WorldWideScience

Sample records for sars coronavirus infections

  1. Receptor recognition and cross-species infections of SARS coronavirus.

    Science.gov (United States)

    Li, Fang

    2013-10-01

    Receptor recognition is a major determinant of the host range, cross-species infections, and pathogenesis of the severe acute respiratory syndrome coronavirus (SARS-CoV). A defined receptor-binding domain (RBD) in the SARS-CoV spike protein specifically recognizes its host receptor, angiotensin-converting enzyme 2 (ACE2). This article reviews the latest knowledge about how RBDs from different SARS-CoV strains interact with ACE2 from several animal species. Detailed research on these RBD/ACE2 interactions has established important principles on host receptor adaptations, cross-species infections, and future evolution of SARS-CoV. These principles may apply to other emerging animal viruses, including the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV). This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses". Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Understanding the T cell immune response in SARS coronavirus infection.

    Science.gov (United States)

    Janice Oh, Hsueh-Ling; Ken-En Gan, Samuel; Bertoletti, Antonio; Tan, Yee-Joo

    2012-09-01

    The severe acute respiratory syndrome (SARS) epidemic started in late 2002 and swiftly spread across 5 continents with a mortality rate of around 10%. Although the epidemic was eventually controlled through the implementation of strict quarantine measures, there continues a need to investigate the SARS coronavirus (SARS-CoV) and develop interventions should it re-emerge. Numerous studies have shown that neutralizing antibodies against the virus can be found in patients infected with SARS-CoV within days upon the onset of illness and lasting up to several months. In contrast, there is little data on the kinetics of T cell responses during SARS-CoV infection and little is known about their role in the recovery process. However, recent studies in mice suggest the importance of T cells in viral clearance during SARS-CoV infection. Moreover, a growing number of studies have investigated the memory T cell responses in recovered SARS patients. This review covers the available literature on the emerging importance of T cell responses in SARS-CoV infection, particularly on the mapping of cytotoxic T lymphocyte (CTL) epitopes, longevity, polyfunctionality and human leukocyte antigen (HLA) association as well as their potential implications on treatment and vaccine development.

  3. Immunological Responses against SARS-Coronavirus Infection in Humans

    Institute of Scientific and Technical Information of China (English)

    Xiaojun Xu; Xiao-Ming Gao

    2004-01-01

    Since the outbreak of a SARS epidemic last year, significant advances have been made on our understanding of the mechanisms of interaction between the SARS coronavirus (CoV) and the immune system. Strong humoral responses have been found in most patients following SARS-CoV infection, with high titers of neutralizing Abspresent in their convalescent sera. The nucleocapsid (N) and spike (S) proteins of SARS-CoV appear to be the dominant antigens recognized by serum Abs. CD4+ T cell responses against the N protein have been observed in SARS patients and an HLA-A2-restricted cytotoxic T lymphocyte epitope in the S protein has been identified.It is likely that the immune responses induced by SARS-CoV infection could also cause pathological damage to the host, especially in the case of proinflammatory cytokines. There is also evidence suggesting that SARS-CoV might be able to directly invade cells of the immune system. Our understanding on the interaction between SARS-CoV, the immune system and local tissues is essential to future diagnosis, control and treatment of this very contagious disease.

  4. Immunological Responses against SARS-Coronavirus Infection in Humans

    Institute of Scientific and Technical Information of China (English)

    XiaojunXu; Xiao-MingGao

    2004-01-01

    Since the outbreak of a SARS epidemic last year, significant advances have been made on our understanding of the mechanisms of interaction between the SARS coronavirus (CoV) and the immune system. Strong humoral responses have been found in most patients following SARS-CoV infection, with high titers of neutralizing Abs present in their convalescent sera. The nucleocapsid (N) and spike (S) proteins of SARS-CoV appear to be the dominant antigens recognized by serum Abs. CD4+ T cell responses against the N protein have been observed in SARS patients and an HLA-A2-restricted cytotoxic T lymphocyte epitope in the S protein has been identified. It is likely that the immune responses induced by SARS-CoV infection could also cause pathological damage to the host, especially in the case of proinflammatory cytokines. There is also evidence suggesting that SARS-CoV might be able to directly invade cells of the immune system. Our understanding on the interaction between SARS-CoV, the immune system and local tissues is essential to future diagnosis, control and treatment of this very contagious disease. Cellular & Molecular Immunology. 2004;1(2):119-122.

  5. Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model.

    Science.gov (United States)

    de Wilde, Adriaan H; Falzarano, Darryl; Zevenhoven-Dobbe, Jessika C; Beugeling, Corrine; Fett, Craig; Martellaro, Cynthia; Posthuma, Clara C; Feldmann, Heinz; Perlman, Stanley; Snijder, Eric J

    2017-01-15

    Currently, there is no registered treatment for infections with emerging zoonotic coronaviruses like SARS- and MERS-coronavirus. We here report that in cultured cells low-micromolar concentrations of alisporivir, a non-immunosuppressive cyclosporin A-analog, inhibit the replication of four different coronaviruses, including MERS- and SARS-coronavirus. Ribavirin was found to further potentiate the antiviral effect of alisporivir in these cell culture-based infection models, but this combination treatment was unable to improve the outcome of SARS-CoV infection in a mouse model. Nevertheless, our data provide a basis to further explore the potential of Cyp inhibitors as host-directed, broad-spectrum inhibitors of coronavirus replication.

  6. An Outbreak of Human Coronavirus OC43 Infection and Serological Cross-Reactivity with SARS Coronavirus

    Directory of Open Access Journals (Sweden)

    David M Patrick

    2006-01-01

    Full Text Available BACKGROUND: In summer 2003, a respiratory outbreak was investigated in British Columbia, during which nucleic acid tests and serology unexpectedly indicated reactivity for severe acute respiratory syndrome coronavirus (SARS-CoV.

  7. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins.

    Science.gov (United States)

    Wang, Sheng-Fan; Tseng, Sung-Pin; Yen, Chia-Hung; Yang, Jyh-Yuan; Tsao, Ching-Han; Shen, Chun-Wei; Chen, Kuan-Hsuan; Liu, Fu-Tong; Liu, Wu-Tse; Chen, Yi-Ming Arthur; Huang, Jason C

    2014-08-22

    The severe acute respiratory syndrome coronavirus (SARS-CoV) still carries the potential for reemergence, therefore efforts are being made to create a vaccine as a prophylactic strategy for control and prevention. Antibody-dependent enhancement (ADE) is a mechanism through which dengue viruses, feline coronaviruses, and HIV viruses take advantage of anti-viral humoral immune responses to infect host target cells. Here we describe our observations of SARS-CoV using ADE to enhance the infectivity of a HL-CZ human promonocyte cell line. Quantitative-PCR and immunofluorescence staining results indicate that SARS-CoV is capable of replication in HL-CZ cells, and of displaying virus-induced cytopathic effects and increased levels of TNF-α, IL-4 and IL-6 two days post-infection. According to flow cytometry data, the HL-CZ cells also expressed angiotensin converting enzyme 2 (ACE2, a SARS-CoV receptor) and higher levels of the FcγRII receptor. We found that higher concentrations of anti-sera against SARS-CoV neutralized SARS-CoV infection, while highly diluted anti-sera significantly increased SARS-CoV infection and induced higher levels of apoptosis. Results from infectivity assays indicate that SARS-CoV ADE is primarily mediated by diluted antibodies against envelope spike proteins rather than nucleocapsid proteins. We also generated monoclonal antibodies against SARS-CoV spike proteins and observed that most of them promoted SARS-CoV infection. Combined, our results suggest that antibodies against SARS-CoV spike proteins may trigger ADE effects. The data raise new questions regarding a potential SARS-CoV vaccine, while shedding light on mechanisms involved in SARS pathogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus.

    Science.gov (United States)

    Josset, Laurence; Menachery, Vineet D; Gralinski, Lisa E; Agnihothram, Sudhakar; Sova, Pavel; Carter, Victoria S; Yount, Boyd L; Graham, Rachel L; Baric, Ralph S; Katze, Michael G

    2013-04-30

    A novel human coronavirus (HCoV-EMC) was recently identified in the Middle East as the causative agent of a severe acute respiratory syndrome (SARS) resembling the illness caused by SARS coronavirus (SARS-CoV). Although derived from the CoV family, the two viruses are genetically distinct and do not use the same receptor. Here, we investigated whether HCoV-EMC and SARS-CoV induce similar or distinct host responses after infection of a human lung epithelial cell line. HCoV-EMC was able to replicate as efficiently as SARS-CoV in Calu-3 cells and similarly induced minimal transcriptomic changes before 12 h postinfection. Later in infection, HCoV-EMC induced a massive dysregulation of the host transcriptome, to a much greater extent than SARS-CoV. Both viruses induced a similar activation of pattern recognition receptors and the interleukin 17 (IL-17) pathway, but HCoV-EMC specifically down-regulated the expression of several genes within the antigen presentation pathway, including both type I and II major histocompatibility complex (MHC) genes. This could have an important impact on the ability of the host to mount an adaptive host response. A unique set of 207 genes was dysregulated early and permanently throughout infection with HCoV-EMC, and was used in a computational screen to predict potential antiviral compounds, including kinase inhibitors and glucocorticoids. Overall, HCoV-EMC and SARS-CoV elicit distinct host gene expression responses, which might impact in vivo pathogenesis and could orient therapeutic strategies against that emergent virus. Identification of a novel coronavirus causing fatal respiratory infection in humans raises concerns about a possible widespread outbreak of severe respiratory infection similar to the one caused by SARS-CoV. Using a human lung epithelial cell line and global transcriptomic profiling, we identified differences in the host response between HCoV-EMC and SARS-CoV. This enables rapid assessment of viral properties and the

  9. Lack of Innate Interferon Responses during SARS Coronavirus Infection in a Vaccination and Reinfection Ferret Model

    Science.gov (United States)

    Cameron, Mark J.; Kelvin, Alyson A.; Leon, Alberto J.; Cameron, Cheryl M.; Ran, Longsi; Xu, Luoling; Chu, Yong-Kyu; Danesh, Ali; Fang, Yuan; Li, Qianjun; Anderson, Austin; Couch, Ronald C.; Paquette, Stephane G.; Fomukong, Ndingsa G.; Kistner, Otfried; Lauchart, Manfred; Rowe, Thomas; Harrod, Kevin S.; Jonsson, Colleen B.; Kelvin, David J.

    2012-01-01

    In terms of its highly pathogenic nature, there remains a significant need to further define the immune pathology of SARS-coronavirus (SARS-CoV) infection, as well as identify correlates of immunity to help develop vaccines for severe coronaviral infections. Here we use a SARS-CoV infection-reinfection ferret model and a functional genomics approach to gain insight into SARS immunopathogenesis and to identify correlates of immune protection during SARS-CoV-challenge in ferrets previously infected with SARS-CoV or immunized with a SARS virus vaccine. We identified gene expression signatures in the lungs of ferrets associated with primary immune responses to SARS-CoV infection and in ferrets that received an identical second inoculum. Acute SARS-CoV infection prompted coordinated innate immune responses that were dominated by antiviral IFN response gene (IRG) expression. Reinfected ferrets, however, lacked the integrated expression of IRGs that was prevalent during acute infection. The expression of specific IRGs was also absent upon challenge in ferrets immunized with an inactivated, Al(OH)3-adjuvanted whole virus SARS vaccine candidate that protected them against SARS-CoV infection in the lungs. Lack of IFN-mediated immune enhancement in infected ferrets that were previously inoculated with, or vaccinated against, SARS-CoV revealed 9 IRG correlates of protective immunity. This data provides insight into the molecular pathogenesis of SARS-CoV and SARS-like-CoV infections and is an important resource for the development of CoV antiviral therapeutics and vaccines. PMID:23029269

  10. Phagocytic cells contribute to the antibody-mediated elimination of pulmonary-infected SARS coronavirus.

    Science.gov (United States)

    Yasui, Fumihiko; Kohara, Michinori; Kitabatake, Masahiro; Nishiwaki, Tetsu; Fujii, Hideki; Tateno, Chise; Yoneda, Misako; Morita, Kouichi; Matsushima, Kouji; Koyasu, Shigeo; Kai, Chieko

    2014-04-01

    While the 2002-2003 outbreak of severe acute respiratory syndrome (SARS) resulted in 774 deaths, patients who were affected with mild pulmonary symptoms successfully recovered. The objective of the present work was to identify, using SARS coronavirus (SARS-CoV) mouse infection models, immune factors responsible for clearing of the virus. The elimination of pulmonary SARS-CoV infection required the activation of B cells by CD4(+) T cells. Furthermore, passive immunization (post-infection) with homologous (murine) anti-SARS-CoV antiserum showed greater elimination efficacy against SARS-CoV than that with heterologous (rabbit) antiserum, despite the use of equivalent titers of neutralizing antibodies. This distinction was mediated by mouse phagocytic cells (monocyte-derived infiltrating macrophages and partially alveolar macrophages, but not neutrophils), as demonstrated both by adoptive transfer from donors and by immunological depletion of selected cell types. These results indicate that the cooperation of anti-SARS-CoV antibodies and phagocytic cells plays an important role in the elimination of SARS-CoV. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. From SARS coronavirus to novel animal and human coronaviruses.

    Science.gov (United States)

    To, Kelvin K W; Hung, Ivan F N; Chan, Jasper F W; Yuen, Kwok-Yung

    2013-08-01

    In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) caused one of the most devastating epidemics known to the developed world. There were two important lessons from this epidemic. Firstly, coronaviruses, in addition to influenza viruses, can cause severe and rapidly spreading human infections. Secondly, bats can serve as the origin and natural animal reservoir of deadly human viruses. Since then, researchers around the world, especially those in Asia where SARS-CoV was first identified, have turned their focus to find novel coronaviruses infecting humans, bats, and other animals. Two human coronaviruses, HCoV-HKU1 and HCoV-NL63, were identified shortly after the SARS-CoV epidemic as common causes of human respiratory tract infections. In 2012, a novel human coronavirus, now called Middle East respiratory syndrome coronavirus (MERS-CoV), has emerged in the Middle East to cause fatal human infections in three continents. MERS-CoV human infection is similar to SARS-CoV in having a high fatality rate and the ability to spread from person to person which resulted in secondary cases among close contacts including healthcare workers without travel history to the Middle East. Both viruses also have close relationships with bat coronaviruses. New cases of MERS-CoV infection in humans continue to occur with the origins of the virus still unknown in many cases. A multifaceted approach is necessary to control this evolving MERS-CoV outbreak. Source identification requires detailed epidemiological studies of the infected patients and enhanced surveillance of MERS-CoV or similar coronaviruses in humans and animals. Early diagnosis of infected patients and appropriate infection control measures will limit the spread in hospitals, while social distancing strategies may be necessary to control the outbreak in communities if it remained uncontrolled as in the SARS epidemic.

  12. Ezrin interacts with the SARS coronavirus Spike protein and restrains infection at the entry stage.

    Directory of Open Access Journals (Sweden)

    Jean Kaoru Millet

    Full Text Available BACKGROUND: Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S. There are still many unknowns on the implication of cellular factors that regulate the entry process. METHODOLOGY/PRINCIPAL FINDINGS: We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle. Here we show that the ezrin membrane-actin linker interacts with S endodomain through the F1 lobe of its FERM domain and that both the eight carboxy-terminal amino-acids and a membrane-proximal cysteine cluster of S endodomain are important for this interaction in vitro. Interestingly, we found that ezrin is present at the site of entry of S-pseudotyped lentiviral particles in Vero E6 cells. Targeting ezrin function by small interfering RNA increased S-mediated entry of pseudotyped particles in epithelial cells. Furthermore, deletion of the eight carboxy-terminal amino acids of S enhanced S-pseudotyped particles infection. Expression of the ezrin dominant negative FERM domain enhanced cell susceptibility to infection by SARS-CoV and S-pseudotyped particles and potentiated S-dependent membrane fusion. CONCLUSIONS/SIGNIFICANCE: Ezrin interacts with SARS-CoV S endodomain and limits virus entry and fusion. Our data present a novel mechanism involving a cellular factor in the regulation of S-dependent early events of infection.

  13. Ezrin Interacts with the SARS Coronavirus Spike Protein and Restrains Infection at the Entry Stage

    Science.gov (United States)

    Millet, Jean Kaoru; Kien, François; Cheung, Chung-Yan; Siu, Yu-Lam; Chan, Wing-Lim; Li, Huiying; Leung, Hiu-Lan; Jaume, Martial; Bruzzone, Roberto; Malik Peiris, Joseph S.; Altmeyer, Ralf Marius; Nal, Béatrice

    2012-01-01

    Background Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S). There are still many unknowns on the implication of cellular factors that regulate the entry process. Methodology/Principal Findings We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle. Here we show that the ezrin membrane-actin linker interacts with S endodomain through the F1 lobe of its FERM domain and that both the eight carboxy-terminal amino-acids and a membrane-proximal cysteine cluster of S endodomain are important for this interaction in vitro. Interestingly, we found that ezrin is present at the site of entry of S-pseudotyped lentiviral particles in Vero E6 cells. Targeting ezrin function by small interfering RNA increased S-mediated entry of pseudotyped particles in epithelial cells. Furthermore, deletion of the eight carboxy-terminal amino acids of S enhanced S-pseudotyped particles infection. Expression of the ezrin dominant negative FERM domain enhanced cell susceptibility to infection by SARS-CoV and S-pseudotyped particles and potentiated S-dependent membrane fusion. Conclusions/Significance Ezrin interacts with SARS-CoV S endodomain and limits virus entry and fusion. Our data present a novel mechanism involving a cellular factor in the regulation of S-dependent early events of infection. PMID:23185364

  14. Immunodominant SARS Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-human Primates.

    Science.gov (United States)

    Wang, Qidi; Zhang, Lianfeng; Kuwahara, Kazuhiko; Li, Li; Liu, Zijie; Li, Taisheng; Zhu, Hua; Liu, Jiangning; Xu, Yanfeng; Xie, Jing; Morioka, Hiroshi; Sakaguchi, Nobuo; Qin, Chuan; Liu, Gang

    2016-05-13

    Severe acute respiratory syndrome (SARS) is caused by a coronavirus (SARS-CoV) and has the potential to threaten global public health and socioeconomic stability. Evidence of antibody-dependent enhancement (ADE) of SARS-CoV infection in vitro and in non-human primates clouds the prospects for a safe vaccine. Using antibodies from SARS patients, we identified and characterized SARS-CoV B-cell peptide epitopes with disparate functions. In rhesus macaques, the spike glycoprotein peptides S471-503, S604-625, and S1164-1191 elicited antibodies that efficiently prevented infection in non-human primates. In contrast, peptide S597-603 induced antibodies that enhanced infection both in vitro and in non-human primates by using an epitope sequence-dependent (ESD) mechanism. This peptide exhibited a high level of serological reactivity (64%), which resulted from the additive responses of two tandem epitopes (S597-603 and S604-625) and a long-term human B-cell memory response with antisera from convalescent SARS patients. Thus, peptide-based vaccines against SARS-CoV could be engineered to avoid ADE via elimination of the S597-603 epitope. We provide herein an alternative strategy to prepare a safe and effective vaccine for ADE of viral infection by identifying and eliminating epitope sequence-dependent enhancement of viral infection.

  15. Inhibition of cytokine gene expression and induction of chemokine genes in non-lymphatic cells infected with SARS coronavirus

    Directory of Open Access Journals (Sweden)

    Weber Friedemann

    2006-03-01

    Full Text Available Abstract Background SARS coronavirus (SARS-CoV is the etiologic agent of the severe acute respiratory syndrome. SARS-CoV mainly infects tissues of non-lymphatic origin, and the cytokine profile of those cells can determine the course of disease. Here, we investigated the cytokine response of two human non-lymphatic cell lines, Caco-2 and HEK 293, which are fully permissive for SARS-CoV. Results A comparison with established cytokine-inducing viruses revealed that SARS-CoV only weakly triggered a cytokine response. In particular, SARS-CoV did not activate significant transcription of the interferons IFN-α, IFN-β, IFN-λ1, IFN-λ2/3, as well as of the interferon-induced antiviral genes ISG56 and MxA, the chemokine RANTES and the interleukine IL-6. Interestingly, however, SARS-CoV strongly induced the chemokines IP-10 and IL-8 in the colon carcinoma cell line Caco-2, but not in the embryonic kidney cell line 293. Conclusion Our data indicate that SARS-CoV suppresses the antiviral cytokine system of non-immune cells to a large extent, thus buying time for dissemination in the host. However, synthesis of IP-10 and IL-8, which are established markers for acute-stage SARS, escapes the virus-induced silencing at least in some cell types. Therefore, the progressive infiltration of immune cells into the infected lungs observed in SARS patients could be due to the production of these chemokines by the infected tissue cells.

  16. SARS Patients-derived Human Recombinant Antibodies to S and M Proteins Efficiently Neutralize SARS-Coronavirus Infectivity

    Institute of Scientific and Technical Information of China (English)

    MI-FANG LIANG; KONG-XING WU; ZHAO-HUI XIONG; QI JIN; DE-XIN LI; RUN-LEI DU; JING-ZHI LIU; CHUAN LI; QUAN-FU ZHANG; LU-LU HAN; JIAN-SHI YU; SHU-MIN DUAN; XIAO-FANG WANG

    2005-01-01

    Objective To develop a specific SARS virus-targeted antibody preparation for emergent prophylaxis and treatment of SARS virus infection. Methods By using phage display technology, we constructed a naive antibody library from convalescent SARS patient lymphocytes. To obtain the neutralizing antibody to SARS virus surface proteins, the library panning procedure was performed on purified SARS virions and the specific Fab antibody clones were enriched by four rounds of repeated panning procedure and screened by highthroughput selection. The selected Fab antibodies expressed in the periplasma of E. Coli were soluble and further purified and tested for their binding properties and antiviral function to SARS virus. The functional Fab antibodies were converted to full human IgG antibodies with recombinant baculovirus/insect cell systems and their neutralizing activities were further determined. Results After four rounds of the panning, a number of SARS-CoV virus-targeted human recombinant Fab antibodies were isolated from the SARS patient antibody library. Most of these were identified to recognize both natural and recombinant SARS spike (S) proteins, two Fab antibodies were specific for the virus membrane (M) protein, only one bound to SARS-CoV nucleocapsid protein. The SARS-CoV S and M protein-targeted Fab or IgG antibodies showed significant neutralizing activities in cytopathic effect (CPE) inhibition neutralization test, these antibodies were able to completely neutralize the SARS virus and protect the Vero cells from CPE after virus infection. However, the N protein-targeted Fab or IgG antibodies failed to neutralize the virus. In addition, the SARS N protein-targeted human Fab antibody reacted with the denatured N proteins, whereas none of the S and M protein specific neutralizing antibodies did. These results suggested that the S and M protein-specific neutralizing antibodies could recognize conformational epitopes which might be involved in the binding of virions

  17. Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant.

    Science.gov (United States)

    McPherson, Clifton; Chubet, Richard; Holtz, Kathy; Honda-Okubo, Yoshikazu; Barnard, Dale; Cox, Manon; Petrovsky, Nikolai

    2016-01-01

    Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing. The methods herein described for rapid development of a highly protective SARS vaccine are equally suited to rapid development of vaccines against other fatal human coronavirus infections, e.g., the MERS coronavirus.

  18. Possible SARS coronavirus transmission during cardiopulmonary resuscitation.

    Science.gov (United States)

    Christian, Michael D; Loutfy, Mona; McDonald, L Clifford; Martinez, Kennth F; Ofner, Mariana; Wong, Tom; Wallington, Tamara; Gold, Wayne L; Mederski, Barbara; Green, Karen; Low, Donald E

    2004-02-01

    Infection of healthcare workers with the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is thought to occur primarily by either contact or large respiratory droplet transmission. However, infrequent healthcare worker infections occurred despite the use of contact and droplet precautions, particularly during certain aerosol-generating medical procedures. We investigated a possible cluster of SARS-CoV infections in healthcare workers who used contact and droplet precautions during attempted cardiopulmonary resuscitation of a SARS patient. Unlike previously reported instances of transmission during aerosol-generating procedures, the index case-patient was unresponsive, and the intubation procedure was performed quickly and without difficulty. However, before intubation, the patient was ventilated with a bag-valve-mask that may have contributed to aerosolization of SARS-CoV. On the basis of the results of this investigation and previous reports of SARS transmission during aerosol-generating procedures, a systematic approach to the problem is outlined, including the use of the following: 1) administrative controls, 2) environmental engineering controls, 3) personal protective equipment, and 4) quality control.

  19. Development of a dose-response model for SARS coronavirus.

    Science.gov (United States)

    Watanabe, Toru; Bartrand, Timothy A; Weir, Mark H; Omura, Tatsuo; Haas, Charles N

    2010-07-01

    In order to develop a dose-response model for SARS coronavirus (SARS-CoV), the pooled data sets for infection of transgenic mice susceptible to SARS-CoV and infection of mice with murine hepatitis virus strain 1, which may be a clinically relevant model of SARS, were fit to beta-Poisson and exponential models with the maximum likelihood method. The exponential model (k= 4.1 x l0(2)) could describe the dose-response relationship of the pooled data sets. The beta-Poisson model did not provide a statistically significant improvement in fit. With the exponential model, the infectivity of SARS-CoV was calculated and compared with those of other coronaviruses. The does of SARS-CoV corresponding to 10% and 50% responses (illness) were estimated at 43 and 280 PFU, respectively. Its estimated infectivity was comparable to that of HCoV-229E, known as an agent of human common cold, and also similar to those of some animal coronaviruses belonging to the same genetic group. Moreover, the exponential model was applied to the analysis of the epidemiological data of SARS outbreak that occurred at an apartment complex in Hong Kong in 2003. The estimated dose of SARS-CoV for apartment residents during the outbreak, which was back-calculated from the reported number of cases, ranged from 16 to 160 PFU/person, depending on the floor. The exponential model developed here is the sole dose-response model for SARS-CoV at the present and would enable us to understand the possibility for reemergence of SARS.

  20. Anti-SARS coronavirus agents: a patent review (2008 - present).

    Science.gov (United States)

    Kumar, Vathan; Jung, Young-Sik; Liang, Po-Huang

    2013-10-01

    A novel coronavirus (CoV), unlike previous typical human coronaviruses (HCoVs), was identified as causative agent for severe acute respiratory syndrome (SARS). SARS first surfaced as a pandemic in late 2002 and originated in southern China. SARS-CoV rapidly spread to > 30 countries by 2003, infecting nearly 8,000 people and causing around 800 fatalities. After 10 years of silence, a 2012 report alarmed researchers about the emergence of a new strain of CoV causing SARS-like disease. To combat SARS, scientists applied for patents on various therapeutic agents, including small-molecule inhibitors targeting the essential proteases, helicase and other proteins of the virus, natural products, approved drugs, molecules binding to the virus, neutralizing antibodies, vaccines, anti-sense RNA, siRNA and ribozyme against SARS-CoV. In this article, the patents published from 2008 to the present for the new therapeutics that could potentially be used in the prophylaxis and treatment of SARS are reviewed. The therapeutic interventions or prophylaxis discussed in this review seems to offer promising solutions to tackle SARS. Rather than being complacent about the results, we should envisage how to transform them into drug candidates that may be useful in combating SARS and related viral infections in the future.

  1. A decade after SARS: Strategies to control emerging coronaviruses

    Science.gov (United States)

    Graham, Rachel L.; Donaldson, Eric F.; Baric, Ralph S.

    2016-01-01

    Two novel coronaviruses have emerged in humans in the 21st century, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome human coronavirus (MERS-CoV), both of which cause acute respiratory distress syndrome (ARDS) and have high mortality rates. There are no clinically approved vaccines or antiviral drugs available for either of these infections; thus, a priority in the field is the development of effective therapeutic and preventive strategies that can be readily applied to new emergent strains. This review will: describe the emergence and identification of novel human coronaviruses over the last 10 years; review their key biological features, including tropism and receptor use; and summarize approaches to develop broadly effective vaccines. PMID:24217413

  2. Development of animal models against emerging coronaviruses: From SARS to MERS coronavirus.

    Science.gov (United States)

    Sutton, Troy C; Subbarao, Kanta

    2015-05-01

    Two novel coronaviruses have emerged to cause severe disease in humans. While bats may be the primary reservoir for both viruses, SARS coronavirus (SARS-CoV) likely crossed into humans from civets in China, and MERS coronavirus (MERS-CoV) has been transmitted from camels in the Middle East. Unlike SARS-CoV that resolved within a year, continued introductions of MERS-CoV present an on-going public health threat. Animal models are needed to evaluate countermeasures against emerging viruses. With SARS-CoV, several animal species were permissive to infection. In contrast, most laboratory animals are refractory or only semi-permissive to infection with MERS-CoV. This host-range restriction is largely determined by sequence heterogeneity in the MERS-CoV receptor. We describe animal models developed to study coronaviruses, with a focus on host-range restriction at the level of the viral receptor and discuss approaches to consider in developing a model to evaluate countermeasures against MERS-CoV. Copyright © 2015. Published by Elsevier Inc.

  3. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses.

    Science.gov (United States)

    Hilgenfeld, Rolf; Peiris, Malik

    2013-10-01

    This article introduces a series of invited papers in Antiviral Research marking the 10th anniversary of the outbreak of severe acute respiratory syndrome (SARS), caused by a novel coronavirus that emerged in southern China in late 2002. Until that time, coronaviruses had not been recognized as agents causing severe disease in humans, hence, the emergence of the SARS-CoV came as a complete surprise. Research during the past ten years has revealed the existence of a diverse pool of coronaviruses circulating among various bat species and other animals, suggesting that further introductions of highly pathogenic coronaviruses into the human population are not merely probable, but inevitable. The recent emergence of another coronavirus causing severe disease, Middle East respiratory syndrome (MERS), in humans, has made it clear that coronaviruses pose a major threat to human health, and that more research is urgently needed to elucidate their replication mechanisms, identify potential drug targets, and develop effective countermeasures. In this series, experts in many different aspects of coronavirus replication and disease will provide authoritative, up-to-date reviews of the following topics: - clinical management and infection control of SARS; - reservoir hosts of coronaviruses; - receptor recognition and cross-species transmission of SARS-CoV; - SARS-CoV evasion of innate immune responses; - structures and functions of individual coronaviral proteins; - anti-coronavirus drug discovery and development; and - the public health legacy of the SARS outbreak. Each article will be identified in the last line of its abstract as belonging to the series "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses." Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Coronaviridae and SARS-associated Coronavirus Strain HSR1

    Science.gov (United States)

    Canducci, Filippo; Pinna, Debora; Mancini, Nicasio; Carletti, Silvia; Lazzarin, Adriano; Bordignon, Claudio; Poli, Guido; Clementi, Massimo

    2004-01-01

    During the recent severe acute respiratory (SARS) outbreak, the etiologic agent was identified as a new coronavirus (CoV). We have isolated a SARS-associated CoV (SARS-CoV) strain by injecting Vero cells with a sputum specimen from an Italian patient affected by a severe pneumonia; the patient traveled from Vietnam to Italy in March 2003. Ultrastructural analysis of infected Vero cells showed the virions within cell vesicles and around the cell membrane. The full-length viral genome sequence was similar to those derived from the Hong-Kong Hotel M isolate. By using both real-time reverse transcription–polymerase chain reaction TaqMan assay and an infectivity plaque assay, we determined that approximately 360 viral genomes were required to generate a PFU. In addition, heparin (100 μg/mL) inhibited infection of Vero cells by 50%. Overall, the molecular and biologic characteristics of the strain HSR1 provide evidence that SARS-CoV forms a fourth genetic coronavirus group with distinct genomic and biologic features. PMID:15109406

  5. Rapid inactivation of SARS-like coronaviruses.

    Energy Technology Data Exchange (ETDEWEB)

    Kapil, Sanjay (Kansas State University, Manhattan, KS); Oberst, R. D. (Kansas State University, Manhattan, KS); Bieker, Jill Marie; Tucker, Mark David; Souza, Caroline Ann; Williams, Cecelia Victoria

    2004-03-01

    Chemical disinfection and inactivation of viruses is largely understudied, but is very important especially in the case of highly infectious viruses. The purpose of this LDRD was to determine the efficacy of the Sandia National Laboratories developed decontamination formulations against Bovine Coronavirus (BCV) as a surrogate for the coronavirus that causes Severe Acute Respiratory Syndrome (SARS) in humans. The outbreak of SARS in late 2002 resulted from a highly infectious virus that was able to survive and remain infectious for extended periods. For this study, preliminary testing with Escherichia coli MS-2 (MS-2) and Escherichia coli T4 (T4) bacteriophages was conducted to develop virucidal methodology for verifying the inactivation after treatment with the test formulations following AOAC germicidal methodologies. After the determination of various experimental parameters (i.e. exposure, concentration) of the formulations, final testing was conducted on BCV. All experiments were conducted with various organic challenges (horse serum, bovine feces, compost) for results that more accurately represent field use condition. The MS-2 and T4 were slightly more resistant than BCV and required a 2 minute exposure while BCV was completely inactivated after a 1 minute exposure. These results were also consistent for the testing conducted in the presence of the various organic challenges indicating that the test formulations are highly effective for real world application.

  6. A simple and rapid approach for screening of SARS-coronavirus genotypes: an evaluation study

    Directory of Open Access Journals (Sweden)

    Jin Yongjie

    2005-10-01

    Full Text Available Abstract Background The Severe Acute Respiratory Syndrome (SARS was a newly emerged infectious disease which caused a global epidemic in 2002–2003. Sequence analysis of SARS-coronavirus isolates revealed that specific genotypes predominated at different periods of the epidemic. This information can be used as a footprint for tracing the epidemiology of infections and monitor viral evolution. However, direct sequencing analysis of a large number of clinical samples is cumbersome and time consuming. We present here a simple and rapid assay for the screening of SARS-coronavirus genotypes based on the use of fluorogenic oligonucleotide probes for allelic discrimination. Methods Thirty SARS patients were recruited. Allelic discrimination assays were developed based on the use of fluorogenic oligonucleotide probes (TaqMan. Genotyping of the SARS-coronavirus isolates obtained from these patients were carried out by the allelic discrimination assays and confirmed by direct sequencing. Results Genotyping based on the allelic discrimination assays were fully concordant with direct sequencing. All of the 30 SARS-coronavirus genotypes studied were characteristic of genotypes previously documented to be associated with the latter part of the epidemic. Seven of the isolates contained a previously reported major deletion but in patients not epidemiologically related to the previously studied cohort. Conclusion We have developed a simple and accurate method for the characterization and screening of SARS-coronavirus genotypes. It is a promising tool for the study of epidemiological relationships between documented cases during an outbreak.

  7. Efficacy of various disinfectants against SARS coronavirus.

    Science.gov (United States)

    Rabenau, H F; Kampf, G; Cinatl, J; Doerr, H W

    2005-10-01

    The recent severe acute respiratory syndrome (SARS) epidemic in Asia and Northern America led to broad use of various types of disinfectant in order to control the public spread of the highly contagious virus. However, only limited data were available to demonstrate their efficacy against SARS coronavirus (SARS-CoV). We therefore investigated eight disinfectants for their activity against SARS-CoV according to prEN 14476. Four hand rubs were tested at 30s (Sterillium, based on 45% iso-propanol, 30% n-propanol and 0.2% mecetronium etilsulphate; Sterillium Rub, based on 80% ethanol; Sterillium Gel, based on 85% ethanol; Sterillium Virugard, based on 95% ethanol). Three surface disinfectants were investigated at 0.5% for 30 min and 60 min (Mikrobac forte, based on benzalkonium chloride and laurylamine; Kohrsolin FF, based on benzalkonium chloride, glutaraldehyde and didecyldimonium chloride; Dismozon pur, based on magnesium monoperphthalate), and one instrument disinfectant was investigated at 4% for 15 min, 3% for 30 min and 2% for 60 min [Korsolex basic, based on glutaraldehyde and (ethylenedioxy)dimethanol]. Three types of organic load were used: 0.3% albumin, 10% fetal calf serum, and 0.3% albumin with 0.3% sheep erythrocytes. Virus titres were determined by a quantitative test (endpoint titration) in 96-well microtitre plates. With all tested preparations, SARS-CoV was inactivated to below the limit of detection (reduction factor mostly > or =4), regardless of the type of organic load. In summary, SARS-CoV can be inactivated quite easily with many commonly used disinfectants.

  8. Interferon-Beta 1a and SARS Coronavirus Replication

    Science.gov (United States)

    2004-02-01

    ribavirin remains uncertain because it has no activity against SARS-CoV in vitro. Molecular modeling studies suggest that rhinovirus 3Cpro inhibitors...coronavirus. Science 2003;300:1399–404. 3. Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure

  9. Molecular phylogeny of coronaviruses including human SARS-CoV

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Phylogenetic tree of coronaviruses (CoVs) including the human SARS-associated virus is reconstructed from complete genomes by using our newly developed K- string composition approach. The relation of the human SARS-CoV to other coronaviruses, i.e. the rooting of the tree is suggested by choosing an appropriate outgroup. SARS-CoV makes a separate group closer but still distant from G2 (CoVs in mammalian host). The relation between different isolates of the human SARS virus is inferred by first constructing an ultrametric distance matrix from counting sequence variations in the genomes. The resulting tree is consistent with clinic relations between the SARS-CoV isolates. In addition to a larger variety of coronavirus genomes these results provide phylogenetic knowledge based on independent novel methodology as compared to recent phylogenetic studies on SARS-CoV.

  10. Date of origin of the SARS coronavirus strains

    Directory of Open Access Journals (Sweden)

    Cai Lun

    2004-02-01

    Full Text Available Abstract Background A new respiratory infectious epidemic, severe acute respiratory syndrome (SARS, broke out and spread throughout the world. By now the putative pathogen of SARS has been identified as a new coronavirus, a single positive-strand RNA virus. RNA viruses commonly have a high rate of genetic mutation. It is therefore important to know the mutation rate of the SARS coronavirus as it spreads through the population. Moreover, finding a date for the last common ancestor of SARS coronavirus strains would be useful for understanding the circumstances surrounding the emergence of the SARS pandemic and the rate at which SARS coronavirus diverge. Methods We propose a mathematical model to estimate the evolution rate of the SARS coronavirus genome and the time of the last common ancestor of the sequenced SARS strains. Under some common assumptions and justifiable simplifications, a few simple equations incorporating the evolution rate (K and time of the last common ancestor of the strains (T0 can be deduced. We then implemented the least square method to estimate K and T0 from the dataset of sequences and corresponding times. Monte Carlo stimulation was employed to discuss the results. Results Based on 6 strains with accurate dates of host death, we estimated the time of the last common ancestor to be about August or September 2002, and the evolution rate to be about 0.16 base/day, that is, the SARS coronavirus would on average change a base every seven days. We validated our method by dividing the strains into two groups, which coincided with the results from comparative genomics. Conclusion The applied method is simple to implement and avoid the difficulty and subjectivity of choosing the root of phylogenetic tree. Based on 6 strains with accurate date of host death, we estimated a time of the last common ancestor, which is coincident with epidemic investigations, and an evolution rate in the same range as that reported for the HIV-1 virus.

  11. Peptide Mimicrying Between SARS Coronavirus Spike Protein and Human Proteins Reacts with SARS Patient Serum

    Directory of Open Access Journals (Sweden)

    K.-Y. Hwa

    2008-01-01

    Full Text Available Molecular mimicry, defined as similar structures shared by molecules from dissimilar genes or proteins, is a general strategy used by pathogens to infect host cells. Severe acute respiratory syndrome (SARS is a new human respiratory infectious disease caused by SARS coronavirus (SARS-CoV. The spike (S protein of SARS-CoV plays an important role in the virus entry into a cell. In this study, eleven synthetic peptides from the S protein were selected based on its sequence homology with human proteins. Two of the peptides D07 (residues 927–937 and D08 (residues 942–951 were recognized by the sera of SARS patients. Murine hyperimmune sera against these peptides bound to proteins of human lung epithelial cells A549. Another peptide D10 (residues 490–502 stimulated A549 to proliferate and secrete IL-8. The present results suggest that the selected S protein regions, which share sequence homology with human proteins, may play important roles in SARS-CoV infection.

  12. SARS and MERS: recent insights into emerging coronaviruses.

    Science.gov (United States)

    de Wit, Emmie; van Doremalen, Neeltje; Falzarano, Darryl; Munster, Vincent J

    2016-08-01

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 marked the second introduction of a highly pathogenic coronavirus into the human population in the twenty-first century. The continuing introductions of MERS-CoV from dromedary camels, the subsequent travel-related viral spread, the unprecedented nosocomial outbreaks and the high case-fatality rates highlight the need for prophylactic and therapeutic measures. Scientific advancements since the 2002-2003 severe acute respiratory syndrome coronavirus (SARS-CoV) pandemic allowed for rapid progress in our understanding of the epidemiology and pathogenesis of MERS-CoV and the development of therapeutics. In this Review, we detail our present understanding of the transmission and pathogenesis of SARS-CoV and MERS-CoV, and discuss the current state of development of measures to combat emerging coronaviruses.

  13. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds.

    Science.gov (United States)

    Báez-Santos, Yahira M; St John, Sarah E; Mesecar, Andrew D

    2015-03-01

    Over 10 years have passed since the deadly human coronavirus that causes severe acute respiratory syndrome (SARS-CoV) emerged from the Guangdong Province of China. Despite the fact that the SARS-CoV pandemic infected over 8500 individuals, claimed over 800 lives and cost billions of dollars in economic loss worldwide, there still are no clinically approved antiviral drugs, vaccines or monoclonal antibody therapies to treat SARS-CoV infections. The recent emergence of the deadly human coronavirus that causes Middle East respiratory syndrome (MERS-CoV) is a sobering reminder that new and deadly coronaviruses can emerge at any time with the potential to become pandemics. Therefore, the continued development of therapeutic and prophylactic countermeasures to potentially deadly coronaviruses is warranted. The coronaviral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), are attractive antiviral drug targets because they are essential for coronaviral replication. Although the primary function of PLpro and 3CLpro are to process the viral polyprotein in a coordinated manner, PLpro has the additional function of stripping ubiquitin and ISG15 from host-cell proteins to aid coronaviruses in their evasion of the host innate immune responses. Therefore, targeting PLpro with antiviral drugs may have an advantage in not only inhibiting viral replication but also inhibiting the dysregulation of signaling cascades in infected cells that may lead to cell death in surrounding, uninfected cells. This review provides an up-to-date discussion on the SARS-CoV papain-like protease including a brief overview of the SARS-CoV genome and replication followed by a more in-depth discussion on the structure and catalytic mechanism of SARS-CoV PLpro, the multiple cellular functions of SARS-CoV PLpro, the inhibition of SARS-CoV PLpro by small molecule inhibitors, and the prospect of inhibiting papain-like protease from other coronaviruses. This paper forms part of a series of

  14. Understanding bat SARS-like coronaviruses for the preparation of future coronavirus outbreaks - Implications for coronavirus vaccine development.

    Science.gov (United States)

    Ng, Oi-Wing; Tan, Yee-Joo

    2017-01-02

    The severe acute respiratory syndrome coronavirus (SARS-CoV) first emerged in 2003, causing the SARS epidemic which resulted in a 10% fatality rate. The advancements in metagenomic techniques have allowed the identification of SARS-like coronaviruses (SL-CoVs) sequences that share high homology to the human SARS-CoV epidemic strains from wildlife bats, presenting concrete evidence that bats are the origin and natural reservoir of SARS-CoV. The application of reverse genetics further enabled that characterization of these bat CoVs and the prediction of their potential to cause disease in humans. The knowledge gained from such studies is valuable in the surveillance and preparation of a possible future outbreak caused by a spill-over of these bat SL-CoVs.

  15. Anti-SARS virus antibody responses against human SARS-associated coronavirus and animal SARS-associated coronavirus-like virus

    Institute of Scientific and Technical Information of China (English)

    王鸣; 徐慧芳; 莫自耀; 郑伯健; 高阳; 顾菁; 秦鹏哲; 张周斌; 邹晓忠; 梁彩云; 赵宇腾; 高凯

    2004-01-01

    @@ Severe acute respiratory syndrome (SARS) is an infectious disease first recognized in November 2002 in Guangdong province, China. It was spread to many countries all over the world within a few months.1,2 By April 2003, SARS-associated coronavirus (SARS-CoV) was found to be the etiological agent.

  16. SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon.

    Science.gov (United States)

    Totura, Allison L; Baric, Ralph S

    2012-06-01

    SARS-CoV is a pathogenic coronavirus that emerged from a zoonotic reservoir, leading to global dissemination of the virus. The association SARS-CoV with aberrant cytokine, chemokine, and Interferon Stimulated Gene (ISG) responses in patients provided evidence that SARS-CoV pathogenesis is at least partially controlled by innate immune signaling. Utilizing models for SARS-CoV infection, key components of innate immune signaling pathways have been identified as protective factors against SARS-CoV disease, including STAT1 and MyD88. Gene transcription signatures unique to SARS-CoV disease states have been identified, but host factors that regulate exacerbated disease phenotypes still remain largely undetermined. SARS-CoV encodes several proteins that modulate innate immune signaling through the antagonism of the induction of Interferon and by avoidance of ISG effector functions. Copyright © 2012. Published by Elsevier B.V.

  17. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis.

    Science.gov (United States)

    Venkataraman, Thiagarajan; Frieman, Matthew B

    2017-07-01

    Many survivors of the 2003 outbreak of severe acute respiratory syndrome (SARS) developed residual pulmonary fibrosis with increased severity seen in older patients. Autopsies of patients that died from SARS also showed fibrosis to varying extents. Pulmonary fibrosis can be occasionally seen as a consequence to several respiratory viral infections but is much more common after a SARS coronavirus (SARS-CoV) infection. Given the threat of future outbreaks of severe coronavirus disease, including Middle East respiratory syndrome (MERS), it is important to understand the mechanisms responsible for pulmonary fibrosis, so as to support the development of therapeutic countermeasures and mitigate sequelae of infection. In this article, we summarize pulmonary fibrotic changes observed after a SARS-CoV infection, discuss the extent to which other respiratory viruses induce fibrosis, describe available animal models to study the development of SARS-CoV induced fibrosis and review evidence that pulmonary fibrosis is caused by a hyperactive host response to lung injury mediated by epidermal growth factor receptor (EGFR) signaling. We summarize work from our group and others indicating that inhibiting EGFR signaling may prevent an excessive fibrotic response to SARS-CoV and other respiratory viral infections and propose directions for future research. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Coronavirus 3CLpro proteinase cleavage sites: Possible relevance to SARS virus pathology

    Directory of Open Access Journals (Sweden)

    Blom Nikolaj

    2004-06-01

    Full Text Available Abstract Background Despite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS, efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection. Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods. Results We retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network was trained to recognise the cleavage sites in the genomes obtaining a sensitivity of 87.0% and a specificity of 99.0%. Several proteins known to be cleaved by other viruses were submitted to prediction as well as proteins suspected relevant in coronavirus pathology. Cleavage sites were predicted in proteins such as the cystic fibrosis transmembrane conductance regulator (CFTR, transcription factors CREB-RP and OCT-1, and components of the ubiquitin pathway. Conclusions Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified which might be important to elucidate coronavirus pathology. Furthermore, the method might assist in design of proteinase inhibitors for treatment of SARS and possible future diseases caused by coronaviruses. It is made available for public use at our website: http://www.cbs.dtu.dk/services/NetCorona/.

  19. The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Jason E.; Mitchell, Hugh D.; Gralinski, Lisa E.; Eisfeld, Amie J.; Josset, Laurence; Bankhead, Armand; Neumann, Gabriele; Tilton, Susan C.; Schäfer, Alexandra; Li, Chengjun; Fan, Shufang; McWeeney, Shannon; Baric, Ralph S.; Katze, Michael G.; Waters, Katrina M.

    2016-09-23

    The complex interplay between viral replication and host immune response during infection remains poorly understood. While many viruses are known to employ antiimmune strategies to facilitate their replication, highly pathogenic virus infections can also cause an excessive immune response that exacerbates, rather than reduces pathogenicity. To investigate this dichotomy in severe acute respiratory syndrome coronavirus (SARS-CoV), we developed a transcriptional network model of SARS-CoV infection in mice and used the model to prioritize candidate regulatory targets for further investigation. We validated our predictions in 18 different knockout (KO) mouse strains, showing that network topology provides significant predictive power to identify genes that are important for viral infection. We identified a novel player in the immune response to virus infection, Kepi, an inhibitory subunit of the protein phosphatase 1 (PP1) complex, which protects against SARS-CoV pathogenesis. We also found that receptors for the proinflammatory cytokine, tumor necrosis factor alpha (TNFα), promote pathogenesis through a parallel feed-forward circuit that promotes inflammation. These results are consistent with previous studies showing the role of over-stimulation of the inflammatory response to SARS-CoV in pathogenesis. We conclude that the critical balance between immune response and inflammation can be manipulated to improve the outcome of the infection. Further, our study provides two potential therapeutic strategies for mitigating the effects of SARS-CoV infection, and may provide insight into treatment strategies for Middle East Respiratory Syndrome Coronavirus (MERS-CoV).

  20. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence.

    Science.gov (United States)

    Menachery, Vineet D; Yount, Boyd L; Debbink, Kari; Agnihothram, Sudhakar; Gralinski, Lisa E; Plante, Jessica A; Graham, Rachel L; Scobey, Trevor; Ge, Xing-Yi; Donaldson, Eric F; Randell, Scott H; Lanzavecchia, Antonio; Marasco, Wayne A; Shi, Zhengli-Li; Baric, Ralph S

    2015-12-01

    The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome (MERS)-CoV underscores the threat of cross-species transmission events leading to outbreaks in humans. Here we examine the disease potential of a SARS-like virus, SHC014-CoV, which is currently circulating in Chinese horseshoe bat populations. Using the SARS-CoV reverse genetics system, we generated and characterized a chimeric virus expressing the spike of bat coronavirus SHC014 in a mouse-adapted SARS-CoV backbone. The results indicate that group 2b viruses encoding the SHC014 spike in a wild-type backbone can efficiently use multiple orthologs of the SARS receptor human angiotensin converting enzyme II (ACE2), replicate efficiently in primary human airway cells and achieve in vitro titers equivalent to epidemic strains of SARS-CoV. Additionally, in vivo experiments demonstrate replication of the chimeric virus in mouse lung with notable pathogenesis. Evaluation of available SARS-based immune-therapeutic and prophylactic modalities revealed poor efficacy; both monoclonal antibody and vaccine approaches failed to neutralize and protect from infection with CoVs using the novel spike protein. On the basis of these findings, we synthetically re-derived an infectious full-length SHC014 recombinant virus and demonstrate robust viral replication both in vitro and in vivo. Our work suggests a potential risk of SARS-CoV re-emergence from viruses currently circulating in bat populations.

  1. The Role of Severe Acute Respiratory Syndrome (SARS)-Coronavirus Accessory Proteins in Virus Pathogenesis

    Science.gov (United States)

    McBride, Ruth; Fielding, Burtram C.

    2012-01-01

    A respiratory disease caused by a novel coronavirus, termed the severe acute respiratory syndrome coronavirus (SARS-CoV), was first reported in China in late 2002. The subsequent efficient human-to-human transmission of this virus eventually affected more than 30 countries worldwide, resulting in a mortality rate of ~10% of infected individuals. The spread of the virus was ultimately controlled by isolation of infected individuals and there has been no infections reported since April 2004. However, the natural reservoir of the virus was never identified and it is not known if this virus will re-emerge and, therefore, research on this virus continues. The SARS-CoV genome is about 30 kb in length and is predicted to contain 14 functional open reading frames (ORFs). The genome encodes for proteins that are homologous to known coronavirus proteins, such as the replicase proteins (ORFs 1a and 1b) and the four major structural proteins: nucleocapsid (N), spike (S), membrane (M) and envelope (E). SARS-CoV also encodes for eight unique proteins, called accessory proteins, with no known homologues. This review will summarize the current knowledge on SARS-CoV accessory proteins and will include: (i) expression and processing; (ii) the effects on cellular processes; and (iii) functional studies. PMID:23202509

  2. Identification of an epitope of SARS-coronavirus nucleocapsid protein

    Institute of Scientific and Technical Information of China (English)

    YING LIN; JIN WANG; HONG XIA WANG; HUA LIANG JIANG; JIAN HUA SHEN; YOU HUA XIE; YUAN WANG; GANG PEI; BEI FEN SHEN; JIA RUI WU; BING SUN; XU SHEN; RUI FU YANG; YI XUE LI; YONG YONG JI; YOU YU HE; MUDE SHI; WEI LU; TIE LIU SHI

    2003-01-01

    The nucleocapsid (N) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) is a majorvirion structural protein. In this study, two epitopes (N1 and N2) of the N protein of SARS-CoV werepredicted by bioinformatics analysis. After immunization with two peptides, the peptides-specific antibodieswere isolated from the immunized rabbits. The further experiments demonstrated that N1 peptide-inducedpolyclonal antibodies had a high affinity to bind to E. coli expressed N protein of SARS-CoV. Furthermore, itwas confirmed that N1 peptide-specific IgG antibodies were detectable in the sera of severe acute respiratorysyndrome (SARS) patients. The results indicated that an epitope of the N protein has been identified andN protein specific Abs were produced by peptide immunization, which will be useful for the study of SARS-CoV.

  3. Accessory proteins of SARS-CoV and other coronaviruses.

    Science.gov (United States)

    Liu, Ding Xiang; Fung, To Sing; Chong, Kelvin Kian-Long; Shukla, Aditi; Hilgenfeld, Rolf

    2014-09-01

    The huge RNA genome of SARS coronavirus comprises a number of open reading frames that code for a total of eight accessory proteins. Although none of these are essential for virus replication, some appear to have a role in virus pathogenesis. Notably, some SARS-CoV accessory proteins have been shown to modulate the interferon signaling pathways and the production of pro-inflammatory cytokines. The structural information on these proteins is also limited, with only two (p7a and p9b) having their structures determined by X-ray crystallography. This review makes an attempt to summarize the published knowledge on SARS-CoV accessory proteins, with an emphasis on their involvement in virus-host interaction. The accessory proteins of other coronaviruses are also briefly discussed. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses" (see Introduction by Hilgenfeld and Peiris (2013)). Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor.

    Science.gov (United States)

    Ge, Xing-Yi; Li, Jia-Lu; Yang, Xing-Lou; Chmura, Aleksei A; Zhu, Guangjian; Epstein, Jonathan H; Mazet, Jonna K; Hu, Ben; Zhang, Wei; Peng, Cheng; Zhang, Yu-Ji; Luo, Chu-Ming; Tan, Bing; Wang, Ning; Zhu, Yan; Crameri, Gary; Zhang, Shu-Yi; Wang, Lin-Fa; Daszak, Peter; Shi, Zheng-Li

    2013-11-28

    The 2002-3 pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV) was one of the most significant public health events in recent history. An ongoing outbreak of Middle East respiratory syndrome coronavirus suggests that this group of viruses remains a key threat and that their distribution is wider than previously recognized. Although bats have been suggested to be the natural reservoirs of both viruses, attempts to isolate the progenitor virus of SARS-CoV from bats have been unsuccessful. Diverse SARS-like coronaviruses (SL-CoVs) have now been reported from bats in China, Europe and Africa, but none is considered a direct progenitor of SARS-CoV because of their phylogenetic disparity from this virus and the inability of their spike proteins to use the SARS-CoV cellular receptor molecule, the human angiotensin converting enzyme II (ACE2). Here we report whole-genome sequences of two novel bat coronaviruses from Chinese horseshoe bats (family: Rhinolophidae) in Yunnan, China: RsSHC014 and Rs3367. These viruses are far more closely related to SARS-CoV than any previously identified bat coronaviruses, particularly in the receptor binding domain of the spike protein. Most importantly, we report the first recorded isolation of a live SL-CoV (bat SL-CoV-WIV1) from bat faecal samples in Vero E6 cells, which has typical coronavirus morphology, 99.9% sequence identity to Rs3367 and uses ACE2 from humans, civets and Chinese horseshoe bats for cell entry. Preliminary in vitro testing indicates that WIV1 also has a broad species tropism. Our results provide the strongest evidence to date that Chinese horseshoe bats are natural reservoirs of SARS-CoV, and that intermediate hosts may not be necessary for direct human infection by some bat SL-CoVs. They also highlight the importance of pathogen-discovery programs targeting high-risk wildlife groups in emerging disease hotspots as a strategy for pandemic preparedness.

  5. Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines.

    Science.gov (United States)

    Müller, Marcel A; Raj, V Stalin; Muth, Doreen; Meyer, Benjamin; Kallies, Stephan; Smits, Saskia L; Wollny, Robert; Bestebroer, Theo M; Specht, Sabine; Suliman, Tasnim; Zimmermann, Katrin; Binger, Tabea; Eckerle, Isabella; Tschapka, Marco; Zaki, Ali M; Osterhaus, Albert D M E; Fouchier, Ron A M; Haagmans, Bart L; Drosten, Christian

    2012-12-11

    A new human coronavirus (hCoV-EMC) has emerged very recently in the Middle East. The clinical presentation resembled that of the severe acute respiratory syndrome (SARS) as encountered during the epidemic in 2002/2003. In both cases, acute renal failure was observed in humans. HCoV-EMC is a member of the same virus genus as SARS-CoV but constitutes a sister species. Here we investigated whether it might utilize angiotensin-converting enzyme 2 (ACE2), the SARS-CoV receptor. Knowledge of the receptor is highly critical because the restriction of the SARS receptor to deep compartments of the human respiratory tract limited the spread of SARS. In baby hamster kidney (BHK) cells, lentiviral transduction of human ACE2 (hACE2) conferred permissiveness and replication for SARS-CoV but not for hCoV-EMC. Monkey and human kidney cells (LLC-MK2, Vero, and 769-P) and swine kidney cells were permissive for both viruses, but only SARS-CoV infection could be blocked by anti-hACE2 antibody and could be neutralized by preincubation of virus with soluble ACE2. Our data show that ACE2 is neither necessary nor sufficient for hCoV-EMC replication. Moreover, hCoV-EMC, but not SARS-CoV, replicated in cell lines from Rousettus, Rhinolophus, Pipistrellus, Myotis, and Carollia bats, representing four major chiropteran families from both suborders. As human CoV normally cannot replicate in bat cells from different families, this suggests that hCoV-EMC might use a receptor molecule that is conserved in bats, pigs, and humans, implicating a low barrier against cross-host transmission. IMPORTANCE A new human coronavirus (hCoV) emerged recently in the Middle East. The disease resembled SARS (severe acute respiratory syndrome), causing a fatal epidemic in 2002/2003. Coronaviruses have a reservoir in bats and because this novel virus is related to SARS-CoV, we investigated whether it might replicate in bat cells and use the same receptor (angiotensin-converting enzyme 2 [ACE2]). This knowledge is

  6. Stability of SARS Coronavirus in Human Specimens and Environment and Its Sensitivity to Heating and UV Irradiation

    Institute of Scientific and Technical Information of China (English)

    SHU-MING DUAN; XIAO-PING DONG; SARS RESEARCH TEAM; XIN-SHENG ZHAO; RUI-FU WEN; JING-JING HUANG; GUO-HUA PI; SU-XIANG ZHANG; JUN HAN; SHENG-LI BI; LI RUAN

    2003-01-01

    The causal agent for SARS is considered as a novel coronavirus that has never been described both in human and animals previously. The stability of SARS coronavirus in human specimens and in environments was studied. Methods Using a SARS coronavirus strain CoV-P9,which was isolated from pharyngeal swab of a probable SARS case in Beijing, its stability in mimic human specimens and in mimic environment including surfaces of commonly used materials or in household conditions, as well as its resistances to temperature and UV irradiation were analyzed. A total of 106 TCID50 viruses were placed in each tested condition, and changes of the viral infectivity in samples after treatments were measured by evaluating cytopathic effect (CPE) in cell line Vero-E6 at 48 h after infectionn. Results The results showed that SARS coronavirus in the testing condition could survive in serum, 1:20 diluted sputum and feces for at least 96 h, whereas it could remain alive in urine for at least 72 h with a low level of infectivity. The survival abilities on the surfaces of eight different materials and in water were quite comparable, revealing reduction of infectivity after 72 to 96 h exposure. Viruses stayed stable at 4℃, at room temperature (20℃) and at 37℃ for at least 2 h without remarkable change in the infectious ability in cells, but were convened to be non-infectious after 90-, 60- and 30-min exposure at 56℃, at 67℃ and at 75℃, respectively. Irradiation of UV for 60 min on the virus in culture medium resulted in the destruction of viral infectivity at an undetectable level. Conclusion The survival ability of SARS coronavirus in human specimens and in environments seems to be relatively strong. Heating and UV irradiation can efficiently eliminate the viral infectivity.

  7. The SARS-unique domain (SUD of SARS coronavirus contains two macrodomains that bind G-quadruplexes.

    Directory of Open Access Journals (Sweden)

    Jinzhi Tan

    2009-05-01

    Full Text Available Since the outbreak of severe acute respiratory syndrome (SARS in 2003, the three-dimensional structures of several of the replicase/transcriptase components of SARS coronavirus (SARS-CoV, the non-structural proteins (Nsps, have been determined. However, within the large Nsp3 (1922 amino-acid residues, the structure and function of the so-called SARS-unique domain (SUD have remained elusive. SUD occurs only in SARS-CoV and the highly related viruses found in certain bats, but is absent from all other coronaviruses. Therefore, it has been speculated that it may be involved in the extreme pathogenicity of SARS-CoV, compared to other coronaviruses, most of which cause only mild infections in humans. In order to help elucidate the function of the SUD, we have determined crystal structures of fragment 389-652 ("SUD(core" of Nsp3, which comprises 264 of the 338 residues of the domain. Both the monoclinic and triclinic crystal forms (2.2 and 2.8 A resolution, respectively revealed that SUD(core forms a homodimer. Each monomer consists of two subdomains, SUD-N and SUD-M, with a macrodomain fold similar to the SARS-CoV X-domain. However, in contrast to the latter, SUD fails to bind ADP-ribose, as determined by zone-interference gel electrophoresis. Instead, the entire SUD(core as well as its individual subdomains interact with oligonucleotides known to form G-quadruplexes. This includes oligodeoxy- as well as oligoribonucleotides. Mutations of selected lysine residues on the surface of the SUD-N subdomain lead to reduction of G-quadruplex binding, whereas mutations in the SUD-M subdomain abolish it. As there is no evidence for Nsp3 entering the nucleus of the host cell, the SARS-CoV genomic RNA or host-cell mRNA containing long G-stretches may be targets of SUD. The SARS-CoV genome is devoid of G-stretches longer than 5-6 nucleotides, but more extended G-stretches are found in the 3'-nontranslated regions of mRNAs coding for certain host-cell proteins

  8. Expression and Purification of SARS Coronavirus Membrane Protein

    Institute of Scientific and Technical Information of China (English)

    戴五星; 雷明军; 吴少庭; 陈智浩; 梁靓; 潘晖榕; 秦莉; 高士同; 袁仕善; 张仁利

    2004-01-01

    To construct a recombinant plasmid Pet23a-M, the gene encoding severe acute respiratory syndrome (SARS) coronavirus membrane protein was amplified by RT-PCR and cloned into the expression plasmid Pet23a. Results of restriction endonuclease analysis, PCR detection and DNA sequencing analysis revealed that the cloned DNA sequence was the same as that reported. The re combinants were transformed into Escherichia coli (E. Coli) BL21 (DE3) and induced by Isopropylβ-D-thiogalactopyranoside (IPTG). The expression of 27 kD (1 kD=0. 992 1 ku) protein was detected by SDS-PAGE and pured by metal chelated chromatography. Results of Western-blot showed that this expressed protein could react with antibodies in sera of SARS patients during convalescence. This provided the basis for the further study on SARS virus vaccine and diagnostic agents.

  9. A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide

    Directory of Open Access Journals (Sweden)

    Roh C

    2012-05-01

    Full Text Available Changhyun RohDivision of Biotechnology, Advanced Radiation Technology Institute (ARTI, Korea Atomic Energy Research Institute (KAERI, Jeongeup, Republic of KoreaAbstract: Hundreds of million people worldwide have been infected with severe acute respiratory syndrome (SARS, and the rate of global death from SARS has remarkably increased. Hence, the development of efficient drug treatments for the biological effects of SARS is highly needed. We have previously shown that quantum dots (QDs-conjugated RNA oligonucleotide is sensitive to the specific recognition of the SARS-associated coronavirus (SARS-CoV nucleocapsid (N protein. In this study, we found that a designed biochip could analyze inhibitors of the SARS-CoV N protein using nanoparticle-based RNA oligonucleotide. Among the polyphenolic compounds examined, (--catechin gallate and (--gallocatechin gallate demonstrated a remarkable inhibition activity on SARS-CoV N protein. (--catechin gallate and (--gallocatechin gallate attenuated the binding affinity in a concentrated manner as evidenced by QDs-conjugated RNA oligonucleotide on a designed biochip. At a concentration of 0.05 µg mL–1, (--catechin gallate and (--gallocatechin gallate showed more than 40% inhibition activity on a nanoparticle-based RNA oligonucleotide biochip system.Keywords: SARS, RNA oligonucleotide, quantum dots, inhibitor, screening

  10. The SARS coronavirus nucleocapsid protein--forms and functions.

    Science.gov (United States)

    Chang, Chung-ke; Hou, Ming-Hon; Chang, Chi-Fon; Hsiao, Chwan-Deng; Huang, Tai-huang

    2014-03-01

    The nucleocapsid phosphoprotein of the severe acute respiratory syndrome coronavirus (SARS-CoV N protein) packages the viral genome into a helical ribonucleocapsid (RNP) and plays a fundamental role during viral self-assembly. It is a protein with multifarious activities. In this article we will review our current understanding of the N protein structure and its interaction with nucleic acid. Highlights of the progresses include uncovering the modular organization, determining the structures of the structural domains, realizing the roles of protein disorder in protein-protein and protein-nucleic acid interactions, and visualizing the ribonucleoprotein (RNP) structure inside the virions. It was also demonstrated that N-protein binds to nucleic acid at multiple sites with a coupled-allostery manner. We propose a SARS-CoV RNP model that conforms to existing data and bears resemblance to the existing RNP structures of RNA viruses. The model highlights the critical role of modular organization and intrinsic disorder of the N protein in the formation and functions of the dynamic RNP capsid in RNA viruses. This paper forms part of a symposium in Antiviral Research on "From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses." Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis

    NARCIS (Netherlands)

    Hamming, [No Value; Timens, W; Bulthuis, MLC; Lely, AT; Navis, GJ; van Goor, H

    2004-01-01

    Severe acute respiratory syndrome (SARS) is an acute infectious disease that spreads mainly via the respiratory route. A distinct coronavirus (SARS-CoV) has been identified as the aetiological agent of SARS. Recently, a metallopeptidase named angiotensin-converting enzyme 2 (ACE2) has been identifie

  12. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis

    NARCIS (Netherlands)

    Hamming, [No Value; Timens, W; Bulthuis, MLC; Lely, AT; Navis, GJ; van Goor, H

    Severe acute respiratory syndrome (SARS) is an acute infectious disease that spreads mainly via the respiratory route. A distinct coronavirus (SARS-CoV) has been identified as the aetiological agent of SARS. Recently, a metallopeptidase named angiotensin-converting enzyme 2 (ACE2) has been

  13. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum.

    Directory of Open Access Journals (Sweden)

    Kèvin Knoops

    2008-09-01

    Full Text Available Positive-strand RNA viruses, a large group including human pathogens such as SARS-coronavirus (SARS-CoV, replicate in the cytoplasm of infected host cells. Their replication complexes are commonly associated with modified host cell membranes. Membrane structures supporting viral RNA synthesis range from distinct spherular membrane invaginations to more elaborate webs of packed membranes and vesicles. Generally, their ultrastructure, morphogenesis, and exact role in viral replication remain to be defined. Poorly characterized double-membrane vesicles (DMVs were previously implicated in SARS-CoV RNA synthesis. We have now applied electron tomography of cryofixed infected cells for the three-dimensional imaging of coronavirus-induced membrane alterations at high resolution. Our analysis defines a unique reticulovesicular network of modified endoplasmic reticulum that integrates convoluted membranes, numerous interconnected DMVs (diameter 200-300 nm, and "vesicle packets" apparently arising from DMV merger. The convoluted membranes were most abundantly immunolabeled for viral replicase subunits. However, double-stranded RNA, presumably revealing the site of viral RNA synthesis, mainly localized to the DMV interior. Since we could not discern a connection between DMV interior and cytosol, our analysis raises several questions about the mechanism of DMV formation and the actual site of SARS-CoV RNA synthesis. Our data document the extensive virus-induced reorganization of host cell membranes into a network that is used to organize viral replication and possibly hide replicating RNA from antiviral defense mechanisms. Together with biochemical studies of the viral enzyme complex, our ultrastructural description of this "replication network" will aid to further dissect the early stages of the coronavirus life cycle and its virus-host interactions.

  14. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway

    Institute of Scientific and Technical Information of China (English)

    Hongliang Wang; Peng Yang; Kangtai Liu; Feng Guo; Yanli Zhang; Gongyi Zhang; Chengyu Jiang

    2008-01-01

    While severe acute respiratory syndrome coronavirus (SARS-CoV)fwas initially thought to enter cells through direct fusion with the plasma membrane, more recent evidence suggests that virus entry may also involve endocytosis. We have found that SARS-CoV enters cells via pH- and receptor-dependent endocytosis. Treatment of cells with either SARS-CoV spike protein or spike-bearing pseudoviruses resulted in the translocation of angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV, from the cell surface to endosomes. In addition, the spike-bearing pseudoviruses and early endosome antigen 1 were found to colocalize in endosomes. Further analyses using specific endocytic pathway inhibitors and dominant-negative Eps15 as well as caveolin-1 colocalization study suggested that virus entry was mediated by a clathrin- and caveolae-independent mechanism. Moreover, cholesterol- and sphingolipid-rich lipid raft microdomains in the plasma membrane, which have been shown to act as platforms for many physiological signaling pathways, were shown to be involved in virus entry. Endocytic entry of SARS-CoV may expand the cellular range of SARS-CoV infection, and our findings here contribute to the understanding of SARS-CoV pathogenesis, providing new information for anti-viral drug research.

  15. A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide.

    Science.gov (United States)

    Roh, Changhyun

    2012-01-01

    Hundreds of million people worldwide have been infected with severe acute respiratory syndrome (SARS), and the rate of global death from SARS has remarkably increased. Hence, the development of efficient drug treatments for the biological effects of SARS is highly needed. We have previously shown that quantum dots (QDs)-conjugated RNA oligonucleotide is sensitive to the specific recognition of the SARS-associated coronavirus (SARS-CoV) nucleocapsid (N) protein. In this study, we found that a designed biochip could analyze inhibitors of the SARS-CoV N protein using nanoparticle-based RNA oligonucleotide. Among the polyphenolic compounds examined, (-)-catechin gallate and (-)-gallocatechin gallate demonstrated a remarkable inhibition activity on SARS-CoV N protein. (-)-catechin gallate and (-)-gallocatechin gallate attenuated the binding affinity in a concentrated manner as evidenced by QDs-conjugated RNA oligonucleotide on a designed biochip. At a concentration of 0.05 μg mL(-1), (-)-catechin gallate and (-)-gallocatechin gallate showed more than 40% inhibition activity on a nanoparticle-based RNA oligonucleotide biochip system.

  16. A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Anjeanette Roberts

    2007-01-01

    Full Text Available No single animal model for severe acute respiratory syndrome (SARS reproduces all aspects of the human disease. Young inbred mice support SARS-coronavirus (SARS-CoV replication in the respiratory tract and are available in sufficient numbers for statistical evaluation. They are relatively inexpensive and easily accessible, but their use in SARS research is limited because they do not develop illness following infection. Older (12- to 14-mo-old BALB/c mice develop clinical illness and pneumonitis, but they can be hard to procure, and immune senescence complicates pathogenesis studies. We adapted the SARS-CoV (Urbani strain by serial passage in the respiratory tract of young BALB/c mice. Fifteen passages resulted in a virus (MA15 that is lethal for mice following intranasal inoculation. Lethality is preceded by rapid and high titer viral replication in lungs, viremia, and dissemination of virus to extrapulmonary sites accompanied by lymphopenia, neutrophilia, and pathological changes in the lungs. Abundant viral antigen is extensively distributed in bronchial epithelial cells and alveolar pneumocytes, and necrotic cellular debris is present in airways and alveoli, with only mild and focal pneumonitis. These observations suggest that mice infected with MA15 die from an overwhelming viral infection with extensive, virally mediated destruction of pneumocytes and ciliated epithelial cells. The MA15 virus has six coding mutations associated with adaptation and increased virulence; when introduced into a recombinant SARS-CoV, these mutations result in a highly virulent and lethal virus (rMA15, duplicating the phenotype of the biologically derived MA15 virus. Intranasal inoculation with MA15 reproduces many aspects of disease seen in severe human cases of SARS. The availability of the MA15 virus will enhance the use of the mouse model for SARS because infection with MA15 causes morbidity, mortality, and pulmonary pathology. This virus will be of value as

  17. Bat-to-human: spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond.

    Science.gov (United States)

    Lu, Guangwen; Wang, Qihui; Gao, George F

    2015-08-01

    Both severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic pathogens that crossed the species barriers to infect humans. The mechanism of viral interspecies transmission is an important scientific question to be addressed. These coronaviruses contain a surface-located spike (S) protein that initiates infection by mediating receptor-recognition and membrane fusion and is therefore a key factor in host specificity. In addition, the S protein needs to be cleaved by host proteases before executing fusion, making these proteases a second determinant of coronavirus interspecies infection. Here, we summarize the progress made in the past decade in understanding the cross-species transmission of SARS-CoV and MERS-CoV by focusing on the features of the S protein, its receptor-binding characteristics, and the cleavage process involved in priming. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Dissection of SARS Coronavirus Spike Protein into Discrete Folded Fragments

    Institute of Scientific and Technical Information of China (English)

    LI Shuang; CAI Zhen; CHEN Yong; LIN Zhanglin

    2006-01-01

    The spike protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) mediates cell fusion by binding to target cell surface receptors. This paper reports a simple method for dissecting the viral protein and for searching for foldable fragments in a random but systematic manner. The method involves digestion by DNase I to generate a pool of short DNA segments, followed by an additional step of reassembly of these segments to produce a library of DNA fragments with random ends but controllable lengths. To rapidly screen for discrete folded polypeptide fragments, the reassembled gene fragments were further cloned into a vector as N-terminal fusions to a folding reporter gene which was a variant of green fluorescent protein. Two foldable fragments were identified for the SARS-CoV spike protein, which coincide with various anti-SARS peptides derived from the hepated repeat (HR) region 2 of the spike protein. The method should be applicable to other viral proteins to isolate antigen or vaccine candidates, thus providing an alternative to the full-length proteins (subunits) or linear short peptides.

  19. Coronavirus infection of polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Horzinek, M C; Rottier, P J

    1995-01-01

    Epithelial cells are the first host cells to be infected by incoming c oronaviruses. Recent observations in vitro show that coronaviruses are released from a specific side of these polarized cells, and this polarized release might be important for the spread of the infection in vivo. Mechanisms for

  20. Development of chemical inhibitors of the SARS coronavirus: viral helicase as a potential target.

    Science.gov (United States)

    Keum, Young-Sam; Jeong, Yong-Joo

    2012-11-15

    Severe acute respiratory syndrome (SARS) was the first pandemic in the 21st century to claim more than 700 lives worldwide. However, effective anti-SARS vaccines or medications are currently unavailable despite being desperately needed to adequately prepare for a possible SARS outbreak. SARS is caused by a novel coronavirus, and one of its components, a viral helicase, is emerging as a promising target for the development of chemical SARS inhibitors. In the following review, we describe the characterization, family classification, and kinetic movement mechanisms of the SARS coronavirus (SCV) helicase-nsP13. We also discuss the recent progress in the identification of novel chemical inhibitors of nsP13 in the context of our recent discovery of the strong inhibition of the SARS helicase by natural flavonoids, myricetin and scutellarein. These compounds will serve as important resources for the future development of anti-SARS medications. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Coronavirus infection, ER stress and Apoptosis

    Directory of Open Access Journals (Sweden)

    TO SING eFUNG

    2014-06-01

    Full Text Available The replication of coronavirus, a family of important animal and human pathogens, is closely associated with the cellular membrane compartments, especially the endoplasmic reticulum (ER. Coronavirus infection of cultured cells was previously shown to cause ER stress and induce the unfolded protein response (UPR, a process that aims to restore the ER homeostasis by global translation shutdown and increasing the ER folding capacity. However under prolonged ER stress, UPR can also induce apoptotic cell death. Accumulating evidence from recent studies has shown that induction of ER stress and UPR may constitute a major aspect of coronavirus-host interaction. Activation of the three branches of UPR modulates a wide variety of signaling pathways, such as mitogen-activated protein (MAP kinases activation, autophagy, apoptosis and innate immune response. ER stress and UPR activation may therefore contribute significantly to the viral replication and pathogenesis during coronavirus infection. In this review, we summarize current knowledge on coronavirus-induced ER stress and UPR activation, with emphasis on their cross-talking to apoptotic signaling.

  2. Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination.

    Science.gov (United States)

    Lau, Susanna K P; Feng, Yun; Chen, Honglin; Luk, Hayes K H; Yang, Wei-Hong; Li, Kenneth S M; Zhang, Yu-Zhen; Huang, Yi; Song, Zhi-Zhong; Chow, Wang-Ngai; Fan, Rachel Y Y; Ahmed, Syed Shakeel; Yeung, Hazel C; Lam, Carol S F; Cai, Jian-Piao; Wong, Samson S Y; Chan, Jasper F W; Yuen, Kwok-Yung; Zhang, Hai-Lin; Woo, Patrick C Y

    2015-10-01

    originated from SARSr-CoVs of greater horseshoe bats through recombination, which may be important for animal-to-human transmission. Although horseshoe bats are the primary reservoir of SARS-related coronaviruses (SARSr-CoVs), it is still unclear how these bat viruses have evolved to cross the species barrier to infect civets and humans. Most human SARS-CoV epidemic strains contain a signature 29-nucleotide deletion in ORF8, compared to civet SARSr-CoVs, suggesting that ORF8 may be important for interspecies transmission. However, the origin of SARS-CoV ORF8 remains obscure. In particular, SARSr-Rs-BatCoVs from Chinese horseshoe bats (Rhinolophus sinicus) exhibited SARS-CoV in the ORF8 protein. We detected diverse alphacoronaviruses and betacoronaviruses among various bat species in Yunnan, China, including two SARSr-Rf-BatCoVs from greater horseshoe bats that possessed ORF8 proteins with exceptionally high amino acid identities to that of human/civet SARSr-CoVs. We demonstrated recombination events around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. Our findings offer insight into the evolutionary origin of SARS-CoV ORF8 protein, which was likely acquired from SARSr-CoVs of greater horseshoe bats through recombination. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines

    NARCIS (Netherlands)

    M.A. Müller (Marcel); V.S. Raj (V. Stalin); D. Muth; B. Meyer (Bernhard); S. Kallies (Stephan); S.L. Smits (Saskia); R. Wollny (Robert); T.M. Bestebroer (Theo); S. Specht (Sabine); T. Suliman (Tasnim); K. Zimmermann (Kathrin); T. Binger (Tabea); I. Eckerle; M. Tschapka (Marco); A.M. Zaki (Ali); A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron); B.L. Haagmans (Bart); C. Drosten (Christian)

    2012-01-01

    textabstractA new human coronavirus (hCoV-EMC) has emerged very recently in the Middle East. The clinical presentation resembled that of the severe acute respiratory syndrome (SARS) as encountered during the epidemic in 2002/2003. In both cases, acute renal failure was observed in humans. HCoV-EMC i

  4. The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus.

    Science.gov (United States)

    McDermott, Jason E; Mitchell, Hugh D; Gralinski, Lisa E; Eisfeld, Amie J; Josset, Laurence; Bankhead, Armand; Neumann, Gabriele; Tilton, Susan C; Schäfer, Alexandra; Li, Chengjun; Fan, Shufang; McWeeney, Shannon; Baric, Ralph S; Katze, Michael G; Waters, Katrina M

    2016-09-23

    The complex interplay between viral replication and host immune response during infection remains poorly understood. While many viruses are known to employ anti-immune strategies to facilitate their replication, highly pathogenic virus infections can also cause an excessive immune response that exacerbates, rather than reduces pathogenicity. To investigate this dichotomy in severe acute respiratory syndrome coronavirus (SARS-CoV), we developed a transcriptional network model of SARS-CoV infection in mice and used the model to prioritize candidate regulatory targets for further investigation. We validated our predictions in 18 different knockout (KO) mouse strains, showing that network topology provides significant predictive power to identify genes that are important for viral infection. We identified a novel player in the immune response to virus infection, Kepi, an inhibitory subunit of the protein phosphatase 1 (PP1) complex, which protects against SARS-CoV pathogenesis. We also found that receptors for the proinflammatory cytokine tumor necrosis factor alpha (TNFα) promote pathogenesis, presumably through excessive inflammation. The current study provides validation of network modeling approaches for identifying important players in virus infection pathogenesis, and a step forward in understanding the host response to an important infectious disease. The results presented here suggest the role of Kepi in the host response to SARS-CoV, as well as inflammatory activity driving pathogenesis through TNFα signaling in SARS-CoV infections. Though we have reported the utility of this approach in bacterial and cell culture studies previously, this is the first comprehensive study to confirm that network topology can be used to predict phenotypes in mice with experimental validation.

  5. Receptor-Dependent Coronavirus Infection of Dendritic Cells

    Science.gov (United States)

    Turner, Brian C.; Hemmila, Erin M.; Beauchemin, Nicole; Holmes, Kathryn V.

    2004-01-01

    In several mammalian species, including humans, coronavirus infection can modulate the host immune response. We show a potential role of dendritic cells (DC) in murine coronavirus-induced immune modulation and pathogenesis by demonstrating that the JAW SII DC line and primary DC from BALB/c mice and p/p mice with reduced expression of the murine coronavirus receptor, murine CEACAM1a, are susceptible to murine coronavirus infection by a receptor-dependent pathway. PMID:15113927

  6. Identification of Immunogenic Determinants of the Spike Protein of SARS-like Coronavirus

    Institute of Scientific and Technical Information of China (English)

    Peng Zhou; Zhenggang Han; Lin-Fa Wang; Zhengli Shi

    2013-01-01

    Bat SARS-like coronavirus (SL-CoV) has a genome organization almost identical to that of SARS-CoV,but the N-terminus of the Spike (S) proteins,which interacts with host receptor and is a major target of neutralizing antibodies against CoVs,of the two viruses has only 63-64% sequence identity.Although there have been reports studying the overall immunogenicity of SSL,knowledge on the precise location of immunodominant determinants for SSL is still lacking.In this study,using a series of truncated expressed SSL fragments and SsL specific mouse sera,we identified two immunogenic determinants for SSL.Importantly,one of the two regions seems to be located in a region not shared by known immunogenic determinants of the SSARS.This finding will be of potential use in future monitoring of SL-CoV infection in bats and spillover animals and in development of more effective vaccine to cover broad protection against this new group of coronaviruses.

  7. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research.

    Science.gov (United States)

    Simmons, Graham; Zmora, Pawel; Gierer, Stefanie; Heurich, Adeline; Pöhlmann, Stefan

    2013-12-01

    The severe acute respiratory syndrome (SARS) pandemic revealed that zoonotic transmission of animal coronaviruses (CoV) to humans poses a significant threat to public health and warrants surveillance and the development of countermeasures. The activity of host cell proteases, which cleave and activate the SARS-CoV spike (S) protein, is essential for viral infectivity and constitutes a target for intervention. However, the identities of the proteases involved have been unclear. Pioneer studies identified cathepsins and type II transmembrane serine proteases as cellular activators of SARS-CoV and demonstrated that several emerging viruses might exploit these enzymes to promote their spread. Here, we will review the proteolytic systems hijacked by SARS-CoV for S protein activation, we will discuss their contribution to viral spread in the host and we will outline antiviral strategies targeting these enzymes. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses.'' Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus.

    Directory of Open Access Journals (Sweden)

    I-Chueh Huang

    Full Text Available Interferon-inducible transmembrane proteins 1, 2, and 3 (IFITM1, 2, and 3 are recently identified viral restriction factors that inhibit infection mediated by the influenza A virus (IAV hemagglutinin (HA protein. Here we show that IFITM proteins restricted infection mediated by the entry glycoproteins (GP(1,2 of Marburg and Ebola filoviruses (MARV, EBOV. Consistent with these observations, interferon-β specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV. We observed distinct patterns of IFITM-mediated restriction: compared with IAV, the entry processes of MARV and EBOV were less restricted by IFITM3, but more restricted by IFITM1. Moreover, murine Ifitm5 and 6 did not restrict IAV, but efficiently inhibited filovirus entry. We further demonstrate that replication of infectious SARS coronavirus (SARS-CoV and entry mediated by the SARS-CoV spike (S protein are restricted by IFITM proteins. The profile of IFITM-mediated restriction of SARS-CoV was more similar to that of filoviruses than to IAV. Trypsin treatment of receptor-associated SARS-CoV pseudovirions, which bypasses their dependence on lysosomal cathepsin L, also bypassed IFITM-mediated restriction. However, IFITM proteins did not reduce cellular cathepsin activity or limit access of virions to acidic intracellular compartments. Our data indicate that IFITM-mediated restriction is localized to a late stage in the endocytic pathway. They further show that IFITM proteins differentially restrict the entry of a broad range of enveloped viruses, and modulate cellular tropism independently of viral receptor expression.

  9. Genome sequence variation analysis of two SARS coronavirus isolates after passage in Vero cell culture

    Institute of Scientific and Technical Information of China (English)

    JIN Weiwu; LI Ning; HU Liangxiang; DU Zhenglin; GAO Qiang; GAO Hong; NING Ye; FENG Jidong; ZHANG Jiansan; YIN Weidong

    2004-01-01

    SARS coronavirus is an RNA virus whose replication is error-prone, which provides possibility for escape of host defenses, and even leads to evolution of new viral strains during the passage or the transmission. Lots of variations have been detected among different SARS-CoV strains. And a study on these variations is helpful for development of efficient vaccine. Moreover, the test of nucleic acid characterization and genetic stability of SARS-CoV is important in the research of inactivated vaccine. The whole genome sequences of two SARS coronavirus strains after passage in Vero cell culture were determined and were compared with those of early passages, respectively. Results showed that both SARS coronavirus strains have high genetic stability, although nearly 10 generations were passed. Four nucleotide variations were observed between the second passage and the 11th passage of Sino1 strain for identification of SARS inactivated vaccine. Moreover, only one nucleotide was different between the third passage and the 10th passage of Sino3 strain for SARS inactivated vaccine. Therefore, this study suggested it was possible to develop inactivated vaccine against SARS-CoV in the future.

  10. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses.

    Directory of Open Access Journals (Sweden)

    Markus Hoffmann

    Full Text Available Bats (Chiroptera host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat or Yangochiroptera (genera Carollia and Tadarida for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV, a porcine coronavirus, or to infection mediated by the Spike (S protein of SARS-coronavirus (SARS-CoV incorporated into pseudotypes based on vesicular stomatitis virus (VSV. The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3 were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed.

  11. Molecular signature of clinical severity in recovering patients with severe acute respiratory syndrome coronavirus (SARS-CoV

    Directory of Open Access Journals (Sweden)

    Wu Ting-Shu

    2005-09-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS, a recent epidemic human disease, is caused by a novel coronavirus (SARS-CoV. First reported in Asia, SARS quickly spread worldwide through international travelling. As of July 2003, the World Health Organization reported a total of 8,437 people afflicted with SARS with a 9.6% mortality rate. Although immunopathological damages may account for the severity of respiratory distress, little is known about how the genome-wide gene expression of the host changes under the attack of SARS-CoV. Results Based on changes in gene expression of peripheral blood, we identified 52 signature genes that accurately discriminated acute SARS patients from non-SARS controls. While a general suppression of gene expression predominated in SARS-infected blood, several genes including those involved in innate immunity, such as defensins and eosinophil-derived neurotoxin, were upregulated. Instead of employing clustering methods, we ranked the severity of recovering SARS patients by generalized associate plots (GAP according to the expression profiles of 52 signature genes. Through this method, we discovered a smooth transition pattern of severity from normal controls to acute SARS patients. The rank of SARS severity was significantly correlated with the recovery period (in days and with the clinical pulmonary infection score. Conclusion The use of the GAP approach has proved useful in analyzing the complexity and continuity of biological systems. The severity rank derived from the global expression profile of significantly regulated genes in patients may be useful for further elucidating the pathophysiology of their disease.

  12. Development of a single nucleotide polymorphism DNA microarray for the detection and genotyping of the SARS coronavirus.

    Science.gov (United States)

    Guo, Xi; Geng, Peng; Wang, Quan; Cao, Boyang; Liu, Bin

    2014-10-01

    Severe acute respiratory syndrome (SARS), a disease that spread widely in the world during late 2002 to 2004, severely threatened public health. Although there have been no reported infections since 2004, the extremely pathogenic SARS coronavirus (SARS-CoV), as the causative agent of SARS, has recently been identified in animals, showing the potential for the re-emergence of this disease. Previous studies showed that 27 single nucleotide polymorphism (SNP) mutations among the spike (S) gene of this virus are correlated closely with the SARS pathogenicity and epidemicity. We have developed a SNP DNA microarray in order to detect and genotype these SNPs, and to obtain related information on the pathogenicity and epidemicity of a given strain. The microarray was hybridized with PCR products amplified from cDNAs obtained from different SARS-CoV strains. We were able to detect 24 SNPs and determine the type of a given strain. The hybridization profile showed that 19 samples were detected and genotyped correctly by using our microarray, with 100% accuracy. Our microarray provides a novel method for the detection and epidemiological surveillance of SARS-CoV.

  13. Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response.

    Science.gov (United States)

    Kindler, E; Thiel, V; Weber, F

    2016-01-01

    Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) are the most severe coronavirus (CoV)-associated diseases in humans. The causative agents, SARS-CoV and MERS-CoV, are of zoonotic origin but may be transmitted to humans, causing severe and often fatal respiratory disease in their new host. The two coronaviruses are thought to encode an unusually large number of factors that allow them to thrive and replicate in the presence of efficient host defense mechanisms, especially the antiviral interferon system. Here, we review the recent progress in our understanding of the strategies that highly pathogenic coronaviruses employ to escape, dampen, or block the antiviral interferon response in human cells. © 2016 Elsevier Inc. All rights reserved.

  14. SARS-unique fold in the Rousettus bat coronavirus HKU9.

    Science.gov (United States)

    Hammond, Robert G; Tan, Xuan; Johnson, Margaret A

    2017-09-01

    The coronavirus nonstructural protein 3 (nsp3) is a multifunctional protein that comprises multiple structural domains. This protein assists viral polyprotein cleavage, host immune interference, and may play other roles in genome replication or transcription. Here, we report the solution NMR structure of a protein from the "SARS-unique region" of the bat coronavirus HKU9. The protein contains a frataxin fold or double-wing motif, which is an α + β fold that is associated with protein/protein interactions, DNA binding, and metal ion binding. High structural similarity to the human severe acute respiratory syndrome (SARS) coronavirus nsp3 is present. A possible functional site that is conserved among some betacoronaviruses has been identified using bioinformatics and biochemical analyses. This structure provides strong experimental support for the recent proposal advanced by us and others that the "SARS-unique" region is not unique to the human SARS virus, but is conserved among several different phylogenetic groups of coronaviruses and provides essential functions. © 2017 The Protein Society.

  15. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2.

    Science.gov (United States)

    Wong, Swee Kee; Li, Wenhui; Moore, Michael J; Choe, Hyeryun; Farzan, Michael

    2004-01-30

    The coronavirus spike (S) protein mediates infection of receptor-expressing host cells and is a critical target for antiviral neutralizing antibodies. Angiotensin-converting enzyme 2 (ACE2) is a functional receptor for the coronavirus (severe acute respiratory syndrome (SARS)-CoV) that causes SARS. Here we demonstrate that a 193-amino acid fragment of the S protein (residues 318-510) bound ACE2 more efficiently than did the full S1 domain (residues 12-672). Smaller S protein fragments, expressing residues 327-510 or 318-490, did not detectably bind ACE2. A point mutation at aspartic acid 454 abolished association of the full S1 domain and of the 193-residue fragment with ACE2. The 193-residue fragment blocked S protein-mediated infection with an IC(50) of less than 10 nm, whereas the IC(50) of the S1 domain was approximately 50 nm. These data identify an independently folded receptor-binding domain of the SARS-CoV S protein.

  16. Identification of phosphorylation sites in the nucleocapsid protein (N protein) of SARS-coronavirus

    Science.gov (United States)

    Lin, Liang; Shao, Jianmin; Sun, Maomao; Liu, Jinxiu; Xu, Gongjin; Zhang, Xumin; Xu, Ningzhi; Wang, Rong; Liu, Siqi

    2007-12-01

    After decoding the genome of SARS-coronavirus (SARS-CoV), next challenge is to understand how this virus causes the illness at molecular bases. Of the viral structural proteins, the N protein plays a pivot role in assembly process of viral particles as well as viral replication and transcription. The SARS-CoV N proteins expressed in the eukaryotes, such as yeast and HEK293 cells, appeared in the multiple spots on two-dimensional electrophoresis (2DE), whereas the proteins expressed in E. coli showed a single 2DE spotE These 2DE spots were further examined by Western blot and MALDI-TOF/TOF MS, and identified as the N proteins with differently apparent pI values and similar molecular mass of 50 kDa. In the light of the observations and other evidences, a hypothesis was postulated that the SARS-CoV N protein could be phosphorylated in eukaryotes. To locate the plausible regions of phosphorylation in the N protein, two truncated N proteins were generated in E. coli and treated with PKC[alpha]. The two truncated N proteins after incubation of PKC[alpha] exhibited the differently electrophoretic behaviors on 2DE, suggesting that the region of 1-256 aa in the N protein was the possible target for PKC[alpha] phosphorylation. Moreover, the SARS-CoV N protein expressed in yeast were partially digested with trypsin and carefully analyzed by MALDI-TOF/TOF MS. In contrast to the completely tryptic digestion, these partially digested fragments generated two new peptide mass signals with neutral loss, and MS/MS analysis revealed two phosphorylated peptides located at the "dense serine" island in the N protein with amino acid sequences, GFYAEGSRGGSQASSRSSSR and GNSGNSTPGSSRGNSPARMASGGGK. With the PKC[alpha] phosphorylation treatment and the partially tryptic digestion, the N protein expressed in E. coli released the same peptides as observed in yeast cells. Thus, this investigation provided the preliminary data to determine the phosphorylation sites in the SARS-CoV N protein, and

  17. A Real-Time PCR Assay for Bat SARS-Like Coronavirus Detection and Its Application to Italian Greater Horseshoe Bat Faecal Sample Surveys

    Directory of Open Access Journals (Sweden)

    Andrea Balboni

    2012-01-01

    Full Text Available Bats are source of coronaviruses closely related to the severe acute respiratory syndrome (SARS virus. Numerous studies have been carried out to identify new bat viruses related to SARS-coronavirus (bat-SARS-like CoVs using a reverse-transcribed-polymerase chain reaction assay. However, a qualitative PCR could underestimate the prevalence of infection, affecting the epidemiological evaluation of bats in viral ecology. In this work an SYBR Green-real time PCR assay was developed for diagnosing infection with SARS-related coronaviruses from bat guano and was applied as screening tool in a survey carried out on 45 greater horseshoe bats (Rhinolophus ferrumequinum sampled in Italy in 2009. The assay showed high sensitivity and reproducibility. Its application on bats screening resulted in a prevalence of 42%. This method could be suitable as screening tool in epidemiological surveys about the presence of bat-SARS-like CoVs, consequently to obtain a more realistic scenario of the viral prevalence in the population.

  18. Allelic Variation in the Toll-Like Receptor Adaptor Protein Ticam2 Contributes to SARS-Coronavirus Pathogenesis in Mice.

    Science.gov (United States)

    Gralinski, Lisa E; Menachery, Vineet D; Morgan, Andrew P; Totura, Allison L; Beall, Anne; Kocher, Jacob; Plante, Jessica; Harrison-Shostak, D Corinne; Schäfer, Alexandra; Pardo-Manuel de Villena, Fernando; Ferris, Martin T; Baric, Ralph S

    2017-06-07

    Host genetic variation is known to contribute to differential pathogenesis following infection. Mouse models allow direct assessment of host genetic factors responsible for susceptibility to Severe Acute Respiratory Syndrome coronavirus (SARS-CoV). Based on an assessment of early stage lines from the Collaborative Cross mouse multi-parent population, we identified two lines showing highly divergent susceptibilities to SARS-CoV: the resistant CC003/Unc and the susceptible CC053/Unc. We generated 264 F2 mice between these strains, and infected them with SARS-CoV. Weight loss, pulmonary hemorrhage, and viral load were all highly correlated disease phenotypes. We identified a quantitative trait locus of major effect on chromosome 18 (27.1-58.6 Mb) which affected weight loss, viral titer and hemorrhage. Additionally, each of these three phenotypes had distinct quantitative trait loci [Chr 9 (weight loss), Chrs 7 and 12 (virus titer), and Chr 15 (hemorrhage)]. We identified Ticam2, an adaptor protein in the TLR signaling pathways, as a candidate driving differential disease at the Chr 18 locus. Ticam2(-/-) mice were highly susceptible to SARS-CoV infection, exhibiting increased weight loss and more pulmonary hemorrhage than control mice. These results indicate a critical role for Ticam2 in SARS-CoV disease, and highlight the importance of host genetic variation in disease responses. Copyright © 2017 Gralinski et al.

  19. Molecular Advances in Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV)

    Institute of Scientific and Technical Information of China (English)

    Ken Yan Ching Chow; Chung Chau Hon; Raymond Kin Hi Hui; Raymond Tsz Yeung Wong; Chi Wai Yip; Fanya Zeng; Frederick Chi Ching Leung

    2003-01-01

    The sudden outbreak of severe acute respiratory syndrome (SARS) in 2002 prompted the establishment of a global scientific network subsuming most of the traditional rivalries in the competitive field of virology. Within months of the SARS outbreak, collaborative work revealed the identity of the disastrous pathogen as SARS-associated coronavirus (SARS-CoV). However, although the rapid identification of the agent represented an important breakthrough, our understanding of the deadly virus remains limited. Detailed biological knowledge is crucial for the development of effective countermeasures, diagnostic tests, vaccines and antiviral drugs against the SARS-CoV. This article reviews the present state of molecular knowledge about SARS-CoV, from the aspects of comparative genomics, molecular biology of viral genes, evolution, and epidemiology, and describes the diagnostic tests and the anti-viral drugs derived so far based on the available molecular information.

  20. Reverse genetics of SARS-related coronavirus using vaccinia virus-based recombination.

    Directory of Open Access Journals (Sweden)

    Sjoerd H E van den Worm

    Full Text Available Severe acute respiratory syndrome (SARS is a zoonotic disease caused by SARS-related coronavirus (SARS-CoV that emerged in 2002 to become a global health concern. Although the original outbreak was controlled by classical public health measures, there is a real risk that another SARS-CoV could re-emerge from its natural reservoir, either in its original form or as a more virulent or pathogenic strain; in which case, the virus would be difficult to control in the absence of any effective antiviral drugs or vaccines. Using the well-studied SARS-CoV isolate HKU-39849, we developed a vaccinia virus-based SARS-CoV reverse genetic system that is both robust and biosafe. The SARS-CoV genome was cloned in separate vaccinia virus vectors, (vSARS-CoV-5prime and vSARS-CoV-3prime as two cDNAs that were subsequently ligated to create a genome-length SARS-CoV cDNA template for in vitro transcription of SARS-CoV infectious RNA transcripts. Transfection of the RNA transcripts into permissive cells led to the recovery of infectious virus (recSARS-CoV. Characterization of the plaques produced by recSARS-CoV showed that they were similar in size to the parental SARS-CoV isolate HKU-39849 but smaller than the SARS-CoV isolate Frankfurt-1. Comparative analysis of replication kinetics showed that the kinetics of recSARS-CoV replication are similar to those of SARS-CoV Frankfurt-1, although the titers of virus released into the culture supernatant are approximately 10-fold less. The reverse genetic system was finally used to generate a recSARS-CoV reporter virus expressing Renilla luciferase in order to facilitate the analysis of SARS-CoV gene expression in human dendritic cells (hDCs. In parallel, a Renilla luciferase gene was also inserted into the genome of human coronavirus 229E (HCoV-229E. Using this approach, we demonstrate that, in contrast to HCoV-229E, SARS-CoV is not able to mediate efficient heterologous gene expression in hDCs.

  1. Reverse Genetics of SARS-Related Coronavirus Using Vaccinia Virus-Based Recombination

    Science.gov (United States)

    Zevenhoven, Jessika C.; Weber, Friedemann; Züst, Roland; Kuri, Thomas; Dijkman, Ronald; Chang, Guohui; Siddell, Stuart G.; Snijder, Eric J.; Thiel, Volker; Davidson, Andrew D.

    2012-01-01

    Severe acute respiratory syndrome (SARS) is a zoonotic disease caused by SARS-related coronavirus (SARS-CoV) that emerged in 2002 to become a global health concern. Although the original outbreak was controlled by classical public health measures, there is a real risk that another SARS-CoV could re-emerge from its natural reservoir, either in its original form or as a more virulent or pathogenic strain; in which case, the virus would be difficult to control in the absence of any effective antiviral drugs or vaccines. Using the well-studied SARS-CoV isolate HKU-39849, we developed a vaccinia virus-based SARS-CoV reverse genetic system that is both robust and biosafe. The SARS-CoV genome was cloned in separate vaccinia virus vectors, (vSARS-CoV-5prime and vSARS-CoV-3prime) as two cDNAs that were subsequently ligated to create a genome-length SARS-CoV cDNA template for in vitro transcription of SARS-CoV infectious RNA transcripts. Transfection of the RNA transcripts into permissive cells led to the recovery of infectious virus (recSARS-CoV). Characterization of the plaques produced by recSARS-CoV showed that they were similar in size to the parental SARS-CoV isolate HKU-39849 but smaller than the SARS-CoV isolate Frankfurt-1. Comparative analysis of replication kinetics showed that the kinetics of recSARS-CoV replication are similar to those of SARS-CoV Frankfurt-1, although the titers of virus released into the culture supernatant are approximately 10-fold less. The reverse genetic system was finally used to generate a recSARS-CoV reporter virus expressing Renilla luciferase in order to facilitate the analysis of SARS-CoV gene expression in human dendritic cells (hDCs). In parallel, a Renilla luciferase gene was also inserted into the genome of human coronavirus 229E (HCoV-229E). Using this approach, we demonstrate that, in contrast to HCoV-229E, SARS-CoV is not able to mediate efficient heterologous gene expression in hDCs. PMID:22412934

  2. Design and application of 60mer oligonucleotide microarray in SARS coronavirus detection

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The 60mer oligonucleotide microarray was designed and applied to detecting of SARS (severe acute respiratory syndrome) coronavirus. Thirty 60mer specific oligos were designed to cover the whole genome of the first submitted coronavirus strain, according to the sequence of TOR2 (GENEBANK Accession: AY274119). These primers were synthesized and printed into a microarray with 12×12 spots. RNAs were extracted from the throat swab and gargling fluid of SARS patients and reverse-transcripted into the double strand cDNAs. The cDNAs were prepared as restricted cDNA fragments by the restriction display (RD) technique and labeled by PCR with the Cy5-universal primer. The labeled samples were then applied to the oligo microarray for hybridization. The diagnostic capability of the microarray was evaluated after the washing and scanning steps. The scanning result showed that samples of SARS patients were hybridized with multiple SARS probes on the microarray, and there is no signal on the negative and blank controls. These results indicate that the genome of SARS coronavirus can be detected in parallel by the 60mer oligonucleotide microarray, which can improve the positive ratio of the diagnosis. The oligo microarray can also be used for monitoring the behavior of the virus genes in different stages of the disease status.

  3. Immunohistochemical, in situ hybridization, and ultrastructural localization of SARS-associated coronavirus in lung of a fatal case of severe acute respiratory syndrome in Taiwan.

    Science.gov (United States)

    Shieh, Wun-Ju; Hsiao, Cheng-Hsiang; Paddock, Christopher D; Guarner, Jeannette; Goldsmith, Cynthia S; Tatti, Kathleen; Packard, Michelle; Mueller, Laurie; Wu, Mu-Zong; Rollin, Pierre; Su, Ih-Jen; Zaki, Sherif R

    2005-03-01

    This article describes the pathological studies of fatal severe acute respiratory syndrome (SARS) in a 73-year-old man during an outbreak of SARS in Taiwan, 2003. Eight days before onset of symptoms, he visited a municipal hospital that was later identified as the epicenter of a large outbreak of SARS. On admission to National Taiwan University Hospital in Taipei, the patient experienced chest tightness, progressive dyspnea, and low-grade fever. His condition rapidly deteriorated with increasing respiratory difficulty, and he died 7 days after admission. The most prominent histopathologic finding was diffuse alveolar damage of the lung. Immunohistochemical and in situ hybridization assays demonstrated evidence of SARS-associated coronavirus (SARS-CoV) infection in various respiratory epithelial cells, predominantly type II pneumocytes, and in alveolar macrophages in the lung. Electron microscopic examination also revealed coronavirus particles in the pneumocytes, and their identity was confirmed as SARS-CoV by immunogold labeling electron microscopy. This report is the first to describe the cellular localization of SARS-CoV in human lung tissue by using a combination of immunohistochemistry, double-stain immunohistochemistry, in situ hybridization, electron microscopy, and immunogold labeling electron microscopy. These techniques represent valuable laboratory diagnostic modalities and provide insights into the pathogenesis of this emerging infection.

  4. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion

    Science.gov (United States)

    Simmons, Graham; Bertram, Stephanie; Glowacka, Ilona; Steffen, Imke; Chaipan, Chawaree; Agudelo, Juliet; Lu, Kai; Rennekamp, Andrew J.; Hofmann, Heike; Bates, Paul; Pöhlmann, Stefan

    2011-01-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S-activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a protease essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation. PMID:21435673

  5. SARS-like cluster of circulating bat coronavirus pose threat for human emergence

    Science.gov (United States)

    Menachery, Vineet D.; Yount, Boyd L.; Debbink, Kari; Agnihothram, Sudhakar; Gralinski, Lisa E.; Plante, Jessica A.; Graham, Rachel L.; Scobey, Trevor; Ge, Xing-Yi; Donaldson, Eric F.; Randell, Scott H.; Lanzavecchia, Antonio; Marasco, Wayne A.; Shi, Zhengli-Li; Baric, Ralph S.

    2016-01-01

    The emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome (MERS)-CoV underscores the threat of cross-species transmission events leading to outbreaks in humans. In this study, we examine the disease potential for SARS-like CoVs currently circulating in Chinese horseshoe bat populations. Utilizing the SARS-CoV infectious clone, we generated and characterized a chimeric virus expressing the spike of bat coronavirus SHC014 in a mouse adapted SARS-CoV backbone. The results indicate that group 2b viruses encoding the SHC014 spike in a wild type backbone can efficiently utilize multiple ACE2 receptor orthologs, replicate efficiently in primary human airway cells, and achieve in vitro titers equivalent to epidemic strains of SARS-CoV. Additionally, in vivo experiments demonstrate replication of the chimeric virus in mouse lung with notable pathogenesis. Evaluation of available SARS-based immune-therapeutic and prophylactic modalities revealed poor efficacy; both monoclonal antibody and vaccine approaches failed to neutralize and protect from CoVs utilizing the novel spike protein. Importantly, based on these findings, we synthetically rederived an infectious full length SHC014 recombinant virus and demonstrate robust viral replication both in vitro and in vivo. Together, the work highlights a continued risk of SARS-CoV reemergence from viruses currently circulating in bat populations. PMID:26552008

  6. The aetiology of SARS: Koch's postulates fulfilled

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron); T. Kuiken (Thijs)

    2004-01-01

    textabstractProof that a newly identified coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV) is the primary cause of severe acute respiratory syndrome (SARS) came from a series of studies on experimentally infected cynomolgus macaques (Macaca, fascicularis). SARS-CoV-infected

  7. Differential stepwise evolution of SARS coronavirus functional proteins in different host species

    Directory of Open Access Journals (Sweden)

    Tang Xianchun

    2009-03-01

    Full Text Available Abstract Background SARS coronavirus (SARS-CoV was identified as the etiological agent of SARS, and extensive investigations indicated that it originated from an animal source (probably bats and was recently introduced into the human population via wildlife animals from wet markets in southern China. Previous studies revealed that the spike (S protein of SARS had experienced adaptive evolution, but whether other functional proteins of SARS have undergone adaptive evolution is not known. Results We employed several methods to investigate selective pressure among different SARS-CoV groups representing different epidemic periods and hosts. Our results suggest that most functional proteins of SARS-CoV have experienced a stepwise adaptive evolutionary pathway. Similar to previous studies, the spike protein underwent strong positive selection in the early and middle phases, and became stabilized in the late phase. In addition, the replicase experienced positive selection only in human patients, whereas assembly proteins experienced positive selection mainly in the middle and late phases. No positive selection was found in any proteins of bat SARS-like-CoV. Furthermore, specific amino acid sites that may be the targets of positive selection in each group are identified. Conclusion This extensive evolutionary analysis revealed the stepwise evolution of different functional proteins of SARS-CoVs at different epidemic stages and different hosts. These results support the hypothesis that SARS-CoV originated from bats and that the spill over into civets and humans were more recent events.

  8. Discovery of Anti-SARS Coronavirus Drug Based on Molecular Docking and Database Screening

    Institute of Scientific and Technical Information of China (English)

    CHEN,Hai-Feng(陈海峰); YAO,Jian-Hua(姚建华); SUN,Jing(孙晶); LI,Qiang(李强); LI,Feng(李丰); FAN,Bo-Tao(范波涛); YUAN,Shen-Gang(袁身刚)

    2004-01-01

    The active site of 3CL proteinase (3CLpro) for coronavirus was identified by comparing the crystal structures of human and porcine coronavirus. The inhibitor of the main protein of rhinovirus (Ag7088) could bind with 3CLpro of human coronavirus, then it was selected as the reference for molecular docking and database screening. The ligands from two databases were used to search potential lead structures with molecular docking. Several structures from natural products and ACD-SC databases were found to have lower binding free energy with 3CLpro than that of Ag7088. These structures have similar hydrophobicity to Ag7088. They have complementary electrostatic potential and hydrogen bond acceptor and donor with 3CLpro, showing that the strategy of anti-SARS drug design based on molecular docking and database screening is feasible.

  9. Protection from SARS coronavirus conferred by live measles vaccine expressing the spike glycoprotein.

    Science.gov (United States)

    Escriou, Nicolas; Callendret, Benoît; Lorin, Valérie; Combredet, Chantal; Marianneau, Philippe; Février, Michèle; Tangy, Frédéric

    2014-03-01

    The recent identification of a novel human coronavirus responsible of a SARS-like illness in the Middle-East a decade after the SARS pandemic, demonstrates that reemergence of a SARS-like coronavirus from an animal reservoir remains a credible threat. Because SARS is contracted by aerosolized contamination of the respiratory tract, a vaccine inducing mucosal long-term protection would be an asset to control new epidemics. To this aim, we generated live attenuated recombinant measles vaccine (MV) candidates expressing either the membrane-anchored SARS-CoV spike (S) protein or its secreted soluble ectodomain (Ssol). In mice susceptible to measles virus, recombinant MV expressing the anchored full-length S induced the highest titers of neutralizing antibodies and fully protected immunized animals from intranasal infectious challenge with SARS-CoV. As compared to immunization with adjuvanted recombinant Ssol protein, recombinant MV induced stronger and Th1-biased responses, a hallmark of live attenuated viruses and a highly desirable feature for an antiviral vaccine. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The Conserved Coronavirus Macrodomain Promotes Virulence and Suppresses the Innate Immune Response during Severe Acute Respiratory Syndrome Coronavirus Infection

    Directory of Open Access Journals (Sweden)

    Anthony R. Fehr

    2016-12-01

    Full Text Available ADP-ribosylation is a common posttranslational modification that may have antiviral properties and impact innate immunity. To regulate this activity, macrodomain proteins enzymatically remove covalently attached ADP-ribose from protein targets. All members of the Coronavirinae, a subfamily of positive-sense RNA viruses, contain a highly conserved macrodomain within nonstructural protein 3 (nsp3. However, its function or targets during infection remain unknown. We identified several macrodomain mutations that greatly reduced nsp3’s de-ADP-ribosylation activity in vitro. Next, we created recombinant severe acute respiratory syndrome coronavirus (SARS-CoV strains with these mutations. These mutations led to virus attenuation and a modest reduction of viral loads in infected mice, despite normal replication in cell culture. Further, macrodomain mutant virus elicited an early, enhanced interferon (IFN, interferon-stimulated gene (ISG, and proinflammatory cytokine response in mice and in a human bronchial epithelial cell line. Using a coinfection assay, we found that inclusion of mutant virus in the inoculum protected mice from an otherwise lethal SARS-CoV infection without reducing virus loads, indicating that the changes in innate immune response were physiologically significant. In conclusion, we have established a novel function for the SARS-CoV macrodomain that implicates ADP-ribose in the regulation of the innate immune response and helps to demonstrate why this domain is conserved in CoVs.

  11. Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus.

    Science.gov (United States)

    Sevajol, Marion; Subissi, Lorenzo; Decroly, Etienne; Canard, Bruno; Imbert, Isabelle

    2014-12-19

    The successive emergence of highly pathogenic coronaviruses (CoVs) such as the Severe Acute Respiratory Syndrome (SARS-CoV) in 2003 and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012 has stimulated a number of studies on the molecular biology. This research has provided significant new insight into functions and activities of the replication/transcription multi-protein complex. The latter directs both continuous and discontinuous RNA synthesis to replicate and transcribe the large coronavirus genome made of a single-stranded, positive-sense RNA of ∼30 kb. In this review, we summarize our current understanding of SARS-CoV enzymes involved in RNA biochemistry, such as the in vitro characterization of a highly active and processive RNA polymerase complex which can associate with methyltransferase and 3'-5' exoribonuclease activities involved in RNA capping, and RNA proofreading, respectively. The recent discoveries reveal fascinating RNA-synthesizing machinery, highlighting the unique position of coronaviruses in the RNA virus world. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The Severe Acute Respiratory Syndrome (SARS-coronavirus 3a protein may function as a modulator of the trafficking properties of the spike protein

    Directory of Open Access Journals (Sweden)

    Tan Yee-Joo

    2005-02-01

    Full Text Available Abstract Background A recent publication reported that a tyrosine-dependent sorting signal, present in cytoplasmic tail of the spike protein of most coronaviruses, mediates the intracellular retention of the spike protein. This motif is missing from the spike protein of the severe acute respiratory syndrome-coronavirus (SARS-CoV, resulting in high level of surface expression of the spike protein when it is expressed on its own in vitro. Presentation of the hypothesis It has been shown that the severe acute respiratory syndrome-coronavirus genome contains open reading frames that encode for proteins with no homologue in other coronaviruses. One of them is the 3a protein, which is expressed during infection in vitro and in vivo. The 3a protein, which contains a tyrosine-dependent sorting signal in its cytoplasmic domain, is expressed on the cell surface and can undergo internalization. In addition, 3a can bind to the spike protein and through this interaction, it may be able to cause the spike protein to become internalized, resulting in a decrease in its surface expression. Testing the hypothesis The effects of 3a on the internalization of cell surface spike protein can be examined biochemically and the significance of the interplay between these two viral proteins during viral infection can be studied using reverse genetics methodology. Implication of the hypothesis If this hypothesis is proven, it will indicate that the severe acute respiratory syndrome-coronavirus modulates the surface expression of the spike protein via a different mechanism from other coronaviruses. The interaction between 3a and S, which are expressed from separate subgenomic RNA, would be important for controlling the trafficking properties of S. The cell surface expression of S in infected cells significantly impacts viral assembly, viral spread and viral pathogenesis. Modulation by this unique pathway could confer certain advantages during the replication of the severe

  13. SARS-coronavirus spike S2 domain flanked by cysteine residues C822 and C833 is important for activation of membrane fusion.

    Science.gov (United States)

    Madu, Ikenna G; Belouzard, Sandrine; Whittaker, Gary R

    2009-10-25

    The S2 domain of the coronavirus spike (S) protein is known to be responsible for mediating membrane fusion. In addition to a well-recognized cleavage site at the S1-S2 boundary, a second proteolytic cleavage site has been identified in the severe acute respiratory syndrome coronavirus (SARS-CoV) S2 domain (R797). C-terminal to this S2 cleavage site is a conserved region flanked by cysteine residues C822 and C833. Here, we investigated the importance of this well conserved region for SARS-CoV S-mediated fusion activation. We show that the residues between C822-C833 are well conserved across all coronaviruses. Mutagenic analysis of SARS-CoV S, combined with cell-cell fusion and pseudotyped virion infectivity assays, showed a critical role for the core-conserved residues C822, D830, L831, and C833. Based on available predictive models, we propose that the conserved domain flanked by cysteines 822 and 833 forms a loop structure that interacts with components of the SARS-CoV S trimer to control the activation of membrane fusion.

  14. Distinct Patterns of IFITM-Mediated Restriction of Filoviruses, SARS Coronavirus, and Influenza A Virus

    Science.gov (United States)

    2011-01-06

    West Nile viruses . In contrast, they do not inhibit replication of murine leukemia virus (MLV), or the entry processes of amphotropic MLV, Machupo virus ...MACV), Lassa virus (LASV), or lympho- cytic choriomeningitis virus (LCMV). Although IFITM proteins are induced by type I and II interferons, most...processes of several highly pathogenic viruses – Marburg virus , Ebola virus , and SARS coronavirus – are similarly disrupted by IFITM proteins. We

  15. Coronavirus virulence genes with main focus on SARS-CoV envelope gene.

    Science.gov (United States)

    DeDiego, Marta L; Nieto-Torres, Jose L; Jimenez-Guardeño, Jose M; Regla-Nava, Jose A; Castaño-Rodriguez, Carlos; Fernandez-Delgado, Raul; Usera, Fernando; Enjuanes, Luis

    2014-12-19

    Coronavirus (CoV) infection is usually detected by cellular sensors, which trigger the activation of the innate immune system. Nevertheless, CoVs have evolved viral proteins that target different signaling pathways to counteract innate immune responses. Some CoV proteins act as antagonists of interferon (IFN) by inhibiting IFN production or signaling, aspects that are briefly addressed in this review. After CoV infection, potent cytokines relevant in controlling virus infections and priming adaptive immune responses are also generated. However, an uncontrolled induction of these proinflammatory cytokines can lead to pathogenesis and disease severity as described for SARS-CoV and MERS-CoV. The cellular pathways mediated by interferon regulatory factor (IRF)-3 and -7, activating transcription factor (ATF)-2/jun, activator protein (AP)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NF-AT), are the main drivers of the inflammatory response triggered after viral infections, with NF-κB pathway the most frequently activated. Key CoV proteins involved in the regulation of these pathways and the proinflammatory immune response are revisited in this manuscript. It has been shown that the envelope (E) protein plays a variable role in CoV morphogenesis, depending on the CoV genus, being absolutely essential in some cases (genus α CoVs such as TGEV, and genus β CoVs such as MERS-CoV), but not in others (genus β CoVs such as MHV or SARS-CoV). A comprehensive accumulation of data has shown that the relatively small E protein elicits a strong influence on the interaction of SARS-CoV with the host. In fact, after infection with viruses in which this protein has been deleted, increased cellular stress and unfolded protein responses, apoptosis, and augmented host immune responses were observed. In contrast, the presence of E protein activated a pathogenic inflammatory response that may cause death in animal

  16. Cross-reactive antibodies in convalescent SARS patients' sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests.

    Science.gov (United States)

    Chan, Kwok-Hung; Chan, Jasper Fuk-Woo; Tse, Herman; Chen, Honglin; Lau, Candy Choi-Yi; Cai, Jian-Piao; Tsang, Alan Ka-Lun; Xiao, Xincai; To, Kelvin Kai-Wang; Lau, Susanna Kar-Pui; Woo, Patrick Chiu-Yat; Zheng, Bo-Jiang; Wang, Ming; Yuen, Kwok-Yung

    2013-08-01

    A severe acute respiratory syndrome (SARS)-like disease due to a novel betacoronavirus, human coronavirus EMC (HCoV-EMC), has emerged recently. HCoV-EMC is phylogenetically closely related to Tylonycteris-bat-coronavirus-HKU4 and Pipistrellus-bat-coronavirus-HKU5 in Hong Kong. We conducted a seroprevalence study on archived sera from 94 game-food animal handlers at a wild life market, 28 SARS patients, and 152 healthy blood donors in Southern China to assess the zoonotic potential and evidence for intrusion of HCoV-EMC and related viruses into humans. Anti-HCoV-EMC and anti-SARS-CoV antibodies were detected using screening indirect immunofluorescence (IF) and confirmatory neutralizing antibody tests. Two (2.1%) animal handlers had IF antibody titer of ≥ 1:20 against both HCoV-EMC and SARS-CoV with neutralizing antibody titer of SARS patients had significant IF antibody titers with 7/28 (25%) having anti-HCoV-EMC neutralizing antibodies at low titers which significantly correlated with that of HCoV-OC43. Bioinformatics analysis demonstrated a significant B-cell epitope overlapping the heptad repeat-2 region of Spike protein. Virulence of SARS-CoV over other betacoronaviruses may boost cross-reactive neutralizing antibodies against other betacoronaviruses. Convalescent SARS sera may contain cross-reactive antibodies against other betacoronaviruses and confound seroprevalence study for HCoV-EMC. Copyright © 2013 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  17. Excretion and detection of SARS coronavirus and its nucleic acid from digestive system

    Institute of Scientific and Technical Information of China (English)

    Xin-Wei Wang; Xiao-Ming Wu; Wen-Jun Xiao; Xiu-Mei Zhu; Chang-Qing Gu; Jing Yin; Wei Wei; Wei Yao; Chao Liu; Jian-Feng Li; Guo-Rong Ou; Jin-Song Li; Min-Nian Wang; Tong-Yu Fang; Gui-Jie Wang; Yao-Hui Qiu; Huai-Huan Wu; Fu-Huan Chao; Jun-Wen Li; Ting-Kai Guo; Bei Zhen; Qing-Xin Kong; Bin Yi; Zhong Li; Nong Song; Min Jin

    2005-01-01

    AIM: To study whether severe acute respiratory syndrome coronavirus (SARS-CoV) could be excreted from digestive system.METHODS: Cell culture and semi-nested RT-PCR were used to detect SARS-CoV and its RNA from 21 stool and urine samples, and a kind of electropositive filter media particles was used to concentrate the virus in 10 sewage samples from two hospitals receiving SAPS patients in Beijing in China.RESULTS: It was demonstrated that there was no live SARS-CoV in all samples collected, but the RNA of SARS-CoV could be detected in seven stool samples from SARS patients with any one of the symptoms of fever, malaise,cough, or dyspnea, in 10 sewage samples before disinfection and 3 samples after disinfection from the two hospitals.The RNA could not be detected in urine and stool samples from patients recovered from SARS.CONCLUSION: Nucleic acid of SARS-CoV can be excreted through the stool of patients into sewage system, and the possibility of SARS-CoV transmitting through digestive system cannot be excluded.

  18. Automated extraction protocol for quantification of SARS-Coronavirus RNA in serum: an evaluation study

    Directory of Open Access Journals (Sweden)

    Lui Wing-bong

    2006-02-01

    Full Text Available Abstract Background We have previously developed a test for the diagnosis and prognostic assessment of the severe acute respiratory syndrome (SARS based on the detection of the SARS-coronavirus RNA in serum by real-time quantitative reverse transcriptase polymerase chain reaction (RT-PCR. In this study, we evaluated the feasibility of automating the serum RNA extraction procedure in order to increase the throughput of the assay. Methods An automated nucleic acid extraction platform using the MagNA Pure LC instrument (Roche Diagnostics was evaluated. We developed a modified protocol in compliance with the recommended biosafety guidelines from the World Health Organization based on the use of the MagNA Pure total nucleic acid large volume isolation kit for the extraction of SARS-coronavirus RNA. The modified protocol was compared with a column-based extraction kit (QIAamp viral RNA mini kit, Qiagen for quantitative performance, analytical sensitivity and precision. Results The newly developed automated protocol was shown to be free from carry-over contamination and have comparable performance with other standard protocols and kits designed for the MagNA Pure LC instrument. However, the automated method was found to be less sensitive, less precise and led to consistently lower serum SARS-coronavirus concentrations when compared with the column-based extraction method. Conclusion As the diagnostic efficiency and prognostic value of the serum SARS-CoV RNA RT-PCR test is critically associated with the analytical sensitivity and quantitative performance contributed both by the RNA extraction and RT-PCR components of the test, we recommend the use of the column-based manual RNA extraction method.

  19. Modeling the Early Events of Severe Acute Respiratory Syndrome Coronavirus Infection In Vitro

    Science.gov (United States)

    Yen, Yu-Ting; Liao, Fang; Hsiao, Cheng-Hsiang; Kao, Chuan-Liang; Chen, Yee-Chun; Wu-Hsieh, Betty A.

    2006-01-01

    The clinical picture of severe acute respiratory syndrome (SARS) is characterized by pulmonary inflammation and respiratory failure, resembling that of acute respiratory distress syndrome. However, the events that lead to the recruitment of leukocytes are poorly understood. To study the cellular response in the acute phase of SARS coronavirus (SARS-CoV)-host cell interaction, we investigated the induction of chemokines, adhesion molecules, and DC-SIGN (dendritic cell-specific ICAM-3-grabbing nonintegrin) by SARS-CoV. Immunohistochemistry revealed neutrophil, macrophage, and CD8 T-cell infiltration in the lung autopsy of a SARS patient who died during the acute phase of illness. Additionally, pneumocytes and macrophages in the patient's lung expressed P-selectin and DC-SIGN. In in vitro study, we showed that the A549 and THP-1 cell lines were susceptible to SARS-CoV. A549 cells produced CCL2/monocyte chemoattractant protein 1 (MCP-1) and CXCL8/interleukin-8 (IL-8) after interaction with SARS-CoV and expressed P-selectin and VCAM-1. Moreover, SARS-CoV induced THP-1 cells to express CCL2/MCP-1, CXCL8/IL-8, CCL3/MIP-1α, CXCL10/IP-10, CCL4/MIP-1β, and CCL5/RANTES, which attracted neutrophils, monocytes, and activated T cells in a chemotaxis assay. We also demonstrated that DC-SIGN was inducible in THP-1 as well as A549 cells after SARS-CoV infection. Our in vitro experiments modeling infection in humans together with the study of a lung biopsy of a patient who died during the early phase of infection demonstrated that SARS-CoV, through a dynamic interaction with lung epithelial cells and monocytic cells, creates an environment conducive for immune cell migration and accumulation that eventually leads to lung injury. PMID:16501078

  20. Functional genomics highlights differential induction of antiviral pathways in the lungs of SARS-CoV-infected macaques.

    NARCIS (Netherlands)

    A. de Lang (Anna); T. Baas (Tracey); T.H. Teal (Thomas); L.M.E. Leijten (Lonneke); B. Rain (Brandon); A.D.M.E. Osterhaus (Albert); B.L. Haagmans (Bart); M.G. Katze (Michael)

    2007-01-01

    textabstractThe pathogenesis of severe acute respiratory syndrome coronavirus (SARS-CoV) is likely mediated by disproportional immune responses and the ability of the virus to circumvent innate immunity. Using functional genomics, we analyzed early host responses to SARS-CoV infection in the lungs o

  1. Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts.

    Directory of Open Access Journals (Sweden)

    Stephanie Bertram

    Full Text Available The type II transmembrane serine proteases TMPRSS2 and HAT activate influenza viruses and the SARS-coronavirus (TMPRSS2 in cell culture and may play an important role in viral spread and pathogenesis in the infected host. However, it is at present largely unclear to what extent these proteases are expressed in viral target cells in human tissues. Here, we show that both HAT and TMPRSS2 are coexpressed with 2,6-linked sialic acids, the major receptor determinant of human influenza viruses, throughout the human respiratory tract. Similarly, coexpression of ACE2, the SARS-coronavirus receptor, and TMPRSS2 was frequently found in the upper and lower aerodigestive tract, with the exception of the vocal folds, epiglottis and trachea. Finally, activation of influenza virus was conserved between human, avian and porcine TMPRSS2, suggesting that this protease might activate influenza virus in reservoir-, intermediate- and human hosts. In sum, our results show that TMPRSS2 and HAT are expressed by important influenza and SARS-coronavirus target cells and could thus support viral spread in the human host.

  2. Feline and Canine Coronaviruses: Common Genetic and Pathobiological Features

    OpenAIRE

    Sophie Le Poder

    2011-01-01

    A new human coronavirus responsible for severe acute respiratory syndrome (SARS) was identified in 2003, which raised concern about coronaviruses as agents of serious infectious disease. Nevertheless, coronaviruses have been known for about 50 years to be major agents of respiratory, enteric, or systemic infections of domestic and companion animals. Feline and canine coronaviruses are widespread among dog and cat populations, sometimes leading to the fatal diseases known as feline infectious ...

  3. Inhibition of genes expression of SARS coronavirus by synthetic small interfering RNAs

    Institute of Scientific and Technical Information of China (English)

    Yi SHI; De Hua YANG; Jie XIONG; Jie JIA; Bing HUANG; You Xin JIN

    2005-01-01

    RNA interference (RNAi) is triggered by the presence of a double-stranded RNA (dsRNA), and results in the silencing of homologous gene expression through the specific degradation of an mRNA containing the same sequence. dsRNAmediated RNAi can be used in a wide variety of eucaryotes to induce the sequence-specific inhibition of gene expression.Synthetic 21-23 nucleotide (nt) small interfering RNA (siRNA) with 2 nt 3' overhangs was recently found to mediate efficient sequence-specific mRNA degradation in mammalian cells. Here, we studied the effects of synthetic siRNA duplexes targeted to SARS coronavirus structural proteins E, M, and N in a cell culture system. Among total 26 siRNA duplexes, we obtained 3 siRNA duplexes which could sequence-specifically reduce target genes expression over 80% at the concentration of 60 nM in Vero E6 cells. The downregulation effect was in correlation with the concentrations of the siRNA duplexes in a range of 0~60 nM. Our results also showed that many inactive siRNA duplexes may be brought to life simply by unpairing the 5' end of the antisense strands. Results suggest that siRNA is capable of inhibiting SARS coronavirus genes expression and thus may be a new therapeutic strategy for treatment of SARS.

  4. Altered Lipid Metabolism in Recovered SARS Patients Twelve Years after Infection.

    Science.gov (United States)

    Wu, Qi; Zhou, Lina; Sun, Xin; Yan, Zhongfang; Hu, Chunxiu; Wu, Junping; Xu, Long; Li, Xue; Liu, Huiling; Yin, Peiyuan; Li, Kuan; Zhao, Jieyu; Li, Yanli; Wang, Xiaolin; Li, Yu; Zhang, Qiuyang; Xu, Guowang; Chen, Huaiyong

    2017-08-22

    Severe acute respiratory syndrome-coronavirus (SARS-CoV) and SARS-like coronavirus are a potential threat to global health. However, reviews of the long-term effects of clinical treatments in SARS patients are lacking. Here a total of 25 recovered SARS patients were recruited 12 years after infection. Clinical questionnaire responses and examination findings indicated that the patients had experienced various diseases, including lung susceptibility to infections, tumors, cardiovascular disorders, and abnormal glucose metabolism. As compared to healthy controls, metabolomic analyses identified significant differences in the serum metabolomes of SARS survivors. The most significant metabolic disruptions were the comprehensive increase of phosphatidylinositol and lysophospha tidylinositol levels in recovered SARS patients, which coincided with the effect of methylprednisolone administration investigated further in the steroid treated non-SARS patients with severe pneumonia. These results suggested that high-dose pulses of methylprednisolone might cause long-term systemic damage associated with serum metabolic alterations. The present study provided information for an improved understanding of coronavirus-associated pathologies, which might permit further optimization of clinical treatments.

  5. Establishment of a fluorescent polymerase chain reaction method for the detection of the SARS-associated coronavirus and its clinical application

    Institute of Scientific and Technical Information of China (English)

    吴新伟; 程钢; 狄飚; 尹爱华; 何蕴韶; 王鸣; 周新宇; 何丽娟; 罗凯; 杜琳

    2003-01-01

    Objective To establish a fluorescent polymerase chain reaction (F-PCR) method for detecting the coronavirus related to severe acute respiratory syndrome (SARS) and to evaluate its value for clinical application. Methods The primers and the fluorescence-labeled probe were designed and synthesized according to the published sequence of the SARS-associated coronavirus genes. A F-PCR diagnosis kit for detecting the coronavirus was developed, and 115 clinical nasopharyngeal gargling liquid samples were tested. Results The sequence of PCR amplified products completely matched the related sequence of the SARS-associated coronavirus genome. Forty-nine out of 67 samples from identified SARS patients and 8 of 18 samples from persons having close contact with SARS patients showed positive results. All 30 samples from healthy controls were negative. Conclusion The F-PCR method established may be a rapid, accurate and efficient way for screening and for the early diagnosis of SARS patients.

  6. Protein Subcellular Localization Prediction and Genomic Polymorphism Analysis of the SARS Coronavirus

    Institute of Scientific and Technical Information of China (English)

    季星来; 柳树群; 李岭; 孙之荣

    2004-01-01

    The cause of severe acute respiratory syndrome (SARS) has been identified as a new coronavirus (CoV).Several sequences of the complete genome of SARS-CoV have been determined.The subcellular localization (SubLocation) of annotated open-reading frames of the SARS-CoV genome was predicted using a support vector machine.Several gene products were predicted to locate in the Golgi body and cell nucleus.The SubLocation information was combined with predicted transmembrane information to develop a model of the viral life cycle.The results show that this information can be used to predict the functions of genes and even the virus pathogenesis.In addition,the entire SARS viral genome sequences currently available in GenBank were compared to identify the sequence variations among different isolates.Some variations in the Hong Kong strains may be related to the special clinical manifestations and provide clues for understanding the relationship between gene functions and evolution.These variations reflect the evolution of the SARS virus in human populations and may help development of a vaccine.

  7. Immune Responses and Histopathological Changes in Rabbits Immunized with Inactivated SARS Coronavirus

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To evaluate the immunogenicity of inactivated SARS coronavirus (SARS-CoV), three groups of rabbits were immunized three times at 2-week intervals with inactivated vaccine + adjuvant, adjuvant,and normal saline respectively. Eight batchs of serum were sampled from the auricular vein at day 7 to day 51, and specific IgG antibody titers and neutralizing antibody titers were detected by indirect ELISA and micro-cytopathic effect neutralizing test. Antibody specificity was identified by proteinchip assay.Histopathological changes were detected by H&E staining. The results showed that, rabbits in the experimental group immunized with inactivated SARS-CoV all generated specific IgG antibodies with neutralizing activity, which suggested the inactivated SARS-CoV could preserve its antigenicity well and elicit an effective humoral immune responses. The peak titer value of specific IgG antibody and neutralizing antibody reached 1:40960 and 1:2560 respectively. In the experimental group, no obvious histopathological changes was detected in the H&E stained slides of heart, spleen, kidney and testis samples, but the livers had slight histopathological changes, and the lungs presented remarkable histopathological changes. These findings are of importance for SARS-CoV inactivated vaccine development.

  8. The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity.

    Science.gov (United States)

    Matthews, Krystal; Schäfer, Alexandra; Pham, Alissa; Frieman, Matthew

    2014-12-07

    The outcome of a viral infection is regulated by complex interactions of viral and host factors. SARS coronavirus (SARS-CoV) engages and regulates several innate immune response pathways during infection. We have previously shown that the SARS-CoV Papain-like Protease (PLpro) inhibits type I interferon (IFN) by inhibiting IRF3 phosphorylation thereby blocking downstream Interferon induction. This finding prompted us to identify other potential mechanisms of inhibition of PLpro on IFN induction. We have used plasmids expressing PLpro and IRF3 including an IRF3 mutant that is constitutively active, called IRF3(5D). In these experiments we utilize transfections, chromatin immunoprecipitation, Electro-mobility Shift Assays (EMSA) and protein localization to identify where IRF3 and IRF3(5D) are inhibited by PLpro. Here we show that PLpro also inhibits IRF3 activation at a step after phosphorylation and that this inhibition is dependent on the de-ubiquitination (DUB) activity of PLpro. We found that PLpro is able to block the type I IFN induction of a constitutively active IRF3, but does not inhibit IRF3 dimerization, nuclear localization or DNA binding. However, inhibition of PLpro's DUB activity by mutagenesis blocked the IRF3 inhibition activity of PLpro, suggesting a role for IRF3 ubiquitination in induction of a type I IFN innate immune response. These results demonstrate an additional mechanism that PLpro is able to inhibit IRF3 signaling. These data suggest novel innate immune antagonism activities of PLpro that may contribute to SARS-CoV pathogenesis.

  9. Structure and inhibition of the SARS coronavirus envelope protein ion channel.

    Directory of Open Access Journals (Sweden)

    Konstantin Pervushin

    2009-07-01

    Full Text Available The envelope (E protein from coronaviruses is a small polypeptide that contains at least one alpha-helical transmembrane domain. Absence, or inactivation, of E protein results in attenuated viruses, due to alterations in either virion morphology or tropism. Apart from its morphogenetic properties, protein E has been reported to have membrane permeabilizing activity. Further, the drug hexamethylene amiloride (HMA, but not amiloride, inhibited in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication. We have previously shown for the coronavirus species responsible for severe acute respiratory syndrome (SARS-CoV that the transmembrane domain of E protein (ETM forms pentameric alpha-helical bundles that are likely responsible for the observed channel activity. Herein, using solution NMR in dodecylphosphatidylcholine micelles and energy minimization, we have obtained a model of this channel which features regular alpha-helices that form a pentameric left-handed parallel bundle. The drug HMA was found to bind inside the lumen of the channel, at both the C-terminal and the N-terminal openings, and, in contrast to amiloride, induced additional chemical shifts in ETM. Full length SARS-CoV E displayed channel activity when transiently expressed in human embryonic kidney 293 (HEK-293 cells in a whole-cell patch clamp set-up. This activity was significantly reduced by hexamethylene amiloride (HMA, but not by amiloride. The channel structure presented herein provides a possible rationale for inhibition, and a platform for future structure-based drug design of this potential pharmacological target.

  10. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination.

    Science.gov (United States)

    Otter, J A; Donskey, C; Yezli, S; Douthwaite, S; Goldenberg, S D; Weber, D J

    2016-03-01

    Viruses with pandemic potential including H1N1, H5N1, and H5N7 influenza viruses, and severe acute respiratory syndrome (SARS)/Middle East respiratory syndrome (MERS) coronaviruses (CoV) have emerged in recent years. SARS-CoV, MERS-CoV, and influenza virus can survive on surfaces for extended periods, sometimes up to months. Factors influencing the survival of these viruses on surfaces include: strain variation, titre, surface type, suspending medium, mode of deposition, temperature and relative humidity, and the method used to determine the viability of the virus. Environmental sampling has identified contamination in field-settings with SARS-CoV and influenza virus, although the frequent use of molecular detection methods may not necessarily represent the presence of viable virus. The importance of indirect contact transmission (involving contamination of inanimate surfaces) is uncertain compared with other transmission routes, principally direct contact transmission (independent of surface contamination), droplet, and airborne routes. However, influenza virus and SARS-CoV may be shed into the environment and be transferred from environmental surfaces to hands of patients and healthcare providers. Emerging data suggest that MERS-CoV also shares these properties. Once contaminated from the environment, hands can then initiate self-inoculation of mucous membranes of the nose, eyes or mouth. Mathematical and animal models, and intervention studies suggest that contact transmission is the most important route in some scenarios. Infection prevention and control implications include the need for hand hygiene and personal protective equipment to minimize self-contamination and to protect against inoculation of mucosal surfaces and the respiratory tract, and enhanced surface cleaning and disinfection in healthcare settings.

  11. [Nosocomial infections due to human coronaviruses in the newborn].

    Science.gov (United States)

    Gagneur, A; Legrand, M C; Picard, B; Baron, R; Talbot, P J; de Parscau, L; Sizun, J

    2002-01-01

    Human coronaviruses, with two known serogroups named 229-E and OC-43, are enveloped positive-stranded RNA viruses. The large RNA is surrounded by a nucleoprotein (protein N). The envelop contains 2 or 3 glycoproteins: spike protein (or protein S), matrix protein (or protein M) and a hemagglutinin (or protein HE). Their pathogen role remains unclear because their isolation is difficult. Reliable and rapid methods as immunofluorescence with monoclonal antibodies and reverse transcription-polymerase chain reaction allow new researches on epidemiology. Human coronaviruses can survive for as long as 6 days in suspension and 3 hours after drying on surfaces, suggesting that they could be a source of hospital-acquired infections. Two prospective studies conducted in a neonatal and paediatric intensive care unit demonstrated a significant association of coronavirus-positive nasopharyngal samples with respiratory illness in hospitalised preterm neonates. Positive samples from staff suggested either a patient-to-staff or a staff-to-patient transmission. No cross-infection were observed from community-acquired respiratory-syncitial virus or influenza-infected children to neonates. Universal precautions with hand washing and surface desinfection could be proposed to prevent coronavirus transmission.

  12. VHL negatively regulates SARS coronavirus replication by modulating nsp16 ubiquitination and stability.

    Science.gov (United States)

    Yu, Xiao; Chen, Shuliang; Hou, Panpan; Wang, Min; Chen, Yu; Guo, Deyin

    2015-04-03

    Eukaryotic cellular and most viral RNAs carry a 5'-terminal cap structure, a 5'-5' triphosphate linkage between the 5' end of the RNA and a guanosine nucleotide (cap-0). SARS coronavirus (SARS-CoV) nonstructural protein nsp16 functions as a methyltransferase, to methylate mRNA cap-0 structure at the ribose 2'-O position of the first nucleotide to form cap-1 structures. However, whether there is interplay between nsp16 and host proteins was not yet clear. In this report, we identified several potential cellular nsp16-interacting proteins from a human thymus cDNA library by yeast two-hybrid screening. VHL, one of these proteins, was proven to interact with nsp16 both in vitro and in vivo. Further studies showed that VHL can inhibit SARS-CoV replication by regulating nsp16 ubiquitination and promoting its degradation. Our results have revealed the role of cellular VHL in the regulation of SARS-CoV replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Study on the roles of HLA-A gene polymorphism in the susceptibility and symptom of SARS-Coronavirus infection%HLA-A基因多态性与SARS易感性及症状关系的研究

    Institute of Scientific and Technical Information of China (English)

    何丽; 魏茂提; 王世鑫; 胡役兰

    2011-01-01

    Objective:To study the association between HLA-A gene polym orphsm and the susceptibility and symptom of SARS-Coroavirus infection in Northern Chinese Han ethnics.Methods:HLA-A were typed in 53 SARS cases,44 high risks and 77 controls using PCR-SBT m ethods in two case-control studies.Data were analyzed using SPSS version 11.5 and chisquares and OR were used to show the differences and association .Results:The frequency of HLA-A * 2453 allele in SARS patients was markedly higher than that of the high risk care workers(P=0.039,0R=4.479,95%CI 0.95-21.015).How ever,the frequency of HLA-A * 2444 allele in SARS patients was lower than that of the health control( P=0.029 ) .There was no significant difference of the distribution of HLA-A allele frequency in mild cases and severe cases.Conclusion :Genotype of HLA-A * 2453 may be one risk factor for infection of SARS-Cov ,how ever,HLA-A * 2444 may be protect factor for it infection .The severity of SARS may not relate with the genotype of HLA-A.%目的:研究中国北方汉族人群HLA-A基因多态性与SARS-Cov易感性及症状的关系.方法:采用病例-对照研究设计,应用PCR-SBT的研究方法对53例SARS患者、44例高危人群和77例健康人员的HLA-A位点等位基因型分布进行研究,运用SPSS11.5软件包进行统计分析,组间比较采用χ2检验,计算比值比(OR)及其95%可信区间(95%CI).结果:与高危人群比较,SARS病人 HLA-A*2453(P=0.039,OR=4.479,95%CI 0.955~21.015)基因型出现频率较高,两者有统计学意义;与健康人群比较,SARS病人HLA-A*2444(P=0.029)基因型频率显著减低;SARS患者轻症组和重症组的HLA-A位点的等位基因频率分布相比较未发现统计学差异(P>0.05).结论:我国华北地区汉族人群中HLA-A*2453可能与SARS的易感性相关,而等位基因HLA-A*2444可能具有保护作用.HLA-A基因多态性与SARS患者病情严重程度可能无关.

  14. Coronavirus MHV-A59 infects the lung and causes severe pneumonia in C57BL/6 mice

    Institute of Scientific and Technical Information of China (English)

    Zhangsheng; Yang; Jun; Du; Gang; Chen; Jie; Zhao; Xuanming; Yang; Lishan; Su; Genhong; Cheng; Hong; Tang

    2014-01-01

    It remains challenging to develop animal models of lung infection and severe pneumonia by severe acute respiratory syndrome coronavirus(SARS-CoV) and Middle East respiratory syndrome cornavirus(MERS-Co V) without high level of containment. This inevitably hinders understanding of virushost interaction and development of appropriate countermeasures. Here we report that intranasal inoculation of sublethal doses of murine coronavirus mouse hepatitis virus A-59(MHV-A59), a hepatic and neuronal tropic coronavirus, can induce acute pneumonia and severe lung injuries in C57BL/6 mice. Inflammatory leukocyte infiltrations, hemorrhages and fibrosis of alveolar walls can be observed 2-11 days after MHV-A59 infection. This pathological manifestation is associated with dramatical elevation of tissue IP-10 and IFN-γ and moderate increase of TNF-α and IL-1β, but inability of anti-viral type I interferon response. These results suggest that intranasal infection of MHV-A59 would serve as a surrogate mouse model of acute respiratory distress syndrome by SARS-CoV and MERS-CoV infections.

  15. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor.

    Science.gov (United States)

    Kim, Yunjeong; Liu, Hongwei; Galasiti Kankanamalage, Anushka C; Weerasekara, Sahani; Hua, Duy H; Groutas, William C; Chang, Kyeong-Ok; Pedersen, Niels C

    2016-03-01

    Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV) causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP), can arise through mutation of FECV to FIP virus (FIPV). The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro) with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for further

  16. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor

    Science.gov (United States)

    Kim, Yunjeong; Liu, Hongwei; Galasiti Kankanamalage, Anushka C.; Weerasekara, Sahani; Hua, Duy H.; Groutas, William C.; Chang, Kyeong-Ok; Pedersen, Niels C.

    2016-01-01

    Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV) causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP), can arise through mutation of FECV to FIP virus (FIPV). The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro) with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for further

  17. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor.

    Directory of Open Access Journals (Sweden)

    Yunjeong Kim

    2016-03-01

    Full Text Available Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP, can arise through mutation of FECV to FIP virus (FIPV. The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for

  18. The inhibitory effect of Chinese herb on SARS virus infection

    Institute of Scientific and Technical Information of China (English)

    Rika; Furuta; Jyunichi; Fujisawa; Toshio; Hattori

    2005-01-01

    [Subject]Severe acute respiratory syndrome(SARS)is a contagious atypical pneumonia with a high mortality rate.SARS coronavirus(SARS-CoV)is the pathogenof SARS.We established SARS-CoVS/HIVpseudotyped(SHP)virussystemandthe cell fusion assay systemto screeninhibitors for entry of SARS-CoV.[Materials and methods]SHPor VSV-Gpseudotype(VHP)virus was made bytransfecting pCMVΔR8·2,pHR’CMV-Luc and pCMV/R-SARS-S or pMDGplasmids into293Tcells.5ng p24of SHPor VHPvirus was addedfor eachinfec-tion.Twelve Chinese herbs,wh...

  19. Peptides derived from HIV-1, HIV-2, Ebola virus, SARS coronavirus and coronavirus 229E exhibit high affinity binding to the formyl peptide receptor

    Science.gov (United States)

    Mills, John S.

    2007-01-01

    Peptides derived from the membrane proximal region of fusion proteins of human immunodeficiency viruses 1 and 2, Coronavirus 229 E, severe acute respiratory syndrome coronavirus and Ebola virus were all potent antagonists of the formyl peptide receptor expressed in Chinese hamster ovary cells. Binding of viral peptides was affected by the naturally occurring polymorphisms at residues 190 and 192, which are located at second extracellular loop-transmembrane helix 5 interface. Substitution of R190 with W190 enhanced the affinity for a severe acute respiratory syndrome coronavirus peptide 6 fold but reduced the affinity for N-formyl-Nle–Leu-Phe by 2.5 fold. A 12 mer peptide derived from coronavirus 229E (ETYIKPWWVWL) was the most potent antagonist of the formyl peptide receptor W190 with a Ki of 230 nM. Fluorescently labeled ETYIKPWWVWL was effectively internalized by all three variants with EC50 of ~25 nM. An HKU-1 coronavirus peptide, MYVKWPWYVWL, was a potent antagonist but N-formyl-MYVKWPWYVWL was a potent agonist. ETYIKPWWVWL did not stimulate GTPγS binding but inhibited the stimulation by formyl-NleLeuPhe. It also blocked β arrestin translocation and receptor downregulation induced by formyl-Nle–Leu–Phe. This indicates that formyl peptide receptor may be important in viral infections and that variations in its sequence among individuals may affect their likelihood of viral and bacterial infections. PMID:16842982

  20. Prevalence of Korean cats with natural feline coronavirus infections

    Directory of Open Access Journals (Sweden)

    Lee Myoung-Heon

    2011-09-01

    Full Text Available Abstract Background Feline coronavirus is comprised of two pathogenic biotypes consisting of feline infectious peritonitis virus (FIPV and feline enteric coronavirus (FECV, which are both divided into two serotypes. To examine the prevalence of Korean cats infected with feline coronavirus (FCoV type I and II, fecal samples were obtained from 212 cats (107 pet and 105 feral in 2009. Results Fourteen cats were FCoV-positive, including infections with type I FCoV (n = 8, type II FCoV (n = 4, and types I and II co-infection (n = 2. Low seroprevalences (13.7%, 29/212 of FCoV were identified in chronically ill cats (19.3%, 16/83 and healthy cats (10.1%, 13/129. Conclusions Although the prevalence of FCoV infection was not high in comparison to other countries, there was a higher prevalence of type I FCoV in Korean felines. The prevalence of FCoV antigen and antibody in Korean cats are expected to gradually increase due to the rising numbers of stray and companion cats.

  1. [New coronavirus infection: new challenges, new legacies].

    Science.gov (United States)

    Cabrera-Gaytán, David Alejandro; Vargas-Valerio, Alfredo; Grajales-Muñiz, Concepción

    2014-01-01

    Introducción: emergió una nueva enfermedad por coronavirus. Su historia natural y sus determinantes todavía se están investigando. Se carece de una publicación que estudie todos los casos identificados en el mundo, por lo que el objetivo de este artículo estriba en describir los casos y defunciones por el nuevo coronavirus. Métodos: se revisaron las publicaciones en línea de la Organización Mundial de la Salud, del Centro Europeo para el Control y Prevención de Enfermedades y de la Eurosurveillance. Se realizó un análisis descriptivo de los casos, se calcularon los límites para proporciones con un alfa del 0.05 por prueba de Wilson y una prueba t de Student para diferencia de medias. Resultados: son 17 casos confirmados y 11 defunciones en varios países de Asia y Europa; predominaron los pacientes masculinos. La tasa de letalidad fue de 64.70 %; los que fallecieron se hospitalizaron cinco días después de los primeros síntomas. Se carece de publicaciones que describan la historia natural de la enfermedad; sin embargo, lo descrito en las publicaciones de Europa coincide con los resultados de este estudio. Conclusión: es necesario continuar con la vigilancia epidemiológica y la realización de nuevos estudios para evaluar el impacto de esta enfermedad en la salud pública internacional.

  2. High-yield expression of recombinant SARS coronavirus nucleocapsid protein in methylotrophic yeast Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    Ru-Shi Liu; Kun-Yu Yang; Jian Lin; Yi-Wei Lin; Zhi-Hong Zhang; Jun Zhang; Ning-Shao Xia

    2004-01-01

    AIM: Nucleocapsid (N) protein plays an important role in reproduction and pathological reaction of severe acute respiratory syndrome (SARS) coronavirus (SCoV), theantigenicity of the protein is better than spike (S) protein.This study was to find a highly specific and antigenic recombinant SCoV nucleocapsid (rSCoVN) protein, and to provide a basis for further researches on early diagnosis of SARS.METHODS: Full length cDNA of SCoV nucleocapsid (SCoVN)protein was amplified through polymerase chain reaction (PCR) and cloned into yeast expression vector pPIC3.5K to construct plasmid of pPIC3.5K-SCoVN. The plasmid was linearized and then transformed into Pichia pastoris (P. pastoris) GS115 (HisMut+) by electroporation. His+Mut+recombinant strains were identified by PCR and cultivated on MM/MD plates. The influence of different factors on biomass and rSCoVN protein production during induction phase, such as various induction media, dissolved oxygen (DO) and different final concentrations of methanol, was subsequently studied. The expression level and activation were detected by SDS-PAGE and Western-blot respectively.RESULTS: All of the recombinants were His+Mut+ aftertransformation of P. pastoriswith linearized plasmids. The BMMY medium was optimal for recombinant ScoVN (rSCoVN)protein expression and growth of the recombinant strains.The final optimal concentration of methanol was 20 mL/L,the DO had a significant effect on rSCoVN protein expression and growth of recombinant strains. The rSCoVN protein expressed in recombinant strains was about 8% of the total cell protein, 520 mg/L of rSCoVN protein was achieved,and a maximum cell ,A at 600 nm of 62 was achieved in shake flask culture. The rSCoVN protein had a high specificity against mouse-anti-SARS-CoVN-mAb and SARS positive sera, but had no cross-reaction with normal human serum.The biological activity of rSCoVN expressed in P. pastoris was about 4-fold higher than that expressed in E.coliwhen the same rSCoVN protein

  3. The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase.

    Science.gov (United States)

    Wei, Ping; Fan, Keqiang; Chen, Hao; Ma, Liang; Huang, Changkang; Tan, Lei; Xi, Dong; Li, Chunmei; Liu, Ying; Cao, Aoneng; Lai, Luhua

    2006-01-20

    The 3C-like proteinase of severe acute respiratory syndrome (SARS) coronavirus has been proposed to be a key target for structural-based drug design against SARS. Accurate determination of the dimer dissociation constant and the role of the N-finger (residues 1-7) will provide more insights into the enzyme catalytic mechanism of SARS 3CL proteinase. The dimer dissociation constant of the wild-type protein was determined to be 14.0microM by analytical ultracentrifugation method. The N-finger fragment of the enzyme plays an important role in enzyme dimerization as shown in the crystal structure. Key residues in the N-finger have been studied by site-directed mutagenesis, enzyme assay, and analytical ultracentrifugation. A single mutation of M6A was found to be critical to maintain the dimer structure of the enzyme. The N-terminal octapeptide N8 and its mutants were also synthesized and tested for their potency as dimerization inhibitors. Peptide cleavage assay confirms that peptide N8 is a dimerization inhibitor with a K(i) of 2.20mM. The comparison of the inhibitory activities of N8 and its mutants indicates that the hydrophobic interaction of Met-6 and the electrostatic interaction of Arg-4 contribute most for inhibitor binding. This study describes the first example of inhibitors targeting the dimeric interface of SARS 3CL proteinase, providing a novel strategy for drug design against SARS and other coronaviruses.

  4. Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: insights into mechanisms of general viral fusion and inhibitor design.

    Science.gov (United States)

    Aydin, Halil; Al-Khooly, Dina; Lee, Jeffrey E

    2014-05-01

    Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS-coronavirus (SARS-CoV). SARS-CoV entry is facilitated by the spike protein (S), which consists of an N-terminal domain (S1) responsible for cellular attachment and a C-terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS-CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site-directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH-independent retroviral fusion proteins, SARS-CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS-CoV S2 analysis showed that specific hydrophobic positions at the C-terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C-terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C-terminal hydrophobic residues led us to identify a 42-residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation=0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections. © 2014 The Protein Society.

  5. Feline and canine coronaviruses: common genetic and pathobiological features.

    Science.gov (United States)

    Le Poder, Sophie

    2011-01-01

    A new human coronavirus responsible for severe acute respiratory syndrome (SARS) was identified in 2003, which raised concern about coronaviruses as agents of serious infectious disease. Nevertheless, coronaviruses have been known for about 50 years to be major agents of respiratory, enteric, or systemic infections of domestic and companion animals. Feline and canine coronaviruses are widespread among dog and cat populations, sometimes leading to the fatal diseases known as feline infectious peritonitis (FIP) and pantropic canine coronavirus infection in cats and dogs, respectively. In this paper, different aspects of the genetics, host cell tropism, and pathogenesis of the feline and canine coronaviruses (FCoV and CCoV) will be discussed, with a view to illustrating how study of FCoVs and CCoVs can improve our general understanding of the pathobiology of coronaviruses.

  6. Feline and Canine Coronaviruses: Common Genetic and Pathobiological Features

    Directory of Open Access Journals (Sweden)

    Sophie Le Poder

    2011-01-01

    Full Text Available A new human coronavirus responsible for severe acute respiratory syndrome (SARS was identified in 2003, which raised concern about coronaviruses as agents of serious infectious disease. Nevertheless, coronaviruses have been known for about 50 years to be major agents of respiratory, enteric, or systemic infections of domestic and companion animals. Feline and canine coronaviruses are widespread among dog and cat populations, sometimes leading to the fatal diseases known as feline infectious peritonitis (FIP and pantropic canine coronavirus infection in cats and dogs, respectively. In this paper, different aspects of the genetics, host cell tropism, and pathogenesis of the feline and canine coronaviruses (FCoV and CCoV will be discussed, with a view to illustrating how study of FCoVs and CCoVs can improve our general understanding of the pathobiology of coronaviruses.

  7. Pathogenic characteristics of persistent feline enteric coronavirus infection in cats.

    Science.gov (United States)

    Vogel, Liesbeth; Van der Lubben, Mariken; te Lintelo, Eddie G; Bekker, Cornelis P J; Geerts, Tamara; Schuijff, Leontine S; Grinwis, Guy C M; Egberink, Herman F; Rottier, Peter J M

    2010-01-01

    Feline coronaviruses (FCoV) comprise two biotypes: feline enteric coronaviruses (FECV) and feline infectious peritonitis viruses (FIPV). FECV is associated with asymptomatic persistent enteric infections, while FIPV causes feline infectious peritonitis (FIP), a usually fatal systemic disease in domestic cats and some wild Felidae. FIPV arises from FECV by mutation. FCoV also occur in two serotypes, I and II, of which the serotype I viruses are by far the most prevalent in the field. Yet, most of our knowledge about FCoV infections relates to serotype II viruses, particularly about the FIPV, mainly because type I viruses grow poorly in cell culture. Hence, the aim of the present work was the detailed study of the epidemiologically most relevant viruses, the avirulent serotype I viruses. Kittens were inoculated oronasally with different doses of two independent FECV field strains, UCD and RM. Persistent infection could be reproducibly established. The patterns of clinical symptoms, faecal virus shedding and seroconversion were monitored for up to 10 weeks revealing subtle but reproducible differences between the two viruses. Faecal virus, i.e. genomic RNA, was detected during persistent FECV infection only in the large intestine, downstream of the appendix, and could occasionally be observed also in the blood. The implications of our results, particularly our insights into the persistently infected state, are discussed.

  8. Human Infection with MERS Coronavirus after Exposure to Infected Camels, Saudi Arabia, 2013

    OpenAIRE

    Memish, Ziad A.; Cotten, Matthew; Meyer, Benjamin; Simon J Watson; Alsahafi, Abdullah J.; Al Rabeeah, Abdullah A.; Corman, Victor Max; Sieberg, Andrea; Makhdoom, Hatem Q.; Assiri, Abdullah; Al Masri, Malaki; Aldabbagh, Souhaib; Bosch, Berend-Jan; Beer, Martin; Müller, Marcel A.

    2014-01-01

    We investigated a case of human infection with Middle East respiratory syndrome coronavirus (MERS-CoV) after exposure to infected camels. Analysis of the whole human-derived virus and 15% of the camel-derived virus sequence yielded nucleotide polymorphism signatures suggestive of cross-species transmission. Camels may act as a direct source of human MERS-CoV infection.

  9. SARS Pathogenesis: Host Factors

    NARCIS (Netherlands)

    A. de Lang (Anna)

    2012-01-01

    textabstractWhile it is hypothesized that Sever Acute Respiratory Syndrome (SARS) in humans is caused by a disproportional immune response illustrated by inappropriate induction of inflammatory cytokines, the exact nature of the host response to SARS coronavirus (CoV) infection causing severe

  10. Substitution at Aspartic Acid 1128 in the SARS Coronavirus Spike Glycoprotein Mediates Escape from a S2 Domain-Targeting Neutralizing Monoclonal Antibody

    Science.gov (United States)

    Ng, Oi-Wing; Keng, Choong-Tat; Leung, Cynthia Sau-Wai; Peiris, J. S. Malik; Poon, Leo Lit Man; Tan, Yee-Joo

    2014-01-01

    The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is the etiological agent for the infectious disease, SARS, which first emerged 10 years ago. SARS-CoV is a zoonotic virus that has crossed the species barriers to infect humans. Bats, which harbour a diverse pool of SARS-like CoVs (SL-CoVs), are believed to be the natural reservoir. The SARS-CoV surface Spike (S) protein is a major antigenic determinant in eliciting neutralizing antibody production during SARS-CoV infection. In our previous work, we showed that a panel of murine monoclonal antibodies (mAbs) that target the S2 subunit of the S protein are capable of neutralizing SARS-CoV infection in vitro (Lip KM et al, J Virol. 2006 Jan; 80(2): 941–50). In this study, we report our findings on the characterization of one of these mAbs, known as 1A9, which binds to the S protein at a novel epitope within the S2 subunit at amino acids 1111–1130. MAb 1A9 is a broadly neutralizing mAb that prevents viral entry mediated by the S proteins of human and civet SARS-CoVs as well as bat SL-CoVs. By generating mutant SARS-CoV that escapes the neutralization by mAb 1A9, the residue D1128 in S was found to be crucial for its interaction with mAb 1A9. S protein containing the substitution of D1128 with alanine (D1128A) exhibited a significant decrease in binding capability to mAb 1A9 compared to wild-type S protein. By using a pseudotyped viral entry assay, it was shown that the D1128A substitution in the escape virus allows it to overcome the viral entry blockage by mAb 1A9. In addition, the D1128A mutation was found to exert no effects on the S protein cell surface expression and incorporation into virion particles, suggesting that the escape virus retains the same viral entry property as the wild-type virus. PMID:25019613

  11. Substitution at aspartic acid 1128 in the SARS coronavirus spike glycoprotein mediates escape from a S2 domain-targeting neutralizing monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Oi-Wing Ng

    Full Text Available The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV is the etiological agent for the infectious disease, SARS, which first emerged 10 years ago. SARS-CoV is a zoonotic virus that has crossed the species barriers to infect humans. Bats, which harbour a diverse pool of SARS-like CoVs (SL-CoVs, are believed to be the natural reservoir. The SARS-CoV surface Spike (S protein is a major antigenic determinant in eliciting neutralizing antibody production during SARS-CoV infection. In our previous work, we showed that a panel of murine monoclonal antibodies (mAbs that target the S2 subunit of the S protein are capable of neutralizing SARS-CoV infection in vitro (Lip KM et al, J Virol. 2006 Jan; 80(2: 941-50. In this study, we report our findings on the characterization of one of these mAbs, known as 1A9, which binds to the S protein at a novel epitope within the S2 subunit at amino acids 1111-1130. MAb 1A9 is a broadly neutralizing mAb that prevents viral entry mediated by the S proteins of human and civet SARS-CoVs as well as bat SL-CoVs. By generating mutant SARS-CoV that escapes the neutralization by mAb 1A9, the residue D1128 in S was found to be crucial for its interaction with mAb 1A9. S protein containing the substitution of D1128 with alanine (D1128A exhibited a significant decrease in binding capability to mAb 1A9 compared to wild-type S protein. By using a pseudotyped viral entry assay, it was shown that the D1128A substitution in the escape virus allows it to overcome the viral entry blockage by mAb 1A9. In addition, the D1128A mutation was found to exert no effects on the S protein cell surface expression and incorporation into virion particles, suggesting that the escape virus retains the same viral entry property as the wild-type virus.

  12. Substitution at aspartic acid 1128 in the SARS coronavirus spike glycoprotein mediates escape from a S2 domain-targeting neutralizing monoclonal antibody.

    Science.gov (United States)

    Ng, Oi-Wing; Keng, Choong-Tat; Leung, Cynthia Sau-Wai; Peiris, J S Malik; Poon, Leo Lit Man; Tan, Yee-Joo

    2014-01-01

    The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is the etiological agent for the infectious disease, SARS, which first emerged 10 years ago. SARS-CoV is a zoonotic virus that has crossed the species barriers to infect humans. Bats, which harbour a diverse pool of SARS-like CoVs (SL-CoVs), are believed to be the natural reservoir. The SARS-CoV surface Spike (S) protein is a major antigenic determinant in eliciting neutralizing antibody production during SARS-CoV infection. In our previous work, we showed that a panel of murine monoclonal antibodies (mAbs) that target the S2 subunit of the S protein are capable of neutralizing SARS-CoV infection in vitro (Lip KM et al, J Virol. 2006 Jan; 80(2): 941-50). In this study, we report our findings on the characterization of one of these mAbs, known as 1A9, which binds to the S protein at a novel epitope within the S2 subunit at amino acids 1111-1130. MAb 1A9 is a broadly neutralizing mAb that prevents viral entry mediated by the S proteins of human and civet SARS-CoVs as well as bat SL-CoVs. By generating mutant SARS-CoV that escapes the neutralization by mAb 1A9, the residue D1128 in S was found to be crucial for its interaction with mAb 1A9. S protein containing the substitution of D1128 with alanine (D1128A) exhibited a significant decrease in binding capability to mAb 1A9 compared to wild-type S protein. By using a pseudotyped viral entry assay, it was shown that the D1128A substitution in the escape virus allows it to overcome the viral entry blockage by mAb 1A9. In addition, the D1128A mutation was found to exert no effects on the S protein cell surface expression and incorporation into virion particles, suggesting that the escape virus retains the same viral entry property as the wild-type virus.

  13. A novel pancoronavirus RT-PCR assay: frequent detection of human coronavirus NL63 in children hospitalized with respiratory tract infections in Belgium

    Directory of Open Access Journals (Sweden)

    Berkhout Ben

    2005-02-01

    Full Text Available Abstract Background Four human coronaviruses are currently known to infect the respiratory tract: human coronaviruses OC43 (HCoV-OC43 and 229E (HCoV-229E, SARS associated coronavirus (SARS-CoV and the recently identified human coronavirus NL63 (HCoV-NL63. In this study we explored the incidence of HCoV-NL63 infection in children diagnosed with respiratory tract infections in Belgium. Methods Samples from children hospitalized with respiratory diseases during the winter seasons of 2003 and 2004 were evaluated for the presence of HCoV-NL63 using a optimized pancoronavirus RT-PCR assay. Results Seven HCoV-NL63 positive samples were identified, six were collected during January/February 2003 and one at the end of February 2004. Conclusions Our results support the notation that HCoV-NL63 can cause serious respiratory symptoms in children. Sequence analysis of the S gene showed that our isolates could be classified into two subtypes corresponding to the two prototype HCoV-NL63 sequences isolated in The Netherlands in 1988 and 2003, indicating that these two subtypes may currently be cocirculating.

  14. Mechanism for controlling the monomer-dimer conversion of SARS coronavirus main protease.

    Science.gov (United States)

    Wu, Cheng Guo; Cheng, Shu Chun; Chen, Shiang Chuan; Li, Juo Yan; Fang, Yi Hsuan; Chen, Yau Hung; Chou, Chi Yuan

    2013-05-01

    The Severe acute respiratory syndrome coronavirus (SARS-CoV) main protease (M(pro)) cleaves two virion polyproteins (pp1a and pp1ab); this essential process represents an attractive target for the development of anti-SARS drugs. The functional unit of M(pro) is a homodimer and each subunit contains a His41/Cys145 catalytic dyad. Large amounts of biochemical and structural information are available on M(pro); nevertheless, the mechanism by which monomeric M(pro) is converted into a dimer during maturation still remains poorly understood. Previous studies have suggested that a C-terminal residue, Arg298, interacts with Ser123 of the other monomer in the dimer, and mutation of Arg298 results in a monomeric structure with a collapsed substrate-binding pocket. Interestingly, the R298A mutant of M(pro) shows a reversible substrate-induced dimerization that is essential for catalysis. Here, the conformational change that occurs during substrate-induced dimerization is delineated by X-ray crystallography. A dimer with a mutual orientation of the monomers that differs from that of the wild-type protease is present in the asymmetric unit. The presence of a complete substrate-binding pocket and oxyanion hole in both protomers suggests that they are both catalytically active, while the two domain IIIs show minor reorganization. This structural information offers valuable insights into the molecular mechanism associated with substrate-induced dimerization and has important implications with respect to the maturation of the enzyme.

  15. The SARS Coronavirus 3a protein binds calcium in its cytoplasmic domain.

    Science.gov (United States)

    Minakshi, Rinki; Padhan, Kartika; Rehman, Safikur; Hassan, Md Imtaiyaz; Ahmad, Faizan

    2014-10-13

    The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a positive stranded RNA virus with ∼30kb genome. Among all open reading frames (orfs) of this virus, the orf3a is the largest, and encodes a protein of 274 amino acids, named as 3a protein. Sequence analysis suggests that the orf3a aligned to one calcium pump present in Plasmodium falciparum and the enzyme glutamine synthetase found in Leptospira interrogans. This sequence similarity was found to be limited only to amino acid residues 209-264 which form the cytoplasmic domain of the orf3a. Furthermore, this region was predicted to be involved in the calcium binding. Owing to this hypothesis, we were driven to establish its calcium binding property in vitro. Here, we expressed and purified the cytoplasmic domain of the 3a protein, called Cyto3a, as a recombinant His-tagged protein in the E. coli. The calcium binding nature was established by performing various staining methods such as ruthenium red and stains-all. (45)Ca overlay method was also done to further support the data. Since the 3a protein forms ion channels, we were interested to see any conformational changes occurring in the Cyot3a upon calcium binding, using fluorescence spectroscopy and circular dichroism. These studies clearly indicate a significant change in the conformation of the Cyto3a protein after binding with calcium. Our results strongly suggest that the cytoplasmic domain of the 3a protein of SARS-CoV binds calcium in vitro, causing a change in protein conformation. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome.

    Directory of Open Access Journals (Sweden)

    Albrecht von Brunn

    Full Text Available The severe acute respiratory syndrome coronavirus (SARS-CoV genome is predicted to encode 14 functional open reading frames, leading to the expression of up to 30 structural and non-structural protein products. The functions of a large number of viral ORFs are poorly understood or unknown. In order to gain more insight into functions and modes of action and interaction of the different proteins, we cloned the viral ORFeome and performed a genome-wide analysis for intraviral protein interactions and for intracellular localization. 900 pairwise interactions were tested by yeast-two-hybrid matrix analysis, and more than 65 positive non-redundant interactions, including six self interactions, were identified. About 38% of interactions were subsequently confirmed by CoIP in mammalian cells. Nsp2, nsp8 and ORF9b showed a wide range of interactions with other viral proteins. Nsp8 interacts with replicase proteins nsp2, nsp5, nsp6, nsp7, nsp8, nsp9, nsp12, nsp13 and nsp14, indicating a crucial role as a major player within the replication complex machinery. It was shown by others that nsp8 is essential for viral replication in vitro, whereas nsp2 is not. We show that also accessory protein ORF9b does not play a pivotal role for viral replication, as it can be deleted from the virus displaying normal plaque sizes and growth characteristics in Vero cells. However, it can be expected to be important for the virus-host interplay and for pathogenicity, due to its large number of interactions, by enhancing the global stability of the SARS proteome network, or play some unrealized role in regulating protein-protein interactions. The interactions identified provide valuable material for future studies.

  17. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome.

    Science.gov (United States)

    Shi, Chong-Shan; Qi, Hai-Yan; Boularan, Cedric; Huang, Ning-Na; Abu-Asab, Mones; Shelhamer, James H; Kehrl, John H

    2014-09-15

    Coronaviruses (CoV) have recently emerged as potentially serious pathogens that can cause significant human morbidity and death. The severe acute respiratory syndrome (SARS)-CoV was identified as the etiologic agent of the 2002-2003 international SARS outbreak. Yet, how SARS evades innate immune responses to cause human disease remains poorly understood. In this study, we show that a protein encoded by SARS-CoV designated as open reading frame-9b (ORF-9b) localizes to mitochondria and causes mitochondrial elongation by triggering ubiquitination and proteasomal degradation of dynamin-like protein 1, a host protein involved in mitochondrial fission. Also, acting on mitochondria, ORF-9b targets the mitochondrial-associated adaptor molecule MAVS signalosome by usurping PCBP2 and the HECT domain E3 ligase AIP4 to trigger the degradation of MAVS, TRAF3, and TRAF 6. This severely limits host cell IFN responses. Reducing either PCBP2 or AIP4 expression substantially reversed the ORF-9b-mediated reduction of MAVS and the suppression of antiviral transcriptional responses. Finally, transient ORF-9b expression led to a strong induction of autophagy in cells. The induction of autophagy depended upon ATG5, a critical autophagy regulator, but the inhibition of MAVS signaling did not. These results indicate that SARS-CoV ORF-9b manipulates host cell mitochondria and mitochondrial function to help evade host innate immunity. This study has uncovered an important clue to the pathogenesis of SARS-CoV infection and illustrates the havoc that a small ORF can cause in cells.

  18. Coronavirus infection in mink (Mustela vison). Serological evidence of infection with a coronavirus related to transmissible gastroenteritis virus and porcine epidemic diarrhea virus

    DEFF Research Database (Denmark)

    Have, P; Moving, V; Svansson, V

    1992-01-01

    Antibodies to a transmissible gastroenteritis virus (TGEV)-related coronavirus have been demonstrated in mink sera by indirect immunofluorescence, peroxidase-linked antibody assays and immunoblotting. This is the first serological evidence of a specific coronavirus infection in mink. The putative......-reacted with N and M polypeptides of porcine epidemic diarrhea virus (PEDV). Thus MCV may occupy an intermediate position between the TGEV group of coronaviruses and PEDV. The possibility that MCV may be associated with syndromes of acute enteritis in preweaning mink is discussed....

  19. Human Infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013

    NARCIS (Netherlands)

    Memish, Ziad A.; Cotten, Matthew; Meyer, Benjamin; Watson, Simon J.; Alsahafi, Abdullah J.; Al Rabeeah, Abdullah A.; Corman, Victor Max; Sieberg, Andrea; Makhdoom, Hatem Q.; Assiri, Abdullah; Al Masri, Malaki; Aldabbagh, Souhaib; Bosch, Berend Jan; Beer, Martin; Müller, Marcel A.; Kellam, Paul; Drosten, Christian

    2014-01-01

    We investigated a case of human infection with Middle East respiratory syndrome coronavirus (MERS-CoV) after exposure to infected camels. Analysis of the whole human-derived virus and 15% of the camel-derived virus sequence yielded nucleotide polymorphism signatures suggestive of cross-species trans

  20. SARS CORONAVIRUS ENRICHED IN LYMPHOCYTES:AN EARLY DETECTION OF SARS%检测淋巴细胞内的冠状病毒RNA可作为SARS的早期诊断指标

    Institute of Scientific and Technical Information of China (English)

    王海滨; 毛远丽; 鞠连才

    2004-01-01

    Because of the highly contagious nature of the SARS-Coronavirus (CoV),a rapid and reliable diagnostic test is urgently needed for making a definite diagnosis at early phase so that infected individuals can be isolated while avoiding blanket quarantines and the unnecessary burden on the medical care system.Unfortanantly,current kits/procedures had only less than 20 % positive detecting rate with serum or other samples of real SARS patients.Due to the compositions varies with times and individuals,the septum and lung lavage are impossible to serve as a standardized sample source for the comparison or monitoring of viral load.Therefore,the currently available kits/procedures should be improved and a good sample source should be identified.[Methods] Viral RNA in two hundred microlitter plasma or one million lymphocytes from SARS patients were extracted with Trizol,and then entire RNA was used as a template in a modified procedure of RT-PCR.CoV viral load was quantified in 45 patients at different phases of SARS infection and compared between the paired samples of plasma and lymphocytes obtained from 5 patients who had recovered from SARS for 2 months and lived in a normal life.[Results] Our methods detected CoV at a level of a few copies with 60-80% positive detection rate for plasma from SARS patients within 1 to 7 days after fever,which was much more sensitive than other current available method(positive rate at 8%~20%).The mean viral copies in 17 acute phase patients(1 to 7 days after fever)was 8,951,while that in 18 sub-acute phase patients(13 to 36 days after fever)was 98 and that in 10 recovered patients(79 to 91 days after fever)was 88.Importantly,the levels of CoV in lymphocytes of 5 patients who had recovered from SARS for 2 months were 2 to 3 orders of magnitude higher than that in the plasma.[Conclusions] The early and definite diagnosis of SARS can be achieved by our modified RT-PCR.CoV load peaked during the acute phase and rapidly dropped in sub

  1. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13.

    Science.gov (United States)

    Yu, Mi-Sun; Lee, June; Lee, Jin Moo; Kim, Younggyu; Chin, Young-Won; Jee, Jun-Goo; Keum, Young-Sam; Jeong, Yong-Joo

    2012-06-15

    Severe acute respiratory syndrome (SARS) is an infectious disease with a strong potential for transmission upon close personal contact and is caused by the SARS-coronavirus (CoV). However, there are no natural or synthetic compounds currently available that can inhibit SARS-CoV. We examined the inhibitory effects of 64 purified natural compounds against the activity of SARS helicase, nsP13, and the hepatitis C virus (HCV) helicase, NS3h, by conducting fluorescence resonance energy transfer (FRET)-based double-strand (ds) DNA unwinding assay or by using a colorimetry-based ATP hydrolysis assay. While none of the compounds, examined in our study inhibited the DNA unwinding activity or ATPase activity of human HCV helicase protein, we found that myricetin and scutellarein potently inhibit the SARS-CoV helicase protein in vitro by affecting the ATPase activity, but not the unwinding activity, nsP13. In addition, we observed that myricetin and scutellarein did not exhibit cytotoxicity against normal breast epithelial MCF10A cells. Our study demonstrates for the first time that selected naturally-occurring flavonoids, including myricetin and scultellarein might serve as SARS-CoV chemical inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Orchitis in a cat associated with coronavirus infection.

    Science.gov (United States)

    Sigurdardóttir, O G; Kolbjørnsen, O; Lutz, H

    2001-01-01

    A case of severe, pyogranulomatous and necrotizing orchitis in a cat, which later succumbed to systemic feline infectious peritonitis (FIP), is described. The 3.5-year-old cat, positive for feline immunodeficiency virus infection, presented with a left testicular enlargement. A few months after castration the animal was humanely destroyed due to declining health. Post-mortem examination revealed inflammatory lesions in abdominal organs and in the brain compatible with FIP. Infection was confirmed with a reverse transcriptase-polymerase chain reaction test and by immunohistochemical demonstration of coronavirus antigen in the affected tissues, including the left testicle. FIP is usually a systemic disease. However, lesions and presenting clinical signs in a single organ system such as the brain are not uncommon. The results of this case study indicate that orchitis, although rare, should be on the list of lesions of FIP.

  3. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1.

    Science.gov (United States)

    Ma-Lauer, Yue; Carbajo-Lozoya, Javier; Hein, Marco Y; Müller, Marcel A; Deng, Wen; Lei, Jian; Meyer, Benjamin; Kusov, Yuri; von Brunn, Brigitte; Bairad, Dev Raj; Hünten, Sabine; Drosten, Christian; Hermeking, Heiko; Leonhardt, Heinrich; Mann, Matthias; Hilgenfeld, Rolf; von Brunn, Albrecht

    2016-08-30

    Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PL(pro)), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95-144 of RCHY1 and 389-652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PL(pro)s from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD-PL(pro) fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PL(pro) alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes.

  4. Fatal respiratory distress syndrome due to coronavirus infection in a child with severe combined immunodeficiency.

    Science.gov (United States)

    Szczawinska-Poplonyk, Aleksandra; Jonczyk-Potoczna, Katarzyna; Breborowicz, Anna; Bartkowska-Sniatkowska, Alicja; Figlerowicz, Magdalena

    2013-09-01

    Coronaviruses have been demonstrated to contribute substantially to respiratory tract infections among the child population. Though infected children commonly present mild upper airway symptoms, in high-risk patients with underlying conditions, particularly in immunocompromised children these pathogens may lead to severe lung infection and extrapulmonary disorders. In this paper, we provide the first report of the case of a 15-month-old child with severe combined immunodeficiency and coronavirus HKU1-related pneumonia with fatal respiratory distress syndrome.

  5. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus.

    Science.gov (United States)

    Qian, Zhaohui; Travanty, Emily A; Oko, Lauren; Edeen, Karen; Berglund, Andrew; Wang, Jieru; Ito, Yoko; Holmes, Kathryn V; Mason, Robert J

    2013-06-01

    Severe acute respiratory syndrome (SARS)-coronavirus (CoV) produces a devastating primary viral pneumonia with diffuse alveolar damage and a marked increase in circulating cytokines. One of the major cell types to be infected is the alveolar type II cell. However, the innate immune response of primary human alveolar epithelial cells infected with SARS-CoV has not been defined. Our objectives included developing a culture system permissive for SARS-CoV infection in primary human type II cells and defining their innate immune response. Culturing primary human alveolar type II cells at an air-liquid interface (A/L) improved their differentiation and greatly increased their susceptibility to infection, allowing us to define their primary interferon and chemokine responses. Viral antigens were detected in the cytoplasm of infected type II cells, electron micrographs demonstrated secretory vesicles filled with virions, virus RNA concentrations increased with time, and infectious virions were released by exocytosis from the apical surface of polarized type II cells. A marked increase was evident in the mRNA concentrations of interferon-β and interferon-λ (IL-29) and in a large number of proinflammatory cytokines and chemokines. A surprising finding involved the variability of expression of angiotensin-converting enzyme-2, the SARS-CoV receptor, in type II cells from different donors. In conclusion, the cultivation of alveolar type II cells at an air-liquid interface provides primary cultures in which to study the pulmonary innate immune responses to infection with SARS-CoV, and to explore possible therapeutic approaches to modulating these innate immune responses.

  6. Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2'-O-methyltransferase activity of nsp10/nsp16 complex.

    Science.gov (United States)

    Ke, Min; Chen, Yu; Wu, Andong; Sun, Ying; Su, Ceyang; Wu, Hao; Jin, Xu; Tao, Jiali; Wang, Yi; Ma, Xiao; Pan, Ji-An; Guo, Deyin

    2012-08-01

    Coronaviruses are the etiological agents of respiratory and enteric diseases in humans and livestock, exemplified by the life-threatening severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV). However, effective means for combating coronaviruses are still lacking. The interaction between nonstructural protein (nsp) 10 and nsp16 has been demonstrated and the crystal structure of SARS-CoV nsp16/10 complex has been revealed. As nsp10 acts as an essential trigger to activate the 2'-O-methyltransferase activity of nsp16, short peptides derived from nsp10 may have inhibitory effect on viral 2'-O-methyltransferase activity. In this study, we revealed that the domain of aa 65-107 of nsp10 was sufficient for its interaction with nsp16 and the region of aa 42-120 in nsp10, which is larger than the interaction domain, was needed for stimulating the nsp16 2'-O-methyltransferase activity. We further showed that two short peptides derived from the interaction domain of nsp10 could inhibit the 2'-O-methyltransferase activity of SARS-CoV nsp16/10 complex, thus providing a novel strategy and proof-of-principle study for developing peptide inhibitors against SARS-CoV. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. A G-quadruplex-binding macrodomain within the "SARS-unique domain" is essential for the activity of the SARS-coronavirus replication-transcription complex.

    Science.gov (United States)

    Kusov, Yuri; Tan, Jinzhi; Alvarez, Enrique; Enjuanes, Luis; Hilgenfeld, Rolf

    2015-10-01

    The multi-domain non-structural protein 3 of SARS-coronavirus is a component of the viral replication/transcription complex (RTC). Among other domains, it contains three sequentially arranged macrodomains: the X domain and subdomains SUD-N as well as SUD-M within the "SARS-unique domain". The X domain was proposed to be an ADP-ribose-1"-phosphatase or a poly(ADP-ribose)-binding protein, whereas SUD-NM binds oligo(G)-nucleotides capable of forming G-quadruplexes. Here, we describe the application of a reverse genetic approach to assess the importance of these macrodomains for the activity of the SARS-CoV RTC. To this end, Renilla luciferase-encoding SARS-CoV replicons with selectively deleted macrodomains were constructed and their ability to modulate the RTC activity was examined. While the SUD-N and the X domains were found to be dispensable, the SUD-M domain was crucial for viral genome replication/transcription. Moreover, alanine replacement of charged amino-acid residues of the SUD-M domain, which are likely involved in G-quadruplex-binding, caused abrogation of RTC activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Enzymatic activity characterization of SARS coronavirus 3C-like protease by fluorescence resonance energy transfer technique

    Institute of Scientific and Technical Information of China (English)

    Shuai CHEN; Hua-liang JIANG; Li-li CHEN; Hai-bin LUO; Tao SUN; Jing CHEN; Fei YE; Jian-hua CAI; Jing-kang SHEN; Xu SHEN

    2005-01-01

    Aim: To characterize enzymatic activity of severe acute respiratory syndrome(SARS) coronavirus (CoV) 3C-like protease (3CLpro) and its four site-directed mutants. Methods: Based on the fluorescence resonance energy transfer (FRET)principle using 5-[(2'-aminoethyl)-amino] naphthelenesulfonic acid (EDANS) and 4-[[4-(dimethylamino) phenyl] azo] benzoic acid (Dabcyl) as the energy transfer pair, one fluorogenic substrate was designed for the evaluation of SARS-CoV 3CLpro proteolytic activity. Results: The kinetic parameters of the fluorogenic substrate have been determined as Km=404 μmol.L-1, kcat=1.08 min-1, and kcat/Km=2.7 gered activity switches, and site-directed mutagenesis analysis of SARS-CoV 3CLpro revealed that substitutions of His41, Cys145, and His163 resulted in complete loss of enzymatic activity, while replacement of Met162 with Ala caused strongly increased activity. Conclusion: This present work has provided valuable information for understanding the catalytic mechanism of SARS-CoV 3CLpro. This FRET-based assay might supply an ideal approach for the exploration SARSCoV 3CLpro putative inhibitors.

  9. Severe acute respiratory syndrome (SARS) - an emerging infection of the 21st century.

    Science.gov (United States)

    Hsueh, Po-Ren; Yang, Pan-Chyr

    2003-12-01

    Severe acute respiratory syndrome (SARS) is an emerging infection caused by a novel coronavirus known as SARS-CoV. The disease has a high propensity to spread to household members and healthcare workers and may be associated with transmission and outbreaks in the community. Severe illness in immunocompromised patients, sophisticated hospital facilities and treatment procedures, particularly those that generate aerosols, and lack of adequate isolation and control measures, can amplify transmission and contribute to so-called "super-spreading" events. The presence of non-specific clinical manifestations at presentation and a lack of validated early diagnostic methods and effective management pose great difficulty for frontline physicians in the containment of this disease. The mortality of SARS is in the region of 10 to 15%; the presence of underlying disease, high initial C-reactive protein levels, and positive SARS-CoV in nasopharyngeal aspirate samples are associated with a higher risk of respiratory failure and mortality. Despite the disappearance of SARS cases worldwide, the potential evolution of SARS-CoV in animals suggests the disease may re-emerge in the future. Heightened levels of clinical suspicion, rapid case detection and isolation, and contact tracing are essential to effective management of future outbreaks. Further ongoing requirements for successful management include research on the immunopathogenesis of SARS and the development of timely and reliable diagnostic tests, effective antiviral and immunomodulatory agents, and vaccines for the disease.

  10. The SARS Coronavirus S Glycoprotein Receptor Binding Domain: Fine Mapping and Functional Characterization

    Directory of Open Access Journals (Sweden)

    Xiao Xiaodong

    2005-08-01

    Full Text Available Abstract The entry of the SARS coronavirus (SCV into cells is initiated by binding of its spike envelope glycoprotein (S to a receptor, ACE2. We and others identified the receptor-binding domain (RBD by using S fragments of various lengths but all including the amino acid residue 318 and two other potential glycosylation sites. To further characterize the role of glycosylation and identify residues important for its function as an interacting partner of ACE2, we have cloned, expressed and characterized various soluble fragments of S containing RBD, and mutated all potential glycosylation sites and 32 other residues. The shortest of these fragments still able to bind the receptor ACE2 did not include residue 318 (which is a potential glycosylation site, but started at residue 319, and has only two potential glycosylation sites (residues 330 and 357. Mutation of each of these sites to either alanine or glutamine, as well as mutation of residue 318 to alanine in longer fragments resulted in the same decrease of molecular weight (by approximately 3 kDa suggesting that all glycosylation sites are functional. Simultaneous mutation of all glycosylation sites resulted in lack of expression suggesting that at least one glycosylation site (any of the three is required for expression. Glycosylation did not affect binding to ACE2. Alanine scanning mutagenesis of the fragment S319–518 resulted in the identification of ten residues (K390, R426, D429, T431, I455, N473, F483, Q492, Y494, R495 that significantly reduced binding to ACE2, and one residue (D393 that appears to increase binding. Mutation of residue T431 reduced binding by about 2-fold, and mutation of the other eight residues – by more than 10-fold. Analysis of these data and the mapping of these mutations on the recently determined crystal structure of a fragment containing the RBD complexed to ACE2 (Li, F, Li, W, Farzan, M, and Harrison, S. C., submitted suggested the existence of two hot

  11. TMPRSS2: A potential target for treatment of influenza virus and coronavirus infections.

    Science.gov (United States)

    Shen, Li Wen; Mao, Hui Juan; Wu, Yan Ling; Tanaka, Yoshimasa; Zhang, Wen

    2017-08-01

    Influenza virus and coronavirus epidemics or pandemics have occurred in succession worldwide throughout the early 21st century. These epidemics or pandemics pose a major threat to human health. Here, we outline a critical role of the host cell protease TMPRSS2 in influenza virus and coronavirus infections and highlight an antiviral therapeutic strategy targeting TMPRSS2. Copyright © 2017. Published by Elsevier B.V.

  12. False-Positive Results in a Recombinant Severe Acute Respiratory Syndrome-Associated Coronavirus (SARS-CoV) Nucleocapsid-Based Western Blot Assay Were Rectified by the Use of Two Subunits (S1 and S2) of Spike for Detection of Antibody to SARS-CoV

    Science.gov (United States)

    Maache, Mimoun; Komurian-Pradel, Florence; Rajoharison, Alain; Perret, Magali; Berland, Jean-Luc; Pouzol, Stéphane; Bagnaud, Audrey; Duverger, Blandine; Xu, Jianguo; Osuna, Antonio; Paranhos-Baccalà, Glaucia

    2006-01-01

    To evaluate the reactivity of the recombinant proteins expressed in Escherichia coli strain BL21(DE3), a Western blot assay was performed by using a panel of 78 serum samples obtained, respectively, from convalescent-phase patients infected with severe acute respiratory syndrome-associated coronavirus (SARS-CoV) (30 samples) and from healthy donors (48 samples). As antigen for detection of SARS-CoV, the nucleocapsid protein (N) showed high sensitivity and strong reactivity with all samples from SARS-CoV patients and cross-reacted with all serum samples from healthy subjects, with either those obtained from China (10 samples) or those obtained from France (38 serum samples), giving then a significant rate of false positives. Specifically, our data indicated that the two subunits, S1 (residues 14 to 760) and S2 (residues 761 to 1190), resulted from the divided spike reacted with all samples from SARS-CoV patients and without any cross-reactivity with any of the healthy serum samples. Consequently, these data revealed the nonspecific nature of N protein in serodiagnosis of SARS-CoV compared with the S1 and S2, where the specificity is of 100%. Moreover, the reported results indicated that the use of one single protein as a detection antigen of SARS-CoV infection may lead to false-positive diagnosis. These may be rectified by using more than one protein for the serodiagnosis of SARS-CoV. PMID:16522785

  13. Livestock Susceptibility to Infection with Middle East Respiratory Syndrome Coronavirus

    Science.gov (United States)

    Vergara-Alert, Júlia; van den Brand, Judith M.A.; Widagdo, W.; Muñoz, Marta; Raj, Stalin; Schipper, Debby; Solanes, David; Cordón, Ivan; Bensaid, Albert; Haagmans, Bart L.

    2017-01-01

    Middle East respiratory syndrome (MERS) cases continue to be reported, predominantly in Saudi Arabia and occasionally other countries. Although dromedaries are the main reservoir, other animal species might be susceptible to MERS coronavirus (MERS-CoV) infection and potentially serve as reservoirs. To determine whether other animals are potential reservoirs, we inoculated MERS-CoV into llamas, pigs, sheep, and horses and collected nasal and rectal swab samples at various times. The presence of MERS-CoV in the nose of pigs and llamas was confirmed by PCR, titration of infectious virus, immunohistochemistry, and in situ hybridization; seroconversion was detected in animals of both species. Conversely, in sheep and horses, virus-specific antibodies did not develop and no evidence of viral replication in the upper respiratory tract was found. These results prove the susceptibility of llamas and pigs to MERS-CoV infection. Thus, the possibility of MERS-CoV circulation in animals other than dromedaries, such as llamas and pigs, is not negligible. PMID:27901465

  14. An immunosuppressed Syrian golden hamster model for SARS-CoV infection.

    Science.gov (United States)

    Schaecher, Scott R; Stabenow, Jennifer; Oberle, Christina; Schriewer, Jill; Buller, R Mark; Sagartz, John E; Pekosz, Andrew

    2008-10-25

    Several small animal models have been developed for the study of severe acute respiratory syndrome coronavirus (SARS-CoV) replication and pathogenesis. Syrian golden hamsters are among the best small animal models, though little clinical illness and no mortality are observed after virus infection. Cyclophosphamide was used to immunosuppress hamsters leading to a prolonged disease course and higher mortality after SARS-CoV infection. In addition, there was a significant weight loss, expanded tissue tropism, and increased viral pathology in the lung, heart, kidney, and nasal turbinate tissues. Infection with recombinant SARS-CoV viruses bearing disruptions in the gene 7 coding region showed no significant change in replication kinetics, tissue tropism, morbidity, or mortality suggesting that the ORF7a (7a) and ORF7b (7b) proteins are not required for virus replication in immunosuppressed hamsters. This modified hamster model may provide a useful tool for SARS-CoV pathogenesis studies, evaluation of antiviral therapy, and analysis of additional SARS-CoV mutants.

  15. Acute middle East respiratory syndrome coronavirus infection in livestock Dromedaries, Dubai, 2014.

    Science.gov (United States)

    Wernery, Ulrich; Corman, Victor M; Wong, Emily Y M; Tsang, Alan K L; Muth, Doreen; Lau, Susanna K P; Khazanehdari, Kamal; Zirkel, Florian; Ali, Mansoor; Nagy, Peter; Juhasz, Jutka; Wernery, Renate; Joseph, Sunitha; Syriac, Ginu; Elizabeth, Shyna K; Patteril, Nissy Annie Georgy; Woo, Patrick C Y; Drosten, Christian

    2015-06-01

    Camels carry Middle East respiratory syndrome coronavirus, but little is known about infection age or prevalence. We studied >800 dromedaries of all ages and 15 mother-calf pairs. This syndrome constitutes an acute, epidemic, and time-limited infection in camels <4 years of age, particularly calves. Delayed social separation of calves might reduce human infection risk.

  16. [Prokaryotic expression of S2 extracellular domain of SARS coronavirus spike protein and its fusion with Hela cell membrane].

    Science.gov (United States)

    Liu, Yun; Liu, Ai-Hua; Deng, Peng; Wu, Xiang-Ling; Li, Tao; Liu, Ya-Wei; Xu, Jia; Jiang, Yong

    2009-03-01

    To construct the expression plasmid of S2 extracellular domain (S2ED) of SARS-coronavirus (SARS- Cov) spike protein (S protein) and enhanced green fluorescent protein (EGFP) to obtain the fusion protein expressed in prokaryotic cells. S2ED based on bioinformatics prediction and EGFP sequence were amplified by PCR and inserted into pET-14b plasmid. The recombinant protein His-S2ED-EGFP was expressed in E. coli by IPTG induction. After purification by Ni-NTA agarose beads, the soluble fractions of the fusion protein were collected and identified by SDS-PAGE and Western blotting. The fusion of S2ED with Hela cell membranes was observed with fluorescent microscope. The pET-14b-S2ED-EGFP plasmid was correctly constructed and highly expressed in BL21 (DE3). When incubated with Hela cells, the purified protein could not internalize through membrane fusion. The expression plasmid containing S2ED of SARS-Cov S protein and EGFP sequence is constructed successfully. Although the recombinant protein obtained has not shown the expected fusion effect with Hela cell membrane, this work may enrich the understanding of the process of membrane fusion mediated by S2 protein and lay the foundation for future study of targeting cell transport system based on cell-specific binding peptide.

  17. Effect of coronavirus infection on reproductive performance of turkey hens.

    Science.gov (United States)

    Awe, Olusegun O; Ali, Ahmed; Elaish, Mohamed; Ibrahim, Mahmoud; Murgia, Maria; Pantin-Jackwood, Mary; Saif, Yehia M; Lee, Chang-Won

    2013-09-01

    Turkey coronavirus (TCoV) infection causes enteritis in turkeys of varying ages with high mortality in young birds. In older birds, field evidence indicates the possible involvement of TCoV in egg-production drops in turkey hens. However, no experimental studies have been conducted to demonstrate TCoV pathogenesis in turkey hens and its effect on reproductive performance. In the present study, we assessed the possible effect of TCoV on the reproductive performance of experimentally infected turkey hens. In two separate trials, 29- to 30-wk-old turkey hens in peak egg production were either mock-infected or inoculated orally with TCoV (Indiana strain). Cloacal swabs and intestinal and reproductive tissues were collected and standard reverse-transcription PCR was conducted to detect TCoV RNA. In the cloacal swabs, TCoV was detected consistently at 3, 5, 7, and 12 days postinoculation (DPI) with higher rates of detection after 5 DPI (> 90%). All intestinal samples were also positive for TCoV at 7 DPI, and microscopic lesions consisting of severe enteritis with villous atrophy were observed in the duodenum and jejunum of TCoV-infected hens. In one of the trials TCoV was detected from the oviduct of two birds at 7 DPI; however, no or mild microscopic lesions were present. In both experimental trials an average of 28%-29% drop in egg production was observed in TCoV-infected turkey hens between 4 and 7 DPI. In a separate trial we also confirmed that TCoV can efficiently transmit from infected to contact control hens. Our results show that TCoV infection can affect the reproductive performance in turkey hens, causing a transient drop in egg production. This drop in egg production most likely occurred as consequence of the severe enteritis produced by the TCoV. However, the potential replication of TCoV in the oviduct and its effect on pathogenesis should be considered and further investigated.

  18. Coronavirus 3CL(pro) proteinase cleavage sites: Possible relevance to SARS virus pathology

    DEFF Research Database (Denmark)

    Kiemer, Lars; Lund, Ole; Brunak, Søren

    2004-01-01

    such as the cystic fibrosis transmembrane conductance regulator ( CFTR), transcription factors CREB-RP and OCT-I, and components of the ubiquitin pathway. Conclusions: Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified...

  19. Reverse genetic characterization of the natural genomic deletion in SARS-Coronavirus strain Frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in-vitro and in-vivo

    Directory of Open Access Journals (Sweden)

    Grywna Klaus

    2009-08-01

    Full Text Available Abstract During the outbreak of SARS in 2002/3, a prototype virus was isolated from a patient in Frankfurt/Germany (strain Frankfurt-1. As opposed to all other SARS-Coronavirus strains, Frankfurt-1 has a 45-nucleotide deletion in the transmembrane domain of its ORF 7b protein. When over-expressed in HEK 293 cells, the full-length protein but not the variant with the deletion caused interferon beta induction and cleavage of procaspase 3. To study the role of ORF 7b in the context of virus replication, we cloned a full genome cDNA copy of Frankfurt-1 in a bacterial artificial chromosome downstream of a T7 RNA polymerase promoter. Transfection of capped RNA transcribed from this construct yielded infectious virus that was indistinguishable from the original virus isolate. The presumed Frankfurt-1 ancestor with an intact ORF 7b was reconstructed. In CaCo-2 and HUH7 cells, but not in Vero cells, the variant carrying the ORF 7b deletion had a replicative advantage against the parental virus (4- and 6-fold increase of virus RNA in supernatant, respectively. This effect was neither associated with changes in the induction or secretion of type I interferon, nor with altered induction of apoptosis in cell culture. However, pretreatment of cells with interferon beta caused the deleted virus to replicate to higher titers than the parental strain (3.4-fold in Vero cells, 7.9-fold in CaCo-2 cells. In Syrian Golden Hamsters inoculated intranasally with 10e4 plaque forming units of either virus, mean titers of infectious virus and viral RNA in the lungs after 24 h were increased 23- and 94.8-fold, respectively, with the deleted virus. This difference could explain earlier observations of enhanced virulence of Frankfurt-1 in Hamsters as compared to other SARS-Coronavirus reference strains and identifies the SARS-CoV 7b protein as an attenuating factor with the SARS-Coronavirus genome. Because attenuation was focused on the early phase of infection in-vivo, ORF 7

  20. Extraordinary GU-rich single-strand RNA identified from SARS coronavirus contributes an excessive innate immune response.

    Science.gov (United States)

    Li, Yan; Chen, Ming; Cao, Hongwei; Zhu, Yuanfeng; Zheng, Jiang; Zhou, Hong

    2013-02-01

    A dangerous cytokine storm occurs in the SARS involving in immune disorder, but many aspects of the pathogenetic mechanism remain obscure since its outbreak. To deeply reveal the interaction of host and SARS-CoV, based on the basic structural feature of pathogen-associated molecular pattern, we created a new bioinformatics method for searching potential pathogenic molecules and identified a set of SARS-CoV specific GU-rich ssRNA fragments with a high-density distribution in the genome. In vitro experiments, the result showed the representative SARS-CoV ssRNAs had powerful immunostimulatory activities to induce considerable level of pro-inflammatory cytokine TNF-a, IL-6 and IL-12 release via the TLR7 and TLR8, almost 2-fold higher than the strong stimulatory ssRNA40 that was found previously from other virus. Moreover, SARS-CoV ssRNA was able to cause acute lung injury in mice with a high mortality rate in vivo experiment. It suggests that SARS-CoV specific GU-rich ssRNA plays a very important role in the cytokine storm associated with a dysregulation of the innate immunity. This study not only presents new evidence about the immunopathologic damage caused by overactive inflammation during the SARS-CoV infection, but also provides a useful clue for a new therapeutic strategy. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  1. HTCC: Broad Range Inhibitor of Coronavirus Entry.

    Directory of Open Access Journals (Sweden)

    Aleksandra Milewska

    Full Text Available To date, six human coronaviruses have been known, all of which are associated with respiratory infections in humans. With the exception of the highly pathogenic SARS and MERS coronaviruses, human coronaviruses (HCoV-NL63, HCoV-OC43, HCoV-229E, and HCoV-HKU1 circulate worldwide and typically cause the common cold. In most cases, infection with these viruses does not lead to severe disease, although acute infections in infants, the elderly, and immunocompromised patients may progress to severe disease requiring hospitalization. Importantly, no drugs against human coronaviruses exist, and only supportive therapy is available. Previously, we proposed the cationically modified chitosan, N-(2-hydroxypropyl-3-trimethylammonium chitosan chloride (HTCC, and its hydrophobically-modified derivative (HM-HTCC as potent inhibitors of the coronavirus HCoV-NL63. Here, we show that HTCC inhibits interaction of a virus with its receptor and thus blocks the entry. Further, we demonstrate that HTCC polymers with different degrees of substitution act as effective inhibitors of all low-pathogenic human coronaviruses.

  2. The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor.

    Directory of Open Access Journals (Sweden)

    Rinki Minakshi

    Full Text Available The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV is reported to cause apoptosis of infected cells and several of its proteins including the 3a accessory protein, are pro-apoptotic. Since the 3a protein localizes to the endoplasmic reticulum (ER-Golgi compartment, its role in causing ER stress was investigated in transiently transfected cells. Cells expressing the 3a proteins showed ER stress based on activation of genes for the ER chaperones GRP78 and GRP94. Since ER stress can cause differential modulation of the unfolded protein response (UPR, which includes the inositol-requiring enzyme 1 (IRE-1, activating transcription factor 6 (ATF6 and PKR-like ER kinase (PERK pathways, these were individually tested in 3a-expressing cells. Only the PERK pathway was found to be activated in 3a-expressing cells based on (1 increased phosphorylation of eukaryotic initiation factor 2 alpha (eIF2alpha and inhibitory effects of a dominant-negative form of eIF2alpha on GRP78 promoter activity, (2 increased translation of activating transcription factor 4 (ATF4 mRNA, and (3 ATF4-dependent activation of the C/EBP homologous protein (CHOP gene promoter. Activation of PERK affects innate immunity by suppression of type 1 interferon (IFN signaling. The 3a protein was found to induce serine phosphorylation within the IFN alpha-receptor subunit 1 (IFNAR1 degradation motif and to increase IFNAR1 ubiquitination. Confocal microscopic analysis showed increased translocation of IFNAR1 into the lysosomal compartment and flow cytometry showed reduced levels of IFNAR1 in 3a-expressing cells. These results provide further mechanistic details of the pro-apoptotic effects of the SARS-CoV 3a protein, and suggest a potential role for it in attenuating interferon responses and innate immunity.

  3. Unraveling the complexities of the interferon response during SARS-CoV infection

    NARCIS (Netherlands)

    A. de Lang (Anna); T. Baas (Tracey); S.L. Smits (Saskia); M.G. Katze (Michael); A.D.M.E. Osterhaus (Albert); B.L. Haagmans (Bart)

    2009-01-01

    textabstractViruses employ different strategies to circumvent the antiviral actions of the innate immune response. SARS coronavirus (SARS-CoV), a virus that causes severe lung damage encodes an array of proteins able to inhibit induction and signaling of type-I interferons. However, recent studies h

  4. Unraveling the complexities of the interferon response during SARS-CoV infection

    NARCIS (Netherlands)

    A. de Lang (Anna); T. Baas (Tracey); S.L. Smits (Saskia); M.G. Katze (Michael); A.D.M.E. Osterhaus (Albert); B.L. Haagmans (Bart)

    2009-01-01

    textabstractViruses employ different strategies to circumvent the antiviral actions of the innate immune response. SARS coronavirus (SARS-CoV), a virus that causes severe lung damage encodes an array of proteins able to inhibit induction and signaling of type-I interferons. However, recent studies

  5. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture

    NARCIS (Netherlands)

    A.H. de Wilde (Adriaan); D. Jochmans (Dirk); C.C. Posthuma (Clara); J.C. Zevenhoven-Dobbe (Jessika); S. van Nieuwkoop (Stefan); T.M. Bestebroer (Theo); B.G. van den Hoogen (Bernadette); J. Neyts; E.J. Snijder (Eric)

    2014-01-01

    textabstractCoronaviruses can cause respiratory and enteric disease in a wide variety of human and animal hosts. The 2003 outbreak of severe acute respiratory syndrome (SARS) first demonstrated the potentially lethal consequences of zoonotic coronavirus infections in humans. In 2012, a similar previ

  6. Coronavirus bovino: Infecciones neumoentéricas (Bovine coronavirus:Neumoenteric infections

    Directory of Open Access Journals (Sweden)

    Betancourt, Martell, Alexander|

    2006-12-01

    Full Text Available Coronavirus bovino (BCoV es reconocido como un importante agente patógeno del ganado bovino, el cual está asociado a tres síndromes clínicos diferentes, Síndrome diarreico neonatal del ternero, caracterizado en terneros recién nacidos por diarreas líquidas profusas, en ocasiones hemorrágicas, anorexia, deshidratación y frecuentemente la muerte; Disentería de Invierno, la cual ocurre primariamente en bovinos adultos y cursa con severas diarreas, algunas veces con restos de sangre y mucus, decrecimiento de laproducción láctea, depresión, anorexia y descargas nasolagrimales; y finalmente como causa de infecciones respiratorias en vacas, incluida la Fiebre de Embarque. En todos los casos el diagnóstico requiere deensayos de laboratorio para la confirmación de BCoV, debido que resulta imposible su reconocimiento basado en elementos clínicos y anatomopatológicos por su similitud con otras enfermedades. Hasta elmomento todos los aislados de BCoV, tanto de cuadros entéricos como respiratorios pertenecen a un solo serotipo, pero con dos o tres subtipos identificados por seroneutralización empleando anticuerposmonoclonales. En adición, diferencias genéticas (por mutaciones puntuales, no delecciones han sido detectadas en el gen S, diferenciando entre aislados entéricos y respiratorios. No obstante, numerosos experimentos han demostrado la protección cruzada experimentada por terneros recién nacidos, privados de calostro ygnotobióticos, inoculados con aislados de BCoV obtenidos a partir de cuadros entéricos y respiratorios de terneros y bovinos adultos, los cuales resultaron protegidos al desafío subsiguiente con cepas de BCoV asociadas a diarrea.

  7. SARS-CoV-Encoded Small RNAs Contribute to Infection-Associated Lung Pathology.

    Science.gov (United States)

    Morales, Lucía; Oliveros, Juan Carlos; Fernandez-Delgado, Raúl; tenOever, Benjamin Robert; Enjuanes, Luis; Sola, Isabel

    2017-03-08

    Severe acute respiratory syndrome coronavirus (SARS-CoV) causes lethal disease in humans, which is characterized by exacerbated inflammatory response and extensive lung pathology. To address the relevance of small non-coding RNAs in SARS-CoV pathology, we deep sequenced RNAs from the lungs of infected mice and discovered three 18-22 nt small viral RNAs (svRNAs). The three svRNAs were derived from the nsp3 (svRNA-nsp3.1 and -nsp3.2) and N (svRNA-N) genomic regions of SARS-CoV. Biogenesis of CoV svRNAs was RNase III, cell type, and host species independent, but it was dependent on the extent of viral replication. Antagomir-mediated inhibition of svRNA-N significantly reduced in vivo lung pathology and pro-inflammatory cytokine expression. Taken together, these data indicate that svRNAs contribute to SARS-CoV pathogenesis and highlight the potential of svRNA-N antagomirs as antivirals. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Functional genomics highlights differential induction of antiviral pathways in the lungs of SARS-CoV-infected macaques.

    Directory of Open Access Journals (Sweden)

    Anna de Lang

    2007-08-01

    Full Text Available The pathogenesis of severe acute respiratory syndrome coronavirus (SARS-CoV is likely mediated by disproportional immune responses and the ability of the virus to circumvent innate immunity. Using functional genomics, we analyzed early host responses to SARS-CoV infection in the lungs of adolescent cynomolgus macaques (Macaca fascicularis that show lung pathology similar to that observed in human adults with SARS. Analysis of gene signatures revealed induction of a strong innate immune response characterized by the stimulation of various cytokine and chemokine genes, including interleukin (IL-6, IL-8, and IP-10, which corresponds to the host response seen in acute respiratory distress syndrome. As opposed to many in vitro experiments, SARS-CoV induced a wide range of type I interferons (IFNs and nuclear translocation of phosphorylated signal transducer and activator of transcription 1 in the lungs of macaques. Using immunohistochemistry, we revealed that these antiviral signaling pathways were differentially regulated in distinctive subsets of cells. Our studies emphasize that the induction of early IFN signaling may be critical to confer protection against SARS-CoV infection and highlight the strength of combining functional genomics with immunohistochemistry to further unravel the pathogenesis of SARS.

  9. Palmitoylations on murine coronavirus spike proteins are essential for virion assembly and infectivity.

    Science.gov (United States)

    Thorp, Edward B; Boscarino, Joseph A; Logan, Hillary L; Goletz, Jeffrey T; Gallagher, Thomas M

    2006-02-01

    Coronavirus spike (S) proteins are palmitoylated at several cysteine residues clustered near their transmembrane-spanning domains. This is achieved by cellular palmitoyl acyltransferases (PATs), which can modify newly synthesized S proteins before they are assembled into virion envelopes at the intermediate compartment of the exocytic pathway. To address the importance of these fatty acylations to coronavirus infection, we exposed infected cells to 2-bromopalmitate (2-BP), a specific PAT inhibitor. 2-BP profoundly reduced the specific infectivities of murine coronaviruses at very low, nontoxic doses that were inert to alphavirus and rhabdovirus infections. 2-BP effected only two- to fivefold reductions in S palmitoylation, yet this correlated with reduced S complexing with virion membrane (M) proteins and consequent exclusion of S from virions. At defined 2-BP doses, underpalmitoylated S proteins instead trafficked to infected cell surfaces and elicited cell-cell membrane fusions, suggesting that the acyl chain adducts are more critical to virion assembly than to S-induced syncytial developments. These studies involving pharmacologic inhibition of S protein palmitoylation were complemented with molecular genetic analyses in which cysteine acylation substrates were mutated. Notably, some mutations (C1347F and C1348S) did not interfere with S incorporation into virions, indicating that only a subset of the cysteine-rich region provides the essential S-assembly functions. However, the C1347F/C1348S mutant viruses exhibited relatively low specific infectivities, similar to virions secreted from 2-BP-treated cultures. Our collective results indicate that the palmitate adducts on coronavirus S proteins are necessary in assembly and also in positioning the assembled envelope proteins for maximal infectivity.

  10. MicroRNome analysis unravels the molecular basis of SARS infection in bronchoalveolar stem cells.

    Directory of Open Access Journals (Sweden)

    Bibekanand Mallick

    Full Text Available Severe acute respiratory syndrome (SARS, caused by the coronavirus SARS-CoV, is an acute infectious disease with significant mortality. A typical clinical feature associated with SARS is pulmonary fibrosis and associated lung failure. In the aftermath of the SARS epidemic, although significant progress towards understanding the underlying molecular mechanism of the infection has been made, a large gap still remains in our knowledge regarding how SARS-CoV interacts with the host cell at the onset of infection. The rapidly changing viral genome adds another variable to this equation. We have focused on a novel concept of microRNA (miRNA-mediated host-virus interactions in bronchoalveolar stem cells (BASCs at the onset of infection by correlating the "BASC-microRNome" with their targets within BASCs and viral genome. This work encompasses miRNA array data analysis, target prediction, and miRNA-mRNA enrichment analysis and develops a complex interaction map among disease-related factors, miRNAs, and BASCs in SARS pathway, which will provide some clues for diagnostic markers to view an overall interplay leading to disease progression. Our observation reveals the BASCs (Sca-1+ CD34+ CD45- Pecam-, a subset of Oct-4+ ACE2+ epithelial colony cells at the broncho-alveolar duct junction, to be the prime target cells of SARS-CoV infection. Upregulated BASC miRNAs-17*, -574-5p, and -214 are co-opted by SARS-CoV to suppress its own replication and evade immune elimination until successful transmission takes place. Viral Nucleocapsid and Spike protein targets seem to co-opt downregulated miR-223 and miR-98 respectively within BASCs to control the various stages of BASC differentiation, activation of inflammatory chemokines, and downregulation of ACE2. All these effectively accounts for a successful viral transmission and replication within BASCs causing continued deterioration of lung tissues and apparent loss of capacity for lung repair. Overall, this

  11. SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex.

    Science.gov (United States)

    Chen, Xiaojuan; Yang, Xingxing; Zheng, Yang; Yang, Yudong; Xing, Yaling; Chen, Zhongbin

    2014-05-01

    SARS coronavirus (SARS-CoV) develops an antagonistic mechanism by which to evade the antiviral activities of interferon (IFN). Previous studies suggested that SARS-CoV papain-like protease (PLpro) inhibits activation of the IRF3 pathway, which would normally elicit a robust IFN response, but the mechanism(s) used by SARS PLpro to inhibit activation of the IRF3 pathway is not fully known. In this study, we uncovered a novel mechanism that may explain how SARS PLpro efficiently inhibits activation of the IRF3 pathway. We found that expression of the membrane-anchored PLpro domain (PLpro-TM) from SARS-CoV inhibits STING/TBK1/IKKε-mediated activation of type I IFNs and disrupts the phosphorylation and dimerization of IRF3, which are activated by STING and TBK1. Meanwhile, we showed that PLpro-TM physically interacts with TRAF3, TBK1, IKKε, STING, and IRF3, the key components that assemble the STING-TRAF3-TBK1 complex for activation of IFN expression. However, the interaction between the components in STING-TRAF3-TBK1 complex is disrupted by PLpro-TM. Furthermore, SARS PLpro-TM reduces the levels of ubiquitinated forms of RIG-I, STING, TRAF3, TBK1, and IRF3 in the STING-TRAF3-TBK1 complex. These results collectively point to a new mechanism used by SARS-CoV through which PLpro negatively regulates IRF3 activation by interaction with STING-TRAF3-TBK1 complex, yielding a SARS-CoV countermeasure against host innate immunity.

  12. Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV

    Science.gov (United States)

    Liu, Ye V.; Massare, Michael J.; Barnard, Dale L.; Kort, Thomas; Nathan, Margret; Wang, Lei; Smith, Gale

    2011-01-01

    SARS-CoV was the cause of the global pandemic in 2003 that infected over 8000 people in 8 months. Vaccines against SARS are still not available. We developed a novel method to produce high levels of a recombinant SARS virus-like particles (VLPs) vaccine containing the SARS spike (S) protein and the influenza M1 protein using the baculovirus insect cell expression system. These chimeric SARS VLPs have a similar size and morphology to the wild type SARS-CoV. We tested the immunogenicity and protective efficacy of purified chimeric SARS VLPs and full length SARS S protein vaccines in a mouse lethal challenge model. The SARS VLP vaccine, containing 0.8 μg of SARS S protein, completely protected mice from death when administered intramuscular (IM) or intranasal (IN) routes in the absence of an adjuvant. Likewise, the SARS VLP vaccine, containing 4 μg of S protein without adjuvant, reduced lung virus titer to below detectable level, protected mice from weight loss, and elicited a high level of neutralizing antibodies against SARS-CoV. Sf9 cell-produced full length purified SARS S protein was also an effective vaccine against SARS-CoV but only when co-administered IM with aluminum hydroxide. SARS-CoV VLPs are highly immunogenic and induce neutralizing antibodies and provide protection against lethal challenge. Sf9 cell-based VLP vaccines are a potential tool to provide protection against novel pandemic agents. PMID:21762752

  13. Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus.

    Science.gov (United States)

    Zielecki, Florian; Weber, Michaela; Eickmann, Markus; Spiegelberg, Larissa; Zaki, Ali Moh; Matrosovich, Mikhail; Becker, Stephan; Weber, Friedemann

    2013-05-01

    Infections with human coronavirus EMC (HCoV-EMC) are associated with severe pneumonia. We demonstrate that HCoV-EMC resembles severe acute respiratory syndrome coronavirus (SARS-CoV) in productively infecting primary and continuous cells of the human airways and in preventing the induction of interferon regulatory factor 3 (IRF-3)-mediated antiviral alpha/beta interferon (IFN-α/β) responses. However, HCoV-EMC was markedly more sensitive to the antiviral state established by ectopic IFN. Thus, HCoV-EMC can utilize a broad range of human cell substrates and suppress IFN induction, but it does not reach the IFN resistance of SARS-CoV.

  14. Structure of a SARS coronavirus-derived peptide bound to the human major histocompatibility complex class I molecule HLA-B*1501

    DEFF Research Database (Denmark)

    Røder, Gustav; Kristensen, Ole; Kastrup, Jette S;

    2008-01-01

    , the crystal structure of HLA-B*1501 in complex with a SARS coronavirus-derived nonapeptide (VQQESSFVM) has been determined at high resolution (1.87 A). The peptide is deeply anchored in the B and F pockets, but with the Glu4 residue pointing away from the floor in the peptide-binding groove, making......The human leukocyte antigen (HLA) class I system comprises a highly polymorphic set of molecules that specifically bind and present peptides to cytotoxic T cells. HLA-B*1501 is a prototypical member of the HLA-B62 supertype and only two peptide-HLA-B*1501 structures have been determined. Here...

  15. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice.

    Science.gov (United States)

    Channappanavar, Rudragouda; Fehr, Anthony R; Vijay, Rahul; Mack, Matthias; Zhao, Jincun; Meyerholz, David K; Perlman, Stanley

    2016-02-10

    Highly pathogenic human respiratory coronaviruses cause acute lethal disease characterized by exuberant inflammatory responses and lung damage. However, the factors leading to lung pathology are not well understood. Using mice infected with SARS (severe acute respiratory syndrome)-CoV, we show that robust virus replication accompanied by delayed type I interferon (IFN-I) signaling orchestrates inflammatory responses and lung immunopathology with diminished survival. IFN-I remains detectable until after virus titers peak, but early IFN-I administration ameliorates immunopathology. This delayed IFN-I signaling promotes the accumulation of pathogenic inflammatory monocyte-macrophages (IMMs), resulting in elevated lung cytokine/chemokine levels, vascular leakage, and impaired virus-specific T cell responses. Genetic ablation of the IFN-αβ receptor (IFNAR) or IMM depletion protects mice from lethal infection, without affecting viral load. These results demonstrate that IFN-I and IMM promote lethal SARS-CoV infection and identify IFN-I and IMMs as potential therapeutic targets in patients infected with pathogenic coronavirus and perhaps other respiratory viruses. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Efficient and Quick Inactivation of SARS Coronavirus and Other Microbes Exposed to the Surfaces of Some Metal Catalysts

    Institute of Scientific and Technical Information of China (English)

    JUN HAN; LAN CHEN; SHU-MIN DUAN; QING-XIANG YANG; MIN YANG; CHEN GAO; BAO-YUN ZHANG; HONG HE; XIAO-PING DONG

    2005-01-01

    Objective To study the two metal catalysts Ag/Al2O3 and Cu/Al2O3 that interdict the transmission pathway for SARS and other respiratory infectious diseases. Methods Two metal catalysts Ag/Al2O3 and Cu/Al2O3 were pressed into wafers. One hundred μL 106 TCID50/mL SARS-CoV, 100 μL 106 PFU/mL recombinant baculovirus expressing hamster's prion protein (haPrP) protein and roughly 106 E. coli were slowly dropped onto the surfaces of the catalyst wafers and exposed for 5 and 20 min, respectively. After eluted from the surfaces of wafers, the infectivity of viruses and propagation of bacteria were measured. The expression of PrP protein was determined by Western blot. The morphological changes of bacteria were observed by electronic microscopy. Results After exposure to the catalysts surfaces for 5 and 20 min, the infectivity of SARS-CoV in Vero cells and baculovirus in Sf9 cells dropped down to a very low and undetectable level, and no colony was detected using bacteria culture method. The expression of haPrP protein reduced to 21.8% in the preparation of Sf9 cells infected with recombinant baculovirus exposed for 5 min and was undetectable exposed for 20 min. Bacterial membranes seemed to be cracked and the cytoplasm seemed to be effluent from cell bodies. Conclusion Exposures to the surfaces of Ag/Al2O3 and Cu/Al2O3 destroy the replication and propagation abilities of SARS-CoV, baculovirus and E. coli. Inactivation ability of metal catalysts needs to interact with air, utilizing oxygen molecules in air. Efficiently killing viruses and bacteria on the surfaces of the two metal catalysts has a promising potential for air-disinfection in hospitals, communities, and households.

  17. SARS Coronavirus Papain-Like Protease Inhibits the TLR7 Signaling Pathway through Removing Lys63-Linked Polyubiquitination of TRAF3 and TRAF6.

    Science.gov (United States)

    Li, Shih-Wen; Wang, Ching-Ying; Jou, Yu-Jen; Huang, Su-Hua; Hsiao, Li-Hsin; Wan, Lei; Lin, Ying-Ju; Kung, Szu-Hao; Lin, Cheng-Wen

    2016-05-05

    Severe acute respiratory syndrome coronavirus (SARS-CoV) papain-like protease (PLPro) reportedly inhibits the production of type I interferons (IFNs) and pro-inflammatory cytokines in Toll-like receptor 3 (TLR3) and retinoic acid-inducible gene 1 (RIG-I) pathways. The study investigated the inhibitory effect and its antagonistic mechanism of SARS-CoV PLPro on TLR7-mediated cytokine production. TLR7 agonist (imiquimod (IMQ)) concentration-dependently induced activation of ISRE-, NF-κB- and AP-1-luciferase reporters, as well as the production of IFN-α, IFN-β, TNF-α, IL-6 and IL-8 in human promonocyte cells. However, SARS-CoV PLPro significantly inhibited IMQ-induced cytokine production through suppressing the activation of transcription factors IRF-3, NF-κB and AP-1. Western blot analysis with anti-Lys48 and anti-Lys63 ubiquitin antibodies indicated the SARS-CoV PLPro removed Lys63-linked ubiquitin chains of TRAF3 and TRAF6, but not Lys48-linked ubiquitin chains in un-treated and treated cells. The decrease in the activated state of TRAF3 and TRAF6 correlated with the inactivation of TBK1 in response to IMQ by PLPro. The results revealed that the antagonism of SARS-CoV PLPro on TLR7-mediated innate immunity was associated with the negative regulation of TRAF3/6-TBK1-IRF3/NF-κB/AP1 signals.

  18. Characterization of human coronavirus etiology in Chinese adults with acute upper respiratory tract infection by real-time RT-PCR assays.

    Directory of Open Access Journals (Sweden)

    Roujian Lu

    Full Text Available BACKGROUND: In addition to SARS associated coronaviruses, 4 non-SARS related human coronaviruses (HCoVs are recognized as common respiratory pathogens. The etiology and clinical impact of HCoVs in Chinese adults with acute upper respiratory tract infection (URTI needs to be characterized systematically by molecular detection with excellent sensitivity. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we detected 4 non-SARS related HCoV species by real-time RT-PCR in 981 nasopharyngeal swabs collected from March 2009 to February 2011. All specimens were also tested for the presence of other common respiratory viruses and newly identified viruses, human metapneumovirus (hMPV and human bocavirus (HBoV. 157 of the 981 (16.0% nasopharyngeal swabs were positive for HCoVs. The species detected were 229E (96 cases, 9.8%, OC43 (42 cases, 4.3%, HKU1 (16 cases, 1.6% and NL63 (11 cases, 1.1%. HCoV-229E was circulated in 21 of the 24 months of surveillance. The detection rates for both OC43 and NL63 were showed significantly year-to-year variation between 2009/10 and 2010/11, respectively (P<0.001 and P = 0.003, and there was a higher detection frequency of HKU1 in patients aged over 60 years (P = 0.03. 48 of 157(30.57% HCoV positive patients were co-infected. Undifferentiated human rhinoviruses and influenza (Flu A were the most common viruses detected (more than 35% in HCoV co-infections. Respiratory syncytial virus (RSV, human parainfluenza virus (PIV and HBoV were detected in very low rate (less than 1% among adult patients with URTI. CONCLUSIONS/SIGNIFICANCE: All 4 non-SARS-associated HCoVs were more frequently detected by real-time RT-PCR assay in adults with URTI in Beijing and HCoV-229E led to the most prevalent infection. Our study also suggested that all non-SARS-associated HCoVs contribute significantly to URTI in adult patients in China.

  19. Protease Inhibitors Targeting Coronavirus and Filovirus Entry

    Science.gov (United States)

    Zhou, Yanchen; Vedantham, Punitha; Lu, Kai; Agudelo, Juliet; Carrion, Ricardo; Nunneley, Jerritt W.; Barnard, Dale; Pöhlmann, Stefan; McKerrow, James H.; Renslo, Adam R.; Simmons, Graham

    2016-01-01

    In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess, whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and

  20. T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV.

    Science.gov (United States)

    Liu, William J; Zhao, Min; Liu, Kefang; Xu, Kun; Wong, Gary; Tan, Wenjie; Gao, George F

    2017-01-01

    Over 12 years have elapsed since severe acute respiratory syndrome (SARS) triggered the first global alert for coronavirus infections. Virus transmission in humans was quickly halted by public health measures and human infections of SARS coronavirus (SARS-CoV) have not been observed since. However, other coronaviruses still pose a continuous threat to human health, as exemplified by the recent emergence of Middle East respiratory syndrome (MERS) in humans. The work on SARS-CoV widens our knowledge on the epidemiology, pathophysiology and immunology of coronaviruses and may shed light on MERS coronavirus (MERS-CoV). It has been confirmed that T-cell immunity plays an important role in recovery from SARS-CoV infection. Herein, we summarize T-cell immunological studies of SARS-CoV and discuss the potential cross-reactivity of the SARS-CoV-specific immunity against MERS-CoV, which may provide useful recommendations for the development of broad-spectrum vaccines against coronavirus infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Transmission of Middle East Respiratory Syndrome Coronavirus Infections in Healthcare Settings, Abu Dhabi

    Science.gov (United States)

    Nguyen, Duc; Aden, Bashir; Al Bandar, Zyad; Al Dhaheri, Wafa; Abu Elkheir, Kheir; Khudair, Ahmed; Al Mulla, Mariam; El Saleh, Feda; Imambaccus, Hala; Al Kaabi, Nawal; Sheikh, Farrukh Amin; Sasse, Jurgen; Turner, Andrew; Abdel Wareth, Laila; Weber, Stefan; Al Ameri, Asma; Abu Amer, Wesal; Alami, Negar N.; Bunga, Sudhir; Haynes, Lia M.; Hall, Aron J.; Kallen, Alexander J.; Kuhar, David; Pham, Huong; Pringle, Kimberly; Tong, Suxiang; Whitaker, Brett L.; Gerber, Susan I.; Al Hosani, Farida Ismail

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) infections sharply increased in the Arabian Peninsula during spring 2014. In Abu Dhabi, United Arab Emirates, these infections occurred primarily among healthcare workers and patients. To identify and describe epidemiologic and clinical characteristics of persons with healthcare-associated infection, we reviewed laboratory-confirmed MERS-CoV cases reported to the Health Authority of Abu Dhabi during January 1, 2013–May 9, 2014. Of 65 case-patients identified with MERS-CoV infection, 27 (42%) had healthcare-associated cases. Epidemiologic and genetic sequencing findings suggest that 3 healthcare clusters of MERS-CoV infection occurred, including 1 that resulted in 20 infected persons in 1 hospital. MERS-CoV in healthcare settings spread predominantly before MERS-CoV infection was diagnosed, underscoring the importance of increasing awareness and infection control measures at first points of entry to healthcare facilities. PMID:26981708

  2. Transmission of Middle East Respiratory Syndrome Coronavirus Infections in Healthcare Settings, Abu Dhabi.

    Science.gov (United States)

    Hunter, Jennifer C; Nguyen, Duc; Aden, Bashir; Al Bandar, Zyad; Al Dhaheri, Wafa; Abu Elkheir, Kheir; Khudair, Ahmed; Al Mulla, Mariam; El Saleh, Feda; Imambaccus, Hala; Al Kaabi, Nawal; Sheikh, Farrukh Amin; Sasse, Jurgen; Turner, Andrew; Abdel Wareth, Laila; Weber, Stefan; Al Ameri, Asma; Abu Amer, Wesal; Alami, Negar N; Bunga, Sudhir; Haynes, Lia M; Hall, Aron J; Kallen, Alexander J; Kuhar, David; Pham, Huong; Pringle, Kimberly; Tong, Suxiang; Whitaker, Brett L; Gerber, Susan I; Al Hosani, Farida Ismail

    2016-04-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) infections sharply increased in the Arabian Peninsula during spring 2014. In Abu Dhabi, United Arab Emirates, these infections occurred primarily among healthcare workers and patients. To identify and describe epidemiologic and clinical characteristics of persons with healthcare-associated infection, we reviewed laboratory-confirmed MERS-CoV cases reported to the Health Authority of Abu Dhabi during January 1, 2013-May 9, 2014. Of 65 case-patients identified with MERS-CoV infection, 27 (42%) had healthcare-associated cases. Epidemiologic and genetic sequencing findings suggest that 3 healthcare clusters of MERS-CoV infection occurred, including 1 that resulted in 20 infected persons in 1 hospital. MERS-CoV in healthcare settings spread predominantly before MERS-CoV infection was diagnosed, underscoring the importance of increasing awareness and infection control measures at first points of entry to healthcare facilities.

  3. The spike protein of severe acute respiratory syndrome (SARS) is cleaved in virus infected Vero-E6 cells

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Spike protein is one of the major structural proteins of severe acute respiratory syndrome-coronavirus. It is essential for the interaction of the virons with host cell receptors and subsequent fusion of the viral envelop with host cell membrane to allow infection. Some spike proteins of coronavirus, such as MHV, HCoV-OC43, AIBV and BcoV, are proteolytically cleaved into two subunits, S1 and S2. In contrast, TGV, FIPV and HCoV-229E are not. Many studies have shown that the cleavage of spike protein seriously affects its function. In order to investigate the maturation and proteolytic processing of the S protein of SARS CoV, we generated S1 and S2 subunit specific antibodies (Abs) as well as N, E and 3CL protein-specific Abs. Our results showed that the antibodies could efficiently and specifically bind to their corresponding proteins from E. coli expressed or lysate of SARS-CoV infected Vero-E6 cells by Western blot analysis. Furthermore, the anti-S 1 and S2 Abs were proved to be capable of binding to SARS CoV under electron microscope observation. When S2 Ab was used to perform immune precipitation with lysate of SARS-CoV infected cells, a cleaved S2 fragment was detected with S2-specific mAb by Western blot analysis. The data demonstrated that the cleavage of S protein was observed in the lysate, indicating that proteolytic processing of S protein is present in host cells.

  4. Quarantine protects Falkland Islands (Malvinas) cats from feline coronavirus infection.

    Science.gov (United States)

    Addie, Diane D; McDonald, Mike; Audhuy, Stéphane; Burr, Paul; Hollins, Jonathan; Kovacic, Rémi; Lutz, Hans; Luxton, Zoe; Mazar, Shlomit; Meli, Marina L

    2012-02-01

    Feline coronavirus (FCoV) causes feline infectious peritonitis (FIP). Since 2002, when 20 cats on the Falkland Islands were found to be FCoV seronegative, only seronegative cats could be imported. Between 2005-2007, 95 pet and 10 feral cats tested negative by indirect immunofluorescence antibody (IFA) analysis using two strains of type II FCoV, two transmissible gastroenteritis virus assays, an enzyme-linked immunosorbent assay and rapid immunomigration test. Twenty-four samples (23%) showed non-specific fluorescence, mostly attributable to anti-nuclear antibodies (ANA). The reason for ANA was unclear: reactive samples were negative for Erhlichia canis antibodies; seven were feline immunodeficiency virus positive, but 15 were negative. It was not possible to determine retrospectively whether the cats had autoimmune disease, hyperthyroidism treatment, or recent vaccination which may also cause ANA. The FCoV/ FIP-free status of the Falkland Islands cats should be maintained by FCoV testing incoming cats. However, ANA can complicate interpretation of IFA tests.

  5. Suppression of Coronavirus Replication by Cyclophilin Inhibitors

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2013-05-01

    Full Text Available Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS, feline infectious peritonitis (FIP, mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA, could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication.

  6. SARS coronavirus papain-like protease induces Egr-1-dependent up-regulation of TGF-β1 via ROS/p38 MAPK/STAT3 pathway.

    Science.gov (United States)

    Li, Shih-Wein; Wang, Ching-Ying; Jou, Yu-Jen; Yang, Tsuey-Ching; Huang, Su-Hua; Wan, Lei; Lin, Ying-Ju; Lin, Cheng-Wen

    2016-05-13

    SARS coronavirus (SARS-CoV) papain-like protease (PLpro) has been identified in TGF-β1 up-regulation in human promonocytes (Proteomics 2012, 12: 3193-205). This study investigates the mechanisms of SARS-CoV PLpro-induced TGF-β1 promoter activation in human lung epithelial cells and mouse models. SARS-CoV PLpro dose- and time-dependently up-regulates TGF-β1 and vimentin in A549 cells. Dual luciferase reporter assays with TGF-β1 promoter plasmids indicated that TGF-β1 promoter region between -175 to -60, the Egr-1 binding site, was responsible for TGF-β1 promoter activation induced by SARS-CoV PLpro. Subcellular localization analysis of transcription factors showed PLpro triggering nuclear translocation of Egr-1, but not NF-κB and Sp-1. Meanwhile, Egr-1 silencing by siRNA significantly reduced PLpro-induced up-regulation of TGF-β1, TSP-1 and pro-fibrotic genes. Furthermore, the inhibitors for ROS (YCG063), p38 MAPK (SB203580), and STAT3 (Stattic) revealed ROS/p38 MAPK/STAT3 pathway involving in Egr-1 dependent activation of TGF-β1 promoter induced by PLpro. In a mouse model with a direct pulmonary injection, PLpro stimulated macrophage infiltration into lung, up-regulating Egr-1, TSP-1, TGF-β1 and vimentin expression in lung tissues. The results revealed that SARS-CoV PLpro significantly triggered Egr-1 dependent activation of TGF-β1 promoter via ROS/p38 MAPK/STAT3 pathway, correlating with up-regulation of pro-fibrotic responses in vitro and in vivo.

  7. Prophylactic and therapeutic intranasal administration with an immunomodulator, Hiltonol(®) (Poly IC:LC), in a lethal SARS-CoV-infected BALB/c mouse model.

    Science.gov (United States)

    Kumaki, Yohichi; Salazar, Andres M; Wandersee, Miles K; Barnard, Dale L

    2017-03-01

    Hiltonol(®), (Poly IC:LC), a potent immunomodulator, is a synthetic, double-stranded polyriboinosinic-polyribocytidylic acid (poly IC) stabilized with Poly-L-lysine and carboxymethyl cellulose (LC). Hiltonol(®) was tested for efficacy in a lethal SARS-CoV-infected BALB/c mouse model. Hiltonol(®) at 5, 1, 0.5 or 0.25 mg/kg/day by intranasal (i.n.) route resulted in significant survival benefit when administered at selected times 24 h prior to challenge with a lethal dose of mouse-adapted severe acute respiratory syndrome coronavirus (SARS-CoV). The infected BALB/c mice receiving the Hiltonol(®) treatments were also significantly effective in protecting mice against weight loss due to infection (p SARS-CoV infection in mice leads to substantial prophylactic and therapeutic effects and could be used for treatment of other virus disease such as those caused by MERS-CoV a related coronavirus. These properties might be therapeutically advantageous if Hiltonol(®) is considered for possible clinical use. Published by Elsevier B.V.

  8. Coronavirus Genomics and Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Kwok-Yung Yuen

    2010-08-01

    Full Text Available The drastic increase in the number of coronaviruses discovered and coronavirus genomes being sequenced have given us an unprecedented opportunity to perform genomics and bioinformatics analysis on this family of viruses. Coronaviruses possess the largest genomes (26.4 to 31.7 kb among all known RNA viruses, with G + C contents varying from 32% to 43%. Variable numbers of small ORFs are present between the various conserved genes (ORF1ab, spike, envelope, membrane and nucleocapsid and downstream to nucleocapsid gene in different coronavirus lineages. Phylogenetically, three genera, Alphacoronavirus, Betacoronavirus and Gammacoronavirus, with Betacoronavirus consisting of subgroups A, B, C and D, exist. A fourth genus, Deltacoronavirus, which includes bulbul coronavirus HKU11, thrush coronavirus HKU12 and munia coronavirus HKU13, is emerging. Molecular clock analysis using various gene loci revealed that the time of most recent common ancestor of human/civet SARS related coronavirus to be 1999-2002, with estimated substitution rate of 4´10-4 to 2´10-2 substitutions per site per year. Recombination in coronaviruses was most notable between different strains of murine hepatitis virus (MHV, between different strains of infectious bronchitis virus, between MHV and bovine coronavirus, between feline coronavirus (FCoV type I and canine coronavirus generating FCoV type II, and between the three genotypes of human coronavirus HKU1 (HCoV-HKU1. Codon usage bias in coronaviruses were observed, with HCoV-HKU1 showing the most extreme bias, and cytosine deamination and selection of CpG suppressed clones are the two major independent biological forces that shape such codon usage bias in coronaviruses.

  9. SARS Coronavirus Papain-Like Protease Inhibits the TLR7 Signaling Pathway through Removing Lys63-Linked Polyubiquitination of TRAF3 and TRAF6

    Directory of Open Access Journals (Sweden)

    Shih-Wen Li

    2016-05-01

    Full Text Available Severe acute respiratory syndrome coronavirus (SARS-CoV papain-like protease (PLPro reportedly inhibits the production of type I interferons (IFNs and pro-inflammatory cytokines in Toll-like receptor 3 (TLR3 and retinoic acid-inducible gene 1 (RIG-I pathways. The study investigated the inhibitory effect and its antagonistic mechanism of SARS-CoV PLPro on TLR7-mediated cytokine production. TLR7 agonist (imiquimod (IMQ concentration-dependently induced activation of ISRE-, NF-κB- and AP-1-luciferase reporters, as well as the production of IFN-α, IFN-β, TNF-α, IL-6 and IL-8 in human promonocyte cells. However, SARS-CoV PLPro significantly inhibited IMQ-induced cytokine production through suppressing the activation of transcription factors IRF-3, NF-κB and AP-1. Western blot analysis with anti-Lys48 and anti-Lys63 ubiquitin antibodies indicated the SARS-CoV PLPro removed Lys63-linked ubiquitin chains of TRAF3 and TRAF6, but not Lys48-linked ubiquitin chains in un-treated and treated cells. The decrease in the activated state of TRAF3 and TRAF6 correlated with the inactivation of TBK1 in response to IMQ by PLPro. The results revealed that the antagonism of SARS-CoV PLPro on TLR7-mediated innate immunity was associated with the negative regulation of TRAF3/6-TBK1-IRF3/NF-κB/AP1 signals.

  10. SARS coronavirus papain-like protease up-regulates the collagen expression through non-Samd TGF-β1 signaling.

    Science.gov (United States)

    Wang, Ching-Ying; Lu, Chien-Yi; Li, Shih-Wen; Lai, Chien-Chen; Hua, Chun-Hung; Huang, Su-Hua; Lin, Ying-Ju; Hour, Mann-Jen; Lin, Cheng-Wen

    2017-05-02

    SARS coronavirus (CoV) papain-like protease (PLpro) reportedly induced the production of TGF-β1 through p38 MAPK/STAT3-meidated Egr-1-dependent activation (Sci. Rep. 6, 25754). This study investigated the correlation of PLpro-induced TGF-β1 with the expression of Type I collagen in human lung epithelial cells and mouse pulmonary tissues. Specific inhibitors for TGF-βRI, p38 MAPK, MEK, and STAT3 proved that SARS-CoV PLpro induced TGF-β1-dependent up-regulation of Type I collagen in vitro and in vivo. Subcellular localization analysis of SMAD3 and SMAD7 indicated that non-SMAD pathways in TGF-β1 signaling involved in the production of Type I collagen in transfected cells with pSARS-PLpro. Comprehensive analysis of ubiquitin-conjugated proteins using immunoprecipitation and nanoLC-MS/MS indicated that SARS-CoV PLpro caused the change in the ubiquitination profile of Rho GTPase family proteins, in which linked with the increase of Rho-like GTPase family proteins. Moreover, selective inhibitors TGF-βRI and STAT6 (AS1517499) ascertained that STAT6 activation was required for PLpro-induced TGF-β1-dependent up-regulation of Type I collagen in human lung epithelial cells. The results showed that SARS-CoV PLpro stimulated TGF-β1-dependent expression of Type I collagen via activating STAT6 pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A meta-analysis to evaluate the effectiveness of real-time PCR for diagnosing novel coronavirus infections.

    Science.gov (United States)

    Lin, C; Ye, R; Xia, Y L

    2015-12-02

    Novel coronavirus (nCoV) belongs to the Coronaviridae family, which includes the virus that causes SARS, or severe acute respiratory syndrome. However, infection source, transmission route, and host of nCoV have not yet been thoroughly characterized. In some cases, nCoV presented a limited person-to-person transmission. Therefore, early diagnosis of nCoV may be of importance for reducing the spread of disease in public. Methods for nCoV diagnosis involve smear dyeing inspection, culture identification, and real-time PCR detection, all of which are proved highly effective. Here, we performed a meta-analysis to evaluate the effectiveness of real-time PCR for diagnosing nCoV infection. Fifteen articles conformed to the inclusion and exclusion criteria for further meta-analysis on the basis of a wide range of publications searched from databases involving PubMed, EMBASE, Web of Science, Medline, ISI. We analyzed the stability and publication bias as well as examined the heterogeneity inspection of real-time PCR detection in contrast to smear staining and culture identification. The fixed-effect model was adopted in our meta-analysis. Our result demonstrated that the combination of real-time PCR and smear diagnostics yielded an odds ratio (OR) = 1.91, 95% confidence interval (CI) = 1.51-2.41, Z = 5.43, P real-time PCR and culture identification yielded OR = 2.44, 95%CI = 1.77-3.37, Z = 5.41, P real-time PCR as an efficient method that offers an auxiliary support for future nCoV diagnosis.

  12. A Review of Coronavirus Infections in Avain%禽源冠状病毒感染情况概述

    Institute of Scientific and Technical Information of China (English)

    庄青叶; 陈继明; 王楷宬

    2015-01-01

    Based on epidemiological investigation,surveillance,gene analysis of coronaviruses in birds in the world,coronavirus infections and the related diseases in avian were summarized in this paper. Avian-origin coronavirus has a very complex population with abundant diversity,involving viruses in Gammacoronavirus and Deltacoronavirus at least. Avian infectious bronchitis virus existed and was endemic in almost all chicken-producing countries. Turkey coronavirus,duck coronavirus,goose coronavirus,pigeon coronavirus were already detected in avian and some of these were pandemic. A few other Deltacoronavirus were only detected in wildfowl .%以国内外对冠状病毒在禽类中的流行病学调查、监测和基因分析等研究报道为基础,从病毒分类学角度,对各“种”冠状病毒在禽类中的感染情况和引起的相关疾病进行简要概述。全球在禽类中发现的冠状病毒种类较多,至少涉及丙型和丁型冠状病毒属。其中,鸡传染性支气管炎病毒几乎在全球所有养鸡国家中存在,并呈地方性流行;火鸡冠状病毒、鸭冠状病毒、鹅冠状病毒、鸽冠状病毒也在禽类中被发现,部分病毒已在禽群中流行;其他丁型冠状病毒属病毒仅在少数野鸟中被发现。

  13. Infection with human coronavirus NL63 enhances streptococcal adherence to epithelial cells

    Science.gov (United States)

    Golda, Anna; Malek, Natalia; Dudek, Bartosz; Zeglen, Slawomir; Wojarski, Jacek; Ochman, Marek; Kucewicz, Ewa; Zembala, Marian

    2011-01-01

    Understanding the mechanisms of augmented bacterial pathogenicity in post-viral infections is the first step in the development of an effective therapy. This study assessed the effect of human coronavirus NL63 (HCoV-NL63) on the adherence of bacterial pathogens associated with respiratory tract illnesses. It was shown that HCoV-NL63 infection resulted in an increased adherence of Streptococcus pneumoniae to virus-infected cell lines and fully differentiated primary human airway epithelium cultures. The enhanced binding of bacteria correlated with an increased expression level of the platelet-activating factor receptor (PAF-R), but detailed evaluation of the bacterium–PAF-R interaction revealed a limited relevance of this process. PMID:21325482

  14. Reference gene selection for quantitative real-time PCR analysis in virus infected cells: SARS corona virus, Yellow fever virus, Human Herpesvirus-6, Camelpox virus and Cytomegalovirus infections

    Directory of Open Access Journals (Sweden)

    Müller Marcel A

    2005-02-01

    Full Text Available Abstract Ten potential reference genes were compared for their use in experiments investigating cellular mRNA expression of virus infected cells. Human cell lines were infected with Cytomegalovirus, Human Herpesvirus-6, Camelpox virus, SARS coronavirus or Yellow fever virus. The expression levels of these genes and the viral replication were determined by real-time PCR. Genes were ranked by the BestKeeper tool, the GeNorm tool and by criteria we reported previously. Ranking lists of the genes tested were tool dependent. However, over all, β-actin is an unsuitable as reference gene, whereas TATA-Box binding protein and peptidyl-prolyl-isomerase A are stable reference genes for expression studies in virus infected cells.

  15. Experimental feline enteric coronavirus infection reveals an aberrant infection pattern and shedding of mutants with impaired infectivity in enterocyte cultures

    Science.gov (United States)

    Desmarets, Lowiese M. B.; Vermeulen, Ben L.; Theuns, Sebastiaan; Conceição-Neto, Nádia; Zeller, Mark; Roukaerts, Inge D. M.; Acar, Delphine D.; Olyslaegers, Dominique A. J.; Van Ranst, Marc; Matthijnssens, Jelle; Nauwynck, Hans J.

    2016-01-01

    Feline infectious peritonitis (FIP) results from mutations in the viral genome during a common feline enteric coronavirus (FECV) infection. Since many virological and immunological data on FECV infections are lacking, the present study investigated these missing links during experimental infection of three SPF cats with FECV strain UCD. Two cats showed mild clinical signs, faecal shedding of infectious virus from 4 dpi, a cell-associated viraemia at inconsistent time points from 5 dpi, a highly neutralising antibody response from 9 dpi, and no major abnormalities in leukocyte numbers. Faecal shedding lasted for 28–56 days, but virus shed during this stage was less infectious in enterocyte cultures and affected by mutations. Remarkably, in the other cat neither clinical signs nor acute shedding were seen, but virus was detected in blood cells from 3 dpi, and shedding of non-enterotropic, mutated viruses suddenly occurred from 14 dpi onwards. Neutralising antibodies arose from 21 dpi. Leukocyte numbers were not different compared to the other cats, except for the CD8+ regulatory T cells. These data indicate that FECV can infect immune cells even in the absence of intestinal replication and raise the hypothesis that the gradual adaptation to these cells can allow non-enterotropic mutants to arise. PMID:26822958

  16. Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin, Urtica dioica agglutinin

    Science.gov (United States)

    Kumaki, Yohichi; Wandersee, Miles K.; Smith, Aaron J.; Zhou, Yanchen; Simmons, Graham; Nelson, Nathan M.; Bailey, Kevin W.; Vest, Zachary G.; Li, Joseph K.-K.; Chan, Paul Kay-Sheung; Smee, Donald F.; Barnard, Dale L.

    2011-01-01

    Urtica dioica agglutinin (UDA) is a small plant monomeric lectin, 8.7 kDa in size, with an N-acetylglucosamine specificity that inhibits viruses from Nidovirales in vitro. In the current study, we first examined the efficacy of UDA on the replication of different SARS-CoV strains in Vero 76 cells. UDA inhibited virus replication in a dose-dependent manner and reduced virus yields of the Urbani strain by 90% at 1.1 ± 0.4 µg/ml in Vero 76 cells. Then, UDA was tested for efficacy in a lethal SARS-CoV-infected BALB/c mouse model. BALB/c mice were infected with two LD50 (575 PFU) of virus for 4 hours before the mice were treated intraperitoneally with UDA at 20, 10, 5 or 0 mg/kg/day for 4 days. Treatment with UDA at 5 mg/kg significantly protected the mice against a lethal infection with mouse-adapted SARS-CoV (pSARS infection in mice leads to a substantial therapeutic effect that protects mice against death and weight loss. Furthermore, the mode of action of UDA in vitro was further investigated using live SARS-CoV Urbani strain virus and retroviral particles pseudotyped with SARS-CoV spike (S). UDA specifically inhibited the replication of live SARS-CoV or SARS-CoV pseudotyped virus when added just before, but not after, adsorption. These data suggested that UDA likely inhibits SARS-CoV infection by targeting early stages of the replication cycle, namely, adsorption or penetration. In addition, we demonstrated that UDA neutralizes the virus infectivity, presumably by binding to the SARS-CoV spike (S) glycoprotein. Finally, the target molecule for inhibition of virus replication was partially characterized. When UDA was exposed to N-acetylglucosamine and then UDA was added to cells just prior to adsorption, UDA did not inhibit the virus infection. These data support the conclusion that UDA might bind to N-acetylglucosamine-like residues present on the glycosylated envelope glycoproteins, thereby preventing virus attachment to cells. PMID:21338626

  17. Differential effect of cholesterol on type I and II feline coronavirus infection.

    Science.gov (United States)

    Takano, Tomomi; Satomi, Yui; Oyama, Yuu; Doki, Tomoyoshi; Hohdatsu, Tsutomu

    2016-01-01

    Feline infectious peritonitis (FIP) is a fatal disease of domestic and wild felidae that is caused by feline coronavirus (FCoV). FCoV has been classified into types I and II. Since type I FCoV infection is dominant in the field, it is necessary to develop antiviral agents and vaccines against type I FCoV infection. However, few studies have been conducted on type I FCoV. Here, we compare the effects of cholesterol on types I and II FCoV infections. When cells were treated methyl-β-cyclodextrin (MβCD) and inoculated with type I FCoV, the infection rate decreased significantly, and the addition of exogenous cholesterol to MβCD-treated cells resulted in the recovery of the infectivity of type I FCoV. Furthermore, exogenous cholesterol increased the infectivity of type I FCoV. In contrast, the addition of MβCD and exogenous cholesterol had little effect on the efficiency of type II FCoV infection. These results strongly suggest that the dependence of infection by types I and II FCoV on cholesterol differs.

  18. Respiratory disease associated with bovine coronavirus infection in cattle herds in Southern Italy.

    Science.gov (United States)

    Decaro, Nicola; Campolo, Marco; Desario, Costantina; Cirone, Francesco; D'Abramo, Maria; Lorusso, Eleonora; Greco, Grazia; Mari, Viviana; Colaianni, Maria Loredana; Elia, Gabriella; Martella, Vito; Buonavoglia, Canio

    2008-01-01

    Four outbreaks of bovine respiratory disease (BRD) associated with bovine coronavirus (BCoV) infection in Italian cattle herds were reported. In 3 outbreaks, BRD was observed only in 2-3-month-old feedlot calves, whereas in the remaining outbreak, lactating cows, heifers, and calves were simultaneously affected. By using reverse transcription polymerase chain reaction (RT-PCR), BCoV RNA was detected in all outbreaks without evidence of concurrent viral pathogens (i.e., bovine respiratory syncytial virus, bovine herpesvirus type 1, bovine viral diarrhea virus, bovine parainfluenza virus). Common bacteria of cattle were recovered only from 2 outbreaks of BRD: Staphylococcus spp. and Proteus mirabilis (outbreak 1) and Mannheimia haemolytica (outbreak 4). A recently established real-time RT-PCR assay showed that viral RNA loads in nasal secretions ranged between 3.10 x 10(2) and 7.50 x 10(7) RNA copies/microl of template. Bovine coronavirus was isolated from respiratory specimens from all outbreaks except outbreak 1, in which real-time RT-PCR found very low viral titers in nasal swabs.

  19. Reovirus, isolated from SARS patients

    Institute of Scientific and Technical Information of China (English)

    DUAN Qing; SONG Lihua; GAN Yonghua; TAN Hua; JIN Baofeng; LI Huiyan; ZUO Tingting; CHEN Dehui; ZHANG Xuemin; ZHU Hong; YANG Yi; LI Weihua; ZHOU Yusen; HE Jun; HE Kun; ZHANG Haojie; ZHOU Tao

    2003-01-01

    Beijing has been severely affected by SARS, and SARS-associated coronavirus has been confirmed as its cause. However, clinical and experimental evidence implicates the possibility of co-infection. In this report, reovirus was isolated from throat swabs of SARS patients, including the first case in Beijing andher mother. Identification with the electron microscopy revealed the characteristic features of reovirus. 24 of 38 samples from other SARS cases were found to have serologic responses to the reovirus. Primers designed for reovirus have amplified several fragments of DNA, one of which was sequenced (S2 gene fragment), which indicates it as a unique reovirus (orthoreovirus). Preliminary animal experiment showed that inoculation of the reovirus in mice caused death with atypical pneumonia. Nevertheless, the association of reovirus with SARS outbreak requires to be further investigated.

  20. The sialic acid binding activity of the S protein facilitates infection by porcine transmissible gastroenteritis coronavirus

    Directory of Open Access Journals (Sweden)

    Enjuanes Luis

    2011-09-01

    Full Text Available Abstract Background Transmissible gastroenteritis virus (TGEV has a sialic acid binding activity that is believed to be important for enteropathogenicity, but that has so far appeared to be dispensable for infection of cultured cells. The aims of this study were to determine the effect of sialic acid binding for the infection of cultured cells under unfavorable conditions, and comparison of TGEV strains and mutants, as well as the avian coronavirus IBV concerning their dependence on the sialic acid binding activity. Methods The infectivity of different viruses was analyzed by a plaque assay after adsorption times of 5, 20, and 60 min. Prior to infection, cultured cells were either treated with neuraminidase to deplete sialic acids from the cell surface, or mock-treated. In a second approach, pre-treatment of the virus with porcine intestinal mucin was performed, followed by the plaque assay after a 5 min adsorption time. A student's t-test was used to verify the significance of the results. Results Desialylation of cells only had a minor effect on the infection by TGEV strain Purdue 46 when an adsorption period of 60 min was allowed for initiation of infection. However, when the adsorption time was reduced to 5 min the infectivity on desialylated cells decreased by more than 60%. A TGEV PUR46 mutant (HAD3 deficient in sialic acid binding showed a 77% lower titer than the parental virus after a 5 min adsorption time. After an adsorption time of 60 min the titer of HAD3 was 58% lower than that of TGEV PUR46. Another TGEV strain, TGEV Miller, and IBV Beaudette showed a reduction in infectivity after neuraminidase treatment of the cultured cells irrespective of the virion adsorption time. Conclusions Our results suggest that the sialic acid binding activity facilitates the infection by TGEV under unfavorable environmental conditions. The dependence on the sialic acid binding activity for an efficient infection differs in the analyzed TGEV strains.

  1. Coronavirus Infections in the Central Nervous System and Respiratory Tract Show Distinct Features in Hospitalized Children.

    Science.gov (United States)

    Li, Yuanyuan; Li, Haipeng; Fan, Ruyan; Wen, Bo; Zhang, Jian; Cao, Xiaoying; Wang, Chengwu; Song, Zhanyi; Li, Shuochi; Li, Xiaojie; Lv, Xinjun; Qu, Xiaowang; Huang, Renbin; Liu, Wenpei

    2016-01-01

    Coronavirus (CoV) infections induce respiratory tract illnesses and central nervous system (CNS) diseases. We aimed to explore the cytokine expression profiles in hospitalized children with CoV-CNS and CoV-respiratory tract infections. A total of 183 and 236 hospitalized children with acute encephalitis-like syndrome and respiratory tract infection, respectively, were screened for anti-CoV IgM antibodies. The expression profiles of multiple cytokines were determined in CoV-positive patients. Anti-CoV IgM antibodies were detected in 22/183 (12.02%) and 26/236 (11.02%) patients with acute encephalitis-like syndrome and respiratory tract infection, respectively. Cytokine analysis revealed that the level of serum granulocyte colony-stimulating factor (G-CSF) was significantly higher in both CoV-CNS and CoV-respiratory tract infection compared with healthy controls. Additionally, the serum level of granulocyte macrophage colony-stimulating factor (GM-CSF) was significantly higher in CoV-CNS infection than in CoV-respiratory tract infection. In patients with CoV-CNS infection, the levels of IL-6, IL-8, MCP-1, and GM-CSF were significantly higher in their cerebrospinal fluid samples than in matched serum samples. To the best of our knowledge, this is the first report showing a high incidence of CoV infection in hospitalized children, especially with CNS illness. The characteristic cytokine expression profiles in CoV infection indicate the importance of host immune response in disease progression. © 2017 S. Karger AG, Basel.

  2. Three-Dimensional Human Bronchial-Tracheal Epithelial Tissue-Like Assemblies (TLAs) as Hosts For Severe Acute Respiratory Syndrome (SARS)-CoV Infection

    Science.gov (United States)

    Suderman, M. T.; McCarthy, M.; Mossell, E.; Watts, D. M.; Peters, C. J.; Shope, R.; Goodwin, T. J.

    2006-01-01

    A three-dimensional (3-D) tissue-like assembly (TLA) of human bronchial-tracheal mesenchymal (HBTC) cells with an overlay of human bronchial epithelial (BEAS-2B) cells was constructed using a NASA Bioreactor to survey the infectivity of SARS-CoV. This TLA was inoculated with a low passage number Urbani strain of SARS-CoV. At selected intervals over a 10-day period, media and cell aliquots of the 3-D TLA were harvested for viral titer assay and for light and electron microscopy examination. All viral titer assays were negative in both BEAS-2B two-dimensional monolayer and TLA. Light microscopy immunohistochemistry demonstrated antigen-antibody reactivity with anti-SARS-CoV polyclonal antibody to spike and nuclear proteins on cell membranes and cytoplasm. Coronavirus Group 2 cross-reactivity was demonstrated by positive reaction to anti-FIPV 1 and anti-FIPV 1 and 2 antibodies. TLA examination by transmission electron microscopy indicated increasing cytoplasmic vacuolation with numerous electron-dense bodies measuring 45 to 270 nm from days 4 through 10. There was no evidence of membrane blebbing, membrane duplication, or fragmentation of organelles in the TLAs. However, progressive disruption of endoplasmic reticulum was observed throughout the cells. Antibody response to SARS-CoV specific spike and nucleocapsid glycoproteins, cross-reactivity with FIPV antibodies, and the cytoplasmic pathology suggests this HBTE TLA model is permissive to SARS-CoV infection.

  3. Use of heliox delivered via high-flow nasal cannula to treat an infant with coronavirus-related respiratory infection and severe acute air-flow obstruction.

    Science.gov (United States)

    Morgan, Sherwin E; Vukin, Kirissa; Mosakowski, Steve; Solano, Patti; Stanton, Lolita; Lester, Lucille; Lavani, Romeen; Hall, Jesse B; Tung, Avery

    2014-11-01

    Heliox, a helium-oxygen gas mixture, has been used for many decades to treat obstructive pulmonary disease. The lower density and higher viscosity of heliox relative to nitrogen-oxygen mixtures can significantly reduce airway resistance when an anatomic upper air-flow obstruction is present and gas flow is turbulent. Clinically, heliox can decrease airway resistance in acute asthma in adults and children and in COPD. Heliox may also enhance the bronchodilating effects of β-agonist administration for acute asthma. Respiratory syndromes caused by coronavirus infections in humans range in severity from the common cold to severe acute respiratory syndrome associated with human coronavirus OC43 and other viral strains. In infants, coronavirus infection can cause bronchitis, bronchiolitis, and pneumonia in variable combinations and can produce enough air-flow obstruction to cause respiratory failure. We describe a case of coronavirus OC43 infection in an infant with severe acute respiratory distress treated with heliox inhalation to avoid intubation.

  4. Human Coronavirus in the 2014 Winter Season as a Cause of Lower Respiratory Tract Infection.

    Science.gov (United States)

    Kim, Kyu Yeun; Han, Song Yi; Kim, Ho Seong; Cheong, Hyang Min; Kim, Sung Soon; Kim, Dong Soo

    2017-01-01

    During the late autumn to winter season (October to December) in the Republic of Korea, respiratory syncytial virus (RSV) is the most common pathogen causing lower respiratory tract infections (LRTIs). Interestingly, in 2014, human coronavirus (HCoV) caused not only upper respiratory infections but also LRTIs more commonly than in other years. Therefore, we sought to determine the epidemiology, clinical characteristics, outcomes, and severity of illnesses associated with HCoV infections at a single center in Korea. We retrospectively identified patients with positive HCoV respiratory specimens between October 2014 and December 2014 who were admitted to Severance Children's Hospital at Yonsei University Medical Center for LRTI. Charts of the patients with HCoV infection were reviewed and compared with RSV infection. During the study period, HCoV was the third most common respiratory virus and accounted for 13.7% of infections. Coinfection was detected in 43.8% of children with HCoV. Interestingly, one patient had both HCoV-OC43 and HCoV-NL63. Mild pneumonia was most common (60.4%) with HCoV, and when combined with RSV, resulted in bronchiolitis. Two patients required care in the intensive care unit. However, compared with that of RSV infection, the disease course HCoV was short. Infections caused by HCoVs are common, and can cause LRTIs. During an epidemic season, clinicians should be given special consideration thereto. When combined with other medical conditions, such as neurologic or cardiologic diseases, intensive care unit (ICU) care may be necessary.

  5. Human coronavirus EMC is not the same as severe acute respiratory syndrome coronavirus.

    Science.gov (United States)

    Perlman, Stanley; Zhao, Jincun

    2013-01-15

    A newly identified betacoronavirus, human coronavirus EMC (HCoV-EMC), has been isolated from several patients with respiratory and renal disease in the Middle East. While only a few infected patients have been identified, the mortality of the infection is greater than 50%. Like its better-known cousin severe acute respiratory syndrome coronavirus (SARS-CoV), HCoV-EMC appears to have originated from bats. In a recent article in mBio, Müller et al. described several important differences between the two viruses [M. A. Müller et al., mBio 3(6):e00515-12, 2012, doi:10.1128/mBio.00515-12]. Unlike SARS-CoV, HCoV-EMC can directly infect bat cells. As important, HCoV-EMC does not enter cells using the SARS-CoV receptor, human angiotensin-converting receptor-2 (hACE2). These results provide a strong incentive for identifying the host cell receptor used by HCoV-EMC. Identification of the receptor will provide insight into the pathogenesis of pulmonary and renal disease and may also suggest novel therapeutic interventions.

  6. Bilateral Entry and Release of Middle East Respiratory Syndrome Coronavirus Induces Profound Apoptosis of Human Bronchial Epithelial Cells

    Science.gov (United States)

    Tao, Xinrong; Hill, Terence E.; Morimoto, Chikao; Peters, Clarence J.; Ksiazek, Thomas G.

    2013-01-01

    The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) infects human bronchial epithelial Calu-3 cells. Unlike severe acute respiratory syndrome (SARS)-CoV, which exclusively infects and releases through the apical route, this virus can do so through either side of polarized Calu-3 cells. Infection results in profound apoptosis within 24 h irrespective of its production of titers that are lower than those of SARS-CoV. Together, our results provide new insights into the dissemination and pathogenesis of MERS-CoV and may indicate that the virus differs markedly from SARS-CoV. PMID:23824802

  7. Association of SARS susceptibility with single nucleic acid polymorphisms of OASI and MxA genes: A case-control study

    NARCIS (Netherlands)

    J. He (Jing); D. Feng (Dan); S.J. de Vlas (Sake); H. Wang (Hongwei); A. Fontanet (Arnaud); F. Zhang (Fang); S. Plancoulaine (Sabine); F. Tang (Fang); L. Zhan (Lin); H. Yang (Honghui); T. Wang (Teng); J.H. Richardus (Jan Hendrik); J.D.F. Habbema (Dik); W.-C. Cao (Wuchun)

    2006-01-01

    textabstractBackground: Host genetic factors may play a role in susceptibility and resistance to SARS associated coronavirus (SARS-CoV) infection. The study was carried out to investigate the association between the genetic polymorphisms of 2′,5′-oligoadenylate synthetase I (OASI) gene as well as my

  8. Association of SARS susceptibility with single nucleic acid polymorphisms of OAS1 and MxA genes : a case-control study

    NARCIS (Netherlands)

    He, Jing; Feng, Dan; de Vlas, Sake J.; Wang, Hongwei; Fontanet, Arnaud; Zhang, Panhe; Plancoulaine, Sabine; Tang, Fang; Zhan, Lin; Yang, Hong; Wang, Tianbao; Richardus, Jan H.; Habbema, J. Dik F.; Cao, Wuchun

    2006-01-01

    Background: Host genetic factors may play a role in susceptibility and resistance to SARS associated coronavirus (SARS-CoV) infection. The study was carried out to investigate the association between the genetic polymorphisms of 2',5'-oligoadenylate synthetase 1 (OAS1) gene as well as myxovirus resi

  9. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC.

    Science.gov (United States)

    Raj, V Stalin; Mou, Huihui; Smits, Saskia L; Dekkers, Dick H W; Müller, Marcel A; Dijkman, Ronald; Muth, Doreen; Demmers, Jeroen A A; Zaki, Ali; Fouchier, Ron A M; Thiel, Volker; Drosten, Christian; Rottier, Peter J M; Osterhaus, Albert D M E; Bosch, Berend Jan; Haagmans, Bart L

    2013-03-14

    Most human coronaviruses cause mild upper respiratory tract disease but may be associated with more severe pulmonary disease in immunocompromised individuals. However, SARS coronavirus caused severe lower respiratory disease with nearly 10% mortality and evidence of systemic spread. Recently, another coronavirus (human coronavirus-Erasmus Medical Center (hCoV-EMC)) was identified in patients with severe and sometimes lethal lower respiratory tract infection. Viral genome analysis revealed close relatedness to coronaviruses found in bats. Here we identify dipeptidyl peptidase 4 (DPP4; also known as CD26) as a functional receptor for hCoV-EMC. DPP4 specifically co-purified with the receptor-binding S1 domain of the hCoV-EMC spike protein from lysates of susceptible Huh-7 cells. Antibodies directed against DPP4 inhibited hCoV-EMC infection of primary human bronchial epithelial cells and Huh-7 cells. Expression of human and bat (Pipistrellus pipistrellus) DPP4 in non-susceptible COS-7 cells enabled infection by hCoV-EMC. The use of the evolutionarily conserved DPP4 protein from different species as a functional receptor provides clues about the host range potential of hCoV-EMC. In addition, it will contribute critically to our understanding of the pathogenesis and epidemiology of this emerging human coronavirus, and may facilitate the development of intervention strategies.

  10. Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV).

    Science.gov (United States)

    Zhou, Nan; Pan, Ting; Zhang, Junsong; Li, Qianwen; Zhang, Xue; Bai, Chuan; Huang, Feng; Peng, Tao; Zhang, Jianhua; Liu, Chao; Tao, Liang; Zhang, Hui

    2016-04-22

    Ebola virus infection can cause severe hemorrhagic fever with a high mortality in humans. The outbreaks of Ebola viruses in 2014 represented the most serious Ebola epidemics in history and greatly threatened public health worldwide. The development of additional effective anti-Ebola therapeutic agents is therefore quite urgent. In this study, via high throughput screening of Food and Drug Administration-approved drugs, we identified that teicoplanin, a glycopeptide antibiotic, potently prevents the entry of Ebola envelope pseudotyped viruses into the cytoplasm. Furthermore, teicoplanin also has an inhibitory effect on transcription- and replication-competent virus-like particles, with an IC50 as low as 330 nm Comparative analysis further demonstrated that teicoplanin is able to block the entry of Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) envelope pseudotyped viruses as well. Teicoplanin derivatives such as dalbavancin, oritavancin, and telavancin can also inhibit the entry of Ebola, MERS, and SARS viruses. Mechanistic studies showed that teicoplanin blocks Ebola virus entry by specifically inhibiting the activity of cathepsin L, opening a novel avenue for the development of additional glycopeptides as potential inhibitors of cathepsin L-dependent viruses. Notably, given that teicoplanin has routinely been used in the clinic with low toxicity, our work provides a promising prospect for the prophylaxis and treatment of Ebola, MERS, and SARS virus infection.

  11. Immunohistochemistry Assay to Detect Turkey Coronavirus (TCoV from Experimentally Infected Poults

    Directory of Open Access Journals (Sweden)

    Thais Larissa L. Castanheira

    2007-01-01

    Full Text Available The objective of this study was to develop a direct immunohistochemical assay to detect TCoV antigens in formalin-fixed paraffin-embedded sections prepared from experimentally infected poults. The sections of ileo, ileo-cecal junction and ceca regions from intestine were prepared and submitted to two different primary antibodies, first the non-biotin labeled polyclonal antibody for the indirect method, and second the biotin-labeled polyclonal antibody, both raised against IBV by immunized specific pathogen free chickens. All sections were submitted to immufluorescent assay (IFA, a conventional method, and the results compared. The direct immunohistochemical technique showed a higher frequency of antigen in tissues, especially from the ileo-cecal junction with no difference between results obtained by the conventional method. Finally, the immunofluorescence and all modalities of molecular approaches have been played an important role to the diagnosis and prevention of TCoV infections, although to be precise on infectious disease diagnosis, it is necessary complementary techniques. Here, was standardized the biotin labeled polyclonal antibody as reliable tool to be used as an alternative detection of Turkey Coronavirus.

  12. Autocrine interferon priming in macrophages but not dendritic cells results in enhanced cytokine and chemokine production after coronavirus infection.

    Science.gov (United States)

    Zhou, Haixia; Zhao, Jincun; Perlman, Stanley

    2010-10-19

    Coronaviruses efficiently inhibit interferon (IFN) induction in nonhematopoietic cells and conventional dendritic cells (cDC). However, IFN is produced in infected macrophages, microglia, and plasmacytoid dendritic cells (pDC). To begin to understand why IFN is produced in infected macrophages, we infected bone marrow-derived macrophages (BMM) and as a control, bone marrow-derived DC (BMDC) with the coronavirus mouse hepatitis virus (MHV). As expected, BMM but not BMDC expressed type I IFN. IFN production in infected BMM was nearly completely dependent on signaling through the alpha/beta interferon (IFN-α/β) receptor (IFNAR). Several IFN-dependent cytokines and chemokines showed the same expression pattern, with enhanced production in BMM compared to BMDC and dependence upon signaling through the IFNAR. Exogenous IFN enhanced IFN-dependent gene expression in BMM at early times after infection and in BMDC at all times after infection but did not stimulate expression of molecules that signal through myeloid differentiation factor 88 (MyD88), such as tumor necrosis factor (TNF). Collectively, our results show that IFN is produced at early times postinfection (p.i.) in MHV-infected BMM, but not in BMDC, and primes expression of IFN and IFN-responsive genes. Further, our results also show that BMM are generally more responsive to MHV infection, since MyD88-dependent pathways are also activated to a greater extent in these cells than in BMDC.

  13. Involvement of Autophagy in Coronavirus Replication

    Directory of Open Access Journals (Sweden)

    Paul Britton

    2012-11-01

    Full Text Available Coronaviruses are single stranded, positive sense RNA viruses, which induce the rearrangement of cellular membranes upon infection of a host cell. This provides the virus with a platform for the assembly of viral replication complexes, improving efficiency of RNA synthesis. The membranes observed in coronavirus infected cells include double membrane vesicles. By nature of their double membrane, these vesicles resemble cellular autophagosomes, generated during the cellular autophagy pathway. In addition, coronavirus infection has been demonstrated to induce autophagy. Here we review current knowledge of coronavirus induced membrane rearrangements and the involvement of autophagy or autophagy protein microtubule associated protein 1B light chain 3 (LC3 in coronavirus replication.

  14. Possible involvement of infection with human coronavirus 229E, but not NL63, in Kawasaki disease.

    Science.gov (United States)

    Shirato, Kazuya; Imada, Yoshio; Kawase, Miyuki; Nakagaki, Keiko; Matsuyama, Shutoku; Taguchi, Fumihiro

    2014-12-01

    Although human coronavirus (HCoV)-NL63 was once considered a possible causative agent of Kawasaki disease based on RT-PCR analyses, subsequent studies could not confirm the result. In this study, this possibility was explored using serological tests. To evaluate the role of HCoV infection in patients with Kawasaki disease, immunofluorescence assays and virus neutralizing tests were performed. Paired serum samples were obtained from patients with Kawasaki disease who had not been treated with γ-globulin. HCoV-NL63 and two antigenically different isolates of HCoV-229E (ATCC-VR740 and a new isolate, Sendai-H) were examined as controls. Immunofluorescence assays detected no difference in HCoV-NL63 antibody positivity between the patients with Kawasaki disease and controls, whereas the rate of HCoV-229E antibody positivity was higher in the patients with Kawasaki disease than that in controls. The neutralizing tests revealed no difference in seropositivity between the acute and recovery phases of patients with Kawasaki disease for the two HCoV-229Es. However, the Kawasaki disease specimens obtained from patients in recovery phase displayed significantly higher positivity for Sendai-H, but not for ATCC-VR740, as compared to the controls. The serological test supported no involvement of HCoV-NL63 but suggested the possible involvement of HCoV-229E in the development of Kawasaki disease. © 2014 Wiley Periodicals, Inc.

  15. Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: Engineering a recombination-resistant genome

    Science.gov (United States)

    Yount, Boyd; Roberts, Rhonda S.; Lindesmith, Lisa; Baric, Ralph S.

    2006-08-01

    Live virus vaccines provide significant protection against many detrimental human and animal diseases, but reversion to virulence by mutation and recombination has reduced appeal. Using severe acute respiratory syndrome coronavirus as a model, we engineered a different transcription regulatory circuit and isolated recombinant viruses. The transcription network allowed for efficient expression of the viral transcripts and proteins, and the recombinant viruses replicated to WT levels. Recombinant genomes were then constructed that contained mixtures of the WT and mutant regulatory circuits, reflecting recombinant viruses that might occur in nature. Although viable viruses could readily be isolated from WT and recombinant genomes containing homogeneous transcription circuits, chimeras that contained mixed regulatory networks were invariantly lethal, because viable chimeric viruses were not isolated. Mechanistically, mixed regulatory circuits promoted inefficient subgenomic transcription from inappropriate start sites, resulting in truncated ORFs and effectively minimize viral structural protein expression. Engineering regulatory transcription circuits of intercommunicating alleles successfully introduces genetic traps into a viral genome that are lethal in RNA recombinant progeny viruses. regulation | systems biology | vaccine design

  16. Protective Role of Toll-like Receptor 3-Induced Type I Interferon in Murine Coronavirus Infection of Macrophages

    Directory of Open Access Journals (Sweden)

    Sonia Navas-Martin

    2012-05-01

    Full Text Available Toll-like Receptors (TLRs sense viral infections and induce production of type I interferons (IFNs, other cytokines, and chemokines. Viral recognition by TLRs and other pattern recognition receptors (PRRs has been proven to be cell-type specific. Triggering of TLRs with selected ligands can be beneficial against some viral infections. Macrophages are antigen-presenting cells that express TLRs and have a key role in the innate and adaptive immunity against viruses. Coronaviruses (CoVs are single-stranded, positive-sense RNA viruses that cause acute and chronic infections and can productively infect macrophages. Investigation of the interplay between CoVs and PRRs is in its infancy. We assessed the effect of triggering TLR2, TLR3, TLR4, and TLR7 with selected ligands on the susceptibility of the J774A.1 macrophage cell line to infection with murine coronavirus (mouse hepatitis virus, [MHV]. Stimulation of TLR2, TLR4, or TLR7 did not affect MHV production. In contrast, pre-stimulation of TLR3 with polyinosinic-polycytidylic acid (poly I:C hindered MHV infection through induction of IFN-β in macrophages. We demonstrate that activation of TLR3 with the synthetic ligand poly I:C mediates antiviral immunity that diminishes (MHV-A59 or suppresses (MHV-JHM, MHV-3 virus production in macrophages.

  17. Coronavirus spike-receptor interactions

    NARCIS (Netherlands)

    Mou, H.

    2015-01-01

    Coronaviruses cause important diseases in humans and animals. Coronavirus infection starts with the virus binding with its spike proteins to molecules present on the surface of host cells that act as receptors. This spike-receptor interaction is highly specific and determines the virus’ cell, tissue

  18. Infection of SARS-CoV on juvenile and adult Brandt's vole Microtus brandtii

    Institute of Scientific and Technical Information of China (English)

    GAO Hong; PENG Jingpian; DENG Wei; SHI Dazhao; BAO Linlin; WANG Dehua; ZHANG Binglin; QIN Chuan; ZHANG Zhibin

    2005-01-01

    We studied the infectious effect of SARS-CoV virus on juvenile and adult Brandt's Vole (Microtus brandtii) by nasal cavity spraying method (CCID50 is 105.7). SARS virus caused serious deaths in adults. The death adults demonstrated hemorrhage from mouth, nasal cavity and intestine, hemorrhageious interstitial pneumonia and gore in liver, spleen and kidney. The survival adults demonstrated local hemorrhagic spot in lung and emphysema, but the other organs showed no pathological abnormality. SARS virus caused no deaths in juveniles, but locomotion of infected juveniles became slower. In the early stage, there was local pneumonia in lung and SARS viruses were isolated from the pathological tissue. Only one control juvenile lived and the infected juvenile showed local pneumonia in lung. The results demonstrated that SARS-CoV infected Brandt's vole seriously and adults were more susceptive to SARS-CoV than juveniles. The Brandt's vole may be a potential animal model for SARS research.

  19. Severe acute respiratory syndrome coronavirus persistence in Vero cells

    Institute of Scientific and Technical Information of China (English)

    Gustavo Palacios; Omar Jabado; Neil Renwick; Thomas Briese; W. Ian Lipkin

    2005-01-01

    Background Several coronaviruses establish persistent infections in vitro and in vivo, however it is unknown whether persistence is a feature of the severe acute respiratory syndorme coronavirus (SARS-CoV) life cycle. This study was conducted to investigate viral persistence.Methods We inoculated confluent monolayers of Vero cells with SARS-CoV at a multiplicity of infection of 0.1 TCID50 and passaged the remaining cells every 4 to 8 days for a total of 11 passages. Virus was titrated at each passage by limited dilution assay and nucleocapsid antigen was detected by Western blot and immunofluoresence assays. The presence of viral particles in passage 11 cells was assessed by electron microscopy. Changes in viral genomic sequences during persistent infection were examined by DNA sequencing. Results Cytopathic effect was extensive after initial inoculation but diminished with serial passages. Infectious virus was detected after each passage and viral growth curves were identical for parental virus stock and virus obtained from passage 11 cells. Nucleocapsid antigen was detected in the majority of cells after initial inoculation but in only 10%-40% of cells at passages 2-11. Electron microscopy confirmed the presence of viral particles in passage 11 cells. Sequence analysis at passage 11 revealed fixed mutations in the spike (S) gene and ORFs 7a-8b but not in the nucleocapsid (N) gene. Conclusions SARS-CoV can establish a persistent infection in vitro. The mechanism for viral persistence is consistent with the formation of a carrier culture whereby a limited number of cells are infected with each round of virus replication and release. Persistence is associated with selected mutations in the SARS-CoV genome. This model may provide insight into SARS-related lung pathology and mechanisms by which humans and animals can serve as reservoirs for infection.

  20. The nucleocapsid protein of human coronavirus NL63.

    Directory of Open Access Journals (Sweden)

    Kaja Zuwała

    Full Text Available Human coronavirus (HCoV NL63 was first described in 2004 and is associated with respiratory tract disease of varying severity. At the genetic and structural level, HCoV-NL63 is similar to other members of the Coronavirinae subfamily, especially human coronavirus 229E (HCoV-229E. Detailed analysis, however, reveals several unique features of the pathogen. The coronaviral nucleocapsid protein is abundantly present in infected cells. It is a multi-domain, multi-functional protein important for viral replication and a number of cellular processes. The aim of the present study was to characterize the HCoV-NL63 nucleocapsid protein. Biochemical analyses revealed that the protein shares characteristics with homologous proteins encoded in other coronaviral genomes, with the N-terminal domain responsible for nucleic acid binding and the C-terminal domain involved in protein oligomerization. Surprisingly, analysis of the subcellular localization of the N protein of HCoV-NL63 revealed that, differently than homologous proteins from other coronaviral species except for SARS-CoV, it is not present in the nucleus of infected or transfected cells. Furthermore, no significant alteration in cell cycle progression in cells expressing the protein was observed. This is in stark contrast with results obtained for other coronaviruses, except for the SARS-CoV.

  1. MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment

    NARCIS (Netherlands)

    A.H. de Wilde (Adriaan); V.S. Raj (Stalin); D. Oudshoorn (Diede); T.M. Bestebroer (Theo); S. van Nieuwkoop (Stefan); R. Limpens (Ronald); C.C. Posthuma (Clara); Y. van der Meer (Yvonne); M. Bárcena (Montserrat); B.L. Haagmans (Bart); E.J. Snijder (Eric); B.G. van den Hoogen (Bernadette)

    2013-01-01

    textabstractCoronavirus (CoV) infections are commonly associated with respiratory and enteric disease in humans and animals. The 2003 outbreak of severe acute respiratory syndrome (SARS) highlighted the potentially lethal consequences of CoV-induced disease in humans. In 2012, a novel CoV (Middle Ea

  2. Prevalence and phylogeny of coronaviruses in wild birds from the Bering Strait area (Beringia.

    Directory of Open Access Journals (Sweden)

    Shaman Muradrasoli

    Full Text Available Coronaviruses (CoVs can cause mild to severe disease in humans and animals, their host range and environmental spread seem to have been largely underestimated, and they are currently being investigated for their potential medical relevance. Infectious bronchitis virus (IBV belongs to gamma-coronaviruses and causes a costly respiratory viral disease in chickens. The role of wild birds in the epidemiology of IBV is poorly understood. In the present study, we examined 1,002 cloacal and faecal samples collected from 26 wild bird species in the Beringia area for the presence of CoVs, and then we performed statistical and phylogenetic analyses. We detected diverse CoVs by RT-PCR in wild birds in the Beringia area. Sequence analysis showed that the detected viruses are gamma-coronaviruses related to IBV. These findings suggest that wild birds are able to carry gamma-coronaviruses asymptomatically. We concluded that CoVs are widespread among wild birds in Beringia, and their geographic spread and frequency is higher than previously realised. Thus, Avian CoV can be efficiently disseminated over large distances and could be a genetic reservoir for future emerging pathogenic CoVs. Considering the great animal health and economic impact of IBV as well as the recent emergence of novel coronaviruses such as SARS-coronavirus, it is important to investigate the role of wildlife reservoirs in CoV infection biology and epidemiology.

  3. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture.

    Science.gov (United States)

    de Wilde, Adriaan H; Jochmans, Dirk; Posthuma, Clara C; Zevenhoven-Dobbe, Jessika C; van Nieuwkoop, Stefan; Bestebroer, Theo M; van den Hoogen, Bernadette G; Neyts, Johan; Snijder, Eric J

    2014-08-01

    Coronaviruses can cause respiratory and enteric disease in a wide variety of human and animal hosts. The 2003 outbreak of severe acute respiratory syndrome (SARS) first demonstrated the potentially lethal consequences of zoonotic coronavirus infections in humans. In 2012, a similar previously unknown coronavirus emerged, Middle East respiratory syndrome coronavirus (MERS-CoV), thus far causing over 650 laboratory-confirmed infections, with an unexplained steep rise in the number of cases being recorded over recent months. The human MERS fatality rate of ∼ 30% is alarmingly high, even though many deaths were associated with underlying medical conditions. Registered therapeutics for the treatment of coronavirus infections are not available. Moreover, the pace of drug development and registration for human use is generally incompatible with strategies to combat emerging infectious diseases. Therefore, we have screened a library of 348 FDA-approved drugs for anti-MERS-CoV activity in cell culture. If such compounds proved sufficiently potent, their efficacy might be directly assessed in MERS patients. We identified four compounds (chloroquine, chlorpromazine, loperamide, and lopinavir) inhibiting MERS-CoV replication in the low-micromolar range (50% effective concentrations [EC(50)s], 3 to 8 μM). Moreover, these compounds also inhibit the replication of SARS coronavirus and human coronavirus 229E. Although their protective activity (alone or in combination) remains to be assessed in animal models, our findings may offer a starting point for treatment of patients infected with zoonotic coronaviruses like MERS-CoV. Although they may not necessarily reduce viral replication to very low levels, a moderate viral load reduction may create a window during which to mount a protective immune response.

  4. Coronavirus antibodies in African bat species.

    Science.gov (United States)

    Müller, Marcel A; Paweska, Janusz T; Leman, Patricia A; Drosten, Christian; Grywna, Klaus; Kemp, Alan; Braack, Leo; Sonnenberg, Karen; Niedrig, Matthias; Swanepoel, Robert

    2007-09-01

    Asian bats have been identified as potential reservoir hosts of coronaviruses associated with severe acute respiratory syndrome (SARS-CoV). We detected antibody reactive with SARS-CoV antigen in 47 (6.7%) of 705 bat serum specimens comprising 26 species collected in Africa; thus, African bats may harbor agents related to putative group 4 CoV.

  5. Bioinformatic Analysis of Putative Gene Products Encoded in SARS-HCoV Genome

    Institute of Scientific and Technical Information of China (English)

    赵心刚; 韩敬东; 宁元亨; 孟安明; 陈晔光

    2003-01-01

    The cause of severe acute respiratory syndrome (SARS) has been identified as a new coronavirus named as SARS-HCoV.Using bioinformatic methods, we have performed a detailed domain search.In addition to the viral structure proteins, we have found that several putative polypeptides share sequence similarity to known domains or proteins.This study may provide a basis for future studies on the infection and replication process of this notorious virus.

  6. First Case of Systemic Coronavirus Infection in a Domestic Ferret (Mustela putorius furo) in Peru.

    Science.gov (United States)

    Lescano, J; Quevedo, M; Gonzales-Viera, O; Luna, L; Keel, M K; Gregori, F

    2015-12-01

    A domestic ferret from Lima, Peru, died after ten days of non-specific clinical signs. Based on pathology, immunohistochemistry and molecular analysis, ferret systemic coronavirus (FRSCV)-associated disease was diagnosed for the first time in South America. This report highlights the potential spread of pathogens by the international pet trade.

  7. Inhibition of middle east respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody

    NARCIS (Netherlands)

    K. Ohnuma (Kei); B.L. Haagmans (Bart); R. Hatano (Ryo); V.S. Raj (Stalin); H. Mou (Huihui); S. Iwata (Satoshi); R.L. Dang (Rong); B.J. Bosch (Berend Jan); C. Morimoto (Chikao)

    2013-01-01

    textabstractWe identified the domains of CD26 involved in the binding of Middle East respiratory syndrome coronavirus (MERS-CoV) using distinct clones of anti-CD26 monoclonal antibodies (MAbs). One clone, named 2F9, almost completely inhibited viral entry. The humanized anti-CD26 MAb YS110 also sign

  8. Development of a molecular-beacon-based multi-allelic real-time RT-PCR assay for the detection of human coronavirus causing severe acute respiratory syndrome (SARS-CoV): a general methodology for detecting rapidly mutating viruses.

    Science.gov (United States)

    Hadjinicolaou, Andreas V; Farcas, Gabriella A; Demetriou, Victoria L; Mazzulli, Tony; Poutanen, Susan M; Willey, Barbara M; Low, Donald E; Butany, Jagdish; Asa, Sylvia L; Kain, Kevin C; Kostrikis, Leondios G

    2011-04-01

    Emerging infectious diseases have caused a global effort for development of fast and accurate detection techniques. The rapidly mutating nature of viruses presents a major difficulty, highlighting the need for specific detection of genetically diverse strains. One such infectious agent is SARS-associated coronavirus (SARS-CoV), which emerged in 2003. This study aimed to develop a real-time RT-PCR detection assay specific for SARS-CoV, taking into account its intrinsic polymorphic nature due to genetic drift and recombination and the possibility of continuous and multiple introductions of genetically non-identical strains into the human population, by using mismatch-tolerant molecular beacons designed to specifically detect the SARS-CoV S, E, M and N genes. These were applied in simple, reproducible duplex and multiplex real-time PCR assays on 25 post-mortem samples and constructed RNA controls, and they demonstrated high target detection ability and specificity. This assay can readily be adapted for detection of other emerging and rapidly mutating pathogens.

  9. Elevated plasma surfactant protein D (SP-D) levels and a direct correlation with anti-severe acute respiratory syndrome coronavirus-specific IgG antibody in SARS patients

    DEFF Research Database (Denmark)

    Wu, Y P; Liu, Z H; Wei, R

    2009-01-01

    Pulmonary SP-D is a defence lectin promoting clearance of viral infections. SP-D is recognized to bind the S protein of SARS-CoV and enhance phagocytosis. Moreover, systemic SP-D is widely used as a biomarker of alveolar integrity. We investigated the relation between plasma SP-D, SARS-type pneum...

  10. Cutaneous lesions associated with coronavirus-induced vasculitis in a cat with feline infectious peritonitis and concurrent feline immunodeficiency virus infection.

    Science.gov (United States)

    Cannon, Martha J; Silkstone, Malcolm A; Kipar, Anja M

    2005-08-01

    This report describes a clinical case of feline infectious peritonitis (FIP) with multisystemic involvement, including multiple nodular cutaneous lesions, in a cat that was co-infected with feline coronavirus and feline immunodeficiency virus. The skin lesions were caused by a pyogranulomatous-necrotising dermal phlebitis and periphlebitis. Immunohistology demonstrated the presence of coronavirus antigen in macrophages within these lesions. The pathogenesis of FIP involves a viral associated, disseminated phlebitis and periphlebitis which can arise at many sites. Target organs frequently include the eyes, abdominal organs, pleural and peritoneal membranes, and central nervous tissues, but cutaneous lesions have not previously been reported.

  11. Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication

    Science.gov (United States)

    Kindler, Eveline; Gil-Cruz, Cristina; Spanier, Julia; Li, Yize; Wilhelm, Jochen; Rabouw, Huib H.; Züst, Roland; Marti, Sabrina; Habjan, Matthias; Cervantes-Barragan, Luisa; Elliot, Ruth; Karl, Nadja; Gaughan, Christina; Silverman, Robert H.; Keller, Markus; Ludewig, Burkhard; Bergmann, Cornelia C.; Ziebuhr, John; Kalinke, Ulrich

    2017-01-01

    Coronaviruses are of veterinary and medical importance and include highly pathogenic zoonotic viruses, such as SARS-CoV and MERS-CoV. They are known to efficiently evade early innate immune responses, manifesting in almost negligible expression of type-I interferons (IFN-I). This evasion strategy suggests an evolutionary conserved viral function that has evolved to prevent RNA-based sensing of infection in vertebrate hosts. Here we show that the coronavirus endonuclease (EndoU) activity is key to prevent early induction of double-stranded RNA (dsRNA) host cell responses. Replication of EndoU-deficient coronaviruses is greatly attenuated in vivo and severely restricted in primary cells even during the early phase of the infection. In macrophages we found immediate induction of IFN-I expression and RNase L-mediated breakdown of ribosomal RNA. Accordingly, EndoU-deficient viruses can retain replication only in cells that are deficient in IFN-I expression or sensing, and in cells lacking both RNase L and PKR. Collectively our results demonstrate that the coronavirus EndoU efficiently prevents simultaneous activation of host cell dsRNA sensors, such as Mda5, OAS and PKR. The localization of the EndoU activity at the site of viral RNA synthesis–within the replicase complex—suggests that coronaviruses have evolved a viral RNA decay pathway to evade early innate and intrinsic antiviral host cell responses. PMID:28158275

  12. SARS-CoV regulates immune function-related gene expression in human monocytic cells.

    Science.gov (United States)

    Hu, Wanchung; Yen, Yu-Ting; Singh, Sher; Kao, Chuan-Liang; Wu-Hsieh, Betty A

    2012-08-01

    Severe acute respiratory syndrome (SARS) is characterized by acute respiratory distress syndrome (ARDS) and pulmonary fibrosis, and monocytes/macrophages are the key players in the pathogenesis of SARS. In this study, we compared the transcriptional profiles of SARS coronavirus (SARS-CoV)-infected monocytic cells against that infected by coronavirus 229E (CoV-229E). Total RNA was extracted from infected DC-SIGN-transfected monocytes (THP-1-DC-SIGN) at 6 and 24 h after infection, and the gene expression was profiled in oligonucleotide-based microarrays. Analysis of immune-related gene expression profiles showed that at 24 h after SARS-CoV infection: (1) IFN-α/β-inducible and cathepsin/proteasome genes were downregulated; (2) hypoxia/hyperoxia-related genes were upregulated; and (3) TLR/TLR-signaling, cytokine/cytokine receptor-related, chemokine/chemokine receptor-related, lysosome-related, MHC/chaperon-related, and fibrosis-related genes were differentially regulated. These results elucidate that SARS-CoV infection regulates immune-related genes in monocytes/macrophages, which may be important to the pathogenesis of SARS.

  13. Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies.

    Science.gov (United States)

    Geller, Chloé; Varbanov, Mihayl; Duval, Raphaël E

    2012-11-12

    The Coronaviridae family, an enveloped RNA virus family, and, more particularly, human coronaviruses (HCoV), were historically known to be responsible for a large portion of common colds and other upper respiratory tract infections. HCoV are now known to be involved in more serious respiratory diseases, i.e. bronchitis, bronchiolitis or pneumonia, especially in young children and neonates, elderly people and immunosuppressed patients. They have also been involved in nosocomial viral infections. In 2002-2003, the outbreak of severe acute respiratory syndrome (SARS), due to a newly discovered coronavirus, the SARS-associated coronavirus (SARS-CoV); led to a new awareness of the medical importance of the Coronaviridae family. This pathogen, responsible for an emerging disease in humans, with high risk of fatal outcome; underline the pressing need for new approaches to the management of the infection, and primarily to its prevention. Another interesting feature of coronaviruses is their potential environmental resistance, despite the accepted fragility of enveloped viruses. Indeed, several studies have described the ability of HCoVs (i.e. HCoV 229E, HCoV OC43 (also known as betacoronavirus 1), NL63, HKU1 or SARS-CoV) to survive in different environmental conditions (e.g. temperature and humidity), on different supports found in hospital settings such as aluminum, sterile sponges or latex surgical gloves or in biological fluids. Finally, taking into account the persisting lack of specific antiviral treatments (there is, in fact, no specific treatment available to fight coronaviruses infections), the Coronaviridae specificities (i.e. pathogenicity, potential environmental resistance) make them a challenging model for the development of efficient means of prevention, as an adapted antisepsis-disinfection, to prevent the environmental spread of such infective agents. This review will summarize current knowledge on the capacity of human coronaviruses to survive in the

  14. Human Coronaviruses: Insights into Environmental Resistance and Its Influence on the Development of New Antiseptic Strategies

    Directory of Open Access Journals (Sweden)

    Mihayl Varbanov

    2012-11-01

    Full Text Available The Coronaviridae family, an enveloped RNA virus family, and, more particularly, human coronaviruses (HCoV, were historically known to be responsible for a large portion of common colds and other upper respiratory tract infections. HCoV are now known to be involved in more serious respiratory diseases, i.e. bronchitis, bronchiolitis or pneumonia, especially in young children and neonates, elderly people and immunosuppressed patients. They have also been involved in nosocomial viral infections. In 2002–2003, the outbreak of severe acute respiratory syndrome (SARS, due to a newly discovered coronavirus, the SARS-associated coronavirus (SARS-CoV; led to a new awareness of the medical importance of the Coronaviridae family. This pathogen, responsible for an emerging disease in humans, with high risk of fatal outcome; underline the pressing need for new approaches to the management of the infection, and primarily to its prevention. Another interesting feature of coronaviruses is their potential environmental resistance, despite the accepted fragility of enveloped viruses. Indeed, several studies have described the ability of HCoVs (i.e. HCoV 229E, HCoV OC43 (also known as betacoronavirus 1, NL63, HKU1 or SARS-CoV to survive in different environmental conditions (e.g. temperature and humidity, on different supports found in hospital settings such as aluminum, sterile sponges or latex surgical gloves or in biological fluids. Finally, taking into account the persisting lack of specific antiviral treatments (there is, in fact, no specific treatment available to fight coronaviruses infections, the Coronaviridae specificities (i.e. pathogenicity, potential environmental resistance make them a challenging model for the development of efficient means of prevention, as an adapted antisepsis-disinfection, to prevent the environmental spread of such infective agents. This review will summarize current knowledge on the capacity of human coronaviruses to

  15. Bioinformatics analysis of SARS-Cov M protein provides information for vaccine development

    Institute of Scientific and Technical Information of China (English)

    LIU Wanli; LU Yun; CHEN Yinghua

    2003-01-01

    The pathogen causing severe acute respiratory syndrome (SARS) is identified to be SARS-Cov. It is urgent to know more about SARS-Cov for developing an efficient SARS vaccine to prevent this epidemic disease. In this report, the homology of SARS-Cov M protein to other members of coronavirus is illustrated, and all amino acid changes in both S and M proteins among all available SARS-Cov isolates in GenBank are described. Furthermore, one topological trans-membrane secondary structure model of M protein is proposed, which is corresponded well with the accepted topology model of M proteins of other members of coronavirus. Hydrophilic profile analysis indicated that one region (aa150~210) on the cytoplasmic domain is fairly hydrophilic, suggesting its property of antigenicity. Based on the fact that cytoplasmic domain of the M protein of some other coronavirus could induce protective activities against virus infection, this region might be one potential target for SARS vaccine development.

  16. Human Coronavirus 229E Remains Infectious on Common Touch Surface Materials.

    Science.gov (United States)

    Warnes, Sarah L; Little, Zoë R; Keevil, C William

    2015-11-10

    The evolution of new and reemerging historic virulent strains of respiratory viruses from animal reservoirs is a significant threat to human health. Inefficient human-to-human transmission of zoonotic strains may initially limit the spread of transmission, but an infection may be contracted by touching contaminated surfaces. Enveloped viruses are often susceptible to environmental stresses, but the human coronaviruses responsible for severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) have recently caused increasing concern of contact transmission during outbreaks. We report here that pathogenic human coronavirus 229E remained infectious in a human lung cell culture model following at least 5 days of persistence on a range of common nonbiocidal surface materials, including polytetrafluoroethylene (Teflon; PTFE), polyvinyl chloride (PVC), ceramic tiles, glass, silicone rubber, and stainless steel. We have shown previously that noroviruses are destroyed on copper alloy surfaces. In this new study, human coronavirus 229E was rapidly inactivated on a range of copper alloys (within a few minutes for simulated fingertip contamination) and Cu/Zn brasses were very effective at lower copper concentration. Exposure to copper destroyed the viral genomes and irreversibly affected virus morphology, including disintegration of envelope and dispersal of surface spikes. Cu(I) and Cu(II) moieties were responsible for the inactivation, which was enhanced by reactive oxygen species generation on alloy surfaces, resulting in even faster inactivation than was seen with nonenveloped viruses on copper. Consequently, copper alloy surfaces could be employed in communal areas and at any mass gatherings to help reduce transmission of respiratory viruses from contaminated surfaces and protect the public health. Respiratory viruses are responsible for more deaths globally than any other infectious agent. Animal coronaviruses that "host jump" to humans result in

  17. Palmitoylation of SARS-CoV S protein is necessary for partitioning into detergent-resistant membranes and cell-cell fusion but not interaction with M protein

    Science.gov (United States)

    McBride, Corrin E.; Machamer, Carolyn E.

    2010-01-01

    Coronaviruses are enveloped RNA viruses that generally cause mild disease in humans. However, the recently emerged coronavirus that caused severe acute respiratory syndrome (SARS-CoV) is the most pathogenic human coronavirus discovered to date. The SARS-CoV spike (S) protein mediates virus entry by binding cellular receptors and inducing fusion between the viral envelope and the host cell membrane. Coronavirus S proteins are palmitoylated, which may affect function. Here, we created a non-palmitoylated SARS-CoV S protein by mutating all nine cytoplasmic cysteine residues. Palmitoylation of SARS-CoV S was required for partitioning into detergent-resistant membranes and for cell-cell fusion. Surprisingly, however, palmitoylation of S was not required for interaction with SARS-CoV M protein. This contrasts with the requirement for palmitoylation of mouse hepatitis virus S protein for interaction with M protein, and may point to important differences in assembly and infectivity of these two coronaviruses. PMID:20580052

  18. The protein X4 of severe acute respiratory syndrome-associated coronavirus is expressed on both virus-infected cells and lung tissue of severe acute respiratory syndrome patients and inhibits growth of Balb/c 3T3 cell line

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying-yu; GAN Qi-ni; ZHANG Xin; ZHENG Ying; LIU Shun-ai; WANG Xiao-ning; ZHONG Nan-shan; MA Da-long; SHUANG Bao; TAN Ya-xia; MENG Min-jie; HAN Pu; MO Xiao-ning; SONG Quan-sheng; QIU Xiao-yan; LUO Xin

    2005-01-01

    Background The genome of the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) includes sequences encoding the putative protein X4 (ORF8, ORF7a), consisting of 122 amino acids. The deduced sequence contains a probable cleaved signal peptide sequence and a C-terminal transmembrane helix, indicating that protein X4 is likely to be a type I membrane protein. This study was conducted to demonstrate whether the protein X4 was expressed and its essential function in the process of SARS-CoV infection.Methods The prokaryotic and eukaryotic protein X4-expressing plasmids were constructed. Recombinant soluble protein X4 was purified from E. Coli using ion exchange chromatography, and the preparation was injected into chicken for rising specific polyclonal antibodies. The expression of protein X4 in SARS-CoV-infected Vero E6 cells and lung tissues from patients with SARS was performed using immunofluorescence assay and immunohistochemistry technique. The preliminary function of protein X4 was evaluated by treatment with and over-expression of protein X4 in cell lines. Western blot was employed to evaluate the expression of protein X4 in SARS-CoV particles. Results We expressed and purified soluble recombinant protein X4 from E.coli, and generated specific antibodies against protein X4. Western blot proved that the protein X4 was not assembled in the SARS-CoV particles. Indirect immunofluorescence assays revealed that the expression of protein X4 was detected at 8 hours after infection in SARS-CoV-infected Vero E6 cells. It was also detected in the lung tissues from patients with SARS. Treatment with and overexpression of protein X4 inhibited the growth of Balb/c 3T3 cells as determined by cell counting and MTT assays. Conclusion The results provide the evidence of protein X4 expression following SARS-CoV infection, and may facilitate further investigation of the immunopathological mechanism of SARS.

  19. Multi-Organ Damage in Human Dipeptidyl Peptidase 4 Transgenic Mice Infected with Middle East Respiratory Syndrome-Coronavirus.

    Directory of Open Access Journals (Sweden)

    Guangyu Zhao

    Full Text Available The Middle East Respiratory Syndrome Coronavirus (MERS-CoV causes severe acute respiratory failure and considerable extrapumonary organ dysfuction with substantial high mortality. For the limited number of autopsy reports, small animal models are urgently needed to study the mechanisms of MERS-CoV infection and pathogenesis of the disease and to evaluate the efficacy of therapeutics against MERS-CoV infection. In this study, we developed a transgenic mouse model globally expressing codon-optimized human dipeptidyl peptidase 4 (hDPP4, the receptor for MERS-CoV. After intranasal inoculation with MERS-CoV, the mice rapidly developed severe pneumonia and multi-organ damage, with viral replication being detected in the lungs on day 5 and in the lungs, kidneys and brains on day 9 post-infection. In addition, the mice exhibited systemic inflammation with mild to severe pneumonia accompanied by the injury of liver, kidney and spleen with neutrophil and macrophage infiltration. Importantly, the mice exhibited symptoms of paralysis with high viral burden and viral positive neurons on day 9. Taken together, this study characterizes the tropism of MERS-CoV upon infection. Importantly, this hDPP4-expressing transgenic mouse model will be applicable for studying the pathogenesis of MERS-CoV infection and investigating the efficacy of vaccines and antiviral agents designed to combat MERS-CoV infection.

  20. Estimating the Severity and Subclinical Burden of Middle East Respiratory Syndrome Coronavirus Infection in the Kingdom of Saudi Arabia.

    Science.gov (United States)

    Lessler, Justin; Salje, Henrik; Van Kerkhove, Maria D; Ferguson, Neil M; Cauchemez, Simon; Rodriquez-Barraquer, Isabel; Hakeem, Rafat; Jombart, Thibaut; Aguas, Ricardo; Al-Barrak, Ali; Cummings, Derek A T

    2016-04-01

    Not all persons infected with Middle East respiratory syndrome coronavirus (MERS-CoV) develop severe symptoms, which likely leads to an underestimation of the number of people infected and an overestimation of the severity. To estimate the number of MERS-CoV infections that have occurred in the Kingdom of Saudi Arabia, we applied a statistical model to a line list describing 721 MERS-CoV infections detected between June 7, 2012, and July 25, 2014. We estimated that 1,528 (95% confidence interval (CI): 1,327, 1,883) MERS-CoV infections occurred in this interval, which is 2.1 (95% CI: 1.8, 2.6) times the number reported. The probability of developing symptoms ranged from 11% (95% CI: 4, 25) in persons under 10 years of age to 88% (95% CI: 72, 97) in those 70 years of age or older. An estimated 22% (95% CI: 18, 25) of those infected with MERS-CoV died. MERS-CoV is deadly, but this work shows that its clinical severity differs markedly between groups and that many cases likely go undiagnosed.

  1. Association of human leukocyte antigen class II alleles with severe Middle East respiratory syndrome-coronavirus infection.

    Science.gov (United States)

    Hajeer, Ali H; Balkhy, Hanan; Johani, Sameera; Yousef, Mohammed Z; Arabi, Yaseen

    2016-01-01

    Middle East Respiratory Syndrome (MERS) is a disease of the lower respiratory tract and is characterized by high mortality. It is caused by a beta coronavirus (CoV) referred to as MERS-CoV. Majority of MERS-CoV cases have been reported from Saudi Arabia. We investigated the human leukocyte antigen (HLA) Class II alleles in patients with severe MERS who were admitted in our Intensive Care Unit. A total of 23 Saudi patients with severe MERS-CoV infection were typed for HLA class II, results were compared with those of 161 healthy controls. Two HLA class II alleles were associated with the disease; HLA-DRB1*11:01 and DQB1*02:02, but not with the disease outcome. Our results suggest that the HLA-DRB1*11:01 and DQB1*02:02 may be associated with susceptibility to MERS.

  2. Death of a SARS case from secondary aspergillus infection

    Institute of Scientific and Technical Information of China (English)

    王慧君; 丁彦青; 徐军; 李欣; 李学锋; 杨磊; 张文丽; 耿健; 申洪; 蔡俊杰; 康伟; 吴正容; 赵菲; 钟南山

    2004-01-01

    @@ Severe acute respiratory syndrome (SARS) is an acute infectious disease which has been found to spread mainly via respiration. The first case was idnetified in Guangdong, southem China in November 2002. This disease has resulted in a severe epidemic outbreak in 27 countries and regions. In order to investigate the etiology and clinicopathologic characteristics of SARS, we reported here a patient with SARS who died of aspergillosis after prolonged treatment with corticosteroids.

  3. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection

    Institute of Scientific and Technical Information of China (English)

    K. H. Chiow; M. C. Phoon; Thomas Putti; Benny K. H. Tan; Vincent T. Chow

    2016-01-01

    Objective: To evaluate the in vitro activities of the ethyl acetate (EA) fraction of Houttuynia cordata (H. cordata) Thunb. (Saururaceae) and three of its constituent flavonoids (quercetin, quercitrin and rutin) against murine coronavirus and dengue virus (DENV). Methods: The antiviral activities of various concentrations of the EA fraction of H. cordata and flavonoids were assessed using virus neutralization tests against mouse hepatitis virus (MHV) and DENV type 2 (DENV-2). Cinanserin hydrochloride was also tested against MHV. The EA fraction of H. cordata was tested for acute oral toxicity in C57BL/6 mice. Results: The EA fraction of H. cordata inhibited viral infectivity up to 6 d. Cinanserin hydrochloride was able to inhibit MHV for only 2 d. The 50% inhibitory concentrations (IC50) of the EA fraction of H. cordata added before the viral adsorption stage were 0.98 μg/mL for MHV and 7.50 μg/mL for DENV-2 with absence of cytotoxicity. The mice fed with the EA fraction up to 2 000 mg/kg did not induce any signs of acute toxicity, with normal histological features of major organs. Certain flavonoids exhibited comparatively weaker antiviral activity, notably quercetin which could inhibit both MHV and DENV-2. This was followed by quercitrin which could inhibit DENV-2 but not MHV, whereas rutin did not exert any inhibitory effect on either virus. When quercetin was combined with quercitrin, enhancement of anti-DENV-2 activity and reduced cytotoxicity were observed. However, the synergistic efficacy of the flavonoid combination was still less than that of the EA fraction. Conclusions: The compounds in H. cordata contribute to the superior antiviral efficacy of the EA fraction which lacked cytotoxicity in vitro and acute toxicity in vivo. H. cordata has much potential for the development of antiviral agents against coronavirus and dengue infections.

  4. Proteomic analysis of chicken embryonic trachea and kidney tissues after infection in ovo by avian infectious bronchitis coronavirus

    Directory of Open Access Journals (Sweden)

    Kong Xiangang

    2011-03-01

    Full Text Available Abstract Background Avian infectious bronchitis (IB is one of the most serious diseases of economic importance in chickens; it is caused by the avian infectious coronavirus (IBV. Information remains limited about the comparative protein expression profiles of chicken embryonic tissues in response to IBV infection in ovo. In this study, we analyzed the changes of protein expression in trachea and kidney tissues from chicken embryos, following IBV infection in ovo, using two-dimensional gel electrophoresis (2-DE coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS. Results 17 differentially expressed proteins from tracheal tissues and 19 differentially expressed proteins from kidney tissues were identified. These proteins mostly related to the cytoskeleton, binding of calcium ions, the stress response, anti-oxidative, and macromolecular metabolism. Some of these altered proteins were confirmed further at the mRNA level using real-time RT-PCR. Moreover, western blotting analysis further confirmed the changes of annexin A5 and HSPB1 during IBV infection. Conclusions To the best of our knowledge, we have performed the first analysis of the proteomic changes in chicken embryonic trachea and kidney tissues during IBV infection in ovo. The data obtained should facilitate a better understanding of the pathogenesis of IBV infection.

  5. A Strategy Toward Convergent Combination Immunotherapy for SARS

    Institute of Scientific and Technical Information of China (English)

    Wayne; A.; Marasco

    2005-01-01

    Passive Immunotherapyfor viral infections withimmune humanimmunoglobulin has been usedfor many yearsinthe pro-phylaxis andtreatment of infectious disease such as RSV,CMV,rabies,hepatitis Aand B and others.Recently,ad-vances in antibody engineering have allowedthe rapid isolation and pre-clinical development of human monoclonal anti-bodies(Mab)for the treatment of humaninfectious diseases and other conditions.We have explored the use of humanmonoclonal antibodies against the newly emerged SARS coronavirus(Co...

  6. Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic?

    Science.gov (United States)

    Chan, Jasper F W; Li, Kenneth S M; To, Kelvin K W; Cheng, Vincent C C; Chen, Honglin; Yuen, Kwok-Yung

    2012-12-01

    Fouchier et al. reported the isolation and genome sequencing of a novel coronavirus tentatively named "human betacoronavirus 2c EMC/2012 (HCoV-EMC)" from a Saudi patient presenting with pneumonia and renal failure in June 2012. Genome sequencing showed that this virus belongs to the group C species of the genus betacoronavirus and phylogenetically related to the bat coronaviruses HKU4 and HKU5 previously found in lesser bamboo bat and Japanese Pipistrelle bat of Hong Kong respectively. Another patient from Qatar with similar clinical presentation and positive RT-PCR test was reported in September 2012. We compare and contrast the clinical presentation, laboratory diagnosis and management of infection due to this novel coronavirus and that of SARS coronavirus despite the paucity of published information on the former. Since 70% of all emerging infectious pathogens came from animals, the emergence of this novel virus may represent another instance of interspecies jumping of betacoronavirus from animals to human similar to the group A coronavirus OC43 possibly from a bovine source in the 1890s and the group B SARS coronavirus in 2003 from bat to civet and human. Despite the apparently low transmissibility of the virus at this stage, research preparedness against another SARS-like pandemic is an important precautionary strategy.

  7. Development of an equine coronavirus-specific enzyme-linked immunosorbent assay to determine serologic responses in naturally infected horses.

    Science.gov (United States)

    Kooijman, Lotte J; Mapes, Samantha M; Pusterla, Nicola

    2016-07-01

    Equine coronavirus (EqCoV) infection has been documented in most reports through quantitative qPCR analysis of feces and viral genome sequencing. Although qPCR is used to detect antigen during the acute disease phase, there is no equine-specific antibody test available to study EqCoV seroprevalence in various horse populations. We developed an enzyme-linked immunosorbent assay (ELISA) targeting antibodies to the spike (S) protein of EqCoV and validated its use, using acute and convalescent sera from 83 adult horses involved in 6 outbreaks. The EqCoV S protein-based ELISA was able to reliably detect antibodies to EqCoV in naturally infected horses. The greatest seroconversion rate was observed in horses with clinical signs compatible with EqCoV infection and EqCoV qPCR detection in feces. The EqCoV S protein-based ELISA could be used effectively for seroepidemiologic studies in order to better characterize the overall infection rate of EqCoV in various horse populations.

  8. Proteolytic Activation of the Coronavirus Fusion Protein

    NARCIS (Netherlands)

    Wicht, O.

    2014-01-01

    Coronaviruses are enveloped viruses with a positive-stranded RNA genome. They have been isolated from various mammals and birds and can cause severe diseases among farm and companion animals. Cross-species transmission of animal viruses and genuine human coronavirus infections pose a potential

  9. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.

    Science.gov (United States)

    Irigoyen, Nerea; Firth, Andrew E; Jones, Joshua D; Chung, Betty Y-W; Siddell, Stuart G; Brierley, Ian

    2016-02-01

    Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal

  10. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.

    Directory of Open Access Journals (Sweden)

    Nerea Irigoyen

    2016-02-01

    Full Text Available Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV, are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59, a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the

  11. The emerging novel Middle East respiratory syndrome coronavirus: The “knowns” and “unknowns”

    Directory of Open Access Journals (Sweden)

    Jasper Fuk-Woo Chan

    2013-07-01

    Full Text Available A novel lineage C betacoronavirus, originally named human coronavirus EMC/2012 (HCoV-EMC and recently renamed Middle East respiratory syndrome coronavirus (MERS-CoV, that is phylogenetically closely related to Tylonycteris bat coronavirus HKU4 and Pipistrellus bat coronavirus HKU5, which we discovered in 2007 from bats in Hong Kong, has recently emerged in the Middle East to cause a severe acute respiratory syndrome (SARS-like infection in humans. The first laboratory-confirmed case, which involved a 60-year-old man from Bisha, the Kingdom of Saudi Arabia (KSA, who died of rapidly progressive community-acquired pneumonia and acute renal failure, was announced by the World Health Organization (WHO on September 23, 2012. Since then, a total of 70 cases, including 39 fatalities, have been reported in the Middle East and Europe. Recent clusters involving epidemiologically-linked household contacts and hospital contacts in the Middle East, Europe, and Africa strongly suggested possible human-to-human transmission. Clinical and laboratory research data generated in the past few months have provided new insights into the possible animal reservoirs, transmissibility, and virulence of MERS-CoV, and the optimal laboratory diagnostic options and potential antiviral targets for MERS-CoV-associated infection.

  12. Field strain feline coronaviruses with small deletions in ORF7b associated with both enteric infection and feline infectious peritonitis.

    Science.gov (United States)

    Lin, Chao-Nan; Su, Bi-Ling; Huang, Hui-Pi; Lee, Jih-Jong; Hsieh, Min-Wei; Chueh, Ling-Ling

    2009-06-01

    Feline coronavirus (FCoV) varies greatly from causing subclinical or mild enteric infections to fatal feline infectious peritonitis (FIP). The open reading frame (ORF) 7b of FCoV has been speculated to play a determining role in virulence as deletions were found to be associated with avirulent viruses. To further clarify the correlation between this gene and FIP, clinical samples from 20 cats that had succumbed to wet-type FIP and 20 clinically healthy FCoV-infected cats were analysed. The ORF7b from the peritoneal/pleural effusions of FIP cats and from the rectal swabs of healthy cats was amplified. Of the 40 FCoVs analysed, 32 were found to have an intact 7b gene whereas eight showed deletions of either three or 12 nucleotides. Surprisingly, among the eight viruses with deletions, three were from FIP diseased cats. These results show that deletions in the ORF7b gene are not constrained to low pathogenicity/enteric biotypes but also associated with pathogenicity/FIP biotypes of FCoV.

  13. SARS病毒和其他冠状病毒中性突变速率初步的比较研究%The preliminary comparative study of the neutral mutation rate of SARS-CoV and other groups of Coronavirus

    Institute of Scientific and Technical Information of China (English)

    孙慧敏; 唐晓凤; 王波; 谭雅慧; 于晓寒; 张景霞; 闫永平; 夏结来; 徐德忠

    2011-01-01

    目的 比较SARS冠状病毒(SARS-CoV)与第1至第3组(其他3组)冠状病毒的中性突变速率之异同,为更深入研究SARS-CoV起源提供新的思路.方法 在美国国立生物技术信息中心中获取其他3组26条病毒序列,同时选取7条SARS-CoV序列.计算各病毒株5个主要基因串联序列的同义替换核苷酸的数量(Ks值),以此值与时间创建散点图,并进行直线拟合,取得各自中性突变速率并比较.结果SARS-CoV中性突变速率为7.33×10-6/位点·天,而其他3组冠状病毒为2×10-6/位点·天,仅约前者的1/3.5,但决定系数R2极低,无意义.经多种拟合检验,发现标本量和离散性不是本文R2低值的主要原因.结论用同一方法对SARS-CoV和其他3组冠状病毒的中性突变速率进行比较研究,结果显示两者明显不同或具不同的模式;提示和其他3组冠状病毒相比较,SARS-CoV在分子进化或起源模式上似有特别之处.%Objective To oompare the neutral mutation rate between the SARS-CoV and the other three groups (Gl, G2 and G3) of Coronavirus, in order to provide new ideas for research deeply into the origin of SARS-CoV . Methods We obtained 26 sequences of Gl, G2, G3 of Coronavirus and seven sequences of SARS-CoV from NCBI. The Pami-lo-Bianchi-Li model was used to calculate the number of synonymous substitutions per synonymous site, Ks, for the concatenated five known major coding sequences of Coronavirus. A plot of Ks for the concatenated coding sequences vs. The sampling dates was established. The slope of the fitted line from the linear regression model gives the estimation of the neutral mutation rate. Results The neutral mutation rate of SARS-CoV was 7.33 × 10~6nt-1· day-1', the other three groups was 2.0 × 10-6nt-1·day-1, and the later was only 1/3.5 of the former, but the coefficient of determination (R2) is low extremely, and meaningless. Fitted by a variety of tests, we found the number of specimens and the dispersion were

  14. Polymorphisms in the feline TNFA and CD209 genes are associated with the outcome of feline coronavirus infection.

    Science.gov (United States)

    Wang, Ying-Ting; Hsieh, Li-En; Dai, Yu-Rou; Chueh, Ling-Ling

    2014-12-16

    Feline infectious peritonitis (FIP), caused by feline coronavirus (FCoV) infection, is a highly lethal disease without effective therapy and prevention. With an immune-mediated disease entity, host genetic variant was suggested to influence the occurrence of FIP. This study aimed at evaluating cytokine-associated single nucleotide polymorphisms (SNPs), i.e., tumor necrosis factor alpha (TNF-α), receptor-associated SNPs, i.e., C-type lectin DC-SIGN (CD209), and the five FIP-associated SNPs identified from Birman cats of USA and Denmark origins and their associations with the outcome of FCoV infection in 71 FIP cats and 93 FCoV infected non-FIP cats in a genetically more diverse cat populations. A promoter variant, fTNFA - 421 T, was found to be a disease-resistance allele. One SNP was identified in the extracellular domain (ECD) of fCD209 at position +1900, a G to A substitution, and the A allele was associated with FIP susceptibility. Three SNPs located in the introns of fCD209, at positions +2276, +2392, and +2713, were identified to be associated with the outcome of FCoV infection, with statistical relevance. In contrast, among the five Birman FIP cat-associated SNPs, no genotype or allele showed significant differences between our FIP and non-FIP groups. As disease resistance is multifactorial and several other host genes could involve in the development of FIP, the five genetic traits identified in this study should facilitate in the future breeding of the disease-resistant animal to reduce the occurrence of cats succumbing to FIP.

  15. Understanding SARS with Wolfram Approach

    Institute of Scientific and Technical Information of China (English)

    Da-WeiLI; Yu-XiPAN; YunDUAN; Zhen-DeHUNG; Ming-QingXU; LinHE

    2004-01-01

    Stepping acquired immunodeficiency syndrome (AIDS), severe acute respiratory syndrome (SARS) as another type of disease has been threatening mankind since late last year. Many scientists worldwide are making great efforts to study the etiology of this disease with different approaches. 13 species of SARS virus have been sequenced. However, most people still largely rely on the traditional methods with some disadvantages. In this work, we used Wolfram approach to study the relationship among SARS viruses and between SARS viruses and other types of viruses, the effect of variations on the whole genome and the advantages in the analysis of SARS based on this novel approach. As a result, the similarities between SARS viruses and other coronaviruses are not really higher than those between SARS viruses and non-coronaviruses.

  16. The behavioral impacts of SARS and its implication for societal preparedness for other emerging infections

    Directory of Open Access Journals (Sweden)

    Kathleen Pik-san Kwok

    2008-07-01

    Full Text Available Introduction: This study examined public attitudes toward Severe Acute Respiratory Syndrome (SARS in Hong Kong three months after the peak of the 2003 outbreak in order to shed light on SARS-related complaints received by the Equal Opportunities Commission of Hong Kong. Methods: A cross-sectional telephone survey was conducted three months after the SARS outbreak of 1,023 randomly selected Chinese-speaking residents in Hong Kong. Results: Most of the respondents (72.2% reported worry about contracting SARS. They attributed their anxiety to the perceived danger of the disease, the government’s unsatisfactory style of crisis management, and inconsistent health information dissemination. The majority of respondents endorsed up to 3 avoidant (67.8% and 3 imposing (72.7% attitudes toward individuals and/or situations considered to be at risk of spreading SARS. Logistic Regression analyses indicated that the odds for avoidant and imposing attitudes increased significantly for those who were middle aged (35-54, employed full-time or part-time, and worried over contracting SARS. Conclusions: Public attitudes that endorsed avoidant and imposing behaviors were common during the outbreak of SARS. While essential for preventive health practices, they might bring about workplace conflicts, stigma, and other negative interpersonal experiences. These problems may complicate public health efforts to control the epidemic. They may also suggest ways in which societal preparedness for future emerging infections can be improved.

  17. Spatial Distribution of Infection Risk of SARS Transmission in a Hospital Ward

    DEFF Research Database (Denmark)

    Qian, Hua; Li, Yuguo; Nielsen, Peter V.;

    2009-01-01

    diseases by integrating the Wells-Riley equation into computational fluid dynamics. We applied our new integrated model to analyze a large nosocomial SARS outbreak in Hong Kong during the 2003 SARS epidemics, which was studied in the literature with regard to the association between airflow and SARS......The classical Wells-Riley model for predicting risk of airborne transmission of diseases assumes a uniform spatial distribution of the infected cases in an enclosed space. A new mathematical model is developed here for predicting the spatial distribution of infection risk of airborne transmitted...... inpatients during the entire infection period. The new developed model provides a new modelling tool for investigating the airborne transmission of diseases in enclosed spaces. The model is applicable when the susceptible stays mostly at the same location in an enclosed space during the infectious period...

  18. BST2/CD317 counteracts human coronavirus 229E productive infection by tethering virions at the cell surface

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shiu-Mei [Department of Medical Research and Education, Taipei Veterans General Hospital and Institute of Clinical Medicine, Taipei 11217, Taiwan (China); Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Huang, Kuo-Jung [Department of Medical Research and Education, Taipei Veterans General Hospital and Institute of Clinical Medicine, Taipei 11217, Taiwan (China); Wang, Chin-Tien, E-mail: chintien@ym.edu.tw [Department of Medical Research and Education, Taipei Veterans General Hospital and Institute of Clinical Medicine, Taipei 11217, Taiwan (China); Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (China)

    2014-01-20

    Bone marrow stromal antigen 2 (BST2), an interferon-inducible antiviral factor, has been shown to block the release of various enveloped viruses from cells. It has also been identified as an innate immune system component. Most enveloped viruses subject to BST2 restriction bud at the plasma membrane. Here we report our findings that (a) the production of human coronavirus 229E (HCoV-229E) progeny viruses, whose budding occurs at the ER-Golgi intermediate compartment (ERGIC), markedly decreases in the presence of BST2; and (b) BST2 knockdown expression results in enhanced HCoV-229E virion production. Electron microscopy analyses indicate that HCoV-229E virions are tethered to cell surfaces or intracellular membranes by BST2. Our results suggest that BST2 exerts a broad blocking effect against enveloped virus release, regardless of whether budding occurs at the plasma membrane or intracellular compartments. - Highlights: • BST2 knockdown expression results in enhanced HCoV-229E egress. • HCoV-229E virions are tethered to cell surfaces or intracellular membranes by BST2. • HCoV-229E infection at high MOI can significantly downregulate HeLa BST2 and rescue HIV-1 egress.

  19. Preparation and development of equine hyperimmune globulin F(ab')2 against severe acute respiratory syndrome coronavirus

    Institute of Scientific and Technical Information of China (English)

    Jia-hai LU; Bing L WONG; Nan-shan ZHONG; Zhong-min GUO; Wen-yu HAN; Guo-ling WANG; Ding-mei ZHANG; Yi-fei WANG; Sheng-yun SUN; Qin-he YANG; Huan-ying ZHENG

    2005-01-01

    Aim: The resurgence of severe acute respiratory syndrome (SARS) is still a threat because the causative agent remaining in animal reservoirs is not fully understood,and sporadic cases continue to be reported. Developing high titers of anti-SARS hyperimmune globulin to provide an alternative pathway for emergent future prevention and treatment of SARS. Methods: SARS coronavirus (CoV)F69 (AY313906)and Z2-Y3 (AY394989) were isolated and identified from 2 different Cantonese onset SARS patients. Immunogen was prepared from SARS-CoV F69 strain. Six health horses were immunized 4 times and serum was collected periodically to measure the profile of specific IgG and neutralizing antibodies using indirect enzyme-linked immunosorbent assay and a microneutralization test. Sera were collected in large amounts at the peak, where IgG was precipitated using ammonium sulphate and subsequently digested with pepsin. The product was then purified using anion-exchange chromatography to obtain F(ab')2 fragments. Results: The specific IgG and neutralizing antibody titers peaked at approximately week 7 after the first immunization, with a maximum value of 1:14210. The sera collected at the peak were then purified. Fragment of approximately 15 g F(ab')2 was obtained from 1 litre antiserum and the purity was above 90% with the titer of 1:5120, which could neutralize the other strain (SARS-CoV Z2-Y3) as well. Conclusion: This research provides a viable strategy for the prevention and treatment of SARS coronavirus infection with equine hyperimmune globulin, with the purpose of combating any resurgence of SARS.

  20. Coronaviruses: emerging and re-emerging pathogens in humans and animals.

    Science.gov (United States)

    Lau, Susanna K P; Chan, Jasper F W

    2015-12-22

    The severe acute respiratory syndrome coronavirus (SARS-CoV) and recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) epidemics have proven the ability of coronaviruses to cross species barrier and emerge rapidly in humans. Other coronaviruses such as porcine epidemic diarrhea virus (PEDV) are also known to cause major disease epidemics in animals with huge economic loss. This special issue in Virology Journal aims to highlight the advances and key discoveries in the animal origin, viral evolution, epidemiology, diagnostics and pathogenesis of the emerging and re-emerging coronaviruses in both humans and animals.

  1. An Outbreak of SARS in a Diabetes Room of a General Hospital without Infected Medical Staff

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    Objective To investigate the epidemiologic features of an outbreak of SARS that occurred in a single diabetes room of a general hospital in Beijing in late March 2003. Methods Field investigation was carried out in the ward, the nursing log and the hospitalization medical record of correlative patients were consulted. SARS-CoV in serum specimen from SARS patient was detected by PCR. Results The room where SARS outbreak occurred was on the 13th lfoor of the 16-story main ward building. There were 6 beds in the room, living with 6 female patients (aged 45-67) who were all hospitalized due to type 2 diabetes. On March 24, 2003, Patient 1 began to have a fever and cough, chest X-ray showed pneumonia. Five and six days later, Patient 2 and Patient 3 began to have a fever, respectively. Finally, all of these 3 patients died. Their beds were all at the same side of the room, and the other 3 patients at the opposite side were not infected. Serum SARS CoV-RNA of the Patient 3 was positive by nest-PCR. The daughter-in-law of Patient 1 who accompanied Patient 1 by the bedside several days, mainly near the window, upwind of Patient 1, was not infected. Medical staff, family members and visitors of the 6 patients were not infected. Conclusions This outbreak was not transmitted by aerosol. The distance droplets travels could be up to 3.43 meters. Droplet spread has direction, and the droplets direction of propagation is closely related with the wind direction and speed. Those at the downwind position of SARS patients were susceptible to be infected. Medical staff wore face masks and good natural ventilation of this ward building may be important reasons for the prevention of infection.

  2. Infection of cats with atypical feline coronaviruses harbouring a truncated form of the canine type I non-structural ORF3 gene.

    Science.gov (United States)

    Le Poder, Sophie; Pham-Hung d'Alexandry d'Orangiani, Anne-Laure; Duarte, Lidia; Fournier, Annie; Horhogea, Cristina; Pinhas, Carine; Vabret, Astrid; Eloit, Marc

    2013-12-01

    Feline and canine coronaviruses (FCoV and CCoV, respectively) are common pathogens of cats and dogs sometimes leading to lethal infections named feline infectious peritonitis (FIP) and canine pantropic coronavirus infection. FCoV and CCoV are each subdivided into two serotypes, FCoV-I/II and CCoV-I/II. A phylogenetic relationship is evident between, on one hand, CCoV-I/FCoV-I, and on the other hand, CCoV-II/FCoV-II, suggesting that interspecies transmission can occur. The aim of the present study was to evaluate the prevalence of coronavirus (CoV)-infected cats according to their contact with dogs and to genetically analyse the CoV strains infecting cats. From 2003 to 2009, we collected 88 faecal samples from healthy cats and 11 ascitic fluids from FIP cats. We investigated the possible contact with dog in the household and collected dogs samples if appropriate. Out of 99 cat samples, 26 were coronavirus positive, with six cats living with at least one dog, thus showing that contact with dogs does not appear as a predisposing factor for cats CoV infections. Molecular and phylogenetic analyses of FCoV strains were conducted using partial N and S sequences. Six divergent strains were identified with the N gene clustering with CCoV-I whereas the 3' end of S was related to FCoV-I. Further analysis on those six samples was attempted by researching the presence of the ORF3 gene, the latter being peculiar to CCoV-I to date. We succeeded to amplify the ORF3 gene in five samples out of six. Thus, our data strongly suggest the circulation of atypical FCoV strains harbouring the CCoV-I ORF3 gene among cats. Moreover, the ORF3 genes recovered from the feline strains exhibited shared deletions, never described before, suggesting that these deletions could be critical in the adaptation of these strains to the feline host. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Bats and SARS

    Centers for Disease Control (CDC) Podcasts

    2006-11-08

    Bats are a natural reservoir for emerging viruses, among them henipaviruses and rabies virus variants. Dr. Nina Marano, Chief, Geographic Medicine and Health Promotion Branch, Division of Global Migration and Quarantine, CDC, explains connection between horseshoe bats and SARS coronavirus transmission.  Created: 11/8/2006 by Emerging Infectious Diseases.   Date Released: 11/17/2006.

  4. Human Coronaviruses HCoV-NL63 and HCoV-HKU1 in Hospitalized Children with Acute Respiratory Infections in Beijing, China

    Directory of Open Access Journals (Sweden)

    Li-Jin Cui

    2011-01-01

    Full Text Available The human coronaviruses (HCoVs HCoV-NL63 and HCoV-HKU1 are two recently discovered coronaviruses that circulate widely and are associated with acute respiratory infections (ARI. We detected HCoV-NL63 and HCoV-HKU1 in specimens collected from May 2008 to March 2010 from patients with ARI aged <7.75 years of age attending the Beijing Children's Hospital. Thirty-two (8.4% and 57 (14.9% of 382 specimens tested positive for HCoV-NL63 and HCoV-HKU1, respectively, by real-time RT-PCR. Use of a Luminex xTAG RVP Fast kit showed that coinfection with respiratory syncytial virus and parainfluenza 3 virus was common among patients infected with either virus type. In HCoV-HKU1-infected patients, the predominant clinical symptoms were cough, fever, and expectoration. In HCoV-NL63-infected patients they were cough, fever, and rhinorrhea. Phylogenetic studies showed that the HCoV-HKU1 nucleoprotein gene was relatively conserved compared to NCBI reference sequences, while the 1ab gene of HCoV-NL63 showed more variation.

  5. IFITM Proteins Inhibit Entry Driven by the MERS-Coronavirus Spike Protein: Evidence for Cholesterol-Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Florian Wrensch

    2014-09-01

    Full Text Available The interferon-inducible transmembrane (IFITM proteins 1, 2 and 3 inhibit the host cell entry of several enveloped viruses, potentially by promoting the accumulation of cholesterol in endosomal compartments. IFITM3 is essential for control of influenza virus infection in mice and humans. In contrast, the role of IFITM proteins in coronavirus infection is less well defined. Employing a retroviral vector system for analysis of coronavirus entry, we investigated the susceptibility of human-adapted and emerging coronaviruses to inhibition by IFITM proteins. We found that entry of the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV is sensitive to inhibition by IFITM proteins. In 293T cells, IFITM-mediated inhibition of cellular entry of the emerging MERS- and SARS-CoV was less efficient than blockade of entry of the globally circulating human coronaviruses 229E and NL63. Similar differences were not observed in A549 cells, suggesting that cellular context and/or IFITM expression levels can impact inhibition efficiency. The differential IFITM-sensitivity of coronaviruses observed in 293T cells afforded the opportunity to investigate whether efficiency of entry inhibition by IFITMs and endosomal cholesterol accumulation correlate. No such correlation was observed. Furthermore, entry mediated by the influenza virus hemagglutinin was robustly inhibited by IFITM3 but was insensitive to accumulation of endosomal cholesterol, indicating that modulation of cholesterol synthesis/transport did not account for the antiviral activity of IFITM3. Collectively, these results show that the emerging MERS-CoV is a target of the antiviral activity of IFITM proteins and demonstrate that mechanisms other than accumulation of endosomal cholesterol can contribute to viral entry inhibition by IFITMs.

  6. Host-directed therapies for improving poor treatment outcomes associated with the middle east respiratory syndrome coronavirus infections

    Directory of Open Access Journals (Sweden)

    Alimuddin Zumla

    2015-11-01

    Full Text Available Three years after its first discovery in Jeddah Saudi Arabia, the novel zoonotic pathogen of humans, the Middle East Respiratory Syndrome Coronavirus (MERS-CoV continues to be a major threat to global health security.1 Sporadic community acquired cases of MERS continue to be reported from the Middle East. The recent nosocomial outbreaks in hospitals in Seoul, Korea and at the National Guard Hospital in Riyadh, Saudi Arabia indicate the epidemic potential of MERS-CoV. Currently there are no effective anti-MERS-CoV anti-viral agents or therapeutics and MERS is associated with a high mortality rate (40% in hospitalised patients. A large proportion of MERS patients who die have a range of pulmonary pathology ranging from pneumonia to adult respiratory distress syndrome with multi-organ failure, compounded by co-morbidities, reflecting a precarious balance of interactions between the host-immune system and MERS-CoV. Whilst we wait for new MERS-CoV specific drugs, therapeutics and vaccines to be developed, there is a need to advance a range of Host-Directed Therapies. A range of HDTs are available, including commonly used drugs with good safety profiles, which could augment host innate and adaptive immune mechanisms to MERS-CoV, modulate excessive inflammation and reduce lung tissue destruction. We discuss the rationale and potential of using Host-Directed Therapies for improving the poor treatment outcomes associated with MERS. Carefully designed randomized controlled trials will be needed to determine whether HDTs could benefit patients with MERS. The recurrent outbreaks of MERS-CoV infections at hospitals in the Middle East present unique opportunities to conduct randomized clinical trials. The time has come for a more coordinated global response to MERS and a multidisciplinary global MERS-CoV response group is required to take forward priority research agendas.

  7. Total sialic acid: an acute phase reactant in cats with a possible role in feline coronavirus infection.

    Science.gov (United States)

    Rossi, Gabriele; Paltrinieri, Saverio

    2009-04-01

    The aims of this study were to validate a colorimetric method to measure total sialic acid (TSA) in feline serum and to investigate the serum concentration of TSA in clinically healthy cats seronegative (n = 9) and seropositive (n = 48) for feline coronavirus (FCoV), and in cats affected by feline infectious peritonitis (FIP, n = 28), tumors (n = 20), or inflammation (n = 16). The correlation between TSA and alpha(1)-acid glycoprotein (AGP) was also investigated. The method employed in this study is precise and accurate at TSA levels (in mg/L) commonly encountered in feline serum. No significant differences between seropositive (385.6 +/- 192.2 mg/L) and seronegative (433.5 +/- 179.0 mg/L) cats were detectable, suggesting that the simple infection by FCoVs does not influence TSA levels. Compared with seropositive controls, the concentration of TSA was higher in cats with FIP (556.7 +/- 268.3 mg/L, P = 0.003), tumors (522.5 +/- 294.4 mg/L, P = 0.028), and inflammation (546.8 +/- 208.3 mg/L, P = 0.018). The discriminating power of TSA for FIP is moderate (area under the ROC curve = 0.65) and the likelihood ratio is higher than 3.0 only at high TSA levels. Consequently, TSA could support a diagnosis of FIP only at extremely high serum concentration (> 800 mg/L) or when the pre-test probability of FIP is high. No correlations were found between the TSA and AGP concentrations in cats with FIP, suggesting that sialylated proteins other than AGP are present. Both the antibody titre and the degree of AGP sialylation were negatively correlated with TSA levels, suggesting that increased TSA may contribute to reduce the burden of FCoVs.

  8. Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS coronavirus

    Directory of Open Access Journals (Sweden)

    Júlia Vergara-Alert

    2017-06-01

    Full Text Available Emerging and re-emerging pathogens represent a substantial threat to public health, as demonstrated with numerous outbreaks over the past years, including the 2013–2016 outbreak of Ebola virus in western Africa. Coronaviruses are also a threat for humans, as evidenced in 2002/2003 with infection by the severe acute respiratory syndrome coronavirus (SARS-CoV, which caused more than 8000 human infections with 10% fatality rate in 37 countries. Ten years later, a novel human coronavirus (Middle East respiratory syndrome coronavirus, MERS-CoV, associated with severe pneumonia, arose in the Kingdom of Saudi Arabia. Until December 2016, MERS has accounted for more than 1800 cases and 35% fatality rate. Finding an animal model of disease is key to develop vaccines or antivirals against such emerging pathogens and to understand its pathogenesis. Knowledge of the potential role of domestic livestock and other animal species in the transmission of pathogens is of importance to understand the epidemiology of the disease. Little is known about MERS-CoV animal host range. In this paper, experimental data on potential hosts for MERS-CoV is reviewed. Advantages and limitations of different animal models are evaluated in relation to viral pathogenesis and transmission studies. Finally, the relevance of potential new target species is discussed.

  9. Characterization of a novel coronavirus associated with severe acute respiratory syndrome

    NARCIS (Netherlands)

    P.A. Rota (Paul); M.S. Oberste (Steven); S.S. Monroe (Stephan); W.A. Nix (Allan); R. Campagnoli (Ray); J.P. Icenogle (Joseph); S. Penaranda; B. Bankamp (Bettina); K. Maher (Kaija); M.H. Chen (Min-hsin); S. Tong (Suxiong); A. Tamin (Azaibi); L. Lowe (Luis); M. Frace (Michael); J.L. DeRisi (Joseph); Q. Chen (Qi); D. Wang (David); D.D. Erdman (Dean); T.C. Peret (Teresa); C. Burns (Cara); T.G. Ksiazek (Thomas); P.E. Rollin (Pierre); A. Sanchez (Berenguer); S. Liffick (Stephanie); B. Holloway (Brian); J. Limor (Josef); K. McCaustland (Karen); M. Olsen-Rasmussen (Mellissa); S. Gunther; A.D.M.E. Osterhaus (Albert); C. Drosten (Christian); M.A. Pallansch (Mark); L.J. Anderson (Larry); W.J. Belline; R.A.M. Fouchier (Ron)

    2003-01-01

    textabstractIn March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The geno

  10. The role of viral population diversity in adaptation of bovine coronavirus to new host environments.

    Directory of Open Access Journals (Sweden)

    Monica K Borucki

    Full Text Available The high mutation rate of RNA viruses enables a diverse genetic population of viral genotypes to exist within a single infected host. In-host genetic diversity could better position the virus population to respond and adapt to a diverse array of selective pressures such as host-switching events. Multiple new coronaviruses, including SARS, have been identified in human samples just within the last ten years, demonstrating the potential of coronaviruses as emergent human pathogens. Deep sequencing was used to characterize genomic changes in coronavirus quasispecies during simulated host-switching. Three bovine nasal samples infected with bovine coronavirus were used to infect human and bovine macrophage and lung cell lines. The virus reproduced relatively well in macrophages, but the lung cell lines were not infected efficiently enough to allow passage of non lab-adapted samples. Approximately 12 kb of the genome was amplified before and after passage and sequenced at average coverages of nearly 950×(454 sequencing and 38,000×(Illumina. The consensus sequence of many of the passaged samples had a 12 nucleotide insert in the consensus sequence of the spike gene, and multiple point mutations were associated with the presence of the insert. Deep sequencing revealed that the insert was present but very rare in the unpassaged samples and could quickly shift to dominate the population when placed in a different environment. The insert coded for three arginine residues, occurred in a region associated with fusion entry into host cells, and may allow infection of new cell types via heparin sulfate binding. Analysis of the deep sequencing data indicated that two distinct genotypes circulated at different frequency levels in each sample, and support the hypothesis that the mutations present in passaged strains were "selected" from a pre-existing pool rather than through de novo mutation and subsequent population fixation.

  11. Detection of feline coronavirus using microcantilever sensors

    Science.gov (United States)

    Velanki, Sreepriya; Ji, Hai-Feng

    2006-11-01

    This work demonstrated the feasibility of detecting severe acute respiratory syndrome associated coronavirus (SARS-CoV) using microcantilever technology by showing that the feline coronavirus (FIP) type I virus can be detected by a microcantilever modified by feline coronavirus (FIP) type I anti-viral antiserum. A microcantilever modified by FIP type I anti-viral antiserum was developed for the detection of FIP type I virus. When the FIP type I virus positive sample is injected into the fluid cell where the microcantilever is held, the microcantilever bends upon the recognition of the FIP type I virus by the antiserum on the surface of the microcantilever. A negative control sample that does not contain FIP type I virus did not cause any bending of the microcantilever. The detection limit of the sensor was 0.1 µg ml-1 when the assay time was <1 h.

  12. Biological Characteristics and Etiological Significance of Porcine Respiratory Coronavirus(PRCV)

    Institute of Scientific and Technical Information of China (English)

    FAN Xiuping; FENG Li; SHI Hongyan; CHEN Jianfei

    2009-01-01

    Porcine respiratory coronavirus (PRCV), a spike (S) gene natural deletion mutant of transmissible gastroenteritis virus (TGEV), causes porcine respiratory disease complex. Research advances on porcine respiratory coronavirus were reviewed from four aspects of biological character, the model function for SARS-CoV research, contribution of the immunity to PRCV to protection against TGEV challenge exposure and other etiological significance.

  13. Understanding Emerging Zoonotic Respiratory Viruses : Animal models for human influenza and coronavirus infections

    NARCIS (Netherlands)

    L.C.M. Wiersma (Lidewij)

    2016-01-01

    markdownabstractThe objective of the work presented in this thesis was to improve understanding of, and response to, emerging zoonotic respiratory viruses. To this end, various animal models were employed to represent respiratory viral infections in humans. The introduction serves to provide a backg

  14. Peptides corresponding to the predicted heptad repeat 2 domain of the feline coronavirus spike protein are potent inhibitors of viral infection.

    Directory of Open Access Journals (Sweden)

    I-Jung Liu

    Full Text Available BACKGROUND: Feline infectious peritonitis (FIP is a lethal immune-mediated disease caused by feline coronavirus (FCoV. Currently, no therapy with proven efficacy is available. In searching for agents that may prove clinically effective against FCoV infection, five analogous overlapping peptides were designed and synthesized based on the putative heptad repeat 2 (HR2 sequence of the spike protein of FCoV, and the antiviral efficacy was evaluated. METHODS: Plaque reduction assay and MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide cytotoxicity assay were performed in this study. Peptides were selected using a plaque reduction assay to inhibit Feline coronavirus infection. RESULTS: The results demonstrated that peptide (FP5 at concentrations below 20 μM inhibited viral replication by up to 97%. The peptide (FP5 exhibiting the most effective antiviral effect was further combined with a known anti-viral agent, human interferon-α (IFN-α, and a significant synergistic antiviral effect was observed. CONCLUSION: Our data suggest that the synthetic peptide FP5 could serve as a valuable addition to the current FIP prevention methods.

  15. Analysis of the host transcriptome from demyelinating spinal cord of murine coronavirus-infected mice.

    Directory of Open Access Journals (Sweden)

    Ruth Elliott

    Full Text Available Persistent infection of the mouse central nervous system (CNS with mouse hepatitis virus (MHV induces a demyelinating disease pathologically similar to multiple sclerosis and is therefore used as a model system. There is little information regarding the host factors that correlate with and contribute to MHV-induced demyelination. Here, we detail the genes and pathways associated with MHV-induced demyelinating disease in the spinal cord. High-throughput sequencing of the host transcriptome revealed that demyelination is accompanied by numerous transcriptional changes indicative of immune infiltration as well as changes in the cytokine milieu and lipid metabolism. We found evidence that a Th1-biased cytokine/chemokine response and eicosanoid-derived inflammation accompany persistent MHV infection and that antigen presentation is ongoing. Interestingly, increased expression of genes involved in lipid transport, processing, and catabolism, including some with known roles in neurodegenerative diseases, coincided with demyelination. Lastly, expression of several genes involved in osteoclast or bone-resident macrophage function, most notably TREM2 and DAP12, was upregulated in persistently infected mouse spinal cord. This study highlights the complexity of the host antiviral response, which accompany MHV-induced demyelination, and further supports previous findings that MHV-induced demyelination is immune-mediated. Interestingly, these data suggest a parallel between bone reabsorption by osteoclasts and myelin debris clearance by microglia in the bone and the CNS, respectively. To our knowledge, this is the first report of using an RNA-seq approach to study the host CNS response to persistent viral infection.

  16. The replication of a mouse adapted SARS-CoV in a mouse cell line stably expressing the murine SARS-CoV receptor mACE2 efficiently induces the expression of proinflammatory cytokines.

    Science.gov (United States)

    Regla-Nava, Jose A; Jimenez-Guardeño, Jose M; Nieto-Torres, Jose L; Gallagher, Thomas M; Enjuanes, Luis; DeDiego, Marta L

    2013-11-01

    Infection of conventional mice with a mouse adapted (MA15) severe acute respiratory syndrome (SARS) coronavirus (CoV) reproduces many aspects of human SARS such as pathological changes in lung, viremia, neutrophilia, and lethality. However, established mouse cell lines highly susceptible to mouse-adapted SARS-CoV infection are not available. In this work, efficiently transfectable mouse cell lines stably expressing the murine SARS-CoV receptor angiotensin converting enzyme 2 (ACE2) have been generated. These cells yielded high SARS-CoV-MA15 titers and also served as excellent tools for plaque assays. In addition, in these cell lines, SARS-CoV-MA15 induced the expression of proinflammatory cytokines and IFN-β, mimicking what has been observed in experimental animal models infected with SARS-CoV and SARS patients. These cell lines are valuable tools to perform in vitro studies in a mouse cell system that reflects the species used for in vivo studies of SARS-CoV-MA15 pathogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Spatial distribution of infection risk of SARS transmission in a hospital ward

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Hua; Li, Yuguo [School of Energy and Environment, Southeast University, Nanjing, JiangSu (China); Nielsen, Peter V. [Department of Civil Engineering, Aalborg University, DK-9000 Aalborg (Denmark); Huang, Xinhua [Institute of Refrigeration and Cryogenics Engineering, Shanghai Jiaotong University, Shanghai (China)

    2009-08-15

    The classical Wells-Riley model for predicting risk of airborne transmission of diseases assumes a uniform spatial distribution of the infected cases in an enclosed space. A new mathematical model is developed here for predicting the spatial distribution of infection risk of airborne transmitted diseases by integrating the Wells-Riley equation into computational fluid dynamics. We applied our new integrated model to analyze a large nosocomial SARS outbreak in Hong Kong during the 2003 SARS epidemics, which was studied in the literature with regard to the association between airflow and SARS infection. The predicted numbers of infected cases of medical students in the same cubicle, the adjacent cubicle and the distant cubicle were 6.39, 0.78 and 0.2 respectively while the observed numbers of infected medical students in the three cubicles were 7, 0 and 0 respectively during the morning of March 6th, which was the highest attack period. The predicted numbers of infected cases of inpatients during the morning of March 6th in the same cubicle, the adjacent cubic and the distance cubicle were 7.8, 5.1, and 4.8 respectively which also agree well with the observed distribution of the infected inpatients during the entire infection period. The new developed model provides a new modelling tool for investigating the airborne transmission of diseases in enclosed spaces. The model is applicable when the susceptible stays mostly at the same location in an enclosed space during the infectious period, such as inpatients in a hospital ward, passengers in an airplane etc. (author)

  18. A chimeric virus-mouse model system for evaluating the function and inhibition of papain-like proteases of emerging coronaviruses.

    Science.gov (United States)

    Deng, Xufang; Agnihothram, Sudhakar; Mielech, Anna M; Nichols, Daniel B; Wilson, Michael W; StJohn, Sarah E; Larsen, Scott D; Mesecar, Andrew D; Lenschow, Deborah J; Baric, Ralph S; Baker, Susan C

    2014-10-01

    To combat emerging coronaviruses, developing safe and efficient platforms to evaluate viral protease activities and the efficacy of protease inhibitors is a high priority. Here, we exploit a biosafety level 2 (BSL-2) chimeric Sindbis virus system to evaluate protease activities and the efficacy of inhibitors directed against the papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus (SARS-CoV), a biosafety level 3 (BSL-3) pathogen. We engineered Sindbis virus to coexpress PLpro and a substrate, murine interferon-stimulated gene 15 (ISG15), and found that PLpro mediates removal of ISG15 (deISGylation) from cellular proteins. Mutation of the catalytic cysteine residue of PLpro or addition of a PLpro inhibitor blocked deISGylation in virus-infected cells. Thus, deISGylation is a marker of PLpro activity. Infection of alpha/beta interferon receptor knockout (IFNAR(-/-)) mice with these chimeric viruses revealed that PLpro deISGylation activity removed ISG15-mediated protection during viral infection. Importantly, administration of a PLpro inhibitor protected these mice from lethal infection, demonstrating the efficacy of a coronavirus protease inhibitor in a mouse model. However, this PLpro inhibitor was not sufficient to protect the mice from lethal infection with SARS-CoV MA15, suggesting that further optimization of the delivery and stability of PLpro inhibitors is needed. We extended the chimeric-virus platform to evaluate the papain-like protease/deISGylating activity of Middle East respiratory syndrome coronavirus (MERS-CoV) to provide a small-animal model to evaluate PLpro inhibitors of this recently emerged pathogen. This platform has the potential to be universally adaptable to other viral and cellular enzymes that have deISGylating activities. Importance: Evaluating viral protease inhibitors in a small-animal model is a critical step in the path toward antiviral drug development. We modified a biosafety level 2 chimeric virus system to

  19. Interference of coronavirus infection by expression of immunoglobulin G (IgG) or IgA virus-neutralizing antibodies.

    OpenAIRE

    Castilla, J; Sola, I.; Enjuanes, L

    1997-01-01

    Immunoglobulin gene fragments encoding the variable modules of the heavy and light chains of a transmissible gastroenteritis coronavirus (TGEV)-neutralizing monoclonal antibody (MAb) have been cloned and sequenced. The selected MAb recognizes a highly conserved viral epitope and does not lead to the selection of neutralization escape mutants. The sequences of MAb 6A.C3 kappa and gamma 1 modules were identified as subgroup V and subgroup IIIC, respectively. The chimeric immunoglobulin genes en...

  20. Antiviral activity of cepharanthine against severe acute respiratory syndrome coronavirus in vitro

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chuan-hai; XIONG Sheng; LI Jiu-xiang; QI Shu-yuan; WANG Yi-fei; LIU Xin-jian; LU Jia-hai; QIAN Chui-wen; WAN Zhuo-yue; YAN Xin-ge; ZHENG Huan-ying; ZHANG Mei-ying

    2005-01-01

    @@ Severe acute respiratory syndrome (SARS) is the first severe viral epidemic we encountered this century, which once spread in more than thirty countries in 2003.1 The etiological agent of SARS has been confirmed to be a novel coronavirus, namely SARS coronavirus (SARS-CoV),2,3 and the first outbreak of SARS has been successfully controlled worldwide, but the identification of SARS-CoV isolated from wild animals, the emergence of some sporadic SARS cases later after that outbreak, all suggest that the recurrence of such an epidemic is not unlikely in the future. In this case, development of SARS vaccines and specific drugs is undoubtedly essential to the control and prevention from the possible outbreak.4,5

  1. Potent inhibition of feline coronaviruses with peptidyl compounds targeting coronavirus 3C-like protease.

    Science.gov (United States)

    Kim, Yunjeong; Mandadapu, Sivakoteswara Rao; Groutas, William C; Chang, Kyeong-Ok

    2013-02-01

    Feline coronavirus infection is common among domestic and exotic felid species and usually associated with mild or asymptomatic enteritis; however, feline infectious peritonitis (FIP) is a fatal disease of cats that is caused by systemic infection with a feline infectious peritonitis virus (FIPV), a variant of feline enteric coronavirus (FECV). Currently, there is no specific treatment approved for FIP despite the importance of FIP as the leading infectious cause of death in young cats. During the replication process, coronavirus produces viral polyproteins that are processed into mature proteins by viral proteases, the main protease (3C-like [3CL] protease) and the papain-like protease. Since the cleavages of viral polyproteins are an essential step for virus replication, blockage of viral protease is an attractive target for therapeutic intervention. Previously, we reported the generation of broad-spectrum peptidyl inhibitors against viruses that possess a 3C or 3CL protease. In this study, we further evaluated the antiviral effects of the peptidyl inhibitors against feline coronaviruses, and investigated the interaction between our protease inhibitor and a cathepsin B inhibitor, an entry blocker, against a feline coronavirus in cell culture. Herein we report that our compounds behave as reversible, competitive inhibitors of 3CL protease, potently inhibited the replication of feline coronaviruses (EC(50) in a nanomolar range) and, furthermore, combination of cathepsin B and 3CL protease inhibitors led to a strong synergistic interaction against feline coronaviruses in a cell culture system.

  2. Proteomics analysis of differentially expressed proteins in chicken trachea and kidney after infection with the highly virulent and attenuated coronavirus infectious bronchitis virus in vivo

    Directory of Open Access Journals (Sweden)

    Cao Zhongzan

    2012-03-01

    Full Text Available Abstract Background Infectious bronchitis virus (IBV is first to be discovered coronavirus which is probably endemic in all regions with intensive impact on poultry production. In this study, we used two-dimensional gel electrophoresis (2-DE and two-dimensional fluorescence difference gel electrophoresis (2-DIGE, coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS, to explore the global proteome profiles of trachea and kidney tissues from chicken at different stages infected in vivo with the highly virulent ck/CH/LDL/97I P5 strain of infectious bronchitis virus (IBV and the embryo-passaged, attenuated ck/CH/LDL/97I P115 strain. Results Fifty-eight differentially expressed proteins were identified. Results demonstrated that some proteins which had functions in cytoskeleton organization, anti-oxidative stress, and stress response, showed different change patterns in abundance from chicken infected with the highly virulent ck/CH/LDL/97I P5 strain and those given the embryo-passaged, attenuated P115 stain. In addition, the dynamic transcriptional alterations of 12 selected proteins were analyzed by the real-time RT-PCR, and western blot analysis confirmed the change in abundance of heat shock proteins (HSP beta-1, annexin A2, and annexin A5. Conclusions The proteomic alterations described here may suggest that these changes to protein expression correlate with IBV virus' virulence in chicken, hence provides valuable insights into the interactions of IBV with its host and may also assist with investigations of the pathogenesis of IBV and other coronavirus infections.

  3. METAPNEUMOVIRUS AND BOKAVIRUS RESPIRATORY INFECTIONS IN THE STRUCTURE OF SARS IN CHILDREN

    Directory of Open Access Journals (Sweden)

    F. S. Harlamov

    2015-01-01

    Full Text Available The article provides an overview of the literature data about new pneumotropic viruses - metapneumovirus and bokavirus: taxonomy, structural features, pathogenesis, laboratory diagnosis, clinical symptoms of the diseases they cause and complications. The high incidence and bokavirus metapnevmovirus structure of SARS infections in preschool children, the authors have shown the example carried out at the Department of Infectious Diseases in Children Medical University (now RNIMU named after N.I. Pirogov and on the basis of clinical Institute of Virology, multicenter, randomized, blind, placebo-controlled study on the therapeutic efficacy and safety of interferon inducer Kagocel in 120 children aged 2 to 6 years. The findings to point out on significant reduction in the rate of relief of basic clinical manifestations of SARS, regardless of etiology, in children taking Kagocel in compare with a group of children who took a placebo.

  4. Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study.

    Science.gov (United States)

    Chowell, Gerardo; Abdirizak, Fatima; Lee, Sunmi; Lee, Jonggul; Jung, Eunok; Nishiura, Hiroshi; Viboud, Cécile

    2015-09-03

    highly across individual hospital outbreaks (Kruskal-Wallis test; P SARS. Simulations indicate a 2-fold higher probability of occurrence of large outbreaks (>100 cases) for SARS than MERS (2 % versus 1 %); however, owing to higher transmission heterogeneity, the largest outbreaks of MERS are characterized by sharper incidence peaks. The probability of occurrence of MERS outbreaks larger than the South Korean cluster (n = 186) is of the order of 1 %. Our study suggests that the South Korean outbreak followed a similar progression to previously described hospital clusters involving coronaviruses, with early super-spreading events generating a disproportionately large number of secondary infections, and the transmission potential diminishing greatly in subsequent generations. Differences in relative exposure patterns and transmission heterogeneity of MERS and SARS could point to changes in hospital practices since 2003 or differences in transmission mechanisms of these coronaviruses.

  5. Detection of the Middle East Respiratory Syndrome Coronavirus Genome in an Air Sample Originating from a Camel Barn Owned by an Infected Patient

    Science.gov (United States)

    Hashem, Anwar M.; El-Kafrawy, Sherif A.; Sohrab, Sayed Sartaj; Aburizaiza, Asad S.; Farraj, Suha A.; Hassan, Ahmed M.; Al-Saeed, Muneera S.; Jamjoom, Ghazi A.; Madani, Tariq A.

    2014-01-01

    ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel betacoronavirus that has been circulating in the Arabian Peninsula since 2012 and causing severe respiratory infections in humans. While bats were suggested to be involved in human MERS-CoV infections, a direct link between bats and MERS-CoV is uncertain. On the other hand, serological and virological data suggest dromedary camels as the potential animal reservoirs of MERS-CoV. Recently, we isolated MERS-CoV from a camel and its infected owner and provided evidence for the direct transmission of MERS-CoV from the infected camel to the patient. Here, we extend this work and show that identical MERS-CoV RNA fragments were detected in an air sample collected from the same barn that sheltered the infected camel in our previous study. These data indicate that the virus was circulating in this farm concurrently with its detection in the camel and in the patient, which warrants further investigations for the possible airborne transmission of MERS-CoV. PMID:25053787

  6. Elucidation of the avian nucleolar proteome by quantitative proteomics using SILAC and changes in cells infected with the coronavirus infectious bronchitis virus.

    Science.gov (United States)

    Emmott, Edward; Smith, Catriona; Emmett, Stevan R; Dove, Brian K; Hiscox, Julian A

    2010-10-01

    The nucleolus is a dynamic subnuclear compartment involved in ribosome subunit biogenesis, regulation of cell stress and modulation of cellular growth and the cell cycle, among other functions. The nucleolus is composed of complex protein/protein and protein/RNA interactions. It is a target of virus infection with many viral proteins being shown to localize to the nucleolus during infection. Perturbations to the structure of the nucleolus and its proteome have been predicted to play a role in both cellular and infectious disease. Stable isotope labeling with amino acids in cell culture coupled to LC-MS/MS with bioinformatic analysis using Ingenuity Pathway Analysis was used to investigate whether the nucleolar proteome altered in virus-infected cells. In this study, the avian nucleolar proteome was defined in the absence and presence of virus, in this case the positive strand RNA virus, avian coronavirus infectious bronchitis virus. Data sets, potential protein changes and the functional consequences of virus infection were validated using independent assays. These demonstrated that specific rather than generic changes occurred in the nucleolar proteome in infectious bronchitis virus-infected cells.

  7. Network-based analysis of comorbidities risk during an infection: SARS and HIV case studies.

    Science.gov (United States)

    Moni, Mohammad Ali; Liò, Pietro

    2014-10-24

    Infections are often associated to comorbidity that increases the risk of medical conditions which can lead to further morbidity and mortality. SARS is a threat which is similar to MERS virus, but the comorbidity is the key aspect to underline their different impacts. One UK doctor says "I'd rather have HIV than diabetes" as life expectancy among diabetes patients is lower than that of HIV. However, HIV has a comorbidity impact on the diabetes. We present a quantitative framework to compare and explore comorbidity between diseases. By using neighbourhood based benchmark and topological methods, we have built comorbidity relationships network based on the OMIM and our identified significant genes. Then based on the gene expression, PPI and signalling pathways data, we investigate the comorbidity association of these 2 infective pathologies with other 7 diseases (heart failure, kidney disorder, breast cancer, neurodegenerative disorders, bone diseases, Type 1 and Type 2 diabetes). Phenotypic association is measured by calculating both the Relative Risk as the quantified measures of comorbidity tendency of two disease pairs and the ϕ-correlation to measure the robustness of the comorbidity associations. The differential gene expression profiling strongly suggests that the response of SARS affected patients seems to be mainly an innate inflammatory response and statistically dysregulates a large number of genes, pathways and PPIs subnetworks in different pathologies such as chronic heart failure (21 genes), breast cancer (16 genes) and bone diseases (11 genes). HIV-1 induces comorbidities relationship with many other diseases, particularly strong correlation with the neurological, cancer, metabolic and immunological diseases. Similar comorbidities risk is observed from the clinical information. Moreover, SARS and HIV infections dysregulate 4 genes (ANXA3, GNS, HIST1H1C, RASA3) and 3 genes (HBA1, TFRC, GHITM) respectively that affect the ageing process. It is notable

  8. Achieving a golden mean: mechanisms by which coronaviruses ensure synthesis of the correct stoichiometric ratios of viral proteins.

    Science.gov (United States)

    Plant, Ewan P; Rakauskaite, Rasa; Taylor, Deborah R; Dinman, Jonathan D

    2010-05-01

    In retroviruses and the double-stranded RNA totiviruses, the efficiency of programmed -1 ribosomal frameshifting is critical for ensuring the proper ratios of upstream-encoded capsid proteins to downstream-encoded replicase enzymes. The genomic organizations of many other frameshifting viruses, including the coronaviruses, are very different, in that their upstream open reading frames encode nonstructural proteins, the frameshift-dependent downstream open reading frames encode enzymes involved in transcription and replication, and their structural proteins are encoded by subgenomic mRNAs. The biological significance of frameshifting efficiency and how the relative ratios of proteins encoded by the upstream and downstream open reading frames affect virus propagation has not been explored before. Here, three different strategies were employed to test the hypothesis that the -1 PRF signals of coronaviruses have evolved to produce the correct ratios of upstream- to downstream-encoded proteins. Specifically, infectious clones of the severe acute respiratory syndrome (SARS)-associated coronavirus harboring mutations that lower frameshift efficiency decreased infectivity by >4 orders of magnitude. Second, a series of frameshift-promoting mRNA pseudoknot mutants was employed to demonstrate that the frameshift signals of the SARS-associated coronavirus and mouse hepatitis virus have evolved to promote optimal frameshift efficiencies. Finally, we show that a previously described frameshift attenuator element does not actually affect frameshifting per se but rather serves to limit the fraction of ribosomes available for frameshifting. The findings of these analyses all support a "golden mean" model in which viruses use both programmed ribosomal frameshifting and translational attenuation to control the relative ratios of their encoded proteins.

  9. A Case-Control Study of Association between Diarrhea in Newborn Calves and Infection with Rotavirus and Coronavirus in Some Industrial Dairy Herds of Mashhad Aarea, Iran in 2008

    Directory of Open Access Journals (Sweden)

    Afshari Safavi, E.A.

    2012-06-01

    Full Text Available A 1:1 matched case-control study of calves under 1 month of age was carried out by weekly visits to 7 dairy farms in Mashhad from May 2008 to October 2008. Fecal samples were collected from a total of 112 calves with clinical signs of diarrhea and from 112 matched animals without clinical signs of diarrhea as assessed by a scoring system. The samples were investigated for the presence of Rotavirus and Coronavirus by a commercial antigen capture ELISA test. Rotavirus antigen was detected in 29.5% and 17% of diarrheic and non-diarrheic calves, respectively and Coronavirus antigen was detected in 2.7% and 1.8% of diarrheic and non-diarrheic calves, respectively. Among diarrheic calves Rotavirus was the most common in the third week of life and Coronavirus was detected only in some cases of second week of life. The excretion of Rotavirus in the feces of scouring calves was significantly higher than in non-diarrheic calves (P value =0.03, odds ratio = 1.9 (1.05 – 3.76, but there was not any significant association between shedding of Coronavirus in the feces and diarrhea (P value =0.66, odds ratio = 1.4 (0.24 –9.05. These results indicate that in these industrial dairy farms in Mashhad, infections by Rotavirus can be considered as an important cause for newborn calf diarrhea.

  10. The Important Role of Lipid Raft-Mediated Attachment in the Infection of Cultured Cells by Coronavirus Infectious Bronchitis Virus Beaudette Strain

    Science.gov (United States)

    Guo, Huichen; Huang, Mei; Yuan, Quan; Wei, Yanquan; Gao, Yuan; Mao, Lejiao; Gu, Lingjun; Tan, Yong Wah; Zhong, Yanxin; Liu, Dingxiang; Sun, Shiqi

    2017-01-01

    Lipid raft is an important element for the cellular entry of some viruses, including coronavirus infectious bronchitis virus (IBV). However, the exact role of lipid rafts in the cellular membrane during the entry of IBV into host cells is still unknown. In this study, we biochemically fractionated IBV-infected cells via sucrose density gradient centrifugation after depleting plasma membrane cholesterol with methyl-β-cyclodextrin or Mevastatin. Our results demonstrated that unlike IBV non-structural proteins, IBV structural proteins co-localized with lipid raft marker caveolin-1. Infectivity assay results of Vero cells illustrated that the drug-induced disruption of lipid rafts significantly suppressed IBV infection. Further studies revealed that lipid rafts were not required for IBV genome replication or virion release at later stages. However, the drug-mediated depletion of lipid rafts in Vero cells before IBV attachment significantly reduced the expression of viral structural proteins, suggesting that drug treatment impaired the attachment of IBV to the cell surface. Our results indicated that lipid rafts serve as attachment factors during the early stages of IBV infection, especially during the attachment stage. PMID:28081264

  11. Antigen Production in Plant to Tackle Infectious Diseases Flare Up: the Case of SARS

    Directory of Open Access Journals (Sweden)

    Olivia C eDemurtas

    2016-02-01

    Full Text Available Severe Acute Respiratory Syndrome (SARS is a dangerous infection with pandemic potential. It emerged in 2002 and its aetiological agent, the SARS Coronavirus (SARS-CoV, crossed the species barrier to infect humans, showing high morbidity and mortality rates. No vaccines are currently licensed for SARS-CoV and important efforts have been performed during the first outbreak to develop diagnostic tools. Here we demonstrate the transient expression in Nicotiana benthamiana of two important antigenic determinants of the SARS-CoV, the nucleocapsid protein (N and the membrane protein (M using a virus-derived vector or agro-infiltration, respectively. For the M protein, this is the first description of production in plants, while for plant-derived N protein we demonstrate that it is recognized by sera of patients from the SARS outbreak in Hong Kong in 2003. The availability of recombinant N and M proteins from plants opens the way to further evaluation of their potential utility for the development of diagnostic and protection/therapy tools to be quickly manufactured, at low cost and with minimal risk, to face potential new highly infectious SARS-CoV outbreaks.

  12. Antigen Production in Plant to Tackle Infectious Diseases Flare Up: The Case of SARS.

    Science.gov (United States)

    Demurtas, Olivia C; Massa, Silvia; Illiano, Elena; De Martinis, Domenico; Chan, Paul K S; Di Bonito, Paola; Franconi, Rosella

    2016-01-01

    Severe acute respiratory syndrome (SARS) is a dangerous infection with pandemic potential. It emerged in 2002 and its aetiological agent, the SARS Coronavirus (SARS-CoV), crossed the species barrier to infect humans, showing high morbidity and mortality rates. No vaccines are currently licensed for SARS-CoV and important efforts have been performed during the first outbreak to develop diagnostic tools. Here we demonstrate the transient expression in Nicotiana benthamiana of two important antigenic determinants of the SARS-CoV, the nucleocapsid protein (N) and the membrane protein (M) using a virus-derived vector or agro-infiltration, respectively. For the M protein, this is the first description of production in plants, while for plant-derived N protein we demonstrate that it is recognized by sera of patients from the SARS outbreak in Hong Kong in 2003. The availability of recombinant N and M proteins from plants opens the way to further evaluation of their potential utility for the development of diagnostic and protection/therapy tools to be quickly manufactured, at low cost and with minimal risk, to face potential new highly infectious SARS-CoV outbreaks.

  13. Surface vimentin is critical for the cell entry of SARS-CoV.

    Science.gov (United States)

    Yu, Yvonne Ting-Chun; Chien, Ssu-Chia; Chen, I-Yin; Lai, Chia-Tsen; Tsay, Yeou-Guang; Chang, Shin C; Chang, Ming-Fu

    2016-01-22

    Severe acute respiratory syndrome coronavirus (SARS-CoV) caused a global panic due to its high morbidity and mortality during 2002 and 2003. Soon after the deadly disease outbreak, the angiotensin-converting enzyme 2 (ACE2) was identified as a functional cellular receptor in vitro and in vivo for SARS-CoV spike protein. However, ACE2 solely is not sufficient to allow host cells to become susceptible to SARS-CoV infection, and other host factors may be involved in SARS-CoV spike protein-ACE2 complex. A host intracellular filamentous cytoskeletal protein vimentin was identified by immunoprecipitation and LC-MS/MS analysis following chemical cross-linking on Vero E6 cells that were pre-incubated with the SARS-CoV spike protein. Moreover, flow cytometry data demonstrated an increase of the cell surface vimentin level by 16.5 % after SARS-CoV permissive Vero E6 cells were treated with SARS-CoV virus-like particles (VLPs). A direct interaction between SARS-CoV spike protein and host surface vimentin was further confirmed by far-Western blotting. In addition, antibody neutralization assay and shRNA knockdown experiments indicated a vital role of vimentin in cell binding and uptake of SARS-CoV VLPs and the viral spike protein. A direct interaction between vimentin and SARS-CoV spike protein during viral entry was observed. Vimentin is a putative anti-viral drug target for preventing/reducing the susceptibility to SARS-CoV infection.

  14. Potent and specific inhibition of SARS-CoV antigen expression by RNA interference

    Institute of Scientific and Technical Information of China (English)

    TAO Peng; ZHANG Jun; TANG Ni; ZHANG Bing-qiang; HE Tong-chuan; HUANG Ai-long

    2005-01-01

    Background Severe acute respiratory syndrome (SARS) is an infectious disease caused by SARS-CoV. There are no effective antiviral drugs for SARS although the epidemic of SARS was controlled. The aim of this study was to develop an RNAi (RNA interference) approach that specifically targeted the N gene sequence of severe acute respiratory syndrome associated coronavirus (SARS-CoV) by synthesizing short hairpin RNA (shRNA) in vivo, and to assess the inhibitory effect of this shRNA on SARS-CoV N antigen expression. Methods The eukaryotic expression plasmid pEGFP-C1-N, containing SARS-CoV N gene, was co-transfected into 293 cells with either the RNAi plasmid pshRNA-N or unrelated control plasmid pshRNA-HBV-C4. At 24, 48 and 72 hours post transfection, the green fluorescence was observed through a fluorescence microscope. The RNA levels of SARS-CoV N were determined by reverse transcription polymerase chain reaction (RT-PCR). The expression of Green Fluorescent Protein (GFP) and protein N were detected using Western blot.Results The vector, pshRNA-N expressing shRNA which targeted the N gene of SARS-CoV, was successfully constructed. The introduction of RNAi plasmid efficiently and specifically inhibited the synthesis of protein N. RT-PCR showed that RNAs of N gene were clearly reduced when the pEGFP-C1-N was cotransfected with pshRNA-N, whereas the control vector did not exhibit inhibitory effect on N gene transcription.Conclusions Our results demonstrate that RNAi mediated silencing of SARS-CoV gene could effectively inhibit expression of SARS-CoV antigen, hence RNAi based strategy should be further explored as a more efficacious antiviral therapy of SARS-CoV infection.

  15. Mechanisms of Host Receptor Adaptation by Severe Acute Respiratory Syndrome Coronavirus

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kailang; Peng, Guiqing; Wilken, Matthew; Geraghty, Robert J.; Li, Fang (UMMC)

    2012-12-10

    The severe acute respiratory syndrome coronavirus (SARS-CoV) from palm civets has twice evolved the capacity to infect humans by gaining binding affinity for human receptor angiotensin-converting enzyme 2 (ACE2). Numerous mutations have been identified in the receptor-binding domain (RBD) of different SARS-CoV strains isolated from humans or civets. Why these mutations were naturally selected or how SARS-CoV evolved to adapt to different host receptors has been poorly understood, presenting evolutionary and epidemic conundrums. In this study, we investigated the impact of these mutations on receptor recognition, an important determinant of SARS-CoV infection and pathogenesis. Using a combination of biochemical, functional, and crystallographic approaches, we elucidated the molecular and structural mechanisms of each of these naturally selected RBD mutations. These mutations either strengthen favorable interactions or reduce unfavorable interactions with two virus-binding hot spots on ACE2, and by doing so, they enhance viral interactions with either human (hACE2) or civet (cACE2) ACE2. Therefore, these mutations were viral adaptations to either hACE2 or cACE2. To corroborate the above analysis, we designed and characterized two optimized RBDs. The human-optimized RBD contains all of the hACE2-adapted residues (Phe-442, Phe-472, Asn-479, Asp-480, and Thr-487) and possesses exceptionally high affinity for hACE2 but relative low affinity for cACE2. The civet-optimized RBD contains all of the cACE2-adapted residues (Tyr-442, Pro-472, Arg-479, Gly-480, and Thr-487) and possesses exceptionally high affinity for cACE2 and also substantial affinity for hACE2. These results not only illustrate the detailed mechanisms of host receptor adaptation by SARS-CoV but also provide a molecular and structural basis for tracking future SARS-CoV evolution in animals.

  16. Inhibition of SARS Pseudovirus Cell Entry by Lactoferrin Binding to Heparan Sulfate Proteoglycans

    Science.gov (United States)

    Lang, Jianshe; Yang, Ning; Deng, Jiejie; Liu, Kangtai; Yang, Peng; Zhang, Guigen; Jiang, Chengyu

    2011-01-01

    It has been reported that lactoferrin (LF) participates in the host immune response against Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) invasion by enhancing NK cell activity and stimulating neutrophil aggregation and adhesion. We further investigated the role of LF in the entry of SARS pseudovirus into HEK293E/ACE2-Myc cells. Our results reveal that LF inhibits SARS pseudovirus infection in a dose-dependent manner. Further analysis suggested that LF was able to block the binding of spike protein to host cells at 4°C, indicating that LF exerted its inhibitory function at the viral attachment stage. However, LF did not disrupt the interaction of spike protein with angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV. Previous studies have shown that LF colocalizes with the widely distributed cell-surface heparan sulfate proteoglycans (HSPGs). Our experiments have also confirmed this conclusion. Treatment of the cells with heparinase or exogenous heparin prevented binding of spike protein to host cells and inhibited SARS pseudovirus infection, demonstrating that HSPGs provide the binding sites for SARS-CoV invasion at the early attachment phase. Taken together, our results suggest that, in addition to ACE2, HSPGs are essential cell-surface molecules involved in SARS-CoV cell entry. LF may play a protective role in host defense against SARS-CoV infection through binding to HSPGs and blocking the preliminary interaction between SARS-CoV and host cells. Our findings may provide further understanding of SARS-CoV pathogenesis and aid in treatment of this deadly disease. PMID:21887302

  17. Discovery, Synthesis, And Structure-Based Optimization of a Series of N-(tert-Butyl)-2-(N-arylamido)-2-(pyridin-3-yl) Acetamides (ML188) as Potent Noncovalent Small Molecule Inhibitors of the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) 3CL Protease

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Jon [Vanderbilt Univ., Nashville, TN (United States); Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN (United States); Grum-Tokars, Valerie [Northwestern Univ., Chicago, IL (United States); Zhou, Ya [Vanderbilt Univ., Nashville, TN (United States); Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN (United States); Turlington, Mark [Vanderbilt Univ., Nashville, TN (United States); Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN (United States); Saldanha, S. Adrian [Sripps Research Inst. Molecular Screening Center, Jupiter, FL (United States); Chase, Peter [Sripps Research Inst. Molecular Screening Center, Jupiter, FL (United States); Eggler, Aimee [Purdue Univ., West Lafayette, IN (United States); Dawson, Eric S. [Vanderbilt Univ., Nashville, TN (United States); Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN (United States); Baez-Santos, Yahira M. [Purdue Univ., West Lafayette, IN (United States); Tomar, Sakshi [Purdue Univ., West Lafayette, IN (United States); Mielech, Anna M. [Loyola Univ. Medical Center, Maywood, IL (United States); Baker, Susan C. [Loyola Univ. Medical Center, Maywood, IL (United States); Lindsley, Craig W. [Vanderbilt Univ., Nashville, TN (United States); Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN (United States); Hodder, Peter [Sripps Research Inst. Molecular Screening Center, Jupiter, FL (United States); Mesecar, Andrew [Purdue Univ., West Lafayette, IN (United States); Stauffer, Shaun R. [Vanderbilt Univ., Nashville, TN (United States); Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN (United States)

    2012-12-11

    A high-throughput screen of the NIH molecular libraries sample collection and subsequent optimization of a lead dipeptide-like series of severe acute respiratory syndrome (SARS) main protease (3CLpro) inhibitors led to the identification of probe compound ML188 (16-(R), (R)-N-(4-(tert-butyl)phenyl)-N-(2-(tert-butylamino)-2-oxo-1-(pyridin-3-yl)ethyl)furan-2-carboxamide, Pubchem CID: 46897844). But, unlike the majority of reported coronavirus 3CLpro inhibitors that act via covalent modification of the enzyme, 16-(R) is a noncovalent SARS-CoV 3CLpro inhibitor with moderate MW and good enzyme and antiviral inhibitory activity. A multicomponent Ugi reaction was utilized to rapidly explore structure–activity relationships within S1', S1, and S2enzyme binding pockets. Moreover, the X-ray structure of SARS-CoV 3CLpro bound with 16-(R) was instrumental in guiding subsequent rounds of chemistry optimization. 16-(R) provides an excellent starting point for the further design and refinement of 3CLpro inhibitors that act by a noncovalent mechanism of action.

  18. 人感染新型冠状病毒致中东呼吸综合征的全球流行特征%Global epidemic characteristics of Middle East respiratory syndrome induced by a novel human coronavirus infection

    Institute of Scientific and Technical Information of China (English)

    顾春燕; 陈卓; 罗永能

    2013-01-01

    目的 了解人感染中东呼吸综合征冠状病毒确诊病例的全球流行特征.方法 对截至2013年8月31日,全球108例感染中东呼吸综合征冠状病毒病例的相关数据进行统计,总结分析其发病地点、时间、患者年龄、性别分布和临床症状轻重等特征.结果 108例病例主要发生在中东地区,少数在欧洲及非洲地区,病例数在2013年4月开始呈上升趋势.患者主要为中老年人,占52.8%,并且男性占60.2%,明显高于女性的32.4%.死亡病例共50例,死亡率46.3%,远高于SARS的10.3%,其中60岁以上患者的死亡率为61.5%.大多数病例临床症状严重或死亡,少数病例症状轻微或无症状.结论 中东呼吸综合征冠状病毒感染患者以中老年人为主,男性多于女性,并且死亡率远高于SARS.%Objective To understand the global epidemic characteristics of Middle East respiratory syndrome (MERS) cases induced by a novel human coronavirus infection.Methods The data of 108 MERS cases by the time of August 31st,2013 were analyzed statistically.The factors such as onset place,time,age and sex distributions as well as the clinical severity were summarized.Results The majority of 108 MERS cases took place in Middle East area,while the rest happened in Europe and Africa.New cases started to increase since April 2013.Middle-aged and old people accounted for 52.8%.The percent of male patients (60.4%) was apparently much higher than that of females (32.4%).Fifty cases were fatal and the overall mortality was 46.3%,which was much higher than the mortalrity of SARS(10.3%).The mortality of the patients over 60 years old was 61.5%.Most cases were severe or fatal,and a few cases were mild or asymptomatic.Conclusions Most MERS patients are middleaged and old people,and the ratio of male patients is much higher than that of females.Currently,the mortality of MERS is much higher than that of SARS.

  19. Exacerbated Innate Host Response to SARS-CoV in Aged Non-Human Primates

    Science.gov (United States)

    Smits, Saskia L.; de Lang, Anna; van den Brand, Judith M. A.; Leijten, Lonneke M.; van IJcken, Wilfred F.; Eijkemans, Marinus J. C.; van Amerongen, Geert; Kuiken, Thijs; Andeweg, Arno C.; Osterhaus, Albert D. M. E.; Haagmans, Bart L.

    2010-01-01

    The emergence of viral respiratory pathogens with pandemic potential, such as severe acute respiratory syndrome coronavirus (SARS-CoV) and influenza A H5N1, urges the need for deciphering their pathogenesis to develop new intervention strategies. SARS-CoV infection causes acute lung injury (ALI) that may develop into life-threatening acute respiratory distress syndrome (ARDS) with advanced age correlating positively with adverse disease outcome. The molecular pathways, however, that cause virus-induced ALI/ARDS in aged individuals are ill-defined. Here, we show that SARS-CoV-infected aged macaques develop more severe pathology than young adult animals, even though viral replication levels are similar. Comprehensive genomic analyses indicate that aged macaques have a stronger host response to virus infection than young adult macaques, with an increase in differential expression of genes associated with inflammation, with NF-κB as central player, whereas expression of type I interferon (IFN)-β is reduced. Therapeutic treatment of SARS-CoV-infected aged macaques with type I IFN reduces pathology and diminishes pro-inflammatory gene expression, including interleukin-8 (IL-8) levels, without affecting virus replication in the lungs. Thus, ALI in SARS-CoV-infected aged macaques developed as a result of an exacerbated innate host response. The anti-inflammatory action of type I IFN reveals a potential intervention strategy for virus-induced ALI. PMID:20140198

  20. Comparative proteome analysis of tracheal tissues in response to infectious bronchitis coronavirus, Newcastle disease virus, and avian influenza virus H9 subtype virus infection.

    Science.gov (United States)

    Sun, Junfeng; Han, Zongxi; Shao, Yuhao; Cao, Zhongzan; Kong, Xiangang; Liu, Shengwang

    2014-06-01

    Infectious bronchitis coronavirus (IBV), Newcastle disease virus (NDV), and avian influenza virus (AIV) H9 subtype are major pathogens of chickens causing serious respiratory tract disease and heavy economic losses. To better understand the replication features of these viruses in their target organs and molecular pathogenesis of these different viruses, comparative proteomic analysis was performed to investigate the proteome changes of primary target organ during IBV, NDV, and AIV H9 infections, using 2D-DIGE followed MALDI-TOF/TOF-MS. In total, 44, 39, 41, 48, and 38 proteins were identified in the tracheal tissues of the chickens inoculated with IBV (ck/CH/LDL/97I, H120), NDV (La Sota), and AIV H9, and between ck/CH/LDL/97I and H120, respectively. Bioinformatics analysis showed that IBV, NDV, and AIV H9 induced similar core host responses involved in biosynthetic, catabolic, metabolic, signal transduction, transport, cytoskeleton organization, macromolecular complex assembly, cell death, response to stress, and immune system process. Comparative analysis of host response induced by different viruses indicated differences in protein expression changes induced by IBV, NDV, and AIV H9 may be responsible for the specific pathogenesis of these different viruses. Our result reveals specific host response to IBV, NDV, and AIVH9 infections and provides insights into the distinct pathogenic mechanisms of these avian respiratory viruses. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Clinicopathologic, Immunohistochemical, and Ultrastructural Findings of a Fatal Case of Middle East Respiratory Syndrome Coronavirus Infection in the United Arab Emirates, April 2014.

    Science.gov (United States)

    Ng, Dianna L; Al Hosani, Farida; Keating, M Kelly; Gerber, Susan I; Jones, Tara L; Metcalfe, Maureen G; Tong, Suxiang; Tao, Ying; Alami, Negar N; Haynes, Lia M; Mutei, Mowafaq Ali; Abdel-Wareth, Laila; Uyeki, Timothy M; Swerdlow, David L; Barakat, Maha; Zaki, Sherif R

    2016-03-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) infection causes an acute respiratory illness and is associated with a high case fatality rate; however, the pathogenesis of severe and fatal MERS-CoV infection is unknown. We describe the histopathologic, immunohistochemical, and ultrastructural findings from the first autopsy performed on a fatal case of MERS-CoV in the world, which was related to a hospital outbreak in the United Arab Emirates in April 2014. The main histopathologic finding in the lungs was diffuse alveolar damage. Evidence of chronic disease, including severe peripheral vascular disease, patchy cardiac fibrosis, and hepatic steatosis, was noted in the other organs. Double staining immunoassays that used anti-MERS-CoV antibodies paired with immunohistochemistry for cytokeratin and surfactant identified pneumocytes and epithelial syncytial cells as important targets of MERS-CoV antigen; double immunostaining with dipeptidyl peptidase 4 showed colocalization in scattered pneumocytes and syncytial cells. No evidence of extrapulmonary MERS-CoV antigens were detected, including the kidney. These results provide critical insights into the pathogenesis of MERS-CoV in humans.

  2. MERS: Emergence of a novel human coronavirus

    NARCIS (Netherlands)

    V.S. Raj (Stalin); A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron); B.L. Haagmans (Bart)

    2014-01-01

    textabstractA novel coronavirus (CoV) that causes a severe lower respiratory tract infection in humans, emerged in the Middle East region in 2012. This virus, named Middle East respiratory syndrome (MERS)-CoV, is phylogenetically related to bat CoVs, but other animal species like dromedary camels ma

  3. Dynamics of the coronavirus replicative structures

    NARCIS (Netherlands)

    Hagemeijer, M.C.

    2011-01-01

    Coronaviruses (CoV) are positive-strand RNA (+RNA) viruses that are important infectious agents in both animals and man. Upon infection, CoVs generate large multicomponent protein complexes, consisting of 16 nonstructural proteins (nsp’s) and yet to be identified cellular proteins, dedicated to the

  4. Interactions of Rodent Coronaviruses with Cellular Receptors

    Science.gov (United States)

    2016-05-08

    eel to block binding of S to its receptor on various mouse cell lines and then challenged these cells with an HE expressing strain of MEV to...MAb-CCl an MEV iii strain expressing, HE could not infect mouse fibroblast cell lines or primary brain cells. Although murine coronavirus (MHV) and...Cell Cultures .. Virus Propagation and Purification ...............• Plaque assay .................... .... ............. . Hemagglutination Assay

  5. Potential Broad Spectrum Inhibitors of the Coronavirus 3CLpro: A Virtual Screening and Structure-Based Drug Design Study.

    Science.gov (United States)

    Berry, Michael; Fielding, Burtram C; Gamieldien, Junaid

    2015-12-15

    Human coronaviruses represent a significant disease burden; however, there is currently no antiviral strategy to combat infection. The outbreak of severe acute respiratory syndrome (SARS) in 2003 and Middle East respiratory syndrome (MERS) less than 10 years later demonstrates the potential of coronaviruses to cross species boundaries and further highlights the importance of identifying novel lead compounds with broad spectrum activity. The coronavirus 3CL(pro) provides a highly validated drug target and as there is a high degree of sequence homology and conservation in main chain architecture the design of broad spectrum inhibitors is viable. The ZINC drugs-now library was screened in a consensus high-throughput pharmacophore modeling and molecular docking approach by Vina, Glide, GOLD and MM-GBSA. Molecular dynamics further confirmed results obtained from structure-based techniques. A highly defined hit-list of 19 compounds was identified by the structure-based drug design methodologies. As these compounds were extensively validated by a consensus approach and by molecular dynamics, the likelihood that at least one of these compounds is bioactive is excellent. Additionally, the compounds segregate into 15 significantly dissimilar (p < 0.05) clusters based on shape and features, which represent valuable scaffolds that can be used as a basis for future anti-coronaviral inhibitor discovery experiments. Importantly though, the enriched subset of 19 compounds identified from the larger library has to be validated experimentally.

  6. The emergence of human coronavirus EMC: how scared should we be?

    Science.gov (United States)

    Chan, Renee W Y; Poon, Leo L M

    2013-04-09

    A novel betacoronavirus, human coronavirus (HCoV-EMC), has recently been detected in humans with severe respiratory disease. Further characterization of HCoV-EMC suggests that this virus is different from severe acute respiratory syndrome coronavirus (SARS-CoV) because it is able to replicate in multiple mammalian cell lines and it does not use angiotensin-converting enzyme 2 as a receptor to achieve infection. Additional research is urgently needed to better understand the pathogenicity and tissue tropism of this virus in humans. In their recent study published in mBio, Kindler et al. shed some light on these important topics (E. Kindler, H. R. Jónsdóttir, M. Muth, O. J. Hamming, R. Hartmann, R. Rodriguez, R. Geffers, R. A. Fouchier, C. Drosten, M. A. Müller, R. Dijkman, and V. Thiel, mBio 4[1]:e00611-12, 2013). These authors report the use of differentiated pseudostratified human primary airway epithelial cells, an in vitro model with high physiological relevance to the human airway epithelium, to characterize the cellular tropism of HCoV-EMC. More importantly, the authors demonstrate the potential use of type I and type III interferons (IFNs) to control viral infection.

  7. First cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infections in France, investigations and implications for the prevention of human-to-human transmission, France, May 2013.

    Science.gov (United States)

    Mailles, A; Blanckaert, K; Chaud, P; van der Werf, S; Lina, B; Caro, V; Campese, C; Guéry, B; Prouvost, H; Lemaire, X; Paty, M C; Haeghebaert, S; Antoine, D; Ettahar, N; Noel, H; Behillil, S; Hendricx, S; Manuguerra, J C; Enouf, V; La Ruche, G; Semaille, Caroline; Coignard, B; Lévy-Bruhl, D; Weber, F; Saura, C; Che, D

    2013-06-13

    In May 2013, Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection was diagnosed in an adult male in France with severe respiratory illness, who had travelled to the United Arab Emirates before symptom onset. Contact tracing identified a secondary case in a patient hospitalised in the same hospital room. No other cases of MERS-CoV infection were identified among the index case’s 123 contacts, nor among 39 contacts of the secondary case, during the 10-day follow-up period.

  8. Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2.

    Science.gov (United States)

    Reinke, Lennart Michel; Spiegel, Martin; Plegge, Teresa; Hartleib, Anika; Nehlmeier, Inga; Gierer, Stefanie; Hoffmann, Markus; Hofmann-Winkler, Heike; Winkler, Michael; Pöhlmann, Stefan

    2017-01-01

    The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates viral entry into target cells. Cleavage and activation of SARS S by a host cell protease is essential for infectious viral entry and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease TMPRSS2 cleaves and activates SARS S in cell culture and potentially also in the infected host. Here, we investigated which determinants in SARS S control cleavage and activation by TMPRSS2. We found that SARS S residue R667, a previously identified trypsin cleavage site, is also required for S protein cleavage by TMPRSS2. The cleavage fragments produced by trypsin and TMPRSS2 differed in their decoration with N-glycans, suggesting that these proteases cleave different SARS S glycoforms. Although R667 was required for SARS S cleavage by TMPRSS2, this residue was dispensable for TMPRSS2-mediated S protein activation. Conversely, residue R797, previously reported to be required for SARS S activation by trypsin, was dispensable for S protein cleavage but required for S protein activation by TMPRSS2. Collectively, these results show that different residues in SARS S control cleavage and activation by TMPRSS2, suggesting that these processes are more complex than initially appreciated.

  9. Human LINE1 endonuclease domain as a putative target of SARS-associated autoantibodies involved in the pathogenesis of severe acute respiratory syndrome

    Institute of Scientific and Technical Information of China (English)

    HE Wei-ping; SHU Cui-li; LI Bo-an; ZHAO Jun; CHENG Yun

    2008-01-01

    Background Severe acute respiratory syndrome(SARS)is a disease with a mortality of 9.56%.Although SARS is etiologically linked to a new coronavirus(SARS-CoV)and functional cell receptor has been identified,the pathogenesis of the virus infection is largely unclear.Methods The clinical specimens were processed and analyzed using an indirect enzyme-linked immunosorbent assay (ELISA) in-house.Further investigations of target antigen included reviews of phage display technique,rapid amplification of cDNA ends(RACE)technique,protein expression and purification,Western blotting validation,serological and immunohistochemical staining in postmortem tissue.Results A type of medium or low titer anti-lung tissue antibodies were found in the sera of SARS patients at the early stage of the disease.Human long interspersed nuclear element 1(LINE1)gene endonuclease(EN)domain protein was one of the target autoantigens and it was aberrantly expressed in the lung tissue of SARS patients.Anti-EN antibody was positive in the sera of 40.9% of SARS patients.Conclusions Human LINE1 endonuclease domain was identified as a putative target of SARS-associated autoantibodies,which were presented in the serum of SARS patients and may be involved in the pathogenesis of SARS.

  10. Human Coronavirus-Associated Influenza-Like Illness in the Community Setting in Peru.

    Science.gov (United States)

    Razuri, Hugo; Malecki, Monika; Tinoco, Yeny; Ortiz, Ernesto; Guezala, M Claudia; Romero, Candice; Estela, Abel; Breña, Patricia; Morales, Maria-Luisa; Reaves, Erik J; Gomez, Jorge; Uyeki, Timothy M; Widdowson, Marc-Alain; Azziz-Baumgartner, Eduardo; Bausch, Daniel G; Schildgen, Verena; Schildgen, Oliver; Montgomery, Joel M

    2015-11-01

    We present findings describing the epidemiology of non-severe acute respiratory syndrome human coronavirus-associated influenza-like illness from a population-based active follow-up study in four different regions of Peru. In 2010, the prevalence of infections by human coronaviruses 229E, OC43, NL63, or HKU1 was 6.4% in participants with influenza-like illness who tested negative for influenza viruses. Ten of 11 human coronavirus infections were identified in the fall-winter season. Human coronaviruses are present in different regions of Peru and are relatively frequently associated with influenza-like illness in Peru.

  11. Regulation of Stress Responses and Translational Control by Coronavirus

    Science.gov (United States)

    Fung, To Sing; Liao, Ying; Liu, Ding Xiang

    2016-01-01

    Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER) results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed. PMID:27384577

  12. Regulation of Stress Responses and Translational Control by Coronavirus

    Directory of Open Access Journals (Sweden)

    To Sing Fung

    2016-07-01

    Full Text Available Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed.

  13. SARS hCoV papain-like protease is a unique Lys48 linkage-specific di-distributive deubiquitinating enzyme.

    Science.gov (United States)

    Békés, Miklós; Rut, Wioletta; Kasperkiewicz, Paulina; Mulder, Monique P C; Ovaa, Huib; Drag, Marcin; Lima, Christopher D; Huang, Tony T

    2015-06-01

    Ubiquitin (Ub) and the Ub-like (Ubl) modifier interferon-stimulated gene 15 (ISG15) participate in the host defence of viral infections. Viruses, including the severe acute respiratory syndrome human coronavirus (SARS hCoV), have co-opted Ub-ISG15 conjugation pathways for their own advantage or have evolved effector proteins to counter pro-inflammatory properties of Ub-ISG15-conjugated host proteins. In the present study, we compare substrate specificities of the papain-like protease (PLpro) from the recently emerged Middle East respiratory syndrome (MERS) hCoV to the related protease from SARS, SARS PLpro. Through biochemical assays, we show that, similar to SARS PLpro, MERS PLpro is both a deubiquitinating (DUB) and a deISGylating enzyme. Further analysis of the intrinsic DUB activity of these viral proteases revealed unique differences between the recognition and cleavage specificities of polyUb chains. First, MERS PLpro shows broad linkage specificity for the cleavage of polyUb chains, whereas SARS PLpro prefers to cleave Lys48-linked polyUb chains. Secondly, MERS PLpro cleaves polyUb chains in a 'mono-distributive' manner (one Ub at a time) and SARS PLpro prefers to cleave Lys48-linked polyUb chains by sensing a di-Ub moiety as a minimal recognition element using a 'di-distributive' cleavage mechanism. The di-distributive cleavage mechanism for SARS PLpro appears to be uncommon among USP (Ub-specific protease)-family DUBs, as related USP family members from humans do not display such a mechanism. We propose that these intrinsic enzymatic differences between SARS and MERS PLpro will help to identify pro-inflammatory substrates of these viral DUBs and can guide in the design of therapeutics to combat infection by coronaviruses.

  14. MERS Coronaviruses in Dromedary Camels, Egypt

    OpenAIRE

    Chu, Daniel K. W.; Poon, Leo L.M.; Gomaa, Mokhtar M.; Shehata, Mahmoud M.; Perera, Ranawaka A. P. M.; Abu Zeid, Dina; El Rifay, Amira S.; Siu, Lewis Y.; Guan, Yi; Webby, Richard J; Mohamed A Ali; Peiris, Malik; Kayali, Ghazi

    2014-01-01

    We identified the near-full-genome sequence (29,908 nt, >99%) of Middle East respiratory syndrome coronavirus (MERS-CoV) from a nasal swab specimen from a dromedary camel in Egypt. We found that viruses genetically very similar to human MERS-CoV are infecting dromedaries beyond the Arabian Peninsula, where human MERS-CoV infections have not yet been detected.

  15. Genome organization of the SARS-CoV

    DEFF Research Database (Denmark)

    Xu, Jing; Hu, Jianfei; Wang, Jing;

    2003-01-01

    Annotation of the genome sequence of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) is indispensable to understand its evolution and pathogenesis. We have performed a full annotation of the SARS-CoV genome sequences by using annotation programs publicly available or devel...

  16. SARS Basics

    Science.gov (United States)

    ... and Resources Related Links Clinician Registry Travelers' Health SARS Basics Fact Sheet Language: English Español (Spanish) Format: ... 3 pages] SARS [3 pages] SARS [3 pages] SARS? Severe acute respiratory syndrome (SARS) is a viral ...

  17. Evaluation by indirect immunofluorescent assay and enzyme linked immunosorbent assay of the dynamic changes of serum antibody responses against severe acute respiratory syndrome coronavirus

    Institute of Scientific and Technical Information of China (English)

    MO Hong-ying; XU Jun; REN Xiao-lan; ZENG Guang-qiao; TAN Ya-xia; CHEN Rong-chang; Moira Chan-Yeung; ZHONG Nan-shan

    2005-01-01

    Background Severe acute respiratory syndrome coronavirus (SARS-CoV) is a newly emerging virus that gives rise to SARS patients with high rates of infectivity and fatality. To study the humoral immune responses to SARS-CoV, the authors evaluated IgG and IgM specific antibodies in patients' sera.Methods Two methods, enzyme-linked immunosorbent assay (ELISA) and indirect immunofluorescent assay (IFA), were used to detect specific serum IgG and IgM against SARS-CoV in 98 SARS patients and 250 controls consisting of patients with pneumonia, health-care professionals and healthy subjects. The serum antibody profiles were investigated at different times over one and a half years in 18 of the SARS patients. Results The sensitivity and specificity of ELISA for detecting IgG against SARS-CoV were 100.0% and 97.2% and for IgM 89.8% and 97.6% respectively; the figures using IFA for IgG were 100.0% and 100.0% and for IgM 81.8% and 100.0% respectively. During the first seven days of the antibodies trace test, no IgG and IgM were detected, but on day 15, IgG response increased dramatically, reaching a peak on day 60, remaining high up to day 180 and decreasing gradually until day 540. On day 15, IgM was detected, rapidly reached a peak, then declined gradually until day 180 when IgM was undetectable. Conclusion The detection of antibodies against SARS virus is helpful in the clinical diagnosis of SARS.

  18. Association of SARS susceptibility with single nucleic acid polymorphisms of OAS1 and MxA genes: a case-control study

    Directory of Open Access Journals (Sweden)

    Yang Hong

    2006-07-01

    Full Text Available Abstract Background Host genetic factors may play a role in susceptibility and resistance to SARS associated coronavirus (SARS-CoV infection. The study was carried out to investigate the association between the genetic polymorphisms of 2',5'-oligoadenylate synthetase 1 (OAS1 gene as well as myxovirus resistance 1 (MxA gene and susceptibility to SARS in Chinese Han population. Methods A hospital-based case-control study was conducted. A collective of 66 SARS cases and 64 close contact uninfected controls were enrolled in this study. End point real time polymerase chain reaction (PCR and PCR-based Restriction Fragment Length Polymorphism (RFLP analysis were used to detect the single nucleic polymorphisms (SNPs in OAS1 and MxA genes. Information on other factors associated with SARS infection was collected using a pre-tested questionnaire. Univariate and multivariate logistic analyses were conducted. Results One polymorphism in the 3'-untranslated region (3'-UTR of the OAS1 gene was associated with SARS infection. Compared to AA genotype, AG and GG genotypes were found associated with a protective effect on SARS infection with ORs (95% CI of 0.42 (0.20~0.89 and 0.30 (0.09~0.97, respectively. Also, a GT genotype at position 88 in the MxA gene promoter was associated with increased susceptibility to SARS infection compared to a GG genotype (OR = 3.06, 95% CI: 1.25~7.50. The associations of AG genotype in OAS1 and GT genotype in MxA remained significant in multivariate analyses after adjusting for SARS protective measures (OR = 0.38, 95% CI: 0.14~0.98 and OR = 3.22, 95% CI: 1.13~9.18, respectively. Conclusion SNPs in the OAS1 3'-UTR and MxA promoter region appear associated with host susceptibility to SARS in Chinese Han population.

  19. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis.

    Directory of Open Access Journals (Sweden)

    Jose L Nieto-Torres

    2014-05-01

    Full Text Available Deletion of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV envelope (E gene attenuates the virus. E gene encodes a small multifunctional protein that possesses ion channel (IC activity, an important function in virus-host interaction. To test the contribution of E protein IC activity in virus pathogenesis, two recombinant mouse-adapted SARS-CoVs, each containing one single amino acid mutation that suppressed ion conductivity, were engineered. After serial infections, mutant viruses, in general, incorporated compensatory mutations within E gene that rendered active ion channels. Furthermore, IC activity conferred better fitness in competition assays, suggesting that ion conductivity represents an advantage for the virus. Interestingly, mice infected with viruses displaying E protein IC activity, either with the wild-type E protein sequence or with the revertants that restored ion transport, rapidly lost weight and died. In contrast, mice infected with mutants lacking IC activity, which did not incorporate mutations within E gene during the experiment, recovered from disease and most survived. Knocking down E protein IC activity did not significantly affect virus growth in infected mice but decreased edema accumulation, the major determinant of acute respiratory distress syndrome (ARDS leading to death. Reduced edema correlated with lung epithelia integrity and proper localization of Na+/K+ ATPase, which participates in edema resolution. Levels of inflammasome-activated IL-1β were reduced in the lung airways of the animals infected with viruses lacking E protein IC activity, indicating that E protein IC function is required for inflammasome activation. Reduction of IL-1β was accompanied by diminished amounts of TNF and IL-6 in the absence of E protein ion conductivity. All these key cytokines promote the progression of lung damage and ARDS pathology. In conclusion, E protein IC activity represents a new determinant for SARS

  20. Identification of an HLA-A* 0201-restricted CD8+ T-cell epitope SSp-1 of SARS-CoV spike protein

    Institute of Scientific and Technical Information of China (English)

    Wang B; Yu Y; Wang X; Yang R; Cao X; Chen H; Jiang X; Zhang M; Wan T; Li N; Zhou X; Wu Y; Yang F

    2004-01-01

    A novel coronavirus, severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV), has been identified as the causal agent of SARS. Spike (S) protein is a major structural glycoprotein of the SARS virus and a potential target for SARS-specific cell-mediated immune responses. A panel of S protein-derived peptides was tested for their binding affinity to HLA-A * 0201 molecules. Peptides with high affinity for HLA-A * 0201 were then assessed for their capacity to elicit specific immune responses mediated by cytotoxic T lymphocytes (CTLs) both in vivo, in HLA-A2. 1/Kb transgenic mice, and in vitro, from peripheral blood lymphocytes (PBLs) harvested from healthy HLA-A2.1 + donors. SARS-CoV protein-derived peptide-1 (SSp-1 RLNEVAKNL), induced peptide-specific CTLs both in vivo (transgenic mice) and in vitro (human PBLs), which specifically released interferon-gamma (IFN-gamma) upon stimulation with SSp-1-pulsed autologous dendritic cells (DCs) or T2 cells. SSp-1-specific CTLs also lysed major histocompatibility complex (MHC)-matched tumor cell lines engineered to express S proteins. HLA-A * 0201-SSp-1 tetramer staining revealed the presence of significant populations of SSp-1-specific CTLs in SSp-1-induced CD8+ T cells. We propose that the newly identified epitope SSp-1 will help in the characterization of virus control mechanisms and immunopathology in SARS-CoV infection, and may be relevant to the development of immunotherapeutic approaches for SARS.

  1. Maintaining dental education and specialist dental care during an outbreak of a new coronavirus infection. Part 1: a deadly viral epidemic begins.

    Science.gov (United States)

    Smales, F C; Samaranyake, L P

    2003-11-22

    During the three months from March 2003 the economically vibrant city of Hong Kong was seriously dislocated after becoming 'second port of call' of the new and potentially fatal disease, Severe Acute Respiratory Syndrome (SARS). The uncertainties during that period had a significant impact on the provision of dental care. However the city's only dental hospital continued to function and to support the Faculty of Dentistry of the University of Hong Kong in educating dental students and other members of the dental team. At the time of writing no transmissions of the disease have been attributed to procedures associated with dental healthcare. This article chronicles the sequence of events during the outbreak from a dental perspective. It highlights information that may be useful to dental colleagues who might someday be confronted with similar outbreaks of newly emerged potentially lethal infections.

  2. CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERS-CoV infection and evolution of persistent infection.

    Directory of Open Access Journals (Sweden)

    Yíngyún Caì

    Full Text Available Middle East respiratory syndrome coronavirus (MERS-CoV is a recently isolated betacoronavirus identified as the etiologic agent of a frequently fatal disease in Western Asia, Middle East respiratory syndrome. Attempts to identify the natural reservoirs of MERS-CoV have focused in part on dromedaries. Bats are also suspected to be reservoirs based on frequent detection of other betacoronaviruses in these mammals. For this study, ten distinct cell lines derived from bats of divergent species were exposed to MERS-CoV. Plaque assays, immunofluorescence assays, and transmission electron microscopy confirmed that six bat cell lines can be productively infected. We found that the susceptibility or resistance of these bat cell lines directly correlates with the presence or absence of cell surface-expressed CD26/DPP4, the functional human receptor for MERS-CoV. Human anti-CD26/DPP4 antibodies inhibited infection of susceptible bat cells in a dose-dependent manner. Overexpression of human CD26/DPP4 receptor conferred MERS-CoV susceptibility to resistant bat cell lines. Finally, sequential passage of MERS-CoV in permissive bat cells established persistent infection with concomitant downregulation of CD26/DPP4 surface expression. Together, these results imply that bats indeed could be among the MERS-CoV host spectrum, and that cellular restriction of MERS-CoV is determined by CD26/DPP4 expression rather than by downstream restriction factors.

  3. The use of enzyme-linked immunosorbent assay systems for the serology and antigen detection in parvovirus, coronavirus and rotavirus infections in dogs in The Netherlands.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); J. Groen (Jan); H.F. Egberink (Herman); G.H.A. Borst (Gerrit); F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert)

    1991-01-01

    textabstractComplex trapping blocking (CTB) enzyme-linked immunosorbent assays (ELISAs) and indirect ELISAs for the detection of antibodies to canine parvovirus (CPV), canine coronavirus (CCV) and rotavirus in sera of dogs were established. Double antibody sandwich ELISAs for the detection of CPV-,

  4. Probable transmission chains of Middle East respiratory syndrome coronavirus and the multiple generations of secondary infection in South Korea

    Directory of Open Access Journals (Sweden)

    Shui Shan Lee

    2015-09-01

    Conclusions: Publicly available data from multiple sources, including the media, are useful to describe the epidemic history of an outbreak. The effective control of MERS-CoV hinges on the upholding of infection control standards and an understanding of health-seeking behaviours in the community.

  5. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding.

    Science.gov (United States)

    Gui, Miao; Song, Wenfei; Zhou, Haixia; Xu, Jingwei; Chen, Silian; Xiang, Ye; Wang, Xinquan

    2017-01-01

    The global outbreak of SARS in 2002-2003 was caused by the infection of a new human coronavirus SARS-CoV. The infection of SARS-CoV is mediated mainly through the viral surface glycoproteins, which consist of S1 and S2 subunits and form trimer spikes on the envelope of the virions. Here we report the ectodomain structures of the SARS-CoV surface spike trimer in different conformational states determined by single-particle cryo-electron microscopy. The conformation 1 determined at 4.3 Å resolution is three-fold symmetric and has all the three receptor-binding C-terminal domain 1 (CTD1s) of the S1 subunits in "down" positions. The binding of the "down" CTD1s to the SARS-CoV receptor ACE2 is not possible due to steric clashes, suggesting that the conformation 1 represents a receptor-binding inactive state. Conformations 2-4 determined at 7.3, 5.7 and 6.8 Å resolutions are all asymmetric, in which one RBD rotates away from the "down" position by different angles to an "up" position. The "up" CTD1 exposes the receptor-binding site for ACE2 engagement, suggesting that the conformations 2-4 represent a receptor-binding active state. This conformational change is also required for the binding of SARS-CoV neutralizing antibodies targeting the CTD1. This phenomenon could be extended to other betacoronaviruses utilizing CTD1 of the S1 subunit for receptor binding, which provides new insights into the intermediate states of coronavirus pre-fusion spike trimer during infection.

  6. SARS (SEVERE ACUTE RESPIRATORY SYNDROME – A NEW CHALLENGE FOR THE MANKIND

    Directory of Open Access Journals (Sweden)

    Andrej Trampuž

    2003-07-01

    Full Text Available Background. SARS (severe acute respiratory syndrome is a recently recognized new infectious respiratory illness, which first appeared in southern China in November 2002, and has since then within months spread to 29 countries. In total, 8437 cases and 813 deaths occurred (situation as of August 1, 2003. SARS is caused by a novel coronavirus that is primarily spread by large droplet transmission, less commonly by surface contamination or by air (airborne. Around half of the infected were health care workers; the majority of cases acquired the infection in the hospital.Conclusions. Incubation period of SARS is 2 to 10 days. Early manifestations include fever, myalgia, and headache, followed 2 to 4 days later by cough, shortness of breath, and diarrhea. In 10–20% of patients, tracheal intubation and mechanical ventilation is required. Case-fatality is approximately 15%, in patients aged 60 years or older may be higher than 40%. There is no specific therapy or vaccine, and management consists of supportive care. This article summarizes updated information regarding epidemiology, clinical features, etiologic agent, modes of transmission of the disease, and infection control measures to contain SARS.

  7. MERS Coronavirus in Dromedary Camel Herd Saudi Arabia

    OpenAIRE

    Hemida, Maged G.; Chu, Daniel K. W.; Poon, Leo L.M.; Perera, Ranawaka A. P. M.; Alhammadi, Mohammad A.; Ng, Hoi-yee; Siu, Lewis Y.; Guan, Yi; Alnaeem, Abdelmohsen; Peiris, Malik

    2014-01-01

    A prospective study of a dromedary camel herd during the 2013–14 calving season showed Middle East respiratory syndrome coronavirus infection of calves and adults. Virus was isolated from the nose and feces but more frequently from the nose. Preexisting neutralizing antibody did not appear to protect against infection.

  8. Phylogeny of SARS-CoV as inferred from complete genome comparison

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    SARS-CoV, as the pathogeny of severe acute respiratory syndrome (SARS), is a mystery that the origin of the virus is still unknown even a few isolates of the virus were completely sequenced. To explore the genesis of SARS-CoV, the FDOD method previously developed by us was applied to comparing complete genomes from 12 SARS-CoV isolates to those from 12 previously identified coronaviruses and an unrooted phylogenetic tree was constructed. Our results show that all SARS-CoV isolates were clustered into a clique and previously identified coronaviruses formed the other clique. Meanwhile, the three groups of coronaviruses depart from each other clearly in our tree that is consistent with the results of prevenient papers. Differently, from the topology of the phylogenetic tree we found that SARS-CoV is more close to group 1 within genus coronavirus. The topology map also shows that the 12 SARS-CoV isolates may be divided into two groups determined by the association with the SARS-CoV from the Hotel M in Hong Kong that may give some information about the infectious relationship of the SARS.

  9. AIdentification of encoding proteins related to SARS-CoV

    Institute of Scientific and Technical Information of China (English)

    MEI Hu; SUN Lili; ZHOU Yuan; XIONG Qing; LI Zhiliang

    2004-01-01

    By sampling 100 encoding proteins from SARS-coronavirus (SARS-CoV, NC 004718) and other six coronaviruses and selecting 23 variables through stepwise multiple regression (SMR) from 172 variables, the multiple linear regression (MLR) model was established with good results of the quantitative modelling correlation coefficient R2 = 0.645 and the cross-validation correlation coefficient 0.375. After removing 4 outliers, the quantitative modelling and cross-validation correlation coefficients were R2 = 0.743 and R2CV=0.543, respectively.

  10. Cytoplasmic tail of coronavirus spike protein has intracellular targeting signals

    Indian Academy of Sciences (India)

    JIBIN SADASIVAN; MANMEET SINGH; JAYASRI DAS SARMA

    2017-06-01

    Intracellular trafficking and localization studies of spike protein from SARS and OC43 showed that SARS spikeprotein is localized in the ER or ERGIC compartment and OC43 spike protein is predominantly localized in thelysosome. Differential localization can be explained by signal sequence. The sequence alignment using Clustal Wshows that the signal sequence present at the cytoplasmic tail plays an important role in spike protein localization. Aunique GYQEL motif is identified at the cytoplasmic terminal of OC43 spike protein which helps in localization in thelysosome, and a novel KLHYT motif is identified in the cytoplasmic tail of SARS spike protein which helps in ER orERGIC localization. This study sheds some light on the role of cytoplasmic tail of spike protein in cell-to-cell fusion,coronavirus host cell fusion and subsequent pathogenicity.

  11. Nuclear Magnetic Resonance Structure Shows that the Severe Acute Respiratory Syndrome Coronavirus-Unique Domain Contains a Macrodomain Fold▿

    Science.gov (United States)

    Chatterjee, Amarnath; Johnson, Margaret A.; Serrano, Pedro; Pedrini, Bill; Joseph, Jeremiah S.; Neuman, Benjamin W.; Saikatendu, Kumar; Buchmeier, Michael J.; Kuhn, Peter; Wüthrich, Kurt

    2009-01-01

    The nuclear magnetic resonance (NMR) structure of a central segment of the previously annotated severe acute respiratory syndrome (SARS)-unique domain (SUD-M, for “middle of the SARS-unique domain”) in SARS coronavirus (SARS-CoV) nonstructural protein 3 (nsp3) has been determined. SUD-M(513-651) exhibits a macrodomain fold containing the nsp3 residues 528 to 648, and there is a flexibly extended N-terminal tail with the residues 513 to 527 and a C-terminal flexible tail of residues 649 to 651. As a follow-up to this initial result, we also solved the structure of a construct representing only the globular domain of residues 527 to 651 [SUD-M(527-651)]. NMR chemical shift perturbation experiments showed that SUD-M(527-651) binds single-stranded poly(A) and identified the contact area with this RNA on the protein surface, and electrophoretic mobility shift assays then confirmed that SUD-M has higher affinity for purine bases than for pyrimidine bases. In a further search for clues to the function, we found that SUD-M(527-651) has the closest three-dimensional structure homology with another domain of nsp3, the ADP-ribose-1"-phosphatase nsp3b, although the two proteins share only 5% sequence identity in the homologous sequence regions. SUD-M(527-651) also shows three-dimensional structure homology with several helicases and nucleoside triphosphate-binding proteins, but it does not contain the motifs of catalytic residues found in these structural homologues. The combined results from NMR screening of potential substrates and the structure-based homology studies now form a basis for more focused investigations on the role of the SARS-unique domain in viral infection. PMID:19052085

  12. Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease.

    Science.gov (United States)

    Yang, Xingxing; Chen, Xiaojuan; Bian, Guangxing; Tu, Jian; Xing, Yaling; Wang, Yayun; Chen, Zhongbin

    2014-03-01

    The emerging Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe pulmonary disease in humans and represents the second example of a highly pathogenic coronavirus (CoV) following severe acute respiratory syndrome coronavirus (SARS-CoV). Genomic studies revealed that two viral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), process the polyproteins encoded by the MERS-CoV genomic RNA. We previously reported that SARS-CoV PLpro acts as both deubiquitinase (DUB) and IFN antagonist, but the function of the MERS-CoV PLpro was poorly understood. In this study, we characterized MERS-CoV PLpro, which is a protease and can recognize and process the cleavage sites (CS) of nsp1-2, nsp2-3 and nsp3-4. The LXGG consensus cleavage sites in the N terminus of pp1a/1ab, which is generally essential for CoV PLpro-mediated processing, were also characterized in MERS-CoV. MERS-CoV PLpro, like human SARS-CoV PLpro and NL63-CoV PLP2, is a viral deubiquitinating enzyme. It acts on both K48- and K63-linked ubiquitination and ISG15-linked ISGylation. We confirmed that MERS-CoV PLpro acts as an IFN antagonist through blocking the phosphorylation and nuclear translocation of IFN regulatory factor 3 (IRF3). These findings indicate that MERS-CoV PLpro acts as a viral DUB and suppresses production of IFN-β by an interfering IRF3-mediated signalling pathway, in addition to recognizing and processing the CS at the N terminus of replicase polyprotein to release the non-structural proteins. The characterization of proteolytic processing, DUB and IFN antagonist activities of MERS-CoV PLpro would reveal the interactions between MERS-CoV and its host, and be applicable to develop strategies targeting PLpro for the effective control of MERS-CoV infection.

  13. Variation analysis of the severe acute respiratory syndrome coronavirus putative non-structural protein 2 gene and construction of three-dimensional model

    Institute of Scientific and Technical Information of China (English)

    LU Jia-hai; CHEN Wei-qing; LING Wen-hua; YU Xin-bing; ZHONG Nan-shan; ZHANG Ding-mei; WANG Guo-ling; GUO Zhong-min; ZHANG Chuan-hai; TAN Bing-yan; OUYANG Li-ping; LIN Li; LIU Yi-min

    2005-01-01

    cells successfully. The result of sequencing and sequence comparison with other SARS-CoV strains showed that nsp2 gene was relatively conservative during the transmission and total five base sites mutated in about 100 strains investigated, three of which in the early and middle phases caused synonymous mutation, and another two base sites variation in the late phase resulted in the amino acid substitutions and secondary structure changes. The three-dimensional structure of the nsp2 protein was successfully constructed. Conclusions The results suggest that polymerase nsp2 is relatively stable during the phase of epidemic. The amino acid and secondary structure change may be important for viral infection. The fact that majority of single nucleotide variations (SNVs) are predicted to cause synonymous, as well as the result of low mutation rate of nsp2 gene in the epidemic variations, indicates that the nsp2 is conservative and could be a target for anti-SARS drugs. The three-dimensional structure result indicates that the nsp2 protein of GD strain is high homologous with 3CLpro of SARS-CoV urbani strain, 3CLpro of transmissible gastroenteritis virus and 3CLpro of human coronavirus 229E strain, which further suggests that nsp2 protein of GD strain possesses the activity of 3CLpro.

  14. Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide.

    Science.gov (United States)

    Madu, Ikenna G; Roth, Shoshannah L; Belouzard, Sandrine; Whittaker, Gary R

    2009-08-01

    Many viral fusion proteins are primed by proteolytic cleavage near their fusion peptides. While the coronavirus (CoV) spike (S) protein is known to be cleaved at the S1/S2 boundary, this cleavage site is not closely linked to a fusion peptide. However, a second cleavage site has been identified in the severe acute respiratory syndrome CoV (SARS-CoV) S2 domain (R797). Here, we investigated whether this internal cleavage of S2 exposes a viral fusion peptide. We show that the residues immediately C-terminal to the SARS-CoV S2 cleavage site SFIEDLLFNKVTLADAGF are very highly conserved across all CoVs. Mutagenesis studies of these residues in SARS-CoV S, followed by cell-cell fusion and pseudotyped virion infectivity assays, showed a critical role for residues L803, L804, and F805 in membrane fusion. Mutation of the most N-terminal residue (S798) had little or no effect on membrane fusion. Biochemical analyses of synthetic peptides corresponding to the proposed S2 fusion peptide also showed an important role for this region in membrane fusion and indicated the presence of alpha-helical structure. We propose that proteolytic cleavage within S2 exposes a novel internal fusion peptide for SARS-CoV S, which may be conserved across the Coronaviridae.

  15. Characterization of a Highly Conserved Domain within the Severe Acute Respiratory Syndrome Coronavirus Spike Protein S2 Domain with Characteristics of a Viral Fusion Peptide▿

    Science.gov (United States)

    Madu, Ikenna G.; Roth, Shoshannah L.; Belouzard, Sandrine; Whittaker, Gary R.

    2009-01-01

    Many viral fusion proteins are primed by proteolytic cleavage near their fusion peptides. While the coronavirus (CoV) spike (S) protein is known to be cleaved at the S1/S2 boundary, this cleavage site is not closely linked to a fusion peptide. However, a second cleavage site has been identified in the severe acute respiratory syndrome CoV (SARS-CoV) S2 domain (R797). Here, we investigated whether this internal cleavage of S2 exposes a viral fusion peptide. We show that the residues immediately C-terminal to the SARS-CoV S2 cleavage site SFIEDLLFNKVTLADAGF are very highly conserved across all CoVs. Mutagenesis studies of these residues in SARS-CoV S, followed by cell-cell fusion and pseudotyped virion infectivity assays, showed a critical role for residues L803, L804, and F805 in membrane fusion. Mutation of the most N-terminal residue (S798) had little or no effect on membrane fusion. Biochemical analyses of synthetic peptides corresponding to the proposed S2 fusion peptide also showed an important role for this region in membrane fusion and indicated the presence of α-helical structure. We propose that proteolytic cleavage within S2 exposes a novel internal fusion peptide for SARS-CoV S, which may be conserved across the Coronaviridae. PMID:19439480

  16. Stability of bovine coronavirus on lettuce surfaces under household refrigeration conditions.

    Science.gov (United States)

    Mullis, Lisa; Saif, Linda J; Zhang, Yongbin; Zhang, Xuming; Azevedo, Marli S P

    2012-05-01

    Fecal suspensions with an aerosol route of transmission were responsible for a cluster of severe acute respiratory syndrome (SARS) cases in 2003 in Hong Kong. Based on that event, the World Health Organization recommended that research be implemented to define modes of transmission of SARS coronavirus through sewage, feces, food and water. Environmental studies have shown that animal coronaviruses remain infectious in water and sewage for up to a year depending on the temperature and humidity. In this study, we examined coronavirus stability on lettuce surfaces. A cell culture adapted bovine coronavirus, diluted in growth media or in bovine fecal suspensions to simulate fecal contamination was used to spike romaine lettuce. qRT-PCR detected viral RNA copy number ranging from 6.6 × 10⁴ to 1.7 × 10⁶ throughout the experimental period of 30 days. Whereas infectious viruses were detected for at least 14 days, the amount of infectious virus varied, depending upon the diluent used for spiking the lettuce. UV and confocal microscopic observation indicated attachment of residual labeled virions to the lettuce surface after the elution procedure, suggesting that rates of inactivation or detection of the virus may be underestimated. Thus, it is possible that contaminated vegetables may be potential vehicles for coronavirus zoonotic transmission to humans.

  17. Coronaviruses in brain tissue from patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Dessau, R B; Lisby, G; Frederiksen, J L

    2001-01-01

    Brain tissue from 25 patients with clinically definite multiple sclerosis (MS) and as controls brain tissue from 36 patients without neurological disease was tested for the presence of human coronaviral RNA. Four PCR assays with primers specific for N-protein of human coronavirus strain 229E...... in the proportion of positive signals from the MS patients compared to controls. Evidence for a chronic infection with the human coronaviruses strain 229E or OC43 in brain tissue from patients with MS or controls has not been found in this study....

  18. Transmission of MERS-coronavirus in household contacts

    NARCIS (Netherlands)

    Drosten, Christian; Meyer, Benjamin; Müller, Marcel A; Corman, Victor M; Al-Masri, Malak; Hossain, Raheela; Madani, Hosam; Sieberg, Andrea; Bosch, Berend Jan; Lattwein, Erik; Alhakeem, Raafat F; Assiri, Abdullah M; Hajomar, Waleed; Albarrak, Ali M; Al-Tawfiq, Jaffar A; Zumla, Alimuddin I; Memish, Ziad A

    2014-01-01

    BACKGROUND: Strategies to contain the Middle East respiratory syndrome coronavirus (MERS-CoV) depend on knowledge of the rate of human-to-human transmission, including subclinical infections. A lack of serologic tools has hindered targeted studies of transmission. METHODS: We studied 26 index patien

  19. Evolution and Variation of the SARS-CoV Genome

    Institute of Scientific and Technical Information of China (English)

    Jianfei Hu; Zizhang Zhang; Wei Wei; Songgang Li; Jun Wang; Jian Wang; Jun Yu; Huanming Yang; Jing Wang; Jing Xu; Wei Li; Yujun Han; Yan Li; Jia Ji; Jia Ye; Zhao Xu

    2003-01-01

    Knowledge of the evolution of pathogens is of great medical and biological significance to the prevention, diagnosis, and therapy of infectious diseases. In order to understand the origin and evolution of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus), we collected complete genome sequences of all viruses available in GenBank, and made comparative analyses with the SARSCoV. Genomic signature analysis demonstrates that the coronaviruses all take the TGTT as their richest tetranucleotide except the SARS-CoV. A detailed analysis of the forty-two complete SARS-CoV genome sequences revealed the existence of two distinct genotypes, and showed that these isolates could be classified into four groups. Our manual analysis of the BLASTN results demonstrates that the HE (hemagglutinin-esterase) gene exists in the SARS-CoV, and many mutations made it unfamiliar to us.

  20. Identification of a novel conserved HLA-A*0201-restricted epitope from the spike protein of SARS-CoV

    Directory of Open Access Journals (Sweden)

    Ni Bing

    2009-12-01

    Full Text Available Abstract Background The spike (S protein is a major structural glycoprotein of coronavirus (CoV, the causal agent of severe acute respiratory syndrome (SARS. The S protein is a potent target for SARS-specific cell-mediated immune responses. However, the mechanism CoV pathogenesis in SARS and the role of special CTLs in virus clearance are still largely uncharacterized. Here, we describe a study that leads to the identification of a novel HLA-A*0201-restricted epitope from conserved regions of S protein. Results First, different SARS-CoV sequences were analyzed to predict eight candidate peptides from conserved regions of the S protein based upon HLA-A*0201 binding and proteosomal cleavage. Four of eight candidate peptides were tested by HLA-A*0201 binding assays. Among the four candidate peptides, Sp8 (S958-966, VLNDILSRL induced specific CTLs both ex vivo in PBLs of healthy HLA-A2+ donors and in HLA-A2.1/Kb transgenic mice immunized with a plasmid encoding full-length S protein. The immunized mice released IFN-γ and lysed target cells upon stimulation with Sp8 peptide-pulsed autologous dendritic cells in comparison to other candidates. Conclusion These results suggest that Sp8 is a naturally processed epitope. We propose that Sp8 epitope should help in the characterization of mechanisms of virus control and immunopathology in SARS-CoV infection.

  1. Severe acute respiratory syndrome (SARS) in Hong Kong.

    Science.gov (United States)

    Tsang, Kenneth W; Mok, Thomas Y; Wong, Poon C; Ooi, Gaik C

    2003-09-01

    Severe acute respiratory syndrome (SARS) is a recently recognized and highly contagious pneumonic illness, caused by a novel coronavirus. While developments in diagnostic, clinical and other aspects of SARS research are well underway, there is still great difficulty for frontline clinicians as validated rapid diagnostic tests or effective treatment regimens are lacking. This article attempts to summarize some of the recent developments in this newly recognized condition from the Asia Pacific perspective.

  2. Middle East respiratory syndrome coronavirus in children

    OpenAIRE

    Thabet, Farah; Chehab, May; Bafaqih, Hind; AlMohaimeed, Sulaiman

    2015-01-01

    The Middle East respiratory syndrome (MERS) is a new human disease caused by a novel coronavirus (CoV). The disease is reported mainly in adults. Data in children are scarce. The disease caused by MERS-CoV in children presents with a wide range of clinical manifestations, and it is associated with a lower mortality rate compared with adults. Poor outcome is observed mainly in admitted patients with medical comorbidities. We report a new case of MERS-CoV infection in a 9-month-old child compli...

  3. Coronavirus avian infectious bronchitis virus

    National Research Council Canada - National Science Library

    Cavanagh, Dave

    2007-01-01

    Infectious bronchitis virus (IBV), the coronavirus of the chicken (Gallus gallus), is one of the foremost causes of economic loss within the poultry industry, affecting the performance of both meat-type and egg-laying birds...

  4. Diagnostic Methods for Feline Coronavirus: A Review

    Directory of Open Access Journals (Sweden)

    Saeed Sharif

    2010-01-01

    Full Text Available Feline coronaviruses (FCoVs are found throughout the world. Infection with FCoV can result in a diverse range of signs from clinically inapparent infections to a highly fatal disease called feline infectious peritonitis (FIP. FIP is one of the most serious viral diseases of cats. While there is neither an effective vaccine, nor a curative treatment for FIP, a diagnostic protocol for FCoV would greatly assist in the management and control of the virus. Clinical findings in FIP are non-specific and not helpful in making a differential diagnosis. Haematological and biochemical abnormalities in FIP cases are also non-specific. The currently available serological tests have low specificity and sensitivity for detection of active infection and cross-react with FCoV strains of low pathogenicity, the feline enteric coronaviruses (FECV. Reverse transcriptase polymerase chain reaction (RT-PCR has been used to detect FCoV and is rapid and sensitive, but results must be interpreted in the context of clinical findings. At present, a definitive diagnosis of FIP can be established only by histopathological examination of biopsies. This paper describes and compares diagnostic methods for FCoVs and includes a brief account of the virus biology, epidemiology, and pathogenesis.

  5. Severe acute respiratory syndrome--a new coronavirus from the Chinese dragon's lair.

    Science.gov (United States)

    Knudsen, T B; Kledal, T N; Andersen, O; Eugen-Olsen, J; Kristiansen, T B

    2003-09-01

    The recent identification of a novel clinical entity, the severe acute respiratory syndrome (SARS), the rapid subsequent spread and case fatality rates of 14-15% have prompted a massive international collaborative investigation facilitated by a network of laboratories established by the World Health Organization (WHO). As SARS has the potential of becoming the first pandemic of the new millennium, a global warning by the WHO was issued on 12 March 2003. The disease, which is believed to have its origin in the Chinese Guangdong province, spread from Hong Kong via international airports to its current worldwide distribution. The concerted efforts of a globally united scientific community have led to the independent isolation and identification of a novel coronavirus from SARS patients by several groups. The extraordinarily rapid isolation of a causative agent of this newly emerged infectious disease constitutes an unprecedented scientific achievement. The main scope of the article is to provide the clinician with an overview of the natural history, epidemiology and clinical characteristics of SARS. On the basis of the recently published viral genome and structural features common to the members of the coronavirus family, a model for host cell-virus interaction and possible targets for antiviral drugs are presented. The epidemiological consequences of introducing a novel pathogen in a previously unexposed population and the origin and evolution of a new and more pathogenic strain of coronavirus are discussed.

  6. Tracing Airline Travelers for a Public Health Investigation: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection in the United States, 2014.

    Science.gov (United States)

    Regan, Joanna J; Jungerman, M Robynne; Lippold, Susan A; Washburn, Faith; Roland, Efrosini; Objio, Tina; Schembri, Christopher; Gulati, Reena; Edelson, Paul J; Alvarado-Ramy, Francisco; Pesik, Nicki; Cohen, Nicole J

    2016-01-01

    CDC routinely conducts contact investigations involving travelers on commercial conveyances, such as aircrafts, cargo vessels, and cruise ships. The agency used established systems of communication and partnerships with other federal agencies to quickly provide accurate traveler contact information to states and jurisdictions to alert contacts of potential exposure to two travelers with Middle East Respiratory Syndrome Coronavirus (MERS-CoV) who had entered the United States on commercial flights in April and May 2014. Applying the same process used to trace and notify travelers during routine investigations, such as those for tuberculosis or measles, CDC was able to notify most travelers of their potential exposure to MERS-CoV during the first few days of each investigation. To prevent the introduction and spread of newly emerging infectious diseases, travelers need to be located and contacted quickly.

  7. Detection of Coronaviruses in Bats of Various Species in Italy

    Directory of Open Access Journals (Sweden)

    Maria B. Boniotti

    2013-10-01

    Full Text Available Bats are natural reservoirs for many mammalian coronaviruses, which have received renewed interest after the discovery of the severe acute respiratory syndrome (SARS and the Middle East respiratory syndrome (MERS CoV in humans. This study describes the identification and molecular characterization of alphacoronaviruses and betacoronaviruses in bats in Italy, from 2010 to 2012. Sixty-nine faecal samples and 126 carcasses were tested using pan-coronavirus RT-PCR. Coronavirus RNAs were detected in seven faecal samples and nine carcasses. A phylogenetic analysis of RNA-dependent RNA polymerase sequence fragments aided in identifying two alphacoronaviruses from Kuhl’s pipistrelle (Pipistrellus kuhlii, three clade 2b betacoronaviruses from lesser horseshoe bats (Rhinolophus hipposideros, and 10 clade 2c betacoronaviruses from Kuhl’s pipistrelle, common noctule (Nyctalus noctula, and Savi’s pipistrelle (Hypsugo savii. This study fills a substantive gap in the knowledge on bat-CoV ecology in Italy, and extends the current knowledge on clade 2c betacoronaviruses with new sequences obtained from bats that have not been previously described as hosts of these viruses.

  8. Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines.

    Directory of Open Access Journals (Sweden)

    Roland Züst

    2007-08-01

    Full Text Available Attenuated viral vaccines can be generated by targeting essential pathogenicity factors. We report here the rational design of an attenuated recombinant coronavirus vaccine based on a deletion in the coding sequence of the non-structural protein 1 (nsp1. In cell culture, nsp1 of mouse hepatitis virus (MHV, like its SARS-coronavirus homolog, strongly reduced cellular gene expression. The effect of nsp1 on MHV replication in vitro and in vivo was analyzed using a recombinant MHV encoding a deletion in the nsp1-coding sequence. The recombinant MHV nsp1 mutant grew normally in tissue culture, but was severely attenuated in vivo. Replication and spread of the nsp1 mutant virus was restored almost to wild-type levels in type I interferon (IFN receptor-deficient mice, indicating that nsp1 interferes efficiently with the type I IFN system. Importantly, replication of nsp1 mutant virus in professional antigen-presenting cells such as conventional dendritic cells and macrophages, and induction of type I IFN in plasmacytoid dendritic cells, was not impaired. Furthermore, even low doses of nsp1 mutant MHV elicited potent cytotoxic T cell responses and protected mice against homologous and heterologous virus challenge. Taken together, the presented attenuation strategy provides a paradigm for the development of highly efficient coronavirus vaccines.

  9. SARS-CoV ORF1b-encoded nonstructural proteins 12-16: replicative enzymes as antiviral targets.

    Science.gov (United States)

    Subissi, Lorenzo; Imbert, Isabelle; Ferron, François; Collet, Axelle; Coutard, Bruno; Decroly, Etienne; Canard, Bruno

    2014-01-01

    The SARS (severe acute respiratory syndrome) pandemic caused ten years ago by the SARS-coronavirus (SARS-CoV) has stimulated a number of studies on the molecular biology of coronaviruses. This research has provided significant new insight into many mechanisms used by the coronavirus replication-transcription complex (RTC). The RTC directs and coordinates processes in order to replicate and transcribe the coronavirus genome, a single-stranded, positive-sense RNA of outstanding length (∼27-32kilobases). Here, we review the up-to-date knowledge on SARS-CoV replicative enzymes encoded in the ORF1b, i.e., the main RNA-dependent RNA polymerase (nsp12), the helicase/triphosphatase (nsp13), two unusual ribonucleases (nsp14, nsp15) and RNA-cap methyltransferases (nsp14, nsp16). We also review how these enzymes co-operate with other viral co-factors (nsp7, nsp8, and nsp10) to regulate their activity. These last ten years of research on SARS-CoV have considerably contributed to unravel structural and functional details of one of the most fascinating replication/transcription machineries of the RNA virus world. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses". Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling.

    Directory of Open Access Journals (Sweden)

    Li Sun

    Full Text Available Viruses have evolved elaborate mechanisms to evade or inactivate the complex system of sensors and signaling molecules that make up the host innate immune response. Here we show that human coronavirus (HCoV NL63 and severe acute respiratory syndrome (SARS CoV papain-like proteases (PLP antagonize innate immune signaling mediated by STING (stimulator of interferon genes, also known as MITA/ERIS/MYPS. STING resides in the endoplasmic reticulum and upon activation, forms dimers which assemble with MAVS, TBK-1 and IKKε, leading to IRF-3 activation and subsequent induction of interferon (IFN. We found that expression of the membrane anchored PLP domain from human HCoV-NL63 (PLP2-TM or SARS-CoV (PLpro-TM inhibits STING-mediated activation of IRF-3 nuclear translocation and induction of IRF-3 dependent promoters. Both catalytically active and inactive forms of CoV PLPs co-immunoprecipitated with STING, and viral replicase proteins co-localize with STING in HCoV-NL63-infected cells. Ectopic expression of catalytically active PLP2-TM blocks STING dimer formation and negatively regulates assembly of STING-MAVS-TBK1/IKKε complexes required for activation of IRF-3. STING dimerization was also substantially reduced in cells infected with SARS-CoV. Furthermore, the level of ubiquitinated forms of STING, RIG-I, TBK1 and IRF-3 are reduced in cells expressing wild type or catalytic mutants of PLP2-TM, likely contributing to disruption of signaling required for IFN induction. These results describe a new mechanism used by CoVs in which CoV PLPs negatively regulate antiviral defenses by disrupting the STING-mediated IFN induction.

  11. Zn(2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture.

    Directory of Open Access Journals (Sweden)

    Aartjan J W te Velthuis

    Full Text Available Increasing the intracellular Zn(2+ concentration with zinc-ionophores like pyrithione (PT can efficiently impair the replication of a variety of RNA viruses, including poliovirus and influenza virus. For some viruses this effect has been attributed to interference with viral polyprotein processing. In this study we demonstrate that the combination of Zn(2+ and PT at low concentrations (2 µM Zn(2+ and 2 µM PT inhibits the replication of SARS-coronavirus (SARS-CoV and equine arteritis virus (EAV in cell culture. The RNA synthesis of these two distantly related nidoviruses is catalyzed by an RNA-dependent RNA polymerase (RdRp, which is the core enzyme of their multiprotein replication and transcription complex (RTC. Using an activity assay for RTCs isolated from cells infected with SARS-CoV or EAV--thus eliminating the need for PT to transport Zn(2+ across the plasma membrane--we show that Zn(2+ efficiently inhibits the RNA-synthesizing activity of the RTCs of both viruses. Enzymatic studies using recombinant RdRps (SARS-CoV nsp12 and EAV nsp9 purified from E. coli subsequently revealed that Zn(2+ directly inhibited the in vitro activity of both nidovirus polymerases. More specifically, Zn(2+ was found to block the initiation step of EAV RNA synthesis, whereas in the case of the SARS-CoV RdRp elongation was inhibited and template binding reduced. By chelating Zn(2+ with MgEDTA, the inhibitory effect of the divalent cation could be reversed, which provides a novel experimental tool for in vitro studies of the molecular details of nidovirus replication and transcription.

  12. Qualitative study on the shifting sociocultural meanings of the facemask in Hong Kong since the severe acute respiratory syndrome (SARS) outbreak: implications for infection control in the post-SARS era.

    Science.gov (United States)

    Siu, Judy Yuen-Man

    2016-05-04

    The clinical importance and efficacy of facemasks in infection prevention have been documented in the international literature. Past studies have shown that the perceived susceptibility, the perceived severity of being afflicted with life-threatening diseases, and the perceived benefits of using a facemask are predictors of a person's use of a facemask. However, I argue that people wear a facemask not merely for infection prevention, and various sociocultural reasons have been motivating people to wear (and not wear) a facemask. Facemasks thus have sociocultural implications for people. Research on the sociocultural meanings of facemasks is scant, and even less is known on how the shifting sociocultural meanings of facemasks are related to the changing social environment, which, I argue, serve as remarkable underlying factors for people using (and not using) facemasks. As new infectious diseases such as avian influenza and Middle East Respiratory Syndrome have been emerging, threatening people's health worldwide, and because facemasks have been documented to have substantial efficacy in the prevention of infection transmission, understanding the sociocultural meanings of facemasks has significant implications for public health policymakers and health care providers in designing a socially and culturally responsive public health and infection control policy for the community. A qualitative research design involving the use of 40 individual, in-depth semistructured interviews and a phenomenological analysis approach were adopted. The sociocultural meanings of the facemask have been undergoing constant change, from positive to negative, which resulted in the participants displaying hesitation in using a facemask in the post-SARS era. Because it represents a violation of societal ideologies and traditional Chinese cultural beliefs, the meanings of the facemask that had developed during the SARS outbreak failed to be sustained in the post-SARS era. The changes in

  13. Multiple Sequence Alignment of the M Proteinin SARS—Associated and Other Known Coronaviruses

    Institute of Scientific and Technical Information of China (English)

    史定华; 周晖杰; 王斌宾; 顾燕红; 王翼飞

    2003-01-01

    In this paper, we report a multiple sequence alignment result on the basis of 10 amino acid sequences of the M protein,which come from different coronaviruses (4 SARS-associated and 6 others known). The alignment model was based on the profile HMM (Hidden Markov Model), and the model training was implemented through the SAHMM (Self-Adapting Hidden Markov Model)software developed by the authors.

  14. Antibody binding site mapping of SARS-CoV spike protein receptor-binding domain by a combination of yeast surface display and phage peptide library screening.

    Science.gov (United States)

    Zhang, Xiaoping; Wang, Jingxue; Wen, Kun; Mou, Zhirong; Zou, Liyun; Che, Xiaoyan; Ni, Bing; Wu, Yuzhang

    2009-12-01

    The receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus (SARS-CoV) spike (S) protein plays an important role in viral infection, and is a potential major neutralizing determinant. In this study, three hybridoma cell lines secreting specific monoclonal antibodies against the RBD of the S protein were generated and their exact binding sites were identified. Using yeast surface display, the binding sites of these antibodies were defined to two linear regions on the RBD: S(337-360) and S(380-399). Using these monoclonal antibodies in phage peptide library screening identified 10 distinct mimotopes 12 amino acids in length. Sequence comparison between native epitopes and these mimotopes further confirmed the binding sites, and revealed key amino acid residues involved in antibody binding. None of these antibodies could neutralize the murine leukemia virus pseudotyped expressing the SARS-CoV spike protein (MLV/SARS-CoV). However, these mAbs could be useful in the diagnosis of SARS-CoV due to their exclusive reactivity with SARS-CoV. Furthermore, this study established a feasible platform for epitope mapping. Yeast surface display combined with phage peptide library screening provides a convenient strategy for the identification of epitope peptides from certain antigenic proteins.

  15. Sequence Analysis and Structural Prediction of the Severe Acute Respiratory Syndrome Coronavirus nsp5

    Institute of Scientific and Technical Information of China (English)

    Jia-Hai LU; Nan-Shan ZHONG; Ding-Mei ZHANG; Guo-Ling WANG; Zhong-Min GUO; Juan LI; Bing-Yan TAN; Li-Ping OU-YANG; Wen-Hua LING; Xin-Bing YU

    2005-01-01

    The non-structural proteins (nsp or replicase proteins) of coronaviruses are relatively conserved and can be effective targets for drugs. Few studies have been conducted into the function of the severe acute respiratory syndrome coronavirus (SARS-CoV) nsp5. In this study, bioinformatics methods were employed to predict the secondary structure and construct 3-D models of the SARS-CoV GD strain nsp5. Sequencing and sequential comparison was performed to analyze the mutation trend of the polymerase nsp5 gene during the epidemic process using a nucleotide-nucleotide basic local alignment search tool (BLASTN) and a protein-protein basic local alignment search tool (BLASTP). The results indicated that the nsp5 gene was steady during the epidemic process and the protein was homologous with other coronavirus nsp5 proteins. The protein encoded by the nsp5 gene was expressed in COS-7 cells and analyzed by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This study provided the foundation for further exploration of the protein's biological function, and contributed to the search for anti-SARS-CoV drugs.

  16. Feline Coronaviruses: Pathogenesis of Feline Infectious Peritonitis.

    Science.gov (United States)

    Tekes, G; Thiel, H-J

    2016-01-01

    Feline infectious peritonitis (FIP) belongs to the few animal virus diseases in which, in the course of a generally harmless persistent infection, a virus acquires a small number of mutations that fundamentally change its pathogenicity, invariably resulting in a fatal outcome. The causative agent of this deadly disease, feline infectious peritonitis virus (FIPV), arises from feline enteric coronavirus (FECV). The review summarizes our current knowledge of the genome and proteome of feline coronaviruses (FCoVs), focusing on the viral surface (spike) protein S and the five accessory proteins. We also review the current classification of FCoVs into distinct serotypes and biotypes, cellular receptors of FCoVs and their presumed role in viral virulence, and discuss other aspects of FIPV-induced pathogenesis. Our current knowledge of genetic differences between FECVs and FIPVs has been mainly based on comparative sequence analyses that revealed "discriminatory" mutations that are present in FIPVs but not in FECVs. Most of these mutations result in amino acid substitutions in the S protein and these may have a critical role in the switch from FECV to FIPV. In most cases, the precise roles of these mutations in the molecular pathogenesis of FIP have not been tested experimentally in the natural host, mainly due to the lack of suitable experimental tools including genetically engineered virus mutants. We discuss the recent progress in the development of FCoV reverse genetics systems suitable to generate recombinant field viruses containing appropriate mutations for in vivo studies.

  17. Emerging infectious diseases: Focus on infection control issues for novel coronaviruses (Severe Acute Respiratory Syndrome-CoV and Middle East Respiratory Syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A(H5N1) and A(H7N9).

    Science.gov (United States)

    Weber, David J; Rutala, William A; Fischer, William A; Kanamori, Hajime; Sickbert-Bennett, Emily E

    2016-05-02

    Over the past several decades, we have witnessed the emergence of many new infectious agents, some of which are major public threats. New and emerging infectious diseases which are both transmissible from patient-to-patient and virulent with a high mortality include novel coronaviruses (SARS-CoV, MERS-CV), hemorrhagic fever viruses (Lassa, Ebola), and highly pathogenic avian influenza A viruses, A(H5N1) and A(H7N9). All healthcare facilities need to have policies and plans in place for early identification of patients with a highly communicable diseases which are highly virulent, ability to immediately isolate such patients, and provide proper management (e.g., training and availability of personal protective equipment) to prevent transmission to healthcare personnel, other patients and visitors to the healthcare facility.

  18. Middle East Respiratory Syndrome Coronavirus: A Review

    Directory of Open Access Journals (Sweden)

    Leila Sarparast

    2015-01-01

    Full Text Available Context: Middle East Respiratory Syndrome Coronavirus (MERS-CoV infection is an emerging human disease that has been reported from the Arabian Peninsula and Middle East countries since 2012. Although zoonotic transmission was postulated, virological and serological finding suggest that the dromedary camels act as the potential reservoirs of MERS-CoV infection to humans. As October 2014, a totally 855 confirmed cases with 333 related deaths were reported to WHO. All cases occurred in or epidemiologically linked to affected countries. The virus ability to induce a pandemic attack is limited. The clinical presentations vary and range from asymptomatic infection to severe respiratory disease and death. However, most severe disease occurs in elderly and in those with underlying conditions. Infection prevention and control measures are critical to prevent the possible spread of MERS-CoV infection is health care facilities and in the community. The WHO encourages all member states to perform surveillance of patients with acute severe respiratory infection and to carefully monitor any unusual patterns. This paper aims to review the current key characteristics of MERS-CoV infection in human and update the WHO recommendations about this illness.

  19. Sublingual immunization with recombinant adenovirus encoding SARS-CoV spike protein induces systemic and mucosal immunity without redirection of the virus to the brain

    Directory of Open Access Journals (Sweden)

    Shim Byoung-Shik

    2012-09-01

    Full Text Available Abstract Background Sublingual (s.l. administration of soluble protein antigens, inactivated viruses, or virus-like particles has been shown to induce broad immune responses in mucosal and extra-mucosal tissues. Recombinant replication-defective adenovirus vectors (rADVs infect mucosa surface and therefore can serve as a mucosal antigen delivery vehicle. In this study we examined whether s.l. immunization with rADV encoding spike protein (S (rADV-S of severe acute respiratory syndrome-associated coronavirus (SARS-CoV induces protective immunity against SARS-CoV and could serve as a safe mucosal route for delivery of rADV. Results Here, we show that s.l. administration of rADV-S induced serum SARS-CoV neutralizing and airway IgA antibodies in mice. These antibody responses are comparable to those induced by intranasal (i.n. administration. In addition, s.l. immunization induced antigen-specific CD8+ T cell responses in the lungs that are superior to those induced by intramuscular immunization. Importantly, unlike i.n. administration, s.l. immunization with rADV did not redirect the rADV vector to the olfactory bulb. Conclusion Our study indicates that s.l. immunization with rADV-S is safe and effective in induction of a broad spectrum of immune responses and presumably protection against infection with SARS-CoV.

  20. Coronaviruses in polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Bekker, C P; Voorhout, W F; Horzinek, M C; Van der Ende, A; Strous, G J; Rottier, P J

    1995-01-01

    Coronaviruses have a marked tropism for epithelial cells. In this paper the interactions of the porcine transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV-A59) with epithelial cells are compared. Porcine (LLC-PK1) and murine (mTAL) epithelial cells were grown on permeable supp

  1. Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mustafa Saad

    2014-12-01

    Conclusions: MERS-CoV can cause severe infection requiring intensive care and has a high mortality. Concomitant infections and low albumin were found to be predictors of severe infection, while age ≥65 years was the only predictor of increased mortality.

  2. SARS疫苗研究进展%The progress in research of SARS vaccine

    Institute of Scientific and Technical Information of China (English)

    张增峰

    2011-01-01

    Severe acute respiratory syndrome (SARS) is a serious infectious disease caused by SARSassociated coronavirus (SARS-CoV). There are no approved antiviral drugs that effectively target SARS-CoV,and vaccination is the most effective mode for preventing SARS in people. At present, SARS vaccines,including inactivated vaccines, attenuated vaccines, subunit vaccines and DNA vaccines, etc., are being developed. Progress has been made in animal models, and some of the vaccines have entered clinical trials. In this article, the current state of SARS vaccine development is reviewed.%严重急性呼吸综合征(severe acute respiratory syndrome,SARS)是由SARS相关冠状病毒(SARS-associated coronavirus,SARS-CoV)引起的一类严重的急性呼吸系统传染病.目前尚未研制出治疗SARS的有效药物,防范SARS-CoV感染最有效的方法是使用疫苗.正在研制的SARS疫苗有灭活疫苗、减毒活疫苗、亚单位疫苗和DNA疫苗等,这些疫苗在动物模型中取得一些进展,有的已进入人体试验.此文就近几年有关SARS疫苗的研发现状做一综述.

  3. Biodiversity impact of host interferon-stimulated-gene-product 15 on the coronavirus Papain-like protease deISGylase functions

    Science.gov (United States)

    Coronaviruses are single-stranded, positive sense RNA viruses whose members have severe impact on human health and cause significant economic hardships. Some pertinent examples include severe acute and Middle East respiratory syndromes (SARS-CoV; MERS-CoV), porcine epidemic diarrhea virus (PEDV), an...

  4. SARS-like WIV1-CoV poised for human emergence

    Science.gov (United States)

    Menachery, Vineet D.; Yount, Boyd L.; Sims, Amy C.; Debbink, Kari; Agnihothram, Sudhakar S.; Gralinski, Lisa E.; Graham, Rachel L.; Scobey, Trevor; Plante, Jessica A.; Royal, Scott R.; Swanstrom, Jesica; Sheahan, Timothy P.; Pickles, Raymond J.; Corti, Davide; Randell, Scott H.; Lanzavecchia, Antonio; Marasco, Wayne A.; Baric, Ralph S.

    2016-01-01

    Outbreaks from zoonotic sources represent a threat to both human disease as well as the global economy. Despite a wealth of metagenomics studies, methods to leverage these datasets to identify future threats are underdeveloped. In this study, we describe an approach that combines existing metagenomics data with reverse genetics to engineer reagents to evaluate emergence and pathogenic potential of circulating zoonotic viruses. Focusing on the severe acute respiratory syndrome (SARS)-like viruses, the results indicate that the WIV1-coronavirus (CoV) cluster has the ability to directly infect and may undergo limited transmission in human populations. However, in vivo attenuation suggests additional adaptation is required for epidemic disease. Importantly, available SARS monoclonal antibodies offered success in limiting viral infection absent from available vaccine approaches. Together, the data highlight the utility of a platform to identify and prioritize prepandemic strains harbored in animal reservoirs and document the threat posed by WIV1-CoV for emergence in human populations. PMID:26976607

  5. Understanding Viral Transmission Behavior via Protein Intrinsic Disorder Prediction: Coronaviruses

    Directory of Open Access Journals (Sweden)

    Gerard Kian-Meng Goh

    2012-01-01

    Full Text Available Besides being a common threat to farm animals and poultry, coronavirus (CoV was responsible for the human severe acute respiratory syndrome (SARS epidemic in 2002–4. However, many aspects of CoV behavior, including modes of its transmission, are yet to be fully understood. We show that the amount and the peculiarities of distribution of the protein intrinsic disorder in the viral shell can be used for the efficient analysis of the behavior and transmission modes of CoV. The proposed model allows categorization of the various CoVs by the peculiarities of disorder distribution in their membrane (M and nucleocapsid (N. This categorization enables quick identification of viruses with similar behaviors in transmission, regardless of genetic proximity. Based on this analysis, an empirical model for predicting the viral transmission behavior is developed. This model is able to explain some behavioral aspects of important coronaviruses that previously were not fully understood. The new predictor can be a useful tool for better epidemiological, clinical, and structural understanding of behavior of both newly emerging viruses and viruses that have been known for a long time. A potentially new vaccine strategy could involve searches for viral strains that are characterized by the evolutionary misfit between the peculiarities of the disorder distribution in their shells and their behavior.

  6. Middle East respiratory syndrome coronavirus: epidemiology and disease control measures

    Directory of Open Access Journals (Sweden)

    Al-Tawfiq JA

    2014-11-01

    Full Text Available Jaffar A Al-Tawfiq,1,2 Ziad A Memish3,4 1Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; 2Indiana University School of Medicine, Indianapolis, IN, USA; 3Ministry of Health, 4Alfaisal University, Riyadh, Saudi Arabia Abstract: The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV infection in 2012 resulted in an increased concern of the spread of the infection globally. MERS-CoV infection had previously caused multiple health-care-associated outbreaks and resulted in transmission of the virus within families. Community onset MERS-CoV cases continue to occur. Dromedary camels are currently the most likely animal to be linked to human MERS-CoV cases. Serologic tests showed significant infection in adult camels compared to juvenile camels. The control of MERS-CoV infection relies on prompt identification of cases within health care facilities, with institutions applying appropriate infection control measures. In addition, determining the exact route of transmission from camels to humans would further add to the control measures of MERS-CoV infection. Keywords: MERS, Middle East respiratory syndrome coronavirus, epidemiology, control measures, transmission, Saudi Arabia

  7. Effects of air temperature and relative humidity on coronavirus survival on surfaces.

    Science.gov (United States)

    Casanova, Lisa M; Jeon, Soyoung; Rutala, William A; Weber, David J; Sobsey, Mark D

    2010-05-01

    Assessment of the risks posed by severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) on surfaces requires data on survival of this virus on environmental surfaces and on how survival is affected by environmental variables, such as air temperature (AT) and relative humidity (RH). The use of surrogate viruses has the potential to overcome the challenges of working with SARS-CoV and to increase the available data on coronavirus survival on surfaces. Two potential surrogates were evaluated in this study; transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) were used to determine effects of AT and RH on the survival of coronaviruses on stainless steel. At 4 degrees C, infectious virus persisted for as long as 28 days, and the lowest level of inactivation occurred at 20% RH. Inactivation was more rapid at 20 degrees C than at 4 degrees C at all humidity levels; the viruses persisted for 5 to 28 days, and the slowest inactivation occurred at low RH. Both viruses were inactivated more rapidly at 40 degrees C than at 20 degrees C. The relationship between inactivation and RH was not monotonic, and there was greater survival or a greater protective effect at low RH (20%) and high RH (80%) than at moderate RH (50%). There was also evidence of an interaction between AT and RH. The results show that when high numbers of viruses are deposited, TGEV and MHV may survive for days on surfaces at ATs and RHs typical of indoor environments. TGEV and MHV could serve as conservative surrogates for modeling exposure, the risk of transmission, and control measures for pathogenic enveloped viruses, such as SARS-CoV and influenza virus, on health care surfaces.

  8. Effects of Air Temperature and Relative Humidity on Coronavirus Survival on Surfaces▿

    Science.gov (United States)

    Casanova, Lisa M.; Jeon, Soyoung; Rutala, William A.; Weber, David J.; Sobsey, Mark D.

    2010-01-01

    Assessment of the risks posed by severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) on surfaces requires data on survival of this virus on environmental surfaces and on how survival is affected by environmental variables, such as air temperature (AT) and relative humidity (RH). The use of surrogate viruses has the potential to overcome the challenges of working with SARS-CoV and to increase the available data on coronavirus survival on surfaces. Two potential surrogates were evaluated in this study; transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) were used to determine effects of AT and RH on the survival of coronaviruses on stainless steel. At 4°C, infectious virus persisted for as long as 28 days, and the lowest level of inactivation occurred at 20% RH. Inactivation was more rapid at 20°C than at 4°C at all humidity levels; the viruses persisted for 5 to 28 days, and the slowest inactivation occurred at low RH. Both viruses were inactivated more rapidly at 40°C than at 20°C. The relationship between inactivation and RH was not monotonic, and there was greater survival or a greater protective effect at low RH (20%) and high RH (80%) than at moderate RH (50%). There was also evidence of an interaction between AT and RH. The results show that when high numbers of viruses are deposited, TGEV and MHV may survive for days on surfaces at ATs and RHs typical of indoor environments. TGEV and MHV could serve as conservative surrogates for modeling exposure, the risk of transmission, and control measures for pathogenic enveloped viruses, such as SARS-CoV and influenza virus, on health care surfaces. PMID:20228108

  9. Receptor-binding domain as a target for developing SARS vaccines.

    Science.gov (United States)

    Zhu, Xiaojie; Liu, Qi; Du, Lanying; Lu, Lu; Jiang, Shibo

    2013-08-01

    A decade ago, severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a global pandemic with a mortality rate of 10%. Reports of recent outbreaks of a SARS-like disease caused by Middle East respiratory syndrome coronavirus (MERS-CoV) have raised serious concerns of a possible reemergence of SARS-CoV, either by laboratory escape or the presence of a natural reservoir. Therefore, the development of effective and safe SARS vaccines is still needed. Based on our previous studies, we believe that the receptor-binding domain (RBD) in the S1 subunit of the SARS-CoV spike (S) protein is the most important target for developing a SARS vaccine. In particular, RBD of S protein contains the critical neutralizing domain (CND), which is able to induce highly potent neutralizing antibody response and cross-protection against divergent SARS-CoV strains. Furthermore, a RBD-based subunit vaccine is expected to be safer than other vaccines that may induce Th2-type immunopathology. This review will discuss key advances in the development of RBD-based SARS vaccines and the possibility of using a similar strategy to develop vaccines against MERS-CoV.

  10. Optimization of the Production Process and Characterization of the Yeast-Expressed SARS-CoV Recombinant Receptor-Binding Domain (RBD219-N1), a SARS Vaccine Candidate.

    Science.gov (United States)

    Chen, Wen-Hsiang; Chag, Shivali M; Poongavanam, Mohan V; Biter, Amadeo B; Ewere, Ebe A; Rezende, Wanderson; Seid, Christopher A; Hudspeth, Elissa M; Pollet, Jeroen; McAtee, C Patrick; Strych, Ulrich; Bottazzi, Maria Elena; Hotez, Peter J

    2017-08-01

    From 2002 to 2003, a global pandemic of severe acute respiratory syndrome (SARS) spread to 5 continents and caused 8000 respiratory infections and 800 deaths. To ameliorate the effects of future outbreaks as well as to prepare for biodefense, a process for the production of a recombinant protein vaccine candidate is under development. Previously, we reported the 5 L scale expression and purification of a promising recombinant SARS vaccine candidate, RBD219-N1, the 218-amino acid residue receptor-binding domain (RBD) of SARS coronavirus expressed in yeast-Pichia pastoris X-33. When adjuvanted with aluminum hydroxide, this protein elicited high neutralizing antibody titers and high RBD-specific antibody titers. However, the yield of RBD219-N1 (60 mg RBD219-N1 per liter of fermentation supernatant; 60 mg/L FS) still required improvement to reach our target of >100 mg/L FS. In this study, we optimized the 10 L scale production process and increased the fermentation yield 6- to 7-fold to 400 mg/L FS with purification recovery >50%. A panel of characterization tests indicated that the process is reproducible and that the purified, tag-free RBD219-N1 protein has high purity and a well-defined structure and is therefore a suitable candidate for production under current Good Manufacturing Practice and future phase-1 clinical trials. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Comparative properties of feline coronaviruses in vitro.

    Science.gov (United States)

    McKeirnan, A J; Evermann, J F; Davis, E V; Ott, R L

    1987-04-01

    Two feline coronaviruses were characterized to determine their biological properties in vitro and their antigenic relatedness to a previously recognized feline infectious peritonitis virus and canine coronavirus. The viruses, designated WSU 79-1146 and WSU 79-1683, were shown to have comparable growth curves with the prototype feline infectious peritonitis virus. Treatment of the feline infectious peritonitis virus strains with 0.25% trypsin indicated that they were relatively resistant to proteolytic inactivation when compared with the feline enteric coronavirus strain. This observation may serve as a useful in vitro marker to distinguish closely related members of the feline coronavirus group. Plaque assay results indicated that the feline infectious peritonitis virus strains produced large homogeneous plaques in comparison to the feline enteric coronavirus strain and canine coronavirus, which showed a heterogenous plaque size distribution. No naturally temperature sensitive mutants were detected in either of the feline coronavirus populations. Both of the viruses were antigenically related to feline infectious peritonitis virus and to a lesser extent to canine coronavirus by virus neutralization.

  12. SARS Transmission among Hospital Workers in Hong Kong

    OpenAIRE

    Lau, Joseph T F; Fung, Kitty S.; Wong, Tze Wai; Kim, Jean H; Wong, Eric; Chung, Sydney; Ho, Deborah; Chan, Louis Y; Lui, S F; Cheng, Augustine

    2004-01-01

    Despite infection control measures, breakthrough transmission of severe acute respiratory syndrome (SARS) occurred for many hospital workers in Hong Kong. We conducted a case-control study of 72 hospital workers with SARS and 144 matched controls. Inconsistent use of goggles, gowns, gloves, and caps was associated with a higher risk for SARS infection (unadjusted odds ratio 2.42 to 20.54, p < 0.05). The likelihood of SARS infection was strongly associated with the amount of personal protectio...

  13. The Paradox of Feline Coronavirus Pathogenesis: A Review

    Directory of Open Access Journals (Sweden)

    Luciana Wanderley Myrrha

    2011-01-01

    Full Text Available Feline coronavirus (FCoV is an enveloped single-stranded RNA virus, of the family Coronaviridae and the order Nidovirales. FCoV is an important pathogen of wild and domestic cats and can cause a mild or apparently symptomless enteric infection, especially in kittens. FCoV is also associated with a lethal, systemic disease known as feline infectious peritonitis (FIP. Although the precise cause of FIP pathogenesis remains unclear, some hypotheses have been suggested. In this review we present results from different FCoV studies and attempt to elucidate existing theories on the pathogenesis of FCoV infection.

  14. The coronavirus transmissible gastroenteritis virus causes infection after receptor-mediated endocytosis and acid-dependent fusion with an intracellular compartment

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Delmas, B; Besnardeau, L;

    1998-01-01

    adsorption to the pAPN-MDCK cells. TGEV was also observed in endocytic pits and apical vesicles after 3 to 10 min of incubation at 38 degrees C. The number of pits and apical vesicles was increased by the TGEV incubation, indicating an increase in endocytosis. After 10 min of incubation, a distinct TGEV......-pAPN-containing population of large intracellular vesicles, morphologically compatible with endosomes, was found. A higher density of pAPN receptors was observed in the pits beneath the virus particles than in the surrounding plasma membrane, indicating that TGEV recruits pAPN receptors before endocytosis. Ammonium chloride...... and bafilomycin A1 markedly inhibited the TGEV infection as judged from virus production and protein biosynthesis analyses but did so only when added early in the course of the infection, i.e., about 1 h after the start of endocytosis. Together our results point to an acid intracellular compartment as the site...

  15. Structural Characterization of Human Coronavirus NL63 N Protein.

    Science.gov (United States)

    Szelazek, Bozena; Kabala, Wojciech; Kus, Krzysztof; Zdzalik, Michal; Twarda-Clapa, Aleksandra; Golik, Przemyslaw; Burmistrz, Michal; Florek, Dominik; Wladyka, Benedykt; Pyrc, Krzysztof; Dubin, Grzegorz

    2017-06-01

    Coronaviruses are responsible for upper and lower respiratory tract infections in humans. It is estimated that 1 to 10% of the population suffers annually from cold-like symptoms related to infection with human coronavirus NL63 (HCoV-NL63), an alphacoronavirus. The nucleocapsid (N) protein, the major structural component of the capsid, facilitates RNA packing, links the capsid to the envelope, and is also involved in multiple other processes, including viral replication and evasion of the immune system. Although the role of N protein in viral replication is relatively well described, no structural data are currently available regarding the N proteins of alphacoronaviruses. Moreover, our understanding of the mechanisms of RNA binding and nucleocapsid formation remains incomplete. In this study, we solved the crystal structures of the N- and C-terminal domains (NTD, residues 10 to 140, and CTD, residues 221 to 340, respectively) of the N protein of HCoV-NL63, both at a 1.5-Å resolution. Based on our structure of NTD solved here, we proposed and experimentally evaluated a model of RNA binding. The structure of the CTD reveals the mode of N protein dimerization. Overall, this study expands our understanding of the initial steps of N protein-nucleic acid interaction and may facilitate future efforts to control the associated infections.IMPORTANCE Coronaviruses are responsible for the common cold and other respiratory tract infections in humans. According to multiple studies, 1 to 10% of the population is infected each year with HCoV-NL63. Viruses are relatively simple organisms composed of a few proteins and the nucleic acids that carry the information determining their composition. The nucleocapsid (N) protein studied in this work protects the nucleic acid from the environmental factors during virus transmission. This study investigated the structural arrangement of N protein, explaining the first steps of its interaction with nucleic acid at the initial stages of

  16. Middle East respiratory syndrome coronavirus (MERS-CoV viral shedding in the respiratory tract: an observational analysis with infection control implications

    Directory of Open Access Journals (Sweden)

    Ziad A. Memish

    2014-12-01

    Conclusions: Contacts cleared MERS-CoV earlier than ill patients. This finding could be related to the types of sample as well as the types of patient studied. More ill patients with significant comorbidities shed the virus for a significantly longer time. The results of this study could have critical implications for infection control guidance and its application in healthcare facilities handling positive cases.

  17. Severe acute respiratory syndrome coronavirus protein 6 mediates ubiquitin-dependent proteosomal degradation of N-Myc(and STAT) interactor

    Institute of Scientific and Technical Information of China (English)

    Weijia; Cheng; Shiyou; Chen; Ruiling; Li; Yu; Chen; Min; Wang; Deyin; Guo

    2015-01-01

    Severe acute respiratory syndrome coronavirus(SARS-Co V) encodes eight accessory proteins, the functions of which are not yet fully understood. SARS-Co V protein 6(P6) is one of the previously studied accessory proteins that have been documented to enhance viral replication and suppress host interferon(IFN) signaling pathways. Through yeast two-hybrid screening, we identified eight potential cellular P6-interacting proteins from a human spleen c DNA library. For further investigation, we targeted the IFN signaling pathway-mediating protein, N-Myc(and STAT) interactor(Nmi). Its interaction with P6 was confirmed within cells. The results showed that P6 can promote the ubiquitin-dependent proteosomal degradation of Nmi. This study revealed a new mechanism of SARS-Co V P6 in limiting the IFN signaling to promote SARS-Co V survival in host cells.

  18. Evasion by stealth: inefficient immune activation underlies poor T cell response and severe disease in SARS-CoV-infected mice.

    Directory of Open Access Journals (Sweden)

    Jincun Zhao

    2009-10-01

    Full Text Available Severe Acute Respiratory Syndrome caused substantial morbidity and mortality during the 2002-2003 epidemic. Many of the features of the human disease are duplicated in BALB/c mice infected with a mouse-adapted version of the virus (MA15, which develop respiratory disease with high morbidity and mortality. Here, we show that severe disease is correlated with slow kinetics of virus clearance and delayed activation and transit of respiratory dendritic cells (rDC to the draining lymph nodes (DLN with a consequent deficient virus-specific T cell response. All of these defects are corrected when mice are treated with liposomes containing clodronate, which deplete alveolar macrophages (AM. Inhibitory AMs are believed to prevent the development of immune responses to environmental antigens and allergic responses by interacting with lung dendritic cells and T cells. The inhibitory effects of AM can also be nullified if mice or AMs are pretreated with poly I:C, which directly activate AMs and rDCs through toll-like receptors 3 (TLR3. Further, adoptive transfer of activated but not resting bone marrow-derived dendritic cells (BMDC protect mice from lethal MA15 infection. These results may be relevant for SARS in humans, which is also characterized by prolonged virus persistence and delayed development of a SARS-CoV-specific immune response in individuals with severe disease.

  19. Genotyping coronaviruses associated with feline infectious peritonitis.

    Science.gov (United States)

    Lewis, Catherine S; Porter, Emily; Matthews, David; Kipar, Anja; Tasker, Séverine; Helps, Christopher R; Siddell, Stuart G

    2015-06-01

    Feline coronavirus (FCoV) infections are endemic among cats worldwide. The majority of infections are asymptomatic or result in only mild enteric disease. However, approximately 5 % of cases develop feline infectious peritonitis (FIP), a systemic disease that is a frequent cause of death in young cats. In this study, we report the complete coding genome sequences of six FCoVs: three from faecal samples from healthy cats and three from tissue lesion samples from cats with confirmed FIP. The six samples were obtained over a period of 8 weeks at a single-site cat rescue and rehoming centre in the UK. We found amino acid differences located at 44 positions across an alignment of the six virus translatomes and, at 21 of these positions, the differences fully or partially discriminated between the genomes derived from the faecal samples and the genomes derived from the tissue lesion samples. In this study, two amino acid differences fully discriminated the two classes of genomes: these were both located in the S2 domain of the virus surface glycoprotein gene. We also identified deletions in the 3c protein ORF of genomes from two of the FIP samples. Our results support previous studies that implicate S protein mutations in the pathogenesis of FIP.

  20. Antibodies against MERS coronavirus in dromedaries, United Arab Emirates, 2003 and 2013

    NARCIS (Netherlands)

    Meyer, Benjamin; Müller, Marcel A.; Corman, Victor M.; Reusken, Chantal B E M; Ritz, Daniel; Godeke, Gert Jan; Lattwein, Erik; Kallies, Stephan; Siemens, Artem; van Beek, Janko; Drexler, Jan F.; Muth, Doreen; Bosch, Berend Jan; Wernery, Ulrich; Koopmans, Marion P G; Wernery, Renate; Drosten, Christian

    2014-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has caused an ongoing outbreak of severe acute respiratory tract infection in humans in the Arabian Peninsula since 2012. Dromedary camels have been implicated as possible viral reservoirs. We used serologic assays to analyze 651 dromedary came

  1. Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013

    NARCIS (Netherlands)

    Corman, Victor M.; Jores, Joerg; Meyer, Benjamin; Younan, Mario; Liljander, Anne; Said, Mohammed Y.; Gluecks, Ilona; Lattwein, Erik; Bosch, Berend Jan; Drexler, Jan Felix; Bornstein, Set; Drosten, Christian; Müller, Marcel A.

    2014-01-01

    Dromedary camels are a putative source for human infections with Middle East respiratory syndrome coronavirus. We showed that camels sampled in different regions in Kenya during 1992-2013 have antibodies against this virus. High densities of camel populations correlated with increased seropositivity

  2. Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation

    NARCIS (Netherlands)

    B.L. Haagmans (Bart); S.H.S. Al Dhahiry (Said); C.B.E.M. Reusken (Chantal); V.S. Raj (Stalin); M. Galiano (Monica); R.H. Myers (Richard); G-J. Godeke (Gert-Jan); M. Jonges (Marcel); E. Farag (Elmoubasher); A. Diab (Ayman); H. Ghobashy (Hazem); F. Alhajri (Farhoud); M. Al-Thani (Mohamed); S.A. Al-Marri (Salih); H.E. Al Romaihi (Hamad); A. Al Khal (Abdullatif); A. Bermingham (Alison); A.D.M.E. Osterhaus (Albert); M.M. AlHajri (Mohd); M.P.G. Koopmans D.V.M. (Marion)

    2014-01-01

    textabstractBackground: Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe lower respiratory tract infection in people. Previous studies suggested dromedary camels were a reservoir for this virus. We tested for the presence of MERS-CoV in dromedary camels from a farm in Qatar link

  3. Proteolytic Activation of the Porcine Epidemic Diarrhea Coronavirus Spike Fusion Protein by Trypsin in Cell Culture.

    NARCIS (Netherlands)

    Wicht, Oliver|info:eu-repo/dai/nl/32291177X; Li, Wentao; Willems, Lione; Meuleman, Tom J; Wubbolts, Richard W|info:eu-repo/dai/nl/181688255; van Kuppeveld, Frank J M|info:eu-repo/dai/nl/156614723; Rottier, Peter J M|info:eu-repo/dai/nl/068451954; Bosch, Berend Jan|info:eu-repo/dai/nl/273306049

    2014-01-01

    Isolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infec

  4. Activation of the chicken type I IFN response by infectious bronchitis coronavirus

    NARCIS (Netherlands)

    Kint, J.; Fernandez Gutierrez, M.M.; Maier, H.J.; Britton, P.; Langereis, M.A.; Koumans, J.; Wiegertjes, G.F.; Forlenza, M.

    2015-01-01

    Coronaviruses from both the Alpha and Betacoronavirus genera, interfere with the type I interferon (IFN) response in various ways, ensuring limited activation of the IFN response in most cell types. Of Gammacoronaviruses that mainly infect birds, little is known about activation of the host immune r

  5. Proteolytic Activation of the Porcine Epidemic Diarrhea Coronavirus Spike Fusion Protein by Trypsin in Cell Culture.

    NARCIS (Netherlands)

    Wicht, Oliver; Li, Wentao; Willems, Lione; Meuleman, Tom J; Wubbolts, Richard W; van Kuppeveld, Frank J M; Rottier, Peter J M; Bosch, Berend Jan

    2014-01-01

    Isolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infec

  6. ATP1A1-mediated Src signaling inhibits coronavirus entry into host cells

    NARCIS (Netherlands)

    C. Burkard (Christine); M.H. Verheije (Monique); B.L. Haagmans (Bart); F.J.M. van Kuppeveld (Frank ); P.J.M. Rottier (Peter); B.J. Bosch (Berend Jan); C.A.M. de Haan (Cornelis)

    2015-01-01

    textabstractIn addition to transporting ions, the multisubunit Na+,K+-ATPase also functions by relaying cardiotonic steroid (CTS)-binding- induced signals into cells. In this study, we analyzed the role of Na+,K+-ATPase and, in particular, of its ATP1A1 α subunit during coronavirus (CoV) infection.

  7. Cloaked similarity between HIV-1 and SARS-CoV suggests an anti-SARS strategy

    Directory of Open Access Journals (Sweden)

    Kliger Yossef

    2003-09-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS is a febrile respiratory illness. The disease has been etiologically linked to a novel coronavirus that has been named the SARS-associated coronavirus (SARS-CoV, whose genome was recently sequenced. Since it is a member of the Coronaviridae, its spike protein (S2 is believed to play a central role in viral entry by facilitating fusion between the viral and host cell membranes. The protein responsible for viral-induced membrane fusion of HIV-1 (gp41 differs in length, and has no sequence homology with S2. Results Sequence analysis reveals that the two viral proteins share the sequence motifs that construct their active conformation. These include (1 an N-terminal leucine/isoleucine zipper-like sequence, and (2 a C-terminal heptad repeat located upstream of (3 an aromatic residue-rich region juxtaposed to the (4 transmembrane segment. Conclusions This study points to a similar mode of action for the two viral proteins, suggesting that anti-viral strategy that targets the viral-induced membrane fusion step can be adopted from HIV-1 to SARS-CoV. Recently the FDA approved Enfuvirtide, a synthetic peptide corresponding to the C-terminal heptad repeat of HIV-1 gp41, as an anti-AIDS agent. Enfuvirtide and C34, another anti HIV-1 peptide, exert their inhibitory activity by binding to a leucine/isoleucine zipper-like sequence in gp41, thus inhibiting a conformational change of gp41 required for its activation. We suggest that peptides corresponding to the C-terminal heptad repeat of the S2 protein may serve as inhibitors for SARS-CoV entry.

  8. Spike protein homology between the SARS-associated virus and murine hepatitis virus implies existence of a putative receptor-binding region

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Coronavirus has been determined to be the cause of the recent outbreak of severe acute respiratory syndrome (SARS). Human coronavirus 229E had been studied well and its receptor-binding domain was restricted to aa417-547 of S protein. However, this region has no homology with the newly separated SARS-associated virus (Hong Kong isolate CUHK-W1). Then we analyzed the phylogenesis of S1 subunit of the coronavirus spike protein (SARS-associated virus, Hong Kong isolate CUHK-W1). Interestingly, the highest homology between murine hepatitis virus (MHV) and SARS-associated coronavirus was found. And the important sites (aa62-65 and aa214-216) on the spike protein of MHV with receptor-binding capacity were highly conservative in comparison with the newly separated SARS-asso- ciated virus (the corresponding sites are aa51-54 and aa195-197). These results from bioinformatics analysis might help us to study the receptor-binding sites of SARS-associ- ated virus and the mechanism of the virus entry into the target cell, and design antiviral drugs and potent vaccines.

  9. A rare cause of acute flaccid paralysis: Human coronaviruses

    Directory of Open Access Journals (Sweden)

    Cokyaman Turgay

    2015-01-01

    Full Text Available Acute flaccid paralysis (AFP is a life-threatening clinical entity characterized by weakness in the whole body muscles often accompanied by respiratory and bulbar paralysis. The most common cause is Gullian-Barre syndrome, but infections, spinal cord diseases, neuromuscular diseases such as myasthenia gravis, drugs and toxins, periodic hypokalemic paralysis, electrolyte disturbances, and botulism should be considered as in the differential diagnosis. Human coronaviruses (HCoVs cause common cold, upper and lower respiratory tract disease, but in the literature presentation with the lower respiratory tract infection and AFP has not been reported previously. In this study, pediatric case admitted with lower respiratory tract infection and AFP, who detected for HCoV 229E and OC43 co-infection by the real-time polymerase chain reaction, has been reported for the first time.

  10. Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA.

    Science.gov (United States)

    Tanaka, Tomohisa; Kamitani, Wataru; DeDiego, Marta L; Enjuanes, Luis; Matsuura, Yoshiharu

    2012-10-01

    Severe acute respiratory syndrome (SARS) coronavirus (SCoV) is an enveloped virus containing a single-stranded, positive-sense RNA genome. Nine mRNAs carrying a set of common 5' and 3' untranslated regions (UTR) are synthesized from the incoming viral genomic RNA in cells infected with SCoV. A nonstructural SCoV nsp1 protein causes a severe translational shutoff by binding to the 40S ribosomal subunits. The nsp1-40S ribosome complex further induces an endonucleolytic cleavage near the 5'UTR of host mRNA. However, the mechanism by which SCoV viral proteins are efficiently produced in infected cells in which host protein synthesis is impaired by nsp1 is unknown. In this study, we investigated the role of the viral UTRs in evasion of the nsp1-mediated shutoff. Luciferase activities were significantly suppressed in cells expressing nsp1 together with the mRNA carrying a luciferase gene, while nsp1 failed to suppress luciferase activities of the mRNA flanked by the 5'UTR of SCoV. An RNA-protein binding assay and RNA decay assay revealed that nsp1 bound to stem-loop 1 (SL1) in the 5'UTR of SCoV RNA and that the specific interaction with nsp1 stabilized the mRNA carrying SL1. Furthermore, experiments using an SCoV replicon system showed that the specific interaction enhanced the SCoV replication. The specific interaction of nsp1 with SL1 is an important strategy to facilitate efficient viral gene expression in infected cells, in which nsp1 suppresses host gene expression. Our data indicate a novel mechanism of viral gene expression control by nsp1 and give new insight into understanding the pathogenesis of SARS.

  11. Comparative properties of feline coronaviruses in vitro.

    OpenAIRE

    McKeirnan, A J; Evermann, J F; Davis, E. V.; Ott, R L

    1987-01-01

    Two feline coronaviruses were characterized to determine their biological properties in vitro and their antigenic relatedness to a previously recognized feline infectious peritonitis virus and canine coronavirus. The viruses, designated WSU 79-1146 and WSU 79-1683, were shown to have comparable growth curves with the prototype feline infectious peritonitis virus. Treatment of the feline infectious peritonitis virus strains with 0.25% trypsin indicated that they were relatively resistant to pr...

  12. Unraveling the Mysteries of Middle East Respiratory Syndrome Coronavirus

    Centers for Disease Control (CDC) Podcasts

    2014-03-11

    Dr. Aron Hall, a CDC coronavirus epidemiologist, discusses Middle East Respiratory Syndrome Coronavirus.  Created: 3/11/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 3/11/2014.

  13. Receptor-binding domain of SARS-Cov spike protein: Soluble expression in purification and functional characterization

    Institute of Scientific and Technical Information of China (English)

    Jing Chen; Lin Miao; Jia-Ming Li; Yan-Ying Li; Qing-Yu Zhu; Chang-Lin Zhou; Hong-Qing Fang; Hui-Peng Chen

    2005-01-01

    AIM: To find a soluble and functional recombinant receptor-binding domain of severe acute respiratory syndrome-associated coronavirus (SARS-Cov), and to analyze its receptor binding ability.METHODS: Three fusion tags (glutathione S-transferase,GST; thioredoxin, Trx; maltose-binding protein, MBP),which preferably contributes to increasing solubility and to facilitating the proper folding of heteroprotein, were used to acquire the soluble and functional expression of RBD protein in Escherichia coli( BL21( DE3 ) and Rosetta-gamiB(DE3) strains). The receptor binding ability of the purified soluble RBD protein was then detected by ELISA and flow cytometry assay.RESULTS: RBD of SARS-Cov spike protein was expressed as inclusion body when fused as TrxA tag form in both BL21 (DE3) and Rosetta-gamiB (DE3) under many different cultures and induction conditions. And there was no visible expression band on SDS-PAGE when RBD was expressed as MBP tagged form. Only GST tagged RBD was soluble expressed in BL21(DE3), and the protein was purified by AKTA Prime Chromatography system. The ELISA data anti-RBD mouse monoclonal antibody 1A5. Further flow cytometry assay demonstrated the high efficiency of RBD's binding ability to ACE2 (angiotensin-converting enzyme 2)positive Vero E6 cell. And ACE2 was proved as a cellular receptor that meditated an initial-affinity interaction with SARS-Cov spike protein. The geometrical mean of GST and respectively.CONCLUSION: In this paper, we get sufficient soluble N terminal GST tagged RBD protein expressed in E. coli BL21(DE3); data from ELISA and flow cytometry assay demonstrate that the recombinant protein is functional and binding to ACE2 positive Vero E6 cell efficiently. And the recombinant RBD derived from E. coli can be used to developing subunit vaccine to block S protein binding with receptor and to neutralizing SARS-Cov infection.

  14. Coronaviruses Hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication.

    Science.gov (United States)

    Reggiori, Fulvio; Monastyrska, Iryna; Verheije, Monique H; Calì, Tito; Ulasli, Mustafa; Bianchi, Siro; Bernasconi, Riccardo; de Haan, Cornelis A M; Molinari, Maurizio

    2010-06-25

    Coronaviruses (CoV), including SARS and mouse hepatitis virus (MHV), are enveloped RNA viruses that induce formation of double-membrane vesicles (DMVs) and target their replication and transcription complexes (RTCs) on the DMV-limiting membranes. The DMV biogenesis has been connected with the early secretory pathway. CoV-induced DMVs, however, lack conventional endoplasmic reticulum (ER) or Golgi protein markers, leaving their membrane origins in question. We show that MHV co-opts the host cell machinery for COPII-independent vesicular ER export of a short-living regulator of ER-associated degradation (ERAD), EDEM1, to derive cellular membranes for replication. MHV infection causes accumulation of EDEM1 and OS-9, another short-living ER chaperone, in the DMVs. DMVs are coated with the nonlipidated LC3/Atg8 autophagy marker. Downregulation of LC3, but not inactivation of host cell autophagy, protects cells from CoV infection. Our study identifies the host cellular pathway hijacked for supplying CoV replication membranes and describes an autophagy-independent role for nonlipidated LC3-I.

  15. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    OpenAIRE

    2011-01-01

    Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this ...

  16. Core Structure of S2 from the Human Coronavirus NL63 Spike Glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Zheng,Q.; Deng, Y.; Liu, J.; van der Hoek, L.; Berkhout, B.; Lu, M.

    2006-01-01

    Human coronavirus NL63 (HCoV-NL63) has recently been identified as a causative agent of acute respiratory tract illnesses in infants and young children. The HCoV-NL63 spike (S) protein mediates virion attachment to cells and subsequent fusion of the viral and cellular membranes. This viral entry process is a primary target for vaccine and drug development. HCoV-NL63 S is expressed as a single-chain glycoprotein and consists of an N-terminal receptor-binding domain (S1) and a C-terminal transmembrane fusion domain (S2). The latter contains two highly conserved heptad-repeat (HR) sequences that are each extended by 14 amino acids relative to those of the SARS coronavirus or the prototypic murine coronavirus, mouse hepatitis virus. Limited proteolysis studies of the HCoV-NL63 S2 fusion core identify an {alpha}-helical domain composed of a trimer of the HR segments N57 and C42. The crystal structure of this complex reveals three C42 helices entwined in an oblique and antiparallel manner around a central triple-stranded coiled coil formed by three N57 helices. The overall geometry comprises distinctive high-affinity conformations of interacting cross-sectional layers of the six helices. As a result, this structure is unusually stable, with an apparent melting temperature of 78 {sup o}C in the presence of the denaturant guanidine hydrochloride at 5 M concentration. The extended HR regions may therefore be required to prime the group 1 S glycoproteins for their fusion-activating conformational changes during viral entry. Our results provide an initial basis for understanding an intriguing interplay between the presence or absence of proteolytic maturation among the coronavirus groups and the membrane fusion activity of their S glycoproteins. This study also suggests a potential strategy for the development of improved HCoV-NL63 fusion inhibitors.

  17. Cross-Reaction of SARS-CoV Antigen with Autoantibodies in Autoimmune Diseases

    Institute of Scientific and Technical Information of China (English)

    YunshanWang; ShanhuiSun; HongShen; LihuaJiang; MaoxiuZhang; DongjieXiao; YangLiu; XiaoliMa; YongZhang; NongjianGuo; TanghongJia

    2004-01-01

    To investigate the significance of the SARS-associated coronavirus (SARS-CoV) antibody, detected by ELISA and indirect immunofluorescence assays (IFA) for the SARS-CoV Vero E6 cell lysates, in non-SARS subjects, 114 serum samples from healthy controls and 104 serum specimens from autoimmune disease patients were collected. The results of ELISA showed that among 114 sera from healthy controls, 4 (3.5%) were positive of SARS-CoV-IgG antibody and 114 (100%) were all negative of SARS-CoV-IgM antibody; the specificity of SARS-CoV-IgG antibody for SARS patients was 96.5%, but the specificity of both SARS-CoV-IgG and -IgM antibodies for SARS patients was 100%. In 58 cases with SLE, positive rates of SARS-CoV-IgG and -IgM antibodies were 32.8% (19/58) and 8.6% (5/58), respectively, in which 11 cases (19%) were positive of both SARS-CoV-IgG and -IgM antibodies; in 10 cases with SS, positive rate of both SARS-CoV-IgG and -IgM antibodies was 10% (1/10); in 16 cases with MCTD, positive rate of SARS-CoV-IgG was 37.5% (6/16), positive rate of both SARS-CoV-IgG and -IgM antibodies was 6.3% (1/16); in 20 cases with RA, one case was positive (5%) of SARS-CoV-IgC However, of all samples with positive SARS-CoV-IgG and -IgM antibodies for autoimmune diseases and healthy controls, SARS-CoV RNA and antibodies were all negative by RT-PCR and IFA. All sera for negative or positive ELISA results were also negative or positive results using ELISA with Vero E6 cells lysates. These studies showed that SARS-CoV Vero E6 cell lysates for the ELISA to detect SARS-CoV antibodies could lead to the false-positive reactions or cross-reactions of SARS-CoV antibodies in non-SARS diseases and healthy controls, and the false-positive reactions or cross-reactions were related to Vero E6 cell lysates and autoantibodies in non-SARS population. Cellular & Molecular Immunology.

  18. Cross-Reaction of SARS-CoV Antigen with Autoantibodies in Autoimmune Diseases

    Institute of Scientific and Technical Information of China (English)

    Yunshan Wang; Nongjian Guo; Tanghong Jia; Shanhui Sun; Hong Shen; Lihua Jiang; Maoxiu Zhang; Dongjie Xiao; Yang Liu; Xiaoli Ma; Yong Zhang

    2004-01-01

    To investigate the significance of the SARS-associated coronavirus (SARS-CoV) antibody, detected by ELISA and indirect immunofluorescence assays (IFA) for the SARS-CoV Vero E6 cell lysates, in non-SARS subjects,114 serum samples from healthy controls and 104 serum specimens from autoimmune disease patients were collected. The results of ELISA showed that among 114 sera from healthy controls, 4 (3.5 %) were positive of SARS-CoV-IgG antibody and 114 (100%) were all negative of SARS-CoV-IgM antibody; the specificity of SARS-CoV-IgG antibody for SARS patients was 96.5%, but the specificity of both SARS-CoV-IgG and -IgM antibodies for SARS patients was 100%. In 58 cases with SLE, positive rates of SARS-CoV-IgG and -IgM antibodies were 32.8% (19/58) and 8.6% (5/58), respectively, in which 11 cases (19%) were positive of both SARS-CoV-IgG and -IgM antibodies; in 10 cases with SS, positive rate of both SARS-CoV-IgG and -IgM antibodies was 10% (1/10); in 16 cases with MCTD, positive rate of SARS-CoV-IgG was 37.5% (6/16), positive rate of both SARS-CoV-IgG and -IgM antibodies was 6.3% (1/16); in 20 cases with RA, one case was positive (5%) of SARS-CoV-IgG. However, of all samples with positive SARS-CoV-IgG and -IgM antibodies for autoimmune diseases and healthy controls, SARS-CoV RNA and antibodies were all negative by RT-PCR and IFA. All sera for negative or positive ELISA results were also negative or positive results using ELISA with Vero E6 cells lysates. These studies showed that SARS-CoV Vero E6 cell lysates for the ELISA to detect SARS-CoV antibodies could lead to the false-positive reactions or cross-reactions of SARS-CoV antibodies in non-SARS diseases and healthy controls, and the false-positive reactions or cross-reactions were related to Vero E6 cell lysates and autoantibodies in non-SARS population.

  19. Bird flu: lessons from SARS.

    Science.gov (United States)

    Wong, Gary W K; Leung, Ting F

    2007-06-01

    Severe acute respiratory syndrome (SARS) and avian influenza are two important newly emerged infections with pandemic potential. Both infections have crossed the species barrier to infect humans. SARS originated from southern China and spread to many countries in early 2003. The close collaboration of scientists around the world resulted in a rapid identification of the causative agent, and the early isolation of infected cases and meticulous infection control measures were the key to successfully controlling the outbreak of SARS. The first outbreak of human cases of avian influenza was reported in 1997 in Hong Kong. Since 2003, there have been many small outbreaks of human cases around the world, and the reported mortality is greater than 50%. Current evidence suggests that the human-to-human transmission of avian influenza is rather inefficient, but mutation might occur in the future resulting in improved transmission and possibly a pandemic in humans. As with the outbreak of SARS, the development of sensitive and accurate early diagnostic tests is extremely important for successful control of the outbreak at source. The availability of isolation facilities, the stockpiling of antiviral agents and effective and safe vaccination will be extremely important in minimising the damage of a new influenza pandemic.

  20. Canine Enteric Coronaviruses: Emerging Viral Pathogens with Distinct Recombinant Spike Proteins

    Directory of Open Access Journals (Sweden)

    Beth N. Licitra

    2014-08-01

    Full Text Available Canine enteric coronavirus (CCoV is an alphacoronavirus infecting dogs that is closely related to enteric coronaviruses of cats and pigs. While CCoV has traditionally caused mild gastro-intestinal clinical signs, there are increasing reports of lethal CCoV infections in dogs, with evidence of both gastrointestinal and systemic viral dissemination. Consequently, CCoV is now considered to be an emerging infectious disease of dogs. In addition to the two known serotypes of CCoV, novel recombinant variants of CCoV have been found containing spike protein N-terminal domains (NTDs that are closely related to those of feline and porcine strains. The increase in disease severity in dogs and the emergence of novel CCoVs can be attributed to the high level of recombination within the spike gene that can occur during infection by more than one CCoV type in the same host.

  1. Humoral immune responses in rabbits induced by an experimental inactivated severe acute respiratory syndrome coronavirus vaccine prepared from F69 strain

    Institute of Scientific and Technical Information of China (English)

    张传海; 郭中敏; 郑焕英; 陆家海; 王一飞; 鄢心革; 赵勇; 杜雄威; 张欣; 方苓; 凌文华; 戚树源; 余新炳; 钟南山

    2004-01-01

    Background The etiologic agent of severe acute respiratory syndrome (SARS) has been confirmed to be a novel coronavirus (CoV), namely SARS-CoV. Developing safe and effective SARS-CoV vaccines is essential for us to prevent the possible reemergence of its epidemic. Previous experiences indicate that inactivated vaccine is conventional and more hopeful to be successfully developed. Immunogenicity evaluation of an experimental inactivated SARS-CoV vaccine in rabbits was conducted and reported in this paper.Methods The large-scale cultured SARS-CoV F69 strain was inactivated with 0.4% formaldehyde and purified, then used as the immunogen combined with Freund's adjuvant. Eight adult New Zealand rabbits were immunized four times with this experimental inactivated vaccine. Twelve sets of rabbit serum were sampled from the third day to the seventy-fourth day after the first vaccination. The titers of specific anti-SARS-CoV IgG antibody were determined by indirect enzyme-linked immunosorbent assay, and the neutralizing antibody titers were detected with micro-cytopathic effect neutralization test.Conclusions The inactivated SARS-CoV vaccine made from F69 strain owns strong immunogenicity, and the cross neutralization response between the two different SARS-CoV strains gives a hint of the similar neutralizing epitopes, which provide stable bases for the development of inactivated SARS-CoV vaccines.

  2. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro.

    Science.gov (United States)

    Chen, Lili; Gui, Chunshan; Luo, Xiaomin; Yang, Qingang; Günther, Stephan; Scandella, Elke; Drosten, Christian; Bai, Donglu; He, Xichang; Ludewig, Burkhard; Chen, Jing; Luo, Haibin; Yang, Yiming; Yang, Yifu; Zou, Jianping; Thiel, Volker; Chen, Kaixian; Shen, Jianhua; Shen, Xu; Jiang, Hualiang

    2005-06-01

    The 3C-like proteinase (3CLpro) of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is one of the most promising targets for anti-SARS-CoV drugs due to its crucial role in the viral life cycle. In this study, a database containing structural information of more than 8,000 existing drugs was virtually screened by a docking approach to identify potential binding molecules of SARS-CoV 3CLpro. As a target for screening, both a homology model and the crystallographic structure of the binding pocket of the enzyme were used. Cinanserin (SQ 10,643), a well-characterized serotonin antagonist that has undergone preliminary clinical testing in humans in the 1960s, showed a high score in the screening and was chosen for further experimental evaluation. Binding of both cinanserin and its hydrochloride to bacterially expressed 3CLpro of SARS-CoV and the related human coronavirus 229E (HCoV-229E) was demonstrated by surface plasmon resonance technology. The catalytic activity of both enzymes was inhibited with 50% inhibitory concentration (IC50) values of 5 microM, as tested with a fluorogenic substrate. The antiviral activity of cinanserin was further evaluated in tissue culture assays, namely, a replicon system based on HCoV-229E and quantitative test assays with infectious SARS-CoV and HCoV-229E. All assays revealed a strong inhibition of coronavirus replication at nontoxic drug concentrations. The level of virus RNA and infectious particles was reduced by up to 4 log units, with IC50 values ranging from 19 to 34 microM. These findings demonstrate that the old drug cinanserin is an inhibitor of SARS-CoV replication, acting most likely via inhibition of the 3CL proteinase.

  3. Clinical characteristics of human coronavirus in children with acute lower respiratory tract infection%人冠状病毒在急性下呼吸道感染儿童中的临床特征

    Institute of Scientific and Technical Information of China (English)

    刘军; 谢正德; 徐保平; 钱素云; 杨燕; 申昆玲

    2016-01-01

    Objective To describe the clinical characteristics of acute lower respiratory tract infection (ALRTI)caused by human coronavirus (HCoV)in children.Methods Three thousand five hundred and three hospi-talized children diagnosed with ALRTI in Beijing Children′s Hospital from March 2007 to February 201 3 were re-viewed.Nasopharyngeal aspirate(NPA)specimen was collected from each patient.Reverse transcription (RT)-poly-merase chain reaction(PCR)methods were applied to detect common respiratory viruses including respiratory syncytial virus (RSV),rhinovirus (RV),parainfluenza virus (PIV)type 1 -4,influenza virus type A and B (IFA,IFB),adeno-virus (AdV),enterovirus (EV),HCoV,human metapneumovirus (hMPV)and human bocavirus (HBoV).Serum anti-bodies of mycoplasma and sputum bacterial culture were also detected.Only HCoV positive patients were analyzed in this study.Results Eleven of 3 503 patients were proved as HCoV -positive in NPA specimens.Of the 1 1 children,8 cases were male and 3 cases were female (2.71 .0).The median age was 3 months.The clinical symptoms of HCoV infection included cough (1 1 /1 1 cases,1 00.0%),wheezing (1 0 /1 1 cases,90.9%),fever (6 /1 1 cases,54.5%)and poor appetite (7 /1 1 cases,63.6%).Wheezing (8 /1 1 cases,72.7%)and moist rale in inspiratory phase (5 /1 1 ca-ses,45.4%)could be heard.Most patient′s chest X -ray showed bronchopneumonia.Full blood count displayed that leukocyte was in the normal range.Conclusions Respiratory tract infection with HCoV -positive will be easier to spread to ALRTI,especially in infants less than 1 year old.The symptoms include fever,cough and wheezing,but poor appetite and diarrhea can also be detected.%目的:了解急性下呼吸道感染住院患儿人冠状病毒(HCoV)感染的临床表现。方法回顾性分析2007年3月至2013年2月在北京儿童医院因下呼吸道感染住院的患儿3503例,患儿在住院当日或次日采集鼻咽吸取物1份,采用反转录(RT)-PCR 方法进行

  4. Coronavirus envelope (E) protein remains at the site of assembly

    Energy Technology Data Exchange (ETDEWEB)

    Venkatagopalan, Pavithra [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States); Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287-5401 (United States); Daskalova, Sasha M. [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); Department of Biochemistry and Chemistry, Arizona State University, Tempe, AZ 85287-5401 (United States); Lopez, Lisa A. [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States); Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85287-5401 (United States); Dolezal, Kelly A. [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States); Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287-5401 (United States); Hogue, Brenda G., E-mail: Brenda.Hogue@asu.edu [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States)

    2015-04-15

    Coronaviruses (CoVs) assemble at endoplasmic reticulum Golgi intermediate compartment (ERGIC) membranes and egress from cells in cargo vesicles. Only a few molecules of the envelope (E) protein are assembled into virions. The role of E in morphogenesis is not fully understood. The cellular localization and dynamics of mouse hepatitis CoV A59 (MHV) E protein were investigated to further understanding of its role during infection. E protein localized in the ERGIC and Golgi with the amino and carboxy termini in the lumen and cytoplasm, respectively. E protein does not traffic to the cell surface. MHV was genetically engineered with a tetracysteine tag at the carboxy end of E. Fluorescence recovery after photobleaching (FRAP) showed that E is mobile in ERGIC/Golgi membranes. Correlative light electron microscopy (CLEM) confirmed the presence of E in Golgi cisternae. The results provide strong support that E proteins carry out their function(s) at the site of budding/assembly. - Highlights: • Mouse hepatitis coronavirus (MHV-CoV) E protein localizes in the ERGIC and Golgi. • MHV-CoV E does not transport to the cell surface. • MHV-CoV can be genetically engineered with a tetracysteine tag appended to E. • First FRAP and correlative light electron microscopy of a CoV E protein. • Live-cell imaging shows that E is mobile in ERGIC/Golgi membranes.

  5. Genome Organization of the SARS-CoV

    Institute of Scientific and Technical Information of China (English)

    Jing Xu; Zizhang Zhang; Wei Wei; Songgang Li; Jun Wang; Jian Wang; Jun Yu; Huanming Yang; Jianfei Hu; Jing Wang; Yujun Han; Yongwu Hu; Jie Wen; Yan Li; Jia Ji; Jia Ye

    2003-01-01

    Annotation of the genome sequence of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) is indispensable to understand its evolution and pathogenesis. We have performed a full annotation of the SARS-CoV genome sequences by using annotation programs publicly available or developed by ourselves.Totally, 21 open reading frames (ORFs) of genes or putative uncharacterized proteins (PUPs) were predicted. Seven PUPs had not been reported previously, and two of them were predicted to contain transmembrane regions. Eight ORFs partially overlapped with or embedded into those of known genes, revealing that the SARS-CoV genome is a small and compact one with overlapped coding regions.The most striking discovery is that an ORF locates on the minus strand. We have also annotated non-coding regions and identified the transcription regulating sequences (TRS) in the intergenic regions. The analysis of TRS supports the minus strand extending transcription mechanism of coronavirus. The SNP analysis of different isolates reveals that mutations of the sequences do not affect the prediction results of ORFs.

  6. Terrain Measurement with SAR/InSAR

    Science.gov (United States)

    Li, Deren; Liao, Mingsheng; Balz, Timo; Zhang, Lu; Yang, Tianliang

    2016-08-01

    Terrain measurement and surface motion estimation are the most important applications for commercial and scientific SAR missions. In Dragon-3, we worked on these applications, especially regarding DEM generation, surface motion estimation with SAR time- series for urban subsidence monitoring and landslide motion estimation, as well as developing tomographic SAR processing methods in urban areas.

  7. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication.

    Directory of Open Access Journals (Sweden)

    Ji'an Pan

    Full Text Available Analyses of viral protein-protein interactions are an important step to understand viral protein functions and their underlying molecular mechanisms. In this study, we adopted a mammalian two-hybrid system to screen the genome-wide intraviral protein-protein interactions of SARS coronavirus (SARS-CoV and therefrom revealed a number of novel interactions which could be partly confirmed by in vitro biochemical assays. Three pairs of the interactions identified were detected in both directions: non-structural protein (nsp 10 and nsp14, nsp10 and nsp16, and nsp7 and nsp8. The interactions between the multifunctional nsp10 and nsp14 or nsp16, which are the unique proteins found in the members of Nidovirales with large RNA genomes including coronaviruses and toroviruses, may have important implication for the mechanisms of replication/transcription complex assembly and functions of these viruses. Using a SARS-CoV replicon expressing a luciferase reporter under the control of a transcription regulating sequence, it has been shown that several viral proteins (N, X and SUD domains of nsp3, and nsp12 provided in trans stimulated the replicon reporter activity, indicating that these proteins may regulate coronavirus replication and transcription. Collectively, our findings provide a basis and platform for further characterization of the functions and mechanisms of coronavirus proteins.

  8. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis.

    Directory of Open Access Journals (Sweden)

    Marta L DeDiego

    2011-10-01

    Full Text Available Severe acute respiratory syndrome virus (SARS-CoV that lacks the envelope (E gene (rSARS-CoV-ΔE is attenuated in vivo. To identify factors that contribute to rSARS-CoV-ΔE attenuation, gene expression in cells infected by SARS-CoV with or without E gene was compared. Twenty-five stress response genes were preferentially upregulated during infection in the absence of the E gene. In addition, genes involved in signal transduction, transcription, cell metabolism, immunoregulation, inflammation, apoptosis and cell cycle and differentiation were differentially regulated in cells infected with rSARS-CoV with or without the E gene. Administration of E protein in trans reduced the stress response in cells infected with rSARS-CoV-ΔE or with respiratory syncytial virus, or treated with drugs, such as tunicamycin and thapsigargin that elicit cell stress by different mechanisms. In addition, SARS-CoV E protein down-regulated the signaling pathway inositol-requiring enzyme 1 (IRE-1 of the unfolded protein response, but not the PKR-like ER kinase (PERK or activating transcription factor 6 (ATF-6 pathways, and reduced cell apoptosis. Overall, the activation of the IRE-1 pathway was not able to restore cell homeostasis, and apoptosis was induced probably as a measure to protect the host by limiting virus production and dissemination. The expression of proinflammatory cytokines was reduced in rSARS-CoV-ΔE-infected cells compared to rSARS-CoV-infected cells, suggesting that the increase in stress responses and the reduction of inflammation in the absence of the E gene contributed to the attenuation of rSARS-CoV-ΔE.

  9. The E Protein Is a Multifunctional Membrane Protein of SARS-CoV

    Institute of Scientific and Technical Information of China (English)

    Qingfa Wu; Jia Ji; Jing Xu; Jia Ye; Yongwu Hu; Wenjun Chen; Songgang Li; Jun Wang; Jian Wang; Shengli Bi; Huanming Yang; Yilin Zhang; Hong Lü; Jing Wang; Ximiao He; Yong Liu; Chen Ye; Wei Lin; Jianfei Hu

    2003-01-01

    The E (envelope) protein is the smallest structural protein in all coronaviruses andis the only viral structural protein in which no variation has been detected. Weconducted genome sequencing and phylogenetic analyses of SARS-CoV. Based ongenome sequencing, we predicted the E protein is a transmembrane (TM) pro-tein characterized by a TM region with strong hydrophobicity and α-helix con-formation. We identified a segment (NH2-_L-Cys-A-Y-Cys-Cys-N_-COOH) in thecarboxyl-terminal region of the E protein that appears to form three disulfide bondswith another segment of corresponding cysteines in the carboxyl-terminus of the S(spike) protein. These bonds point to a possible structural association between theE and S proteins. Our phylogenetic analyses of the E protein sequences in all pub-lished coronaviruses place SARS-CoV in an independent group in Coronaviridaeand suggest a non-human animal origin.

  10. Severe acute respiratory syndrome: 'SARS' or 'not SARS'.

    Science.gov (United States)

    Li, A M; Hon, K L E; Cheng, W T; Ng, P C; Chan, F Y; Li, C K; Leung, T F; Fok, T F

    2004-01-01

    Accurate clinical diagnosis of severe acute respiratory syndrome (SARS) based on the current World Health Organization definition is difficult and at times impossible at the early stage of the disease. Both false positive and false negative cases are commonly encountered and this could have far-reaching detrimental effects on the patients, their family and the clinicians alike. Contact history is particularly important in diagnosing SARS in children as their presenting features are often non-specific. The difficulty in making a correct diagnosis is further compounded by the lack of a sensitive rapid diagnostic test. Serology is not particularly helpful in the initial triaging of patients as it takes at least 3 weeks to become positive. Co-infection and other treatable conditions should not be missed and conventional antibiotics should remain as part of the first-line treatment regimen. We report five cases to illustrate the difficulties and dilemmas faced by clinicians in diagnosing SARS in children.

  11. Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia : a nationwide, cross-sectional, serological study

    NARCIS (Netherlands)

    Müller, Marcel A; Meyer, Benjamin; Corman, Victor M; Al-Masri, Malak; Turkestani, Abdulhafeez; Ritz, Daniel; Sieberg, Andrea; Aldabbagh, Souhaib; Bosch, Berend-J; Lattwein, Erik; Alhakeem, Raafat F; Assiri, Abdullah M; Albarrak, Ali M; Al-Shangiti, Ali M; Al-Tawfiq, Jaffar A; Wikramaratna, Paul; Alrabeeah, Abdullah A; Drosten, Christian; Memish, Ziad A

    2015-01-01

    BACKGROUND: Scientific evidence suggests that dromedary camels are the intermediary host for the Middle East respiratory syndrome coronavirus (MERS-CoV). However, the actual number of infections in people who have had contact with camels is unknown and most index patients cannot recall any such cont

  12. Infectious bronchitis coronavirus limits interferon production by inducing a host shutoff that requires accessory protein 5b

    NARCIS (Netherlands)

    Kint, Joeri; Langereis, Martijn A.; Maier, Helena J.; Britton, Paul; Kuppeveld, van Frank J.; Koumans, Joseph; Wiegertjes, Geert F.; Forlenza, Maria

    2016-01-01

    During infection of their host cells, viruses often inhibit the production of host proteins, a process that is referred to as host shutoff. By doing this, viruses limit the production of antiviral proteins and increase production capacity for viral proteins. Coronaviruses from the genera Alphacor

  13. Lactogenic immunity in transgenic mice producing recombinant antibodies neutralizing coronavirus.

    Science.gov (United States)

    Castilla, J; Sola, I; Pintado, B; Sánchez-Morgado, J M; Enjuanes, L

    1998-01-01

    Protection against coronavirus infections can be provided by the oral administration of virus neutralizing antibodies. To provide lactogenic immunity, eighteen lines of transgenic mice secreting a recombinant IgG1 monoclonal antibody (rIgG1) and ten lines of transgenic mice secreting recombinant IgA monoclonal antibodies (rIgA) neutralizing transmissible gastroenteritis coronavirus (TGEV) into the milk were generated. Genes encoding the light and heavy chains of monoclonal antibody (MAb) 6A.C3 were expressed under the control of regulatory sequences derived from the mouse genomic DNA encoding the whey acidic protein (WAP) and beta-lactoglobulin (BLG), which are highly abundant milk proteins. The MAb 6A.C3 binds to a highly conserved epitope present in coronaviruses of several species. This MAb does not allow the selection of neutralization escaping virus mutants. The antibody was expressed in the milk of transgenic mice with titers of one million as determined by RIA, and neutralized TGEV infectivity by one million fold corresponding to immunoglobulin concentrations of 5 to 6 mg per ml. Matrix attachment regions (MAR) sequences were not essential for rIgG1 transgene expression, but co-microinjection of MAR and antibody genes led to a twenty to ten thousand-fold increase in the antibody titer in 50% of the rIgG1 transgenic animals generated. Co-microinjection of the genomic BLG gene with rIgA light and heavy chain genes led to the generation of transgenic mice carrying the three transgenes. The highest antibody titers were produced by transgenic mice that had integrated the antibody and BLG genes, although the number of transgenic animals generated does not allow a definitive conclusion on the enhancing effect of BLG co-integration. Antibody expression levels were transgene copy number independent and integration site dependent. The generation of transgenic animals producing virus neutralizing antibodies in the milk could be a general approach to provide protection

  14. Prevalence of rotavirus (GARV) and coronavirus (BCoV) associated with neonatal diarrhea in calves in western Algeria

    Institute of Scientific and Technical Information of China (English)

    Selles Sidi Mohammed Ammar; Kouidri Mokhtaria; Belhamiti Belkacem Tahar; Ait Amrane Amar; Benia Ahmed Redha; Bellik Yuva; Hammoudi Si Mohamed; Niar Abdellatif; Boukra Laid

    2014-01-01

    Objective: To study the prevalence of bovine group A rotavirus (GARV) and bovine coronavirus (BCoV) in diarrheic feces from calves and the sensitive’s parameters such as age group and sex.Methods:Feces samples from 82 diarrheic dairy calves from farms around Tiaret (Western Algeria) were collected. These samples were tested by ELISA assay.Results:The present study demonstrates that the both BCoV and GARV are involved in the (12.2% alone and 2.43% associated with bovine coronavirus) and 20.73% (18.3% alone and 2.43%associated with GARV), respectively.Conclusions:The results showed that the prevalence of rotavirus and coronavirus infection are 14.63%neonatal calves’ diarrhea, where the frequency of BCoV is clearly higher than that of GARV.

  15. Prevalence of rotavirus (GARV) and coronavirus (BCoV) associated with neonatal diarrhea in calves in western Algeria

    Science.gov (United States)

    Ammar, Selles Sidi Mohammed; Mokhtaria, Kouidri; Tahar, Belhamiti Belkacem; Amar, Ait Amrane; Redha, Benia Ahmed; Yuva, Bellik; Mohamed, Hammoudi Si; Abdellatif, Niar; Laid, Boukrâa

    2014-01-01

    Objective To study the prevalence of bovine group A rotavirus (GARV) and bovine coronavirus (BCoV) in diarrheic feces from calves and the sensitive's parameters such as age group and sex. Methods Feces samples from 82 diarrheic dairy calves from farms around Tiaret (Western Algeria) were collected. These samples were tested by ELISA assay. Results The results showed that the prevalence of rotavirus and coronavirus infection are 14.63% (12.2% alone and 2.43% associated with bovine coronavirus) and 20.73% (18.3% alone and 2.43% associated with GARV), respectively. Conclusions The present study demonstrates that the both BCoV and GARV are involved in the neonatal calves' diarrhea, where the frequency of BCoV is clearly higher than that of GARV. PMID:25183104

  16. DNA Vaccine of SARS-Cov S Gene Induces Antibody Response in Mice

    Institute of Scientific and Technical Information of China (English)

    PingZHAO; Jin-ShanKE; Zhao-LinQIN; HaoREN; Lan-JuanZHAO; Jian-GuoYU

    2004-01-01

    The spike (S) protein, a main surface antigen of SARS-coronavirus (SARS-CoV), is one of the most important antigen candidates for vaccine design. In the present study, three fragments of the truncated S protein were expressed in E.coli, and analyzed with pooled sera of convalescence phase of SARS patients.The full length S gene DNA vaccine was constructed and used to immunize BALB/c mice. The mouse serum IgG antibody against SARS-CoV was measured by ELISA with E.coli expressed truncated S protein or SARS-CoV lysate as diagnostic antigen. The results showed that all the three fragments of S protein expressed by E.coli was able to react with sera of SARS patients and the S gene DNA candidate vaccine could induce the production of specific IgG antibody against SARS-CoV efficiently in mice with seroconversion ratio of 75% after 3 times of immunization. These findings lay some foundations for further understanding the immunology of SARS-CoV and developing SARS vaccines.

  17. DNA Vaccine of SARS-Cov S Gene Induces Antibody Response in Mice

    Institute of Scientific and Technical Information of China (English)

    Ping ZHAO; Jin-Shan KE; Zhao-Lin QIN; Hao REN; Lan-Juan ZHAO; Jian-Guo YU; Jun GAO; Shi-Ying ZHU; Zhong-Tian QI

    2004-01-01

    The spike (S) protein, a main surface antigen of SARS-coronavirus (SARS-CoV), is one of the most important antigen candidates for vaccine design. In the present study, three fragments of the truncated S protein were expressed in E. Coli, and analyzed with pooled sera of convalescence phase of SARS patients.The full length S gene DNA vaccine was constructed and used to immunize BALB/c mice. The mouse serum IgG antibody against SARS-CoV was measured by ELISA with E. Coli expressed truncated S protein or SARS-CoV lysate as diagnostic antigen. The results showed that all the three fragments of S protein expressed by E. Coli was able to react with sera of SARS patients and the S gene DNA candidate vaccine could induce the production of specific IgG antibody against SARS-CoV efficiently in mice with seroconversion ratio of 75% after 3 times of immunization. These findings lay some foundations for further understanding the immunology of SARS-CoV and developing SARS vaccines.

  18. Impact of the regulatory loci agr, sarA and sae of Staphylococcus aureus on the induction of alpha-toxin during device-related infection resolved by direct quantitative transcript analysis.

    Science.gov (United States)

    Goerke, C; Fluckiger, U; Steinhuber, A; Zimmerli, W; Wolz, C

    2001-06-01

    The cytotoxic alpha-toxin (encoded by hla) of Staphylococcus aureus is regulated by three loci, agr, sarA and sae, in vitro. Here, we assess the regulation of hla in a guinea pig model of device-related infection by quantifying RNAIII (the effector molecule of agr) and hla directly in exudates accumulating in infected devices without subculturing of the bacteria. LightCycler reverse transcription-polymerase chain reaction (RT-PCR) was used to quantify the transcripts. Strains RN6390 and Newman expressed considerably smaller amounts of RNAIII in the guinea pig than during in vitro growth. The residual RNAIII expression decreased during the course of infection and was negatively correlated with bacterial densities. As with RNAIII, the highest hla expression was detected in both strains early in infection. Even in strain Newman, a weak hla producer in vitro, a pronounced expression of hla was observed during infection. Likewise, four S. aureus isolates from cystic fibrosis (CF) patients expressed Q1hla despite an inactive agr during device-related infection as in the CF lung. Mutation of agr and sarA in strain Newman and RN6390 had no consequence for hla expression in vivo. In contrast, the mutation in sae resulted in severe downregulation of hla in vitro as well as in vivo. In conclusion, S. aureus seems to be provided with regulatory circuits different from those characterized in vitro to ensure alpha-toxin synthesis during infections.

  19. Middle East Respiratory Syndrome Coronavirus during Pregnancy, Abu Dhabi, United Arab Emirates, 2013.

    Science.gov (United States)

    Malik, Asim; El Masry, Karim Medhat; Ravi, Mini; Sayed, Falak

    2016-03-01

    As of June 19, 2015, the World Health Organization had received 1,338 notifications of laboratory-confirmed infection with Middle East respiratory syndrome coronavirus (MERS-CoV). Little is known about the course of or treatment for MERS-CoV in pregnant women. We report a fatal case of MERS-CoV in a pregnant woman administered combination ribavirin-peginterferon-α therapy.

  20. MERS-coronavirus: From discovery to intervention

    NARCIS (Netherlands)

    W. Widagdo; N. Okba (Nisreen); V. Stalin Raj; B.L. Haagmans (Bart)

    2017-01-01

    textabstractMiddle East respiratory syndrome coronavirus (MERS-CoV) still causes outbreaks despite public awareness and implementation of health care measures, such as rapid viral diagnosis and patient quarantine. Here we describe the current epidemiological picture of MERS-CoV, focusing on humans a

  1. Canine coronaviruses: Epidemiology, evolution and pathobiology

    NARCIS (Netherlands)

    Decaro, N.

    2009-01-01

    Coronaviruses (CoVs; order Nidovirales, family Coronaviridae) are viruses exceptionally prone to genetic evolution through the continual accumulation of mutations and by homologous recombination between related members. CoVs are organised into three antigenic groups of which group 1 is subdivided in

  2. The nucleocapsid proteins of mouse hepatitis virus and severe acute respiratory syndrome coronavirus share the same IFN-β antagonizing mechanism: attenuation of PACT-mediated RIG-I/ MDA5 activation.

    Science.gov (United States)

    Ding, Zhen; Fang, Liurong; Yuan, Shuangling; Zhao, Ling; Wang, Xunlei; Long, Siwen; Wang, Mohan; Wang, Dang; Foda, Mohamed Frahat; Xiao, Shaobo

    2017-07-25

    Coronaviruses (CoVs) are a huge threat to both humans and animals and have evolved elaborate mechanisms to antagonize interferons (IFNs). Nucleocapsid (N) protein is the most abundant viral protein in CoV-infected cells, and has been identified as an innate immunity antagonist in several CoVs, including mouse hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV. However, the underlying molecular mechanism(s) remain unclear. In this study, we found that MHV N protein inhibited Sendai virus and poly(I:C)-induced IFN-β production by targeting a molecule upstream of retinoic acid-induced gene I (RIG-I) and melanoma differentiation gene 5 (MDA5). Further studies showed that both MHV and SARS-CoV N proteins directly interacted with protein activator of protein kinase R (PACT), a cellular dsRNA-binding protein that can bind to RIG-I and MDA5 to activate IFN production. The N-PACT interaction sequestered the association of PACT and RIG-I/MDA5, which in turn inhibited IFN-β production. However, the N proteins from porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV), which are also classified in the order Nidovirales, did not interact and counteract with PACT. Taken together, our present study confirms that both MHV and SARS-CoV N proteins can perturb the function of cellular PACT to circumvent the innate antiviral response. However, this strategy does not appear to be used by all CoVs N proteins.

  3. 中东呼吸综合征冠状病毒(M ERS-CoV)的研究进展%Research progress of Middle East Respiratory Syndrome-Coronavirus (MERS-CoV)

    Institute of Scientific and Technical Information of China (English)

    阮红梅; 张健之

    2014-01-01

    Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) is a novel coronavirus which can cause severe acute respiratory illness with a high mortality rate .There is no proven medication or vaccine for MERS-CoV .Currently MERS-CoV has spread from the main epidemic area ,the Middle East area ,to many other countries including United States of America and has the potential of global endemic .It has raised global public health concerns regarding the current situation and its future evolution .This review will mainly focus on the research progress of MERS-CoV about the animal reservoir and transmission , infection mechanisms and development of anti-viral drugs or vaccine .The goal is to provide with useful references to the devel-opment of specific drug and vaccine and an effective control and prevention of M ERS-CoV infection .%中东呼吸综合征冠状病毒(Middle East Respiratory Syndrome-Coronavirus ,MERS-CoV)是继SARS冠状病毒(SARS-CoV)之后发现的一种能引起人严重急性呼吸道疾病且具有高致死率的新型病毒。目前还没有有效的抗病毒治疗药物或疫苗。现已从主要流行的中东地区逐渐蔓延至多个国家,具有全球流行的潜在趋势,引起了世界各国的极大关注及众多的调查研究。本文主要对M ERS-CoV的传播源及途径、致病机理和抗病毒药物及疫苗等的研究进展做一综述,以期对研制特异的抗病毒药物及疫苗和实施切实有效的预防及控制措施提供参考。

  4. Characterization of the Role of Hexamer AGUAAA and Poly(A) Tail in Coronavirus Polyadenylation

    Science.gov (United States)

    Peng, Yu-Hui; Lin, Ching-Houng; Lin, Chao-Nan; Lo, Chen-Yu; Tsai, Tsung-Lin; Wu, Hung-Yi

    2016-01-01

    Similar to eukaryotic mRNA, the positive-strand coronavirus genome of ~30 kilobases is 5’-capped and 3’-polyadenylated. It has been demonstrated that the length of the coronaviral poly(A) tail is not static but regulated during infection; however, little is known regarding the factors involved in coronaviral polyadenylation and its regulation. Here, we show that during infection, the level of coronavirus poly(A) tail lengthening depends on the initial length upon infection and that the minimum length to initiate lengthening may lie between 5 and 9 nucleotides. By mutagenesis analysis, it was found that (i) the hexamer AGUAAA and poly(A) tail are two important elements responsible for synthesis of the coronavirus poly(A) tail and may function in concert to accomplish polyadenylation and (ii) the function of the hexamer AGUAAA in coronaviral polyadenylation is position dependent. Based on these findings, we propose a process for how the coronaviral poly(A) tail is synthesized and undergoes variation. Our results provide the first genetic evidence to gain insight into coronaviral polyadenylation. PMID:27760233

  5. Full genome analysis of a novel type II feline coronavirus NTU156.

    Science.gov (United States)

    Lin, Chao-Nan; Chang, Ruey-Yi; Su, Bi-Ling; Chueh, Ling-Ling

    2013-04-01

    Infections by type II feline coronaviruses (FCoVs) have been shown to be significantly correlated with fatal feline infectious peritonitis (FIP). Despite nearly six decades having passed since its first emergence, different studies have shown that type II FCoV represents only a small portion of the total FCoV seropositivity in cats; hence, there is very limited knowledge of the evolution of type II FCoV. To elucidate the correlation between viral emergence and FIP, a local isolate (NTU156) that was derived from a FIP cat was analyzed along with other worldwide strains. Containing an in-frame deletion of 442 nucleotides in open reading frame 3c, the complete genome size of NTU156 (28,897 nucleotides) appears to be the smallest among the known type II feline coronaviruses. Bootscan analysis revealed that NTU156 evolved from two crossover events between type I FCoV and canine coronavirus, with recombination sites located in the RNA-dependent RNA polymerase and M genes. With an exchange of nearly one-third of the genome with other members of alphacoronaviruses, the new emerging virus could gain new antigenicity, posing a threat to cats that either have been infected with a type I virus before or never have been infected with FCoV.

  6. [Importance of the case of coronavirus-associated severe acute respiratory syndrome detected in Hungary in 2005].

    Science.gov (United States)

    Rókusz, László; Jankovics, István; Jankovics, Máté; Sarkadi, Júlia; Visontai, Ildikó

    2013-11-24

    Ten years have elapsed since the severe acute respiratory syndrome outbreak, which resulted in more than 8000 cases worldwide with more than 700 deaths. Recently, a new coronavirus, the Middle East Respiratory Syndrome Coronavirus emerged, causing serious respiratory cases and death. By the end of August 2013, 108 cases including 50 deaths were reported. The authors discuss a coronavirus-associated severe acute respiratory syndrome, which was detected in Hungary in 2005 and highlight its significance in 2013. In 2005 the patient was hospitalized and all relevant clinical and microbiological tests were performed. Based on the IgG antibody positivity of the serum samples, the patient was diagnosed as having severe acute respiratory syndrome coronavirus infection in the past. The time and source of the infection remained unknown. The condition of the patient improved and he was discharged from the hospital. The case raises the possibility of infections in Hungary imported from remote areas of the world and the importance of thorough examination of patients with severe respiratory syndrome with unknown etiology.

  7. Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity.

    Science.gov (United States)

    Chen, Xiaojuan; Wang, Kai; Xing, Yaling; Tu, Jian; Yang, Xingxing; Zhao, Qian; Li, Kui; Chen, Zhongbin

    2014-12-01

    Autophagy plays important roles in modulating viral replication and antiviral immune response. Coronavirus infection is associated with the autophagic process, however, little is known about the mechanisms of autophagy induction and its contribution to coronavirus regulation of host innate responses. Here, we show that the membrane-associated papain-like protease PLP2 (PLP2-TM) of coronaviruses acts as a novel autophagy-inducing protein. Intriguingly, PLP2-TM induces incomplete autophagy process by increasing the accumulation of autophagosomes but blocking the fusion of autophagosomes with lysosomes. Furthermore, PLP2-TM interacts with the key autophagy regulators, LC3 and Beclin1, and promotes Beclin1 interaction with STING, the key regulator for antiviral IFN signaling. Finally, knockdown of Beclin1 partially reverses PLP2-TM's inhibitory effect on innate immunity which resulting in decreased coronavirus replication. These results suggested that coronavirus papain-like protease induces incomplete autophagy by interacting with Beclin1, which in turn modulates coronavirus replication and antiviral innate immunity.

  8. SARS: systematic review of treatment effects.

    Directory of Open Access Journals (Sweden)

    Lauren J Stockman

    2006-09-01

    Full Text Available BACKGROUND: The SARS outbreak of 2002-2003 presented clinicians with a new, life-threatening disease for which they had no experience in treating and no research on the effectiveness of treatment options. The World Health Organization (WHO expert panel on SARS treatment requested a systematic review and comprehensive summary of treatments used for SARS-infected patients in order to guide future treatment and identify priorities for research. METHODS AND FINDINGS: In response to the WHO request we conducted a systematic review of the published literature on ribavirin, corticosteroids, lopinavir and ritonavir (LPV/r, type I interferon (IFN, intravenous immunoglobulin (IVIG, and SARS convalescent plasma from both in vitro studies and in SARS patients. We also searched for clinical trial evidence of treatment for acute respiratory distress syndrome. Sources of data were the literature databases MEDLINE, EMBASE, BIOSIS, and the Cochrane Central Register of Controlled Trials (CENTRAL up to February 2005. Data from publications were extracted and evidence within studies was classified using predefined criteria. In total, 54 SARS treatment studies, 15 in vitro studies, and three acute respiratory distress syndrome studies met our inclusion criteria. Within in vitro studies, ribavirin, lopinavir, and type I IFN showed inhibition of SARS-CoV in tissue culture. In SARS-infected patient reports on ribavirin, 26 studies were classified as inconclusive, and four showed possible harm. Seven studies of convalescent plasma or IVIG, three of IFN type I, and two of LPV/r were inconclusive. In 29 studies of steroid use, 25 were inconclusive and four were classified as causing possible harm. CONCLUSIONS: Despite an extensive literature reporting on SARS treatments, it was not possible to determine whether treatments benefited patients during the SARS outbreak. Some may have been harmful. Clinical trials should be designed to validate a standard protocol for dosage

  9. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus

    NARCIS (Netherlands)

    Horzinek, M.C.; Herrewegh, A.A.; Rottier, P.J.M.; Groot, R.J. de

    1998-01-01

    Recent evidence suggests that the type II feline coronavirus (FCoV) strains 79-1146 and 79-1683 have arisen from a homologous RNA recombination event between FCoV type I and canine coronavirus (CCV). In both cases, the template switch apparently took place between the S and M genes, giving rise to r

  10. Detection of human coronavirus strain HKU1 in a 2 years old girl with asthma exacerbation caused by acute pharyngitis

    Directory of Open Access Journals (Sweden)

    Amini Razieh

    2012-08-01

    Full Text Available Abstract Respiratory viral infections can trigger asthma attack which may lead to sever morbidity. In this report, using molecular methods, we show the chronological association between human coronavirus - HKU1 infection and asthma exacerbation in a two years and seven months old asthmatic girl who was not under treatment and was otherwise healthy.

  11. Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus.

    Science.gov (United States)

    Cavanagh, Dave

    2003-12-01

    Vaccines against infectious bronchitis of chickens (Gallus gallus domesticus) have arguably been the most successful, and certainly the most widely used, of vaccines for diseases caused by coronaviruses, the others being against bovine, canine, feline and porcine coronaviruses. Infectious bronchitis virus (IBV), together with the genetically related coronaviruses of turkey (Meleagris gallopovo) and ring-necked pheasant (Phasianus colchicus), is a group 3 coronavirus, severe acute respiratory syndrome (SARS) coronavirus being tentatively in group 4, the other known mammalian coronaviruses being in groups 1 and 2. IBV replicates not only in respiratory tissues (including the nose, trachea, lungs and airsacs, causing respiratory disease), but also in the kidney (associated with minor or major nephritis), oviduct, and in many parts of the alimentary tract--the oesophagus, proventriculus, duodenum, jejunum, bursa of Fabricius, caecal tonsils (near the distal end of the tract), rectum and cloaca (the common opening for release of eggs and faeces), usually without clinical effects. The virus can persist, being re-excreted at the onset of egg laying (4 to 5 months of age), believed to be a consequence of the stress of coming into lay. Genetic lines of chickens differ in the extent to which IBV causes mortality in chicks, and in respect of clearance of the virus after the acute phase. Live attenuated (by passage in chicken embryonated eggs) IBV strains were introduced as vaccines in the 1950s, followed a couple of decades later by inactivated vaccines for boosting protection in egg-laying birds. Live vaccines are usually applied to meat-type chickens at 1 day of age. In experimental situations this can result in sterile immunity when challenged by virulent homologous virus. Although 100% of chickens may be protected (against clinical signs and loss of ciliary activity in trachea), sometimes 10% of vaccinated chicks do not respond with a protective immune response

  12. Mutation in spike protein cleavage site and pathogenesis of feline coronavirus.

    Science.gov (United States)

    Licitra, Beth N; Millet, Jean K; Regan, Andrew D; Hamilton, Brian S; Rinaldi, Vera D; Duhamel, Gerald E; Whittaker, Gary R

    2013-07-01

    Feline coronaviruses (FCoV) exist as 2 biotypes: feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV). FECV causes subclinical infections; FIPV causes feline infectious peritonitis (FIP), a systemic and fatal disease. It is thought that mutations in FECV enable infection of macrophages, causing FIP. However, the molecular basis for this biotype switch is unknown. We examined a furin cleavage site in the region between receptor-binding (S1) and fusion (S2) domains of the spike of serotype 1 FCoV. FECV sequences were compared with FIPV sequences. All FECVs had a conserved furin cleavage motif. For FIPV, there was a correlation with the disease and >1 substitution in the S1/S2 motif. Fluorogenic peptide assays confirmed that the substitutions modulate furin cleavage. We document a functionally relevant S1/S2 mutation that arises when FIP develops in a cat. These insights into FIP pathogenesis may be useful in development of diagnostic, prevention, and treatment measures against coronaviruses.

  13. Modelling strategies for controlling SARS outbreaks.

    Science.gov (United States)

    Gumel, Abba B.; Ruan, Shigui; Day, Troy; Watmough, James; Brauer, Fred; van den Driessche, P.; Gabrielson, Dave; Bowman, Chris; Alexander, Murray E.; Ardal, Sten; Wu, Jianhong; Sahai, Beni M.

    2004-01-01

    Severe acute respiratory syndrome (SARS), a new, highly contagious, viral disease, emerged in China late in 2002 and quickly spread to 32 countries and regions causing in excess of 774 deaths and 8098 infections worldwide. In the absence of a rapid diagnostic test, therapy or vaccine, isolation of individuals diagnosed with SARS and quarantine of individuals feared exposed to SARS virus were used to control the spread of infection. We examine mathematically the impact of isolation and quarantine on the control of SARS during the outbreaks in Toronto, Hong Kong, Singapore and Beijing using a deterministic model that closely mimics the data for cumulative infected cases and SARS-related deaths in the first three regions but not in Beijing until mid-April, when China started to report data more accurately. The results reveal that achieving a reduction in the contact rate between susceptible and diseased individuals by isolating the latter is a critically important strategy that can control SARS outbreaks with or without quarantine. An optimal isolation programme entails timely implementation under stringent hygienic precautions defined by a critical threshold value. Values below this threshold lead to control, but those above are associated with the incidence of new community outbreaks or nosocomial infections, a known cause for the spread of SARS in each region. Allocation of resources to implement optimal isolation is more effective than to implement sub-optimal isolation and quarantine together. A community-wide eradication of SARS is feasible if optimal isolation is combined with a highly effective screening programme at the points of entry. PMID:15539347

  14. SARS-CoV envelope protein palmitoylation or nucleocapid association is not required for promoting virus-like particle production.

    Science.gov (United States)

    Tseng, Ying-Tzu; Wang, Shiu-Mei; Huang, Kuo-Jung; Wang, Chin-Tien

    2014-04-27

    Coronavirus membrane (M) proteins are capable of interacting with nucleocapsid (N) and envelope (E) proteins. Severe acute respiratory syndrome coronavirus (SARS-CoV) M co-expression with either N or E is sufficient for producing virus-like particles (VLPs), although at a lower level compared to M, N and E co-expression. Whether E can release from cells or E/N interaction exists so as to contribute to enhanced VLP production is unknown. It also remains to be determined whether E palmitoylation or disulfide bond formation plays a role in SARS-CoV virus assembly. SARS-CoV N is released from cells through an association with E protein-containing vesicles. Further analysis suggests that domains involved in E/N interaction are largely located in both carboxyl-terminal regions. Changing all three E cysteine residues to alanines did not exert negative effects on E release, E association with N, or E enhancement of VLP production, suggesting that E palmitoylation modification or disulfide bond formation is not required for SARS-CoV virus assembly. We found that removal of the last E carboxyl-terminal residue markedly affected E release, N association, and VLP incorporation, but did not significantly compromise the contribution of E to efficient VLP production. The independence of the SARS-CoV E enhancement effect on VLP production from its viral packaging capacity suggests a distinct SARS-CoV E role in virus assembly.

  15. Citizens’ Health Information Behaviors During SARS Spread Periods in Taiwan

    Directory of Open Access Journals (Sweden)

    Nei-Ching Yeh

    2003-09-01

    Full Text Available The purpose of this study is to investigate the information behaviors of citizens during the periods of SARS spreading in Taiwan. This study is exploratory in nature, and the naturalistic inquiry approach was applied. Sixteen persons, aged from 20 to 62 years old, were interviewed in order to understand their primary information channels of obtaining SARS information, the characteristics of information communication, the methods of infection, the attitudes toward SARS news, and the influences of SARS to life. The findings show that most participants obtained SARS information from televisions. SARS became the major topic of chatting between people, but telephone communication replaced face to face communication. Part of interviewers applied folk medicine to guard against SARS. Participant dissatisfied that governments did not announce much more authoritative information. The results also found participants’ information sharing and information avoidance behaviors.[Article content in Chinese

  16. Passively acquired challenge immunity to enterotropic coronavirus in mice.

    Science.gov (United States)

    Homberger, F R; Barthold, S W

    1992-01-01

    Maternally-derived passive immunity of infant mice to challenge infection with enterotropic coronavirus mouse hepatitis virus strain Y (MHV-Y) was studied. Pups born to both naive and immune dams, but nursed by naive foster dams, were susceptible to infection, while naive or immune pups nursed by immune foster dams were protected. The MHV infectious dose was identical among naive pups inoculated at 1, 2, 3, or 4 weeks of age. Pups nursing immune dams resisted infection when inoculated at 1, 2, or 3 weeks of age. Three week old pups were protected only if they were allowed access to their immune dams. Pups born to MHV immune dams 4 in consecutive litters acquired equal MHV IgG titers in serum and whey and were all protected against challenge infection. Only pups actively ingesting immune whey at the time of or within two hours after virus inoculation were effectively protected. Pups born to dams immunized by oral inoculation with live MHV acquired both MHV-specific IgA and IgG in their whey, while pups born to dams immunized with killed virus acquired only IgG. Both IgA and IgG, but not IgG alone, were required for complete protection.

  17. Sites of feline coronavirus persistence in healthy cats.

    Science.gov (United States)

    Kipar, Anja; Meli, Marina L; Baptiste, Keith E; Bowker, Laurel J; Lutz, Hans

    2010-07-01

    Feline coronavirus (FCoV) is transmitted via the faecal-oral route and primarily infects enterocytes, but subsequently spreads by monocyte-associated viraemia. In some infected cats, virulent virus mutants induce feline infectious peritonitis (FIP), a fatal systemic disease that can develop in association with viraemia. Persistently infected, healthy carriers are believed to be important in the epidemiology of FIP, as they represent a constant source of FCoV, shed either persistently or intermittently in faeces. So far, the sites of virus persistence have not been determined definitely. The purpose of this study was to examine virus distribution and viral load in organs and gut compartments of specified-pathogen-free cats, orally infected with non-virulent type I FCoV, over different time periods and with or without detectable viraemia. The colon was identified as the major site of FCoV persistence and probable source for recurrent shedding, but the virus was shown also to persist in several other organs, mainly in tissue macrophages. These might represent additional sources for recurrent viraemia.

  18. Stochastic dynamic model of SARS spreading

    Institute of Scientific and Technical Information of China (English)

    SHI Yaolin

    2003-01-01

    Based upon the simulation of the stochastic process of infection, onset and spreading of each SARS patient, a system dynamic model of SRAS spreading is constructed. Data from Vietnam is taken as an example for Monte Carlo test. The preliminary results indicate that the time-dependent infection rate is the most important control factor for SARS spreading. The model can be applied to prediction of the course with fluctuations of the epidemics, if the previous history of the epidemics and the future infection rate under control measures are known.

  19. A Review of Novel Coronavirus, cause of Middle East Respiratory Syndrome

    Directory of Open Access Journals (Sweden)

    Katayoun Vahdat

    2014-01-01

    Full Text Available Abstract Background: Isolation of a novel virus belonging to coronavirdae family in September 2012, from patients in Middle East who had died of an acute respiratory illness & renal failure lead to researches on this new virus. Here, a brief review to summarize the events of scientific findings of this new emerging virus. Material and Methods: This review is based on a comprehensive search of three databases (Pubmed, Embase and Cochrane and WHO reports. The searched keywords were new coronavirus, Middle East, acute respieratory distress syndrom & Saudi Arabia. Results: Due to novelty of virus only limited papers exist on searched databases, so only 50 papers were identified which after omitting repeated case reports, papers related to SARS and updated WHO reports, 30 papers were finally reviewed. Conclusion: WHO recommendation is evaluation of all patients with acute respiratory illness and history of travel to Saudi Arabia or other countries where this novel virus is epidemic.

  20. Role of the lipid rafts in the life cycle of canine coronavirus.

    Science.gov (United States)

    Pratelli, Annamaria; Colao, Valeriana

    2015-02-01

    Coronaviruses are enveloped RNA viruses that have evolved complex relationships with their host cells, and modulate their lipid composition, lipid synthesis and signalling. Lipid rafts, enriched in sphingolipids, cholesterol and associated proteins, are special plasma membrane microdomains involved in several processes in viral infections. The extraction of cholesterol leads to disorganization of lipid microdomains and to dissociation of proteins bound to lipid rafts. Because cholesterol-rich microdomains appear to be a general feature of the entry mechanism of non-eneveloped viruses and of several coronaviruses, the purpose of this study was to analyse the contribution of lipids to the infectivity of canine coronavirus (CCoV). The CCoV life cycle is closely connected to plasma membrane cholesterol, from cell entry to viral particle production. The methyl-β-cyclodextrin (MβCD) was employed to remove cholesterol and to disrupt the lipid rafts. Cholesterol depletion from the cell membrane resulted in a dose-dependent reduction, but not abolishment, of virus infectivity, and at a concentration of 15 mM, the reduction in the infection rate was about 68 %. MβCD treatment was used to verify if cholesterol in the envelope was required for CCoV infection. This resulted in a dose-dependent inhibitory effect, and at a concentration of 9 mM MβCD, infectivity was reduced by about 73 %. Since viral entry would constitute a target for antiviral strategies, inhibitory molecules interacting with viral and/or cell membranes, or interfering with lipid metabolism, may have strong antiviral potential. It will be interesting in the future to analyse the membrane microdomains in the CCoV envelope.

  1. Elastase-mediated activation of the severe acute respiratory syndrome coronavirus spike protein at discrete sites within the S2 domain.

    Science.gov (United States)

    Belouzard, Sandrine; Madu, Ikenna; Whittaker, Gary R

    2010-07-23

    Proteolytic priming is a common method of controlling the activation of membrane fusion mediated by viral glycoproteins. The severe acute respiratory syndrome coronavirus spike protein (SARS-CoV S) can be primed by a variety of host cell proteases, with proteolytic cleavage occurring both as the S1/S2 boundary and adjacent to a fusion peptide in the S2 domain. Here, we studied the priming of SARS-CoV S by elastase and show an important role for residue Thr(795) in the S2 domain. A series of alanine mutants were generated in the vicinity of the S2 cleavage site, with the goal of examining elastase-mediated cleavage within S2. Both proteolytic cleavage and fusion activation were modulated by altering the cleavage site position. We propose a novel mechanism whereby SARS-CoV fusion protein function can be controlled by spatial regulation of the proteolytic priming site, with important implications for viral pathogenesis.

  2. Crystal structure of the papain-like protease of MERS coronavirus reveals unusual, potentially druggable active-site features.

    Science.gov (United States)

    Lei, Jian; Mesters, Jeroen R; Drosten, Christian; Anemüller, Stefan; Ma, Qingjun; Hilgenfeld, Rolf

    2014-09-01

    The Middle-East Respiratory Syndrome coronavirus (MERS-CoV) causes severe acute pneumonia and renal failure. The MERS-CoV papain-like protease (PL(pro)) is a potential target for the development of antiviral drugs. To facilitate these efforts, we determined the three-dimensional structure of the enzyme by X-ray crystallography. The molecule consists of a ubiquitin-like domain and a catalytic core domain. The catalytic domain displays an extended right-hand fold with a zinc ribbon and embraces a solvent-exposed substrate-binding region. The overall structure of the MERS-CoV PL(pro) is similar to that of the corresponding SARS-CoV enzyme, but the architecture of the oxyanion hole and of the S3 as well as the S5 specificity sites differ from the latter. These differences are the likely reason for reduced in vitro peptide hydrolysis and deubiquitinating activities of the MERS-CoV PL(pro), compared to the homologous enzyme from the SARS coronavirus. Introduction of a side-chain capable of oxyanion stabilization through the Leu106Trp mutation greatly enhances the in vitro catalytic activity of the MERS-CoV PL(pro). The unique features observed in the crystal structure of the MERS-CoV PL(pro) should allow the design of antivirals that would not interfere with host ubiquitin-specific proteases.

  3. Characterisation of human coronavirus-NL63 nucleocapsid protein

    African Journals Online (AJOL)

    Michael

    2012-09-18

    Sep 18, 2012 ... Coronavirus N is a multifunctional protein that plays an essential role in enhancing the efficiency of .... HCoV-NL63 was shown to be most similar to the human ... evolution of these coronaviruses and gave rise to the.

  4. The outbreak pattern of the SARS cases in Asia

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhibin; SHENG Chengfa; MA Zufei; LI Dianmo

    2004-01-01

    The severe acute respiratory syndrome (SARS) caused tremendous damage to many Asia countries, especially China. The transmission process and outbreak pattern of SARS is still not well understood. This study aims to find a simple model to describe the outbreak pattern of SARS cases by using SARS case data commonly released by governments. The outbreak pattern of cumulative SARS cases is expected to be a logistic type because the infection will be slowed down due to the increasing control effort by people and/or due to depletion of susceptible individuals. The increase rate of SARS cases is expected to decrease with the cumulative SARS cases, as described by the traditional logistical model, which is widely used in population dynamic studies. The instantaneous rate of increases were significantly and negatively correlated with the cumulative SARS cases in mainland of China (including Beijing, Hebei, Tianjin, Shanxi, the Autonomous Region of Inner Mongolia) and Singapore. The basic reproduction number R0 in Asia ranged from 2.0 to 5.6 (except for Taiwan, China). The R0 of Hebei and Tianjinwere much higher than that of Singapore, Hongkong, Beijing, Shanxi, Inner Mongolia, indicating SARS virus might have originated differently or new mutations occurred during transmission. We demonstrated that the outbreaks of SARS in many regions of Asia were well described by the logistic model, and the control measures implemented by governments are effective. The maximum instantaneous rate of increase, basic reproductive number, and maximum cumulative SARS cases were also calculated by using the logistic model.

  5. Yeast based small molecule screen for inhibitors of SARS-CoV.

    Directory of Open Access Journals (Sweden)

    Matthew Frieman

    Full Text Available Severe acute respiratory coronavirus (SARS-CoV emerged in 2002, resulting in roughly 8000 cases worldwide and 10% mortality. The animal reservoirs for SARS-CoV precursors still exist and the likelihood of future outbreaks in the human population is high. The SARS-CoV papain-like protease (PLP is an attractive target for pharmaceutical development because it is essential for virus replication and is conserved among human coronaviruses. A yeast-based assay was established for PLP activity that relies on the ability of PLP to induce a pronounced slow-growth phenotype when expressed in S. cerevisiae. Induction of the slow-growth phenotype was shown to take place over a 60-hour time course, providing the basis for conducting a screen for small molecules that restore growth by inhibiting the function of PLP. Five chemical suppressors of the slow-growth phenotype were identified from the 2000 member NIH Diversity Set library. One of these, NSC158362, potently inhibited SARS-CoV replication in cell culture without toxic effects on cells, and it specifically inhibited SARS-CoV replication but not influenza virus replication. The effect of NSC158362 on PLP protease, deubiquitinase and anti-interferon activities was investigated but the compound did not alter these activities. Another suppressor, NSC158011, demonstrated the ability to inhibit PLP protease activity in a cell-based assay. The identification of these inhibitors demonstrated a strong functional connection between the PLP-based yeast assay, the inhibitory compounds, and SARS-CoV biology. Furthermore the data with NSC158362 suggest a novel mechanism for inhibition of SARS-CoV replication that may involve an unknown activity of PLP, or alternatively a direct effect on a cellular target that modifies or bypasses PLP function in yeast and mammalian cells.

  6. Feline Coronavirus 3c Protein: A Candidate for a Virulence Marker?

    Science.gov (United States)

    Hora, A S; Tonietti, P O; Taniwaki, S A; Asano, K M; Maiorka, P; Richtzenhain, L J; Brandão, P E

    2016-01-01

    Feline infectious peritonitis virus (FIPV) is highly virulent and responsible for the highly fatal disease feline infectious peritonitis (FIP), whereas feline enteric coronavirus (FECV) is widespread among the feline population and typically causes asymptomatic infections. Some candidates for genetic markers capable of differentiating these two pathotypes of a unique virus (feline coronavirus) have been proposed by several studies. In the present survey, in order to search for markers that can differentiate FECV and FIPV, several clones of the 3a-c, E, and M genes were sequenced from samples obtained from cats with or without FIP. All genes showed genetic diversity and suggested the presence of FCoV mutant spectrum capable of producing a virulent pathotype in an individual-specific way. In addition, all the feline coronavirus FIPV strains demonstrated a truncated 3c protein, and the 3c gene was the only observed pathotypic marker for FCoVs, showing that 3c gene is a candidate marker for the distinction between the two pathotypes when the mutant spectrum is taken into account.

  7. Coronavirus in Pigs: Significance and Presentation of Swine Epidemic Diarrhea Virus (PEDV in Colombia

    Directory of Open Access Journals (Sweden)

    Ricardo Piñeros

    2015-05-01

    Full Text Available The article seeks to study general aspects of the main coronaviruses affecting pigs, their presentation in Colombia, and particular aspects of porcine epidemic diarrhea virus (PEDV, emerging in different countries and generating a great impact on the health and economy of the swine industry. The main coronaviruses affecting swine are porcine transmissible gastroenteritis virus (TGEV, porcine respiratory coronavirus (PRCV, porcine hemagglutinating encephalomyelitis virus (PHEV, PEDV, and porcine deltacoronavirus (PDCoV. Long ago in Colombia there had been reports of TGEV and PRCV associated with the importation of animals from the United States, which was controlled in the infected farms and in quarantine units. PEDV was first detected in Colombia in mid-March 2014; the Colombian Agricultural Institute issued a health alert in Neiva (Huila, Fusagasugá and Silvania (Cundinamarca, and Puerto López (Meta due to the unusual presentation of epidemic vomiting and diarrhea in young and adult animals, abortion in pregnant sows, with high mortality rates (up to 100% in animals during the first week of age. At present the disease has been reported in other municipalities of the country as well as in different countries with similar clinical conditions and mortality rates in pigs with high economic losses for the swine sector.

  8. Feline Coronavirus 3c Protein: A Candidate for a Virulence Marker?

    Directory of Open Access Journals (Sweden)

    A. S. Hora

    2016-01-01

    Full Text Available Feline infectious peritonitis virus (FIPV is highly virulent and responsible for the highly fatal disease feline infectious peritonitis (FIP, whereas feline enteric coronavirus (FECV is widespread among the feline population and typically causes asymptomatic infections. Some candidates for genetic markers capable of differentiating these two pathotypes of a unique virus (feline coronavirus have been proposed by several studies. In the present survey, in order to search for markers that can differentiate FECV and FIPV, several clones of the 3a–c, E, and M genes were sequenced from samples obtained from cats with or without FIP. All genes showed genetic diversity and suggested the presence of FCoV mutant spectrum capable of producing a virulent pathotype in an individual-specific way. In addition, all the feline coronavirus FIPV strains demonstrated a truncated 3c protein, and the 3c gene was the only observed pathotypic marker for FCoVs, showing that 3c gene is a candidate marker for the distinction between the two pathotypes when the mutant spectrum is taken into account.

  9. Feline Coronavirus 3c Protein: A Candidate for a Virulence Marker?

    Science.gov (United States)

    Hora, A. S.; Tonietti, P. O.; Taniwaki, S. A.; Asano, K. M.; Maiorka, P.; Richtzenhain, L. J.; Brandão, P. E.

    2016-01-01

    Feline infectious peritonitis virus (FIPV) is highly virulent and responsible for the highly fatal disease feline infectious peritonitis (FIP), whereas feline enteric coronavirus (FECV) is widespread among the feline population and typically causes asymptomatic infections. Some candidates for genetic markers capable of differentiating these two pathotypes of a unique virus (feline coronavirus) have been proposed by several studies. In the present survey, in order to search for markers that can differentiate FECV and FIPV, several clones of the 3a–c, E, and M genes were sequenced from samples obtained from cats with or without FIP. All genes showed genetic diversity and suggested the presence of FCoV mutant spectrum capable of producing a virulent pathotype in an individual-specific way. In addition, all the feline coronavirus FIPV strains demonstrated a truncated 3c protein, and the 3c gene was the only observed pathotypic marker for FCoVs, showing that 3c gene is a candidate marker for the distinction between the two pathotypes when the mutant spectrum is taken into account. PMID:27243037

  10. Feline coronavirus in multicat environments.

    Science.gov (United States)

    Drechsler, Yvonne; Alcaraz, Ana; Bossong, Frank J; Collisson, Ellen W; Diniz, Pedro Paulo V P

    2011-11-01

    Feline infectious peritonitis (FIP), a fatal disease in cats worldwide, is caused by FCoV infection, which commonly occurs in multicat environments. The enteric FCoV, referred to as feline enteric virus (FECV), is considered a mostly benign biotype infecting the gut, whereas the FIP virus biotype is considered the highly pathogenic etiologic agent for FIP. Current laboratory tests are unable to distinguish between virus biotypes of FCoV. FECV is highly contagious and easily spreads in multicat environments; therefore, the challenges to animal shelters are tremendous. This review summarizes interdisciplinary current knowledge in regard to virology, immunology, pathology, diagnostics, and treatment options in the context of multicat environments.

  11. 兰州地区冠状病毒HKU1在儿童急性呼吸道感染的研究%Molecular epidemiological and clinical features of coronavirus HKU1 in children with acute respiratory tract infection in Lanzhou

    Institute of Scientific and Technical Information of China (English)

    宋靖荣; 金玉; 段招军; 原新慧; 闫坤龙; 赵扬; 谢志萍; 高寒春

    2010-01-01

    目的 了解兰州地区冠状病毒HKU1(Human CoV-HKU1)在儿童急性呼吸道感染中的分子流行情况和临床特点.方法 采用逆转录聚合酶链反应(RT-PCR)方法,对2007年11月~2008年10月兰州大学第一医院301例急性呼吸道感染患儿的鼻咽抽吸物进行冠状病毒HKU1基因检测,阳性产物经克隆、测序、同源性和进化分析,阳性标本同时检测呼吸道合胞病毒、腺病毒、鼻病毒、流感病毒、副流感病毒、偏肺病毒和冠状病毒NL63.结果 301份标本中共检出冠状病毒HKU1阳性扩增产物15份,检出率为5.0%,氨基酸同源性在90.7%~99.3%之间,与标准株HKU1-B(DQ415911)属于同一进化簇.有11例存在混合感染,时间分布在11月至次年4月.15例阳性患儿年龄10个月(15 d~12岁),主要诊断包括上呼吸道感染,支气管炎,支气管肺炎,肺炎,细支气管炎;临床表现包括发热、咳嗽、咯痰、腹泻、呕吐、咽充血、湿啰音、哮鸣音.无死亡病例.有6例患有基础性疾病.结论 在兰州地区急性呼吸道感染患儿中检出冠状病毒HKU1,基因型为B型.临床症状及诊断无特异性.%Objective Human coronavirus (CoV)-HKU1 (HCoV-HKU1) was first isolated by Woo et al in Hong Kong. Several successive reports confirmed retrospectively that this new human coronavirus was circulating in different countries worldwide. However, the impact and the role of the emerging HCoV-HKU1 were not defined in children with ARTI. The objective of this study was to investigate the molecular epidemiology and clinical characteristics of HCoV-HKU1 infection in children with ARTI in Lanzhou, China. Method Nasopharyngeal aspiration (NPA) samples were collected from 301 children with ARTI at the First Hospital of Lanzhou University, Gansu Province, China, between November 2007 and October 2008. Demographic data and clinical findings of these children were collected at the same time. The informed consent was obtained from their parents

  12. The Multi-parameter Prediction of B-cell Epitopes in Amino Acid Sequence Fragments of Spike Glycoprotein of SARS Coronavirus%SARS病毒S蛋白部分片段B-细胞表位的多参数预测

    Institute of Scientific and Technical Information of China (English)

    曾桥; 万志刚; 肖建华; 吴移谋; 谭立志; 万艳平; 张文波; 杨秋林; 尹卫国; 刘双全; 胡四海

    2003-01-01

    目的预测SARS病毒S蛋白(spike glycoprotein)部分片段(aa No.400~600 & aa No.1 100~1 195)的B-细胞表位.方法应用多种参数和方法进行综合分析,包括跨膜分析、保守区分析、同源性比较、Hopp & Woods亲水性参数、抗原性参数、可及性参数、β-转角、万氏法等综合预测方法.结果显示B-细胞识别的表位可能在436~456和1 136~1 146残基或其附近,这两个被预测的表位均含有β-转角和不规则卷曲结构.结论本研究为应用合成肽抗原制备抗SARS病毒S蛋白抗体、诊断非典型肺炎(severe acute respiratory syndrome, SARS)提供了依据.

  13. Identification of residues of SARS-CoV nsp1 that differentially affect inhibition of gene expression and antiviral signaling.

    Science.gov (United States)

    Jauregui, Andrew R; Savalia, Dhruti; Lowry, Virginia K; Farrell, Cara M; Wathelet, Marc G

    2013-01-01

    An epidemic of Severe Acute Respiratory Syndrome (SARS) led to the identification of an associated coronavirus, SARS-CoV. This virus evades the host innate immune response in part through the expression of its non-structural protein (nsp) 1, which inhibits both host gene expression and virus- and interferon (IFN)-dependent signaling. Thus, nsp1 is a promising target for drugs, as inhibition of nsp1 would make SARS-CoV more susceptible to the host antiviral defenses. To gain a better understanding of nsp1 mode of action, we generated and analyzed 38 mutants of the SARS-CoV nsp1, targeting 62 solvent exposed residues out of the 180 amino acid protein. From this work, we identified six classes of mutants that abolished, attenuated or increased nsp1 inhibition of host gene expression and/or antiviral signaling. Each class of mutants clustered on SARS-CoV nsp1 surface and suggested nsp1 interacts with distinct host factors to exert its inhibitory activities. Identification of the nsp1 residues critical for its activities and the pathways involved in these activities should help in the design of drugs targeting nsp1. Significantly, several point mutants increased the inhibitory activity of nsp1, suggesting that coronaviruses could evolve a greater ability to evade the host response through mutations of such residues.

  14. The C-Terminal Portion of the Nucleocapsid Protein Demonstrates SARS-CoV Antigenicity

    Institute of Scientific and Technical Information of China (English)

    Guozhen Liu; Bo You; Ye Yin; Shuting Li; Hao Wang; Yan Ren; Jia Ji; Xiaoqian Zhao; Yongqiao Sun; Xiaowei Zhang; Jianqiu Fang; Shaohui Hu; Jian Wang; Siqi Liu; Jun Yu; Heng Zhu; Huanming Yang; Yongwu Hu; Peng Chen; Jianning Yin; Jie Wen; Jingqiang Wang; Liang Lin; Jinxiu Liu

    2003-01-01

    In order to develop clinical diagnostic tools for rapid detection of SARS-CoV (severe acute respiratory syndrome-associated coronavirus) and to identify candidate proteins for vaccine development, the C-terminal portion of the nucleocapsid (NC)gene was amplified using RT-PCR from the SARS-CoV genome, cloned into a yeast expression vector (pEGH), and expressed as a glutathione S-transferase (GST) and Hisx6 double-tagged fusion protein under the control of an inducible promoter.Western analysis on the purified protein confirmed the expression and purification of the NC fusion proteins from yeast. To determine its antigenicity, the fusion protein was challenged with serum samples from SARS patients and normal controls.The NC fusion protein demonstrated high antigenicity with high specificity, and therefore, it should have great potential in designing clinical diagnostic tools and provide useful information for vaccine development.

  15. Novel Coronaviruses and Astroviruses in Bats

    Institute of Scientific and Technical Information of China (English)

    Daniel K. W. Chu; J. S. Malik Peiris; Leo L. M. Poon

    2009-01-01

    Zoonotic transmissions of emerging pathogens from wildlife to human have shaped the history of mankind. These events have also highlighted our poor understanding of microorganisms circulated in wild animals. Coronaviruses and astroviruses, which can be found from a wide range of mammals, were recently detected in bats. Strikingly, these bat viruses are genetically highly diverse and these interesting findings might help to better understand the evolution and ecology of these viruses. The discoveries of these novel bats viruses not only suggested that bats are important hosts for these virus families, but also reiterated the role of bats as a reservoir of viruses that might pose a zoonotic threat to human health.

  16. Sialic Acid Binding Properties of Soluble Coronavirus Spike (S1 Proteins: Differences between Infectious Bronchitis Virus and Transmissible Gastroenteritis Virus

    Directory of Open Access Journals (Sweden)

    Christine Winter

    2013-07-01

    Full Text Available The spike proteins of a number of coronaviruses are able to bind to sialic acids present on the cell surface. The importance of this sialic acid binding ability during infection is, however, quite different. We compared the spike protein of transmissible gastroenteritis virus (TGEV and the spike protein of infectious bronchitis virus (IBV. Whereas sialic acid is the only receptor determinant known so far for IBV, TGEV requires interaction with its receptor aminopeptidase N to initiate infection of cells. Binding tests with soluble spike proteins carrying an IgG Fc-tag revealed pronounced differences between these two viral proteins. Binding of the IBV spike protein to host cells was in all experiments sialic acid dependent, whereas the soluble TGEV spike showed binding to APN but had no detectable sialic acid binding activity. Our results underline the different ways in which binding to sialoglycoconjugates is mediated by coronavirus spike proteins.

  17. A complete sequence and comparative analysis of a SARS-associated virus (Isolate BJ01)

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The genome sequence of the Severe Acute Respiratory Syndrome (SARS)-associated virus provides essential information for the identification of pathogen(s), exploration of etiology and evolution, interpretation of transmission and pathogenesis, development of diagnostics, prevention by future vaccination, and treatment by developing new drugs. We report the complete genome sequence and comparative analysis of an isolate (BJ01) of the coronavirus that has been recognized as a pathogen for SARS. The genome is 29725 nt in size and has 11 ORFs (Open Reading Frames). It is composed of a stable region encoding an RNA-dependent RNA polymerase (composed of 2 ORFs) and a variable region representing 4 CDSs (coding sequences) for viral structural genes (the S, E, M, N proteins) and 5 PUPs (putative uncharacterized proteins). Its gene order is identical to that of other known coronaviruses. The sequence alignment with all known RNA viruses places this virus as a member in the family of Coronaviridae. Thirty putative substitutions have been identified by comparative analysis of the 5 SARS- associated virus genome sequences in GenBank. Fifteen of them lead to possible amino acid changes (non-synonymousmutations) in the proteins. Three amino acid changes, with predicted alteration of physical and chemical features, have been detected in the S protein that is postulated to be involved in the immunoreactions between the virus and its host. Two amino acid changes have been detected in the M protein, which could be related to viral envelope formation. Phylogenetic analysis suggests the possibility of non-human origin of the SARS-associated viruses but provides no evidence that they are man-made. Further efforts should focus on identifying the etiology of the SARS-associated virus and ruling out conclusively the existence of other possible SARS-related pathogen(s).

  18. Surveillance and Testing for Middle East Respiratory Syndrome Coronavirus, Saudi Arabia, April 2015–February 2016

    Science.gov (United States)

    Bin Saeed, Abdulaziz A.; Alzahrani, Abdullah G.; Salameh, Iyad; Abdirizak, Fatima; Alhakeem, Raafat; Algarni, Homoud; El Nil, Osman A.; Mohammed, Mutaz; Assiri, Abdullah M.; Alabdely, Hail M.; Watson, John T.; Gerber, Susan I.

    2017-01-01

    Saudi Arabia has reported >80% of the Middle East respiratory syndrome coronavirus (MERS-CoV) cases worldwide. During April 2015–February 2016, Saudi Arabia identified and tested 57,363 persons (18.4/10,000 residents) with suspected MERS-CoV infection; 384 (0.7%) tested positive. Robust, extensive, and timely surveillance is critical for limiting virus transmission. PMID:28322710

  19. The Staphylococcus aureus protein-coding gene gdpS modulates sarS expression via mRNA-mRNA interaction.

    Science.gov (United States)

    Chen, Chuan; Zhang, Xu; Shang, Fei; Sun, Haipeng; Sun, Baolin; Xue, Ting

    2015-08-01

    Staphylococcus aureus is an important Gram-positive pathogen responsible for numerous diseases ranging from localized skin infections to life-threatening systemic infections. The virulence of S. aureus is essentially determined by a wide spectrum of factors, including cell wall-associated proteins and secreted toxins that are precisely controlled in response to environmental changes. GGDEF domain protein from Staphylococcus (GdpS) is the only conserved staphylococcal GGDEF domain protein that is involved not in c-di-GMP synthesis but in the virulence regulation of S. aureus NCTC8325. Our previous study showed that the inactivation of gdpS generates an extensive change of virulence factors together with, in particular, a major Spa (protein A) surface protein. As reported, sarS is a direct positive regulator of spa. The decreased transcript levels of sarS in the gdpS mutant compared with the parental NCTC8325 strain suggest that gdpS affects spa through interaction with sarS. In this study, site mutation and complementary experiments showed that the translation product of gdpS was not involved in the regulation of transcript levels of sarS. We found that gdpS functioned through direct RNA-RNA base pairing with the 5' untranslated region (5'UTR) of sarS mRNA and that a putative 18-nucleotide region played a significant role in the regulatory process. Furthermore, the mRNA half-life analysis of sarS in the gdpS mutant showed that gdpS positively regulates the mRNA levels of sarS by contributing to the stabilization of sarS mRNA, suggesting that gdpS mRNA may regulate spa expression in an RNA-dependent pathway.

  20. A coronavirus detected in the vampire bat Desmodus rotundus

    Directory of Open Access Journals (Sweden)

    Paulo Eduardo Brandão

    Full Text Available This article reports on the identification of a group 2 coronavirus (BatCoV DR/2007 in a Desmodus rotundus vampire bat in Brazil. Phylogenetic analysis of ORF1b revealed that BatCoV DR/2007 originates from a unique lineage in the archetypical group 2 coronaviruses, as described for bat species elsewhere with putative importance in Public Health.

  1. Blocking of Exchange Proteins Directly Activated by cAMP Leads to Reduced Replication of Middle East Respiratory Syndrome Coronavirus

    Science.gov (United States)

    Tao, Xinrong; Mei, Feng; Agrawal, Anurodh; Peters, Clarence J.; Ksiazek, Thomas G.

    2014-01-01

    The outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infections and diseases represents a potential threat for worldwide spread and requires development of effective therapeutic strategies. In this study, we revealed a novel positive function of an exchange protein directly activated by cyclic AMP 1 (cAMP-1; Epac-1) on MERS-CoV replication. Specifically, we have shown that Epac-specific inhibitor treatment or silencing Epac-1 gene expression rendered cells resistant to viral infection. We believe Epac-1 inhibitors deserve further study as potential therapeutic agents for MERS-CoV infection. PMID:24453361

  2. Health Communication during SARS

    Science.gov (United States)

    Navin, Ava W.; Steele, Stefanie F.; Weld, Leisa H.; Kozarsky, Phyllis E.

    2004-01-01

    During the severe acute respiratory syndrome (SARS) outbreak, electronic media made it possible to disseminate prevention messages rapidly. The Centers for Disease Control and Prevention’s Travelers’ Health Web site was frequently visited in the first half of 2003; more than 2.6 million visits were made to travel alerts, advisories, and other SARS-related documents. PMID:15030717

  3. SAR: Stroke Authorship Recognition

    KAUST Repository

    Shaheen, Sara

    2015-10-15

    Are simple strokes unique to the artist or designer who renders them? If so, can this idea be used to identify authorship or to classify artistic drawings? Also, could training methods be devised to develop particular styles? To answer these questions, we propose the Stroke Authorship Recognition (SAR) approach, a novel method that distinguishes the authorship of 2D digitized drawings. SAR converts a drawing into a histogram of stroke attributes that is discriminative of authorship. We provide extensive classification experiments on a large variety of data sets, which validate SAR\\'s ability to distinguish unique authorship of artists and designers. We also demonstrate the usefulness of SAR in several applications including the detection of fraudulent sketches, the training and monitoring of artists in learning a particular new style and the first quantitative way to measure the quality of automatic sketch synthesis tools. © 2015 The Eurographics Association and John Wiley & Sons Ltd.

  4. Detection of feline coronavirus in captive Felidae in the USA.

    Science.gov (United States)

    Kennedy, Melissa; Citino, Scott; McNabb, Amanda Hillis; Moffatt, Amy Serino; Gertz, Karen; Kania, Stephen

    2002-11-01

    Feline coronavirus (FCoV) is an important pathogen of domestic and nondomestic Felidae. Investigation into the prevalence of FCoV in exotic Felidae has relied primarily on serology. The usefulness of genetic detection of FCoV using reverse transcription and nested polymerase chain reaction (RT/nPCR) for viral screening was investigated. Seventy-five biologic samples, primarily feces, from captive felids from 11 institutions were tested using PCR. Serum samples collected from all but 12 of these animals were tested for antibodies to type I and type II FCoV by indirect immunofluorescence. Twenty-four animals were positive using RT/nPCR for virus. Twenty-nine animals were seropositive to type I and/or type II FCoV. From serologic data, infection with a virus antigenically related to FCoV type I occurred most commonly. Serology did not correlate with virus shedding because 13 animals were seronegative to FCoV type I and II but positive using RT/nPCR for virus. Conversely, 20 animals were seropositive but negative using RT/nPCR for FCoV. Some of the populations in which virus was detected had experienced health problems, including feline infectious peritonitis (FIP), necrotizing colitis, and mild enteritis. In addition to its role in FIP, this virus may play a role in gastrointestinal diseases of infected animals. This study demonstrates that FCoV is a significant infectious agent of captive felids because over half of the animals tested were positive by viral genetic detection, serology, or both. Dependence upon one method for detection of infection is unreliable.

  5. Fighting SARS in grand collaboration: Our strategies

    Institute of Scientific and Technical Information of China (English)

    钟南山

    2003-01-01

    @@ The war without gunsmoke against severe acute respiratory syndrome(SARS), a type of communicable atypical pneumonia (AP), is now outspreading throughout China and many other countries in the world. So far, the disease has swept through nearly 30 countries and regions. Globally, more than 7,000 people have been infected, with a total of over 550 deaths. More than 5,000 people in mainland of China have been affected and approximately 200 have died. In some areas, the current situation remains at large. It is estimated that SARS has caused a financial loss of over 30 billion dollars (US) worldwide.

  6. PIKA Provides an Adjuvant Effect to Induce Strong Mucosal and Systemic Humoral Immunity Against SARS-CoV

    Institute of Scientific and Technical Information of China (English)

    Wei-wei Gai; Yan Zhang; Di-han Zhou; Yao-qing Chen; Jing-yi Yang; Hui-min Yan

    2011-01-01

    Severe Acute Respiratory Syndrome(SARS)is a deadly infectious disease caused by SARS Coronavirus(SARS-CoV).Inactivated SARS-CoV has been explored as a vaccine against SARS-CoV.However,safe and potent adjuvants,especially with more efficient and economical needle-free vaccination are always needed more urgently in a pandemic.The development of a safe and effective mucosal adjuvant and vaccine for prevention of emergent infectious diseases such as SARS will be an important advancement.PIKA,a stabilized derivative of Poly(I:C),was previously reported to be safe and potent as adjuvant in mouse models.In the present study,we demonstrated that the intraperitoneal and intranasal co-administration of inactivated SARS-CoV vaccine together with this improved Poly(I:C)derivative induced strong anti-SARS-CoV mucosal and systemic humoral immune responses with neutralizing activity against pseudotyped virus.Although intraperitoneal immunization of inactivated SARS-CoV vaccine alone could induce a certain level of neutralizing activity in serum as well as in mucosal sites,co-administration of inactivated SARS-CoV vaccine with PIKA as adjuvant could induce a much higher neutralizing activity.When intranasal immunization was used,PIKA was obligatorily for inducing neutralizing activity in serum as well as in mucosal sites and was correlated with both mucosal IgA and mucosal IgG response.Overall,PIKA could be a good mucosal adjuvant candidate for inactivated SARS-CoV vaccine for use in possible future pandemic.

  7. European Surveillance for Pantropic Canine Coronavirus

    Science.gov (United States)

    Cordonnier, Nathalie; Demeter, Zoltan; Egberink, Herman; Elia, Gabriella; Grellet, Aurélien; Le Poder, Sophie; Mari, Viviana; Martella, Vito; Ntafis, Vasileios; von Reitzenstein, Marcela; Rottier, Peter J.; Rusvai, Miklos; Shields, Shelly; Xylouri, Eftychia; Xu, Zach; Buonavoglia, Canio

    2013-01-01

    Highly virulent pantropic canine coronavirus (CCoV) strains belonging to subtype IIa were recently identified in dogs. To assess the distribution of such strains in Europe, tissue samples were collected from 354 dogs that had died after displaying systemic disease in France (n = 92), Hungary (n = 75), Italy (n = 69), Greece (n = 87), The Netherlands (n = 27), Belgium (n = 4), and Bulgaria (n = 1). A total of 124 animals tested positive for CCoV, with 33 of them displaying the virus in extraintestinal tissues. Twenty-four CCoV strains (19.35% of the CCoV-positive dogs) detected in internal organs were characterized as subtype IIa and consequently assumed to be pantropic CCoVs. Sequence and phylogenetic analyses of the 5′ end of the spike protein gene showed that pantropic CCoV strains are closely related to each other, with the exception of two divergent French viruses that clustered with enteric strains. PMID:23100349

  8. Characterization of the expression and immunogenicity of the ns4b protein of human coronavirus 229E

    DEFF Research Database (Denmark)

    Chagnon, F; Lamarre, A; Lachance, C;

    1998-01-01

    and immunogenicity of the ns4b gene product from strain 229E of human coronavirus (HCV-229E), a respiratory virus with a neurotropic potential. The gene was cloned and expressed in bacteria. A fusion protein of ns4b with maltose-binding protein was injected into rabbits to generate specific antibodies that were used...... to demonstrate the expression of ns4b in HCV-229E-infected cells using flow cytometry. Given a previously reported contiguous five amino acid shared region between ns4b and myelin basic protein, a purified recombinant histidine-tagged ns4b protein and (or) human myelin basic protein were injected into mice......Sequencing of complementary DNAs prepared from various coronaviruses has revealed open reading frames encoding putative proteins that are yet to be characterized and are so far only described as nonstructural (ns). As a first step in the elucidation of its function, we characterized the expression...

  9. Identification of Aminopeptidase N as a Cellular Receptor for Human Coronavirus-229E

    Science.gov (United States)

    1992-05-12

    feline enteric coronav irus feline infectious peritonitis virus hUman adult intestine hUman aminopeptidase N human aminopeptidase with 39 amino...coronavirus (TCV), rat coronavirus (RCV), cat feline infectious peritonitis virus (FIPV), and the hUman coronaviruses. These include the slow, patchy...While the cat, dog and pig serve as natural hosts for the other coronavirus group 1 viruses, feline infectious peritonitis virus (FIPV), canine

  10. Heparan sulfate is a selective attachment factor for the avian coronavirus infectious bronchitis virus Beaudette.

    Science.gov (United States)

    Madu, Ikenna G; Chu, Victor C; Lee, Hwajin; Regan, Andrew D; Bauman, Beverley E; Whittaker, Gary R

    2007-03-01

    The avian coronavirus infectious bronchitis virus (IBV) strain Beaudette is an embryo-adapted virus that has extended species tropism in cell culture. In order to understand the acquired tropism of the Beaudette strain, we compared the S protein sequences of several IBV strains. The Beaudette strain was found to contain a putative heparan sulfate (HS)-binding site, indicating that the Beaudette virus may use HS as a selective receptor. To ascertain the requirements of cell-surface HS for Beaudette infectivity, we assayed for infectivity in the presence of soluble heparin as a competitor and determined infectivity in mutant cell lines with no HS or glycosaminoglycan expression. Our results indicate that HS plays a role as an attachment factor for IBV, working in concert with other factors like sialic acid to mediate virus binding to cells, and may explain in part the extended tropism of IBV Beaudette.

  11. Identification of viral and atypical bacterial pathogens in children hospitalized with acute respiratory infections in Hong Kong by multiplex PCR assays.

    Science.gov (United States)

    Sung, R Y T; Chan, Paul K S; Tsen, Tracy; Li, A M; Lam, W Y; Yeung, Apple C M; Nelson, E A S

    2009-01-01

    Acute respiratory tract infection is a leading cause of hospital admission of children. This study used a broad capture, rapid and sensitive method (multiplex PCR assay) to detect 20 different respiratory pathogens including influenza