WorldWideScience

Sample records for sarcomeric embryonic myosin

  1. Ozz-E3 ubiquitin ligase targets sarcomeric embryonic myosin heavy chain during muscle development.

    Directory of Open Access Journals (Sweden)

    Yvan Campos

    2010-03-01

    Full Text Available Muscle contractile proteins are expressed as a series of developmental isoforms that are in constant dynamic remodeling during embryogenesis, but how obsolete molecules are recognized and removed is not known. Ozz is a developmentally regulated protein that functions as the adaptor component of a RING-type ubiquitin ligase complex specific to striated muscle. Ozz(-/- mutants exhibit defects in myofibrillogenesis and myofiber differentiation. Here we show that Ozz targets the rod portion of embryonic myosin heavy chain and preferentially recognizes the sarcomeric rather than the soluble pool of myosin. We present evidence that Ozz binding to the embryonic myosin isoform within sarcomeric thick filaments marks it for ubiquitination and proteolytic degradation, allowing its replacement with neonatal or adult isoforms. This unique function positions Ozz within a system that facilitates sarcomeric myosin remodeling during muscle maturation and regeneration. Our findings identify Ozz-E3 as the ubiquitin ligase complex that interacts with and regulates myosin within its fully assembled cytoskeletal structure.

  2. Sarcomere lattice geometry influences cooperative myosin binding in muscle.

    Directory of Open Access Journals (Sweden)

    Bertrand C W Tanner

    2007-07-01

    Full Text Available In muscle, force emerges from myosin binding with actin (forming a cross-bridge. This actomyosin binding depends upon myofilament geometry, kinetics of thin-filament Ca(2+ activation, and kinetics of cross-bridge cycling. Binding occurs within a compliant network of protein filaments where there is mechanical coupling between myosins along the thick-filament backbone and between actin monomers along the thin filament. Such mechanical coupling precludes using ordinary differential equation models when examining the effects of lattice geometry, kinetics, or compliance on force production. This study uses two stochastically driven, spatially explicit models to predict levels of cross-bridge binding, force, thin-filament Ca(2+ activation, and ATP utilization. One model incorporates the 2-to-1 ratio of thin to thick filaments of vertebrate striated muscle (multi-filament model, while the other comprises only one thick and one thin filament (two-filament model. Simulations comparing these models show that the multi-filament predictions of force, fractional cross-bridge binding, and cross-bridge turnover are more consistent with published experimental values. Furthermore, the values predicted by the multi-filament model are greater than those values predicted by the two-filament model. These increases are larger than the relative increase of potential inter-filament interactions in the multi-filament model versus the two-filament model. This amplification of coordinated cross-bridge binding and cycling indicates a mechanism of cooperativity that depends on sarcomere lattice geometry, specifically the ratio and arrangement of myofilaments.

  3. Three-dimensional stochastic model of actin–myosin binding in the sarcomere lattice

    Energy Technology Data Exchange (ETDEWEB)

    Mijailovich, Srboljub M.; Kayser-Herold, Oliver; Stojanovic, Boban; Nedic, Djordje; Irving, Thomas C.; Geeves, MA (Harvard); (IIT); (U. Kent); (Kragujevac)

    2016-11-18

    The effect of molecule tethering in three-dimensional (3-D) space on bimolecular binding kinetics is rarely addressed and only occasionally incorporated into models of cell motility. The simplest system that can quantitatively determine this effect is the 3-D sarcomere lattice of the striated muscle, where tethered myosin in thick filaments can only bind to a relatively small number of available sites on the actin filament, positioned within a limited range of thermal movement of the myosin head. Here we implement spatially explicit actomyosin interactions into the multiscale Monte Carlo platform MUSICO, specifically defining how geometrical constraints on tethered myosins can modulate state transition rates in the actomyosin cycle. The simulations provide the distribution of myosin bound to sites on actin, ensure conservation of the number of interacting myosins and actin monomers, and most importantly, the departure in behavior of tethered myosin molecules from unconstrained myosin interactions with actin. In addition, MUSICO determines the number of cross-bridges in each actomyosin cycle state, the force and number of attached cross-bridges per myosin filament, the range of cross-bridge forces and accounts for energy consumption. At the macroscopic scale, MUSICO simulations show large differences in predicted force-velocity curves and in the response during early force recovery phase after a step change in length comparing to the two simplest mass action kinetic models. The origin of these differences is rooted in the different fluxes of myosin binding and corresponding instantaneous cross-bridge distributions and quantitatively reflects a major flaw of the mathematical description in all mass action kinetic models. Consequently, this new approach shows that accurate recapitulation of experimental data requires significantly different binding rates, number of actomyosin states, and cross-bridge elasticity than typically used in mass action kinetic models to

  4. Cardiac alpha-myosin (MYH6 is the predominant sarcomeric disease gene for familial atrial septal defects.

    Directory of Open Access Journals (Sweden)

    Maximilian G Posch

    Full Text Available Secundum-type atrial septal defects (ASDII account for approximately 10% of all congenital heart defects (CHD and are associated with a familial risk. Mutations in transcription factors represent a genetic source for ASDII. Yet, little is known about the role of mutations in sarcomeric genes in ASDII etiology. To assess the role of sarcomeric genes in patients with inherited ASDII, we analyzed 13 sarcomeric genes (MYH7, MYBPC3, TNNT2, TCAP, TNNI3, MYH6, TPM1, MYL2, CSRP3, ACTC1, MYL3, TNNC1, and TTN kinase region in 31 patients with familial ASDII using array-based resequencing. Genotyping of family relatives and control subjects as well as structural and homology analyses were used to evaluate the pathogenic impact of novel non-synonymous gene variants. Three novel missense mutations were found in the MYH6 gene encoding alpha-myosin heavy chain (R17H, C539R, and K543R. These mutations co-segregated with CHD in the families and were absent in 370 control alleles. Interestingly, all three MYH6 mutations are located in a highly conserved region of the alpha-myosin motor domain, which is involved in myosin-actin interaction. In addition, the cardiomyopathy related MYH6-A1004S and the MYBPC3-A833T mutations were also found in one and two unrelated subjects with ASDII, respectively. No mutations were found in the 11 other sarcomeric genes analyzed. The study indicates that sarcomeric gene mutations may represent a so far underestimated genetic source for familial recurrence of ASDII. In particular, perturbations in the MYH6 head domain seem to play a major role in the genetic origin of familial ASDII.

  5. Is sarcomere lattice geometry optimal? Analysis of several potential virtual polygon cross-sectional patterns for actin and myosin myofilaments in muscle.

    Science.gov (United States)

    Kepner, Gordon R

    2014-09-01

    The hexagonal arrangement of actin filaments in skeletal muscle is not the fundamental geometrical or functioning myofilament unit. This analysis of several possible sarcomere lattice geometries for the arrangement of the actin and myosin filaments identifies several geometrical constraints that can be compared for their effect on muscle sarcomere functioning and efficiency. Three distinct virtual polygons, with myosins at their vertices and that tessellate the plane, are compared for both centered actin and perimeter actin arrangements. The analysis evaluates the optimal ratio of myosin to actin filaments, the packing density, and the effect on new myofilament formation in muscle hypertrophy for the various lattice geometries. The results support the view that no single measure of geometrical effectiveness can evaluate definitively the efficiency of any particular arrangement of the myofilaments. The analysis provides quantitative measures of several parameters that, taken overall, support the effectiveness of the myofilament arrangement in Nature. It provides a new definition of the fundamental myofilament unit (FMU). It is possible to calculate the number of actin and myosin myofilaments that need to be added to each polygon arrangement of the myofilaments to create a new FMU for that specific geometry. This leads to useful conclusions about the biochemical efficiency involved in where such units arise in the course of muscle hypertrophy. It supports the idea that the evolutionary endpoint for optimizing muscle's force-generating function can be better understood via the concepts of a FMU and the polygon arrangement of the sarcomere lattice geometry. © 2014 Wiley Periodicals, Inc.

  6. Differences in Contractile Function of Myofibrils within Human Embryonic Stem Cell-Derived Cardiomyocytes vs. Adult Ventricular Myofibrils Are Related to Distinct Sarcomeric Protein Isoforms

    Directory of Open Access Journals (Sweden)

    Bogdan Iorga

    2018-01-01

    Full Text Available Characterizing the contractile function of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs is key for advancing their utility for cellular disease models, promoting cell based heart repair, or developing novel pharmacological interventions targeting cardiac diseases. The aim of the present study was to understand whether steady-state and kinetic force parameters of β-myosin heavy chain (βMyHC isoform-expressing myofibrils within human embryonic stem cell-derived cardiomyocytes (hESC-CMs differentiated in vitro resemble those of human ventricular myofibrils (hvMFs isolated from adult donor hearts. Contractile parameters were determined using the same micromechanical method and experimental conditions for both types of myofibrils. We identified isoforms and phosphorylation of main sarcomeric proteins involved in the modulation of force generation of both, chemically demembranated hESC-CMs (d-hESC-CMs and hvMFs. Our results indicate that at saturating Ca2+ concentration, both human-derived contractile systems developed forces with similar rate constants (0.66 and 0.68 s−1, reaching maximum isometric force that was significantly smaller for d-hESC-CMs (42 kPa than for hvMFs (94 kPa. At submaximal Ca2+-activation, where intact cardiomyocytes normally operate, contractile parameters of d-hESC-CMs and hvMFs exhibited differences. Ca2+ sensitivity of force was higher for d-hESC-CMs (pCa50 = 6.04 than for hvMFs (pCa50 = 5.80. At half-maximum activation, the rate constant for force redevelopment was significantly faster for d-hESC-CMs (0.51 s−1 than for hvMFs (0.28 s−1. During myofibril relaxation, kinetics of the slow force decay phase were significantly faster for d-hESC-CMs (0.26 s−1 than for hvMFs (0.21 s−1, while kinetics of the fast force decay were similar and ~20x faster. Protein analysis revealed that hESC-CMs had essentially no cardiac troponin-I, and partially non-ventricular isoforms of some other sarcomeric proteins

  7. An embryonic myosin converter domain influences Drosophila indirect flight muscle stretch activation, power generation and flight.

    Science.gov (United States)

    Wang, Qian; Newhard, Christopher S; Ramanath, Seemanti; Sheppard, Debra; Swank, Douglas M

    2014-01-15

    Stretch activation (SA) is critical to the flight ability of insects powered by asynchronous, indirect flight muscles (IFMs). An essential muscle protein component for SA and power generation is myosin. Which structural domains of myosin are significant for setting SA properties and power generation levels is poorly understood. We made use of the transgenic techniques and unique single muscle myosin heavy chain gene of Drosophila to test the influence of the myosin converter domain on IFM SA and power generation. Replacing the endogenous converter with an embryonic version decreased SA tension and the rate of SA tension generation. The alterations in SA properties and myosin kinetics from the converter exchange caused power generation to drop to 10% of control fiber power when the optimal conditions for control fibers - 1% muscle length (ML) amplitude and 150 Hz oscillation frequency - were applied to fibers expressing the embryonic converter (IFI-EC). Optimizing conditions for IFI-EC fiber power production, by doubling ML amplitude and decreasing oscillation frequency by 60%, improved power output to 60% of optimized control fiber power. IFI-EC flies altered their aerodynamic flight characteristics to better match optimal fiber power generation conditions as wing beat frequency decreased and wing stroke amplitude increased. This enabled flight in spite of the drastic changes to fiber mechanical performance.

  8. At the Start of the Sarcomere: A Previously Unrecognized Role for Myosin Chaperones and Associated Proteins during Early Myofibrillogenesis

    Directory of Open Access Journals (Sweden)

    J. Layne Myhre

    2012-01-01

    Full Text Available The development of striated muscle in vertebrates requires the assembly of contractile myofibrils, consisting of highly ordered bundles of protein filaments. Myofibril formation occurs by the stepwise addition of complex proteins, a process that is mediated by a variety of molecular chaperones and quality control factors. Most notably, myosin of the thick filament requires specialized chaperone activity during late myofibrillogenesis, including that of Hsp90 and its cofactor, Unc45b. Unc45b has been proposed to act exclusively as an adaptor molecule, stabilizing interactions between Hsp90 and myosin; however, recent discoveries in zebrafish and C. elegans suggest the possibility of an earlier role for Unc45b during myofibrillogenesis. This role may involve functional control of nonmuscle myosins during the earliest stages of myogenesis, when premyofibril scaffolds are first formed from dynamic cytoskeletal actin. This paper will outline several lines of evidence that converge to build a model for Unc45b activity during early myofibrillogenesis.

  9. Cardiac myosin binding protein-C as a central target of cardiac sarcomere signaling: a special mini-review series

    Science.gov (United States)

    de Tombe, Pieter P.

    2013-01-01

    Cardiac myosin binding protein-C (cMyBP-C) is a cardiac-specific thick filament assembly, accessory and regulatory protein. Physiologically, it is a key regulator of cardiac contractility. With more than two hundred mutations in the cMyBP-C gene directly linked to the development of cardiomyopathy and heart failure, cMyBP-C clearly plays a critical role in heart function. At baseline, cMyBP-C is highly phosphorylated, a condition required for normal cardiac function. However, the level of cMyBP-C phosphorylation is significantly decreased during heart failure, indicating that the level of cMyBP-C phosphorylation is directly linked to signaling and cardiac function. Early studies indicated that cMyBP-C interacts with myosin and titin, whereas studies now show that it also interacts with thin filament proteins. However, the exact role(s) of cMyBP-C in the heart remain(s) to be elucidated. As such, we invited experts in the field of cardiac muscle to identify and address key issues related to cMyBP-C by contributing a mini-review on such topics as structure, function, regulation, cardiomyopathy, proteolysis, and gene therapy. Starting from this issue, Pflügers Archiv European Journal of Physiology will publish two invited mini-review articles each month to discuss the most recent advances in the study of cMyBP-C. PMID:24196566

  10. Cardiac myosin binding protein-C as a central target of cardiac sarcomere signaling: a special mini review series.

    Science.gov (United States)

    Sadayappan, Sakthivel; de Tombe, Pieter P

    2014-02-01

    Cardiac myosin binding protein-C (cMyBP-C) is a cardiac-specific thick filament assembly, accessory, and regulatory protein. Physiologically, it is a key regulator of cardiac contractility. With more than 200 mutations in the cMyBP-C gene directly linked to the development of cardiomyopathy and heart failure, cMyBP-C clearly plays a critical role in heart function. At baseline, cMyBP-C is highly phosphorylated, a condition required for normal cardiac function. However, the level of cMyBP-C phosphorylation is significantly decreased during heart failure, indicating that the level of cMyBP-C phosphorylation is directly linked to signaling and cardiac function. Early studies indicated that cMyBP-C interacts with myosin and titin, whereas studies now show that it also interacts with thin filament proteins. However, the exact role(s) of cMyBP-C in the heart remain(s) to be elucidated. As such, we invited experts in the field of cardiac muscle to identify and address key issues related to cMyBP-C by contributing a mini review on such topics as structure, function, regulation, cardiomyopathy, proteolysis, and gene therapy. Starting from this issue, Pflügers Archiv European Journal of Physiology will publish two invited mini review articles each month to discuss the most recent advances in the study of cMyBP-C.

  11. An embryonic myosin isoform enables stretch activation and cyclical power in Drosophila jump muscle.

    Science.gov (United States)

    Zhao, Cuiping; Swank, Douglas M

    2013-06-18

    The mechanism behind stretch activation (SA), a mechanical property that increases muscle force and oscillatory power generation, is not known. We used Drosophila transgenic techniques and our new muscle preparation, the jump muscle, to determine if myosin heavy chain isoforms influence the magnitude and rate of SA force generation. We found that Drosophila jump muscles show very low SA force and cannot produce positive power under oscillatory conditions at pCa 5.0. However, we transformed the jump muscle to be moderately stretch-activatable by replacing its myosin isoform with an embryonic isoform (EMB). Expressing EMB, jump muscle SA force increased by 163% and it generated net positive power. The rate of SA force development decreased by 58% with EMB expression. Power generation is Pi dependent as >4 mM Pi was required for positive power from EMB. Pi increased EMB SA force, but not wild-type SA force. Our data suggest that when muscle expressing EMB is stretched, EMB is more easily driven backward to a weakly bound state than wild-type jump muscle. This increases the number of myosin heads available to rapidly bind to actin and contribute to SA force generation. We conclude that myosin heavy chain isoforms influence both SA kinetics and SA force, which can determine if a muscle is capable of generating oscillatory power at a fixed calcium concentration. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Temporal embryonic transcription of chicken fast skeletal myosin heavy chain isoforms in the single comb white leghorn

    OpenAIRE

    Griffin, J.; St-Pierre, N.; Lilburn, M. S.; Wick, M.

    2016-01-01

    There are numerous factors that can significantly influence embryonic development in poultry and thus make simple days of incubation (chronological age) a less than perfect metric for studying embryonic physiology. The developmental fast skeletal muscle myosin (MyHC), the predominant protein in the Pectoralis major (PM), is temporally expressed as a cadre of highly specific developmental isoforms. In the study described herein, a novel molecular technology (NanoString) was used to characteriz...

  13. Knockdown of embryonic myosin heavy chain reveals an essential role in the morphology and function of the developing heart

    Science.gov (United States)

    Rutland, Catrin Sian; Polo-Parada, Luis; Ehler, Elisabeth; Alibhai, Aziza; Thorpe, Aaran; Suren, Suganthi; Emes, Richard D.; Patel, Bhakti; Loughna, Siobhan

    2011-01-01

    The expression and function of embryonic myosin heavy chain (eMYH) has not been investigated within the early developing heart. This is despite the knowledge that other structural proteins, such as alpha and beta myosin heavy chains and cardiac alpha actin, play crucial roles in atrial septal development and cardiac function. Most cases of atrial septal defects and cardiomyopathy are not associated with a known causative gene, suggesting that further analysis into candidate genes is required. Expression studies localised eMYH in the developing chick heart. eMYH knockdown was achieved using morpholinos in a temporal manner and functional studies were carried out using electrical and calcium signalling methodologies. Knockdown in the early embryo led to abnormal atrial septal development and heart enlargement. Intriguingly, action potentials of the eMYH knockdown hearts were abnormal in comparison with the alpha and beta myosin heavy chain knockdowns and controls. Although myofibrillogenesis appeared normal, in knockdown hearts the tissue integrity was affected owing to apparent focal points of myocyte loss and an increase in cell death. An expression profile of human skeletal myosin heavy chain genes suggests that human myosin heavy chain 3 is the functional homologue of the chick eMYH gene. These data provide compelling evidence that eMYH plays a crucial role in important processes in the early developing heart and, hence, is a candidate causative gene for atrial septal defects and cardiomyopathy. PMID:21862559

  14. Temporal embryonic transcription of chicken fast skeletal myosin heavy chain isoforms in the single comb white leghorn.

    Science.gov (United States)

    Griffin, J; St-Pierre, N; Lilburn, M S; Wick, M

    2016-05-01

    There are numerous factors that can significantly influence embryonic development in poultry and thus make simple days of incubation (chronological age) a less than perfect metric for studying embryonic physiology. The developmental fast skeletal muscle myosin (MyHC), the predominant protein in the Pectoralis major (PM), is temporally expressed as a cadre of highly specific developmental isoforms. In the study described herein, a novel molecular technology (NanoString) was used to characterize the myosin isoform transcriptional patterns in the PM of Single Comb White Leghorn (SCWL) embryos. NanoString technology is based on quantitative analysis of the transcriptome through digital detection and quantification of target mRNA transcripts. Total RNA was isolated and gene transcription quantified using NanoString in embryonic muscle samples collected daily from 6 through 19 days of incubation. Data were analyzed using the LOESS smoothing function at a 95% confidence level. The temporal transcription of MyHC isoforms obtained in this study was consistent with the literature at higher specificity and resolution, thus validating NanoString for use in gene transcription analyses. The results support a hypothesis that the transcription patterns of the embryonic MyHC isoforms may be used as molecular clocks to further investigate the developmental relationships underlying embryonic fast skeletal muscle growth and development. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.

  15. The sarcomeric cytoskeleton: from molecules to motion.

    Science.gov (United States)

    Gautel, Mathias; Djinović-Carugo, Kristina

    2016-01-01

    Highly ordered organisation of striated muscle is the prerequisite for the fast and unidirectional development of force and motion during heart and skeletal muscle contraction. A group of proteins, summarised as the sarcomeric cytoskeleton, is essential for the ordered assembly of actin and myosin filaments into sarcomeres, by combining architectural, mechanical and signalling functions. This review discusses recent cell biological, biophysical and structural insight into the regulated assembly of sarcomeric cytoskeleton proteins and their roles in dissipating mechanical forces in order to maintain sarcomere integrity during passive extension and active contraction. α-Actinin crosslinks in the Z-disk show a pivot-and-rod structure that anchors both titin and actin filaments. In contrast, the myosin crosslinks formed by myomesin in the M-band are of a ball-and-spring type and may be crucial in providing stable yet elastic connections during active contractions, especially eccentric exercise. © 2016. Published by The Company of Biologists Ltd.

  16. Role of common sarcomeric gene polymorphisms in genetic ...

    Indian Academy of Sciences (India)

    Abstract. Mutations in sarcomeric genes are common genetic cause of cardiomyopathies. An intronic 25-bp deletion in cardiac myosin binding protein C (MYBPC3) at 3 region is associated with dilated and hypertrophic cardiomyopathies in Southeast Asia. However, the frequency of sarcomeric gene polymorphisms and ...

  17. Spatial distribution of "tissue-specific" antigens in the developing human heart and skeletal muscle. II. An immunohistochemical analysis of myosin heavy chain isoform expression patterns in the embryonic heart

    NARCIS (Netherlands)

    Wessels, A.; Vermeulen, J. L.; Virágh, S.; Kálmán, F.; Lamers, W. H.; Moorman, A. F.

    1991-01-01

    The spatial distribution of alpha- and beta-myosin heavy chain isoforms (MHCs) was investigated immunohistochemically in the embryonic human heart between the 4th and the 8th week of development. The development of the overall MHC isoform expression pattern can be outlined as follows: (1) In all

  18. Expression and subcellular localization of mammalian formin Fhod3 in the embryonic and adult heart.

    Directory of Open Access Journals (Sweden)

    Meikun Kan-o

    Full Text Available The formin family proteins play pivotal roles in actin filament assembly via the FH2 domain. The mammalian formin Fhod3 is highly expressed in the heart, and its mRNA in the adult heart contains exons 11, 12, and 25, which are absent from non-muscle Fhod3 isoforms. In cultured neonatal cardiomyocytes, Fhod3 localizes to the middle of the sarcomere and appears to function in its organization, although it is suggested that Fhod3 localizes differently in the adult heart. Here we show, using immunohistochemical analysis with three different antibodies, each recognizing distinct regions of Fhod3, that Fhod3 localizes as two closely spaced bands in middle of the sarcomere in both embryonic and adult hearts. The bands are adjacent to the M-line that crosslinks thick myosin filaments at the center of a sarcomere but distant from the Z-line that forms the boundary of the sarcomere, which localization is the same as that observed in cultured cardiomyocytes. Detailed immunohistochemical and immuno-electron microscopic analyses reveal that Fhod3 localizes not at the pointed ends of thin actin filaments but to a more peripheral zone, where thin filaments overlap with thick myosin filaments. We also demonstrate that the embryonic heart of mice specifically expresses the Fhod3 mRNA isoform harboring the three alternative exons, and that the characteristic localization of Fhod3 in the sarcomere does not require a region encoded by exon 25, in contrast to an essential role of exons 11 and 12. Furthermore, the exon 25-encoded region appears to be dispensable for actin-organizing activities both in vivo and in vitro, albeit it is inserted in the catalytic FH2 domain.

  19. Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mark S.; Dambacher, Corey M.; Knowles, Aileen F.; Braddock, Joan M.; Farman, Gerrie P.; Irving, Thomas C.; Swank, Douglas M.; Bernstein, Sanford I.; Maughan, David W.; (RPI); (IIT); (SDSU); (Vermont)

    2009-07-01

    The subfragment 2/light meromyosin 'hinge' region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifying this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.

  20. Modeling of supramolecular centrosymmetry effect on sarcomeric SHG intensity pattern of skeletal muscles.

    Science.gov (United States)

    Rouède, Denis; Recher, Gaëlle; Bellanger, Jean-Jacques; Lavault, Marie-Thérèse; Schaub, Emmanuel; Tiaho, François

    2011-07-20

    A theoretical far-field second harmonic generation (SHG) imaging radiation pattern is calculated for muscular myosin taking into account both Gouy effect and light diffraction under high focusing excitation. Theoretical analysis, in agreement with experimental results obtained on healthy Xenopus muscles, shows that the increase on intensity at the middle of the sarcomeric SHG intensity pattern is generated by an off-axis constructive interference related to the specific antipolar distribution of myosin molecules within the sarcomere. The best fit of the experimental sarcomeric SHG intensity pattern was obtained with an estimated size of antiparallel, intrathick filaments' packing-width of 115 ± 25 nm localized at the M-band. During proteolysis, experimental sarcomeric SHG intensity pattern exhibits decrease on intensity at the center of the sarcomere. An effective intra- and interthick filaments centrosymmetry of 320 ± 25 nm, in agreement with ultrastructural disorganization observed at the electron microscopy level, was necessary to fit the experimental sarcomeric SHG intensity pattern. Our results show that sarcomeric SHG intensity pattern is very sensitive to misalignment of thick filaments and highlights the potential usefulness of SHG microscopy to diagnose proteolysis-induced muscular disorders. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Immunophenotyping of congenital myopathies: disorganization of sarcomeric, cytoskeletal and extracellular matrix proteins

    NARCIS (Netherlands)

    van der Ven, P. F.; Jap, P. H.; ter Laak, H. J.; Nonaka, I.; Barth, P. G.; Sengers, R. C.; Stadhouders, A. M.; Ramaekers, F. C.

    1995-01-01

    We have studied the expression and distribution patterns of the intermediate filament proteins desmin and vimentin, the sarcomere components titin, nebulin and myosin, the basement membrane constituents collagen type IV and laminin, and the reticular layer component collagen type VI in skeletal

  2. Dynamic Alterations to α-Actinin Accompanying Sarcomere Disassembly and Reassembly during Cardiomyocyte Mitosis.

    Directory of Open Access Journals (Sweden)

    Xiaohu Fan

    Full Text Available Although mammals are thought to lose their capacity to regenerate heart muscle shortly after birth, embryonic and neonatal cardiomyocytes in mammals are hyperplastic. During proliferation these cells need to selectively disassemble their myofibrils for successful cytokinesis. The mechanism of sarcomere disassembly is, however, not understood. To study this, we performed a series of immunofluorescence studies of multiple sarcomeric proteins in proliferating neonatal rat ventricular myocytes and correlated these observations with biochemical changes at different cell cycle stages. During myocyte mitosis, α-actinin and titin were disassembled as early as prometaphase. α-actinin (representing the sarcomeric Z-disk disassembly precedes that of titin (M-line, suggesting that titin disassembly occurs secondary to the collapse of the Z-disk. Sarcomere disassembly was concurrent with the dissolution of the nuclear envelope. Inhibitors of several intracellular proteases could not block the disassembly of α-actinin or titin. There was a dramatic increase in both cytosolic (soluble and sarcomeric α-actinin during mitosis, and cytosolic α-actinin exhibited decreased phosphorylation compared to sarcomeric α-actinin. Inhibition of cyclin-dependent kinase 1 (CDK1 induced the quick reassembly of the sarcomere. Sarcomere dis- and re-assembly in cardiomyocyte mitosis is CDK1-dependent and features dynamic differential post-translational modifications of sarcomeric and cytosolic α-actinin.

  3. Sarcomeric model of stretch-induced stress fiber reorganization

    Directory of Open Access Journals (Sweden)

    Rol

    2010-12-01

    Full Text Available Roland Kaunas1, Hui-Ju Hsu1, Shinji Deguchi21Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA; 2Department of Biomedical Engineering, Tohoku University, Sendai, JapanAbstract: Actin stress fibers (SFs are mechanosensitive structural elements that respond to applied stress and strain to regulate cell morphology, signal transduction, and cell function. Results from various studies indicate that SFs tend to maintain stress or strain at a constant level. We developed a simple quantitative sarcomeric model of SFs to predict the role of actomyosin crossbridge cycling in SF tension regulation and reorientation in response to cyclic stretching. Under static conditions, the steady-state levels of SF tension were determined by the fiber passive stiffness and the stall force of the constituent myosin II filaments. When subject to cyclic changes in length at low frequencies, SFs change their unloaded reference length levels through myosin sliding to maintain tension at the original level. At high stretch frequencies, myosin cannot respond quickly enough and the SF behaves elastically. Myosin sliding also contributes to SF turnover, resulting in SF reorientation away from the direction of stretching at high, but not low, stretch frequencies. Using model parameters extracted from the literature, our model describes the dependence of cyclic stretch-induced SF alignment on stretch frequency and pattern consistent with experimental findings. This analysis predicts that myosin II plays multiple roles in regulating the ability of SFs to adapt to a dynamic mechanical environment.Keywords: mechanical stretch, cytoskeletal dynamics, myosin, mechanotransduction

  4. Genetic selection system allowing monitoring of myofibrillogenesis in living cardiomyocytes derived from mouse embryonic stem cells

    Directory of Open Access Journals (Sweden)

    R Bugorsky

    2009-08-01

    Full Text Available Embryonic stem (ES cell-derived cardiomyocytes recapitulate cardiomyogenesis in vitro and are a potential source of cells for cardiac repair. However, this requires enrichment of mixed populations of differentiating ES cells into cardiomyocytes. Toward this goal, we have generated bicistronic vectors that express both the blasticidin S deaminase (bsd gene and a fusion protein consisting of either myosin light chain (MLC-3f or human a-actinin 2A and enhanced green fluorescent protein (EGFP under the transcriptional control of the a-cardiac myosin heavy chain (a-MHC promoter. Insertion of the DNase I-hypersensitive site (HS-2 element from the b-globin locus control region, which has been shown to reduce transgene silencing in other cell systems, upstream of the transgene promoter enhanced MLC3f-EGFP gene expression levels in mouse ES cell lines. The a-MHC-a- actinin-EGFP, but not the a-MHC-MLC3f-EGFP, construct resulted in the correct incorporation of the newly synthesized fusion protein at the Z-band of the sarcomeres in ES cellderived cardiomyocytes. Exposure of embryoid bodies to blasticidin S selected for a relatively pure population of cardiomyocytes within 3 days. Myofibrillogenesis could be monitored by fluorescence microscopy in living cells due to sarcomeric epitope tagging. Therefore, this genetic system permits the rapid selection of a relatively pure population of developing cardiomyocytes from a heterogeneous population of differentiating ES cells, simultaneously allowing monitoring of early myofibrillogenesis in the selected myocytes.

  5. Familial hypertrophic cardiomyopathy: Functional effects of myosin mutation R723G in cardiomyocytes

    NARCIS (Netherlands)

    Kraft, T.; Witjas-Paalberends, E.R.; Boontje, N.; Tripathi, S.; Brandis, A.; Montag, J.; Hodgkinson, J.L.; Francino, A.; Navarro-Lopez, F.; Brenner, B.; Stienen, G.J.M.; van der Velden, J.

    2013-01-01

    Familial Hypertrophic Cardiomyopathy (FHC) is frequently caused by mutations in the β-cardiac myosin heavy chain (β-MyHC). To identify changes in sarcomeric function triggered by such mutations, distinguishing mutation effects from other functional alterations of the myocardium is essential. We

  6. Imaging the bipolarity of myosin filaments with Interferometric Second Harmonic Generation microscopy.

    Science.gov (United States)

    Rivard, Maxime; Couture, Charles-André; Miri, Amir K; Laliberté, Mathieu; Bertrand-Grenier, Antony; Mongeau, Luc; Légaré, François

    2013-01-01

    We report that combining interferometry with Second Harmonic Generation (SHG) microscopy provides valuable information about the relative orientation of noncentrosymmetric structures composing tissues. This is confirmed through the imaging of rat medial gastrocnemius muscle. The inteferometric Second Harmonic Generation (ISHG) images reveal that each side of the myosin filaments composing the A band of the sarcomere generates π phase shifted SHG signal which implies that the myosin proteins at each end of the filaments are oriented in opposite directions. This highlights the bipolar structural organization of the myosin filaments and shows that muscles can be considered as a periodically poled biological structure.

  7. Effect of Serum from Chickens Treated with Clenbuterol on Myosin Accumulation, Beta-Adrenergic Receptor Population, and Cyclic AMP Synthesis in Embryonic Chicken Skeletal Muscle Cell Cultures

    Science.gov (United States)

    Young, Ronald B.; Bridge, Kristin Y.; Wuethrich, Andrew J.; Hancock, Deana L.

    2002-01-01

    Broiler chickens at 35 d of age were fed 1 ppm clenbuterol for 14 d. This level of dietary clenbuterol led to 5-7% increases in the weights of leg and breast muscle tissue. At the end of the 14-d period, serum was prepared from both control and clenbuterol-treated chickens, and was then employed as a component of cell culture media at a final concentration of 20% (v/v). Muscle cell cultures were prepared from both the leg and the breast muscle groups of 12-d chick embryos. Treatment groups included control chicken serum to which 10 nM, 50 nM, and 1 uM clenbuterol had been added, as well as cells grown in media containing 10% horse serum. Cultures were subjected to each treatment for 3 d, beginning on the seventh d in culture. Neither the percent fusion nor the number of nuclei in myotubes was significantly affected by any of the treatments. The quantity of myosin heavy chains (MHCs) was not increased by serum from clenbuterol-treated chickens in either breast or leg muscle cultures; however, the MHC quantity was 50-150% higher in cultures grown in control chicken serum to which 10 and 50 nM clenbuterol had also been added. The B-adrenergic receptor (betaAR) population was 4000-7000 betaARs per cell in cultures grown in chicken serum with leg muscle cultures having approximately 25-30% more receptors than breast muscle Culture. Receptor population was not significantly affected by the presence of clenbuterol or by the presence of serum from clenbuterol-treated chickens. In contrast, the betaAR Population in leg and breast muscle cultures grown in the presence of 10% horse serum was 16,000-18,000 betaARs per cell. Basal concentration of cyclic adenosine 3':5'monophosphate (cAMP) was not significantly affected by the treatments. When cultures grown in chicken serum were stimulated for 10 min with 1 uM isoproterenol, limited increases of 12-20% in cAMP Concentration above the. basal levels were observed. However, when cultures grown in the presence of horse serum were

  8. Muscular tissues of the squid Doryteuthis pealeii express identical myosin heavy chain isoforms: an alternative mechanism for tuning contractile speed.

    Science.gov (United States)

    Shaffer, Justin F; Kier, William M

    2012-01-15

    The speed of muscle contraction is largely controlled at the sarcomere level by the ATPase activity of the motor protein myosin. Differences in amino acid sequence in catalytically important regions of myosin yield different myosin isoforms with varying ATPase activities and resulting differences in cross-bridge cycling rates and interfilamentary sliding velocities. Modulation of whole-muscle performance by changes in myosin isoform ATPase activity is regarded as a universal mechanism to tune contractile properties, especially in vertebrate muscles. Invertebrates such as squid, however, may exhibit an alternative mechanism to tune contractile properties that is based on differences in muscle ultrastructure, including variable myofilament and sarcomere lengths. To determine definitively whether contractile properties of squid muscles are regulated via different myosin isoforms (i.e. different ATPase activities), the nucleotide and amino acid sequences of the myosin heavy chain from the squid Doryteuthis pealeii were determined from the mantle, arm, tentacle, fin and funnel retractor musculature. We identified three myosin heavy chain isoforms in squid muscular tissues, with differences arising at surface loop 1 and the carboxy terminus. All three isoforms were detected in all five tissues studied. These results suggest that the muscular tissues of D. pealeii express identical myosin isoforms, and it is likely that differences in muscle ultrastructure, not myosin ATPase activity, represent the most important mechanism for tuning contractile speeds.

  9. Still Heart Encodes a Structural HMT, SMYD1b, with Chaperone-Like Function during Fast Muscle Sarcomere Assembly.

    Directory of Open Access Journals (Sweden)

    Kendal Prill

    Full Text Available The vertebrate sarcomere is a complex and highly organized contractile structure whose assembly and function requires the coordination of hundreds of proteins. Proteins require proper folding and incorporation into the sarcomere by assembly factors, and they must also be maintained and replaced due to the constant physical stress of muscle contraction. Zebrafish mutants affecting muscle assembly and maintenance have proven to be an ideal tool for identification and analysis of factors necessary for these processes. The still heart mutant was identified due to motility defects and a nonfunctional heart. The cognate gene for the mutant was shown to be smyd1b and the still heart mutation results in an early nonsense codon. SMYD1 mutants show a lack of heart looping and chamber definition due to a lack of expression of heart morphogenesis factors gata4, gata5 and hand2. On a cellular level, fast muscle fibers in homozygous mutants do not form mature sarcomeres due to the lack of fast muscle myosin incorporation by SMYD1b when sarcomeres are first being assembled (19hpf, supporting SMYD1b as an assembly protein during sarcomere formation.

  10. Ebstein's anomaly may be caused by mutations in the sarcomere protein gene MYH7.

    Science.gov (United States)

    van Engelen, K; Postma, A V; van de Meerakker, J B A; Roos-Hesselink, J W; Helderman-van den Enden, A T J M; Vliegen, H W; Rahman, T; Baars, M J H; Sels, J-W; Bauer, U; Pickardt, T; Sperling, S R; Moorman, A F M; Keavney, B; Goodship, J; Klaassen, S; Mulder, B J M

    2013-03-01

    Ebstein's anomaly is a rare congenital heart malformation characterised by adherence of the septal and posterior leaflets of the tricuspid valve to the underlying myocardium. Associated abnormalities of left ventricular morphology and function including left ventricular noncompaction (LVNC) have been observed. An association between Ebstein's anomaly with LVNC and mutations in the sarcomeric protein gene MYH7, encoding β-myosin heavy chain, has been shown by recent studies. This might represent a specific subtype of Ebstein's anomaly with a Mendelian inheritance pattern. In this review we discuss the association of MYH7 mutations with Ebstein's anomaly and LVNC and its implications for the clinical care for patients and their family members.

  11. Different actions of salt and pyrophosphate on protein extraction from myofibrils reveal the mechanism controlling myosin dissociation.

    Science.gov (United States)

    Shen, Qingwu W; Swartz, Darl R; Wang, Zhenyu; Liu, Yue; Gao, Yuan; Zhang, Dequan

    2016-04-01

    Myosin is the major functional protein in muscle foods for water retention, protein binding/gelation and fat holding/emulsification. To maximize its functionality, myosin needs to be released from thick filaments. Understanding of the mechanism controlling myosin extraction will help improve quality traits of meat products. The data obtained show that actomyosin binding is the rate-limiting constraint for myosin release in rigor condition. Magnesium pyrophosphate (MgPPi) increased myosin extraction by weakening actomyosin interaction and maximized myosin extraction at 0.4 mol L(-1) NaCl, which was not attained at 1.0 mol L(-1) NaCl in the absence of PPi. Interaction between myosin rod domains is another critical constraint for myosin extraction, which is, rather than PPi, salt dependent. Further, our data suggest that MyBP-C (myosin binding protein C) and M-line might not be of significance in the process of NaCl-induced myosin extraction, though further study was needed. Our study provides new insight into the mechanism that controls myosin extraction from intact sarcomere, which could be applied to maximize myosin function and to improve meat quality in practice. © 2015 Society of Chemical Industry.

  12. Targets for therapy in sarcomeric cardiomyopathies.

    Science.gov (United States)

    Tardiff, Jil C; Carrier, Lucie; Bers, Donald M; Poggesi, Corrado; Ferrantini, Cecilia; Coppini, Raffaele; Maier, Lars S; Ashrafian, Houman; Huke, Sabine; van der Velden, Jolanda

    2015-04-01

    To date, no compounds or interventions exist that treat or prevent sarcomeric cardiomyopathies. Established therapies currently improve the outcome, but novel therapies may be able to more fundamentally affect the disease process and course. Investigations of the pathomechanisms are generating molecular insights that can be useful for the design of novel specific drugs suitable for clinical use. As perturbations in the heart are stage-specific, proper timing of drug treatment is essential to prevent initiation and progression of cardiac disease in mutation carrier individuals. In this review, we emphasize potential novel therapies which may prevent, delay, or even reverse hypertrophic cardiomyopathy caused by sarcomeric gene mutations. These include corrections of genetic defects, altered sarcomere function, perturbations in intracellular ion homeostasis, and impaired myocardial energetics. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  13. Targets for therapy in sarcomeric cardiomyopathies

    Science.gov (United States)

    Tardiff, Jil C.; Carrier, Lucie; Bers, Donald M.; Poggesi, Corrado; Ferrantini, Cecilia; Coppini, Raffaele; Maier, Lars S.; Ashrafian, Houman; Huke, Sabine; van der Velden, Jolanda

    2015-01-01

    To date, no compounds or interventions exist that treat or prevent sarcomeric cardiomyopathies. Established therapies currently improve the outcome, but novel therapies may be able to more fundamentally affect the disease process and course. Investigations of the pathomechanisms are generating molecular insights that can be useful for the design of novel specific drugs suitable for clinical use. As perturbations in the heart are stage-specific, proper timing of drug treatment is essential to prevent initiation and progression of cardiac disease in mutation carrier individuals. In this review, we emphasize potential novel therapies which may prevent, delay, or even reverse hypertrophic cardiomyopathy caused by sarcomeric gene mutations. These include corrections of genetic defects, altered sarcomere function, perturbations in intracellular ion homeostasis, and impaired myocardial energetics. PMID:25634554

  14. Hypothesis and theory: Mechanical instabilities and non-uniformities in hereditary sarcomere myopathies

    Directory of Open Access Journals (Sweden)

    Alf eMansson

    2014-09-01

    Full Text Available Familial hypertrophic cardiomyopathy (HCM, due to point mutations in genes for sarcomere proteins such as myosin, occurs in 1/500 people and is the most common cause of sudden death in young individuals. Similar mutations in skeletal muscle, e.g. in the MYH7 gene for slow myosin found in both the cardiac ventricle and slow skeletal muscle, may also cause severe disease but the severity and the morphological changes are often different. In HCM, the modified protein function leads, over years to decades, to secondary remodeling with substantial morphological changes, such as hypertrophy, myofibrillar disarray and extensive fibrosis associated with severe functional deterioration. Despite intense studies, it is unclear how the moderate mutation-induced changes in protein function cause the long-term effects. In hypertrophy of the heart due to pressure overload (e.g. hypertension, mechanical stress in the myocyte is believed to be major initiating stimulus for activation of relevant cell signaling cascades. Here it is considered how expression of mutated proteins, such as myosin or regulatory proteins, could have similar consequences through one or both of the following mechanisms: 1. contractile instabilities within each sarcomere (with more than one stable velocity for a given load, 2. different tension generating capacities of cells in series. These mechanisms would have the potential to cause increased tension and/or stretch of certain cells during parts of the cardiac cycle. Modeling studies are used to illustrate these ideas and experimental tests are proposed. The applicability of similar ideas to skeletal muscle is also postulated, and differences between heart and skeletal muscle are discussed.

  15. Transmural heterogeneity of myofilament function and sarcomeric protein phosphorylation in remodelled myocardium of pigs with a recent myocardial infarction

    Directory of Open Access Journals (Sweden)

    Jolanda evan der Velden

    2011-11-01

    Full Text Available Transmural differences in sarcomeric protein composition and function across the left ventricular (LV wall have been reported. We studied sarcomeric function and protein phosphorylation in subepicardial (EPI and subendocardial (ENDO layers of remote LV pig myocardium after infarction (MI, induced by left circumflex coronary artery ligation. EPI and ENDO samples were taken 3 weeks after sham surgery (n=12 or induction of MI (n=12 at baseline and after β-adrenergic receptor (βAR stimulation with dobutamine. Isometric force was measured in single cardiomyocytes at various [Ca2+] and 2.2 μm sarcomere length. In sham hearts, no significant transmural differences were observed in myofilament function or protein phosphorylation. Myofilament Ca2+-sensitivity was significantly higher in both EPI and ENDO of MI compared to sham hearts. Maximal force was significantly reduced in MI compared to sham, but solely in ENDO cells. A higher passive force was observed in MI hearts, but only in EPI cells. The proportion of stiff N2B isoform was higher in EPI than in ENDO in both sham and MI hearts, and a trend towards increased N2B-proportion appeared in MI EPI, but not MI Endo. Analysis of myofilament protein phosphorylation did not reveal significant transmural differences in phosphorylation of myosin binding protein C, desmin, troponin T, troponin I (cTnI and myosin light chain 2 (MLC-2 both at baseline and after βAR stimulation with dobutamine infusion. A significant increase in MLC-2 phosphorylation was observed during dobutamine only in sham. In addition, the increase in cTnI phosphorylation upon dobutamine was 2-fold lower in MI than in sham.Myofilament dysfunction is present in both EPI and ENDO in post-MI remodelled myocardium, but shows a high degree of qualitative heterogeneity across the LV wall. These heterogeneous transmural changes in sarcomeric properties likely contribute differently to systolic versus diastolic global LV dysfunction after MI.

  16. Disorder profile of nebulin encodes a vernierlike position sensor for the sliding thin and thick filaments of the skeletal muscle sarcomere

    Science.gov (United States)

    Wu, Ming-Chya; Forbes, Jeffrey G.; Wang, Kuan

    2016-06-01

    Nebulin is an about 1 μ m long intrinsically disordered scaffold for the thin filaments of skeletal muscle sarcomere. It is a multifunctional elastic protein that wraps around actin filament, stabilizes thin filaments, and regulates Ca-dependent actomyosin interactions. This study investigates whether the disorder profile of nebulin might encode guidelines for thin and thick filament interactions in the sarcomere of the skeletal muscle. The question was addressed computationally by analyzing the predicted disorder profile of human nebulin (6669 residues, ˜200 actin-binding repeats) by pondr and the periodicity of the A-band stripes (reflecting the locations of myosin-associated proteins) in the electron micrographs of the sarcomere. Using the detrended fluctuation analysis, a scale factor for the A-band stripe image data with respect to the nebulin disorder profile was determined to make the thin and thick filaments aligned to have maximum correlation. The empirical mode decomposition method was then applied to identify hidden periodicities in both the nebulin disorder profile and the rescaled A-band data. The decomposition reveals three characteristic length scales (45 nm, 100 nm, and 200 nm) that are relevant for correlational analysis. The dynamical cross-correlation analyses with moving windows at various sarcomere lengths depict a vernierlike design for both periodicities, thus enabling nebulin to sense position and fine tune sarcomere overlap. This shows that the disorder profile of scaffolding proteins may encode a guideline for cellular architecture.

  17. Myosin binding protein C, a phosphorylation-dependent force regulator in muscle that controls the attachment of myosin heads by its interaction with myosin S2.

    Science.gov (United States)

    Kunst, G; Kress, K R; Gruen, M; Uttenweiler, D; Gautel, M; Fink, R H

    Myosin binding protein C (MyBP-C) is one of the major sarcomeric proteins involved in the pathophysiology of familial hypertrophic cardiomyopathy (FHC). The cardiac isoform is tris-phosphorylated by cAMP-dependent protein kinase (cAPK) on beta-adrenergic stimulation at a conserved N-terminal domain (MyBP-C motif), suggesting a role in regulating positive inotropy mediated by cAPK. Recent data show that the MyBP-C motif binds to a conserved segment of sarcomeric myosin S2 in a phosphorylation-regulated way. Given that most MyBP-C mutations that cause FHC are predicted to result in N-terminal fragments of the protein, we investigated the specific effects of the MyBP-C motif on contractility and its modulation by cAPK phosphorylation. The diffusion of proteins into skinned fibers allows the investigation of effects of defined molecular regions of MyBP-C, because the endogenous MyBP-C is associated with few myosin heads. Furthermore, the effect of phosphorylation of cardiac MyBP-C can be studied in a defined unphosphorylated background in skeletal muscle fibers only. Triton skinned fibers were tested for maximal isometric force, Ca(2+)/force relation, rigor force, and stiffness in the absence and presence of the recombinant cardiac MyBP-C motif. The presence of unphosphorylated MyBP-C motif resulted in a significant (1) depression of Ca(2+)-activated maximal force with no effect on dynamic stiffness, (2) increase of the Ca(2+) sensitivity of active force (leftward shift of the Ca(2+)/force relation), (3) increase of maximal rigor force, and (4) an acceleration of rigor force and rigor stiffness development. Tris-phosphorylation of the MyBP-C motif by cAPK abolished these effects. This is the first demonstration that the S2 binding domain of MyBP-C is a modulator of contractility. The anchorage of the MyBP-C motif to the myosin filament is not needed for the observed effects, arguing that the mechanism of MyBP-C regulation is at least partly independent of a "tether

  18. Myosins, Actin and Autophagy

    National Research Council Canada - National Science Library

    Kruppa, Antonina J; Kendrick‐Jones, John; Buss, Folma

    2016-01-01

    .... In this review, we will discuss the importance of actin filament dynamics for autophagy progression and highlight the distinct requirement for three classes of myosins during different stages of the autophagy pathway...

  19. Unexpectedly Low Mutation Rates in Beta-Myosin Heavy Chain and Cardiac Myosin Binding Protein Genes in Italian Patients With Hypertrophic Cardiomyopathy

    Science.gov (United States)

    Roncarati, Roberta; Latronico, Michael VG; Musumeci, Beatrice; Aurino, Stefania; Torella, Annalaura; Bang, Marie-Louise; Jotti, Gloria Saccani; Puca, Annibale A; Volpe, Massimo; Nigro, Vincenzo; Autore, Camillo; Condorelli, Gianluigi

    2011-01-01

    Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiac disease. Fourteen sarcomeric and sarcomere-related genes have been implicated in HCM etiology, those encoding β-myosin heavy chain (MYH7) and cardiac myosin binding protein C (MYBPC3) reported as the most frequently mutated: in fact, these account for around 50% of all cases related to sarcomeric gene mutations, which are collectively responsible for approximately 70% of all HCM cases. Here, we used denaturing high-performance liquid chromatography followed by bidirectional sequencing to screen the coding regions of MYH7 and MYBPC3 in a cohort (n = 125) of Italian patients presenting with HCM. We found 6 MHY7 mutations in 9/125 patients and 18 MYBPC3 mutations in 19/125 patients. Of the three novel MYH7 mutations found, two were missense, and one was a silent mutation; of the eight novel MYBPC3 mutations, one was a substitution, three were stop codons, and four were missense mutations. Thus, our cohort of Italian HCM patients did not harbor the high frequency of mutations usually found in MYH7 and MYBPC3. This finding, coupled to the clinical diversity of our cohort, emphasizes the complexity of HCM and the need for more inclusive investigative approaches in order to fully understand the pathogenesis of this disease. J. Cell. Physiol. 226: 2894–2900, 2011. © 2011 Wiley-Liss, Inc. PMID:21302287

  20. Breaking sarcomeres by in vitro exercise.

    Science.gov (United States)

    Orfanos, Zacharias; Gödderz, Markus P O; Soroka, Ekaterina; Gödderz, Tobias; Rumyantseva, Anastasia; van der Ven, Peter F M; Hawke, Thomas J; Fürst, Dieter O

    2016-01-25

    Eccentric exercise leads to focal disruptions in the myofibrils, referred to as "lesions". These structures are thought to contribute to the post-exercise muscle weakness, and to represent areas of mechanical damage and/or remodelling. Lesions have been investigated in human biopsies and animal samples after exercise. However, this approach does not examine the mechanisms behind lesion formation, or their behaviour during contraction. To circumvent this, we used electrical pulse stimulation (EPS) to simulate exercise in C2C12 myotubes, combined with live microscopy. EPS application led to the formation of sarcomeric lesions in the myotubes, resembling those seen in exercised mice, increasing in number with the time of application or stimulation intensity. Furthermore, transfection with an EGFP-tagged version of the lesion and Z-disc marker filamin-C allowed us to observe the formation of lesions using live cell imaging. Finally, using the same technique we studied the behaviour of these structures during contraction, and observed them to be passively stretching. This passive behaviour supports the hypothesis that lesions contribute to the post-exercise muscle weakness, protecting against further damage. We conclude that EPS can be reliably used as a model for the induction and study of sarcomeric lesions in myotubes in vitro.

  1. Breaking sarcomeres by in vitro exercise

    Science.gov (United States)

    Orfanos, Zacharias; Gödderz, Markus P. O.; Soroka, Ekaterina; Gödderz, Tobias; Rumyantseva, Anastasia; van der Ven, Peter F. M.; Hawke, Thomas J.; Fürst, Dieter O.

    2016-01-01

    Eccentric exercise leads to focal disruptions in the myofibrils, referred to as “lesions”. These structures are thought to contribute to the post-exercise muscle weakness, and to represent areas of mechanical damage and/or remodelling. Lesions have been investigated in human biopsies and animal samples after exercise. However, this approach does not examine the mechanisms behind lesion formation, or their behaviour during contraction. To circumvent this, we used electrical pulse stimulation (EPS) to simulate exercise in C2C12 myotubes, combined with live microscopy. EPS application led to the formation of sarcomeric lesions in the myotubes, resembling those seen in exercised mice, increasing in number with the time of application or stimulation intensity. Furthermore, transfection with an EGFP-tagged version of the lesion and Z-disc marker filamin-C allowed us to observe the formation of lesions using live cell imaging. Finally, using the same technique we studied the behaviour of these structures during contraction, and observed them to be passively stretching. This passive behaviour supports the hypothesis that lesions contribute to the post-exercise muscle weakness, protecting against further damage. We conclude that EPS can be reliably used as a model for the induction and study of sarcomeric lesions in myotubes in vitro. PMID:26804343

  2. Expression of various sarcomeric tropomyosin isoforms in equine ...

    African Journals Online (AJOL)

    Hence, we undertook a comprehensive exploratory study of various TPM isoforms from horse heart and skeletal muscle. We have cloned and sequenced two sarcomeric isoforms of the TPM1 gene called TPM1α and TPM1κ, one sarcomeric isoform of the TPM2 and one of the TPM3 gene, TPM2α and TPM3α respectively.

  3. Genetic advances in sarcomeric cardiomyopathies: state of the art

    NARCIS (Netherlands)

    Ho, Carolyn Y.; Charron, Philippe; Richard, Pascale; Girolami, Francesca; van Spaendonck-Zwarts, Karin Y.; Pinto, Yigal

    2015-01-01

    Genetic studies in the 1980s and 1990s led to landmark discoveries that sarcomere mutations cause both hypertrophic and dilated cardiomyopathies. Sarcomere mutations also likely play a role in more complex phenotypes and overlap cardiomyopathies with features of hypertrophy, dilation, diastolic

  4. Developmental expression and cardiac transcriptional regulation of Myh7b, a third myosin heavy chain in the vertebrate heart

    OpenAIRE

    Warkman, Andrew S.; Whitman, Samantha A; Miller, Melanie K.; Garriock, Robert J.; Schwach, Catherine M.; Gregorio, Carol C.; Krieg, Paul A.

    2012-01-01

    The mammalian heart expresses two myosin heavy chain genes (Myh6 and Myh7), which are major components of the thick filaments of the sarcomere. We have determined that a third myosin heavy chain, MYH7B, is also expressed in the myocardium. Developmental analysis shows Myh7b expression in cardiac and skeletal muscle of Xenopus, chick and mouse embryos, and in smooth muscle tissues during later stages of mouse embryogenesis. Myh7b is also expressed in the adult human heart. The promoter region ...

  5. The mechanisms of the residual force enhancement after stretch of skeletal muscle: non-uniformity in half-sarcomeres and stiffness of titin

    Science.gov (United States)

    Rassier, Dilson E.

    2012-01-01

    When activated skeletal muscles are stretched, the force increases significantly. After the stretch, the force decreases and reaches a steady-state level that is higher than the force produced at the corresponding length during purely isometric contractions. This phenomenon, referred to as residual force enhancement, has been observed for more than 50 years, but the mechanism remains elusive, generating considerable debate in the literature. This paper reviews studies performed with single muscle fibres, myofibrils and sarcomeres to investigate the mechanisms of the stretch-induced force enhancement. First, the paper summarizes the characteristics of force enhancement and early hypotheses associated with non-uniformity of sarcomere length. Then, it reviews new evidence suggesting that force enhancement can also be associated with sarcomeric structures. Finally, this paper proposes that force enhancement is caused by: (i) half-sarcomere non-uniformities that will affect the levels of passive forces and overlap between myosin and actin filaments, and (ii) a Ca2+-induced stiffness of titin molecules. These mechanisms are compatible with most observations in the literature, and can be tested directly with emerging technologies in the near future. PMID:22535786

  6. Myosin head orientation: a structural determinant for the Frank-Starling relationship

    Energy Technology Data Exchange (ETDEWEB)

    Farman, Gerrie P.; Gore, David; Allen, Edward; Schoenfelt, Kelly; Irving, Thomas C.; de Tombe, Pieter P. (IIT); (UIC)

    2011-09-06

    The cellular mechanism underlying the Frank-Starling law of the heart is myofilament length-dependent activation. The mechanism(s) whereby sarcomeres detect changes in length and translate this into increased sensitivity to activating calcium has been elusive. Small-angle X-ray diffraction studies have revealed that the intact myofilament lattice undergoes numerous structural changes upon an increase in sarcomere length (SL): lattice spacing and the I{sub 1,1}/I{sub 1,0} intensity ratio decreases, whereas the M3 meridional reflection intensity (I{sub M3}) increases, concomitant with increases in diastolic and systolic force. Using a short ({approx}10 ms) X-ray exposure just before electrical stimulation, we were able to obtain detailed structural information regarding the effects of external osmotic compression (with mannitol) and obtain SL on thin intact electrically stimulated isolated rat right ventricular trabeculae. We show that over the same incremental increases in SL, the relative changes in systolic force track more closely to the relative changes in myosin head orientation (as reported by IM3) than to the relative changes in lattice spacing. We conclude that myosin head orientation before activation determines myocardial sarcomere activation levels and that this may be the dominant mechanism for length-dependent activation.

  7. Differential patterns of myosin Va expression during the ontogenesis of the rat hippocampus

    Directory of Open Access Journals (Sweden)

    L.S. Brinn

    2010-09-01

    Full Text Available Myosin Va is an actin-based, processive molecular motor protein highly enriched in the nervous tissue of vertebrates. It has been associated with processes of cellular motility, which include organelle transport and neurite outgrowth. The in vivo expression of myosin Va protein in the developing nervous system of mammals has not yet been reported. We describe here the immunolocalization of myosin Va in the developing rat hippocampus. Coronal sections of the embryonic and postnatal rat hippocampus were probed with an affinity-purified, polyclonal anti-myosin Va antibody. Myosin Va was localized in the cytoplasm of granule cells in the dentate gyrus and of pyramidal cells in Ammon's horn formation. Myosin Va expression changed during development, being higher in differentiating rather than already differentiated granule and pyramidal cells. Some of these cells presented a typical migratory profile, while others resembled neurons that were in the process of differentiation. Myosin Va was also transiently expressed in fibers present in the fimbria. Myosin Va was not detected in germinative matrices of the hippocampus proper or of the dentate gyrus. In conclusion, myosin Va expression in both granule and pyramidal cells showed both position and time dependency during hippocampal development, indicating that this motor protein is under developmental regulation.

  8. Transmural heterogeneity of myofilament function and sarcomeric protein phosphorylation in remodeled myocardium of pigs with a recent myocardial infarction.

    Science.gov (United States)

    van der Velden, Jolanda; Merkus, Daphne; de Beer, Vincent; Hamdani, Nazha; Linke, Wolfgang A; Boontje, Nicky M; Stienen, Ger J M; Duncker, Dirk J

    2011-01-01

    Transmural differences in sarcomeric protein composition and function across the left ventricular (LV) wall have been reported. We studied in pigs sarcomeric function and protein phosphorylation in subepicardial (EPI) and subendocardial (ENDO) layers of remote LV myocardium after myocardial infarction (MI), induced by left circumflex coronary artery ligation. EPI and ENDO samples were taken 3 weeks after sham surgery (n = 12) or induction of MI (n = 12) at baseline (BL) and during β-adrenergic receptor (βAR) stimulation with dobutamine. Isometric force was measured in single cardiomyocytes at various [Ca(2+)] and 2.2 μm sarcomere length. In sham hearts, no significant transmural differences were observed in myofilament function or protein phosphorylation. Myofilament Ca(2+)-sensitivity was significantly higher in both EPI and ENDO of MI compared to sham hearts. Maximal force was significantly reduced in MI compared to sham, but solely in ENDO cells. A higher passive force was observed in MI hearts, but only in EPI cells. The proportion of stiff N2B isoform was higher in EPI than in ENDO in both sham and MI hearts, and a trend toward increased N2B-proportion appeared in MI EPI, but not MI Endo. Analysis of myofilament protein phosphorylation did not reveal significant transmural differences in phosphorylation of myosin binding protein C, desmin, troponin T, troponin I (cTnI), and myosin light chain 2 (MLC-2) both at BL and during βAR stimulation with dobutamine infusion. A significant increase in MLC-2 phosphorylation was observed during dobutamine only in sham. In addition, the increase in cTnI phosphorylation upon dobutamine was twofold lower in MI than in sham. Myofilament dysfunction is present in both EPI and ENDO in post-MI remodeled myocardium, but shows a high degree of qualitative heterogeneity across the LV wall. These heterogeneous transmural changes in sarcomeric properties likely contribute differently to systolic vs. diastolic global LV

  9. Regulation of class V myosin.

    Science.gov (United States)

    Zhang, Ning; Yao, Lin-Lin; Li, Xiang-Dong

    2018-01-01

    Class V myosin (myosin-5) is a molecular motor that functions as an organelle transporter. The activation of myosin-5's motor function has long been known to be associated with a transition from the folded conformation in the off-state to the extended conformation in the on-state, but only recently have we begun to understand the underlying mechanism. The globular tail domain (GTD) of myosin-5 has been identified as the inhibitory domain and has recently been shown to function as a dimer in regulating the motor function. The folded off-state of myosin-5 is stabilized by multiple intramolecular interactions, including head-GTD interactions, GTD-GTD interactions, and interactions between the GTD and the C-terminus of the first coiled-coil segment. Any cellular factor that affects these intramolecular interactions and thus the stability of the folded conformation of myosin-5 would be expected to regulate myosin-5 motor function. Both the adaptor proteins of myosin-5 and Ca2+ are potential regulators of myosin-5 motor function, because they can destabilize its folded conformation. A combination of these regulators provides a versatile scheme in regulating myosin-5 motor function in the cell.

  10. Contractile Dysfunction in Sarcomeric Hypertrophic Cardiomyopathy.

    Science.gov (United States)

    MacIver, David H; Clark, Andrew L

    2016-09-01

    The pathophysiological mechanisms underlying the clinical phenotype of sarcomeric hypertrophic cardiomyopathy are controversial. The development of cardiac hypertrophy in hypertension and aortic stenosis is usually described as a compensatory mechanism that normalizes wall stress. We suggest that an important abnormality in hypertrophic cardiomyopathy is reduced contractile stress (the force per unit area) generated by myocardial tissue secondary to abnormalities such as cardiomyocyte disarray. In turn, a progressive deterioration in contractile stress provokes worsening hypertrophy and disarray. A maintained or even exaggerated ejection fraction is explained by the increased end-diastolic wall thickness producing augmented thickening. We propose that the nature of the hemodynamic load in an individual with hypertrophic cardiomyopathy could determine its phenotype. Hypertensive patients with hypertrophic cardiomyopathy are more likely to develop exaggerated concentric hypertrophy; athletic individuals an asymmetric pattern; and inactive individuals a more apical hypertrophy. The development of a left ventricular outflow tract gradient and mitral regurgitation may be explained by differential regional strain resulting in mitral annular rotation. Copyright © 2016. Published by Elsevier Inc.

  11. Myosin Binding Protein C Interaction with Actin: CHARACTERIZATION AND MAPPING OF THE BINDING SITE*

    OpenAIRE

    Rybakova, Inna N.; Greaser, Marion L.; Moss, Richard L.

    2010-01-01

    Myosin binding protein C (MyBPC) is a multidomain protein associated with the thick filaments of striated muscle. Although both structural and regulatory roles have been proposed for MyBPC, its interactions with other sarcomeric proteins remain obscure. The current study was designed to examine the actin-binding properties of MyBPC and to define MyBPC domain regions involved in actin interaction. Here, we have expressed full-length mouse cardiac MyBPC (cMyBPC) in a baculovirus system and show...

  12. Organization and polarity of actin filament networks in cells: implications for the mechanism of myosin-based cell motility.

    Science.gov (United States)

    Cramer, L P

    1999-01-01

    Force arising from myosin activity drives a number of different types of motility in eukaryotic cells. Outside of muscle tissue, the precise mechanism of myosin-based cell motility is for the most part theoretical. A large part of the problem is that, aside from cell surface features such as lamellipodia and microvilli, relatively little is known about the structural organization of potential actin substrates for myosin in non-muscle motile cells. Several groups [Cramer, Siebert and Mitchison (1997) J. Cell Biol. 136, 1287-1305; Guild, Connelly, Shaw and Tilney (1997) J. Cell Biol. 138, 783-797; Svitkina, Verkhovsky, McQuade and Borisy (1997) J. Cell Biol. 139, 397-415] have begun to address this issue by determining actin organization throughout entire non-muscle motile cells. These studies reveal that a single motile cell comprises up to four distinct structural groups of actin organization, distinguished by differences in actin filament polarity: alternating, uniform, mixed or graded. The relative abundance and spatial location in cells of a particular actin organization varies with cell type. The existence in non-muscle motile cells of alternating-polarity actin filament bundles, the organization of muscle sarcomeres, provides direct structural evidence that some forms of motility in non-muscle cells are based on sarcomeric contraction, a recurring theory in the literature since the early days of muscle research. In this scenario, as in muscle sarcomeres, myosin generates isometric force, which is ideally suited to driving symmetrical types of motility, e.g. healing of circular wounds in coherent groups of cells. In contrast, uniform-polarity actin filament bundles and oriented meshworks in cells allow oriented movement of myosin, potentially over relatively long distances. In this simple 'transport-based' scenario, the direction in which myosin generates force is inherently polarized, and is well placed for driving asymmetrical or polarized types of motility

  13. Harmonic Force Spectroscopy Reveals a Force-Velocity Curve from a Single Human Beta Cardiac Myosin Motor

    DEFF Research Database (Denmark)

    Sung, Jongmin; Nag, Suman; Vestergaard, Christian L.

    2014-01-01

    in thin filaments in the sarcomere, cycling between a strongly bound state (force producing state) and a weakly bound state (relaxed state). Huxley and Simmons have previously proposed that the transition from the strong to the weak interaction can be modulated by an external load, i.e., the transition......A muscle contracts rapidly under low load, but slowly under high load. This load-dependent muscle shortening has been described with a hyperbolic load-velocity curve. Its molecular mechanisms remain to be elucidated, however. During muscle contraction, myosins in thick filaments interact with actin...... is slow under high load and fast under low load. We use a new, simple method we call "harmonic force spectroscopy" to extract a load-velocity relationship from a single human beta cardiac myosin II motor (S1). With a dual-beam optical trap, we hold an actin dumbbell over a single myosin molecule...

  14. Myosin heavy chain-like localizes at cell contact sites during Drosophila myoblast fusion and interacts in vitro with Rolling pebbles 7

    Energy Technology Data Exchange (ETDEWEB)

    Bonn, Bettina R.; Rudolf, Anja; Hornbruch-Freitag, Christina; Daum, Gabor; Kuckwa, Jessica; Kastl, Lena; Buttgereit, Detlev [Developmental Biology, Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35037 Marburg (Germany); Renkawitz-Pohl, Renate, E-mail: renkawit@biologie.uni-marburg.de [Developmental Biology, Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35037 Marburg (Germany)

    2013-02-15

    Besides representing the sarcomeric thick filaments, myosins are involved in many cellular transport and motility processes. Myosin heavy chains are grouped into 18 classes. Here we show that in Drosophila, the unconventional group XVIII myosin heavy chain-like (Mhcl) is transcribed in the mesoderm of embryos, most prominently in founder cells (FCs). An ectopically expressed GFP-tagged Mhcl localizes in the growing muscle at cell–cell contacts towards the attached fusion competent myoblast (FCM). We further show that Mhcl interacts in vitro with the essential fusion protein Rolling pebbles 7 (Rols7), which is part of a protein complex established at cell contact sites (Fusion-restricted Myogenic-Adhesive Structure or FuRMAS). Here, branched F-actin is likely needed to widen the fusion pore and to integrate the myoblast into the growing muscle. We show that the localization of Mhcl is dependent on the presence of Rols7, and we postulate that Mhcl acts at the FuRMAS as an actin motor protein. We further show that Mhcl deficient embryos develop a wild-type musculature. We thus propose that Mhcl functions redundantly to other myosin heavy chains in myoblasts. Lastly, we found that the protein is detectable adjacent to the sarcomeric Z-discs, suggesting an additional function in mature muscles. - Highlights: ► The class XVIII myosin encoding gene Mhcl is transcribed in the mesoderm. ► Mhcl localization at contact sites of fusing myoblasts depends on Rols7. ► Mhcl interacts in vitro with Rols7 which is essential for myogenesis. ► Functional redundancy with other myosins is likely as mutants show no muscle defects. ► Mhcl localizes adjacent to Z-discs of sarcomeres and might support muscle integrity.

  15. Subtle abnormalities in contractile function are an early manifestation of sarcomere mutations in dilated cardiomyopathy

    DEFF Research Database (Denmark)

    Lakdawala, Neal K; Thune, Jens J; Colan, Steven D

    2012-01-01

    Sarcomere mutations cause both dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM); however, the steps leading from mutation to disease are not well described. By studying mutation carriers before a clinical diagnosis develops, we characterize the early manifestations of sarcomere...

  16. Build it up-Tear it down: protein quality control in the cardiac sarcomere

    National Research Council Canada - National Science Library

    Willis, Monte S; Schisler, Jonathan C; Portbury, Andrea L; Patterson, Cam

    .... A host of new factors have been identified that play a role in the regulation of protein quality control in the sarcomere, including chaperones that mediate the assembly of sarcomere components...

  17. Overstretching of sarcomeres may not cause cerebral palsy muscle contracture

    NARCIS (Netherlands)

    Smeulders, Mark J. C.; Kreulen, Michiel; Hage, J. Joris; Huijing, Peter A.; van der Horst, Chantal M. A. M.

    2004-01-01

    To answer the question whether the muscle contracture in patients with cerebral palsy is caused by overstretching of in-series sarcomeres we studied the active and passive force-length relationship of the flexor carpi ulnaris muscle (FCU) in relation to its operating length range in 14 such patients

  18. Diaphragm weakness in pulmonary arterial hypertension: role of sarcomeric dysfunction

    NARCIS (Netherlands)

    Manders, E.; Man, F.S. de; Handoko, M.L.; Westerhof, N.; Hees, H.W.H. van; Stienen, G.J.; Vonk-Noordegraaf, A.; Ottenheijm, C.A.C.

    2012-01-01

    We previously demonstrated that diaphragm muscle weakness is present in experimental pulmonary arterial hypertension (PH). However, the nature of this diaphragm weakness is still unknown. Therefore, the aim of this study was to investigate whether changes at the sarcomeric level contribute to

  19. Myosin and myoglobin as tumor markers in the diagnosis of rhabdomyosarcoma. A comparative study.

    Science.gov (United States)

    Jong, A S; van Vark, M; Albus-Lutter, C E; van Raamsdonk, W; Voûte, P A

    1984-07-01

    Antibodies against the myosin heavy chain of adult chicken pectoral muscle and heart muscle which cross-react with myosin of human fast type II fibers ( antifast myosin) and slow type I fibers ( antislow myosin), respectively, and antibodies against human myoglobin have been assessed for their usefulness in diagnosing rhabdomyosarcoma. Formaldehyde-fixed and paraffin-embedded tissue and the avidin-biotinyl-peroxidase complex technique were used. Of 23 rhabdomyosarcomas studied, 20 were positive with antifast myosin and 11 with antimyoglobin . All tumors were negative with antislow myosin. Positive staining was observed in all three types of rhabdomyosarcoma, i.e., embryonal, alveolar, and pleomorphic, regardless of the antiserum used. Staining with antimyoglobin was generally limited to the cytoplasm-rich tumor cells. Besides rhabdomyosarcomas, the only other positive neoplasms were those which contained rhabdomyoblastic differentiation such as malignant Triton tumors and malignant mixed müllerian tumors. Our results indicate that antibodies against the fast myosin heavy chain are a useful tool for diagnosing rhabdomyosarcoma and that they can be used to distinguish that tumor from other small round cell tumors in childhood. The results are discussed in the light of the embryogenesis of skeletal muscle.

  20. The R403Q myosin mutation implicated in familial hypertrophic cardiomyopathy causes disorder at the actomyosin interface.

    Directory of Open Access Journals (Sweden)

    Niels Volkmann

    2007-11-01

    Full Text Available Mutations in virtually all of the proteins comprising the cardiac muscle sarcomere have been implicated in causing Familial Hypertrophic Cardiomyopathy (FHC. Mutations in the beta-myosin heavy chain (MHC remain among the most common causes of FHC, with the widely studied R403Q mutation resulting in an especially severe clinical prognosis. In vitro functional studies of cardiac myosin containing the R403Q mutation have revealed significant changes in enzymatic and mechanical properties compared to wild-type myosin. It has been proposed that these molecular changes must trigger events that ultimately lead to the clinical phenotype.Here we examine the structural consequences of the R403Q mutation in a recombinant smooth muscle myosin subfragment (S1, whose kinetic features have much in common with slow beta-MHC. We obtained three-dimensional reconstructions of wild-type and R403Q smooth muscle S1 bound to actin filaments in the presence (ADP and absence (apo of nucleotide by electron cryomicroscopy and image analysis. We observed that the mutant S1 was attached to actin at highly variable angles compared to wild-type reconstructions, suggesting a severe disruption of the actin-myosin interaction at the interface.These results provide structural evidence that disarray at the molecular level may be linked to the histopathological myocyte disarray characteristic of the diseased state.

  1. Seeding bioreactor-produced embryonic stem cell-derived cardiomyocytes on different porous, degradable, polyurethane scaffolds reveals the effect of scaffold architecture on cell morphology.

    Science.gov (United States)

    Fromstein, Joanna D; Zandstra, Peter W; Alperin, Cecilia; Rockwood, Danielle; Rabolt, John F; Woodhouse, Kimberly A

    2008-03-01

    A successful regenerative therapy to treat damage incurred after an ischemic event in the heart will require an integrated approach including methods for appropriate revascularization of the infarct site, mechanical recovery of damaged tissue, and electrophysiological coupling with native cells. Cardiomyocytes are the ideal cell type for heart regeneration because of their inherent electrical and physiological properties, and cardiomyocytes derived from embryonic stem cells (ESCs) represent an attractive option for tissue-engineering therapies. An important step in developing tissue engineering-based approaches to cardiac cell therapy is understanding how scaffold architecture affects cell behavior. In this work, we generated large numbers of ESC-derived cardiomyocytes in bioreactors and seeded them on porous, 3-dimensional scaffolds prepared using 2 different techniques: electrospinning and thermally induced phase separation (TIPS). The effect of material macro-architecture on the adhesion, viability, and morphology of the seeded cells was determined. On the electrospun scaffolds, cells were elongated in shape, a morphology typical of cultured ESC-derived cardiomyocytes, whereas on scaffolds fabricated using TIPS, the cells retained a rounded morphology. Despite these gross phenotypic and physiological differences, sarcomeric myosin and connexin 43 expression was evident, and contracting cells were observed on both scaffold types, suggesting that morphological changes induced by material macrostructure do not directly correlate to functional differences.

  2. C2C12 co-culture on a fibroblast substratum enables sustained survival of contractile, highly differentiated myotubes with peripheral nuclei and adult fast myosin expression.

    Science.gov (United States)

    Cooper, S T; Maxwell, A L; Kizana, E; Ghoddusi, M; Hardeman, E C; Alexander, I E; Allen, D G; North, K N

    2004-07-01

    We describe a simple culture method for obtaining highly differentiated clonal C2C12 myotubes using a feeder layer of confluent fibroblasts, and document the expression of contractile protein expression and aspects of myofibre morphology using this system. Traditional culture methods using collagen- or laminin-coated tissue-culture plastic typically results in a cyclic pattern of detachment and reformation of myotubes, rarely producing myotubes of a mature adult phenotype. C2C12 co-culture on a fibroblast substratum facilitates the sustained culture of contractile myotubes, resulting in a mature sarcomeric register with evidence for peripherally migrating nuclei. Immunoblot analysis demonstrates that desmin, tropomyosin, sarcomeric actin, alpha-actinin-2 and slow myosin are detected throughout myogenic differentiation, whereas adult fast myosin heavy chain isoforms, members of the dystrophin-associated complex, and alpha-actinin-3 are not expressed at significant levels until >6 days of differentiation, coincident with the onset of contractile activity. Electrical stimulation of mature myotubes reveals typical and reproducible calcium transients, demonstrating functional maturation with respect to calcium handling proteins. Immunocytochemical staining demonstrates a well-defined sarcomeric register throughout the majority of myotubes (70-80%) and a striated staining pattern is observed for desmin, indicating alignment of the intermediate filament network with the sarcomeric register. We report that culture volume affects the fusion index and rate of sarcomeric development in developing myotubes and propose that a fibroblast feeder layer provides an elastic substratum to support contractile activity and likely secretes growth factors and extracellular matrix proteins that assist myotube development. Copyright 2004 Wiley-Liss, Inc.

  3. Uncoupling of Expression of an Intronic MicroRNA and Its Myosin Host Gene by Exon Skipping▿

    OpenAIRE

    Bell, Matthew L; Buvoli, Massimo; Leinwand, Leslie A.

    2010-01-01

    The ancient MYH7b gene, expressed in striated muscle and brain, encodes a sarcomeric myosin and the intronic microRNA miR-499. We find that skipping of an exon introduces a premature termination codon in the transcript that downregulates MYH7b protein production without affecting microRNA expression. Among other genes, endogenous miR-499 targets the 3′ untranslated region of the transcription factor Sox6, which in turn acts as a repressor of MYH7b transcriptional activity. Thus, concerted tra...

  4. Genetic advances in sarcomeric cardiomyopathies: state of the art.

    Science.gov (United States)

    Ho, Carolyn Y; Charron, Philippe; Richard, Pascale; Girolami, Francesca; Van Spaendonck-Zwarts, Karin Y; Pinto, Yigal

    2015-04-01

    Genetic studies in the 1980s and 1990s led to landmark discoveries that sarcomere mutations cause both hypertrophic and dilated cardiomyopathies. Sarcomere mutations also likely play a role in more complex phenotypes and overlap cardiomyopathies with features of hypertrophy, dilation, diastolic abnormalities, and non-compaction. Identification of the genetic cause of these important conditions provides unique opportunities to interrogate and characterize disease pathogenesis and pathophysiology, starting from the molecular level and expanding from there. With such insights, there is potential for clinical translation that may transform management of patients and families with inherited cardiomyopathies. If key pathways for disease development can be identified, they could potentially serve as targets for novel disease-modifying or disease-preventing therapies. By utilizing gene-based diagnostic testing, we can identify at-risk individuals prior to the onset of clinical disease, allowing for disease-modifying therapy to be initiated early in life, at a time that such treatment may be most successful. In this section, we review the current application of genetics in clinical management, focusing on hypertrophic cardiomyopathy as a paradigm; discuss state-of-the-art genetic testing technology; review emerging knowledge of gene expression in sarcomeric cardiomyopathies; and discuss both the prospects, as well as the challenges, of bringing genetics to medicine. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.

  5. A Drosophila model of dominant inclusion body myopathy type 3 shows diminished myosin kinetics that reduce muscle power and yield myofibrillar defects

    Directory of Open Access Journals (Sweden)

    Jennifer A. Suggs

    2017-06-01

    Full Text Available Individuals with inclusion body myopathy type 3 (IBM3 display congenital joint contractures with early-onset muscle weakness that becomes more severe in adulthood. The disease arises from an autosomal dominant point mutation causing an E706K substitution in myosin heavy chain type IIa. We have previously expressed the corresponding myosin mutation (E701K in homozygous Drosophila indirect flight muscles and recapitulated the myofibrillar degeneration and inclusion bodies observed in the human disease. We have also found that purified E701K myosin has dramatically reduced actin-sliding velocity and ATPase levels. Since IBM3 is a dominant condition, we now examine the disease state in heterozygote Drosophila in order to gain a mechanistic understanding of E701K pathogenicity. Myosin ATPase activities in heterozygotes suggest that approximately equimolar levels of myosin accumulate from each allele. In vitro actin sliding velocity rates for myosin isolated from the heterozygotes were lower than the control, but higher than for the pure mutant isoform. Although sarcomeric ultrastructure was nearly wild type in young adults, mechanical analysis of skinned indirect flight muscle fibers revealed a 59% decrease in maximum oscillatory power generation and an approximately 20% reduction in the frequency at which maximum power was produced. Rate constant analyses suggest a decrease in the rate of myosin attachment to actin, with myosin spending decreased time in the strongly bound state. These mechanical alterations result in a one-third decrease in wing beat frequency and marginal flight ability. With aging, muscle ultrastructure and function progressively declined. Aged myofibrils showed Z-line streaming, consistent with the human heterozygote phenotype. Based upon the mechanical studies, we hypothesize that the mutation decreases the probability of the power stroke occurring and/or alters the degree of movement of the myosin lever arm, resulting in

  6. Apical constriction is driven by a pulsatile apical myosin network in delaminating Drosophila neuroblasts.

    Science.gov (United States)

    An, Yanru; Xue, Guosheng; Shaobo, Yang; Mingxi, Deng; Zhou, Xiaowei; Yu, Weichuan; Ishibashi, Toyotaka; Zhang, Lei; Yan, Yan

    2017-06-15

    Cell delamination is a conserved morphogenetic process important for the generation of cell diversity and maintenance of tissue homeostasis. Here, we used Drosophila embryonic neuroblasts as a model to study the apical constriction process during cell delamination. We observe dynamic myosin signals both around the cell adherens junctions and underneath the cell apical surface in the neuroectoderm. On the cell apical cortex, the nonjunctional myosin forms flows and pulses, which are termed medial myosin pulses. Quantitative differences in medial myosin pulse intensity and frequency are crucial to distinguish delaminating neuroblasts from their neighbors. Inhibition of medial myosin pulses blocks delamination. The fate of a neuroblast is set apart from that of its neighbors by Notch signaling-mediated lateral inhibition. When we inhibit Notch signaling activity in the embryo, we observe that small clusters of cells undergo apical constriction and display an abnormal apical myosin pattern. Together, these results demonstrate that a contractile actomyosin network across the apical cell surface is organized to drive apical constriction in delaminating neuroblasts. © 2017. Published by The Company of Biologists Ltd.

  7. Myosin storage myopathy: slow skeletal myosin (MYH7) mutation in two isolated cases.

    Science.gov (United States)

    Laing, N G; Ceuterick-de Groote, C; Dye, D E; Liyanage, K; Duff, R M; Dubois, B; Robberecht, W; Sciot, R; Martin, J-J; Goebel, H H

    2005-02-08

    Myosin storage myopathy is a congenital myopathy characterized by subsarcolemmal hyaline bodies in type 1 muscle fibers, which are ATPase positive and thus contain myosin. Mutations recently were identified in the type 1 muscle fiber myosin gene (MYH7) in Swedish and Saudi families with myosin storage myopathy. The authors have identified the arginine 1845 tryptophan mutation found in the Swedish families in two isolated Belgian cases, indicating a critical role for myosin residue arginine 1845.

  8. Mechanical parameters of the molecular motor myosin II determined in permeabilised fibres from slow and fast skeletal muscles of the rabbit.

    Science.gov (United States)

    Percario, Valentina; Boncompagni, Simona; Protasi, Feliciano; Pertici, Irene; Pinzauti, Francesca; Caremani, Marco

    2017-11-17

    The different performance of slow and fast muscles is mainly attributed to diversity of the myosin heavy chain (MHC) isoform expressed within them. In this study fast sarcomere-level mechanics has been applied to Ca2+ -activated single permeabilised fibres isolated from soleus (containing the slow myosin isoform) and psoas (containing the fast myosin isoform) muscles of rabbit for a comparative definition of the mechano-kinetics of force generation by slow and fast myosin isoforms in situ. The stiffness and the force of the slow myosin isoform are three times smaller than those of the fast isoform, suggesting that the stiffness of the myosin motor is a determinant of the isoform-dependent functional diversity between skeletal muscles. These results open the question of the mechanism that can reconcile the reduced performance of the slow MHC with the higher efficiency of the slow muscle. The skeletal muscle exhibits large functional differences depending on the myosin heavy chain (MHC) isoform expressed in its molecular motor, myosin II. The differences in the mechanical features of force generation by myosin isoforms were investigated in situ by using fast sarcomere-level mechanical methods in permeabilised fibres (sarcomere length 2.4 μm, temperature 12°C, 4% dextran T-500) from slow (soleus, containing the MHC-1 isoform) and fast (psoas, containing the MHC-2X isoform) skeletal muscle of the rabbit. The stiffness of the half-sarcomere was determined at the plateau of Ca2+ -activated isometric contractions and in rigor and analysed with a model that accounted for the filament compliance to estimate the stiffness of the myosin motor (ε). ε was 0.56 ± 0.04 and 1.70 ± 0.37 pN nm-1 for the slow and fast isoform, respectively, while the average strain per attached motor (s0 ) was similar (∼3.3 nm) in both isoforms. Consequently the force per motor (F0  = εs0 ) was three times smaller in the slow isoform than in the fast isoform (1.89 ± 0.43 versus

  9. Auxotonic to isometric contraction transitioning in a beating heart causes myosin step-size to down shift.

    Directory of Open Access Journals (Sweden)

    Thomas P Burghardt

    Full Text Available Myosin motors in cardiac ventriculum convert ATP free energy to the work of moving blood volume under pressure. The actin bound motor cyclically rotates its lever-arm/light-chain complex linking motor generated torque to the myosin filament backbone and translating actin against resisting force. Previous research showed that the unloaded in vitro motor is described with high precision by single molecule mechanical characteristics including unitary step-sizes of approximately 3, 5, and 8 nm and their relative step-frequencies of approximately 13, 50, and 37%. The 3 and 8 nm unitary step-sizes are dependent on myosin essential light chain (ELC N-terminus actin binding. Step-size and step-frequency quantitation specifies in vitro motor function including duty-ratio, power, and strain sensitivity metrics. In vivo, motors integrated into the muscle sarcomere form the more complex and hierarchically functioning muscle machine. The goal of the research reported here is to measure single myosin step-size and step-frequency in vivo to assess how tissue integration impacts motor function. A photoactivatable GFP tags the ventriculum myosin lever-arm/light-chain complex in the beating heart of a live zebrafish embryo. Detected single GFP emission reports time-resolved myosin lever-arm orientation interpreted as step-size and step-frequency providing single myosin mechanical characteristics over the active cycle. Following step-frequency of cardiac ventriculum myosin transitioning from low to high force in relaxed to auxotonic to isometric contraction phases indicates that the imposition of resisting force during contraction causes the motor to down-shift to the 3 nm step-size accounting for >80% of all the steps in the near-isometric phase. At peak force, the ATP initiated actomyosin dissociation is the predominant strain inhibited transition in the native myosin contraction cycle. The proposed model for motor down-shifting and strain sensing involves ELC N

  10. The emergence of sarcomeric, graded-polarity and spindle-like patterns in bundles of short cytoskeletal polymers and two opposite molecular motors

    Energy Technology Data Exchange (ETDEWEB)

    Craig, E M; Dey, S; Mogilner, A, E-mail: ecraig@ucdavis.edu, E-mail: satarupa.dey@gmail.com, E-mail: mogilner@math.ucdavis.edu [Department of Neurobiology, Physiology and Behavior and Department of Mathematics, University of California, Davis, CA 95616 (United States)

    2011-09-21

    We use linear stability analysis and numerical solutions of partial differential equations to investigate pattern formation in the one-dimensional system of short dynamic polymers and one (plus-end directed) or two (one is plus-end, another minus-end directed) molecular motors. If polymer sliding and motor gliding rates are slow and/or the polymer turnover rate is fast, then the polymer-motor bundle has mixed polarity and homogeneous motor distribution. However, if motor gliding is fast, a sarcomeric pattern with periodic bands of alternating polymer polarity separated by motor aggregates evolves. On the other hand, if polymer sliding is fast, a graded-polarity bundle with motors at the center emerges. In the presence of the second, minus-end directed motor, the sarcomeric pattern is more ubiquitous, while the graded-polarity pattern is destabilized. However, if the minus-end motor is weaker than the plus-end directed one, and/or polymer nucleation is autocatalytic, and/or long polymers are present in the bundle, then a spindle-like architecture with a sorted-out polarity emerges with the plus-end motors at the center and minus-end motors at the edges. We discuss modeling implications for actin-myosin fibers and in vitro and meiotic spindles.

  11. Myosin substitution rate is affected by the amount of cytosolic myosin in cultured muscle cells.

    Science.gov (United States)

    Ojima, Koichi; Ichimura, Emi; Yasukawa, Yuya; Oe, Mika; Muroya, Susumu; Suzuki, Takahiro; Wakamatsu, Jun-Ichi; Nishimura, Takanori

    2017-11-01

    In striated muscles, approximately 300 myosin molecules form a single thick filament in myofibrils. Each myosin is continuously displaced by another myosin to maintain the thick filament structure. Our previous study using a fluorescence recovery after photobleaching (FRAP) technique showed that the myosin replacement rate is decreased by inhibition of protein synthesis, but myosin is still exchangeable. This result prompted us to examine whether myosin in the cytoplasm is involved in myosin replacement in myofibrils. To address this, FRAP was measured in green fluorescent protein (GFP)-tagged myosin heavy chain 3 (Myh3) expressing myotubes that were treated with streptolysin-O (SLO), which forms pores specifically in the plasma membrane to induce leakage of cytoplasmic proteins. Our biochemical data demonstrated that the cytoplasmic myosin content was reduced in SLO-permeabilized semi-intact myotubes. Furthermore, FRAP experiments showed a sluggish substitution rate of GFP-Myh3 in SLO-permeabilized myotubes. Taken together, these results demonstrate that the myosin substitution rate is significantly reduced by a decreased amount of myosin in the cytoplasm and that cytoplasmic myosin contributes to myosin replacement in myofibrils. © 2017 Japanese Society of Animal Science.

  12. Hand-Held Model of a Sarcomere to Illustrate the Sliding Filament Mechanism in Muscle Contraction

    Science.gov (United States)

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2009-01-01

    From our teaching of the contractile unit of the striated muscle, we have found limitations in using textbook illustrations of sarcomere structure and its related dynamic molecular physiological details. A hand-held model of a striated muscle sarcomere made from common items has thus been made by us to enhance students' understanding of the…

  13. M line-deficient titin causes cardiac lethality through impaired maturation of the sarcomere.

    NARCIS (Netherlands)

    Weinert, S.; Bergmann, N.; Luo, X.; Erdmann, B.; Gotthardt, M.

    2006-01-01

    Titin, the largest protein known to date, has been linked to sarcomere assembly and function through its elastic adaptor and signaling domains. Titin's M-line region contains a unique kinase domain that has been proposed to regulate sarcomere assembly via its substrate titin cap (T-cap). In this

  14. Double-band sarcomeric SHG pattern induced by adult skeletal muscles alteration during myofibrils preparation.

    Science.gov (United States)

    Recher, G; Rouède, D; Tascon, C; D'Amico, L-A; Tiaho, F

    2011-02-01

    To understand the reported difference between double band, sarcomeric second harmonic generation pattern of isolated myofibril and predominant single band pattern found in thick muscle tissues, we studied the effect of myofibril preparation on the second harmonic generation pattern. We found that double band sarcomeric second harmonic generation pattern usually observed in myofibrils (prepared from fresh tissue) is due to muscle alteration during the mixing and triton treatment processes. Single band sarcomeric second harmonic generation pattern could be observed in isolated myofibrils when this alteration is previously prevented using paraformaldehyd fixed tissue. We conclude that single band sarcomeric second harmonic generation pattern is a signature of adult muscle myofibrils in normal physiological condition, suggesting that sarcomeric second harmonic generation patterns could be used as a valuable diagnosis tool of muscle health. © 2010 The Authors Journal of Microscopy © 2010 The Royal Microscopical Society.

  15. New insights into myosin evolution and classification.

    Science.gov (United States)

    Foth, Bernardo J; Goedecke, Marc C; Soldati, Dominique

    2006-03-07

    Myosins are eukaryotic actin-dependent molecular motors important for a broad range of functions like muscle contraction, vision, hearing, cell motility, and host cell invasion of apicomplexan parasites. Myosin heavy chains consist of distinct head, neck, and tail domains and have previously been categorized into 18 different classes based on phylogenetic analysis of their conserved heads. Here we describe a comprehensive phylogenetic examination of many previously unclassified myosins, with particular emphasis on sequences from apicomplexan and other chromalveolate protists including the model organism Toxoplasma, the malaria parasite Plasmodium, and the ciliate Tetrahymena. Using different phylogenetic inference methods and taking protein domain architectures, specific amino acid polymorphisms, and organismal distribution into account, we demonstrate a hitherto unrecognized common origin for ciliate and apicomplexan class XIV myosins. Our data also suggest common origins for some apicomplexan myosins and class VI, for classes II and XVIII, for classes XII and XV, and for some microsporidian myosins and class V, thereby reconciling evolutionary history and myosin structure in several cases and corroborating the common coevolution of myosin head, neck, and tail domains. Six novel myosin classes are established to accommodate sequences from chordate metazoans (class XIX), insects (class XX), kinetoplastids (class XXI), and apicomplexans and diatom algae (classes XXII, XXIII, and XXIV). These myosin (sub)classes include sequences with protein domains (FYVE, WW, UBA, ATS1-like, and WD40) previously unknown to be associated with myosin motors. Regarding the apicomplexan "myosome," we significantly update class XIV classification, propose a systematic naming convention, and discuss possible functions in these parasites.

  16. Human soleus sarcomere lengths measured using in vivo microendoscopy at two ankle flexion angles.

    Science.gov (United States)

    Chen, Xuefeng; Delp, Scott L

    2016-12-08

    The forces generated by the soleus muscle play an important role in standing and locomotion. The lengths of the sarcomeres of the soleus affect its force-generating capacity, yet it is unknown how sarcomere lengths in the soleus change as a function of ankle flexion angle. In this study, we used microendoscopy to measure resting sarcomere lengths at 10° plantarflexion and 20° dorsiflexion in 7 healthy individuals. Mean sarcomere lengths at 10° plantarflexion were 2.84±0.09µm (mean±S.E.M.), near the optimal length for sarcomere force generation. Sarcomere lengths were 3.43±0.09µm at 20° dorsiflexion, indicating that they were longer than optimal length when the ankle was in dorsiflexion and the muscle was inactive. Our results indicate a smaller sarcomere length difference between two ankle flexion angles compared to estimates from musculoskeletal models and suggest why these models frequently underestimate the force-generating capacity of the soleus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Myosin cross-bridges do not form precise rigor bonds in hypertrophic heart muscle carrying troponin T mutations.

    Science.gov (United States)

    Midde, K; Dumka, V; Pinto, J R; Muthu, P; Marandos, P; Gryczynski, I; Gryczynski, Z; Potter, J D; Borejdo, J

    2011-09-01

    Distribution of orientations of myosin was examined in ex-vivo myofibrils from hearts of transgenic (Tg) mice expressing Familial Hypertrophic Cardiomyopathy (FHC) troponin T (TnT) mutations I79N, F110I and R278C. Humans are heterozygous for sarcomeric FHC mutations and so hypertrophic myocardium contains a mixture of the wild-type (WT) and mutated (MUT) TnT. If mutations are expressed at a low level there may not be a significant change in the global properties of heart muscle. In contrast, measurements from a few molecules avoid averaging inherent in the global measurements. It is thus important to examine the properties of only a few molecules of muscle. To this end, the lever arm of one out of every 60,000 myosin molecules was labeled with a fluorescent dye and a small volume within the A-band (~1 fL) was observed by confocal microscopy. This volume contained on average 5 fluorescent myosin molecules. The lever arm assumes different orientations reflecting different stages of acto-myosin enzymatic cycle. We measured the distribution of these orientations by recording polarization of fluorescent light emitted by myosin-bound fluorophore during rigor and contraction. The distribution of orientations of rigor WT and MUT myofibrils was significantly different. There was a large difference in the width and of skewness and kurtosis of rigor distributions. These findings suggest that the hypertrophic phenotype associated with the TnT mutations can be characterized by a significant increase in disorder of rigor cross-bridges. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Nuclear Actin and Myosins in Adenovirus Infection

    Science.gov (United States)

    Fuchsova, Beata; Serebryannyy, Leonid A.; de Lanerolle, Primal

    2015-01-01

    Adenovirus serotypes have been shown to cause drastic changes in nuclear organization, including the transcription machinery, during infection. This ability of adenovirus to subvert transcription in the host cell facilitates viral replication. Because nuclear actin and nuclear myosin I, myosin V and myosin VI have been implicated as direct regulators of transcription and important factors in the replication of other viruses, we sought to determine how nuclear actin and myosins are involved in adenovirus infection. We first confirmed reorganization of the host’s transcription machinery to viral replication centers. We found that nuclear actin also reorganizes to sites of transcription through the intermediate but not the advanced late phase of viral infection. Furthermore, nuclear myosin I localized with nuclear actin and sites of transcription in viral replication centers. Intriguingly, nuclear myosins V and VI, which also reorganized to viral replication centers, exhibited different localization patterns, suggesting specialized roles for these nuclear myosins. Finally, we assessed the role of actin in adenovirus infection and found both cytoplasmic and nuclear actin likely play roles in adenovirus infection and replication. Together our data suggest the involvement of actin and multiple myosins in the nuclear replication and late viral gene expression of adenovirus. PMID:26226218

  19. Lampreys Have a Single Gene Cluster for the Fast Skeletal Myosin Heavy Chain Gene Family

    Science.gov (United States)

    Ikeda, Daisuke; Ono, Yosuke; Hirano, Shigeki; Kan-no, Nobuhiro; Watabe, Shugo

    2013-01-01

    Muscle tissues contain the most classic sarcomeric myosin, called myosin II, which consists of 2 heavy chains (MYHs) and 4 light chains. In the case of humans (tetrapod), a total of 6 fast skeletal-type MYH genes (MYHs) are clustered on a single chromosome. In contrast, torafugu (teleost) contains at least 13 fast skeletal MYHs, which are distributed in 5 genomic regions; the MYHs are clustered in 3 of these regions. In the present study, the evolutionary relationship among fast skeletal MYHs is elucidated by comparing the MYHs of teleosts and tetrapods with those of cyclostome lampreys, one of two groups of extant jawless vertebrates (agnathans). We found that lampreys contain at least 3 fast skeletal MYHs, which are clustered in a head-to-tail manner in a single genomic region. Although there was apparent synteny in the corresponding MYH cluster regions between lampreys and tetrapods, phylogenetic analysis indicated that lamprey and tetrapod MYHs have independently duplicated and diversified. Subsequent transgenic approaches showed that the 5′-flanking sequences of Japanese lamprey fast skeletal MYHs function as a regulatory sequence to drive specific reporter gene expression in the fast skeletal muscle of zebrafish embryos. Although zebrafish MYH promoters showed apparent activity to direct reporter gene expression in myogenic cells derived from mice, promoters from Japanese lamprey MYHs had no activity. These results suggest that the muscle-specific regulatory mechanisms are partially conserved between teleosts and tetrapods but not between cyclostomes and tetrapods, despite the conserved synteny. PMID:24376886

  20. Lampreys have a single gene cluster for the fast skeletal myosin heavy chain gene family.

    Directory of Open Access Journals (Sweden)

    Daisuke Ikeda

    Full Text Available Muscle tissues contain the most classic sarcomeric myosin, called myosin II, which consists of 2 heavy chains (MYHs and 4 light chains. In the case of humans (tetrapod, a total of 6 fast skeletal-type MYH genes (MYHs are clustered on a single chromosome. In contrast, torafugu (teleost contains at least 13 fast skeletal MYHs, which are distributed in 5 genomic regions; the MYHs are clustered in 3 of these regions. In the present study, the evolutionary relationship among fast skeletal MYHs is elucidated by comparing the MYHs of teleosts and tetrapods with those of cyclostome lampreys, one of two groups of extant jawless vertebrates (agnathans. We found that lampreys contain at least 3 fast skeletal MYHs, which are clustered in a head-to-tail manner in a single genomic region. Although there was apparent synteny in the corresponding MYH cluster regions between lampreys and tetrapods, phylogenetic analysis indicated that lamprey and tetrapod MYHs have independently duplicated and diversified. Subsequent transgenic approaches showed that the 5'-flanking sequences of Japanese lamprey fast skeletal MYHs function as a regulatory sequence to drive specific reporter gene expression in the fast skeletal muscle of zebrafish embryos. Although zebrafish MYH promoters showed apparent activity to direct reporter gene expression in myogenic cells derived from mice, promoters from Japanese lamprey MYHs had no activity. These results suggest that the muscle-specific regulatory mechanisms are partially conserved between teleosts and tetrapods but not between cyclostomes and tetrapods, despite the conserved synteny.

  1. Functions of myosin motors tailored for parasitism

    DEFF Research Database (Denmark)

    Mueller, Christina; Graindorge, Arnault; Soldati-Favre, Dominique

    2017-01-01

    Myosin motors are one of the largest protein families in eukaryotes that exhibit divergent cellular functions. Their roles in protozoans, a diverse group of anciently diverged, single celled organisms with many prominent members known to be parasitic and to cause diseases in human and livestock......, are largely unknown. In the recent years many different approaches, among them whole genome sequencing, phylogenetic analyses and functional studies have increased our understanding on the distribution, protein architecture and function of unconventional myosin motors in protozoan parasites. In Apicomplexa......, myosins turn out to be highly specialized and to exhibit unique functions tailored to accommodate the lifestyle of these parasites....

  2. Novel slow-skeletal myosin (MYH7) mutation in the original myosin storage myopathy kindred.

    Science.gov (United States)

    Dye, Danielle E; Azzarelli, Biagio; Goebel, Hans H; Laing, Nigel G

    2006-06-01

    Myosin storage myopathy (OMIM 608358), a congenital myopathy characterised by subsarcolemmal, hyaline-like accumulations of myosin in Type I muscle fibres, was first described by Cancilla and Colleagues in 1971 [Neurology 1971;21:579-585] in two siblings as 'familial myopathy with probable lysis of myofibrils in type I muscle fibres'. Two mutations in the slow skeletal myosin heavy chain gene (MYH7) have recently been associated with the disease in other families. We have identified a novel heterozygous Leu1793Pro mutation in MYH7 in DNA from paraffin sections of one of the original siblings. This historical molecular analysis confirms the original cases had myosin storage myopathy.

  3. Expression and identification of 10 sarcomeric MyHC isoforms in human skeletal muscles of different embryological origin. Diversity and similarity in mammalian species.

    Science.gov (United States)

    Mascarello, Francesco; Toniolo, Luana; Cancellara, Pasqua; Reggiani, Carlo; Maccatrozzo, Lisa

    2016-09-01

    In the mammalian genome, among myosin heavy chain (MyHC) isoforms a family can be identified as sarcomeric based on their molecular structure which allows thick filament formation. In this study we aimed to assess the expression of the 10 sarcomeric isoforms in human skeletal muscles, adopting this species as a reference for comparison with all other mammalian species. To this aim, we set up the condition for quantitative Real Time PCR assay to detect and quantify MyHC mRNA expression in a wide variety of human muscles from somitic, presomitic and preotic origin. Specific patterns of expression of the following genes MYH1, MYH2, MYH3, MYH4, MYH6, MYH7, MYH8, MYH13, MYH14/7b and MYH15 were demonstrated in various muscle samples. On the same muscle samples which were analysed for mRNA expression, the corresponding MyHC proteins were studied with SDS PAGE and Western blot. The mRNA-protein comparison allowed the identification of 10 distinct proteins based on the electrophoretic migration rate. Three groups were formed based on the migration rate: fast migrating comprising beta/slow/1, alpha cardiac and fast 2B, slow migrating comprising fast 2X, fast 2A and two developmental isoforms (NEO and EMB), intermediate migrating comprising EO MyHC, slow B (product of MYH15), slow tonic (product of MYH14/7b). Of special interest was the demonstration of a protein band corresponding to 2B-MyHC in laryngeal muscles and the finding that all 10 isoforms are expressed in extraocular muscles. These latter muscles are the unique localization for extraocular, slow B (product of MYH15) and slow tonic (product of MYH14/7b). Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Functions of class V myosins in neurons.

    Science.gov (United States)

    Hammer, John A; Wagner, Wolfgang

    2013-10-04

    This minireview focuses on recent studies implicating class V myosins in organelle and macromolecule transport within neurons. These studies reveal that class V myosins play important roles in a wide range of fundamental processes occurring within neurons, including the transport into dendritic spines of organelles that support synaptic plasticity, the establishment of neuronal shape, the specification of polarized cargo transport, and the subcellular localization of mRNA.

  5. A mathematical model of muscle containing heterogeneous half-sarcomeres exhibits residual force enhancement.

    Science.gov (United States)

    Campbell, Stuart G; Hatfield, P Chris; Campbell, Kenneth S

    2011-09-01

    A skeletal muscle fiber that is stimulated to contract and then stretched from L₁ to L₂ produces more force after the initial transient decays than if it is stimulated at L₂. This behavior has been well studied experimentally, and is known as residual force enhancement. The underlying mechanism remains controversial. We hypothesized that residual force enhancement could reflect mechanical interactions between heterogeneous half-sarcomeres. To test this hypothesis, we subjected a computational model of interacting heterogeneous half-sarcomeres to the same activation and stretch protocols that produce residual force enhancement in real preparations. Following a transient period of elevated force associated with active stretching, the model predicted a slowly decaying force enhancement lasting >30 seconds after stretch. Enhancement was on the order of 13% above isometric tension at the post-stretch muscle length, which agrees well with experimental measurements. Force enhancement in the model was proportional to stretch magnitude but did not depend strongly on the velocity of stretch, also in agreement with experiments. Even small variability in the strength of half-sarcomeres (2.1% standard deviation, normally distributed) was sufficient to produce a 5% force enhancement over isometric tension. Analysis of the model suggests that heterogeneity in half-sarcomeres leads to residual force enhancement by storing strain energy introduced during active stretch in distributions of bound cross-bridges. Complex interactions between the heterogeneous half-sarcomeres then dissipate this stored energy at a rate much slower than isolated cross-bridges would cycle. Given the variations in half-sarcomere length that have been observed in real muscle preparations and the stochastic variability inherent in all biological systems, half-sarcomere heterogeneity cannot be excluded as a contributing source of residual force enhancement.

  6. A mathematical model of muscle containing heterogeneous half-sarcomeres exhibits residual force enhancement.

    Directory of Open Access Journals (Sweden)

    Stuart G Campbell

    2011-09-01

    Full Text Available A skeletal muscle fiber that is stimulated to contract and then stretched from L₁ to L₂ produces more force after the initial transient decays than if it is stimulated at L₂. This behavior has been well studied experimentally, and is known as residual force enhancement. The underlying mechanism remains controversial. We hypothesized that residual force enhancement could reflect mechanical interactions between heterogeneous half-sarcomeres. To test this hypothesis, we subjected a computational model of interacting heterogeneous half-sarcomeres to the same activation and stretch protocols that produce residual force enhancement in real preparations. Following a transient period of elevated force associated with active stretching, the model predicted a slowly decaying force enhancement lasting >30 seconds after stretch. Enhancement was on the order of 13% above isometric tension at the post-stretch muscle length, which agrees well with experimental measurements. Force enhancement in the model was proportional to stretch magnitude but did not depend strongly on the velocity of stretch, also in agreement with experiments. Even small variability in the strength of half-sarcomeres (2.1% standard deviation, normally distributed was sufficient to produce a 5% force enhancement over isometric tension. Analysis of the model suggests that heterogeneity in half-sarcomeres leads to residual force enhancement by storing strain energy introduced during active stretch in distributions of bound cross-bridges. Complex interactions between the heterogeneous half-sarcomeres then dissipate this stored energy at a rate much slower than isolated cross-bridges would cycle. Given the variations in half-sarcomere length that have been observed in real muscle preparations and the stochastic variability inherent in all biological systems, half-sarcomere heterogeneity cannot be excluded as a contributing source of residual force enhancement.

  7. Myocardial infarction-induced N-terminal fragment of cardiac myosin-binding protein C (cMyBP-C) impairs myofilament function in human myocardium.

    Science.gov (United States)

    Witayavanitkul, Namthip; Ait Mou, Younss; Kuster, Diederik W D; Khairallah, Ramzi J; Sarkey, Jason; Govindan, Suresh; Chen, Xin; Ge, Ying; Rajan, Sudarsan; Wieczorek, David F; Irving, Thomas; Westfall, Margaret V; de Tombe, Pieter P; Sadayappan, Sakthivel

    2014-03-28

    Myocardial infarction (MI) is associated with depressed cardiac contractile function and progression to heart failure. Cardiac myosin-binding protein C, a cardiac-specific myofilament protein, is proteolyzed post-MI in humans, which results in an N-terminal fragment, C0-C1f. The presence of C0-C1f in cultured cardiomyocytes results in decreased Ca(2+) transients and cell shortening, abnormalities sufficient for the induction of heart failure in a mouse model. However, the underlying mechanisms remain unclear. Here, we investigate the association between C0-C1f and altered contractility in human cardiac myofilaments in vitro. To accomplish this, we generated recombinant human C0-C1f (hC0C1f) and incorporated it into permeabilized human left ventricular myocardium. Mechanical properties were studied at short (2 μm) and long (2.3 μm) sarcomere length (SL). Our data demonstrate that the presence of hC0C1f in the sarcomere had the greatest effect at short, but not long, SL, decreasing maximal force and myofilament Ca(2+) sensitivity. Moreover, hC0C1f led to increased cooperative activation, cross-bridge cycling kinetics, and tension cost, with greater effects at short SL. We further established that the effects of hC0C1f occur through direct interaction with actin and α-tropomyosin. Our data demonstrate that the presence of hC0C1f in the sarcomere is sufficient to induce depressed myofilament function and Ca(2+) sensitivity in otherwise healthy human donor myocardium. Decreased cardiac function post-MI may result, in part, from the ability of hC0C1f to bind actin and α-tropomyosin, suggesting that cleaved C0-C1f could act as a poison polypeptide and disrupt the interaction of native cardiac myosin-binding protein C with the thin filament.

  8. The role of myosin 1c and myosin 1b in surfactant exocytosis.

    Science.gov (United States)

    Kittelberger, Nadine; Breunig, Markus; Martin, René; Knölker, Hans-Joachim; Miklavc, Pika

    2016-04-15

    Actin and actin-associated proteins have a pivotal effect on regulated exocytosis in secretory cells and influence pre-fusion as well as post-fusion stages of exocytosis. Actin polymerization on secretory granules during the post-fusion phase (formation of an actin coat) is especially important in cells with large secretory vesicles or poorly soluble secretions. Alveolar type II (ATII) cells secrete hydrophobic lipo-protein surfactant, which does not easily diffuse from fused vesicles. Previous work showed that compression of actin coat is necessary for surfactant extrusion. Here, we investigate the role of class 1 myosins as possible linkers between actin and membranes during exocytosis. Live-cell microscopy showed translocation of fluorescently labeled myosin 1b and myosin 1c to the secretory vesicle membrane after fusion. Myosin 1c translocation was dependent on its pleckstrin homology domain. Expression of myosin 1b and myosin 1c constructs influenced vesicle compression rate, whereas only the inhibition of myosin 1c reduced exocytosis. These findings suggest that class 1 myosins participate in several stages of ATII cell exocytosis and link actin coats to the secretory vesicle membrane to influence vesicle compression. © 2016. Published by The Company of Biologists Ltd.

  9. Muscle contraction phenotypic analysis enabled by optogenetics reveals functional relationships of sarcomere components in Caenorhabditis elegans

    Science.gov (United States)

    Hwang, Hyundoo; Barnes, Dawn E.; Matsunaga, Yohei; Benian, Guy M.; Ono, Shoichiro; Lu, Hang

    2016-01-01

    The sarcomere, the fundamental unit of muscle contraction, is a highly-ordered complex of hundreds of proteins. Despite decades of genetics work, the functional relationships and the roles of those sarcomeric proteins in animal behaviors remain unclear. In this paper, we demonstrate that optogenetic activation of the motor neurons that induce muscle contraction can facilitate quantitative studies of muscle kinetics in C. elegans. To increase the throughput of the study, we trapped multiple worms in parallel in a microfluidic device and illuminated for photoactivation of channelrhodopsin-2 to induce contractions in body wall muscles. Using image processing, the change in body size was quantified over time. A total of five parameters including rate constants for contraction and relaxation were extracted from the optogenetic assay as descriptors of sarcomere functions. To potentially relate the genes encoding the sarcomeric proteins functionally, a hierarchical clustering analysis was conducted on the basis of those parameters. Because it assesses physiological output different from conventional assays, this method provides a complement to the phenotypic analysis of C. elegans muscle mutants currently performed in many labs; the clusters may provide new insights and drive new hypotheses for functional relationships among the many sarcomere components.

  10. Improved targeting and enhanced retention of the human, autologous, fibroblast-derived, induced, pluripotent stem cells to the sarcomeres of the infarcted myocardium with the aid of the bioengineered, heterospecific, tetravalent antibodies.

    Science.gov (United States)

    Malecki, Marek

    2013-05-06

    Clinical trials, to regenerate the human heart injured by myocardial infarction, involve the delivery of stem cells to the site of the injury. However, only a small fraction of the introduced stem cells are detected at the site of the injury, merely two weeks after this therapeutic intervention. This significantly hampers the effectiveness of the stem cell therapy. To resolve the aforementioned problem, we genetically and molecularly bioengineered heterospecific, tetravalent antibodies (htAbs), which have both exquisite specificity and high affinity towards human, pluripotent, stem cells through the htAbs' domains binding SSEA-4, SSEA-3, TRA-1-60, and TRA-1-81, as well as towards the injured cardiac muscle through the htAbs' domains binding human cardiac myosin, α-actinin, actin, and titin. The cardiac tissue was acquired from the patients, who were receiving heart transplants. The autologous, human, induced, pluripotent stem cells (hiPSCs) were generated from the patients' fibroblasts by non-viral delivery and transient expression of the DNA constructs for: Oct4, Nanog, Sox2, Lin28, Klf4, c-Myc. In the trials involving the htAbs, the human, induced, pluripotent stem cells anchored to the myocardial sarcomeres with the efficiency, statistically, significantly higher, than in the trials with non-specific or without antibodies (p < 0.0003). Moreover, application of the htAbs resulted in cross-linking of the sarcomeric proteins to create the stable scaffolds for anchoring of the stem cells. Thereafter, these human, induced pluripotent stem cells differentiated into cardiomyocytes at their anchorage sites. By bioengineering of these novel heterospecific, tetravalent antibodies and using them to guide and to anchor the stem cells specifically to the stabilized sarcomeric scaffolds, we demonstrated the proof of concept in vitro for improving effectiveness of regenerative therapy of myocardial infarction and created the foundations for the trials in vivo.

  11. Contribution of Post-translational Phosphorylation to Sarcomere-linked Cardiomyopathy Phenotypes

    Directory of Open Access Journals (Sweden)

    Margaret V Westfall

    2016-09-01

    Full Text Available Secondary shifts develop in post-translational phosphorylation of sarcomeric proteins in multi¬ple animal models of inherited cardiomyopathy. These signaling alterations together with the primary mutation are predicted to contribute to the overall cardiac phenotype. As a result, identification and integration of post-translational myofilament signaling responses are identified as priorities for gaining insights into sarcomeric cardiomyopathies. However, significant questions remain about the nature and contribution of post-translational phosphorylation to structural remodeling and cardiac dysfunction in animal models and human patients. This perspective essay discusses specific goals for filling critical gaps about post-translational signaling in response to these inherited mutations, especially within sarcomeric proteins. The discussion focuses primarily on pre-clinical analysis of animal models and defines challenges and future directions in this field.

  12. Interactions between connected half-sarcomeres produce emergent mechanical behavior in a mathematical model of muscle.

    Science.gov (United States)

    Campbell, Kenneth S

    2009-11-01

    Most reductionist theories of muscle attribute a fiber's mechanical properties to the scaled behavior of a single half-sarcomere. Mathematical models of this type can explain many of the known mechanical properties of muscle but have to incorporate a passive mechanical component that becomes approximately 300% stiffer in activating conditions to reproduce the force response elicited by stretching a fast mammalian muscle fiber. The available experimental data suggests that titin filaments, which are the mostly likely source of the passive component, become at most approximately 30% stiffer in saturating Ca2+ solutions. The work described in this manuscript used computer modeling to test an alternative systems theory that attributes the stretch response of a mammalian fiber to the composite behavior of a collection of half-sarcomeres. The principal finding was that the stretch response of a chemically permeabilized rabbit psoas fiber could be reproduced with a framework consisting of 300 half-sarcomeres arranged in 6 parallel myofibrils without requiring titin filaments to stiffen in activating solutions. Ablation of inter-myofibrillar links in the computer simulations lowered isometric force values and lowered energy absorption during a stretch. This computed behavior mimics effects previously observed in experiments using muscles from desmin-deficient mice in which the connections between Z-disks in adjacent myofibrils are presumably compromised. The current simulations suggest that muscle fibers exhibit emergent properties that reflect interactions between half-sarcomeres and are not properties of a single half-sarcomere in isolation. It is therefore likely that full quantitative understanding of a fiber's mechanical properties requires detailed analysis of a complete fiber system and cannot be achieved by focusing solely on the properties of a single half-sarcomere.

  13. Interactions between connected half-sarcomeres produce emergent mechanical behavior in a mathematical model of muscle.

    Directory of Open Access Journals (Sweden)

    Kenneth S Campbell

    2009-11-01

    Full Text Available Most reductionist theories of muscle attribute a fiber's mechanical properties to the scaled behavior of a single half-sarcomere. Mathematical models of this type can explain many of the known mechanical properties of muscle but have to incorporate a passive mechanical component that becomes approximately 300% stiffer in activating conditions to reproduce the force response elicited by stretching a fast mammalian muscle fiber. The available experimental data suggests that titin filaments, which are the mostly likely source of the passive component, become at most approximately 30% stiffer in saturating Ca2+ solutions. The work described in this manuscript used computer modeling to test an alternative systems theory that attributes the stretch response of a mammalian fiber to the composite behavior of a collection of half-sarcomeres. The principal finding was that the stretch response of a chemically permeabilized rabbit psoas fiber could be reproduced with a framework consisting of 300 half-sarcomeres arranged in 6 parallel myofibrils without requiring titin filaments to stiffen in activating solutions. Ablation of inter-myofibrillar links in the computer simulations lowered isometric force values and lowered energy absorption during a stretch. This computed behavior mimics effects previously observed in experiments using muscles from desmin-deficient mice in which the connections between Z-disks in adjacent myofibrils are presumably compromised. The current simulations suggest that muscle fibers exhibit emergent properties that reflect interactions between half-sarcomeres and are not properties of a single half-sarcomere in isolation. It is therefore likely that full quantitative understanding of a fiber's mechanical properties requires detailed analysis of a complete fiber system and cannot be achieved by focusing solely on the properties of a single half-sarcomere.

  14. Mutations in MYH7 reduce the force generating capacity of sarcomeres in human familial hypertrophic cardiomyopathy.

    Science.gov (United States)

    Witjas-Paalberends, E Rosalie; Piroddi, Nicoletta; Stam, Kelly; van Dijk, Sabine J; Oliviera, Vasco Sequeira; Ferrara, Claudia; Scellini, Beatrice; Hazebroek, Mark; ten Cate, Folkert J; van Slegtenhorst, Marjon; dos Remedios, Cris; Niessen, Hans W M; Tesi, Chiara; Stienen, Ger J M; Heymans, Stephane; Michels, Michelle; Poggesi, Corrado; van der Velden, Jolanda

    2013-08-01

    Familial hypertrophic cardiomyopathy (HCM), frequently caused by sarcomeric gene mutations, is characterized by cellular dysfunction and asymmetric left-ventricular (LV) hypertrophy. We studied whether cellular dysfunction is due to an intrinsic sarcomere defect or cardiomyocyte remodelling. Cardiac samples from 43 sarcomere mutation-positive patients (HCMmut: mutations in thick (MYBPC3, MYH7) and thin (TPM1, TNNI3, TNNT2) myofilament genes) were compared with 14 sarcomere mutation-negative patients (HCMsmn), eight patients with secondary LV hypertrophy due to aortic stenosis (LVHao) and 13 donors. Force measurements in single membrane-permeabilized cardiomyocytes revealed significantly lower maximal force generating capacity (Fmax) in HCMmut (21 ± 1 kN/m²) and HCMsmn (26 ± 3 kN/m²) compared with donor (36 ± 2 kN/m²). Cardiomyocyte remodelling was more severe in HCMmut compared with HCMsmn based on significantly lower myofibril density (49 ± 2 vs. 63 ± 5%) and significantly higher cardiomyocyte area (915 ± 15 vs. 612 ± 11 μm²). Low Fmax in MYBPC3mut, TNNI3mut, HCMsmn, and LVHao was normalized to donor values after correction for myofibril density. However, Fmax was significantly lower in MYH7mut, TPM1mut, and TNNT2mut even after correction for myofibril density. In accordance, measurements in single myofibrils showed very low Fmax in MYH7mut, TPM1mut, and TNNT2mut compared with donor (respectively, 73 ± 3, 70 ± 7, 83 ± 6, and 113 ± 5 kN/m²). In addition, force was lower in MYH7mut cardiomyocytes compared with MYBPC3mut, HCMsmn, and donor at submaximal [Ca²⁺]. Low cardiomyocyte Fmax in HCM patients is largely explained by hypertrophy and reduced myofibril density. MYH7 mutations reduce force generating capacity of sarcomeres at maximal and submaximal [Ca²⁺]. These hypocontractile sarcomeres may represent the primary abnormality in patients with MYH7 mutations.

  15. Phosphorylation and the N-terminal extension of the regulatory light chain help orient and align the myosin heads in Drosophila flight muscle

    Energy Technology Data Exchange (ETDEWEB)

    Farman, Gerrie P.; Miller, Mark S.; Reedy, Mary C.; Soto-Adames, Felipe N.; Vigoreaux, Jim O.; Maughan, David W.; Irving, Thomas C.; (IIT); (Vermont); (Duke)

    2010-02-02

    X-ray diffraction of the indirect flight muscle (IFM) in living Drosophila at rest and electron microscopy of intact and glycerinated IFM was used to compare the effects of mutations in the regulatory light chain (RLC) on sarcomeric structure. Truncation of the RLC N-terminal extension (Dmlc2{sup {Delta}2-46}) or disruption of the phosphorylation sites by substituting alanines (Dmlc2{sup S66A, S67A}) decreased the equatorial intensity ratio (I{sub 20}/I{sub 10}), indicating decreased myosin mass associated with the thin filaments. Phosphorylation site disruption (Dmlc2{sup S66A, S67A}), but not N-terminal extension truncation (Dmlc2{sup {Delta}2-46}), decreased the 14.5 nm reflection intensity, indicating a spread of the axial distribution of the myosin heads. The arrangement of thick filaments and myosin heads in electron micrographs of the phosphorylation mutant (Dmlc2{sup S66A, S67A}) appeared normal in the relaxed and rigor states, but when calcium activated, fewer myosin heads formed cross-bridges. In transgenic flies with both alterations to the RLC (Dmlc2{sup {Delta}2-46; S66A, S67A}), the effects of the dual mutation were additive. The results suggest that the RLC N-terminal extension serves as a 'tether' to help pre-position the myosin heads for attachment to actin, while phosphorylation of the RLC promotes head orientations that allow optimal interactions with the thin filament.

  16. Mutations in the sarcomere gene MYH7 in Ebstein anomaly.

    Science.gov (United States)

    Postma, Alex V; van Engelen, Klaartje; van de Meerakker, Judith; Rahman, Thahira; Probst, Susanne; Baars, Marieke J H; Bauer, Ulrike; Pickardt, Thomas; Sperling, Silke R; Berger, Felix; Moorman, Antoon F M; Mulder, Barbara J M; Thierfelder, Ludwig; Keavney, Bernard; Goodship, Judith; Klaassen, Sabine

    2011-02-01

    Ebstein anomaly is a rare congenital heart malformation characterized by adherence of the septal and posterior leaflets of the tricuspid valve to the underlying myocardium. An association between Ebstein anomaly with left ventricular noncompaction (LVNC) and mutations in MYH7 encoding β-myosin heavy chain has been shown; in this report, we have screened for MYH7 mutations in a cohort of probands with Ebstein anomaly in a large population-based study. Mutational analysis in a cohort of 141 unrelated probands with Ebstein anomaly was performed by next-generation sequencing and direct DNA sequencing of MYH7. Heterozygous mutations were identified in 8 of 141 samples (6%). Seven distinct mutations were found; 5 were novel and 2 were known to cause hypertrophic cardiomyopathy. All mutations except for 1 3-bp deletion were missense mutations; 1 was a de novo change. Mutation-positive probands and family members showed various congenital heart malformations as well as LVNC. Among 8 mutation-positive probands, 6 had LVNC, whereas among 133 mutation-negative probands, none had LVNC. The frequency of MYH7 mutations was significantly different between probands with and without LVNC accompanying Ebstein anomaly (PMYH7 mutation in the pedigrees of 3 of the probands, 1 of which also included another individual with Ebstein anomaly. Ebstein anomaly is a congenital heart malformation that is associated with mutations in MYH7. MYH7 mutations are predominantly found in Ebstein anomaly associated with LVNC and may warrant genetic testing and family evaluation in this subset of patients.

  17. Sarcomere neutralization in inherited cardiomyopathy: small-molecule proof-of-concept to correct hyper-Ca2+-sensitive myofilaments.

    Science.gov (United States)

    Thompson, Brian R; Martindale, Joshua; Metzger, Joseph M

    2016-07-01

    The sarcomere is the functional unit of the heart. Alterations in sarcomere activation lead to disease states such as hypertrophic and restrictive cardiomyopathy (HCM/RCM). Mutations in many of the sarcomeric genes are causal for HCM/RCM. In most cases, these mutations result in increased Ca(2+) sensitivity of the sarcomere, giving rise to altered systolic and diastolic function. There is emerging evidence that small-molecule sarcomere neutralization is a potential therapeutic strategy for HCM/RCM. To pursue proof-of-concept, W7 was used here because of its well-known Ca(2+) desensitizer biochemical effects at the level of cardiac troponin C. Acute treatment of adult cardiac myocytes with W7 caused a dose-dependent (1-10 μM) decrease in contractility in a Ca(2+)-independent manner. Alkalosis was used as an in vitro experimental model of acquired heightened Ca(2+) sensitivity, resulting in increased live cell contractility and decreased baseline sarcomere length, which were rapidly corrected with W7. As an inherited cardiomyopathy model, R193H cardiac troponin I (cTnI) transgenic myocytes showed significant decreased baseline sarcomere length and slowed relaxation that were rapidly and dose-dependently corrected by W7. Langendorff whole heart pacing stress showed that R193H cTnI transgenic hearts had elevated end-diastolic pressures at all pacing frequencies compared with hearts from nontransgenic mice. Acute treatment with W7 rapidly restored end-diastolic pressures to normal values in R193H cTnI hearts, supporting a sarcomere intrinsic mechanism of dysfunction. The known off-target effects of W7 notwithstanding, these results provide further proof-of-concept that small-molecule-based sarcomere neutralization is a potential approach to remediate hyper-Ca(2+)-sensitive sarcomere function. Copyright © 2016 the American Physiological Society.

  18. Identification of an Arg403Gln beta myosin heavy chain gene mutation in a Portuguese family with hypertrophic cardiomyopathy.

    Science.gov (United States)

    Gonçalves, L M; Vieira, M; Faro, C; Ventura, M; Pires, E; Providência, L A

    2000-04-01

    The etiology of Familial Hypertrophic Cardiomyopathy (HCM) is attributed to the mutation of genes that encode sarcomeric proteins in the heart. Until now no gene mutations had been identified in Portuguese families with HCM. The main objective of this study is to describe a Portuguese family with HCM carrying an Arg403Gln mutation in the beta myosin heavy chain gene. With the help of several Molecular Biology tools, 40 families with HCM were studied. In all these families, one member was identified as carrying an Arg403Gln mutation in the beta myosin heavy chain gene. All family members were submitted to a physical exam, EKG and echocardiography. Those carrying a gene mutation were also submitted to Holter monitoring and to magnetic ressonance imaging. Molecular biology techniques are extremely important for the diagnosis of HCM, particularly in healthy carriers. The use of molecular diagnostic tools in HCM is very useful because it allows us to identify the healthy carriers and establish earlier clinical and prevention programs for these individuals.

  19. Echocardiographic strain imaging to assess early and late consequences of sarcomere mutations in hypertrophic cardiomyopathy

    DEFF Research Database (Denmark)

    Ho, Carolyn Y; Carlsen, Christian; Thune, Jens Jakob

    2009-01-01

    BACKGROUND: Genetic testing identifies sarcomere mutation carriers (G+) before clinical diagnosis of hypertrophic cardiomyopathy (HCM), allowing characterization of initial disease manifestations. Previous studies demonstrated that impaired relaxation develops before left ventricular hypertrophy...... to reshape the clinical paradigm for treatment, based on early diagnosis and disease prevention....

  20. Electrocardiographic features of sarcomere mutation carriers with and without clinically overt hypertrophic cardiomyopathy

    DEFF Research Database (Denmark)

    Lakdawala, Neal K; Thune, Jens Jakob; Maron, Barry J

    2011-01-01

    In hypertrophic cardiomyopathy (HC), electrocardiographic (ECG) changes have been postulated to be an early marker of disease, detectable in sarcomere mutation carriers when left ventricular (LV) wall thickness is still normal. However, the ECG features of mutation carriers have not been fully...

  1. Sallimus and the dynamics of sarcomere assembly in Drosophila flight muscles.

    Science.gov (United States)

    Orfanos, Zacharias; Leonard, Kevin; Elliott, Chris; Katzemich, Anja; Bullard, Belinda; Sparrow, John

    2015-06-19

    The Drosophila indirect flight muscles (IFM) can be used as a model for the study of sarcomere assembly. Here we use a transgenic line with a green fluorescent protein (GFP) exon inserted into the Z-disc-proximal portion of sallimus (Sls), also known as Drosophila titin, to observe sarcomere assembly during IFM development. Firstly, we confirm that Sls-GFP can be used in the heterozygote state without an obvious phenotype in IFM and other muscles. We then use Sls-GFP in the IFM to show that sarcomeres grow individually and uniformly throughout the fibre, growing linearly in length and in diameter. Finally, we show that limiting the amounts of Sls in the IFM using RNAi leads to sarcomeres with smaller Z-discs in their core, whilst the thick/thin filament lattice can form peripherally without a Z-disc. Thick filament preparations from those muscles show that although the Z-disc-containing core has thick filaments of a regular length, filaments from the peripheral lattice are longer and asymmetrical around the bare zone. Therefore, the Z-disc and Sls are required for thick filament length specification but not for the assembly of the thin/thick filament lattice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Electrocardiographic features of sarcomere mutation carriers with and without clinically overt hypertrophic cardiomyopathy

    DEFF Research Database (Denmark)

    Lakdawala, Neal K; Thune, Jens Jakob; Maron, Barry J

    2011-01-01

    In hypertrophic cardiomyopathy (HC), electrocardiographic (ECG) changes have been postulated to be an early marker of disease, detectable in sarcomere mutation carriers when left ventricular (LV) wall thickness is still normal. However, the ECG features of mutation carriers have not been fully ch...

  3. Noncompaction of the Ventricular Myocardium Is Associated with a De Novo Mutation in the β-Myosin Heavy Chain Gene

    Science.gov (United States)

    Budde, Birgit S.; Binner, Priska; Waldmüller, Stephan; Höhne, Wolfgang; Blankenfeldt, Wulf; Hassfeld, Sabine; Brömsen, Jürgen; Dermintzoglou, Anastassia; Wieczorek, Marcus; May, Erik; Kirst, Elisabeth; Selignow, Carmen; Rackebrandt, Kirsten; Müller, Melanie; Goody, Roger S.; Vosberg, Hans-Peter; Nürnberg, Peter; Scheffold, Thomas

    2007-01-01

    Noncompaction of the ventricular myocardium (NVM) is the morphological hallmark of a rare familial or sporadic unclassified heart disease of heterogeneous origin. NVM results presumably from a congenital developmental error and has been traced back to single point mutations in various genes. The objective of this study was to determine the underlying genetic defect in a large German family suffering from NVM. Twenty four family members were clinically assessed using advanced imaging techniques. For molecular characterization, a genome-wide linkage analysis was undertaken and the disease locus was mapped to chromosome 14ptel-14q12. Subsequently, two genes of the disease interval, MYH6 and MYH7 (encoding the α- and β-myosin heavy chain, respectively) were sequenced, leading to the identification of a previously unknown de novo missense mutation, c.842G>C, in the gene MYH7. The mutation affects a highly conserved amino acid in the myosin subfragment-1 (R281T). In silico simulations suggest that the mutation R281T prevents the formation of a salt bridge between residues R281 and D325, thereby destabilizing the myosin head. The mutation was exclusively present in morphologically affected family members. A few members of the family displayed NVM in combination with other heart defects, such as dislocation of the tricuspid valve (Ebstein's anomaly, EA) and atrial septal defect (ASD). A high degree of clinical variability was observed, ranging from the absence of symptoms in childhood to cardiac death in the third decade of life. The data presented in this report provide first evidence that a mutation in a sarcomeric protein can cause noncompaction of the ventricular myocardium. PMID:18159245

  4. Noncompaction of the ventricular myocardium is associated with a de novo mutation in the beta-myosin heavy chain gene.

    Directory of Open Access Journals (Sweden)

    Birgit S Budde

    Full Text Available Noncompaction of the ventricular myocardium (NVM is the morphological hallmark of a rare familial or sporadic unclassified heart disease of heterogeneous origin. NVM results presumably from a congenital developmental error and has been traced back to single point mutations in various genes. The objective of this study was to determine the underlying genetic defect in a large German family suffering from NVM. Twenty four family members were clinically assessed using advanced imaging techniques. For molecular characterization, a genome-wide linkage analysis was undertaken and the disease locus was mapped to chromosome 14ptel-14q12. Subsequently, two genes of the disease interval, MYH6 and MYH7 (encoding the alpha- and beta-myosin heavy chain, respectively were sequenced, leading to the identification of a previously unknown de novo missense mutation, c.842G>C, in the gene MYH7. The mutation affects a highly conserved amino acid in the myosin subfragment-1 (R281T. In silico simulations suggest that the mutation R281T prevents the formation of a salt bridge between residues R281 and D325, thereby destabilizing the myosin head. The mutation was exclusively present in morphologically affected family members. A few members of the family displayed NVM in combination with other heart defects, such as dislocation of the tricuspid valve (Ebstein's anomaly, EA and atrial septal defect (ASD. A high degree of clinical variability was observed, ranging from the absence of symptoms in childhood to cardiac death in the third decade of life. The data presented in this report provide first evidence that a mutation in a sarcomeric protein can cause noncompaction of the ventricular myocardium.

  5. Myosin Binding Protein-C Slow: An Intricate Subfamily of Proteins

    Directory of Open Access Journals (Sweden)

    Maegen A. Ackermann

    2010-01-01

    Full Text Available Myosin binding protein C (MyBP-C consists of a family of thick filament associated proteins. Three isoforms of MyBP-C exist in striated muscles: cardiac, slow skeletal, and fast skeletal. To date, most studies have focused on the cardiac form, due to its direct involvement in the development of hypertrophic cardiomyopathy. Here we focus on the slow skeletal form, discuss past and current literature, and present evidence to support that: (i MyBP-C slow comprises a subfamily of four proteins, resulting from complex alternative shuffling of the single MyBP-C slow gene, (ii the four MyBP-C slow isoforms are expressed in variable amounts in different skeletal muscles, (iii at least one MyBP-C slow isoform is preferentially found at the periphery of M-bands and (iv the MyBP-C slow subfamily may play important roles in the assembly and stabilization of sarcomeric M- and A-bands and regulate the contractile properties of the actomyosin filaments.

  6. Myosin Heavy Chain Gene Expression in Developing Neonatal Skeletal Muscle: Involvement of the Nerve, Gravity, and Thyroid State

    Science.gov (United States)

    Baldwin, K. M.; Adams, G.; Haddad, F.; Zeng, M.; Qin, A.; Qin, L.; McCue, S.; Bodell, P.

    1999-01-01

    The myosin heavy chain (MHC) gene family encodes at least six MHC proteins (herein designated as neonatal, embryonic, slow type I (beta), and fast IIa, IIx, and IIb) that are expressed in skeletal muscle in a muscle-specific and developmentally-regulated fashion. At birth, both antigravity (e.g. soleus) and locomotor (e.g., plantaris) skeletal muscles are undifferentiated relative to the adult MHC phenotype such that the neonatal and embryonic MHC isoforms account for 80 - 90% of the MHC pool in a fast locomotor muscle; whereas, the embryonic and slow, type I isoforms account for approx. 90% of the pool in a typical antigravity muscle. The goal of this study was to investigate the role of an intact nerve, gravity and thyroid hormone (T3), as well as certain interactions of these interventions, on MHC gene expression in developing neonatal skeletal muscles of rodents.

  7. Disruption of a GATA4/Ankrd1 signaling axis in cardiomyocytes leads to sarcomere disarray: implications for anthracycline cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Billy Chen

    Full Text Available Doxorubicin (Adriamycin is an effective anti-cancer drug, but its clinical usage is limited by a dose-dependent cardiotoxicity characterized by widespread sarcomere disarray and loss of myofilaments. Cardiac ankyrin repeat protein (CARP, ANKRD1 is a transcriptional regulatory protein that is extremely susceptible to doxorubicin; however, the mechanism(s of doxorubicin-induced CARP depletion and its specific role in cardiomyocytes have not been completely defined. We report that doxorubicin treatment in cardiomyocytes resulted in inhibition of CARP transcription, depletion of CARP protein levels, inhibition of myofilament gene transcription, and marked sarcomere disarray. Knockdown of CARP with small interfering RNA (siRNA similarly inhibited myofilament gene transcription and disrupted cardiomyocyte sarcomere structure. Adenoviral overexpression of CARP, however, was unable to rescue the doxorubicin-induced sarcomere disarray phenotype. Doxorubicin also induced depletion of the cardiac transcription factor GATA4 in cardiomyocytes. CARP expression is regulated in part by GATA4, prompting us to examine the relationship between GATA4 and CARP in cardiomyocytes. We show in co-transfection experiments that GATA4 operates upstream of CARP by activating the proximal CARP promoter. GATA4-siRNA knockdown in cardiomyocytes inhibited CARP expression and myofilament gene transcription, and induced extensive sarcomere disarray. Adenoviral overexpression of GATA4 (AdV-GATA4 in cardiomyocytes prior to doxorubicin exposure maintained GATA4 levels, modestly restored CARP levels, and attenuated sarcomere disarray. Interestingly, siRNA-mediated depletion of CARP completely abolished the Adv-GATA4 rescue of the doxorubicin-induced sarcomere phenotype. These data demonstrate co-dependent roles for GATA4 and CARP in regulating sarcomere gene expression and maintaining sarcomeric organization in cardiomyocytes in culture. The data further suggests that concurrent

  8. Zinc-induced cardiomyocyte relaxation in a rat model of hyperglycemia is independent of myosin isoform

    Directory of Open Access Journals (Sweden)

    Yi Ting

    2012-11-01

    Full Text Available Abstract It has been reported previously that diabetic cardiomyopathy can be inhibited or reverted with chronic zinc supplementation. In the current study, we hypothesized that total cardiac calcium and zinc content is altered in early onset diabetes mellitus characterized in part as hyperglycemia (HG and that exposure of zinc ion (Zn2+ to isolated cardiomyocytes would enhance contraction-relaxation function in HG more so than in nonHG controls. To better control for differential cardiac myosin isoform expression as occurs in rodents after β-islet cell necrosis, hypothyroidism was induced in 16 rats resulting in 100% β-myosin heavy chain expression in the heart. β-Islet cell necrosis was induced in half of the rats by streptozocin administration. After 6 wks of HG, both HG and nonHG controls rats demonstrated similar myofilament performance measured as thin filament calcium sensitivity, native thin filament velocity in the myosin motility assay and contractile velocity and power. Extracellular Zn2+ reduced cardiomyocyte contractile function in both groups, but enhanced relaxation function significantly in the HG group compared to controls. Most notably, a reduction in diastolic sarcomere length with increasing pacing frequencies, i.e., incomplete relaxation, was more pronounced in the HG compared to controls, but was normalized with extracellular Zn2+ application. This is a novel finding implicating that the detrimental effect of HG on cardiomyocyte Ca2+ regulation can be amelioration by Zn2+. Among the many post-translational modifications examined, only phosphorylation of ryanodine receptor (RyR at S-2808 was significantly higher in HG compared to nonHG. We did not find in our hypothyroid rats any differentiating effects of HG on myofibrillar protein phosphorylation, lysine acetylation, O-linked N-acetylglucosamine and advanced glycated end-products, which are often implicated as complicating factors in cardiac performance due to HG. Our

  9. Non-muscle (NM) myosin heavy chain phosphorylation regulates the formation of NM myosin filaments, adhesome assembly and smooth muscle contraction.

    Science.gov (United States)

    Zhang, Wenwu; Gunst, Susan J

    2017-07-01

    Non-muscle (NM) and smooth muscle (SM) myosin II are both expressed in smooth muscle tissues, however the role of NM myosin in SM contraction is unknown. Contractile stimulation of tracheal smooth muscle tissues stimulates phosphorylation of the NM myosin heavy chain on Ser1943 and causes NM myosin filament assembly at the SM cell cortex. Expression of a non-phosphorylatable NM myosin mutant, NM myosin S1943A, in SM tissues inhibits ACh-induced NM myosin filament assembly and SM contraction, and also inhibits the assembly of membrane adhesome complexes during contractile stimulation. NM myosin regulatory light chain (RLC) phosphorylation but not SM myosin RLC phosphorylation is regulated by RhoA GTPase during ACh stimulation, and NM RLC phosphorylation is required for NM myosin filament assembly and SM contraction. NM myosin II plays a critical role in airway SM contraction that is independent and distinct from the function of SM myosin. The molecular function of non-muscle (NM) isoforms of myosin II in smooth muscle (SM) tissues and their possible role in contraction are largely unknown. We evaluated the function of NM myosin during contractile stimulation of canine tracheal SM tissues. Stimulation with ACh caused NM myosin filament assembly, as assessed by a Triton solubility assay and a proximity ligation assay aiming to measure interactions between NM myosin monomers. ACh stimulated the phosphorylation of NM myosin heavy chain on Ser1943 in tracheal SM tissues, which can regulate NM myosin IIA filament assembly in vitro. Expression of the non-phosphorylatable mutant NM myosin S1943A in SM tissues inhibited ACh-induced endogenous NM myosin Ser1943 phosphorylation, NM myosin filament formation, the assembly of membrane adhesome complexes and tension development. The NM myosin cross-bridge cycling inhibitor blebbistatin suppressed adhesome complex assembly and SM contraction without inhibiting NM myosin Ser1943 phosphorylation or NM myosin filament assembly. Rho

  10. Tetanic contraction induces enhancement of fatigability and sarcomeric damage in atrophic skeletal muscle and its underlying molecular mechanisms.

    Science.gov (United States)

    Yu, Zhi-Bin

    2013-11-01

    intracellular resting Ca2+ concentration ([Ca2+]i) in unloaded soleus muscles. High [Ca2+]i activated calpain-1 which induced a higher degradation of desmin. Desmin degradation may loose connections between adjacent myofibrils and further misaligned Z-disc during repeated tetanic contractions. Passive stretch in unloaded muscle could preserve the stability of sarcoplasmic reticulum Ca2+ release channels by means of keeping nNOS activity, and decrease the enhanced protein level and activity of calpain to control levels in unloaded soleus muscles. Therefore, passive stretch restored normal appearance of Z-disc and resisted in part atrophy of unloaded soleus muscles. The above results indicate that enhanced fatigability of high-frequency tetanic contraction is associated to the alteration in K+ channel characteristics, and elevated SERCA activity and slow to fast transition of myosin heavy chain (MHC) isoforms increases fatigability of intermittent tetanic contraction in atrophic soleus muscle. The sarcomeric damage induced by tetanic contraction can be retarded by stretch in atrophic soleus muscles.

  11. Distinct functional interactions between actin isoforms and nonsarcomeric myosins.

    Directory of Open Access Journals (Sweden)

    Mirco Müller

    Full Text Available Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.

  12. Molecular effects of the myosin activator omecamtiv mecarbil on contractile properties of skinned myocardium lacking cardiac myosin binding protein-C.

    Science.gov (United States)

    Mamidi, Ranganath; Gresham, Kenneth S; Li, Amy; dos Remedios, Cristobal G; Stelzer, Julian E

    2015-08-01

    Decreased expression of cardiac myosin binding protein-C (cMyBP-C) in the myocardium is thought to be a contributing factor to hypertrophic cardiomyopathy in humans, and the initial molecular defect is likely abnormal cross-bridge (XB) function which leads to impaired force generation, decreased contractile performance, and hypertrophy in vivo. The myosin activator omecamtiv mecarbil (OM) is a pharmacological drug that specifically targets the myosin XB and recent evidence suggests that OM induces a significant decrease in the in vivo motility velocity and an increase in the XB duty cycle. Thus, the molecular effects of OM maybe beneficial in improving contractile function in skinned myocardium lacking cMyBP-C because absence of cMyBP-C in the sarcomere accelerates XB kinetics and enhances XB turnover rate, which presumably reduces contractile efficiency. Therefore, parameters of XB function were measured in skinned myocardium lacking cMyBP-C prior to and following OM incubation. We measured ktr, the rate of force redevelopment as an index of XB transition from both the weakly- to strongly-bound state and from the strongly- to weakly-bound states and performed stretch activation experiments to measure the rates of XB detachment (krel) and XB recruitment (kdf) in detergent-skinned ventricular preparations isolated from hearts of wild-type (WT) and cMyBP-C knockout (KO) mice. Samples from donor human hearts were also used to assess the effects of OM in cardiac muscle expressing a slow β-myosin heavy chain (β-MHC). Incubation of skinned myocardium with OM produced large enhancements in steady-state force generation which were most pronounced at low levels of [Ca(2+)] activations, suggesting that OM cooperatively recruits additional XB's into force generating states. Despite a large increase in steady-state force generation following OM incubation, parallel accelerations in XB kinetics as measured by ktr were not observed, and there was a significant OM

  13. The role of sarcomere gene mutations in patients with idiopathic dilated cardiomyopathy

    DEFF Research Database (Denmark)

    Møller, Daniel Vega; Andersen, Paal Skytt; Hedley, Paula

    2009-01-01

    We investigated a Danish cohort of 31 unrelated patients with idiopathic dilated cardiomyopathy (IDC), to assess the role that mutations in sarcomere protein genes play in IDC. Patients were genetically screened by capillary electrophoresis single strand conformation polymorphism and subsequently...... by bidirectional DNA sequencing of conformers in the coding regions of MYH7, MYBPC3, TPM1, ACTC, MYL2, MYL3, TNNT2, CSRP3 and TNNI3. Eight probands carried disease-associated genetic variants (26%). In MYH7, three novel mutations were found; in MYBPC3, one novel variant and two known mutations were found...... DCM as well as one case with left ventricular non-compaction. Disease-causing sarcomere gene mutations were found in about one-quarter of IDC patients, and seem to play an important role in the causation of the disease. The genetics is as complex as seen in HCM. Thus, our data suggest that a genetic...

  14. Effects of anisosmotic stress on cardiac muscle cell length, diameter, area, and sarcomere length

    Science.gov (United States)

    Tanaka, R.; Barnes, M. A.; Cooper, G. 4th; Zile, M. R.

    1996-01-01

    The purpose of this study was to examine the effects of anisosmotic stress on adult mammalian cardiac muscle cell (cardiocyte) size. Cardiocyte size and sarcomere length were measured in cardiocytes isolated from 10 normal rats and 10 normal cats. Superfusate osmolarity was decreased from 300 +/- 6 to 130 +/- 5 mosM and increased to 630 +/- 8 mosM. Cardiocyte size and sarcomere length increased progressively when osmolarity was decreased, and there were no significant differences between cat and rat cardiocytes with respect to percent change in cardiocyte area or diameter; however, there were significant differences in cardiocyte length (2.8 +/- 0.3% in cat vs. 6.1 +/- 0.3% in rat, P cell size relation is useful in assessing the cardiocyte response to anisosmotic stress and may in future studies be useful in assessing changes in relative passive cardiocyte stiffness produced by pathological processes.

  15. Antiparallel coiled-coil–mediated dimerization of myosin X

    Science.gov (United States)

    Lu, Qing; Ye, Fei; Wei, Zhiyi; Wen, Zilong; Zhang, Mingjie

    2012-01-01

    Processive movements of unconventional myosins on actin filaments generally require motor dimerization. A commonly accepted myosin dimerization mechanism is via formation of a parallel coiled-coil dimer by a stretch of amino acid residues immediately carboxyl-terminal to the motor’s lever-arm domain. Here, we discover that the predicted coiled-coil region of myosin X forms a highly stable, antiparallel coiled-coil dimer (anti-CC). Disruption of the anti-CC either by single-point mutations or by replacement of the anti-CC with a parallel coiled coil with a similar length compromised the filopodial induction activity of myosin X. We further show that the anti-CC and the single α-helical domain of myosin X are connected by a semirigid helical linker. The anti-CC–mediated dimerization may enable myosin X to walk on both single and bundled actin filaments. PMID:23012428

  16. Cargo binding activates myosin VIIA motor function in cells.

    Science.gov (United States)

    Sakai, Tsuyoshi; Umeki, Nobuhisa; Ikebe, Reiko; Ikebe, Mitsuo

    2011-04-26

    Myosin VIIA, thought to be involved in human auditory function, is a gene responsible for human Usher syndrome type 1B, which causes hearing and visual loss. Recent studies have suggested that it can move processively if it forms a dimer. Nevertheless, it exists as a monomer in vitro, unlike the well-known two-headed processive myosin Va. Here we studied the molecular mechanism, which is currently unknown, of activating myosin VIIA as a cargo-transporting motor. Human myosin VIIA was present throughout cytosol, but it moved to the tip of filopodia upon the formation of dimer induced by dimer-inducing reagent. The forced dimer of myosin VIIA translocated its cargo molecule, MyRip, to the tip of filopodia, whereas myosin VIIA without the forced dimer-forming module does not translocate to the filopodial tips. These results suggest that dimer formation of myosin VIIA is important for its cargo-transporting activity. On the other hand, myosin VIIA without the forced dimerization module became translocated to the filopodial tips in the presence of cargo complex, i.e., MyRip/Rab27a, and transported its cargo complex to the tip. Coexpression of MyRip promoted the association of myosin VIIA to vesicles and the dimer formation. These results suggest that association of myosin VIIA monomers with membrane via the MyRip/Rab27a complex facilitates the cargo-transporting activity of myosin VIIA, which is achieved by cluster formation on the membrane, where it possibly forms a dimer. Present findings support that MyRip, a cargo molecule, functions as an activator of myosin VIIA transporter function.

  17. Defining phenotypes and disease progression in sarcomeric cardiomyopathies: contemporary role of clinical investigations.

    Science.gov (United States)

    Olivotto, Iacopo; d'Amati, Giulia; Basso, Cristina; Van Rossum, Albert; Patten, Monica; Emdin, Michele; Pinto, Yigal; Tomberli, Benedetta; Camici, Paolo G; Michels, Michelle

    2015-04-01

    Mutations in cardiac sarcomere protein genes are associated with a variety of clinical phenotypes, including hypertrophic (HCM), dilated (DCM), and restrictive (RCM) cardiomyopathy as well as left ventricular non-compaction, with the overlap of morpho-functional manifestations in individual patients and families. Over time, initial phenotypes may undergo profound changes which determine clinical course and disease progression. Although genetic defects causing HCM and DCM have opposite effects at the myofilament level, a number of downstream maladaptive mechanisms, ranging from microvascular dysfunction and ischaemia to myocardial fibrosis and from diastolic dysfunction to abnormal sympathetic activation and arrhythmogenesis, seem to recur in sarcomeric cardiomyopathies, independent of the presenting phenotype. The extent and rate at which each of these features occur and evolve may be radically different in each form of cardiomyopathy, determining a clinical heterogeneity that is not only cross-sectional, but also longitudinal, i.e. time-related. Timely and sensitive detection of these long-term modifications in the clinical setting is a key to preventing advanced disease and identifying novel therapeutic targets. The present review evaluates the contribution of contemporary technology to pre-clinical diagnosis, characterization of phenotypes, and assessment of disease progression in sarcomere cardiomyopathies, including echocardiography, positron emission tomography, magnetic resonance, pathology, and circulating biomarkers. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  18. Elastic Energy Storage and Radial Forces in the Myofilament Lattice Depend on Sarcomere Length

    Science.gov (United States)

    Williams, C. David; Regnier, Michael; Daniel, Thomas L.

    2012-01-01

    We most often consider muscle as a motor generating force in the direction of shortening, but less often consider its roles as a spring or a brake. Here we develop a fully three-dimensional spatially explicit model of muscle to isolate the locations of forces and energies that are difficult to separate experimentally. We show the strain energy in the thick and thin filaments is less than one third the strain energy in attached cross-bridges. This result suggests the cross-bridges act as springs, storing energy within muscle in addition to generating the force which powers muscle. Comparing model estimates of energy consumed to elastic energy stored, we show that the ratio of these two properties changes with sarcomere length. The model predicts storage of a greater fraction of energy at short sarcomere lengths, suggesting a mechanism by which muscle function shifts as force production declines, from motor to spring. Additionally, we investigate the force that muscle produces in the radial or transverse direction, orthogonal to the direction of shortening. We confirm prior experimental estimates that place radial forces on the same order of magnitude as axial forces, although we find that radial forces and axial forces vary differently with changes in sarcomere length. PMID:23166482

  19. Clinical outcomes associated with sarcomere mutations in hypertrophic cardiomyopathy: a meta-analysis on 7675 individuals.

    Science.gov (United States)

    Sedaghat-Hamedani, Farbod; Kayvanpour, Elham; Tugrul, Oguz Firat; Lai, Alan; Amr, Ali; Haas, Jan; Proctor, Tanja; Ehlermann, Philipp; Jensen, Katrin; Katus, Hugo A; Meder, Benjamin

    2017-08-24

    Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiovascular disease, which goes along with increased risk for sudden cardiac death (SCD). Despite the knowledge about the different causal genes, the relationship between individual genotypes and phenotypes is incomplete. We retrieved PubMed/Medline literatures on genotype-phenotype associations in patients with HCM and mutations in MYBPC3, MYH7, TNNT2, and TNNI3. Altogether, 51 studies with 7675 HCM patients were included in our meta-analysis. The average frequency of mutations in MYBPC3 (20%) and MYH7 (14%) was higher than TNNT2 and TNNI3 (2% each). The mean age of HCM onset for MYH7 mutation positive patients was the beginning of the fourth decade, significantly earlier than patients without sarcomeric mutations. A high male proportion was observed in TNNT2 (69%), MYBPC3 (62%) and mutation negative group (64%). Cardiac conduction disease, ventricular arrhythmia and heart transplantation (HTx) rate were higher in HCM patients with MYH7 mutations in comparison to MYBPC3 (p MYH7 is earlier and leads to a more severe phenotype than in patient without such mutations. Furthermore, patients with sarcomeric mutations are more susceptible to SCD. The present study further supports the clinical interpretation of sarcomeric mutations in HCM patients.

  20. Sarcomeric lesions and remodeling proximal to intercalated disks in overload-induced cardiac hypertrophy.

    Science.gov (United States)

    Kebir, Sied; Orfanos, Zacharias; Schuld, Julia; Linhart, Markus; Lamberz, Christian; van der Ven, Peter F M; Schrickel, Jan; Kirfel, Gregor; Fürst, Dieter O; Meyer, Rainer

    2016-10-15

    Pressure overload induces cardiac remodeling involving both the contractile machinery and intercalated disks (IDs). Filamin C (FlnC) and Xin actin-binding repeat-containing proteins (XIRPs) are multi-adapters localizing in IDs of higher vertebrates. Knockout of the gene encoding Xin (Xirp1) in mice leads to a mild cardiac phenotype with ID mislocalization. In order to amplify this phenotype, we performed transverse aortic constriction (TAC) on control and Xirp1-deficient mice. TAC induced similar left ventricular hypertrophy in both genotypes, suggesting that the lack of Xin does not lead to higher susceptibility to cardiac overload. However, in both genotypes, FlnC appeared in "streaming" localizations across multiple sarcomeres proximal to the IDs, suggesting a remodeling response. Furthermore, FlnC-positive areas of remodeling, reminiscent of sarcomeric lesions previously described for skeletal muscles (but so far unreported in the heart), were also observed. These adaptations reflect a similarly strong effect of the pressure induced by TAC in both genotypes. However, 2 weeks post-operation TAC-treated knockout hearts had reduced levels of connexin43 and slightly increased incidents of ventricular tachycardia compared to their wild-type (WT) counterparts. Our findings highlight the FlnC-positive sarcomeric lesions and ID-proximal streaming as general remodeling responses in cardiac overload-induced hypertrophy. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Animal and in silico models for the study of sarcomeric cardiomyopathies.

    Science.gov (United States)

    Duncker, Dirk J; Bakkers, Jeroen; Brundel, Bianca J; Robbins, Jeff; Tardiff, Jil C; Carrier, Lucie

    2015-04-01

    Over the past decade, our understanding of cardiomyopathies has improved dramatically, due to improvements in screening and detection of gene defects in the human genome as well as a variety of novel animal models (mouse, zebrafish, and drosophila) and in silico computational models. These novel experimental tools have created a platform that is highly complementary to the naturally occurring cardiomyopathies in cats and dogs that had been available for some time. A fully integrative approach, which incorporates all these modalities, is likely required for significant steps forward in understanding the molecular underpinnings and pathogenesis of cardiomyopathies. Finally, novel technologies, including CRISPR/Cas9, which have already been proved to work in zebrafish, are currently being employed to engineer sarcomeric cardiomyopathy in larger animals, including pigs and non-human primates. In the mouse, the increased speed with which these techniques can be employed to engineer precise 'knock-in' models that previously took years to make via multiple rounds of homologous recombination-based gene targeting promises multiple and precise models of human cardiac disease for future study. Such novel genetically engineered animal models recapitulating human sarcomeric protein defects will help bridging the gap to translate therapeutic targets from small animal and in silico models to the human patient with sarcomeric cardiomyopathy. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  2. Animal and in silico models for the study of sarcomeric cardiomyopathies

    Science.gov (United States)

    Duncker, Dirk J.; Bakkers, Jeroen; Brundel, Bianca J.; Robbins, Jeff; Tardiff, Jil C.; Carrier, Lucie

    2015-01-01

    Over the past decade, our understanding of cardiomyopathies has improved dramatically, due to improvements in screening and detection of gene defects in the human genome as well as a variety of novel animal models (mouse, zebrafish, and drosophila) and in silico computational models. These novel experimental tools have created a platform that is highly complementary to the naturally occurring cardiomyopathies in cats and dogs that had been available for some time. A fully integrative approach, which incorporates all these modalities, is likely required for significant steps forward in understanding the molecular underpinnings and pathogenesis of cardiomyopathies. Finally, novel technologies, including CRISPR/Cas9, which have already been proved to work in zebrafish, are currently being employed to engineer sarcomeric cardiomyopathy in larger animals, including pigs and non-human primates. In the mouse, the increased speed with which these techniques can be employed to engineer precise ‘knock-in’ models that previously took years to make via multiple rounds of homologous recombination-based gene targeting promises multiple and precise models of human cardiac disease for future study. Such novel genetically engineered animal models recapitulating human sarcomeric protein defects will help bridging the gap to translate therapeutic targets from small animal and in silico models to the human patient with sarcomeric cardiomyopathy. PMID:25600962

  3. Cargo binding activates myosin VIIA motor function in cells

    OpenAIRE

    Sakai, Tsuyoshi; Umeki, Nobuhisa; Ikebe, Reiko; Ikebe, Mitsuo

    2011-01-01

    Myosin VIIA, thought to be involved in human auditory function, is a gene responsible for human Usher syndrome type 1B, which causes hearing and visual loss. Recent studies have suggested that it can move processively if it forms a dimer. Nevertheless, it exists as a monomer in vitro, unlike the well-known two-headed processive myosin Va. Here we studied the molecular mechanism, which is currently unknown, of activating myosin VIIA as a cargo-transporting motor. Human myosin VIIA was present ...

  4. Native bare zone assemblage nucleates myosin filament assembly.

    Science.gov (United States)

    Niederman, R; Peters, L K

    1982-11-15

    Native myosin filaments from rabbit psoas muscle are always 1.5 micrometer long. The regulated assembly of these filaments is generally considered to occur by an initial antiparallel and subsequent parallel aggregation of identical myosin subunits. In this schema myosin filament length is controlled by either a self-assembly or a Vernier process. We present evidence which refines these ideas. Namely, that the intact myosin bare zone assemblage nucleates myosin filament assembly. This suggestion is based on the following experimental evidence. (1) A native bare zone assemblage about 0.3 micrometer long can be formed by dialysis of native myosin filaments to either a pH 8 or a 0.2 M-KCl solution. (2) Upon dialysis back to 0.1 M-KCl, bare zone assemblages and distal myosin molecules recombine to form 1.5 micrometer long bipolar filaments. (3) The bare zone assemblage can be separated from the distal myosin molecules by column chromatography in 0.2 M-KCl. Upon dialysis of the fractionated subsets back to 0.1 M-KCl, the bare zone assemblage retains its length of about 0.3 micrometer. However, the distal molecules reassemble to form filaments about 5 micrometers long. (4) Filaments are formed from mixes of the isolated subsets. The lengths of these filaments vary with the amount of distal myosin present. (5) When native filaments, isolated bare zone assemblages or distal myosin molecules are moved sequentially to 0.6 M-KCl and then to 0.1 M-KCl, the final filament lengths are all about 5 micrometers. The capacity of the bare zone assemblage to nucleate filament assembly may be due to the bare zone myosin molecules, the associated M band components or both.

  5. Characterization of myosin light chain in shrimp hemocytic phagocytosis.

    Science.gov (United States)

    Han, Fang; Wang, Zhiyong; Wang, Xiaoqing

    2010-11-01

    Myosin light chain, a well-known cytoskeleton gene, regulates multiple processes that are involved in material transport, muscle shrink and cell division. However, its function in phagocytosis against invading pathogens in crustacean remains unknown. In this investigation, a myosin light chain gene was obtained from Marsupenaeus japonicus shrimp. The full-length cDNA of this gene was of 766 bp and an open reading frame (ORF) of 462 bp encoding a polypeptide of 153 amino acids. The myosin light chain protein was expressed in Escherichia coli and purified. Subsequently the specific antibody was raised using the purified GST fusion protein. As revealed by immuno-electron microscopy, the myosin light chain protein was only expressed in the dark bands of muscle. In the present study, the myosin light chain gene was up-regulated in the WSSV-resistant shrimp as revealed by real-time PCR and western blot. And the phagocytic percentage and phagocytic index using FITC-labeled Vibrio parahemolyticus were remarkably increased in the WSSV-resistant shrimp, suggesting that the myosin light chain protein was essential in hemocytic phagocytosis. On the other hand, RNAi assays indicated that the phagocytic percentage and phagocytic index were significantly decreased when the myosin light chain gene was silenced by sequence-specific siRNA. These findings suggested that myosin light chain protein was involved in the regulation of hemocytic phagocytosis of shrimp. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Robust mechanobiological behavior emerges in heterogeneous myosin systems

    Science.gov (United States)

    Egan, Paul F.; Moore, Jeffrey R.; Ehrlicher, Allen J.; Weitz, David A.; Schunn, Christian; Cagan, Jonathan; LeDuc, Philip

    2017-09-01

    Biological complexity presents challenges for understanding natural phenomenon and engineering new technologies, particularly in systems with molecular heterogeneity. Such complexity is present in myosin motor protein systems, and computational modeling is essential for determining how collective myosin interactions produce emergent system behavior. We develop a computational approach for altering myosin isoform parameters and their collective organization, and support predictions with in vitro experiments of motility assays with α-actinins as molecular force sensors. The computational approach models variations in single myosin molecular structure, system organization, and force stimuli to predict system behavior for filament velocity, energy consumption, and robustness. Robustness is the range of forces where a filament is expected to have continuous velocity and depends on used myosin system energy. Myosin systems are shown to have highly nonlinear behavior across force conditions that may be exploited at a systems level by combining slow and fast myosin isoforms heterogeneously. Results suggest some heterogeneous systems have lower energy use near stall conditions and greater energy consumption when unloaded, therefore promoting robustness. These heterogeneous system capabilities are unique in comparison with homogenous systems and potentially advantageous for high performance bionanotechnologies. Findings open doors at the intersections of mechanics and biology, particularly for understanding and treating myosin-related diseases and developing approaches for motor molecule-based technologies.

  7. Planarian myosin essential light chain is involved in the formation of brain lateral branches during regeneration.

    Science.gov (United States)

    Yu, Shuying; Chen, Xuhui; Yuan, Zuoqing; Zhou, Luming; Pang, Qiuxiang; Mao, Bingyu; Zhao, Bosheng

    2015-08-01

    The myosin essential light chain (ELC) is a structure component of the actomyosin cross-bridge, however, the functions in the central nervous system (CNS) development and regeneration remain poorly understood. Planarian Dugesia japonica has revealed fundamental mechanisms and unique aspects of neuroscience and neuroregeneration. In this study, the cDNA DjElc, encoding a planarian essential light chain of myosin, was identified from the planarian Dugesia japonica cDNA library. It encodes a deduced protein with highly conserved functionally domains EF-Hand and Ca(2+) binding sites that shares significant similarity with other members of ELC. Whole mount in situ hybridization studies show that DjElc expressed in CNS during embryonic development and regeneration of adult planarians. Loss of function of DjElc by RNA interference during planarian regeneration inhibits brain lateral branches regeneration completely. In conclusion, these results demonstrated that DjElc is required for maintenance of neurons and neurite outgrowth, particularly for involving the brain later branch regeneration.

  8. Caenorhabditis elegans unc-82 encodes a serine/threonine kinase important for myosin filament organization in muscle during growth.

    Science.gov (United States)

    Hoppe, Pamela E; Chau, Johnnie; Flanagan, Kelly A; Reedy, April R; Schriefer, Lawrence A

    2010-01-01

    Mutations in the unc-82 locus of Caenorhabditis elegans were previously identified by screening for disrupted muscle cytoskeleton in otherwise apparently normal mutagenized animals. Here we demonstrate that the locus encodes a serine/threonine kinase orthologous to human ARK5/SNARK (NUAK1/NUAK2) and related to the PAR-1 and SNF1/AMP-Activated kinase (AMPK) families. The predicted 1600-amino-acid polypeptide contains an N-terminal catalytic domain and noncomplex repetitive sequence in the remainder of the molecule. Phenotypic analyses indicate that unc-82 is required for maintaining the organization of myosin filaments and internal components of the M-line during cell-shape changes. Mutants exhibit normal patterning of cytoskeletal elements during early embryogenesis. Defects in localization of thick filament and M-line components arise during embryonic elongation and become progressively more severe as development proceeds. The phenotype is independent of contractile activity, consistent with unc-82 mutations preventing proper cytoskeletal reorganization during growth, rather than undermining structural integrity of the M-line. This is the first report establishing a role for the UNC-82/ARK5/SNARK kinases in normal development. We propose that activation of UNC-82 kinase during cell elongation regulates thick filament attachment or growth, perhaps through phosphorylation of myosin and paramyosin. We speculate that regulation of myosin is an ancestral characteristic of kinases in this region of the kinome.

  9. A novel skeletal-myosin blocking drug for the study of neuromuscular physiology

    Directory of Open Access Journals (Sweden)

    Dante J Heredia

    2016-12-01

    Full Text Available The failure to transmit neural action potentials (APs into muscle APs is referred to as neuromuscular transmission failure (NTF. Although synaptic dysfunction occurs in a variety of neuromuscular diseases and impaired neurotransmission contributes to muscle fatigue, direct evaluation of neurotransmission by measurement of successfully transduced muscle APs is difficult due to the subsequent movements produced by muscle. Moreover, the voltage-gated sodium channel inhibitor used to study neurotransmitter release at the adult neuromuscular junction is ineffective in embryonic tissue, making it nearly impossible to precisely measure any aspect of neurotransmission in embryonic lethal mouse mutants. In this study we utilized 3-(N-butylethanimidoyl-4-hydroxy-2H-chromen-2-one (BHC, previously identified in a small-molecule screen of skeletal muscle myosin inhibitors, to suppress movements without affecting membrane currents. In contrast to previously characterized drugs from this screen such as BTS, which inhibit skeletal muscle myosin ATPase activity but also block neurotransmission, BHC selectively blocked nerve-evoked muscle contraction without affecting neurotransmitter release. This feature allowed a detailed characterization of neurotransmission in both embryonic and adult mice. In the presence of BHC, neural APs produced by tonic stimulation of the phrenic nerve at rates up to 20 Hz were successfully transmitted into muscle APs. At higher rates of phrenic nerve stimulation, NTF was observed. NTF was intermittent and characterized by successful muscle APs following failed ones, with the percentage of successfully transmitted muscle APs diminishing over time. Nerve stimulation rates that failed to produce NTF in the presence of BHC similarly failed to produce a loss of peak muscle fiber shortening, which was examined using a novel optical method of muscle fatigue, or a loss of peak cytosolic calcium transient intensity, examined in whole

  10. Sarcomere length-dependence of activity-dependent twitch potentiation in mouse skeletal muscle

    Directory of Open Access Journals (Sweden)

    MacIntosh Brian R

    2002-12-01

    Full Text Available Abstract Background It has been reported that potentiation of a skeletal muscle twitch response is proportional to muscle length with a negative slope during staircase, and a positive slope during posttetanic potentiation. This study was done to directly compare staircase and posttetanic responses with measurement of sarcomere length to compare their length-dependence. Methods Mouse extensor digitorum longus (EDL muscles were dissected to small bundles of fibers, which permit measurement of sarcomere length (SL, by laser diffraction. In vitro fixed-end contractions of EDL fiber bundles were elicited at 22°C and 35°C at sarcomere lengths ranging from 2.35 μm to 3.85 μm. Twitch contractions were assessed before and after 1.5 s of 75 Hz stimulation at 22°C or during 10 s of 10 Hz stimulation at 22°C or 35°C. Results Staircase potentiation was greater at 35°C than 22°C, and the relative magnitude of the twitch contraction (Pt*/Pt was proportional to sarcomere length with a negative slope, over the range 2.3 μm – 3.7 μm. Linear regression yielded the following: Pt*/Pt = -0.59·SL+3.27 (r2 = 0.74; Pt*/Pt = -0.39·SL+2.34 (r2 = 0.48; and Pt*/Pt = -0.50·SL+2.45 (r2 = 0.80 for staircase at 35°C, and 22°C and posttetanic response respectively. Posttetanic depression rather than potentiation was present at long SL. This indicates that there may be two processes operating in these muscles to modulate the force: one that enhances and a second that depresses the force. Either or both of these processes may have a length-dependence of its mechanism. Conclusion There is no evidence that posttetanic potentiation is fundamentally different from staircase in these muscles.

  11. Park7 expression influences myotube size and myosin expression in muscle.

    Directory of Open Access Journals (Sweden)

    Hui Yu

    Full Text Available Callipyge sheep exhibit postnatal muscle hypertrophy due to the up-regulation of DLK1 and/or RTL1. The up-regulation of PARK7 was identified in hypertrophied muscles by microarray analysis and further validated by quantitative PCR. The expression of PARK7 in hypertrophied muscle of callipyge lambs was confirmed to be up-regulated at the protein level. PARK7 was previously identified to positively regulate PI3K/AKT pathway by suppressing the phosphatase activity of PTEN in mouse fibroblasts. The purpose of this study was to investigate the effects of PARK7 in muscle growth and protein accretion in response to IGF1. Primary myoblasts isolated from Park7 (+/+ and Park7 (-/- mice were used to examine the effect of differential expression of Park7. The Park7 (+/+ myotubes had significantly larger diameters and more total sarcomeric myosin expression than Park7 (-/- myotubes. IGF1 treatment increased the mRNA abundance of Myh4, Myh7 and Myh8 between 20-40% in Park7 (+/+ myotubes relative to Park7 (-/-. The level of AKT phosphorylation was increased in Park7 (+/+ myotubes at all levels of IGF1 supplementation. After removal of IGF1, the Park7 (+/+ myotubes maintained higher AKT phosphorylation through 3 hours. PARK7 positively regulates the PI3K/AKT pathway by inhibition of PTEN phosphatase activity in skeletal muscle. The increased PARK7 expression can increase protein synthesis and result in myotube hypertrophy. These results support the hypothesis that elevated expression of PARK7 in callipyge muscle would increase levels of AKT activity to cause hypertrophy in response to the normal IGF1 signaling in rapidly growing lambs. Increasing expression of PARK7 could be a novel mechanism to increase protein accretion and muscle growth in livestock or help improve muscle mass with disease or aging.

  12. Identification of an FHL1 protein complex containing gamma-actin and non-muscle myosin IIB by analysis of protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Lili Wang

    Full Text Available FHL1 is multifunctional and serves as a modular protein binding interface to mediate protein-protein interactions. In skeletal muscle, FHL1 is involved in sarcomere assembly, differentiation, growth, and biomechanical stress. Muscle abnormalities may play a major role in congenital clubfoot (CCF deformity during fetal development. Thus, identifying the interactions of FHL1 could provide important new insights into its functional role in both skeletal muscle development and CCF pathogenesis. Using proteins derived from rat L6GNR4 myoblastocytes, we detected FHL1 interacting proteins by immunoprecipitation. Samples were analyzed by liquid chromatography mass spectrometry (LC-MS. Dynamic gene expression of FHL1 was studied. Additionally, the expression of the possible interacting proteins gamma-actin and non-muscle myosin IIB, which were isolated from the lower limbs of E14, E15, E17, E18, E20 rat embryos or from adult skeletal muscle was analyzed. Potential interacting proteins isolated from E17 lower limbs were verified by immunoprecipitation, and co-localization in adult gastrocnemius muscle was visualized by fluorescence microscopy. FHL1 expression was associated with skeletal muscle differentiation. E17 was found to be the critical time-point for skeletal muscle differentiation in the lower limbs of rat embryos. We also identified gamma-actin and non-muscle myosin IIB as potential binding partners of FHL1, and both were expressed in adult skeletal muscle. We then demonstrated that FHL1 exists as part of a complex, which binds gamma-actin and non-muscle myosin IIB.

  13. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy.

    Science.gov (United States)

    Ho, Carolyn Y; Abbasi, Siddique A; Neilan, Tomas G; Shah, Ravi V; Chen, Yucheng; Heydari, Bobak; Cirino, Allison L; Lakdawala, Neal K; Orav, E John; González, Arantxa; López, Begoña; Díez, Javier; Jerosch-Herold, Michael; Kwong, Raymond Y

    2013-05-01

    Myocardial fibrosis is a hallmark of hypertrophic cardiomyopathy (HCM) and a potential substrate for arrhythmias and heart failure. Sarcomere mutations seem to induce profibrotic changes before left ventricular hypertrophy (LVH) develops. To further evaluate these processes, we used cardiac magnetic resonance with T1 measurements on a genotyped HCM population to quantify myocardial extracellular volume (ECV). Sarcomere mutation carriers with LVH (G+/LVH+, n=37) and without LVH (G+/LVH-, n=29), patients with HCM without mutations (sarcomere-negative HCM, n=11), and healthy controls (n=11) underwent contrast cardiac magnetic resonance, measuring T1 times pre- and postgadolinium infusion. Concurrent echocardiography and serum biomarkers of collagen synthesis, hemodynamic stress, and myocardial injury were also available in a subset. Compared with controls, ECV was increased in patients with overt HCM, as well as G+/LVH- mutation carriers (ECV=0.36±0.01, 0.33±0.01, 0.27±0.01 in G+/LVH+, G+/LVH-, controls, respectively; P≤0.001 for all comparisons). ECV correlated with N-terminal probrain natriuretic peptide levels (r=0.58; P60% of overt patients with HCM but absent from G+/LVH- subjects. Both ECV and late gadolinium enhancement were more extensive in sarcomeric HCM than sarcomere-negative HCM. Myocardial ECV is increased in HCM sarcomere mutation carriers even in the absence of LVH. These data provide additional support that fibrotic remodeling is triggered early in disease pathogenesis. Quantifying ECV may help characterize the development of myocardial fibrosis in HCM and ultimately assist in developing novel disease-modifying therapy, targeting interstitial fibrosis.

  14. Intermediate filament-co-localized molecules with myosin heavy chain epitopes define distinct cellular domains in hair follicles and epidermis

    Directory of Open Access Journals (Sweden)

    Hughes Simon M

    2003-08-01

    Full Text Available Abstract Background Proteins linking intermediate filaments to other cytoskeletal components have important functions in maintaining tissue integrity and cell shape. Results We found a set of monoclonal antibodies raised against specific human sarcomeric myosin heavy chain (MyHC isoforms labels cells in distinct regions of the mammalian epidermis. The antigens co-localize with intermediate filament-containing structures. A slow MyHC-related antigen is punctate on the cell surface and co-localizes with desmoplakin at desmosomal junctions of all suprabasal epidermal layers from rat fœtal day 16 onwards, in the root sheath of the hair follicle and in intercalated disks of cardiomyocytes. A fast MyHC-related antigen occurs in cytoplasmic filaments in a subset of basal cells of skin epidermis and bulb, but not neck, of hair follicles. A fast IIA MyHC-related antigen labels filaments of a single layer of cells in hair bulb. This 230 000 Mr antigen co-purifies with keratin. No obvious candidate for any of the antigens appears in the literature. Conclusions We describe a set of molecules that co-localize with intermediate filament in specific cell subsets in epithelial tissues. These antigens presumably influence intermediate filament structure or function.

  15. Structural insight into the UNC-45–myosin complex

    DEFF Research Database (Denmark)

    Fratev, Filip; Jonsdottir, Svava Osk; Pajeva, Ilza

    2013-01-01

    is mainly stabilized by electrostatic interactions. Remarkably, the contact surface area is similar to that of the myosinactin complex. A significant interspecies difference in the myosin binding epitope is observed. Our results reveal the structural basis of MYH7 exons 15–16 hypertrophic cardiomyopathy......The UNC-45 chaperone protein interacts with and affects the folding, stability, and the ATPase activity of myosins. It plays a critical role in the cardiomyopathy development and in the breast cancer tumor growth. Here we propose the first structural model of the UNC-45–myosin complex using various...

  16. Electron microscopic evidence for the myosin head lever arm mechanism in hydrated myosin filaments using the gas environmental chamber

    Energy Technology Data Exchange (ETDEWEB)

    Minoda, Hiroki [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganeishi, Tokyo184-8588 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Okabe, Tatsuhiro; Inayoshi, Yuhri [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganeishi, Tokyo184-8588 (Japan); Miyakawa, Takuya; Miyauchi, Yumiko; Tanokura, Masaru [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032 (Japan); Katayama, Eisaku [Graduate School of Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Wakabayashi, Takeyuki [Department of Biosciences, School of Science and Engineering, Teikyo University, Utsunomiya, Tochigiken 320-8551 (Japan); Akimoto, Tsuyoshi [Department of Physiology, School of Medicine, Teikyo University, Itabashi-ku, Tokyo 173-8605 (Japan); Sugi, Haruo, E-mail: sugi@kyf.biglobe.ne.jp [Department of Physiology, School of Medicine, Teikyo University, Itabashi-ku, Tokyo 173-8605 (Japan)

    2011-02-25

    Research highlights: {yields} We succeeded in recording structural changes of hydrated myosin cross-bridges. {yields} We succeeded in position-marking the cross-bridges with site-directed antibodies. {yields} We recorded cross-bridge movement at different regions in individual cross-bridge. {yields} The movement was smallest at the cross-bridge-subfragment two boundary. {yields} The results provide evidence for the cross-bridge lever arm mechanism. -- Abstract: Muscle contraction results from an attachment-detachment cycle between the myosin heads extending from myosin filaments and the sites on actin filaments. The myosin head first attaches to actin together with the products of ATP hydrolysis, performs a power stroke associated with release of hydrolysis products, and detaches from actin upon binding with new ATP. The detached myosin head then hydrolyses ATP, and performs a recovery stroke to restore its initial position. The strokes have been suggested to result from rotation of the lever arm domain around the converter domain, while the catalytic domain remains rigid. To ascertain the validity of the lever arm hypothesis in muscle, we recorded ATP-induced movement at different regions within individual myosin heads in hydrated myosin filaments, using the gas environmental chamber attached to the electron microscope. The myosin head were position-marked with gold particles using three different site-directed antibodies. The amplitude of ATP-induced movement at the actin binding site in the catalytic domain was similar to that at the boundary between the catalytic and converter domains, but was definitely larger than that at the regulatory light chain in the lever arm domain. These results are consistent with the myosin head lever arm mechanism in muscle contraction if some assumptions are made.

  17. Dual role of myosin II during Drosophila imaginal disc metamorphosis.

    Science.gov (United States)

    Aldaz, Silvia; Escudero, Luis M; Freeman, Matthew

    2013-01-01

    The motor protein non-muscle myosin II is a major driver of the movements that sculpt three-dimensional organs from two-dimensional epithelia. The machinery of morphogenesis is well established but the logic of its control remains unclear in complex organs. Here we use live imaging and ex vivo culture to report a dual role of myosin II in regulating the development of the Drosophila wing. First, myosin II drives the contraction of a ring of cells that surround the squamous peripodial epithelium, providing the force to fold the whole disc through about 90°. Second, myosin II is needed to allow the squamous cells to expand and then retract at the end of eversion. The combination of genetics and live imaging allows us to describe and understand the tissue dynamics, and the logic of force generation needed to transform a relatively simple imaginal disc into a more complex and three-dimensional adult wing.

  18. Arginylation of Myosin Heavy Chain Regulates Skeletal Muscle Strength

    Directory of Open Access Journals (Sweden)

    Anabelle S. Cornachione

    2014-07-01

    Full Text Available Protein arginylation is a posttranslational modification with an emerging global role in the regulation of actin cytoskeleton. To test the role of arginylation in the skeletal muscle, we generated a mouse model with Ate1 deletion driven by the skeletal muscle-specific creatine kinase (Ckmm promoter. Ckmm-Ate1 mice were viable and outwardly normal; however, their skeletal muscle strength was significantly reduced in comparison to controls. Mass spectrometry of isolated skeletal myofibrils showed a limited set of proteins, including myosin heavy chain, arginylated on specific sites. Atomic force microscopy measurements of contractile strength in individual myofibrils and isolated myosin filaments from these mice showed a significant reduction of contractile forces, which, in the case of myosin filaments, could be fully rescued by rearginylation with purified Ate1. Our results demonstrate that arginylation regulates force production in muscle and exerts a direct effect on muscle strength through arginylation of myosin.

  19. Pulsed actin-myosin network contractions drive apical constriction

    OpenAIRE

    Martin, Adam C.; Kaschube, Matthias; Eric F Wieschaus

    2008-01-01

    Apical constriction facilitates epithelial sheet bending and invagination during morphogenesis1, 2. Apical constriction is conventionally thought to be driven by the continuous purse-string-like contraction of a circumferential actin and Non-Muscle Myosin-II (myosin) belt underlying adherens junctions3–7. However, it is unclear whether other force-generating mechanisms can drive this process. Here, we use real-time imaging and quantitative image analysis of Drosophila gastrulation to show tha...

  20. An invertebrate smooth muscle with striated muscle myosin filaments

    Science.gov (United States)

    Sulbarán, Guidenn; Alamo, Lorenzo; Pinto, Antonio; Márquez, Gustavo; Méndez, Franklin; Padrón, Raúl; Craig, Roger

    2015-01-01

    Muscle tissues are classically divided into two major types, depending on the presence or absence of striations. In striated muscles, the actin filaments are anchored at Z-lines and the myosin and actin filaments are in register, whereas in smooth muscles, the actin filaments are attached to dense bodies and the myosin and actin filaments are out of register. The structure of the filaments in smooth muscles is also different from that in striated muscles. Here we have studied the structure of myosin filaments from the smooth muscles of the human parasite Schistosoma mansoni. We find, surprisingly, that they are indistinguishable from those in an arthropod striated muscle. This structural similarity is supported by sequence comparison between the schistosome myosin II heavy chain and known striated muscle myosins. In contrast, the actin filaments of schistosomes are similar to those of smooth muscles, lacking troponin-dependent regulation. We conclude that schistosome muscles are hybrids, containing striated muscle-like myosin filaments and smooth muscle-like actin filaments in a smooth muscle architecture. This surprising finding has broad significance for understanding how muscles are built and how they evolved, and challenges the paradigm that smooth and striated muscles always have distinctly different components. PMID:26443857

  1. A role for myosin II in mammalian mitochondrial fission.

    Science.gov (United States)

    Korobova, Farida; Gauvin, Timothy J; Higgs, Henry N

    2014-02-17

    Mitochondria are dynamic organelles, undergoing both fission and fusion regularly in interphase cells. Mitochondrial fission is thought to be part of a quality-control mechanism whereby damaged mitochondrial components are segregated from healthy components in an individual mitochondrion, followed by mitochondrial fission and degradation of the damaged daughter mitochondrion. Fission also plays a role in apoptosis. Defects in mitochondrial dynamics can lead to neurodegenerative diseases such as Alzheimer's disease. Mitochondrial fission requires the dynamin GTPase Drp1, which assembles in a ring around the mitochondrion and appears to constrict both outer and inner mitochondrial membranes. However, mechanisms controlling Drp1 assembly on mammalian mitochondria are unclear. Recent results show that actin polymerization, driven by the endoplasmic reticulum-bound formin protein INF2, stimulates Drp1 assembly at fission sites. Here, we show that myosin II also plays a role in fission. Chemical inhibition by blebbistatin or small interfering RNA (siRNA)-mediated suppression of myosin IIA or myosin IIB causes an increase in mitochondrial length in both control cells and cells expressing constitutively active INF2. Active myosin II accumulates in puncta on mitochondria in an actin- and INF2-dependent manner. In addition, myosin II inhibition decreases Drp1 association with mitochondria. Based on these results, we propose a mechanistic model in which INF2-mediated actin polymerization leads to myosin II recruitment and constriction at the fission site, enhancing subsequent Drp1 accumulation and fission. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Precipitation of kidney myosin IIA and IIB by freezing.

    Science.gov (United States)

    Dias, Decivaldo dos Santos; da Cruz, Grabriel Costa Nunes; de Sousa, Marcelo Valle; Coelho, Milton Vieira

    2011-03-01

    Actomyosin precipitation is a critical step in the purification of myosins. In this work, the objective was to precipitate rat kidney actomyosin and isolate myosin by freezing and thawing the soluble fraction. Kidney was homogenized in imidazole buffer, centrifuged at 45000 g for 30 min, and the supernatant was frozen at -20°C for 48 h. The supernatant was thawed at 4°C, centrifuged at 45000 g for 30 min and the precipitate washed twice with imidazole buffer pH 7.0 (with and without Triton X-100, respectively). The resulting precipitate presented a polypeptide profile in SDS/PAGE characteristic of actomyosin and expressed Mg- and K/EDTA-ATPase activity. The actomyosin complex was solubilized with ATP and Mg, and the main polypeptide, p200, was purified in a DEAE-Sepharose column. p200 was marked with anti-myosin II, co-sedimented with F-actin in the absence, but not in the presence, of ATP and was identified by MS/MS with a high Mascot score for myosin IIA. The analysis identified peptides exclusive of myosin IIB, but detected no peptides exclusive of myosin IIC.

  3. Gene duplication and conversion events shaped three homologous, differentially expressed myosin regulatory light chain (MLC2) genes.

    NARCIS (Netherlands)

    Gerrits, L.; Overheul, G.J.; Derks, R.C.; Wieringa, B.; Hendriks, W.J.A.J.; Wansink, D.G.

    2012-01-01

    Myosin II is a hexameric protein complex consisting of two myosin heavy chains, two myosin essential light chains and two myosin regulatory light chains. Multiple subunit isoforms exist, allowing great diversity in myosin II composition which likely impacts on its contractile properties. Little is

  4. Finite element modeling of aponeurotomy: altered intramuscular myofascial force transmission yields complex sarcomere length distributions determining acute effects

    NARCIS (Netherlands)

    Yucesoy, C.A.; Koopman, B.H.; Grootenboer, H.J.; Huijing, P.A.J.B.M.

    2007-01-01

    Finite element modeling of aponeurotomized rat extensor digitorium longus muscle was performed to investigate the acute effects of proximal aponeurotomy. The specific goal was to assess the changes in lengths of sarcomeres within aponeurotomized muscle and to explain how the intervention leads to

  5. Oxidation of myosin by haem proteins generates myosin radicals and protein cross-links

    DEFF Research Database (Denmark)

    Lametsch, Marianne Lund; Luxford, Catherine; Skibsted, Leif Horsfelt

    2008-01-01

    Previous studies have reported that myosin can be modified by oxidative stress and particularly by activated haem proteins. These reactions have been implicated in changes in the properties of this protein in food samples (changes in meat tenderness and palatability), in human physiology...... as a result of the reaction with activated haem proteins (horseradish peroxidase/H2O2) and met-myoglobin/H2O2) has been investigated by EPR spectroscopy and amino-acid consumption, product formation has been characterized by HPLC, and changes in protein integrity have been determined by SDS/PAGE. Multiple...

  6. A Role for Myosin Va in Human Cytomegalovirus Nuclear Egress.

    Science.gov (United States)

    Wilkie, Adrian R; Sharma, Mayuri; Pesola, Jean M; Ericsson, Maria; Fernandez, Rosio; Coen, Donald M

    2018-03-15

    Herpesviruses replicate and package their genomes into capsids in replication compartments within the nuclear interior. Capsids then move to the inner nuclear membrane for envelopment and release into the cytoplasm in a process called nuclear egress. We previously found that nuclear F-actin is induced upon infection with the betaherpesvirus human cytomegalovirus (HCMV) and is important for nuclear egress and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Despite these and related findings, it has not been shown that any specific motor protein is involved in herpesvirus nuclear egress. In this study, we have investigated whether the host motor protein, myosin Va, could be fulfilling this role. Using immunofluorescence microscopy and coimmunoprecipitation, we observed associations between a nuclear population of myosin Va and the viral major capsid protein, with both concentrating at the periphery of replication compartments. Immunoelectron microscopy showed that nearly 40% of assembled nuclear capsids associate with myosin Va. We also found that myosin Va and major capsid protein colocalize with nuclear F-actin. Importantly, antagonism of myosin Va with RNA interference or a dominant negative mutant revealed that myosin Va is important for the efficient production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Our results lead us to suggest a working model whereby human cytomegalovirus capsids associate with myosin Va for movement from replication compartments to the nuclear periphery during nuclear egress. IMPORTANCE Little is known regarding how newly assembled and packaged herpesvirus capsids move from the nuclear interior to the periphery during nuclear egress. While it has been proposed that an actomyosin-based mechanism facilitates intranuclear movement of alphaherpesvirus capsids, a functional role for

  7. Muscleblind, BSF and TBPH are mislocalized in the muscle sarcomere of a Drosophila myotonic dystrophy model

    Directory of Open Access Journals (Sweden)

    Beatriz Llamusi

    2013-01-01

    Myotonic dystrophy type 1 (DM1 is a genetic disease caused by the pathological expansion of a CTG trinucleotide repeat in the 3′ UTR of the DMPK gene. In the DMPK transcripts, the CUG expansions sequester RNA-binding proteins into nuclear foci, including transcription factors and alternative splicing regulators such as MBNL1. MBNL1 sequestration has been associated with key features of DM1. However, the basis behind a number of molecular and histological alterations in DM1 remain unclear. To help identify new pathogenic components of the disease, we carried out a genetic screen using a Drosophila model of DM1 that expresses 480 interrupted CTG repeats, i(CTG480, and a collection of 1215 transgenic RNA interference (RNAi fly lines. Of the 34 modifiers identified, two RNA-binding proteins, TBPH (homolog of human TAR DNA-binding protein 43 or TDP-43 and BSF (Bicoid stability factor; homolog of human LRPPRC, were of particular interest. These factors modified i(CTG480 phenotypes in the fly eye and wing, and TBPH silencing also suppressed CTG-induced defects in the flight muscles. In Drosophila flight muscle, TBPH, BSF and the fly ortholog of MBNL1, Muscleblind (Mbl, were detected in sarcomeric bands. Expression of i(CTG480 resulted in changes in the sarcomeric patterns of these proteins, which could be restored by coexpression with human MBNL1. Epistasis studies showed that Mbl silencing was sufficient to induce a subcellular redistribution of TBPH and BSF proteins in the muscle, which mimicked the effect of i(CTG480 expression. These results provide the first description of TBPH and BSF as targets of Mbl-mediated CTG toxicity, and they suggest an important role of these proteins in DM1 muscle pathology.

  8. A PCR-based integrated protocol for the structural analysis of the 13th exon of the human beta-myosin heavy chain gene (MYH7): development of a diagnostic tool for HCM disease.

    Science.gov (United States)

    Stravopodis, Dimitrios J; Zapheiropoulos, Athanassios Z; Voutsinas, Gerassimos; Margaritis, Lukas H; Papassideri, Issidora S

    2008-06-01

    Familial Hypertrophic Cardiomyopathy (FHC) constitutes a genetic disease of the sarcomere characterized by a Mendelian pattern of inheritance. A variety of different mutations affecting the at least eight sarcomeric gene products has been identified and the majority of them appear to function through a dominant negative mechanism. Family history analysis and genetic counseling have been widely adopted as integral tools for the evaluation and management of individuals with Hypertrophic Cardiomyopathy (HCM). Genetic testing of the disease has been progressively released into the clinical mainstream, thus rendering the development of novel and potent molecular diagnostic protocols an inevitable task. To this direction, we have evolved an integrated PCR-based molecular protocol, which through the utilization of novel "exonic" primers allows, among others, the structural analysis of the 13th exon of the human beta-myosin heavy chain gene locus (MYH7) mainly characterized by the critical for HCM Arginine residue 403 (R(403)). Interestingly, through a DNA sequencing approach, a single nucleotide substitution from "G" to "T" was detected in the adjacent 13th intron, thus divulging the versatile potential of the present molecular protocol to clinical practice.

  9. Dynamic instability of collective myosin II motors

    Science.gov (United States)

    Li, Jin-Fang; Wang, Zi-Qing; Li, Qi-Kun; Xing, Jian-Jun; Wang, Guo-Dong

    2016-11-01

    Some kinds of muscles can oscillate spontaneously, which is related to the dynamic instability of the collective motors. Based on the two-state ratchet model and with consideration of the motor stiffness, the dynamics of collective myosin II motors are studied. It is shown that when the motor stiffness is small, the velocity of the collective motors decreases monotonically with load increasing. When the motor stiffness becomes large, dynamic instability appears in the force-velocity relationship of the collective-motor transport. For a large enough motor stiffness, the zero-velocity point lies in the unstable range of the force-velocity curve, and the motor system becomes unstable before the motion is stopped, so spontaneous oscillations can be generated if the system is elastically coupled to its environment via a spring. The oscillation frequency is related to the motor stiffness, motor binding rate, spring stiffness, and the width of the ATP excitation interval. For a medium motor stiffness, the zero-velocity point lies outside the unstable range of the force-velocity curve, and the motion will be stopped before the instability occurs. Project supported by the National Natural Science Foundation of China (Grant No. 11205123).

  10. Porcine embryonic stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane

    2008-01-01

    The development of porcine embryonic stem cell lines (pESC) has received renewed interest given the advances being made in the production of immunocompatible transgenic pigs. However, difficulties are evident in the production of pESCs in-vitro. This may largely be attributable to differences...

  11. Calcium-regulated import of myosin IC into the nucleus.

    Science.gov (United States)

    Maly, Ivan V; Hofmann, Wilma A

    2016-06-01

    Myosin IC is a molecular motor involved in intracellular transport, cell motility, and transcription. Its mechanical properties are regulated by calcium via calmodulin binding, and its functions in the nucleus depend on import from the cytoplasm. The import has recently been shown to be mediated by the nuclear localization signal located within the calmodulin-binding domain. In the present paper, it is demonstrated that mutations in the calmodulin-binding sequence shift the intracellular distribution of myosin IC to the nucleus. The redistribution is displayed by isoform B, described originally as the "nuclear myosin," but is particularly pronounced with isoform C, the normally cytoplasmic isoform. Furthermore, experimental elevation of the intracellular calcium concentration induces a rapid import of myosin into the nucleus. The import is blocked by the importin β inhibitor importazole. These findings are consistent with a mechanism whereby calmodulin binding prevents recognition of the nuclear localization sequence by importin β, and the steric inhibition of import is released by cell signaling leading to the intracellular calcium elevation. The results establish a mechanistic connection between the calcium regulation of the motor function of myosin IC in the cytoplasm and the induction of its import into the nucleus. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation

    National Research Council Canada - National Science Library

    Ana M. Pasapera; Ian C. Schneider; Erin Rericha; David D. Schlaepfer; Clare M. Waterman

    2010-01-01

    ...) are myosin II and extracellular matrix (ECM) stiffness dependent. Myosin II activity promotes FAK/ Src-mediated phosphorylation of paxillin on tyrosines 31 and 118 and vinculin association with paxillin...

  13. Protection against osmotic stress by cGMP-mediated myosin phosphorylation

    NARCIS (Netherlands)

    Kuwayama, H; Ecke, M; Gerisch, G; VanHaastert, PJM

    1996-01-01

    Conventional myosin functions universally as a generator of motive force in eukaryotic cells. Analysis of mutants of the microorganism Dictyostelium discoideum revealed that myosin also provides resistance against high external osmolarities. An osmo-induced increase of intracellular guanosine

  14. Magnesium and Embryonic Development

    OpenAIRE

    Komiya, Yuko; Su, Li-Ting; Chen, Hsiang-Chin; Habas, Raymond; Runnels, Loren W.

    2014-01-01

    Important for energy metabolism, neurotransmission, bone stability, and other cellular functions, Mg2+ has well-established and undisputedly critical roles in adult tissues. Its contributions to early embryonic development are less clearly understood. For decades it has been known that gestational Mg2+ deficiency in rodents produces teratogenic effects. More recent studies have linked deficiency in this vital cation to birth defects in humans, including spina bifida, a neural fold closure def...

  15. Furthering the link between the sarcomere and primary cardiomyopathies: restrictive cardiomyopathy associated with multiple mutations in genes previously associated with hypertrophic or dilated cardiomyopathy.

    Science.gov (United States)

    Caleshu, Colleen; Sakhuja, Rahul; Nussbaum, Robert L; Schiller, Nelson B; Ursell, Philip C; Eng, Celeste; De Marco, Teresa; McGlothlin, Dana; Burchard, Esteban González; Rame, J Eduardo

    2011-09-01

    Mutations in genes that encode components of the sarcomere are well established as the cause of hypertrophic and dilated cardiomyopathies. Sarcomere genes, however, are increasingly being associated with other cardiomyopathies. One phenotype more recently recognized as a disease of the sarcomere is restrictive cardiomyopathy (RCM). We report on two patients with RCM associated with multiple mutations in sarcomere genes not previously associated with RCM. Patient 1 presented with NYHA Class III/IV heart failure at 22 years of age. She was diagnosed with RCM and advanced heart failure requiring heart transplantation. Sequencing of sarcomere genes revealed previously reported homozygous p.Glu143Lys mutations in MYL3, and a novel heterozygous p.Gly57Glu mutation in MYL2. The patient's mother is a double heterozygote for these mutations, with no evidence of cardiomyopathy. Patient 2 presented at 35 years of age with volume overload while hospitalized for oophorectomy. She was diagnosed with RCM and is being evaluated for heart transplantation. Sarcomere gene sequencing identified homozygous p.Asn279His mutations in TPM1. The patient's parents are consanguineous and confirmed heterozygotes. Her father was diagnosed with HCM at 42 years of age. This is the first report of mutations in TPM1, MYL3, and MYL2 associated with primary, non-hypertrophied RCM. The association of more sarcomere genes with RCM provides further evidence that mutations in the various sarcomere genes can cause different cardiomyopathy phenotypes. These cases also contribute to the growing body of evidence that multiple mutations have an additive effect on the severity of cardiomyopathies. Copyright © 2011 Wiley-Liss, Inc.

  16. TRPM7 regulates myosin IIA filament stability and protein localization by heavy chain phosphorylation.

    NARCIS (Netherlands)

    Clark, K.; Middelbeek, J.; Lasonder, E.; Dulyaninova, N.G.; Morrice, N.A.; Ryazanov, A.G.; Bresnick, A.R.; Figdor, C.G.; Leeuwen, F.N. van

    2008-01-01

    Deregulation of myosin II-based contractility contributes to the pathogenesis of human diseases, such as cancer, which underscores the necessity for tight spatial and temporal control of myosin II activity. Recently, we demonstrated that activation of the mammalian alpha-kinase TRPM7 inhibits myosin

  17. Properties of single FDB fibers following a collagenase digestion for studying contractility, fatigue, and pCa-sarcomere shortening relationship

    Science.gov (United States)

    Selvin, David; Hesse, Erik

    2015-01-01

    The objective of this study was to optimize the approach to obtain viable single flexor digitorum brevis (FDB) fibers following a collagenase digestion. A first aim was to determine the culture medium conditions for the collagenase digestion. The MEM yielded better fibers in terms of morphology and contractility than the DMEM. The addition of FBS to culture media was crucial to prevent fiber supercontraction. The addition of FBS to the physiological solution used during an experiment was also beneficial, especially during fatigue. Optimum FBS concentration in MEM was 10% (vol/vol), and for the physiological solution, it ranged between 0.2 and 1.0%. A second aim was to document the stability of single FDB fibers. If tested the day of the preparation, most fibers (∼80%) had stable contractions for up to 3 h, normal stimulus duration strength to elicit contractions, and normal and stable resting membrane potential during prolonged microelectrode penetration. A third aim was to document their fatigue kinetics. Major differences in fatigue resistance were observed between fibers as expected from the FDB fiber-type composition. All sarcoplasmic [Ca2+] and sarcomere length parameters returned to their prefatigue levels after a short recovery. The pCa-sarcomere shortening relationship of unfatigued fibers is very similar to the pCa-force curve reported in other studies. The pCa-sarcomere shortening from fatigue data is complicated by large decreases in sarcomere length between contractions. It is concluded that isolation of single fibers by a collagenase digestion is a viable preparation to study contractility and fatigue kinetics. PMID:25568074

  18. [Mutations in sarcomeric genes MYH7, MYBPC3, TNNT2, TNNI3, and TPM1 in patients with hypertrophic cardiomyopathy].

    Science.gov (United States)

    García-Castro, Mónica; Coto, Eliecer; Reguero, Julián R; Berrazueta, José R; Alvarez, Victoria; Alonso, Belén; Sainz, Rocío; Martín, María; Morís, Cesar

    2009-01-01

    Mutation of a sarcomeric gene is the most frequent cause of hypertrophic cardiomyopathy. For each such gene, however, previous studies have reported a range of different mutation frequencies, and clinical manifestations have been highly heterogeneous, both of which limit the use of genetic information in clinical practice. Our aim was to determine the frequency of mutations in the sarcomeric genes MYH7, MYBPC3, TNNT2, TNNI3, and TPM1 in a cohort of Spanish patients with hypertrophic cardiomyopathy. We used sequencing to analyze the coding regions of these five genes in 120 patients (29% with a family history) and investigated how the patient phenotype varied with the gene mutated. In total, 32 patients were found to have mutations: 10 in MYH7 (8%), 20 in MYBPC3 (16%), 2 in TNNT2, 1 in TPM1 and none in TNNI3. Overall, 61% of mutations had not been described before. Two patients had two mutations (i.e., double mutants). There was no difference in the mean age at diagnosis or the extent of the hypertrophy between those with MYH7 mutations and those with MYBPC3 mutations. Some 26% of patients had a mutation in one of the five sarcomeric genes investigated. More than half of the mutations had not been described before. The MYBPC3 gene was the most frequently mutated, followed by MYH7. No phenotypic differences were observed between carriers of the various mutations, which makes it difficult to use genetic information to stratify risk in these patients.

  19. Molecular adaptability of carp myosin: a study of some physico-chemical properties and their comparison with those of rabbit myosin.

    Science.gov (United States)

    Hasnain, A; Samejima, K; Takahashi, K; Yasui, T

    1979-10-01

    During thermal inactivation, the addition of as low as M urea resulted in the reduction of delta G identical to barrier of the inactivation of carp myosin Ca2+-ATPase, whereas that of rabbit myosin remained unaffected. In the absence of urea, a four-hour incubation of carp myosin was accompanied by the release of light chains at 30 degrees C, a value 10 degrees C lower than that for rabbit myosin. Electron micrographs revealed that carp myosin forms artificial thick filaments, which were uniform in size and may differ in a few details from those of rabbit. Not only that helical content of carp myosin was about 4% less than those of rabbit myosin, but it showed more sensitivity to thermal and urea denaturation; and its reversibility upon subsequent cooling or removal of urea was rather poor. The loss in helicity of myosins by urea was a concentration- and temperature-dependent biphasic reaction, with the most obvious effect observed on carp myosin. That carp myosin has increased tendency of unfolding in urea solutions was confirmed by viscosity data and the exposure of thiols also. Even in the absence of urea more SH groups of carp myosin were incorporated by DTNB, and more epsilon-amino groups reacted with NQS. Carp myosin remained in solution till the modification of about 52 surface myosin remained in solution till the modification of about 52 surface amino groups, whereas no precipitation effect was noted in case of rabbit myosin. Neither amino-acid composition nor some parameters derived from it, such as average hydrophobicity polarity index and number of polar side chains, revealed any difference pertinent to the relative stability of the two myosins. On the contrary, the contractile efficiency of carp myosin in the near physiological range was high and thus inversely related with the thermostability. This relationship along with the above evidence has been regarded to demonstrate the adaptability of carp myosin through a loose molecular conformation, which

  20. Cloning, Sequencing, and the Expression of the Elusive Sarcomeric TPM4α Isoform in Humans

    Directory of Open Access Journals (Sweden)

    Dipak K. Dube

    2016-01-01

    Full Text Available In mammals, tropomyosin is encoded by four known TPM genes (TPM1, TPM2, TPM3, and TPM4 each of which can generate a number of TPM isoforms via alternative splicing and/or using alternate promoters. In humans, the sarcomeric isoform(s of each of the TPM genes, except for the TPM4, have been known for a long time. Recently, on the basis of computational analyses of the human genome sequence, the predicted sequence of TPM4α has been posted in GenBank. We designed primer-pairs for RT-PCR and showed the expression of the transcripts of TPM4α and a novel isoform TPM4δ in human heart and skeletal muscle. qRT-PCR shows that the relative expression of TPM4α and TPM4δ is higher in human cardiac muscle. Western blot analyses using CH1 monoclonal antibodies show the absence of the expression of TPM4δ protein (~28 kDa in human heart muscle. 2D western blot analyses with the same antibody show the expression of at least nine distinct tropomyosin molecules with a mass ~32 kD and above in adult heart. By Mass spectrometry, we determined the amino acid sequences of the extracted proteins from these spots. Spot “G” reveals the putative expression of TPM4α along with TPM1α protein in human adult heart.

  1. Magnesium and embryonic development.

    Science.gov (United States)

    Komiya, Yuko; Su, Li-Ting; Chen, Hsiang-Chin; Habas, Raymond; Runnels, Loren W

    2014-01-01

    Important for energy metabolism, neurotransmission, bone stability, and other cellular functions, Mg(2+) has well-established and undisputedly critical roles in adult tissues. Its contributions to early embryonic development are less clearly understood. For decades it has been known that gestational Mg(2+) deficiency in rodents produces teratogenic effects. More recent studies have linked deficiency in this vital cation to birth defects in humans, including spina bifida, a neural fold closure defect in humans that occurs at an average rate of 1 per 1000 pregnancies. The first suggestion that Mg(2+) may be playing a more specific role in early development arose from studies of the TRPM7 and TRPM6 ion channels. TRPM7 and TRPM6 are divalent-selective ion channels in possession of their own kinase domains that have been implicated in the control of Mg(2+) homeostasis in vertebrates. Disruption of the functions of these ion channels in mice as well as in frogs interferes with gastrulation, a pivotal process during early embryonic development that executes the emergence of the body plan and closure of the neural tube. Surprisingly, gastrulation defects produced by depletion of TRPM7 can be prevented by Mg(2+) supplementation, indicating an essential role for Mg(2+) in gastrulation and neural fold closure. The aim of this review is to summarize the data emerging from molecular genetic, biochemical and electrophysiological studies of TRPM6 and TRPM7 and provide a model of how Mg(2+), through these unique channel-kinases, may be impacting early embryonic development.

  2. Characterization of a Myosin VII MyTH/FERM domain

    Science.gov (United States)

    Moen, Rebecca J.; Johnsrud, Daniel O.; Thomas, David D.; Titus, Margaret A.

    2011-01-01

    A group of closely related myosins are characterized by the presence of at least one MyTH/FERM (myosin talin homology 4; band 4.1, ezrin, radixin, moesin) domain in their C-terminal tails. This domain interacts with a variety of binding partners, and mutations in either the MyTH4 or FERM domains of myosin VII and XV result in deafness, highlighting the functional importance of each domain. The N-terminal MyTH/FERM region of Dictyostelium myosin VII (M7) has been isolated as a first step toward gaining insight into the function of this domain and its interaction with binding partners. The M7 MyTH4/FERM domain (MF1) binds to both actin and microtubules in vitro, with dissociation constants of 13.7 and 1.7 μM, respectively. Gel filtration and UV spectroscopy reveal that MF1 exists as a monomer in solution and forms a well-folded, compact conformation with a high degree of secondary structure. These results indicate that MF1 forms an integrated structural domain that serves to couple actin filaments and microtubules in specific regions of the cytoskeleton. PMID:21875595

  3. Transportation of Nanoscale Cargoes by Myosin Propelled Actin Filaments

    NARCIS (Netherlands)

    Persson, Malin; Gullberg, Maria; Tolf, Conny; Lindberg, A. Michael; Mansson, Alf; Kocer, Armagan

    2013-01-01

    Myosin II propelled actin filaments move ten times faster than kinesin driven microtubules and are thus attractive candidates as cargo-transporting shuttles in motor driven lab-on-a-chip devices. In addition, actomyosin-based transportation of nanoparticles is useful in various fundamental studies.

  4. Hypoxia favors myosin heavy chain beta gene expression in an Hif-1alpha-dependent manner

    Science.gov (United States)

    Binó, Lucia; Procházková, Jiřina; Radaszkiewicz, Katarzyna Anna; Kučera, Jan; Kudová, Jana; Pacherník, Jiří; Kubala, Lukáš

    2017-01-01

    The potentiation of the naturally limited regenerative capacity of the heart is dependent on an understanding of the mechanisms that are activated in response to pathological conditions such as hypoxia. Under these conditions, the expression of genes suggested to support cardiomyocyte survival and heart adaptation is triggered. Particularly important are changes in the expression of myosin heavy chain (MHC) isoforms. We propose here that alterations in the expression profiles of MHC genes are induced in response to hypoxia and are primarily mediated by hypoxia inducible factor (HIF). In in vitro models of mouse embryonic stem cell-derived cardiomyocytes, we showed that hypoxia (1% O2) or the pharmacological stabilization of HIFs significantly increased MHCbeta (Myh7) gene expression. The key role of HIF-1alpha is supported by the absence of these effects in HIF-1alpha-deficient cells, even in the presence of HIF-2alpha. Interestingly, ChIP analysis did not confirm the direct interaction of HIF-1alpha with putative HIF response elements predicted in the MHCalpha and beta encoding DNA region. Further analyses showed the significant effect of the mTOR signaling inhibitor rapamycin in inducing Myh7 expression and a hypoxia-triggered reduction in the levels of antisense RNA transcripts associated with the Myh7 gene locus. Overall, the recognized and important role of HIF in the regulation of heart regenerative processes could be highly significant for the development of novel therapeutic interventions in heart failure. PMID:29137374

  5. Loss of Cell Adhesion Causes Hydrocephalus in Nonmuscle Myosin II-B–ablated and Mutated Mice

    Science.gov (United States)

    Bao, Jianjun; Adelstein, Robert S.

    2007-01-01

    Ablation of nonmuscle myosin (NM) II-B in mice during embryonic development leads to marked enlargement of the cerebral ventricles and destruction of brain tissue, due to hydrocephalus. We have identified a transient mesh-like structure present at the apical border of cells lining the spinal canal of mice during development. This structure, which only contains the II-B isoform of NM, also contains β-catenin and N-cadherin, consistent with a role in cell adhesion. Ablation of NM II-B or replacement of NM II-B with decreased amounts of a mutant (R709C), motor-impaired NM II-B in mice results in collapse of the mesh-like structure and loss of cell adhesion. This permits the underlying neuroepithelial cells to invade the spinal canal and obstruct cerebral spinal fluid flow. These defects in the CNS of NM II-B–ablated mice seem to be the cause of hydrocephalus. Interestingly, the mesh-like structure and patency of the spinal canal can be restored by increasing expression of the motor-impaired NM II-B, which also rescues hydrocephalus. However, the mutant isoform cannot completely rescue neuronal cell migration. These studies show that the scaffolding properties of NM II-B play an important role in cell adhesion, thereby preventing hydrocephalus during mouse brain development. PMID:17429076

  6. Transcriptome analysis of IFM-specific actin and myosin nulls in Drosophila melanogaster unravels lesion-specific expression blueprints across muscle mutations.

    Science.gov (United States)

    Madan, Aditi; Thimmaiya, Divesh; Franco-Cea, Ari; Aiyaz, Mohammed; Kumar, Prabodh; Sparrow, John C; Nongthomba, Upendra

    2017-10-05

    Muscle contraction is a highly fine-tuned process that requires the precise and timely construction of large protein sub-assemblies to form sarcomeres. Mutations in many genes encoding constituent proteins of this macromolecular machine result in defective functioning of the muscle tissue. However, the pathways underlying muscle degeneration, and manifestation of myopathy phenotypes are not well understood. In this study, we explored transcriptional alterations that ensue from the absence of the two major muscle proteins - myosin and actin - using the Drosophila indirect flight muscles. Our aim was to understand how the muscle tissue responds as a whole to the absence of either of the major scaffold proteins, whether the responses are generic to the tissue; or unique to the thick versus thin filament systems. Our results indicated that muscles respond by altering gene transcriptional levels in multiple systems active in muscle remodelling, protein degradation and heat shock responses. However, there were some responses that were filament-specific signatures of muscle degeneration, like immune responses, metabolic alterations and alterations in expression of muscle structural genes and mitochondrial ribosomal genes. These general and filament-specific changes in gene expression may be of relevance to human myopathies. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Presence of cardiac alpha-myosin correlates with histochemical myosin Ca2+ ATPase activity in rabbit masseter muscle

    NARCIS (Netherlands)

    Bredman, J. J.; Weijs, W. A.; Moorman, A. F.

    1992-01-01

    A combined enzyme-histochemical (ATPase reactivity) and immunohistochemical study has been performed on sections of rabbit masseter muscle. The majority of the fibres previously designated as type IIC and/or type I according to their ATPase activity were found to contain 'cardiac' alpha-myosin heavy

  8. Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II

    Directory of Open Access Journals (Sweden)

    Drescher Uwe

    2010-06-01

    Full Text Available Abstract Background In the developing hindbrain, cranial motor axon guidance depends on diffusible repellent factors produced by the floor plate. Our previous studies have suggested that candidate molecules for mediating this effect are Slits, Netrin-1 and Semaphorin3A (Sema3A. It is unknown to what extent these factors contribute to floor plate-derived chemorepulsion of motor axons, and the downstream signalling pathways are largely unclear. Results In this study, we have used a combination of in vitro and in vivo approaches to identify the components of floor plate chemorepulsion and their downstream signalling pathways. Using in vitro motor axon deflection assays, we demonstrate that Slits and Netrin-1, but not Sema3A, contribute to floor plate repulsion. We also find that the axon pathways of dorsally projecting branchiomotor neurons are disrupted in Netrin-1 mutant mice and in chick embryos expressing dominant-negative Unc5a receptors, indicating an in vivo role for Netrin-1. We further demonstrate that Slit and Netrin-1 signalling are mediated by Rho-kinase (ROCK and myosin light chain kinase (MLCK, which regulate myosin II activity, controlling actin retrograde flow in the growth cone. We show that MLCK, ROCK and myosin II are required for Slit and Netrin-1-mediated growth cone collapse of cranial motor axons. Inhibition of these molecules in explant cultures, or genetic manipulation of RhoA or myosin II function in vivo causes characteristic cranial motor axon pathfinding errors, including the inability to exit the midline, and loss of turning towards exit points. Conclusions Our findings suggest that both Slits and Netrin-1 contribute to floor plate-derived chemorepulsion of cranial motor axons. They further indicate that RhoA/ROCK, MLCK and myosin II are components of Slit and Netrin-1 signalling pathways, and suggest that these pathways are of key importance in cranial motor axon navigation.

  9. Intermittent stretch training of rabbit plantarflexor muscles increases soleus mass and serial sarcomere number.

    Science.gov (United States)

    De Jaeger, Dominique; Joumaa, Venus; Herzog, Walter

    2015-06-15

    In humans, enhanced joint range of motion is observed after static stretch training and results either from an increased stretch tolerance or from a change in the biomechanical properties of the muscle-tendon unit. We investigated the effects of an intermittent stretch training on muscle biomechanical and structural variables. The left plantarflexors muscles of seven anesthetized New Zealand (NZ) White rabbits were passively and statically stretched three times a week for 4 wk, while the corresponding right muscles were used as nonstretched contralateral controls. Before and after the stretching protocol, passive torque produced by the left plantarflexor muscles as a function of the ankle angle was measured. The left and right plantarflexor muscles were harvested from dead rabbits and used to quantify possible changes in muscle structure. Significant mass and serial sarcomere number increases were observed in the stretched soleus but not in the plantaris or medial gastrocnemius. This difference in adaptation between the plantarflexors is thought to be the result of their different fiber type composition and pennation angles. Neither titin isoform nor collagen amount was modified in the stretched compared with the control soleus muscle. Passive torque developed during ankle dorsiflexion was not modified after the stretch training on average, but was decreased in five of the seven experimental rabbits. Thus, an intermittent stretching program similar to those used in humans can produce a change in the muscle structure of NZ White rabbits, which was associated in some rabbits with a change in the biomechanical properties of the muscle-tendon unit. Copyright © 2015 the American Physiological Society.

  10. Differential Sarcomere and Electrophysiological Maturation of Human iPSC-Derived Cardiac Myocytes in Monolayer vs. Aggregation-Based Differentiation Protocols

    Directory of Open Access Journals (Sweden)

    Dorota Jeziorowska

    2017-06-01

    Full Text Available Human induced pluripotent stem cells (iPSCs represent a powerful human model to study cardiac disease in vitro, notably channelopathies and sarcomeric cardiomyopathies. Different protocols for cardiac differentiation of iPSCs have been proposed either based on embroid body formation (3D or, more recently, on monolayer culture (2D. We performed a direct comparison of the characteristics of the derived cardiomyocytes (iPSC-CMs on day 27 ± 2 of differentiation between 3D and 2D differentiation protocols with two different Wnt-inhibitors were compared: IWR1 (inhibitor of Wnt response or IWP2 (inhibitor of Wnt production. We firstly found that the level of Troponin T (TNNT2 expression measured by FACS was significantly higher for both 2D protocols as compared to the 3D protocol. In the three methods, iPSC-CM show sarcomeric structures. However, iPSC-CM generated in 2D protocols constantly displayed larger sarcomere lengths as compared to the 3D protocol. In addition, mRNA and protein analyses reveal higher cTNi to ssTNi ratios in the 2D protocol using IWP2 as compared to both other protocols, indicating a higher sarcomeric maturation. Differentiation of cardiac myocytes with 2D monolayer-based protocols and the use of IWP2 allows the production of higher yield of cardiac myocytes that have more suitable characteristics to study sarcomeric cardiomyopathies.

  11. Actin structure-dependent stepping of myosin 5a and 10 during processive movement.

    Directory of Open Access Journals (Sweden)

    Jianjun Bao

    Full Text Available How myosin 10, an unconventional myosin, walks processively along actin is still controversial. Here, we used single molecule fluorescence techniques, TIRF and FIONA, to study the motility and the stepping mechanism of dimerized myosin 10 heavy-meromyosin-like fragment on both single actin filaments and two-dimensional F-actin rafts cross-linked by fascin or α-actinin. As a control, we also tracked and analyzed the stepping behavior of the well characterized processive motor myosin 5a. We have shown that myosin 10 moves processively along both single actin filaments and F-actin rafts with a step size of 31 nm. Moreover, myosin 10 moves more processively on fascin-F-actin rafts than on α-actinin-F-actin rafts, whereas myosin 5a shows no such selectivity. Finally, on fascin-F-actin rafts, myosin 10 has more frequent side steps to adjacent actin filaments than myosin 5a in the F-actin rafts. Together, these results reveal further single molecule features of myosin 10 on various actin structures, which may help to understand its cellular functions.

  12. Actin sliding velocity on pure myosin isoforms from hindlimb unloaded mice.

    Science.gov (United States)

    Maffei, M; Longa, E; Qaisar, R; Agoni, V; Desaphy, J-F; Camerino, D Conte; Bottinelli, R; Canepari, M

    2014-12-01

    Notwithstanding the widely accepted idea that following disuse skeletal muscles become faster, an increase in shortening velocity was previously observed mostly in fibres containing type 1 myosin, whereas a decrease was generally found in fibres containing type 2B myosin. In this study, unloaded shortening velocity of pure type 1 and 2B fibres from hindlimb unloaded mice was determined and a decrease in type 2B fibres was found. To clarify whether the decrease in shortening velocity could depend on alterations of myosin motor function, an in vitro motility assay approach was applied to study pure type 1 and pure type 2B myosin from hindlimb unloaded mice. The latter approach, assessing actin sliding velocity on isolated myosin in the absence of other myofibrillar proteins, enabled to directly investigate myosin motor function. Actin sliding velocity was significantly lower on type 2B myosin following unloading (2.70 ± 0.32 μm s(-1)) than in control conditions (4.11 ± 0.35 μm s(-1)), whereas actin sliding velocity of type 1 myosin was not different following unloading (0.89 ± 0.04 μm s(-1)) compared with control conditions (0.84 ± 0.17 μm s(-1)). Myosin light chain (MLC) isoform composition of type 2B myosin from hindlimb unloaded and control mice was not different. No oxidation of either type 1 or 2B myosin was observed. Higher phosphorylation of regulatory MLC in type 2B myosin after unloading was found. Results suggest that the observed lower shortening velocity of type 2B fibres following unloading could be related to slowing of acto-myosin kinetics in the presence of MLC phosphorylation. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  13. Malignant effects of multiple rare variants in sarcomere genes on the prognosis of patients with hypertrophic cardiomyopathy.

    Science.gov (United States)

    Wang, Jizheng; Wang, Yilu; Zou, Yubao; Sun, Kai; Wang, Zhimin; Ding, Hu; Yuan, Jinqing; Wei, Wei; Hou, Qing; Wang, Hu; Liu, Xuan; Zhang, Hongju; Ji, Yun; Zhou, Xianliang; Sharma, Ravi K; Wang, Daowen; Ahmad, Ferhaan; Hui, Rutai; Song, Lei

    2014-09-01

    Although genetic testing has been recommended in patients with hypertrophic cardiomyopathy (HCM) in current clinical practice, its utility in prognostic prediction remains to be ascertained. We assessed the dosage effect of rare variants in sarcomere genes on the long-term outcomes of HCM. A total of 529 unrelated HCM patients were prospectively recruited and followed for 4.7 ± 3.2 years. Eight sarcomere genes were screened with targeted resequencing and identified variants were validated through Sanger sequencing. After polymorphisms and likely neutral rare variants were excluded, the patients were segregated into three groups based on the dosage of rare variants: no rare variant, a single rare variant, and multiple rare variants. Multiple rare variants were identified in 7.2% (38/529) of the study patients. Patients with multiple rare variants were younger at diagnosis, and had greater maximum LV wall thicknesses and larger left atria. The risk for cardiovascular death in patients with multiple rare variants was higher than in those without rare variants (P =10⁻⁵) or in those with a single rare variant (P = 2 × 10⁻⁵). Multivariable analysis revealed that multiple rare variants were a risk factor for cardiovascular death [hazard ratio (HR) 3.74, 95% confidence interval (CI) 1.84-7.58, P = 0.0003], as well as sudden cardiac death (HR 3.57, 95% CI 1.23-10.35, P = 0.019) and heart failure-related death (HR 4.62, 95% CI 1.67-12.76, P = 0.003). The presence of multiple rare variants in sarcomere genes is a risk factor for malignant outcomes in HCM, and may be appropriate to consider as a criterion in the risk stratification of HCM patients. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.

  14. Diagnostic yield, interpretation, and clinical utility of mutation screening of sarcomere encoding genes in Danish hypertrophic cardiomyopathy patients and relatives

    DEFF Research Database (Denmark)

    Andersen, Paal Skytt; Havndrup, Ole; Hougs, Lotte

    2008-01-01

    The American Heart Association (AHA) recommends family screening for hypertrophic cardiomyopathy (HCM). We assessed the outcome of family screening combining clinical evaluation and screening for sarcomere gene mutations in a cohort of 90 Danish HCM patients and their close relatives, in all 451......, and in 37.5% of relatives without a mutation, one or more criteria was fulfilled. A total of 60% of family members had no mutation and could be reassured and further follow-up ceased. Genetic diagnosis may be established in approximately 40% of families with the highest yield in familial HCM with clinical...

  15. Embryonic mortality in buffalo cows

    Directory of Open Access Journals (Sweden)

    G. Neglia

    2010-02-01

    Full Text Available In buffalo species embryonic mortality is considered one of the major causes of fertility loss, especially in the animals that are not mated during their reproductive period. Embryonic loss in animals mated by artificial insemination (AI is 20-40% during seasons characterized by high number of light hours. Also in buffalo naturally mated the incidence of embryonic mortality is about 20% and a higher incidence is observed between 28- 60 days of gestation in buffaloes that conceive during increasing daylight length. A reduced capacity to secrete progesterone seems to explain in part this embryonic mortality but other as yet unidentified factors contribute between 40-50% to the embryonic losses. Treatments with hCG, GnRH agonist or progesterone on Days 5 after AI not always reduce embryonic mortality in buffalo species. Embryonic mortality in buffaloes appears to occur later (Day 25-40 than in cattle and P4 treatments should perhaps be applied later in buffaloes.

  16. Reverse actin sliding triggers strong myosin binding that moves tropomyosin

    Energy Technology Data Exchange (ETDEWEB)

    Bekyarova, T.I.; Reedy, M.C.; Baumann, B.A.J.; Tregear, R.T.; Ward, A.; Krzic, U.; Prince, K.M.; Perz-Edwards, R.J.; Reconditi, M.; Gore, D.; Irving, T.C.; Reedy, M.K. (IIT); (EMBL); (Scripps); (Duke); (Prince); (FSU); (MRC); (U. Florence)

    2008-09-03

    Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the 'steric blocking' mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca{sup 2+} with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence that TM in insect flight muscle (IFM) moves in a manner consistent with the steric blocking mechanism. We find that both isometric contraction, at high [Ca{sup 2+}], and stretch activation, at lower [Ca{sup 2+}], develop similarly high x-ray intensities on the IFM fourth actin layer line because of TM movement, coinciding with x-ray signals of strong-binding cross-bridge attachment to helically favored 'actin target zones.' Vanadate (Vi), a phosphate analog that inhibits active cross-bridge cycling, abolishes all active force in IFM, allowing high [Ca{sup 2+}] to elicit initial TM movement without cross-bridge attachment or other changes from relaxed structure. However, when stretched in high [Ca{sup 2+}], Vi-'paralyzed' fibers produce force substantially above passive response at pCa {approx} 9, concurrent with full conversion from resting to active x-ray pattern, including x-ray signals of cross-bridge strong-binding and TM movement. This argues that myosin heads can be recruited as strong-binding 'brakes' by backward-sliding, calcium-activated thin filaments, and are as effective in moving TM as actively force-producing cross-bridges. Such recruitment of myosin as brakes may be the major mechanism resisting extension during lengthening contractions.

  17. Active multistage coarsening of actin networks driven by myosin motors

    Science.gov (United States)

    Silva, Marina Soares e; Depken, Martin; Stuhrmann, Björn; Korsten, Marijn; MacKintosh, Fred C.; Koenderink, Gijsje H.

    2011-01-01

    In cells, many vital processes involve myosin-driven motility that actively remodels the actin cytoskeleton and changes cell shape. Here we study how the collective action of myosin motors organizes actin filaments into contractile structures in a simplified model system devoid of biochemical regulation. We show that this self-organization occurs through an active multistage coarsening process. First, motors form dense foci by moving along the actin network structure followed by coalescence. Then the foci accumulate actin filaments in a shell around them. These actomyosin condensates eventually cluster due to motor-driven coalescence. We propose that the physical origin of this multistage aggregation is the highly asymmetric load response of actin filaments: they can support large tensions but buckle easily under piconewton compressive loads. Because the motor-generated forces well exceed this threshold, buckling is induced on the connected actin network that resists motor-driven filament sliding. We show how this buckling can give rise to the accumulation of actin shells around myosin foci and subsequent coalescence of foci into superaggregates. This new physical mechanism provides an explanation for the formation and contractile dynamics of disordered condensed actomyosin states observed in vivo. PMID:21593409

  18. Structural basis of cargo recognitions for class V myosins.

    Science.gov (United States)

    Wei, Zhiyi; Liu, Xiaotian; Yu, Cong; Zhang, Mingjie

    2013-07-09

    Class V myosins (MyoV), the most studied unconventional myosins, recognize numerous cargos mainly via the motor's globular tail domain (GTD). Little is known regarding how MyoV-GTD recognizes such a diverse array of cargos specifically. Here, we solved the crystal structures of MyoVa-GTD in its apo-form and in complex with two distinct cargos, melanophilin and Rab interacting lysosomal protein-like 2. The apo-MyoVa-GTD structure indicates that most mutations found in patients with Griscelli syndrome, microvillus inclusion disease, or cancers or in "dilute" rodents likely impair the folding of GTD. The MyoVa-GTD/cargo complex structure reveals two distinct cargo-binding surfaces, one primarily via charge-charge interaction and the other mainly via hydrophobic interactions. Structural and biochemical analysis reveal the specific cargo-binding specificities of various isoforms of mammalian MyoV as well as very different cargo recognition mechanisms of MyoV between yeast and higher eukaryotes. The MyoVa-GTD structures resolved here provide a framework for future functional studies of vertebrate class V myosins.

  19. UNC-45a promotes myosin folding and stress fiber assembly.

    Science.gov (United States)

    Lehtimäki, Jaakko I; Fenix, Aidan M; Kotila, Tommi M; Balistreri, Giuseppe; Paavolainen, Lassi; Varjosalo, Markku; Burnette, Dylan T; Lappalainen, Pekka

    2017-12-04

    Contractile actomyosin bundles, stress fibers, are crucial for adhesion, morphogenesis, and mechanosensing in nonmuscle cells. However, the mechanisms by which nonmuscle myosin II (NM-II) is recruited to those structures and assembled into functional bipolar filaments have remained elusive. We report that UNC-45a is a dynamic component of actin stress fibers and functions as a myosin chaperone in vivo. UNC-45a knockout cells display severe defects in stress fiber assembly and consequent abnormalities in cell morphogenesis, polarity, and migration. Experiments combining structured-illumination microscopy, gradient centrifugation, and proteasome inhibition approaches revealed that a large fraction of NM-II and myosin-1c molecules fail to fold in the absence of UNC-45a. The remaining properly folded NM-II molecules display defects in forming functional bipolar filaments. The C-terminal UNC-45/Cro1/She4p domain of UNC-45a is critical for NM-II folding, whereas the N-terminal tetratricopeptide repeat domain contributes to the assembly of functional stress fibers. Thus, UNC-45a promotes generation of contractile actomyosin bundles through synchronized NM-II folding and filament-assembly activities. © 2017 Lehtimäki et al.

  20. The tymbal muscle of cicada has flight muscle-type sarcomeric architecture and protein expression.

    Science.gov (United States)

    Iwamoto, Hiroyuki

    2017-01-01

    The structural and biochemical features of the tymbal (sound-producing) muscle of cicadas were studied by X-ray diffraction and immunochemistry, and compared with those of flight muscles from the same species. The X-ray diffraction pattern of the tymbal muscle was very similar to that of the dorsal longitudinal flight muscle: In both muscles, the 2,0 equatorial reflection is much more intense than the 1,1, indicating that both muscles have a flight muscle-type myofilament lattice. In rigor, the first myosin/actin layer line reflection was finely lattice-sampled, indicating that the contractile proteins are arranged with a crystalline regularity as in asynchronous flight muscles. In contrast, the diffraction pattern from the tensor muscle, which modulates the sound by stressing the tymbal, did not show signs of such high regularity or flight muscle-type filament lattice. Electrophoretic patterns of myofibrillar proteins were also very similar in the tymbal muscle and flight muscles, but distinct from those from the tensor or leg muscles. The antibody raised against the flight muscle-specific troponin-I isoform reacted with an 80-kDa band from both tymbal and flight muscles, but with none of the bands from the tensor or leg muscles. The close similarities of the structural and biochemical profiles between the tymbal and the flight muscles suggest the possibility that a set of flight muscle-specific proteins is diverted to the tymbal muscle to meet its demand for fast, repetitive contractions.

  1. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C.; Meer, Berend van; Ward-van Oostwaard, Dorien [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); Passier, Robert [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); MIRA, University of Twente (Netherlands); Tertoolen, Leon G.J.; Mummery, Christine L. [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); Casini, Simona, E-mail: s.casini@amc.uva.nl [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands)

    2015-11-27

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation. - Highlights: • Dexamethasone accelerates Ca{sup 2+} transient decay in hESC-CMs. • Dexamethasone enhances SERCA and NCX function in hESC-CMs. • Dexamethasone increases force of contraction and sarcomere length in hESC-CMs. • Dexamethasone does not alter I{sub Ca,L} and action potential characteristics in hESC-CMs.

  2. Myosin: a noncovalent stabilizer of fibrin in the process of clot dissolution.

    Science.gov (United States)

    Kolev, Krasimir; Tenekedjiev, Kiril; Ajtai, Katalin; Kovalszky, Ilona; Gombas, Judit; Váradi, Balázs; Machovich, Raymund

    2003-06-01

    Myosin modulates the fibrinolytic process as a cofactor of the tissue plasminogen activator and as a substrate of plasmin. We report now that myosin is present in arterial thrombi and it forms reversible noncovalent complexes with fibrinogen and fibrin with equilibrium dissociation constants in the micromolar range (1.70 and 0.94 microM, respectively). Competition studies using a peptide inhibitor of fibrin polymerization (glycl-prolyl-arginyl-proline [GPRP]) indicate that myosin interacts with domains common in fibrinogen and fibrin and this interaction is independent of the GPRP-binding polymerization site in the fibrinogen molecule. An association rate constant of 1.81 x 10(2) M(-1) x s(-1) and a dissociation rate constant of 3.07 x 10(-4) s(-1) are determined for the fibrinogen-myosin interaction. Surface plasmon resonance studies indicate that fibrin serves as a matrix core for myosin aggregation. The fibrin clots equilibrated with myosin are stabilized against dissolution initiated by plasminogen and tissue-type plasminogen activator (tPA) or urokinase (at fibrin monomer-myosin molar ratio as high as 30) and by plasmin under static and flow conditions (at fibrin monomer-myosin molar ratio lower than 15). Myosin exerts similar effects on the tPA-induced dissolution of blood plasma clots. Covalent modification involving factor XIIIa does not contribute to this stabilizing effect; myosin is not covalently attached to the clot by the time of complete cross-linking of fibrin. Thus, our in vitro data suggest that myosin detected in arterial thrombi binds to the polymerized fibrin, in the bound form its tPA-cofactor properties are masked, and the myosin fibrin clot is relatively resistant to plasmin.

  3. Prothrombotic skeletal muscle myosin directly enhances prothrombin activation by binding factors Xa and Va

    Science.gov (United States)

    Deguchi, Hiroshi; Sinha, Ranjeet K.; Marchese, Patrizia; Ruggeri, Zaverio M.; Zilberman-Rudenko, Jevgenia; McCarty, Owen J. T.; Cohen, Mitchell J.

    2016-01-01

    To test the hypothesis that skeletal muscle myosins can directly influence blood coagulation and thrombosis, ex vivo studies of the effects of myosin on thrombogenesis in fresh human blood were conducted. Addition of myosin to blood augmented the thrombotic responses of human blood flowing over collagen-coated surfaces (300 s−1 shear rate). Perfusion of human blood over myosin-coated surfaces also caused fibrin and platelet deposition, evidencing myosin’s thrombogenicity. Myosin markedly enhanced thrombin generation in both platelet-rich plasma and platelet-poor plasma, indicating that myosin promoted thrombin generation in plasma primarily independent of platelets. In purified reaction mixtures composed only of factor Xa, factor Va, prothrombin, and calcium ions, myosin greatly enhanced prothrombinase activity. The Gla domain of factor Xa was not required for myosin’s prothrombinase enhancement. When binding of purified clotting factors to immobilized myosin was monitored using biolayer interferometry, factors Xa and Va each showed favorable binding interactions. Factor Va reduced by 100-fold the apparent Kd of myosin for factor Xa (Kd ∼0.48 nM), primarily by reducing koff, indicating formation of a stable ternary complex of myosin:Xa:Va. In studies to assess possible clinical relevance for this discovery, we found that antimyosin antibodies inhibited thrombin generation in acute trauma patient plasmas more than in control plasmas (P = .0004), implying myosin might contribute to acute trauma coagulopathy. We posit that myosin enhancement of thrombin generation could contribute either to promote hemostasis or to augment thrombosis risk with consequent implications for myosin’s possible contributions to pathophysiology in the setting of acute injuries. PMID:27421960

  4. Myosin V attachment to cargo requires the tight association of two functional subdomains

    OpenAIRE

    Pashkova, Natasha; Catlett, Natalie L.; Novak, Jennifer L.; Wu, Guanming; Lu, Renne; Cohen, Robert E.; Weisman, Lois S.

    2005-01-01

    The myosin V carboxyl-terminal globular tail domain is essential for the attachment of myosin V to all known cargoes. Previously, the globular tail was viewed as a single, functional entity. Here, we show that the globular tail of the yeast myosin Va homologue, Myo2p, contains two structural subdomains that have distinct functions, namely, vacuole-specific and secretory vesicle–specific movement. Biochemical and genetic analyses demonstrate that subdomain I tightly associates with subdomain I...

  5. Myosin individualized: single nucleotide polymorphisms in energy transduction

    Directory of Open Access Journals (Sweden)

    Wieben Eric D

    2010-03-01

    Full Text Available Abstract Background Myosin performs ATP free energy transduction into mechanical work in the motor domain of the myosin heavy chain (MHC. Energy transduction is the definitive systemic feature of the myosin motor performed by coordinating in a time ordered sequence: ATP hydrolysis at the active site, actin affinity modulation at the actin binding site, and the lever-arm rotation of the power stroke. These functions are carried out by several conserved sub-domains within the motor domain. Single nucleotide polymorphisms (SNPs affect the MHC sequence of many isoforms expressed in striated muscle, smooth muscle, and non-muscle tissue. The purpose of this work is to provide a rationale for using SNPs as a functional genomics tool to investigate structurefunction relationships in myosin. In particular, to discover SNP distribution over the conserved sub-domains and surmise what it implies about sub-domain stability and criticality in the energy transduction mechanism. Results An automated routine identifying human nonsynonymous SNP amino acid missense substitutions for any MHC gene mined the NCBI SNP data base. The routine tested 22 MHC genes coding muscle and non-muscle isoforms and identified 89 missense mutation positions in the motor domain with 10 already implicated in heart disease and another 8 lacking sequence homology with a skeletal MHC isoform for which a crystallographic model is available. The remaining 71 SNP substitutions were found to be distributed over MHC with 22 falling outside identified functional sub-domains and 49 in or very near to myosin sub-domains assigned specific crucial functions in energy transduction. The latter includes the active site, the actin binding site, the rigid lever-arm, and regions facilitating their communication. Most MHC isoforms contained SNPs somewhere in the motor domain. Conclusions Several functional-crucial sub-domains are infiltrated by a large number of SNP substitution sites suggesting these

  6. Embryonic Stem Cell Markers

    Directory of Open Access Journals (Sweden)

    Lan Ma

    2012-05-01

    Full Text Available Embryonic stem cell (ESC markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal, therefore helping to accelerate the clinical application of ES cells. Unfortunately, different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other types of cells, especially tumor cells. Currently, the marker-based flow cytometry (FCM technique and magnetic cell sorting (MACS are the most effective cell isolating methods, and a detailed maker list will help to initially identify, as well as isolate ESCs using these methods. In the current review, we discuss a wide range of cell surface and generic molecular markers that are indicative of the undifferentiated ESCs. Other types of molecules, such as lectins and peptides, which bind to ESC via affinity and specificity, are also summarized. In addition, we review several markers that overlap with tumor stem cells (TSCs, which suggest that uncertainty still exists regarding the benefits of using these markers alone or in various combinations when identifying and isolating cells.

  7. Adaptation of physiological cross-sectional area and serial number of sarcomeres after tendon transfer of rat muscle.

    Science.gov (United States)

    Huijing, P A; Maas, H

    2016-03-01

    Tendon transfer surgery to a new extensor insertion was performed for musculus flexor carpi ulnaris (FCU) of young adult rats, after which animals were allowed to recover. Mechanical properties and adaptive effects on body mass, bone growth, serial number of sarcomeres, and muscle physiological cross-sectional area were studied. Between the transfer and control groups, no differences were found for body mass and forearm length growth. In contrast, transferred muscles had a 19% smaller physiological cross-sectional area and 25% fewer sarcomeres in series within its muscle fibers than control muscles, i.e., a deficit in muscle belly growth is present. Our present results confirm our the length of previous work showing a limited capability of changing the adapted transferred FCU muscle belly, as the muscle-tendon complex is stretched, so that most of the acute FCU length change must originate from the tendon. This should most likely be attributed to surgery-related additional and/or altered connective tissue linkages at the muscle-tendon boundary. The substantially increased FCU tendon length found, after recovery from surgery and adaptation to the conditions of the transferred position, is likely to be related to such enhanced stretching of the FCU tendon. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Phosphorylation of cardiac myosin binding protein C releases myosin heads from the surface of cardiac thick filaments

    Science.gov (United States)

    Kensler, Robert W.; Craig, Roger; Moss, Richard L.

    2017-01-01

    Cardiac myosin binding protein C (cMyBP-C) has a key regulatory role in cardiac contraction, but the mechanism by which changes in phosphorylation of cMyBP-C accelerate cross-bridge kinetics remains unknown. In this study, we isolated thick filaments from the hearts of mice in which the three serine residues (Ser273, Ser282, and Ser302) that are phosphorylated by protein kinase A in the m-domain of cMyBP-C were replaced by either alanine or aspartic acid, mimicking the fully nonphosphorylated and the fully phosphorylated state of cMyBP-C, respectively. We found that thick filaments from the cMyBP-C phospho-deficient hearts had highly ordered cross-bridge arrays, whereas the filaments from the cMyBP-C phospho-mimetic hearts showed a strong tendency toward disorder. Our results support the hypothesis that dephosphorylation of cMyBP-C promotes or stabilizes the relaxed/superrelaxed quasi-helical ordering of the myosin heads on the filament surface, whereas phosphorylation weakens this stabilization and binding of the heads to the backbone. Such structural changes would modulate the probability of myosin binding to actin and could help explain the acceleration of cross-bridge interactions with actin when cMyBP-C is phosphorylated because of, for example, activation of β1-adrenergic receptors in myocardium. PMID:28167762

  9. Walking to work: roles for class V myosins as cargo transporters.

    Science.gov (United States)

    Hammer, John A; Sellers, James R

    2011-12-07

    Cells use molecular motors, such as myosins, to move, position and segregate their organelles. Class V myosins possess biochemical and structural properties that should make them ideal actin-based cargo transporters. Indeed, studies show that class V myosins function as cargo transporters in yeast, moving a range of organelles, such as the vacuole, peroxisomes and secretory vesicles. There is also increasing evidence in vertebrate cells that class V myosins not only tether organelles to actin but also can serve as short-range, point-to-point organelle transporters, usually following long-range, microtubule-dependent organelle transport.

  10. Analysis of the interactions between Rab GTPases and class V myosins.

    Science.gov (United States)

    Lindsay, Andrew J; Miserey-Lenkei, Stéphanie; Goud, Bruno

    2015-01-01

    Myosins are actin-based motor proteins that are involved in a wide variety of cellular processes such as membrane transport, muscle contraction, and cell division. Humans have over 40 myosins that can be placed into 18 classes, the malfunctioning of a number of which can lead to disease. There are three members of the human class V myosin family, myosins Va, Vb, and Vc. People lacking functional myosin Va suffer from a rare autosomal recessive disease called Griscelli's Syndrome type I (GS1) that is characterized by severe neurological defects and partial albinism. Mutations in the myosin Vb gene lead to an epithelial disorder called microvillus inclusion disease (MVID) that is often fatal in infants. The class V myosins have been implicated in the transport of diverse cargoes such as melanosomes in pigment cells, synaptic vesicles in neurons, RNA transcripts in a variety of cell types, and organelles such as the endoplasmic reticulum. The Rab GTPases play a critical role in recruiting class V myosins to their cargo. We recently published a study in which we used the yeast two-hybrid system to systematically test myosin Va for its ability to interact with each member of the human Rab GTPase family. We present here a detailed description of this yeast two-hybrid "living chip" assay. Furthermore, we present a protocol for validating positive interactions obtained from this screen by coimmunoprecipitation.

  11. Evolutionary traces decode molecular mechanism behind fast pace of myosin XI

    Directory of Open Access Journals (Sweden)

    Syamaladevi Divya P

    2011-09-01

    Full Text Available Abstract Background Cytoplasmic class XI myosins are the fastest processive motors known. This class functions in high-velocity cytoplasmic streaming in various plant cells from algae to angiosperms. The velocities at which they process are ten times faster than its closest class V homologues. Results To provide sequence determinants and structural rationale for the molecular mechanism of this fast pace myosin, we have compared the sequences from myosin class V and XI through Evolutionary Trace (ET analysis. The current study identifies class-specific residues of myosin XI spread over the actin binding site, ATP binding site and light chain binding neck region. Sequences for ET analysis were accumulated from six plant genomes, using literature based text search and sequence searches, followed by triple validation viz. CDD search, string-based searches and phylogenetic clustering. We have identified nine myosin XI genes in sorghum and seven in grape by sequence searches. Both the plants possess one gene product each belonging to myosin type VIII as well. During this process, we have re-defined the gene boundaries for three sorghum myosin XI genes using fgenesh program. Conclusion Molecular modelling and subsequent analysis of putative interactions involving these class-specific residues suggest a structural basis for the molecular mechanism behind high velocity of plant myosin XI. We propose a model of a more flexible switch I region that contributes to faster ADP release leading to high velocity movement of the algal myosin XI.

  12. Effects of high intensity unltrasound on structural and physicochemical properties of myosin from silver carp.

    Science.gov (United States)

    Liu, Ru; Liu, Qing; Xiong, Shanbai; Fu, Yicheng; Chen, Liang

    2017-07-01

    Myosin from silver carp was sonicated with varying power output (100, 150, 200 and 250W) for 3, 6, 9, and 12min. The changes in the structure and physicochemical properties of myosin were evaluated by dynamic light scattering, SDS-PAGE and some physicochemical indexes. The ultrasound treatments induced a significant conversion of myosin aggregates to smaller ones with a more uniform distribution, and obvious enhancement in solubility. The structure of myosin was also notably changed by sonication, with a decrease in Ca2+-ATPase activity and SH content, and an increase in surface hydrophobicity. Furthermore, SH groups were oxidized, leading to a decrease in reactive SH and total SH contents. SDS-PAGE analysis revealed that ultrasound could induce the degradation of myosin heavy chain and change the protein fraction of myosin. Collectively, the ultrasonic treatment of 100W for 3min showed slight influence on the SH content, S0-ANS, and electrophoretic patterns, and the extent of changes in myosin structure and physicochemical properties tended to increase with ultrasonic power and time. The integrated data indicate that ultrasonic treatment can facilitate the improvement of the solubility and dispersion of myosin, but the choice of a suitable ultrasonic condition to avoid oxidation and degradation of myosin is very important. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Isoform composition, gene expression and sarcomeric protein phosphorylation in striated muscle of mice after space flight

    Science.gov (United States)

    Vikhlyantsev, Ivan; Ulanova, Anna; Salmov, Nikolay; Gritsyna, Yulia; Bobylev, Alexandr; Rogachevsky, Vadim; Shenkman, Boris; Podlubnaya, Zoya

    Using RT-PCR and SDS-PAGE, changes in isoform composition, gene expression, titin and nebulin phosphorylation, as well as changes in isoform composition of myosin heavy chains in striated muscles of mice were studied after 30-day-long space flight onboard the Russian spacecraft “BION-M” No. 1. The muscle fibre-type shift from slow-to-fast was observed in m. gastrocnemius and m. tibialis anterior of animals from “Flight” group. A decrease in the content of the NT and N2A titin isoforms and nebulin in the skeletal muscles of animals from “Flight” group was found. Meanwhile, significant differences in gene expression of these proteins in skeletal muscles of mice from “Flight” and “Control” groups were not observed. Using Pro-Q Diamond stain, an increase in titin phosphorylation in m. gastrocnemius of mice from “Flight” group was detected. The content of the NT, N2BA and N2B titin isoforms in cardiac muscle of mice from “Flight” and “Control” groups did not differ, nevertheless an increase in titin gene expression in the myocardium of the “Flight” group animals was found. The observed changes will be discussed in the context of theirs role in contractile activity of striated muscles of mice in conditions of weightlessness. This work was supported by the Russian Foundation for Basic Research (grants No. 14-04-32240, 14-04-00112). Acknowledgement. We express our gratitude to the teams of Institute of Biomedical Problems RAS and “PROGRESS” Corporation involved in the preparation of the “BION-M” mission.

  14. The Association of Myosin IB with Actin Waves in Dictyostelium Requires Both the Plasma Membrane-Binding Site and Actin-Binding Region in the Myosin Tail

    Science.gov (United States)

    Brzeska, Hanna; Pridham, Kevin; Chery, Godefroy; Titus, Margaret A.; Korn, Edward D.

    2014-01-01

    F-actin structures and their distribution are important determinants of the dynamic shapes and functions of eukaryotic cells. Actin waves are F-actin formations that move along the ventral cell membrane driven by actin polymerization. Dictyostelium myosin IB is associated with actin waves but its role in the wave is unknown. Myosin IB is a monomeric, non-filamentous myosin with a globular head that binds to F-actin and has motor activity, and a non-helical tail comprising a basic region, a glycine-proline-glutamine-rich region and an SH3-domain. The basic region binds to acidic phospholipids in the plasma membrane through a short basic-hydrophobic site and the Gly-Pro-Gln region binds F-actin. In the current work we found that both the basic-hydrophobic site in the basic region and the Gly-Pro-Gln region of the tail are required for the association of myosin IB with actin waves. This is the first evidence that the Gly-Pro-Gln region is required for localization of myosin IB to a specific actin structure in situ. The head is not required for myosin IB association with actin waves but binding of the head to F-actin strengthens the association of myosin IB with waves and stabilizes waves. Neither the SH3-domain nor motor activity is required for association of myosin IB with actin waves. We conclude that myosin IB contributes to anchoring actin waves to the plasma membranes by binding of the basic-hydrophobic site to acidic phospholipids in the plasma membrane and binding of the Gly-Pro-Gln region to F-actin in the wave. PMID:24747353

  15. Passive Repetitive Stretching for a Short Duration within a Week Increases Myogenic Regulatory Factors and Myosin Heavy Chain mRNA in Rats' Skeletal Muscles

    Directory of Open Access Journals (Sweden)

    Yurie Kamikawa

    2013-01-01

    Full Text Available Stretching is a stimulation of muscle growth. Stretching for hours or days has an effect on muscle hypertrophy. However, differences of continuous stretching and repetitive stretching to affect muscle growth are not well known. To clarify the difference of continuous and repetitive stretching within a short duration, we investigated the gene expression of muscle-related genes on stretched skeletal muscles. We used 8-week-old male Wistar rats ( for this study. Animals medial gastrocnemius muscle was stretched continuously or repetitively for 15 min daily and 4 times/week under anesthesia. After stretching, muscles were removed and total RNA was extracted. Then, reverse transcriptional quantitative real-time PCR was done to evaluate the mRNA expression of MyoD, myogenin, and embryonic myosin heavy chain (MyHC. Muscles, either stretched continuously or repetitively, increased mRNA expression of MyoD, myogenin, and embryonic MyHC more than unstretched muscles. Notably, repetitive stretching resulted in more substantial effects on embryonic MyHC gene expression than continuous stretching. In conclusion, passive stretching for a short duration within a week is effective in increasing myogenic factor expression, and repetitive stretching had more effects than continuous stretching for skeletal muscle on muscle growth. These findings are applicable in clinical muscle-strengthening therapy.

  16. Analysis of organelle targeting by DIL domains of the Arabidopsis myosin XI family

    Directory of Open Access Journals (Sweden)

    Amirali eSattarzadeh

    2011-11-01

    Full Text Available The Arabidopsis thaliana genome encodes 13 myosin XI motor proteins. Previous insertional mutant analysis has implicated substantial redundancy of function of plant myosin XIs in transport of intracellular organelles. Considerable information is available about the interaction of cargo with the myosin XI-homologous yeast myosin V protein myo2p. We identified a region in each of twelve myosin XI sequences that correspond to the yeast myo2p secretory-vesicle binding domain (the DIL domain. Structural modeling of the myosin DIL domain region of plant myosin XIs revealed significant similarity to the yeast myo2p and myo4p DIL domains. Transient expression of YFP fusions with the Arabidopsis myosin XI DIL domain resulted in fluorescent labeling of a variety of organelles, including the endoplasmic reticulum, peroxisomes, Golgi and nuclear envelope. With the exception of the YFP: MYA1-DIL fusion, expression of the DIL-YFP fusions resulted in loss of motility of labeled organelles, consistent with a dominant-negative effect. Certain fusions resulted in localization to the cytoplasm or to unidentified vesicles. The same YFP-domain fusion sometimes labeled more than one organelle. Expression of a YFP fusion to a yeast myo2p DIL domain resulted in labeling of plant peroxisomes. Fusions with some of the myosin XI domains resulted in labeling of known cargoes of the particular myosin XI; however, certain myosin XI YFP fusions labeled organelles that had not previously been found to be detectably affected by mutations nor by expression of dominant negative constructs.

  17. Expression of myosin VIIA in the developing chick inner ear neurons.

    Science.gov (United States)

    Nguyen, Kristi; Hall, Amanda L; Jones, Jennifer M

    2015-01-01

    The auditory-vestibular ganglion (AVG) is formed by the division of otic placode-derived neuroblasts, which then differentiate into auditory and vestibular afferent neurons. The developmental mechanisms that regulate neuronal cell fate determination, axonal pathfinding and innervation of otic neurons are poorly understood. The present study characterized the expression of myosin VIIA, along with the neuronal markers, Islet1, NeuroD1 and TuJ1, in the developing avian ear, during Hamburger-Hamilton (HH) stages 16-40. At early stages, when neuroblasts are delaminating from the otic epithelium, myosin VIIA expression was not observed. Myosin VIIA was initially detected in a subset of neurons during the early phase of neuronal differentiation (HH stage 20). As the AVG segregates into the auditory and vestibular portions, myosin VIIA was restricted to a subset of vestibular neurons, but was not present in auditory neurons. Myosin VIIA expression in the vestibular ganglion was maintained through HH stage 33 and was downregulated by stage 36. Myosin VIIA was also observed in the migrating processes of vestibular afferents as they begin to innervate the otic epithelium HH stage 22/23. Notably, afferents targeting hair cells of the cristae were positive for myosin VIIA while afferents targeting the utricular and saccular maculae were negative (HH stage 26-28). Although previous studies have reported that myosin VIIA is restricted to sensory hair cells, our data shows that myosin VIIA is also expressed in neurons of the developing chick ear. Our study suggests a possible role for myosin VIIA in axonal migration/pathfinding and/or innervation of vestibular afferents. In addition, myosin VIIA could be used as an early marker for vestibular neurons during the development of the avian AVG. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Fucoidan promotes early step of cardiac differentiation from human embryonic stem cells and long-term maintenance of beating areas.

    Science.gov (United States)

    Hamidi, Sofiane; Letourneur, Didier; Aid-Launais, Rachida; Di Stefano, Antonio; Vainchenker, William; Norol, Françoise; Le Visage, Catherine

    2014-04-01

    Somatic stem cells require specific niches and three-dimensional scaffolds provide ways to mimic this microenvironment. Here, we studied a scaffold based on Fucoidan, a sulfated polysaccharide known to influence morphogen gradients during embryonic development, to support human embryonic stem cells (hESCs) differentiation toward the cardiac lineage. A macroporous (pore 200 μm) Fucoidan scaffold was selected to support hESCs attachment and proliferation. Using a protocol based on the cardiogenic morphogen bone morphogenic protein 2 (BMP2) and transforming growth factor (TGFβ) followed by tumor necrosis factor (TNFα), an effector of cardiopoietic priming, we examined the cardiac differentiation in the scaffold compared to culture dishes and embryoid bodies (EBs). At day 8, Fucoidan scaffolds supported a significantly higher expression of the 3 genes encoding for transcription factors marking the early step of embryonic cardiac differentiation NKX2.5 (pcells, thus enabling maintenance of beating areas for up to 6 months. In conclusion, Fucoidan scaffolds appear as a very promising biomaterial to control cardiac differentiation from hESCs that could be further combined with mechanical stress to promote sarcomere formation at terminal stages of differentiation.

  19. Effects of strain on contractile force and number of sarcomeres in series of Xenopus laevis single muscle fibres during long-term culture

    NARCIS (Netherlands)

    Jaspers, R.T.; Feenstra, Hiske; Verheyen, A.K.; van der Laarse, W.J.; Huijing, P.A.J.B.M.

    2004-01-01

    The aim of the present study is to test whether mechanical strain uniquely regulates muscle fibre atrophy/hypertrophy and adaptation of the number of sarcomeres in series within mature muscle fibres in vitro. Mature single muscle fibres from Xenopus laevis illiofibularis muscle were cultured (4--97

  20. Effects of strain on contractile force and number of sarcomeres in series of Xenopus laevis single muscle fibres during long-term culture

    NARCIS (Netherlands)

    Jaspers, R.T.; Feenstra, H.M.; Verheyen, A.K.; van der Laarse, W.J.; Huijing, P.A.J.B.M.

    2004-01-01

    The aim of the present study is to test whether mechanical strain uniquely regulates muscle fibre atrophy/hypertrophy and adaptation of the number of sarcomeres in series within mature muscle fibres in vitro. Mature single muscle fibres from Xenopus laevis illiofibularis muscle were cultured (4 - 97

  1. Screening of sarcomere gene mutations in young athletes with abnormal findings in electrocardiography: identification of a MYH7 mutation and MYBPC3 mutations.

    Science.gov (United States)

    Kadota, Chika; Arimura, Takuro; Hayashi, Takeharu; Naruse, Taeko K; Kawai, Sachio; Kimura, Akinori

    2015-10-01

    There is an overlap between the physiological cardiac remodeling associated with training in athletes, the so-called athlete's heart, and mild forms of hypertrophic cardiomyopathy (HCM), the most common hereditary cardiac disease. HCM is often accompanied by unfavorable outcomes including a sudden cardiac death in the adolescents. Because one of the initial signs of HCM is abnormality in electrocardiogram (ECG), athletes may need to monitor for ECG findings to prevent any unfavorable outcomes. HCM is caused by mutations in genes for sarcomere proteins, but there is no report on the systematic screening of gene mutations in athletes. One hundred and two genetically unrelated young Japanese athletes with abnormal ECG findings were the subjects for the analysis of four sarcomere genes, MYH7, MYBPC3, TNNT2 and TNNI3. We found that 5 out of 102 (4.9%) athletes carried mutations: a heterozygous MYH7 Glu935Lys mutation, a heterozygous MYBPC3 Arg160Trp mutation and another heterozygous MYBPC3 Thr1046Met mutation, all of which had been reported as HCM-associated mutations, in 1, 2 and 2 subjects, respectively. This is the first study of systematic screening of sarcomere gene mutations in a cohort of athletes with abnormal ECG, demonstrating the presence of sarcomere gene mutations in the athlete's heart.

  2. The Rho kinases I and II regulate different aspects of myosin II activity

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Multhaupt, Hinke A B; Couchman, John R

    2005-01-01

    The homologous mammalian rho kinases (ROCK I and II) are assumed to be functionally redundant, based largely on kinase construct overexpression. As downstream effectors of Rho GTPases, their major substrates are myosin light chain and myosin phosphatase. Both kinases are implicated in microfilament...

  3. Scoliosis surgery in a patient with "de novo" myosin storage myopathy.

    NARCIS (Netherlands)

    Stalpers, X.; Verrips, A.; Braakhekke, J.; Lammens, M.M.Y.; Wijngaard, A. van den; Mostert, A.

    2011-01-01

    Myosin storage myopathy is a rare neuromuscular disorder, characterized by subsarcolemmal inclusions exclusively in type I skeletal muscle fibers, known as hyaline bodies. Its clinical spectrum is diverse, as are its modes of inheritance. Myosin storage myopathy, also called hyaline body myopathy,

  4. My oh my(osin): Insights into how auditory hair cells count, measure, and shape.

    Science.gov (United States)

    Pollock, Lana M; Chou, Shih-Wei; McDermott, Brian M

    2016-01-18

    The mechanisms underlying mechanosensory hair bundle formation in auditory sensory cells are largely mysterious. In this issue, Lelli et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201509017) reveal that a pair of molecular motors, myosin IIIa and myosin IIIb, is involved in the hair bundle's morphology and hearing. © 2016 Pollock et al.

  5. The myosin-II-responsive focal adhesion proteome: a tour de force?

    Science.gov (United States)

    Gallegos, Lisa; Ng, Mei Rosa; Brugge, Joan S

    2011-04-01

    The formation and maturation of focal adhesions involves significant changes in protein composition and requires acto-myosin contractility. A mass spectrometry approach reveals changes to the focal adhesion proteome on myosin inhibition, providing a valuable resource for the cell adhesion field. © 2011 Macmillan Publishers Limited. All rights reserved

  6. Covalent immobilization of myosin for in-vitro motility of actin

    Indian Academy of Sciences (India)

    - tablished but ... In all the experiments, microbes- and pyrogen-free deionized water having 18.2 MΩ resistivity obtained from PureLab, Elga, UK, water purification system was used. 2.2 Immobilization of myosin. Myosin was immobilized on ...

  7. Mouse nuclear myosin I knock-out shows interchangeability and redundancy of myosin isoforms in the cell nucleus.

    Directory of Open Access Journals (Sweden)

    Tomáš Venit

    Full Text Available BACKGROUND: Nuclear myosin I (NM1 is a nuclear isoform of the well-known "cytoplasmic" Myosin 1c protein (Myo1c. Located on the 11(th chromosome in mice, NM1 results from an alternative start of transcription of the Myo1c gene adding an extra 16 amino acids at the N-terminus. Previous studies revealed its roles in RNA Polymerase I and RNA Polymerase II transcription, chromatin remodeling, and chromosomal movements. Its nuclear localization signal is localized in the middle of the molecule and therefore directs both Myosin 1c isoforms to the nucleus. METHODOLOGY/PRINCIPAL FINDINGS: In order to trace specific functions of the NM1 isoform, we generated mice lacking the NM1 start codon without affecting the cytoplasmic Myo1c protein. Mutant mice were analyzed in a comprehensive phenotypic screen in cooperation with the German Mouse Clinic. Strikingly, no obvious phenotype related to previously described functions has been observed. However, we found minor changes in bone mineral density and the number and size of red blood cells in knock-out mice, which are most probably not related to previously described functions of NM1 in the nucleus. In Myo1c/NM1 depleted U2OS cells, the level of Pol I transcription was restored by overexpression of shRNA-resistant mouse Myo1c. Moreover, we found Myo1c interacting with Pol II. The ratio between Myo1c and NM1 proteins were similar in the nucleus and deletion of NM1 did not cause any compensatory overexpression of Myo1c protein. CONCLUSION/SIGNIFICANCE: We observed that Myo1c can replace NM1 in its nuclear functions. Amount of both proteins is nearly equal and NM1 knock-out does not cause any compensatory overexpression of Myo1c. We therefore suggest that both isoforms can substitute each other in nuclear processes.

  8. Myosin II in mechanotransduction: master and commander of cell migration, morphogenesis, and cancer.

    Science.gov (United States)

    Aguilar-Cuenca, Rocío; Juanes-García, Alba; Vicente-Manzanares, Miguel

    2014-02-01

    Mechanotransduction encompasses the role of mechanical forces in controlling cell behavior by activating signal transduction pathways. Most forces at a cellular level are caused by myosin II, which contracts and cross-links actin. Myosin II-dependent forces are transmitted through the actin cytoskeleton to molecular endpoints that promote specific cellular outcomes, e.g., cell proliferation, adhesion, or migration. For example, most adhesive and migratory phenomena are mechanically linked by a molecular clutch comprised of mechanosensitive scaffolds. Myosin II activation and mechanosensitive molecular mechanisms are finely tuned and spatiotemporally integrated to coordinate morphogenetic events during development. Mechanical events dependent on myosin II also participate in tumor cell proliferation, invasion, and metastatic dissemination. Specifically, tumor cells alter the mechanical properties of the microenvironment to create favorable conditions for proliferation and/or dissemination. These observations position myosin II-dependent force generation and mechanotransduction at the crossroads between normal development and cancer.

  9. Characterization of muscle contraction with second harmonic generation microscopy

    Science.gov (United States)

    Prent, Nicole

    Muscle cells have the ability to change length and generate force due to orchestrated action of myosin nanomotors that cause sliding of actin filaments along myosin filaments in the sarcomeres, the fundamental contractile units, of myocytes. The correlated action of hundreds of sarcomeres is needed to produce the myocyte contractions. This study probes the molecular structure of the myofilaments and investigates the movement correlations between sarcomeres during contraction. In this study, second harmonic generation (SHG) microscopy is employed for imaging striated myocytes. Myosin filaments in striated myocytes inherently have a nonzero second-order susceptibility, [special characters omitted] and therefore generate efficient SHG. Employing polarization-in polarization-out (PIPO) SHG microscopy allows for the accurate determination of the characteristic ratio, [special characters omitted] in birefringent myocytes, which describes the structure of the myosin filament. Analysis shows that the b value at the centre of the myosin filament, where the nonlinear dipoles are better aligned, is slightly lower than the value at the edges of the filament, where there is more disorder in orientation of the nonlinear dipoles from the myosin heads. Forced stretching of myocytes resulted in an SHG intensity increase with the elongation of the sarcomere. SHG microscopy captured individual sarcomeres during contraction, allowing for the measurement of sarcomere length (SL) and SHG intensity (SI) fluctuations. The fluctuations also revealed higher SHG intensity in elongated sarcomeres. The sarcomere synchronization model (SSM) for contracting and quiescent myocytes was developed, and experimentally verified for three cases (isolated cardiomyocyte, embryonic chicken cardiomyocyte, and larva myocyte). During contraction, the action of SLs and SIs between neighbouring sarcomeres partially correlated, whereas in quiescent myocytes the SLs show an anti-correlation and the SIs have no

  10. Life without double-headed non-muscle myosin II motor proteins

    Directory of Open Access Journals (Sweden)

    Venkaiah eBetapudi

    2014-07-01

    Full Text Available Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.

  11. Life without double-headed non-muscle myosin II motor proteins

    Science.gov (United States)

    Betapudi, Venkaiah

    2014-07-01

    Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.

  12. Identification of signals that facilitate isoform specific nucleolar localization of myosin IC

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Ryan S.; Ihnatovych, Ivanna; Yunus, Sharifah Z.S.A.; Domaradzki, Tera [Department of Physiology and Biophysics, University at Buffalo—State University of New York, Buffalo, NY (United States); Hofmann, Wilma A., E-mail: whofmann@buffalo.edu [Department of Physiology and Biophysics, University at Buffalo—State University of New York, Buffalo, NY (United States)

    2013-05-01

    Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus, where it is involved in transcription by RNA polymerases I and II, intranuclear transport, and nuclear export. In mammalian cells, three isoforms of myosin IC are expressed that differ only in the addition of short isoform-specific N-terminal peptides. Despite the high sequence homology, the isoforms show differences in cellular distribution, in localization to nuclear substructures, and in their interaction with nuclear proteins through yet unknown mechanisms. In this study, we used EGFP-fusion constructs that express truncated or mutated versions of myosin IC isoforms to detect regions that are involved in isoform-specific localization. We identified two nucleolar localization signals (NoLS). One NoLS is located in the myosin IC isoform B specific N-terminal peptide, the second NoLS is located upstream of the neck region within the head domain. We demonstrate that both NoLS are functional and necessary for nucleolar localization of specifically myosin IC isoform B. Our data provide a first mechanistic explanation for the observed functional differences between the myosin IC isoforms and are an important step toward our understanding of the underlying mechanisms that regulate the various and distinct functions of myosin IC isoforms. - Highlights: ► Two NoLS have been identified in the myosin IC isoform B sequence. ► Both NoLS are necessary for myosin IC isoform B specific nucleolar localization. ► First mechanistic explanation of functional differences between the isoforms.

  13. Par-4: A New Activator of Myosin Phosphatase

    Science.gov (United States)

    Vetterkind, Susanne; Lee, Eunhee; Sundberg, Eric; Poythress, Ransom H.; Tao, Terence C.; Preuss, Ute

    2010-01-01

    Myosin phosphatase (MP) is a key regulator of myosin light chain (LC20) phosphorylation, a process essential for motility, apoptosis, and smooth muscle contractility. Although MP inhibition is well studied, little is known about MP activation. We have recently demonstrated that prostate apoptosis response (Par)-4 modulates vascular smooth muscle contractility. Here, we test the hypothesis that Par-4 regulates MP activity directly. We show, by proximity ligation assays, surface plasmon resonance and coimmunoprecipitation, that Par-4 interacts with the targeting subunit of MP, MYPT1. Binding is mediated by the leucine zippers of MYPT1 and Par-4 and reduced by Par-4 phosphorylation. Overexpression of Par-4 leads to increased phosphatase activity of immunoprecipitated MP, whereas small interfering RNA knockdown of endogenous Par-4 significantly decreases MP activity and increases MYPT1 phosphorylation. LC20 phosphorylation assays demonstrate that overexpression of Par-4 reduces LC20 phosphorylation. In contrast, a phosphorylation site mutant, but not wild-type Par-4, interferes with zipper-interacting protein kinase (ZIPK)-mediated MP inhibition. We conclude from our results Par-4 operates through a “padlock” model in which binding of Par-4 to MYPT1 activates MP by blocking access to the inhibitory phosphorylation sites, and inhibitory phosphorylation of MYPT1 by ZIPK requires “unlocking” of Par-4 by phosphorylation and displacement of Par-4 from the MP complex. PMID:20130087

  14. Dwell time distributions of the molecular motor myosin V.

    Science.gov (United States)

    Bierbaum, Veronika; Lipowsky, Reinhard

    2013-01-01

    The dwell times between two successive steps of the two-headed molecular motor myosin V are governed by non-exponential distributions. These distributions have been determined experimentally for various control parameters such as nucleotide concentrations and external load force. First, we use a simplified network representation to determine the dwell time distributions of myosin V, with the associated dynamics described by a Markov process on networks with absorbing boundaries. Our approach provides a direct relation between the motor's chemical kinetics and its stepping properties. In the absence of an external load, the theoretical distributions quantitatively agree with experimental findings for various nucleotide concentrations. Second, using a more complex branched network, which includes ADP release from the leading head, we are able to elucidate the motor's gating effect. This effect is caused by an asymmetry in the chemical properties of the leading and the trailing head of the motor molecule. In the case of an external load acting on the motor, the corresponding dwell time distributions reveal details about the motor's backsteps.

  15. Discoidin Domain Receptor 1 Mediates Myosin-Dependent Collagen Contraction

    Directory of Open Access Journals (Sweden)

    Nuno M. Coelho

    2017-02-01

    Full Text Available Discoidin domain receptor 1 (DDR1 is a tyrosine kinase collagen adhesion receptor that mediates cell migration through association with non-muscle myosin IIA (NMIIA. Because DDR1 is implicated in cancer fibrosis, we hypothesized that DDR1 interacts with NMIIA to enable collagen compaction by traction forces. Mechanical splinting of rat dermal wounds increased DDR1 expression and collagen alignment. In periodontal ligament of DDR1 knockout mice, collagen mechanical reorganization was reduced >30%. Similarly, cultured cells with DDR1 knockdown or expressing kinase-deficient DDR1d showed 50% reduction of aligned collagen. Tractional remodeling of collagen was dependent on DDR1 clustering, activation, and interaction of the DDR1 C-terminal kinase domain with NMIIA filaments. Collagen remodeling by traction forces, DDR1 tyrosine phosphorylation, and myosin light chain phosphorylation were increased on stiff versus soft substrates. Thus, DDR1 clustering, activation, and interaction with NMIIA filaments enhance the collagen tractional remodeling that is important for collagen compaction in fibrosis.

  16. RNAi targeting embryonic myosin heavy chain isoform inhibited bound thrombin-induced migration of vascular smooth muscle cells

    National Research Council Canada - National Science Library

    Sunagawa, Masanori; Shimada, Seiji; Nakamura, Mariko; Kosugi, Tadayoshi

    2009-01-01

    To investigate the effect of bound thrombin, a complex of alpha-thrombin with fibrin fragments derived from clots, on proliferation and migration of cultured rabbit vascular smooth muscle cells, cell...

  17. Embryonic hematopoiesis under microscopic observation

    NARCIS (Netherlands)

    Klaus, Anna; Robin, Catherine

    2017-01-01

    Hematopoietic stem cells (HSCs) are at the origin of adult hematopoiesis, providing an organism with all blood cell types needed throughout life. During embryonic development a first wave of hematopoiesis (independent of HSCs) allows the survival and growth of the embryo until birth. A second wave

  18. Differences in aberrant expression and splicing of sarcomeric proteins in the myotonic dystrophies DM1 and DM2.

    Science.gov (United States)

    Vihola, Anna; Bachinski, Linda L; Sirito, Mario; Olufemi, Shodimu-Emmanuel; Hajibashi, Shohrae; Baggerly, Keith A; Raheem, Olayinka; Haapasalo, Hannu; Suominen, Tiina; Holmlund-Hampf, Jeanette; Paetau, Anders; Cardani, Rosanna; Meola, Giovanni; Kalimo, Hannu; Edström, Lars; Krahe, Ralf; Udd, Bjarne

    2010-04-01

    Aberrant transcription and mRNA processing of multiple genes due to RNA-mediated toxic gain-of-function has been suggested to cause the complex phenotype in myotonic dystrophies type 1 and 2 (DM1 and DM2). However, the molecular basis of muscle weakness and wasting and the different pattern of muscle involvement in DM1 and DM2 are not well understood. We have analyzed the mRNA expression of genes encoding muscle-specific proteins and transcription factors by microarray profiling and studied selected genes for abnormal splicing. A subset of the abnormally regulated genes was further analyzed at the protein level. TNNT3 and LDB3 showed abnormal splicing with significant differences in proportions between DM2 and DM1. The differential abnormal splicing patterns for TNNT3 and LDB3 appeared more pronounced in DM2 relative to DM1 and are among the first molecular differences reported between the two diseases. In addition to these specific differences, the majority of the analyzed genes showed an overall increased expression at the mRNA level. In particular, there was a more global abnormality of all different myosin isoforms in both DM1 and DM2 with increased transcript levels and a differential pattern of protein expression. Atrophic fibers in DM2 patients expressed only the fast myosin isoform, while in DM1 patients they co-expressed fast and slow isoforms. However, there was no increase of total myosin protein levels, suggesting that aberrant protein translation and/or turnover may also be involved.

  19. Regional differences in actomyosin contraction shape the primary vesicles in the embryonic chicken brain

    Science.gov (United States)

    Filas, Benjamen A.; Oltean, Alina; Majidi, Shabnam; Bayly, Philip V.; Beebe, David C.; Taber, Larry A.

    2012-12-01

    In the early embryo, the brain initially forms as a relatively straight, cylindrical epithelial tube composed of neural stem cells. The brain tube then divides into three primary vesicles (forebrain, midbrain, hindbrain), as well as a series of bulges (rhombomeres) in the hindbrain. The boundaries between these subdivisions have been well studied as regions of differential gene expression, but the morphogenetic mechanisms that generate these constrictions are not well understood. Here, we show that regional variations in actomyosin-based contractility play a major role in vesicle formation in the embryonic chicken brain. In particular, boundaries did not form in brains exposed to the nonmuscle myosin II inhibitor blebbistatin, whereas increasing contractile force using calyculin or ATP deepened boundaries considerably. Tissue staining showed that contraction likely occurs at the inner part of the wall, as F-actin and phosphorylated myosin are concentrated at the apical side. However, relatively little actin and myosin was found in rhombomere boundaries. To determine the specific physical mechanisms that drive vesicle formation, we developed a finite-element model for the brain tube. Regional apical contraction was simulated in the model, with contractile anisotropy and strength estimated from contractile protein distributions and measurements of cell shapes. The model shows that a combination of circumferential contraction in the boundary regions and relatively isotropic contraction between boundaries can generate realistic morphologies for the primary vesicles. In contrast, rhombomere formation likely involves longitudinal contraction between boundaries. Further simulations suggest that these different mechanisms are dictated by regional differences in initial morphology and the need to withstand cerebrospinal fluid pressure. This study provides a new understanding of early brain morphogenesis.

  20. Drosophila non-muscle myosin II motor activity determines the rate of tissue folding

    Science.gov (United States)

    Vasquez, Claudia G; Heissler, Sarah M; Billington, Neil; Sellers, James R; Martin, Adam C

    2016-01-01

    Non-muscle cell contractility is critical for tissues to adopt shape changes. Although, the non-muscle myosin II holoenzyme (myosin) is a molecular motor that powers contraction of actin cytoskeleton networks, recent studies have questioned the importance of myosin motor activity cell and tissue shape changes. Here, combining the biochemical analysis of enzymatic and motile properties for purified myosin mutants with in vivo measurements of apical constriction for the same mutants, we show that in vivo constriction rate scales with myosin motor activity. We show that so-called phosphomimetic mutants of the Drosophila regulatory light chain (RLC) do not mimic the phosphorylated RLC state in vitro. The defect in the myosin motor activity in these mutants is evident in developing Drosophila embryos where tissue recoil following laser ablation is decreased compared to wild-type tissue. Overall, our data highlights that myosin activity is required for rapid cell contraction and tissue folding in developing Drosophila embryos. DOI: http://dx.doi.org/10.7554/eLife.20828.001 PMID:28035903

  1. Subcellular distribution of non-muscle myosin IIb is controlled by FILIP through Hsc70.

    Directory of Open Access Journals (Sweden)

    Hideshi Yagi

    Full Text Available The neuronal spine is a small, actin-rich dendritic or somatic protrusion that serves as the postsynaptic compartment of the excitatory synapse. The morphology of the spine reflects the activity of the synapse and is regulated by the dynamics of the actin cytoskeleton inside, which is controlled by actin binding proteins such as non-muscle myosin. Previously, we demonstrated that the subcellular localization and function of myosin IIb are regulated by its binding partner, filamin-A interacting protein (FILIP. However, how the subcellular distribution of myosin IIb is controlled by FILIP is not yet known. The objective of this study was to identify potential binding partners of FILIP that contribute to its regulation of non-muscle myosin IIb. Pull-down assays detected a 70-kDa protein that was identified by mass spectrometry to be the chaperone protein Hsc70. The binding of Hsc70 to FILIP was controlled by the adenosine triphosphatase (ATPase activity of Hsc70. Further, FILIP bound to Hsc70 via a domain that was not required for binding non-muscle myosin IIb. Inhibition of ATPase activity of Hsc70 impaired the effect of FILIP on the subcellular distribution of non-muscle myosin IIb. Further, in primary cultured neurons, an inhibitor of Hsc70 impeded the morphological change in spines induced by FILIP. Collectively, these results demonstrate that Hsc70 interacts with FILIP to mediate its effects on non-muscle myosin IIb and to regulate spine morphology.

  2. Myosin content of individual human muscle fibers isolated by laser capture microdissection.

    Science.gov (United States)

    Stuart, Charles A; Stone, William L; Howell, Mary E A; Brannon, Marianne F; Hall, H Kenton; Gibson, Andrew L; Stone, Michael H

    2016-03-01

    Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. Copyright © 2016 the American Physiological Society.

  3. ERK and phosphoinositide 3-kinase temporally coordinate different modes of actin-based motility during embryonic wound healing

    Science.gov (United States)

    Li, Jingjing; Zhang, Siwei; Soto, Ximena; Woolner, Sarah; Amaya, Enrique

    2013-01-01

    Summary Embryonic wound healing provides a perfect example of efficient recovery of tissue integrity and homeostasis, which is vital for survival. Tissue movement in embryonic wound healing requires two functionally distinct actin structures: a contractile actomyosin cable and actin protrusions at the leading edge. Here, we report that the discrete formation and function of these two structures is achieved by the temporal segregation of two intracellular upstream signals and distinct downstream targets. The sequential activation of ERK and phosphoinositide 3-kinase (PI3K) signalling divides Xenopus embryonic wound healing into two phases. In the first phase, activated ERK suppresses PI3K activity, and is responsible for the activation of Rho and myosin-2, which drives actomyosin cable formation and constriction. The second phase is dominated by restored PI3K signalling, which enhances Rac and Cdc42 activity, leading to the formation of actin protrusions that drive migration and zippering. These findings reveal a new mechanism for coordinating different modes of actin-based motility in a complex tissue setting, namely embryonic wound healing. PMID:23986484

  4. Allosteric Transitions in Myosin V: Structural Basis for the Dynamics

    Science.gov (United States)

    Tehver, Riina; Thirumalai, D.

    2010-03-01

    The key to understanding the operation of molecular motors lies in deciphering the details of their mechano-chemical coupling, i.e. how nucleotide binding, hydrolysis and release translate into coordinated conformational changes and the resulting mechanical work. We use myosin V to study the details of this coupling. Applying the Structural Perturbation Method (SPM) in conjunction with normal model analysis helps us predict the key structural elements in the transitions. Brownian dynamics simulations, using a coarse-grained Self-Organized Polymer (SOP) model, reveal a hierarchy of local structural changes that occur in the structural elements during the transitions. The combination of methods used here should be of general applicability to describe the fundamental steps in the reaction cycle of other molecular motors.

  5. Shrinkage insensitivity of NKCC1 in myosin II-depleted cytoplasts from Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Hoffmann, Else K; Pedersen, Stine F

    2007-01-01

    -actin organization was disrupted, and myosin II, which in shrunken EATC translocates to the cortical region, was absent. Moreover, NKCC1 activity was essentially insensitive to the myosin light chain kinase (MLCK) inhibitor ML-7, a potent blocker of shrinkage-induced NKCC1 activity in intact EATC. Cytoplast NKCC1...... to the substantial activation in shrunken intact cells, p38 MAPK could not be further activated by shrinkage of the cytoplasts. Together these findings indicate that shrinkage activation of NKCC1 in EATC is dependent on the cortical F-actin network, myosin II, and MLCK....

  6. α-Catenin localization and sarcomere self-organization on N-cadherin adhesive patterns are myocyte contractility driven.

    Directory of Open Access Journals (Sweden)

    Anant Chopra

    Full Text Available The N-cadherin (N-cad complex plays a crucial role in cardiac cell structure and function. Cadherins are adhesion proteins linking adjacent cardiac cells and, like integrin adhesions, are sensitive to force transmission. Forces through these adhesions are capable of eliciting structural and functional changes in myocytes. Compared to integrins, the mechanisms of force transduction through cadherins are less explored. α-catenin is a major component of the cadherin-catenin complex, thought to provide a link to the cell actin cytoskeleton. Using N-cad micropatterned substrates in an adhesion constrainment model, the results from this study show that α-catenin localizes to regions of highest internal stress in myocytes. This localization suggests that α-catenin acts as an adaptor protein associated with the cadherin mechanosensory apparatus, which is distinct from mechanosensing through integrins. Myosin inhibition in cells bound by integrins to fibronectin-coated patterns disrupts myofibiril organization, whereas on N-cad coated patterns, myosin inhibition leads to better organized myofibrils. This result indicates that the two adhesion systems provide independent mechanisms for regulating myocyte structural organization.

  7. Embryonic Heart Progenitors and Cardiogenesis

    Science.gov (United States)

    Brade, Thomas; Pane, Luna S.; Moretti, Alessandra; Chien, Kenneth R.; Laugwitz, Karl-Ludwig

    2013-01-01

    The mammalian heart is a highly specialized organ, comprised of many different cell types arising from distinct embryonic progenitor populations during cardiogenesis. Three precursor populations have been identified to contribute to different myocytic and nonmyocytic cell lineages of the heart: cardiogenic mesoderm cells (CMC), the proepicardium (PE), and cardiac neural crest cells (CNCCs). This review will focus on molecular cues necessary for proper induction, expansion, and lineage-specific differentiation of these progenitor populations during cardiac development in vivo. Moreover, we will briefly discuss how the knowledge gained on embryonic heart progenitor biology can be used to develop novel therapeutic strategies for the management of congenital heart disease as well as for improvement of cardiac function in ischemic heart disease. PMID:24086063

  8. The class V myosin motor, myosin 5c, localizes to mature secretory vesicles and facilitates exocytosis in lacrimal acini.

    Science.gov (United States)

    Marchelletta, Ronald R; Jacobs, Damon T; Schechter, Joel E; Cheney, Richard E; Hamm-Alvarez, Sarah F

    2008-07-01

    We investigated the role of the actin-based myosin motor, myosin 5c (Myo5c) in vesicle transport in exocrine secretion. Lacrimal gland acinar cells (LGAC) are the major source for the regulated secretion of proteins from the lacrimal gland into the tear film. Confocal fluorescence and immunogold electron microscopy revealed that Myo5c was associated with secretory vesicles in primary rabbit LGAC. Upon stimulation of secretion with the muscarinic agonist, carbachol, Myo5c was also detected in association with actin-coated fusion intermediates. Adenovirus-mediated expression of green fluorescent protein (GFP) fused to the tail domain of Myo5c (Ad-GFP-Myo5c-tail) showed that this protein was localized to secretory vesicles. Furthermore, its expression induced a significant (P < or = 0.05) decrease in carbachol-stimulated release of two secretory vesicle content markers, secretory component and syncollin-GFP. Adenovirus-mediated expression of GFP appended to the full-length Myo5c (Ad-GFP-Myo5c-full) was used in parallel with adenovirus-mediated expression of GFP-Myo5c-tail in LGAC to compare various parameters of secretory vesicles labeled with either GFP-labeled protein in resting and stimulated LGAC. These studies revealed that the carbachol-stimulated increase in secretory vesicle diameter associated with compound fusion of secretory vesicles that was also exhibited by vesicles labeled with GFP-Myo5c-full was impaired in vesicles labeled with GFP-Myo5c-tail. A significant decrease in GFP labeling of actin-coated fusion intermediates was also seen in carbachol-stimulated LGAC transduced with GFP-Myo5c-tail relative to LGAC transduced with GFP-Myo5c-full. These results suggest that Myo5c participates in apical exocytosis of secretory vesicles.

  9. The structural basis of myosin V processive movement as revealed by electron cryomicroscopy.

    Science.gov (United States)

    Volkmann, Niels; Liu, HongJun; Hazelwood, Larnele; Krementsova, Elena B; Lowey, Susan; Trybus, Kathleen M; Hanein, Dorit

    2005-09-02

    The processive motor myosin V has a relatively high affinity for actin in the presence of ATP and, thus, offers the unique opportunity to visualize some of the weaker, hitherto inaccessible, actin bound states of the ATPase cycle. Here, electron cryomicroscopy together with computer-based docking of crystal structures into three-dimensional (3D) reconstructions provide the atomic models of myosin V in both weak and strong actin bound states. One structure shows that ATP binding opens the long cleft dividing the actin binding region of the motor domain, thus destroying the strong binding actomyosin interface while rearranging loop 2 as a tether. Nucleotide analogs showed a second new state in which the lever arm points upward, in a prepower-stroke configuration (lever arm up) bound to actin before phosphate release. Our findings reveal how the structural elements of myosin V work together to allow myosin V to step along actin for multiple ATPase cycles without dissociating.

  10. Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells

    Science.gov (United States)

    Chabaud, Mélanie; Heuzé, Mélina L.; Bretou, Marine; Vargas, Pablo; Maiuri, Paolo; Solanes, Paola; Maurin, Mathieu; Terriac, Emmanuel; Le Berre, Maël; Lankar, Danielle; Piolot, Tristan; Adelstein, Robert S.; Zhang, Yingfan; Sixt, Michael; Jacobelli, Jordan; Bénichou, Olivier; Voituriez, Raphaël; Piel, Matthieu; Lennon-Duménil, Ana-Maria

    2015-01-01

    The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space. PMID:26109323

  11. Calcium inhibition as an intracellular signal for actin–myosin interaction

    National Research Council Canada - National Science Library

    KOHAMA, Kazuhiro

    2016-01-01

    .... The activation of Ca2+ regulation of actin-myosin interactions was examined first, whereas it took 20 years for the author to clarify the inhibitory mode by using Physarum polycephalum, a lower eukaryote...

  12. Myosin III-mediated cross-linking and stimulation of actin bundling activity of Espin

    National Research Council Canada - National Science Library

    Liu, Haiyang; Li, Jianchao; Raval, Manmeet H; Yao, Ningning; Deng, Xiaoying; Lu, Qing; Nie, Si; Feng, Wei; Wan, Jun; Yengo, Christopher M; Liu, Wei; Zhang, Mingjie

    2016-01-01

    Class III myosins (Myo3) and actin-bundling protein Espin play critical roles in regulating the development and maintenance of stereocilia in vertebrate hair cells, and their defects cause hereditary hearing impairments...

  13. Interaction of Myosin Phosphatase Target Subunit (MYPT1) with Myosin Phosphatase-RhoA Interacting Protein (MRIP): A Role of Glutamic Acids in the Interaction.

    Science.gov (United States)

    Lee, Eunhee; Stafford, Walter F

    2015-01-01

    Scaffold proteins bind to and functionally link protein members of signaling pathways. Interaction of the scaffold proteins, myosin phosphatase target subunit (MYPT1) and myosin phosphatase-RhoA interacting protein (MRIP), causes co-localization of myosin phosphatase and RhoA to actomyosin. To examine biophysical properties of interaction of MYPT1 with MRIP, we employed analytical ultracentrifugation and surface plasmon resonance. In regard to MRIP, its residues 724-837 are sufficient for the MYPT1/MRIP interaction. Moreover, MRIP binds to MYPT1 as either a monomer or a dimer. With respect to MYPT1, its leucine repeat region, LR (residues 991-1030) is sufficient to account for the MYPT1/MRIP interaction. Furthermore, point mutations that replace glutamic acids 998-1000 within LR reduced the binding affinity toward MRIP. This suggests that the glutamic acids of MYPT1 play an important role in the interaction.

  14. A role for myosin Va in cerebellar plasticity and motor learning: a possible mechanism underlying neurological disorder in myosin Va disease.

    Science.gov (United States)

    Miyata, Mariko; Kishimoto, Yasushi; Tanaka, Masahiko; Hashimoto, Kouichi; Hirashima, Naohide; Murata, Yoshiharu; Kano, Masanobu; Takagishi, Yoshiko

    2011-04-20

    Mutations of the myosin Va gene cause the neurological diseases Griscelli syndrome type 1 and Elejalde syndrome in humans and dilute phenotypes in rodents. To understand the pathophysiological mechanisms underlying the neurological disorders in myosin Va diseases, we conducted an integrated analysis at the molecular, cellular, electrophysiological, and behavioral levels using the dilute-neurological (d-n) mouse mutant. These mice manifest an ataxic gait and clonic seizures during postnatal development, but the neurological disorders are ameliorated in adulthood. We found that smooth endoplasmic reticulum (SER) rarely extended into the dendritic spines of Purkinje cells (PCs) of young d-n mice, and there were few, if any, IP(3) receptors. Moreover, long-term depression (LTD) at parallel fiber-PC synapses was abolished, consistent with our previous observations in juvenile lethal dilute mutants. Young d-n mice exhibited severe impairment of cerebellum-dependent motor learning. In contrast, adult d-n mice showed restoration of motor learning and LTD, and these neurological changes were associated with accumulation of SER and IP(3) receptors in some PC spines and the expression of myosin Va proteins in the PCs. RNA interference-mediated repression of myosin Va caused a reduction in the number of IP(3) receptor-positive spines in cultured PCs. These findings indicate that myosin Va function is critical for subsequent processes in localization of SER and IP(3) receptors in PC spines, LTD, and motor learning. Interestingly, d-n mice had defects of motor coordination from young to adult ages, suggesting that the role of myosin Va in PC spines is not sufficient for motor coordination.

  15. Cardiac MRI assessed left ventricular hypertrophy in differentiating hypertensive heart disease from hypertrophic cardiomyopathy attributable to a sarcomeric gene mutation

    Energy Technology Data Exchange (ETDEWEB)

    Sipola, Petri [Kuopio University Hospital, Department of Clinical Radiology, Kuopio (Finland); University of Eastern Finland, Institute of Clinical Medicine, Faculty of Health Sciences, Kuopio (Finland); Magga, Jarkko; Peuhkurinen, Keijo [Kuopio University Hospital, Department of Medicine, Kuopio (Finland); Husso, Minna [Kuopio University Hospital, Department of Clinical Radiology, Kuopio (Finland); Jaeaeskelaeinen, Pertti; Kuusisto, Johanna [Kuopio University Hospital, Department of Medicine, Kuopio (Finland); Kuopio University Hospital, Heart Center, P.O. Box 1777, Kuopio (Finland)

    2011-07-15

    To evaluate the value of cardiac magnetic resonance imaging (CMRI)-assessed left ventricular hypertrophy (LVH) in differentiating between hypertensive heart disease and hypertrophic cardiomyopathy (HCM). 95 unselected subjects with mild-to-moderate hypertension, 24 patients with HCM attributable to the D175N mutation of the {alpha}-tropomyosin gene and 17 control subjects were studied by cine CMRI. Left ventricular (LV) quantitative and qualitative characteristics were evaluated. LV maximal end-diastolic wall thickness, wall thickness-to-LV volume ratio, end-diastolic septum thickness and septum-to-lateral wall thickness ratio were useful measures for differentiating between LVH due to hypertension and HCM. The most accurate measure for identifying patients with HCM was the LV maximal wall thickness {>=}17 mm, with a sensitivity, specificity, negative predictive value, positive predictive value, and accuracy of 90%, 93%, 86%, 95% and 91%, respectively. LV maximal wall thickness in the anterior wall, or regional bulging in left ventricular wall was found only in patients with HCM. LV mass index was not discriminant between patients with HCM and those with LVH due to hypertension. LV maximal thickness measured by CMRI is the best anatomical parameter in differentiating between LVH due to mild-to-moderate hypertension and HCM attributable to a sarcomeric mutation. CMRI assessment of location and quality of LVH is also of value in differential diagnosis. (orig.)

  16. Actin-myosin network is required for proper assembly of influenza virus particles

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, Michiko; Kawaguchi, Atsushi, E-mail: ats-kawaguchi@md.tsukuba.ac.jp; Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp

    2015-02-15

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.

  17. Smooth muscle actin and myosin expression in cultured airway smooth muscle cells.

    Science.gov (United States)

    Wong, J Z; Woodcock-Mitchell, J; Mitchell, J; Rippetoe, P; White, S; Absher, M; Baldor, L; Evans, J; McHugh, K M; Low, R B

    1998-05-01

    In this study, the expression of smooth muscle actin and myosin was examined in cultures of rat tracheal smooth muscle cells. Protein and mRNA analyses demonstrated that these cells express alpha- and gamma-smooth muscle actin and smooth muscle myosin and nonmuscle myosin-B heavy chains. The expression of the smooth muscle specific actin and myosin isoforms was regulated in the same direction when growth conditions were changed. Thus, at confluency in 1 or 10% serum-containing medium as well as for low-density cells (50-60% confluent) deprived of serum, the expression of the smooth muscle forms of actin and myosin was relatively high. Conversely, in rapidly proliferating cultures at low density in 10% serum, smooth muscle contractile protein expression was low. The expression of nonmuscle myosin-B mRNA and protein was more stable and was upregulated only to a small degree in growing cells. Our results provide new insight into the molecular basis of differentiation and contractile function in airway smooth muscle cells.

  18. Myosins XI modulate host cellular responses and penetration resistance to fungal pathogens

    Science.gov (United States)

    Yang, Long; Qin, Li; Liu, Guosheng; Peremyslov, Valera V.; Dolja, Valerian V.; Wei, Yangdou

    2014-01-01

    The rapid reorganization and polarization of actin filaments (AFs) toward the pathogen penetration site is one of the earliest cellular responses, yet the regulatory mechanism of AF dynamics is poorly understood. Using live-cell imaging in Arabidopsis, we show that polarization coupled with AF bundling involves precise spatiotemporal control at the site of attempted penetration by the nonadapted barley powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We further show that the Bgh-triggered AF mobility and organelle aggregation are predominately driven by the myosin motor proteins. Inactivation of myosins by pharmacological inhibitors prevents bulk aggregation of organelles and blocks recruitment of lignin-like compounds to the penetration site and deposition of callose and defensive protein, PENETRATION 1 (PEN1) into the apoplastic papillae, resulting in attenuation of penetration resistance. Using gene knockout analysis, we demonstrate that highly expressed myosins XI, especially myosin XI-K, are the primary contributors to cell wall-mediated penetration resistance. Moreover, the quadruple myosin knockout mutant xi-1 xi-2 xi-i xi-k displays impaired trafficking pathway responsible for the accumulation of PEN1 at the cell periphery. Strikingly, this mutant shows not only increased penetration rate but also enhanced overall disease susceptibility to both adapted and nonadapted fungal pathogens. Our findings establish myosins XI as key regulators of plant antifungal immunity. PMID:25201952

  19. Nonmuscle Myosin II helps regulate synaptic vesicle mobility at the Drosophila neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Qiu Xinping

    2010-03-01

    Full Text Available Abstract Background Although the mechanistic details of the vesicle transport process from the cell body to the nerve terminal are well described, the mechanisms underlying vesicle traffic within nerve terminal boutons is relatively unknown. The actin cytoskeleton has been implicated but exactly how actin or actin-binding proteins participate in vesicle movement is not clear. Results In the present study we have identified Nonmuscle Myosin II as a candidate molecule important for synaptic vesicle traffic within Drosophila larval neuromuscular boutons. Nonmuscle Myosin II was found to be localized at the Drosophila larval neuromuscular junction; genetics and pharmacology combined with the time-lapse imaging technique FRAP were used to reveal a contribution of Nonmuscle Myosin II to synaptic vesicle movement. FRAP analysis showed that vesicle dynamics were highly dependent on the expression level of Nonmuscle Myosin II. Conclusion Our results provide evidence that Nonmuscle Myosin II is present presynaptically, is important for synaptic vesicle mobility and suggests a role for Nonmuscle Myosin II in shuttling vesicles at the Drosophila neuromuscular junction. This work begins to reveal the process by which synaptic vesicles traverse within the bouton.

  20. Puerarin Facilitates T-Tubule Development of Murine Embryonic Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2014-07-01

    Full Text Available Aims: The embryonic stem cell-derived cardiomyocytes (ES-CM is one of the promising cell sources for repopulation of damaged myocardium. However, ES-CMs present immature structure, which impairs their integration with host tissue and functional regeneration. This study used murine ES-CMs as an in vitro model of cardiomyogenesis to elucidate the effect of puerarin, the main compound found in the traditional Chinese medicine the herb Radix puerariae, on t-tubule development of murine ES-CMs. Methods: Electron microscope was employed to examine the ultrastructure. The investigation of transverse-tubules (t-tubules was performed by Di-8-ANEPPS staining. Quantitative real-time PCR was utilized to study the transcript level of genes related to t-tubule development. Results: We found that long-term application of puerarin throughout cardiac differentiation improved myofibril array and sarcomeres formation, and significantly facilitated t-tubules development of ES-CMs. The transcript levels of caveolin-3, amphiphysin-2 and junctophinlin-2, which are crucial for the formation and development of t-tubules, were significantly upregulated by puerarin treatment. Furthermore, puerarin repressed the expression of miR-22, which targets to caveolin-3. Conclusion: Our data showed that puerarin facilitates t-tubule development of murine ES-CMs. This might be related to the repression of miR-22 by puerarin and upregulation of Cav3, Bin1 and JP2 transcripts.

  1. Regional Myosin heavy chain distribution in selected paraspinal muscles.

    Science.gov (United States)

    Regev, Gilad J; Kim, Choll W; Thacker, Bryan E; Tomiya, Akihito; Garfin, Steven R; Ward, Samuel R; Lieber, Richard L

    2010-06-01

    Cross-sectional study with repeated measures design. To compare the myosin heavy-chain isoform distribution within and between paraspinal muscles and to test the theory that fiber-type gradients exist as a function of paraspinal muscle depth. There is still uncertainty regarding the fiber-type distributions within different paraspinal muscles. It has been previously proposed that deep fibers of the multifidus muscle may contain a higher ratio of type I to type II fibers, because, unlike superficial fibers, they primarily stabilize the spine, and may therefore have relatively higher endurance. Using a minimally invasive surgical approach, using tubular retractors that are placed within anatomic intermuscular planes, it was feasible to obtain biopsies from the multifidus, longissimus, iliocostalis, and psoas muscles at specific predefined depths. Under an institutional review board-approved protocol, muscle biopsies were obtained from 15 patients who underwent minimally invasive spinal surgery, using the posterior paramedian (Wiltse) approach or the minimally invasive lateral approach. Myosin heavy chain (MyHC) isoform distribution was analyzed using SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) electrophoresis. Because multiple biopsies were obtained from each patient, MyHC distribution was compared using both within- and between-muscle repeated measures analyses. The fiber-type distribution was similar among the posterior paraspinal muscles and was composed of relatively high percentage of type I (63%), compared to type IIA (19%) and type IIX (18%) fibers. In contrast, the psoas muscle was found to contain a lower percentage of type I fibers (42%) and a higher percentage of type IIA (33%) and IIX fibers (26%; Pmuscles. Fiber-type distribution between the posterior paraspinal muscles is consistent and is composed of relatively high percentage of type I fibers, consistent with a postural function. The psoas muscle, on the other hand, is

  2. Cardiac development in zebrafish and human embryonic stem cells is inhibited by exposure to tobacco cigarettes and e-cigarettes.

    Directory of Open Access Journals (Sweden)

    Nathan J Palpant

    Full Text Available Maternal smoking is a risk factor for low birth weight and other adverse developmental outcomes.We sought to determine the impact of standard tobacco cigarettes and e-cigarettes on heart development in vitro and in vivo.Zebrafish (Danio rerio were used to assess developmental effects in vivo and cardiac differentiation of human embryonic stem cells (hESCs was used as a model for in vitro cardiac development.In zebrafish, exposure to both types of cigarettes results in broad, dose-dependent developmental defects coupled with severe heart malformation, pericardial edema and reduced heart function. Tobacco cigarettes are more toxic than e-cigarettes at comparable nicotine concentrations. During cardiac differentiation of hESCs, tobacco smoke exposure results in a delayed transition through mesoderm. Both types of cigarettes decrease expression of cardiac transcription factors in cardiac progenitor cells, suggesting a persistent delay in differentiation. In definitive human cardiomyocytes, both e-cigarette- and tobacco cigarette-treated samples showed reduced expression of sarcomeric genes such as MLC2v and MYL6. Furthermore, tobacco cigarette-treated samples had delayed onset of beating and showed low levels and aberrant localization of N-cadherin, reduced myofilament content with significantly reduced sarcomere length, and increased expression of the immature cardiac marker smooth muscle alpha-actin.These data indicate a negative effect of both tobacco cigarettes and e-cigarettes on heart development in vitro and in vivo. Tobacco cigarettes are more toxic than E-cigarettes and exhibit a broader spectrum of cardiac developmental defects.

  3. Exploration of flexible phenylpropylurea scaffold as novel cardiac myosin activators for the treatment of systolic heart failure.

    Science.gov (United States)

    Manickam, Manoj; Jalani, Hitesh B; Pillaiyar, Thanigaimalai; Sharma, Niti; Boggu, Pulla Reddy; Venkateswararao, Eeda; Lee, You-Jung; Jeon, Eun-Seok; Jung, Sang-Hun

    2017-07-07

    A series of flexible urea derivatives have been synthesized and demonstrated as selective cardiac myosin ATPase activator. Among them 1-phenethyl-3-(3-phenylpropyl)urea (1, cardiac myosin ATPase activation at 10 μM = 51.1%; FS = 18.90; EF = 12.15) and 1-benzyl-3-(3-phenylpropyl)urea (9, cardiac myosin ATPase activation = 53.3%; FS = 30.04; EF = 18.27) showed significant activity in vitro and in vivo. The change of phenyl ring with tetrahydropyran-4-yl moiety viz., 1-(3-phenylpropyl)-3-((tetrahydro-2H-pyran-4-yl)methyl)urea (14, cardiac myosin ATPase activation = 81.4%; FS = 20.50; EF = 13.10), and morpholine moiety viz., 1-(2-morpholinoethyl)-3-(3-phenylpropyl)urea (21, cardiac myosin ATPase activation = 44.0%; FS = 24.79; EF = 15.65), proved to be efficient to activate the cardiac myosin. The potent compounds 1, 9, 14 and 21 were found to be selective for cardiac myosin over skeletal and smooth myosins. Thus, these urea derivatives are potent scaffold to develop as a newer cardiac myosin activator for the treatment of systolic heart failure. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. MyosinVIIa interacts with Twinfilin-2 at the tips of mechanosensory stereocilia in the inner ear.

    Directory of Open Access Journals (Sweden)

    Agnieszka K Rzadzinska

    Full Text Available In vertebrates hearing is dependent upon the microvilli-like mechanosensory stereocilia and their length gradation. The staircase-like organization of the stereocilia bundle is dynamically maintained by variable actin turnover rates. Two unconventional myosins were previously implicated in stereocilia length regulation but the mechanisms of their action remain unknown. MyosinXVa is expressed in stereocilia tips at levels proportional to stereocilia length and its absence produces staircase-like bundles of very short stereocilia. MyosinVIIa localizes to the tips of the shorter stereocilia within bundles, and when absent, the stereocilia are abnormally long. We show here that myosinVIIa interacts with twinfilin-2, an actin binding protein, which inhibits actin polymerization at the barbed end of the filament, and that twinfilin localization in stereocilia overlaps with myosinVIIa. Exogenous expression of myosinVIIa in fibroblasts results in a reduced number of filopodia and promotes accumulation of twinfilin-2 at the filopodia tips. We hypothesize that the newly described interaction between myosinVIIa and twinfilin-2 is responsible for the establishment and maintenance of slower rates of actin turnover in shorter stereocilia, and that interplay between complexes of myosinVIIa/twinfilin-2 and myosinXVa/whirlin is responsible for stereocilia length gradation within the bundle staircase.

  5. Myosin-II-Mediated Directional Migration of Dictyostelium Cells in Response to Cyclic Stretching of Substratum

    Science.gov (United States)

    Iwadate, Yoshiaki; Okimura, Chika; Sato, Katsuya; Nakashima, Yuta; Tsujioka, Masatsune; Minami, Kazuyuki

    2013-01-01

    Living cells are constantly subjected to various mechanical stimulations, such as shear flow, osmotic pressure, and hardness of substratum. They must sense the mechanical aspects of their environment and respond appropriately for proper cell function. Cells adhering to substrata must receive and respond to mechanical stimuli from the substrata to decide their shape and/or migrating direction. In response to cyclic stretching of the elastic substratum, intracellular stress fibers in fibroblasts and endothelial, osteosarcoma, and smooth muscle cells are rearranged perpendicular to the stretching direction, and the shape of those cells becomes extended in this new direction. In the case of migrating Dictyostelium cells, cyclic stretching regulates the direction of migration, and not the shape, of the cell. The cells migrate in a direction perpendicular to that of the stretching. However, the molecular mechanisms that induce the directional migration remain unknown. Here, using a microstretching device, we recorded green fluorescent protein (GFP)-myosin-II dynamics in Dictyostelium cells on an elastic substratum under cyclic stretching. Repeated stretching induced myosin II localization equally on both stretching sides in the cells. Although myosin-II-null cells migrated randomly, myosin-II-null cells expressing a variant of myosin II that cannot hydrolyze ATP migrated perpendicular to the stretching. These results indicate that Dictyostelium cells accumulate myosin II at the portion of the cell where a large strain is received and migrate in a direction other than that of the portion where myosin II accumulated. This polarity generation for migration does not require the contraction of actomyosin. PMID:23442953

  6. Direct observation of the myosin Va recovery stroke that contributes to unidirectional stepping along actin.

    Directory of Open Access Journals (Sweden)

    Katsuyuki Shiroguchi

    2011-04-01

    Full Text Available Myosins are ATP-driven linear molecular motors that work as cellular force generators, transporters, and force sensors. These functions are driven by large-scale nucleotide-dependent conformational changes, termed "strokes"; the "power stroke" is the force-generating swinging of the myosin light chain-binding "neck" domain relative to the motor domain "head" while bound to actin; the "recovery stroke" is the necessary initial motion that primes, or "cocks," myosin while detached from actin. Myosin Va is a processive dimer that steps unidirectionally along actin following a "hand over hand" mechanism in which the trailing head detaches and steps forward ∼72 nm. Despite large rotational Brownian motion of the detached head about a free joint adjoining the two necks, unidirectional stepping is achieved, in part by the power stroke of the attached head that moves the joint forward. However, the power stroke alone cannot fully account for preferential forward site binding since the orientation and angle stability of the detached head, which is determined by the properties of the recovery stroke, dictate actin binding site accessibility. Here, we directly observe the recovery stroke dynamics and fluctuations of myosin Va using a novel, transient caged ATP-controlling system that maintains constant ATP levels through stepwise UV-pulse sequences of varying intensity. We immobilized the neck of monomeric myosin Va on a surface and observed real time motions of bead(s attached site-specifically to the head. ATP induces a transient swing of the neck to the post-recovery stroke conformation, where it remains for ∼40 s, until ATP hydrolysis products are released. Angle distributions indicate that the post-recovery stroke conformation is stabilized by ≥ 5 k(BT of energy. The high kinetic and energetic stability of the post-recovery stroke conformation favors preferential binding of the detached head to a forward site 72 nm away. Thus, the recovery

  7. Cloning of the genes encoding two murine and human cochlear unconventional type I myosins

    Energy Technology Data Exchange (ETDEWEB)

    Crozet, F.; El Amraoui, Z.; Blanchard, S. [Institut Pasteur, Paris (France)] [and others

    1997-03-01

    Several lines of evidence indicate a crucial role for unconventional myosins in the function of the sensory hair cells of the inner ear. We report here the characterization of the cDNAs encoding two unconventional type I myosins from a mouse cochlear cDNA library. The first cDNA encodes a putative protein named Myo1c, which is likely to be the murine orthologue of the bullfrog myosin I{beta} and which may be involved in the gating of the mechanotransduction channel of the sensory hair cells. This myosin belongs to the group of short-tailed myosins I, with its tail ending shortly after a polybasic, TH-1-like domain. The second cDNA encodes a novel type I myosin Myo1f which displays three regions: a head domain with the conserved ATP- and actin-binding sites, a neck domain with a single IQ motif, and a tail domain with the tripartite structure initially described in protozoan myosins I. The tail of Myo1f includes (1) a TH-1 region rich in basic residues, which may interact with anionic membrane phospholipids; (2) a TH-2 proline-rich region, expected to contain an ATP-insensitive actin-binding site; and (3) an SH-3 domain found in a variety of cytoskeletal and signaling proteins. Northern blot analysis indicated that the genes encoding Myo1c and Myo1f display a widespread tissue expression in the adult mouse. Myo1c and Myo1f were mapped by in situ hybridization to the chromosomal regions 11D-11E and 17B-17C, respectively. The human orthologuous genes MYO1C and MYO1F were also characterized, and mapped to the human chromosomal regions 17p13 and 19p13.2- 19p1.3.3, respectively. 45 refs., 5 figs., 2 tabs.

  8. Qdot Labeled Actin Super Resolution Motility Assay Measures Low Duty Cycle Muscle Myosin Step-Size

    Science.gov (United States)

    Wang, Yihua; Ajtai, Katalin; Burghardt, Thomas P.

    2013-01-01

    Myosin powers contraction in heart and skeletal muscle and is a leading target for mutations implicated in inheritable muscle diseases. During contraction, myosin transduces ATP free energy into the work of muscle shortening against resisting force. Muscle shortening involves relative sliding of myosin and actin filaments. Skeletal actin filaments were fluorescence labeled with a streptavidin conjugate quantum dot (Qdot) binding biotin-phalloidin on actin. Single Qdot’s were imaged in time with total internal reflection fluorescence microscopy then spatially localized to 1-3 nanometers using a super-resolution algorithm as they translated with actin over a surface coated with skeletal heavy meromyosin (sHMM) or full length β-cardiac myosin (MYH7). Average Qdot-actin velocity matches measurements with rhodamine-phalloidin labeled actin. The sHMM Qdot-actin velocity histogram contains low velocity events corresponding to actin translation in quantized steps of ~5 nm. The MYH7 velocity histogram has quantized steps at 3 and 8 nm in addition to 5 nm, and, larger compliance than sHMM depending on MYH7 surface concentration. Low duty cycle skeletal and cardiac myosin present challenges for a single molecule assay because actomyosin dissociates quickly and the freely moving element diffuses away. The in vitro motility assay has modestly more actomyosin interactions and methylcellulose inhibited diffusion to sustain the complex while preserving a subset of encounters that do not overlap in time on a single actin filament. A single myosin step is isolated in time and space then characterized using super-resolution. The approach provides quick, quantitative, and inexpensive step-size measurement for low duty cycle muscle myosin. PMID:23383646

  9. Molecular dynamics simulation for the reversed power stroke motion of a myosin subfragment-1.

    Science.gov (United States)

    Masuda, Tadashi

    2015-06-01

    Myosins are typical molecular motor proteins that convert the chemical energy from the ATP hydrolysis into mechanical work. The fundamental mechanism of this energy conversion is still unknown. To explain the experimental results already obtained, Masuda has proposed a hypothesis called the "Driven by Detachment" theory for the working principle of the myosins. This theory insists that the energy used during the power stroke of the myosins does not directly originate from the chemical energy of ATP, but is converted from the elastic energy within the molecule at the joint between the head and neck domains. One method for demonstrating the validity of this theory is a computational simulation using the molecular dynamics (MD) method. The MD software used was GROMACS. The target of the MD simulations was myosin subfragment-1 (S1), for which the initial structure was obtained from the Protein Data Bank entry 1M8Q. The AFM pull code of GROMACS was used to apply an external force of 17 pN at the end of the neck domain in the direction opposite to the power stroke to observe whether the myosin S1 takes the pre-power stroke conformation. The residues assumed to be engaged in the docking with an actin filament were fixed to the space. Starting from exactly the same initial position, 10 simulations were repeated by varying the random seeds for generating the initial velocities of the atoms. After 64ns of calculations, the myosin S1 took the conformation of the pre-power stroke state in which the neck domain was bent around the joint between the head and the neck domains. This result agrees with the prediction expected by the DbD theory, the validity of which may be established by conducting similar simulations for the other steps of the myosin working processes. Copyright © 2015. Published by Elsevier Ireland Ltd.

  10. A Small Molecule Inhibitor of Sarcomere Contractility Acutely Relieves Left Ventricular Outflow Tract Obstruction in Feline Hypertrophic Cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Joshua A Stern

    Full Text Available Hypertrophic cardiomyopathy (HCM is an inherited disease of the heart muscle characterized by otherwise unexplained thickening of the left ventricle. Left ventricular outflow tract (LVOT obstruction is present in approximately two-thirds of patients and substantially increases the risk of disease complications. Invasive treatment with septal myectomy or alcohol septal ablation can improve symptoms and functional status, but currently available drugs for reducing obstruction have pleiotropic effects and variable therapeutic responses. New medical treatments with more targeted pharmacology are needed, but the lack of preclinical animal models for HCM with LVOT obstruction has limited their development. HCM is a common cause of heart failure in cats, and a subset exhibit systolic anterior motion of the mitral valve leading to LVOT obstruction. MYK-461 is a recently-described, mechanistically novel small molecule that acts at the sarcomere to specifically inhibit contractility that has been proposed as a treatment for HCM. Here, we use MYK-461 to test whether direct reduction in contractility is sufficient to relieve LVOT obstruction in feline HCM. We evaluated mixed-breed cats in a research colony derived from a Maine Coon/mixed-breed founder with naturally-occurring HCM. By echocardiography, we identified five cats that developed systolic anterior motion of the mitral valve and LVOT obstruction both at rest and under anesthesia when provoked with an adrenergic agonist. An IV MYK-461 infusion and echocardiography protocol was developed to serially assess contractility and LVOT gradient at multiple MYK-461 concentrations. Treatment with MYK-461 reduced contractility, eliminated systolic anterior motion of the mitral valve and relieved LVOT pressure gradients in an exposure-dependent manner. Our findings provide proof of principle that acute reduction in contractility with MYK-461 is sufficient to relieve LVOT obstruction. Further, these studies

  11. Rare and private variations in neural crest, apoptosis and sarcomere genes define the polygenic background of isolated Tetralogy of Fallot.

    Science.gov (United States)

    Grunert, Marcel; Dorn, Cornelia; Schueler, Markus; Dunkel, Ilona; Schlesinger, Jenny; Mebus, Siegrun; Alexi-Meskishvili, Vladimir; Perrot, Andreas; Wassilew, Katharina; Timmermann, Bernd; Hetzer, Roland; Berger, Felix; Sperling, Silke R

    2014-06-15

    Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease. Its genetic basis is demonstrated by an increased recurrence risk in siblings and familial cases. However, the majority of TOF are sporadic, isolated cases of undefined origin and it had been postulated that rare and private autosomal variations in concert define its genetic basis. To elucidate this hypothesis, we performed a multilevel study using targeted re-sequencing and whole-transcriptome profiling. We developed a novel concept based on a gene's mutation frequency to unravel the polygenic origin of TOF. We show that isolated TOF is caused by a combination of deleterious private and rare mutations in genes essential for apoptosis and cell growth, the assembly of the sarcomere as well as for the neural crest and secondary heart field, the cellular basis of the right ventricle and its outflow tract. Affected genes coincide in an interaction network with significant disturbances in expression shared by cases with a mutually affected TOF gene. The majority of genes show continuous expression during adulthood, which opens a new route to understand the diversity in the long-term clinical outcome of TOF cases. Our findings demonstrate that TOF has a polygenic origin and that understanding the genetic basis can lead to novel diagnostic and therapeutic routes. Moreover, the novel concept of the gene mutation frequency is a versatile measure and can be applied to other open genetic disorders. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Cryopreservation of embryonic axes of groundnut ( Arachis ...

    African Journals Online (AJOL)

    An efficient cryopreservation protocol was developed for groundnut embryonic axes using vitrification technique. Embryonic axes obtained from seeds of four groundnut genotypes were dehydrated in Plant Vitrification Solution (PVS2) solution for different durations (0, 1, 2, 3, 4 and 5 h) before plunged into liquid nitrogen ...

  13. Pulsed contractions of an actin-myosin network drive apical constriction.

    Science.gov (United States)

    Martin, Adam C; Kaschube, Matthias; Wieschaus, Eric F

    2009-01-22

    Apical constriction facilitates epithelial sheet bending and invagination during morphogenesis. Apical constriction is conventionally thought to be driven by the continuous purse-string-like contraction of a circumferential actin and non-muscle myosin-II (myosin) belt underlying adherens junctions. However, it is unclear whether other force-generating mechanisms can drive this process. Here we show, with the use of real-time imaging and quantitative image analysis of Drosophila gastrulation, that the apical constriction of ventral furrow cells is pulsed. Repeated constrictions, which are asynchronous between neighbouring cells, are interrupted by pauses in which the constricted state of the cell apex is maintained. In contrast to the purse-string model, constriction pulses are powered by actin-myosin network contractions that occur at the medial apical cortex and pull discrete adherens junction sites inwards. The transcription factors Twist and Snail differentially regulate pulsed constriction. Expression of snail initiates actin-myosin network contractions, whereas expression of twist stabilizes the constricted state of the cell apex. Our results suggest a new model for apical constriction in which a cortical actin-myosin cytoskeleton functions as a developmentally controlled subcellular ratchet to reduce apical area incrementally.

  14. Response of slow and fast muscle to hypothyroidism: maximal shortening velocity and myosin isoforms

    Science.gov (United States)

    Caiozzo, V. J.; Herrick, R. E.; Baldwin, K. M.

    1992-01-01

    This study examined both the shortening velocity and myosin isoform distribution of slow- (soleus) and fast-twitch (plantaris) skeletal muscles under hypothyroid conditions. Adult female Sprague-Dawley rats were randomly assigned to one of two groups: control (n = 7) or hypothyroid (n = 7). In both muscles, the relative contents of native slow myosin (SM) and type I myosin heavy chain (MHC) increased in response to the hypothyroid treatment. The effects were such that the hypothyroid soleus muscle expressed only the native SM and type I MHC isoforms while repressing native intermediate myosin and type IIA MHC. In the plantaris, the relative content of native SM and type I MHC isoforms increased from 5 to 13% and from 4 to 10% of the total myosin pool, respectively. Maximal shortening velocity of the soleus and plantaris as measured by the slack test decreased by 32 and 19%, respectively, in response to hypothyroidism. In contrast, maximal shortening velocity as estimated by force-velocity data decreased only in the soleus (-19%). No significant change was observed for the plantaris.

  15. A novel MYH7 mutation links congenital fiber type disproportion and myosin storage myopathy.

    Science.gov (United States)

    Ortolano, Saida; Tarrío, Rosa; Blanco-Arias, Patricia; Teijeira, Susana; Rodríguez-Trelles, Francisco; García-Murias, María; Delague, Valerie; Lévy, Nicolas; Fernández, José M; Quintáns, Beatriz; Millán, Beatriz San; Carracedo, Angel; Navarro, Carmen; Sobrido, María-Jesús

    2011-04-01

    This study aimed to identify the genetic defect in a multigenerational family presenting an autosomal dominant myopathy with histological features of congenital fiber type disproportion. Linkage analysis and genetic sequencing identified, in all affected members of the family, the c.5807A>G heterozygous mutation in MYH7, which encodes the slow/β-cardiac myosin heavy chain. This mutation causes skeletal but not cardiac involvement. Myosin heavy chain expression pattern was also characterized by immunohistochemistry, western blot and q-PCR in muscle biopsies from two patients aged 25 and 62, respectively. While only congenital fiber type disproportion was observed in the younger patient, older patient's biopsy presented aggregates of slow myosin heavy chains, in fiber sub-sarcolemmal region. These clinico-pathologic findings suggest a novel phenotype within the emerging group of hereditary myosin myopathies, which in this family presents typical characteristics of congenital fiber type disproportion in early stages and later evolves to myosin storage myopathy. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Live-cell single-molecule labeling and analysis of myosin motors with quantum dots

    Science.gov (United States)

    Hatakeyama, Hiroyasu; Nakahata, Yoshihito; Yarimizu, Hirokazu; Kanzaki, Makoto

    2017-01-01

    Quantum dots (QDs) are a powerful tool for quantitatively analyzing dynamic cellular processes by single-particle tracking. However, tracking of intracellular molecules with QDs is limited by their inability to penetrate the plasma membrane and bind to specific molecules of interest. Although several techniques for overcoming these problems have been proposed, they are either complicated or inconvenient. To address this issue, in this study, we developed a simple, convenient, and nontoxic method for labeling intracellular molecules in cells using HaloTag technology and electroporation. We labeled intracellular myosin motors with this approach and tracked their movement within cells. By simultaneously imaging myosin movement and F-actin architecture, we observed that F-actin serves not only as a rail but also as a barrier for myosin movement. We analyzed the effect of insulin on the movement of several myosin motors, which have been suggested to regulate intracellular trafficking of the insulin-responsive glucose transporter GLUT4, but found no significant enhancement in myosin motor motility as a result of insulin treatment. Our approach expands the repertoire of proteins for which intracellular dynamics can be analyzed at the single-molecule level. PMID:28035048

  17. Strain Mediated Adaptation Is Key for Myosin Mechanochemistry: Discovering General Rules for Motor Activity.

    Directory of Open Access Journals (Sweden)

    Biman Jana

    2016-08-01

    Full Text Available A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI. Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities.

  18. Internal dynamics of F-actin and myosin subfragment-1 studied by quasielastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Tatsuhito [Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Arata, Toshiaki [Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Oda, Toshiro [Graduate School of Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Nakajima, Kenji; Ohira-Kawamura, Seiko; Kikuchi, Tatsuya [Neutron Science Section, J-PARC Center, Tokai, Ibaraki 319-1195 (Japan); Fujiwara, Satoru, E-mail: fujiwara.satoru@jaea.go.jp [Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2015-04-10

    Various biological functions related to cell motility are driven by the interaction between the partner proteins, actin and myosin. To obtain insights into how this interaction occurs, the internal dynamics of F-actin and myosin subfragment-1 (S1) were characterized by the quasielastic neutron scattering measurements on the solution samples of F-actin and S1. Contributions of the internal motions of the proteins to the scattering spectra were separated from those of the global macromolecular diffusion. Analysis of the spectra arising from the internal dynamics showed that the correlation times of the atomic motions were about two times shorter for F-actin than for S1, suggesting that F-actin fluctuates more rapidly than S1. It was also shown that the fraction of the immobile atoms is larger for S1 than for F-actin. These results suggest that F-actin actively facilitates the binding of myosin by utilizing the more frequent conformational fluctuations than those of S1. - Highlights: • We studied the internal dynamics of F-actin and myosin S1 by neutron scattering. • The correlation times of the atomic motions were smaller for F-actin than for S1. • The fraction of the immobile atoms was also smaller for F-actin than for S1. • Our results suggest that mobility of atoms in F-actin is higher than that in S1. • We propose that high flexibility of F-actin facilitates the binding of myosin.

  19. A bioinformatic and computational study of myosin phosphatase subunit diversity.

    Science.gov (United States)

    Dippold, Rachael P; Fisher, Steven A

    2014-08-01

    Variability in myosin phosphatase (MP) subunits may provide specificity in signaling pathways that regulate muscle tone. We utilized public databases and computational algorithms to investigate the phylogenetic diversity of MP regulatory (PPP1R12A-C) and inhibitory (PPP1R14A-D) subunits. The comparison of exonic coding sequences and expression data confirmed or refuted the existence of isoforms and their tissue-specific expression in different model organisms. The comparison of intronic and exonic sequences identified potential expressional regulatory elements. As examples, smooth muscle MP regulatory subunit (PPP1R12A) is highly conserved through evolution. Its alternative exon E24 is present in fish through mammals with two invariant features: 1) a reading frame shift generating a premature termination codon and 2) a hexanucleotide sequence adjacent to the 3' splice site hypothesized to be a novel suppressor of exon splicing. A characteristic of the striated muscle MP regulatory subunit (PPP1R12B) locus is numerous and phylogenetically variable transcriptional start sites. In fish this locus only codes for the small (M21) subunit, suggesting the primordial function of this gene. Inhibitory subunits show little intragenic variability; their diversity is thought to have arisen by expansion and tissue-specific expression of different gene family members. We demonstrate differences in the regulatory landscape between smooth muscle enriched (PPP1R14A) and more ubiquitously expressed (PPP1R14B) family members and identify deeply conserved intronic sequence and predicted transcriptional cis-regulatory elements. This bioinformatic and computational study has uncovered a number of attributes of MP subunits that supports selection of ideal model organisms and testing of hypotheses regarding their physiological significance and regulated expression. Copyright © 2014 the American Physiological Society.

  20. Developing Cardiac and Skeletal Muscle Share Fast-Skeletal Myosin Heavy Chain and Cardiac Troponin-I Expression

    Science.gov (United States)

    Powell, Mary C.; Liu, Li J.; Huard, Johnny; Keller, Bradley B.; Tobita, Kimimasa

    2012-01-01

    Skeletal muscle derived stem cells (MDSCs) transplanted into injured myocardium can differentiate into fast skeletal muscle specific myosin heavy chain (sk-fMHC) and cardiac specific troponin-I (cTn-I) positive cells sustaining recipient myocardial function. We have recently found that MDSCs differentiate into a cardiomyocyte phenotype within a three-dimensional gel bioreactor. It is generally accepted that terminally differentiated myocardium or skeletal muscle only express cTn-I or sk-fMHC, respectively. Studies have shown the presence of non-cardiac muscle proteins in the developing myocardium or cardiac proteins in pathological skeletal muscle. In the current study, we tested the hypothesis that normal developing myocardium and skeletal muscle transiently share both sk-fMHC and cTn-I proteins. Immunohistochemistry, western blot, and RT-PCR analyses were carried out in embryonic day 13 (ED13) and 20 (ED20), neonatal day 0 (ND0) and 4 (ND4), postnatal day 10 (PND10), and 8 week-old adult female Lewis rat ventricular myocardium and gastrocnemius muscle. Confocal laser microscopy revealed that sk-fMHC was expressed as a typical striated muscle pattern within ED13 ventricular myocardium, and the striated sk-fMHC expression was lost by ND4 and became negative in adult myocardium. cTn-I was not expressed as a typical striated muscle pattern throughout the myocardium until PND10. Western blot and RT-PCR analyses revealed that gene and protein expression patterns of cardiac and skeletal muscle transcription factors and sk-fMHC within ventricular myocardium and skeletal muscle were similar at ED20, and the expression patterns became cardiac or skeletal muscle specific during postnatal development. These findings provide new insight into cardiac muscle development and highlight previously unknown common developmental features of cardiac and skeletal muscle. PMID:22808244

  1. A systematic review and meta-analysis of genotype-phenotype associations in patients with hypertrophic cardiomyopathy caused by sarcomeric protein mutations.

    Science.gov (United States)

    Lopes, Luís R; Rahman, M Shafiqur; Elliott, Perry M

    2013-12-01

    The genetic basis of familial hypertrophic cardiomyopathy (HCM) is well described, but the relation between genotype and clinical phenotype is still poorly characterised. To summarise and critically review the current literature on genotype-phenotype associations in patients with HCM and to perform a meta-analysis on selected clinical features. PubMed/Medline was searched up to January 2013. Retrieved articles were checked for additional publications. Observational, cross-sectional and prospectively designed English language human studies that analysed the relationship between the presence of mutations in sarcomeric protein genes and clinical parameters. The pooled analysis was confined to studies reporting on cohorts of unrelated and consecutive patients in which at least two sarcomere genes were sequenced. A random effect meta-regression model was used to determine the overall prevalence of predefined clinical features: age at presentation, gender, family history of HCM, family history of sudden cardiac death (SCD), and maximum left ventricular wall thickness (MLVWT). The I(2) statistic was used to estimate the proportion of total variability in the prevalence data attributable to the heterogeneity between studies. Eighteen publications (corresponding to a total of 2459 patients) were selected for the pooled analysis. The presence of any sarcomere gene mutation was associated with a younger age at presentation (38.4 vs 46.0 years, p<0.0005), a family history of HCM (50.6% vs 23.1%, p<0.0005), a family history of SCD (27.0% vs 14.9%, p<0.0005) and greater MLVWT (21.0 vs 19.3 mm, p=0.03). There were no differences when the two most frequently affected genes, MYBPC3 and MYH7, were compared. A total of 53 family studies were also included in the review. These were characterised by pronounced variability and the majority of studies reporting on outcomes analysed small cross-sectional cohorts and were unsuitable for pooled analyses. The presence of a mutation in any

  2. Mutations in the Slow Skeletal Muscle Fiber Myosin Heavy Chain Gene ( MYH7) Cause Laing Early-Onset Distal Myopathy (MPD1)

    National Research Council Canada - National Science Library

    Meredith, Christopher; Herrmann, Ralf; Parry, Cheryl; Liyanage, Khema; Dye, Danielle E; Durling, Hayley J; Duff, Rachael M; Beckman, Kaye; de Visser, Marianne; van der Graaff, Maaike M; Hedera, Peter; Fink, John K; Petty, Elizabeth M; Lamont, Phillipa; Fabian, Vicki; Bridges, Leslie; Voit, Thomas; Mastaglia, Frank L; Laing, Nigel G

    2004-01-01

    .... One candidate gene in the region, MYH7, which is mutated in cardiomyopathy and myosin storage myopathy, codes for the myosin heavy chain of type I skeletal muscle fibers and cardiac ventricles...

  3. Possible Interrelationship between Changes in F-actin and Myosin II, Protein Phosphorylation and Cell Volume Regulation in Ehrlich Ascites Tumor Cells

    DEFF Research Database (Denmark)

    Pedersen, Stine F.; Hoffmann, Else Kay

    2002-01-01

    F-actin; myosin II; osmotic; Rho kinase; p38; PKC; MLCK; serine/threonine phosphatase; blebbing; NHE1......F-actin; myosin II; osmotic; Rho kinase; p38; PKC; MLCK; serine/threonine phosphatase; blebbing; NHE1...

  4. Spontaneous detachment of the leading head contributes to myosin VI backward steps.

    Directory of Open Access Journals (Sweden)

    Keigo Ikezaki

    Full Text Available Myosin VI is an ATP driven molecular motor that normally takes forward and processive steps on actin filaments, but also on occasion stochastic backward steps. While a number of models have attempted to explain the backwards steps, none offer an acceptable mechanism for their existence. We therefore performed single molecule imaging of myosin VI and calculated the stepping rates of forward and backward steps at the single molecule level. The forward stepping rate was proportional to the ATP concentration, whereas the backward stepping rate was independent. Using these data, we proposed that spontaneous detachment of the leading head is uncoupled from ATP binding and is responsible for the backward steps of myosin VI.

  5. Effect of nucleotides on the orientation and mobility of myosin subfragment-1 in ghost muscle fiber.

    Science.gov (United States)

    Pronina, O E; Wrzosek, A; Dabrowska, R; Borovikov, Yu S

    2005-10-01

    Using polarization fluorimetry, the orientation and mobility of 1,5-IAEDANS specifically bound to Cys707 of myosin subfragment-1 (S1) were studied in ghost muscle tropomyosin-containing fibers in the absence and in the presence of MgADP, MgAMP-PNP, MgATPgammaS, or MgATP. Modeling of various intermediate states was accompanied by discrete changes in actomyosin orientation and mobility of fluorescent dye dipoles. This suggests multistep changes in the structural state of the myosin head during the ATPase cycle. Maximal differences in the probe orientation by 4 degrees and its mobility by 30% were found between actomyosin states in the presence of MgADP and MgATP. It is suggested that interaction of S1 with F-actin induces nucleotide-dependent rotation of the whole motor domain of the myosin head or only the dye-binding site and also change in the head mobility.

  6. Polymer Nanocomposites as a Facile Method for Engineering Acto-Myosin Networks at the Interface

    Science.gov (United States)

    Caporizzo, Matthew; Sun, Yujie; Goldman, Yale; Composto, Russell; Nano-Bio Interface Center Collaboration

    2011-03-01

    Filamentous actin acts as the rails for the molecular motor myosin in muscle contraction and intercellular mass transport. Consequently, understanding the process by which actin organizes, polymerizes, and binds is fundamental for the design of myosin based actuators capable of responding to external stimuli. Starting with atomically smooth, freshly cleaved mica optically coupled to glass slides, a random copolymer nanoparticle composite is engineered for in situ single molecule TIRF/AFM studies with controlled roughness, electrostatic binding strength, and binding site density. Four distinct regimes of actin binding are observed; no attachment, end-on attachment, weak side-on attachment, and side-on immobilization. Transitions between regimes are likely to mark competition between the affinity to charged nanoparticles and the inherent resistance of the semi-rigid filaments to bending. Surface conditions optimal for actin immobilization are identified, and Myosin V stepping kinetics are studied on the artificially immobilized filaments, confirming filament support of motility. Supported by NSF grant DMR-0425780.

  7. UCS protein Rng3p is essential for myosin-II motor activity during cytokinesis in fission yeast.

    Directory of Open Access Journals (Sweden)

    Benjamin C Stark

    Full Text Available UCS proteins have been proposed to operate as co-chaperones that work with Hsp90 in the de novo folding of myosin motors. The fission yeast UCS protein Rng3p is essential for actomyosin ring assembly and cytokinesis. Here we investigated the role of Rng3p in fission yeast myosin-II (Myo2p motor activity. Myo2p isolated from an arrested rng3-65 mutant was capable of binding actin, yet lacked stability and activity based on its expression levels and inactivity in ATPase and actin filament gliding assays. Myo2p isolated from a myo2-E1 mutant (a mutant hyper-sensitive to perturbation of Rng3p function showed similar behavior in the same assays and exhibited an altered motor conformation based on limited proteolysis experiments. We propose that Rng3p is not required for the folding of motors per se, but instead works to ensure the activity of intrinsically unstable myosin-II motors. Rng3p is specific to conventional myosin-II and the actomyosin ring, and is not required for unconventional myosin motor function at other actin structures. However, artificial destabilization of myosin-I motors at endocytic actin patches (using a myo1-E1 mutant led to recruitment of Rng3p to patches. Thus, while Rng3p is specific to myosin-II, UCS proteins are adaptable and can respond to changes in the stability of other myosin motors.

  8. Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation

    NARCIS (Netherlands)

    Homburger, J.R. (Julian R.); Green, E.M. (Eric M.); Caleshu, C. (Colleen); Sunitha, M.S. (Margaret S.); Taylor, R.E. (Rebecca E.); Ruppel, K.M. (Kathleen M.); Metpally, R.P.R. (Raghu Prasad Rao); S.D. Colan (Steven); M. Michels (Michelle); Day, S.M. (Sharlene M.); I. Olivotto (Iacopo); Bustamante, C.D. (Carlos D.); Dewey, F.E. (Frederick E.); Ho, C.Y. (Carolyn Y.); Spudich, J.A. (James A.); Ashley, E.A. (Euan A.)

    2016-01-01

    textabstractMyosin motors are the fundamental force-generating elements of muscle contraction. Variation in the human β-cardiac myosin heavy chain gene (MYH7) can lead to hypertrophic cardiomyopathy (HCM), a heritable disease characterized by cardiac hypertrophy, heart failure, and sudden cardiac

  9. Chlamydia trachomatis Inclusion Membrane Protein CT228 Recruits Elements of the Myosin Phosphatase Pathway to Regulate Release Mechanisms

    Directory of Open Access Journals (Sweden)

    Erika I. Lutter

    2013-06-01

    Full Text Available Chlamydia trachomatis replicates within a membrane-bound compartment termed an inclusion. The inclusion membrane is modified by the insertion of multiple proteins known as Incs. In a yeast two-hybrid screen, an interaction was found between the inclusion membrane protein CT228 and MYPT1, a subunit of myosin phosphatase. MYPT1 was recruited peripherally around the inclusion, whereas the phosphorylated, inactive form was localized to active Src-family kinase-rich microdomains. Phosphorylated myosin light chain 2 (MLC2, myosin light chain kinase (MLCK, myosin IIA, and myosin IIB also colocalized with inactive MYPT1. The role of these proteins was examined in the context of host-cell exit mechanisms (i.e., cell lysis and extrusion of intact inclusions. Inhibition of myosin II or small interfering RNA depletion of myosin IIA, myosin IIB, MLC2, or MLCK reduced chlamydial extrusion, thus favoring lytic events as the primary means of release. These studies provide insights into the regulation of egress mechanisms by C. trachomatis.

  10. Spatially explicit, nano-mechanical models of the muscle half-sarcomere: Implications for biomechanical tuning in atrophy and fatigue

    Science.gov (United States)

    Kataoka, Aya; Tanner, Bertrand C. W.; Macpherson, J. Michael; Xu, Xiangrong; Wang, Qi; Regnier, Michael; Daniel, Thomas L.; Chase, P. Bryant

    2007-01-01

    Astronaut biomechanical performance depends on a wide variety of factors. Results from computational modelling suggest that muscle function—a key component of performance—could be modulated by compliance of the contractile filaments in muscle, especially when force is low such as transient Ca activation in a twitch, reduced activation in muscle fatigue encountered during EVA, or perhaps atrophy during prolonged space flight. We used Monte-Carlo models to investigate the hypotheses that myofilament compliance influences muscle function during a twitch, and also modulates the effects of cooperative interactions between contractile proteins on force generation. Peak twitch force and the kinetics of force decay were both decreased, while tension cost was increased, when myofilament compliance was increased relative to physiological values. Both the apparent Ca sensitivity and cooperativity of activation of steady-state isometric force were altered by myofilament compliance even when there were no explicit interactions included between binding sites. The effects of cooperative interactions between adjacent regulatory units were found to be greater than either the effect of myofilament compliance on apparent cooperativity of activation or that due to myosin cross-bridge-induced cooperativity. These results indicate that muscle function may be "tuned" at the molecular level, particularly under conditions of reduced Ca activation.

  11. BMP-2 Overexpression Augments Vascular Smooth Muscle Cell Motility by Upregulating Myosin Va via Erk Signaling

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2014-01-01

    Full Text Available Background. The disruption of physiologic vascular smooth muscle cell (VSMC migration initiates atherosclerosis development. The biochemical mechanisms leading to dysfunctional VSMC motility remain unknown. Recently, cytokine BMP-2 has been implicated in various vascular physiologic and pathologic processes. However, whether BMP-2 has any effect upon VSMC motility, or by what manner, has never been investigated. Methods. VSMCs were adenovirally transfected to genetically overexpress BMP-2. VSMC motility was detected by modified Boyden chamber assay, confocal time-lapse video assay, and a colony wounding assay. Gene chip array and RT-PCR were employed to identify genes potentially regulated by BMP-2. Western blot and real-time PCR detected the expression of myosin Va and the phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2. Immunofluorescence analysis revealed myosin Va expression locale. Intracellular Ca2+ oscillations were recorded. Results. VSMC migration was augmented in VSMCs overexpressing BMP-2 in a dose-dependent manner. siRNA-mediated knockdown of myosin Va inhibited VSMC motility. Both myosin Va mRNA and protein expression significantly increased after BMP-2 administration and were inhibited by Erk1/2 inhibitor U0126. BMP-2 induced Ca2+ oscillations, generated largely by a “cytosolic oscillator”. Conclusion. BMP-2 significantly increased VSMCs migration and myosin Va expression, via the Erk signaling pathway and intracellular Ca2+ oscillations. We provide additional insight into the pathophysiology of atherosclerosis, and inhibition of BMP-2-induced myosin Va expression may represent a potential therapeutic strategy.

  12. Myosin-Powered Membrane Compartment Drives Cytoplasmic Streaming, Cell Expansion and Plant Development.

    Science.gov (United States)

    Peremyslov, Valera V; Cole, Rex A; Fowler, John E; Dolja, Valerian V

    2015-01-01

    Using genetic approaches, particle image velocimetry and an inert tracer of cytoplasmic streaming, we have made a mechanistic connection between the motor proteins (myosins XI), cargo transported by these motors (distinct endomembrane compartment defined by membrane-anchored MyoB receptors) and the process of cytoplasmic streaming in plant cells. It is shown that the MyoB compartment in Nicotiana benthamiana is highly dynamic moving with the mean velocity of ~3 μm/sec. In contrast, Golgi, mitochondria, peroxisomes, carrier vesicles and a cytosol flow tracer share distinct velocity profile with mean velocities of 0.6-1.5 μm/sec. Dominant negative inhibition of the myosins XI or MyoB receptors using overexpression of the N. benthamiana myosin cargo-binding domain or MyoB myosin-binding domain, respectively, resulted in velocity reduction for not only the MyoB compartment, but also each of the tested organelles, vesicles and cytoplasmic streaming. Furthermore, the extents of this reduction were similar for each of these compartments suggesting that MyoB compartment plays primary role in cytosol dynamics. Using gene knockout analysis in Arabidopsis thaliana, it is demonstrated that inactivation of MyoB1-4 results in reduced velocity of mitochondria implying slower cytoplasmic streaming. It is also shown that myosins XI and MyoB receptors genetically interact to contribute to cell expansion, plant growth, morphogenesis and proper onset of flowering. These results support a model according to which myosin-dependent, MyoB receptor-mediated transport of a specialized membrane compartment that is conserved in all land plants drives cytoplasmic streaming that carries organelles and vesicles and facilitates cell growth and plant development.

  13. Myosin light chain kinase facilitates endocytosis of synaptic vesicles at hippocampal boutons.

    Science.gov (United States)

    Li, Lin; Wu, Xiaomei; Yue, Hai-Yuan; Zhu, Yong-Chuan; Xu, Jianhua

    2016-07-01

    At nerve terminals, endocytosis efficiently recycles vesicle membrane to maintain synaptic transmission under different levels of neuronal activity. Ca(2+) and its downstream signal pathways are critical for the activity-dependent regulation of endocytosis. An activity- and Ca(2+) -dependent kinase, myosin light chain kinase (MLCK) has been reported to regulate vesicle mobilization, vesicle cycling, and motility in different synapses, but whether it has a general contribution to regulation of endocytosis at nerve terminals remains unknown. We investigated this issue at rat hippocampal boutons by imaging vesicle endocytosis as the real-time retrieval of vesicular synaptophysin tagged with a pH-sensitive green fluorescence protein. We found that endocytosis induced by 200 action potentials (5-40 Hz) was slowed by acute inhibition of MLCK and down-regulation of MLCK with RNA interference, while the total amount of vesicle exocytosis and somatic Ca(2+) channel current did not change with MLCK down-regulation. Acute inhibition of myosin II similarly impaired endocytosis. Furthermore, down-regulation of MLCK prevented depolarization-induced phosphorylation of myosin light chain, an effect shared by blockers of Ca(2+) channels and calmodulin. These results suggest that MLCK facilitates vesicle endocytosis through activity-dependent phosphorylation of myosin downstream of Ca(2+) /calmodulin, probably as a widely existing mechanism among synapses. Our study suggests that MLCK is an important activity-dependent regulator of vesicle recycling in hippocampal neurons, which are critical for learning and memory. The kinetics of vesicle membrane endocytosis at nerve terminals has long been known to depend on activity and Ca(2+) . This study provides evidence suggesting that myosin light chain kinase increases endocytosis efficiency at hippocampal neurons by mediating Ca(2+) /calmodulin-dependent phosphorylation of myosin. The authors propose that this signal cascade may serve as

  14. Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions.

    Directory of Open Access Journals (Sweden)

    Shenping Wu

    2010-09-01

    Full Text Available Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ.We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the "target zone", situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening.We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very

  15. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shenping; Liu, Jun; Reedy, Mary C.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A. (UPENN); (Duke); (MRCLMB); (FSU); (Jikei-Med)

    2010-10-22

    Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the 'target zone', situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77{sup o}/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127{sup o} range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are

  16. Opening the Arg-Glu salt bridge in myosin: computational study.

    Science.gov (United States)

    Kaliman, Ilya; Grigorenko, Bella; Shadrina, Maria; Nemukhin, Alexander

    2009-06-28

    Opening the Arg-Glu salt bridge in myosin, which presumably succeeds the myosin-catalyzed hydrolysis of adenosine triphosphate, was modeled computationally on the basis of the structures corresponding to the enzyme-substrate and enzyme-product complexes found in the quantum mechanics-molecular mechanics simulations. According to the calculations of the potential of mean force, opening the bridge is considerably facilitated upon termination of the chemical reaction, but does not promote egress of inorganic phosphate by the back-door mechanism.

  17. Transport of single cells using an actin bundle-myosin bionanomotor transport system

    Energy Technology Data Exchange (ETDEWEB)

    Takatsuki, Hideyo; Rice, Kevin M; Kohama, Kazuhiro; Blough, Eric R [Department of Biological Sciences, Marshall University, Huntington, WV (United States); Tanaka, Hideyuki [Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Maebashi (Japan); Kolli, Madhukar B; Nalabotu, Siva K [Center for Diagnostic Nanosystems, Marshall University, Huntington, WV (United States); Famouri, Parviz, E-mail: blough@marshall.edu [Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV (United States)

    2011-06-17

    The potential of using actin bundles for the transport of liposomes and single cells across myosin-coated surfaces is investigated. Compared to that observed with filamentous actin, the liposome transport using actin bundles was more linear in nature and able to occur over longer distances. Bundles, but not filamentous actin, were capable of moving single cells. Cargo unloading from bundles was achieved by incubation with Triton X-100. These data suggest that actin bundling may improve the ability of the myosin motor system for nanotransport applications.

  18. Growth and Muscle Defects in Mice Lacking Adult Myosin Heavy Chain Genes

    OpenAIRE

    Acakpo-Satchivi, Leslie J.R.; Edelmann, Winfried; Sartorius, Carol; Lu, Brian D.; Wahr, Philip A.; Watkins, Simon C.; Metzger, Joseph M.; Leinwand, Leslie; Kucherlapati, Raju

    1997-01-01

    The three adult fast myosin heavy chains (MyHCs) constitute the vast majority of the myosin in adult skeletal musculature, and are >92% identical. We describe mice carrying null mutations in each of two predominant adult fast MyHC genes, IIb and IId/x. Both null strains exhibit growth and muscle defects, but the defects are different between the two strains and do not correlate with the abundance or distribution of each gene product. For example, despite the fact that MyHC-IIb accounts for >7...

  19. Electron Microscopic Observation and Biochemical Properties of Carp Myosin B during Frozen Storage at -8°C with Cryoprotectants

    Science.gov (United States)

    Inoue, Norio; Oguni, Moritoshi; Yamamoto, Mika; Shinano, Haruo

    The cryoprotective effect of sorbitol (0.5M) and monosodium glutamate (0.3M) was examined on the freeze denaturation of carp myosin B filaments by observing the morphological changes in electron microscopy. Myosin B in the presence of 0.1 or 0.6M KCl was stored at -8°C that was higer temperature than the eutectic point of KCl and provided the concentrated KCl solution for causing the filamentous structure to deform. In the case of frozen storage in 0.1M KCl, the deformation of myosin B filaments was protected with both cryoprotectants. In the case of 0.6M KCl with monosodium glutamate, the deformation of the filaments was prevented. However, the granular matters deformed from myosin B were observed to some extent in 0.6M KCl with sorbitol. Morphological changes of the filaments in the electron microscopy agreed with the changes in biochemical properties of myosin B.

  20. Deletion of myosin VI causes slow retinal optic neuropathy and age-related macular degeneration (AMD)-relevant retinal phenotype.

    Science.gov (United States)

    Schubert, Timm; Gleiser, Corinna; Heiduschka, Peter; Franz, Christoph; Nagel-Wolfrum, Kerstin; Sahaboglu, Ayse; Weisschuh, Nicole; Eske, Gordon; Rohbock, Karin; Rieger, Norman; Paquet-Durand, François; Wissinger, Bernd; Wolfrum, Uwe; Hirt, Bernhard; Singer, Wibke; Rüttiger, Lukas; Zimmermann, Ulrike; Knipper, Marlies

    2015-10-01

    The unconventional myosin VI, a member of the actin-based motor protein family of myosins, is expressed in the retina. Its deletion was previously shown to reduce amplitudes of the a- and b-waves of the electroretinogram. Analyzing wild-type and myosin VI-deficient Snell's Waltzer mice in more detail, the expression pattern of myosin VI in retinal pigment epithelium, outer limiting membrane, and outer plexiform layer could be linked with differential progressing ocular deficits. These encompassed reduced a-waves and b-waves and disturbed oscillatory potentials in the electroretinogram, photoreceptor cell death, retinal microglia infiltration, and formation of basal laminar deposits. A phenotype comprising features of glaucoma (neurodegeneration) and age-related macular degeneration could thus be uncovered that suggests dysfunction of myosin VI and its variable cargo adaptor proteins for membrane sorting and autophagy, as possible candidate mediators for both disease forms.

  1. The effect of novel mutations on the structure and enzymatic activity of unconventional myosins associated with autosomal dominant non-syndromic hearing loss

    NARCIS (Netherlands)

    Kwon, T.J.; Oh, S.K.; Park, H.J.; Sato, O.; Venselaar, H.; Choi, S.Y.; Kim, S.; Lee, K.Y.; Bok, J.; Lee, S.H.; Vriend, G.; Ikebe, M.; Kim, U.K.; Choi, J.Y.

    2014-01-01

    Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies

  2. A comparative study of mutation screening of sarcomeric genes ( MYBPC3 , MYH7 , TNNT2 ) using single gene approach versus targeted gene panel next generation sequencing in a cohort of HCM patients in Egypt

    National Research Council Canada - National Science Library

    Heba Sh Kassem; Roddy Walsh; Paul J Barton; Besra S Abdelghany; Remon S Azer; Rachel Buchan; Shibu John; Ahmed Elguindy; Sarah Moharem-ElGamal; Hala M Badran; Hoda Shehata; Stuart A Cook; Magdi H Yacoub

    2017-01-01

    ..., genetic testing for HCM has focused on mutations in myosin heavy chain 7 (MYH7), myosin-binding protein C3 (MYBPC3) and cardiac troponin T (TNNT2), which account for between 35% and 60% of cases [5]. Traditionally such studies have been performed by single gene analysis, utilising either polymerase chain reaction (PCR) or denaturing high perfor...

  3. Circadian rhythmicity and photic plasticity of myosin gene transcription in fast skeletal muscle of Atlantic cod (Gadus morhua).

    Science.gov (United States)

    Lazado, Carlo C; Nagasawa, Kazue; Babiak, Igor; Kumaratunga, Hiruni P S; Fernandes, Jorge M O

    2014-12-01

    The circadian rhythm is a fundamental adaptive mechanism to the daily environmental changes experienced by many organisms, including fish. Myosins constitute a large family of contractile proteins that are essential functional components of skeletal muscle. They are known to display thermal plasticity but the influence of light on myosin expression remains to be investigated in fish. In the present study, we have examined the circadian rhythmicity and photoperiodic plasticity of myosin gene transcription in Atlantic cod (Gadus morhua) fast skeletal muscle. In silico mining of the Atlantic cod genome resulted in the identification of 76 myosins representing different classes, many of which were hitherto uncharacterized. Among the 23 fast skeletal muscle myosin genes, myh_tc, myh_n1, myh_n4, myo18a_2, and myo18b_2 displayed circadian rhythmic expression and contained several circadian-related transcription factor binding sites (Creb, Mef2 and E-box motifs) within their putative promoter regions. Also, the circadian expression of these 5 myosins strongly correlated with the transcription pattern of clock genes in fast skeletal muscle. Under ex vivo conditions, myosin transcript levels lost their circadian rhythmicity. Nonetheless, different photoperiod regimes influenced the mRNA levels of myh_n4, myo18a_2 and myo18b_2 in fast skeletal muscle explants. Photoperiod manipulation in Atlantic cod juveniles revealed that continuous light significantly elevated mRNA levels of several myosins in fast skeletal muscle when compared to natural photoperiod. The daily rhythmicity observed in some fast skeletal muscle myosin genes suggests that they may be under circadian clock regulation. In addition, the influence of photoperiod on their expression implies that myosins may be involved in the photic plasticity of muscle growth observed in Atlantic cod. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Coexistence of Digenic Mutations in Both Thin (TPM1) and Thick (MYH7) Filaments of Sarcomeric Genes Leads to Severe Hypertrophic Cardiomyopathy in a South Indian FHCM.

    Science.gov (United States)

    Selvi Rani, Deepa; Nallari, Pratibha; Dhandapany, Perundurai S; Rani, Jhansi; Meraj, Khunza; Ganesan, Mala; Narasimhan, Calambur; Thangaraj, Kumarasamy

    2015-05-01

    Mutations in sarcomeric genes are the leading cause for cardiomyopathies. However, not many genetic studies have been carried out on Indian cardiomyopathy patients. We performed sequence analyses of a thin filament sarcomeric gene, α-tropomyosin (TPM1), in 101 hypertrophic cardiomyopathy (HCM) patients and 147 dilated cardiomyopathy (DCM) patients against 207 ethnically matched healthy controls, revealing 13 single nucleotide polymorphisms (SNPs). Of these, one mutant, S215L, was identified in two unrelated HCM cases-patient #1, aged 44, and patient #2, aged 65-and was cosegregating with disease in these families as an autosomal dominant trait. In contrast, S215L was completely absent in 147 DCM and 207 controls. Patient #1 showed a more severe disease phenotype, with poor prognosis and a family history of sudden cardiac death, than patient #2. Therefore, these two patients and the family members positive for S215L were further screened for variations in MYH7, MYBPC3, TNNT2, TNNI3, MYL2, MYL3, and ACTC. Interestingly, two novel thick filaments, D896N (homozygous) and I524K (heterozygous) mutations, in the MYH7 gene were identified exclusively in patient #1 and his family members. Thus, we strongly suggest that the coexistence of these digenic mutations is rare, but leads to severe hypertrophy in a South Indian familial hypertrophic cardiomyopathy (FHCM).

  5. Cleaved Slit directs embryonic muscles.

    Science.gov (United States)

    Ordan, Elly; Volk, Talila

    2015-01-01

    The formation of functional musculoskeletal system relies on proper connectivity between muscles and their corresponding tendon cells. In Drosophila, larval muscles are born during early embryonic stages, and elongate toward tendons that are embedded within the ectoderm in later. The Slit/Robo signaling pathway had been implicated in the process of muscle elongation toward tendons. Here we discuss our recent findings regarding the critical contribution of Slit cleavage for immobilization and stabilization of the Slit signal on the tendon cells. Slit cleavage produces 2 polypeptides, the N-terminal Slit-N, which is extremely stable, undergoes oligomerization, and associates with the tendon cell surfaces, and the C-terminal Slit-C, which rapidly degrades. Slit cleavage leads to immobilization of Slit signaling on tendons, leading to a short-range repulsion, which eventually arrest further muscle elongation. Robo2, which is co-expressed with Slit by the tendon cells facilitates Slit cleavage. This activity does not require the cytoplasmic signaling domain of Robo2. We suggest that Robo2-dependent Slit cleavage, and the formation of Slit-N oligomers on the tendon cell surfaces direct muscle elongation, and provide a stop signal for the approaching muscle, through binding to Robo and Robo3 receptors expressed by the muscles.

  6. Novel mutations in beta-myosin heavy chain, actin and troponin-I ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 88; Issue 3. Novel mutations in beta-myosin heavy chain, actin and troponin-I genes associated with dilated cardiomyopathy in Indian population. Ushasree Boda Shivani Vadapalli Narsimhan Calambur Pratibha Nallari. Research Note Volume 88 Issue 3 December 2009 pp ...

  7. Calix[4]arene C-90 and its analogs activate ATPase of the myometrium myosin subfragment-1

    Directory of Open Access Journals (Sweden)

    R. D. Labyntseva

    2016-10-01

    Full Text Available Numerous female reproductive abnormalities are consequences of disorders in uterus smooth muscle (myometrium contractile function. In this work, we described activators of ATPase, which could be used for development of effective treatments for correcting this dysfunction. Myosin ATPase localized in the catalytic domain of myosin subfragment-1 transforms a chemical energy deposited in macroergic bonds of ATP into mechanical movement. It was shown that сalix[4]arene C-90 and its structural analogs functionalized at the upper rim of macrocycle with four or at least two N-phenylsulfonуltrifluoroacetamidine groups, are able to activate ATP hydrolysis catalyzed by myometrium myosin subfragment-1. It was shown with the method of computer modeling that N-phenylsulfonуltrifluoroacetamidine groups of calix[4]arene C-90 interact with responsible for binding, coordination and the hydrolysis of ATP amino acid residues of myosin subfragment-1. The results can be used for further research aimed at using calix[4]arene C-90 and its analogs as pharmacological compounds that can effectively normalize myometrium contractile hypofunction.

  8. Myosin II has distinct functions in PNS and CNS myelin sheath formation.

    Science.gov (United States)

    Wang, Haibo; Tewari, Ambika; Einheber, Steven; Salzer, James L; Melendez-Vasquez, Carmen V

    2008-09-22

    The myelin sheath forms by the spiral wrapping of a glial membrane around the axon. The mechanisms responsible for this process are unknown but are likely to involve coordinated changes in the glial cell cytoskeleton. We have found that inhibition of myosin II, a key regulator of actin cytoskeleton dynamics, has remarkably opposite effects on myelin formation by Schwann cells (SC) and oligodendrocytes (OL). Myosin II is necessary for initial interactions between SC and axons, and its inhibition or down-regulation impairs their ability to segregate axons and elongate along them, preventing the formation of a 1:1 relationship, which is critical for peripheral nervous system myelination. In contrast, OL branching, differentiation, and myelin formation are potentiated by inhibition of myosin II. Thus, by controlling the spatial and localized activation of actin polymerization, myosin II regulates SC polarization and OL branching, and by extension their ability to form myelin. Our data indicate that the mechanisms regulating myelination in the peripheral and central nervous systems are distinct.

  9. Diaphragm single-fiber weakness and loss of myosin in congestive heart failure rats

    NARCIS (Netherlands)

    Hees, H.W.H. van; Heijden, H.F.M. van der; Ottenheijm, C.A.C.; Heunks, L.M.A.; Pigmans, C.J.; Verheugt, F.W.A.; Brouwer, R.M.H.J.; Dekhuijzen, P.N.R.

    2007-01-01

    Diaphragm weakness commonly occurs in patients with congestive heart failure (CHF) and is an independent predictor of mortality. However, the pathophysiology of diaphragm weakness is poorly understood. We hypothesized that CHF induces diaphragm weakness at the single-fiber level by decreasing myosin

  10. Expression of porcine myosin heavy chain 1 gene in Berkshire loins ...

    African Journals Online (AJOL)

    Expression of porcine myosin heavy chain 1 gene in Berkshire loins with a high pH24 value. Jin Hun Kang, Woo Young Bang, Eun Jung Kwon, Yong Hwa Lee, Da Hye Park, Eun Seok Cho, Min Ji Kim, Jong-Soon Choi, Hwa Chun Park, Beom Young Park, Chul Wook Kim ...

  11. Invertebrate and vertebrate class III myosins interact with MORN repeat-containing adaptor proteins.

    Directory of Open Access Journals (Sweden)

    Kirk L Mecklenburg

    Full Text Available In Drosophila photoreceptors, the NINAC-encoded myosin III is found in a complex with a small, MORN-repeat containing, protein Retinophilin (RTP. Expression of these two proteins in other cell types showed NINAC myosin III behavior is altered by RTP. NINAC deletion constructs were used to map the RTP binding site within the proximal tail domain of NINAC. In vertebrates, the RTP ortholog is MORN4. Co-precipitation experiments demonstrated that human MORN4 binds to human myosin IIIA (MYO3A. In COS7 cells, MORN4 and MYO3A, but not MORN4 and MYO3B, co-localize to actin rich filopodia extensions. Deletion analysis mapped the MORN4 binding to the proximal region of the MYO3A tail domain. MYO3A dependent MORN4 tip localization suggests that MYO3A functions as a motor that transports MORN4 to the filopodia tips and MORN4 may enhance MYO3A tip localization by tethering it to the plasma membrane at the protrusion tips. These results establish conserved features of the RTP/MORN4 family: they bind within the tail domain of myosin IIIs to control their behavior.

  12. Heterogeneous activation of a slow myosin gene in proliferating myoblasts and differentiated single myofibers.

    Science.gov (United States)

    Wang, Jing-Hua; Wang, Qiao-Jing; Wang, Chao; Reinholt, Brad; Grant, Alan L; Gerrard, David E; Kuang, Shihuan

    2015-06-01

    Each skeletal muscle contains a fixed ratio of fast and slow myofibers that are distributed in a stereotyped pattern to achieve a specific motor function. How myofibers are specified during development and regeneration is poorly understood. Here we address this question using transgenic reporter mice that indelibly mark the myofiber lineages based on activation of fast or slow myosin. Lineage tracing indicates that during development all muscles have activated the fast myosin gene Myl1, but not the slow myosin gene Myh7, which is activated in all slow but a subset of fast myofibers. Similarly, most nascent myofibers do not activate Myh7 during fast muscle regeneration, but the ratio and pattern of fast and slow myofibers are restored at the completion of regeneration. At the single myofiber level, most mature fast myofibers are heterogeneous in nuclear composition, manifested by mosaic activation of Myh7. Strikingly, Myh7 is activated in a subpopulation of proliferating myoblasts that co-express the myogenic progenitor marker Pax7. When induced to differentiate, the Myh7-activated myoblasts differentiate more readily than the non-activated myoblasts, and have a higher tendency, but not restricted, to become slow myotubes. Together, our data reveal significant nuclear heterogeneity within a single myofiber, and challenge the conventional view that myosin genes are only expressed after myogenic differentiation. These results provide novel insights into the regulation of muscle fiber type specification. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Tail domain of the Aspergillus fumigatus class V myosin orchestrates septal localization and hyphal growth.

    Science.gov (United States)

    Renshaw, Hilary; Vargas-Muñiz, José M; Juvvadi, Praveen R; Richards, Amber D; Waitt, Greg; Soderblom, Erik J; Moseley, M Arthur; Steinbach, William J

    2017-12-08

    Myosins are critical motor proteins that contribute to the secretory pathway, polarized growth, and cytokinesis. The globular tail domains of class V myosins have been shown to be important for cargo binding and actin cable organization. Additionally, phosphorylation plays a role in class V myosin cargo choice. Our previous studies on the class V myosin, MyoE, in the fungal pathogen Aspergillus fumigatus confirmed its requirement for normal morphology and virulence. However, the domains and molecular mechanisms governing MyoE's function remain unknown. Here, by analyzing tail mutants we demonstrate that the tail is required for radial growth, conidiation, septation frequency, and MyoE localization at the septum. Furthermore, MyoE is phosphorylated at multiple residues in vivo; however, alanine substitution mutants revealed that no single phosphorylated residue was critical. Importantly, in the absence of the phosphatase calcineurin, an additional residue was phosphorylated in its tail domain. Mutation of this tail residue led to mislocalization of MyoE from the septa. This work reveals the importance of the MyoE tail domain and its phosphorylation/dephosphorylation in the growth and morphology of A. fumigatus. © 2017. Published by The Company of Biologists Ltd.

  14. Tropomyosin is essential for processive movement of a class V myosin from budding yeast.

    Science.gov (United States)

    Hodges, Alex R; Krementsova, Elena B; Bookwalter, Carol S; Fagnant, Patricia M; Sladewski, Thomas E; Trybus, Kathleen M

    2012-08-07

    Myosin V is an actin-based motor protein involved in intracellular cargo transport [1]. Given this physiological role, it was widely assumed that all class V myosins are processive, able to take multiple steps along actin filaments without dissociating. This notion was challenged when several class V myosins were characterized as nonprocessive in vitro, including Myo2p, the essential class V myosin from S. cerevisiae [2-6]. Myo2p moves cargo including secretory vesicles and other organelles for several microns along actin cables in vivo. This demonstrated cargo transporter must therefore either operate in small ensembles or behave processively in the cellular context. Here we show that Myo2p moves processively in vitro as a single motor when it walks on an actin track that more closely resembles the actin cables found in vivo. The key to processivity is tropomyosin: Myo2p is not processive on bare actin but highly processive on actin-tropomyosin. The major yeast tropomyosin isoform, Tpm1p, supports the most robust processivity. Tropomyosin slows the rate of MgADP release, thus increasing the time the motor spends strongly attached to actin. This is the first example of tropomyosin switching a motor from nonprocessive to processive motion on actin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients

    KAUST Repository

    Conti, Antonio

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS\\'s pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin-myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin-myosin interaction; this in turn might contribute to the pathogenesis of ALS. © 2013 Elsevier B.V.

  16. The Role of a Novel Myosin Isoform in Prostate Cancer Metastasis

    Science.gov (United States)

    2013-10-01

    J.A. Goodrich, P. de Lanerolle, Nuclear myosin I is necessary for the formation of the first phosphodiester bond during transcrip- tion initiation by... noncovalent association of lamin A with SUMO1. DISCUSSION We discovered that the lamin A tail domain is modified, both in vitro and in Cos-7 cells

  17. Myosin heavy chain composition of single fibres from m. biceps brachii of male body builders

    DEFF Research Database (Denmark)

    Klitgaard, H; Zhou, M.-Y.; Richter, Erik

    1990-01-01

    The myosin heavy chain (MHC) composition of single fibres from m. biceps brachii of young sedentary men (28 +/- 0.4 years, mean +/- SE, n = 4) and male body builders (25 +/- 2.0 years, n = 4) was analysed with a sensitive one-dimensional electrophoretic technique. Compared with sedentary men...

  18. A novel cGMP signalling pathway mediating myosin phosphorylation and chemotaxis in Dictyostelium

    NARCIS (Netherlands)

    Bosgraaf, Leonard; Russcher, Henk; Smith, Janet L.; Wessels, Deborah; Soll, David R.; Haastert, Peter J.M. van

    2002-01-01

    Chemotactic stimulation of Dictyostelium cells results in a transient increase in cGMP levels, and transient phosphorylation of myosin II heavy and regulatory light chains. In Dictyostelium, two guanylyl cyclases and four candidate cGMP-binding proteins (GbpA- GbpD) are implicated in cGMP

  19. Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Conti, Antonio; Riva, Nilo; Pesca, Mariasabina; Iannaccone, Sandro; Cannistraci, Carlo V; Corbo, Massimo; Previtali, Stefano C; Quattrini, Angelo; Alessio, Massimo

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS's pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin-myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin-myosin interaction; this in turn might contribute to the pathogenesis of ALS. © 2013 Elsevier B.V. All rights reserved.

  20. Block the function of nonmuscle myosin II by blebbistatin induces zebrafish embryo cardia bifida.

    Science.gov (United States)

    Wang, Xueqian; Chong, Mei; Wang, Xin; Wang, Hongkui; Zhang, Jie; Xu, Hui; Zhang, Jingjing; Liu, Dong

    2015-03-01

    Nonmuscle myosin II (NM II) is the name given to the multi-subunit protein product of three genes encoding different nonmuscle myosin heavy chains including NM II-A, NM II-B, and NM II-C. Blebbistatin is a small molecule that has been shown to be a relatively specific inhibitor of NM II. Blocking the function of NM II by blebbistatin induces zebrafish embryo cardia bifida at a dose-dependent manner. In situ hybridization analysis with ventricular marker ventricular myosin heavy chain (vmhc) and atrial marker atrial myosin heavy chain (amhc) showed each of the heart contained both distinct atria and ventricle. However, the cardia bifida embryos had highly variable distance between two separate ventricles. We also provided evidence that time window from 12 to 20 h post fertilization (hpf) is necessary and sufficient for cardia bifida formation caused by blebbistatin treatment. Expression of spinster homolog 2 (spns2) was decreased in blebbistatin-treated embryos, suggesting the cardia bifida phenotype caused by NM II inhibition was relevant to precardiac mesoderm migration defects. Through in situ hybridization analysis, we showed that foxa1 was expressed in endoderm of blebbistatin-treated embryos at 24-hpf stage, suggesting the endoderm formation is normal in cardia bifida embryos caused by blebbistatin treatment. In addition, we demonstrated that blebbistatin treatment resulted in morphology alteration of zebrafish cardiomyocytes in vivo and neonatal mouse cardiomyocytes in vitro.

  1. Twirling of actin by myosins II and V observed via polarized TIRF in a modified gliding assay.

    Science.gov (United States)

    Beausang, John F; Schroeder, Harry W; Nelson, Philip C; Goldman, Yale E

    2008-12-15

    The force generated between actin and myosin acts predominantly along the direction of the actin filament, resulting in relative sliding of the thick and thin filaments in muscle or transport of myosin cargos along actin tracks. Previous studies have also detected lateral forces or torques that are generated between actin and myosin, but the origin and biological role of these sideways forces is not known. Here we adapt an actin gliding filament assay to measure the rotation of an actin filament about its axis ("twirling") as it is translocated by myosin. We quantify the rotation by determining the orientation of sparsely incorporated rhodamine-labeled actin monomers, using polarized total internal reflection microscopy. To determine the handedness of the filament rotation, linear incident polarizations in between the standard s- and p-polarizations were generated, decreasing the ambiguity of our probe orientation measurement fourfold. We found that whole myosin II and myosin V both twirl actin with a relatively long (approximately 1 microm), left-handed pitch that is insensitive to myosin concentration, filament length, and filament velocity.

  2. Myosin VIIA, important for human auditory function, is necessary for Drosophila auditory organ development.

    Directory of Open Access Journals (Sweden)

    Sokol V Todi

    Full Text Available BACKGROUND: Myosin VIIA (MyoVIIA is an unconventional myosin necessary for vertebrate audition [1]-[5]. Human auditory transduction occurs in sensory hair cells with a staircase-like arrangement of apical protrusions called stereocilia. In these hair cells, MyoVIIA maintains stereocilia organization [6]. Severe mutations in the Drosophila MyoVIIA orthologue, crinkled (ck, are semi-lethal [7] and lead to deafness by disrupting antennal auditory organ (Johnston's Organ, JO organization [8]. ck/MyoVIIA mutations result in apical detachment of auditory transduction units (scolopidia from the cuticle that transmits antennal vibrations as mechanical stimuli to JO. PRINCIPAL FINDINGS: Using flies expressing GFP-tagged NompA, a protein required for auditory organ organization in Drosophila, we examined the role of ck/MyoVIIA in JO development and maintenance through confocal microscopy and extracellular electrophysiology. Here we show that ck/MyoVIIA is necessary early in the developing antenna for initial apical attachment of the scolopidia to the articulating joint. ck/MyoVIIA is also necessary to maintain scolopidial attachment throughout adulthood. Moreover, in the adult JO, ck/MyoVIIA genetically interacts with the non-muscle myosin II (through its regulatory light chain protein and the myosin binding subunit of myosin II phosphatase. Such genetic interactions have not previously been observed in scolopidia. These factors are therefore candidates for modulating MyoVIIA activity in vertebrates. CONCLUSIONS: Our findings indicate that MyoVIIA plays evolutionarily conserved roles in auditory organ development and maintenance in invertebrates and vertebrates, enhancing our understanding of auditory organ development and function, as well as providing significant clues for future research.

  3. Orbit/CLASP is required for myosin accumulation at the cleavage furrow in Drosophila male meiosis.

    Directory of Open Access Journals (Sweden)

    Daishi Kitazawa

    Full Text Available Peripheral microtubules (MTs near the cell cortex are essential for the positioning and continuous constriction of the contractile ring (CR in cytokinesis. Time-lapse observations of Drosophila male meiosis showed that myosin II was first recruited along the cell cortex independent of MTs. Then, shortly after peripheral MTs made contact with the equatorial cortex, myosin II was concentrated there in a narrow band. After MT contact, anillin and F-actin abruptly appeared on the equatorial cortex, simultaneously with myosin accumulation. We found that the accumulation of myosin did not require centralspindlin, but was instead dependent on Orbit, a Drosophila ortholog of the MT plus-end tracking protein CLASP. This protein is required for stabilization of central spindle MTs, which are essential for cytokinesis. Orbit was also localized in a mid-zone of peripheral MTs, and was concentrated in a ring at the equatorial cortex during late anaphase. Fluorescence resonance energy transfer experiments indicated that Orbit is closely associated with F-actin in the CR. We also showed that the myosin heavy chain was in close proximity with Orbit in the cleavage furrow region. Centralspindlin was dispensable in Orbit ring formation. Instead, the Polo-KLP3A/Feo complex was required for the Orbit accumulation independently of the Orbit MT-binding domain. However, orbit mutations of consensus sites for the phosphorylation of Cdk1 or Polo did not influence the Orbit accumulation, suggesting an indirect regulatory role of these protein kinases in Orbit localization. Orbit was also necessary for the maintenance of the CR. Our data suggest that Orbit plays an essential role as a connector between MTs and the CR in Drosophila male meiosis.

  4. Myosin II Motors and F-Actin Dynamics Drive the Coordinated Movement of the Centrosome and Soma during CNS Glial-Guided Neuronal Migration

    Energy Technology Data Exchange (ETDEWEB)

    Solecki, Dr. David [St. Jude Children' s Research Hospital; Trivedi, Dr. Niraj [St. Jude Children' s Research Hospital; Govek, Eve-Ellen [Rockefeller University, The; Kerekes, Ryan A [ORNL; Gleason, Shaun Scott [ORNL; Hatten, Mary E [Rockefeller University, The

    2009-01-01

    Lamination of cortical regions of the vertebrate brain depends on glial-guided neuronal migration. The conserved polarity protein Par6{alpha} localizes to the centrosome and coordinates forward movement of the centrosome and soma in migrating neurons. The cytoskeletal components that produce this unique form of cell polarity and their relationship to polarity signaling cascades are unknown. We show that F-actin and Myosin II motors are enriched in the neuronal leading process and that Myosin II activity is necessary for leading process actin dynamics. Inhibition of Myosin II decreased the speed of centrosome and somal movement, whereas Myosin II activation increased coordinated movement. Ectopic expression or silencing of Par6{alpha} inhibited Myosin II motors by decreasing Myosin light-chain phosphorylation. These findings suggest leading-process Myosin II may function to 'pull' the centrosome and soma forward during glial-guided migration by a mechanism involving the conserved polarity protein Par6{alpha}.

  5. Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation

    Science.gov (United States)

    Homburger, Julian R.; Green, Eric M.; Caleshu, Colleen; Sunitha, Margaret S.; Taylor, Rebecca E.; Ruppel, Kathleen M.; Metpally, Raghu Prasad Rao; Colan, Steven D.; Michels, Michelle; Day, Sharlene M.; Olivotto, Iacopo; Bustamante, Carlos D.; Dewey, Frederick E.; Ho, Carolyn Y.; Spudich, James A.; Ashley, Euan A.

    2016-01-01

    Myosin motors are the fundamental force-generating elements of muscle contraction. Variation in the human β-cardiac myosin heavy chain gene (MYH7) can lead to hypertrophic cardiomyopathy (HCM), a heritable disease characterized by cardiac hypertrophy, heart failure, and sudden cardiac death. How specific myosin variants alter motor function or clinical expression of disease remains incompletely understood. Here, we combine structural models of myosin from multiple stages of its chemomechanical cycle, exome sequencing data from two population cohorts of 60,706 and 42,930 individuals, and genetic and phenotypic data from 2,913 patients with HCM to identify regions of disease enrichment within β-cardiac myosin. We first developed computational models of the human β-cardiac myosin protein before and after the myosin power stroke. Then, using a spatial scan statistic modified to analyze genetic variation in protein 3D space, we found significant enrichment of disease-associated variants in the converter, a kinetic domain that transduces force from the catalytic domain to the lever arm to accomplish the power stroke. Focusing our analysis on surface-exposed residues, we identified a larger region significantly enriched for disease-associated variants that contains both the converter domain and residues on a single flat surface on the myosin head described as the myosin mesa. Notably, patients with HCM with variants in the enriched regions have earlier disease onset than patients who have HCM with variants elsewhere. Our study provides a model for integrating protein structure, large-scale genetic sequencing, and detailed phenotypic data to reveal insight into time-shifted protein structures and genetic disease. PMID:27247418

  6. Defined MicroRNAs Induce Aspects of Maturation in Mouse and Human Embryonic-Stem-Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Desy S. Lee

    2015-09-01

    Full Text Available Pluripotent-cell-derived cardiomyocytes have great potential for use in research and medicine, but limitations in their maturity currently constrain their usefulness. Here, we report a method for improving features of maturation in murine and human embryonic-stem-cell-derived cardiomyocytes (m/hESC-CMs. We found that coculturing m/hESC-CMs with endothelial cells improves their maturity and upregulates several microRNAs. Delivering four of these microRNAs, miR-125b-5p, miR-199a-5p, miR-221, and miR-222 (miR-combo, to m/hESC-CMs resulted in improved sarcomere alignment and calcium handling, a more negative resting membrane potential, and increased expression of cardiomyocyte maturation markers. Although this could not fully phenocopy all adult cardiomyocyte characteristics, these effects persisted for two months following delivery of miR-combo. A luciferase assay demonstrated that all four miRNAs target ErbB4, and siRNA knockdown of ErbB4 partially recapitulated the effects of miR-combo. In summary, a combination of miRNAs induced via endothelial coculture improved ESC-CM maturity, in part through suppression of ErbB4 signaling.

  7. Uncoupled embryonic and extra-embryonic tissues compromise blastocyst development after somatic cell nuclear transfer.

    Directory of Open Access Journals (Sweden)

    Séverine A Degrelle

    Full Text Available Somatic cell nuclear transfer (SCNT is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulating tissues were analysed. At Day 18, 30 SCNT conceptuses were compared to 20 controls (AI and IVP: 10 conceptuses each; one-half of the SCNT conceptuses appeared normal while the other half showed signs of atypical elongation and gastrulation. SCNT was also associated with a high incidence of discordance in embryonic and extra-embryonic patterns, as evidenced by morphological and molecular "uncoupling". Elongation appeared to be secondarily affected; only 3 of 30 conceptuses had abnormally elongated shapes and there were very few differences in gene expression when they were compared to the controls. However, some of these differences could be linked to defects in microvilli formation or extracellular matrix composition and could thus impact extra-embryonic functions. In contrast to elongation, gastrulation stages included embryonic defects that likely affected the hypoblast, the epiblast, or the early stages of their differentiation. When taking into account SCNT conceptus somatic origin, i.e. the reprogramming efficiency of each bovine ear fibroblast (Low: 0029, Med: 7711, High: 5538, we found that embryonic abnormalities or severe embryonic/extra-embryonic uncoupling were more tightly correlated to embryo loss at implantation than were elongation defects. Alternatively, extra-embryonic differences between SCNT and control conceptuses at Day 18 were related to molecular plasticity (high efficiency/high plasticity and subsequent pregnancy loss. Finally

  8. The myotonic dystrophy type 2 (DM2) gene product zinc finger protein 9 (ZNF9) is associated with sarcomeres and normally localized in DM2 patients' muscles.

    Science.gov (United States)

    Massa, R; Panico, M B; Caldarola, S; Fusco, F R; Sabatelli, P; Terracciano, C; Botta, A; Novelli, G; Bernardi, G; Loreni, F

    2010-06-01

    Myotonic dystrophy type 2 (DM2) is caused by a [CCTG]n intronic expansion in the zinc finger protein 9 (ZNF9) gene. As for DM1, sharing with DM2 a similar phenotype, the pathogenic mutation involves a transcribed but untranslated genomic region, suggesting that RNA toxicity may have a role in the pathogenesis of these multisystem disorders by interfering with common cellular mechanisms. However, haploinsufficiency has been described in DM1 and DM2 animal models, and might contribute to pathogenesis. The aim of the present work was therefore to assess ZNF9 protein expression in rat tissues and in human muscle, and ZNF9 subcellular distribution in normal and DM2 human muscles. Polyclonal anti-ZNF9 antibodies were obtained in rabbit, high pressure liquid chromatography-purified, and used for Western blot, standard and confocal immunofluorescence and immunogold labelling electron microscopy on a panel of normal rat tissues and on normal and DM2 human muscles. Western blot analysis showed that ZNF9 is ubiquitously expressed in mammalian tissues, and that its signal is not substantially modified in DM2 muscles. Immunofluorescence studies showed a myofibrillar distribution of ZNF9, and double staining with two non-repetitive epitopes of titin located it in the I bands. This finding was confirmed by the visualization of ZNF9 in close relation with sarcomeric thin filaments by immunogold labelling electron microscopy. ZNF9 distribution was unaltered in DM2 muscle fibres. ZNF9 is abundantly expressed in human myofibres, where it is located in the sarcomeric I bands, and no modification of this pattern is observed in DM2 muscles.

  9. Confinement-Optimized 3-Dimensional T cell Amoeboid Motility is Modulated via Myosin IIA-Regulated Adhesions

    Science.gov (United States)

    Jacobelli, Jordan; Friedman, Rachel S.; Conti, Mary Anne; Lennon-Dumenil, Ana-Maria; Piel, Matthieu; Sorensen, Caitlin M.; Adelstein, Robert S.; Krummel, Matthew F.

    2010-01-01

    During trafficking through tissues, T cells fine-tune their motility to balance the extent and duration of cell-surface contacts with the need to traverse an entire organ. In vivo, Myosin-IIA-deficient T cells exhibited a triad of defects including over-adherence to high-endothelial venules, reduced interstitial migration, and inefficient completion of recirculation through lymph nodes. Spatiotemporal analysis of 3-dimensional motility in microchannels revealed that the degree of confinement and Myosin-IIA function, rather than integrin adhesion as proposed by the haptokinetic model, optimize motility rate. This occurs via a Myosin-IIA-dependent rapid ‘walking’ motility mode using multiple small and simultaneous adhesions to the substrate, which prevent spurious and prolonged adhesions. Adhesion discrimination provided by Myosin-IIA is thus necessary for optimizing motility through complex tissues. PMID:20835229

  10. Blebs produced by actin-myosin contraction during apoptosis release damage-associated molecular pattern proteins before secondary necrosis occurs

    National Research Council Canada - National Science Library

    Wickman, G R; Julian, L; Mardilovich, K; Schumacher, S; Munro, J; Rath, N; Zander, S Al; Mleczak, A; Sumpton, D; Morrice, N; Bienvenut, W V; Olson, M F

    2013-01-01

    ... the catastrophic loss of membrane integrity during secondary necrosis. Blebbing, apoptotic body formation and protein release during early apoptosis are dependent on ROCK and myosin ATPase activity to drive actomyosin contraction...

  11. Embryonic Stem Cells: Isolation, Characterization and Culture

    Science.gov (United States)

    Amit, Michal; Itskovitz-Eldor, Joseph

    Embryonic stem cells are pluripotent cells isolated from the mammalian blastocyst. Traditionally, these cells have been derived and cultured with mouse embryonic fibroblast (MEF) supportive layers, which allow their continuous growth in an undifferentiated state. However, for any future industrial or clinical application hESCs should be cultured in reproducible, defined, and xeno-free culture system, where exposure to animal pathogens is prevented. From their derivation in 1998 the methods for culturing hESCs were significantly improved. This chapter wills discuss hESC characterization and the basic methods for their derivation and maintenance.

  12. Myosin Va Plays a Role in Nitrergic Smooth Muscle Relaxation in Gastric Fundus and Corpora Cavernosa of Penis

    OpenAIRE

    Arun Chaudhury; Vivian Cristofaro; Carew, Josephine A.; Goyal, Raj K; Sullivan, Maryrose P.

    2014-01-01

    The intracellular motor protein myosin Va is involved in nitrergic neurotransmission possibly by trafficking of neuronal nitric oxide synthase (nNOS) within the nerve terminals. In this study, we examined the role of myosin Va in the stomach and penis, proto-typical smooth muscle organs in which nitric oxide (NO) mediated relaxation is critical for function. We used confocal microscopy and co-immunoprecipitation of tissue from the gastric fundus (GF) and penile corpus cavernosum (CCP) to loca...

  13. Refined model of the 10S conformation of smooth muscle myosin by cryo-electron microscopy 3D image reconstruction.

    Science.gov (United States)

    Liu, Jun; Wendt, Thomas; Taylor, Dianne; Taylor, Kenneth

    2003-06-20

    The actin-activated ATPase activity of smooth muscle myosin and heavy meromyosin (smHMM) is regulated by phosphorylation of the regulatory light chain (RLC). Complete regulation requires two intact myosin heads because single-headed myosin subfragments are always active. 2D crystalline arrays of the 10S form of intact myosin, which has a dephosphorylated RLC, were produced on a positively charged lipid monolayer and imaged in 3D at 2.0 nm resolution by cryo-electron microscopy of frozen, hydrated specimens. An atomic model of smooth muscle myosin was constructed from the X-ray structures of the smooth muscle myosin motor domain and essential light chain and a homology model of the RLC was produced based on the skeletal muscle S1 structure. The initial model of the 10S myosin, based on the previous reconstruction of smHMM, was subjected to real space refinement to obtain a quantitative fit to the density. The smHMM was likewise refined and both refined models reveal the same asymmetric interaction between the upper 50 kDa domain of the "blocked" head and parts of the catalytic, converter domains and the essential light chain of the "free" head observed previously. This observation suggests that this interaction is not simply due to crystallographic packing but is enforced by elements of the myosin heads. The 10S reconstruction shows additional alpha-helical coiled-coil not seen in the earlier smHMM reconstruction, but the location of one segment of S2 is the same in both.

  14. The Role of the UNC-82 Protein Kinase in Organizing Myosin Filaments in Striated Muscle of Caenorhabditis elegans.

    Science.gov (United States)

    Schiller, NaTasha R; Duchesneau, Christopher D; Lane, Latrisha S; Reedy, April R; Manzon, Emily R; Hoppe, Pamela E

    2017-03-01

    We study the mechanisms that guide the formation and maintenance of the highly ordered actin-myosin cytoskeleton in striated muscle. The UNC-82 kinase of Caenorhabditis elegans is orthologous to mammalian kinases ARK5/NUAK1 and SNARK/NUAK2. UNC-82 localizes to the M-line, and is required for proper organization of thick filaments, but its substrate and mechanism of action are unknown. Antibody staining of three mutants with missense mutations in the UNC-82 catalytic domain revealed muscle structure that is less disorganized than in the null unc-82(0), but contained distinctive ectopic accumulations not found in unc-82(0) These accumulations contain paramyosin and myosin B, but lack myosin A and myosin A-associated proteins, as well as proteins of the integrin-associated complex. Fluorescently tagged missense mutant protein UNC-82 E424K localized normally in wild type; however, in unc-82(0), the tagged protein was found in the ectopic accumulations, which we also show to label with recently synthesized paramyosin. Recruitment of wild-type UNC-82::GFP to aggregates of differing protein composition in five muscle-affecting mutants revealed that colocalization of UNC-82 and paramyosin does not require UNC-96, UNC-98/ZnF, UNC-89/obscurin, CSN-5, myosin A, or myosin B individually. Dosage effects in paramyosin mutants suggest that UNC-82 acts as part of a complex, in which its stoichiometric relationship with paramyosin is critical. UNC-82 dosage affects muscle organization in the absence of paramyosin, perhaps through myosin B. We present evidence that the interaction of UNC-98/ZnF with myosin A is independent of UNC-82, and that UNC-82 acts upstream of UNC-98/ZnF in a pathway that organizes paramyosin during thick filament assembly. Copyright © 2017 by the Genetics Society of America.

  15. Stimulation of cortical myosin phosphorylation by p114RhoGEF drives cell migration and tumor cell invasion.

    Directory of Open Access Journals (Sweden)

    Stephen J Terry

    Full Text Available Actinomyosin activity is an important driver of cell locomotion and has been shown to promote collective cell migration of epithelial sheets as well as single cell migration and tumor cell invasion. However, the molecular mechanisms underlying activation of cortical myosin to stimulate single cell movement, and the relationship between the mechanisms that drive single cell locomotion and those that mediate collective cell migration of epithelial sheets are incompletely understood. Here, we demonstrate that p114RhoGEF, an activator of RhoA that associates with non-muscle myosin IIA, regulates collective cell migration of epithelial sheets and tumor cell invasion. Depletion of p114RhoGEF resulted in specific spatial inhibition of myosin activation at cell-cell contacts in migrating epithelial sheets and the cortex of migrating single cells, but only affected double and not single phosphorylation of myosin light chain. In agreement, overall elasticity and contractility of the cells, processes that rely on persistent and more constant forces, were not affected, suggesting that p114RhoGEF mediates process-specific myosin activation. Locomotion was p114RhoGEF-dependent on Matrigel, which favors more roundish cells and amoeboid-like actinomyosin-driven movement, but not on fibronectin, which stimulates flatter cells and lamellipodia-driven, mesenchymal-like migration. Accordingly, depletion of p114RhoGEF led to reduced RhoA, but increased Rac activity. Invasion of 3D matrices was p114RhoGEF-dependent under conditions that do not require metalloproteinase activity, supporting a role of p114RhoGEF in myosin-dependent, amoeboid-like locomotion. Our data demonstrate that p114RhoGEF drives cortical myosin activation by stimulating myosin light chain double phosphorylation and, thereby, collective cell migration of epithelial sheets and amoeboid-like motility of tumor cells.

  16. Genetic basis for developmental toxicity due to statin intake using embryonic stem cell differentiation model.

    Science.gov (United States)

    Jyoti, S; Tandon, S

    2015-10-01

    The in utero environment is a key factor controlling the fate of the growing embryo. The deleterious effects of statins during the fetal development are still not very well understood. Data from animal studies and retrospective studies performed in pregnant women give conflicting reports. In this study, using in vitro differentiation model of embryonic stem cells, which mimic the differentiation process of the embryo, we have systematically exposed the cells to lipophilic statins, simvastatin, and atorvastatin at various doses and at critical times during differentiation. The analysis of key genes controlling the differentiation into ecto-, meso- and endodermal lineages was assessed by quantitative polymerase chain reaction. Our results show that genes of the mesodermal lineage were most sensitive to statins, leading to changes in the transcript levels of brachyury, Flk-1, Nkx2.5, and α/β-myosin heavy chain. In addition, changes to endodermal marker α-fetoprotein, along with ectodermal Nes and Neurofilament 200 kDa, imply that during early differentiation exposure to these drugs leads to altered signaling, which could translate to the congenital abnormalities seen in the heart and limbs. © The Author(s) 2015.

  17. Apical constriction initiates new bud formation during monopodial branching of the embryonic chicken lung.

    Science.gov (United States)

    Kim, Hye Young; Varner, Victor D; Nelson, Celeste M

    2013-08-01

    Branching morphogenesis sculpts the airway epithelium of the lung into a tree-like structure to conduct air and promote gas exchange after birth. In the avian lung, a series of buds emerges from the dorsal surface of the primary bronchus via monopodial branching to form the conducting airways; anatomically, these buds are similar to those formed by domain branching in the mammalian lung. Here, we show that monopodial branching is initiated by apical constriction of the airway epithelium, and not by differential cell proliferation, using computational modeling and quantitative imaging of embryonic chicken lung explants. Both filamentous actin and phosphorylated myosin light chain were enriched at the apical surface of the airway epithelium during monopodial branching. Consistently, inhibiting actomyosin contractility prevented apical constriction and blocked branch initiation. Although cell proliferation was enhanced along the dorsal and ventral aspects of the primary bronchus, especially before branch formation, inhibiting proliferation had no effect on the initiation of branches. To test whether the physical forces from apical constriction alone are sufficient to drive the formation of new buds, we constructed a nonlinear, three-dimensional finite element model of the airway epithelium and used it to simulate apical constriction and proliferation in the primary bronchus. Our results suggest that, consistent with the experimental results, apical constriction is sufficient to drive the early stages of monopodial branching whereas cell proliferation is dispensable. We propose that initial folding of the airway epithelium is driven primarily by apical constriction during monopodial branching of the avian lung.

  18. Atoh1 directs hair cell differentiation and survival in the late embryonic mouse inner ear.

    Science.gov (United States)

    Chonko, Kurt T; Jahan, Israt; Stone, Jennifer; Wright, Margaret C; Fujiyama, Tomoyuki; Hoshino, Mikio; Fritzsch, Bernd; Maricich, Stephen M

    2013-09-15

    Atoh1 function is required for the earliest stages of inner ear hair cell development, which begins during the second week of gestation. Atoh1 expression in developing hair cells continues until early postnatal ages, but the function of this late expression is unknown. To test the role of continued Atoh1 expression in hair cell maturation we conditionally deleted the gene in the inner ear at various embryonic and postnatal ages. In the organ of Corti, deletion of Atoh1 at E15.5 led to the death of all hair cells. In contrast, deletion at E16.5 caused death only in apical regions, but abnormalities of stereocilia formation were present throughout the cochlea. In the utricle, deletion at E14.5 or E16.5 did not cause cell death but led to decreased expression of myosin VIIa and failure of stereocilia formation. Furthermore, we show that maintained expression of Barhl1 and Gfi1, two transcription factors implicated in cochlear hair cell survival, depends upon continued Atoh1 expression. However, maintained expression of Pou4f3 and several hair cell-specific markers is independent of Atoh1 expression. These data reveal novel late roles for Atoh1 that are separable from its initial role in hair cell development. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Atoh1 directs hair cell differentiation and survival in the late embryonic mouse inner ear☆

    Science.gov (United States)

    Chonko, Kurt T.; Jahan, Israt; Stone, Jennifer; Wright, Margaret C.; Fujiyama, Tomoyuki; Hoshino, Mikio; Fritzsch, Bernd; Maricich, Stephen M.

    2013-01-01

    Atoh1 function is required for the earliest stages of inner ear hair cell development, which begins during the second week of gestation. Atoh1 expression in developing hair cells continues until early postnatal ages, but the function of this late expression is unknown. To test the role of continued Atoh1 expression in hair cell maturation we conditionally deleted the gene in the inner ear at various embryonic and postnatal ages. In the organ of Corti, deletion of Atoh1 at E15.5 led to the death of all hair cells. In contrast, deletion at E16.5 caused death only in apical regions, but abnormalities of stereocilia formation were present throughout the cochlea. In the utricle, deletion at E14.5 or E16.5 did not cause cell death but led to decreased expression of myosin VIIa and failure of stereocilia formation. Furthermore, we show that maintained expression of Barhl1 and Gfi1, two transcription factors implicated in cochlear hair cell survival, depends upon continued Atoh1 expression. However, maintained expression of Pou4f3 and several hair cell-specific markers is independent of Atoh1 expression. These data reveal novel late roles for Atoh1 that are separable from its initial role in hair cell development. PMID:23796904

  20. Second heart field and the development of the outflow tract in human embryonic heart.

    Science.gov (United States)

    Yang, Yan-Ping; Li, Hai-Rong; Cao, Xi-Mei; Wang, Qin-Xue; Qiao, Cong-Jin; Ya, Jing

    2013-04-01

    The second heart field (SHF) is indicated to contribute to the embryonic heart development. However, less knowledge is available about SHF development of human embryo due to the difficulty of collecting embryos. In this study, serial sections of human embryos from Carnegie stage 10 (CS10) to CS16 were stained with antibodies against Islet-1 (Isl-1), Nkx2.5, GATA4, myosin heavy chain (MHC) and α-smooth muscle actin (α-SMA) to observe spatiotemporal distribution of SHF and its contribution to the development of the arterial pole of cardiac tube. Our findings suggest that during CS10 to CS12, SHF of the human embryo is composed of the bilateral pharyngeal mesenchyme, the central mesenchyme of the branchial arch and splanchnic mesoderm of the pericardial cavity dorsal wall. With development, SHF translocates and consists of ventral pharyngeal mesenchyme and dorsal wall of the pericardial cavity. Hence, the SHF of human embryo shows a dynamic spatiotemporal distribution pattern. The formation of the Isl-1 positive condense cell prongs provides an explanation for the saddle structure formation at the distal pole of the outflow tract. In human embryo, the Isl-1 positive cells of SHF may contribute to the formation of myocardial outflow tract (OFT) and the septum during different development stages. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  1. Cardiomyocyte Marker Expression in Mouse Embryonic Fibroblasts by Cell-Free Cardiomyocyte Extract and Epigenetic Manipulation

    Directory of Open Access Journals (Sweden)

    Tahereh Talaei-Khozani

    2014-03-01

    Full Text Available Background: The regenerative capacity of the mammalian heart is quite limited. Recent reports have focused on reprogramming mesenchymal stem cells into cardiomyocytes. We investigated whether fibroblasts could transdifferentiate into myocardium. Methods: Mouse embryonic fibroblasts were treated with Trichostatin A (TSA and 5-Aza-2-Deoxycytidine (5-aza-dC. The treated cells were permeabilized with streptolysin O and exposed to the mouse cardiomyocyte extract and cultured for 1, 10, and 21 days. Cardiomyocyte markers were detected by immunohistochemistry. Alkaline phosphatase activity and OCT4 were also detected in cells treated by chromatin-modifying agents. Results: The cells exposed to a combination of 5-aza-dC and TSA and permeabilized in the presence of the cardiomyocyte extract showed morphological changes. The cells were unable to express cardiomyocyte markers after 24 h. Immunocytochemical assays showed a notable degree of myosin heavy chain and α-actinin expressions after 10 days. The expression of the natriuretic factor and troponin T occurred after 21 days in these cells. The cells exposed to chromatin-modifying agents also expressed cardiomyocyte markers; however, the proportion of reprogrammed cells was clearly smaller than that in the cultures exposed to 5-aza-dC , TSA, and extract. Conclusion: It seems that the fibroblasts were able to eliminate the previous epigenetic markers and form new ones according to the factors existing in the extract. Since no beating was observed, at least up to 21 days, the cells may need an appropriate extracellular matrix for their function.

  2. THERMAL STABILITY OF SYNTHETIC PEPTIDES MIMICKING THE SEQUENCE OF THE REGION CONTAINING THE SKIP RESIDUES IN SQUID MYOSIN ROD

    Directory of Open Access Journals (Sweden)

    Yoshihiro Ochiai

    2017-08-01

    Full Text Available Myosin is the major protein in skeletal muscles including those of fish and shellfish. The characteristics of this protein are closely related to the biological function and the quality and physical properties of musclefood. In the myosin rod (the coiled-coil region of myosin, several amino acid residues, known as skip residues, seem to destabilize the ordered structure (heptad repeat. These residues might be responsible for reducing thermal stability. Attempts were thus made to examine the role of these residues in the rod of squid myosin, based on the thermodynamic properties of synthetic peptides which have been designed to mimic the partial sequence of myosin heavy chain from the squid Todarodes pacificus mantle muscle. Five peptides, namely, with the sequence of Trp1343 -Ala1372  having the skip residue Glu1357 at the center (Peptide WT, without the skip residue (Peptide Δ, with the replacements of the skip residue (Glu by Ile, Gln and Pro (Peptides E/I, E/Q, and E/P, respectively to modify the helix forming propensity, were synthesized. The results obtained showed that the stability of the peptides as measured by circular dichroism spectrometry was in the order of Peptide Δ > Peptide WT > Peptide E/Q > Peptide E/P > Peptide E/I. It is suggested that the presence of the skip residues dexterously tunes the stability or flexibility of the coiled-coil structure, thus possibly regulating thick filament formation and further gel formation ability of myosin.

  3. Tyrosine phosphorylation/dephosphorylation of myosin II essential light chains of Entamoeba histolytica trophozoites regulates their motility.

    Science.gov (United States)

    Bonilla-Moreno, Raúl; Pérez-Yépez, Eloy-Andrés; Villegas-Sepúlveda, Nicolás; Morales, Fernando O; Meza, Isaura

    2016-08-01

    Entamoeba histolytica trophozoites dwell in the human intestine as comensals although under still unclear circumstances become invasive and destroy the host tissues. For these activities, trophozoites relay on remarkable motility provided by the cytoskeleton organization. Amebic actin and some of its actin-associated proteins are well known, while components of the myosin II molecule, although predicted from the E. histolytica genome, need biochemical and functional characterization. Recently, an amebic essential light myosin II chain, named EhMLCI, was identified and reported to be phosphorylated in tyrosines. The phosphorylated form of the protein was associated with the soluble assembly incompetent conformation of the heavy myosin chains, while the non-phosphorylated protein was identified with filamentous heavy chains, organized in an assembly competent conformation. It was postulated that EhMLCI tyrosine phosphorylation could act as a negative regulator of myosin II activity by its phosphorylation/dephosphorylation cycles. To test this hypothesis, we constructed an expression vector containing an EhMLCI DNA sequence where two tyrosine residues, with strong probability of phosphorylation and fall within the single EF-hand domain that interacts with the N-terminus of myosin II heavy chains, were replaced by phenylalanines. Transfected trophozoites, expressing the mutant MutEhMLCI protein cannot process it, thereby not incorporated into the phosphorylation/dephosphorylation cycles required for myosin II activity, results in motility defective trophozoites. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Calix[4]arene C-99 inhibits myosin ATPase activity and changes the organization of contractile filaments of myometrium

    Directory of Open Access Journals (Sweden)

    R. D. Labyntseva,

    2015-12-01

    Full Text Available Calix[4]arenes are cup-like macrocyclic (polyphenolic compounds, they are regarded as promising molecular “platforms” for the design of new physiologically active compounds. We have earlier found that сalix[4]arenе C-99 inhibits the ATPase activity of actomyosin and myosin subfragment-1 of pig uterus іn vitro. The aim of this study was to investigate the interaction of calix[4]arene C-99 with myosin from rat uterine myocytes. It was found that the ATPase activity of myosin prepared from pre-incubated with 100 mM of calix[4]arene C-99 myocytes was almost 50% lower than in control. Additionally, we have revealed the effect of calix[4]arene C-99 on the subcellular distribution of actin and myosin in uterus myocytes by the method of confocal microscopy. This effect can be caused by reorganization of the structure of the contractile smooth muscle cell proteins due to their interaction with calix[4]arene. The obtained results demonstrate the ability of calix[4]arene C-99 to penetrate into the uterus muscle cells and affect not only the myosin ATPase activity, but also the structure of the actin and myosin filaments in the myometrial cells. Demonstrated ability of calix[4]arene C-99 can be used for development of new pharmacological agents for efficient normalization of myometrial contractile hyperfunction.

  5. Cell-scale dynamic recycling and cortical flow of the actin–myosin cytoskeleton for rapid cell migration

    Directory of Open Access Journals (Sweden)

    Shigehiko Yumura

    2012-11-01

    Actin and myosin II play major roles in cell migration. Whereas pseudopod extension by actin polymerization has been intensively researched, less attention has been paid to how the rest of the actin cytoskeleton such as the actin cortex contributes to cell migration. In this study, cortical actin and myosin II filaments were simultaneously observed in migrating Dictyostelium cells under total internal reflection fluorescence microscopy. The cortical actin and myosin II filaments remained stationary with respect to the substratum as the cells advanced. However, fluorescence recovery after photobleaching experiments and direct observation of filaments showed that they rapidly turned over. When the cells were detached from the substratum, the actin and myosin filaments displayed a vigorous retrograde flow. Thus, when the cells migrate on the substratum, the cortical cytoskeleton firmly holds the substratum to generate the motive force instead. The present studies also demonstrate how myosin II localizes to the rear region of the migrating cells. The observed dynamic turnover of actin and myosin II filaments contributes to the recycling of their subunits across the whole cell and enables rapid reorganization of the cytoskeleton.

  6. Pipette-based Method to Study Embryoid Body Formation Derived from Mouse and Human Pluripotent Stem Cells Partially Recapitulating Early Embryonic Development Under Simulated Microgravity Conditions

    Science.gov (United States)

    Shinde, Vaibhav; Brungs, Sonja; Hescheler, Jürgen; Hemmersbach, Ruth; Sachinidis, Agapios

    2016-06-01

    The in vitro differentiation of pluripotent stem cells partially recapitulates early in vivo embryonic development. More recently, embryonic development under the influence of microgravity has become a primary focus of space life sciences. In order to integrate the technique of pluripotent stem cell differentiation with simulated microgravity approaches, the 2-D clinostat compatible pipette-based method was experimentally investigated and adapted for investigating stem cell differentiation processes under simulated microgravity conditions. In order to keep residual accelerations as low as possible during clinorotation, while also guaranteeing enough material for further analysis, stem cells were exposed in 1-mL pipettes with a diameter of 3.5 mm. The differentiation of mouse and human pluripotent stem cells inside the pipettes resulted in the formation of embryoid bodies at normal gravity (1 g) after 24 h and 3 days. Differentiation of the mouse pluripotent stem cells on a 2-D pipette-clinostat for 3 days also resulted in the formation of embryoid bodies. Interestingly, the expression of myosin heavy chain was downregulated when cultivation was continued for an additional 7 days at normal gravity. This paper describes the techniques for culturing and differentiation of pluripotent stem cells and exposure to simulated microgravity during culturing or differentiation on a 2-D pipette clinostat. The implementation of these methodologies along with -omics technologies will contribute to understand the mechanisms regulating how microgravity influences early embryonic development.

  7. Myosin-II dependent cell contractility contributes to spontaneous nodule formation of mesothelioma cells

    CERN Document Server

    Tárnoki-Zách, Julia; Méhes, Elod; Paku, Sándor; Neufeld, Zoltán; Hegedus, Balázs; Döme, Balázs; Czirok, Andras

    2015-01-01

    We demonstrate that characteristic nodules emerge in cultures of several malignant pleural mesothelioma (MPM) cell lines. Instead of excessive local cell proliferation, the nodules arise by Myosin II-driven cell contractility. The aggregation process can be prevented or reversed by suitable pharmacological inhibitors of acto-myosin contractility. A cell-resolved elasto-plastic model of the multicellular patterning process indicates that the morphology and size of the nodules as well as the speed of their formation is determined by the mechanical tension cells exert on their neighbors, and the stability of cell-substrate adhesion complexes. A linear stability analysis of a homogenous, self-tensioned Maxwell fluid indicates the unconditional presence of a patterning instability.

  8. Cloning and characterization of myosin regulatory light chain (MRLC) gene from Culex pipiens pallens.

    Science.gov (United States)

    Yang, Mifang; Qian, Jin; Sun, Jing; Xu, Yang; Zhang, Donghui; Ma, Lei; Sun, Yan; Zhu, Changliang

    2008-10-01

    Myosin regulatory light chain (MRLC) (GenBank accession no. DQ140391) was cloned from Culex pipiens pallens. An open reading frame (ORF) of 630 bps was found to encode a putative 210 amino acids protein which shows 73% similarity with myosin regulatory light chain of Gryllotalpa orientalis. Real-time quantitative PCR analysis demonstrated that the transcription level of MRLC in deltamethrin-resistant strain (DR-strain) was 4.08-fold higher than in deltamethrin-susceptible strain (DS-strain) of C. pipiens pallens. Over-expression of MRLC in Aedes albopictus C6/36 cells conferred protection against deltamethrin based on tritiated methyl tritiated thymidine ((3)H-TdR) incorporation assay. These results indicate that MRLC may be a potential cause of deltamethrin resistance in C. pipiens pallens.

  9. A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads.

    Science.gov (United States)

    Iwaki, M; Wickham, S F; Ikezaki, K; Yanagida, T; Shih, W M

    2016-12-12

    Mechanosensitive biological nanomachines such as motor proteins and ion channels regulate diverse cellular behaviour. Combined optical trapping with single-molecule fluorescence imaging provides a powerful methodology to clearly characterize the mechanoresponse, structural dynamics and stability of such nanomachines. However, this system requires complicated experimental geometry, preparation and optics, and is limited by low data-acquisition efficiency. Here we develop a programmable DNA origami nanospring that overcomes these issues. We apply our nanospring to human myosin VI, a mechanosensory motor protein, and demonstrate nanometre-precision single-molecule fluorescence imaging of the individual motor domains (heads) under force. We observe force-induced transitions of myosin VI heads from non-adjacent to adjacent binding, which correspond to adapted roles for low-load and high-load transport, respectively. Our technique extends single-molecule studies under force and clarifies the effect of force on biological processes.

  10. The characteristics of antibodies of mice immunized by human unconventional myosin 1c

    Directory of Open Access Journals (Sweden)

    S. L. Myronovskij

    2016-12-01

    Full Text Available Specific antibodies produced against a protein of interest are invaluable tools for monitoring the protein structure, intracellular location and biological activity. Inoculation of murine lymphoma cells into the peritoneal cavity of immunized mice provides generation of ascitic fluid containing a significant amount of antibody with desired antigen specificity. Here we demonstrated that the intraperitoneal administration of murine lymphoma NK/Ly cells in mice immunized with 48 kDa isoform of human blood serum unconventional myosin 1c leads to generation of ascitic fluid that contained specific IgG-antibodies. These antibodies were capable of binding of the unconventional myosin 1c isolated from blood serum of patients with multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosis, and could be used for diagnostics of several autoimmune diseases, the multiple sclerosis in particular.

  11. Myosin Light Chain Kinase: A Potential Target for Treatment of Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Yongjian Xiong

    2017-05-01

    Full Text Available Myosin light chain kinase (MLCK induces contraction of the perijunctional apical actomyosin ring in response to phosphorylation of the myosin light chain. Abnormal expression of MLCK has been observed in respiratory diseases, pancreatitis, cardiovascular diseases, cancer, and inflammatory bowel disease. The signaling pathways involved in MLCK activation and triggering of endothelial barrier dysfunction are discussed in this review. The pharmacological effects of regulating MLCK expression by inhibitors such as ML-9, ML-7, microbial products, naturally occurring products, and microRNAs are also discussed. The influence of MLCK in inflammatory diseases starts with endothelial barrier dysfunction. The effectiveness of anti-MLCK treatment may depend on alleviation of that primary pathological mechanism. This review summarizes evidence for the potential benefits of anti-MLCK agents in the treatment of inflammatory disease and the importance of avoiding treatment-related side effects, as MLCK is widely expressed in many different tissues.

  12. Magnetic manipulation of actin orientation, polymerization, and gliding on myosin using superparamagnetic iron oxide particles

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yun; Guzik, Stephanie; Sumner, James P; Koretsky, Alan P [National Institutes of Health, Bethesda, MD (United States); Moreland, John, E-mail: koretskya@ninds.nih.gov [National Institute of Standards and Technology, Boulder, CO (United States)

    2011-02-11

    The actin cytoskeleton controls cell shape, motility, as well as intracellular molecular trafficking. The ability to remotely manipulate actin is therefore highly desirable as a tool to probe and manipulate biological processes at the molecular level. We demonstrate actin manipulation by labeling actin filaments with superparamagnetic iron oxide particles (IOPs) and applying a uniform magnetic field to affect actin orientation, polymerization and gliding on myosin. We show for the first time magnetic manipulation of magnetizable actin filaments at the molecular level while gliding on a bed of myosin molecules and during polymerization. A model for the magnetic alignment and guiding mechanism is proposed based on the torque from the induced molecular anisotropy due to interactions between neighboring IOPs distributed along magnetically labeled actin molecules.

  13. Differential susceptibility on myosin heavy chain isoform following eccentric-induced muscle damage

    OpenAIRE

    Choi, Seung Jun

    2014-01-01

    Based on myosin heavy chain (MHC) isoform, human skeletal muscle fibers can be categorized into three fiber types, type I, IIa, IIx fibers, and each fiber type has different characteristics. Typical characteristics are difference in force production, shortening velocity, and fatigue resistance. When the muscle is contract and stretched by a force that is greater than the force generated by the muscle, contraction-induced muscle damage frequently occurs. Several experimental models involving b...

  14. Regulation of nonmuscle myosin II during 3-methylcholanthrene induced dedifferentiation of C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sumit K.; Saha, Shekhar; Das, Provas; Das, Mahua R.; Jana, Siddhartha S., E-mail: bcssj@iacs.res.in

    2014-08-01

    3-Methylcholanthrene (3MC) induces tumor formation at the site of injection in the hind leg of mice within 110 days. Recent reports reveal that the transformation of normal muscle cells to atypical cells is one of the causes for tumor formation, however the molecular mechanism behind this process is not well understood. Here, we show in an in vitro study that 3MC induces fragmentation of multinucleate myotubes into viable mononucleates. These mononucleates form colonies when they are seeded into soft agar, indicative of cellular transformation. Immunoblot analysis reveals that phosphorylation of myosin regulatory light chain (RLC{sub 20}) is 5.6±0.5 fold reduced in 3MC treated myotubes in comparison to vehicle treated myotubes during the fragmentation of myotubes. In contrast, levels of myogenic factors such as MyoD, Myogenin and cell cycle regulators such as Cyclin D, Cyclin E1 remain unchanged as assessed by real-time PCR array and reverse transcriptase PCR analysis, respectively. Interestingly, addition of the myosin light chain kinase inhibitor, ML-7, enhances the fragmentation, whereas phosphatase inhibitor perturbs the 3MC induced fragmentation of myotubes. These results suggest that decrease in RLC{sub 20} phosphorylation may be associated with the fragmentation step of dedifferentiation. - Highlights: • 3-Methylcholanthrene induces fragmentation of C2C12-myotubes. • Dedifferentiation can be divided into two steps – fragmentation and proliferation. • Fragmentation is associated with rearrangement of nonmuscle myosin II. • Genes associated with differentiation and proliferation are not altered during fragmentation. • Phosphorylation of myosin regulatory light chain is reduced during fragmentation.

  15. Lead reduces tension development and the myosin ATPase activity of the rat right ventricular myocardium

    Directory of Open Access Journals (Sweden)

    D.V. Vassallo

    2008-09-01

    Full Text Available Lead (Pb2+ poisoning causes hypertension, but little is known regarding its acute effects on cardiac contractility. To evaluate these effects, force was measured in right ventricular strips that were contracting isometrically in 45 male Wistar rats (250-300 g before and after the addition of increasing concentrations of lead acetate (3, 7, 10, 30, 70, 100, and 300 µM to the bath. Changes in rate of stimulation (0.1-1.5 Hz, relative potentiation after pauses of 15, 30, and 60 s, effect of Ca2+ concentration (0.62, 1.25, and 2.5 mM, and the effect of isoproterenol (20 ng/mL were determined before and after the addition of 100 µM Pb2+. Effects on contractile proteins were evaluated after caffeine treatment using tetanic stimulation (10 Hz and measuring the activity of the myosin ATPase. Pb2+ produced concentration-dependent force reduction, significant at concentrations greater than 30 µM. The force developed in response to increasing rates of stimulation became smaller at 0.5 and 0.8 Hz. Relative potentiation increased after 100 µM Pb2+ treatment. Extracellular Ca2+ increment and isoproterenol administration increased force development but after 100 µM Pb2+ treatment the force was significantly reduced suggesting an effect of the metal on the sarcolemmal Ca2+ influx. Concentration of 100 µM Pb2+ also reduced the peak and plateau force of tetanic contractions and reduced the activity of the myosin ATPase. Results showed that acute Pb2+ administration, although not affecting the sarcoplasmic reticulum activity, produces a concentration-dependent negative inotropic effect and reduces myosin ATPase activity. Results suggest that acute lead administration reduced myocardial contractility by reducing sarcolemmal calcium influx and the myosin ATPase activity. These results also suggest that lead exposure is hazardous and has toxicological consequences affecting cardiac muscle.

  16. A small part of myosin IIB takes on a big role in cell polarity.

    Science.gov (United States)

    Fenix, Aidan M; Burnette, Dylan T

    2015-04-13

    A migrating cell must establish front-to-back polarity in order to move. In this issue, Juanes-Garcia et al. (2015. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201407059) report that a short serine-rich motif in nonmuscle myosin IIB is required to establish the cell's rear. This motif represents a new paradigm for what determines directional cell migration. © 2015 Fenix and Burnette.

  17. Actin polymerization or myosin contraction: two ways to build up cortical tension for symmetry breaking

    Science.gov (United States)

    Carvalho, Kevin; Lemière, Joël; Faqir, Fahima; Manzi, John; Blanchoin, Laurent; Plastino, Julie; Betz, Timo; Sykes, Cécile

    2013-01-01

    Cells use complex biochemical pathways to drive shape changes for polarization and movement. One of these pathways is the self-assembly of actin filaments and myosin motors that together produce the forces and tensions that drive cell shape changes. Whereas the role of actin and myosin motors in cell polarization is clear, the exact mechanism of how the cortex, a thin shell of actin that is underneath the plasma membrane, can drive cell shape changes is still an open question. Here, we address this issue using biomimetic systems: the actin cortex is reconstituted on liposome membranes, in an ‘outside geometry’. The actin shell is either grown from an activator of actin polymerization immobilized at the membrane by a biotin–streptavidin link, or built by simple adsorption of biotinylated actin filaments to the membrane, in the presence or absence of myosin motors. We show that tension in the actin network can be induced either by active actin polymerization on the membrane via the Arp2/3 complex or by myosin II filament pulling activity. Symmetry breaking and spontaneous polarization occur above a critical tension that opens up a crack in the actin shell. We show that this critical tension is reached by growing branched networks, nucleated by the Arp2/3 complex, in a concentration window of capping protein that limits actin filament growth and by a sufficient number of motors that pull on actin filaments. Our study provides the groundwork to understanding the physical mechanisms at work during polarization prior to cell shape modifications. PMID:24062578

  18. A small part of myosin IIB takes on a big role in cell polarity

    OpenAIRE

    Fenix, Aidan M.; Dylan T. Burnette

    2015-01-01

    A migrating cell must establish front-to-back polarity in order to move. In this issue, Juanes-Garcia et al. (2015. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201407059) report that a short serine-rich motif in nonmuscle myosin IIB is required to establish the cell’s rear. This motif represents a new paradigm for what determines directional cell migration.

  19. Worse prognosis with gene mutations of beta-myosin heavy chain than myosin-binding protein C in Chinese patients with hypertrophic cardiomyopathy.

    Science.gov (United States)

    Wang, Shuxia; Zou, Yubao; Fu, Chunyan; Xu, Xiqi; Wang, Jizheng; Song, Lei; Wang, Hu; Chen, Jingzhou; Wang, Jianwei; Huan, Tujun; Hui, Rutai

    2008-03-01

    No data are available on survival analysis and longitudinal evolution of patients with gene mutations of beta-myosin heavy chain (MYH7) and myosin binding protein C (MYBPC3) in Chinese. To prospectively investigate whether different gene mutations confer distinct prognosis. We performed a prospective study in 70 HCM patients and 46 genetically affected family members without HCM-phenotype with direct DNA sequencing of MYH7 and MYBPC3, clinical assessments, and 5.8 +/- 1.8 years follow-up. After follow-up, more surgical intervention (8/52 versus 0/18, p MYH7 mutations than in patients with MYBPC3 mutations (45.1 +/- 14.0 versus 73.5 +/- 7.5 years, p = 0.03). Seven of the 27 mutation carriers of MYH7 had clinical presentations of HCM, but no carriers of MYBPC3 mutations developed to HCM during follow-up. Maximal wall thickness was thicker in the patients carrying mutations in the global region of MYH7 than in those carrying mutations in the rod region of MYH7 (21.5 +/- 6.6 versus 15 +/- 6.1 mm, p MYH7 than in patients with other mutations. MYH7 mutations, especially in the global region, cause malignant clinical phenotypes.

  20. A Kinase Anchoring Protein 9 Is a Novel Myosin VI Binding Partner That Links Myosin VI with the PKA Pathway in Myogenic Cells

    Directory of Open Access Journals (Sweden)

    Justyna Karolczak

    2015-01-01

    Full Text Available Myosin VI (MVI is a unique motor protein moving towards the minus end of actin filaments unlike other known myosins. Its important role has recently been postulated for striated muscle and myogenic cells. Since MVI functions through interactions of C-terminal globular tail (GT domain with tissue specific partners, we performed a search for MVI partners in myoblasts and myotubes using affinity chromatography with GST-tagged MVI-GT domain as a bait. A kinase anchoring protein 9 (AKAP9, a regulator of PKA activity, was identified by means of mass spectrometry as a possible MVI interacting partner both in undifferentiated and differentiating myoblasts and in myotubes. Coimmunoprecipitation and proximity ligation assay confirmed that both proteins could interact. MVI and AKAP9 colocalized at Rab5 containing early endosomes. Similarly to MVI, the amount of AKAP9 decreased during myoblast differentiation. However, in MVI-depleted cells, both cAMP and PKA levels were increased and a change in the MVI motor-dependent AKAP9 distribution was observed. Moreover, we found that PKA phosphorylated MVI-GT domain, thus implying functional relevance of MVI-AKAP9 interaction. We postulate that this novel interaction linking MVI with the PKA pathway could be important for targeting AKAP9-PKA complex within cells and/or providing PKA to phosphorylate MVI tail domain.

  1. Pitx2 in Embryonic and Adult Myogenesis

    Directory of Open Access Journals (Sweden)

    Amelia E. Aranega

    2017-05-01

    Full Text Available Skeletal muscle is a heterogeneous tissue that represents between 30 and 38% of the human body mass and has important functions in the organism, such as maintaining posture, locomotor impulse, or pulmonary ventilation. The genesis of skeletal muscle during embryonic development is a process controlled by an elaborate regulatory network combining the interplay of extrinsic and intrinsic regulatory mechanisms that transform myogenic precursor cells into functional muscle fibers through a finely tuned differentiation program. However, the capacity of generating muscle still remains once these fibers have matured. Adult myogenesis resembles many of the embryonic morphogenetic episodes and depends on the activation of satellite cells that have the potential to differentiate into new muscle fibers. Pitx2 is a member of the bicoid family of homeodomain transcription factors that play an important role in morphogenesis. In the last decade, Pitx2 has emerged as a key element involved in the fine-tuning mechanism that regulates skeletal-muscle development as well as the differentiation and cell fate of satellite cells in adult muscle. Here we present an integrative view of all aspects of embryonic and adult myogenesis in which Pitx2 is involved, from embryonic development to satellite-cell proliferation, fate specification, and differentiation. Those new Pitx2 functions on satellite-cell biology might open new perspectives to develop therapeutic strategies for muscular disorders.

  2. Pitx2 in Embryonic and Adult Myogenesis.

    Science.gov (United States)

    Hernandez-Torres, Francisco; Rodríguez-Outeiriño, Lara; Franco, Diego; Aranega, Amelia E

    2017-01-01

    Skeletal muscle is a heterogeneous tissue that represents between 30 and 38% of the human body mass and has important functions in the organism, such as maintaining posture, locomotor impulse, or pulmonary ventilation. The genesis of skeletal muscle during embryonic development is a process controlled by an elaborate regulatory network combining the interplay of extrinsic and intrinsic regulatory mechanisms that transform myogenic precursor cells into functional muscle fibers through a finely tuned differentiation program. However, the capacity of generating muscle still remains once these fibers have matured. Adult myogenesis resembles many of the embryonic morphogenetic episodes and depends on the activation of satellite cells that have the potential to differentiate into new muscle fibers. Pitx2 is a member of the bicoid family of homeodomain transcription factors that play an important role in morphogenesis. In the last decade, Pitx2 has emerged as a key element involved in the fine-tuning mechanism that regulates skeletal-muscle development as well as the differentiation and cell fate of satellite cells in adult muscle. Here we present an integrative view of all aspects of embryonic and adult myogenesis in which Pitx2 is involved, from embryonic development to satellite-cell proliferation, fate specification, and differentiation. Those new Pitx2 functions on satellite-cell biology might open new perspectives to develop therapeutic strategies for muscular disorders.

  3. Embryonic Stem Cells and their Genetic Modification

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 2. Embryonic Stem Cells and their Genetic Modification - The Nobel Prize in Physiology or Medicine 2007. Mitradas M Panicker. General Article Volume 13 Issue 2 February 2008 pp 172-180 ...

  4. Autophagy in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Thien Tra

    Full Text Available Autophagy (macroautophagy is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC.

  5. Embryonic Development In Clarias gariepinus (Buchell, 1822 ...

    African Journals Online (AJOL)

    The embryonic development in Clarias gariepinus was studied under laboratory conditions. The development stages of eggs starting from first cleavage to hatching were examined microscopically. The accurate timing and detailed description of each stage were recorded. Photomicrograph of important stages, segmentation ...

  6. Embryonal rhabdomyosarcoma of the cervix | Ocheke | African ...

    African Journals Online (AJOL)

    Embryonal rhabdomyosarcoma (sarcoma botyroides) of the cervix, which is rare, is described in a 16-yearold. The combined use of chemotherapy, radiotherapy and surgery has markedly improved survival in those with this condition. However, our patient did not benefit from this treatment modality due to late presentation ...

  7. Transcriptome Landscapes of Mammalian Embryonic Cells

    NARCIS (Netherlands)

    Brinkhof, B.

    2015-01-01

    This thesis describes research on gene expression profiles from different embryonic stages and cell types to identify genes involved in pluripotency or differentiation in bovine and porcine cells. The results are compared with data from other mammals. RNA expression profiles of morula and blastocyst

  8. From cilia hydrodynamics to zebrafish embryonic development.

    Science.gov (United States)

    Supatto, Willy; Vermot, Julien

    2011-01-01

    Embryonic development involves the cellular integration of chemical and physical stimuli. A key physical input is the mechanical stress generated during embryonic morphogenesis. This process necessitates tensile forces at the tissue scale such as during axis elongation and budding, as well as at the cellular scale when cells migrate and contract. Furthermore, cells can generate forces using motile cilia to produce flow. Cilia-driven flows are critical throughout embryonic development but little is known about the diversity of the forces they exert and the role of the mechanical stresses they generate. In this chapter, through an examination of zebrafish development, we highlight what is known about the role of hydrodynamics mediated by beating cilia and examine the physical features of flow fields from the modeling and experimental perspectives. We review imaging strategies to visualize and quantify beating cilia and the flow they generate in vivo. Finally, we describe the function of hydrodynamics during left-right embryonic patterning and inner ear development. Ideally, continued progress in these areas will help to address a key conceptual problem in developmental biology, which is to understand the interplay between environmental constraints and genetic control during morphogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Physiopathology of human embryonic implantation: clinical incidences.

    Directory of Open Access Journals (Sweden)

    Pauline Demailly

    2010-01-01

    Full Text Available Embryo implantation consists of a series of events promoting the invasion of the endometrium and then the uterine arterial system by the extra-embryonic trophoblast. In order for this semi-heterologous implantation to succeed, the endometrium has to first undergo a number of structural and biochemical changes (decidualization. The decidua's various constituents subsequently play a role in the embryonic implantation. The third step is the transformation of the uterine vascular system and the growth of the placenta, which will provide the foetoplacental unit with nutrients. Several physiopathological aspects will be discussed: 1 the implantation window, regulated by maternal and embryonic hormonal secretions and thus influenced by any defects in the latter: dysharmonic luteal phase, 21-hydroxylase block, abnormal integrin expression, 2 the successive trophoblast invasions of uterine vessels which, when defective, lead to early embryo loss or late-onset vascular pathologies, as preeclampsia, 3 the pregnancy's immunological equilibrium, with a spontaneously tolerated semi-allogeneic implant, 4 the impact of pro-coagulant factors (thrombophilia on the pregnancy's progression, 5 the environment of the uterus, ranging from hydrosalpinx to uterine contractions. In summary, the least anatomical or physiological perturbation can interfere with human embryonic implantation - a very particular phenomenon and a true biological paradox.

  10. Actin turnover is required for myosin-dependent mitochondrial movements in Arabidopsis root hairs.

    Directory of Open Access Journals (Sweden)

    Maozhong Zheng

    Full Text Available BACKGROUND: Previous studies have shown that plant mitochondrial movements are myosin-based along actin filaments, which undergo continuous turnover by the exchange of actin subunits from existing filaments. Although earlier studies revealed that actin filament dynamics are essential for many functions of the actin cytoskeleton, there are little data connecting actin dynamics and mitochondrial movements. METHODOLOGY/PRINCIPAL FINDINGS: We addressed the role of actin filament dynamics in the control of mitochondrial movements by treating cells with various pharmaceuticals that affect actin filament assembly and disassembly. Confocal microscopy of Arabidopsis thaliana root hairs expressing GFP-FABD2 as an actin filament reporter showed that mitochondrial distribution was in agreement with the arrangement of actin filaments in root hairs at different developmental stages. Analyses of mitochondrial trajectories and instantaneous velocities immediately following pharmacological perturbation of the cytoskeleton using variable-angle evanescent wave microscopy and/or spinning disk confocal microscopy revealed that mitochondrial velocities were regulated by myosin activity and actin filament dynamics. Furthermore, simultaneous visualization of mitochondria and actin filaments suggested that mitochondrial positioning might involve depolymerization of actin filaments on the surface of mitochondria. CONCLUSIONS/SIGNIFICANCE: Base on these results we propose a mechanism for the regulation of mitochondrial speed of movements, positioning, and direction of movements that combines the coordinated activity of myosin and the rate of actin turnover, together with microtubule dynamics, which directs the positioning of actin polymerization events.

  11. Simulating the dynamics of the mechanochemical cycle of myosin-V

    Science.gov (United States)

    Mukherjee, Shayantani; Alhadeff, Raphael; Warshel, Arieh

    2017-01-01

    The detailed dynamics of the cycle of myosin-V are explored by simulation approaches, examining the nature of the energy-driven motion. Our study started with Langevin dynamics (LD) simulations on a very coarse landscape with a single rate-limiting barrier and reproduced the stall force and the hand-over-hand dynamics. We then considered a more realistic landscape and used time-dependent Monte Carlo (MC) simulations that allowed trajectories long enough to reproduce the force/velocity characteristic sigmoidal correlation, while also reproducing the hand-over-hand motion. Overall, our study indicated that the notion of a downhill lever-up to lever-down process (popularly known as the powerstroke mechanism) is the result of the energetics of the complete myosin-V cycle and is not the source of directional motion or force generation on its own. The present work further emphasizes the need to use well-defined energy landscapes in studying molecular motors in general and myosin in particular. PMID:28193897

  12. Myosin II promotes the anisotropic loss of the apical domain during Drosophila neuroblast ingression.

    Science.gov (United States)

    Simões, Sérgio; Oh, Youjin; Wang, Michael F Z; Fernandez-Gonzalez, Rodrigo; Tepass, Ulrich

    2017-05-01

    Epithelial-mesenchymal transitions play key roles in development and cancer and entail the loss of epithelial polarity and cell adhesion. In this study, we use quantitative live imaging of ingressing neuroblasts (NBs) in Drosophila melanogaster embryos to assess apical domain loss and junctional disassembly. Ingression is independent of the Snail family of transcriptional repressors and down-regulation of Drosophila E-cadherin (DEcad) transcription. Instead, the posttranscriptionally regulated decrease in DEcad coincides with the reduction of cell contact length and depends on tension anisotropy between NBs and their neighbors. A major driver of apical constriction and junctional disassembly are periodic pulses of junctional and medial myosin II that result in progressively stronger cortical contractions during ingression. Effective contractions require the molecular coupling between myosin and junctions and apical relaxation of neighboring cells. Moreover, planar polarization of myosin leads to the loss of anterior-posterior junctions before the loss of dorsal-ventral junctions. We conclude that planar-polarized dynamic actomyosin networks drive apical constriction and the anisotropic loss of cell contacts during NB ingression. © 2017 Simões et al.

  13. Active turnover regulates pattern formation and stress transmission in disordered acto-myosin networks

    Science.gov (United States)

    McCall, Patrick; Stam, Samantha; Kovar, David; Gardel, Margaret

    The shape and mechanics of animal cells are controlled by a dynamic, thin network of semiflexible actin filaments and myosin-II motor proteins called the actomyosin cortex. Motor-generated stresses in the cortex drive changes in cell shape during cell division and morphogenesis, while dynamic turnover of actin filaments dissipates stress. The relative effects that force generation, force dissipation, and disassembly and reassembly of material have on motion in these networks are unknown. We find that cross-linked actin networks in vitro contract under myosin-generated stresses, resulting in partial filament disassembly, the formation of asters, and clustering of myosin motors. We observe a rapid restoration of uniform polymer density in the presence of the assembly factors which catalyze network turnover through elongation of severed actin filaments. When severing is accelerated further by the addition of a severing protein, network contraction and motor clustering are dramatically suppressed. We test the relative effects of material regeneration and force transmission using image analysis, and conclude that the dominant mechanism for this effect is relatively short-lived stresses that do not propagate over considerable distance or push network deformation into the nonlinear contractile regime we have previously characterized. Our results present a framework to understand cytoskeletal active matter that are influenced by a complex interplay between stress generation, network reorganization, and polymer turnover.

  14. Thermal Denaturation and Aggregation of Myosin Subfragment 1 Isoforms with Different Essential Light Chains

    Science.gov (United States)

    Markov, Denis I.; Zubov, Eugene O.; Nikolaeva, Olga P.; Kurganov, Boris I.; Levitsky, Dmitrii I.

    2010-01-01

    We compared thermally induced denaturation and aggregation of two isoforms of the isolated myosin head (myosin subfragment 1, S1) containing different “essential” (or “alkali”) light chains, A1 or A2. We applied differential scanning calorimetry (DSC) to investigate the domain structure of these two S1 isoforms. For this purpose, a special calorimetric approach was developed to analyze the DSC profiles of irreversibly denaturing multidomain proteins. Using this approach, we revealed two calorimetric domains in the S1 molecule, the more thermostable domain denaturing in two steps. Comparing the DSC data with temperature dependences of intrinsic fluorescence parameters and S1 ATPase inactivation, we have identified these two calorimetric domains as motor domain and regulatory domain of the myosin head, the motor domain being more thermostable. Some difference between the two S1 isoforms was only revealed by DSC in thermal denaturation of the regulatory domain. We also applied dynamic light scattering (DLS) to analyze the aggregation of S1 isoforms induced by their thermal denaturation. We have found no appreciable difference between these S1 isoforms in their aggregation properties under ionic strength conditions close to those in the muscle fiber (in the presence of 100 mM KCl). Under these conditions kinetics of this process was independent of protein concentration, and the aggregation rate was limited by irreversible denaturation of the S1 motor domain. PMID:21151434

  15. Thermal Denaturation and Aggregation of Myosin Subfragment 1 Isoforms with Different Essential Light Chains

    Directory of Open Access Journals (Sweden)

    Eugene O. Zubov

    2010-10-01

    Full Text Available We compared thermally induced denaturation and aggregation of two isoforms of the isolated myosin head (myosin subfragment 1, S1 containing different “essential” (or “alkali” light chains, A1 or A2. We applied differential scanning calorimetry (DSC to investigate the domain structure of these two S1 isoforms. For this purpose, a special calorimetric approach was developed to analyze the DSC profiles of irreversibly denaturing multidomain proteins. Using this approach, we revealed two calorimetric domains in  the S1 molecule, the more thermostable domain denaturing in two steps. Comparing the DSC data with temperature dependences of intrinsic fluorescence parameters and S1 ATPase inactivation, we have identified these two calorimetric domains as motor domain and regulatory domain of the myosin head, the motor domain being more thermostable. Some difference between the two S1 isoforms was only revealed by DSC in thermal denaturation of the regulatory domain. We also applied dynamic light scattering (DLS to analyze the aggregation of S1 isoforms induced by their thermal denaturation. We have found no appreciable difference between these S1 isoforms in their aggregation properties under ionic strength conditions close to those in the muscle fiber (in the presence of 100 mM KCl. Under these conditions kinetics of this process was independent of protein concentration, and the aggregation rate was limited by irreversible denaturation of the S1 motor domain.

  16. Characteristics of myosin profile in human vastus lateralis muscle in relation to training background.

    Science.gov (United States)

    Zawadowska, B; Majerczak, J; Semik, D; Karasinski, J; Kolodziejski, L; Kilarski, W M; Duda, K; Zoladz, J A

    2004-01-01

    Twenty-four male volunteers (mean +/- SD: age 25.4+/-5.8 years, height 178.6+/-5.5 cm, body mass 72.1+/-7.7 kg) of different training background were investigated and classified into three groups according to their physical activity and sport discipline: untrained students (group A), national and sub-national level endurance athletes (group B, 7.8+/-2.9 years of specialised training) and sprint-power athletes (group C, 12.8+/-8.7 years of specialised training). Muscle biopsies of vastus lateralis were analysed histochemically for mATPase and SDH activities, immunohistochemically for fast and slow myosin, and electrophoretically followed by Western immunoblotting for myosin heavy chain (MyHC) composition. Significant differences (Pvolleyball, soccer and modern dance. Furthermore, the relative amount of the fastest MyHCIIX isoform in vastus lateralis muscle was significantly lower in the athletes from group C than in students (group A). We conclude that the myosin profile in the athletes belonging to group C was unfavourable for their sport disciplines. This could be the reason why those athletes did not reach international level despite of several years of training.

  17. Myosin storage myopathy associated with a heterozygous missense mutation in MYH7.

    Science.gov (United States)

    Tajsharghi, Homa; Thornell, Lars-Eric; Lindberg, Christopher; Lindvall, Björn; Henriksson, Karl-Gösta; Oldfors, Anders

    2003-10-01

    Myosin constitutes the major part of the thick filaments in the contractile apparatus of striated muscle. MYH7 encodes the slow/beta-cardiac myosin heavy chain (MyHC), which is the main MyHC isoform in slow, oxidative, type 1 muscle fibers of skeletal muscle. It is also the major MyHC isoform of cardiac ventricles. Numerous missense mutations in the globular head of slow/beta-cardiac MyHC are associated with familial hypertrophic cardiomyopathy. We identified a missense mutation, Arg1845Trp, in the rod region of slow/beta-cardiac MyHC in patients with a skeletal myopathy from two different families. The myopathy was characterized by muscle weakness and wasting with onset in childhood and slow progression, but no overt cardiomyopathy. Slow, oxidative, type 1 muscle fibers showed large inclusions consisting of slow/beta-cardiac MyHC. The features were similar to a previously described entity: hyaline body myopathy. Our findings indicate that the mutated residue of slow/beta-cardiac MyHC is essential for the assembly of thick filaments in skeletal muscle. We propose the term myosin storage myopathy for this disease.

  18. Antidepressants and protein kinases: inhibition of Ca2+-regulated myosin phosphorylation by fluoxetine and iprindole.

    Science.gov (United States)

    Silver, P J; Sigg, E B; Moyer, J A

    1986-02-11

    The effects of several antidepressant and antipsychotic agents on Ca2+-calmodulin-regulated myosin light chain phosphorylation were evaluated. At a concentration of 100 microM, the antidepressant agents buproprion, mianserin and maprotiline were ineffective; zimelidine, desipramine and imipramine produced 40-50% inhibition; and iprindole and fluoxetine produced 75-90% inhibition. The efficacies of iprindole and fluoxetine were similar to the phenothiazine antipsychotics chlorpromazine and trifluoperazine. Clozapine, an atypical antipsychotic and the butyrophenone haloperidol were relatively ineffective as myosin light chain phosphorylation inhibitors. IC50 values of the most effective agents were: trifluoperazine 16 microM, fluoxetine 28 microM, chlorpromazine and iprindole 56 microM. As with trifluoperazine, inhibition of myosin phosphorylation by iprindole was completely attenuated in the presence of exogenous calmodulin. However, a significant component (30%) of the inhibitory effect of fluoxetine was not reversible with calmodulin. These results show that some antidepressant agents, most notably iprindole and fluoxetine, are capable of antagonizing a calmodulin-regulated protein kinase through calmodulin inhibition; and in the case of fluoxetine, through an additional calmodulin-independent mechanism.

  19. Lack of replication for the myosin-18B association with mathematical ability in independent cohorts.

    Science.gov (United States)

    Pettigrew, K A; Fajutrao Valles, S F; Moll, K; Northstone, K; Ring, S; Pennell, C; Wang, C; Leavett, R; Hayiou-Thomas, M E; Thompson, P; Simpson, N H; Fisher, S E; Whitehouse, A J O; Snowling, M J; Newbury, D F; Paracchini, S

    2015-04-01

    Twin studies indicate that dyscalculia (or mathematical disability) is caused partly by a genetic component, which is yet to be understood at the molecular level. Recently, a coding variant (rs133885) in the myosin-18B gene was shown to be associated with mathematical abilities with a specific effect among children with dyslexia. This association represents one of the most significant genetic associations reported to date for mathematical abilities and the only one reaching genome-wide statistical significance. We conducted a replication study in different cohorts to assess the effect of rs133885 maths-related measures. The study was conducted primarily using the Avon Longitudinal Study of Parents and Children (ALSPAC), (N = 3819). We tested additional cohorts including the York Cohort, the Specific Language Impairment Consortium (SLIC) cohort and the Raine Cohort, and stratified them for a definition of dyslexia whenever possible. We did not observe any associations between rs133885 in myosin-18B and mathematical abilities among individuals with dyslexia or in the general population. Our results suggest that the myosin-18B variant is unlikely to be a main factor contributing to mathematical abilities. © 2015 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  20. Smooth muscle myosin inhibition: a novel therapeutic approach for pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    David Ho

    Full Text Available Pulmonary hypertension remains a major clinical problem despite current therapies. In this study, we examine for the first time a novel pharmacological target, smooth muscle myosin, and determine if the smooth muscle myosin inhibitor, CK-2019165 (CK-165 ameliorates pulmonary hypertension.Six domestic female pigs were surgically instrumented to measure pulmonary blood flow and systemic and pulmonary vascular dynamics. Pulmonary hypertension was induced by hypoxia, or infusion of the thromboxane analog (U-46619, 0.1 µg/kg/min, i.v.. In rats, chronic pulmonary hypertension was induced by monocrotaline.CK-165 (4 mg/kg, i.v. reduced pulmonary vascular resistance by 22±3 and 28±6% from baseline in hypoxia and thromboxane pig models, respectively (p<0.01 and 0.01, while mean arterial pressure also fell and heart rate rose slightly. When CK-165 was delivered via inhalation in the hypoxia model, pulmonary vascular resistance fell by 17±6% (p<0.05 while mean arterial pressure and heart rate were unchanged. In the monocrotaline model of chronic pulmonary hypertension, inhaled CK-165 resulted in a similar (18.0±3.8% reduction in right ventricular systolic pressure as compared with sildenafil (20.3±4.5%.Inhibition of smooth muscle myosin may be a novel therapeutic target for treatment of pulmonary hypertension.

  1. Congenital diaphragmatic hernia candidate genes derived from embryonic transcriptomes

    DEFF Research Database (Denmark)

    Russell, Meaghan K; Longoni, Mauro; Wells, Julie

    2012-01-01

    expression profiling of developing embryonic diaphragms would help identify genes likely to be associated with diaphragm defects. We generated a time series of whole-transcriptome expression profiles from laser captured embryonic mouse diaphragms at embryonic day (E)11.5 and E12.5 when experimental...

  2. Ginsenoside Rg1 Protects against Oxidative Stress-induced Neuronal Apoptosis through Myosin IIA-actin Related Cytoskeletal Reorganization.

    Science.gov (United States)

    Wang, Yan; Liu, Qian; Xu, Yingqiong; Zhang, Yuanyuan; Lv, Yanni; Tan, Yisha; Jiang, Nan; Cao, Guosheng; Ma, Xiaonan; Wang, Jingrong; Cao, Zhengyu; Yu, Boyang; Kou, Junping

    2016-01-01

    Oxidative stress-induced cytoskeletal dysfunction of neurons has been implicated as a crucial cause of cell apoptosis or death in the central nervous system (CNS) diseases, such as neurodegenerative and psychiatric diseases. The application of neuroprotectants rescuing the neurons from cytoskeletal damage and apoptosis can be a potential treatment for these CNS diseases. Ginsenoside Rg1 (Rg1), one of the major active components of ginseng, has been reported possessing notable neuroprotective activities. However, there is rare report about its effect on cytoskeleton and its undergoing mechanism. The current study is to reveal the regulatory effects of Rg1 on cytoskeletal and morphological lesion in oxidative stress-induced neuronal apoptosis. The results demonstrated that pre-treatment with Rg1 (0.1-10 μM) attenuated hydrogen peroxide (H2O2)-induced neuronal apoptosis and oxidative stress through reducing the intracellular reactive oxygen species (ROS) production and methane dicarboxylic aldehyde (MDA) level. The Rg1 treatment also abolished H2O2-induced morphological changes, including cell rounding, membrane blebbing, neurite retraction and nuclei condensation, which were generated by myosin IIA-actin interaction. These effects were mediated via the down-regulation of caspase-3, ROCK1 (Rho-associated kinase1) activation and myosin light chain (MLC, Ser-19) phosphorylation. Furthermore, inhibiting myosin II activity with blebbistatin partly blocked the neuroprotective effects of Rg1. The computer-aided homology modelling revealed that Rg1 preferentially positioned in the actin binding cleft of myosin IIA and might block the binding of myosin IIA to actin filaments. Accordingly, the neuroprotective mechanism of Rg1 is related to the activity that inhibits myosin IIA-actin interaction and the caspase-3/ROCK1/MLC signaling pathway. These findings put some insights into the unique neuroprotective properties of Rg1 associated with the regulation of myosin IIA

  3. Optical pacing of the embryonic heart

    Science.gov (United States)

    Jenkins, M. W.; Duke, A. R.; Gu, S.; Doughman, Y.; Chiel, H. J.; Fujioka, H.; Watanabe, M.; Jansen, E. D.; Rollins, A. M.

    2010-09-01

    Light has been used to non-invasively alter the excitability of both neural and cardiac tissue. Recently, pulsed laser light has been shown to be capable of eliciting action potentials in peripheral nerves and in cultured cardiomyocytes. Here, for the first time, we demonstrate optical pacing of an intact heart in vivo. Pulsed 1.875-µm infrared laser light was used to lock the heart rate to the pulse frequency of the laser. A laser Doppler velocimetry signal was used to verify the pacing. At low radiant exposures, embryonic quail hearts were reliably paced in vivo without detectable damage to the tissue, indicating that optical pacing has great potential as a tool with which to study embryonic cardiac dynamics and development. In particular, optical pacing can be used to control the heart rate, thereby altering stresses and mechanically transduced signalling.

  4. Embryonic vaccines against cancer: an early history.

    Science.gov (United States)

    Brewer, Bradley G; Mitchell, Robert A; Harandi, Amir; Eaton, John W

    2009-06-01

    Almost 100 years have passed since the seminal observations of Schöne showing that vaccination of animals with fetal tissue would prevent the growth of transplantable tumors. Many subsequent reports have affirmed the general idea that immunologic rejection of transplantable tumors, as well as prevention of carcinogenesis, may be affected by vaccination with embryonic/fetal material. Following a decade of intense research on this phenomenon during approximately 1964-1974, interest appears to have waned. This earlier experimental work may be particularly pertinent in view of the rising interest in so-called cancer stem cells. We believe that further work - perhaps involving the use of embryonic stem cells as immunogens - is warranted and that the results reviewed herein support the concept that vaccination against the appearance of cancers of all kinds is a real possibility.

  5. Embryonic stem cells and property rights.

    Science.gov (United States)

    Andersson, Anna-Karin M

    2011-06-01

    This article contributes to the current debate on human embryonic stem cell researchers' possible complicity in the destruction of human embryos and the relevance of such complicity for the issue of commodification of human embryos. I will discuss if, and to what extent, researchers who destroy human embryos, and researchers who merely use human embryos destroyed by others, have moral use rights, and/or moral property rights, in these embryos. I argue that the moral status of the human embryo, however justified, places few restrictions on the latter researchers' use of it, and property rights in it, once it is destroyed. I argue that the former researchers have no property rights in the destroyed embryo but use rights in it to the extent allowed by the legitimate owners of the destroyed embryo. I discuss the implications of this account for previous and current US federal law regulating human embryonic stem cell research.

  6. Cytokine signalling in embryonic stem cells

    DEFF Research Database (Denmark)

    Kristensen, David Møbjerg; Kalisz, Mark; Nielsen, Jens Høiriis

    2006-01-01

    Cytokines play a central role in maintaining self-renewal in mouse embryonic stem (ES) cells through a member of the interleukin-6 type cytokine family termed leukemia inhibitory factor (LIF). LIF activates the JAK-STAT3 pathway through the class I cytokine receptor gp130, which forms a trimeric...... pathways seem to converge on c-myc as a common target to promote self-renewal. Whereas LIF does not seem to stimulate self-renewal in human embryonic stem cells it cannot be excluded that other cytokines are involved. The pleiotropic actions of the increasing number of cytokines and receptors signalling...... via JAKs, STATs and SOCS exhibit considerable redundancy, compensation and plasticity in stem cells in accordance with the view that stem cells are governed by quantitative variations in strength and duration of signalling events known from other cell types rather than qualitatively different stem...

  7. Interaction of c-Cbl with myosin IIA regulates Bleb associated macropinocytosis of Kaposi's sarcoma-associated herpesvirus.

    Science.gov (United States)

    Valiya Veettil, Mohanan; Sadagopan, Sathish; Kerur, Nagaraj; Chakraborty, Sayan; Chandran, Bala

    2010-12-23

    KSHV is etiologically associated with Kaposi's sarcoma (KS), an angioproliferative endothelial cell malignancy. Macropinocytosis is the predominant mode of in vitro entry of KSHV into its natural target cells, human dermal microvascular endothelial (HMVEC-d) cells. Although macropinocytosis is known to be a major route of entry for many viruses, the molecule(s) involved in the recruitment and integration of signaling early during macropinosome formation is less well studied. Here we demonstrate that tyrosine phosphorylation of the adaptor protein c-Cbl is required for KSHV induced membrane blebbing and macropinocytosis. KSHV induced the tyrosine phosphorylation of c-Cbl as early as 1 min post-infection and was recruited to the sites of bleb formation. Infection also led to an increase in the interaction of c-Cbl with PI3-K p85 in a time dependent manner. c-Cbl shRNA decreased the formation of KSHV induced membrane blebs and macropinocytosis as well as virus entry. Immunoprecipitation of c-Cbl followed by mass spectrometry identified the interaction of c-Cbl with a novel molecular partner, non-muscle myosin heavy chain IIA (myosin IIA), in bleb associated macropinocytosis. Phosphorylated c-Cbl colocalized with phospho-myosin light chain II in the interior of blebs of infected cells and this interaction was abolished by c-Cbl shRNA. Studies with the myosin II inhibitor blebbistatin demonstrated that myosin IIA is a biologically significant component of the c-Cbl signaling pathway and c-Cbl plays a new role in the recruitment of myosin IIA to the blebs during KSHV infection. Myosin II associates with actin in KSHV induced blebs and the absence of actin and myosin ubiquitination in c-Cbl ShRNA cells suggested that c-Cbl is also responsible for the ubiquitination of these proteins in the infected cells. This is the first study demonstrating the role of c-Cbl in viral entry as well as macropinocytosis, and provides the evidence that a signaling complex containing c

  8. Interaction of c-Cbl with myosin IIA regulates Bleb associated macropinocytosis of Kaposi's sarcoma-associated herpesvirus.

    Directory of Open Access Journals (Sweden)

    Mohanan Valiya Veettil

    2010-12-01

    Full Text Available KSHV is etiologically associated with Kaposi's sarcoma (KS, an angioproliferative endothelial cell malignancy. Macropinocytosis is the predominant mode of in vitro entry of KSHV into its natural target cells, human dermal microvascular endothelial (HMVEC-d cells. Although macropinocytosis is known to be a major route of entry for many viruses, the molecule(s involved in the recruitment and integration of signaling early during macropinosome formation is less well studied. Here we demonstrate that tyrosine phosphorylation of the adaptor protein c-Cbl is required for KSHV induced membrane blebbing and macropinocytosis. KSHV induced the tyrosine phosphorylation of c-Cbl as early as 1 min post-infection and was recruited to the sites of bleb formation. Infection also led to an increase in the interaction of c-Cbl with PI3-K p85 in a time dependent manner. c-Cbl shRNA decreased the formation of KSHV induced membrane blebs and macropinocytosis as well as virus entry. Immunoprecipitation of c-Cbl followed by mass spectrometry identified the interaction of c-Cbl with a novel molecular partner, non-muscle myosin heavy chain IIA (myosin IIA, in bleb associated macropinocytosis. Phosphorylated c-Cbl colocalized with phospho-myosin light chain II in the interior of blebs of infected cells and this interaction was abolished by c-Cbl shRNA. Studies with the myosin II inhibitor blebbistatin demonstrated that myosin IIA is a biologically significant component of the c-Cbl signaling pathway and c-Cbl plays a new role in the recruitment of myosin IIA to the blebs during KSHV infection. Myosin II associates with actin in KSHV induced blebs and the absence of actin and myosin ubiquitination in c-Cbl ShRNA cells suggested that c-Cbl is also responsible for the ubiquitination of these proteins in the infected cells. This is the first study demonstrating the role of c-Cbl in viral entry as well as macropinocytosis, and provides the evidence that a signaling complex

  9. β3-integrin is required for differentiation in OC-2 cells derived from mammalian embryonic inner ear

    Directory of Open Access Journals (Sweden)

    Brunetta Ivan

    2012-03-01

    Full Text Available Abstract Background The mammalian inner ear contains the organ of Corti which is responsible for the conversion of sound into neuronal signals. This specialised epithelial tissue is the product of a complex developmental process where a common precursor cell type differentiates into the sound transducing hair cells and the non-innervated supporting cells. We hypothesised that integrin proteins, which are involved in cell attachment to extracellular matrix proteins and cellular signalling, play a role in the differentiation process of the precursor inner ear epithelial cells. To test our hypothesis we have utilised a cell line (OC-2 derived from E13 embryonic immortomouse inner ears. In vitro, by switching the incubation temperature from 33°C to 39°C, the OC-2 cells can be induced to differentiate and express hair cells markers, such as Myosin VIIa. The OC-2 cells are thus a useful model system for testing mechanism of hair cells differentiation. Results We have identified 4 integrin subunits which are expressed in OC-2 cells: α6, αv, β1 and β3. Among these, the relative level of expression of the αv, β1 and β3 subunits increased in a time dependent manner when the cells were exposed to the differentiating temperature of 39°C, most notably so for β3 which was not detectable at 33°C. Treatment of fully differentiated OC-2 cells with siRNA against the four integrin subunits reduced the expression of not only the respective integrin proteins but also of the hair cell marker Myosin VIIa. Conversely over-expression of β3 was sufficient to induce the expression of Myosin VIIa at 33°C. Conclusions Our data demonstrate that modulation of integrin expression is associated with the differentiation process of the OC-2 cells. This suggests that the maturation of the organ of Corti, from where OC-2 cells are derived, may also depend on changes of gene expression associated with integrin expression.

  10. Effect of Serum from Chickens Treated with Clenbuterol on Myosin Accumulation, Beta-Adrenergic Receptor Population, and Cyclic AM Synthesis in Embryonic Chicken Skeletal Muscle Cell Cultures

    Science.gov (United States)

    Young, R. B.; Bridge, K. Y.; Wuethrich, A. J.; Hancock, D. L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Broiler chickens at 35 days of age were fed 1 ppm clenbuterol for 14 days. This level of dietary clenbuterol led to 5-7% increases in weights of leg and breast muscle tissue. At the end of the 14-day period, serum was prepared from both control and clenbuterol-treated chickens and was then employed as a component of cell culture media at a final concentration of 20% (v/v). Muscle cell cultures were prepared from both the leg and breast muscle groups of twelve-day chick embryos. Treatment groups included control chicken serum to which 10 nM, 50 nM, and 1 micron clenbuterol had been added, as well as cells grown in media containing 10% horse serum. Cultures were subjected to each treatment for 3 days beginning on the seventh day in culture. Neither the percent fusion nor the number of nuclei in myotubes were significantly affected by any of the treatments. The quantity of MHC was not increased by serum from clenbuterol-treated chickens in either breast and leg muscle cultures; however, MHC quantity was 50- 100% higher in cultures grown in control chicken serum to which 10 nM and 50 nM clenbuterol had also been added. The Beta-AR population was 4,000-7,000 Beta-AR per cell in cultures grown in chicken serum, with leg muscle cultures having approximately 25-30% more receptors than breast muscle cultures. Receptor population was not significantly affected by the presence of clenbuterol or by the presence of serum from clenbuterol-treated chickens. In contrast, the Beta-AR population in leg and breast muscle cultures grown in the presence of 10% horse serum was 18,000-20,000 Beta-AR per cell. Basal concentration of cAMP was not significantly affected by any of the treatments. When cultures grown in chicken serum were stimulated for 10 min with 1 micron isoproterenol, limited increases of 12-20% in cAMP concentration above basal levels were observed. However, when cultures grown in the presence of horse serum were stimulated with 1 micron isoproterenol, increases of 600-800 % in cAMP concentration above basal levels were observed. Thus, not only did cells grown in horse serum have a higher Beta-AR population, each receptor had a higher capacity for cAMP synthesis following isoproterenol stimulation. Finally, the hypothesis was tested that clenbuterol exerts its action on muscle protein content by changes in cAMP concentration. No correlation was apparent between basal cAMP concentration and MHC content.

  11. Effects of FSGS-associated mutations on the stability and function of myosin-1 in fission yeast

    Directory of Open Access Journals (Sweden)

    Jing Bi

    2015-08-01

    Full Text Available Point mutations in the human MYO1E gene, encoding class I myosin Myo1e, are associated with focal segmental glomerulosclerosis (FSGS, a primary kidney disorder that leads to end-stage kidney disease. In this study, we used a simple model organism, fission yeast Schizosaccharomyces pombe, to test the effects of FSGS-associated mutations on myosin activity. Fission yeast has only one class I myosin, Myo1, which is involved in actin patch assembly at the sites of endocytosis. The amino acid residues mutated in individuals with FSGS are conserved between human Myo1e and yeast Myo1, which allowed us to introduce equivalent mutations into yeast myosin and use the resulting mutant strains for functional analysis. Yeast strains expressing mutant Myo1 exhibited defects in growth and endocytosis similar to those observed in the myo1 deletion strain. These mutations also disrupted Myo1 localization to endocytic actin patches and resulted in mis-localization of Myo1 to eisosomes, linear membrane microdomains found in yeast cells. Although both mutants examined in this study exhibited loss of function, one of these mutants was also characterized by the decreased protein stability. Thus, using the yeast model system, we were able to determine that the kidney-disease-associated mutations impair myosin functional activity and have differential effects on protein stability.

  12. Myosin IXB gene region and gluten intolerance: linkage to coeliac disease and a putative dermatitis herpetiformis association.

    Science.gov (United States)

    Koskinen, L L E; Korponay-Szabo, I R; Viiri, K; Juuti-Uusitalo, K; Kaukinen, K; Lindfors, K; Mustalahti, K; Kurppa, K; Adány, R; Pocsai, Z; Széles, G; Einarsdottir, E; Wijmenga, C; Mäki, M; Partanen, J; Kere, J; Saavalainen, P

    2008-04-01

    Coeliac disease is caused by dietary gluten, which triggers chronic inflammation of the small intestine in genetically predisposed individuals. In one quarter of the patients the disease manifests in the skin as dermatitis herpetiformis. Recently, a novel candidate gene, myosin IXB on chromosome 19p13, was shown to be associated with coeliac disease in the Dutch and Spanish populations. The same gene has previously been associated with inflammatory bowel disease, systemic lupus erythematosus and rheumatoid arthritis risk, making myosin IXB a potential shared risk factor in these inflammatory disorders. In this study, previously reported myosin IXB variants were tested for genetic linkage and association with coeliac disease in 495 Hungarian and Finnish families and in an additional 270 patients and controls. The results show significant linkage (logarithm of odds (LOD) 3.76, p = 0.00002) to 19p13 which supports the presence of a genuine risk factor for coeliac disease in this locus. Myosin IXB variants were not associated with coeliac disease in this study; however, weak evidence of association with dermatitis herpetiformis was found. The association could not explain the strong linkage seen in both phenotypes, indicating that the role of other neighbouring genes in the region cannot be excluded. Therefore, more detailed genetic and functional studies are required to characterise the role of the myosin IXB gene in both coeliac disease and dermatitis herpetiformis.

  13. Embryonic mortality in buffalo naturally mated

    Directory of Open Access Journals (Sweden)

    G. Campanile

    2010-02-01

    Full Text Available The aim of this work was to evaluate the incidence of embryonic mortality in three different period of year in buffaloes naturally mated. The trial was carried out in a buffalo farm located in Caserta province between 2000-2006. In this period were registered natural insemination on 200 buffaloes. Pregnancy diagnosis was carried out on Day 30, confirmed on Day 45 and every 15th days until 90 days after natural mating. Buffaloes that were pregnant on Day 30 but not on Day 45 or Day 90 were considered to have undergone embryonic (EM or fetal mortality (FM respectively. EM and FM were 8.8% and 13.4% respectively throughout the experimental period. A high incidence (P<0.01 of FM was found in the transitional period (December-March than in other months of the year. The incidence of embryonic mortality was significantly (P<0.01 higher between 28-60 days of gestation and lower after 71 day of gestation. The higher fetal mortality found in this study could be due the lower serum levels of progesterone normally found in transitional period in buffalo cows.

  14. Differential phosphorylation of myosin light chain (Thr)18 and (Ser)19 and functional implications in platelets.

    Science.gov (United States)

    Getz, T M; Dangelmaier, C A; Jin, J; Daniel, J L; Kunapuli, S P

    2010-10-01

    Myosin IIA is an essential platelet contractile protein that is regulated by phosphorylation of its regulatory light chain (MLC) on residues (Thr)18 and (Ser)19 via the myosin light chain kinase (MLCK). The present study was carried out to elucidate the mechanisms regulating MLC (Ser)19 and (Thr)18 phosphorylation and the functional consequence of each phosphorylation event in platelets. Induction of 2MeSADP-induced shape change occurs within 5s along with robust phosphorylation of MLC (Ser)19 with minimal phosphorylation of MLC (Thr)18. Selective activation of G(12/13) produces both slow shape change and comparably slow MLC (Thr)18 and (Ser)19 phosphorylation. Stimulation with agonists that trigger ATP secretion caused rapid MLC (Ser)19 phosphorylation while MLC (Thr)18 phosphorylation was coincident with secretion. Platelets treated with p160(ROCK) inhibitor Y-27632 exhibited a partial inhibition in secretion and had a substantial inhibition in MLC (Thr)18 phosphorylation without effecting MLC (Ser)19 phosphorylation. These data suggest that phosphorylation of MLC (Ser)19 is downstream of Gq/Ca(2+) -dependent mechanisms and sufficient for shape change, whereas MLC (Thr)18 phosphorylation is substantially downstream of G(12/13) -regulated Rho kinase pathways and necessary, probably in concert with MLC (Ser)19 phosphorylation, for full contractile activity leading to dense granule secretion. Overall, we suggest that the amplitude of the platelet contractile response is differentially regulated by a least two different signaling pathways, which lead to different phosphorylation patterns of the myosin light chain, and this mechanism results in a graded response rather than a simple on/off switch. © 2010 International Society on Thrombosis and Haemostasis.

  15. Allosteric communication in myosin V: from small conformational changes to large directed movements.

    Directory of Open Access Journals (Sweden)

    M Cecchini

    Full Text Available The rigor to post-rigor transition in myosin, a consequence of ATP binding, plays an essential role in the Lymn-Taylor functional cycle because it results in the dissociation of the actomyosin complex after the powerstroke. On the basis of the X-ray structures of myosin V, we have developed a new normal mode superposition model for the transition path between the two states. Rigid-body motions of the various subdomains and specific residues at the subdomain interfaces are key elements in the transition. The allosteric communication between the nucleotide binding site and the U50/L50 cleft is shown to result from local changes due to ATP binding, which induce large amplitude motions that are encoded in the structure of the protein. The triggering event is the change in the interaction of switch I and the P-loop, which is stabilized by ATP binding. The motion of switch I, which is a relatively rigid element of the U50 subdomain, leads directly to a partial opening of the U50/L50 cleft; the latter is expected to weaken the binding of myosin to actin. The calculated transition path demonstrates the nature of the subdomain coupling and offers an explanation for the mutual exclusion of ATP and actin binding. The mechanism of the uncoupling of the converter from the motor head, an essential part of the transition, is elucidated. The origin of the partial untwisting of the central beta-sheet in the rigor to post-rigor transition is described.

  16. Uncovering the post-embryonic functions of gametophytic- and embryonic-lethal genes.

    Science.gov (United States)

    Candela, Héctor; Pérez-Pérez, José Manuel; Micol, José Luis

    2011-06-01

    An estimated 500-1 000 Arabidopsis (Arabidopsis thaliana) genes mutate to embryonic lethality. In addition, several hundred mutations have been identified that cause gametophytic lethality. Thus, a significant fraction of the ∼25,000 protein-coding genes in Arabidopsis are indispensable to the early stages of the diploid phase or to the haploid gametophytic phase. The expression patterns of many of these genes indicate that they also act later in development but, because the mutants die at such early stages, conventional methods limit the study of their roles in adult diploid plants. Here, we describe the toolset that allows researchers to assess the post-embryonic functions of plant genes for which only gametophytic- and embryonic-lethal alleles have been isolated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Fiber size and myosin phenotypes of selected rhesus lower limb muscles after a 14-day spaceflight

    Science.gov (United States)

    Roy, R. R.; Zhong, H.; Bodine, S. C.; Pierotti, D. J.; Talmadge, R. J.; Barkhoudarian, G.; Kim, J.; Fanton, J. W.; Kozlovskaya, I. B.; Edgerton, V. R.

    2000-01-01

    Muscle biopsies were taken from the rhesus (Macaca mulatta) soleus (Sol, a slow ankle extensor), medial gastrocnemius (MG, a fast ankle extensor), tibialis anterior (TA, a fast ankle flexor), and vastus lateralis (VL, a fast knee extensor) muscles in vivarium controls (n=5) before and after either a 14-day spaceflight (Bion 11, n=2) or a 14-day ground-based flight simulation (n=3). Myosin heavy chain (MHC) composition (gel electrophoresis), fiber type distribution (immunohistochemistry), and fiber size were determined. Although there were no significant changes, each muscle showed trends towards adaptation.

  18. Characteristics of myosin profile in human vastus lateralis muscle in relation to training background.

    Directory of Open Access Journals (Sweden)

    J A Zoladz

    2004-10-01

    Full Text Available Twenty-four male volunteers (mean +/- SD: age 25.4+/-5.8 years, height 178.6+/-5.5 cm, body mass 72.1+/-7.7 kg of different training background were investigated and classified into three groups according to their physical activity and sport discipline: untrained students (group A, national and sub-national level endurance athletes (group B, 7.8+/-2.9 years of specialised training and sprint-power athletes (group C, 12.8+/-8.7 years of specialised training. Muscle biopsies of vastus lateralis were analysed histochemically for mATPase and SDH activities, immunohistochemically for fast and slow myosin, and electrophoretically followed by Western immunoblotting for myosin heavy chain (MyHC composition. Significant differences (P<0.05 regarding composition of muscle fibre types and myosin heavy chains were found only between groups A (41.7+/-1.6% of MyHCI, 40.8+/-4.0% of MyHCIIA and 17.5+/-4.0% of MyHCIIX and B (64.3+/-0.8% of MyHCI, 34.0+/-1.4% of MyHCIIA and 1.7+/-1.4% of MyHCIIX and groups A and C (59.6+/-1.6% of MyHCI, 37.2+/-1.3% of MyHCIIA and 3.2+/-1.3% of MyHCIIX. Unexpectedly, endurance athletes (group B such as long-distance runners, cyclists and cross country skiers, did not differ from the athletes representing short term, high power output sports (group C such as ice hockey, karate, ski-jumping, volleyball, soccer and modern dance. Furthermore, the relative amount of the fastest MyHCIIX isoform in vastus lateralis muscle was significantly lower in the athletes from group C than in students (group A. We conclude that the myosin profile in the athletes belonging to group C was unfavourable for their sport disciplines. This could be the reason why those athletes did not reach international level despite of several years of training.

  19. Determining the impact of oxidation on the motility of single muscle-fibres expressing different myosin isoforms

    DEFF Research Database (Denmark)

    Spanos, Dimitrios; Li, M.; Baron, Caroline P.

    2013-01-01

    Under oxidative stress, myosin has been shown to be one of the muscle proteins that are extensively modified, leading to carbonylation and cross-linking. However, how oxidation affects the actomyosin interaction in muscle fibres with different metabolic profiles and expressing different myosin...... heavy chain (MyHC) isoforms has not been previously investigated. Oxidation of myosin isolated from muscle fibres originating from various porcine muscles with a different metabolic profile was studied using a single muscle fibre in-vitro motility assay, allowing measurements of catalytic properties...... (motility speed) and force-generation capacity of specific MyHC isoforms. In the experimental procedure, single muscle fibres were split in different segments and each segment was exposed to a different concentration of hydrogen peroxide. Speed and force measurements were recorded and compared, to assess...

  20. Myosin content of single muscle fibers following short-term disuse and active recovery in young and old healthy men

    DEFF Research Database (Denmark)

    Hvid, Lars Grøndahl; Brocca, Lorenza; Ørtenblad, Niels

    2017-01-01

    in young, it is unknown whether similar relationships exist in old. Therefore, the purpose of the present study was to examine the effect of 14days lower limb disuse followed by 28days of active recovery on single muscle fiber myosin content in old (68yrs) and young (24yrs) recreationally physically active......Short-term disuse and subsequent recovery affect whole muscle and single myofiber contractile function in young and old. While the loss and recovery of single myofiber specific force (SF) following disuse and rehabilitation has been shown to correlate with alterations in myosin concentrations...... contractile capacity of MHC 2a fibers. In conclusion, adaptive changes in myofiber myosin content appear to occur rapidly following brief periods of disuse (2wks) and after subsequent active recovery (4wks) in young and old, which contribute to alterations in contractile function at the single muscle fiber...

  1. Long single [alpha]-helical tail domains bridge the gap between structure and function of myosin VI

    Energy Technology Data Exchange (ETDEWEB)

    Spink, Benjamin J.; Sivaramakrishnan, Sivaraj; Lipfert, Jan; Doniach, Sebastian; Spudich, James A. (Stanford)

    2008-09-29

    Myosin VI has challenged the lever arm hypothesis of myosin movement because of its ability to take {approx}36-nm steps along actin with a canonical lever arm that seems to be too short to allow such large steps. Here we demonstrate that the large step of dimeric myosin VI is primarily made possible by a medial tail in each monomer that forms a rare single {alpha}-helix of {approx}10 nm, which is anchored to the calmodulin-bound IQ domain by a globular proximal tail. With the medial tail contributing to the {approx}36-nm step, rather than dimerizing as previously proposed, we show that the cargo binding domain is the dimerization interface. Furthermore, the cargo binding domain seems to be folded back in the presence of the catalytic head, constituting a potential regulatory mechanism that inhibits dimerization.

  2. Metastasis-associated protein Mts1 (S100A4) inhibits CK2-mediated phosphorylation and self-assembly of the heavy chain of nonmuscle myosin

    DEFF Research Database (Denmark)

    Kriajevska, M; Bronstein, I B; Scott, D J

    2000-01-01

    of Mts1. The short C-terminal fragment of the myosin heavy chain was totally soluble in the presence of an equimolar amount of Mts1 at low ionic conditions (50 mM NaCl). Depolymerization was found to be calcium-dependent and could be blocked by EGTA. Our data suggest that Mts1 can increase myosin...... a regulatory role in the myosin assembly. In the presence of calcium, Mts1 binds at the C-terminal end of the myosin heavy chain close to the site of phosphorylation by protein kinase CK2 (Ser1944). In the present study, we have shown that interaction of Mts1 with the human platelet myosin or C......-terminal fragment of the myosin heavy chain inhibits phosphorylation of the myosin heavy chain by protein kinase CK2 in vitro. Mts1 might also bind directly the beta subunit of protein kinase CK2, thereby modifying the enzyme activity. Our results indicate that myosin oligomers were disassembled in the presence...

  3. Myosin Va plays a role in nitrergic smooth muscle relaxation in gastric fundus and corpora cavernosa of penis.

    Directory of Open Access Journals (Sweden)

    Arun Chaudhury

    Full Text Available The intracellular motor protein myosin Va is involved in nitrergic neurotransmission possibly by trafficking of neuronal nitric oxide synthase (nNOS within the nerve terminals. In this study, we examined the role of myosin Va in the stomach and penis, proto-typical smooth muscle organs in which nitric oxide (NO mediated relaxation is critical for function. We used confocal microscopy and co-immunoprecipitation of tissue from the gastric fundus (GF and penile corpus cavernosum (CCP to localize myosin Va with nNOS and demonstrate their molecular interaction. We utilized in vitro mechanical studies to test whether smooth muscle relaxations during nitrergic neuromuscular neurotransmission is altered in DBA (dilute, brown, non-agouti mice which lack functional myosin Va. Myosin Va was localized in nNOS-positive nerve terminals and was co-immunoprecipitated with nNOS in both GF and CCP. In comparison to C57BL/6J wild type (WT mice, electrical field stimulation (EFS of precontracted smooth muscles of GF and CCP from DBA animals showed significant impairment of nitrergic relaxation. An NO donor, Sodium nitroprusside (SNP, caused comparable levels of relaxation in smooth muscles of WT and DBA mice. These normal postjunctional responses to SNP in DBA tissues suggest that impairment of smooth muscle relaxation resulted from inhibition of NO synthesis in prejunctional nerve terminals. Our results suggest that normal physiological processes of relaxation of gastric and cavernosal smooth muscles that facilitate food accommodation and penile erection, respectively, may be disrupted under conditions of myosin Va deficiency, resulting in complications like gastroparesis and erectile dysfunction.

  4. Myosin Va Plays a Role in Nitrergic Smooth Muscle Relaxation in Gastric Fundus and Corpora Cavernosa of Penis

    Science.gov (United States)

    Carew, Josephine A.; Goyal, Raj K.; Sullivan, Maryrose P.

    2014-01-01

    The intracellular motor protein myosin Va is involved in nitrergic neurotransmission possibly by trafficking of neuronal nitric oxide synthase (nNOS) within the nerve terminals. In this study, we examined the role of myosin Va in the stomach and penis, proto-typical smooth muscle organs in which nitric oxide (NO) mediated relaxation is critical for function. We used confocal microscopy and co-immunoprecipitation of tissue from the gastric fundus (GF) and penile corpus cavernosum (CCP) to localize myosin Va with nNOS and demonstrate their molecular interaction. We utilized in vitro mechanical studies to test whether smooth muscle relaxations during nitrergic neuromuscular neurotransmission is altered in DBA (dilute, brown, non-agouti) mice which lack functional myosin Va. Myosin Va was localized in nNOS-positive nerve terminals and was co-immunoprecipitated with nNOS in both GF and CCP. In comparison to C57BL/6J wild type (WT) mice, electrical field stimulation (EFS) of precontracted smooth muscles of GF and CCP from DBA animals showed significant impairment of nitrergic relaxation. An NO donor, Sodium nitroprusside (SNP), caused comparable levels of relaxation in smooth muscles of WT and DBA mice. These normal postjunctional responses to SNP in DBA tissues suggest that impairment of smooth muscle relaxation resulted from inhibition of NO synthesis in prejunctional nerve terminals. Our results suggest that normal physiological processes of relaxation of gastric and cavernosal smooth muscles that facilitate food accommodation and penile erection, respectively, may be disrupted under conditions of myosin Va deficiency, resulting in complications like gastroparesis and erectile dysfunction. PMID:24516539

  5. Botulinum Toxin Type A Inhibits α-Smooth Muscle Actin and Myosin II Expression in Fibroblasts Derived From Scar Contracture.

    Science.gov (United States)

    Chen, Minliang; Yan, Tongtong; Ma, Kui; Lai, Linying; Liu, Chang; Liang, Liming; Fu, Xiaobing

    2016-09-01

    Scar contracture (SC) is one of the most common complications resulting from major burn injuries. Numerous treatments are currently available but they do not always yield excellent therapeutic results. Recent reports suggest that botulinum toxin type A (BTXA) is effective at reducing SC clinically, but the molecular mechanism for this action is unknown. α-Smooth muscle actin (α-SMA) and myosin II are the main components of stress fibers, which are the contractile structures of fibroblasts. The effects of BTXA on α-SMA and myosin II in SC are still unknown. This study aimed to explore the effect of BTXA on α-SMA and myosin II expression in fibroblasts derived from SC and to elucidate its actual mechanism further. Fibroblasts were isolated from tissue specimens of SC. Fibroblasts were cultured in Dulbecco modified Eagle medium with different concentrations of BTXA and their proliferation was analyzed through the tetrazolium-based colorimetric method at 1, 4, and 7 days. Proteins of α-SMA and myosin II were checked using Western blot in fibroblasts treated with different concentrations of BTXA at 1, 4, and 7 days. Fibroblasts without BTXA treatment had a higher proliferation than that in other groups, which indicated that the proliferation of fibroblasts was significantly inhibited by BTXA (P < 0.05). Proteins of α-SMA and myosin II between fibroblasts with BTXA and fibroblasts without BTXA are statistically significant (P < 0.05). These results suggest that BTXA effectively inhibited the growth of fibroblasts derived from SC and reduced the expression of α-SMA and myosin II, which provided theoretical support for the application of BTXA to control SC.

  6. Head-neck domain of Arabidopsis myosin XI, MYA2, fused with GFP produces F-actin patterns that coincide with fast organelle streaming in different plant cells

    Directory of Open Access Journals (Sweden)

    Holweg Carola L

    2008-07-01

    Full Text Available Abstract Background The cytoskeletal mechanisms that underlie organelle transport in plants are intimately linked to acto-myosin function. This function is mediated by the attachment of myosin heads to F-actin and the binding of cargo to the tails. Acto-myosin also powers vigorous cytoplasmic streaming in plant cells. Class XI myosins exhibit strikingly fast velocities and may have extraordinary roles in cellular motility. Studies of the structural basis of organelle transport have focused on the cargo-binding tails of myosin XI, revealing a close relationship with the transport of peroxisomes, mitochondria, and Golgi-vesicles. Links between myosin heads and F-actin-based motility have been less investigated. To address this function, we performed localization studies using the head-neck domain of AtMYA2, a myosin XI from Arabidopsis. Results We expressed the GFP-fused head-neck domain of MYA2 in epidermal cells of various plant species and found that it associated with F-actin. By comparison to other markers such as fimbrin and talin, we revealed that the myosin-labeled F-actin was of a lower quality and absent from the fine microfilament arrays at the cell cortex. However, it colocalized with cytoplasmic (transvacuolar F-actin in areas coinciding with the tracks of fast organelles. This observation correlates well with the proposed function of myosin XI in organelle trafficking. The fact that organelle streaming was reduced in cells expressing the GFP-MYA2-head6IQ indicated that the functionless motor protein inhibits endogenous myosins. Furthermore, co-expression of the GFP-MYA2-head6IQ with other F-actin markers disrupted its attachment to F-actin. In nuclei, the GFP-myosin associated with short bundles of F-actin. Conclusion The localization of the head of MYA2 in living plant cells, as investigated here for the first time, suggests a close linkage between this myosin XI and cytoplasmic microfilaments that support the rapid streaming of

  7. Global transcriptional profiles of beating clusters derived from human induced pluripotent stem cells and embryonic stem cells are highly similar

    Directory of Open Access Journals (Sweden)

    Gupta Manoj K

    2010-09-01

    Full Text Available Abstract Background Functional and molecular integrity of cardiomyocytes (CMs derived from induced pluripotent stem (iPS cells is essential for their use in tissue repair, disease modelling and drug screening. In this study we compared global transcriptomes of beating clusters (BCs microdissected from differentiating human iPS cells and embryonic stem (ES cells. Results Hierarchical clustering and principal component analysis revealed that iPS-BCs and ES-BCs cluster together, are similarly enriched for cardiospecific genes and differ in expression of only 1.9% of present transcripts. Similarly, sarcomeric organization, electrophysiological properties and calcium handling of iPS-CMs were indistinguishable from those of ES-CMs. Gene ontology analysis revealed that among 204 genes that were upregulated in iPS-BCs vs ES-BCs the processes related to extracellular matrix, cell adhesion and tissue development were overrepresented. Interestingly, 47 of 106 genes that were upregulated in undifferentiated iPS vs ES cells remained enriched in iPS-BCs vs ES-BCs. Most of these genes were found to be highly expressed in fibroblasts used for reprogramming and 34% overlapped with the recently reported iPS cell-enriched genes. Conclusions These data suggest that iPS-BCs are transcriptionally highly similar to ES-BCs. However, iPS-BCs appear to share some somatic cell signature with undifferentiated iPS cells. Thus, iPS-BCs may not be perfectly identical to ES-BCs. These minor differences in the expression profiles may occur due to differential cellular composition of iPS-BCs and ES-BCs, due to retention of some genetic profile of somatic cells in differentiated iPS cell-derivatives, or both.

  8. Hyaluronan esters drive Smad gene expression and signaling enhancing cardiogenesis in mouse embryonic and human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Margherita Maioli

    Full Text Available BACKGROUND: Development of molecules chemically modifying the expression of crucial orchestrator(s of stem cell commitment may have significant biomedical impact. We have recently developed hyaluronan mixed esters of butyric and retinoic acids (HBR, turning cardiovascular stem cell fate into a high-yield process. The HBR mechanism(s remain still largely undefined. METHODOLOGY/PRINCIPAL FINDINGS: We show that in both mouse embryonic stem (ES cells and human mesenchymal stem cells from fetal membranes of term placenta (FMhMSCs, HBR differentially affected the patterning of Smad proteins, one of the major conductors of stem cell cardiogenesis. Real-time RT-PCR and Western blot analyses revealed that in both cell types HBR enhanced gene and protein expression of Smad1,3, and 4, while down-regulating Smad7. HBR acted at the transcriptional level, as shown by nuclear run-off experiments in isolated nuclei. Immunofluorescence analysis indicated that HBR increased the fluorescent staining for Smad1,3, and 4, confirming that the transcriptional action of HBR encompassed the upregulation of the encoded Smad proteins. Chromatin immune precipitation and transcriptional analyses showed that HBR increased the transcription of the cardiogenic gene Nkx-2.5 through Smad4 binding to its own consensus Smad site. Treatment of mouse ES cells and FMhMSCs with HBR led to the concomitant overexpression of both Smad4 and α-sarcomeric actinin. Smad4 silencing by the aid of lentiviral-mediated Smad4 shRNA confirmed a dominant role of Smad4 in HBR-induced cardiogenesis. CONCLUSIONS/SIGNIFICANCE: The use of HBR may pave the way to novel combinatorial strategies of molecular and stem cell therapy based on fine tuning of targeted Smad transciption and signaling leading to a high-throughput of cardiogenesis without the needs of gene transfer technologies.

  9. Myosin light chains are not a physiological substrate of AMPK in the control of cell structure changes.

    Science.gov (United States)

    Bultot, Laurent; Horman, Sandrine; Neumann, Dietbert; Walsh, Michael P; Hue, Louis; Rider, Mark H

    2009-01-05

    The kinetics of myosin regulatory light chain (MLC) phosphorylation by recombinant AMP-activated protein kinase (AMPK) were compared with commercial AMPK from rat liver and smooth muscle myosin light chain kinase (smMLCK). With identical amounts of activity units, initial rates of phosphorylation of MLC were at least 100-fold less with recombinant AMPK compared to smMLCK, whereas with rat liver AMPK significant phosphorylation was seen. In Madin-Darby Canine Kidney cells, AMPK activation led to an increase in MLC phosphorylation, which was decreased by a Rho kinase inhibitor without affecting AMPK activation. Therefore, MLC phosphorylation during energy deprivation does not result from direct phosphorylation by AMPK.

  10. Possible interrelationship between changes in F-actin and myosin II, protein phosphorylation, and cell volume regulation in Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Pedersen, S F; Hoffmann, E K

    2002-01-01

    Osmotic shrinkage of Ehrlich ascites tumor cells (EATC) elicited translocation of myosin II from the cytosol to the cortical region, and swelling elicits concentration of myosin II in the Golgi region. Rho kinase and p38 both appeared to be involved in shrinkage-induced myosin II reorganization....... In contrast, the previously reported shrinkage-induced actin polymerization [Pedersen et al. (1999) Exp. Cell Res. 252, 63-74] was independent of Rho kinase, p38, myosin light chain kinase (MLCK), and protein kinase C (PKC), which thus do not exert their effects on the shrinkage-activated transporters via...... by osmotic shrinkage and by the serine/threonine phosphatase inhibitor Calyculin A (CL-A). Both stimuli caused Rho kinase-dependent myosin II relocation to the cortical cytoplasm, but in contrast to the shrinkage-induced F-actin polymerization, CL-A treatment elicited a slight F-actin depolymerization...

  11. Antibodies covalently immobilized on actin filaments for fast myosin driven analyte transport.

    Directory of Open Access Journals (Sweden)

    Saroj Kumar

    Full Text Available Biosensors would benefit from further miniaturization, increased detection rate and independence from external pumps and other bulky equipment. Whereas transportation systems built around molecular motors and cytoskeletal filaments hold significant promise in the latter regard, recent proof-of-principle devices based on the microtubule-kinesin motor system have not matched the speed of existing methods. An attractive solution to overcome this limitation would be the use of myosin driven propulsion of actin filaments which offers motility one order of magnitude faster than the kinesin-microtubule system. Here, we realized a necessary requirement for the use of the actomyosin system in biosensing devices, namely covalent attachment of antibodies to actin filaments using heterobifunctional cross-linkers. We also demonstrated consistent and rapid myosin II driven transport where velocity and the fraction of motile actin filaments was negligibly affected by the presence of antibody-antigen complexes at rather high density (>20 µm(-1. The results, however, also demonstrated that it was challenging to consistently achieve high density of functional antibodies along the actin filament, and optimization of the covalent coupling procedure to increase labeling density should be a major focus for future work. Despite the remaining challenges, the reported advances are important steps towards considerably faster nanoseparation than shown for previous molecular motor based devices, and enhanced miniaturization because of high bending flexibility of actin filaments.

  12. Myosin light chain kinase mediates intestinal barrier dysfunction via occludin endocytosis during anoxia/reoxygenation injury.

    Science.gov (United States)

    Jin, Younggeon; Blikslager, Anthony T

    2016-12-01

    Intestinal anoxia/reoxygenation (A/R) injury induces loss of barrier function followed by epithelial repair. Myosin light chain kinase (MLCK) has been shown to alter barrier function via regulation of interepithelial tight junctions, but has not been studied in intestinal A/R injury. We hypothesized that A/R injury would disrupt tight junction barrier function via MLCK activation and myosin light chain (MLC) phosphorylation. Caco-2BBe1 monolayers were subjected to anoxia for 2 h followed by reoxygenation in 21% O 2 , after which barrier function was determined by measuring transepithelial electrical resistance (TER) and FITC-dextran flux. Tight junction proteins and MLCK signaling were assessed by Western blotting, real-time PCR, or immunofluorescence microscopy. The role of MLCK was further investigated with select inhibitors (ML-7 and peptide 18) by using in vitro and ex vivo models. Following A/R injury, there was a significant increase in paracellular permeability compared with control cells, as determined by TER and dextran fluxes (P endocytosis caused by A/R injury. Application of MLCK inhibitors to ischemia-injured porcine ileal mucosa induced significant increases in TER and reduced mucosal-to-serosal fluxes of 3 H-labeled mannitol. These data suggest that MLCK-induced occludin endocytosis mediates intestinal epithelial barrier dysfunction during A/R injury. Our results also indicate that MLCK-dependent occludin regulation may be a target for the therapeutic treatment of ischemia/reperfusion injury. Copyright © 2016 the American Physiological Society.

  13. PTP1B triggers integrin-mediated repression of myosin activity and modulates cell contractility

    Directory of Open Access Journals (Sweden)

    Ana E. González Wusener

    2016-01-01

    Full Text Available Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO cells and PTP1B reconstituted (WT cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of β3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration.

  14. The role of myosin II in glioma invasion: A mathematical model.

    Directory of Open Access Journals (Sweden)

    Wanho Lee

    Full Text Available Gliomas are malignant tumors that are commonly observed in primary brain cancer. Glioma cells migrate through a dense network of normal cells in microenvironment and spread long distances within brain. In this paper we present a two-dimensional multiscale model in which a glioma cell is surrounded by normal cells and its migration is controlled by cell-mechanical components in the microenvironment via the regulation of myosin II in response to chemoattractants. Our simulation results show that the myosin II plays a key role in the deformation of the cell nucleus as the glioma cell passes through the narrow intercellular space smaller than its nuclear diameter. We also demonstrate that the coordination of biochemical and mechanical components within the cell enables a glioma cell to take the mode of amoeboid migration. This study sheds lights on the understanding of glioma infiltration through the narrow intercellular spaces and may provide a potential approach for the development of anti-invasion strategies via the injection of chemoattractants for localization.

  15. Dynamic myosin phosphorylation regulates contractile pulses and tissue integrity during epithelial morphogenesis

    Science.gov (United States)

    Vasquez, Claudia G.; Tworoger, Mike

    2014-01-01

    Apical constriction is a cell shape change that promotes epithelial bending. Activation of nonmuscle myosin II (Myo-II) by kinases such as Rho-associated kinase (Rok) is important to generate contractile force during apical constriction. Cycles of Myo-II assembly and disassembly, or pulses, are associated with apical constriction during Drosophila melanogaster gastrulation. It is not understood whether Myo-II phosphoregulation organizes contractile pulses or whether pulses are important for tissue morphogenesis. Here, we show that Myo-II pulses are associated with pulses of apical Rok. Mutants that mimic Myo-II light chain phosphorylation or depletion of myosin phosphatase inhibit Myo-II contractile pulses, disrupting both actomyosin coalescence into apical foci and cycles of Myo-II assembly/disassembly. Thus, coupling dynamic Myo-II phosphorylation to upstream signals organizes contractile Myo-II pulses in both space and time. Mutants that mimic Myo-II phosphorylation undergo continuous, rather than incremental, apical constriction. These mutants fail to maintain intercellular actomyosin network connections during tissue invagination, suggesting that Myo-II pulses are required for tissue integrity during morphogenesis. PMID:25092658

  16. Space exploration by dendritic cells requires maintenance of myosin II activity by IP3 receptor 1

    Science.gov (United States)

    Solanes, Paola; Heuzé, Mélina L; Maurin, Mathieu; Bretou, Marine; Lautenschlaeger, Franziska; Maiuri, Paolo; Terriac, Emmanuel; Thoulouze, Maria-Isabel; Launay, Pierre; Piel, Matthieu; Vargas, Pablo; Lennon-Duménil, Ana-Maria

    2015-01-01

    Dendritic cells (DCs) patrol the interstitial space of peripheral tissues. The mechanisms that regulate their migration in such constrained environment remain unknown. We here investigated the role of calcium in immature DCs migrating in confinement. We found that they displayed calcium oscillations that were independent of extracellular calcium and more frequently observed in DCs undergoing strong speed fluctuations. In these cells, calcium spikes were associated with fast motility phases. IP3 receptors (IP3Rs) channels, which allow calcium release from the endoplasmic reticulum, were identified as required for immature DCs to migrate at fast speed. The IP3R1 isoform was further shown to specifically regulate the locomotion persistence of immature DCs, that is, their capacity to maintain directional migration. This function of IP3R1 results from its ability to control the phosphorylation levels of myosin II regulatory light chain (MLC) and the back/front polarization of the motor protein. We propose that by upholding myosin II activity, constitutive calcium release from the ER through IP3R1 maintains DC polarity during migration in confinement, facilitating the exploration of their environment. PMID:25637353

  17. MYH7 gene mutation in myosin storage myopathy and scapulo-peroneal myopathy.

    Science.gov (United States)

    Pegoraro, Elena; Gavassini, Bruno F; Borsato, Carlo; Melacini, Paola; Vianello, Andrea; Stramare, Roberto; Cenacchi, Giovanna; Angelini, Corrado

    2007-04-01

    In order to characterize, at the clinical, molecular and imaging level, myopathies due to MYH7 gene mutations, MYH7 gene analysis was conducted by RT-PCR/SSCP/sequencing in two patients diagnosed with myosin storage myopathy and 17 patients diagnosed with scapulo-peroneal myopathy of unknown etiology. MYH7 gene studies revealed the 5533C>T mutation (Arg1845Trp) in both myosin storage myopathy and in 2 of the 17 scapulo-peroneal patients studied. 5533C>T segregation analysis in the mutation carrier families identified 11 additional patients. The clinical spectrum in our cohort of patients included asymptomatic hyperCKemia, scapulo-peroneal myopathy and proximal and distal myopathy with muscle hypertrophy. Muscle MRI identified a unique pattern in the posterior compartment of the thigh, characterized by early involvement of the biceps femoris and semimembranosus, with relative sparing of the semitendinosus. Muscle biopsy revealed hyaline bodies in only half of biopsied patients (2/4). In conclusion, phenotypic and histopathological variability may underlie MYH7 gene mutation and the absence of hyaline bodies in muscle biopsies does not rule out MYH7 gene mutations.

  18. A single molecule approach to mRNA transport by a class V myosin.

    Science.gov (United States)

    Sladewski, Thomas E; Trybus, Kathleen M

    2014-01-01

    mRNA localization ensures correct spatial and temporal control of protein synthesis in the cell. We show that an in vitro single molecule approach, using purified recombinant full-length proteins and synthesized mRNA, provides insight into the mechanism by which localizing mRNAs are carried to their destination. A messenger ribonucleoprotein (mRNP) complex was reconstituted from a budding yeast class V myosin motor complex (Myo4p-She3p), an mRNA-binding adaptor protein (She2p), and a localizing mRNA (ASH1). The motion of the mRNP was tracked with high spatial (∼10 nm) and temporal (70 ms) resolution. Using this "bottom-up" methodology, we show that mRNA triggers the assembly of a high affinity double-headed motor-mRNA complex that moves continuously for long distances on actin filaments at physiologic ionic strength. Without mRNA, the myosin is monomeric and unable to move continuously on actin. This finding reveals an elegant strategy to ensure that only cargo-bound motors are activated for transport. Increasing the number of localization elements ("zip codes") in the mRNA enhanced both the frequency of motile events and their run length, features which likely enhance cellular localization. Future in vitro reconstitution of mRNPs with kinesin and dynein motors should similarly yield mechanistic insight into mRNA transport by microtubule-based motors.

  19. Altered myosin isoform expression in rat skeletal muscles induced by a changed thyroid state.

    Science.gov (United States)

    Wahrmann, J P; Fulla, Y; Rieu, M; Kahn, A; Dinh-Xuan, A T

    2002-11-01

    The aim of our study was to find out, which are the thyroid linked mechanisms responsible for the changes in myosin isoform composition which accompany endurance training (ET) in rodents. We studied the interaction between ET and altered sedentary group with no thyroid treatment or Se group. Six groups of rats were compared: (1) a trained group with no thyroid treatment or T group; (2) a thyroid state in rats; (3) a sedentary group rendered hypothyroid with 6-n-propyl thio uracil (H); (4) a sedentary group rendered hyperthyroid with T3 (150 microg kg(-1) every other day for 4 weeks) (St); (5) trained rats rendered hyperthyroid with T3 (150 microg kg(-1) every other day for 4 weeks) (Tt) and (6) a trained group kept euthyroid with T3 (150 ng kg(-1) every other day for 4 weeks) (Te). In each group myosin isoform composition was determined in five muscles, three locomotor muscles: (1) extensor digitorum longus, (2) superficial lateral gastrocnemius, (3) deep medial gastrocnemius, (4) an antigravity muscle, the soleus and (5) a rhytmic respiratory muscle, the crural diaphragm. Different muscles responded in a specific way to variations of the thyroid state and training.

  20. Myosin phosphorylation potentiated steady state work output without altering contractile economy of mouse fast skeletal muscles.

    Science.gov (United States)

    Gittings, William; Bunda, Jordan; Vandenboom, Rene

    2017-11-09

    Skeletal myosin light chain kinase (skMLCK) catalyzed phosphorylation of the myosin regulatory light chain (RLC) increases (i.e. potentiates) mechanical work output of fast skeletal muscle. The influence of this event on contractile economy (i.e. energy cost/work performed) remains controversial, however. Our purpose was to quantify contractile economy of potentiated extensor digitorum longus (EDL) muscles from mouse skeletal muscles with (wildtype, WT) and without (skMLCK ablated, skMLCK-/-) the ability to phosphorylate the RLC. Contractile economy was calculated as the ratio of total work performed to high-energy phosphate consumption (HEPC) during a period of repeated isovelocity contractions that followed a potentiating stimulus (PS). Consistent with genotype, the PS increased RLC phosphorylation measured during before and after isovelocity contractions in WT but not skMLCK-/- muscles (i.e. 0.65 and 0.05 mol phos mol RLC, respectively). In addition, although the PS enhanced work during repeated isovelocity contractions in both genotypes the increase was significantly greater in WT than in skMLCK-/- muscles (1.51±0.03 vs. 1.10±0.05, respectively) (all data Peconomy calculated for WT muscles was similar to that calculated for skMLCK-/- muscles (i.e. 5.74±0.67 and 4.61±0.71 J•kg-1μmol∼P-1; respectively (Peconomy. © 2017. Published by The Company of Biologists Ltd.

  1. Model of myosin node aggregation into a contractile ring: the effect of local alignment

    Energy Technology Data Exchange (ETDEWEB)

    Ojkic, Nikola; Vavylonis, Dimitrios [Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States); Wu Jianqiu, E-mail: vavylonis@lehigh.edu [Department of Molecular Genetics and Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210 (United States)

    2011-09-21

    Actomyosin bundles frequently form through aggregation of membrane-bound myosin clusters. One such example is the formation of the contractile ring in fission yeast from a broad band of cortical nodes. Nodes are macromolecular complexes containing several dozens of myosin-II molecules and a few formin dimers. The condensation of a broad band of nodes into the contractile ring has been previously described by a search, capture, pull and release (SCPR) model. In SCPR, a random search process mediated by actin filaments nucleated by formins leads to transient actomyosin connections among nodes that pull one another into a ring. The SCPR model reproduces the transport of nodes over long distances and predicts observed clump-formation instabilities in mutants. However, the model does not generate transient linear elements and meshwork structures as observed in some wild-type and mutant cells during ring assembly. As a minimal model of node alignment, we added short-range aligning forces to the SCPR model representing currently unresolved mechanisms that may involve structural components, cross-linking and bundling proteins. We studied the effect of the local node alignment mechanism on ring formation numerically. We varied the new parameters and found viable rings for a realistic range of values. Morphologically, transient structures that form during ring assembly resemble those observed in experiments with wild-type and cdc25-22 cells. Our work supports a hierarchical process of ring self-organization involving components drawn together from distant parts of the cell followed by progressive stabilization.

  2. Coupling of two non-processive myosin 5c dimers enables processive stepping along actin filaments.

    Science.gov (United States)

    Gunther, Laura K; Furuta, Ken'ya; Bao, Jianjun; Urbanowski, Monica K; Kojima, Hiroaki; White, Howard D; Sakamoto, Takeshi

    2014-05-09

    Myosin 5c (Myo5c) is a low duty ratio, non-processive motor unable to move continuously along actin filaments though it is believed to participate in secretory vesicle trafficking in vertebrate cells. Here, we measured the ATPase kinetics of Myo5c dimers and tested the possibility that the coupling of two Myo5c molecules enables processive movement. Steady-state ATPase activity and ADP dissociation kinetics demonstrated that a dimer of Myo5c-HMM (double-headed heavy meromyosin 5c) has a 6-fold lower Km for actin filaments than Myo5c-S1 (single-headed myosin 5c subfragment-1), indicating that the two heads of Myo5c-HMM increase F-actin-binding affinity. Nanometer-precision tracking analyses showed that two Myo5c-HMM dimers linked with each other via a DNA scaffold and moved processively along actin filaments. Moreover, the distance between the Myo5c molecules on the DNA scaffold is an important factor for the processive movement. Individual Myo5c molecules in two-dimer complexes move stochastically in 30-36 nm steps. These results demonstrate that two dimers of Myo5c molecules on a DNA scaffold increased the probability of rebinding to F-actin and enabled processive steps along actin filaments, which could be used for collective cargo transport in cells.

  3. The On-off Switch in Regulated Myosins: Different Triggers but Related Mechanisms

    Science.gov (United States)

    Himmel, Daniel M.; Mui, Suet; O'Neall-Hennessey, Elizabeth; Szent-Györgyi, Andrew G.; Cohen, Carolyn

    2009-01-01

    In regulated myosins, motor and enzymatic activity are toggled between on- and off-states by a switch located on its lever arm, or regulatory domain (RD). This region consists of a long alpha-helical "heavy chain" stabilized by a "regulatory" and an "essential" light chain. The on-state is activated by phosphorylation of the regulatory light chain of smooth muscle RD, or by direct binding of Ca2+ to the essential light chain of molluscan RD. Crystal structures are available only for the molluscan RD. To understand the pathway between the on and off states in more detail, we have now also determined the crystal structure of a molluscan (scallop) RD in the absence of Ca2+. Our results indicate that loss of Ca2+ abolishes most of the interactions between the light chains and may increase flexibility of the RD heavy chain. We propose that disruption of critical links with the C-lobe of the regulatory light chain is the key event initiating the off-state in both smooth muscle and molluscan myosins. PMID:19769984

  4. Dynamic Proteomic Profiling of Extra-Embryonic Endoderm Differentiation in Mouse Embryonic Stem Cells.

    Science.gov (United States)

    Mulvey, Claire M; Schröter, Christian; Gatto, Laurent; Dikicioglu, Duygu; Fidaner, Isik Baris; Christoforou, Andy; Deery, Michael J; Cho, Lily T Y; Niakan, Kathy K; Martinez-Arias, Alfonso; Lilley, Kathryn S

    2015-09-01

    During mammalian preimplantation development, the cells of the blastocyst's inner cell mass differentiate into the epiblast and primitive endoderm lineages, which give rise to the fetus and extra-embryonic tissues, respectively. Extra-embryonic endoderm (XEN) differentiation can be modeled in vitro by induced expression of GATA transcription factors in mouse embryonic stem cells. Here, we use this GATA-inducible system to quantitatively monitor the dynamics of global proteomic changes during the early stages of this differentiation event and also investigate the fully differentiated phenotype, as represented by embryo-derived XEN cells. Using mass spectrometry-based quantitative proteomic profiling with multivariate data analysis tools, we reproducibly quantified 2,336 proteins across three biological replicates and have identified clusters of proteins characterized by distinct, dynamic temporal abundance profiles. We first used this approach to highlight novel marker candidates of the pluripotent state and XEN differentiation. Through functional annotation enrichment analysis, we have shown that the downregulation of chromatin-modifying enzymes, the reorganization of membrane trafficking machinery, and the breakdown of cell-cell adhesion are successive steps of the extra-embryonic differentiation process. Thus, applying a range of sophisticated clustering approaches to a time-resolved proteomic dataset has allowed the elucidation of complex biological processes which characterize stem cell differentiation and could establish a general paradigm for the investigation of these processes. © 2015 AlphaMed Press.

  5. Electrophysiological Characteristics of Embryonic Stem Cell-Derived Cardiomyocytes are Cell Line-Dependent

    Directory of Open Access Journals (Sweden)

    Tobias Hannes

    2015-01-01

    Full Text Available Background: Modelling of cardiac development, physiology and pharmacology by differentiation of embryonic stem cells (ESCs requires comparability of cardiac differentiation between different ESC lines. To investigate whether the outcome of cardiac differentiation is consistent between different ESC lines, we compared electrophysiological properties of ESC-derived cardiomyocytes (ESC-CMs of different murine ESC lines. Methods: Two wild-type (D3 and R1 and two transgenic ESC lines (D3/aPIG44 and CGR8/AMPIGX-7 were differentiated under identical culture conditions. The transgenic cell lines expressed enhanced green fluorescent protein (eGFP and puromycin-N-acetyltransferase under control of the cardiac specific α-myosin heavy chain (αMHC promoter. Action potentials (APs were recorded using sharp electrodes and multielectrode arrays in beating clusters of ESC-CMs. Results: Spontaneous AP frequency and AP duration (APD as well as maximal upstroke velocity differed markedly between unpurified CMs of the four ESC lines. APD heterogeneity was negligible in D3/aPIG44, moderate in D3 and R1 and extensive in CGR8/AMPIGX-7. Interspike intervals calculated from long-term recordings showed a high degree of variability within and between recordings in CGR8/AMPIGX-7, but not in D3/aPIG44. Purification of the αMHC+ population by puromycin treatment posed only minor changes to APD in D3/aPIG44, but significantly shortened APD in CGR8/AMPIGX-7. Conclusion: Electrophysiological properties of ESC-CMs are strongly cell line-dependent and can be influenced by purification of cardiomyocytes by antibiotic selection. Thus, conclusions on cardiac development, physiology and pharmacology derived from single stem cell lines have to be interpreted carefully.

  6. Analysis of the ACTN3 heterozygous genotype suggests that α-actinin-3 controls sarcomeric composition and muscle function in a dose-dependent fashion.

    Science.gov (United States)

    Hogarth, Marshall W; Garton, Fleur C; Houweling, Peter J; Tukiainen, Taru; Lek, Monkol; Macarthur, Daniel G; Seto, Jane T; Quinlan, Kate G R; Yang, Nan; Head, Stewart I; North, Kathryn N

    2016-03-01

    A common null polymorphism (R577X) in ACTN3 causes α-actinin-3 deficiency in ∼ 18% of the global population. There is no associated disease phenotype, but α-actinin-3 deficiency is detrimental to sprint and power performance in both elite athletes and the general population. However, despite considerable investigation to date, the functional consequences of heterozygosity for ACTN3 are unclear. A subset of studies have shown an intermediate phenotype in 577RX individuals, suggesting dose-dependency of α-actinin-3, while others have shown no difference between 577RR and RX genotypes. Here, we investigate the effects of α-actinin-3 expression level by comparing the muscle phenotypes of Actn3(+/-) (HET) mice to Actn3(+/+) [wild-type (WT)] and Actn3(-/-) [knockout (KO)] littermates. We show reduction in α-actinin-3 mRNA and protein in HET muscle compared with WT, which is associated with dose-dependent up-regulation of α-actinin-2, z-band alternatively spliced PDZ-motif and myotilin at the Z-line, and an incremental shift towards oxidative metabolism. While there is no difference in force generation, HET mice have an intermediate endurance capacity compared with WT and KO. The R577X polymorphism is associated with changes in ACTN3 expression consistent with an additive model in the human genotype-tissue expression cohort, but does not influence any other muscle transcripts, including ACTN2. Overall, ACTN3 influences sarcomeric composition in a dose-dependent fashion in mouse skeletal muscle, which translates directly to function. Variance in fibre type between biopsies likely masks this phenomenon in human skeletal muscle, but we suggest that an additive model is the most appropriate for use in testing ACTN3 genotype associations. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Novel Sarcopenia-related Alterations in Sarcomeric Protein Post-translational Modifications in Skeletal Muscles Identified by Top-down Proteomics.

    Science.gov (United States)

    Wei, Liming; Gregorich, Zachery R; Lin, Ziqing; Cai, Wenxuan; Jin, Yutong; McKiernan, Susan H; McIlwain, Sean; Aiken, Judd M; Moss, Richard L; Diffee, Gary M; Ge, Ying

    2017-10-18

    Sarcopenia, the age-related loss of skeletal muscle mass and strength, is a significant cause of morbidity in the elderly and is a major burden on health care systems. Unfortunately, the underlying molecular mechanisms in sarcopenia remain poorly understood. Herein, we utilized top-down proteomics to elucidate sarcopenia-related changes in the fast- and slow-twitch skeletal muscles of aging rats with a focus on the sarcomeric proteome, which includes both myofilament and Z-disc proteins-the proteins that constitute the contractile apparatuses. Top-down quantitative proteomics identified significant changes in the post-translational modifications (PTMs) of critical myofilament proteins in the fast-twitch skeletal muscles of aging rats, in accordance with the vulnerability of fast-twitch muscles to sarcopenia. Surprisingly, age-related alterations in the phosphorylation of Cypher isoforms, proteins that localize to the Z-discs in striated muscles, were also noted in the fast-twitch skeletal muscle of aging rats. This represents the first report of changes in the phosphorylation of Z-disc proteins in skeletal muscle during aging. In addition, increased glutathionylation of slow skeletal troponin I, a novel modification that may help protect against oxidative damage, was observed in slow-twitch skeletal muscles. Furthermore, we have identified and characterized novel muscle type-specific proteoforms of myofilament proteins and Z-disc proteins, including a novel isoform of the Z-disc protein Enigma. The finding that the phosphorylation of Z-disc proteins is altered in response to aging in the fast-twitch skeletal muscles of aging rats opens new avenues for the investigation of the role of Z-discs in age-related muscle dysfunction. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  8. Circadian regulation of myocardial sarcomeric Titin-cap (Tcap, telethonin: identification of cardiac clock-controlled genes using open access bioinformatics data.

    Directory of Open Access Journals (Sweden)

    Peter S Podobed

    Full Text Available Circadian rhythms are important for healthy cardiovascular physiology and are regulated at the molecular level by a circadian clock mechanism. We and others previously demonstrated that 9-13% of the cardiac transcriptome is rhythmic over 24 h daily cycles; the heart is genetically a different organ day versus night. However, which rhythmic mRNAs are regulated by the circadian mechanism is not known. Here, we used open access bioinformatics databases to identify 94 transcripts with expression profiles characteristic of CLOCK and BMAL1 targeted genes, using the CircaDB website and JTK_Cycle. Moreover, 22 were highly expressed in the heart as determined by the BioGPS website. Furthermore, 5 heart-enriched genes had human/mouse conserved CLOCK:BMAL1 promoter binding sites (E-boxes, as determined by UCSC table browser, circadian mammalian promoter/enhancer database PEDB, and the European Bioinformatics Institute alignment tool (EMBOSS. Lastly, we validated findings by demonstrating that Titin cap (Tcap, telethonin was targeted by transcriptional activators CLOCK and BMAL1 by showing 1 Tcap mRNA and TCAP protein had a diurnal rhythm in murine heart; 2 cardiac Tcap mRNA was rhythmic in animals kept in constant darkness; 3 Tcap and control Per2 mRNA expression and cyclic amplitude were blunted in Clock(Δ19/Δ19 hearts; 4 BMAL1 bound to the Tcap promoter by ChIP assay; 5 BMAL1 bound to Tcap promoter E-boxes by biotinylated oligonucleotide assay; and 6 CLOCK and BMAL1 induced tcap expression by luciferase reporter assay. Thus this study identifies circadian regulated genes in silico, with validation of Tcap, a critical regulator of cardiac Z-disc sarcomeric structure and function.

  9. Evaluation of 309 environmental chemicals using a mouse embryonic stem cell adherent cell differentiation and cytotoxicity assay.

    Science.gov (United States)

    Chandler, Kelly J; Barrier, Marianne; Jeffay, Susan; Nichols, Harriette P; Kleinstreuer, Nicole C; Singh, Amar V; Reif, David M; Sipes, Nisha S; Judson, Richard S; Dix, David J; Kavlock, Robert; Hunter, Edward S; Knudsen, Thomas B

    2011-01-01

    The vast landscape of environmental chemicals has motivated the need for alternative methods to traditional whole-animal bioassays in toxicity testing. Embryonic stem (ES) cells provide an in vitro model of embryonic development and an alternative method for assessing developmental toxicity. Here, we evaluated 309 environmental chemicals, mostly food-use pesticides, from the ToxCast™ chemical library using a mouse ES cell platform. ES cells were cultured in the absence of pluripotency factors to promote spontaneous differentiation and in the presence of DMSO-solubilized chemicals at different concentrations to test the effects of exposure on differentiation and cytotoxicity. Cardiomyocyte differentiation (α,β myosin heavy chain; MYH6/MYH7) and cytotoxicity (DRAQ5™/Sapphire700™) were measured by In-Cell Western™ analysis. Half-maximal activity concentration (AC₅₀) values for differentiation and cytotoxicity endpoints were determined, with 18% of the chemical library showing significant activity on either endpoint. Mining these effects against the ToxCast Phase I assays (∼500) revealed significant associations for a subset of chemicals (26) that perturbed transcription-based activities and impaired ES cell differentiation. Increased transcriptional activity of several critical developmental genes including BMPR2, PAX6 and OCT1 were strongly associated with decreased ES cell differentiation. Multiple genes involved in reactive oxygen species signaling pathways (NRF2, ABCG2, GSTA2, HIF1A) were strongly associated with decreased ES cell differentiation as well. A multivariate model built from these data revealed alterations in ABCG2 transporter was a strong predictor of impaired ES cell differentiation. Taken together, these results provide an initial characterization of metabolic and regulatory pathways by which some environmental chemicals may act to disrupt ES cell growth and differentiation.

  10. Evaluation of 309 environmental chemicals using a mouse embryonic stem cell adherent cell differentiation and cytotoxicity assay.

    Directory of Open Access Journals (Sweden)

    Kelly J Chandler

    Full Text Available The vast landscape of environmental chemicals has motivated the need for alternative methods to traditional whole-animal bioassays in toxicity testing. Embryonic stem (ES cells provide an in vitro model of embryonic development and an alternative method for assessing developmental toxicity. Here, we evaluated 309 environmental chemicals, mostly food-use pesticides, from the ToxCast™ chemical library using a mouse ES cell platform. ES cells were cultured in the absence of pluripotency factors to promote spontaneous differentiation and in the presence of DMSO-solubilized chemicals at different concentrations to test the effects of exposure on differentiation and cytotoxicity. Cardiomyocyte differentiation (α,β myosin heavy chain; MYH6/MYH7 and cytotoxicity (DRAQ5™/Sapphire700™ were measured by In-Cell Western™ analysis. Half-maximal activity concentration (AC₅₀ values for differentiation and cytotoxicity endpoints were determined, with 18% of the chemical library showing significant activity on either endpoint. Mining these effects against the ToxCast Phase I assays (∼500 revealed significant associations for a subset of chemicals (26 that perturbed transcription-based activities and impaired ES cell differentiation. Increased transcriptional activity of several critical developmental genes including BMPR2, PAX6 and OCT1 were strongly associated with decreased ES cell differentiation. Multiple genes involved in reactive oxygen species signaling pathways (NRF2, ABCG2, GSTA2, HIF1A were strongly associated with decreased ES cell differentiation as well. A multivariate model built from these data revealed alterations in ABCG2 transporter was a strong predictor of impaired ES cell differentiation. Taken together, these results provide an initial characterization of metabolic and regulatory pathways by which some environmental chemicals may act to disrupt ES cell growth and differentiation.

  11. Head-head interactions of resting myosin crossbridges in intact frog skeletal muscles, revealed by synchrotron x-ray fiber diffraction.

    Directory of Open Access Journals (Sweden)

    Kanji Oshima

    Full Text Available The intensities of the myosin-based layer lines in the x-ray diffraction patterns from live resting frog skeletal muscles with full thick-thin filament overlap from which partial lattice sampling effects had been removed were analyzed to elucidate the configurations of myosin crossbridges around the thick filament backbone to nanometer resolution. The repeat of myosin binding protein C (C-protein molecules on the thick filaments was determined to be 45.33 nm, slightly longer than that of myosin crossbridges. With the inclusion of structural information for C-proteins and a pre-powerstroke head shape, modeling in terms of a mixed population of regular and perturbed regions of myosin crown repeats along the filament revealed that the myosin filament had azimuthal perturbations of crossbridges in addition to axial perturbations in the perturbed region, producing pseudo-six-fold rotational symmetry in the structure projected down the filament axis. Myosin crossbridges had a different organization about the filament axis in each of the regular and perturbed regions. In the regular region that lacks C-proteins, there were inter-molecular interactions between the myosin heads in axially adjacent crown levels. In the perturbed region that contains C-proteins, in addition to inter-molecular interactions between the myosin heads in the closest adjacent crown levels, there were also intra-molecular interactions between the paired heads on the same crown level. Common features of the interactions in both regions were interactions between a portion of the 50-kDa-domain and part of the converter domain of the myosin heads, similar to those found in the phosphorylation-regulated invertebrate myosin. These interactions are primarily electrostatic and the converter domain is responsible for the head-head interactions. Thus multiple head-head interactions of myosin crossbridges also characterize the switched-off state and have an important role in the regulation

  12. Chromosomal Aneuploidies and Early Embryonic Developmental Arrest

    Directory of Open Access Journals (Sweden)

    Maria Maurer

    2015-07-01

    Full Text Available Background: Selecting the best embryo for transfer, with the highest chance of achieving a vital pregnancy, is a major goal in current in vitro fertilization (IVF technology. The high rate of embryonic developmental arrest during IVF treatment is one of the limitations in achieving this goal. Chromosomal abnormalities are possibly linked with chromosomal arrest and selection against abnormal fertilization products. The objective of this study was to evaluate the frequency and type of chromosomal abnormalities in preimplantation embryos with developmental arrest. Materials and Methods: This cohort study included blastomeres of embryos with early developmental arrest that were biopsied and analyzed by fluorescence in-situ hybridization (FISH with probes for chromosomes 13, 16, 18, 21 and 22. Forty-five couples undergoing IVF treatment were included, and 119 arrested embryos were biopsied. All probes were obtained from the Kinderwunsch Zentrum, Linz, Austria, between August 2009 and August 2011. Results: Of these embryos, 31.6% were normal for all chromosomes tested, and 68.4% were abnormal. Eleven embryos were uniformly aneuploid, 20 were polyploid, 3 were haploid, 11 displayed mosaicism and 22 embryos exhibited chaotic chromosomal complement. Conclusion: Nearly 70% of arrested embryos exhibit chromosomal errors, making chromosomal abnormalities a major cause of embryonic arrest and may be a further explanation for the high developmental failure rates during culture of the embryos in the IVF setting.

  13. An inducible mouse model for microvillus inclusion disease reveals a role for myosin Vb in apical and basolateral trafficking

    NARCIS (Netherlands)

    Schneeberger, Kerstin; Vogel, Georg F; Teunissen, Hans; van Ommen, Domenique D; Begthel, Harry; El Bouazzaoui, Layla; van Vugt, Anke H M; Beekman, Jeffrey M; Klumperman, Judith; Müller, Thomas; Janecke, Andreas; Gerner, Patrick; Huber, Lukas A; Hess, Michael W; Clevers, Hans; van Es, Johan H; Nieuwenhuis, Edward E S; Middendorp, Sabine

    2015-01-01

    Microvillus inclusion disease (MVID) is a rare intestinal enteropathy with an onset within a few days to months after birth, resulting in persistent watery diarrhea. Mutations in the myosin Vb gene (MYO5B) have been identified in the majority of MVID patients. However, the exact pathophysiology of

  14. Maintenance of muscle myosin levels in adult C. elegans requires both the double bromodomain protein BET-1 and sumoylation

    Directory of Open Access Journals (Sweden)

    Kate Fisher

    2013-10-01

    Attenuation of RAS-mediated signalling is a conserved process essential to control cell proliferation, differentiation, and apoptosis. Cooperative interactions between histone modifications such as acetylation, methylation and sumoylation are crucial for proper attenuation in C. elegans, implying that the proteins recognising these histone modifications could also play an important role in attenuation of RAS-mediated signalling. We sought to systematically identify these proteins and found BET-1. BET-1 is a conserved double bromodomain protein that recognises acetyl-lysines on histone tails and maintains the stable fate of various lineages. Unexpectedly, adults lacking both BET-1 and SUMO-1 are depleted of muscle myosin, an essential component of myofibrils. We also show that this muscle myosin depletion does not occur in all animals at a specific time, but rather that the penetrance of the phenotype increases with age. To gain mechanistic insights into this process, we sought to delay the occurrence of the muscle myosin depletion phenotype and found that it requires caspase activity and MEK-dependent signalling. We also performed transcription profiling on these mutants and found an up-regulation of the FGF receptor, egl-15, a tyrosine kinase receptor acting upstream of MEK. Consistent with a MEK requirement, we could delay the muscle phenotype by systemic or hypodermal knock down of egl-15. Thus, this work uncovered a caspase- and MEK-dependent mechanism that acts specifically on ageing adults to maintain the appropriate net level of muscle myosin.

  15. Myosin IXB gene region and gluten intolerance : linkage to coeliac disease and a putative dermatitis herpetiformis association

    NARCIS (Netherlands)

    Koskinen, L. L. E.; Korponay-Szabo, I. R.; Viiri, K.; Juuti-Uusitalo, K.; Kaukinen, K.; Lindfors, K.; Mustalahti, K.; Kurppa, K.; Adany, R.; Pocsai, Z.; Szeles, G.; Einarsdottir, E.; Wijmenga, C.; Maeki, M.; Partanen, J.; Kere, J.; Saavalainen, P.

    Background: Coeliac disease is caused by dietary gluten, which triggers chronic inflammation of the small intestine in genetically predisposed individuals. In one quarter of the patients the disease manifests in the skin as dermatitis herpetiformis. Recently, a novel candidate gene, myosin IXB on

  16. Balance between cell−substrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes

    Science.gov (United States)

    Barnhart, Erin; Lee, Kun-Chun; Allen, Greg M.; Theriot, Julie A.; Mogilner, Alex

    2015-01-01

    Cells are dynamic systems capable of spontaneously switching among stable states. One striking example of this is spontaneous symmetry breaking and motility initiation in fish epithelial keratocytes. Although the biochemical and mechanical mechanisms that control steady-state migration in these cells have been well characterized, the mechanisms underlying symmetry breaking are less well understood. In this work, we have combined experimental manipulations of cell−substrate adhesion strength and myosin activity, traction force measurements, and mathematical modeling to develop a comprehensive mechanical model for symmetry breaking and motility initiation in fish epithelial keratocytes. Our results suggest that stochastic fluctuations in adhesion strength and myosin localization drive actin network flow rates in the prospective cell rear above a critical threshold. Above this threshold, high actin flow rates induce a nonlinear switch in adhesion strength, locally switching adhesions from gripping to slipping and further accelerating actin flow in the prospective cell rear, resulting in rear retraction and motility initiation. We further show, both experimentally and with model simulations, that the global levels of adhesion strength and myosin activity control the stability of the stationary state: The frequency of symmetry breaking decreases with increasing adhesion strength and increases with increasing myosin contraction. Thus, the relative strengths of two opposing mechanical forces—contractility and cell−substrate adhesion—determine the likelihood of spontaneous symmetry breaking and motility initiation. PMID:25848042

  17. Memory Disrupting Effects of Nonmuscle Myosin II Inhibition Depend on the Class of Abused Drug and Brain Region

    Science.gov (United States)

    Briggs, Sherri B.; Blouin, Ashley M.; Young, Erica J.; Rumbaugh, Gavin; Miller, Courtney A.

    2017-01-01

    Depolymerizing actin in the amygdala through nonmuscle myosin II inhibition (NMIIi) produces a selective, lasting, and retrieval-independent disruption of the storage of methamphetamine-associated memories. Here we report a similar disruption of memories associated with amphetamine, but not cocaine or morphine, by NMIIi. Reconsolidation appeared…

  18. Myosin Vb mediated plasma membrane homeostasis regulates peridermal cell size and maintains tissue homeostasis in the zebrafish epidermis.

    Science.gov (United States)

    Sonal; Sidhaye, Jaydeep; Phatak, Mandar; Banerjee, Shamik; Mulay, Aditya; Deshpande, Ojas; Bhide, Sourabh; Jacob, Tressa; Gehring, Ines; Nuesslein-Volhard, Christiane; Sonawane, Mahendra

    2014-09-01

    The epidermis is a stratified epithelium, which forms a barrier to maintain the internal milieu in metazoans. Being the outermost tissue, growth of the epidermis has to be strictly coordinated with the growth of the embryo. The key parameters that determine tissue growth are cell number and cell size. So far, it has remained unclear how the size of epidermal cells is maintained and whether it contributes towards epidermal homeostasis. We have used genetic analysis in combination with cellular imaging to show that zebrafish goosepimples/myosin Vb regulates plasma membrane homeostasis and is involved in maintenance of cell size in the periderm, the outermost epidermal layer. The decrease in peridermal cell size in Myosin Vb deficient embryos is compensated by an increase in cell number whereas decrease in cell number results in the expansion of peridermal cells, which requires myosin Vb (myoVb) function. Inhibition of cell proliferation as well as cell size expansion results in increased lethality in larval stages suggesting that this two-way compensatory mechanism is essential for growing larvae. Our analyses unravel the importance of Myosin Vb dependent cell size regulation in epidermal homeostasis and demonstrate that the epidermis has the ability to maintain a dynamic balance between cell size and cell number.

  19. An isoform of Arabidopsis myosin XI interacts with small GTPases in its C-terminal tail region

    Science.gov (United States)

    Hashimoto, Kohsuke; Igarashi, Hisako; Mano, Shoji; Takenaka, Chikako; Shiina, Takashi; Yamaguchi, Masatoshi; Demura, Taku; Nishimura, Mikio; Shimmen, Teruo; Yokota, Etsuo

    2008-01-01

    Myosin XI, a class of myosins expressed in plants is believed to be responsible for cytoplasmic streaming and the translocation of organelles and vesicles. To gain further insight into the translocation of organelles and vesicles by myosin XI, an isoform of Arabidopsis myosin XI, MYA2, was chosen and its role in peroxisome targeting was examined. Using the yeast two-hybrid screening method, two small GTPases, AtRabD1 and AtRabC2a, were identified as factors that interact with the C-terminal tail region of MYA2. Both recombinant AtRabs tagged with His bound to the recombinant C-terminal tail region of MYA2 tagged with GST in a GTP-dependent manner. Furthermore, AtRabC2a was localized on peroxisomes, when its CFP-tagged form was expressed transiently in protoplasts prepared from Arabidopsis leaf tissue. It is suggested that MYA2 targets the peroxisome through an interaction with AtRabC2a. PMID:18703495

  20. Myosin-binding Protein C Compound Heterozygous Variant Effect on the Phenotypic Expression of Hypertrophic Cardiomyopathy

    Science.gov (United States)

    Rafael, Julianny Freitas; Cruz Filho, Fernando Eugênio dos Santos; de Carvalho, Antônio Carlos Campos; Gottlieb, Ilan; Cazelli, José Guilherme; Siciliano, Ana Paula; Dias, Glauber Monteiro

    2017-01-01

    Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disease caused by mutations in genes encoding sarcomere proteins. It is the major cause of sudden cardiac death in young high-level athletes. Studies have demonstrated a poorer prognosis when associated with specific mutations. The association between HCM genotype and phenotype has been the subject of several studies since the discovery of the genetic nature of the disease. This study shows the effect of a MYBPC3 compound variant on the phenotypic HCM expression. A family in which a young man had a clinical diagnosis of HCM underwent clinical and genetic investigations. The coding regions of the MYH7, MYBPC3 and TNNT2 genes were sequenced and analyzed. The proband present a malignant manifestation of the disease, and is the only one to express HCM in his family. The genetic analysis through direct sequencing of the three main genes related to this disease identified a compound heterozygous variant (p.E542Q and p.D610H) in MYBPC3. A family analysis indicated that the p.E542Q and p.D610H alleles have paternal and maternal origin, respectively. No family member carrier of one of the variant alleles manifested clinical signs of HCM. We suggest that the MYBPC3-biallelic heterozygous expression of p.E542Q and p.D610H may cause the severe disease phenotype seen in the proband. PMID:28538763

  1. Myosin-binding Protein C Compound Heterozygous Variant Effect on the Phenotypic Expression of Hypertrophic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Julianny Freitas Rafael

    Full Text Available Abstract Hypertrophic cardiomyopathy (HCM is an autosomal dominant genetic disease caused by mutations in genes encoding sarcomere proteins. It is the major cause of sudden cardiac death in young high-level athletes. Studies have demonstrated a poorer prognosis when associated with specific mutations. The association between HCM genotype and phenotype has been the subject of several studies since the discovery of the genetic nature of the disease. This study shows the effect of a MYBPC3 compound variant on the phenotypic HCM expression. A family in which a young man had a clinical diagnosis of HCM underwent clinical and genetic investigations. The coding regions of the MYH7, MYBPC3 and TNNT2 genes were sequenced and analyzed. The proband present a malignant manifestation of the disease, and is the only one to express HCM in his family. The genetic analysis through direct sequencing of the three main genes related to this disease identified a compound heterozygous variant (p.E542Q and p.D610H in MYBPC3. A family analysis indicated that the p.E542Q and p.D610H alleles have paternal and maternal origin, respectively. No family member carrier of one of the variant alleles manifested clinical signs of HCM. We suggest that the MYBPC3-biallelic heterozygous expression of p.E542Q and p.D610H may cause the severe disease phenotype seen in the proband.

  2. Characterization of the minimum domain required for targeting budding yeast myosin II to the site of cell division

    Directory of Open Access Journals (Sweden)

    Tolliday Nicola J

    2006-06-01

    Full Text Available Abstract Background All eukaryotes with the exception of plants use an actomyosin ring to generate a constriction force at the site of cell division (cleavage furrow during mitosis and meiosis. The structure and filament forming abilities located in the C-terminal or tail region of one of the main components, myosin II, are important for localising the molecule to the contractile ring (CR during cytokinesis. However, it remains poorly understood how myosin II is recruited to the site of cell division and how this recruitment relates to myosin filament assembly. Significant conservation between species of the components involved in cytokinesis, including those of the CR, allows the use of easily genetically manipulated organisms, such as budding yeast (Saccharomyces cerevisiae, in the study of cytokinesis. Budding yeast has a single myosin II protein, named Myo1. Unlike most other class II myosins, the tail of Myo1 has an irregular coiled coil. In this report we use molecular genetics, biochemistry and live cell imaging to characterize the minimum localisation domain (MLD of budding yeast Myo1. Results We show that the MLD is a small region in the centre of the tail of Myo1 and that it is both necessary and sufficient for localisation of Myo1 to the yeast bud neck, the pre-determined site of cell division. Hydrodynamic measurements of the MLD, purified from bacteria or yeast, show that it is likely to exist as a trimer. We also examine the importance of a small region of low coiled coil forming probability within the MLD, which we call the hinge region. Removal of the hinge region prevents contraction of the CR. Using fluorescence recovery after photobleaching (FRAP, we show that GFP-tagged MLD is slightly more dynamic than the GFP-tagged full length molecule but less dynamic than the GFP-tagged Myo1 construct lacking the hinge region. Conclusion Our results define the intrinsic determinant for the localization of budding yeast myosin II and show

  3. File list: ALL.Emb.50.AllAg.Embryonic_megakaryocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.50.AllAg.Embryonic_megakaryocytes mm9 All antigens Embryo Embryonic megakar...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.50.AllAg.Embryonic_megakaryocytes.bed ...

  4. File list: ALL.Emb.10.AllAg.Embryonic_megakaryocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.10.AllAg.Embryonic_megakaryocytes mm9 All antigens Embryo Embryonic megakar...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.10.AllAg.Embryonic_megakaryocytes.bed ...

  5. File list: Unc.Emb.05.AllAg.Embryonic_megakaryocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.05.AllAg.Embryonic_megakaryocytes mm9 Unclassified Embryo Embryonic megakar...yocytes http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.05.AllAg.Embryonic_megakaryocytes.bed ...

  6. File list: Unc.Emb.50.AllAg.Embryonic_megakaryocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.50.AllAg.Embryonic_megakaryocytes mm9 Unclassified Embryo Embryonic megakar...yocytes http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.50.AllAg.Embryonic_megakaryocytes.bed ...

  7. File list: Unc.Emb.10.AllAg.Embryonic_megakaryocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.10.AllAg.Embryonic_megakaryocytes mm9 Unclassified Embryo Embryonic megakar...yocytes http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.10.AllAg.Embryonic_megakaryocytes.bed ...

  8. File list: Unc.Emb.20.AllAg.Embryonic_megakaryocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.20.AllAg.Embryonic_megakaryocytes mm9 Unclassified Embryo Embryonic megakar...yocytes http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.20.AllAg.Embryonic_megakaryocytes.bed ...

  9. File list: ALL.Emb.20.AllAg.Embryonic_megakaryocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.20.AllAg.Embryonic_megakaryocytes mm9 All antigens Embryo Embryonic megakar...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.20.AllAg.Embryonic_megakaryocytes.bed ...

  10. File list: Pol.Emb.05.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.AllAg.Embryonic_pancreas mm9 RNA polymerase Embryo Embryonic pancreas ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.05.AllAg.Embryonic_pancreas.bed ...

  11. File list: Pol.Emb.20.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.20.AllAg.Embryonic_pancreas mm9 RNA polymerase Embryo Embryonic pancreas ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.20.AllAg.Embryonic_pancreas.bed ...

  12. File list: Unc.Emb.50.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.50.AllAg.Embryonic_pancreas mm9 Unclassified Embryo Embryonic pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.50.AllAg.Embryonic_pancreas.bed ...

  13. File list: Unc.Emb.20.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.20.AllAg.Embryonic_pancreas mm9 Unclassified Embryo Embryonic pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.20.AllAg.Embryonic_pancreas.bed ...

  14. File list: Unc.Emb.10.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.10.AllAg.Embryonic_pancreas mm9 Unclassified Embryo Embryonic pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.10.AllAg.Embryonic_pancreas.bed ...

  15. File list: Pol.Emb.10.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.10.AllAg.Embryonic_pancreas mm9 RNA polymerase Embryo Embryonic pancreas ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.10.AllAg.Embryonic_pancreas.bed ...

  16. File list: Unc.Emb.05.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.05.AllAg.Embryonic_pancreas mm9 Unclassified Embryo Embryonic pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.05.AllAg.Embryonic_pancreas.bed ...

  17. File list: Oth.Emb.50.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.50.AllAg.Embryonic_palates mm9 TFs and others Embryo Embryonic palates http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.50.AllAg.Embryonic_palates.bed ...

  18. File list: Pol.Emb.05.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.AllAg.Embryonic_palates mm9 RNA polymerase Embryo Embryonic palates http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.05.AllAg.Embryonic_palates.bed ...

  19. File list: Oth.Emb.20.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.20.AllAg.Embryonic_palates mm9 TFs and others Embryo Embryonic palates http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.20.AllAg.Embryonic_palates.bed ...

  20. File list: Pol.Emb.20.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.20.AllAg.Embryonic_palates mm9 RNA polymerase Embryo Embryonic palates http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.20.AllAg.Embryonic_palates.bed ...

  1. File list: Oth.Emb.10.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.10.AllAg.Embryonic_palates mm9 TFs and others Embryo Embryonic palates http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.10.AllAg.Embryonic_palates.bed ...

  2. File list: Pol.Emb.50.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.AllAg.Embryonic_palates mm9 RNA polymerase Embryo Embryonic palates http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.50.AllAg.Embryonic_palates.bed ...

  3. File list: Oth.Emb.05.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.05.AllAg.Embryonic_palates mm9 TFs and others Embryo Embryonic palates http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.05.AllAg.Embryonic_palates.bed ...

  4. Human pluripotent embryonal carcinoma NTERA2 cl.D1 cells maintain their typical morphology in an angiomyogenic medium

    Directory of Open Access Journals (Sweden)

    Ramos Teresa

    2007-04-01

    Full Text Available Abstract Background Pluripotent embryonal carcinomas are good potential models, to study, "in vitro," the mechanisms that control differentiation during embryogenesis. The NTERA2cl.D1 (NT2/D1 cell line is a well known system of ectodermal differentiation. Retinoic acid (RA induces a dorsal pattern of differentiation (essentially neurons and bone morphogenetic protein (BMP or hexamethylenebisacetamide (HMBA induces a more ventral (epidermal pattern of differentiation. However, whether these human cells could give rise to mesoderm derivatives as their counterpart in mouse remained elusive. We analyzed the morphological characteristics and transcriptional activation of genes pertinent in cardiac muscle and endothelium differentiation, during the growth of NT2/D1 cells in an inductive angiomyogenic medium with or without Bone Morphogenetic Protein 2 (BMP2. Results Our experiments showed that NT2/D1 maintains their typical actin organization in angiomyogenic medium. Although the beta myosin heavy chain gene was never detected, all the other 15 genes analyzed maintained their expression throughout the time course of the experiment. Among them were early and late cardiac, endothelial, neuronal and teratocarcinoma genes. Conclusion Our results suggest that despite the NT2/D1 cells natural tendency to differentiate into neuroectodermal lineages, they can activate genes of mesodermal lineages. Therefore, we believe that these pluripotent cells might still be a good model to study biological development of mesodermal derivatives, provided the right culture conditions are met.

  5. Pathways in pluripotency and differentiation of embryonic cells

    NARCIS (Netherlands)

    du Puy, L.

    2010-01-01

    Pluripotency - the potential to differentiate into derivatives of the three embryonic germ layers endoderm, ectoderm and mesoderm - is the main characteristic of embryonic stem (ES) cells. ES cells are derived from the inner cell mass (ICM) of a pre-implantation blastocyst and can self-renew

  6. Spontaneous cyclic embryonic movements in humans and guinea pigs

    NARCIS (Netherlands)

    Felt, R.H.; Mulder, E.J.; Lüchinger, A.M.; van Kan, C.M.; Taverne, M.A.; de Vries, J.I.P.

    2012-01-01

    Motility assessment before birth can be used to evaluate the integrity of the nervous system. Sideways bending (SB) of head and/or rump, the earliest embryonic motility in both humans and guinea pigs, can be visualized sonographically. We know from other species that early embryonic motility is

  7. Cryopreservation of embryonic axes of maize ( Zea mays L.) by ...

    African Journals Online (AJOL)

    A storage protocol at cryogenic temperature was established for embryonic axes of maize using a basic vitrification protocol with direct immersion in liquid nitrogen (-196ºC). The response of isolated embryonic axes of five maize genotypes to plant vitrification solution (PVS2) at different concentrations was studied. Recovery ...

  8. Sox2 in Embryonic Stem Cells and Lung Development

    NARCIS (Netherlands)

    C.G. Pardo (Cristina Gontan)

    2009-01-01

    markdownabstract__Abstract__ Sox2 is a fascinating transcription factor with multiple roles during embryonic development. In early embryonic development, Sox2 is one of the key transcription factors in the maintenance of the pluripotent status of the cells of the inner cell mass (ICM). Sox2 is

  9. Embryonic adaptations and nutrition in the viviparous teleost Clinus ...

    African Journals Online (AJOL)

    Embryos of Clinus dorsalis absorb nutrients from the embiyotrophe, secreted by the follicular epithelium. Autoradiographic studies revealed that the principal areas of nutrient absorption are the embryonic gut and epidermis. A histological and electron microscopic study of embryonic structure revealed an extensively ...

  10. Embryonic stem cells: testing the germ-cell theory.

    Science.gov (United States)

    Hochedlinger, Konrad

    2011-10-25

    The exact cellular origin of embryonic stem cells remains elusive. Now a new study provides compelling evidence that embryonic stem cells, established under conventional culture conditions, originate from a transient germ-cell state. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Myosin IIA participates in docking of Glut4 storage vesicles with the plasma membrane in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Le Thi Kim, E-mail: ngocanh@nutr.med.tokushima-u.ac.jp [Department of Nutrition and Metabolism, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503 (Japan); Hosaka, Toshio [Department of Public Health and Applied Nutrition, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima (Japan); Harada, Nagakatsu; Jambaldorj, Bayasgalan; Fukunaga, Keiko; Nishiwaki, Yuka [Department of Nutrition and Metabolism, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503 (Japan); Teshigawara, Kiyoshi [Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503 (Japan); Sakai, Tohru [Department of Public Health and Applied Nutrition, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima (Japan); Nakaya, Yutaka [Department of Nutrition and Metabolism, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503 (Japan); Funaki, Makoto, E-mail: m-funaki@clin.med.tokushima-u.ac.jp [Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503 (Japan)

    2010-01-01

    In adipocytes and myocytes, insulin stimulation translocates glucose transporter 4 (Glut4) storage vesicles (GSVs) from their intracellular storage sites to the plasma membrane (PM) where they dock with the PM. Then, Glut4 is inserted into the PM and initiates glucose uptake into these cells. Previous studies using chemical inhibitors demonstrated that myosin II participates in fusion of GSVs and the PM and increase in the intrinsic activity of Glut4. In this study, the effect of myosin IIA on GSV trafficking was examined by knocking down myosin IIA expression. Myosin IIA knockdown decreased both glucose uptake and exposures of myc-tagged Glut4 to the cell surface in insulin-stimulated cells, but did not affect insulin signal transduction. Interestingly, myosin IIA knockdown failed to decrease insulin-dependent trafficking of Glut4 to the PM. Moreover, in myosin IIA knockdown cells, insulin-stimulated binding of GSV SNARE protein, vesicle-associated membrane protein 2 (VAMP2) to PM SNARE protein, syntaxin 4 was inhibited. These data suggest that myosin IIA plays a role in insulin-stimulated docking of GSVs to the PM in 3T3-L1 adipocytes through SNARE complex formation.

  12. Papaverine Prevents Vasospasm by Regulation of Myosin Light Chain Phosphorylation and Actin Polymerization in Human Saphenous Vein.

    Directory of Open Access Journals (Sweden)

    Kyle M Hocking

    Full Text Available Papaverine is used to prevent vasospasm in human saphenous veins (HSV during vein graft preparation prior to implantation as a bypass conduit. Papaverine is a nonspecific inhibitor of phosphodiesterases, leading to increases in both intracellular cGMP and cAMP. We hypothesized that papaverine reduces force by decreasing intracellular calcium concentrations ([Ca2+]i and myosin light chain phosphorylation, and increasing actin depolymerization via regulation of actin regulatory protein phosphorylation.HSV was equilibrated in a muscle bath, pre-treated with 1 mM papaverine followed by 5 μM norepinephrine, and force along with [Ca2+]i levels were concurrently measured. Filamentous actin (F-actin level was measured by an in vitro actin assay. Tissue was snap frozen to measure myosin light chain and actin regulatory protein phosphorylation. Pre-treatment with papaverine completely inhibited norepinephrine-induced force generation, blocked increases in [Ca2+]i and led to a decrease in the phosphorylation of myosin light chain. Papaverine pre-treatment also led to increased phosphorylation of the heat shock-related protein 20 (HSPB6 and the vasodilator stimulated phosphoprotein (VASP, as well as decreased filamentous actin (F-actin levels suggesting depolymerization of actin.These results suggest that papaverine-induced force inhibition of HSV involves [Ca2+]i-mediated inhibition of myosin light chain phosphorylation and actin regulatory protein phosphorylation-mediated actin depolymerization. Thus, papaverine induces sustained inhibition of contraction of HSV by the modulation of both myosin cross-bridge formation and actin cytoskeletal dynamics and is a pharmacological alternative to high pressure distention to prevent vasospasm.

  13. EF-hand proteins and the regulation of actin-myosin interaction in the eutardigrade Hypsibius klebelsbergi (tardigrada).

    Science.gov (United States)

    Prasath, Thiruketheeswaran; Greven, Hartmut; D'Haese, Jochen

    2012-06-01

    Many tardigrade species resist harsh environmental conditions by entering anhydrobiosis or cryobiosis. Desiccation as well as freeze resistance probably leads to changes of the ionic balance that includes the intracellular calcium concentration. In order to search for protein modifications affecting the calcium homoeostasis, we studied the regulatory system controlling actin-myosin interaction of the eutardigrade Hypsibius klebelsbergi and identified full-length cDNA clones for troponin C (TnC, 824 bp), calmodulin (CaM, 1,407 bp), essential myosin light chain (eMLC, 1,015 bp), and regulatory myosin light chain (rMLC, 984 bp) from a cDNA library. All four proteins belong to the EF-hand superfamily typified by a calcium coordinating helix-loop-helix motif. Further, we cloned and obtained recombinant TnC and both MLCs. CaM and TnC revealed four and two potential calcium-binding domains, respectively. Gel mobility shift assays demonstrated calcium-induced conformational transition of TnC. From both MLCs, only the rMLC showed one potential N-terminal EF-hand domain. Additionally, sequence properties suggest phosphorylation of this myosin light chain. Based on our results, we suggest a dual-regulated system at least in somatic muscles for tardigrades with a calcium-dependent tropomyosin-troponin complex bound to the actin filaments and a phosphorylation of the rMLC turning on and off both actin and myosin. Our results indicate no special modifications of the molecular structure and function of the EF-hand proteins in tardigrades. Phylogenetic trees of 131 TnCs, 96 rMLCs, and 62 eMLCs indicate affinities to Ecdysozoa, but also to some other taxa suggesting that our results reflect the complex evolution of these proteins rather than phylogenetic relationships. © 2012 WILEY PERIODICALS, INC.

  14. The Intensity Of The 2.7nm Reflection As A Constraint For Models Of Myosin Docking To Actin

    Energy Technology Data Exchange (ETDEWEB)

    Reconditi, Massimo; Irving, Tom C.; (IIT); (U.Florence)

    2009-03-16

    Previous workers have proposed high resolution models for the docking of the myosin heads on actin on the basis of combined crystallographic and electron microscopy data (Mendelson and Morris, 1997 PNAS 94:8533; Holmes et al. 2003 Nature 425:423). We have used data from small angle X-ray fiber diffraction from living muscle to check the predictions of these models. Whole sartorius muscles from Rana pipiens were mounted in a chamber containing Ringer's solution at 10 C and at rest length at the BioCAT beamline (18 ID, Advanced Photon Source, Argonne, IL-U.S.A.). The muscles were activated by electrical stimulation and the force was recorded with a muscle lever system type 300B (Aurora Scientific). X-ray patterns were collected with 1s total exposures at rest and during isometric contraction out to 0.5 nm{sup -1} in reciprocal space, as the higher angle reflections are expected to be more sensitive to the arrangement of myosin heads on actin. We observed that during isometric contraction the meridional reflection originating from the 2.73nm repeat of the actin monomers along the actin filament increases its intensity by a factor 2.1 {+-} 0.2 relative to rest. Among the models tested, Holmes et al. fits the data when the actin filament is decorated with 30-40% the total available myosin heads, a fraction similar to that estimated with fast single fiber mechanics by Piazzesi et al. (2007, Cell 131:784). However, when the mismatch between the periodicities of actin and myosin filaments is taken into account, none of the models can reproduce the fiber diffraction data. We suggest that the fiber diffraction data should be used as a further constraint on new high resolution models for the docking of the myosin heads on actin.

  15. 4D embryonic cardiography using gated optical coherence tomography

    Science.gov (United States)

    Jenkins, M. W.; Rothenberg, F.; Roy, D.; Nikolski, V. P.; Hu, Z.; Watanabe, M.; Wilson, D. L.; Efimov, I. R.; Rollins, A. M.

    2006-01-01

    Simultaneous imaging of very early embryonic heart structure and function has technical limitations of spatial and temporal resolution. We have developed a gated technique using optical coherence tomography (OCT) that can rapidly image beating embryonic hearts in four-dimensions (4D), at high spatial resolution (10-15 μm), and with a depth penetration of 1.5 - 2.0 mm that is suitable for the study of early embryonic hearts. We acquired data from paced, excised, embryonic chicken and mouse hearts using gated sampling and employed image processing techniques to visualize the hearts in 4D and measure physiologic parameters such as cardiac volume, ejection fraction, and wall thickness. This technique is being developed to longitudinally investigate the physiology of intact embryonic hearts and events that lead to congenital heart defects.

  16. Stimulatory and inhibitory mechanisms of slow muscle-specific myosin heavy chain gene expression in fish: transient and transgenic analysis of torafugu MYH(M86-2) promoter in zebrafish embryos.

    Science.gov (United States)

    Asaduzzaman, Md; Kinoshita, Shigeharu; Bhuiyan, Sharmin Siddique; Asakawa, Shuichi; Watabe, Shugo

    2013-04-01

    The myosin heavy chain gene, MYHM86-2, exhibited restricted expression in slow muscle fibers of torafugu embryos and larvae, suggesting its functional roles for embryonic and larval muscle development. However, the transcriptional mechanisms involved in its expression are still ambiguous. The present study is the first extensive analysis of slow muscle-specific MYHM86-2 promoter in fish for identifying the cis-elements that are crucial for its expression. Combining both transient transfection and transgenic approaches, we demonstrated that the 2614bp 5'-flanking sequences of MYHM86-2 contain a sufficient promoter activity to drive gene expression specific to superficial slow muscle fibers. By cyclopamine treatment, we also demonstrated that the differentiation of such superficial slow muscle fibers depends on hedgehog signaling activity. The deletion analyses defined an upstream fragment necessary for repressing ectopic MYHM86-2 expression in the fast muscle fibers. The transcriptional mechanism that prevents MYHM86-2 expression in the fast muscle fibers is mediated through Sox6 binding elements. We also demonstrated that Sox6 may function as a transcriptional repressor of MYHM86-2 expression. We further discovered that nuclear factor of activated T cells (NFAT) binding elements plays a key role and myocyte enhancer factor-2 (MEF2) binding elements participate in the transcriptional regulation of MYHM86-2 expression. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Myosins XI-K, XI-1, and XI-2 are required for development of pavement cells, trichomes, and stigmatic papillae in Arabidopsis

    Science.gov (United States)

    2012-01-01

    Background The positioning and dynamics of vesicles and organelles, and thus the growth of plant cells, is mediated by the acto-myosin system. In Arabidopsis there are 13 class XI myosins which mediate vesicle and organelle transport in different cell types. So far the involvement of five class XI myosins in cell expansion during the shoot and root development has been shown, three of which, XI-1, XI-2, and XI-K, are essential for organelle transport. Results Simultaneous depletion of Arabidopsis class XI myosins XI-K, XI-1, and XI-2 in double and triple mutant plants affected the growth of several types of epidermal cells. The size and shape of trichomes, leaf pavement cells and the elongation of the stigmatic papillae of double and triple mutant plants were affected to different extent. Reduced cell size led to significant size reduction of shoot organs in the case of triple mutant, affecting bolt formation, flowering time and fertility. Phenotype analysis revealed that the reduced fertility of triple mutant plants was caused by delayed or insufficient development of pistils. Conclusions We conclude that the class XI myosins XI-K, XI-1 and XI-2 have partially redundant roles in the growth of shoot epidermis. Myosin XI-K plays more important role whereas myosins XI-1 and XI-2 have minor roles in the determination of size and shape of epidermal cells, because the absence of these two myosins is compensated by XI-K. Co-operation between myosins XI-K and XI-2 appears to play an important role in these processes. PMID:22672737

  18. The UNC-45 chaperone is critical for establishing myosin-based myofibrillar organization and cardiac contractility in the Drosophila heart model.

    Directory of Open Access Journals (Sweden)

    Girish C Melkani

    Full Text Available UNC-45 is a UCS (UNC-45/CRO1/She4P class chaperone necessary for myosin folding and/or accumulation, but its requirement for maintaining cardiac contractility has not been explored. Given the prevalence of myosin mutations in eliciting cardiomyopathy, chaperones like UNC-45 are likely to be equally critical in provoking or modulating myosin-associated cardiomyopathy. Here, we used the Drosophila heart model to examine its role in cardiac physiology, in conjunction with RNAi-mediated gene silencing specifically in the heart in vivo. Analysis of cardiac physiology was carried out using high-speed video recording in conjunction with movement analysis algorithms. unc-45 knockdown resulted in severely compromised cardiac function in adults as evidenced by prolonged diastolic and systolic intervals, and increased incidence of arrhythmias and extreme dilation; the latter was accompanied by a significant reduction in muscle contractility. Structural analysis showed reduced myofibrils, myofibrillar disarray, and greatly decreased cardiac myosin accumulation. Cardiac unc-45 silencing also dramatically reduced life-span. In contrast, third instar larval and young pupal hearts showed mild cardiac abnormalities, as severe cardiac defects only developed during metamorphosis. Furthermore, cardiac unc-45 silencing in the adult heart (after metamorphosis led to less severe phenotypes. This suggests that UNC-45 is mostly required for myosin accumulation/folding during remodeling of the forming adult heart. The cardiac defects, myosin deficit and decreased life-span in flies upon heart-specific unc-45 knockdown were significantly rescued by UNC-45 over-expression. Our results are the first to demonstrate a cardiac-specific requirement of a chaperone in Drosophila, suggestive of a critical role of UNC-45 in cardiomyopathies, including those associated with unfolded proteins in the failing human heart. The dilated cardiomyopathy phenotype associated with UNC-45

  19. Arabidopsis myosin XI sub-domains homologous to the yeast myo2p organelle inheritance sub-domain target subcellular structures in plant cells

    Directory of Open Access Journals (Sweden)

    Amirali eSattarzadeh

    2013-10-01

    Full Text Available Myosin XI motor proteins transport plant organelles on the actin cytoskeleton. The Arabidopsis gene family that encodes myosin XI has 13 members, 12 of which have sub-domains within the tail region that are homologous to well-characterized cargo-binding domains in the yeast myosin V myo2p. Little is presently known about the cargo-binding domains of plant myosin XIs. Prior experiments in which most or all of the tail regions of myosin XIs have been fused to yellow fluorescent protein (YFP and transiently expressed have often not resulted in fluorescent labeling of plant organelles. We identified 42 amino-acid regions within 12 Arabidopsis myosin XIs that are homologous to the yeast myo2p tail region known to be essential for vacuole and mitochondrial inheritance. A YFP fusion of the yeast region expressed in plants did not label tonoplasts or mitochondria. We investigated whether the homologous Arabidopsis regions, termed by us the PAL sub-domain, could associate with subcellular structures following transient expression of fusions with YFP in Nicotiana benthamiana. Seven YFP::PAL sub-domain fusions decorated Golgi and six were localized to mitochondria. In general, the myosin XI PAL sub-domains labeled organelles whose motility had previously been observed to be affected by mutagenesis or dominant negative assays with the respective myosins. Simultaneous transient expression of the PAL sub-domains of myosin XI-H, XI-I, and XI-K resulted in inhibition of movement of mitochondria and Golgi.

  20. Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction.

    Science.gov (United States)

    Mason, Frank M; Tworoger, Michael; Martin, Adam C

    2013-08-01

    Apical constriction promotes epithelia folding, which changes tissue architecture. During Drosophila gastrulation, mesoderm cells exhibit repeated contractile pulses that are stabilized such that cells apically constrict like a ratchet. The transcription factor Twist is required to stabilize cell shape. However, it is unknown how Twist spatially coordinates downstream signals to prevent cell relaxation. We find that during constriction, Rho-associated kinase (Rok) is polarized to the middle of the apical domain (medioapical cortex), separate from adherens junctions. Rok recruits or stabilizes medioapical myosin II (Myo-II), which contracts dynamic medioapical actin cables. The formin Diaphanous mediates apical actin assembly to suppress medioapical E-cadherin localization and form stable connections between the medioapical contractile network and adherens junctions. Twist is not required for apical Rok recruitment, but instead polarizes Rok medioapically. Therefore, Twist establishes radial cell polarity of Rok/Myo-II and E-cadherin and promotes medioapical actin assembly in mesoderm cells to stabilize cell shape fluctuations.

  1. Myosin IXa binds AMPAR and regulates synaptic structure, LTP and cognitive function

    Directory of Open Access Journals (Sweden)

    Alessandra eFolci

    2016-01-01

    Full Text Available Myosin IXa (Myo9a is a motor protein that is highly expressed in the brain. However, the role of Myo9a in neurons remains unknown. Here, we investigated Myo9a function in hippocampal synapses. In rat hippocampal neurons, Myo9a localizes to the postsynaptic density (PSD and binds the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR GluA2 subunit. Myo9a+/- mice displayed a thicker PSD and increased levels of PSD95 and surface AMPAR expression. Furthermore, synaptic transmission, long-term potentiation (LTP and cognitive functions were impaired in Myo9a+/- mice. Together, these results support a key role for Myo9a in controlling the molecular structure and function of hippocampal synapses.

  2. Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells

    Science.gov (United States)

    Lin, Congping; Schuster, Martin; Guimaraes, Sofia Cunha; Ashwin, Peter; Schrader, Michael; Metz, Jeremy; Hacker, Christian; Gurr, Sarah Jane; Steinberg, Gero

    2016-06-01

    Even distribution of peroxisomes (POs) and lipid droplets (LDs) is critical to their role in lipid and reactive oxygen species homeostasis. How even distribution is achieved remains elusive, but diffusive motion and directed motility may play a role. Here we show that in the fungus Ustilago maydis ~95% of POs and LDs undergo diffusive motions. These movements require ATP and involve bidirectional early endosome motility, indicating that microtubule-associated membrane trafficking enhances diffusion of organelles. When early endosome transport is abolished, POs and LDs drift slowly towards the growing cell end. This pole-ward drift is facilitated by anterograde delivery of secretory cargo to the cell tip by myosin-5. Modelling reveals that microtubule-based directed transport and active diffusion support distribution, mobility and mixing of POs. In mammalian COS-7 cells, microtubules and F-actin also counteract each other to distribute POs. This highlights the importance of opposing cytoskeletal forces in organelle positioning in eukaryotes.

  3. Myosin II governs collective cell migration behaviour downstream of guidance receptor signalling.

    Science.gov (United States)

    Combedazou, Anne; Choesmel-Cadamuro, Valérie; Gay, Guillaume; Liu, Jiaying; Dupré, Loïc; Ramel, Damien; Wang, Xiaobo

    2017-01-01

    Border cell migration during Drosophila oogenesis is a potent model to study collective cell migration, a process involved in development and metastasis. Border cell clusters adopt two main types of behaviour during migration: linear and rotational. However, the molecular mechanism controlling the switch from one to the other is unknown. Here, we demonstrate that non-muscle Myosin II (NMII, also known as Spaghetti squash) activity controls the linear-to-rotational switch. Furthermore, we show that the regulation of NMII takes place downstream of guidance receptor signalling and is critical to ensure efficient collective migration. This study thus provides new insight into the molecular mechanism coordinating the different cell behaviours in a migrating cluster. © 2017. Published by The Company of Biologists Ltd.

  4. Single-molecule reconstitution of mRNA transport by a class V myosin.

    Science.gov (United States)

    Sladewski, Thomas E; Bookwalter, Carol S; Hong, Myoung-Soon; Trybus, Kathleen M

    2013-08-01

    Molecular motors are instrumental in mRNA localization, which provides spatial and temporal control of protein expression and function. To obtain mechanistic insight into how a class V myosin transports mRNA, we performed single-molecule in vitro assays on messenger ribonucleoprotein (mRNP) complexes reconstituted from purified proteins and a localizing mRNA found in budding yeast. mRNA is required to form a stable, processive transport complex on actin--an elegant mechanism to ensure that only cargo-bound motors are motile. Increasing the number of localizing elements ('zip codes') on the mRNA, or configuring the track to resemble actin cables, enhanced run length and event frequency. In multi-zip-code mRNPs, motor separation distance varied during a run, thus showing the dynamic nature of the transport complex. Building the complexity of single-molecule in vitro assays is necessary to understand how these complexes function within cells.

  5. Myosin heavy chain expression in rodent skeletal muscle: effects of exposure to zero gravity

    Science.gov (United States)

    Haddad, F.; Herrick, R. E.; Adams, G. R.; Baldwin, K. M.

    1993-01-01

    This study ascertained the effects of 9 days of zero gravity on the relative (percentage of total) and calculated absolute (mg/muscle) content of isomyosin expressed in both antigravity and locomotor skeletal muscle of ground control (CON) and flight-exposed (FL) rats. Results showed that although there were no differences in body weight between FL and CON animals, a significant reduction in muscle mass occurred in the vastus intermedius (VI) (P muscle protein and myofibril protein content were not different between the muscle regions examined in the FL and CON groups. In the VI, there were trends for reductions in the relative content of type I and IIa myosin heavy chains (MHCs) that were offset by increases in the relative content of both type IIb and possibly type IIx MHC protein (P > 0.05). mRNA levels were consistent with this pattern (P antigravity skeletal muscle during exposure to zero gravity that could affect muscle function.

  6. Myosin-Va-dependent cell-to-cell transfer of RNA from Schwann cells to axons.

    Science.gov (United States)

    Sotelo, José R; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José R; Xu, Lei; Wallrabe, Horst; Calliari, Aldo; Rosso, Gonzalo; Cal, Karina; Mercer, John A

    2013-01-01

    To better understand the role of protein synthesis in axons, we have identified the source of a portion of axonal RNA. We show that proximal segments of transected sciatic nerves accumulate newly-synthesized RNA in axons. This RNA is synthesized in Schwann cells because the RNA was labeled in the complete absence of neuronal cell bodies both in vitro and in vivo. We also demonstrate that the transfer is prevented by disruption of actin and that it fails to occur in the absence of myosin-Va. Our results demonstrate cell-to-cell transfer of RNA and identify part of the mechanism required for transfer. The induction of cell-to-cell RNA transfer by injury suggests that interventions following injury or degeneration, particularly gene therapy, may be accomplished by applying them to nearby glial cells (or implanted stem cells) at the site of injury to promote regeneration.

  7. Atractylodin Induces Myosin Light Chain Phosphorylation and Promotes Gastric Emptying through Ghrelin Receptor

    Directory of Open Access Journals (Sweden)

    Yu Bai

    2017-01-01

    Full Text Available Atractylodin is one of the main constituents in the rhizomes of Atractylodes lancea Thunb., being capable of treating cancer cachexia-anorexia and age-related diseases as an agonist of growth hormone secretagogue receptor (GHSR. GHSR was herein expressed in human gastric smooth muscle cells (HGSMCs and activated by ghrelin receptor agonist L-692,585. Like L-692,585, atractylodin also increased Ca2+ and enhanced the phosphorylation of myosin light chain (MLC through GHSR in HGSMCs. In addition, atractylodin promoted gastric emptying and MLC phosphorylation in the gastric antrum of mice also through GHSR. Collectively, atractylodin can activate GHSR in gastric smooth muscle, as a potential target in clinical practice.

  8. Myosin heavy chain isoforms in single fibres from m. vastus lateralis of sprinters: influence of training.

    Science.gov (United States)

    Andersen, J L; Klitgaard, H; Saltin, B

    1994-06-01

    The myosin heavy chain (MHC) composition of single fibres from m. vastus lateralis of a group of male sprint athletes (n = 6) was analysed, before and after a three months period of intensive strength- and interval-training, using a sensitive gel electrophoretic technique. Significant improvements were observed after training in almost all of a series of performance tests. After training the sprinters revealed a decrease in fibres containing only MHC isoform I (52.0 +/- 3.0% vs. 41.2 +/- 4.7% (mean +/- SE) (P training (12.9 +/- 5.0% vs. 5.1 +/- 3.1% (P sprinters seems therefore to contain both MHC isoforms IIA and IIB. Sprint-training appears to induce an increased expression of MHC isoform IIA in skeletal muscles. This seems related to a bi-directional transformation from both MHC isoforms I and IIB towards MHC isoform IIA.

  9. Mapping the stem cell state: eight novel human embryonic stem and embryonal carcinoma cell antibodies

    DEFF Research Database (Denmark)

    Wright, A; Andrews, N; Bardsley, K

    2011-01-01

    The antigenic profile of human embryonic stem (ES) and embryonal carcinoma (EC) cells has served as a key element of their characterization, with a common panel of surface and intracellular markers now widely used. Such markers have been used to identify cells within the 'undifferentiated state...... of reactivity for all antibodies against both ES and EC cells, suggesting that these markers will afford recognition of unique sub-states within the undifferentiated stem cell compartment....... and EC cells, and herein describe their characterization. The reactivity of these antibodies against a range of cell lines is reported, as well as their developmental regulation, basic biochemistry and reactivity in immunohistochemistry of testicular germ cell tumours. Our data reveal a range...

  10. Somatic muscle specification during embryonic and post-embryonic development in the nematode C. elegans.

    Science.gov (United States)

    Krause, Michael; Liu, Jun

    2012-01-01

    Myogenesis has proved to be a powerful paradigm for understanding cell fate specification and differentiation in many model organisms. Studies of somatic bodywall muscle (BWM) development in Caenorhabditis elegans allow us to define, with single cell resolution, the distinct hierarchies of transcriptional regulators needed for myogenesis throughout development. Although all 95 BWM cells appear uniform after differentiation, there are several different regulatory cascades employed embryonically and post-embryonically. These, in turn, are integrated into multiple extrinsic cell signaling events. The convergence of these different pathways on the key nodal point, that is the activation of the core muscle module, commits individual cells to myogenesis. Comparisons of myogenesis between C. elegans and other model systems provide insights into the evolution of contractile cell types, demonstrating the conservation of regulatory schemes for muscles throughout the animal kingdom. Copyright © 2011 Wiley Periodicals, Inc.

  11. Will embryonic stem cells change health policy?

    Science.gov (United States)

    Sage, William M

    2010-01-01

    Embryonic stem cells are actively debated in political and public policy arenas. However, the connections between stem cell innovation and overall health care policy are seldom elucidated. As with many controversial aspects of medical care, the stem cell debate bridges to a variety of social conversations beyond abortion. Some issues, such as translational medicine, commercialization, patient and public safety, health care spending, physician practice, and access to insurance and health care services, are core health policy concerns. Other issues, such as economic development, technologic progress, fiscal politics, and tort reform, are only indirectly related to the health care system but are frequently seen through a health care lens. These connections will help determine whether the stem cell debate reaches a resolution, and what that resolution might be.

  12. Human embryonic stem cells and patent protection

    Directory of Open Access Journals (Sweden)

    Radovanović Sanja M.

    2015-01-01

    Full Text Available Given the importance of biotechnological research in modern diagnostics and therapeutics, on the one hand, and stimulative function of a patent, on the other hand, this work deals with the question of the possibility of pa-tent protection of human embryonic stem cells. Taking into account that this is a biotechnological invention, the key question that this paper highlights is the interpretation of the provisions of their patentability. Namely, thanks to the advanced methods of isolation, purification and preparation for implementation, modern patent systems do not exclude a priori living organisms from patent protection. Therefore, the analysis of representative administrative decisions or court rulings sought to define the criteria that would be applied in order to give patent protection to a certain biotechnological invention (stem cells while others do not.

  13. Embryonic stem cells in pig and cattle

    DEFF Research Database (Denmark)

    Maddox-Hyttel, Poul; Wolf, Xenia Asbæk; Rasmussen, Mikkel Aabech

    2007-01-01

    Porcine and bovine cell lines derived from the inner cell mass (ICM) or epiblasts of blastocysts have been maintained over extended periods of time and characterized by morphology, identification of some stem cell markers and, in few cases, by production of chimaeric offspring. However, germ line...... transmission in chimaeras has never been obtained. Due to this incomplete characterization of the cell lines, the expression embryonic stem (ES)-like cells is presently used in pig and cattle. The ICM or epiblast can be isolated from the blastocyst by whole blastocyst culture, mechanical isolation......, or immunosurgery, and they are generally cultured on feeder cells. The resulting ES-like cells may be differentiated in vivo by chimaera and teratoma formation or in vitro by embryoid body formation and monolayer induction. It is likely that more well characterized and stable porcine and bovine ES cell lines...

  14. Human embryonic stem cells: preclinical perspectives

    Directory of Open Access Journals (Sweden)

    Sarda Kanchan

    2008-01-01

    Full Text Available Abstract Human embryonic stem cells (hESCs have been extensively discussed in public and scientific communities for their potential in treating diseases and injuries. However, not much has been achieved in turning them into safe therapeutic agents. The hurdles in transforming hESCs to therapies start right with the way these cells are derived and maintained in the laboratory, and goes up-to clinical complications related to need for patient specific cell lines, gender specific aspects, age of the cells, and several post transplantation uncertainties. The different types of cells derived through directed differentiation of hESC and used successfully in animal disease and injury models are described briefly. This review gives a brief outlook on the present and the future of hESC based therapies, and talks about the technological advances required for a safe transition from laboratory to clinic.

  15. LIF signal in mouse embryonic stem cells

    Science.gov (United States)

    Ohtsuka, Satoshi; Nakai-Futatsugi, Yoko; Niwa, Hitoshi

    2015-01-01

    Since the establishment of mouse embryonic stem cells (mESCs) in the 1980s, a number of important notions on the self-renewal of pluripotent stem cells in vitro have been found. In serum containing conventional culture, an exogenous cytokine, leukemia inhibitory factor (LIF), is absolutely essential for the maintenance of pluripotency. In contrast, in serum-free culture with simultaneous inhibition of Map-kinase and Gsk3 (so called 2i-culture), LIF is no longer required. However, recent findings also suggest that LIF may have a role not covered by the 2i for the maintenance of naïve pluripotency. These suggest that LIF functions for the maintenance of naïve pluripotency in a context dependent manner. We summarize how LIF-signal pathway is converged to maintain the naïve state of pluripotency. PMID:27127728

  16. Epigenetic control of embryonic stem cell fate

    DEFF Research Database (Denmark)

    Christophersen, Nicolaj Strøyer; Helin, Kristian

    2010-01-01

    Embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo and are pluripotent, as they are able to differentiate into all cell types of the adult organism. Once established, the pluripotent ES cells can be maintained under defined culture conditions, but can also...... be induced rapidly to differentiate. Maintaining this balance of stability versus plasticity is a challenge, and extensive studies in recent years have focused on understanding the contributions of transcription factors and epigenetic enzymes to the "stemness" properties of these cells. Identifying...... the molecular switches that regulate ES cell self-renewal versus differentiation can provide insights into the nature of the pluripotent state and enhance the potential use of these cells in therapeutic applications. Here, we review the latest models for how changes in chromatin methylation can modulate ES cell...

  17. Nonmuscle myosin II exerts tension but does not translocate actin in vertebrate cytokinesis.

    Science.gov (United States)

    Ma, Xuefei; Kovács, Mihály; Conti, Mary Anne; Wang, Aibing; Zhang, Yingfan; Sellers, James R; Adelstein, Robert S

    2012-03-20

    During vertebrate cytokinesis it is thought that contractile ring constriction is driven by nonmuscle myosin II (NM II) translocation of antiparallel actin filaments. Here we report in situ, in vitro, and in vivo observations that challenge this hypothesis. Graded knockdown of NM II in cultured COS-7 cells reveals that the amount of NM II limits ring constriction. Restoration of the constriction rate with motor-impaired NM II mutants shows that the ability of NM II to translocate actin is not required for cytokinesis. Blebbistatin inhibition of cytokinesis indicates the importance of myosin strongly binding to actin and exerting tension during cytokinesis. This role is substantiated by transient kinetic experiments showing that the load-dependent mechanochemical properties of mutant NM II support efficient tension maintenance despite the inability to translocate actin. Under loaded conditions, mutant NM II exhibits a prolonged actin attachment in which a single mechanoenzymatic cycle spans most of the time of cytokinesis. This prolonged attachment promotes simultaneous binding of NM II heads to actin, thereby increasing tension and resisting expansion of the ring. The detachment of mutant NM II heads from actin is enhanced by assisting loads, which prevent mutant NM II from hampering furrow ingression during cytokinesis. In the 3D context of mouse hearts, mutant NM II-B R709C that cannot translocate actin filaments can rescue multinucleation in NM II-B ablated cardiomyocytes. We propose that the major roles of NM II in vertebrate cell cytokinesis are to bind and cross-link actin filaments and to exert tension on actin during contractile ring constriction.

  18. The Intriguing Dual Lattices of the Myosin Filaments in Vertebrate Striated Muscles: Evolution and Advantage

    Directory of Open Access Journals (Sweden)

    Pradeep K. Luther

    2014-12-01

    Full Text Available Myosin filaments in vertebrate striated muscle have a long roughly cylindrical backbone with cross-bridge projections on the surfaces of both halves except for a short central bare zone. In the middle of this central region the filaments are cross-linked by the M-band which holds them in a well-defined hexagonal lattice in the muscle A-band. During muscular contraction the M-band-defined rotation of the myosin filaments around their long axes influences the interactions that the cross-bridges can make with the neighbouring actin filaments. We can visualise this filament rotation by electron microscopy of thin cross-sections in the bare-region immediately adjacent to the M-band where the filament profiles are distinctly triangular. In the muscles of teleost fishes, the thick filament triangular profiles have a single orientation giving what we call the simple lattice. In other vertebrates, for example all the tetrapods, the thick filaments have one of two orientations where the triangles point in opposite directions (they are rotated by 60° or 180° according to set rules. Such a distribution cannot be developed in an ordered fashion across a large 2D lattice, but there are small domains of superlattice such that the next-nearest neighbouring thick filaments often have the same orientation. We believe that this difference in the lattice forms can lead to different contractile behaviours. Here we provide a historical review, and when appropriate cite recent work related to the emergence of the simple and superlattice forms by examining the muscles of several species ranging back to primitive vertebrates and we discuss the functional differences that the two lattice forms may have.

  19. Myosin Light Chain Kinase (MLCK) Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon.

    Science.gov (United States)

    Del Coso, Juan; Valero, Marjorie; Lara, Beatriz; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A) of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1%) were CC homozygotes and 8 marathoners (11.9%) were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30) and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21) and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29). However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03) and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05) than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts.

  20. Myosin VIIA mutation screening in 189 Usher syndrome type 1 patients

    Energy Technology Data Exchange (ETDEWEB)

    Weston, M.D.; Kelley, P.M.; Overbeck, L.D. [Univ. of Nebraska Medical Center, Omaha, NE (United States)] [and others

    1996-11-01

    Usher syndrome type 1b (USH1B) is an autosomal recessive disorder characterized by congenital profound hearing loss, vestibular abnormalities, and retinitis pigmentosa. The disorder has recently been shown to be caused by mutations in the myosin VIIa gene (MYO7A) located on 11q14. In the current study, a panel of 189 genetically independent Usher I cases were screened for the presence of mutations in the N-terminal coding portion of the motor domain of MYO7A by heteroduplex analysis of 14 exons. Twenty-three mutations were found segregating with the disease in 20 families. Of the 23 mutations, 13 were unique, and 2 of the 13 unique mutations (Arg212His and Arg212Cys) accounted for the greatest percentage of observed mutant alleles (8/23, 31%). Six of the 13 mutations caused premature stop codons, 6 caused changes in the amino acid sequence of the myosin VIIa protein, and 1 resulted in a splicing defect. Three patients were homozygotes or compound heterozygotes for mutant alleles; these three cases were Tyr333Stop/Tyr333Stop, Arg212His-Arg302His/Arg212His-Arg302His, and IVS13nt-8c{r_arrow}g/ G1u450Gln. All the other USH1B mutations observed were simple heterozygotes, and it is presumed that the mutation on the other allele is present in the unscreened regions of the gene. None of the mutations reported here were observed in 96 unrelated control samples, although several polymorphisms were detected. These results add three patients to a single case reported previously where mutations have been found in both alleles and raises the total number of unique mutations in MYO7A to 16. 22 refs., 4 figs., 3 tabs.

  1. Mechanochemical coupling in the myosin motor domain. I. Insights from equilibrium active-site simulations.

    Directory of Open Access Journals (Sweden)

    Haibo Yu

    2007-02-01

    Full Text Available Although the major structural transitions in molecular motors are often argued to couple to the binding of Adenosine triphosphate (ATP, the recovery stroke in the conventional myosin has been shown to be dependent on the hydrolysis of ATP. To obtain a clearer mechanistic picture for such "mechanochemical coupling" in myosin, equilibrium active-site simulations with explicit solvent have been carried out to probe the behavior of the motor domain as functions of the nucleotide chemical state and conformation of the converter/relay helix. In conjunction with previous studies of ATP hydrolysis with different active-site conformations and normal mode analysis of structural flexibility, the results help establish an energetics-based framework for understanding the mechanochemical coupling. It is proposed that the activation of hydrolysis does not require the rotation of the lever arm per se, but the two processes are tightly coordinated because both strongly couple to the open/close transition of the active site. The underlying picture involves shifts in the dominant population of different structural motifs as a consequence of changes elsewhere in the motor domain. The contribution of this work and the accompanying paper [] is to propose the actual mechanism behind these "population shifts" and residues that play important roles in the process. It is suggested that structural flexibilities at both the small and large scales inherent to the motor domain make it possible to implement tight couplings between different structural motifs while maintaining small free-energy drops for processes that occur in the detached states, which is likely a feature shared among many molecular motors. The significantly different flexibility of the active site in different X-ray structures with variable level arm orientations supports the notation that external force sensed by the lever arm may transmit into the active site and influence the chemical steps (nucleotide

  2. Effect of spaceflight on skeletal muscle: Mechanical properties and myosin isoform content of a slow muscle

    Science.gov (United States)

    Caiozzo, Vincent J.; Baker, Michael J.; Herrick, Robert E.; Tao, Ming; Baldwin, Kenneth M.

    1994-01-01

    This study examined changes in contractile, biochemical, and histochemical properties of slow antigravity skeletal muscle after a 6-day spaceflight mission. Twelve male Sprague-Dawley rats were randomly divided into two groups: flight and ground-based control. Approximately 3 h after the landing, in situ contractile measurements were made on the soleus muscles of the flight animals. The control animals were studied 24 h later. The contractile measurements included force-velocity relationship, force-frequency relationship, and fatigability. Biochemical measurements focused on the myosin heavy chain (MHC) and myosin light chain profiles. Adenosinetriphosphatase histochemistry was performed to identify cross-sectional area of slow and fast muscle fibers and to determine the percent fiber type distribution. The force-velocity relationships of the flight muscles were altered such that maximal isometric tension P(sub o) was decreased by 24% and maximal shortening velocity was increased by 14% (P less than 0.05). The force-frequency relationship of the flight muscles was shifted to the right of the control muscles. At the end of the 2-min fatigue test, the flight muscles generated only 34% of P(sub o), whereas the control muscles generated 64% of P(sub o). The flight muscles exhibited de novo expression of the type IIx MHC isoform as well as a slight decrease in the slow type I and fast type IIa MHC isoforms. Histochemical analyses of flight muscles demonstrated a small increase in the percentage of fast type II fibers and a greater atrophy of the slow type I fibers. The results demonstrate that contractile properties of slow antigravity skeletal muscle are sensitive to the microgravity environment and that changes begin to occur within the 1st wk. These changes were at least, in part, associated with changes in the amount and type of contractile protein expressed.

  3. Noninvasive Assessment of Skeletal Muscle Myosin Heavy Chain Expression in Trained and Untrained Men.

    Science.gov (United States)

    Fry, Andrew C; Housh, Terry J; Cramer, Joel B; Weir, Joseph P; Beck, Travis W; Schilling, Brian K; Miller, Jonathan D; Nicoll, Justin X

    2017-09-01

    Fry, AC, Housh, TJ, Cramer, JB, Weir, JP, Beck, TW, Schilling, BK, Miller, JD, and Nicoll, JX. Noninvasive assessment of skeletal muscle myosin heavy chain expression in trained and untrained men. J Strength Cond Res 31(9): 2355-2362, 2017-Numerous conditions and types of physical activity (e.g., exercise, aging, and muscle-related diseases) can influence muscle fiber types and the proteins expressed. To date, muscle fibers can only be characterized by actually obtaining a tissue sample using the invasive muscle biopsy procedure. Mechanomyography (MMG) is the assessment of the vibration properties of contracting skeletal muscle and has been proposed as a possible noninvasive method for muscle fiber analysis. Therefore, the purpose of this project was to examine the feasibility of using MMG and muscle performance measures to noninvasively assess muscle fiber characteristics. Fifteen men (5 endurance-trained, 5 weight-trained, and 5 sedentary) provided muscle samples from their vastus lateralis muscle. These samples were analyzed for relative myosin heavy chain (MHC) protein expression, which is highly correlated with % muscle fiber type areas. Additionally, each subject performed several muscle performance tests, and MMG of the quadriceps was assessed during a knee extension exercise. Multiple regression was used to develop prediction equations for determining relative muscle content of MHC types I, IIa, and IIx. A combination of MMG and knee extension performance variables estimated types I, IIa, and IIx MHCs with approximately 80% accuracy. Although preliminary, these data suggest that muscle performance tests in addition to MMG assessments during a simple muscle performance task (knee extension) can be used to estimate muscle fiber type composition in a healthy male population. Such methods could ultimately be used to noninvasively monitor muscle health and fitness.

  4. Protective Effects of Clenbuterol against Dexamethasone-Induced Masseter Muscle Atrophy and Myosin Heavy Chain Transition.

    Directory of Open Access Journals (Sweden)

    Daisuke Umeki

    Full Text Available Glucocorticoid has a direct catabolic effect on skeletal muscle, leading to muscle atrophy, but no effective pharmacotherapy is available. We reported that clenbuterol (CB induced masseter muscle hypertrophy and slow-to-fast myosin heavy chain (MHC isoform transition through direct muscle β2-adrenergic receptor stimulation. Thus, we hypothesized that CB would antagonize glucocorticoid (dexamethasone; DEX-induced muscle atrophy and fast-to-slow MHC isoform transition.We examined the effect of CB on DEX-induced masseter muscle atrophy by measuring masseter muscle weight, fiber diameter, cross-sectional area, and myosin heavy chain (MHC composition. To elucidate the mechanisms involved, we used immunoblotting to study the effects of CB on muscle hypertrophic signaling (insulin growth factor 1 (IGF1 expression, Akt/mammalian target of rapamycin (mTOR pathway, and calcineurin pathway and atrophic signaling (Akt/Forkhead box-O (FOXO pathway and myostatin expression in masseter muscle of rats treated with DEX and/or CB.Masseter muscle weight in the DEX-treated group was significantly lower than that in the Control group, as expected, but co-treatment with CB suppressed the DEX-induced masseter muscle atrophy, concomitantly with inhibition of fast-to-slow MHC isoforms transition. Activation of the Akt/mTOR pathway in masseter muscle of the DEX-treated group was significantly inhibited compared to that of the Control group, and CB suppressed this inhibition. DEX also suppressed expression of IGF1 (positive regulator of muscle growth, and CB attenuated this inhibition. Myostatin protein expression was unchanged. CB had no effect on activation of the Akt/FOXO pathway. These results indicate that CB antagonizes DEX-induced muscle atrophy and fast-to-slow MHC isoform transition via modulation of Akt/mTOR activity and IGF1 expression. CB might be a useful pharmacological agent for treatment of glucocorticoid-induced muscle atrophy.

  5. Human embryonic stem cells and microenvironment

    Directory of Open Access Journals (Sweden)

    Banu İskender

    2014-09-01

    Full Text Available Human embryonic stem cells (hESCs possess a great potential in the field of regenerative medicine by their virtue of pluripotent potential with indefinite proliferation capabilities. They can self renew themselves and differentiate into three embryonic germ layers. Although they are conventionally grown on mitotically inactivated mouse feeder cells, there are in vitro culture systems utilizing feeder cells of human origin in order to prevent cross-species contamination. Recently established in vitro culture systems suggested that direct interaction with feeder cells is not necessary but rather attachment to a substrate is required to ensure long-term, efficient hESC culture in vitro. This substrate is usually composed of a mixture of extracellular matrix components representing in vivo natural niche. In hESC biology, the mechanism of interaction of hESCs with extracellular matrix molecules remained insufficiently explored area of research due to their transient nature of interaction with the in vivo niche. However, an in vitro culture system established using extracellular matrix molecules may provide a safer alternative to culture systems with feeder cells while paving the way to Good Manufacturing Practice-GMP production of hESCs for therapeutic purposes. Therefore, it is essential to study the interaction of extracellular matrix molecules with hESCs in order to standardize in vitro culture systems for large-scale production of hESCs in a less labor-intensive way. This would not only provide valuable information regarding the mechanisms that control pluripotency but also serve to dissect the molecular signaling pathways of directed differentiation for prospective therapeutic applications in the future. J Clin Exp Invest 2014; 5 (3: 486-495

  6. Intestinal lineage commitment of embryonic stem cells.

    Science.gov (United States)

    Cao, Li; Gibson, Jason D; Miyamoto, Shingo; Sail, Vibhavari; Verma, Rajeev; Rosenberg, Daniel W; Nelson, Craig E; Giardina, Charles

    2011-01-01

    Generating lineage-committed intestinal stem cells from embryonic stem cells (ESCs) could provide a tractable experimental system for understanding intestinal differentiation pathways and may ultimately provide cells for regenerating damaged intestinal tissue. We tested a two-step differentiation procedure in which ESCs were first cultured with activin A to favor formation of definitive endoderm, and then treated with fibroblast-conditioned medium with or without Wnt3A. The definitive endoderm expressed a number of genes associated with gut-tube development through mouse embryonic day 8.5 (Sox17, Foxa2, and Gata4 expressed and Id2 silent). The intestinal stem cell marker Lgr5 gene was also activated in the endodermal cells, whereas the Msi1, Ephb2, and Dcamkl1 intestinal stem cell markers were not. Exposure of the endoderm to fibroblast-conditioned medium with Wnt3A resulted in the activation of Id2, the remaining intestinal stem cell markers and the later gut markers Cdx2, Fabp2, and Muc2. Interestingly, genes associated with distal gut-associated mesoderm (Foxf2, Hlx, and Hoxd8) were also simulated by Wnt3A. The two-step differentiation protocol generated gut bodies with crypt-like structures that included regions of Lgr5-expressing proliferating cells and regions of cell differentiation. These gut bodies also had a smooth muscle component and some underwent peristaltic movement. The ability of the definitive endoderm to differentiate into intestinal epithelium was supported by the vivo engraftment of these cells into mouse colonic mucosa. These findings demonstrate that definitive endoderm derived from ESCs can carry out intestinal cell differentiation pathways and may provide cells to restore damaged intestinal tissue. Copyright © 2010 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  7. No shortcuts to pig embryonic stem cells.

    Science.gov (United States)

    Brevini, T A L; Pennarossa, G; Gandolfi, F

    2010-09-01

    The establishment of embryonic stem cell (ESC) lines in domestic species could have great impact in the agricultural as well as in the biomedical field. In particular, derivation of pig ESC would find important applications aimed at improving health and production traits of this species through genetic engineering. Similarly, the immunological, morphological, physiological, and functional similarities to the human make the pig a very effective and suitable animal model for biomedical studies and pre-clinical trials. While proven blastocyst-derived mouse and human ESC lines have been established, no validated porcine ESC (pESC) lines are available. In the present manuscript we briefly discuss some of the factors that make the establishment of ESC lines in the pig, and in animal species other than mouse and human, a very slow process. The paucity of information related to morphology, pluripotency markers, differentiation capability hampers a thorough evaluation of the validity of putative lines. These difficulties are further increased by the lack of reliable antibodies, reagents, and in vitro culture systems that could ensure reliable results in the pig and allow for the screening and long-term maintenance of pESC. Data from the literature suggest that similar regulatory pathways are likely to exist among different species. Coupling of these pathways with their distinct expression patterns, the relative concentrations of pluripotency-related molecules, and timing of embryo development, along with supportive micro-environmental conditions, would appear to vary in a species-specific manner. We feel that the understanding of these subtle but meaningful diversities may provide beneficial information about the isolation of genuine porcine embryonic stem cells. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Embryonic environment and transgenerational effects in quail.

    Science.gov (United States)

    Leroux, Sophie; Gourichon, David; Leterrier, Christine; Labrune, Yann; Coustham, Vincent; Rivière, Sandrine; Zerjal, Tatiana; Coville, Jean-Luc; Morisson, Mireille; Minvielle, Francis; Pitel, Frédérique

    2017-01-26

    Environmental exposures, for instance to chemicals, are known to impact plant and animal phenotypes on the long term, sometimes across several generations. Such transgenerational phenotypes were shown to be promoted by epigenetic alterations such as DNA methylation, an epigenetic mark involved in the regulation of gene expression. However, it is yet unknown whether transgenerational epigenetic inheritance of altered phenotypes exists in birds. The purpose of this study was to develop an avian model to investigate whether changes to the embryonic environment had a transgenerational effect that could alter the phenotypes of third-generation offspring. Given its impact on the mammalian epigenome and the reproductive system in birds, genistein was used as an environment stressor. We compared several third-generation phenotypes of two quail "epilines", which were obtained from genistein-injected eggs (Epi+) or from untreated eggs (Epi-) from the same founders. A "mirrored" crossing strategy was used to minimize between-line genetic variability by maintaining similar ancestor contributions across generations in each line. Three generations after genistein treatment, a significant difference in the sexual maturity of the females, which, after three generations, could not be attributed to direct maternal effects, was observed between the lines, with Epi+ females starting to lay eggs later. Adult body weight was significantly affected by genistein treatment applied in a previous generation, and a significant interaction between line and sex was observed for body weight at 3 weeks. Behavioral traits, such as evaluating the birds' reaction to social isolation, were also significantly affected by genistein treatment. Yet, global methylation analyses revealed no significant difference between the epilines. These findings demonstrate that embryonic environment affects the phenotype of offspring three generations later in quail. While one cannot rule out the existence of some