-based computational approach discriminates functional activity of p53 cancer and rescue mutants.

    Directory of Open Access Journals (Sweden)

    Özlem Demir

    2011-10-01

    Full Text Available The tumor suppressor protein p53 can lose its function upon single-point missense mutations in the core DNA-binding domain ("cancer mutants". Activity can be restored by second-site suppressor mutations ("rescue mutants". This paper relates the functional activity of p53 cancer and rescue mutants to their overall molecular dynamics (MD, without focusing on local structural details. A novel global measure of protein flexibility for the p53 core DNA-binding domain, the number of clusters at a certain RMSD cutoff, was computed by clustering over 0.7 µs of explicitly solvated all-atom MD simulations. For wild-type p53 and a sample of p53 cancer or rescue mutants, the number of clusters was a good predictor of in vivo p53 functional activity in cell-based assays. This number-of-clusters (NOC metric was strongly correlated (r(2 = 0.77 with reported values of experimentally measured ΔΔG protein thermodynamic stability. Interpreting the number of clusters as a measure of protein flexibility: (i p53 cancer mutants were more flexible than wild-type protein, (ii second-site rescue mutations decreased the flexibility of cancer mutants, and (iii negative controls of non-rescue second-site mutants did not. This new method reflects the overall stability of the p53 core domain and can discriminate which second-site mutations restore activity to p53 cancer mutants.

  17. Mildew-resistant mutants induced in North American two- and six-rowed malting barley cultivars

    DEFF Research Database (Denmark)

    Molina-Cano, J.L.; Simiand, J.P.; Sopena, A.

    2003-01-01

    and were shown to have two new alleles at the mlo locus; these were designated, respectively, mlo31 and mlo32. Mutant URS2, showing partial resistance, was inherited as a dominant gene, but was not an allele at the Mla locus. The mean yield of each mutant was higher than that of its parental line...

  18. Structural basis for the changed substrate specificity of Drosophila melanogaster deoxyribonucleoside kinase mutant N64D

    DEFF Research Database (Denmark)

    Welin, M.; Skovgaard, T.; Knecht, Wolfgang

    2005-01-01

    The Drosophila melanogaster deoxyribonucleoside kinase (Dm-dNK) double mutant N45D/N64D was identified during a previous directed evolution study. This mutant enzyme had a decreased activity towards the natural substrates and decreased feedback inhibition with dTTP, whereas the activity with 3...

  19. “Start” Mutants of Saccharomyces cerevisiae Are Suppressed in Carbon Catabolite-Derepressing Medium

    OpenAIRE

    Shuster, Jeffrey R.

    1982-01-01

    Temperature-sensitive cell division “start” mutants cdc28, cdc36, cdc37, and cdc39 of the yeast Saccharomyces cerevisiae arrested cell division in the G1 phase of the cell cycle in glucose medium. I report here that cdc28, cdc36, and cdc39 mutants were suppressed when grown in carbon catabolite-derepressing medium.

  20. L-Glutamate production by lysozyme-sensitive Corynebacterium glutamicum ltsA mutant strains

    Directory of Open Access Journals (Sweden)

    Nagai Kazuo

    2001-10-01

    Full Text Available Abstract Background A non-pathogenic species of coryneform bacteria, Corynebacterium glutamicum, was originally isolated as an L-glutamate producing bacterium and is now used for fermentative production of various amino acids. A mutation in the C. glutamicum ltsA gene caused susceptibility to lysozyme, temperature-sensitive growth, and L-glutamate production. Results The characteristics of eight lysozyme-sensitive mutants which had been isolated after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis were examined. Complementation analysis with the cloned wild-type ltsA gene and DNA sequencing of the ItsA region revealed that four mutants had a mutation in the ltsA gene. Among them, two mutants showed temperature-sensitive growth and overproduced L-glutamate at higher temperatures, as well as the previously reported ltsA mutant. Other two showed temperature-resistant growth: one missense mutant produced L-glutamate to some extent but the other nonsense mutant did not. These two mutants remained temperature-resistant in spite of introduction of ltsA::kan mutation that causes temperature-sensitive growth in the wild-type background. Conclusions These results indicate that a defect caused by the ltsA mutations is responsible for temperature-sensitive growth and L-glutamate overproduction by C. glutamicum. The two temperature-resistant mutants seem to carry suppressor mutations that rendered cells temperature-resistance and abolished L-glutamate overproduction.

  1. Induction, isolation, and characterization of aspergillus niger mutant strains producing elevated levels of beta-galactosidase.

    OpenAIRE

    Nevalainen, K M

    1981-01-01

    An Aspergillus niger mutant strain, VTT-D-80144, with an improvement of three- to fourfold in the production of extracellular beta-galactosidase was isolated after mutagenesis. The production of beta-galactosidase by this mutant was unaffected by fermentor size, and the enzyme was also suitable for immobilization.

  2. Induction, isolation, and characterization of aspergillus niger mutant strains producing elevated levels of beta-galactosidase.

    Science.gov (United States)

    Nevalainen, K M

    1981-01-01

    An Aspergillus niger mutant strain, VTT-D-80144, with an improvement of three- to fourfold in the production of extracellular beta-galactosidase was isolated after mutagenesis. The production of beta-galactosidase by this mutant was unaffected by fermentor size, and the enzyme was also suitable for immobilization. PMID:6784672

  3. Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence

    NARCIS (Netherlands)

    Jing, Hai-Chun; Sturre, Marcel J.G.; Hille, Jacques; Dijkwel, Paul P.

    2002-01-01

    The onset of leaf senescence is controlled by leaf age and ethylene can promote leaf senescence within a specific age window. We exploited the interaction between leaf age and ethylene and isolated mutants with altered leaf senescence that are named as onset of leaf death (old) mutants. Early leaf

  4. Photosynthetic Characteristics of Flag Leaves in Rice White Stripe Mutant 6001 During Senescence Process

    Directory of Open Access Journals (Sweden)

    Xiao-hui ZHEN

    2014-11-01

    Full Text Available Physiological, biochemical and electron microscopy analyses were used to investigate the photosynthetic performance of flag leaves in rice white stripe mutant 6001 during the senescence process. Results showed that the chlorophyll content at the heading and milk-ripe stages in rice mutant 6001 were about 34.78% and 3.00% less than those in wild type 6028, respectively. However, the chlorophyll content at the fully-ripe stage in rice mutant 6001 was higher than that in wild type 6028. At the heading stage, the net photosynthetic rate (Pn in rice mutant 6001 was lower than that in wild type 6028. Rice mutant 6001 also exhibited a significantly slower decrease rate of Pn than wild type 6028 during the senescence progress, especially at the later stage. Furthermore, Ca2+-ATPase, Mg2+-ATPase and photophosphorylation activities exhibited the similar trends as the Pn. During the senescence process, the 68 kDa polypeptide concentrations in the thylakoid membrane proteins exhibited a significant change, which was one of the critical factors that contributed to the observed change in photosynthesis. We also observed that the chloroplasts of rice mutant 6001 exhibited higher integrity than those of wild type 6028, and the chloroplast membrane of rice mutant 6001 disintegrated more slow during the senescence process. In general, rice mutant 6001 had a relatively slower senescence rate than wild type 6028, and exhibited anti-senescence properties.

  5. Molecular mapping of three nuclear male sterility mutant genes in cultivated sunflower (Helianthus annuus L.)

    Science.gov (United States)

    The nuclear male sterility (NMS) trait is a useful tool for sunflower (Helianthus annuus L.) breeding and genetic programs. Previously, we induced NMS mutants in cultivated line HA 89. The mutants possessed single recessive genes, ms6, ms7, and ms8, respectively, in NMS HA 89-872, NMS HA 89-552, and...

  6. Chemical Excitation and Inactivation in Photoreceptors of the Fly Mutants trp and nss

    NARCIS (Netherlands)

    Suss, E.; Barash, S.; Stavenga, D.G.; Stieve, H.; Selinger, Z.; Minke, B.

    1989-01-01

    The Drosophila and Lucilia photoreceptor mutants, trp and nss, respond like wild-type flies to a short pulse of intense light or prolonged dim light; however, upon continuous intense illumination, the trp and nss mutants are unable to maintain persistent excitation. This defect manifests itself by a

  7. Methanol metabolism in a peroxisome-deficient mutant of Hansenula polymorpha : A physiological study

    NARCIS (Netherlands)

    Klei, Ida J. van der; Harder, Willem; Veenhuis, Marten

    We have studied methanol-utilization in a peroxisome-deficient (PER) mutant of Hansenula polymorpha. In spite of the fact that in carbon-limited chemostat cultures under induced conditions the enzymes involved in methanol metabolism were present at wildtype (WT) levels, this mutant is unable to grow

  8. Comparative production of cellulases by mutants of Trichoderma parceramosume PTCC5140

    Directory of Open Access Journals (Sweden)

    Hoda Nouri

    2017-06-01

    Discussion and conclusion: Evaluation of cellulase production in mutant strains of Trichoderma parceramosume PTCC 5140 showed that use of chemical mutagenesis with 2 to 11 fold increasing in enzyme activity is a potent method to improve cellulase complex activity. In the current study, obtained mutant strains could be introduced as a potent cellulase producer for further studies in bioconversion processes.

  9. Rescue of ligand binding of a mutant IGF-I receptor by complementation

    DEFF Research Database (Denmark)

    Chakravarty, Arjun Anders; Hinrichsen, Jane; Whittaker, Linda

    2005-01-01

    from a wild-type receptor monomer and a mutant receptor monomer devoid of binding activity. Receptor hybrids were generated by transient co-transfection of cDNAs encoding wild-type and mutant receptors with unique epitope tags. Hybrid receptors were purified from transfected cells by sequential immuno...

  10. Guanylate cyclase 2C agonism corrects CFTR mutants.

    Science.gov (United States)

    Arora, Kavisha; Huang, Yunjie; Mun, Kyushik; Yarlagadda, Sunitha; Sundaram, Nambirajan; Kessler, Marco M; Hannig, Gerhard; Kurtz, Caroline B; Silos-Santiago, Inmaculada; Helmrath, Michael; Palermo, Joseph J; Clancy, John P; Steinbrecher, Kris A; Naren, Anjaparavanda P

    2017-10-05

    Cystic fibrosis (CF) is a genetic disorder in which epithelium-generated fluid flow from the lung, intestine, and pancreas is impaired due to mutations disrupting CF transmembrane conductance regulator (CFTR) channel function. CF manifestations of the pancreas and lung are present in the vast majority of CF patients, and 15% of CF infants are born with obstructed gut or meconium ileus. However, constipation is a significantly underreported outcome of CF disease, affecting 47% of the CF patients, and management becomes critical in the wake of increasing life span of CF patients. In this study, we unraveled a potentially novel molecular role of a membrane-bound cyclic guanosine monophosphate-synthesizing (cGMP-synthesizing) intestinal enzyme, guanylate cyclase 2C (GCC) that could be targeted to ameliorate CF-associated intestinal fluid deficit. We demonstrated that GCC agonism results in functional rescue of murine F508del/F508del and R117H/R117H Cftr and CFTR mutants in CF patient-derived intestinal spheres. GCC coexpression and activation facilitated processing and ER exit of F508del CFTR and presented a potentially novel rescue modality in the intestine, similar to the CF corrector VX-809. Our findings identify GCC as a biological CFTR corrector and potentiator in the intestine.

  11. Bacteriophage-insensitive mutants for high quality Crescenza manufacture

    Directory of Open Access Journals (Sweden)

    Donatella eChirico

    2014-05-01

    Full Text Available Streptococcus thermophilus is a thermophilic lactic acid bacterium used as starter culture for the manufacture of fermented dairy products. For the production of Crescenza and other soft cheeses, Sacco has developed and provides dairies with 3 different defined blends of S. thermophilus strains. Each blend contains 2 different S. thermophilus strains. The strains were selected based on their unique technological properties as well as different phage profiles. Analysis of 133 whey samples collected in 2009-2010 from Italian dairies showed a high prevalence (about 50% of bacteriophage attacks on the blend ST020. More specifically, the strain S. thermophilus ST1A was found to be the preferred target of the bacteriophages. A bacteriophage insensitive mutant (BIM5 of the phage-sensitive strain ST1A was successfully developed and used to substitute strain ST1A in the Crescenza starter culture ST020. The strain BIM5 showed identical technological and industrial traits as those of the phage-sensitive strain ST1A. The improved resistance of the modified Crescenza starter culture ST020R was confirmed at Italian dairies, and its effectiveness monitored on 122 whey samples collected in 2011-2012. Compared to the previous values (2009-2010, the use of the phage-hardened blend ST020R allowed reducing of frequency of phage attacks from about 50 to less than 5% of the whey samples investigated.

  12. Fecal corticosterone levels in RCAN1 mutant mice.

    Science.gov (United States)

    Rakowski-Anderson, Tammy; Wong, Helen; Rothermel, Beverly; Cain, Peter; Lavilla, Carmencita; Pullium, Jennifer K; Hoeffer, Charles

    2012-04-01

    Regulator of calcineurin 1 (RCAN1) is related to the expression of human neurologic disorders such as Down syndrome, Alzheimer disease, and chromosome 21q deletion syndrome. We showed here that RCAN1-knockout mice exhibit reduced innate anxiety as indicated by the elevated-plus maze. To examine whether glucocorticoids contribute to this phenotype, we measured fecal corticosterone in male wildtype and RCAN1-knockout mice and in male and female transgenic mice with neuronal overexpression of RCAN1 (Tg-RCAN1(TG)). We found no difference in fecal corticosterone levels of RCAN1-knockout mice and their wildtype littermates. As expected, we found differences between sexes in fecal corticosterone levels. In addition, we found higher levels of excreted corticosterone in Tg-RCAN1(TG) female mice as compared with female wildtype mice. Our data indicate normal diurnal corticosterone production in RCAN1 mutant mice and do not suggest a causal role in either the cognitive or anxiety phenotypes exhibited by RCAN1-knockout mice.

  13. Proteomic and Genomic Analyses of Antimony Resistant Leishmania infantum Mutant

    Science.gov (United States)

    Brotherton, Marie-Christine; Bourassa, Sylvie; Leprohon, Philippe; Légaré, Danielle; Poirier, Guy G.; Droit, Arnaud; Ouellette, Marc

    2013-01-01

    Background Antimonials remain the primary antileishmanial drugs in most developing countries. However, drug resistance to these compounds is increasing and our understanding of resistance mechanisms is partial. Methods/Principal Findings In the present study, quantitative proteomics using stable isotope labelling of amino acids in cell culture (SILAC) and genome next generation sequencing were used in order to better characterize in vitro generated Leishmania infantum antimony resistant mutant (Sb2000.1). Using the proteomic method, 58 proteins were found to be differentially regulated in Sb2000.1. The ABC transporter MRPA (ABCC3), a known marker of antimony resistance, was observed for the first time in a proteomic screen. Furthermore, transfection of its gene conferred antimony resistance in wild-type cells. Next generation sequencing revealed aneuploidy for 8 chromosomes in Sb2000.1. Moreover, specific amplified regions derived from chromosomes 17 and 23 were observed in Sb2000.1 and a single nucleotide polymorphism (SNP) was detected in a protein kinase (LinJ.33.1810-E629K). Conclusion/Significance Our results suggest that differentially expressed proteins, chromosome number variations (CNVs), specific gene amplification and SNPs are important features of antimony resistance in Leishmania. PMID:24312377

  14. Bacteriophage-insensitive mutants for high quality Crescenza manufacture.

    Science.gov (United States)

    Chirico, Donatella; Gorla, Arianna; Verga, Viola; Pedersen, Per D; Polgatti, Eliseo; Cava, Antonio; Dal Bello, Fabio

    2014-01-01

    Streptococcus thermophilus is a thermophilic lactic acid bacterium used as starter culture for the manufacture of fermented dairy products. For the production of Crescenza and other soft cheeses, Sacco has developed and provides dairies with three different defined blends of S. thermophilus strains. Each blend contains two different S. thermophilus strains. The strains were selected based on their unique technological properties as well as different phage profiles. Analysis of 133 whey samples collected in 2009-2010 from Italian dairies showed a high prevalence (about 50%) of bacteriophage attacks on the blend ST020. More specifically, the strain S. thermophilus ST1A was found to be the preferred target of the bacteriophages. A bacteriophage insensitive mutant (BIM5) of the phage-sensitive strain ST1A was successfully developed and used to substitute strain ST1A in the Crescenza starter culture ST020. The strain BIM5 showed identical technological and industrial traits as those of the phage-sensitive strain ST1A. The improved resistance of the modified Crescenza starter culture ST020R was confirmed at Italian dairies, and its effectiveness monitored on 122 whey samples collected in 2011-2012. Compared to the previous values (2009-2010), the use of the phage-hardened blend ST020R allowed reducing of frequency of phage attacks from about 50 to less than 5% of the whey samples investigated.

  15. Producing Conditional Mutants for Studying Plant Microtubule Function

    Energy Technology Data Exchange (ETDEWEB)

    Richard Cyr

    2009-09-29

    The cytoskeleton, and in particular its microtubule component, participates in several processes that directly affect growth and development in higher plants. Normal cytoskeletal function requires the precise and orderly arrangement of microtubules into several cell cycle and developmentally specific arrays. One of these, the cortical array, is notable for its role in directing the deposition of cellulose (the most prominent polymer in the biosphere). An understanding of how these arrays form, and the molecular interactions that contribute to their function, is incomplete. To gain a better understanding of how microtubules work, we have been working to characterize mutants in critical cytoskeletal genes. This characterization is being carried out at the subcellular level using vital microtubule gene constructs. In the last year of funding colleagues have discovered that gamma-tubulin complexes form along the lengths of cortical microtubules where they act to spawn new microtubules at a characteristic 40 deg angle. This finding complements nicely the finding from our lab (which was funded by the DOE) showing that microtubule encounters are angle dependent; high angles encounters results in catastrophic collisions while low angle encounters result in favorable zippering. The finding of a 40 deg spawn of new microtubules from extant microtubule, together with aforementioned rules of encounters, insures favorable co-alignment in the array. I was invited to write a New and Views essay on this topic and a PDF is attached (News and Views policy does not permit funding acknowledgments and so I was not allowed to acknowledge support from the DOE).

  16. Characterization of a Virescent Chloroplast Mutant of Tobacco 1

    Science.gov (United States)

    Archer, E. Kathleen; Bonnett, Howard T.

    1987-01-01

    Virescent mutations produce plants in which young leaves have reduced chlorophyll levels but accumulate nearly normal amounts of chlorophyll as they age; they are predominantly nuclear mutations. We describe here a virescent mutation (designated Vir-c) found in a somatic hybrid line derived from Nicotiana tabacum L. and Nicotiana suaveolens Lehm. This mutation is inherited maternally. Young, half-expanded Vir-c leaves contained three to six times less chlorophyll than did control leaves, and reached maximum chlorophyll levels much later in development. Chlorophyll synthesis rates and chloroplast numbers per cell in Vir-c were similar to the control, and carotenoid content in Vir-c was sufficient to protect chlorophyll from photo-oxidation. Photosynthetic rates of Vir-c at low light intensities suggested a reduced ability to collect light. Electron micrographs of Vir-c chloroplasts from half-expanded leaves showed a significant reduction in thylakoids per granum. The decrease in granal thylakoids was strongly associated with low chlorophyll levels; mature Vir-c leaves with nearly normal chlorophyll content showed normal granal profiles. These results are discussed in relation to virescent mutants previously described. Images Fig. 3 PMID:16665364

  17. Characterization of a virescent chloroplast mutant of tobacco.

    Science.gov (United States)

    Archer, E K; Bonnett, H T

    1987-04-01

    Virescent mutations produce plants in which young leaves have reduced chlorophyll levels but accumulate nearly normal amounts of chlorophyll as they age; they are predominantly nuclear mutations. We describe here a virescent mutation (designated Vir-c) found in a somatic hybrid line derived from Nicotiana tabacum L. and Nicotiana suaveolens Lehm. This mutation is inherited maternally. Young, half-expanded Vir-c leaves contained three to six times less chlorophyll than did control leaves, and reached maximum chlorophyll levels much later in development. Chlorophyll synthesis rates and chloroplast numbers per cell in Vir-c were similar to the control, and carotenoid content in Vir-c was sufficient to protect chlorophyll from photo-oxidation. Photosynthetic rates of Vir-c at low light intensities suggested a reduced ability to collect light. Electron micrographs of Vir-c chloroplasts from half-expanded leaves showed a significant reduction in thylakoids per granum. The decrease in granal thylakoids was strongly associated with low chlorophyll levels; mature Vir-c leaves with nearly normal chlorophyll content showed normal granal profiles. These results are discussed in relation to virescent mutants previously described.

  18. WEDGE: An anticoagulant thrombin mutant produced by autoactivation

    Science.gov (United States)

    Wood, D.C.; Pelc, L.A.; Pozzi, N.; Wallisch, M.; Verbout, N.G.; Tucker, E.I.; Gruber, A.; Di Cera, E.

    2015-01-01

    Summary Background Production of therapeutically relevant proteases typically involves activation of a zymogen precursor by external enzymes, which may raise regulatory issues about availability and purity. Recent studies of thrombin precursors have shown how to engineer constructs that spontaneously convert to the mature protease by autoactivation, without the need of external enzymes. Objectives Autoactivation is an innovative strategy that promises to simplify the production of proteases of therapeutic relevance, but has not been tested in practical applications. This study aims to provide a direct test of this strategy. Methods An autoactivating version of the thrombin mutant W215A/E217A (WE), currently in pre-clinical development as an anticoagulant, is engineered. Results and Conclusions The autoactivating version of WE can be produced in large quantities, like WE made in BHK cells or E. coli, and retains all significant functional properties in vitro and in vivo. The results serve as proof of principle that autoactivation is an innovative and effective strategy for production of trypsin-like proteases of therapeutic relevance. PMID:25369995

  19. Isolating human DNA repair genes using rodent-cell mutants

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.H.; Weber, C.A.; Brookman, K.W.; Salazar, E.P.; Stewart, S.A.; Mitchell, D.L.

    1987-03-23

    The DNA repair systems of rodent and human cells appear to be at least as complex genetically as those in lower eukaryotes and bacteria. The use of mutant lines of rodent cells as a means of identifying human repair genes by functional complementation offers a new approach toward studying the role of repair in mutagenesis and carcinogenesis. In each of six cases examined using hybrid cells, specific human chromosomes have been identified that correct CHO cell mutations affecting repair of damage from uv or ionizing radiations. This finding suggests that both the repair genes and proteins may be virtually interchangeable between rodent and human cells. Using cosmid vectors, human repair genes that map to chromosome 19 have cloned as functional sequences: ERCC2 and XRCC1. ERCC1 was found to have homology with the yeast excision repair gene RAD10. Transformants of repair-deficient cell lines carrying the corresponding human gene show efficient correction of repair capacity by all criteria examined. 39 refs., 1 fig., 1 tab.

  20. Mutant WD-repeat protein in triple-A syndrome.

    Science.gov (United States)

    Tullio-Pelet, A; Salomon, R; Hadj-Rabia, S; Mugnier, C; de Laet, M H; Chaouachi, B; Bakiri, F; Brottier, P; Cattolico, L; Penet, C; Bégeot, M; Naville, D; Nicolino, M; Chaussain, J L; Weissenbach, J; Munnich, A; Lyonnet, S

    2000-11-01

    Triple-A syndrome (MIM 231550; also known as Allgrove syndrome) is an autosomal recessive disorder characterized by adrenocorticotropin hormone (ACTH)-resistant adrenal insufficiency, achalasia of the oesophageal cardia and alacrima. Whereas several lines of evidence indicate that triple-A syndrome results from the abnormal development of the autonomic nervous system, late-onset progressive neurological symptoms (including cerebellar ataxia, peripheral neuropathy and mild dementia) suggest that the central nervous system may be involved in the disease as well. Using fine-mapping based on linkage disequilibrium in North African inbred families, we identified a short ancestral haplotype on chromosome 12q13 (<1 cM), sequenced a BAC contig encompassing the triple-A minimal region and identified a novel gene (AAAS) encoding a protein of 547 amino acids that is mutant in affected individuals. We found five homozygous truncating mutations in unrelated patients and ascribed the founder effect in North African families to a single splice-donor site mutation that occurred more than 2,400 years ago. The predicted product of AAAS, ALADIN (for alacrima-achalasia-adrenal insufficiency neurologic disorder), belongs to the WD-repeat family of regulatory proteins, indicating a new disease mechanism involved in triple-A syndrome. The expression of the gene in both neuroendocrine and cerebral structures points to a role in the normal development of the peripheral and central nervous systems.

  1. Transcriptional dysregulation in NIPBL and cohesin mutant human cells.

    Directory of Open Access Journals (Sweden)

    Jinglan Liu

    2009-05-01

    Full Text Available Cohesin regulates sister chromatid cohesion during the mitotic cell cycle with Nipped-B-Like (NIPBL facilitating its loading and unloading. In addition to this canonical role, cohesin has also been demonstrated to play a critical role in regulation of gene expression in nondividing cells. Heterozygous mutations in the cohesin regulator NIPBL or cohesin structural components SMC1A and SMC3 result in the multisystem developmental disorder Cornelia de Lange Syndrome (CdLS. Genome-wide assessment of transcription in 16 mutant cell lines from severely affected CdLS probands has identified a unique profile of dysregulated gene expression that was validated in an additional 101 samples and correlates with phenotypic severity. This profile could serve as a diagnostic and classification tool. Cohesin binding analysis demonstrates a preference for intergenic regions suggesting a cis-regulatory function mimicking that of a boundary/insulator interacting protein. However, the binding sites are enriched within the promoter regions of the dysregulated genes and are significantly decreased in CdLS proband, indicating an alternative role of cohesin as a transcription factor.

  2. Natural variation of model mutant phenotypes in Ciona intestinalis.

    Directory of Open Access Journals (Sweden)

    Paolo Sordino

    Full Text Available BACKGROUND: The study of ascidians (Chordata, Tunicata has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes. CONCLUSIONS/SIGNIFICANCE: Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity.

  3. Demarcation of mutant-carrying regions in barley plants after ethylmethane-sulfonate seed treatment

    DEFF Research Database (Denmark)

    Jacobsen, P.

    1966-01-01

    The branching pattern of the barley plant is analyzed and the anatomical structure of the resting barley embryo studied in longitudinal and cross-sections as well as by dissection techniques. The frequency and distribution of ethylmethane-sulfonate induced chloroplast and morphological seedling...... mutants were analyzed in spikes classified according to their ontogenetic relationship. The frequency with which two spikes segregated identical mutants was determined by pairwise comparisons of all spikes in each plant. In this way the frequency of mutant cluster sharing between spikes and spike groups...... was obtained.The absence of cluster sharing allows the recognition in the barley plant of 8 mutually exclusive mutant sectors which never had a mutant cluster in common. The anatomical analysis proves that the barley embryo contains at least 6 separate shoot meristems or prospective shoot meristems, which...

  4. Isolation and characterization of a barley mutant with abscisic-acid-insensitive stomata.

    Science.gov (United States)

    Raskin, I; Ladyman, J A

    1988-01-01

    A barley (Hordeum vulgare L.) mutant ("cool") with leaf transpiration unaffected by the application of 1 mM abscisic acid (ABA) was isolated from the population of M2 seedlings using thermography (electronic visualization, and quantitation of the temperature profiles on the surface of the leaves). Stomata of the mutant plants were insensitive to exogenously applied ABA, darkness, and such desiccation treatments as leaf excision and drought stress. The evaporative cooling of the leaves of the "cool" barley was always higher than that of the wild-type barley, even without ABA application, indicating that the diffusive resistance of the mutant leaves to water loss was always lower. Guard-cell morphology and stomatal density as well as ABA level and metabolism were seemingly unaltered in the mutant plants. In addition, gibberellin-induced α-amylase secretion and precocious embryo germination in the mutant barley was inhibited by ABA to the same extent as in the wild-type barley.

  5. Examining the virulence of Candida albicans transcription factor mutants using Galleria mellonella and mouse infection models.

    Science.gov (United States)

    Amorim-Vaz, Sara; Delarze, Eric; Ischer, Françoise; Sanglard, Dominique; Coste, Alix T

    2015-01-01

    The aim of the present study was to identify Candida albicans transcription factors (TFs) involved in virulence. Although mice are considered the gold-standard model to study fungal virulence, mini-host infection models have been increasingly used. Here, barcoded TF mutants were first screened in mice by pools of strains and fungal burdens (FBs) quantified in kidneys. Mutants of unannotated genes which generated a kidney FB significantly different from that of wild-type were selected and individually examined in Galleria mellonella. In addition, mutants that could not be detected in mice were also tested in G. mellonella. Only 25% of these mutants displayed matching phenotypes in both hosts, highlighting a significant discrepancy between the two models. To address the basis of this difference (pool or host effects), a set of 19 mutants tested in G. mellonella were also injected individually into mice. Matching FB phenotypes were observed in 50% of the cases, highlighting the bias due to host effects. In contrast, 33.4% concordance was observed between pool and single strain infections in mice, thereby highlighting the bias introduced by the "pool effect." After filtering the results obtained from the two infection models, mutants for MBF1 and ZCF6 were selected. Independent marker-free mutants were subsequently tested in both hosts to validate previous results. The MBF1 mutant showed impaired infection in both models, while the ZCF6 mutant was only significant in mice infections. The two mutants showed no obvious in vitro phenotypes compared with the wild-type, indicating that these genes might be specifically involved in in vivo adapt.

  6. Examining the virulence of Candida albicans transcription factor mutants using Galleria mellonella and mouse infection models

    Directory of Open Access Journals (Sweden)

    Sara eAmorim-Vaz

    2015-05-01

    Full Text Available The aim of the present study was to identify C. albicans transcription factors (TF involved in virulence. Although mice are considered the gold-standard model to study fungal virulence, mini-host infection models have been increasingly used. Here, barcoded TF mutants were first screened in mice by pools of strains and fungal burdens quantified in kidneys. Mutants of unannotated genes which generated a kidney fungal burden significantly different from that of wild-type were selected and individually examined in G. mellonella. In addition, mutants that could not be detected in mice were also tested in G. mellonella. Only 25 % of these mutants displayed matching phenotypes in both hosts, highlighting a significant discrepancy between the two models. To address the basis of this difference (pool or host effects, a set of 19 mutants tested in G. mellonella were also injected individually into mice. Matching fungal burden phenotypes were observed in 50 % of the cases, highlighting the bias due to host effects. In contrast, 33.4 % concordance was observed between pool and single strain infections in mice, thereby highlighting the bias introduced by the pool effect. After filtering the results obtained from the two infection models, mutants for MBF1 and ZCF6 were selected. Independent marker-free mutants were subsequently tested in both hosts to validate previous results. The MBF1 mutant showed impaired infection in both models, while the ZCF6 mutant was only significant in mice infections. The two mutants showed no obvious in vitro phenotypes compared with the wild-type, indicating that these genes might be specifically involved in in vivo adaptation.

  7. Mutant p53 upregulates alpha-1 antitrypsin expression and promotes invasion in lung cancer.

    Science.gov (United States)

    Shakya, R; Tarulli, G A; Sheng, L; Lokman, N A; Ricciardelli, C; Pishas, K I; Selinger, C I; Kohonen-Corish, M R J; Cooper, W A; Turner, A G; Neilsen, P M; Callen, D F

    2017-08-01

    Missense mutations in the TP53 tumor-suppressor gene inactivate its antitumorigenic properties and endow the incipient cells with newly acquired oncogenic properties that drive invasion and metastasis. Although the oncogenic effect of mutant p53 transcriptome has been widely acknowledged, the global influence of mutant p53 on cancer cell proteome remains to be fully elucidated. Here, we show that mutant p53 drives the release of invasive extracellular factors (the 'secretome') that facilitates the invasion of lung cancer cell lines. Proteomic characterization of the secretome from mutant p53-inducible H1299 human non-small cell lung cancer cell line discovered that the mutant p53 drives its oncogenic pathways through modulating the gene expression of numerous targets that are subsequently secreted from the cells. Of these genes, alpha-1 antitrypsin (A1AT) was identified as a critical effector of mutant p53 that drives invasion in vitro and in vivo, together with induction of epithelial-mesenchymal transition markers expression. Mutant p53 upregulated A1AT transcriptionally through the involvement with its family member p63. Conditioned medium containing secreted A1AT enhanced cell invasion, while an A1AT-blocking antibody attenuated the mutant p53-driven migration and invasion. Importantly, high A1AT expression correlated with increased tumor stage, elevated p53 staining and shorter overall survival in lung adenocarcinoma patients. Collectively, these findings suggest that A1AT is an indispensable target of mutant p53 with prognostic and therapeutic potential in mutant p53-expressing tumors.

  8. Isolation and characterization of xylitol-assimilating mutants of recombinant Saccharomyces cerevisiae.

    Science.gov (United States)

    Tani, Tatsunori; Taguchi, Hisataka; Fujimori, Kazuhiro E; Sahara, Takehiko; Ohgiya, Satoru; Kamagata, Yoichi; Akamatsu, Takashi

    2016-10-01

    To clarify the mechanisms of xylitol utilization, three xylitol-assimilating mutants were isolated from recombinant Saccharomyces cerevisiae strains showing highly efficient xylose-utilization. The nucleotide sequences of the mutant genomes were analyzed and compared with those of the wild-type strains and the mutation sites were identified. gal80 mutations were common to all the mutants, and recessive to the wild-type allele. Hence we constructed a gal80Δ mutant and confirmed that the gal80Δ mutant showed a xylitol-assimilation phenotype. When the constructed gal80Δ mutant was crossed with the three isolated mutants, all diploid hybrids showed xylitol assimilation, indicating that the mutations were all located in the GAL80. We analyzed the role of the galactose permease Gal2, controlled by the regulatory protein Gal80, in assimilating xylitol. A gal2Δ gal80Δ double mutant did not show xylitol assimilation, whereas expression of GAL2 under the control of the TDH3 promoter in the GAL80 strain did result in assimilation. These data indicate that Gal2 was needed for xylitol assimilation in the wild-type strain. When the gal80 mutant with an initial cell concentration of A660 = 20 was used for batch fermentation in a complex medium containing 20 g/L xylose or 20 g/L xylitol at pH 5.0 and 30°C under oxygen limitation, the gal80 mutant consumed 100% of the xylose within 12 h, but <30% of the xylitol within 100 h, indicating that xylose reductase is required for xylitol consumption in oxygen-limited conditions. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Autosomal mutants of proton-exposed kidney cells display frequent loss of heterozygosity on nonselected chromosomes.

    Science.gov (United States)

    Grygoryev, Dmytro; Dan, Cristian; Gauny, Stacey; Eckelmann, Bradley; Ohlrich, Anna P; Connolly, Marissa; Lasarev, Michael; Grossi, Gianfranco; Kronenberg, Amy; Turker, Mitchell S

    2014-05-01

    High-energy protons found in the space environment can induce mutations and cancer, which are inextricably linked. We hypothesized that some mutants isolated from proton-exposed kidneys arose through a genome-wide incident that causes loss of heterozygosity (LOH)-generating mutations on multiple chromosomes (termed here genomic LOH). To test this hypothesis, we examined 11 pairs of nonselected chromosomes for LOH events in mutant cells isolated from the kidneys of mice exposed to 4 or 5 Gy of 1 GeV protons. The mutant kidney cells were selected for loss of expression of the chromosome 8-encoded Aprt gene. Genomic LOH events were also assessed in Aprt mutants isolated from isogenic cultured kidney epithelial cells exposed to 5 Gy of protons in vitro. Control groups were spontaneous Aprt mutants and clones isolated without selection from the proton-exposed kidneys or cultures. The in vivo results showed significant increases in genomic LOH events in the Aprt mutants from proton-exposed kidneys when compared with spontaneous Aprt mutants and when compared with nonmutant (i.e., nonselected) clones from the proton-exposed kidneys. A bias for LOH events affecting chromosome 14 was observed in the proton-induced Aprt mutants, though LOH for this chromosome did not confer increased radiation resistance. Genomic LOH events were observed in Aprt mutants isolated from proton-exposed cultured kidney cells; however the incidence was fivefold lower than in Aprt mutants isolated from exposed intact kidneys, suggesting a more permissive environment in the intact organ and/or the evolution of kidney clones prior to their isolation from the tissue. We conclude that proton exposure creates a subset of viable cells with LOH events on multiple chromosomes, that these cells form and persist in vivo, and that they can be isolated from an intact tissue by selection for a mutation on a single chromosome.

  10. Isolation and characterization of mutants of common ice plant deficient in crassulacean acid metabolism.

    Science.gov (United States)

    Cushman, John C; Agarie, Sakae; Albion, Rebecca L; Elliot, Stewart M; Taybi, Tahar; Borland, Anne M

    2008-05-01

    Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that improves water use efficiency by shifting part or all of net atmospheric CO2 uptake to the night. Genetic dissection of regulatory and metabolic attributes of CAM has been limited by the difficulty of identifying a reliable phenotype for mutant screening. We developed a novel and simple colorimetric assay to measure leaf pH to screen fast neutron-mutagenized populations of common ice plant (Mesembryanthemum crystallinum), a facultative CAM species, to detect CAM-deficient mutants with limited nocturnal acidification. The isolated CAM-deficient mutants showed negligible net dark CO2 uptake compared with wild-type plants following the imposition of salinity stress. The mutants and wild-type plants accumulated nearly comparable levels of sodium in leaves, but the mutants grew more slowly than the wild-type plants. The mutants also had substantially reduced seed set and seed weight relative to wild type under salinity stress. Carbon-isotope ratios of seed collected from 4-month-old plants indicated that C3 photosynthesis made a greater contribution to seed production in mutants compared to wild type. The CAM-deficient mutants were deficient in leaf starch and lacked plastidic phosphoglucomutase, an enzyme critical for gluconeogenesis and starch formation, resulting in substrate limitation of nocturnal C4 acid formation. The restoration of nocturnal acidification by feeding detached leaves of salt-stressed mutants with glucose or sucrose supported this defect and served to illustrate the flexibility of CAM. The CAM-deficient mutants described here constitute important models for exploring regulatory features and metabolic consequences of CAM.

  11. Pan-mutant IDH1 inhibitor BAY 1436032 for effective treatment of IDH1 mutant astrocytoma in vivo.

    Science.gov (United States)

    Pusch, Stefan; Krausert, Sonja; Fischer, Viktoria; Balss, Jörg; Ott, Martina; Schrimpf, Daniel; Capper, David; Sahm, Felix; Eisel, Jessica; Beck, Ann-Christin; Jugold, Manfred; Eichwald, Viktoria; Kaulfuss, Stefan; Panknin, Olaf; Rehwinkel, Hartmut; Zimmermann, Katja; Hillig, Roman C; Guenther, Judith; Toschi, Luisella; Neuhaus, Roland; Haegebart, Andrea; Hess-Stumpp, Holger; Bauser, Markus; Wick, Wolfgang; Unterberg, Andreas; Herold-Mende, Christel; Platten, Michael; von Deimling, Andreas

    2017-04-01

    Mutations in codon 132 of isocitrate dehydrogenase (IDH) 1 are frequent in diffuse glioma, acute myeloid leukemia, chondrosarcoma and intrahepatic cholangiocarcinoma. These mutations result in a neomorphic enzyme specificity which leads to a dramatic increase of intracellular D-2-hydroxyglutarate (2-HG) in tumor cells. Therefore, mutant IDH1 protein is a highly attractive target for inhibitory drugs. Here, we describe the development and properties of BAY 1436032, a pan-inhibitor of IDH1 protein with different codon 132 mutations. BAY 1436032 strongly reduces 2-HG levels in cells carrying IDH1-R132H, -R132C, -R132G, -R132S and -R132L mutations. Cells not carrying IDH mutations were unaffected. BAY 1436032 did not exhibit toxicity in vitro or in vivo. The pharmacokinetic properties of BAY 1436032 allow for oral administration. In two independent experiments, BAY 1436032 has been shown to significantly prolong survival of mice intracerebrally transplanted with human astrocytoma carrying the IDH1R132H mutation. In conclusion, we developed a pan-inhibitor targeting tumors with different IDH1R132 mutations.

  12. Drosophila Interspecific Hybrids Phenocopy piRNA-Pathway Mutants

    Science.gov (United States)

    Kelleher, Erin S.; Edelman, Nathaniel B.; Barbash, Daniel A.

    2012-01-01

    The Piwi-interacting RNA (piRNA) pathway defends the germline of animals from the deleterious activity of selfish transposable elements (TEs) through small-RNA mediated silencing. Adaptation to novel invasive TEs is proposed to occur by incorporating their sequences into the piRNA pool that females produce and deposit into their eggs, which then propagates immunity against specific TEs to future generations. In support of this model, the F1 offspring of crosses between strains of the same Drosophila species sometimes suffer from germline derepression of paternally inherited TE families, caused by a failure of the maternal strain to produce the piRNAs necessary for their regulation. However, many protein components of the Drosophila piRNA pathway exhibit signatures of positive selection, suggesting that they also contribute to the evolution of host genome defense. Here we investigate piRNA pathway function and TE regulation in the F1 hybrids of interspecific crosses between D. melanogaster and D. simulans and compare them with intraspecific control crosses of D. melanogaster. We confirm previous reports showing that intraspecific crosses are characterized by derepression of paternally inherited TE families that are rare or absent from the maternal genome and piRNA pool, consistent with the role of maternally deposited piRNAs in shaping TE silencing. In contrast to the intraspecific cross, we discover that interspecific hybrids are characterized by widespread derepression of both maternally and paternally inherited TE families. Furthermore, the pattern of derepression of TE families in interspecific hybrids cannot be attributed to their paucity or absence from the piRNA pool of the maternal species. Rather, we demonstrate that interspecific hybrids closely resemble piRNA effector-protein mutants in both TE misregulation and aberrant piRNA production. We suggest that TE derepression in interspecific hybrids largely reflects adaptive divergence of piRNA pathway genes

  13. Catalytic properties of thimet oligopeptidase H600A mutant

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Mauricio F.M.; Marcondes, Marcelo F. [Departamento de Biofisica, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP (Brazil); Rioli, Vanessa [Laboratorio Especial de Toxinologia Aplicada, Instituto Butantan, 05467-010 Sao Paulo, SP (Brazil); Departamento de Biologia Celular e Desenvolvimento, Universidade de Sao Paulo, 05508-900 Sao Paulo, SP (Brazil); Ferro, Emer S. [Departamento de Biologia Celular e Desenvolvimento, Universidade de Sao Paulo, 05508-900 Sao Paulo, SP (Brazil); Juliano, Maria A.; Juliano, Luiz [Departamento de Biofisica, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP (Brazil); Oliveira, Vitor, E-mail: vitor.oliveira@unifesp.br [Departamento de Biofisica, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP (Brazil)

    2010-04-02

    Thimet oligopeptidase (EC 3.4.24.15, TOP) is a metallo-oligopeptidase that participates in the intracellular metabolism of peptides. Predictions based on structurally analogous peptidases (Dcp and ACE-2) show that TOP can present a hinge-bend movement during substrate hydrolysis, what brings some residues closer to the substrate. One of these residues that in TOP crystallographic structure are far from the catalytic residues, but, moves toward the substrate considering this possible structural reorganization is His{sup 600}. In the present work, the role of His{sup 600} of TOP was investigated by site-directed mutagenesis. TOP H600A mutant was characterized through analysis of S{sub 1} and S{sub 1}' specificity, pH-activity profile and inhibition by JA-2. Results showed that TOP His{sup 600} residue makes important interactions with the substrate, supporting the prediction that His{sup 600} moves toward the substrate due to a hinge movement similar to the Dcp and ACE-2. Furthermore, the mutation H600A affected both K{sub m} and k{sub cat}, showing the importance of His{sup 600} for both substrate binding and/or product release from active site. Changes in the pH-profile may indicate also the participation of His{sup 600} in TOP catalysis, transferring a proton to the newly generated NH{sub 2}-terminus or helping Tyr{sup 605} and/or Tyr{sup 612} in the intermediate oxyanion stabilization.

  14. Genetics of peripheral vestibular dysfunction: lessons from mutant mouse strains.

    Science.gov (United States)

    Jones, Sherri M; Jones, Timothy A

    2014-03-01

    A considerable amount of research has been published about genetic hearing impairment. Fifty to sixty percent of hearing loss is thought to have a genetic cause. Genes may also play a significant role in acquired hearing loss due to aging, noise exposure, or ototoxic medications. Between 1995 and 2012, over 100 causative genes have been identified for syndromic and nonsyndromic forms of hereditary hearing loss. Mouse models have been extremely valuable in facilitating the discovery of hearing loss genes and in understanding inner ear pathology due to genetic mutations or elucidating fundamental mechanisms of inner ear development. Whereas much is being learned about hereditary hearing loss and the genetics of cochlear disorders, relatively little is known about the role genes may play in peripheral vestibular impairment. Here we review the literature with regard to genetics of vestibular dysfunction and discuss what we have learned from studies using mutant mouse models and direct measures of peripheral vestibular neural function. Several genes are considered that when mutated lead to varying degrees of inner ear vestibular dysfunction due to deficits in otoconia, stereocilia, hair cells, or neurons. Behavior often does not reveal the inner ear deficit. Many of the examples presented are also known to cause human disorders. Knowledge regarding the roles of particular genes in the operation of the vestibular sensory apparatus is growing, and it is clear that gene products co-expressed in the cochlea and vestibule may play different roles in the respective end organs. The discovery of new genes mediating critical inner ear vestibular function carries the promise of new strategies in diagnosing, treating, and managing patients as well as predicting the course and level of morbidity in human vestibular disease. American Academy of Audiology.

  15. Distinctive Klf4 mutants determine preference for DNA methylation status

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hideharu; Wang, Dongxue; Steves, Alyse N.; Jin, Peng; Blumenthal, Robert M.; Zhang, Xing; Cheng, Xiaodong

    2016-09-04

    Reprogramming of mammalian genome methylation is critically important but poorly understood. Klf4, a transcription factor directing reprogramming, contains a DNA binding domain with three consecutive C2H2 zinc fingers. Klf4 recognizes CpG or TpG within a specific sequence. Mouse Klf4 DNA binding domain has roughly equal affinity for methylated CpG or TpG, and slightly lower affinity for unmodified CpG. The structural basis for this key preference is unclear, though the side chain of Glu446 is known to contact the methyl group of 5-methylcytosine (5mC) or thymine (5-methyluracil). We examined the role of Glu446 by mutagenesis. Substituting Glu446 with aspartate (E446D) resulted in preference for unmodified cytosine, due to decreased affinity for 5mC. In contrast, substituting Glu446 with proline (E446P) increased affinity for 5mC by two orders of magnitude. Structural analysis revealed hydrophobic interaction between the proline's aliphatic cyclic structure and the 5-methyl group of the pyrimidine (5mC or T). As in wild-type Klf4 (E446), the proline at position 446 does not interact directly with either the 5mC N4 nitrogen or the thymine O4 oxygen. In contrast, the unmethylated cytosine's exocyclic N4 amino group (NH2) and its ring carbon C5 atom hydrogen bond directly with the aspartate carboxylate of the E446D variant. Both of these interactions would provide a preference for cytosine over thymine, and the latter one could explain the E446D preference for unmethylated cytosine. Finally, we evaluated the ability of these Klf4 mutants to regulate transcription of methylated and unmethylated promoters in a luciferase reporter assay.

  16. Apoc2 loss-of-function zebrafish mutant as a genetic model of hyperlipidemia

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2015-08-01

    Full Text Available Apolipoprotein C-II (APOC2 is an obligatory activator of lipoprotein lipase. Human patients with APOC2 deficiency display severe hypertriglyceridemia while consuming a normal diet, often manifesting xanthomas, lipemia retinalis and pancreatitis. Hypertriglyceridemia is also an important risk factor for development of cardiovascular disease. Animal models to study hypertriglyceridemia are limited, with no Apoc2-knockout mouse reported. To develop a genetic model of hypertriglyceridemia, we generated an apoc2 mutant zebrafish characterized by the loss of Apoc2 function. apoc2 mutants show decreased plasma lipase activity and display chylomicronemia and severe hypertriglyceridemia, which closely resemble the phenotype observed in human patients with APOC2 deficiency. The hypertriglyceridemia in apoc2 mutants is rescued by injection of plasma from wild-type zebrafish or by injection of a human APOC2 mimetic peptide. Consistent with a previous report of a transient apoc2 knockdown, apoc2 mutant larvae have a minor delay in yolk consumption and angiogenesis. Furthermore, apoc2 mutants fed a normal diet accumulate lipid and lipid-laden macrophages in the vasculature, which resemble early events in the development of human atherosclerotic lesions. In addition, apoc2 mutant embryos show ectopic overgrowth of pancreas. Taken together, our data suggest that the apoc2 mutant zebrafish is a robust and versatile animal model to study hypertriglyceridemia and the mechanisms involved in the pathogenesis of associated human diseases.

  17. Effect of Mutant p53 Proteins on Glycolysis and Mitochondrial Metabolism.

    Science.gov (United States)

    Eriksson, Matilda; Ambroise, Gorbatchev; Ouchida, Amanda Tomie; Lima Queiroz, Andre; Smith, Dominique; Gimenez-Cassina, Alfredo; Iwanicki, Marcin P; Muller, Patricia A; Norberg, Erik; Vakifahmetoglu-Norberg, Helin

    2017-12-15

    TP53 is one of the most commonly mutated genes in human cancers. Unlike other tumor suppressors that are frequently deleted or acquire loss-of-function mutations, the majority of TP53 mutations in tumors are missense substitutions, which lead to the expression of full-length mutant proteins that accumulate in cancer cells and may confer unique gain-of-function (GOF) activities to promote tumorigenic events. Recently, mutant p53 proteins have been shown to mediate metabolic changes as a novel GOF to promote tumor development. There is a strong rationale that the GOF activities, including alterations in cellular metabolism, might vary between the different p53 mutants. Accordingly, the effect of different mutant p53 proteins on cancer cell metabolism is largely unknown. In this study, we have metabolically profiled several individual frequently occurring p53 mutants in cancers, focusing on glycolytic and mitochondrial oxidative phosphorylation pathways. Our investigation highlights the diversity of different p53 mutants in terms of their effect on metabolism, which might provide a foundation for the development of more effective targeted pharmacological approaches toward variants of mutant p53. Copyright © 2017 American Society for Microbiology.

  18. Characterization of novel nitrate reductase-deficient mutants for transgenic Dunaliella salina systems.

    Science.gov (United States)

    Gao, L J; Jia, Y L; Li, S K; Qiu, L L

    2015-10-27

    The aim of the present study was to isolate and characterize novel nitrate reductase (NR)-deficient mutants, which may be useful for the transgenic manipulation of Dunaliella salina. Three NR-deficient mutants of D. salina, J-1, J-2, and J-3, were successfully isolated by screening for chlorate resistance after chemical mutagenesis with ethylnitrosourea. NR activity was not detected in the mutants and the expression of NR mRNA was significantly decreased. Growth analysis of D. salina strains grown in media containing different nitrogen sources revealed that these mutants were capable of utilizing nitrite and urea, but not nitrate as a nitrogen source, indicating that these mutants are indeed NR-deficient. Mutation analysis of NR cDNA sequences revealed that there were 11 point mutations shared by the J-1, J-2, and J-3 mutants. Furthermore, the results of the functional complementation experiment showed that NR activity of transformant T-1 derived from J-1 was recovered to 48.1 % of that of the wild-type D. salina. The findings of the present study indicate that nitrate may be used as a selective agent rather than antibiotics or herbicides for the isolated NR-deficient mutants in future transgenic D. salina systems.

  19. Mitochondrial quality control: Cell-type-dependent responses to pathological mutant mitochondrial DNA.

    Science.gov (United States)

    Malena, Adriana; Pantic, Boris; Borgia, Doriana; Sgarbi, Gianluca; Solaini, Giancarlo; Holt, Ian J; Spinazzola, Antonella; Perissinotto, Egle; Sandri, Marco; Baracca, Alessandra; Vergani, Lodovica

    2016-11-01

    Pathological mutations in the mitochondrial DNA (mtDNA) produce a diverse range of tissue-specific diseases and the proportion of mutant mitochondrial DNA can increase or decrease with time via segregation, dependent on the cell or tissue type. Previously we found that adenocarcinoma (A549.B2) cells favored wild-type (WT) mtDNA, whereas rhabdomyosarcoma (RD.Myo) cells favored mutant (m3243G) mtDNA. Mitochondrial quality control (mtQC) can purge the cells of dysfunctional mitochondria via mitochondrial dynamics and mitophagy and appears to offer the perfect solution to the human diseases caused by mutant mtDNA. In A549.B2 and RD.Myo cybrids, with various mutant mtDNA levels, mtQC was explored together with macroautophagy/autophagy and bioenergetic profile. The 2 types of tumor-derived cell lines differed in bioenergetic profile and mitophagy, but not in autophagy. A549.B2 cybrids displayed upregulation of mitophagy, increased mtDNA removal, mitochondrial fragmentation and mitochondrial depolarization on incubation with oligomycin, parameters that correlated with mutant load. Conversely, heteroplasmic RD.Myo lines had lower mitophagic markers that negatively correlated with mutant load, combined with a fully polarized and highly fused mitochondrial network. These findings indicate that pathological mutant mitochondrial DNA can modulate mitochondrial dynamics and mitophagy in a cell-type dependent manner and thereby offer an explanation for the persistence and accumulation of deleterious variants.

  20. TP53 mutants in the tower of babel of cancer progression.

    Science.gov (United States)

    Bisio, Alessandra; Ciribilli, Yari; Fronza, Gilberto; Inga, Alberto; Monti, Paola

    2014-06-01

    Loss-of-function, partial-function, altered-function, dominant-negative, temperature sensitive, interfering, contact, structural, unfolded, misfolded, dimeric, monomeric, non-cooperative, unstable, supertrans, superstable, intragenic suppressor. TP53 mutants are many, more than 2,000 in fact, and they can be very diverse. Sporadic; germline; gain-of-function (GoF); oncogenic; rebel-angel; yin and yang; prion-like; metastasis-inducer; mediator of chemo-resistance; modifier of stemness. TP53 mutants can impact important cancer clinical variables, in multiple, often subtle ways, as revealed by cell-based assays as well as animal models. Here, we review studies investigating TP53 mutants for their effect on sequence-specific transactivation function, and especially recent findings on how TP53 mutants can exhibit GoF properties. We also review reports on TP53 mutants' impact on cancer cell transcriptomes and studies with Li-Fraumeni patients trying to classify and predict phenotypes in relation to experimentally determined transcription fingerprints. Finally, we provide an example of the complexity of correlating TP53 mutant functionality to clinical variables in sporadic cancer patients. Conflicting results and limitations of experimental approaches notwithstanding, the study of TP53 mutants has provided a rich body of knowledge, mostly available in the public domain and accessible through databases, which is beginning to impact cancer intervention strategies. © 2014 WILEY PERIODICALS, INC.

  1. Production and Characterization of Radiation-Sensitive Meiotic Mutants of Coprinus Cinereus

    Science.gov (United States)

    Zolan, M. E.; Tremel, C. J.; Pukkila, P. J.

    1988-01-01

    We have isolated four γ-ray-sensitive mutants of the basidiomycete Coprinus cinereus. When homozygous, two of these (rad 3-1 and rad 9-1) produce fruiting bodies with very few viable basidiospores, the products of meiosis in this organism. A less radiation-sensitive allele of RAD 3, rad 3-2, causes no apparent meiotic defect in homozygous strains. Quantitative measurements of oidial survival of rad 3-1;rad 9-1 double mutants compared to the single mutants indicated that rad 3-1 and rad 9-1 mutants are defective in the same DNA repair pathway. In the few viable basidiospores that are produced by these two strains, essentially normal levels of meiotic recombination can be detected. None of the mutants exhibits increased sensitivity to UV radiation. Cytological examination of meiotic chromosomes from mutant and wild-type fruiting bodies showed that rad 3-1 homozygous strains fail to condense and pair homologous chromosomes during prophase I. Although rad 9-1 strains are successful at chromosome pairing, meiosis is usually not completed in these mutants. PMID:3197952

  2. Recovery of the wild type atomic flexibility in the HIV-1 protease double mutants.

    Science.gov (United States)

    De Conto, Valderes; Braz, Antônio S K; Perahia, David; Scott, Luis P B

    2015-06-01

    The emergence of drug resistant mutations due to the selective pressure exerted by antiretrovirals, including protease inhibitors (PIs), remains a major problem in the treatment of AIDS. During PIs therapy, the occurrence of primary mutations in the wild type HIV-1 protease reduces both the affinity for the inhibitors and the viral replicative capacity compared to the wild type (WT) protein, but additional mutations compensate for this reduced viral fitness. To investigate this phenomenon from the structural point of view, we combined Molecular Dynamics and Normal Mode Analysis to analyze and compare the variations of the flexibility of C-alpha atoms and the differences in hydrogen bond (h-bond) network between the WT and double mutants. In most cases, the flexibility profile of the double mutants was more often similar to that of the WT than to that of the related single base mutants. All single mutants showed a significant alteration in h-bond formation compared to WT. Most of the significant changes occur in the border between the flap and cantilever regions. We found that all the considered double mutants have their h-bond pattern significantly altered in comparison to the respective single base mutants affecting their flexibility profile that becomes more similar to that of WT. This WT flexibility restoration in the double mutants appears as an important factor for the HIV-1 fitness recovery observed in patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Atrial fibrillation-linked germline GJA5/connexin40 mutants showed an increased hemichannel function.

    Directory of Open Access Journals (Sweden)

    Yiguo Sun

    Full Text Available Mutations in GJA5 encoding the gap junction protein connexin40 (Cx40 have been linked to lone atrial fibrillation. Some of these mutants result in impaired gap junction function due to either abnormal connexin localization or impaired gap junction channels, which may play a role in promoting atrial fibrillation. However, the effects of the atrial fibrillation-linked Cx40 mutants on hemichannel function have not been studied. Here we investigated two atrial fibrillation-linked germline Cx40 mutants, V85I and L221I. These two mutants formed putative gap junction plaques at cell-cell interfaces, with similar gap junction coupling conductance as that of wild-type Cx40. Connexin deficient HeLa cells expressing either one of these two mutants displayed prominent propidium iodide-uptake distinct from cells expressing wild-type Cx40 or other atrial fibrillation-linked Cx40 mutants, I75F, L229M, and Q49X. Propidium iodide-uptake was sensitive to [Ca2+]o and the hemichannel blockers, carbenoxolone, flufenamic acid and mefloquine, but was not affected by the pannexin 1 channel blocking agent, probenecid, indicating that uptake is most likely mediated via connexin hemichannels. A gain-of-hemichannel function in these two atrial fibrillation-linked Cx40 mutants may provide a novel mechanism underlying the etiology of atrial fibrillation.

  4. Identification and characterization of tomato mutants affected in the Rx-mediated resistance to PVX isolates.

    Science.gov (United States)

    Sturbois, Bénédicte; Dubrana-Ourabah, Marie-Pierre; Gombert, Julie; Lasseur, Bertrand; Macquet, Audrey; Faure, Chantal; Bendahmane, Abdelhafid; Baurès, Isabelle; Candresse, Thierry

    2012-03-01

    Five tomato mutants affected in the Rx-mediated resistance against Potato virus X (PVX) were identified by screening a mutagenized population derived from a transgenic, Rx1-expressing 'Micro-Tom' line. Contrary to their parental line, they failed to develop lethal systemic necrosis upon infection with the virulent PVX-KH2 isolate. Sequence analysis and quantitative reverse-transcription polymerase chain reaction experiments indicated that the mutants are not affected in the Rx1 transgene or in the Hsp90, RanGap1 and RanGap2, Rar1 and Sgt1 genes. Inoculation with the PVX-CP4 avirulent isolate demonstrated that the Rx1 resistance was still effective in the mutants. In contrast, the virulent PVX-KH2 isolate accumulation was readily detectable in all mutants, which could further be separated in two groups depending on their ability to restrict the accumulation of PVX-RR, a mutant affected at two key positions for Rx1 elicitor activity. Finally, transient expression of the viral capsid protein elicitor indicated that the various mutants have retained the ability to mount an Rx1-mediated hypersensitive response. Taken together, the results obtained are consistent with a modification of the specificity or intensity of the Rx1-mediated response. The five Micro-Tom mutants should provide very valuable resources for the identification of novel tomato genes affecting the functioning of the Rx gene.

  5. Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction.

    Directory of Open Access Journals (Sweden)

    Sho W Suzuki

    2011-02-01

    Full Text Available Autophagy is a highly-conserved cellular degradation and recycling system that is essential for cell survival during nutrient starvation. The loss of viability had been used as an initial screen to identify autophagy-defective (atg mutants of the yeast Saccharomyces cerevisiae, but the mechanism of cell death in these mutants has remained unclear. When cells grown in a rich medium were transferred to a synthetic nitrogen starvation media, secreted metabolites lowered the extracellular pH below 3.0 and autophagy-defective mutants mostly died. We found that buffering of the starvation medium dramatically restored the viability of atg mutants. In response to starvation, wild-type (WT cells were able to upregulate components of the respiratory pathway and ROS (reactive oxygen species scavenging enzymes, but atg mutants lacked this synthetic capacity. Consequently, autophagy-defective mutants accumulated the high level of ROS, leading to deficient respiratory function, resulting in the loss of mitochondria DNA (mtDNA. We also showed that mtDNA deficient cells are subject to cell death under low pH starvation conditions. Taken together, under starvation conditions non-selective autophagy, rather than mitophagy, plays an essential role in preventing ROS accumulation, and thus in maintaining mitochondria function. The failure of response to starvation is the major cause of cell death in atg mutants.

  6. Isolation, characterization, and mapping of the stay green mutant in rice.

    Science.gov (United States)

    Cha, K.-W.; Lee, Y.-J.; Koh, H.-J.; Lee, B.-M.; Nam, Y.-W.; Paek, N.-C.

    2002-03-01

    Leaf color turns yellow during senescence due to the degradation of chlorophylls and photosynthetic proteins. A stay green mutant was isolated from the glutinous japonica rice Hwacheong- wx through N-methyl-N-nitrosourea mutagenesis. Leaves of the mutant remained green, while turning yellow in those of the wild-type rice during senescence. The stay green phenotype was controlled by a single recessive nuclear gene, tentatively symbolized as sgr(t). All the phenotypic characteristics of the mutant were the same as those of the wild-type lines except for the stay green trait. The leaf chlorophyll concentration of the mutant was similar to that of the wild-type before heading, but decreased steeply in the wild-type during grain filling, while very slowly in the mutant. However, no difference in photosynthetic activity was observed between the stay green mutant and the yellowing wild-type leaves, indicating that senescence is proceeding normally in the mutant leaves and that the mutation affects the rate of chlorophyll degradation during the leaf senescence. Using phenotypic and molecular markers, we mapped the sgr(t) locus to the long arm of chromosome 9 between RFLP markers RG662 and C985 at 1.8- and 2.1-cM intervals, respectively.

  7. A Medicago truncatula mutant hyper-responsive to mycorrhiza and defective for nodulation.

    Science.gov (United States)

    Morandi, Dominique; le Signor, Christine; Gianinazzi-Pearson, Vivienne; Duc, Gérard

    2009-08-01

    One key strategy for the identification of plant genes required for mycorrhizal development is the use of plant mutants affected in mycorrhizal colonisation. In this paper, we report a new Medicago truncatula mutant defective for nodulation but hypermycorrhizal for symbiosis development and response. This mutant, called B9, presents a poor shoot and, especially, root development with short laterals. Inoculation with Glomus intraradices results in significantly higher root colonisation of the mutant than the wild-type genotype A17 (+20% for total root length, +16% for arbuscule frequency in the colonised part of the root, +39% for arbuscule frequency in the total root system). Mycorrhizal effects on shoot and root biomass of B9 plants are about twofold greater than in the wild-type genotype. The B9 mutant of M. truncatula is characterised by considerably higher root concentrations of the phytoestrogen coumestrol and by the novel synthesis of the coumestrol conjugate malonyl glycoside, absent from roots of wild-type plants. In conclusion, this is the first time that a hypermycorrhizal plant mutant affected negatively for nodulation (Myc(++), Nod (-/+) phenotype) is reported. This mutant represents a new tool for the study of plant genes differentially regulating mycorrhiza and nodulation symbioses, in particular, those related to autoregulation mechanisms.

  8. Mutant IDH1 Downregulates ATM and Alters DNA Repair and Sensitivity to DNA Damage Independent of TET2

    National Research Council Canada - National Science Library

    Inoue, Satoshi; Li, Wanda Y; Tseng, Alan; Beerman, Isabel; Elia, Andrew J; Bendall, Sean C; Lemonnier, François; Kron, Ken J; Cescon, David W; Hao, Zhenyue; Lind, Evan F; Takayama, Naoya; Planello, Aline C; Shen, Shu Yi; Shih, Alan H; Larsen, Dana M; Li, Qinxi; Snow, Bryan E; Wakeham, Andrew; Haight, Jillian; Gorrini, Chiara; Bassi, Christian; Thu, Kelsie L; Murakami, Kiichi; Elford, Alisha R; Ueda, Takeshi; Straley, Kimberly; Yen, Katharine E; Melino, Gerry; Cimmino, Luisa; Aifantis, Iannis; Levine, Ross L; De Carvalho, Daniel D; Lupien, Mathieu; Rossi, Derrick J; Nolan, Garry P; Cairns, Rob A; Mak, Tak W

    2016-01-01

    ...) but their mechanism is not fully understood. It is thought that IDH1 mutants act by inhibiting TET2 to alter DNA methylation, but there are significant unexplained clinical differences between IDH1- and TET2-mutant diseases...

  9. Modified Starch of Sorghum Mutant Line Zh-30 for High Fiber Muffin Products

    Directory of Open Access Journals (Sweden)

    D.D.S. Santosa

    2009-01-01

    Full Text Available Sorghum mutant line Zh-30 is a breeding line developed at the Center for the Application of Isotope and Radiation Technology, BATAN by using mutation techniques. Gamma irradiation with the dose of 300 Gy was used to induce sorghum genetic variation. Through selection processes in several generations, the mutant line Zh-30 was identified to have better agronomic characteristics, better grain quality and higher grain yield than the original variety. Research on modified starch quality of this mutant line was done to identify its potential use in food industry. Functionality of pregelatinized, hydroxypropyl and crosslinked starch of this mutant line (Mutant TexInstant 30 has been studied for its use in high fiber muffin products. Characteristics of high fiber muffins containing 1.50; 3.50 and 5.50% of Mutant Tex-Instant 30 replacement levels to wheat flour were evaluated using both sensory panel and physical test methods. With regard to the sensory parameters, the high fiber muffins containing 1.50 - 5.50 % Mutant Tex-Instant 30 in general were not significantly different compared to the standard reference muffin. Results of physical evaluations showed that all Mutant Tex-Instant 30 containing products retained more moisture during baking than the standard reference. Tenderness of all products decreased at similar rate following 24 and 48 hr of room temperature storage and seven days at freezer temperature. These results suggested that sorghum mutant line Zh-30 starch could be modified and potentially used in food industry as a subtitute of wheat flour.

  10. Morphological Structure and Genetic Mapping of New Leaf-Color Mutant Gene in Rice (Oryza sativa

    Directory of Open Access Journals (Sweden)

    Yu-hong LI

    2012-06-01

    Full Text Available Leaf-color mutations are a widely-observed class of mutations, playing an important role in the study of chlorophyll biosynthesis and plant chloroplast structure, function, genetics and development. A naturally-occurring leaf-color rice mutant, Baihuaidao 7, was analyzed. Mutant plants typically exhibited a green-white-green leaf-color progression, but this phenotype was only expressed in the presence of a stress signal induced by mechanical scarification such as transplantation. Prior to the appearance of white leaves, mutant plant growth, leaf color, chlorophyll content, and chloroplast ultrastructure appeared to be identical to those of the wild type. After the changeover to white leaf color, an examination of the mutated leaves revealed a decrease in total chlorophyll, chlorophyll a, chlorophyll b, and carotenoid content, a reduction in the number of chloroplast grana lamella and grana, and a gradual degradation of the thylakoid lamellas. At maturity, the mutant plant was etiolated and dwarfed compared with wild-type plants. Genetic analysis indicated that the leaf mutant character is controlled by a recessive nuclear gene. Genetic mapping of the mutant gene was performed using an F2 population derived from a Baihuaidao 7 × Jiangxi 1587 cross. The mutant gene was mapped to rice chromosome 11, positioned between InDel markers L59.2-7 and L64.8-11, which are separated by approximately 740.5 kb. The mutant gene is believed to be a new leaf-color mutant gene in rice, and is tentatively designated as gwgl.

  11. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system

    Science.gov (United States)

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-01-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na+, (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na+/K+ homeostasis and hormonal balance. PMID:23299430

  12. Construction of a large-scale Burkholderia cenocepacia J2315 transposon mutant library

    Science.gov (United States)

    Wong, Yee-Chin; Pain, Arnab; Nathan, Sheila

    2014-09-01

    Burkholderia cenocepacia, a pathogenic member of the Burkholderia cepacia complex (Bcc), has emerged as a significant threat towards cystic fibrosis patients, where infection often leads to the fatal clinical manifestation known as cepacia syndrome. Many studies have investigated the pathogenicity of B. cenocepacia as well as its ability to become highly resistant towards many of the antibiotics currently in use. In addition, studies have also been undertaken to understand the pathogen's capacity to adapt and survive in a broad range of environments. Transposon based mutagenesis has been widely used in creating insertional knock-out mutants and coupled with recent advances in sequencing technology, robust tools to study gene function in a genome-wide manner have been developed based on the assembly of saturated transposon mutant libraries. In this study, we describe the construction of a large-scale library of B. cenocepacia transposon mutants. To create transposon mutants of B. cenocepacia strain J2315, electrocompetent bacteria were electrotransformed with the EZ-Tn5 transposome. Tetracyline resistant colonies were harvested off selective agar and pooled. Mutants were generated in multiple batches with each batch consisting of ˜20,000 to 40,000 mutants. Transposon insertion was validated by PCR amplification of the transposon region. In conclusion, a saturated B. cenocepacia J2315 transposon mutant library with an estimated total number of 500,000 mutants was successfully constructed. This mutant library can now be further exploited as a genetic tool to assess the function of every gene in the genome, facilitating the discovery of genes important for bacterial survival and adaptation, as well as virulence.

  13. Polypeptone induces dramatic cell lysis in ura4 deletion mutants of fission yeast.

    Directory of Open Access Journals (Sweden)

    Yuzy Matsuo

    Full Text Available Polypeptone is widely excluded from Schizosaccharomyces pombe growth medium. However, the reasons why polypeptone should be avoided have not been documented. Polypeptone dramatically induced cell lysis in the ura4 deletion mutant when cells approached the stationary growth phase, and this phenotype was suppressed by supplementation of uracil. To determine the specificity of this cell lysis phenotype, we created deletion mutants of other genes involved in de novo biosynthesis of uridine monophosphate (ura1, ura2, ura3, and ura5. Cell lysis was not observed in these gene deletion mutants. In addition, concomitant disruption of ura1, ura2, ura3, or ura5 in the ura4 deletion mutant suppressed cell lysis, indicating that cell lysis induced by polypeptone is specific to the ura4 deletion mutant. Furthermore, cell lysis was also suppressed when the gene involved in coenzyme Q biosynthesis was deleted. This is likely because Ura3 requires coenzyme Q for its activity. The ura4 deletion mutant was sensitive to zymolyase, which mainly degrades (1,3-beta-D glucan, when grown in the presence of polypeptone, and cell lysis was suppressed by the osmotic stabiliser, sorbitol. Finally, the induction of cell lysis in the ura4 deletion mutant was due to the accumulation of orotidine-5-monophosphate. Cell wall integrity was dramatically impaired in the ura4 deletion mutant when grown in the presence of polypeptone. Because ura4 is widely used as a selection marker in S. pombe, caution needs to be taken when evaluating phenotypes of ura4 mutants.

  14. Reduced arbuscular mycorrhizal colonization in tomato ethylene mutants Reduzida formação de micorrízas arbusculares em tomateiros mutantes em etileno

    Directory of Open Access Journals (Sweden)

    Agustin Zsögön

    2008-01-01

    Full Text Available Plant hormones are likely key regulators of arbuscular mycorrhizae (AM development. However, their roles in AM are not well known. Here mutants in five hormone classes introgressed in a single tomato (Lycopersicon esculentum Mill. Syn Solanum lycopersicum L. background (cv. Micro-Tom were used to determine their effects on AM development and the expression of defense-related genes (chitinases and b-1,3-glucanases in roots. Under low P conditions, mutant epinastic (epi and Never ripe (Nr, ethylene overproducer and low sensitivity, respectively, had the intraradical colonization by Glomus clarum highly inhibited, as compared to the control Micro-Tom (MT. No significant alterations in fungal colonization were observed in mutants affecting other hormone classes. Under low P conditions, the steady state levels of transcripts encoding a class I basic chitinase (chi9 were higher in mycorrhizal epi and Nr mutant roots as compared to MT controls. In contrast the steady state levels of a class III acidic b-1,3-glucanase (TomPR-Q'a transcripts in mycorrhizal epi mutant roots were significantly lower than in mycorrhizal MT roots. Root colonization in epi mutants was accompanied by several alterations in fungal morphology, as compared to root colonization in MT controls. The data suggest that ethylene may play an important role in controlling intraradical arbuscular mycorrhizal fungal growth.Os hormônios vegetais são possíveis reguladores chave do desenvolvimento de micorrizas arbusculares (MAS. Contudo, seus papéis em MA são pouco conhecidos. No presente estudo, foram utilizados mutantes em cinco classes hormonais introgredidos em uma única cultivar (cv. Micro-Tom de tomateiro (Lycopersicon esculentum Mill. Syn Solanum lycopersicum L. para determinar seus efeitos no desenvolvimento de MA e expressão de genes relacionados à defesa (quitinases e b-1,3-glucanases em raízes. Sob condição de baixo P, os mutantes epinastic (epi e Never ripe (Nr, os

  15. Hepatitis B surface gene 145 mutant as a minor population in hepatitis B virus carriers

    Directory of Open Access Journals (Sweden)

    Komatsu Haruki

    2012-01-01

    Full Text Available Abstract Background Hepatitis B virus (HBV can have mutations that include the a determinant, which causes breakthrough infection. In particular, a single mutation at amino acid 145 of the surface protein (G145 is frequently reported in the failure of prophylactic treatment. The aim of this study was to evaluate the frequency of the a determinant mutants, especially the G145 variant, in Japan, where universal vaccination has not been adopted. Methods The present study was a retrospective study. The study cohorts were defined as follows: group 1, children with failure to prevent mother-to-child transmission despite immunoprophylaxis (n = 18, male/female = 8/10, age 1-14 years; median 6 years; group 2, HBV carriers who had not received vaccination or hepatitis B immunoglobulin (n = 107, male/female = 107, age 1-52 years; median 16 years. To detect the G145R and G145A mutants in patients, we designed 3 probes for real-time PCR. We also performed direct sequencing and cloning of PCR products. Results By mutant-specific real-time PCR, one subject (5.6% was positive for the G145R mutant in group 1, while the G145 mutant was undetectable in group 2. The a determinant mutants were detected in one (5.6% of the group 1 subjects and 10 (9.3% of the group 2 subjects using direct sequencing, but direct sequencing did not reveal the G145 mutant as a predominant strain in the two groups. However, the subject who was positive according to the mutant-specific real-time PCR in group 1 had overlapped peaks at nt 587 in the electropherogram. In group 2, 11 patients had overlapped peaks at nt 587 in the electropherogram. Cloning of PCR products allowed detection of the G145R mutant as a minor strain in 7 (group 1: 1 subject, group 2: 6 subjects of 12 subjects who had overlapped peaks at nt 587 in the electropherogram. Conclusions The frequency of the a determinant mutants was not high in Japan. However, the G145R mutant was often present as a minor population in

  16. Un Nuevo Enfoque en el Estudio de la Esporotricosis: Mutantes de Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    Haydee Torres-Guerrero

    2012-02-01

    Full Text Available Una cepa silvestre y cepas mutantes de Sporothrix schenckii, se han estudiado como un modelo experimental de los procesos de diferenciación y desarrollo que se presentan al ser invadidas las células huésped y causar la esporotricosis. Las cepas mutantes de S. schenckii fueron obtenidas por exposición a la luz ultravioleta y Nitrosoguanidina. Las mutantes morfológicas M-III y M-V fueron seleccionadas. Estas mutantes muestran una alteración colonial y un mayor desarrollo que las cepas silvestres. Además, las mutantes presentan mayor adhesión al sustrato. El análisis de componentes de la pared celular y la distribución de núcleos, indican que no existen diferencias significativas que implique un daño por la mutación. Los resultados indican que en las mutantes morfológicas existe una alteración en el patrón de crecimiento y su regulación. Son necesarios, estudios bioquímicos e inmunológicos, relacionados con la virulencia S. schenckii que puedan ser útiles en el diagnóstico y en un futuro contribuyan a medidas preventivas para la esporotricosis. A wild-type strain and mutant strain of Sporothrix schenckii were studied as an experimental model in the process of differentiation and development which occurs when the host cell is invaded causing sporotrichosis. The mutant strains of S. schenckii were obtained by exposure to ultraviolet light and Nitrosoguanidine. The morphological mutants M-III and M-V were selected. These mutants showed a colonial alteration and a higher growth rate than the wild-type strains. Moreover, the mutants showed greater adhesion to the substratum. An analysis of the components of the cell wall and the distribution of nuclei indicate that significant differences do not exist which involve damage by mutation. The results suggest that in morphological mutants there is an alteration of growth and its regulation in the host cell. Biochemical and immunological studies related to the virulence of S. schenkii are

  17. Sperm morphogenesis in wild-type and fertilization-defective mutants of Caenorhabditis elegans

    Science.gov (United States)

    1981-01-01

    Taking advantage of conditions that allow spermatogenesis in vitro, the timing and sequence of morphological changes leading from the primary spermatocyte to the spermatozoon is described by light and electron microscopy. Together with previous studies, this allows a detailed description of the nuclear, cytoplasmic, and membrane changes occurring during spermatozoan morphogenesis. By comparison with wild type, abnormalities in spermatogenesis leading to aberrant infertile spermatozoa are found in six fertilization-defective (fer) mutants. In fer-1 mutant males, spermatids appear normal, but during spermiogenesis membranous organelles (MO) fail to fuse with the sperm plasma membrane and a short, though motile. pseudopod is formed. In fer-2, fer-3, and fer-4 mutants, spermatids accumulate 48-nm tubules around their nuclei where the centriole and an RNA containing perinuclear halo would normally be. In all three mutants, spermatids still activate to spermatozoa with normal fusion of their MOs, but the pseudopods formed are aberrant in most fer-2 and fer-4 spermatozoa and in some fer-3 spermatozoa. In fer-5 mutant males, spermatozoa do not form. Instead, defective spermatids with crystalline inclusions and abnormal internal laminar membranes accumulate. In fer-6 mutant males, only a few spermatozoa form and these have defective pseudopods. These spermatozoa retain their fibrous bodies, a structure which normally disassembles in the spermatid. The time of appearance of developmental abnormalities in all of these mutants correlates with the temperature-sensitive periods for development of infertility. The observation that each of these mutants has a different and discreet set of morphological defects, a structure which normally disassembles in the spermatid. The time of appearance of developmental abnormalities in all of these mutants correlates with the temperature-sensitive periods for development of infertility. The observation that each of these mutants has a

  18. The bps signal: embryonic arrest from an auxin-independent mechanism in bypass triple mutants.

    Science.gov (United States)

    Lee, Dong-Keun; Sieburth, Leslie E

    2012-06-01

    Long-distance signaling is essential for coordination of plant development and environmental responses. We originally isolated a tiny mutant named bypass1 (bps1), which has defects in shoot and root development. The bps1 roots overproduce a mobile signal (bps signal) that arrests both root and shoot development. Our recent study demonstrated that all three BPS gene family members prevent ectopic synthesis of the same bps signal.bps multiple mutants show progressively more severe developmental defects. An embryogenesis analysis revealed abnormal cell divisions in all meristem lineages of bps triple mutants. These defects appear to be auxin independent, and arise prior to changes in PLT1 and PLT2 expression.

  19. Biochemical and genetic characterization of a carbamyl phosphate synthetase mutant of Escherichia coli K12.

    Science.gov (United States)

    Bolivar, F; Galván, M; Martuscelli, J

    1976-05-01

    An unusual Escherichia coli K12 mutant for carbamyl phosphate synthetase is described. The mutation was generated by bacteriophage MUI insertion and left a 5% residual activity of the enzyme using either ammonia or glutamine as donors. The mutation is recessive to the wild-type allele and maps at or near the pyrA gene, but the mutant requires only arginine and not uracil for growth. By a second block in the pyrB gene it was possible to shift the accumulated carbamyl phosphate to arginine biosynthesis. The Km values and the levels of ornithine activation and inhibition by UMP were normal in the mutant enzyme.

  20. Functional alterations in the olfactory bulb of the staggerer mutant mouse.

    Science.gov (United States)

    Michel, V; Monnier, Z; Guastavino, J M; Propper, A; Math, F

    2000-02-11

    Putative alterations of the functional activity in the staggerer mutant mouse olfactory bulb neuronal network have been studied by recording odor induced evoked field potentials (EFP) in the mitral cells layer. In standard conditions, the main feature observed in mutants was a significant increase in latency preceding the functional response of the mitral cells to the odorant. In these animals, all parameters of the average EFP were widely modified when compared with those recorded in wild mice. Amplitudes and most of the duration of the EFP phases were significantly decreased. Functional alterations were discussed according to the structural disorganization previously described in staggerer mutant mouse olfactory bulb.

  1. Effects of the rearing temperature on the temporal feeding pattern of the staggerer mutant mouse.

    Science.gov (United States)

    Guastavino, J M; Bertin, R; Portet, R

    1991-02-01

    The temporal feeding pattern of the staggerer mutant mouse was tested under two thermal rearing conditions, 28 degrees C and 22 degrees C, and compared to that of the normal mouse. At a temperature of 28 degrees C, the mutants were observed to eat more than the normal mice did although they showed a drastic body weight deficit. At 22 degrees C, this peculiarity was still observed, but with an altered feeding pattern, wherein the mutants ate as much during both the dark and light phases.

  2. Brewing properties of clotrimazole-resistant mutants isolated from sake yeast.

    OpenAIRE

    広畑, 修二; 渡辺, 睦; 西村, 顕; 近藤, 恭一; SHUJI, HIROHATA; MUTSUMI, WATANABE; AKIRA, NISHIMURA; KYOICHI, KONDO; 白鶴酒造(株)研究室; 白鶴酒造(株)研究室; 白鶴酒造(株)研究室; 白鶴酒造(株)研究室; Research Laboratory, Hakutsuru Sake Brewing Co., Ltd.,; Research Laboratory, Hakutsuru Sake Brewing Co., Ltd.,; Research Laboratory, Hakutsuru Sake Brewing Co., Ltd.,

    1994-01-01

    High fermentative activity mutants were selected from among sake yeast mutants resistant to clotrimazole(CTZ)by means of small-scale sake brewing tests. CTZ239 had the highest fermentative activity among these mutants, and the sake brewed with it was of good quality. Industrial-scale brewing tests were conducted with CTZ239 and the parent strain K1001. With CTZ239 the decrease in specific gravity and production of alcohol were so rapid that the fermentation of the sake mash was accomplished i...

  3. Filtration enrichment method for isolation of auxotrophic mutants of Trichoderma harzianum rifai

    OpenAIRE

    Cassiolato, Ana Maria R. [UNESP; Itamar Soares de Melo

    1999-01-01

    The isolation of genetic markers, like drug resistance and auxotrophy, is a laborious but important step in genetic research. The isolation of auxotrophic mutants of Trichoderma harzianum using the filtration enrichment technique was more effective than using the total isolation technique. Most of 12 auxotrophic mutants exhibited similar growth rate and higher sporulation when compared with the wild type, but only two mutants (TWS-410 and TW5-523) could grow in 500µg/L of benomyl.A obtenção d...

  4. Enzymatic Characterization of a Mutant of Escherichia coli with an Altered DNA Ligase

    Science.gov (United States)

    Modrich, Paul; Lehman, I. R.

    1971-01-01

    A temperature-sensitive, radiation-sensitive mutant of Escherichia coli has been assayed for DNA ligase activity in vitro. The strain contains a markedly reduced amount of DNA-joining activity, which is thermolabile. The formation of the ligase-adenylate intermediate is also temperature-sensitive in vitro. Two temperature-resistant revertants of the mutant contain normal amounts of a thermostable ligase. The mutant is killed by growth at 42°C, a temperature at which it displays aberrant DNA synthesis. These results suggest that the ligase is necessary for normal DNA metabolism and viability in this strain. PMID:4995816

  5. PHENOTYPIC ANALYSIS OF OsTPKb LOSS OF FUNCTION MUTANT RICE LINES

    Directory of Open Access Journals (Sweden)

    Isayenkov S. V.

    2015-08-01

    Full Text Available The results of screen and analysis of two OsTPKb rice mutant lines were described. The phenotypes and growth rate level of homozygous mutant plants of both rice lines were estimated. The electron microscopy of aleurone layer from forming seeds was performed. The OsTPKb mutant plants demonstrate lower growth rate in comparison with wild type plants. The loss of function OsTPKb mutations invariably led to (semisterile rice plants. The functional disruption of OsTPKb channel has negative impact on plant growth and development. It might completely change the cell morphology of aleurone layer.

  6. Temperature regulates expression of the Drosophila vestigial gene only in mutant wing discs.

    Science.gov (United States)

    Silber, J; Flagiello, D; Cossard, R; Zider, A; Becker, J L

    1997-10-01

    All Vestigial mutants in Drosophila melanogaster display a thermosensitive phenotype, with the exception of two which disrupt an intronic wing-specific enhancer element. Here we report a very unusual transcriptional regulation; temperature changes are associated with alterations in the level of vg expression only in the wing disc of thermosensitive mutant flies and not in the brain. No effect is observed in the wild-type strain. The tissue specificity of the temperature effect indicates an involvement of the intronic wing-specific enhancer element in determining the thermosensitivity of mutants.

  7. Determining mutant spectra of three RNA viral samples using ultra-deep sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H

    2012-06-06

    RNA viruses have extremely high mutation rates that enable the virus to adapt to new host environments and even jump from one species to another. As part of a viral transmission study, three viral samples collected from naturally infected animals were sequenced using Illumina paired-end technology at ultra-deep coverage. In order to determine the mutant spectra within the viral quasispecies, it is critical to understand the sequencing error rates and control for false positive calls of viral variants (point mutantations). I will estimate the sequencing error rate from two control sequences and characterize the mutant spectra in the natural samples with this error rate.

  8. A new mutant, White larva, of the mosquito Toxorhynchites splendens: genetics and cannibalism.

    Science.gov (United States)

    Horio, M; Tsukamoto, M; Miyagi, I

    1990-09-01

    A strain of a new body-color mutant, white larva (wl), was established from a field-collected wild-type strain of Toxorhynchites splendens. The mutant can be distinguished from the wild type in both the larval and pupal stages, but not in the adult. Crossing experiments confirmed its mode of inheritance to be a single recessive system. This is the first visible mutant found in Tx. splendens. Larvae of the wl phenotype seem to be recognized as prey by other individuals in mass larvae rearing.

  9. Detection of sensitive and mutant ruminal bacteria isolates from sheep, cattle, and buffalo using 14 therapeutic antibiotics

    OpenAIRE

    SALEM, Abdelfattah Zeidan Mohamed; JIMENEZ, Roberto Montes de OCA; CERRILLO-SOTO, Maria Andrea

    2015-01-01

    In the present study, sensitive and mutant colonies of some ruminal bacterial species isolated from sheep, cattle, and buffalo were detected. We counted and considered \\"mutant colonies\\" the bacterial colonies grown in the clear inhibition zone in the Kirby-Bauer disk diffusion susceptibility test. Detected mutant colonies were higher in buffalo than in cattle and sheep. Duricef and metronidazole caused no mutations in any species. The others formed mutant colonies, where r...

  10. Tissue and protoplast culture studies in Lycopersicon esculentum miller var. flammatum lehm. cv. 'Bonner Beste' and its mutant chloronerva.

    Science.gov (United States)

    Koblitz, H; Koblitz, D

    1983-08-01

    Methods of shoot and plant development from cotyledon explants of the tomato cultivar 'Bonner Beste' and its mutant chloronerva are described. Cotyledon mesophyll protoplasts of the mutant chloronerva have been isolated and cultured, and induced to regenerate shoots and plants. By grafting regenerated shoots of the chloronerva mutant on rootstocks of the cultivar 'Bonner Beste' plants were obtained producing fruits and seeds. Plants derived from these seeds show all the typical characteristics of the chloronerva mutant.

  11. Fermentation of lignocellulosic sugars to ethanol: selection of mutants of Pichia stipitis affected for D-glucose utilization

    Energy Technology Data Exchange (ETDEWEB)

    Laplace, J.M.; Delgenes, J.P.; Moletta, R. (Institut National de la Recherche Agronomique, Lab. de Biotechnologie de l' Environnement des IAA, Station d' Oenologie et de Technologie des Produits Vegetaux, Narbonne (FR)); Navarro, J.M. (Montpellier-2 Univ., 34 (France))

    1992-08-01

    Mutants of the xylose-fermenting yeast Pichia stipitis exhibiting a decreased ability to convert glucose to ethanol were obtained by mutagenesis with UV light. Mutants were isolated by replica-plating onto complete medium containing either D-galactose or D-glucose as carbon source. Mutants showing a reduction of growth on glucose were further tested for their ability to still use xylose. Finally, the kinetic behaviour of six mutant strains grown on glucose and xylose is presented. (author).

  12. Pregnancy Hyperglycemia in Prolactin Receptor Mutant, but Not Prolactin Mutant, Mice and Feeding-Responsive Regulation of Placental Lactogen Genes Implies Placental Control of Maternal Glucose Homeostasis.

    Science.gov (United States)

    Rawn, Saara M; Huang, Carol; Hughes, Martha; Shaykhutdinov, Rustem; Vogel, Hans J; Cross, James C

    2015-09-01

    Pregnancy is often viewed as a conflict between the fetus and mother over metabolic resources. Insulin resistance occurs in mothers during pregnancy but does not normally lead to diabetes because of an increase in the number of the mother's pancreatic beta cells. In mice, this increase is dependent on prolactin (Prl) receptor signaling but the source of the ligand has been unclear. Pituitary-derived Prl is produced during the first half of pregnancy in mice but the placenta produces Prl-like hormones from implantation to term. Twenty-two separate mouse genes encode the placenta Prl-related hormones, making it challenging to assess their roles in knockout models. However, because at least four of them are thought to signal through the Prl receptor, we analyzed Prlr mutant mice and compared their phenotypes with those of Prl mutants. We found that whereas Prlr mutants develop hyperglycemia during gestation, Prl mutants do not. Serum metabolome analysis showed that Prlr mutants showed other changes consistent with diabetes. Despite the metabolic changes, fetal growth was normal in Prlr mutants. Of the four placenta-specific, Prl-related hormones that have been shown to interact with the Prlr, their gene expression localizes to different endocrine cell types. The Prl3d1 gene is expressed by trophoblast giant cells both in the labyrinth layer, sitting on the arterial side where maternal blood is highest in oxygen and nutrients, and in the junctional zone as maternal blood leaves the placenta. Expression increases during the night, though the increase in the labyrinth is circadian whereas it occurs only after feeding in the junctional zone. These data suggest that the placenta has a sophisticated endocrine system that regulates maternal glucose metabolism during pregnancy. © 2015 by the Society for the Study of Reproduction, Inc.

  13. Heat Survival and Phenotype Microarray Profiling of Salmonella Typhimurium Mutants.

    Science.gov (United States)

    Dawoud, Turki M; Khatiwara, Anita; Park, Si Hong; Davis, Morgan L; Baker, Christopher A; Ricke, Steven C; Kwon, Young Min

    2017-02-01

    Contamination of food products by pathogenic microorganisms continues to be a major public health and food industry concern. Non-typhoidal Salmonella species have led to numerous outbreaks associated with various foods. A wide variety of methods have been applied and introduced for treatment of fresh foods to eliminate pathogenic as well as spoilage microorganisms. Salmonella can become exposed to elevated temperatures while associated with hosts such as poultry. In addition, heat treatment is also applied at various stages of processing to retain the shelf life of food products. Despite this, these microorganisms may overcome exposure to such treatments through the efficient expression of stress response mechanisms and result in illness following consumption. Thermal stress induces a range of destructive exposures to bacterial cells such as protein damage and DNA damage caused by reactive oxygen species. In this study, we chose three genes (∆recD, ∆STM14_5307, and ∆aroD) associated with conditionally essential genes required for different aspects of optimal growth at 42 °C and evaluated the responses of wild type and mutant Salmonella Typhimurium strains to uncover potential mechanisms that may enable survival and resistance under thermal stress. The RecBCD complex that initiates repair of double-stranded DNA breaks through homologous recombination. STM14_5307 is a transcriptional regulator involved in stationary phase growth and inositol metabolism. The gene aroD is involved in metabolism and stationary phase growth. These strains were characterized via high throughput phenotypic profiling in response to two different growth temperatures (37 °C (human host temperature) and 42 °C (poultry host temperature)). The ∆aroD strain exhibited the highest sensitivity to the various temperatures followed by the ∆recD and ∆STM14_5307 strains, respectively. Achieving more understanding of the molecular mechanisms of heat survival may lead to the development

  14. Mutant DLX 3 disrupts odontoblast polarization and dentin formation

    Science.gov (United States)

    Choi, S.J.; Song, I.S.; Feng, J.Q.; Gao, T.; Haruyama, N.; Gautam, P.; Robey, P.G.; Hart, Thomas C.

    2010-01-01

    Tricho-dento-osseous (TDO) syndrome is an autosomal dominant disorder characterized by abnormalities in the thickness and density of bones and teeth. A 4-bp deletion mutation in the Distal-Less 3 (DLX3) gene is etiologic for most cases of TDO. To investigate the in vivo role of mutant DLX3 (MT-DLX3) on dentin development, we generated transgenic (TG) mice expressing MT-DLX3 driven by a mouse 2.3 Col1A1 promoter. Dentin defects were radiographically evident in all teeth and the size of the nonmineralized pulp was enlarged in TG mice, consistent with clinical characteristics in patients with TDO. High-resolution radiography, microcomputed tomography, and SEM revealed a reduced zone of mineralized dentin with anomalies in the number and organization of dentinal tubules in MT-DLX3 TG mice. Histological and immunohistochemical studies demonstrated that the decreased dentin was accompanied by altered odontoblast cytology that included disruption of odontoblast polarization and reduced numbers of odontoblasts. TUNEL assays indicated enhanced odontoblast apoptosis. Expression levels of the apoptotic marker caspase-3 were increased in odontoblasts in TG mice as well as in odontoblastic-like MDPC-23 cells transfected with MT-DLX3 cDNA. Expression of Runx2, Wnt 10A, and TBC1D19 colocalized with DLX3 expression in odontoblasts, and MT-DLX3 significantly reduced expression of all three genes. TBC1D19 functions in cell polarity and decreased TBC1D19 expression may contribute to the observed disruption of odontoblast polarity and apoptosis. These data indicate that MT-DLX3 acts to disrupt odontoblast cytodifferentiation leading to odontoblast apoptosis, and aberrations of dentin tubule formation and dentin matrix production, resulting in decreased dentin and taurodontism. In summary, this TG model demonstrates that MT-DLX3 has differential effects on matrix production and mineralization in dentin and bone and provides a novel tool for the investigation of odontoblast biology

  15. A methodology for evaluation of parent-mutant competition using a generalized non-linear ecosystem model

    Science.gov (United States)

    Raymond L. Czaplewski

    1973-01-01

    A generalized, non-linear population dynamics model of an ecosystem is used to investigate the direction of selective pressures upon a mutant by studying the competition between parent and mutant populations. The model has the advantages of considering selection as operating on the phenotype, of retaining the interaction of the mutant population with the ecosystem as a...

  16. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene

    NARCIS (Netherlands)

    Soppe, W.J.J.; Jacobsen, S.E.; Alonso-Blanco, C.; Jackson, J.P.; Kakutani, T.; Koornneef, M.; Peeters, A.J.M.

    2000-01-01

    The transition to flowering in Arabidopsis thaliana is delayed in fwa mutant plants. FWA was identified by loss-of-function mutations in normally flowering revertants of the fwa mutant, and it encodes a homeodomain-containing transcription factor. The DNA sequence of wild-type and fwa mutant alleles

  17. What can long-lived mutants tell us about mechanisms causing aging and lifespan variation in natural environments?

    NARCIS (Netherlands)

    Briga, Michael; Verhulst, Simon

    2015-01-01

    Long-lived mutants of model organisms have brought remarkable progress in our understanding of aging mechanisms. However, long-lived mutants are usually maintained in optimal standardized laboratory environments (SLEs), and it is not obvious to what extent insights from long-lived mutants in SLEs

  18. Transposon Tn5 mutagenesis of pseudomonas fluorescens to isolate mutants deficient in antibacterial activity.

    Science.gov (United States)

    Rajendran, N; Jahn, D; Jayaraman, K; Marahiel, M A

    1994-01-15

    Pseudomonas fluorescens was subjected to insertion mutagenesis studies using the transposon Tn5-GM to generate mutants deficient in antibacterial activity minus mutants. The transposon located on the temperature-sensitive plasmid pCHR84 was conjugally transferred into the non-pathogenic pseudomonad using the triparental mating procedure. Random integration of Tn5-GM into the chromosome of P. fluorescens was achieved by heat treatment of the transformed cells at 42 degrees C. Approximately 2% of transconjugants revealed an auxotrophic phenotype indicating efficient integration of the employed transposon into the chromosome of P. fluorescens. One transposon insertion mutant was obtained showing an antibacterial activity minus phenotype. This mutant (MM-7) was found to be defective in the production of an unidentified antibacterial compound against B. subtilis. These results introduce Tn5 transposon mutagenesis as a new useful tool for the molecular analysis of P. fluorescens.

  19. Structural Change of Site-Directed Mutants of PYP: New Dynamics during pR State

    National Research Council Canada - National Science Library

    Takeshita, Kan; Imamoto, Yasushi; Kataoka, Mikio; Mihara, Ken’ichi; Tokunaga, Fumio; Terazima, Masahide

    2002-01-01

    The energetics, protein dynamics, and diffusion coefficients of three mutants of photoactive yellow protein, R52Q, P68A, and W119G, were studied by the transient grating and pulsed laser-induced photoacoustic method...

  20. Morphology, physiology, genetics, enigmas, and status of an extremely rare tree: Mutant tanoak

    Science.gov (United States)

    Philip M. McDonald; Jianwei Zhang; Randy S. Senock; Jessica W. Wright

    2013-01-01

    Important physical characteristics, morphological attributes, physiological functions, and genetic properties of mutant tanoak, Notholithocarpus densiflorus f. attenuato-dentatus (Fagaceae), and normal tanoak, Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S. H. Oh, were studied on the Challenge...

  1. A new conditional Apc-mutant mouse model for colorectal cancer

    NARCIS (Netherlands)

    E.C. Robanus-Maandag (Els); P.J. Koelink (Pim); C. Breukel (Cor); D.C.F. Salvatori (Daniela); S.C. Jagmohan-Changur (Shantie); C.A.J. Bosch (Cathy); H.W. Verspaget; P. Devilee (Peter); R. Fodde (Riccardo); M.J.M. Smits (Ron)

    2010-01-01

    textabstractMutations of the adenomatous polyposis coli (APC) gene predispose individuals to familial adenomatous polyposis (FAP), characterized by multiple tumours in the large intestine. Most mouse models heterozygous for truncating mutant Apc alleles mimic FAP, however, the intestinal tumours

  2. Enhanced lipid production in thermo-tolerant mutants of Chlorella pyrenoidosa NCIM 2738.

    Science.gov (United States)

    Sachdeva, Neha; Gupta, Ravi Prakash; Mathur, Anshu Shankar; Tuli, Deepak Kumar

    2016-12-01

    The present study aimed to develop thermo-tolerant mutants of Chlorella pyrenoidosa NCIM 2738 for high lipids production. For this, ethyl methane sulfonate was used, which generated two effective thermo-tolerant mutants, M18 and M24 of Chlorella pyrenoidosa NCIM 2738, capable of surviving at temperature up to 47°C and showing improved lipid and biomass yields. They showed 59.62% and 50.75% increase, respectively in lipid content compared to wild type at 30°C, which could not grow at temperature above 35°C. The novelty of this study lied in incorporation of PAM Flurometry with mutagenesis to generate thermo-tolerant mutants of C. pyrenoidosa and investigating the reasons for increased yields of mutants at cellular and photosynthetic levels with the aim to use them for commercial biodiesel production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Mutant breeding of Serratia marcescens strain for enhancing prodigiosin production and application to textiles.

    Science.gov (United States)

    Liu, Xiaoxia; Wang, Yujie; Sun, Shiqing; Zhu, Changjun; Xu, Wei; Park, Yongdoo; Zhou, Haimeng

    2013-01-01

    Microwaves have been used as a mutant agent to select mutant strains with high-yield and high-purity pigment. Mass spectrometry and nuclear magnetic resonance spectroscopic techniques were used to elucidate the structures of the pigment. High-performance liquid chromatography was used to measure pigment purity. The analysis of the mutant strain showed that pigment yield increased by 109% and was 98% pure. Prodigiosin in ethanol solution had good stability under ambient temperature and natural indoor light. However, prodigiosin rapidly decomposed under intense sunlight. Prodigiosin is an ecological colorant to dye fabrics, including synthetic and natural fibers. Synthetic fabrics dyed with prodigiosin, such as polyamide and acrylic, have high colorfastness to washing (≥4th grade) and antimicrobial properties (>90%) against Escherichia coli and Staphylococcus aureus. Antimicrobial properties were significantly different between synthetic and natural fabrics. The mutant strain Serratia marcescens jx1-1, with high prodigiosin yield and purity, has promising prospects in food, cosmetic, and textile industries.

  4. A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis.

    Science.gov (United States)

    Adorno, Maddalena; Cordenonsi, Michelangelo; Montagner, Marco; Dupont, Sirio; Wong, Christine; Hann, Byron; Solari, Aldo; Bobisse, Sara; Rondina, Maria Beatrice; Guzzardo, Vincenza; Parenti, Anna R; Rosato, Antonio; Bicciato, Silvio; Balmain, Allan; Piccolo, Stefano

    2009-04-03

    TGFbeta ligands act as tumor suppressors in early stage tumors but are paradoxically diverted into potent prometastatic factors in advanced cancers. The molecular nature of this switch remains enigmatic. Here, we show that TGFbeta-dependent cell migration, invasion and metastasis are empowered by mutant-p53 and opposed by p63. Mechanistically, TGFbeta acts in concert with oncogenic Ras and mutant-p53 to induce the assembly of a mutant-p53/p63 protein complex in which Smads serve as essential platforms. Within this ternary complex, p63 functions are antagonized. Downstream of p63, we identified two candidate metastasis suppressor genes associated with metastasis risk in a large cohort of breast cancer patients. Thus, two common oncogenic lesions, mutant-p53 and Ras, selected in early neoplasms to promote growth and survival, also prefigure a cellular set-up with particular metastasis proclivity by TGFbeta-dependent inhibition of p63 function.

  5. Effects of cold acclimation on the energetic metabolism of the staggerer mutant mouse.

    Science.gov (United States)

    Bertin, R; Guastavino, J M; Portet, R

    1990-02-01

    Staggerer mutant mice are lean despite their hyperphagia. Brown adipose tissue activity may be implicated in this phenomenon. The aim of this work is to determine the energetic metabolism and to detail some characteristics of the brown adipose tissue of Staggerer mutant mice born and reared either at 28 degrees C (within the thermoneutral zone) or 22 degrees C (cold temperature) compared to nonmutant control mice. In mutant mice reared at thermoneutrality the resting metabolism was found to be higher than that of controls, and further the activity of the brown adipose tissue increased as indicated in relative mass, composition and cytochrome oxydase activity. A stimulatory effect of cold exposure was observed in both mutant and nonmutant mice. It is suggested that Staggerer mice may provide a good model for the study of the cold-induced or diet-induced mechanisms of brown fat stimulation.

  6. Total Abdominal F-18-FDG Uptake Reflects Intestinal Adenoma Burden in Apc Mutant Mice

    NARCIS (Netherlands)

    Heijink, Dianne M.; Kleibeuker, Jan H.; Nagengast, Wouter B.; Oosterhuis, Dorenda; Brouwers, Adrienne H.; Koornstra, Jan J.; de Jong, Steven; de Vries, Elisabeth G. E.

    2011-01-01

    Apc mutant (Apc(Min)) mice develop multiple adenomas in their intestines and are widely used to study colorectal carcinogenesis and chemopreventive approaches. Molecular imaging of intestinal adenomas could potentially provide noninvasive longitudinal evaluation of these lesions in living mice.

  7. A mutant sialidase having trans-sialidase activity for use in production of sialylated glycans

    DEFF Research Database (Denmark)

    2014-01-01

    galacto-oligosaccharides (GOS), fructo-oligosaccharides (FOS), malto-oligosaccharides (MOS), isomalto-oligosaccarides (IMO), lactulose, melibiose, maltose, glycosyl sucrose, lactosucrose and fucose. Trans-sialidated mono- and oligo- saccharides, produced with the mutant enzyme, are useful in preparing...

  8. Reversal of mutant myocilin non-secretion and cell killing: implications for glaucoma

    National Research Council Canada - National Science Library

    Liu, Yuhui; Vollrath, Douglas

    2004-01-01

    .... Mutations of the myocilin gene are one cause of autosomal dominant juvenile- and adult-onset primary open angle glaucoma, but the mechanism by which mutant myocilins cause disease is poorly understood...

  9. Discovery and Evaluation of Clinical Candidate IDH305, a Brain Penetrant Mutant IDH1 Inhibitor.

    Science.gov (United States)

    Cho, Young Shin; Levell, Julian R; Liu, Gang; Caferro, Thomas; Sutton, James; Shafer, Cynthia M; Costales, Abran; Manning, James R; Zhao, Qian; Sendzik, Martin; Shultz, Michael; Chenail, Gregg; Dooley, Julia; Villalba, Brian; Farsidjani, Ali; Chen, Jinyun; Kulathila, Raviraj; Xie, Xiaoling; Dodd, Stephanie; Gould, Ty; Liang, Guiqing; Heimbach, Tycho; Slocum, Kelly; Firestone, Brant; Pu, Minying; Pagliarini, Raymond; Growney, Joseph D

    2017-10-12

    Inhibition of mutant IDH1 is being evaluated clinically as a promising treatment option for various cancers with hotspot mutation at Arg 132 . Having identified an allosteric, induced pocket of IDH1 R132H , we have explored 3-pyrimidin-4-yl-oxazolidin-2-ones as mutant IDH1 inhibitors for in vivo modulation of 2-HG production and potential brain penetration. We report here optimization efforts toward the identification of clinical candidate IDH305 ( 13 ), a potent and selective mutant IDH1 inhibitor that has demonstrated brain exposure in rodents. Preclinical characterization of this compound exhibited in vivo correlation of 2-HG reduction and efficacy in a patient-derived IDH1 mutant xenograft tumor model. IDH305 ( 13 ) has progressed into human clinical trials for the treatment of cancers with IDH1 mutation.

  10. The phenotype of Arabidopsis thaliana det1 mutants suggest a role for cytokinins in greening

    Energy Technology Data Exchange (ETDEWEB)

    Chory, J.; Aguilar, N.; Peto, C.A.

    1990-01-01

    When grown in the absence of light, the det1 mutants of Arabidopsis thaliana develop characteristics of light-grown plants by morphological, cellular, and molecular criteria. Further, in light-grown plants, mutations in the DET1 gene affect cell-type-specific expression of light-regulated genes and the chloroplast developmental program. Here we show that the addition of exogenously added cytokinins (either 2-isopentenyl adenine, kinetin, or benzyladenine) to the growth medium of dark-germinated wild-type seedlings results in seedlings that resemble det1 mutants, instead of having the normal etiolated morphology. Like det1 mutants, these dark-grown seedlings now contain chloroplasts and have high levels of expression of genes that are normally light''-regulated. These results suggest an important role for cytokinins during greening of Arabidopsis, and may implicate cytokinin levels or an increased sensitivity to cytokinins as explanations for some of the observed phenotypes of det1 mutants.

  11. Neuregulin 1 expression and electrophysiological abnormalities in the Neuregulin 1 transmembrane domain heterozygous mutant mouse

    National Research Council Canada - National Science Library

    Long, Leonora E; Anderson, Paul; Frank, Elisabeth; Shaw, Alex; Liu, Shijie; Huang, Xu-Feng; Pinault, Didier; Karl, Tim; O'Brien, Terence J; Shannon Weickert, Cynthia; Jones, Nigel C

    2015-01-01

    .... In addition, we investigate the regulation of high-frequency (gamma) electrophysiological oscillations in this mutant mouse to associate molecular changes in Nrg1 with a schizophrenia-relevant neurophysiological profile...

  12. Characterization of a cytochalasin D-resistant mutant of Entamoeba histolytica.

    Science.gov (United States)

    de la Garza, M; Gallegos, B; Meza, I

    1989-01-01

    Characterization of a cytochalasin D-resistant mutant of the human parasite Entamoeba histolytica capable of growing at 10 microM cytochalasin is described. The mutant cells also show resistance to 5 mM colchicine and 100 microM cytochalasin B, drugs proved deleterious for wild type trophozoites. The mutants show increased osmotic fragility and electric mobility but reduced phagocytic activity, and agglutination by Concanavalin A. On the other hand pinocytic activity remains unaltered when compared with the wild type cells. Polymerized actin, seen by staining with phalloidin, often appears polarized to one end of the trophozoites and forms few of the endocytic invaginations found in wild type amebas. An altered distribution of part of the actin could explain the differences in surface properties and motility observed in the mutant amebas.

  13. N-glycan maturation mutants in Lotus japonicus for basic and applied glycoprotein research

    DEFF Research Database (Denmark)

    Pedersen, Carina T.; Loke, Ian; Lorentzen, Andrea

    2017-01-01

    Studies of protein N-glycosylation are important for answering fundamental questions on the diverse functions of glycoproteins in plant growth and development. Here we generated and characterised a comprehensive collection of Lotus japonicusLORE1 insertion mutants, each lacking the activity of one...... glycoproteins undergoing differential expression/N-glycosylation in the mutants. Demonstrating the functional importance of glycosylation, reduced growth and seed production phenotypes were observed for the mutant plants lacking functional mannosidase I, N-acetylglucosaminyltransferase I, and α1....... This platform will serve as a valuable tool for elucidating the functional role of protein N-glycosylation in plants. Furthermore, this technology can be used to generate stable plant mutant lines for biopharmaceutical production of glycoproteins displaying relative homogeneous and mammalian-like N...

  14. Glycogen storage in normal and wing-mutant strains of Drosophila melanogaster.

    Science.gov (United States)

    Barnes, W S

    1994-10-01

    Total body weight, total glycogen content and the percentage of body weight attributable to stored glycogen were measured in wild-type and two wing-mutant strains of 0-2-day-old (immature) and 5-7-day-old (mature) Drosophila melanogaster. Wild-type and wing mutant strains did not differ significantly in any of the measured parameters at 0-2 days of age. By 5-7 days of age, significant increases in glycogen content and glycogen percent had occurred in both wild-type and wing-mutant strains. Likewise, by 5-7 days of age, total body weight had increased significantly in the mature wild-type and vestigial strains but not in apterous flies. Mature wild-type flies displayed significantly greater total body glycogen content and glycogen percent when compared with the mature apterous and vestigial wing-mutant strains.

  15. Highly improved acarbose production of Actinomyces through the combination of ARTP and penicillin susceptible mutant screening.

    Science.gov (United States)

    Ren, Fei; Chen, Long; Tong, Qunyi

    2017-01-01

    Atmospheric and room temperature plasma (ARTP) was first employed to generate mutants of Actinomyces JN537 for improving acarbose production. To obtain higher acarbose producing strains, the method of screening the strains for susceptibility to penicillin was used after treatment with ARTP. The rationale for the strategy was that mutants showing penicillin susceptibility were likely to be high acarbose producers, as their ability to synthesize cell walls was weak which might enhance metabolic flux to the pathway of acarbose biosynthesis. Acarbose yield of the mutant strain M37 increased by 62.5 % than that of the original strain. The contents of monosaccharides and amino acids of the cell wall of M37 were lower than that of the original strain. The acarbose production ability in mutant strain remained relatively stable after 10 generations. This work provides a promising strategy for obtaining high acarbose-yield strains by combination of ARTP mutation method and efficient screening technique.

  16. Fatty acid composition analyses of the DCMU resistant mutants of Nannochloropsis oculata (eustigmatophyceae)

    Science.gov (United States)

    Jimin, Zhang; Shuang, Liu; Xue, Sun; Guanpin, Yang; Xuecheng, Zhang; Zhenhui, Gao

    2003-04-01

    Ultraviolet mutagenesis was applied to Nannochloropsis oculata and three mutants resistant to 3-(3, 4-dichlorophenyl)-1,1-dimethylurea (DCMU) were isolated. The cellular chlorophyll a and total lipid content of the wild are higher in the medium supplemented with DCMU than in the control without DCMU. Without DCMU, the growth rates and chlorophyll a contents of the mutants are similar to those of the wild. Significant changes of fatty acid content and composition have occurred in DCMU-resistant mutants growing in the medium supplemented with DCMU. The total lipid, palmitic acid (16:0), palmitoleic acid (16:1ω9) and oleic (18:1ω9) contents decrease significantly, while the vaccenic acid (18:1ω11) increases significantly and the EPA content of dried powder increases slightly in the mutants. The study may provide a basis to improve EPA content in Nannochloropsis oculata in the future.

  17. Molecular Characterization of Prostate Cancer Cell Oncolysis by Herpes Simplex Virus ICP0 Mutants

    National Research Council Canada - National Science Library

    Mossman, Karen

    2006-01-01

    .... Briefly, the goals of the proposal were to characterize the oncolytic capacity of Herpes simplex virus type 1 ICP0 mutants in prostate cancer cells given the relationship between ICP0 and two tumor...

  18. Molecular Characterization of Prostate Cancer Cell Oncolysis by Herpes Simplex Virus ICP0 Mutants

    National Research Council Canada - National Science Library

    Mossman, Karen

    2005-01-01

    .... Briefly, the goals of the proposal were to characterize the oncolytic capacity of Herpes simplex virus type 1 ICPO mutants in prostate cancer cells given the relationship between ICPO and two tumor...

  19. Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor β signaling

    National Research Council Canada - National Science Library

    Weissmueller, Susann; Manchado, Eusebio; Saborowski, Michael; Morris, 4th, John P; Wagenblast, Elvin; Davis, Carrie A; Moon, Sung-Hwan; Pfister, Neil T; Tschaharganeh, Darjus F; Kitzing, Thomas; Aust, Daniela; Markert, Elke K; Wu, Jianmin; Grimmond, Sean M; Pilarsky, Christian; Prives, Carol; Biankin, Andrew V; Lowe, Scott W

    2014-01-01

    ...) as both necessary and sufficient to mediate these effects. Mutant p53 induced PDGFRb through a cell-autonomous mechanism involving inhibition of a p73/NF-Y complex that represses PDGFRb expression in p53-deficient, noninvasive cells...

  20. Molecular Mechanisms Regulating Ocular Apoptosis in Zebrafish gdf6a Mutants

    DEFF Research Database (Denmark)

    Pant, Sameer D.; March, Lindsey D.; Famulski, Jakub K.

    2013-01-01

    PURPOSE. To characterize the molecular mechanisms underlying retinal apoptosis induced by loss of Gdf6, a TGF beta ligand. METHODS. The role of Gdf6 in regulating apoptosis was studied using a zebrafish gdf6a(-/-) mutant, which encodes a truncated, nonfunctional protein. To investigate whether...... occurs 28 hours post fertilization (hpf) in gdf6a(-/-) mutants that is mediated independently of p53 by intrinsic mechanisms involving Bax proteins. Also, gdf6a(-/-) mutants exhibit markedly increased p38 MAP kinase activation that can be inhibited to significantly reduce retinal apoptosis. A reduction...... in retinal smad1 expression was also noted in gdf6a(-/-) mutants. CONCLUSIONS. gdf6a(-/-)-induced apoptosis is characterized by the involvement of intrinsic apoptotic pathways, p38 MAP kinases, and dysregulated smad expression. Modulation of key mediators can inhibit retinal apoptosis offering potential...

  1. MDM2 Overexpression Cooperates with Mutant CDK4 in Mammary Cell Transformation and Tumorigenesis

    National Research Council Canada - National Science Library

    Carbone, Christopher

    2005-01-01

    In an effort to gain a better understanding of the consequence of deregulated CDK4 activity in vivo, the authors generated knock-in transgenic mice that express a tumor-derived mutant form of CDK4 (r24c...

  2. An Ethylmethane Sulfonate Mutant Resource in Pre-Green Revolution Hexaploid Wheat.

    Science.gov (United States)

    Dhaliwal, Amandeep K; Mohan, Amita; Sidhu, Gaganjot; Maqbool, Rizwana; Gill, Kulvinder S

    2015-01-01

    Mutagenesis is a powerful tool used for studying gene function as well as for crop improvement. It is regaining popularity because of the development of effective and cost efficient methods for high-throughput mutation detection. Selection for semi-dwarf phenotype during green revolution has reduced genetic diversity including that for agronomically desirable traits. Most of the available mutant populations in wheat (Triticum aestivum L.) were developed in post-green revolution cultivars. Besides the identification and isolation of agronomically important alleles in the mutant population of pre-green revolution cultivar, this population can be a vital resource for expanding the genetic diversity for wheat breeding. Here we report an Ethylmethane Sulfonate (EMS) generated mutant population consisting of 4,180 unique mutant plants in a pre-green revolution spring wheat cultivar 'Indian'. Released in early 1900s, 'Indian' is devoid of any known height-reducing mutations. Unique mutations were captured by proceeding with single M2 seed from each of the 4,180 M1 plants. Mutants for various phenotypic traits were identified by detailed phenotyping for altered morphological and agronomic traits on M2 plants in the greenhouse and M3 plants in the field. Of the 86 identified mutants, 75 (87%) were phenotypically stable at the M4 generation. Among the observed phenotypes, variation in plant height was the most frequent followed by the leaf morphology. Several mutant phenotypes including looped peduncle, crooked plant morphology, 'gritty' coleoptiles, looped lower internodes, and burnt leaf tips are not reported in other plant species. Considering the extent and diversity of the observed mutant phenotypes, this population appears to be a useful resource for the forward and reverse genetic studies. This resource is available to the scientific community.

  3. High-content screening of yeast mutant libraries by shotgun lipidomics

    DEFF Research Database (Denmark)

    Tarasov, Kirill; Stefanko, Adam; Casanovas, Albert

    2014-01-01

    To identify proteins with a functional role in lipid metabolism and homeostasis we designed a high-throughput platform for high-content lipidomic screening of yeast mutant libraries. To this end, we combined culturing and lipid extraction in 96-well format, automated direct infusion...... factor KAR4 precipitated distinct lipid metabolic phenotypes. These results demonstrate that the high-throughput shotgun lipidomics platform is a valid and complementary proxy for high-content screening of yeast mutant libraries....

  4. USE OF LIGNOCELLULOLYTIC MUTANTS OF PLEUROTUS OSTREATUS IN RUMINANT FEED FORMULATIONS

    OpenAIRE

    Vijaya Chalamcherla; Singaracharya Maringanti A.; Vijaya Lakshmi Muvva; Lakshmi Narasu Mangamoori; Mallikarjuna Reddy Ramireddy

    2009-01-01

    Two lignolytic mutants (POM1 - U.V. irradiated and POM2 – X ray irradiated) of P. ostreatus wild type (POW) were developed and used in new feed formulations for ruminants. Paddy straw (10 kg) amended with coconut cake, glyricidia leaves, urea (2%), and rice bran (5%) along with mutant forms of P. ostreatus substantially increased the reducing sugars, crude protein, and In Vitro Dry Matter Digestibility (IVDMD), while reducing the lignin contents. Maximum amounts of reducing sugars (555 mg/1...

  5. Production of cellulases and xylanases under catabolic repression conditions from mutant PR-22 of Cellulomonas flavigena.

    Science.gov (United States)

    Rojas-Rejón, Oscar A; Poggi-Varaldo, Héctor M; Ramos-Valdivia, Ana C; Martínez-Jiménez, Alfredo; Cristiani-Urbina, Eliseo; de la Torre Martínez, Mayra; Ponce-Noyola, Teresa

    2011-01-01

    Derepressed mutant PR-22 was obtained by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) mutagenic treatment of Cellulomonas flavigena PN-120. This mutant improved its xylanolytic activity from 26.9 to 40 U mg(-1) and cellulolytic activity from 1.9 to 4 U mg(-1); this represented rates almost 2 and 1.5 times higher, respectively, compared to its parent strain growing in sugarcane bagasse. Either glucose or cellobiose was added to cultures of C. flavigena PN-120 and mutant PR-22 induced with sugarcane bagasse in batch culture. The inhibitory effect of glucose on xylanase activity was more noticeable for parent strain PN-120 than for mutant PR-22. When 20 mM glucose was added, the xylanolytic activity decreased 41% compared to the culture grown without glucose in mutant PR-22, whereas in the PN-120 strain the xylanolytic activity decreased by 49% at the same conditions compared to its own control. Addition of 10 and 15 mM of glucose did not adversely affect CMCase activity in PR-22, but glucose at 20 mM inhibited the enzymatic activity by 28%. The CMCase activity of the PN-120 strain was more sensitive to glucose than PR-22, with a reduction of CMCase activity in the range of 20-32%. Cellobiose had a more significant effect on xylanase and CMCase activities than glucose did in the mutant PR-22 and parent strain. Nevertheless, the activities under both conditions were always higher in the mutant PR-22 than in the PN-120 strain. Enzymatic saccharification experiments showed that it is possible to accumulate up to 10 g l(-1) of total soluble sugars from pretreated sugarcane bagasse with the concentrated enzymatic crude extract from mutant PR-22.

  6. Mammalian mutator mutant with an aphidicolin-resistant DNA polymerase alpha.

    OpenAIRE

    Liu, P.K.; Chang, C C; Trosko, J E; Dube, D K; Martin, G. M.; Loeb, L A

    1983-01-01

    The Chinese hamster V79 cell mutant aphr-4-2, selected for its resistance to aphidicolin, a specific inhibitor of DNA polymerase alpha (DNA nucleotidyltransferase, EC 2.7.7.7), is characterized by slow growth, UV sensitivity, and hypersensitivity to UV-induced mutation. DNA polymerase alpha has been purified from mitochondria-free crude extracts of the mutant and its parental wild-type cells by sequential column chromatography on DEAE-cellulose and phosphocellulose. The major DNA polymerase a...

  7. DELLA proteins restrain germination and elongation growth in Arabidopsis thaliana COP9 signalosome mutants.

    Science.gov (United States)

    Dohmann, Esther Mirjam Natascha; Nill, Carola; Schwechheimer, Claus

    2010-01-01

    The COP9 signalosome (CSN) is an evolutionarily conserved multiprotein complex with an essential role in the development of higher eukaryotes. CSN deconjugates the ubiquitin-related modifier NEDD8 from the cullin subunit of cullin-RING type E3 ubiquitin ligases (CRLs), and CSN-mediated cullin deneddylation is required for full CRL activity. Although several plant E3 CRL functions have been shown to be compromised in Arabidopsis csn mutants, none of these functions have so far been shown to limit growth in these mutants. Here, we examine the role of CSN in the context of the E3 ubiquitin ligase SCF(SLEEPY1 (SLY1)), which promotes gibberellic acid (GA)-dependent responses in Arabidopsis thaliana. We show that csn mutants are impaired in GA- and SCF(SLY1)-dependent germination and elongation growth, and we show that these defects correlate with an accumulation and reduced turnover of an SCF(SLY1)-degradation target, the DELLA protein REPRESSOR-OF-ga1-3 (RGA). Genetic interaction studies between csn mutants and loss-of-function alleles of RGA and its functional homologue GIBBERELLIC ACID INSENSITIVE (GAI) further reveal that RGA and GAI repress defects of germination in strong csn mutants. In addition, we find that these two DELLA proteins are largely responsible for the elongation defects of a weak csn5 mutant allele. We thus conclude that an impairment of SCF(SLY1) is at least in part causative for the germination and elongation defects of csn mutants, and suggest that DELLA proteins are major growth repressors in these mutants. Copyright 2009 Elsevier GmbH. All rights reserved.

  8. An Ethylmethane Sulfonate Mutant Resource in Pre-Green Revolution Hexaploid Wheat.

    Directory of Open Access Journals (Sweden)

    Amandeep K Dhaliwal

    Full Text Available Mutagenesis is a powerful tool used for studying gene function as well as for crop improvement. It is regaining popularity because of the development of effective and cost efficient methods for high-throughput mutation detection. Selection for semi-dwarf phenotype during green revolution has reduced genetic diversity including that for agronomically desirable traits. Most of the available mutant populations in wheat (Triticum aestivum L. were developed in post-green revolution cultivars. Besides the identification and isolation of agronomically important alleles in the mutant population of pre-green revolution cultivar, this population can be a vital resource for expanding the genetic diversity for wheat breeding. Here we report an Ethylmethane Sulfonate (EMS generated mutant population consisting of 4,180 unique mutant plants in a pre-green revolution spring wheat cultivar 'Indian'. Released in early 1900s, 'Indian' is devoid of any known height-reducing mutations. Unique mutations were captured by proceeding with single M2 seed from each of the 4,180 M1 plants. Mutants for various phenotypic traits were identified by detailed phenotyping for altered morphological and agronomic traits on M2 plants in the greenhouse and M3 plants in the field. Of the 86 identified mutants, 75 (87% were phenotypically stable at the M4 generation. Among the observed phenotypes, variation in plant height was the most frequent followed by the leaf morphology. Several mutant phenotypes including looped peduncle, crooked plant morphology, 'gritty' coleoptiles, looped lower internodes, and burnt leaf tips are not reported in other plant species. Considering the extent and diversity of the observed mutant phenotypes, this population appears to be a useful resource for the forward and reverse genetic studies. This resource is available to the scientific community.

  9. A tilted rotational stimulation improves the gait of a cerebellar mutant mouse : The staggerer.

    Science.gov (United States)

    Guastavino, J M

    1984-01-01

    A titled rotational stimulation was given daily from birth to normal and cerebellar staggerer mutant mice. At weaning time the ability to ambulate on a holed floor was measured. An increase in neither the speed nor the total exploration was demonstrated but the ability to avoid holes was significantly improved for both groups. In this experiment, the mutant appeared to be more sensitive to the enrichment factor than the normal. Copyright © 1984. Published by Elsevier B.V.

  10. Substrate binding activates the designed triple mutant of the colicin E7 metallonuclease

    DEFF Research Database (Denmark)

    Németh, Eszter; Körtvélyesi, Tamás; Kožíšek, Milan

    2014-01-01

    to the agarose gel electrophoresis experiments and linear dichroism spectra the catalytic activity of the TKW mutant decreased in comparison with wild-type NColE7. The distorted structure and weakened Zn(2+) binding may account for this as revealed by circular dichroism spectra, mass spectrometry, fluorescence......-based thermal analysis and isothermal microcalorimetric titrations. Remarkably, the substrate induced the folding of the mutant protein....

  11. Bacteriocin-resistant mutants of Erwinia chrysanthemi: possible involvement of iron acquisition in phytopathogenicity.

    Science.gov (United States)

    Expert, D; Toussaint, A

    1985-07-01

    A series of bacteriocin-resistant mutants of Erwinia chrysanthemi 3937JRH were unable to elicit soft-rot symptoms on saintpaulia plants. The loss of pathogenicity was correlated with the disappearance of one to three outer membrane polypeptides (molecular weights, about 80,000 to 90,000) whose production in wild-type strains was greatly enhanced under iron-limited growth conditions. The mutants did not exhibit altered extracellular pectinolytic or cellulolytic activities.

  12. Proteomic analysis of a disease-resistance-enhanced lesion mimic mutant spotted leaf 5 in rice

    OpenAIRE

    Chen, Xifeng; Fu, Shufang; Zhang, Pinghua; Gu, Zhimin; Liu, Jianzhong; Qian, Qian; Ma, Bojun

    2013-01-01

    Background A lesion-mimic mutant in rice (Oryza sativa L.), spotted leaf 5 (spl5), displays a disease-resistance-enhanced phenotype, indicating that SPL5 negatively regulates cell death and resistance responses. To understand the molecular mechanisms of SPL5 mutation-induced cell death and resistance responses, a proteomics-based approach was used to identify differentially accumulated proteins between the spl5 mutant and wild type (WT). Results Proteomic data from two-dimensional gel electro...

  13. The phenotype of a phospholipase C (plc-1) mutant in a filamentous fungus, Neurospora crassa.

    Science.gov (United States)

    Lew, Roger R; Giblon, Rachel E; Lorenti, Miranda S H

    2015-09-01

    In the filamentous fungus Neurospora crassa, phospholipase C may play a role in hyphal extension at the growing tips as part of a growth-sensing mechanism that activates calcium release from internal stores to mediate continued expansion of the hyphal tip. One candidate for a tip-localized phospholipase C is PLC-1. We characterized morphology and growth characteristics of a knockout mutant (KO plc-1) and a RIP mutated strain (RIP plc-1) (missense mutations and a nonsense mutation render the gene product non-functional). Growth and hyphal cytology of wildtype and KO plc-1 were similar, but the RIP plc-1 mutant grew slower and exhibited abnormal membrane structures at the hyphal tip, imaged using the fluorescence dye FM4-64. To test for causes of the slower growth of the RIP plc-1 mutant, we examined its physiological poise compared to wildtype and the KO plc-1 mutant. The electrical properties of all three strains and the electrogenic contribution of the plasma membrane H(+)-ATPase (identified by cyanide inhibition) were the same. Responses to high osmolarity were also similar. However, the RIP plc-1 mutant had a significantly lower turgor, a possible cause of its slower growth. While growth of all three strains was inhibited by the phospholipase C inhibitor 3-nitrocoumarin, the RIP plc-1 mutant did not exhibit hyphal bursting after addition of the inhibitor, observed in both wildtype and the KO plc-1 mutant. Although the plc-1 gene is not obligatory for tip growth, the phenotype of the RIP plc-1 mutant - abnormal tip cytology, lower turgor and resistance to inhibitor-induced hyphal bursting - suggest it does play a role in tip growth. The expression of a dysfunctional plc-1 gene may cause a shift to alternative mechanism(s) of growth sensing in hyphal extension. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Mutation Spectra of Herpes Simplex Virus Type 1 Thymidine Kinase Mutants

    OpenAIRE

    Lu, Qiaosheng; Hwang, Ying T.; Hwang, Charles B. C.

    2002-01-01

    To examine whether the exonuclease activity intrinsic to the polymerase (Pol) of herpes simplex virus type 1 can influence the mutational spectra, we applied the denaturing gradient gel electrophoresis (DGGE) system combined with sequencing to characterize thymidine kinase mutants isolated from both the wild-type virus and a mutant deficient in exonuclease activity, Y7. Wild-type viruses produced predominately frameshift mutations (67%), whereas Y7 replicated a significantly lower proportion ...

  15. Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes

    Science.gov (United States)

    Pratt, Ashley J.; Shin, David S.; Merz, Gregory E.; Rambo, Robert P.; Lancaster, W. Andrew; Dyer, Kevin N.; Borbat, Peter P.; Poole, Farris L.; Adams, Michael W. W.; Freed, Jack H.; Crane, Brian R.; Tainer, John A.; Getzoff, Elizabeth D.

    2014-01-01

    Protein framework alterations in heritable Cu, Zn superoxide dismutase (SOD) mutants cause misassembly and aggregation in cells affected by the motor neuron disease ALS. However, the mechanistic relationship between superoxide dismutase 1 (SOD1) mutations and human disease is controversial, with many hypotheses postulated for the propensity of specific SOD mutants to cause ALS. Here, we experimentally identify distinguishing attributes of ALS mutant SOD proteins that correlate with clinical severity by applying solution biophysical techniques to six ALS mutants at human SOD hotspot glycine 93. A small-angle X-ray scattering (SAXS) assay and other structural methods assessed aggregation propensity by defining the size and shape of fibrillar SOD aggregates after mild biochemical perturbations. Inductively coupled plasma MS quantified metal ion binding stoichiometry, and pulsed dipolar ESR spectroscopy evaluated the Cu2+ binding site and defined cross-dimer copper–copper distance distributions. Importantly, we find that copper deficiency in these mutants promotes aggregation in a manner strikingly consistent with their clinical severities. G93 mutants seem to properly incorporate metal ions under physiological conditions when assisted by the copper chaperone but release copper under destabilizing conditions more readily than the WT enzyme. Altered intradimer flexibility in ALS mutants may cause differential metal retention and promote distinct aggregation trends observed for mutant proteins in vitro and in ALS patients. Combined biophysical and structural results test and link copper retention to the framework destabilization hypothesis as a unifying general mechanism for both SOD aggregation and ALS disease progression, with implications for disease severity and therapeutic intervention strategies. PMID:25316790

  16. Identification of Mutant K-Ras-dependent Phenotypes Using a Panel of Isogenic Cell Lines*

    Science.gov (United States)

    Vartanian, Steffan; Bentley, Carolyn; Brauer, Matthew J.; Li, Li; Shirasawa, Senji; Sasazuki, Takehiko; Kim, Jung-Sik; Haverty, Pete; Stawiski, Eric; Modrusan, Zora; Waldman, Todd; Stokoe, David

    2013-01-01

    To assess the consequences of endogenous mutant K-Ras, we analyzed the signaling and biological properties of a small panel of isogenic cell lines. These include the cancer cell lines DLD1, HCT116, and Hec1A, in which either the WT or mutant K-ras allele has been disrupted, and SW48 colorectal cancer cells and human mammary epithelial cells in which a single copy of mutant K-ras was introduced at its endogenous genomic locus. We find that single copy mutant K-Ras causes surprisingly modest activation of downstream signaling to ERK and Akt. In contrast, a negative feedback signaling loop to EGFR and N-Ras occurs in some, but not all, of these cell lines. Mutant K-Ras also had relatively minor effects on cell proliferation and cell migration but more dramatic effects on cell transformation as assessed by growth in soft agar. Surprisingly, knock-out of the wild type K-ras allele consistently increased growth in soft agar, suggesting tumor-suppressive properties of this gene under these conditions. Finally, we examined the effects of single copy mutant K-Ras on global gene expression. Although transcriptional programs triggered by mutant K-Ras were generally quite distinct in the different cell lines, there was a small number of genes that were consistently overexpressed, and these could be used to monitor K-Ras inhibition in a panel of human tumor cell lines. We conclude that there are conserved components of mutant K-Ras signaling and phenotypes but that many depend on cell context and environmental cues. PMID:23188824

  17. Mutant IDH1 Disrupts the Mouse Subventricular Zone and Alters Brain Tumor Progression.

    Science.gov (United States)

    Pirozzi, Christopher J; Carpenter, Austin B; Waitkus, Matthew S; Wang, Catherine Y; Zhu, Huishan; Hansen, Landon J; Chen, Lee H; Greer, Paula K; Feng, Jie; Wang, Yu; Bock, Cheryl B; Fan, Ping; Spasojevic, Ivan; McLendon, Roger E; Bigner, Darell D; He, Yiping; Yan, Hai

    2017-05-01

    IDH1 mutations occur in the majority of low-grade gliomas and lead to the production of the oncometabolite, D-2-hydroxyglutarate (D-2HG). To understand the effects of tumor-associated mutant IDH1 (IDH1-R132H) on both the neural stem cell (NSC) population and brain tumorigenesis, genetically faithful cell lines and mouse model systems were generated. Here, it is reported that mouse NSCs expressing Idh1-R132H displayed reduced proliferation due to p53-mediated cell-cycle arrest as well as a decreased ability to undergo neuronal differentiation. In vivo , Idh1-R132H expression reduced proliferation of cells within the germinal zone of the subventricular zone (SVZ). The NSCs within this area were dispersed and disorganized in mutant animals, suggesting that Idh1-R132H perturbed the NSCs and the microenvironment from which gliomas arise. In addition, tumor-bearing animals expressing mutant Idh1 displayed a prolonged survival and also overexpressed Olig2, features consistent with IDH1-mutated human gliomas. These data indicate that mutant Idh1 disrupts the NSC microenvironment and the candidate cell-of-origin for glioma; thus, altering the progression of tumorigenesis. In addition, this study provides a mutant Idh1 brain tumor model that genetically recapitulates human disease, laying the foundation for future investigations on mutant IDH1 -mediated brain tumorigenesis and targeted therapy. Implications: Through the use of a conditional mutant mouse model that confers a less aggressive tumor phenotype, this study reveals that mutant Idh1 impacts the candidate cell-of-origin for gliomas. Mol Cancer Res; 15(5); 507-20. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. Impaired exercise tolerance and skeletal muscle myopathy in sulfonylurea receptor-2 mutant mice

    OpenAIRE

    Stoller, Douglas; Pytel, Peter; Katz, Sophie; Earley, Judy U.; Collins, Keith; Metcalfe, Jamie; Lang, Roberto M.; McNally, Elizabeth M.

    2009-01-01

    By sensing intracellular energy levels, ATP-sensitive potassium (KATP) channels help regulate vascular tone, glucose metabolism, and cardioprotection. SUR2 mutant mice lack full-length KATP channels in striated and smooth muscle and display a complex phenotype of hypertension and coronary vasospasm. SUR2 mutant mice also display baseline cardioprotection and can withstand acute sympathetic stress better than normal mice. We now studied response to a form of chronic stress, namely that induced...

  19. Mutant p53 Amplifies Epidermal Growth Factor Receptor Family Signaling to Promote Mammary Tumorigenesis.

    Science.gov (United States)

    Yallowitz, Alisha R; Li, Dun; Lobko, Anthony; Mott, Daniel; Nemajerova, Alice; Marchenko, Natalia

    2015-04-01

    The EGFR family (ErbB2/Her2 and EGFR/ErbB1/Her1) often modulates the transcriptional program involved in promoting mammary tumorigenesis. In humans, the majority of ErbB2-positive sporadic breast cancers harbor p53 mutations, which correlate with poor prognosis. Also, the extremely high incidence of ErbB2-positive breast cancer in women with p53 germline mutations (Li-Fraumeni syndrome) suggests a key role of mutant p53 specifically in ErbB2-mediated mammary tumorigenesis. To examine the role of mutant p53 during ErbB2-mediated mammary tumorigenesis, a mutant p53 allele (R172H) was introduced into the (MMTV)-ErbB2/Neu mouse model system. Interestingly, we show in heterozygous p53 mice that mutant p53 R172H is a more potent activator of ErbB2-mediated mammary tumorigenesis than simple loss of p53. The more aggressive disease in mutant p53 animals was reflected by earlier tumor onset, increased mammary tumor multiplicity, and shorter survival. These in vivo and in vitro data provide mechanistic evidence that mutant p53 amplifies ErbB2 and EGFR signaling to promote the expansion of mammary stem cells and induce cell proliferation. This study identifies mutant p53 as an essential player in ErbB2 and EGFR-mediated mammary tumorigenesis and indicates the potential translational importance of targeting mutant p53 in this subset of patients with breast cancer. ©2015 American Association for Cancer Research.

  20. Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Albert; Kiel, Tilman; Heupel, Wolfgang-M. [University of Wuerzburg, Institute of Anatomy and Cell Biology, Koellikerstrasse 6, 97070 Wuerzburg (Germany); Wehnert, Manfred [Institute of Human Genetics, University of Greifswald, Greifswald (Germany); Huebner, Stefan, E-mail: stefan.huebner@mail.uni-wuerzburg.de [University of Wuerzburg, Institute of Anatomy and Cell Biology, Koellikerstrasse 6, 97070 Wuerzburg (Germany)

    2009-08-15

    Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associated proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.

  1. Functional Loss of Bmsei Causes Thermosensitive Epilepsy in Contractile Mutant Silkworm, Bombyx mori

    Science.gov (United States)

    Nie, Hongyi; Cheng, Tingcai; Huang, Xiaofeng; Zhou, Mengting; Zhang, Yinxia; Dai, Fangyin; Mita, Kazuei; Xia, Qingyou; Liu, Chun

    2015-01-01

    The thermoprotective mechanisms of insects remain largely unknown. We reported the Bombyx mori contractile (cot) behavioral mutant with thermo-sensitive seizures phenotype. At elevated temperatures, the cot mutant exhibit seizures associated with strong contractions, rolling, vomiting, and a temporary lack of movement. We narrowed a region containing cot to ~268 kb by positional cloning and identified the mutant gene as Bmsei which encoded a potassium channel protein. Bmsei was present in both the cell membrane and cytoplasm in wild-type ganglia but faint in cot. Furthermore, Bmsei was markedly decreased upon high temperature treatment in cot mutant. With the RNAi method and injecting potassium channel blockers, the wild type silkworm was induced the cot phenotype. These results demonstrated that Bmsei was responsible for the cot mutant phenotype and played an important role in thermoprotection in silkworm. Meanwhile, comparative proteomic approach was used to investigate the proteomic differences. The results showed that the protein of Hsp-1 and Tn1 were significantly decreased and increased on protein level in cot mutant after thermo-stimulus, respectively. Our data provide insights into the mechanism of thermoprotection in insect. As cot phenotype closely resembles human epilepsy, cot might be a potential model for the mechanism of epilepsy in future. PMID:26198671

  2. Early responses to Nod factors and mycorrhizal colonization in a non-nodulating Phaseolus vulgaris mutant.

    Science.gov (United States)

    Cárdenas, Luis; Alemán, Emilia; Nava, Noreide; Santana, Olivia; Sánchez, Federico; Quinto, Carmen

    2006-03-01

    Legumes can acquire nitrogen through a symbiotic interaction with rhizobial bacteria. The initiation of this process is determined by a molecular dialogue between the two partners. Legume roots exude flavonoids that induce the expression of the bacterial nodulation genes, which encode proteins involved in the synthesis and secretion of signals called Nod factors (NFs). NFs signal back to the plant root and trigger several responses, leading to bacterial invasion and nodule formation. Here, we describe the molecular and cellular characterization of a Phaseolus vulgaris non-nodulating mutant (NN-mutant). Root hair cells of the NN-mutant plant respond with swelling and branching when inoculated with Rhizobium etli, albeit without curling induction. Furthermore, neither initiation of cell division in the outer cortex, nor entrapment of bacteria nor infection thread formation was observed. Both the bean wild-type and the NN-mutant responded with elevated intracellular calcium changes in the root hairs. Although the NN-mutant is deficient in early nodulin gene expression when inoculated with R. etli, it can be effectively colonized by arbuscular mycorrhizal fungi (Glomus intraradices). Our data indicate that the P. vulgaris NN-mutant is not blocked at the NFs early perception stage, but at later downstream stages between Ca(2+) signaling and early nodulin induction. This supports the idea that both microsymbionts are perceived and trigger different downstream pathways in the host plant.

  3. Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis.

    Science.gov (United States)

    Wright, Robin; Parrish, Mark L; Cadera, Emily; Larson, Lynnelle; Matson, Clinton K; Garrett-Engele, Philip; Armour, Chris; Lum, Pek Yee; Shoemaker, Daniel D

    2003-07-30

    Increased levels of HMG-CoA reductase induce cell type- and isozyme-specific proliferation of the endoplasmic reticulum. In yeast, the ER proliferations induced by Hmg1p consist of nuclear-associated stacks of smooth ER membranes known as karmellae. To identify genes required for karmellae assembly, we compared the composition of populations of homozygous diploid S. cerevisiae deletion mutants following 20 generations of growth with and without karmellae. Using an initial population of 1,557 deletion mutants, 120 potential mutants were identified as a result of three independent experiments. Each experiment produced a largely non-overlapping set of potential mutants, suggesting that differences in specific growth conditions could be used to maximize the comprehensiveness of similar parallel analysis screens. Only two genes, UBC7 and YAL011W, were identified in all three experiments. Subsequent analysis of individual mutant strains confirmed that each experiment was identifying valid mutations, based on the mutant's sensitivity to elevated HMG-CoA reductase and inability to assemble normal karmellae. The largest class of HMG-CoA reductase-sensitive mutations was a subset of genes that are involved in chromatin structure and transcriptional regulation, suggesting that karmellae assembly requires changes in transcription or that the presence of karmellae may interfere with normal transcriptional regulation. Copyright 2003 John Wiley & Sons, Ltd.

  4. ISOELECTRIC FOCUSING OF MEMBRANE PROTEINS OF PROBIOTIC B. COAGULANS AND ITS BACTERIOPHAGE RESISTANT MUTANTS

    Directory of Open Access Journals (Sweden)

    Kavita Rajesh Pandey

    2016-09-01

    Full Text Available Bacteriophages are the most notorious type of infection in the probiotic and dairy fermentations. Two phage resistant mutants viz. B. co PIII and B. co MIII (B. coagulans mutants PIII and MIII obtained in previous studies (Dubey and Vakil, 2010, were further characterized for their protein profile in comparison with the parental probiotic strain –B. coagulans. The cell lysates were subjected to ultra-centrifugation and the purified membrane fractions were resolved using 2D gel electrophoresis. The Isoelectric focussing showed 187, 202 and 154 protein spots for the parental strain, mutant B. co PIII and mutant B. co MIII, respectively. Ten and 18 protein spots were missing as compared to parent for mutants B.co PIII and B.co MIII whereas there were 21 and 14 new spots noticed for these two mutants. Eight membrane proteins present only in the phage sensitive parental culture could be tentatively identified by comparison with the complete proteome of B. coagulans by use of UniprotKB and then CELLO database It is quite likely that some of these identified membrane proteins may be also functioning as receptors for phage adsorption followed by entry of nucleic acid into the phage sensitive host cell.

  5. Identification of diphtheria toxin R domain mutants with enhanced inhibitory activity against HB-EGF.

    Science.gov (United States)

    Suzuki, Keisuke; Mizushima, Hiroto; Abe, Hiroyuki; Iwamoto, Ryo; Nakamura, Haruki; Mekada, Eisuke

    2015-05-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a ligand of EGF receptor, is involved in the growth and malignant progression of cancers. Cross-reacting material 197, CRM197, a non-toxic mutant of diphtheria toxin (DT), specifically binds to the EGF-like domain of HB-EGF and inhibits its mitogenic activity, thus CRM197 is currently under evaluation in clinical trials for cancer therapy. To develop more potent DT mutants than CRM197, we screened various mutant proteins of R domain of DT, the binding site for HB-EGF. A variety of R-domain mutant proteins fused with maltose-binding protein were produced and their inhibitory activity was evaluated in vitro. We found four R domain mutants that showed much higher inhibitory activity against HB-EGF than wild-type (WT) R domain. These R domain mutants suppressed HB-EGF-dependent cell proliferation more effectively than WT R domain. Surface plasmon resonance revealed their higher affinity to HB-EGF than WT R domain. CRM197(R460H) carrying the newly identified mutation showed increased cell proliferation inhibitory activity and affinity to HB-EGF. These results suggest that CRM197(R460H) or other recombinant proteins carrying newly identified mutation(s) in the R domain are potential therapeutics targeting HB-EGF. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  6. Hierarchical mutational events compensate for glutamate auxotrophy of a Bacillus subtilis gltC mutant.

    Science.gov (United States)

    Dormeyer, Miriam; Lübke, Anastasia L; Müller, Peter; Lentes, Sabine; Reuß, Daniel R; Thürmer, Andrea; Stülke, Jörg; Daniel, Rolf; Brantl, Sabine; Commichau, Fabian M

    2017-06-01

    Glutamate is the major donor of nitrogen for anabolic reactions. The Gram-positive soil bacterium Bacillus subtilis either utilizes exogenously provided glutamate or synthesizes it using the gltAB-encoded glutamate synthase (GOGAT). In the absence of glutamate, the transcription factor GltC activates expression of the GOGAT genes for glutamate production. Consequently, a gltC mutant strain is auxotrophic for glutamate. Using a genetic selection and screening system, we could isolate and differentiate between gltC suppressor mutants in one step. All mutants had acquired the ability to synthesize glutamate, independent of GltC. We identified (i) gain-of-function mutations in the gltR gene, encoding the transcription factor GltR, (ii) mutations in the promoter of the gltAB operon and (iii) massive amplification of the genomic locus containing the gltAB operon. The mutants belonging to the first two classes constitutively expressed the gltAB genes and produced sufficient glutamate for growth. By contrast, mutants that belong to the third class appeared most frequently and solved glutamate limitation by increasing the copy number of the poorly expressed gltAB genes. Thus, glutamate auxotrophy of a B. subtilis gltC mutant can be relieved in multiple ways. Moreover, recombination-dependent amplification of the gltAB genes is the predominant mutational event indicating a hierarchy of mutations. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Morphological Characterization and Assessment of Genetic Variability, Character Association, and Divergence in Soybean Mutants

    Directory of Open Access Journals (Sweden)

    M. A. Malek

    2014-01-01

    Full Text Available Genetic diversity is important for crop improvement. An experiment was conducted during 2011 to study genetic variability, character association, and genetic diversity among 27 soybean mutants and four mother genotypes. Analysis of variance revealed significant differences among the mutants and mothers for nine morphological traits. Eighteen mutants performed superiorly to their mothers in respect to seed yield and some morphological traits including yield attributes. Narrow differences between phenotypic and genotypic coefficients of variation (PCV and GCV for most of the characters revealed less environmental influence on their expression. High values of heritability and genetic advance with high GCV for branch number, plant height, pod number, and seed weight can be considered as favorable attributes for soybean improvement through phenotypic selection and high expected genetic gain can be achieved. Pod and seed number and maturity period appeared to be the first order traits for higher yield and priority should be given in selection due to their strong associations and high magnitudes of direct effects on yield. Cluster analysis grouped 31 genotypes into five groups at the coefficient value of 235. The mutants/genotypes from cluster I and cluster II could be used for hybridization program with the mutants of clusters IV and V in order to develop high yielding mutant-derived soybean varieties for further improvement.

  8. Characterization of Brucella abortus mutant strain Δ22915, a potential vaccine candidate.

    Science.gov (United States)

    Bao, Yanqing; Tian, Mingxing; Li, Peng; Liu, Jiameng; Ding, Chan; Yu, Shengqing

    2017-04-04

    Brucellosis, caused by Brucella spp., is an important zoonosis worldwide. Vaccination is an effective strategy for protection against Brucella infection in livestock in developing countries and in wildlife in developed countries. However, current vaccine strains including S19 and RB51 are pathogenic to humans and pregnant animals, limiting their use. In this study, we constructed the Brucella abortus (B. abortus) S2308 mutant strain Δ22915, in which the putative lytic transglycosylase gene BAB_RS22915 was deleted. The biological properties of mutant strain Δ22915 were characterized and protection of mice against virulent S2308 challenge was evaluated. The mutant strain Δ22915 showed reduced survival within RAW264.7 cells and survival in vivo in mice. In addition, the mutant strain Δ22915 failed to escape fusion with lysosomes within host cells, and caused no observable pathological damage. RNA-seq analysis indicated that four genes associated with amino acid/nucleotide transport and metabolism were significantly upregulated in mutant strain Δ22915. Furthermore, inoculation of ∆22915 at 10 5 colony forming units induced effective host immune responses and long-term protection of BALB/c mice. Therefore, mutant strain ∆22915 could be used as a novel vaccine candidate in the future to protect animals against B. abortus infection.

  9. Fluoride-tolerant mutants of Aspergillus niger show enhanced phosphate solubilization capacity.

    Directory of Open Access Journals (Sweden)

    Ubiana de Cássia Silva

    Full Text Available P-solubilizing microorganisms are a promising alternative for a sustainable use of P against a backdrop of depletion of high-grade rock phosphates (RPs. Nevertheless, toxic elements present in RPs, such as fluorine, can negatively affect microbial solubilization. Thus, this study aimed at selecting Aspergillus niger mutants efficient at P solubilization in the presence of fluoride (F-. The mutants were obtained by exposition of conidia to UV light followed by screening in a medium supplemented with Ca3(PO42 and F-. The mutant FS1-555 showed the highest solubilization in the presence of F-, releasing approximately 70% of the P contained in Ca3(PO42, a value 1.7 times higher than that obtained for the wild type (WT. The mutant FS1-331 showed improved ability of solubilizing fluorapatites, increasing the solubilization of Araxá, Catalão, and Patos RPs by 1.7, 1.6, and 2.5 times that of the WT, respectively. These mutants also grew better in the presence of F-, indicating that mutagenesis allowed the acquisition of F- tolerance. Higher production of oxalic acid by FS1-331 correlated with its improved capacity for RP solubilization. This mutant represents a significant improvement and possess a high potential for application in solubilization systems with fluoride-rich phosphate sources.

  10. A rapid, highly accurate method for quantifying CALR mutant allele burden in persons with myeloproliferative neoplasms.

    Science.gov (United States)

    Yao, Qiu-Mei; Zhou, Jiao; Gale, Robert Peter; Li, Jin-Lan; Li, Ling-Di; Li, Ning; Chen, Shan-Shan; Ruan, Guo-Rui

    2015-10-01

    Calreticulin (CALR) mutations were recently identified in a substantial proportion of persons with essential thrombocythemia (ET) and with primary myelofibrosis (PMF) without JAK2(V617F). Consequently rapid, sensitive, and specific methods to detect and quantify these mutations are needed. We studied samples from 1088 persons with myeloproliferative neoplasms (MPNs) including 421 JAK2(V617F) negative subjects with ET, PMF, polycythemia vera (PV), chronic myeloid leukemia (CML) and hyper-eosinophilic syndrome (HES). Detection of CALR exon 9 mutations was done by PCR amplification followed by fragment length analysis and direct sequencing. Dilution assays were used to determine CALR mutant allele burden. We detected CALR mutations in blood and bone marrow samples from 152 subjects with ET and with PMF but not in samples from normal or persons with PV, CML, or HES. CALR mutant peaks were distinct from wild-type peaks and dilution experiments indicated a sensitivity level of 0.5-5% for a CALR mutant allele in a wild-type background. Diverse types of mutations were detected including deletions, insertions, and complex indels. All mutations were confirmed by direct sequencing. We also used dilution experiments to quantify mutant allele burden. We were able to reproducibly detect mutant allele levels as low 5% (0.5-5%) in a wild-type background. PCR amplification followed by fragment length analysis is a rapid, sensitive, and specific method for screening persons with MPNs for CALR mutations, especially those with ET and PMF and for estimating mutant allele burden.

  11. Isolation and partial characterization of mutants with elevated lipid content in Chlorella sorokiniana and Scenedesmus obliquus.

    Science.gov (United States)

    Vigeolas, Hélène; Duby, Francéline; Kaymak, Esra; Niessen, Guillaume; Motte, Patrick; Franck, Fabrice; Remacle, Claire

    2012-11-30

    This paper describes the isolation and partial biomass characterization of high triacylglycerol (TAG) mutants of Chlorella sorokiniana and Scenedesmus obliquus, two algal species considered as potential source of biodiesel. Following UV mutagenesis, 2000 Chlorella and 2800 Scenedesmus colonies were screened with a method based on Nile Red fluorescence. Several mutants with high Nile Red fluorescence were selected by this high-throughput method in both species. Growth and biomass parameters of the strongest mutants were analyzed in detail. All of the four Chlorella mutants showed no significant changes in growth rate, cell weight, cell size, protein and chlorophyll contents on a per cell basis. Whereas all contained elevated total lipid and TAG content per unit of dry weight, two of them were also affected for starch metabolism, suggesting a change in biomass/storage carbohydrate composition. Two Scenedesmus mutants showed a 1.5 and 2-fold increased cell weight and larger cells compared to the wild type, which led to a general increase of biomass including total lipid and TAG content on a per cell basis. Such mutants could subsequently be used as commercial oleaginous algae and serve as an alternative to conventional petrol. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Interleukin-1 hyperproduction by in vitro activated peripheral macrophages from cerebellar mutant mice.

    Science.gov (United States)

    Kopmels, B; Wollman, E E; Guastavino, J M; Delhaye-Bouchaud, N; Fradelizi, D; Mariani, J

    1990-12-01

    Several mutations in mice produce complex patterns of neuronal degeneration of the cerebellum and of its afferent pathways. In the staggerer (sg/sg) mutant, atrophy of the lymphoid organs and immunological abnormalities have been described. To search for a possible link between the neurological and the immune disorders in this mutant, we studied the production by its peripheral macrophages of interleukin-1 (IL-1), which roles in both immune and nervous systems are well established. Suspensions of peritoneal and/or spleen macrophages from mutants and their appropriate controls were stimulated in vitro by lipopolysaccharide. Northern and dot blots, performed with murine IL-1 cDNA probes, revealed a clear-cut hyperexpression of IL-1 mRNA in staggerer macrophages. An IL-1 bioassay using the IL-1-responsive D10.G4 cell line also revealed a sixfold increase of IL-1 activity in the macrophage supernatants of staggerer mutant mice. The hyperproduction was found in 3-week to 1-year-old staggerer and also in heterozygous (+/sg) mice. A similar phenomenon existed in cerebellar mutants lurcher, Purkinje cell degeneration (pcd), and to a lesser extent reeler and wobbler, but was absent in the neurological mutants weaver, jimpy, and motor end plate disease (medH). These observations establish that in several point mutations in mice, central nervous degeneration is associated with dysregulation of IL-1 production by peripheral macrophages.

  13. Phenotypic Characterization of a Comprehensive Set of MAPK1/ERK2 Missense Mutants

    Directory of Open Access Journals (Sweden)

    Lisa Brenan

    2016-10-01

    Full Text Available Tumor-specific genomic information has the potential to guide therapeutic strategies and revolutionize patient treatment. Currently, this approach is limited by an abundance of disease-associated mutants whose biological functions and impacts on therapeutic response are uncharacterized. To begin to address this limitation, we functionally characterized nearly all (99.84% missense mutants of MAPK1/ERK2, an essential effector of oncogenic RAS and RAF. Using this approach, we discovered rare gain- and loss-of-function ERK2 mutants found in human tumors, revealing that, in the context of this assay, mutational frequency alone cannot identify all functionally impactful mutants. Gain-of-function ERK2 mutants induced variable responses to RAF-, MEK-, and ERK-directed therapies, providing a reference for future treatment decisions. Tumor-associated mutations spatially clustered in two ERK2 effector-recruitment domains yet produced mutants with opposite phenotypes. This approach articulates an allele-characterization framework that can be scaled to meet the goals of genome-guided oncology.

  14. Phenotypic Characterization of a Comprehensive Set of MAPK1/ERK2 Missense Mutants.

    Science.gov (United States)

    Brenan, Lisa; Andreev, Aleksandr; Cohen, Ofir; Pantel, Sasha; Kamburov, Atanas; Cacchiarelli, Davide; Persky, Nicole S; Zhu, Cong; Bagul, Mukta; Goetz, Eva M; Burgin, Alex B; Garraway, Levi A; Getz, Gad; Mikkelsen, Tarjei S; Piccioni, Federica; Root, David E; Johannessen, Cory M

    2016-10-18

    Tumor-specific genomic information has the potential to guide therapeutic strategies and revolutionize patient treatment. Currently, this approach is limited by an abundance of disease-associated mutants whose biological functions and impacts on therapeutic response are uncharacterized. To begin to address this limitation, we functionally characterized nearly all (99.84%) missense mutants of MAPK1/ERK2, an essential effector of oncogenic RAS and RAF. Using this approach, we discovered rare gain- and loss-of-function ERK2 mutants found in human tumors, revealing that, in the context of this assay, mutational frequency alone cannot identify all functionally impactful mutants. Gain-of-function ERK2 mutants induced variable responses to RAF-, MEK-, and ERK-directed therapies, providing a reference for future treatment decisions. Tumor-associated mutations spatially clustered in two ERK2 effector-recruitment domains yet produced mutants with opposite phenotypes. This approach articulates an allele-characterization framework that can be scaled to meet the goals of genome-guided oncology. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin

    Science.gov (United States)

    Vogel, J. P.; Schuerman, P.; Woeste, K.; Brandstatter, I.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Cytokinins elevate ethylene biosynthesis in etiolated Arabidopsis seedlings via a post-transcriptional modification of one isoform of the key biosynthetic enzyme ACC synthase. In order to begin to dissect the signaling events leading from cytokinin perception to this modification, we have isolated a series of mutants that lack the ethylene-mediated triple response in the presence of cytokinin due to their failure to increase ethylene biosynthesis. Analysis of genetic complementation and mapping revealed that these Cin mutants (cytokinin-insensitive) represent four distinct complementation groups, one of which, cin4, is allelic to the constitutive photomorphogenic mutant fus9/cop10. The Cin mutants have subtle effects on the morphology of adult plants. We further characterized the Cin mutants by analyzing ethylene biosynthesis in response to various other inducers and in adult tissues, as well as by assaying additional cytokinin responses. The cin3 mutant did not disrupt ethylene biosynthesis under any other conditions, nor did it disrupt any other cytokinin responses. Only cin2 disrupted ethylene biosynthesis in multiple circumstances. cin1 and cin2 made less anthocyanin in response to cytokinin. cin1 also displayed reduced shoot initiation in tissue culture in response to cytokinin, suggesting that it affects a cytokinin signaling element.

  16. Metabolism of lactose and citrate by mutants of Lactococcus lactis producing excess carbon dioxide.

    Science.gov (United States)

    El Attar, A; Monnet, C; Corrieu, G

    2000-11-01

    Mutants of Lactococcus lactis producing excess carbon dioxide could be isolated on LDHA-20 agar (described by El Attar et al. Journal of Dairy Research 67 641-646 2000). The use of these mutants in the manufacture of Roquefort cheese has the potential to improve the formation of openings in this cheese. The aim of this work was to examine the stability of these mutants, their enzymic activities and their metabolism of lactose and citrate during growth in milk. They produced less L-lactate than the parent strain and their lactate dehydrogenase activity was lower. Nevertheless none of the mutants produced no L-lactate at all and the most active gas generators among them generally produced 30-50 mM-L-lactate. Unexpectedly, all the strains produced some D-lactate, some > 10 mM. We found that carbon dioxide production by the mutants could be determined indirectly by assaying acetoin, citrate and 2,3-butanediol by high-performance liquid chromatography. Generally, spontaneous mutants were more stable than those obtained after treating with nitrosoguanidine or u.v. irradiation.

  17. Differential chromosomal and mitochondrial DNA synthesis in temperature-sensitive mutants of Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.

    1977-01-01

    The amount and type of residual DNA synthesis was determined in eight temperature-sensitive mutants of the smut fungus Ustilago maydis after incubation at the restrictive temperature (32/sup 0/C) for eight hours. Mutants ts-220, ts-207, ts-432 and ts-346 were found to have an overall reduction in the synthesis of both nuclear and mitochondrial DNA in comparison to the wild-type. In mutants ts-20, tsd 1-1, ts-84 and pol 1-1 nuclear DNA synthesis was depressed relative to mitochondrial synthesis. The DNA-polymerase mutant pol 1-1 had persistent nuclear synthesis at about 50% of the rate of synthesis of mitochondrial DNA and similar behavior was observed in a diploid homozygous strain. Mutant ts-84 had an initial burst of DNA synthesis which was reduced for nuclear but not mitochondrial synthesis after three hours preincubation at 32/sup 0/C. tsd 1-1 and ts-20 had nuclear residual synthesis amounting to about 25% of the relative rate of mitochondrial synthesis which correlates to increasing UV sensitivity of these strains on incubation at 32/sup 0/C. A pol 1-1 ts-84 double mutant had an additive loss of nuclear DNA synthesis which indicates that the steps of replication involved may be sequential.

  18. Antibodies with higher bactericidal activity induced by a Neisseria gonorrhoeae Rmp deletion mutant strain.

    Directory of Open Access Journals (Sweden)

    Guocai Li

    Full Text Available Neisseria gonorrhoeae (N. gonorrhoeae outer membrane protein reduction modifiable protein (Rmp has strong immunogenicity. However, anti-Rmp antibodies block rather than preserve the antibacterial effects of protective antibodies, which hampers the development of vaccines for gonococcal infections. We herein constructed an Rmp deletion mutant strain of N. gonorrhoeae by gene homologous recombination. The 261-460 nucleotide residues of Rmp gene amplified from N. gonorrhoeae WHO-A strain were replaced with a kanamycin-resistant Kan gene amplified from pET-28a. The resultant hybridized DNA was transformed into N. gonorrhoeae WHO-A strain. PCR was used to screen the colonies in which wild-type Rmp gene was replaced with a mutant gene fragment. Western blotting revealed that the Rmp deletion mutant strain did not express Rmp protein. Rmp deletion did not alter the morphological and Gram staining properties of the mutant strain that grew slightly more slowly than the wild-type one. Rmp gene mutated stably throughout 25 generations of passage. Antibody-mediated complement-dependent cytotoxicity assay indicated that the antibodies induced by the mutant strain had evidently higher bactericidal activities than those induced by the wild-type strain. Further modification of the Rmp deletion mutant strain is still required in the development of novel live attenuated vaccines for gonorrhea by Opa genes deletion or screening of phenotypic variant strains that do not express Opa proteins.

  19. Improving the synthesis of phenolic polymer using Coprinus cinereus peroxidase mutant Phe230Ala.

    Science.gov (United States)

    Kim, Su Jin; Joo, Jeong Chan; Song, Bong Keun; Yoo, Young Je; Kim, Yong Hwan

    2016-06-01

    The F230A mutant of Coprinus cinereus peroxidase (CiP), which has a high stability against radical-inactivation, was previously reported. In the present study, the radical-robust F230A mutant was applied to the oxidative polymerization of phenol. The F230A mutant exhibited better polymerization activities than the wild-type CiP in the presence of water-miscible alcohols i.e., methanol, ethanol, and isopropanol despite its lower stability against alcohols. In particular, the F230A mutant showed a higher consumption of phenol (40%) and yielded phenolic polymer of larger molecular weight (8850Da) in a 50% (v/v) isopropanol-buffer mixture compared with the wild-type CiP (2% and 1519Da, respectively). In addition, the wild-type CiP and F230A mutant had no significant differences in enzyme inactivation by physical adsorption on the polymeric products or by heat incubation, and showed comparable kinetic parameters. These results indicate that high radical stability of the F230A mutant and improved solubility of phenolic polymers in alcohol-water cosolvent systems may synergistically contribute to the production of the high molecular weight phenolic polymer. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Antibodies with higher bactericidal activity induced by a Neisseria gonorrhoeae Rmp deletion mutant strain.

    Science.gov (United States)

    Li, Guocai; Xie, Rushan; Zhu, Xiaoping; Mao, Yanli; Liu, Shuangxi; Jiao, Hongmei; Yan, Hua; Xiong, Kun; Ji, Mingchun

    2014-01-01

    Neisseria gonorrhoeae (N. gonorrhoeae) outer membrane protein reduction modifiable protein (Rmp) has strong immunogenicity. However, anti-Rmp antibodies block rather than preserve the antibacterial effects of protective antibodies, which hampers the development of vaccines for gonococcal infections. We herein constructed an Rmp deletion mutant strain of N. gonorrhoeae by gene homologous recombination. The 261-460 nucleotide residues of Rmp gene amplified from N. gonorrhoeae WHO-A strain were replaced with a kanamycin-resistant Kan gene amplified from pET-28a. The resultant hybridized DNA was transformed into N. gonorrhoeae WHO-A strain. PCR was used to screen the colonies in which wild-type Rmp gene was replaced with a mutant gene fragment. Western blotting revealed that the Rmp deletion mutant strain did not express Rmp protein. Rmp deletion did not alter the morphological and Gram staining properties of the mutant strain that grew slightly more slowly than the wild-type one. Rmp gene mutated stably throughout 25 generations of passage. Antibody-mediated complement-dependent cytotoxicity assay indicated that the antibodies induced by the mutant strain had evidently higher bactericidal activities than those induced by the wild-type strain. Further modification of the Rmp deletion mutant strain is still required in the development of novel live attenuated vaccines for gonorrhea by Opa genes deletion or screening of phenotypic variant strains that do not express Opa proteins.

  1. Light-Induced Acclimation of the Arabidopsis chlorina1 Mutant to Singlet Oxygen[C][W

    Science.gov (United States)

    Ramel, Fanny; Ksas, Brigitte; Akkari, Elsy; Mialoundama, Alexis S.; Monnet, Fabien; Krieger-Liszkay, Anja; Ravanat, Jean-Luc; Mueller, Martin J.; Bouvier, Florence; Havaux, Michel

    2013-01-01

    Singlet oxygen (1O2) is a reactive oxygen species that can function as a stress signal in plant leaves leading to programmed cell death. In microalgae, 1O2-induced transcriptomic changes result in acclimation to 1O2. Here, using a chlorophyll b–less Arabidopsis thaliana mutant (chlorina1 [ch1]), we show that this phenomenon can also occur in vascular plants. The ch1 mutant is highly photosensitive due to a selective increase in the release of 1O2 by photosystem II. Under photooxidative stress conditions, the gene expression profile of ch1 mutant leaves very much resembled the gene responses to 1O2 reported in the Arabidopsis mutant flu. Preexposure of ch1 plants to moderately elevated light intensities eliminated photooxidative damage without suppressing 1O2 formation, indicating acclimation to 1O2. Substantial differences in gene expression were observed between acclimation and high-light stress: A number of transcription factors were selectively induced by acclimation, and contrasting effects were observed for the jasmonate pathway. Jasmonate biosynthesis was strongly induced in ch1 mutant plants under high-light stress and was noticeably repressed under acclimation conditions, suggesting the involvement of this hormone in 1O2-induced cell death. This was confirmed by the decreased tolerance to photooxidative damage of jasmonate-treated ch1 plants and by the increased tolerance of the jasmonate-deficient mutant delayed-dehiscence2. PMID:23590883

  2. Arrayed mutant haploid embryonic stem cell libraries facilitate phenotype-driven genetic screens.

    Science.gov (United States)

    Liu, Guang; Wang, Xue; Liu, Yufang; Zhang, Meili; Cai, Tao; Shen, Zhirong; Jia, Yuyan; Huang, Yue

    2017-12-15

    Forward genetic screens using mammalian embryonic stem (ES) cells have identified genes required for numerous cellular processes. However, loss-of-function screens are more difficult to conduct in diploid cells because, in most cases, both alleles of a gene must be mutated to exhibit a phenotype. Recently, mammalian haploid ES cell lines were successfully established and applied to several recessive genetic screens. However, all these screens were performed in mixed pools of mutant cells and were mainly based on positive selection. In general, negative screening is not easy to apply to these mixed pools, although quantitative deep sequencing of mutagen insertions can help to identify some 'missing' mutants. Moreover, the interplay between different mutant cells in the mixed pools would interfere with the readout of the screens. Here, we developed a method for rapidly generating arrayed haploid mutant libraries in which the proportion of homozygous mutant clones can reach 85%. After screening thousands of individual mutant clones, we identified a number of novel factors required for the onset of differentiation in ES cells. A negative screen was also conducted to discover mutations conferring cells with increased sensitivity to DNA double-strand breaks induced by the drug doxorubicin. Both of these screens illustrate the value of this system. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Characterization and virulence properties of Erwinia chrysanthemi lipopolysaccharide-defective, phi EC2-resistant mutants.

    Science.gov (United States)

    Schoonejans, E; Expert, D; Toussaint, A

    1987-09-01

    Outer membrane alterations were characterized in spontaneous mutants of the Erwinia chrysanthemi 3937jRH, which were selected for resistance to bacteriophage phi EC2. All but one of the mutants analyzed were affected in their lipopolysaccharide (LPS) structure, lacking the entire heterogeneous region of apparent high molecular weight present in the wild-type E. chrysanthemi LPS. At least two 3937jRH mutants, one selected as phi EC2 resistant (RH6065) and the other previously selected (D. Expert and A. Toussaint, J. Bacteriol. 163:221-227, 1985) as bacteriocin resistant (R1456), were cross-resistant to bacteriophage Mu and had rough LPSs with an altered core structure. Two phi EC2r mutants (RH6053 and RH6065) were most severely affected in their outer membrane integrity and also lost their virulence on saintpaulia plants, although they still possessed normal extracellular levels of pectinolytic and cellulolytic activities. The two Mur mutants RH6065 and R1456 were also able to induce systemic resistance in the challenged plant. All the other phi EC2r mutants retained the virulence of 393jRH.

  4. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening.

    Science.gov (United States)

    Chialva, Matteo; Zouari, Inès; Salvioli, Alessandra; Novero, Mara; Vrebalov, Julia; Giovannoni, James J; Bonfante, Paola

    2016-07-01

    Systemic responses to an arbuscular mycorrhizal fungus reveal opposite phenological patterns in two tomato ripening mutants depending whether ethylene or light reception is involved. The availability of tomato ripening mutants has revealed many aspects of the genetics behind fleshy fruit ripening, plant hormones and light signal reception. Since previous analyses revealed that arbuscular mycorrhizal symbiosis influences tomato berry ripening, we wanted to test the hypothesis that an interplay might occur between root symbiosis and fruit ripening. With this aim, we screened seven tomato mutants affected in the ripening process for their responsiveness to the arbuscular mycorrhizal fungus Funneliformis mosseae. Following their phenological responses we selected two mutants for a deeper analysis: Green ripe (Gr), deficient in fruit ethylene perception and high-pigment-1 (hp-1), displaying enhanced light signal perception throughout the plant. We investigated the putative interactions between ripening processes, mycorrhizal establishment and systemic effects using biochemical and gene expression tools. Our experiments showed that both mutants, notwithstanding a normal mycorrhizal phenotype at root level, exhibit altered arbuscule functionality. Furthermore, in contrast to wild type, mycorrhization did not lead to a higher phosphate concentration in berries of both mutants. These results suggest that the mutations considered interfere with arbuscular mycorrhiza inducing systemic changes in plant phenology and fruits metabolism. We hypothesize a cross talk mechanism between AM and ripening processes that involves genes related to ethylene and light signaling.

  5. Genetic Analysis and Molecular Mapping of a Novel Chlorophyll-Deficit Mutant Gene in Rice

    Directory of Open Access Journals (Sweden)

    Xiao-qun HUANG

    2008-03-01

    Full Text Available A rice etiolation mutant 824ys featured with chlorophyll deficiency was identified from a normal green rice variety 824B. It showed whole green-yellow plant from the seedling stage, reduced number of tillers and longer growth duration. The contents of chlorophyll, chlorophyll a, chlorophyll b and net photosynthetic rate in leaves of the mutant obviously decreased, as well as the number of spikelets per panicle, seed setting rate and 1000-grain weight compared with its wild-type parent. Genetic analyses on F1 and F2 generations of 824ys crossed with three normal green varieties showed that the chlorophyll-deficit mutant character was controlled by a pair of recessive nuclear gene. Genetic mapping of the mutant gene was conducted by using microsatellite markers and F2 mapping population of 495R/824ys, and the mutant gene of 824ys was mapped on the short arm of rice chromosome 3. The genetic distances from the target gene to the markers RM218, RM282 and RM6959 were 25.6 cM, 5.2 cM and 21.8 cM, respectively. It was considered to be a new chlorophyll-deficit mutant gene and tentatively named as chl11(t.

  6. Decreased uv mutagenesis in cdc8, a DNA replication mutant of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, L.; Hinkle, D.; Prakash, S.

    1978-01-01

    A DNA replication mutant of yeast, cdc8, was found to decrease uv-induced reversion of lys2-1, arg4-17, tryl and ural. This effect was observed with all three alleles of cdc8 tested. Survival curves obtained following uv irradiation in cdc8 rad double mutants show that cdc8 is epistatic to rad6, as well as to rad1; cdc8 rad51 double mutants seem to be more sensitive than the single mutants. Since uv-induced reversion in cdc8 rad1 and cdc8 rad51 double mutants is like that of the cdc8 single mutants, we conclude that CDC8 plays a direct role in error-prone repair. To test whether CDC8 codes for a DNA polymerase, we have purified both DNA polymerase I and DNA polymerase II from cdc8 and CDC+ cells. The purified DNA polymerases from cdc8 were no more heat labile than those from CDC+, suggesting that CDC8 is not a structural gene for either enzyme.

  7. Functional Loss of Bmsei Causes Thermosensitive Epilepsy in Contractile Mutant Silkworm, Bombyx mori

    Science.gov (United States)

    Nie, Hongyi; Cheng, Tingcai; Huang, Xiaofeng; Zhou, Mengting; Zhang, Yinxia; Dai, Fangyin; Mita, Kazuei; Xia, Qingyou; Liu, Chun

    2015-07-01

    The thermoprotective mechanisms of insects remain largely unknown. We reported the Bombyx mori contractile (cot) behavioral mutant with thermo-sensitive seizures phenotype. At elevated temperatures, the cot mutant exhibit seizures associated with strong contractions, rolling, vomiting, and a temporary lack of movement. We narrowed a region containing cot to ~268 kb by positional cloning and identified the mutant gene as Bmsei which encoded a potassium channel protein. Bmsei was present in both the cell membrane and cytoplasm in wild-type ganglia but faint in cot. Furthermore, Bmsei was markedly decreased upon high temperature treatment in cot mutant. With the RNAi method and injecting potassium channel blockers, the wild type silkworm was induced the cot phenotype. These results demonstrated that Bmsei was responsible for the cot mutant phenotype and played an important role in thermoprotection in silkworm. Meanwhile, comparative proteomic approach was used to investigate the proteomic differences. The results showed that the protein of Hsp-1 and Tn1 were significantly decreased and increased on protein level in cot mutant after thermo-stimulus, respectively. Our data provide insights into the mechanism of thermoprotection in insect. As cot phenotype closely resembles human epilepsy, cot might be a potential model for the mechanism of epilepsy in future.

  8. Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae.

    Science.gov (United States)

    Stanley, Dragana; Fraser, Sarah; Chambers, Paul J; Rogers, Peter; Stanley, Grant A

    2010-02-01

    Saccharomyces spp. are widely used for ethanologenic fermentations, however yeast metabolic rate and viability decrease as ethanol accumulates during fermentation, compromising ethanol yield. Improving ethanol tolerance in yeast should, therefore, reduce the impact of ethanol toxicity on fermentation performance. The purpose of the current work was to generate and characterise ethanol-tolerant yeast mutants by subjecting mutagenised and non-mutagenised populations of Saccharomyces cerevisiae W303-1A to adaptive evolution using ethanol stress as a selection pressure. Mutants CM1 (chemically mutagenised) and SM1 (spontaneous) had increased acclimation and growth rates when cultivated in sub-lethal ethanol concentrations, and their survivability in lethal ethanol concentrations was considerably improved compared with the parent strain. The mutants utilised glucose at a higher rate than the parent in the presence of ethanol and an initial glucose concentration of 20 g l(-1). At a glucose concentration of 100 g l(-1), SM1 had the highest glucose utilisation rate in the presence or absence of ethanol. The mutants produced substantially more glycerol than the parent and, although acetate was only detectable in ethanol-stressed cultures, both mutants produced more acetate than the parent. It is suggested that the increased ethanol tolerance of the mutants is due to their elevated glycerol production rates and the potential of this to increase the ratio of oxidised and reduced forms of nicotinamide adenine dinucleotide (NAD(+)/NADH) in an ethanol-compromised cell, stimulating glycolytic activity.

  9. Mutant TDP-43 within motor neurons drives disease onset but not progression in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Ditsworth, Dara; Maldonado, Marcus; McAlonis-Downes, Melissa; Sun, Shuying; Seelman, Amanda; Drenner, Kevin; Arnold, Eveline; Ling, Shuo-Chien; Pizzo, Donald; Ravits, John; Cleveland, Don W; Da Cruz, Sandrine

    2017-06-01

    Mutations in TDP-43 cause amyotrophic lateral sclerosis (ALS), a fatal paralytic disease characterized by degeneration and premature death of motor neurons. The contribution of mutant TDP-43-mediated damage within motor neurons was evaluated using mice expressing a conditional allele of an ALS-causing TDP-43 mutant (Q331K) whose broad expression throughout the central nervous system mimics endogenous TDP-43. TDP-43Q331K mice develop age- and mutant-dependent motor deficits from degeneration and death of motor neurons. Cre-recombinase-mediated excision of the TDP-43Q331K gene from motor neurons is shown to delay onset of motor symptoms and appearance of TDP-43-mediated aberrant nuclear morphology, and abrogate subsequent death of motor neurons. However, reduction of mutant TDP-43 selectively in motor neurons did not prevent age-dependent degeneration of axons and neuromuscular junction loss, nor did it attenuate astrogliosis or microgliosis. Thus, disease mechanism is non-cell autonomous with mutant TDP-43 expressed in motor neurons determining disease onset but progression defined by mutant acting within other cell types.

  10. A Mutant Library Approach to Identify Improved Meningococcal Factor H Binding Protein Vaccine Antigens.

    Directory of Open Access Journals (Sweden)

    Monica Konar

    Full Text Available Factor H binding protein (FHbp is a virulence factor used by meningococci to evade the host complement system. FHbp elicits bactericidal antibodies in humans and is part of two recently licensed vaccines. Using human complement Factor H (FH transgenic mice, we previously showed that binding of FH decreased the protective antibody responses to FHbp vaccination. Therefore, in the present study we devised a library-based method to identify mutant FHbp antigens with very low binding of FH. Using an FHbp sequence variant in one of the two licensed vaccines, we displayed an error-prone PCR mutant FHbp library on the surface of Escherichia coli. We used fluorescence-activated cell sorting to isolate FHbp mutants with very low binding of human FH and preserved binding of control anti-FHbp monoclonal antibodies. We sequenced the gene encoding FHbp from selected clones and introduced the mutations into a soluble FHbp construct. Using this approach, we identified several new mutant FHbp vaccine antigens that had very low binding of FH as measured by ELISA and surface plasmon resonance. The new mutant FHbp antigens elicited protective antibody responses in human FH transgenic mice that were up to 20-fold higher than those elicited by the wild-type FHbp antigen. This approach offers the potential to discover mutant antigens that might not be predictable even with protein structural information and potentially can be applied to other microbial vaccine antigens that bind host proteins.

  11. Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism.

    Science.gov (United States)

    Pinfield-Wells, Helen; Rylott, Elizabeth L; Gilday, Alison D; Graham, Stuart; Job, Kathleen; Larson, Tony R; Graham, Ian A

    2005-09-01

    The Arabidopsis acyl-CoA oxidase (ACX) family comprises isozymes with distinct fatty acid chain-length specificities that together catalyse the first step of peroxisomal fatty acid beta-oxidation. We have isolated and characterized T-DNA insertion mutants in the medium to long-chain (ACX1) and long-chain (ACX2) acyl-CoA oxidases, and show that the corresponding endogenous activities are decreased in the mutants. Lipid catabolism during germination and early post-germinative growth was unaltered in the acx1-1 mutant, but slightly delayed in the acx2-1 mutant, with 3-day-old acx2-1 seedlings accumulating long-chain acyl-CoAs. In acx1-1 and acx2-1, seedling growth and establishment in the absence of an exogenous supply of sucrose was unaffected. Seedlings of the double mutant acx1-1 acx2-1 were unable to catabolize seed storage lipid, and accumulated long-chain acyl-CoAs. The acx1-1 acx2-1 seedlings were also unable to establish photosynthetic competency in the absence of an exogenous carbon supply, a phenotype that is shared with a number of other Arabidopsis mutants disrupted in storage lipid breakdown. Germination frequency of the double mutant was significantly reduced compared with wild-type seeds. This was unaffected by the addition of exogenous sucrose, but was improved by dormancy-breaking treatments such as cold stratification and after-ripening. We show that the acx1-1, acx2-1 and acx1-2 acx2-1 double mutants and the ketoacyl-CoA thiolase-2 (kat2) mutant exhibit a sucrose-independent germination phenotype comparable with that reported for comatose (cts-2), a mutant in a peroxisomal ABC transporter which exhibits enhanced dormancy. This demonstrates an additional role beyond that of carbon provision for the beta-oxidation pathway during germination or in dormant seeds.

  12. Evaluation of Mungbean Mutant Lines to Drought Stress and Their Genetic Relationships Using SSR Markers

    Directory of Open Access Journals (Sweden)

    Yuliasti

    2015-12-01

    Full Text Available Development of mungbean cultivarstolerant to drought stress through mutation breeding approach would enable us to anticipate the crop yield-reducing effects of climate changes. The objective of this research was to evaluate the yield performance of mungbean mutant lines that showed tolerance to drought stress, and to analyze their genetic diversity and relationship among mutant lines using SSR markers. The study was conducted during the dry season of 2012 in the Muneng experimental farm, Probolinggo, East Java. The experiment was laid out in a randomized block design with four replications. Five mutant lines and two parental lines as control were tested for evaluation of yield and drought tolerance under twoenvironments of two irrigation systems as treatment. The two environmental conditions consisted of optimal irrigation (at least three times: at planting, flowering and during pod filling and suboptimal irrigation (two times at planting and flowering. To evaluate genetic variation among selected mutant lines and their discrimination from parental lines in molecular level, a cluster analysis was performed using Unweighted Pair Group Method with Arithmetic Mean (UPGMA in the NTSYS software. The results showed that three mutant lines, including PsJ30, PsJ31, PsJ32 produced the highest grain yields of 1.17, 1.01, and 1.04 ton/ha, respectively, compared to the other mutant lines and the parents Gelatik (0.85 ton/ha and Perkutut (0.87 ton/ha as control check. Of those mutant lines, PSJ31 was the most tolerant to drought with sensitivity index value of 0.47. The PSJ31 has now been officially released as a new variety ( 2013, named as Muri which was identified to have high yield and tolerant to drought. Based on 23 SSR markers used for clustering analysis of those 3 selected mutant lines,9SSR markers (MBSS R033; satt137; MBSSR008; MBSSR203; MBSSR013; MBSSR021; MBSSR016; MBSSR136; and DMBSSR013 were successfully identified the three mungbean mutant

  13. Purine biosynthesis-deficient Burkholderia mutants are incapable of symbiotic accommodation in the stinkbug.

    Science.gov (United States)

    Kim, Jiyeun Kate; Jang, Ho Am; Won, Yeo Jin; Kikuchi, Yoshitomo; Han, Sang Heum; Kim, Chan-Hee; Nikoh, Naruo; Fukatsu, Takema; Lee, Bok Luel

    2014-03-01

    The Riptortus-Burkholderia symbiotic system represents a promising experimental model to study the molecular mechanisms involved in insect-bacterium symbiosis due to the availability of genetically manipulated Burkholderia symbiont. Using transposon mutagenesis screening, we found a symbiosis-deficient mutant that was able to colonize the host insect but failed to induce normal development of host's symbiotic organ. The disrupted gene was identified as purL involved in purine biosynthesis. In vitro growth impairment of the purL mutant and its growth dependency on adenine and adenosine confirmed the functional disruption of the purine synthesis gene. The purL mutant also showed defects in biofilm formation, and this defect was not rescued by supplementation of purine derivatives. When inoculated to host insects, the purL mutant was initially able to colonize the symbiotic organ but failed to attain a normal infection density. The low level of infection density of the purL mutant attenuated the development of the host's symbiotic organ at early instar stages and reduced the host's fitness throughout the nymphal stages. Another symbiont mutant-deficient in a purine biosynthesis gene, purM, showed phenotypes similar to those of the purL mutant both in vitro and in vivo, confirming that the purL phenotypes are due to disrupted purine biosynthesis. These results demonstrate that the purine biosynthesis genes of the Burkholderia symbiont are critical for the successful accommodation of symbiont within the host, thereby facilitating the development of the host's symbiotic organ and enhancing the host's fitness values.

  14. Characterization of a yjjQ mutant of avian pathogenic Escherichia coli (APEC).

    Science.gov (United States)

    Li, Ganwu; Ewers, Christa; Laturnus, Claudia; Diehl, Ines; Alt, Katja; Dai, Jianjun; Antão, Esther-Maria; Schnetz, Karin; Wieler, Lothar H

    2008-04-01

    Infections with extraintestinal avian pathogenic Escherichia coli (APEC) cause significant economic losses in the poultry industry worldwide. In a previous study we applied signature-tagged transposon mutagenesis and identified 28 virulence-associated genes in APEC strain IMT5155 (O2 : H5 : K1). One of them, yjjQ, encodes a putative transcriptional regulator whose function and role in pathogenesis are still unknown. In the present study, this mutant has been characterized. The yjjQ-defective mutant of IMT5155 (M18E10) was out-competed by the wild-type strain in vivo, and infection of chickens with this yjjQ mutant led to strongly reduced bacterial loads in several organs. Expression studies showed that transcription of yjjQ was significantly upregulated in M9 minimal medium. Correspondingly, the yjjQ mutant showed significantly reduced growth in M9 medium. Although the mutation could not be complemented, a yjjQ deletion mutant showed phenotypes similar to the transposon-generated mutant M18E10, whereas deletion and overexpression of the downstream gene bglJ did not cause a growth defect in M9. To identify virulence genes regulated by YjjQ, one- and two-dimensional protein gel electrophoresis was performed. The proteomic analysis revealed that in the yjjQ mutant M18E10 the expression of several genes involved in iron uptake was downregulated and some other genes were upregulated. The regulation of genes involved in iron uptake was shown to occur at the transcription level using real-time RT-PCR. Taking the results together, this functional analysis strongly suggests that YjjQ is a regulator involved in virulence of APEC by affecting iron uptake.

  15. The effect of spatial randomness on the average fixation time of mutants

    Science.gov (United States)

    Farhang-Sardroodi, Suzan; Darooneh, Amir H.; Nikbakht, Moladad; Kohandel, Mohammad

    2017-01-01

    The mean conditional fixation time of a mutant is an important measure of stochastic population dynamics, widely studied in ecology and evolution. Here, we investigate the effect of spatial randomness on the mean conditional fixation time of mutants in a constant population of cells, N. Specifically, we assume that fitness values of wild type cells and mutants at different locations come from given probability distributions and do not change in time. We study spatial arrangements of cells on regular graphs with different degrees, from the circle to the complete graph, and vary assumptions on the fitness probability distributions. Some examples include: identical probability distributions for wild types and mutants; cases when only one of the cell types has random fitness values while the other has deterministic fitness; and cases where the mutants are advantaged or disadvantaged. Using analytical calculations and stochastic numerical simulations, we find that randomness has a strong impact on fixation time. In the case of complete graphs, randomness accelerates mutant fixation for all population sizes, and in the case of circular graphs, randomness delays mutant fixation for N larger than a threshold value (for small values of N, different behaviors are observed depending on the fitness distribution functions). These results emphasize fundamental differences in population dynamics under different assumptions on cell connectedness. They are explained by the existence of randomly occurring “dead zones” that can significantly delay fixation on networks with low connectivity; and by the existence of randomly occurring “lucky zones” that can facilitate fixation on networks of high connectivity. Results for death-birth and birth-death formulations of the Moran process, as well as for the (haploid) Wright Fisher model are presented. PMID:29176825

  16. Characterization of antimicrobial activity against Listeria and cytotoxicity of native melittin and its mutant variants.

    Science.gov (United States)

    Wu, Xi; Singh, Atul K; Wu, Xiaoyu; Lyu, Yuan; Bhunia, Arun K; Narsimhan, Ganesan

    2016-07-01

    Antimicrobial peptides (AMPs) are relatively short peptides that have the ability to penetrate the cell membrane, form pores leading to cell death. This study compares both antimicrobial activity and cytotoxicity of native melittin and its two mutants, namely, melittin I17K (GIGAVLKVLTTGLPALKSWIKRKRQQ) with a higher charge and lower hydrophobicity and mutant G1I (IIGAVLKVLTTGLPALISWIKRKRQQ) of higher hydrophobicity. The antimicrobial activity against different strains of Listeria was investigated by bioassay, viability studies, fluorescence and transmission electron microscopy. Cytotoxicity was examined by lactate dehydrogenase (LDH) assay on mammalian Caco-2 cells. The minimum inhibitory concentration of native, mutant I17K, mutant G1I against Listeria monocytogenes F4244 was 0.315±0.008, 0.814±0.006 and 0.494±0.037μg/ml respectively, whereas the minimum bactericidal concentration values were 3.263±0.0034, 7.412±0.017 and 5.366±0.019μg/ml respectively. Lag time for inactivation of L. monocytogenes F4244 was observed at concentrations below 0.20 and 0.78μg/ml for native and mutant melittin I17K respectively. The antimicrobial activity against L. monocytogenes F4244 was in the order native>G1I>I17K. Native melittin was cytotoxic to mammalian Caco-2 cells above concentration of 2μg/ml, whereas the two mutants exhibited negligible cytotoxicity up to a concentration of 8μg/ml. Pore formation in cell wall/membrane was observed by transmission electron microscopy. Molecular dynamics (MD) simulation of native and its mutants indicated that (i) surface native melittin and G1I exhibited higher tendency to penetrate a mimic of bacterial cell membrane and (ii) transmembrane native and I17K formed water channel in mimics of bacterial and mammalian cell membranes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Photosynthesis, Light Use Efficiency, and Yield of Reduced-Chlorophyll Soybean Mutants in Field Conditions

    Science.gov (United States)

    Slattery, Rebecca A.; VanLoocke, Andy; Bernacchi, Carl J.; Zhu, Xin-Guang; Ort, Donald R.

    2017-01-01

    Reducing chlorophyll (chl) content may improve the conversion efficiency of absorbed photosynthetically active radiation into biomass and therefore yield in dense monoculture crops by improving light penetration and distribution within the canopy. The effects of reduced chl on leaf and canopy photosynthesis and photosynthetic efficiency were studied in two reportedly robust reduced-chl soybean mutants, Y11y11 and y9y9, in comparison to the wild-type (WT) “Clark” cultivar. Both mutants were characterized during the 2012 growing season whereas only the Y11y11 mutant was characterized during the 2013 growing season. Chl deficiency led to greater rates of leaf-level photosynthesis per absorbed photon early in the growing season when mutant chl content was ∼35% of the WT, but there was no effect on photosynthesis later in the season when mutant leaf chl approached 50% of the WT. Transient benefits of reduced chl at the leaf level did not translate to improvements in canopy-level processes. Reduced pigmentation in these mutants was linked to lower water use efficiency, which may have dampened any photosynthetic benefits of reduced chl, especially since both growing seasons experienced significant drought conditions. These results, while not confirming our hypothesis or an earlier published study in which the Y11y11 mutant significantly outyielded the WT, do demonstrate that soybean significantly overinvests in chl. Despite a >50% chl reduction, there was little negative impact on biomass accumulation or yield, and the small negative effects present were likely due to pleiotropic effects of the mutation. This outcome points to an opportunity to reinvest nitrogen and energy resources that would otherwise be used in pigment-proteins into increasing biochemical photosynthetic capacity, thereby improving canopy photosynthesis and biomass production. PMID:28458677

  18. A Novel Two-Step Method for Screening Shade Tolerant Mutant Plants via Dwarfism

    Science.gov (United States)

    Li, Wei; Katin-Grazzini, Lorenzo; Krishnan, Sanalkumar; Thammina, Chandra; El-Tanbouly, Rania; Yer, Huseyin; Merewitz, Emily; Guillard, Karl; Inguagiato, John; McAvoy, Richard J.; Liu, Zongrang; Li, Yi

    2016-01-01

    When subjected to shade, plants undergo rapid shoot elongation, which often makes them more prone to disease and mechanical damage. Shade-tolerant plants can be difficult to breed; however, they offer a substantial benefit over other varieties in low-light areas. Although perennial ryegrass (Lolium perenne L.) is a popular species of turf grasses because of their good appearance and fast establishment, the plant normally does not perform well under shade conditions. It has been reported that, in turfgrass, induced dwarfism can enhance shade tolerance. Here we describe a two-step procedure for isolating shade tolerant mutants of perennial ryegrass by first screening for dominant dwarf mutants, and then screening dwarf plants for shade tolerance. The two-step screening process to isolate shade tolerant mutants can be done efficiently with limited space at early seedling stages, which enables quick and efficient isolation of shade tolerant mutants, and thus facilitates development of shade tolerant new cultivars of turfgrasses. Using the method, we isolated 136 dwarf mutants from 300,000 mutagenized seeds, with 65 being shade tolerant (0.022%). When screened directly for shade tolerance, we recovered only four mutants from a population of 150,000 (0.003%) mutagenized seeds. One shade tolerant mutant, shadow-1, was characterized in detail. In addition to dwarfism, shadow-1 and its sexual progeny displayed high degrees of tolerance to both natural and artificial shade. We showed that endogenous gibberellin (GA) content in shadow-1 was higher than wild-type controls, and shadow-1 was also partially GA insensitive. Our novel, simple and effective two-step screening method should be applicable to breeding shade tolerant cultivars of turfgrasses, ground covers, and other economically important crop plants that can be used under canopies of existing vegetation to increase productivity per unit area of land. PMID:27752260

  19. Targetable signaling pathway mutations are associated with malignant phenotype in IDH-mutant gliomas.

    Science.gov (United States)

    Wakimoto, Hiroaki; Tanaka, Shota; Curry, William T; Loebel, Franziska; Zhao, Dan; Tateishi, Kensuke; Chen, Juxiang; Klofas, Lindsay K; Lelic, Nina; Kim, James C; Dias-Santagata, Dora; Ellisen, Leif W; Borger, Darrell R; Fendt, Sarah-Maria; Vander Heiden, Matthew G; Batchelor, Tracy T; Iafrate, A John; Cahill, Daniel P; Chi, Andrew S

    2014-06-01

    Isocitrate dehydrogenase (IDH) gene mutations occur in low-grade and high-grade gliomas. We sought to identify the genetic basis of malignant phenotype heterogeneity in IDH-mutant gliomas. We prospectively implanted tumor specimens from 20 consecutive IDH1-mutant glioma resections into mouse brains and genotyped all resection specimens using a CLIA-certified molecular panel. Gliomas with cancer driver mutations were tested for sensitivity to targeted inhibitors in vitro. Associations between genomic alterations and outcomes were analyzed in patients. By 10 months, 8 of 20 IDH1-mutant gliomas developed intracerebral xenografts. All xenografts maintained mutant IDH1 and high levels of 2-hydroxyglutarate on serial transplantation. All xenograft-producing gliomas harbored "lineage-defining" mutations in CIC (oligodendroglioma) or TP53 (astrocytoma), and 6 of 8 additionally had activating mutations in PIK3CA or amplification of PDGFRA, MET, or N-MYC. Only IDH1 and CIC/TP53 mutations were detected in non-xenograft-forming gliomas (P = 0.0007). Targeted inhibition of the additional alterations decreased proliferation in vitro. Moreover, we detected alterations in known cancer driver genes in 13.4% of IDH-mutant glioma patients, including PIK3CA, KRAS, AKT, or PTEN mutation or PDGFRA, MET, or N-MYC amplification. IDH/CIC mutant tumors were associated with PIK3CA/KRAS mutations whereas IDH/TP53 tumors correlated with PDGFRA/MET amplification. Presence of driver alterations at progression was associated with shorter subsequent progression-free survival (median 9.0 vs. 36.1 months; P = 0.0011). A subset of IDH-mutant gliomas with mutations in driver oncogenes has a more malignant phenotype in patients. Identification of these alterations may provide an opportunity for use of targeted therapies in these patients. Clin Cancer Res; 20(11); 2898-909. ©2014 AACR. ©2014 American Association for Cancer Research.

  20. Quantitative insertion-site sequencing (QIseq) for high throughput phenotyping of transposon mutants.

    Science.gov (United States)

    Bronner, Iraad F; Otto, Thomas D; Zhang, Min; Udenze, Kenneth; Wang, Chengqi; Quail, Michael A; Jiang, Rays H Y; Adams, John H; Rayner, Julian C

    2016-07-01

    Genetic screening using random transposon insertions has been a powerful tool for uncovering biology in prokaryotes, where whole-genome saturating screens have been performed in multiple organisms. In eukaryotes, such screens have proven more problematic, in part because of the lack of a sensitive and robust system for identifying transposon insertion sites. We here describe quantitative insertion-site sequencing, or QIseq, which uses custom library preparation and Illumina sequencing technology and is able to identify insertion sites from both the 5' and 3' ends of the transposon, providing an inbuilt level of validation. The approach was developed using piggyBac mutants in the human malaria parasite Plasmodium falciparum but should be applicable to many other eukaryotic genomes. QIseq proved accurate, confirming known sites in >100 mutants, and sensitive, identifying and monitoring sites over a >10,000-fold dynamic range of sequence counts. Applying QIseq to uncloned parasites shortly after transfections revealed multiple insertions in mixed populations and suggests that >4000 independent mutants could be generated from relatively modest scales of transfection, providing a clear pathway to genome-scale screens in P. falciparum QIseq was also used to monitor the growth of pools of previously cloned mutants and reproducibly differentiated between deleterious and neutral mutations in competitive growth. Among the mutants with fitness defects was a mutant with a piggyBac insertion immediately upstream of the kelch protein K13 gene associated with artemisinin resistance, implying mutants in this gene may have competitive fitness costs. QIseq has the potential to enable the scale-up of piggyBac-mediated genetics across multiple eukaryotic systems. © 2016 Bronner et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Selective processing and metabolism of disease-causing mutant prion proteins.

    Directory of Open Access Journals (Sweden)

    Aarthi Ashok

    2009-06-01

    Full Text Available Prion diseases are fatal neurodegenerative disorders caused by aberrant metabolism of the cellular prion protein (PrP(C. In genetic forms of these diseases, mutations in the globular C-terminal domain are hypothesized to favor the spontaneous generation of misfolded PrP conformers (including the transmissible PrP(Sc form that trigger downstream pathways leading to neuronal death. A mechanistic understanding of these diseases therefore requires knowledge of the quality control pathways that recognize and degrade aberrant PrPs. Here, we present comparative analyses of the biosynthesis, trafficking, and metabolism of a panel of genetic disease-causing prion protein mutants in the C-terminal domain. Using quantitative imaging and biochemistry, we identify a misfolded subpopulation of each mutant PrP characterized by relative detergent insolubility, inaccessibility to the cell surface, and incomplete glycan modifications. The misfolded populations of mutant PrPs were neither recognized by ER quality control pathways nor routed to ER-associated degradation despite demonstrable misfolding in the ER. Instead, mutant PrPs trafficked to the Golgi, from where the misfolded subpopulation was selectively trafficked for degradation in acidic compartments. Surprisingly, selective re-routing was dependent not only on a mutant globular domain, but on an additional lysine-based motif in the highly conserved unstructured N-terminus. These results define a specific trafficking and degradation pathway shared by many disease-causing PrP mutants. As the acidic lysosomal environment has been implicated in facilitating the conversion of PrP(C to PrP(Sc, our identification of a mutant-selective trafficking pathway to this compartment may provide a cell biological basis for spontaneous generation of PrP(Sc in familial prion disease.

  2. [Analysis of various types of competition in Tn5-mutants of alfalfa rhizobium bacteria (Sinorhizobium meliloti)].

    Science.gov (United States)

    Onishchuk, O P; Kurchak, O N; Sharypova, L A; Provorov, N A; Simarov, B V

    2001-11-01

    Nodulation, rhizospheral, and saprophytic types of competitiveness (NC, RC, and SC, respectively) were studied in the highly active strains CXM1-105 and CXM1-188 of the alfalfa rhizobium Sinorhizobium meliloti. The competitiveness was estimated with the use of markers of antibiotic resistance. It was found that the mutant strain T37, which was characterized by a drastically decreased NC, had higher SC and RC than the parental strain. The mutant T107 (with a moderately decreased NC) did not differ from the parental strain with respect to RC but had a higher SC. The mutant T27 (with the lowest NC) did not differ from the parental strain with respect to SC or RC. In the mutant Tb1, the NC and RC were decreased and the SC was the same as in the parental strain. In Tb7, the SC was decreased and RC was increased. In the mutant T795, all of the three types of competitiveness were decreased. The difference between the mutants studied and the parental strain with respect to NC and RC was confirmed using an indirect method (the ability to form effective symbiosis after mixed inoculation together with the an ineffective tester strain CXM1-48) and the X-Gluc staining method (using the S. meliloti RmM4gus tester strain carrying the gene of beta-glucuronidase). However, the decreased SC that the mutants exhibited when they were cultivated together with parental strains in a plant-growth substrate (vermiculite) was not observed in the case of their cocultivation in liquid media. The independent variation of different types of competitiveness indicate that rhizobia have several separate gene systems determining their survival in in planta and ex planta ecological niches.

  3. A novel two-step method for screening shade tolerant mutant plants via dwarfism

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-10-01

    Full Text Available When subjected to shade, plants undergo rapid shoot elongation, which often makes them more prone to disease and mechanical damage. Shade-tolerant plants can be difficult to breed; however, they offer a substantial benefit over other varieties in low-light areas. Although perennial ryegrass (Lolium perenne L. is a popular species of turf grasses because of their good appearance and fast establishment, the plant normally does not perform well under shade conditions. It has been reported that, in turfgrass, induced dwarfism can enhance shade tolerance. Here we describe a two-step procedure for isolating shade tolerant mutants of perennial ryegrass by first screening for dominant dwarf mutants, and then screening dwarf plants for shade tolerance. The two-step screening process to isolate shade tolerant mutants can be done efficiently with limited space at early seedling stages, which enables quick and efficient isolation of shade tolerant mutants, and thus facilitates development of shade tolerant new cultivars of turfgrasses. Using the method, we isolated 136 dwarf mutants from 300,000 mutagenized seeds, with 65 being shade tolerant (0.022%. When screened directly for shade tolerance, we recovered only four mutants from a population of 150,000 (0.003% mutagenized seeds. One shade tolerant mutant, shadow-1, was characterized in detail. In addition to dwarfism, shadow-1 and its sexual progeny displayed high degrees of tolerance to both natural and artificial shade. We showed that endogenous gibberellin (GA content in shadow-1 was higher than wild-type controls, and shadow-1 was also partially GA insensitive. Our novel, simple and effective two-step screening method should be applicable to breeding shade tolerant cultivars of turfgrasses, ground covers, and other economically important crop plants that can be used under canopies of existing vegetation to increase productivity per unit area of land.

  4. Iron uptake from plasma transferrin by a transferrin receptor 2 mutant mouse model of haemochromatosis.

    Science.gov (United States)

    Chua, Anita C G; Delima, Roheeth D; Morgan, Evan H; Herbison, Carly E; Tirnitz-Parker, Janina E E; Graham, Ross M; Fleming, Robert E; Britton, Robert S; Bacon, Bruce R; Olynyk, John K; Trinder, Debbie

    2010-03-01

    Hereditary haemochromatosis type 3 is caused by mutations in transferrin receptor (TFR) 2. TFR2 has been shown to mediate iron transport in vitro and regulate iron homeostasis. The aim of this study was to determine the role of Tfr2 in iron transport in vivo using a Tfr2 mutant mouse. Tfr2 mutant and wild-type mice were injected intravenously with (59)Fe-transferrin and tissue (59)Fe uptake was measured. Tfr1, Tfr2 and ferroportin expression was measured by real-time PCR and Western blot. Cellular localisation of ferroportin was determined by immunohistochemistry. Transferrin-bound iron uptake by the liver and spleen in Tfr2 mutant mice was reduced by 20% and 65%, respectively, whilst duodenal and renal uptake was unchanged compared with iron-loaded wild-type mice. In Tfr2 mutant mice, liver Tfr2 protein was absent, whilst ferroportin protein was increased in non-parenchymal cells and there was a low level of expression in hepatocytes. Tfr1 expression was unchanged compared with iron-loaded wild-type mice. Splenic Tfr2 protein expression was absent whilst Tfr1 and ferroportin protein expression was increased in Tfr2 mutant mice compared with iron-loaded wild-type mice. A small reduction in hepatic transferrin-bound iron uptake in Tfr2 mutant mice suggests that Tfr2 plays a minor role in liver iron transport and its primary role is to regulate iron metabolism. Increased ferroportin expression due to decreased hepcidin mRNA levels is likely to be responsible for impaired splenic iron uptake in Tfr2 mutant mice. Copyright (c) 2009 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  5. Isolation and characterisation of a dwarf rice mutant exhibiting defective gibberellins biosynthesis.

    Science.gov (United States)

    Ji, S H; Gururani, M A; Lee, J W; Ahn, B-O; Chun, S-C

    2014-03-01

    We have isolated a severe dwarf mutant derived from a Ds (Dissociation) insertion mutant rice (Oryza sativa var. japonica c.v. Dongjin). This severe dwarf phenotype, has short and dark green leaves, reduced shoot growth early in the seedling stage, and later severe dwarfism with failure to initiate flowering. When treated with bioactive GA3 , mutants are restored to the normal wild-type phenotype. Reverse transcription PCR analyses of 22 candidate genes related to the gibberellin (GA) biosynthesis pathway revealed that among 22 candidate genes tested, a dwarf mutant transcript was not expressed only in one OsKS2 gene. Genetic analysis revealed that the severe dwarf phenotype was controlled by recessive mutation of a single nuclear gene. The putative OsKS2 gene was a chromosome 4-located ent-kaurene synthase (KS), encoding the enzyme that catalyses an early step of the GA biosynthesis pathway. Sequence analysis revealed that osks2 carried a 1-bp deletion in the ORF region of OsKS2, which led to a loss-of-function mutation. The expression pattern of OsKS2 in wild-type cv Dongjin, showed that it is expressed in all organs, most prominently in the stem and floral organs. Morphological characteristics of the dwarf mutant showed dramatic modifications in internal structure and external morphology. We propose that dwarfism in this mutant is caused by a point mutation in OsKS2, which plays a significant role in growth and development of higher plants. Further investigation on OsKS2 and other OsKS-like proteins is underway and may yield better understanding of the putative role of OsKS in severe dwarf mutants. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. LHC II protein phosphorylation in leaves of Arabidopsis thaliana mutants deficient in non-photochemical quenching.

    Science.gov (United States)

    Breitholtz, Hanna-Leena; Srivastava, Renu; Tyystjärvi, Esa; Rintamäki, Eevi

    2005-06-01

    Phosphorylation of the light-harvesting chlorophyll a/b complex II (LHC II) proteins is induced in light via activation of the LHC II kinase by reduction of cytochrome b(6)f complex in thylakoid membranes. We have recently shown that, besides this activation, the LHC II kinase can be regulated in vitro by a thioredoxin-like component, and H2O2 that inserts an inhibitory loop in the regulation of LHC II protein phosphorylation in the chloroplast. In order to disclose the complex network for LHC II protein phosphorylation in vivo, we studied phosphorylation of LHC II proteins in the leaves of npq1-2 and npq4-1 mutants of Arabidopis thaliana. In comparison to wild-type, these mutants showed reduced non-photochemical quenching and increased excitation pressure of Photosystem II (PS II) under physiological light intensities. Peculiar regulation of LHC II protein phosphorylation was observed in mutant leaves under illumination. The npq4-1 mutant was able to maintain a high amount of phosphorylated LHC II proteins in thylakoid membranes at light intensities that induced inhibition of phosphorylation in wild-type leaves. Light intensity-dependent changes in the level of LHC II protein phosphorylation were smaller in the npq1-2 mutant compared to the wild-type. No significant differences in leaf thickness, dry weight, chlorophyll content, or the amount of LHC II proteins were observed between the two mutant and wild-type lines. We propose that the reduced capacity of the mutant lines to dissipate excess excitation energy induces changes in the production of reactive oxygen species in chloroplasts, which consequently affects the regulation of LHC II protein phosphorylation.

  7. Chlamydomonas fla mutants reveal a link between deflagellation and intraflagellar transport.

    Science.gov (United States)

    Parker, Jeremy David Kirk; Quarmby, Lynne Marie

    2003-08-20

    Cilia and flagella are often lost in anticipation of mitosis or in response to stress. There are two ways that a cell can lose its flagella: resorption or deflagellation. Deflagellation involves active severing of the axoneme at the base of the flagellum; this process is defective in Chlamydomonas fa mutants. In contrast, resorption has been thought to occur as a consequence of constitutive disassembly at the tip in the absence of continued assembly, which requires intraflagellar transport (IFT). Chlamydomonas fla mutants are unable to build and maintain flagella due to defects in IFT. fla10 cells, which are defective in kinesin-II, the anterograde IFT motor, resorb their flagella at the restrictive temperature (33 degrees C), as previously reported. We find that in standard media containing approximately 300 microM calcium, fla10 cells lose flagella by deflagellation at 33 degrees C. This temperature-induced deflagellation of a fla mutant is not predicted by the IFT-based model for flagellar length control. Other fla mutants behave similarly, losing their flagella by deflagellation instead of resorption, if adequate calcium is available. These data suggest a new model whereby flagellar resorption involves active disassembly at the base of the flagellum via a mechanism with components in common with the severing machinery of deflagellation. As predicted by this model, we discovered that deflagellation stimuli induce resorption if deflagellation is blocked either by mutation in a FA gene or by lack of calcium. Further support for this model comes from our discovery that fla10-fa double mutants resorb their flagella more slowly than fla10 mutants. Deflagellation of the fla10 mutant at the restrictive temperature is indicative of an active disassembly signal, which can manifest as either resorption or deflagellation. We propose that when IFT is halted by either an inactivating mutation or a cellular signal, active flagellar disassembly is initiated. This active

  8. Isolation and characterization of a mutant recombinant Saccharomyces cerevisiae strain with high efficiency xylose utilization.

    Science.gov (United States)

    Tomitaka, Masataka; Taguchi, Hisataka; Fukuda, Kohsai; Akamatsu, Takashi; Kida, Kenji

    2013-12-01

    A recombinant xylose-utilizing Saccharomyces cerevisiae strain carrying one copy of heterologous XYL1 and XYL2 from Pichia stipitis and endogenous XKS1 under the control of the TDH3 promoter in the chromosomal DNA was constructed from the industrial haploid yeast strain NAM34-4C, which showed thermotolerance and acid tolerance. The recombinant S. cerevisiae strain SCB7 grew in minimal medium containing xylose as the sole carbon source, and its shortest generation time (G(short)) was 5 h. From this strain, four mutants showing rapid growth (G(short) = 2.5 h) in the minimal medium were isolated. The mutants carried four mutations that were classified into three linkage groups. Three mutations were dominant and one mutation was recessive to the wild type allele. The recessive mutation was in the PHO13 gene encoding para-nitrophenyl phosphatase. The other mutant genes were not linked to TAL1 gene encoding transaldolase. When the mutants and their parental strain were used for the batch fermentation in a complex medium at pH 4.0 containing 30 g/L xylose at 35 °C with shaking (60 rpm) and an initial cell density (Absorbance at 660 nm) of 1.0, all mutants showed efficient ethanol production and xylose consumption from the early stage of the fermentation culture. In two mutants, within 24 h, 4.8 g/L ethanol was produced, and the ethanol yield was 47%, which was 1.4 times higher than that achieved with the parental strain. The xylose concentration in the medium containing the mutant decreased linearly at a rate of 1 g/L/h until 24 h. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Isolation and characterization of a Chinese hamster ovary cell mutant with altered regulation of phosphatidylserine biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, K.; Kuge, O.; Nishijima, M.; Akamatsu, Y. (National Institute of Health, Tokyo (Japan))

    1989-11-25

    We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in (14C)ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of (14C)ethanolamine into phosphatidylethanolamine in mutant 29 was due to dilution of phosphoryl-(14C)ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively, compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated level of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well.

  10. Photosynthesis, Light Use Efficiency, and Yield of Reduced-Chlorophyll Soybean Mutants in Field Conditions.

    Science.gov (United States)

    Slattery, Rebecca A; VanLoocke, Andy; Bernacchi, Carl J; Zhu, Xin-Guang; Ort, Donald R

    2017-01-01

    Reducing chlorophyll (chl) content may improve the conversion efficiency of absorbed photosynthetically active radiation into biomass and therefore yield in dense monoculture crops by improving light penetration and distribution within the canopy. The effects of reduced chl on leaf and canopy photosynthesis and photosynthetic efficiency were studied in two reportedly robust reduced-chl soybean mutants, Y11y11 and y9y9, in comparison to the wild-type (WT) "Clark" cultivar. Both mutants were characterized during the 2012 growing season whereas only the Y11y11 mutant was characterized during the 2013 growing season. Chl deficiency led to greater rates of leaf-level photosynthesis per absorbed photon early in the growing season when mutant chl content was ∼35% of the WT, but there was no effect on photosynthesis later in the season when mutant leaf chl approached 50% of the WT. Transient benefits of reduced chl at the leaf level did not translate to improvements in canopy-level processes. Reduced pigmentation in these mutants was linked to lower water use efficiency, which may have dampened any photosynthetic benefits of reduced chl, especially since both growing seasons experienced significant drought conditions. These results, while not confirming our hypothesis or an earlier published study in which the Y11y11 mutant significantly outyielded the WT, do demonstrate that soybean significantly overinvests in chl. Despite a >50% chl reduction, there was little negative impact on biomass accumulation or yield, and the small negative effects present were likely due to pleiotropic effects of the mutation. This outcome points to an opportunity to reinvest nitrogen and energy resources that would otherwise be used in pigment-proteins into increasing biochemical photosynthetic capacity, thereby improving canopy photosynthesis and biomass production.

  11. Interactions between wild-type and mutant Ras genes in lung and skin carcinogenesis.

    Science.gov (United States)

    To, M D; Rosario, R D; Westcott, P M K; Banta, K L; Balmain, A

    2013-08-22

    Ras oncogenes (Hras, Kras and Nras) are important drivers of carcinogenesis. However, tumors with Ras mutations often show loss of the corresponding wild-type (WT) allele, suggesting that proto-oncogenic forms of Ras can function as a suppressor of carcinogenesis. In vitro studies also suggest that WT Ras proteins can suppress the tumorigenic properties of alternate mutant Ras family members, but in vivo evidence for these heterologous interactions is lacking. We have investigated the genetic interactions between different combinations of mutant and WT Ras alleles in vivo using carcinogen-induced lung and skin carcinogenesis in mice with targeted deletion of different Ras family members. The major suppressor effect of WT Kras is observed only in mutant Kras-driven lung carcinogenesis, where loss of one Kras allele led to increased tumor number and size. Deletion of one Hras allele dramatically reduced the number of skin papillomas with Hras mutations, consistent with Hras as the major target of mutation in these tumors. However, skin carcinoma numbers were very similar, suggesting that WT Hras functions as a suppressor of progression from papillomas to invasive squamous carcinomas. In the skin, the Kras proto-oncogene functions cooperatively with mutant Hras to promote papilloma development, although the effect is relatively small. In contrast, the Hras proto-oncogene attenuated the activity of mutant Kras in lung carcinogenesis. Interestingly, loss of Nras increased the number of mutant Kras-induced lung tumors, but decreased the number of mutant Hras-induced skin papillomas. These results show that the strongest suppressor effects of WT Ras are only seen in the context of mutation of the cognate Ras protein, and only relatively weak effects are detected on tumor development induced by mutations in alternative family members. The data also underscore the complex and context-dependent nature of interactions between proto-oncogenic and oncogenic forms of different

  12. Physiology and pathogenicity of cpdB deleted mutant of avian pathogenic Escherichia coli.

    Science.gov (United States)

    Liu, Huifang; Chen, Liping; Si, Wei; Wang, Chunlai; Zhu, Fangna; Li, Guangxing; Liu, Siguo

    2017-04-01

    Avian colibacillosis is one of the most common infectious diseases caused partially or entirely by avian pathogenic Escherichia coli (APEC) in birds. In addition to spontaneous infection, APEC can also cause secondary infections that result in greater severity of illness and greater losses to the poultry industry. In order to assess the role of 2', 3'-cyclic phosphodiesterase (cpdB) in APEC on disease physiology and pathogenicity, an avian pathogenic Escherichia coli-34 (APEC-34) cpdB mutant was obtained using the Red system. The cpdB mutant grew at a slower rate than the natural strain APEC-34. Scanning electron microscopy (SEM) indicated that the bacteria of the cpdB mutant were significantly longer than the bacteria observed in the natural strain (P<0.01), and that the width of the cpdB mutant was significantly smaller than its natural counterpart (P<0.01). In order to evaluate the role of cpdB in APEC in the colonization of internal organs (lung, liver and spleen) in poultry, seven-day-old SPF chicks were infected with 10 9 CFU/chick of the cpdB mutant or the natural strain. No colonizations of cpdB mutants were observed in the internal organs 10days following the infection, though numerous natural strains were observed at 20days following infection. Additionally, the relative expression of division protein ftsZ, outer membrane protein A ompA, ferric uptake regulator fur and tryptophanase tnaA genes in the mutant strain were all significantly lower than in the natural strain (P<0.05 or P<0.01). These results suggested that cpdB is involved in the long-term colonization of APEC in the internal organs of the test subjects. The deletion of the cpdB gene also significantly affected the APEC growth and morphology. Copyright © 2016. Published by Elsevier Ltd.

  13. Characterization and fine mapping of a light-dependent leaf lesion mimic mutant 1 in rice.

    Science.gov (United States)

    Wang, Jing; Ye, Bangquan; Yin, Junjie; Yuan, Can; Zhou, Xiaogang; Li, Weitao; He, Min; Wang, Jichun; Chen, Weilan; Qin, Peng; Ma, Bintian; Wang, Yuping; Li, Shigui; Chen, Xuewei

    2015-12-01

    Plants that spontaneously produce lesion mimics or spots, without any signs of obvious adversity, such as pesticide and mechanical damage, or pathogen infection, are so-called lesion mimic mutants (lmms). In rice, many lmms exhibit enhanced resistance to pathogens, which provides a unique opportunity to uncover the molecular mechanism underlying lmms. We isolated a rice light-dependent leaf lesion mimic mutant 1 (llm1). Lesion spots appeared in the leaves of the llm1 mutant at the tillering stage. Furthermore, the mutant llm1 had similar agronomic traits to wild type rice. Trypan blue and diamiobenzidine staining analyses revealed that the lesion spot formation on the llm1 mutant was due to programmed cell death and reactive oxygen species. The chloroplasts were severely damaged in the llm1 mutant, suggesting that chloroplast damage was associated with the formation of lesion spots in llm1. More importantly, llm1 exhibited enhanced resistance to bacterial blight pathogens within increased expression of pathogenesis related genes (PRs). Using a map-based cloning approach, we delimited the LLM1 locus to a 121-kb interval between two simple sequence repeat markers, RM17470 and RM17473, on chromosome 4. We sequenced the candidate genes on the interval and found that a base mutation had substituted adenine phosphate for thymine in the last exon of LOC_Os04g52130, which led to an amino acid change (Asp(388) to Val) in the llm1 mutant. Our investigation showed that the putative coproporphyrinogen III oxidase (CPOX) encoded by LOC_Os04g52130 was produced by LLM1 and that amino acid Asp(388) was essential for CPOX function. Our study provides the basis for further investigations into the mechanism underlying lesion mimic initiation associated with LLM1. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. Aggregation of ALS-linked FUS mutant sequesters RNA binding proteins and impairs RNA granules formation

    Energy Technology Data Exchange (ETDEWEB)

    Takanashi, Keisuke; Yamaguchi, Atsushi, E-mail: atsyama@restaff.chiba-u.jp

    2014-09-26

    Highlights: • Aggregation of ALS-linked FUS mutant sequesters ALS-associated RNA-binding proteins (FUS wt, hnRNP A1, and hnRNP A2). • Aggregation of ALS-linked FUS mutant sequesters SMN1 in the detergent-insoluble fraction. • Aggregation of ALS-linked FUS mutant reduced the number of speckles in the nucleus. • Overproduced ALS-linked FUS mutant reduced the number of processing-bodies (PBs). - Abstract: Protein aggregate/inclusion is one of hallmarks for neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). FUS/TLS, one of causative genes for familial ALS, encodes a multifunctional DNA/RNA binding protein predominantly localized in the nucleus. C-terminal mutations in FUS/TLS cause the retention and the inclusion of FUS/TLS mutants in the cytoplasm. In the present study, we examined the effects of ALS-linked FUS mutants on ALS-associated RNA binding proteins and RNA granules. FUS C-terminal mutants were diffusely mislocalized in the cytoplasm as small granules in transiently transfected SH-SY5Y cells, whereas large aggregates were spontaneously formed in ∼10% of those cells. hnRNP A1, hnRNP A2, and SMN1 as well as FUS wild type were assembled into stress granules under stress conditions, and these were also recruited to FUS mutant-derived spontaneous aggregates in the cytoplasm. These aggregates stalled poly(A) mRNAs and sequestered SMN1 in the detergent insoluble fraction, which also reduced the number of nuclear oligo(dT)-positive foci (speckles) in FISH (fluorescence in situ hybridization) assay. In addition, the number of P-bodies was decreased in cells harboring cytoplasmic granules of FUS P525L. These findings raise the possibility that ALS-linked C-terminal FUS mutants could sequester a variety of RNA binding proteins and mRNAs in the cytoplasmic aggregates, which could disrupt various aspects of RNA equilibrium and biogenesis.

  15. TagSmart: analysis and visualization for yeast mutant fitness data measured by tag microarrays

    Directory of Open Access Journals (Sweden)

    Xie Dan

    2007-04-01

    Full Text Available Abstract Background A nearly complete collection of gene-deletion mutants (96% of annotated open reading frames of the yeast Saccharomyces cerevisiae has been systematically constructed. Tag microarrays are widely used to measure the fitness of each mutant in a mutant mixture. The tag array experiments can have a complex experimental design, such as time course measurements and drug treatment with multiple dosages. Results TagSmart is a web application for analysis and visualization of Saccharomyces cerevisiae mutant fitness data measured by tag microarrays. It implements a robust statistical approach to assess the concentration differences among S. cerevisiae mutant strains. It also provides an interactive environment for data analysis and visualization. TagSmart has the following advantages over previously described analysis procedures: 1 it is user-friendly software rather than merely a description of analytical procedure; 2 It can handle complicated experimental designs, such as multiple time points and treatment with multiple dosages; 3 it has higher sensitivity and specificity; 4 It allows users to mask out "bad" tags in the analysis. Two biological tests were performed to illustrate the performance of TagSmart. First, we generated titration mixtures of mutant strains, in which the relative concentration of each strain was controlled. We used tag microarrays to measure the numbers of tag copies in each titration mixture. The data was analyzed with TagSmart and the result showed high precision and recall. Second, TagSmart was applied to a dataset in which heterozygous deletion strain mixture pools were treated with a new drug, Cincreasin. TagSmart identified 53 mutant strains as sensitive to Cincreasin treatment. We individually tested each identified mutant, and found 52 out of the 53 predicted mutants were indeed sensitive to Cincreasin. Conclusion TagSmart is provided "as is" to analyze tag array data produced by Affymetrix and Agilent

  16. A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation.

    Science.gov (United States)

    Pislariu, Catalina I; Murray, Jeremy D; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; Benedito, Vagner A; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S; Chen, Rujin; Udvardi, Michael K

    2012-08-01

    A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod-), 51 mutants with totally ineffective nodules (Nod+ Fix-), 17 mutants with partially ineffective nodules (Nod+ Fix+/-), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/- Fix-), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/- Fix+), and 11 supernodulating mutants (Nod++Fix+/-). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN'T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod- lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.

  17. Leishmania infantum HSP70-II null mutant as candidate vaccine against leishmaniasis: a preliminary evaluation

    Directory of Open Access Journals (Sweden)

    Fresno Manuel

    2011-07-01

    Full Text Available Abstract Background Visceral leishmaniasis is the most severe form of leishmaniasis and no effective vaccine exists. The use of live attenuated vaccines is emerging as a promising vaccination strategy. Results In this study, we tested the ability of a Leishmania infantum deletion mutant, lacking both HSP70-II alleles (ΔHSP70-II, to provide protection against Leishmania infection in the L. major-BALB/c infection model. Administration of the mutant line by either intraperitoneal, intravenous or subcutaneous route invariably leads to the production of high levels of NO and the development in mice of type 1 immune responses, as determined by analysis of anti-Leishmania IgG subclasses. In addition, we have shown that ΔHSP70-II would be a safe live vaccine as immunodeficient SCID mice, and hamsters (Mesocricetus auratus, infected with mutant parasites did not develop any sign of pathology. Conclusions The results suggest that the ΔHSP70-II mutant is a promising and safe vaccine, but further studies in more appropriate animal models (hamsters and dogs are needed to appraise whether this attenuate mutant would be useful as vaccine against visceral leishmaniasis.

  18. Changes of mandibular incisor in Fgfr2 S252W mutant mice

    Directory of Open Access Journals (Sweden)

    Xia ZHOU

    2013-11-01

    Full Text Available Objective To compare the phenotypic differences of mandibular incisor between the wild-type mice and fibroblast growth factor receptor 2 (Fgfr2 gene S252W mutant mice, and explore the influence of gain-of-function mutation in Fgfr2 gene on mandibular incisors in mice. Methods The male EⅡa-Cre mice were mated with Fgfr2S252W-neo/+ females to obtain the Fgfr2 S252W mutant mice. On the 56th day after offspring's birth (P56, samples were taken for Micro-CT, HE staining and calcein double fluorescent labeling to observe the gross appearance, tissue morphology and mineral apposition rate of mandibular incisors, respectively. Results The newborn mutant mice showed short cranial deformity, which became more obvious on P56. Micro-CT showed a significant elongation and cross-bite deformity of mandibular incisors. HE staining showed that there were more ameloblasts and odontoblasts in the mutant mice, mostly with irregular appearance; epithelial diaphragm composed of inner and outer enamel epithelium shrank. Calcein double fluorescent labeling showed that the mineral apposition rate of dentin in mutant mice was significantly higher than that in controls. Conclusion Fgfr2 S252W mutation accelerates the growth of mandibular incisors in mice, resulting in the elongation and cross-bite deformity of mandibular incisors. DOI: 10.11855/j.issn.0577-7402.2013.10.005

  19. Temperature-sensitive retinoid isomerase activity of RPE65 mutants associated with Leber Congenital Amaurosis.

    Science.gov (United States)

    Li, Songhua; Hu, Jane; Jin, Robin J; Aiyar, Ashok; Jacobson, Samuel G; Bok, Dean; Jin, Minghao

    2015-08-01

    RPE65 is a membrane-associated retinoid isomerase involved in the visual cycle responsible for sustaining vision. Many mutations in the human RPE65 gene are associated with distinct forms of retinal degenerative diseases. The pathogenic mechanisms for most of these mutations remain poorly understood. Here, we show that three Leber congenital amaurosis -associated RPE65 mutants (R91W, Y249C and R515W) undergo rapid proteasomal degradation mediated by the 26 S proteasome non-ATPase regulatory subunit 13 (PSMD13) in cultured human retinal pigment epithelium (RPE) cells. These mutant proteins formed cytosolic inclusion bodies or high molecular weight complexes via disulfide bonds. The mutations are mapped on non-active sites but severely reduced isomerase activity of RPE65. At 30°C, however, the enzymatic function and membrane-association of the mutant RPE65s are significantly rescued possibly due to proper folding. In addition, PSMD13 displayed a drastically decreased effect on degradation of the mutant proteins in the cells grown at 30°C. These results suggest that PSMD13 plays a critical role in regulating pathogenicity of the mutations and the molecular basis for the PSMD13-mediated rapid degradation and loss of function of the mutants is misfolding of RPE65. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  20. Responses of Soybean Mutant Lines to Aluminium under In Vitro and In Vivo Condition

    Directory of Open Access Journals (Sweden)

    Yuliasti

    2011-12-01

    Full Text Available The main limited factors of soybean plants expansion in acid soil are Aluminium (Al toxicity and low pH. The best approach to solve this problem is by using Al tolerance variety. In vitro or in vivo selections using selective media containing AlCl3 and induced callus embryonic of mutant lines are reliable methods to develop a new variety. The objectives of this research are to evaluate response of soybean genotypes against AlCl3 under in vitro and in vivo condition. Addition of 15 part per million (ppm AlCl3 into in vitro and in vivo media severely affected plant growth. G3 soybean mutant line was identified as more tolerant than the control soybean cultivar Tanggamus. This mutant line was able to survive under more severe AlCl3 concentrations (15 ppm under in vitro conditions. Under in vivo conditions, G1 and G4 mutants were also identified as more tolerant than Tanggamus since they produced more pods and higher dry seed weigh per plant. Moreover, G4 mutant line also produced more dry seed weight per plant than Tanggamus when they were grown on soil containing high Al concentration 8.1 me/100gr = 81 ppm. Al+3

  1. Giant peroxisomes in a moss (Physcomitrella patens) peroxisomal biogenesis factor 11 mutant.

    Science.gov (United States)

    Kamisugi, Yasuko; Mitsuya, Shiro; El-Shami, Mahmoud; Knight, Celia D; Cuming, Andrew C; Baker, Alison

    2016-01-01

    Peroxisomal biogenesis factor 11 (PEX11) proteins are found in yeasts, mammals and plants, and play a role in peroxisome morphology and regulation of peroxisome division. The moss Physcomitrella patens has six PEX11 isoforms which fall into two subfamilies, similar to those found in monocots and dicots. We carried out targeted gene disruption of the Phypa_PEX11-1 gene and compared the morphological and cellular phenotypes of the wild-type and mutant strains. The mutant grew more slowly and the development of gametophores was retarded. Mutant chloronemal filaments contained large cellular structures which excluded all other cellular organelles. Expression of fluorescent reporter proteins revealed that the mutant strain had greatly enlarged peroxisomes up to 10 μm in diameter. Expression of a vacuolar membrane marker confirmed that the enlarged structures were not vacuoles, or peroxisomes sequestered within vacuoles as a result of pexophagy. Phypa_PEX11 targeted to peroxisome membranes could rescue the knock out phenotype and interacted with Fission1 on the peroxisome membrane. Moss PEX11 functions in peroxisome division similar to PEX11 in other organisms but the mutant phenotype is more extreme and environmentally determined, making P. patens a powerful system in which to address mechanisms of peroxisome proliferation and division. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Genetic Analysis and Mapping of TWH Gene in Rice Twisted Hull Mutant

    Directory of Open Access Journals (Sweden)

    Jin-bo LI

    2009-03-01

    Full Text Available A mutant with twisted hulls was found in a breeding population of rice (Oryza sativa L.. The mutant shows less grain weight and inferior grain quality in addition to twisted hulls. Genetic analysis indicated that the phenotype of mutant was controlled by a single recessive gene (temporarily designated as TWH. To map the TWH gene, an F2 population was generated by crossing the twh mutant to R725, an indica rice variety with normal hulls. For bulked segregant analysis, the bulk of mutant plants was prepared by mixing equal amount of plant tissue from 10 twisted-hull plants and the bulk of normal plants was obtained by pooling equal amount tissue of 10 normal-hull plants. Two hundred and seven pairs of simple sequence repeat (SSR primers, which are distributed on 12 rice chromosomes, were used for polymorphism analysis of the parents and the two bulks. The TWH locus was initially mapped close to the SSR marker RM526 on chromosome 2. Therefore, further mapping was performed using 50 pairs of SSR primers around the marker RM526. The TWH was delimited between the SSR markers RM14128 and RM208 on the long arm of chromosome 2 at the genetic distances of 1.4 cM and 2.7 cM, respectively. These results provide the foundation for further fine mapping, cloning and functional analysis of the TWH gene.

  3. Isolation and characterization of OmpC porin mutants with altered pore properties

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.; Benson, S.A.

    1988-02-01

    The LamB protien is normally required for the uptake of maltodextrins. Starting with a LamB/sup -/ OmpF/sup -/ strain, we have isolated mutants that will grow on maltodextrins. The mutation conferring the Dex/sup +/ phenotype in the majority of these mutants has been mapped to the ompC locus. These mutants, unlike LamB/sup -/ OmpF/sup -/ strains, grew on maltotriose and maltotetraose, but not on maltopentaose, and showed a significantly higher rate of (/sup 14/C) maltose uptake than the parent strain did. In addition, these mutants showed increased sensitivity to certain ..beta..-lactam antibiotics and sodium dodecyl sulfate, but did not exhibit an increase in sensitivity to other antibiotics and detergents. The nucleotide sequence of these mutants has been determined. In all cases, residue 74 (arginine) of the mature OmpC protein was affected. The results suggest that this region of the OmpC protein is involved in the pore domain and that the alterations lead to an increased pore size.

  4. Bridging the gap between chemistry, physiology, and evolution: quantifying the functionality of sperm whale myoglobin mutants.

    Science.gov (United States)

    Dasmeh, Pouria; Kepp, Kasper P

    2012-01-01

    This work merges a large set of previously reported thermochemical data for myoglobin (Mb) mutants with a physiological model of O(2)-transport and -storage. The model allows a quantification of the functional proficiency of myoglobin (Mb) mutants under various physiological conditions, i.e. O(2)-consumption rate resembling workload, O(2) partial pressure resembling hypoxic stress, muscle cell size, and Mb concentration, resembling different organism-specific and compensatory variables. We find that O(2)-storage and -transport are distinct functions that rank mutants and wild type differently depending on O(2) partial pressure. Specifically, the wild type is near-optimal for storage at all conditions, but for transport only at severely hypoxic conditions. At normoxic conditions, low-affinity mutants are in fact better O(2)-transporters because they still have empty sites for O(2), giving rise to a larger [MbO(2)] gradient (more varying saturation curve). The distributions of functionality reveal that many mutants are near-neutral with respect to function, whereas only a few are strongly affected, and the variation in functionality increases dramatically at lower O(2) pressure. These results together show that conserved residues in wild type (WT) Mb were fixated under a selection pressure of low P(O2). Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Reduced heme levels underlie the exponential growth defect of the Shewanella oneidensis hfq mutant.

    Directory of Open Access Journals (Sweden)

    Christopher M Brennan

    Full Text Available The RNA chaperone Hfq fulfills important roles in small regulatory RNA (sRNA function in many bacteria. Loss of Hfq in the dissimilatory metal reducing bacterium Shewanella oneidensis strain MR-1 results in slow exponential phase growth and a reduced terminal cell density at stationary phase. We have found that the exponential phase growth defect of the hfq mutant in LB is the result of reduced heme levels. Both heme levels and exponential phase growth of the hfq mutant can be completely restored by supplementing LB medium with 5-aminolevulinic acid (5-ALA, the first committed intermediate synthesized during heme synthesis. Increasing expression of gtrA, which encodes the enzyme that catalyzes the first step in heme biosynthesis, also restores heme levels and exponential phase growth of the hfq mutant. Taken together, our data indicate that reduced heme levels are responsible for the exponential growth defect of the S. oneidensis hfq mutant in LB medium and suggest that the S. oneidensis hfq mutant is deficient in heme production at the 5-ALA synthesis step.

  6. A simple and efficient method for CRISPR/Cas9-induced mutant screening.

    Science.gov (United States)

    Hua, Yufeng; Wang, Chun; Huang, Jian; Wang, Kejian

    2017-04-20

    The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system provides a technological breakthrough in mutant generation. Several methods such as the polymerase chain reaction (PCR)/restriction enzyme (RE) assay, T7 endonuclease I (T7EI) assay, Surveyor nuclease assay, PAGE-based genotyping assay, and high-resolution melting (HRM) analysis-based assay have been developed for screening CRISPR/Cas9-induced mutants. However, these methods are time- and labour-intensive and may also be sequence-limited or require very expensive equipment. Here, we described a cost-effective and sensitive screening technique based on conventional PCR, annealing at critical temperature PCR (ACT-PCR), for identifying mutants. ACT-PCR requires only a single PCR step followed by agarose gel electrophoresis. We demonstrated that ACT-PCR accurately distinguished CRISPR/Cas9-induced mutants from wild type in both rice and zebrafish. Moreover, the method can be adapted for accurately determining mutation frequency in cultured cells. The simplicity of ACT-PCR makes it particularly suitable for rapid, large-scale screening of CRISPR/Cas9-induced mutants in both plants and animals. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  7. Enhanced production of alkaline protease by a mutant of Bacillus licheniformis N-2 for dehairing

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    2010-10-01

    Full Text Available The purpose of the present investigations was to improve the yield of alkaline protease for leather dehairing by subjecting the indigenous proteolytic strain Bacillus licheniformis N-2 to various mutagenic treatments viz. UV irradiations, NTG (N-methyl-N-nitro-N-nitrosoguinidine and MMS (methyl methane sulfonate. After screening on skim milk agar plates, a total of nine positive mutants were selected for shake flask experiments. Among these, the best proteolytic mutant designated as UV-9 showed 1.4 fold higher alkaline protease activity in preoptimized growth medium than the parent strain. The fermentation profile and kinetic parameters such u(h-1, Yp/s, Yp/x, Yx/s, q s, Qs, q p and Qp also indicated the superiority of the selected mutant UV-9 for alkaline protease production over the parent strain and rest of the mutants. The dehairing capability of mutant UV-9 alkaline protease was analyzed by soaking goat skin pieces for different time intervals (3-15 h at 40 º C. A complete dehairing without degradation of collagen was achieved after 12 h, indicating its commercial exploitation in leather industry.

  8. Kinase Inhibitor Profiling Reveals Unexpected Opportunities to Inhibit Disease-Associated Mutant Kinases

    Directory of Open Access Journals (Sweden)

    Krisna C. Duong-Ly

    2016-02-01

    Full Text Available Small-molecule kinase inhibitors have typically been designed to inhibit wild-type kinases rather than the mutant forms that frequently arise in diseases such as cancer. Mutations can have serious clinical implications by increasing kinase catalytic activity or conferring therapeutic resistance. To identify opportunities to repurpose inhibitors against disease-associated mutant kinases, we conducted a large-scale functional screen of 183 known kinase inhibitors against 76 recombinant mutant kinases. The results revealed lead compounds with activity against clinically important mutant kinases, including ALK, LRRK2, RET, and EGFR, as well as unexpected opportunities for repurposing FDA-approved kinase inhibitors as leads for additional indications. Furthermore, using T674I PDGFRα as an example, we show how single-dose screening data can provide predictive structure-activity data to guide subsequent inhibitor optimization. This study provides a resource for the development of inhibitors against numerous disease-associated mutant kinases and illustrates the potential of unbiased profiling as an approach to compound-centric inhibitor development.

  9. Generation and screening of a comprehensive Mycobacterium avium subsp. paratuberculosis transposon mutant bank.

    Science.gov (United States)

    Rathnaiah, Govardhan; Lamont, Elise A; Harris, N Beth; Fenton, Robert J; Zinniel, Denise K; Liu, Xiaofei; Sotos, Josh; Feng, Zhengyu; Livneh-Kol, Ayala; Shpigel, Nahum Y; Czuprynski, Charles J; Sreevatsan, Srinand; Barletta, Raúl G

    2014-01-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's Disease in ruminants. This enteritis has significant economic impact and worldwide distribution. Vaccination is one of the most cost effective infectious disease control measures. Unfortunately, current vaccines reduce clinical disease and shedding, but are of limited efficacy and do not provide long-term protective immunity. Several strategies have been followed to mine the MAP genome for virulence determinants that could be applied to vaccine and diagnostic assay development. In this study, a comprehensive mutant bank of 13,536 MAP K-10 Tn5367 mutants (P > 95%) was constructed and screened in vitro for phenotypes related to virulence. This strategy was designated to maximize identification of genes important to MAP pathogenesis without relying on studies of other mycobacterial species that may not translate into similar effects in MAP. This bank was screened for mutants with colony morphology alterations, susceptibility to D-cycloserine, impairment in siderophore production or secretion, reduced cell association, and decreased biofilm and clump formation. Mutants with interesting phenotypes were analyzed by PCR, Southern blotting and DNA sequencing to determine transposon insertion sites. These insertion sites mapped upstream from the MAP1152-MAP1156 cluster, internal to either the Mod operon gene MAP1566 or within the coding sequence of lsr2, and several intergenic regions. Growth curves in broth cultures, invasion assays and kinetics of survival and replication in primary bovine macrophages were also determined. The ability of vectors carrying Tn5370 to generate stable MAP mutants was also investigated.

  10. MutMap+: genetic mapping and mutant identification without crossing in rice.

    Directory of Open Access Journals (Sweden)

    Rym Fekih

    Full Text Available Advances in genome sequencing technologies have enabled researchers and breeders to rapidly associate phenotypic variation to genome sequence differences. We recently took advantage of next-generation sequencing technology to develop MutMap, a method that allows rapid identification of causal nucleotide changes of rice mutants by whole genome resequencing of pooled DNA of mutant F2 progeny derived from crosses made between candidate mutants and the parental line. Here we describe MutMap+, a versatile extension of MutMap, that identifies causal mutations by comparing SNP frequencies of bulked DNA of mutant and wild-type progeny of M3 generation derived from selfing of an M2 heterozygous individual. Notably, MutMap+ does not necessitate artificial crossing between mutants and the wild-type parental line. This method is therefore suitable for identifying mutations that cause early development lethality, sterility, or generally hamper crossing. Furthermore, MutMap+ is potentially useful for gene isolation in crops that are recalcitrant to artificial crosses.

  11. Reduced insulin/IGF-1 signaling restores germ cell immortality to Caenorhabditis elegans Piwi mutants.

    Science.gov (United States)

    Simon, Matt; Sarkies, Peter; Ikegami, Kohta; Doebley, Anna-Lisa; Goldstein, Leonard D; Mitchell, Jacinth; Sakaguchi, Aisa; Miska, Eric A; Ahmed, Shawn

    2014-05-08

    Defects in the Piwi/piRNA pathway lead to transposon desilencing and immediate sterility in many organisms. We found that the C. elegans Piwi mutant prg-1 became sterile after growth for many generations. This phenotype did not occur for RNAi mutants with strong transposon-silencing defects and was separable from the role of PRG-1 in transgene silencing. Brief periods of starvation extended the transgenerational lifespan of prg-1 mutants by stimulating the DAF-16/FOXO longevity transcription factor. Constitutive activation of DAF-16 via reduced daf-2 insulin/IGF-1 signaling immortalized prg-1 strains via RNAi proteins and histone H3 lysine 4 demethylases. In late-generation prg-1 mutants, desilencing of repetitive segments of the genome occurred, and silencing of repetitive loci was restored in prg-1; daf-2 mutants. This study reveals an unexpected interface between aging and transgenerational maintenance of germ cells, where somatic longevity is coupled to a genome-silencing pathway that promotes germ cell immortality in parallel to the Piwi/piRNA system. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. INDUCTION OF CHLOROPHYLL MUTANTS IN COMMON BEAN UNDER THE ACTION OF CHEMICAL MUTAGENS ENU AND EMS

    Directory of Open Access Journals (Sweden)

    Diana Lilova SVETLEVA

    2004-10-01

    Full Text Available Effect of treatment with different concentrations of N-nitroso-N-ethyl urea (ENU and etylmethan sulfonate (ЕМS on seeds of Bulgarian common bean Dobroudjanski 7, Dobroudjanski 2, Plovdiv 10, Plovdiv 11М and snap bean Tcher Starozagorski varieties, for induction of chlorophyll mutants, was studied. It was established that investigated varieties manifested specifi c reactions to the treatment with ENU and EMS. Different mutation frequencies and width of mutation spectra were induced under the action of different concentrations of the two applied mutagens. ENU induced chlorophyll mutants with higher frequency in all studied varieties, in comparison to the action of EMS. Sixteen types of chlorophyll mutants were found, for all studied varieties, and mutagenic treatments. Mutant types chlorina (19,8%, xantha (19,3%, viridissima (15,4% and chimerical leaves (9,1% were with the highest frequency, comparing to the total number of observed mutants. Results were statistically elaborated by the Fisher’s method “ϕ”.

  13. Application of Arrhenius kinetic theory to viral eclipse: selection of bacteriophage phi X174 mutants.

    Science.gov (United States)

    Incardona, N L

    1981-08-01

    Analysis of the bacteriophage phi X174 eclipse period in terms of Arrhenius kinetic theory suggests the following hypothesis: mutants should exist with two concomitant physiological characteristics as their phenotype. These are an eclipse rate lower than that of the wild type at permissive temperatures for plaque formation and an eclipse rate too low at lower temperatures to permit plaque development. Thus, enrichment of a mutagenized virus population for mutants that fail to eclipse during a short period at permissive temperatures should yield eclipse mutants with the cold-sensitive (cs; nonpermissive temperature, 25 degrees C), and not the temperature-sensitive (ts; nonpermissive temperature, 42 degrees C), plaque phenotype. In several trials, the frequency of the cs phenotype in the population increased from less than 0.2% to between 2 and 4% after the enrichment step, whereas the frequency of the ts phenotype remained unchanged (less than 0.2%). Moreover, 80% of these cs mutants have eclipse rates that are 3- to 40-fold lower than that of the wild type at both 37 degrees C and 25 degrees C. The successful application of the Arrhenius theory to phi X eclipse may provide insights into the molecular mechanism whereby the phi X174 genome is delivered into the host cell. Since the eclipse kinetics of other nonenveloped viruses are similar to those of phi X174, kinetic theory may be broadly applicable in the selection and characterization of viral eclipse mutants.

  14. Increasing the Triacylglycerol Content in Dunaliella tertiolecta through Isolation of Starch-Deficient Mutants.

    Science.gov (United States)

    Sirikhachornkit, Anchalee; Vuttipongchaikij, Supachai; Suttangkakul, Anongpat; Yokthongwattana, Kittisak; Juntawong, Piyada; Pokethitiyook, Prayad; Kangvansaichol, Kunn; Meetam, Metha

    2016-05-28

    The production cost of biodiesel from microalgae is still not competitive, compared with that of petroleum fuels. The genetic improvement of microalgal strains to increase triacylglycerol (TAG) accumulation is one way to reduce production costs. One of the most promising approaches is the isolation of starch-deficient mutants, which have been reported to successfully increase TAG yields. To date, such a stable mutant is not available in an oleaginous marine microalga, despite several advantages of using marine species for biodiesel production. Algae in the genus Dunaliella are known to tolerate high salt concentration and other environmental stresses. In addition, the cultivation processes for large-scale outdoor commercialization have been well established for this genus. In this study, Dunaliella tertiolecta was used to screen for starch-deficient mutants, using an iodine vapor-staining method. Four out of 20,016 UV-mutagenized strains showed a substantial reduction of starch content. A significantly higher TAG content, up to 3-fold of the wild-type level, was observed in three of the mutants upon induction by nitrogen depletion. The carotenoid production and growth characteristics of these mutants, under both normal and oxidative stress conditions, were not compromised, suggesting that these processes are not necessarily affected by starch deficiency. The results from this work open up new possibilities for exploring Dunaliella for biodiesel production.

  15. Molecular characterization of mlo mutants in North American two- and six-rowed malting barley cultivars.

    Science.gov (United States)

    Panstruga, Ralph; Molina-Cano, José Luis; Reinstädler, Anja; Müller, Judith

    2005-05-01

    SUMMARY Barley lines PRU1, URS1 and URS2 represent three candidate mlo mutants induced in either the two-rowed cultivar Prudentia or the six-rowed cultivar Ursula. Both Prudentia and Ursula are North American malting barley varieties with specific malting properties. Here, we analysed the three candidate mutants at the molecular level. We identified lesions in the Mlo gene of all three lines, causing either a premature stop codon (PRU1), a shift in the reading frame (URS1) or a single amino acid replacement (URS2). In a transient gene expression assay, the URS2 mlo allele fails to complement a barley null mutant genotype, indicating that URS2 is a genuine mlo mutant (here designated as mlo-33). The MLO-33 mutant variant accumulates to similar levels as the wild-type MLO protein in Arabidopsis protoplasts, suggesting that MLO-33 is stable in planta. We show that the mlo-33 allele can be readily detected in barley genomic DNA by a cleaved amplified polymorphic sequence marker, rendering this allele particularly suited for marker-assisted breeding.

  16. Elevated oxidative membrane damage associated with genetic modifiers of Lyst-mutant phenotypes.

    Directory of Open Access Journals (Sweden)

    Colleen M Trantow

    2010-07-01

    Full Text Available LYST is a large cytosolic protein that influences the biogenesis of lysosome-related organelles, and mutation of the encoding gene, LYST, can cause Chediak-Higashi syndrome. Recently, Lyst-mutant mice were recognized to also exhibit an iris disease resembling exfoliation syndrome, a common cause of glaucoma in humans. Here, Lyst-mutant iris phenotypes were used in a search for genes that influence Lyst pathways. In a candidate gene-driven approach, albino Lyst-mutant mice homozygous for a mutation in Tyr, whose product is key to melanin synthesis within melanosomes, exhibited complete rescue of Lyst-mutant iris phenotypes. In a genetic background-driven approach using a DBA/2J strain of congenic mice, an interval containing Tyrp1 enhanced Lyst-dependent iris phenotypes. Thus, both experimental approaches implicated the melanosome, an organelle that is a potential source of oxidative stress, as contributing to the disease phenotype. Confirming an association with oxidative damage, Lyst mutation resulted in genetic context-sensitive changes in iris lipid hydroperoxide levels, being lowest in albino and highest in DBA/2J mice. Surprisingly, the DBA/2J genetic background also exposed a late-onset neurodegenerative phenotype involving cerebellar Purkinje-cell degeneration. These results identify an association between oxidative damage to lipid membranes and the severity of Lyst-mutant phenotypes, revealing a new mechanism that contributes to pathophysiology involving LYST.

  17. A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Howden, R; Andersen, C R; Goldsbrough, P B; Cobbett, C S

    1995-04-01

    The roots of the cadmium-sensitive mutant of Arabidopsis thaliana, cad1-1, become brown in the presence of cadmium. A new cadmium-sensitive mutant affected at a second locus, cad2, has been identified using this phenotype. Genetic analysis has grown that the sensitive phenotype is recessive to the wild type and segregates as a single Mendelian locus. Assays of cadmium accumulation by intact plants indicated that the mutant is deficient in its ability to sequester cadmium. Undifferentiated callus tissue was also cadmium sensitive, suggesting that the mutant phenotype is expressed at the cellular level. The level of cadmium-binding complexes formed in vivo was decreased compared with the wild type and accumulation of phytochelatins was about 10% of that in the wild type. The level of glutathione, the substrate for phytochelatin biosynthesis, in tissues of the mutant was decreased to about 15 to 30% of that in the wild type. Thus, the deficiency in phytochelatin biosynthesis can be explained by a deficiency in glutathione.

  18. Goodness of fit to a mathematical model for Drosophila sleep behavior is reduced in hyposomnolent mutants

    Directory of Open Access Journals (Sweden)

    Joshua M. Diamond

    2016-01-01

    Full Text Available The conserved nature of sleep in Drosophila has allowed the fruit fly to emerge in the last decade as a powerful model organism in which to study sleep. Recent sleep studies in Drosophila have focused on the discovery and characterization of hyposomnolent mutants. One common feature of these animals is a change in sleep architecture: sleep bout count tends to be greater, and sleep bout length lower, in hyposomnolent mutants. I propose a mathematical model, produced by least-squares nonlinear regression to fit the form Y = aX∧b, which can explain sleep behavior in the healthy animal as well as previously-reported changes in total sleep and sleep architecture in hyposomnolent mutants. This model, fit to sleep data, yields coefficient of determination R squared, which describes goodness of fit. R squared is lower, as compared to control, in hyposomnolent mutants insomniac and fumin. My findings raise the possibility that low R squared is a feature of all hyposomnolent mutants, not just insomniac and fumin. If this were the case, R squared could emerge as a novel means by which sleep researchers might assess sleep dysfunction.

  19. Leishmania infantum HSP70-II null mutant as candidate vaccine against leishmaniasis: a preliminary evaluation.

    Science.gov (United States)

    Carrión, Javier; Folgueira, Cristina; Soto, Manuel; Fresno, Manuel; Requena, Jose M

    2011-07-27

    Visceral leishmaniasis is the most severe form of leishmaniasis and no effective vaccine exists. The use of live attenuated vaccines is emerging as a promising vaccination strategy. In this study, we tested the ability of a Leishmania infantum deletion mutant, lacking both HSP70-II alleles (ΔHSP70-II), to provide protection against Leishmania infection in the L. major-BALB/c infection model. Administration of the mutant line by either intraperitoneal, intravenous or subcutaneous route invariably leads to the production of high levels of NO and the development in mice of type 1 immune responses, as determined by analysis of anti-Leishmania IgG subclasses. In addition, we have shown that ΔHSP70-II would be a safe live vaccine as immunodeficient SCID mice, and hamsters (Mesocricetus auratus), infected with mutant parasites did not develop any sign of pathology. The results suggest that the ΔHSP70-II mutant is a promising and safe vaccine, but further studies in more appropriate animal models (hamsters and dogs) are needed to appraise whether this attenuate mutant would be useful as vaccine against visceral leishmaniasis.

  20. Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening.

    Science.gov (United States)

    Verissimo, Carla S; Overmeer, René M; Ponsioen, Bas; Drost, Jarno; Mertens, Sander; Verlaan-Klink, Ingrid; Gerwen, Bastiaan van; van der Ven, Marieke; Wetering, Marc van de; Egan, David A; Bernards, René; Clevers, Hans; Bos, Johannes L; Snippert, Hugo J

    2016-11-15

    Colorectal cancer (CRC) organoids can be derived from almost all CRC patients and therefore capture the genetic diversity of this disease. We assembled a panel of CRC organoids carrying either wild-type or mutant RAS, as well as normal organoids and tumor organoids with a CRISPR-introduced oncogenic KRAS mutation. Using this panel, we evaluated RAS pathway inhibitors and drug combinations that are currently in clinical trial for RAS mutant cancers. Presence of mutant RAS correlated strongly with resistance to these targeted therapies. This was observed in tumorigenic as well as in normal organoids. Moreover, dual inhibition of the EGFR-MEK-ERK pathway in RAS mutant organoids induced a transient cell-cycle arrest rather than cell death. In vivo drug response of xenotransplanted RAS mutant organoids confirmed this growth arrest upon pan-HER/MEK combination therapy. Altogether, our studies demonstrate the potential of patient-derived CRC organoid libraries in evaluating inhibitors and drug combinations in a preclinical setting.