WorldWideScience

Sample records for sarcoma-associated herpesvirus infection

  1. Non-human primate model of Kaposi's sarcoma-associated herpesvirus infection.

    Directory of Open Access Journals (Sweden)

    Heesoon Chang

    2009-10-01

    Full Text Available Since Kaposi's sarcoma-associated herpesvirus (KSHV or human herpesvirus 8 was first identified in Kaposi's sarcoma (KS lesions of HIV-infected individuals with AIDS, the basic biological understanding of KSHV has progressed remarkably. However, the absence of a proper animal model for KSHV continues to impede direct in vivo studies of viral replication, persistence, and pathogenesis. In response to this need for an animal model of KSHV infection, we have explored whether common marmosets can be experimentally infected with human KSHV. Here, we report the successful zoonotic transmission of KSHV into common marmosets (Callithrix jacchus, Cj, a New World primate. Marmosets infected with recombinant KSHV rapidly seroconverted and maintained a vigorous anti-KSHV antibody response. KSHV DNA and latent nuclear antigen (LANA were readily detected in the peripheral blood mononuclear cells (PBMCs and various tissues of infected marmosets. Remarkably, one orally infected marmoset developed a KS-like skin lesion with the characteristic infiltration of leukocytes by spindle cells positive for KSHV DNA and proteins. These results demonstrate that human KSHV infects common marmosets, establishes an efficient persistent infection, and occasionally leads to a KS-like skin lesion. This is the first animal model to significantly elaborate the important aspects of KSHV infection in humans and will aid in the future design of vaccines against KSHV and anti-viral therapies targeting KSHV coinfected tumor cells.

  2. A novel mechanism inducing genome instability in Kaposi's sarcoma-associated herpesvirus infected cells.

    Directory of Open Access Journals (Sweden)

    Brian R Jackson

    2014-05-01

    Full Text Available Kaposi's sarcoma-associated herpesvirus (KSHV is an oncogenic herpesvirus associated with multiple AIDS-related malignancies. Like other herpesviruses, KSHV has a biphasic life cycle and both the lytic and latent phases are required for tumorigenesis. Evidence suggests that KSHV lytic replication can cause genome instability in KSHV-infected cells, although no mechanism has thus far been described. A surprising link has recently been suggested between mRNA export, genome instability and cancer development. Notably, aberrations in the cellular transcription and export complex (hTREX proteins have been identified in high-grade tumours and these defects contribute to genome instability. We have previously shown that the lytically expressed KSHV ORF57 protein interacts with the complete hTREX complex; therefore, we investigated the possible intriguing link between ORF57, hTREX and KSHV-induced genome instability. Herein, we show that lytically active KSHV infected cells induce a DNA damage response and, importantly, we demonstrate directly that this is due to DNA strand breaks. Furthermore, we show that sequestration of the hTREX complex by the KSHV ORF57 protein leads to this double strand break response and significant DNA damage. Moreover, we describe a novel mechanism showing that the genetic instability observed is a consequence of R-loop formation. Importantly, the link between hTREX sequestration and DNA damage may be a common feature in herpesvirus infection, as a similar phenotype was observed with the herpes simplex virus 1 (HSV-1 ICP27 protein. Our data provide a model of R-loop induced DNA damage in KSHV infected cells and describes a novel system for studying genome instability caused by aberrant hTREX.

  3. Seroprevalence of Kaposi's sarcoma-associated herpesvirus infection among blood donors from Texas.

    Science.gov (United States)

    Baillargeon, J; Deng, J H; Hettler, E; Harrison, C; Grady, J J; Korte, L G; Alexander, J; Montalvo, E; Jenson, H B; Gao, S J

    2001-10-01

    Kaposi's sarcoma-associated herpesvirus (KSHV), a gammaherpesvirus recently discovered among AIDS patients with Kaposi's sarcoma, is a potential candidate for screening in blood and plasma donors. While a number of studies have assessed KSHV infection among U.S. blood donors, larger-scale population-based studies would be necessary to develop more refined estimates of the magnitude and variation of KSHV infection across different geographic regions of the U.S. blood supply. The goal of the present study, therefore, was to determine the seroprevalence of KSHV infection and to assess demographic correlates of KSHV infection among south Texas blood donors. KSHV infection was determined using specific serologic assays that measure antibodies to KSHV latent and lytic antigens. The overall seroprevalence of KSHV in Texas blood donors (15.0%) is substantially higher than previously reported among blood donor and general population samples in the United States. This high rate of KSHV infection persisted across most of the sociodemographic subgroups under study but was particularly elevated among participants with less than a high school education. The infection rate also increased linearly with age. The elevated infection rate reported in the present study suggests that screening methods to detect KSHV infection in blood donors should be considered. In view of the etiologic role of KSHV for several malignancies, it would be important for future studies to directly assess the risk of KSHV transmission via blood transfusion.

  4. Kaposi's sarcoma-associated herpesvirus infection and Kaposi's sarcoma in Brazil

    Directory of Open Access Journals (Sweden)

    S. Ramos-da-Silva

    2006-05-01

    Full Text Available Kaposi's sarcoma (KS became a critical health issue with the emergence of acquired immunodeficiency syndrome (AIDS in the 1980s. Four clinical-epidemiological forms of KS have been described: classical KS, endemic KS, iatrogenic KS, and AIDS-associated KS. In 1994, Kaposi's sarcoma-associated herpesvirus (KSHV or human herpesvirus type 8 was identified by Chang and colleagues, and has been detected worldwide at frequencies ranging from 80 to 100%. The aim of the present study was to evaluate the frequency of KSHV infection in KS lesions from HIV-positive and HIV-negative patients in Brazil, as well as to review the current knowledge about KS transmission and detection. For these purposes, DNA from 51 cases of KS was assessed by PCR: 20 (39.2% cases of classical KS, 29 (56.9% of AIDS-associated KS and 2 (3.9% of iatrogenic KS. Most patients were males (7.5:1, M/F, and mean age was 47.9 years (SD = ± 18.7 years. As expected, HIV-positive KS patients were younger than patients with classical KS. On the other hand, patients with AIDS-associated KS have early lesions (patch and plaque compared to classical KS patients (predominantly nodular lesions. This is assumed to be the result of the early diagnose of KS in the HIV-positive setting. KSHV infection was detected by PCR in almost all cases (48/51; 94.1%, irrespectively of the clinical-epidemiological form of KS. These results show that KSHV is associated with all forms of KS in Brazilian patients, a fact that supports the role of this virus in KS pathogenesis.

  5. Asynchronous Progression through the Lytic Cascade and Variations in Intracellular Viral Loads Revealed by High-Throughput Single-Cell Analysis of Kaposi's Sarcoma-Associated Herpesvirus Infection

    OpenAIRE

    Adang, Laura A.; Parsons, Christopher H.; Kedes, Dean H.

    2006-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV or human herpesvirus-8) is frequently tumorigenic in immunocompromised patients. The average intracellular viral copy number within infected cells, however, varies markedly by tumor type. Since the KSHV-encoded latency-associated nuclear antigen (LANA) tethers viral episomes to host heterochromatin and displays a punctate pattern by fluorescence microscopy, we investigated whether accurate quantification of individual LANA dots is predictive of in...

  6. Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells

    Science.gov (United States)

    Cai, Xuezhong; Lu, Shihua; Zhang, Zhihong; Gonzalez, Carlos M.; Damania, Blossom; Cullen, Bryan R.

    2005-01-01

    MicroRNAs (miRNAs) are an endogenously encoded class of small RNAs that have been proposed to function as key posttranscriptional regulators of gene expression in a range of eukaryotic species, including humans. The small size of miRNA precursors makes them potentially ideal for use by viruses as inhibitors of host cell defense pathways. Here, we demonstrate that the pathogenic human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) encodes an array of 11 distinct miRNAs, all of which are expressed at readily detectable levels in latently KSHV infected cells. Individual KSHV miRNAs were expressed at up to 2,200 copies per cell. The KSHV miRNAs are expressed from what appears to be a single genetic locus that largely coincides with an ≈4-kb noncoding sequence located between the KSHV v-cyclin and K12/Kaposin genes, both of which are also expressed in latently infected cells. Computer analysis of potential mRNA targets for these viral miRNAs identified a number of interesting candidate genes, including several mRNAs previously shown to be down-regulated in KSHV-infected cells. We hypothesize that these viral miRNAs play a critical role in the establishment and/or maintenance of KSHV latent infection in vivo and, hence, in KSHV-induced oncogenesis. PMID:15800047

  7. Exploitation of the complement system by oncogenic Kaposi's sarcoma-associated herpesvirus for cell survival and persistent infection.

    Directory of Open Access Journals (Sweden)

    Myung-Shin Lee

    2014-09-01

    Full Text Available During evolution, herpesviruses have developed numerous, and often very ingenious, strategies to counteract efficient host immunity. Specifically, Kaposi's sarcoma-associated herpesvirus (KSHV eludes host immunity by undergoing a dormant stage, called latency wherein it expresses a minimal number of viral proteins to evade host immune activation. Here, we show that during latency, KSHV hijacks the complement pathway to promote cell survival. We detected strong deposition of complement membrane attack complex C5b-9 and the complement component C3 activated product C3b on Kaposi's sarcoma spindle tumor cells, and on human endothelial cells latently infected by KSHV, TIME-KSHV and TIVE-LTC, but not on their respective uninfected control cells, TIME and TIVE. We further showed that complement activation in latently KSHV-infected cells was mediated by the alternative complement pathway through down-regulation of cell surface complement regulatory proteins CD55 and CD59. Interestingly, complement activation caused minimal cell death but promoted the survival of latently KSHV-infected cells grown in medium depleted of growth factors. We found that complement activation increased STAT3 tyrosine phosphorylation (Y705 of KSHV-infected cells, which was required for the enhanced cell survival. Furthermore, overexpression of either CD55 or CD59 in latently KSHV-infected cells was sufficient to inhibit complement activation, prevent STAT3 Y705 phosphorylation and abolish the enhanced survival of cells cultured in growth factor-depleted condition. Together, these results demonstrate a novel mechanism by which an oncogenic virus subverts and exploits the host innate immune system to promote viral persistent infection.

  8. Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells

    OpenAIRE

    Cai, Xuezhong; Lu, Shihua; Zhang, Zhihong; Gonzalez, Carlos M.; Damania, Blossom; Cullen, Bryan R.

    2005-01-01

    MicroRNAs (miRNAs) are an endogenously encoded class of small RNAs that have been proposed to function as key posttranscriptional regulators of gene expression in a range of eukaryotic species, including humans. The small size of miRNA precursors makes them potentially ideal for use by viruses as inhibitors of host cell defense pathways. Here, we demonstrate that the pathogenic human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) encodes an array of 11 distinct miRNAs, all of whic...

  9. Molecular piracy of Kaposi's sarcoma associated herpesvirus.

    Science.gov (United States)

    Choi, J; Means, R E; Damania, B; Jung, J U

    2001-01-01

    Kaposi's Sarcoma associated Herpesvirus (KSHV) is the most recently discovered human tumor virus and is associated with the pathogenesis of Kaposi's sarcoma, primary effusion lymphoma, and Multicentric Casttleman's disease. KSHV contains numerous open reading frames with striking homology to cellular genes. These viral gene products play a variety of roles in KSHV-associated pathogenesis by disrupting cellular signal transduction pathways, which include interferon-mediated anti-viral responses, cytokine-regulated cell growth, apoptosis, and cell cycle control. In this review, we will attempt to cover our understanding of how viral proteins deregulate cellular signaling pathways, which ultimately contribute to the conversion of normal cells to cancerous cells.

  10. Efficient infection by a recombinant Kaposi's sarcoma-associated herpesvirus cloned in a bacterial artificial chromosome: application for genetic analysis.

    Science.gov (United States)

    Zhou, Fu-Chun; Zhang, Yan-Jin; Deng, Jian-Hong; Wang, Xin-Ping; Pan, Hong-Yi; Hettler, Evelyn; Gao, Shou-Jiang

    2002-06-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma and several other malignancies. The lack of an efficient infection system has impeded the understanding of KSHV-related pathogenesis. A genetic approach was used to isolate infectious KSHV. Recombinant bacteria artificial chromosome (BAC) KSHV containing hygromycin resistance and green fluorescent protein (GFP) markers was generated by homologous recombination in KSHV-infected BCBL-1 cells. Recombinant KSHV genomes from cell clones that were resistant to hygromycin, expressed GFP, and produced infectious virions after induction with tetradecanoyl phorbol acetate (TPA) were rescued in Escherichia coli and reconstituted in 293 cells. Several 293 cell lines resulting from infection with recombinant virions induced from a full-length recombinant KSHV genome, named BAC36, were obtained. BAC36 virions established stable latent infection in 293 cells, harboring 1 to 2 copies of viral genome per cell and expressing viral latent proteins, with approximately 0.5% of cells undergoing spontaneous lytic replication, which is reminiscent of KSHV infection in Kaposi's sarcoma tumors. TPA treatment induced BAC36-infected 293 cell lines into productive lytic replication, expressing lytic proteins and producing virions that efficiently infected normal 293 cells with a approximately 50% primary infection rate. BAC36 virions were also infectious to HeLa and E6E7-immortalized human endothelial cells. Since BAC36 can be efficiently shuttled between bacteria and mammalian cells, it is useful for KSHV genetic analysis. The feasibility of the system was illustrated through the generation of a KSHV mutant with the vIRF gene deleted. This cellular model is useful for the investigation of KSHV infection and pathogenesis.

  11. Prevalence of Kaposi's sarcoma-associated herpesvirus infection in sex workers and women from the general population in Spain.

    Science.gov (United States)

    de Sanjosé, Sílvia; Marshall, Vickie; Solà, Judit; Palacio, Virgilio; Almirall, Rosa; Goedert, James J; Bosch, F Xavier; Whitby, Denise

    2002-03-01

    Transmission routes of Kaposi's sarcoma-associated herpesvirus (KSHV) in the general population are poorly understood. Whereas sexual transmission appears to be common in homosexual men, the evidence for heterosexual transmission is less convincing. In our study, prevalence of KSHV infection was examined among women in the Spanish general population and among sex workers. Subjects consisted of 100 prostitutes and 100 women randomly sampled from the general population and age-matched to the prostitutes. Women had a personal interview and gynecologic examinations in which a blood sample, cervical cells and oral cells were obtained. Peripheral blood mononuclear cells (PBMC), oral and cervical samples were tested for KSHV DNA by quantitative real-time PCR. Sera were tested for antibodies against human immunodeficiency virus (HIV) by ELISA and against KSHV by latent IFA and K8.1 ELISA. Women who were positive in either serologic assay or PCR were considered infected by KSHV. Human papillomavirus (HPV) DNA in cervical scrapes were evaluated using the Hybrid Capture System. The study population had an average age of 30 years and were HIV-negative. Women from the general population were largely of Spanish nationality, and 61% reported lifetime monogamy. The majority of the prostitutes (76%) were immigrants, primarily from South America. Sex workers were twice as likely to be infected with KSHV than women in the general population (16% vs. 8%, prevalence odds ratio [OR] = 2.2). KSHV was more prevalent among HPV DNA-positive women (OR = 2.5) and among women with an early age at first sexual intercourse (OR = 2.7, p women in the general population. All PBMC samples were negative. These results suggest that in low-risk countries for KSHV, oral shedding and heterosexual contacts are potential pathways for KSHV transmission. Copyright 2001 Wiley-Liss, Inc.

  12. Kaposi's sarcoma associated herpesvirus (KSHV entry into target cells

    Directory of Open Access Journals (Sweden)

    Sayan eChakraborty

    2012-01-01

    Full Text Available Herpesvirus infection of target cells is a complex process involving multiple host cell surface molecules (receptors and multiple viral envelope glycoproteins. Kaposi’s sarcoma associated herpesvirus (KSHV or HHV-8 infects a variety of in vivo target cells such as endothelial cells, B cells, monocytes, epithelial cells, and keratinocytes. KSHV also infects a diversity of in vitro target cells and establishes in vitro latency in many of these cell types. KSHV interactions with the host cell surface molecules and its mode of entry in the various target cells are critical for the understanding of KSHV pathogenesis. KSHV is the first herpesvirus shown to interact with adherent target cell integrins and this interaction initiates the host cell pre-existing signal pathways that are utilized for successful infection. This chapter discusses the various aspects of the early stage of KSHV infection of target cells, receptors used and issues that need to be clarified and future directions. The various signaling events triggered by KSHV infection and the potential role of signaling events in the different stages of infection are summarized providing the framework and starting point for further detailed studies essential to fully comprehend the pathogenesis of KSHV.

  13. Mechanisms of Kaposi's Sarcoma-Associated Herpesvirus Latency and Reactivation

    Directory of Open Access Journals (Sweden)

    Fengchun Ye

    2011-01-01

    Full Text Available The life cycle of Kaposi's sarcoma-associated herpesvirus (KSHV consists of latent and lytic replication phases. During latent infection, only a limited number of KSHV genes are expressed. However, this phase of replication is essential for persistent infection, evasion of host immune response, and induction of KSHV-related malignancies. KSHV reactivation from latency produces a wide range of viral products and infectious virions. The resulting de novo infection and viral lytic products modulate diverse cellular pathways and stromal microenvironment, which promote the development of Kaposi's sarcoma (KS. The mechanisms controlling KSHV latency and reactivation are complex, involving both viral and host factors, and are modulated by diverse environmental factors. Here, we review the cellular and molecular basis of KSHV latency and reactivation with a focus on the most recent advancements in the field.

  14. Asynchronous progression through the lytic cascade and variations in intracellular viral loads revealed by high-throughput single-cell analysis of Kaposi's sarcoma-associated herpesvirus infection.

    Science.gov (United States)

    Adang, Laura A; Parsons, Christopher H; Kedes, Dean H

    2006-10-01

    Kaposi's sarcoma-associated herpesvirus (KSHV or human herpesvirus-8) is frequently tumorigenic in immunocompromised patients. The average intracellular viral copy number within infected cells, however, varies markedly by tumor type. Since the KSHV-encoded latency-associated nuclear antigen (LANA) tethers viral episomes to host heterochromatin and displays a punctate pattern by fluorescence microscopy, we investigated whether accurate quantification of individual LANA dots is predictive of intracellular viral genome load. Using a novel technology that integrates single-cell imaging with flow cytometry, we found that both the number and the summed immunofluorescence of individual LANA dots are directly proportional to the amount of intracellular viral DNA. Moreover, combining viral (immediate early lytic replication and transcription activator [RTA] and late lytic K8.1) and cellular (syndecan-1) staining with image-based flow cytometry, we were also able to rapidly and simultaneously distinguish among cells supporting latent, immediate early lytic, early lytic, late lytic, and a potential fourth "delayed late" category of lytic replication. Applying image-based flow cytometry to KSHV culture models, we found that de novo infection results in highly varied levels of intracellular viral load and that lytic induction of latently infected cells likewise leads to a heterogeneous population at various stages of reactivation. These findings additionally underscore the potential advantages of studying KSHV biology with high-throughput analysis of individual cells.

  15. Generation of high-titre virus stocks using BrK.219, a B-cell line infected stably with recombinant Kaposi's sarcoma-associated herpesvirus.

    Science.gov (United States)

    Kati, Semra; Hage, Elias; Mynarek, Martin; Ganzenmueller, Tina; Indenbirken, Daniela; Grundhoff, Adam; Schulz, Thomas F

    2015-06-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a gamma-2-lymphotropic human oncogenic herpesvirus associated with Kaposi's sarcoma (KS) and two B-cell lymphoproliferative diseases, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). KSHV establishes latency soon after infection in vivo and in vitro. Consequently, it is technically difficult to generate high-titre virus stocks required for infection experiments in tissue culture. Currently used methods of KSHV stock production involve induction of the lytic/productive cycle in PEL cell lines or in adherent cell lines harbouring recombinant KSHV genomes. In this study, the BJAB-derived B-cell line BrK.219, which is infected latently with a recombinant KSHV (rKSHV.219), is used to produce high-titre virus stocks. BrK.219 cells enter the lytic KSHV replication cycle upon cross-linking of B-cell receptors (BCRs) with anti-IgM antibodies without the need for additional, potentially toxic chemical inducers. High cell concentrations can be cultured and induced easily in spinner flasks, saving time and resources. The established protocol allows the generation of KSHV virus stocks with titres of up to 10(6) IU/ml in unconcentrated culture supernatants, representing a 10(3)-10(4)-fold improvement compared to conventional methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Human Mesenchymal Stem Cells of Diverse Origins Support Persistent Infection with Kaposi’s Sarcoma-Associated Herpesvirus and Manifest Distinct Angiogenic, Invasive, and Transforming Phenotypes

    Directory of Open Access Journals (Sweden)

    Myung-Shin Lee

    2016-01-01

    Full Text Available Kaposi’s sarcoma (KS, a highly angiogenic and invasive tumor often involving different organ sites, including the oral cavity, is caused by infection with Kaposi’s sarcoma-associated herpesvirus (KSHV. Diverse cell markers have been identified on KS tumor cells, but their origin remains an enigma. We previously showed that KSHV could efficiently infect, transform, and reprogram rat primary mesenchymal stem cells (MSCs into KS-like tumor cells. In this study, we showed that human primary MSCs derived from diverse organs, including bone marrow (MSCbm, adipose tissue (MSCa, dental pulp, gingiva tissue (GMSC, and exfoliated deciduous teeth, were permissive to KSHV infection. We successfully established long-term cultures of KSHV-infected MSCa, MSCbm, and GMSC (LTC-KMSCs. While LTC-KMSCs had lower proliferation rates than the uninfected cells, they expressed mixtures of KS markers and displayed differential angiogenic, invasive, and transforming phenotypes. Genetic analysis identified KSHV-derived microRNAs that mediated KSHV-induced angiogenic activity by activating the AKT pathway. These results indicated that human MSCs could be the KSHV target cells in vivo and established valid models for delineating the mechanism of KSHV infection, replication, and malignant transformation in biologically relevant cell types.

  17. Kaposi's Sarcoma-Associated Herpesvirus MicroRNAs Target GADD45B To Protect Infected Cells from Cell Cycle Arrest and Apoptosis.

    Science.gov (United States)

    Liu, Xiaoyan; Happel, Christine; Ziegelbauer, Joseph M

    2017-02-01

    Kaposi's sarcoma is one of the most common malignancies in HIV-infected individuals. The responsible agent, Kaposi's sarcoma-associated herpesvirus (KSHV; HHV8), expresses multiple microRNAs (miRNAs), but the targets and functions of these miRNAs are not completely understood. After infection in primary endothelial cells with KSHV, growth arrest DNA damage-inducible gene 45 beta (GADD45B) is one of the most repressed genes using genomic expression profiling. GADD45B was also repressed in mRNA expression profiling experiments when KSHV miRNAs were introduced to uninfected cells. We hypothesized that KSHV miRNAs target human GADD45B to protect cells from consequences of DNA damage, which can be triggered by viral infection. Expression of GADD45B protein is induced by the p53 activator, Nutlin-3, and KSHV miRNA-K9 inhibits this induction. In addition, Nutlin-3 increased apoptosis and cell cycle arrest based on flow cytometry assays. KSHV miR-K9 protected primary endothelial cells from apoptosis and cell cycle arrest following Nutlin-3 treatment. Similar protective phenotypes were seen for targeting GADD45B with short interfering RNAs (siRNAs), as with miR-K9. KSHV miR-K9 also decreased the protein levels of cleaved caspase-3, cleaved caspase-7, and cleaved poly(ADP-ribose) polymerase (PARP). In B lymphocytes latently infected with KSHV, specific inhibitors of KSHV miR-K9 led to increased GADD45B expression and apoptosis, indicating that miR-K9 is important for reducing apoptosis in infected cells. Furthermore, ectopic expression of GADD45B in KSHV-infected cells promoted apoptosis. Together, these results identify a new miRNA target and demonstrate that KSHV miRNAs are important for protecting infected cells from DNA damage responses. Kaposi's sarcoma-associated herpesvirus is a leading cause of cancers in individuals with AIDS. Promoting survival of infected cells is essential for maintaining viral infections. A virus needs to combat various cellular defense

  18. Kaposi's-sarcoma-associated-herpesvirus-activated dendritic cells promote HIV-1 trans-infection and suppress CD4{sup +} T cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wan; Qin, Yan; Bai, Lei [Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, the Chinese Academy of Sciences, Shanghai (China); Graduate School of the Chinese Academy of Sciences, Beijing (China); Lan, Ke [Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, the Chinese Academy of Sciences, Shanghai (China); Wang, Jian-Hua, E-mail: Jh_wang@sibs.ac.cn [Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, the Chinese Academy of Sciences, Shanghai (China)

    2013-06-05

    Infection of Kaposi's sarcoma-associated herpesvirus (KSHV) is commonly occurred in AIDS patients. KSHV and HIV-1 act cooperatively in regulating infection with each other and in human carcinogenesis. Dendritic cells (DCs), as the pivotal cells in host immunity, may be modulated by both viruses, for immunoevasion and dissemination, therefore, the interaction between DCs and each virus has been a prior focus for pathogenesis elucidation. Here, we assessed the potential effect of KSHV on DC–HIV-1 interaction. We found that KSHV stimulation could promote maturation of monocyte-derived DCs (MDDCs) and impaired the ability of MDDCs to drive proliferation of resting CD4{sup +} T cells, demonstrating the immunosuppression induced by KSHV. More importantly, KSHV-stimulated MDDCs could capture more HIV-1 and efficiently transferred these infectious viruses to Hut/CCR5 T cell line. Our results reveal the novel modulation of DC-mediated HIV-1 dissemination by KSHV, and highlight the importance of studying DC–HIV-1 interaction to elucidate HIV/AIDS pathogenesis. - Highlights: ► KSHV impaired the ability of MDDCs to drive proliferation of resting CD4{sup +} T cells. ► KSHV stimulation matured MDDCs and enhanced HIV-1 endocytosis. ► KSHV stimulated MDDCs increased ICAM-1 expression and tighten contact with T cells. ► KSHV-stimulated MDDCs promoted HIV-1 trans-infection of CD4{sup +} T cells.

  19. Seroprevalence and risk factors of Kaposi's sarcoma-associated herpesvirus infection among the general Uygur population from south and north region of Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Wang Hui

    2011-12-01

    Full Text Available Abstract Background Kaposi sarcoma (KS is a complex multifocal neoplasm and is the major cause of death for about 50% of acquired immunodeficiency syndrome (AIDS patients. Kaposi's sarcoma-associated herpesvirus (KSHV is an oncogenic virus with a causal role in the development of all types of KS. KS is prevalent among the Uygur people in Xinjiang, especially in south area. Here we carried out a cross-sectional study among 1534 general Uygur individuals from south and north region of Xinjiang to assess the seroprevalence of KSHV and to identify the potential correlation between KSHV seroprevalence and KS incidence. Results Seroprevalence of KSHV in South and North Xinjiang was 23.1% and 25.9%, respectively. Older age was independently associated with higher KSHV seroprevalence. In subjects from South Xinjiang, lower educational level and reported drinking were each independently associated with higher KSHV seroprevalence. Furthermore, the antibody titer was significantly lower in both south and north KSHV seropositive individuals compared with KS patients, as analyzed by gradient dilution (P Conclusion KSHV is highly prevalent in the general Uygur population in both South and North Xinjiang. Interestingly, the infection rate of KSHV in these two geographical areas did not correlate well with KS incidence. Perhaps unknown factors exist that promote the progression of KSHV infection to KS development in the local minority groups.

  20. The Chromatin Landscape of Kaposi’s Sarcoma-Associated Herpesvirus

    Directory of Open Access Journals (Sweden)

    Zsolt Toth

    2013-05-01

    Full Text Available Kaposi’s sarcoma-associated herpesvirus is an oncogenic γ-herpesvirus that causes latent infection in humans. In cells, the viral genome adopts a highly organized chromatin structure, which is controlled by a wide variety of cellular and viral chromatin regulatory factors. In the past few years, interrogation of the chromatinized KSHV genome by whole genome-analyzing tools revealed that the complex chromatin landscape spanning the viral genome in infected cells has important regulatory roles during the viral life cycle. This review summarizes the most recent findings regarding the role of histone modifications, histone modifying enzymes, DNA methylation, microRNAs, non-coding RNAs and the nuclear organization of the KSHV epigenome in the regulation of latent and lytic viral gene expression programs as well as their connection to KSHV-associated pathogenesis.

  1. Kaposi's Sarcoma-Associated Herpesvirus ORF18 and ORF30 Are Essential for Late Gene Expression during Lytic Replication

    OpenAIRE

    Gong, Danyang; Wu, Nicholas C.; Xie, Yafang; Feng, Jun; Tong, Leming; Brulois, Kevin F.; Luan, Harding; Du, Yushen; Jung, Jae U.; Wang, Cun-Yu; Kang, Mo Kwan; Park, No-Hee; Sun, Ren; Wu, Ting-Ting

    2014-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with several human malignances. As saliva is likely the major vehicle for KSHV transmission, we studied in vitro KSHV infection of oral epithelial cells. Through infection of two types of oral epithelial cells, normal human oral keratinocytes (NHOKs) and papilloma-immortalized human oral keratinocyte (HOK16B) cells, we found that KSHV can undergo robust lytic replication in oral epithelial cells. By employing de novo lytic infection...

  2. The T-Cell Immune Response against Kaposi's Sarcoma-Associated Herpesvirus.

    Science.gov (United States)

    Robey, Rebecca C; Mletzko, Salvinia; Gotch, Frances M

    2010-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the aetiological agent of Kaposi's sarcoma (KS), the most frequently arising malignancy in individuals with untreated HIV/AIDS. There are several lines of evidence to indicate that Kaposi's sarcoma oncogenesis is associated with loss of T-cell-mediated control of KSHV-infected cells. KSHV can establish life-long asymptomatic infection in immune-competent individuals. However, when T-cell immune control declines, for example, through AIDS or treatment with immunosuppressive drugs, both the prevalence of KSHV infection and the incidence of KS in KSHV carriers dramatically increase. Moreover, a dramatic and spontaneous improvement in KS is frequently seen when immunity is restored, for example, through antiretroviral therapy or the cessation of iatrogenic drugs. In this paper we describe the current state of knowledge on the T-cell immune responses against KSHV.

  3. The T-Cell Immune Response against Kaposi's Sarcoma-Associated Herpesvirus

    Directory of Open Access Journals (Sweden)

    Rebecca C. Robey

    2010-01-01

    Full Text Available Kaposi's sarcoma-associated herpesvirus (KSHV is the aetiological agent of Kaposi's sarcoma (KS, the most frequently arising malignancy in individuals with untreated HIV/AIDS. There are several lines of evidence to indicate that Kaposi's sarcoma oncogenesis is associated with loss of T-cell-mediated control of KSHV-infected cells. KSHV can establish life-long asymptomatic infection in immune-competent individuals. However, when T-cell immune control declines, for example, through AIDS or treatment with immunosuppressive drugs, both the prevalence of KSHV infection and the incidence of KS in KSHV carriers dramatically increase. Moreover, a dramatic and spontaneous improvement in KS is frequently seen when immunity is restored, for example, through antiretroviral therapy or the cessation of iatrogenic drugs. In this paper we describe the current state of knowledge on the T-cell immune responses against KSHV.

  4. Kaposi's Sarcoma-Associated Herpesvirus-Related Solid Lymphoma Involving the Heart and Brain

    Directory of Open Access Journals (Sweden)

    Jason R. Andrews

    2011-01-01

    Full Text Available Since its discovery in 1994, Kaposi's sarcoma-associated herpesvirus (KSHV has been associated with lymphoproliferative disorders, particularly in patients infected with human immunodeficiency virus (HIV. The disorders most strongly linked to KSHV are multicentric Castleman's Disease (MCD, primary effusion lymphoma, and diffuse large B-cell lymphomas. We report an unusual case of KSHV-associated lymphoma in an HIV-infected patient manifesting with myocardial and central nervous system involvement. We discuss this case in the context of increasing array of KSHV-associated lymphomas. In the HIV-infected patient with a mass lesion, a history of cutaneous Kaposi's sarcoma and prolonged immunosuppression should alert clinicians as to the possibility of KSHV-associated lymphoproliferative disorders, in order to establish a timely diagnosis.

  5. The HIV protease inhibitor nelfinavir inhibits Kaposi's sarcoma-associated herpesvirus replication in vitro.

    Science.gov (United States)

    Gantt, Soren; Carlsson, Jacquelyn; Ikoma, Minako; Gachelet, Eliora; Gray, Matthew; Geballe, Adam P; Corey, Lawrence; Casper, Corey; Lagunoff, Michael; Vieira, Jeffrey

    2011-06-01

    Kaposi's sarcoma (KS) is the most common HIV-associated cancer worldwide and is associated with high levels of morbidity and mortality in some regions. Antiretroviral (ARV) combination regimens have had mixed results for KS progression and resolution. Anecdotal case reports suggest that protease inhibitors (PIs) may have effects against KS that are independent of their effect on HIV infection. As such, we evaluated whether PIs or other ARVs directly inhibit replication of Kaposi's sarcoma-associated herpesvirus (KSHV), the gammaherpesvirus that causes KS. Among a broad panel of ARVs tested, only the PI nelfinavir consistently displayed potent inhibitory activity against KSHV in vitro as demonstrated by an efficient quantitative assay for infectious KSHV using a recombinant virus, rKSHV.294, which expresses the secreted alkaline phosphatase. This inhibitory activity of nelfinavir against KSHV replication was confirmed using virus derived from a second primary effusion lymphoma cell line. Nelfinavir was similarly found to inhibit in vitro replication of an alphaherpesvirus (herpes simplex virus) and a betaherpesvirus (human cytomegalovirus). No activity was observed with nelfinavir against vaccinia virus or adenovirus. Nelfinavir may provide unique benefits for the prevention or treatment of HIV-associated KS and potentially other human herpesviruses by direct inhibition of replication.

  6. The epigenetic landscape of latent Kaposi sarcoma-associated herpesvirus genomes.

    Directory of Open Access Journals (Sweden)

    Thomas Günther

    Full Text Available Herpesvirus latency is generally thought to be governed by epigenetic modifications, but the dynamics of viral chromatin at early timepoints of latent infection are poorly understood. Here, we report a comprehensive spatial and temporal analysis of DNA methylation and histone modifications during latent infection with Kaposi Sarcoma-associated herpesvirus (KSHV, the etiologic agent of Kaposi Sarcoma and primary effusion lymphoma (PEL. By use of high resolution tiling microarrays in conjunction with immunoprecipitation of methylated DNA (MeDIP or modified histones (chromatin IP, ChIP, our study revealed highly distinct landscapes of epigenetic modifications associated with latent KSHV infection in several tumor-derived cell lines as well as de novo infected endothelial cells. We find that KSHV genomes are subject to profound methylation at CpG dinucleotides, leading to the establishment of characteristic global DNA methylation patterns. However, such patterns evolve slowly and thus are unlikely to control early latency. In contrast, we observed that latency-specific histone modification patterns were rapidly established upon a de novo infection. Our analysis furthermore demonstrates that such patterns are not characterized by the absence of activating histone modifications, as H3K9/K14-ac and H3K4-me3 marks were prominently detected at several loci, including the promoter of the lytic cycle transactivator Rta. While these regions were furthermore largely devoid of the constitutive heterochromatin marker H3K9-me3, we observed rapid and widespread deposition of H3K27-me3 across latent KSHV genomes, a bivalent modification which is able to repress transcription in spite of the simultaneous presence of activating marks. Our findings suggest that the modification patterns identified here induce a poised state of repression during viral latency, which can be rapidly reversed once the lytic cycle is induced.

  7. Kaposi's Sarcoma-Associated Herpesvirus Hijacks RNA Polymerase II To Create a Viral Transcriptional Factory

    Science.gov (United States)

    Chen, Christopher Phillip; Lyu, Yuanzhi; Chuang, Frank; Nakano, Kazushi; Izumiya, Chie; Jin, Di; Campbell, Mel

    2017-01-01

    ABSTRACT Locally concentrated nuclear factors ensure efficient binding to DNA templates, facilitating RNA polymerase II recruitment and frequent reutilization of stable preinitiation complexes. We have uncovered a mechanism for effective viral transcription by focal assembly of RNA polymerase II around Kaposi's sarcoma-associated herpesvirus (KSHV) genomes in the host cell nucleus. Using immunofluorescence labeling of latent nuclear antigen (LANA) protein, together with fluorescence in situ RNA hybridization (RNA-FISH) of the intron region of immediate early transcripts, we visualized active transcription of viral genomes in naturally infected cells. At the single-cell level, we found that not all episomes were uniformly transcribed following reactivation stimuli. However, those episomes that were being transcribed would spontaneously aggregate to form transcriptional “factories,” which recruited a significant fraction of cellular RNA polymerase II. Focal assembly of “viral transcriptional factories” decreased the pool of cellular RNA polymerase II available for cellular gene transcription, which consequently impaired cellular gene expression globally, with the exception of selected ones. The viral transcriptional factories localized with replicating viral genomic DNAs. The observed colocalization of viral transcriptional factories with replicating viral genomic DNA suggests that KSHV assembles an “all-in-one” factory for both gene transcription and DNA replication. We propose that the assembly of RNA polymerase II around viral episomes in the nucleus may be a previously unexplored aspect of KSHV gene regulation by confiscation of a limited supply of RNA polymerase II in infected cells. IMPORTANCE B cells infected with Kaposi's sarcoma-associated herpesvirus (KSHV) harbor multiple copies of the KSHV genome in the form of episomes. Three-dimensional imaging of viral gene expression in the nucleus allows us to study interactions and changes in the

  8. PAN's Labyrinth: Molecular biology of Kaposi's sarcoma-associated herpesvirus (KSHV) PAN RNA, a multifunctional long noncoding RNA.

    Science.gov (United States)

    Rossetto, Cyprian C; Pari, Gregory S

    2014-11-04

    Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic γ-herpesivrus, the causative agent of Kaposi's sarcoma and body cavity lymphomas. During infection KSHV produces a highly abundant long non-coding polyadenylated RNA that is retained in the nucleus known as PAN RNA. Long noncoding RNAs (lncRNA) are key regulators of gene expression and are known to interact with specific chromatin modification complexes, working in cis and trans to regulate gene expression. Data strongly supports a model where PAN RNA is a multifunctional regulatory transcript that controls KSHV gene expression by mediating the modification of chromatin by targeting the KSHV repressed genome.

  9. Epidemiology of Kaposi's sarcoma-associated herpesvirus in Asia: Challenges and opportunities.

    Science.gov (United States)

    Zhang, Tiejun; Wang, Linding

    2017-04-01

    Kaposi's sarcoma-associated herpes virus (KSHV) also referred to as human herpesvirus-8 (HHV-8), is a gamma herpes virus and recently discovered human virus. Since its discovery, a myriad of studies has been conducted to explore its pathogenesis mechanisms. However, despite our consistently increasing understanding of KSHV biology and its clinical manifestations, only little progress has been made in understanding of its epidemiology characteristics which in turn hampered the management of KSHV-associated diseases and public health. Asia, the largest continent with a diversity of populations, has been thought to be with relative lower KSHV prevalence and diseases burden. The epidemiology of KSHV in this area is obscure either. The present review summarizes the current knowledge pertaining to the epidemiology of KSHV across Asian countries. Studies available in the literature have shown a substantial variation in this region indicating the virus is not ubiquitous in Asia countries as is the case with other human herpes viruses. Also, the MSM has been reconfirmed to be at the highest risk of KSHV infection in Asia highlighting the need for an increased focus on this previously marginalized population. Because of the paucity of data available, the epidemiologic characteristics of KSHV are difficult to determine in Asian countries. Future systematic collection of data to inform KSHV prevention strategies in Asia is urgently needed. J. Med. Virol. 89:563-570, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Antagonism of host antiviral responses by Kaposi's sarcoma-associated herpesvirus tegument protein ORF45.

    Directory of Open Access Journals (Sweden)

    Fan Xiu Zhu

    2010-05-01

    Full Text Available Virus infection of a cell generally evokes an immune response by the host to defeat the intruder in its effort. Many viruses have developed an array of strategies to evade or antagonize host antiviral responses. Kaposi's sarcoma-associated herpesvirus (KSHV is demonstrated in this report to be able to prevent activation of host antiviral defense mechanisms upon infection. Cells infected with wild-type KSHV were permissive for superinfection with vesicular stomatitis virus (VSV, suggesting that KSHV virions fail to induce host antiviral responses. We previously showed that ORF45, a KSHV immediate-early protein as well as a tegument protein of virions, interacts with IRF-7 and inhibits virus-mediated type I interferon induction by blocking IRF-7 phosphorylation and nuclear translocation (Zhu et al., Proc. Natl. Acad. Sci. USA. 99:5573-5578, 2002. Here, using an ORF45-null recombinant virus, we demonstrate a profound role of ORF45 in inhibiting host antiviral responses. Infection of cells with an ORF45-null mutant recombinant KSHV (BAC-stop45 triggered an immune response that resisted VSV super-infection, concomitantly associated with appreciable increases in transcription of type I IFN and downstream anti-viral effector genes. Gain-of-function analysis showed that ectopic expression of ORF45 in human fibroblast cells by a lentivirus vector decreased the antiviral responses of the cells. shRNA-mediated silencing of IRF-7, that predominantly regulates both the early and late phase induction of type I IFNs, clearly indicated its critical contribution to the innate antiviral responses generated against incoming KSHV particles. Thus ORF45 through its targeting of the crucial IRF-7 regulated type I IFN antiviral responses significantly contributes to the KSHV survival immediately following a primary infection allowing for progression onto subsequent stages in its life-cycle.

  11. Regulation of viral and cellular gene expression by Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA.

    Science.gov (United States)

    Rossetto, Cyprian C; Tarrant-Elorza, Margaret; Verma, Subhash; Purushothaman, Pravinkumar; Pari, Gregory S

    2013-05-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the cause of Kaposi's sarcoma and body cavity lymphoma. In cell culture, KSHV results in a latent infection, and lytic reactivation is usually induced with the expression of K-Rta or by treatment with phorbol 12-myristate 13-acetate (TPA) and/or n-butyrate. Lytic infection is marked by the activation of the entire viral genomic transcription cascade and the production of infectious virus. KSHV-infected cells express a highly abundant, long, noncoding transcript referred to as polyadenylated nuclear RNA (PAN RNA). PAN RNA interacts with specific demethylases and physically binds to the KSHV genome to mediate activation of viral gene expression. A recombinant BACmid lacking the PAN RNA locus fails to express K-Rta and does not produce virus. We now show that the lack of PAN RNA expression results in the failure of the initiation of the entire KSHV transcription program. In addition to previous findings of an interaction with demethylases, we show that PAN RNA binds to protein components of Polycomb repression complex 2 (PRC2). RNA-Seq analysis using cell lines that express PAN RNA shows that transcription involving the expression of proteins involved in cell cycle, immune response, and inflammation is dysregulated. Expression of PAN RNA in various cell types results in an enhanced growth phenotype, higher cell densities, and increased survival compared to control cells. Also, PAN RNA expression mediates a decrease in the production of inflammatory cytokines. These data support a role for PAN RNA as a major global regulator of viral and cellular gene expression.

  12. The assembly domain of the small capsid protein of Kaposi's sarcoma-associated herpesvirus.

    Science.gov (United States)

    Kreitler, Dale; Capuano, Christopher M; Henson, Brandon W; Pryce, Erin N; Anacker, Daniel; McCaffery, J Michael; Desai, Prashant J

    2012-11-01

    Self-assembly of Kaposi's sarcoma-associated herpesvirus capsids occurs when six proteins are coexpressed in insect cells using recombinant baculoviruses; however, if the small capsid protein (SCP) is omitted from the coinfection, assembly does not occur. Herein we delineate and identify precisely the assembly domain and the residues of SCP required for assembly. Hence, six residues, R14, D18, V25, R46, G66, and R70 in the assembly domain, when changed to alanine, completely abolish or reduce capsid assembly.

  13. Reactivation and Lytic Replication of Kaposi’s Sarcoma-Associated Herpesvirus: An Update

    Directory of Open Access Journals (Sweden)

    Yan Yuan

    2017-04-01

    Full Text Available The life cycle of Kaposi’s sarcoma-associated herpesvirus (KSHV consists of two phases, latent and lytic. The virus establishes latency as a strategy for avoiding host immune surveillance and fusing symbiotically with the host for lifetime persistent infection. However, latency can be disrupted and KSHV is reactivated for entry into the lytic replication. Viral lytic replication is crucial for efficient dissemination from its long-term reservoir to the sites of disease and for the spread of the virus to new hosts. The balance of these two phases in the KSHV life cycle is important for both the virus and the host and control of the switch between these two phases is extremely complex. Various environmental factors such as oxidative stress, hypoxia, and certain chemicals have been shown to switch KSHV from latency to lytic reactivation. Immunosuppression, unbalanced inflammatory cytokines, and other viral co-infections also lead to the reactivation of KSHV. This review article summarizes the current understanding of the initiation and regulation of KSHV reactivation and the mechanisms underlying the process of viral lytic replication. In particular, the central role of an immediate-early gene product RTA in KSHV reactivation has been extensively investigated. These studies revealed multiple layers of regulation in activation of RTA as well as the multifunctional roles of RTA in the lytic replication cascade. Epigenetic regulation is known as a critical layer of control for the switch of KSHV between latency and lytic replication. The viral non-coding RNA, PAN, was demonstrated to play a central role in the epigenetic regulation by serving as a guide RNA that brought chromatin remodeling enzymes to the promoters of RTA and other lytic genes. In addition, a novel dimension of regulation by microPeptides emerged and has been shown to regulate RTA expression at the protein level. Overall, extensive investigation of KSHV reactivation and lytic

  14. Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen and Angiogenin Interact with Common Host Proteins, Including Annexin A2, Which Is Essential for Survival of Latently Infected Cells

    Science.gov (United States)

    Paudel, Nitika; Sadagopan, Sathish; Balasubramanian, Sandhya

    2012-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) infection and latency-associated nuclear antigen (LANA-1) upregulate the multifunctional protein angiogenin (ANG). Our studies demonstrate that silencing ANG or inhibiting its nuclear translocation downregulates KSHV LANA-1 expression and ANG is necessary for KSHV latency, anti-apoptosis and angiogenesis (Sadagopan et al., J. Virol. 83:3342–3364, 2009; Sadagopan et al., J Virol. 85:2666–2685, 2011). Here we show that LANA-1 interacts with ANG and colocalizes in latently infected endothelial telomerase-immortalized human umbilical vein endothelial (TIVE-LTC) cells. Mass spectrometric analyses of TIVE-LTC proteins immunoprecipitated by anti-LANA-1 and ANG antibodies identified 28 common cellular proteins such as ribosomal proteins, structural proteins, tRNA synthetases, metabolic pathway enzymes, chaperons, transcription factors, antioxidants, and ubiquitin proteosome proteins. LANA-1 and ANG interaction with one of the proteins, annexin A2, was validated. Annexin A2 has been shown to play roles in cell proliferation, apoptosis, plasmin generation, exocytosis, endocytosis, and cytoskeleton reorganization. It is also known to associate with glycolytic enzyme 3-phosphoglyceratekinase in the primer recognition protein (PRP) complex that interacts with DNA polymerase α in the lagging strand of DNA during replication. A higher level of annexin A2 is expressed in KSHV+ but not in Epstein-Barr virus (EBV)+ B-lymphoma cell lines. Annexin A2 colocalized with several LANA-1 punctate spots in KSHV+ body cavity B-cell lymphoma (BCBL-1) cells. In triple-staining analyses, we observed annexin A2-ANG-LANA-1, annexin A2-ANG, and ANG-LANA-1 colocalizations. Annexin A2 appeared as punctate nuclear dots in LANA-1-positive TIVE-LTC cells. In LANA-1-negative TIVE-LTC cells, annexin A2 was detected predominately in the cytoplasm, with some nuclear spots, and colocalization with ANG was observed mostly in the cytoplasm. Annexin A2

  15. Structural Analysis of Thymidylate Synthase from Kaposi?s Sarcoma-Associated Herpesvirus with the Anticancer Drug Raltitrexed

    OpenAIRE

    Choi, Yong Mi; Yeo, Hyun Ku; Park, Young Woo; Lee, Jae Young

    2016-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a highly infectious human herpesvirus that causes Kaposi's sarcoma. KSHV encodes functional thymidylate synthase, which is a target for anticancer drugs such as raltitrexed or 5-fluorouracil. Thymidylate synthase catalyzes the conversion of 2'-deoxyuridine-5'-monophosphate (dUMP) to thymidine-5'-monophosphate (dTMP) using 5,10-methylenetetrahydrofolate (mTHF) as a co-substrate. The crystal structures of thymidylate synthase from KSHV (apo), co...

  16. Structural Analysis of Thymidylate Synthase from Kaposi's Sarcoma-Associated Herpesvirus with the Anticancer Drug Raltitrexed.

    Directory of Open Access Journals (Sweden)

    Yong Mi Choi

    Full Text Available Kaposi's sarcoma-associated herpesvirus (KSHV is a highly infectious human herpesvirus that causes Kaposi's sarcoma. KSHV encodes functional thymidylate synthase, which is a target for anticancer drugs such as raltitrexed or 5-fluorouracil. Thymidylate synthase catalyzes the conversion of 2'-deoxyuridine-5'-monophosphate (dUMP to thymidine-5'-monophosphate (dTMP using 5,10-methylenetetrahydrofolate (mTHF as a co-substrate. The crystal structures of thymidylate synthase from KSHV (apo, complexes with dUMP (binary, and complexes with both dUMP and raltitrexed (ternary were determined at 1.7 Å, 2.0 Å, and 2.4 Å, respectively. While the ternary complex structures of human thymidylate synthase and E. coli thymidylate synthase had a closed conformation, the ternary complex structure of KSHV thymidylate synthase was observed in an open conformation, similar to that of rat thymidylate synthase. The complex structures of KSHV thymidylate synthase did not have a covalent bond between the sulfhydryl group of Cys219 and C6 atom of dUMP, unlike the human thymidylate synthase. The catalytic Cys residue demonstrated a dual conformation in the apo structure, and its sulfhydryl group was oriented toward the C6 atom of dUMP with no covalent bond upon ligand binding in the complex structures. These structural data provide the potential use of antifolates such as raltitrexed as a viral induced anticancer drug and structural basis to design drugs for targeting the thymidylate synthase of KSHV.

  17. Structural Analysis of Thymidylate Synthase from Kaposi's Sarcoma-Associated Herpesvirus with the Anticancer Drug Raltitrexed.

    Science.gov (United States)

    Choi, Yong Mi; Yeo, Hyun Ku; Park, Young Woo; Lee, Jae Young

    2016-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a highly infectious human herpesvirus that causes Kaposi's sarcoma. KSHV encodes functional thymidylate synthase, which is a target for anticancer drugs such as raltitrexed or 5-fluorouracil. Thymidylate synthase catalyzes the conversion of 2'-deoxyuridine-5'-monophosphate (dUMP) to thymidine-5'-monophosphate (dTMP) using 5,10-methylenetetrahydrofolate (mTHF) as a co-substrate. The crystal structures of thymidylate synthase from KSHV (apo), complexes with dUMP (binary), and complexes with both dUMP and raltitrexed (ternary) were determined at 1.7 Å, 2.0 Å, and 2.4 Å, respectively. While the ternary complex structures of human thymidylate synthase and E. coli thymidylate synthase had a closed conformation, the ternary complex structure of KSHV thymidylate synthase was observed in an open conformation, similar to that of rat thymidylate synthase. The complex structures of KSHV thymidylate synthase did not have a covalent bond between the sulfhydryl group of Cys219 and C6 atom of dUMP, unlike the human thymidylate synthase. The catalytic Cys residue demonstrated a dual conformation in the apo structure, and its sulfhydryl group was oriented toward the C6 atom of dUMP with no covalent bond upon ligand binding in the complex structures. These structural data provide the potential use of antifolates such as raltitrexed as a viral induced anticancer drug and structural basis to design drugs for targeting the thymidylate synthase of KSHV.

  18. PAN’s Labyrinth: Molecular Biology of Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) PAN RNA, a Multifunctional Long Noncoding RNA

    Science.gov (United States)

    Rossetto, Cyprian C.; Pari, Gregory S.

    2014-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic γ-herpesivrus, the causative agent of Kaposi’s sarcoma and body cavity lymphomas. During infection KSHV produces a highly abundant long non-coding polyadenylated RNA that is retained in the nucleus known as PAN RNA. Long noncoding RNAs (lncRNA) are key regulators of gene expression and are known to interact with specific chromatin modification complexes, working in cis and trans to regulate gene expression. Data strongly supports a model where PAN RNA is a multifunctional regulatory transcript that controls KSHV gene expression by mediating the modification of chromatin by targeting the KSHV repressed genome. PMID:25375885

  19. Detection of Kaposi's sarcoma associated herpesvirus nucleic acids using a smartphone accessory.

    Science.gov (United States)

    Mancuso, Matthew; Cesarman, Ethel; Erickson, David

    2014-10-07

    Kaposi's sarcoma (KS) is an infectious cancer occurring in immune-compromised patients, caused by Kaposi's sarcoma associated herpesvirus (KSHV). Our vision is to simplify the process of KS diagnosis through the creation of a smartphone based point-of-care system capable of yielding an actionable diagnostic readout starting from a raw biopsy sample. In this work we develop the sensing mechanism for the overall system, a smartphone accessory capable of detecting KSHV nucleic acids. The accessory reads out microfluidic chips filled with a colorimetric nanoparticle assay targeted at KSHV. We calculate that our final device can read out gold nanoparticle solutions with an accuracy of 0.05 OD, and we demonstrate that it can detect DNA sequences from KSHV down to 1 nM. We believe that through integration with our previously developed components, a smartphone based system like the one studied here can provide accurate detection information, as well as a simple platform for field based clinical diagnosis and research.

  20. Kaposi's sarcoma-associated herpesvirus ORF6 gene is essential in viral lytic replication.

    Directory of Open Access Journals (Sweden)

    Can Peng

    Full Text Available Kaposi's sarcoma associated herpesvirus (KSHV is associated with Kaposis's sarcoma (KS, primary effusion lymphoma and multicentric Castleman's disease. KSHV encodes at least 8 open reading frames (ORFs that play important roles in its lytic DNA replication. Among which, ORF6 of KSHV encodes an ssDNA binding protein that has been proved to participate in origin-dependent DNA replication in transient assays. To define further the function of ORF6 in the virus life cycle, we constructed a recombinant virus genome with a large deletion within the ORF6 locus by using a bacterial artificial chromosome (BAC system. Stable 293T cells carrying the BAC36 (wild type and BACΔ6 genomes were generated. When monolayers of 293T-BAC36 and 293T-BACΔ6 cells were induced with 12-O-tetradecanoylphorbol-13-acetate (TPA and sodium butyrate, infectious virus was detected from the 293T-BAC36 cell supernatants only and not from the 293T- BACΔ6 cell supernatants. DNA synthesis was defective in 293T-BACΔ6 cells. Expression of ORF6 in trans in BACΔ6-containing cells was able to rescue both defects. Our results provide genetic evidence that ORF6 is essential for KSHV lytic replication. The stable 293T cells carrying the BAC36 and BACΔ6 genomes could be used as tools to investigate the detailed functions of ORF6 in the lytic replication of KSHV.

  1. Control of Kaposi's sarcoma-associated herpesvirus reactivation induced by multiple signals.

    Directory of Open Access Journals (Sweden)

    Fuqu Yu

    Full Text Available The ability to control cellular functions can bring about many developments in basic biological research and its applications. The presence of multiple signals, internal as well as externally imposed, introduces several challenges for controlling cellular functions. Additionally the lack of clear understanding of the cellular signaling network limits our ability to infer the responses to a number of signals. This work investigates the control of Kaposi's sarcoma-associated herpesvirus reactivation upon treatment with a combination of multiple signals. We utilize mathematical model-based as well as experiment-based approaches to achieve the desired goals of maximizing virus reactivation. The results show that appropriately selected control signals can induce virus lytic gene expression about ten folds higher than a single drug; these results were validated by comparing the results of the two approaches, and experimentally using multiple assays. Additionally, we have quantitatively analyzed potential interactions between the used combinations of drugs. Some of these interactions were consistent with existing literature, and new interactions emerged and warrant further studies. The work presents a general method that can be used to quantitatively and systematically study multi-signal induced responses. It enables optimization of combinations to achieve desired responses. It also allows identifying critical nodes mediating the multi-signal induced responses. The concept and the approach used in this work will be directly applicable to other diseases such as AIDS and cancer.

  2. Kaposi's sarcoma-associated herpesvirus LANA recruits the DNA polymerase clamp loader to mediate efficient replication and virus persistence.

    Science.gov (United States)

    Sun, Qiming; Tsurimoto, Toshiki; Juillard, Franceline; Li, Lin; Li, Shijun; De León Vázquez, Erika; Chen, She; Kaye, Kenneth

    2014-08-12

    Kaposi's sarcoma-associated herpesvirus (KSHV) latently infects tumor cells and persists as a multiple-copy, extrachromosomal, circular episome. To persist, the viral genome must replicate with each cell cycle. The KSHV latency-associated nuclear antigen (LANA) mediates viral DNA replication and persistence, but little is known regarding the underlying mechanisms. We find that LANA recruits replication factor C (RFC), the DNA polymerase clamp [proliferating cell nuclear antigen (PCNA)] loader, to drive DNA replication efficiently. Mutated LANA lacking RFC interaction was deficient for LANA-mediated DNA replication and episome persistence. RFC depletion had a negative impact on LANA's ability to replicate and maintain viral DNA in cells containing artificial KSHV episomes or in infected cells, leading to loss of virus. LANA substantially increased PCNA loading onto DNA in vitro and recruited RFC and PCNA to KSHV DNA in cells. These findings suggest that PCNA loading is a rate-limiting step in DNA replication that is incompatible with viral survival. LANA enhancement of PCNA loading permits efficient virus replication and persistence, revealing a previously unidentified mechanism for KSHV latency.

  3. A hydrophobic domain within the small capsid protein of Kaposi's sarcoma-associated herpesvirus is required for assembly.

    Science.gov (United States)

    Capuano, Christopher M; Grzesik, Peter; Kreitler, Dale; Pryce, Erin N; Desai, Keshal V; Coombs, Gavin; McCaffery, J Michael; Desai, Prashant J

    2014-08-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) capsids can be produced in insect cells using recombinant baculoviruses for protein expression. All six capsid proteins are required for this process to occur and, unlike for alphaherpesviruses, the small capsid protein (SCP) ORF65 is essential for this process. This protein decorates the capsid shell by virtue of its interaction with the capsomeres. In this study, we have explored the SCP interaction with the major capsid protein (MCP) using GFP fusions. The assembly site within the nucleus of infected cells was visualized by light microscopy using fluorescence produced by the SCP-GFP polypeptide, and the relocalization of the SCP to these sites was evident only when the MCP and the scaffold protein were also present - indicative of an interaction between these proteins that ensures delivery of the SCP to assembly sites. Biochemical assays demonstrated a physical interaction between the SCP and MCP, and also between this complex and the scaffold protein. Self-assembly of capsids with the SCP-GFP polypeptide was evident. Potentially, this result can be used to engineer fluorescent KSHV particles. A similar SCP-His6 polypeptide was used to purify capsids from infected cell lysates using immobilized affinity chromatography and to directly label this protein in capsids using chemically derivatized gold particles. Additional studies with SCP-GFP polypeptide truncation mutants identified a domain residing between aa 50 and 60 of ORF65 that was required for the relocalization of SCP-GFP to nuclear assembly sites. Substitution of residues in this region and specifically at residue 54 with a polar amino acid (lysine) disrupted or abolished this localization as well as capsid assembly, whereas substitution with non-polar residues did not affect the interaction. Thus, this study identified a small conserved hydrophobic domain that is important for the SCP-MCP interaction. © 2014 The Authors.

  4. A hydrophobic domain within the small capsid protein of Kaposi’s sarcoma-associated herpesvirus is required for assembly

    Science.gov (United States)

    Capuano, Christopher M.; Grzesik, Peter; Kreitler, Dale; Pryce, Erin N.; Desai, Keshal V.; Coombs, Gavin; McCaffery, J. Michael

    2014-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) capsids can be produced in insect cells using recombinant baculoviruses for protein expression. All six capsid proteins are required for this process to occur and, unlike for alphaherpesviruses, the small capsid protein (SCP) ORF65 is essential for this process. This protein decorates the capsid shell by virtue of its interaction with the capsomeres. In this study, we have explored the SCP interaction with the major capsid protein (MCP) using GFP fusions. The assembly site within the nucleus of infected cells was visualized by light microscopy using fluorescence produced by the SCP–GFP polypeptide, and the relocalization of the SCP to these sites was evident only when the MCP and the scaffold protein were also present – indicative of an interaction between these proteins that ensures delivery of the SCP to assembly sites. Biochemical assays demonstrated a physical interaction between the SCP and MCP, and also between this complex and the scaffold protein. Self-assembly of capsids with the SCP–GFP polypeptide was evident. Potentially, this result can be used to engineer fluorescent KSHV particles. A similar SCP–His6 polypeptide was used to purify capsids from infected cell lysates using immobilized affinity chromatography and to directly label this protein in capsids using chemically derivatized gold particles. Additional studies with SCP–GFP polypeptide truncation mutants identified a domain residing between aa 50 and 60 of ORF65 that was required for the relocalization of SCP–GFP to nuclear assembly sites. Substitution of residues in this region and specifically at residue 54 with a polar amino acid (lysine) disrupted or abolished this localization as well as capsid assembly, whereas substitution with non-polar residues did not affect the interaction. Thus, this study identified a small conserved hydrophobic domain that is important for the SCP–MCP interaction. PMID:24824860

  5. Regulation of the Abundance of Kaposi's Sarcoma-Associated Herpesvirus ORF50 Protein by Oncoprotein MDM2.

    Directory of Open Access Journals (Sweden)

    Tzu-Hsuan Chang

    2016-10-01

    Full Text Available The switch between latency and the lytic cycle of Kaposi's sarcoma-associated herpesvirus (KSHV is controlled by the expression of virally encoded ORF50 protein. Thus far, the regulatory mechanism underlying the protein stability of ORF50 is unknown. Our earlier studies have demonstrated that a protein abundance regulatory signal (PARS at the ORF50 C-terminal region modulates its protein abundance. The PARS region consists of PARS-I (aa 490-535 and PARS-II (aa 590-650, and mutations in either component result in abundant expression of ORF50. Here, we show that ORF50 protein is polyubiquitinated and its abundance is controlled through the proteasomal degradation pathway. The PARS-I motif mainly functions as a nuclear localization signal in the control of ORF50 abundance, whereas the PARS-II motif is required for the binding of ubiquitin enzymes in the nucleus. We find that human oncoprotein MDM2, an ubiquitin E3 ligase, is capable of interacting with ORF50 and promoting ORF50 degradation in cells. The interaction domains between both proteins are mapped to the PARS region of ORF50 and the N-terminal 220-aa region of MDM2. Additionally, we identify lysine residues at positions 152 and 154 in the N-terminal domain of ORF50 critically involved in MDM2-mediated downregulation of ORF50 levels. Within KSHV-infected cells, the levels of MDM2 were greatly reduced during viral lytic cycle and genetic knockdown of MDM2 in these cells favored the enhancement of ORF50 expression, supporting that MDM2 is a negative regulator of ORF50 expression. Collectively, the study elucidates the regulatory mechanism of ORF50 stability and implicates that MDM2 may have a significant role in the maintenance of viral latency by lowering basal level of ORF50.

  6. Glycolysis, Glutaminolysis, and Fatty Acid Synthesis Are Required for Distinct Stages of Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication.

    Science.gov (United States)

    Sanchez, Erica L; Pulliam, Thomas H; Dimaio, Terri A; Thalhofer, Angel B; Delgado, Tracie; Lagunoff, Michael

    2017-05-15

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). KSHV infection induces and requires multiple metabolic pathways, including the glycolysis, glutaminolysis, and fatty acid synthesis (FAS) pathways, for the survival of latently infected endothelial cells. To determine the metabolic requirements for productive KSHV infection, we induced lytic replication in the presence of inhibitors of different metabolic pathways. We found that glycolysis, glutaminolysis, and FAS are all required for maximal KSHV virus production and that these pathways appear to participate in virus production at different stages of the viral life cycle. Glycolysis and glutaminolysis, but not FAS, inhibit viral genome replication and, interestingly, are required for different early steps of lytic gene expression. Glycolysis is necessary for early gene transcription, while glutaminolysis is necessary for early gene translation but not transcription. Inhibition of FAS resulted in decreased production of extracellular virions but did not reduce intracellular genome levels or block intracellular virion production. However, in the presence of FAS inhibitors, the intracellular virions are noninfectious, indicating that FAS is required for virion assembly or maturation. KS tumors support both latent and lytic KSHV replication. Previous work has shown that multiple cellular metabolic pathways are required for latency, and we now show that these metabolic pathways are required for efficient lytic replication, providing novel therapeutic avenues for KS tumors. IMPORTANCE KSHV is the etiologic agent of Kaposi's sarcoma, the most common tumor of AIDS patients. KS spindle cells, the main tumor cells, all contain KSHV, mostly in the latent state, during which there is limited viral gene expression. However, a percentage of spindle cells support lytic replication and production of virus and these cells are thought to contribute to overall tumor formation. Our

  7. Kaposi's sarcoma-associated herpesvirus ORF18 and ORF30 are essential for late gene expression during lytic replication.

    Science.gov (United States)

    Gong, Danyang; Wu, Nicholas C; Xie, Yafang; Feng, Jun; Tong, Leming; Brulois, Kevin F; Luan, Harding; Du, Yushen; Jung, Jae U; Wang, Cun-yu; Kang, Mo Kwan; Park, No-Hee; Sun, Ren; Wu, Ting-Ting

    2014-10-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with several human malignances. As saliva is likely the major vehicle for KSHV transmission, we studied in vitro KSHV infection of oral epithelial cells. Through infection of two types of oral epithelial cells, normal human oral keratinocytes (NHOKs) and papilloma-immortalized human oral keratinocyte (HOK16B) cells, we found that KSHV can undergo robust lytic replication in oral epithelial cells. By employing de novo lytic infection of HOK16B cells, we studied the functions of two previously uncharacterized genes, ORF18 and ORF30, during the KSHV lytic cycle. For this purpose, an ORF18-deficient virus and an ORF30-deficient virus were generated using a mutagenesis strategy based on bacterial artificial chromosome (BAC) technology. We found that neither ORF18 nor ORF30 is required for immediately early or early gene expression or viral DNA replication, but each is essential for late gene expression during both de novo lytic replication and reactivation. This critical role of ORF18 and ORF30 in late gene expression was also observed during KSHV reactivation. In addition, global analysis of viral transcripts by RNA sequencing indicated that ORF18 and ORF30 control the same set of viral genes. Therefore, we suggest that these two viral ORFs are involved in the same mechanism or pathway that coregulates the viral late genes as a group. While KSHV can infect multiple cell types in vitro, only a few can support a full lytic replication cycle with progeny virions produced. Consequently, KSHV lytic replication is mostly studied through reactivation, which requires chemicals to induce the lytic cycle or overexpression of the viral transcriptional activator, RTA. In this study, we present a robust de novo lytic infection system based on oral epithelial cells. Using this system, we demonstrate the role of two viral ORFs, ORF18 and ORF30, in regulating viral gene expression during KSHV lytic replication. As the major

  8. DNA-PK/Ku complex binds to latency-associated nuclear antigen and negatively regulates Kaposi's sarcoma-associated herpesvirus latent replication

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Seho [Department of Life Science, Dongguk Univ-Seoul, Seoul 100-715 (Korea, Republic of); Lim, Chunghun [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Lee, Jae Young [Department of Life Science, Dongguk Univ-Seoul, Seoul 100-715 (Korea, Republic of); Song, Yoon-Jae [Department of Life Science, Kyungwon University, Seongnam-Si, Kyeonggi-Do 461-701 (Korea, Republic of); Park, Junsoo [Division of Biological Science and Technology, Yonsei University, Wonju 220-100 (Korea, Republic of); Choe, Joonho [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Seo, Taegun, E-mail: tseo@dongguk.edu [Department of Life Science, Dongguk Univ-Seoul, Seoul 100-715 (Korea, Republic of)

    2010-04-16

    During latent infection, latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus (KSHV) plays important roles in episomal persistence and replication. Several host factors are associated with KSHV latent replication. Here, we show that the catalytic subunit of DNA protein kinase (DNA-PKcs), Ku70, and Ku86 bind the N-terminal region of LANA. LANA was phosphorylated by DNA-PK and overexpression of Ku70, but not Ku86, impaired transient replication. The efficiency of transient replication was significantly increased in the HCT116 (Ku86 +/-) cell line, compared to the HCT116 (Ku86 +/+) cell line, suggesting that the DNA-PK/Ku complex negatively regulates KSHV latent replication.

  9. A microRNA encoded by Kaposi sarcoma-associated herpesvirus promotes B-cell expansion in vivo.

    Directory of Open Access Journals (Sweden)

    Christine Dahlke

    Full Text Available The human gammaherpesvirus Kaposi sarcoma-associated herpesvirus is strongly linked to neoplasms of endothelial and B-cell origin. The majority of tumor cells in these malignancies are latently infected, and latency genes are consequently thought to play a critical role in virus-induced tumorigenesis. One such factor is kshv-miR-K12-11, a viral microRNA that is constitutively expressed in cell lines derived from KSHV-associated tumors, and that shares perfect homology of its seed sequence with the cellular miR-155. Since miR-155 is overexpressed in a number of human tumors, it is conceivable that mimicry of miR-155 by miR-K12-11 may contribute to cellular transformation in KSHV-associated disease. Here, we have performed a side-by-side study of phenotypic alterations associated with constitutive expression of either human miR-155 or viral miR-K12-11 in bone marrow-derived hematopoietic stem cells. We demonstrate that retroviral-mediated gene transfer and hematopoietic progenitor cell transplantation into C57BL/6 mice leads to increased B-cell fractions in lymphoid organs, as well as to enhanced germinal center formation in both microRNA-expressing mouse cohorts. We furthermore identify Jarid2, a component of Polycomb repressive complex 2, as a novel validated target of miR-K12-11, and confirm its downregulation in miR-K12-11 as well as miR-155 expressing bone marrow cells. Our findings confirm and extend previous observations made in other mouse models, and underscore the notion that miR-K12-11 may have arisen to mimic miR-155 functions in KSHV-infected B-cells. The expression of miR-K12-11 may represent one mechanism by which KSHV presumably aims to reprogram naïve B-cells towards supporting long-term latency, which at the same time is likely to pre-dispose infected lymphocytes to malignant transformation.

  10. ESCRT-0 Component Hrs Promotes Macropinocytosis of Kaposi's Sarcoma-Associated Herpesvirus in Human Dermal Microvascular Endothelial Cells.

    Science.gov (United States)

    Veettil, Mohanan Valiya; Kumar, Binod; Ansari, Mairaj Ahmed; Dutta, Dipanjan; Iqbal, Jawed; Gjyshi, Olsi; Bottero, Virginie; Chandran, Bala

    2016-04-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) enters human dermal microvascular endothelial cells (HMVEC-d), its naturalin vivotarget cells, by lipid raft-dependent macropinocytosis. The internalized viral envelope fuses with the macropinocytic membrane, and released capsid is transported to the nuclear vicinity, resulting in the nuclear entry of viral DNA. The endosomal sorting complexes required for transport (ESCRT) proteins, which include ESCRT-0, -I, -II, and -III, play a central role in endosomal trafficking and sorting of internalized and ubiquitinated receptors. Here, we examined the role of ESCRT-0 component Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) in KSHV entry into HMVEC-d by macropinocytosis. Knockdown of Hrs by short hairpin RNA (shRNA) transduction resulted in significant decreases in KSHV entry and viral gene expression. Immunofluorescence analysis (IFA) and plasma membrane isolation and proximity ligation assay (PLA) demonstrated the translocation of Hrs from the cytosol to the plasma membrane of infected cells and association with α-actinin-4. In addition, infection induced the plasma membrane translocation and activation of the serine/threonine kinase ROCK1, a downstream target of the RhoA GTPase. Hrs knockdown reduced these associations, suggesting that the recruitment of ROCK1 is an Hrs-mediated event. Interaction between Hrs and ROCK1 is essential for the ROCK1-induced phosphorylation of NHE1 (Na(+)/H(+)exchanger 1), which is involved in the regulation of intracellular pH. Thus, our studies demonstrate the plasma membrane association of ESCRT protein Hrs during macropinocytosis and suggest that KSHV entry requires both Hrs- and ROCK1-dependent mechanisms and that ROCK1-mediated phosphorylation of NHE1 and pH change is an essential event required for the macropinocytosis of KSHV. Macropinocytosis is the major entry pathway of KSHV in human dermal microvascular endothelial cells, the natural target cells of KSHV

  11. A negative element involved in Kaposi's sarcoma-associated herpesvirus-encoded ORF11 gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei [Los Alamos National Laboratory

    2009-01-01

    The ORF11 of the Kaposi's sarcoma-associated herpesvirus (KSHV) is a lytic viral gene with delayed-early expression kinetics. How the ORF11 gene expression is regulated in the KSHV lytic cascade is largely unknown. Here we report that the deletion of the KSHV viral IL-6 gene from the viral genome leads to deregulated ORF11 gene expression. The KSHV-encoded viral IL-6 protein was found not to be essentially involved in the regulation of ORF11, suggesting a potential transcriptional cis-regulation. A negative element was identified downstream of the ORF11 gene, which suppresses the ORF11 basal promoter activity in a position-independent manner.

  12. The Crystal Structure of PF-8, the DNA Polymerase Accessory Subunit from Kaposi's Sarcoma-Associated Herpesvirus

    Energy Technology Data Exchange (ETDEWEB)

    Baltz, Jennifer L.; Filman, David J.; Ciustea, Mihai; Silverman, Janice Elaine Y.; Lautenschlager, Catherine L.; Coen, Donald M.; Ricciardi, Robert P.; Hogle, James M.; (UPENN)

    2009-12-01

    Kaposi's sarcoma-associated herpesvirus is an emerging pathogen whose mechanism of replication is poorly understood. PF-8, the presumed processivity factor of Kaposi's sarcoma-associated herpesvirus DNA polymerase, acts in combination with the catalytic subunit, Pol-8, to synthesize viral DNA. We have solved the crystal structure of residues 1 to 304 of PF-8 at a resolution of 2.8 {angstrom}. This structure reveals that each monomer of PF-8 shares a fold common to processivity factors. Like human cytomegalovirus UL44, PF-8 forms a head-to-head dimer in the form of a C clamp, with its concave face containing a number of basic residues that are predicted to be important for DNA binding. However, there are several differences with related proteins, especially in loops that extend from each monomer into the center of the C clamp and in the loops that connect the two subdomains of each protein, which may be important for determining PF-8's mode of binding to DNA and to Pol-8. Using the crystal structures of PF-8, the herpes simplex virus catalytic subunit, and RB69 bacteriophage DNA polymerase in complex with DNA and initial experiments testing the effects of inhibition of PF-8-stimulated DNA synthesis by peptides derived from Pol-8, we suggest a model for how PF-8 might form a ternary complex with Pol-8 and DNA. The structure and the model suggest interesting similarities and differences in how PF-8 functions relative to structurally similar proteins.

  13. KSHV 2.0: a comprehensive annotation of the Kaposi's sarcoma-associated herpesvirus genome using next-generation sequencing reveals novel genomic and functional features.

    Directory of Open Access Journals (Sweden)

    Carolina Arias

    2014-01-01

    Full Text Available Productive herpesvirus infection requires a profound, time-controlled remodeling of the viral transcriptome and proteome. To gain insights into the genomic architecture and gene expression control in Kaposi's sarcoma-associated herpesvirus (KSHV, we performed a systematic genome-wide survey of viral transcriptional and translational activity throughout the lytic cycle. Using mRNA-sequencing and ribosome profiling, we found that transcripts encoding lytic genes are promptly bound by ribosomes upon lytic reactivation, suggesting their regulation is mainly transcriptional. Our approach also uncovered new genomic features such as ribosome occupancy of viral non-coding RNAs, numerous upstream and small open reading frames (ORFs, and unusual strategies to expand the virus coding repertoire that include alternative splicing, dynamic viral mRNA editing, and the use of alternative translation initiation codons. Furthermore, we provide a refined and expanded annotation of transcription start sites, polyadenylation sites, splice junctions, and initiation/termination codons of known and new viral features in the KSHV genomic space which we have termed KSHV 2.0. Our results represent a comprehensive genome-scale image of gene regulation during lytic KSHV infection that substantially expands our understanding of the genomic architecture and coding capacity of the virus.

  14. KSHV 2.0: a comprehensive annotation of the Kaposi's sarcoma-associated herpesvirus genome using next-generation sequencing reveals novel genomic and functional features.

    Science.gov (United States)

    Arias, Carolina; Weisburd, Ben; Stern-Ginossar, Noam; Mercier, Alexandre; Madrid, Alexis S; Bellare, Priya; Holdorf, Meghan; Weissman, Jonathan S; Ganem, Don

    2014-01-01

    Productive herpesvirus infection requires a profound, time-controlled remodeling of the viral transcriptome and proteome. To gain insights into the genomic architecture and gene expression control in Kaposi's sarcoma-associated herpesvirus (KSHV), we performed a systematic genome-wide survey of viral transcriptional and translational activity throughout the lytic cycle. Using mRNA-sequencing and ribosome profiling, we found that transcripts encoding lytic genes are promptly bound by ribosomes upon lytic reactivation, suggesting their regulation is mainly transcriptional. Our approach also uncovered new genomic features such as ribosome occupancy of viral non-coding RNAs, numerous upstream and small open reading frames (ORFs), and unusual strategies to expand the virus coding repertoire that include alternative splicing, dynamic viral mRNA editing, and the use of alternative translation initiation codons. Furthermore, we provide a refined and expanded annotation of transcription start sites, polyadenylation sites, splice junctions, and initiation/termination codons of known and new viral features in the KSHV genomic space which we have termed KSHV 2.0. Our results represent a comprehensive genome-scale image of gene regulation during lytic KSHV infection that substantially expands our understanding of the genomic architecture and coding capacity of the virus.

  15. Identification and characterization of Kaposi's sarcoma-associated herpesvirus open reading frame 11 promotor activation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei [Los Alamos National Laboratory

    2008-01-01

    Open reading frame 11 (ORF11) of Kaposi's sarcoma-associated herpesvirus belongs to a herpesviral homologous protein family shared by some members of the gamma- herpesvirus subfamily. Little is known about this ORF11 homologous protein family. We have characterized an unknown open reading frame, ORF11, located adjacent and in the opposite orientation to a well-characterized viral IL-6 gene. Northern blot analysis reveals that ORF11 is expressed during the KSHV lytic cycle with delayed-early transcription kinetics. We have determined the 5{prime} and 3{prime} untranslated region of the unspliced ORF11 transcript and identified both the transcription start site and the transcription termination site. Core promoter region, representing ORF11 promoter activity, was mapped to a 159nt fragment 5{prime} most proximal to the transcription start site. A functional TATA box was identified in the core promoter region. Interestingly, we found that ORF11 transcriptional activation is not responsive to Rta, the KSHV lytic switch protein. We also discovered that part of the ORF11 promoter region, the 209nt fragment upstream of the transcription start site, was repressed by phorbol esters. Our data help to understand transcription regulation of ORF11 and to elucidate roles of ORF11 in KSHV pathogenesis and life cycle.

  16. Hsp70 Isoforms Are Essential for the Formation of Kaposi's Sarcoma-Associated Herpesvirus Replication and Transcription Compartments.

    Directory of Open Access Journals (Sweden)

    Belinda Baquero-Pérez

    2015-11-01

    Full Text Available Kaposi's sarcoma-associated herpesvirus (KSHV is an oncogenic herpesvirus associated with various AIDS-related malignancies. Like other herpesviruses, multiple processes required for KSHV lytic replication, including viral transcription, viral DNA synthesis and capsid assembly occur in virus-induced intranuclear structures, termed replication and transcription compartments (RTCs. Here we utilised a novel methodology, combining subcellular fractionation and quantitative proteomics, to identify cellular proteins which are recruited to KSHV-induced RTCs and thus play a key role in KSHV lytic replication. We show that several isoforms of the HSP70 chaperone family, Hsc70 and iHsp70, are redistributed from the cytoplasm into the nucleus coinciding with the initial formation of KSHV-induced RTCs. We demonstrate that nuclear chaperone foci are dynamic, initially forming adjacent to newly formed KSHV RTCs, however during later time points the chaperones move within KSHV RTCs and completely co-localise with actively replicating viral DNA. The functional significance of Hsp70 isoforms recruitment into KSHV RTCs was also examined using the specific Hsp70 isoform small molecule inhibitor, VER-155008. Intriguingly, results highlight an essential role of Hsp70 isoforms in the KSHV replication cycle independent of protein stability and maturation. Notably, inhibition of Hsp70 isoforms precluded KSHV RTC formation and RNA polymerase II (RNAPII relocalisation to the viral genome leading to the abolishment of global KSHV transcription and subsequent viral protein synthesis and DNA replication. These new findings have revealed novel mechanisms that regulate KSHV lytic replication and highlight the potential of HSP70 inhibitors as novel antiviral agents.

  17. Chromatin Immunoprecipitation and Microarray Analysis Suggest Functional Cooperation between Kaposi's Sarcoma-Associated Herpesvirus ORF57 and K-bZIP

    Science.gov (United States)

    Hunter, Olga V.; Sei, Emi; Richardson, R. Blake

    2013-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) open reading frame 57 (ORF57)-encoded protein (Mta) is a multifunctional regulator of viral gene expression. ORF57 is essential for viral replication, so elucidation of its molecular mechanisms is important for understanding KSHV infection. ORF57 has been implicated in nearly every aspect of viral gene expression, including transcription, RNA stability, splicing, export, and translation. Here we demonstrate that ORF57 interacts with the KSHV K-bZIP protein in vitro and in cell extracts from lytically reactivated infected cells. To further test the biological relevance of the interaction, we performed a chromatin immunoprecipitation and microarray (ChIP-chip) analysis using anti-ORF57 antibodies and a KSHV tiling array. The results revealed four specific areas of enrichment, including the ORF4 and K8 (K-bZIP) promoters, as well as oriLyt, all of which interact with K-bZIP. In addition, ORF57 associated with DNA corresponding to the PAN RNA transcribed region, a known posttranscriptional target of ORF57. All of the peaks were RNase insensitive, demonstrating that ORF57 association with the viral genome is unlikely to be mediated exclusively by an RNA tether. Our data demonstrate that ORF57 associates with the viral genome by using at least two modes of recruitment, and they suggest that ORF57 and K-bZIP coregulate viral gene expression during lytic infection. PMID:23365430

  18. Kaposi’s Sarcoma-Associated Herpesvirus K3 and K5 Proteins Down Regulate Both DC-SIGN and DC-SIGNR

    Science.gov (United States)

    Karki, Roshan; Tartell, Michael A.; Means, Robert E.

    2013-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of multicentric Castleman’s disease, primary effusion lymphoma and Kaposi’s sarcoma. In this study, we show that like the C-type lectin DC-SIGN, the closely related DC-SIGNR can also enhance KSHV infection. Following infection, they are both targeted for down modulation and our data indicate that the KSHV MARCH-family ubiquitin ligase K5 is mediating this regulation and subsequent targeting for degradation of DC-SIGN and DC-SIGNR in the context of the virus. The closely related viral K3 protein, is also able to target these lectins in exogenous expressions studies, but only weakly during viral infection. In addition to requiring a functional RING-CH domain, several protein trafficking motifs in the C-terminal region of both K3 and K5 are important in regulation of DC-SIGN and DC-SIGNR. Further exploration of this modulation revealed that DC-SIGN is endocytosed from the cell surface in THP-1 monocytes, but degraded from an internal location with minimal endocytosis in HEK-293 cells. Pull-down data indicate that both K3 and K5 preferentially associate with immature forms of the lectins, mediating their ubiquitylation and degradation. Together, these data emphasize the molecular complexities of K3 and K5, while expanding the repertoire of targets of these two viral proteins. PMID:23460925

  19. Herpes simplex virus type 2 triggers reactivation of Kaposi's sarcoma-associated herpesvirus from latency and collaborates with HIV-1 Tat.

    Science.gov (United States)

    Tang, Qiao; Qin, Di; Lv, Zhigang; Zhu, Xiaolei; Ma, Xinting; Yan, Qin; Zeng, Yi; Guo, Yuanyuan; Feng, Ninghan; Lu, Chun

    2012-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) infection was necessary but not sufficient for Kaposi's sarcoma (KS) development without other cofactors. Previously, we identified that both human immunodeficiency type 1 (HIV-1) Tat and herpes simplex virus 1 (HSV-1) were important cofactors reactivating KSHV from latency. Here, we further investigated the potential of herpes simplex virus 2 (HSV-2) to influence KSHV replication and examined the role of Tat in this procedure. We demonstrated that HSV-2 was a potentially important factor in the pathogenesis of KS, as determined by production of lytic phase mRNA transcripts, viral proteins and infectious viral particles in BCBL-1 cells. These results were further confirmed by an RNA interference experiment using small interfering RNA targeting KSHV Rta and a luciferase reporter assay testing Rta promoter-driven luciferase activity. Mechanistic studies showed that HSV-2 infection activated nuclear factor-kappa B (NF-κB) signaling pathway. Inhibition of NF-κB pathway enhanced HSV-2-mediated KSHV activation, whereas activation of NF-κB pathway suppressed KSHV replication in HSV-2-infected BCBL-1 cells. Additionally, ectopic expression of Tat enhanced HSV-2-induced KSHV replication. These novel findings suggest a role of HSV-2 in the pathogenesis of KS and provide the first laboratory evidence that Tat may participate HSV-2-mediated KSHV activation, implying the complicated pathogenesis of acquired immunodeficiency syndrome (AIDS)-related KS (AIDS-KS) patients.

  20. Herpes simplex virus type 2 triggers reactivation of Kaposi's sarcoma-associated herpesvirus from latency and collaborates with HIV-1 Tat.

    Directory of Open Access Journals (Sweden)

    Qiao Tang

    Full Text Available Kaposi's sarcoma-associated herpesvirus (KSHV infection was necessary but not sufficient for Kaposi's sarcoma (KS development without other cofactors. Previously, we identified that both human immunodeficiency type 1 (HIV-1 Tat and herpes simplex virus 1 (HSV-1 were important cofactors reactivating KSHV from latency. Here, we further investigated the potential of herpes simplex virus 2 (HSV-2 to influence KSHV replication and examined the role of Tat in this procedure. We demonstrated that HSV-2 was a potentially important factor in the pathogenesis of KS, as determined by production of lytic phase mRNA transcripts, viral proteins and infectious viral particles in BCBL-1 cells. These results were further confirmed by an RNA interference experiment using small interfering RNA targeting KSHV Rta and a luciferase reporter assay testing Rta promoter-driven luciferase activity. Mechanistic studies showed that HSV-2 infection activated nuclear factor-kappa B (NF-κB signaling pathway. Inhibition of NF-κB pathway enhanced HSV-2-mediated KSHV activation, whereas activation of NF-κB pathway suppressed KSHV replication in HSV-2-infected BCBL-1 cells. Additionally, ectopic expression of Tat enhanced HSV-2-induced KSHV replication. These novel findings suggest a role of HSV-2 in the pathogenesis of KS and provide the first laboratory evidence that Tat may participate HSV-2-mediated KSHV activation, implying the complicated pathogenesis of acquired immunodeficiency syndrome (AIDS-related KS (AIDS-KS patients.

  1. The Gammaherpesviruses Kaposi's Sarcoma-Associated Herpesvirus and Murine Gammaherpesvirus 68 Modulate the Toll-Like Receptor-Induced Proinflammatory Cytokine Response

    Science.gov (United States)

    Bussey, Kendra A.; Reimer, Elisa; Todt, Helene; Denker, Brigitte; Gallo, Antonio; Konrad, Andreas; Ottinger, Matthias; Adler, Heiko; Stürzl, Michael; Brune, Wolfram

    2014-01-01

    ABSTRACT The human pathogen Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease, establishes lifelong latency upon infection. Murine gammaherpesvirus 68 (MHV68) is a well-established model for KSHV. Toll-like receptors (TLRs) play a crucial role for the innate immune response to pathogens. Although KSHV and MHV68 are detected by TLRs, studies suggest they modulate TLR4 and TLR9 signaling, respectively. In this study, we show that in bone marrow-derived macrophages (BMDMs), MHV68 did not induce a detectable proinflammatory cytokine response. Furthermore, MHV68 abrogated the response to TLR2, -4, -7, and -9 agonists in BMDMs. Similarly to observations with MHV68, infection with KSHV efficiently inhibited TLR2 signaling in THP-1 monocytes. Using a KSHV open reading frame (ORF) library, we found that K4.2, ORF21, ORF31, and the replication and transcription activator protein (RTA)/ORF50 inhibited TLR2-dependent nuclear factor kappa B (NF-κB) activation in HEK293 TLR2-yellow fluorescent protein (YFP)- and Flag-TLR2-transfected HEK293T cells. Of the identified ORFs, RTA/ORF50 strongly downregulated TLR2 and TLR4 signaling by reducing TLR2 and TLR4 protein expression. Confocal microscopy revealed that TLR2 and TLR4 were no longer localized to the plasma membrane in cells expressing RTA/ORF50. In this study, we have shown that the gammaherpesviruses MHV68 and KSHV efficiently downmodulate TLR signaling in macrophages and have identified a novel function of RTA/ORF50 in modulation of the innate immune response. IMPORTANCE The Toll-like receptors (TLRs) are an important class of pattern recognition receptors of the innate immune system. They induce a potent proinflammatory cytokine response upon detection of a variety of pathogens. In this study, we found that the gammaherpesviruses murine gammaherpesvirus 68 (MHV68) and Kaposi's sarcoma-associated herpesvirus (KSHV

  2. Epstein-Barr virus (EBV Rta-mediated EBV and Kaposi's sarcoma-associated herpesvirus lytic reactivations in 293 cells.

    Directory of Open Access Journals (Sweden)

    Yen-Ju Chen

    Full Text Available Epstein-Barr virus (EBV Rta belongs to a lytic switch gene family that is evolutionarily conserved in all gamma-herpesviruses. Emerging evidence indicates that cell cycle arrest is a common means by which herpesviral immediate-early protein hijacks the host cell to advance the virus's lytic cycle progression. To examine the role of Rta in cell cycle regulation, we recently established a doxycycline (Dox-inducible Rta system in 293 cells. In this cell background, inducible Rta modulated the levels of signature G1 arrest proteins, followed by induction of the cellular senescence marker, SA-β-Gal. To delineate the relationship between Rta-induced cell growth arrest and EBV reactivation, recombinant viral genomes were transferred into Rta-inducible 293 cells. Somewhat unexpectedly, we found that Dox-inducible Rta reactivated both EBV and Kaposi's sarcoma-associated herpesvirus (KSHV, to similar efficacy. As a consequence, the Rta-mediated EBV and KSHV lytic replication systems, designated as EREV8 and ERKV, respectively, were homogenous, robust, and concurrent with cell death likely due to permissive lytic replication. In addition, the expression kinetics of EBV lytic genes in Dox-treated EREV8 cells was similar to that of their KSHV counterparts in Dox-induced ERKV cells, suggesting that a common pathway is used to disrupt viral latency in both cell systems. When the time course was compared, cell cycle arrest was achieved between 6 and 48 h, EBV or KSHV reactivation was initiated abruptly at 48 h, and the cellular senescence marker was not detected until 120 h after Dox treatment. These results lead us to hypothesize that in 293 cells, Rta-induced G1 cell cycle arrest could provide (1 an ideal environment for virus reactivation if EBV or KSHV coexists and (2 a preparatory milieu for cell senescence if no viral genome is available. The latter is hypothetical in a transient-lytic situation.

  3. New insights into the expression and functions of the Kaposi's sarcoma-associated herpesvirus long noncoding PAN RNA.

    Science.gov (United States)

    Conrad, Nicholas K

    2016-01-02

    The Kaposi's sarcoma-associated herpesvirus (KSHV) is a clinically relevant pathogen associated with several human diseases that primarily affect immunocompromised individuals. KSHV encodes a noncoding polyadenylated nuclear (PAN) RNA that is essential for viral propagation and viral gene expression. PAN RNA is the most abundant viral transcript produced during lytic replication. The accumulation of PAN RNA depends on high levels of transcription driven by the Rta protein, a KSHV transcription factor necessary and sufficient for latent-to-lytic phase transition. In addition, KSHV uses several posttranscriptional mechanisms to stabilize PAN RNA. A cis-acting element, called the ENE, prevents PAN RNA decay by forming a triple helix with its poly(A) tail. The viral ORF57 and the cellular PABPC1 proteins further contribute to PAN RNA stability during lytic phase. PAN RNA functions are only beginning to be uncovered, but PAN RNA has been proposed to control gene expression by several different mechanisms. PAN RNA associates with the KSHV genome and may regulate gene expression by recruiting chromatin-modifying factors. Moreover, PAN RNA binds the viral latency-associated nuclear antigen (LANA) protein and decreases its repressive activity by sequestering it from the viral genome. Surprisingly, PAN RNA was found to associate with translating ribosomes, so this noncoding RNA may be additionally used to produce viral peptides. In this review, I highlight the mechanisms of PAN RNA accumulation and describe recent insights into potential functions of PAN RNA. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Kaposi's sarcoma-associated herpesvirus-encoded LANA associates with glucocorticoid receptor and enhances its transcriptional activities

    Energy Technology Data Exchange (ETDEWEB)

    Togi, Sumihito; Nakasuji, Misa; Muromoto, Ryuta; Ikeda, Osamu; Okabe, Kanako; Kitai, Yuichi; Kon, Shigeyuki [Department of Immunology, Graduate School of Pharmaceutical Sciences Hokkaido University, Sapporo 060-0812 (Japan); Oritani, Kenji [Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Matsuda, Tadashi, E-mail: tmatsuda@pharm.hokudai.ac.jp [Department of Immunology, Graduate School of Pharmaceutical Sciences Hokkaido University, Sapporo 060-0812 (Japan)

    2015-07-31

    Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA), which interacts with cellular proteins, plays a central role in modification of viral and/or cellular gene expression. Here, we show that LANA associates with glucocorticoid receptor (GR), and that LANA enhances the transcriptional activity of GR. Co-immunoprecipitation revealed a physical interaction between LANA and GR in transiently transfected 293T and HeLa cells. In human B-lymphoma cells, LANA overexpression enhanced GR activity and cell growth suppression following glucocorticoid stimulation. Furthermore, confocal microscopy showed that activated GR was bound to LANA and accumulated in the nucleus, leading to an increase in binding of activated GR to the glucocorticoid response element of target genes. Taken together, KSHV-derived LANA acts as a transcriptional co-activator of GR. Our results might suggest a careful use of glucocorticoids in the treatment of patients with KSHV-related malignancies such as Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. - Highlights: • KSHV-LANA enhances the transcriptional activity of GR in 293T and HeLa cells. • KSHV-LANA physically associates with GR. • KSHV-LANA enhances GR activation and cell growth suppression in human B-lymphocytes. • KSHV-LANA influences the nuclear retention and DNA binding activity of GR.

  5. Was Kaposi's sarcoma-associated herpesvirus introduced into China via the ancient Silk Road? An evolutionary perspective.

    Science.gov (United States)

    Liu, Zhenqiu; Fang, Qiwen; Zuo, Jialu; Minhas, Veenu; Wood, Charles; He, Na; Zhang, Tiejun

    2017-07-07

    Kaposi's sarcoma-associated herpesvirus (KSHV) has become widely dispersed worldwide since it was first reported in 1994, but the seroprevalence of KSHV varies geographically. KSHV is relatively ubiquitous in Mediterranean areas and the Xinjiang Uygur Autonomous Region, China. The origin of KSHV has long been puzzling. In the present study, we collected and analysed 154 KSHV ORF-K1 sequences obtained from samples originating from Xinjiang, Italy, Greece, Iran and southern Siberia using Bayesian evolutionary analysis in BEAST to test the hypothesis that KSHV was introduced into Xinjiang via the ancient Silk Road. According to the phylogenetic analysis, 72 sequences were subtype A and 82 subtype C, with C2 (n = 56) being the predominant subtype. The times to the most recent common ancestors (tMRCAs) of KSHV were 29,872 years (95% highest probability density [HPD], 26,851-32,760 years) for all analysed sequences and 2037 years (95% HPD, 1843-2229 years) for Xinjiang sequences in particular. The tMRCA of Xinjiang KSHV was exactly matched with the time period of the ancient Silk Road approximately two thousand years ago. This route began in Chang'an, the capital of the Han dynasty of China, and crossed Central Asia, ending in the Roman Empire. The evolution rate of KSHV was slow, with 3.44 × 10-6 substitutions per site per year (95% HPD, 2.26 × 10-6 to 4.71 × 10-6), although 11 codons were discovered to be under positive selection pressure. The geographic distances from Italy to Iran and Xinjiang are more than 4000 and 7000 kilometres, respectively, but no explicit relationship between genetic distance and geographic distance was detected.

  6. Kaposi's sarcoma-associated herpesvirus ORF57 protein binds and protects a nuclear noncoding RNA from cellular RNA decay pathways.

    Directory of Open Access Journals (Sweden)

    Brooke B Sahin

    2010-03-01

    Full Text Available The control of RNA stability is a key determinant in cellular gene expression. The stability of any transcript is modulated through the activity of cis- or trans-acting regulatory factors as well as cellular quality control systems that ensure the integrity of a transcript. As a result, invading viral pathogens must be able to subvert cellular RNA decay pathways capable of destroying viral transcripts. Here we report that the Kaposi's sarcoma-associated herpesvirus (KSHV ORF57 protein binds to a unique KSHV polyadenylated nuclear RNA, called PAN RNA, and protects it from degradation by cellular factors. ORF57 increases PAN RNA levels and its effects are greatest on unstable alleles of PAN RNA. Kinetic analysis of transcription pulse assays shows that ORF57 protects PAN RNA from a rapid cellular RNA decay process, but ORF57 has little effect on transcription or PAN RNA localization based on chromatin immunoprecipitation and in situ hybridization experiments, respectively. Using a UV cross-linking technique, we further demonstrate that ORF57 binds PAN RNA directly in living cells and we show that binding correlates with function. In addition, we define an ORF57-responsive element (ORE that is necessary for ORF57 binding to PAN RNA and sufficient to confer ORF57-response to a heterologous intronless beta-globin mRNA, but not its spliced counterparts. We conclude that ORF57 binds to viral transcripts in the nucleus and protects them from a cellular RNA decay pathway. We propose that KSHV ORF57 protein functions to enhance the nuclear stability of intronless viral transcripts by protecting them from a cellular RNA quality control pathway.

  7. Kaposi's Sarcoma-Associated Herpesvirus Utilizes and Manipulates RNA N6-Adenosine Methylation To Promote Lytic Replication

    Science.gov (United States)

    Chen, E. Ricky; Nilsen, Timothy W.

    2017-01-01

    ABSTRACT N6-adenosine methylation (m6A) is the most common posttranscriptional RNA modification in mammalian cells. We found that most transcripts encoded by the Kaposi's sarcoma-associated herpesvirus (KSHV) genome undergo m6A modification. The levels of m6A-modified mRNAs increased substantially upon stimulation for lytic replication. The blockage of m6A inhibited splicing of the pre-mRNA encoding the replication transcription activator (RTA), a key KSHV lytic switch protein, and halted viral lytic replication. We identified several m6A sites in RTA pre-mRNA crucial for splicing through interactions with YTH domain containing 1 (YTHDC1), an m6A nuclear reader protein, in conjunction with serine/arginine-rich splicing factor 3 (SRSF3) and SRSF10. Interestingly, RTA induced m6A and enhanced its own pre-mRNA splicing. Our results not only demonstrate an essential role of m6A in regulating RTA pre-mRNA splicing but also suggest that KSHV has evolved a mechanism to manipulate the host m6A machinery to its advantage in promoting lytic replication. IMPORTANCE KSHV productive lytic replication plays a pivotal role in the initiation and progression of Kaposi's sarcoma tumors. Previous studies suggested that the KSHV switch from latency to lytic replication is primarily controlled at the chromatin level through histone and DNA modifications. The present work reports for the first time that KSHV genome-encoded mRNAs undergo m6A modification, which represents a new mechanism at the posttranscriptional level in the control of viral replication. PMID:28592530

  8. Kaposi's sarcoma-associated herpesvirus noncoding polyadenylated nuclear RNA interacts with virus- and host cell-encoded proteins and suppresses expression of genes involved in immune modulation.

    Science.gov (United States)

    Rossetto, Cyprian C; Pari, Gregory S

    2011-12-01

    During lytic infection, Kaposi's sarcoma-associated herpesvirus (KSHV) expresses a polyadenylated nuclear RNA (PAN RNA). This noncoding RNA (ncRNA) is localized to the nucleus and is the most abundant viral RNA during lytic infection; however, to date, the role of PAN RNA in the virus life cycle is unknown. Many examples exist where ncRNAs have a defined key regulatory function controlling gene expression by various mechanisms. Our goal for this study was to identify putative binding partners for PAN RNA in an effort to elucidate a possible function for the transcript in KSHV infection. We employed an in vitro affinity protocol where PAN RNA was used as bait for factors present in BCBL-1 cell nuclear extract to show that PAN RNA interacts with several virus- and host cell-encoded factors, including histones H1 and H2A, mitochondrial and cellular single-stranded binding proteins (SSBPs), and interferon regulatory factor 4 (IRF4). RNA chromatin immunoprecipitation (ChIP) assays confirmed that PAN RNA interacted with these factors in the infected cell environment. A luciferase reporter assay showed that PAN RNA expression interfered with the ability of IRF4/PU.1 to activate the interleukin-4 (IL-4) promoter, strongly suggesting a role for PAN RNA in immune modulation. Since the proteomic screen and functional data suggested a role in immune responses, we investigated if constitutive PAN RNA expression could affect other genes involved in immune responses. PAN RNA expression decreased expression of gamma interferon, interleukin-18, alpha interferon 16, and RNase L. These data strongly suggest that PAN RNA interacts with viral and cellular proteins and can function as an immune modulator.

  9. Ex-vivo recognition of late-lytic CD8 epitopes specific for Kaposi's sarcoma-associated herpesvirus (KSHV) by HIV/KSHV-coinfected individuals.

    Science.gov (United States)

    Robey, Rebecca C; Mletzko, Salvinia; Bower, Mark; Meys, Rhonda; Boffito, Marta; Nelson, Mark; Bunker, Christopher B; Gotch, Frances M

    2011-06-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), the most common cancer in individuals with untreated HIV/AIDS. Host control of KSHV infection and KS oncogenesis by CD8 T cells remains underexplored. Although KSHV CD8 epitopes have been identified, the responses they elicit are weak and little is known about their relative importance. We sought to make a direct comparison of the recognition of a selection of the best-described known epitopes by a cohort of KSHV-seropositive, HIV-co-infected individuals, in order to assess the relative dominance of these epitopes. We further sought to identify novel epitopes from within a candidate immunogenic protein encoded by KSHV ORF28. MHC binding and denaturation assays identified putative novel A*0201-restricted epitopes from within the late-lytic glycoprotein ORF28. Recognition of these candidate epitopes was tested in a cohort of KSHV-seropositive, HIV-1-seropositive, A*0201-positive individuals by ex vivo ELISPOT, and compared with recognition of nine previously described epitopes. One novel late-lytic epitope from ORF28 was recognized by 7.1% of individuals, and was used for further investigation of KSHV-specific T cells using multimer technology. One known late-lytic epitope from the glycoprotein-encoding K8.1 was recognized by 71.4% of individuals, and represented an immunodominant KSHV epitope, but was too hydrophobic for multimer synthesis. This study identifies two KSHV CD8 epitopes derived from late-lytic antigens that are recognized by KSHV-seropositive, HIV co-infected individuals, and will be useful in future immunological studies into the CD8 response against KSHV in similar patient cohorts.

  10. p130Cas scaffolds the signalosome to direct adaptor-effector cross talk during Kaposi's sarcoma-associated herpesvirus trafficking in human microvascular dermal endothelial cells.

    Science.gov (United States)

    Bandyopadhyay, Chirosree; Veettil, Mohanan Valiya; Dutta, Sujoy; Chandran, Bala

    2014-12-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with cell surface receptors, such as heparan sulfate, integrins (α3β1, αVβ3, and αVβ5), and EphrinA2 (EphA2), and activates focal adhesion kinase (FAK), Src, phosphoinositol 3-kinase (PI3-K), c-Cbl, and RhoA GTPase signal molecules early during lipid raft (LR)-dependent productive macropinocytic entry into human dermal microvascular endothelial cells. Our recent studies have identified CIB1 as a signal amplifier facilitating EphA2 phosphorylation and subsequent cytoskeletal cross talk during KSHV macropinocytosis. Although CIB1 lacks an enzymatic activity and traditional adaptor domain or known interacting sequence, it associated with the KSHV entry signal complex and the CIB1-KSHV association was sustained over 30 min postinfection. To identify factors scaffolding the EphA2-CIB1 signal axis, the role of major cellular scaffold protein p130Cas (Crk-associated substrate of Src) was investigated. Inhibitor and small interfering RNA (siRNA) studies demonstrated that KSHV induced p130Cas in an EphA2-, CIB1-, and Src-dependent manner. p130Cas and Crk were associated with KSHV, LRs, EphA2, and CIB1 early during infection. Live-cell microscopy and biochemical studies demonstrated that p130Cas knockdown did not affect KSHV entry but significantly reduced productive nuclear trafficking of viral DNA and routed KSHV to lysosomal degradation. p130Cas aided in scaffolding adaptor Crk to downstream guanine nucleotide exchange factor phospho-C3G possibly to coordinate GTPase signaling during KSHV trafficking. Collectively, these studies demonstrate that p130Cas acts as a bridging molecule between the KSHV-induced entry signal complex and the downstream trafficking signalosome in endothelial cells and suggest that simultaneous targeting of KSHV entry receptors with p130Cas would be an attractive potential avenue for therapeutic intervention in KSHV infection. Eukaryotic cell adaptor molecules, without any intrinsic

  11. Propranolol Decreases Proliferation of Endothelial Cells Transformed by Kaposi's Sarcoma-Associated Herpesvirus and Induces Lytic Viral Gene Expression

    Science.gov (United States)

    Hanson, Ryan S.; Manion, Rory D.

    2015-01-01

    Kaposi's sarcoma (KS) is common in Africa, but economic constraints hinder successful treatment in most patients. Propranolol, a generic β-adrenergic antagonist, decreased proliferation of KS-associated herpesvirus (KSHV)-infected cells. Downregulation of cyclin A2 and cyclin-dependent kinase 1 (CDK1) recapitulated this phenotype. Additionally, propranolol induced lytic gene expression in association with downregulation of CDK6. Thus, propranolol has diverse effects on KSHV-infected cells, and this generic drug has potential as a therapeutic agent for KS. PMID:26269192

  12. Comparative Study of Kaposi's Sarcoma-Associated Herpesvirus Serological Assays Using Clinically and Serologically Defined Reference Standards and Latent Class Analysis▿

    Science.gov (United States)

    Nascimento, Maria Claudia; de Souza, Vanda Akico; Sumita, Laura Masami; Freire, Wilton; Munoz, Fernando; Kim, Joseph; Pannuti, Claudio S.; Mayaud, Philippe

    2007-01-01

    Accurate determination of infection with Kaposi's sarcoma-associated herpesvirus (KSHV) has been hindered by the lack of a “gold standard” for comparison of serological assays used to estimate KSHV prevalence in serosurveys conducted in different settings. We have evaluated the performance of five in-house (developed at University College London [UCL], United Kingdom, and at the virology laboratory of the Instituto de Medicine Tropical [IMT] in Sao Paulo, Brazil) and two commercial (ABI and DIAVIR) serological assays to detect antibodies to latency-associated nuclear antigen (LANA) and to lytic KSHV antigens. We used a variety of serum samples assembled to represent populations likely to be at high, intermediate, and low risk of KSHV infection in Brazil. Composite reference standard panels were prepared based on clinical and serological parameters, against which assay performances were assessed using conventional Bayesian statistics and latent class analysis (LCA). Against the clinical reference standard, in-house immunofluorescence assays to detect anti-LANA antibodies (IFA-LANA) produced at UCL and IMT had similar performances, with sensitivities of 61% (95% confidence interval [CI], 48% to 74%) and 72% (95% CI, 58% to 83%) and specificities of 99% (95% CI, 94% to 100%) and 100% (95% CI, 96% to 100%), respectively, and only the IMT IFA-LANA was included in LCA, together with the IMT IFA-lytic and four enzyme-linked immunosorbent assays (ELISAs). The LCA indicated that the IMT whole-virus ELISA performed best (sensitivity, 87% [95% CI, 81% to 91%]; and specificity, 100% [95% CI, 98% to 100%]), confirming the results obtained with the conventional statistical approach. Commercially available ELISA-based tests yielded the lowest specificities using a spectrum of serum samples. The evaluation of KSHV serological assays is warranted before planning serosurveys in various settings. PMID:17182752

  13. Herpesviruses that infect fish.

    Science.gov (United States)

    Hanson, Larry; Dishon, Arnon; Kotler, Moshe

    2011-11-01

    Herpesviruses are host specific pathogens that are widespread among vertebrates. Genome sequence data demonstrate that most herpesviruses of fish and amphibians are grouped together (family Alloherpesviridae) and are distantly related to herpesviruses of reptiles, birds and mammals (family Herpesviridae). Yet, many of the biological processes of members of the order Herpesvirales are similar. Among the conserved characteristics are the virion structure, replication process, the ability to establish long term latency and the manipulation of the host immune response. Many of the similar processes may be due to convergent evolution. This overview of identified herpesviruses of fish discusses the diseases that alloherpesviruses cause, the biology of these viruses and the host-pathogen interactions. Much of our knowledge on the biology of Alloherpesvirdae is derived from research with two species: Ictalurid herpesvirus 1 (channel catfish virus) and Cyprinid herpesvirus 3 (koi herpesvirus).

  14. Herpesviruses that Infect Fish

    Directory of Open Access Journals (Sweden)

    Moshe Kotler

    2011-11-01

    Full Text Available Herpesviruses are host specific pathogens that are widespread among vertebrates. Genome sequence data demonstrate that most herpesviruses of fish and amphibians are grouped together (family Alloherpesviridae and are distantly related to herpesviruses of reptiles, birds and mammals (family Herpesviridae. Yet, many of the biological processes of members of the order Herpesvirales are similar. Among the conserved characteristics are the virion structure, replication process, the ability to establish long term latency and the manipulation of the host immune response. Many of the similar processes may be due to convergent evolution. This overview of identified herpesviruses of fish discusses the diseases that alloherpesviruses cause, the biology of these viruses and the host-pathogen interactions. Much of our knowledge on the biology of Alloherpesvirdae is derived from research with two species: Ictalurid herpesvirus 1 (channel catfish virus and Cyprinid herpesvirus 3 (koi herpesvirus.

  15. Chemotherapy of herpesvirus infections.

    Science.gov (United States)

    Jawetz, E

    1975-07-01

    Herpesviruses commonly produce lesions that come to the attention of physicians. Many different chemicals are known to suppress the growth of herpesviruses in vitro, but only a few of these have found application in clinical practice. A critical assessment of the place of some of these forms of chemotherapy was briefly presented.

  16. HITS-CLIP analysis uncovers a link between the Kaposi's sarcoma-associated herpesvirus ORF57 protein and host pre-mRNA metabolism.

    Directory of Open Access Journals (Sweden)

    Emi Sei

    2015-02-01

    Full Text Available The Kaposi's sarcoma associated herpesvirus (KSHV is an oncogenic virus that causes Kaposi's sarcoma, primary effusion lymphoma (PEL, and some forms of multicentric Castleman's disease. The KSHV ORF57 protein is a conserved posttranscriptional regulator of gene expression that is essential for virus replication. ORF57 is multifunctional, but most of its activities are directly linked to its ability to bind RNA. We globally identified virus and host RNAs bound by ORF57 during lytic reactivation in PEL cells using high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP. As expected, ORF57-bound RNA fragments mapped throughout the KSHV genome, including the known ORF57 ligand PAN RNA. In agreement with previously published ChIP results, we observed that ORF57 bound RNAs near the oriLyt regions of the genome. Examination of the host RNA fragments revealed that a subset of the ORF57-bound RNAs was derived from transcript 5' ends. The position of these 5'-bound fragments correlated closely with the 5'-most exon-intron junction of the pre-mRNA. We selected four candidates (BTG1, EGR1, ZFP36, and TNFSF9 and analyzed their pre-mRNA and mRNA levels during lytic phase. Analysis of both steady-state and newly made RNAs revealed that these candidate ORF57-bound pre-mRNAs persisted for longer periods of time throughout infection than control RNAs, consistent with a role for ORF57 in pre-mRNA metabolism. In addition, exogenous expression of ORF57 was sufficient to increase the pre-mRNA levels and, in one case, the mRNA levels of the putative ORF57 targets. These results demonstrate that ORF57 interacts with specific host pre-mRNAs during lytic reactivation and alters their processing, likely by stabilizing pre-mRNAs. These data suggest that ORF57 is involved in modulating host gene expression in addition to KSHV gene expression during lytic reactivation.

  17. Effective inhibition of Rta expression and lytic replication of Kaposi's sarcoma-associated herpesvirus by human RNase P.

    Science.gov (United States)

    Zhu, Jiaming; Trang, Phong; Kim, Kihoon; Zhou, Tianhong; Deng, Hongyu; Liu, Fenyong

    2004-06-15

    Ribonuclease P (RNase P) complexed with external guide sequence (EGS) represents a nucleic acid-based gene interference approach to knock-down gene expression. Unlike other strategies, such as antisense oligonucleotides, ribozymes, and RNA interference, the RNase P-based technology is unique because a custom-designed EGS molecule can bind to any complementary mRNA sequence and recruit intracellular RNase P for specific degradation of the target mRNA. In this study, we demonstrate that the RNase P-based strategy is effective in blocking gene expression and growth of Kaposi's sarcoma (KS)-associated herpesvirus (KSHV), the causative agent of the leading AIDS-associated neoplasms, such as KS and primary-effusion lymphoma. We constructed 2'-O-methyl-modified EGS molecules that target the mRNA encoding KSHV immediate-early transcription activator Rta, and we administered them directly to human primary-effusion lymphoma cells infected with KSHV. A reduction of 90% in Rta expression and a reduction of approximately 150-fold in viral growth were observed in cells treated with a functional EGS. In contrast, a reduction of EGSs are highly effective in inhibiting KSHV gene expression and growth. Exogenous administration of chemically modified EGSs in inducing RNase P-mediated cleavage represents an approach for inhibiting specific gene expression and for treating human diseases, including KSHV-associated tumors.

  18. Animal herpesviruses and their zoonotic potential for cross-species infection

    Directory of Open Access Journals (Sweden)

    Grzegorz Woźniakowski

    2015-05-01

    Full Text Available Herpesviruses of humans and animals cause severe diseases that influence not only the health and epidemiological status but are also economically important in the context of food production. The members of Herpesviridae are host specific agents that also share many properties that potentially make them capable of crossing the species barriers. The objective of presented review paper was to summarize the relationship between herpesviruses of animals and humans and their zoonotic potential. In humans, the most epidemiologically important herpesviruses are represented by Human herepesvirus-1 and Human herpesvirus-2, which are commonly known as herpes simplex virus type 1 and 2, varicella-zooster virus (VZV, Epstein-Barr virus (EBV, Kaposi’s Sarcoma-associated herpesvirus (KSHV, cytomegalovirus (CMV, as well as Human herpesviruses: HHV-6A, HHV-6B, and HHV-7. However, in terms of the potential to cross the species barrier, there are a few herpesviruses, including B virus disease (CeHV-1, Marek’s disease virus (MDV, Equid herpesvirus-1 (EHV-1 or pseudorabies virus (PRV, which are potentially able to infect different hosts. To summarize, in advantageous conditions the host specific herpesviruses may pose a threat for public health but also may exert a negative impact on the economical aspects of animal production. The most probable of these are zoonotic infections caused by B virus disease; however, close contact between infected animal hosts and humans may lead to transmission and replication of other Herpesviridae members.

  19. Animal herpesviruses and their zoonotic potential for cross-species infection

    Directory of Open Access Journals (Sweden)

    Grzegorz Woźniakowski

    2015-05-01

    Full Text Available Herpesviruses of humans and animals cause severe diseases that influence not only the health and epidemiological status but are also economically important in the context of food production. The members of[i] Herpesviridae[/i] are host specific agents that also share many properties that potentially make them capable of crossing the species barriers. The objective of presented review paper was to summarize the relationship between herpesviruses of animals and humans and their zoonotic potential. In humans, the most epidemiologically important herpesviruses are represented by Human herepesvirus-1 and Human herpesvirus-2, which are commonly known as herpes simplex virus type 1 and 2, varicella-zooster virus (VZV, Epstein-Barr virus (EBV, Kaposi’s Sarcoma-associated herpesvirus (KSHV, cytomegalovirus (CMV, as well as Human herpesviruses: HHV-6A, HHV-6B, and HHV-7. However, in terms of the potential to cross the species barrier, there are a few herpesviruses, including B virus disease (CeHV-1, Marek’s disease virus (MDV, Equid herpesvirus-1 (EHV-1 or pseudorabies virus (PRV, which are potentially able to infect different hosts. To summarize, in advantageous conditions the host specific herpesviruses may pose a threat for public health but also may exert a negative impact on the economical aspects of animal production. The most probable of these are zoonotic infections caused by B virus disease; however, close contact between infected animal hosts and humans may lead to transmission and replication of other [i]Herpesviridae[/i] members.

  20. CTCF and Rad21 act as host cell restriction factors for Kaposi's sarcoma-associated herpesvirus (KSHV lytic replication by modulating viral gene transcription.

    Directory of Open Access Journals (Sweden)

    Da-Jiang Li

    2014-01-01

    Full Text Available Kaposi's sarcoma-associated herpesvirus (KSHV is a human herpesvirus that causes Kaposi's sarcoma and is associated with the development of lymphoproliferative diseases. KSHV reactivation from latency and virion production is dependent on efficient transcription of over eighty lytic cycle genes and viral DNA replication. CTCF and cohesin, cellular proteins that cooperatively regulate gene expression and mediate long-range DNA interactions, have been shown to bind at specific sites in herpesvirus genomes. CTCF and cohesin regulate KSHV gene expression during latency and may also control lytic reactivation, although their role in lytic gene expression remains incompletely characterized. Here, we analyze the dynamic changes in CTCF and cohesin binding that occur during the process of KSHV viral reactivation and virion production by high resolution chromatin immunoprecipitation and deep sequencing (ChIP-Seq and show that both proteins dissociate from viral genomes in kinetically and spatially distinct patterns. By utilizing siRNAs to specifically deplete CTCF and Rad21, a cohesin component, we demonstrate that both proteins are potent restriction factors for KSHV replication, with cohesin knockdown leading to hundred-fold increases in viral yield. High-throughput RNA sequencing was used to characterize the transcriptional effects of CTCF and cohesin depletion, and demonstrated that both proteins have complex and global effects on KSHV lytic transcription. Specifically, both proteins act as positive factors for viral transcription initially but subsequently inhibit KSHV lytic transcription, such that their net effect is to limit KSHV RNA accumulation. Cohesin is a more potent inhibitor of KSHV transcription than CTCF but both proteins are also required for efficient transcription of a subset of KSHV genes. These data reveal novel effects of CTCF and cohesin on transcription from a relatively small genome that resemble their effects on the cellular

  1. HLA polymorphisms and detection of kaposi sarcoma-associated herpesvirus DNA in saliva and peripheral blood among children and their mothers in the uganda sickle cell anemia KSHV Study

    Directory of Open Access Journals (Sweden)

    Figueiredo Constança

    2010-11-01

    Full Text Available Abstract Kaposi sarcoma-associated herpesvirus (KSHV, also called Human herpesvirus 8 or HHV8 is a γ-2 herpesvirus that causes Kaposi sarcoma. KSHV seroprevalence rates vary geographically with variable rates recorded in different sub Sahara African countries, suggesting that effects of genetic and/or environmental factors may influence the risk of infection. One study conducted in South Africa, where KSHV seroprevalence is relatively low, found that carriage of human leukocyte antigen (HLA alleles HLA-A*6801, HLA-A*30, HLA-A*4301, and HLA-DRB1*04 was associated with increased shedding of KSHV DNA in saliva. Confirmation of those results would strengthen the hypothesis that genetic factors may influence KSHV distribution by modulating KSHV shedding in saliva. To explore these associations in another setting, we used high resolution HLA-A, B, and DRB1 typing on residual samples from the Uganda Sickle Cell Anemia KSHV study, conducted in a high KSHV seroprevalence region, to investigate associations between HLA and KSHV shedding in saliva or peripheral blood among 233 children and their mothers. HLA-A and HLA-DRB1 alleles were not associated with KSHV shedding in our study, but our study was small and was not adequately powered to exclude small associations. In exploratory analyses, we found marginal association of KSHV DNA shedding in saliva but not in peripheral blood among children carrying HLA- B*4415 and marginal association of KSHV DNA shedding in peripheral blood but not in saliva among children carrying HLA- B*0801 alleles. The contribution of individual HLA polymorphisms to KSHV shedding is important but it may vary in different populations. Larger population-based studies are needed to estimate the magnitude and direction of association of HLA with KSHV shedding and viral control.

  2. Interaction of Kaposi's sarcoma-associated herpesvirus ORF59 with oriLyt is dependent on binding with K-Rta.

    Science.gov (United States)

    Rossetto, Cyprian C; Susilarini, Ni Ketut; Pari, Gregory S

    2011-04-01

    Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 (HHV-8) displays two distinct life stages, latency and lytic reactivation. Progression through the lytic cycle and replication of the viral genome constitute an essential step toward the production of infectious virus and human disease. KSHV K-RTA has been shown to be the major transactivator required for the initiation of lytic reactivation. In the transient-cotransfection replication assay, K-Rta is the only noncore protein required for DNA synthesis. K-Rta was shown to interact with both C/EBPα binding motifs and the R response elements (RRE) within oriLyt. It is postulated that K-Rta acts in part to facilitate the recruitment of replication factors to oriLyt. In order to define the role of K-Rta in the initiation of lytic DNA synthesis, we show an interaction with ORF59, the DNA polymerase processivity factor (PF), one of the eight virally encoded proteins necessary for origin-dependent DNA replication. Using the chromatin immunoprecipitation (ChIP) assay, both K-Rta and ORF59 interact with the RRE and C/EBPα binding motifs within oriLyt in cells harboring the KSHV bacterial artificial chromosome (BAC). A transient-transfection ChIP assay demonstrated that the interaction of ORF59 with oriLyt is dependent on binding with K-Rta and that ORF59 fails to bind to oriLyt in the absence of K-Rta. Also, using the cotransfection replication assay, overexpression of the interaction domain of K-Rta with ORF59 has a dominant negative effect on oriLyt amplification, suggesting that the interaction of K-Rta with ORF59 is essential for DNA synthesis and supporting the hypothesis that K-Rta facilitates the formation of a replication complex at oriLyt.

  3. NEDDylation is essential for Kaposi's sarcoma-associated herpesvirus latency and lytic reactivation and represents a novel anti-KSHV target.

    Directory of Open Access Journals (Sweden)

    David J Hughes

    2015-03-01

    Full Text Available Kaposi's sarcoma-associated herpesvirus (KSHV is the causative agent of Kaposi's sarcoma (KS and primary effusion lymphoma (PEL, which are aggressive malignancies associated with immunocompromised patients. For many non-viral malignancies, therapeutically targeting the ubiquitin proteasome system (UPS has been successful. Likewise, laboratory studies have demonstrated that inhibition of the UPS might provide a promising avenue for the treatment of KSHV-associated diseases. The largest class of E3 ubiquitin ligases are the cullin-RING ligases (CRLs that are activated by an additional ubiquitin-like protein, NEDD8. We show that pharmacological inhibition of NEDDylation (using the small molecule inhibitor MLN4924 is cytotoxic to PEL cells by inhibiting NF-κB. We also show that CRL4B is a novel regulator of latency as its inhibition reactivated lytic gene expression. Furthermore, we uncovered a requirement for NEDDylation during the reactivation of the KSHV lytic cycle. Intriguingly, inhibition prevented viral DNA replication but not lytic cycle-associated gene expression, highlighting a novel mechanism that uncouples these two features of KSHV biology. Mechanistically, we show that MLN4924 treatment precluded the recruitment of the viral pre-replication complex to the origin of lytic DNA replication (OriLyt. These new findings have revealed novel mechanisms that regulate KSHV latency and reactivation. Moreover, they demonstrate that inhibition of NEDDylation represents a novel approach for the treatment of KSHV-associated malignancies.

  4. Phosphorylation of Kaposi's Sarcoma-Associated Herpesvirus Processivity Factor ORF59 by a Viral Kinase Modulates Its Ability To Associate with RTA and oriLyt

    Science.gov (United States)

    McDowell, Maria E.; Purushothaman, Pravinkumar; Rossetto, Cyprian C.; Pari, Gregory S.

    2013-01-01

    ORF59 of Kaposi's sarcoma-associated herpesvirus (KSHV) plays an essential role in viral lytic replication by providing DNA processivity activity to the viral DNA polymerase (ORF9). ORF59 forms a homodimer in the cytoplasm and binds and translocates ORF9 into the nucleus, where it secures ORF9 to the origin of lytic DNA replication (oriLyt) in order to synthesize long DNA fragments during replication. ORF59 binds to oriLyt through an immediate early protein, replication and transcription activator (RTA). Here, we show that viral kinase (ORF36) phosphorylates serines between amino acids 376 and 379 of ORF59 and replacement of the Ser378 residue with alanine significantly impairs phosphorylation. Although mutating these serine residues had no effect on binding between ORF59 and ORF9, viral polymerase, or ORF36, the viral kinase, it significantly reduced the ability of ORF59 to bind to RTA. The results for the mutant in which Ser376 to Ser379 were replaced by alanine showed that both Ser378 and Ser379 contribute to binding to RTA. Additionally, the Ser376, Ser378, and Ser379 residues were found to be critical for binding of ORF59 to oriLyt and its processivity function. Ablation of these phosphorylation sites reduced the production of virion particles, suggesting that phosphorylation is critical for ORF59 activity and viral DNA synthesis. PMID:23678174

  5. Kaposi's sarcoma associated herpesvirus encoded viral FLICE inhibitory protein K13 activates NF-κB pathway independent of TRAF6, TAK1 and LUBAC.

    Directory of Open Access Journals (Sweden)

    Hittu Matta

    Full Text Available Kaposi's sarcoma associated herpesvirus encoded viral FLICE inhibitory protein (vFLIP K13 activates the NF-κB pathway by binding to the NEMO/IKKγ subunit of the IκB kinase (IKK complex. However, it has remained enigmatic how K13-NEMO interaction results in the activation of the IKK complex. Recent studies have implicated TRAF6, TAK1 and linear ubiquitin chains assembled by a linear ubiquitin chain assembly complex (LUBAC consisting of HOIL-1, HOIP and SHARPIN in IKK activation by proinflammatory cytokines.Here we demonstrate that K13-induced NF-κB DNA binding and transcriptional activities are not impaired in cells derived from mice with targeted disruption of TRAF6, TAK1 and HOIL-1 genes and in cells derived from mice with chronic proliferative dermatitis (cpdm, which have mutation in the Sharpin gene (Sharpin(cpdm/cpdm. Furthermore, reconstitution of NEMO-deficient murine embryonic fibroblast cells with NEMO mutants that are incapable of binding to linear ubiquitin chains supported K13-induced NF-κB activity. K13-induced NF-κB activity was not blocked by CYLD, a deubiquitylating enzyme that can cleave linear and Lys63-linked ubiquitin chains. On the other hand, NEMO was required for interaction of K13 with IKK1/IKKα and IKK2/IKKβ, which resulted in their activation by "T Loop" phosphorylation.Our results demonstrate that K13 activates the NF-κB pathway by binding to NEMO which results in the recruitment of IKK1/IKKα and IKK2/IKKβ and their subsequent activation by phosphorylation. Thus, K13 activates NF-κB via a mechanism distinct from that utilized by inflammatory cytokines. These results have important implications for the development of therapeutic agents targeting K13-induced NF-κB for the treatment of KSHV-associated malignancies.

  6. p53 Tumor Suppressor Protein Stability and Transcriptional Activity Are Targeted by Kaposi's Sarcoma-Associated Herpesvirus-Encoded Viral Interferon Regulatory Factor 3

    Science.gov (United States)

    Baresova, Petra; Musilova, Jana; Pitha, Paula M.

    2014-01-01

    Viruses have developed numerous strategies to counteract the host cell defense. Kaposi's sarcoma-associated herpesvirus (KSHV) is a DNA tumor virus linked to the development of Kaposi's sarcoma, Castleman's disease, and primary effusion lymphoma (PEL). The virus-encoded viral interferon regulatory factor 3 (vIRF-3) gene is a latent gene which is involved in the regulation of apoptosis, cell cycle, antiviral immunity, and tumorigenesis. vIRF-3 was shown to interact with p53 and inhibit p53-mediated apoptosis. However, the molecular mechanism underlying this phenomenon has not been established. Here, we show that vIRF-3 associates with the DNA-binding domain of p53, inhibits p53 phosphorylation on serine residues S15 and S20, and antagonizes p53 oligomerization and the DNA-binding affinity. Furthermore, vIRF-3 destabilizes p53 protein by increasing the levels of p53 polyubiquitination and targeting p53 for proteasome-mediated degradation. Consequently, vIRF-3 attenuates p53-mediated transcription of the growth-regulatory p21 gene. These effects of vIRF-3 are of biological relevance since the knockdown of vIRF-3 expression in KSHV-positive BC-3 cells, derived from PEL, leads to an increase in p53 phosphorylation, enhancement of p53 stability, and activation of p21 gene transcription. Collectively, these data suggest that KSHV evolved an efficient mechanism to downregulate p53 function and thus facilitate uncontrolled cell proliferation and tumor growth. PMID:24248600

  7. Activation of PI3K/AKT and ERK MAPK signal pathways is required for the induction of lytic cycle replication of Kaposi's Sarcoma-associated herpesvirus by herpes simplex virus type 1

    Directory of Open Access Journals (Sweden)

    Lv Zhigang

    2011-10-01

    Full Text Available Abstract Background Kaposi's sarcoma-associated herpesvirus (KSHV is causally linked to several acquired immunodeficiency syndrome-related malignancies, including Kaposi's sarcoma (KS, primary effusion lymphoma (PEL and a subset of multicentric Castleman's disease. Regulation of viral lytic replication is critical to the initiation and progression of KS. Recently, we reported that herpes simplex virus type 1 (HSV-1 was an important cofactor that activated lytic cycle replication of KSHV. Here, we further investigated the possible signal pathways involved in HSV-1-induced reactivation of KSHV. Results By transfecting a series of dominant negative mutants and protein expressing constructs and using pharmacologic inhibitors, we found that either Janus kinase 1 (JAK1/signal transducer and activator of transcription 3 (STAT3 or JAK1/STAT6 signaling failed to regulate HSV-1-induced KSHV replication. However, HSV-1 infection of BCBL-1 cells activated phosphatidylinositol 3-kinase (PI3K/protein kinase B (PKB, also called AKT pathway and inactivated phosphatase and tensin homologue deleted on chromosome ten (PTEN and glycogen synthase kinase-3β (GSK-3β. PTEN/PI3K/AKT/GSK-3β pathway was found to be involved in HSV-1-induced KSHV reactivation. Additionally, extracellular signal-regulated protein kinase (ERK mitogen-activated protein kinase (MAPK pathway also partially contributed to HSV-1-induced KSHV replication. Conclusions HSV-1 infection stimulated PI3K/AKT and ERK MAPK signaling pathways that in turn contributed to KSHV reactivation, which provided further insights into the molecular mechanism controlling KSHV lytic replication, particularly in the context of HSV-1 and KSHV co-infection.

  8. Interaction of c-Cbl with myosin IIA regulates Bleb associated macropinocytosis of Kaposi's sarcoma-associated herpesvirus.

    Science.gov (United States)

    Valiya Veettil, Mohanan; Sadagopan, Sathish; Kerur, Nagaraj; Chakraborty, Sayan; Chandran, Bala

    2010-12-23

    KSHV is etiologically associated with Kaposi's sarcoma (KS), an angioproliferative endothelial cell malignancy. Macropinocytosis is the predominant mode of in vitro entry of KSHV into its natural target cells, human dermal microvascular endothelial (HMVEC-d) cells. Although macropinocytosis is known to be a major route of entry for many viruses, the molecule(s) involved in the recruitment and integration of signaling early during macropinosome formation is less well studied. Here we demonstrate that tyrosine phosphorylation of the adaptor protein c-Cbl is required for KSHV induced membrane blebbing and macropinocytosis. KSHV induced the tyrosine phosphorylation of c-Cbl as early as 1 min post-infection and was recruited to the sites of bleb formation. Infection also led to an increase in the interaction of c-Cbl with PI3-K p85 in a time dependent manner. c-Cbl shRNA decreased the formation of KSHV induced membrane blebs and macropinocytosis as well as virus entry. Immunoprecipitation of c-Cbl followed by mass spectrometry identified the interaction of c-Cbl with a novel molecular partner, non-muscle myosin heavy chain IIA (myosin IIA), in bleb associated macropinocytosis. Phosphorylated c-Cbl colocalized with phospho-myosin light chain II in the interior of blebs of infected cells and this interaction was abolished by c-Cbl shRNA. Studies with the myosin II inhibitor blebbistatin demonstrated that myosin IIA is a biologically significant component of the c-Cbl signaling pathway and c-Cbl plays a new role in the recruitment of myosin IIA to the blebs during KSHV infection. Myosin II associates with actin in KSHV induced blebs and the absence of actin and myosin ubiquitination in c-Cbl ShRNA cells suggested that c-Cbl is also responsible for the ubiquitination of these proteins in the infected cells. This is the first study demonstrating the role of c-Cbl in viral entry as well as macropinocytosis, and provides the evidence that a signaling complex containing c

  9. Interaction of c-Cbl with myosin IIA regulates Bleb associated macropinocytosis of Kaposi's sarcoma-associated herpesvirus.

    Directory of Open Access Journals (Sweden)

    Mohanan Valiya Veettil

    2010-12-01

    Full Text Available KSHV is etiologically associated with Kaposi's sarcoma (KS, an angioproliferative endothelial cell malignancy. Macropinocytosis is the predominant mode of in vitro entry of KSHV into its natural target cells, human dermal microvascular endothelial (HMVEC-d cells. Although macropinocytosis is known to be a major route of entry for many viruses, the molecule(s involved in the recruitment and integration of signaling early during macropinosome formation is less well studied. Here we demonstrate that tyrosine phosphorylation of the adaptor protein c-Cbl is required for KSHV induced membrane blebbing and macropinocytosis. KSHV induced the tyrosine phosphorylation of c-Cbl as early as 1 min post-infection and was recruited to the sites of bleb formation. Infection also led to an increase in the interaction of c-Cbl with PI3-K p85 in a time dependent manner. c-Cbl shRNA decreased the formation of KSHV induced membrane blebs and macropinocytosis as well as virus entry. Immunoprecipitation of c-Cbl followed by mass spectrometry identified the interaction of c-Cbl with a novel molecular partner, non-muscle myosin heavy chain IIA (myosin IIA, in bleb associated macropinocytosis. Phosphorylated c-Cbl colocalized with phospho-myosin light chain II in the interior of blebs of infected cells and this interaction was abolished by c-Cbl shRNA. Studies with the myosin II inhibitor blebbistatin demonstrated that myosin IIA is a biologically significant component of the c-Cbl signaling pathway and c-Cbl plays a new role in the recruitment of myosin IIA to the blebs during KSHV infection. Myosin II associates with actin in KSHV induced blebs and the absence of actin and myosin ubiquitination in c-Cbl ShRNA cells suggested that c-Cbl is also responsible for the ubiquitination of these proteins in the infected cells. This is the first study demonstrating the role of c-Cbl in viral entry as well as macropinocytosis, and provides the evidence that a signaling complex

  10. Ser-634 and Ser-636 of Kaposi's Sarcoma-Associated Herpesvirus RTA are Involved in Transactivation and are Potential Cdk9 Phosphorylation Sites.

    Science.gov (United States)

    Tsai, Wan-Hua; Wang, Pei-Wen; Lin, Shu-Yu; Wu, I-Lin; Ko, Ying-Chieh; Chen, Yu-Lian; Li, Mengtao; Lin, Su-Fang

    2012-01-01

    The replication and transcription activator (RTA) of Kaposi's sarcoma-associated herpesvirus (KSHV), K-RTA, is a lytic switch protein that moderates the reactivation process of KSHV latency. By mass spectrometric analysis of affinity purified K-RTA, we showed that Thr-513 or Thr-514 was the primary in vivo phosphorylation site. Thr-513 and Thr-514 are proximal to the nuclear localization signal ((527)KKRK(530)) and were previously hypothesized to be target sites of Ser/Thr kinase hKFC. However, substitutions of Thr with Ala at 513 and 514 had no effect on K-RTA subcellular localization or transactivation activity. By contrast, replacement of Ser with Ala at Ser-634 and Ser-636 located in a Ser/Pro-rich region of K-RTA, designated as S634A/S636A, produced a polypeptide with ∼10 kDa shorter in molecular weight and reduced transactivation in a luciferase reporter assay relative to the wild type. In contrast to prediction, the decrease in molecular weight was not due to lack of phosphorylation because the overall Ser and Thr phosphorylation state in K-RTA and S634A/S636A were similar, excluding that Ser-634 or Ser-636 motif served as docking sites for consecutive phosphorylation. Interestingly, S634A/S636A lost ∼30% immuno-reactivity to MPM2, an antibody specific to pSer/pThr-Pro motif, indicating that (634)SPSP(637) motif was in vivo phosphorylated. By in vitro kinase assay, we showed that K-RTA is a substrate of CDK9, a Pro-directed Ser/Thr kinase central to transcriptional regulation. Importantly, the capability of K-RTA in associating with endogenous CDK9 was reduced in S634A/S636A, which suggested that Ser-634 and Ser-636 may be involved in CDK9 recruitment. In agreement, S634A/S636A mutant exhibited ∼25% reduction in KSHV lytic cycle reactivation relative to that by the wild type K-RTA. Taken together, our data propose that Ser-634 and Ser-636 of K-RTA are phosphorylated by host transcriptional kinase CDK9 and such a process contributes to a full

  11. Ser-634 and Ser-636 of Kaposi’s sarcoma-associated herpesvirus RTA are involved in transactivation and are potential CDK9 phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Wan-Hua eTsai

    2012-02-01

    Full Text Available The replication and transcription activator (RTA of Kaposi’s sarcoma-associated herpesvirus (KSHV, K-RTA, is a lytic switch protein that moderates the reactivation process of KSHV latency. By mass spectrometric analysis of affinity-purified K-RTA, we showed that Thr-513 or Thr-514 was the primary in vivo phosphorylation site. Thr-513 and Thr-514 are proximal to the nuclear localization signal (527KKRK530 and were previously hypothesized to be target sites of Ser/Thr kinase hKFC. However, substitutions of Thr with Ala at 513 and 514 had no effect on K-RTA subcellular localization or transactivation activity. By contrast, replacement of Ser with Ala at Ser-634 and Ser-636 located in a Ser/Pro-rich region of K-RTA, designated as S634A/S636A, produced a polypeptide with ∼10 kDa shorter in molecular weight and reduced transactivation in a luciferase reporter assay relative to the wild type. In contrast to prediction, the decrease in molecular weight was not due to lack of phosphorylation because the overall Ser and Thr phosphorylation state in K-RTA and S634A/S636A were similar, excluding that Ser-634 or Ser-636 motif served as docking sites for consecutive phosphorylation. Interestingly, S634A/S636A lost ~30% immuno-reactivity to MPM2, an antibody specific to pSer/pThr-Pro motif, indicating that 634SPSP637 motif was in vivo phosphorylated. By in vitro kinase assay, we showed that K-RTA is a substrate of CDK9, a Pro-directed Ser/Thr kinase central to transcriptional regulation. Importantly, the capability of K-RTA in associating with endogenous CDK9 was reduced in S634A/S636A, which suggested that Ser-634 and Ser-636 may be involved in CDK9 recruitment. In agreement, S634A/S636A mutant exhibited ~30% reduction in KSHV lytic cycle reactivation relative to that by the wild type K-RTA. Taken together, our data propose that Ser-634 and Ser-636 of K-RTA are phosphorylated by host transcriptional kinase CDK9 and such a process contributes to a full

  12. The CD8 and CD4 T-cell response against Kaposi's sarcoma-associated herpesvirus is skewed towards early and late lytic antigens.

    Directory of Open Access Journals (Sweden)

    Rebecca C Robey

    Full Text Available Kaposi's sarcoma-associated herpesvirus (KSHV is causally related to Kaposi's sarcoma (KS, the most common malignancy in untreated individuals with HIV/AIDS. The adaptive T-cell immune response against KSHV has not been fully characterized. To achieve a better understanding of the antigenic repertoire of the CD8 and CD4 T-cell responses against KSHV, we constructed a library of lentiviral expression vectors each coding for one of 31 individual KSHV open reading frames (ORFs. We used these to transduce monocyte-derived dendritic cells (moDCs isolated from 14 KSHV-seropositive (12 HIV-positive and 7 KSHV-seronegative (4 HIV-positive individuals. moDCs were transduced with up to 3 KSHV ORFs simultaneously (ORFs grouped according to their expression during the viral life cycle. Transduced moDCs naturally process the KSHV genes and present the resulting antigens in the context of MHC class I and II. Transduced moDCs were cultured with purified autologous T cells and the CD8 and CD4 T-cell proliferative responses to each KSHV ORF (or group was assessed using a CFSE dye-based assay. Two pools of early lytic KSHV genes ([ORF8/ORF49/ORF61] and [ORF59/ORF65/K4.1] were frequently-recognized targets of both CD8 and CD4 T cells from KSHV seropositive individuals. One pool of late lytic KSHV genes ([ORF28/ORF36/ORF37] was a frequently-recognized CD8 target and another pool of late genes ([ORF33/K1/K8.1] was a frequently-recognized CD4 target. We report that both the CD8 and CD4 T-cell responses against KSHV are skewed towards genes expressed in the early and late phases of the viral lytic cycle, and identify some previously unknown targets of these responses. This knowledge will be important to future immunological investigations into KSHV and may eventually lead to the development of better immunotherapies for KSHV-related diseases.

  13. Ago HITS-CLIP expands understanding of Kaposi's sarcoma-associated herpesvirus miRNA function in primary effusion lymphomas.

    Directory of Open Access Journals (Sweden)

    Irina Haecker

    Full Text Available KSHV is the etiological agent of Kaposi's sarcoma (KS, primary effusion lymphoma (PEL, and a subset of multicentricCastleman's disease (MCD. The fact that KSHV-encoded miRNAs are readily detectable in all KSHV-associated tumors suggests a potential role in viral pathogenesis and tumorigenesis. MiRNA-mediated regulation of gene expression is a complex network with each miRNA having many potential targets, and to date only few KSHV miRNA targets have been experimentally determined. A detailed understanding of KSHV miRNA functions requires high-through putribonomics to globally analyze putative miRNA targets in a cell type-specific manner. We performed Ago HITS-CLIP to identify viral and cellular miRNAs and their cognate targets in two latently KSHV-infected PEL cell lines. Ago HITS-CLIP recovered 1170 and 950 cellular KSHV miRNA targets from BCBL-1 and BC-3, respectively. Importantly, enriched clusters contained KSHV miRNA seed matches in the 3'UTRs of numerous well characterized targets, among them THBS1, BACH1, and C/EBPβ. KSHV miRNA targets were strongly enriched for genes involved in multiple pathways central for KSHV biology, such as apoptosis, cell cycle regulation, lymphocyte proliferation, and immune evasion, thus further supporting a role in KSHV pathogenesis and potentially tumorigenesis. A limited number of viral transcripts were also enriched by HITS-CLIP including vIL-6 expressed only in a subset of PEL cells during latency. Interestingly, Ago HITS-CLIP revealed extremely high levels of Ago-associated KSHV miRNAs especially in BC-3 cells where more than 70% of all miRNAs are of viral origin. This suggests that in addition to seed match-specific targeting of cellular genes, KSHV miRNAs may also function by hijacking RISCs, thereby contributing to a global de-repression of cellular gene expression due to the loss of regulation by human miRNAs. In summary, we provide an extensive list of cellular and viral miRNA targets representing an

  14. NEMO is essential for Kaposi's sarcoma-associated herpesvirus-encoded vFLIP K13-induced gene expression and protection against death receptor-induced cell death, and its N-terminal 251 residues are sufficient for this process.

    Science.gov (United States)

    Tolani, Bhairavi; Matta, Hittu; Gopalakrishnan, Ramakrishnan; Punj, Vasu; Chaudhary, Preet M

    2014-06-01

    Kaposi's sarcoma-associated herpesvirus-encoded viral FLICE inhibitory protein (vFLIP) K13 was originally believed to protect virally infected cells against death receptor-induced apoptosis by interfering with caspase 8/FLICE activation. Subsequent studies revealed that K13 also activates the NF-κB pathway by binding to the NEMO/inhibitor of NF-κB (IκB) kinase gamma (IKKγ) subunit of an IKK complex and uses this pathway to modulate the expression of genes involved in cellular survival, proliferation, and the inflammatory response. However, it is not clear if K13 can also induce gene expression independently of NEMO/IKKγ. The minimum region of NEMO that is sufficient for supporting K13-induced NF-κB has not been delineated. Furthermore, the contribution of NEMO and NF-κB to the protective effect of K13 against death receptor-induced apoptosis remains to be determined. In this study, we used microarray analysis on K13-expressing wild-type and NEMO-deficient cells to demonstrate that NEMO is required for modulation of K13-induced genes. Reconstitution of NEMO-null cells revealed that the N-terminal 251 amino acid residues of NEMO are sufficient for supporting K13-induced NF-κB but fail to support tumor necrosis factor alpha (TNF-α)-induced NF-κB. K13 failed to protect NEMO-null cells against TNF-α-induced cell death but protected those reconstituted with the NEMO mutant truncated to include only the N-terminal 251 amino acid residues [the NEMO(1-251) mutant]. Taken collectively, our results demonstrate that NEMO is required for modulation of K13-induced genes and the N-terminal 251 amino acids of NEMO are sufficient for supporting K13-induced NF-κB. Finally, the ability of K13 to protect against TNF-α-induced cell death is critically dependent on its ability to interact with NEMO and activate NF-κB. Kaposi's sarcoma-associated herpesvirus-encoded vFLIP K13 is believed to protect virally infected cells against death receptor-induced apoptosis and to

  15. A neurotropic herpesvirus infecting the gastropod, abalone, shares ancestry with oyster herpesvirus and a herpesvirus associated with the amphioxus genome

    Directory of Open Access Journals (Sweden)

    Sawbridge Tim

    2010-11-01

    Full Text Available Abstract Background With the exception of the oyster herpesvirus OsHV-1, all herpesviruses characterized thus far infect only vertebrates. Some cause neurological disease in their hosts, while others replicate or become latent in neurological tissues. Recently a new herpesvirus causing ganglioneuritis in abalone, a gastropod, was discovered. Molecular analysis of new herpesviruses, such as this one and others, still to be discovered in invertebrates, will provide insight into the evolution of herpesviruses. Results We sequenced the genome of a neurotropic virus linked to a fatal ganglioneuritis devastating parts of a valuable wild abalone fishery in Australia. We show that the newly identified virus forms part of an ancient clade with its nearest relatives being a herpesvirus infecting bivalves (oyster and, unexpectedly, one we identified, from published data, apparently integrated within the genome of amphioxus, an invertebrate chordate. Predicted protein sequences from the abalone virus genome have significant similarity to several herpesvirus proteins including the DNA packaging ATPase subunit of (putative terminase and DNA polymerase. Conservation of amino acid sequences in the terminase across all herpesviruses and phylogenetic analysis using the DNA polymerase and terminase proteins demonstrate that the herpesviruses infecting the molluscs, oyster and abalone, are distantly related. The terminase and polymerase protein sequences from the putative amphioxus herpesvirus share more sequence similarity with those of the mollusc viruses than with sequences from any of the vertebrate herpesviruses analysed. Conclusions A family of mollusc herpesviruses, Malacoherpesviridae, that was based on a single virus infecting oyster can now be further established by including a distantly related herpesvirus infecting abalone, which, like many vertebrate viruses is neurotropic. The genome of Branchiostoma floridae (amphioxus provides evidence for the

  16. HERPESVIRUS INFECTIONS: MYTHS AND REALITIES

    Directory of Open Access Journals (Sweden)

    Makarenko VD

    2015-04-01

    Full Text Available millennia, and its main symptoms described by Hippocrates more. But our time HVI remains mysterious and before the end of the unknown. Among the issues are not sufficiently clarified latency of infection and persistence of herpes viruses, the causes of the frequent occurrence of the disease in the form of subclinical forms, high infection rate of the world population, and others. Note that virologists and clinicians are showing in the last 20 years to the HVI, is associated with a variety of everincreasing role Herpesviridae in infectious pathology of human and social importance of diseases caused by them. It is now known 8 herpesviruses pathogenic for humans. Because of the difference in a number of biological properties, the nature of replication in cell cultures, the clinical picture and the pathogenesis of diseases caused by all herpesviruses are distributed according to the recommendations of the International Committee on Taxonomy of Viruses, in three subfamilies (α, β, γ. Activators of herpes simplex virus can be endogenous and exogenous factors: reduction of immunoreactivity of the organism (immunodeficiency, interferon failure, physical and emotional stress, overheating or overcooling, hormonal disorders, ultraviolet irradiation, corticosteroids treatment, cytotoxic drugs. It is important to understand that the HVI is a disease of the whole body with lesions in varying degrees, all organs and systems (immune, hematopoietic, lymphatic, CNS, which is responsible for the homeostasis of the human body. These data give reason to believe HVI systemic disease, mainly affecting a particular organ. However, more is still not widely used etiopathogenetical and "topical" diagnosis, indicating the loss of any one body. Due to the fact that the clinical forms of HVI are characterized by marked polymorphism, the timely establishment of the etiologic diagnosis is a difficult task and is based on the use of specific molecular genetic, virological

  17. Latency-Associated Nuclear Antigen Encoded by Kaposi's Sarcoma-Associated Herpesvirus Interacts with Tat and Activates the Long Terminal Repeat of Human Immunodeficiency Virus Type 1 in Human Cells

    OpenAIRE

    Hyun, Teresa S.; Subramanian, Chitra; Cotter, Murray A.; Robert A. Thomas; Robertson, Erle S.

    2001-01-01

    The latency-associated nuclear antigen (LANA) is constitutively expressed in cells infected with the Kaposi's sarcoma (KS) herpesvirus (KSHV), also referred to as human herpesvirus 8. KSHV is tightly associated with body cavity-based lymphomas (BCBLs) in immunocompromised patients infected with human immunodeficiency virus (HIV). LANA, encoded by open reading frame 73 of KSHV, is one of a small subset of proteins expressed during latent infection and was shown to be important in tethering the...

  18. Inhibition of the phosphatidylinositol 3-kinase-Akt pathway enhances gamma-2 herpesvirus lytic replication and facilitates reactivation from latency

    OpenAIRE

    Peng, Li; Wu, Ting-Ting; Tchieu, Jason H.; Feng, Jun; Brown, Helen J.; Feng, Jiaying; Li, Xudong; Qi, Jing; Deng, Hongyu; Vivanco, Igor; Mellinghoff, Ingo K.; Jamieson, Christina; Sun, Ren

    2010-01-01

    Cellular signalling pathways are critical in regulating the balance between latency and lytic replication of herpesviruses. Here, we investigated the effect of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway on replication of two gamma-2 herpesviruses, murine gammaherpesvirus-68 (MHV-68) and human herpesvirus-8/Kaposi's sarcoma-associated herpesvirus (HHV-8/KSHV). We found that de novo infection of MHV-68 induced PI3K-dependent Akt activation and the lytic replication of MHV-68 was enhan...

  19. Neuroimaging of herpesvirus infections in children

    Energy Technology Data Exchange (ETDEWEB)

    Baskin, Henry J. [Cincinnati Children' s Medical Center, Department of Radiology, Cincinnati, OH (United States); Hedlund, Gary [Primary Children' s Medical Center, Department of Medical Imaging, Salt Lake City, UT (United States)

    2007-10-15

    Six members of the herpesvirus family cause well-described neurologic disease in children: herpes simplex virus-1 (HSV-1), herpes simplex virus-2 (HSV-2), varicella-zoster (VZV), Epstein-Barr (EBV), cytomegalovirus (CMV), and human herpes virus-6 (HHV-6). When herpesviruses infect the central nervous system (CNS), the clinical presentation is non-specific and often confounding. The clinical urgency is often underscored by progressive neurologic deficits, seizures, or even death, and prompt diagnosis and treatment rely heavily on neuroimaging. This review focuses on the spectrum of cerebral manifestations caused by these viruses, particularly on non-congenital presentations. Recent advances in our understanding of these viruses are discussed, including new polymerase chain reaction techniques that allow parallel detection, which has improved our recognition that the herpesviruses are neurotropic and involve the CNS more often than previously thought. Evolving knowledge has also better elucidated viral neuropathology, particularly the role of VZV vasculitis in the brain, HHV-6 in febrile seizures, and herpesvirus reactivation in immunosuppressed patients. The virology, clinical course, and CNS manifestations of each virus are reviewed, followed by descriptions of neuroimaging findings when these agents infect the brain. Characteristic but often subtle imaging findings are discussed, as well as technical pearls covering appropriate use of MRI and MRI adjuncts to help differentiate viral infection from mimics. (orig.)

  20. Natural killer cells in herpesvirus infections.

    Science.gov (United States)

    Münz, Christian; Chijioke, Obinna

    2017-01-01

    Natural killer (NK) cells are potent innate cytotoxic lymphocytes for the destruction of infected and transformed cells. Although they were originally considered to be ready-made assassins after their hematopoietic development, it has recently become clear that their activity is regulated by mechanisms such as repertoire composition, licensing, priming, and adaptive memory-like differentiation. Some of these mechanisms are influenced by infectious disease agents, including herpesviruses. In this review, we will compare expansion, stimulation, and effector functions of NK cell populations after infections with β- and γ 1-herpesviruses because, though closely related, these pathogens seem to drive completely opposite NK cell responses. The discussed findings suggest that different NK cell subsets expand and perform protective functions during infectious diseases and might be used diagnostically to predict resistance to the causative pathogens as well as treat them by adoptive transfer of the respective populations.

  1. Two distinct gamma-2 herpesviruses in African green monkeys: a second gamma-2 herpesvirus lineage among old world primates?

    NARCIS (Netherlands)

    Greensill, J.; Sheldon, J. A.; Renwick, N. M.; Beer, B. E.; Norley, S.; Goudsmit, J.; Schulz, T. F.

    2000-01-01

    Primate gamma-2 herpesviruses (rhadinoviruses) have so far been found in humans (Kaposi's sarcoma-associated herpesvirus [KSHV], also called human herpesvirus 8), macaques (Macaca spp.) (rhesus rhadinovirus [RRV] and retroperitoneal fibromatosis herpesvirus [RFHV]), squirrel monkeys (Saimiri

  2. Kaposi sarcoma-associated herpes virus targets the lymphotactin receptor with both a broad spectrum antagonist vCCL2 and a highly selective and potent agonist vCCL3

    DEFF Research Database (Denmark)

    Lüttichau, Hans R; Johnsen, Anders H; Jurlander, Jesper

    2007-01-01

    Large DNA viruses such as herpesvirus and poxvirus encode proteins that target and exploit the chemokine system of their host. These proteins have the potential to block or change the orchestrated recruitment of leukocytes to sites of viral infection. The genome of Kaposi sarcoma-associated herpes...

  3. Human Immunodeficiency Virus Type 1 Tat Accelerates Kaposi Sarcoma-Associated Herpesvirus Kaposin A-Mediated Tumorigenesis of Transformed Fibroblasts In Vitro as well as in Nude and Immunocompetent Mice

    Directory of Open Access Journals (Sweden)

    Xiuying Chen

    2009-12-01

    Full Text Available Kaposi sarcoma-associated herpesvirus (KSHV is necessary but not sufficient to cause Kaposi sarcoma (KS. Coinfection with human immunodeficiency virus type 1 (HIV-1, in the absence of antiretroviral suppressive therapy, drastically increases the risk of KS. Previously, we identified that HIV-1 transactivative transcription protein (Tat was an important cofactor that activated lytic cycle replication of KSHV. Here, we further investigated the potential of Tat to influence tumorigenesis induced by KSHV Kaposin A, a product of KSHV that was encoded by the open reading frame K12 (a KSHV-transforming gene. By using colony formation in soft agar, 3H-TdR incorporation, cell cycle, and microarray gene expression analyses, we demonstrated that Tat enhanced proliferation as well as mitogen-activated protein kinase, signal transducer and activator of transcription 3, and phosphatidylinositol 3-kinase/protein kinase B signaling induced by Kaposin A in NIH3T3 cells. Animal experiments further demonstrated that Tat accelerated tumorigenesis by Kaposin A in athymic nu/nu mice. Cells obtained from primary tumors of nude mice succeeded inducing tumors in immunocompetent mice. These data suggest that Tat can accelerate tumorigenesis induced by Kaposin A. Our data present the first line of evidence that Tat may participate in KS pathogenesis by collaborating with Kaposin A in acquired immunodeficiency syndrome (AIDS-related KS (AIDS-KS patients. Our data also suggest that the model for Kaposin and Tat-mediated oncogenesis will contribute to our understanding of the pathogenesis of AIDS-KS at the molecular level and may even be important in exploring a novel therapeutic method for AIDS-KS.

  4. Kaposi's Sarcoma-Associated Herpesvirus K8 Is an RNA Binding Protein That Regulates Viral DNA Replication in Coordination with a Noncoding RNA.

    Science.gov (United States)

    Liu, Dongcheng; Wang, Yan; Yuan, Yan

    2018-01-10

    KSHV lytic replication and constant primary infection of fresh cells are crucial for viral tumorigenicity. Virus-encoded b-Zip family protein K8 plays an important role in viral DNA replication in both viral reactivation and de novo infection. The mechanism underlying the functional role of K8 in the viral life cycle is elusive. Here we report that K8 is a RNA binding protein, which also associates with many proteins including other RNA binding proteins. Many K8-involved protein-protein interactions are mediated by RNA. Using a crosslinking and immunoprecipitation (CLIP) procedure combined with high-throughput sequencing, RNAs that are associated with K8 in BCBL-1 cells were identified, that include both viral (PAN, T1.4, T0.7 and etc.) and cellular (MALAT-1, MRP, 7SK and etc.) RNAs. An RNA-binding motif in K8 was defined, and mutation of the motif abolished the ability of K8 binding to many noncoding RNAs as well as viral DNA replication during de novo infection, suggesting that the K8 functions in viral replication are carried out through RNA association. The function of K8 and associated T1.4 RNA was investigated in details and results showed that T1.4 mediates the binding of K8 with ori-Lyt DNA. T1.4-K8 complex physically bound to KSHV ori-Lyt DNA and recruited other proteins and cofactors to assemble replication complex. Depletion of T1.4 abolished the DNA replication in primary infection. These findings provide mechanistic insights into the role of K8 in coordination with T1.4 RNA in regulating KSHV DNA replication during de novo infection.ImportanceGenome wide analyses of the mammalian transcriptome revealed that a large proportion of sequence previously annotated as noncoding region are actually transcribed and give rise to stable RNAs. Emergence of a large number of noncoding RNAs suggests that functional RNA-protein complexes exampled by ribosome or spliceosome are not ancient relics of the last riboorganism but would be well adapted for regulatory role

  5. CIB1 synergizes with EphrinA2 to regulate Kaposi's sarcoma-associated herpesvirus macropinocytic entry in human microvascular dermal endothelial cells.

    Directory of Open Access Journals (Sweden)

    Chirosree Bandyopadhyay

    2014-02-01

    Full Text Available KSHV envelope glycoproteins interact with cell surface heparan sulfate and integrins, and activate FAK, Src, PI3-K, c-Cbl, and Rho-GTPase signal molecules in human microvascular dermal endothelial (HMVEC-d cells. c-Cbl mediates the translocation of virus bound α3β1 and αVβ3 integrins into lipid rafts (LRs, where KSHV interacts and activates EphrinA2 (EphA2. EphA2 associates with c-Cbl-myosin IIA and augmented KSHV-induced Src and PI3-K signals in LRs, leading to bleb formation and macropinocytosis of KSHV. To identify the factor(s coordinating the EphA2-signal complex, the role of CIB1 (calcium and integrin binding protein-1 associated with integrin signaling was analyzed. CIB1 knockdown did not affect KSHV binding to HMVEC-d cells but significantly reduced its entry and gene expression. In contrast, CIB1 overexpression increased KSHV entry in 293 cells. Single virus particle infection and trafficking during HMVEC-d cell entry was examined by utilizing DiI (envelope and BrdU (viral DNA labeled virus. CIB1 was associated with KSHV in membrane blebs and in Rab5 positive macropinocytic vesicles. CIB1 knockdown abrogated virus induced blebs, macropinocytosis and virus association with the Rab5 macropinosome. Infection increased the association of CIB1 with LRs, and CIB1 was associated with EphA2 and KSHV entry associated signal molecules such as Src, PI3-K, and c-Cbl. CIB1 knockdown significantly reduced the infection induced EphA2, Src and Erk1/2 activation. Mass spectrometry revealed the simultaneous association of CIB1 and EphA2 with the actin cytoskeleton modulating myosin IIA and alpha-actinin 4 molecules, and CIB1 knockdown reduced EphA2's association with myosin IIA and alpha-actinin 4. Collectively, these studies revealed for the first time that CIB1 plays a role in virus entry and macropinocytosis, and suggested that KSHV utilizes CIB1 as one of the key molecule(s to coordinate and sustain the EphA2 mediated signaling involved in its

  6. Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 K-bZIP modulates latency-associated nuclear protein-mediated suppression of lytic origin-dependent DNA synthesis.

    Science.gov (United States)

    Rossetto, Cyprian; Yamboliev, Irena; Pari, Gregory S

    2009-09-01

    The original cotransfection replication assay identified eight human herpesvirus 8 (HHV8)-encoded proteins required for origin-dependent lytic DNA replication. Previously, we demonstrated that under conditions where K-Rta is overexpressed, a K-bZIP knockout bacmid displayed an aberrant subcellular localization pattern for the latency-associated nuclear protein (LANA). Additionally, these same studies demonstrated that K-bZIP interacts with LANA in the absence of K-Rta and that K-bZIP does not directly participate in, but may facilitate, the initiation of lytic DNA synthesis. We developed a modification of the transient cotransfection replication assay wherein both lytic (oriLyt) and latent (terminal repeat) DNA replication are evaluated simultaneously. We now show that LANA represses origin-dependent lytic DNA replication in a dose dependent manner when added to the cotransfection replication assay. This repression was overcome by increasing amounts of a K-bZIP expression plasmid in the cotransfection mixture or by dominant-negative inhibition of the interaction of LANA with K-bZIP by the overexpression of the K-bZIP-LANA binding domain. Chromatin immunoprecipitation assays show that LANA interacts with oriLyt in the absence of K-bZIP expression, suggesting that suppression of lytic replication by LANA is mediated by direct binding. The interaction of K-bZIP with oriLyt was dependent upon the expression of LANA; however, LANA interacted with oriLyt independently of K-bZIP expression. These data suggest that the interaction of LANA with K-bZIP modulates lytic and latent replication and that K-bZIP facilitates lytic DNA replication and modulates the switch from the latent phase of the virus.

  7. THE POSSIBILITIES OF MODERN DIAGNOSTICS OF HERPESVIRUS INFECTIONS IN CHILDREN

    Directory of Open Access Journals (Sweden)

    A. G. Bokovoy

    2013-01-01

    Full Text Available Medical history, clinical and laboratory data were studied in 828 children aged from 2 months to 14 years. All of them had different clinical forms of herpesvirus infections (HVI. The combination of the information allows to form the etiologic diagnosis timely and to evaluate the activity of the current infection. Given the polymorphism of clinical symptoms of HVI, it was very important to determine herpesvirus genomes in three media (blood, saliva, urine by PCR, and high titers of G-antibodies (439 u for CMV and 212.3 u for HHV-6. 

  8. MG-132 reduces virus release in Bovine herpesvirus-1 infection

    OpenAIRE

    Fiorito, Filomena; Iovane, Valentina; Cantiello, Antonietta; Marullo, Annarosaria; Martino, Luisa De; Iovane, Giuseppe

    2017-01-01

    Bovine herpesvirus 1 (BoHV-1) can provoke conjunctivitis, abortions and shipping fever. BoHV-1 infection can also cause immunosuppression and increased susceptibility to secondary bacterial infections, leading to pneumonia and occasionally to death. Herein, we investigated the influence of MG-132, a proteasome inhibitor, on BoHV-1 infection in bovine kidney (MDBK) cells. Infection of MDBK cells with BoHV-1 induces apoptotic cell death that enhances virus release. Whereas, MG-132 inhibited vir...

  9. PREVALENCE OF INFECTION WITH HUMAN HERPESVIRUS ...

    African Journals Online (AJOL)

    were tuberculosis suspects but had no active STD (25 women and 25 men), 50 patients with a proven STD, and 36 paediatric inpatients ~th a variety of .... Frottier J. Detection of human herpesvirus 8 DNA sequences before the appearance of Kaposi's sarcoma in human immunodeficiency virus (HIV}-positive subjects with a ...

  10. Dyscoria associated with herpesvirus infection in owl monkeys (Aotus nancymae)

    Energy Technology Data Exchange (ETDEWEB)

    Gozalo, Alfonso S.; Montoya, Enrique J.; Weller, Richard E.

    2008-08-16

    Abstract Dyscoria was observed in a female owl monkey and her two offspring. A third offspring was found dead with necrohemorrhagic encephalitis. Two males paired with the female died, one of which showed oral ulcers at necropsy. Histologic examination of the oral ulcers revealed syncytia and eosinophilic intranuclear inclusion bodies in epithelial cells. Ocular examination revealed posterior synechia associated with the dyscoria in all three animals. Serum samples from the female and her offspring were positive for Herpesvirus simplex antibodies by enzyme-linked immunosorbent assay. The clinical history, gross and microscopic lesions, and serology results suggests a herpesviral etiology, possibly, H. simplex or H. saimiri-1. This report underscores the risks associated with introducing animals into breeding or research colonies that were previously kept as pets or those from unknown origin that could carry asymptomatic pathogenic Herpesvirus infections. In addition, herpesviral infection should be considered among the differential diagnoses if dyscoria is observed in nonhuman primates.

  11. Laboratory and Clinical Aspects of Human Herpesvirus 6 Infections

    Science.gov (United States)

    Bonnafous, Pascale; Gautheret-Dejean, Agnès

    2015-01-01

    SUMMARY Human herpesvirus 6 (HHV-6) is a widespread betaherpesvirus which is genetically related to human cytomegalovirus (HCMV) and now encompasses two different species: HHV-6A and HHV-6B. HHV-6 exhibits a wide cell tropism in vivo and, like other herpesviruses, induces a lifelong latent infection in humans. As a noticeable difference with respect to other human herpesviruses, genomic HHV-6 DNA is covalently integrated into the subtelomeric region of cell chromosomes (ciHHV-6) in about 1% of the general population. Although it is infrequent, this may be a confounding factor for the diagnosis of active viral infection. The diagnosis of HHV-6 infection is performed by both serologic and direct methods. The most prominent technique is the quantification of viral DNA in blood, other body fluids, and organs by means of real-time PCR. Many active HHV-6 infections, corresponding to primary infections, reactivations, or exogenous reinfections, are asymptomatic. However, the virus may be the cause of serious diseases, particularly in immunocompromised individuals. As emblematic examples of HHV-6 pathogenicity, exanthema subitum, a benign disease of infancy, is associated with primary infection, whereas further virus reactivations can induce severe encephalitis cases, particularly in hematopoietic stem cell transplant recipients. Generally speaking, the formal demonstration of the causative role of HHV-6 in many acute and chronic human diseases is difficult due to the ubiquitous nature of the virus, chronicity of infection, existence of two distinct species, and limitations of current investigational tools. The antiviral compounds ganciclovir, foscarnet, and cidofovir are effective against active HHV-6 infections, but the indications for treatment, as well as the conditions of drug administration, are not formally approved to date. There are still numerous pending questions about HHV-6 which should stimulate future research works on the pathophysiology, diagnosis, and

  12. Short communication: Pasteurization of milk abolishes bovine herpesvirus 4 infectivity.

    Science.gov (United States)

    Bona, C; Dewals, B; Wiggers, L; Coudijzer, K; Vanderplasschen, A; Gillet, L

    2005-09-01

    Bovine herpesvirus 4 (BoHV-4) is a gammaherpesvirus highly prevalent in the cattle population that has been isolated from the milk and the serum of healthy infected cows. Several studies reported the sensitivity and the permissiveness of some human cells to BoHV-4 infection. Moreover, our recent study demonstrated that some human cells sensitive but not permissive to BoHV-4 support a persistent infection protecting them from tumor necrosis factor-alpha-induced apoptosis. Together, these observations suggested that BoHV-4 could represent a danger for public health. To evaluate the risk of human infection by BoHV-4 through milk or serum derivatives, we investigated the resistance of BoHV-4 to the mildest thermal treatments usually applied to these products. The results demonstrated that milk pasteurization and thermal decomplementation of serum abolish BoHV-4 infectivity by inactivation of its property to enter permissive cells. Consequently, our results demonstrate that these treatments drastically reduce the risk of human infection by BoHV-4 through treated milk or serum derivatives.

  13. Evaluation of metaphylactic RNA interference to prevent equine herpesvirus type 1 infection in experimental herpesvirus myeloencephalopathy in horses.

    Science.gov (United States)

    Perkins, Gillian A; Van de Walle, Gerlinde R; Pusterla, Nicola; Erb, Hollis N; Osterrieder, Nikolaus

    2013-02-01

    To evaluate metaphylactic RNA interference to prevent equine herpesvirus type 1 (EHV-1) infection in experimental herpesvirus myeloencephalopathy in horses and to determine whether horses infected with a neuropathogenic strain of the virus that develop equine herpesvirus myeloencephalopathy (EHM) have differences in viremia. 13 seronegative horses. EHV-1 strain Ab4 was administered intranasally on day 0, and small interfering RNAs (siRNAs [EHV-1 specific siRNAs {n = 7} or an irrelevant siRNA {6}]) were administered intranasally 24 hours before and 12, 24, 36, and 48 hours after infection. Physical and neurologic examinations, nasal swab specimens, and blood samples were collected for virus isolation and quantitative PCR assay. Data from the study were combined with data from a previous study of 14 horses. No significant difference was detected in clinical variables, viremia, or detection of EHV-1 in nasal swab specimens of horses treated with the EHV-1 targeted siRNAs (sigB3-siOri2) versus controls. No significant differences in viremia were detected between horses that developed EHM and those that did not. Administration of siRNAs targeted against EHV-1 around the time of EHV-1 infection was not protective with this experimental design. Horses infected with the neuropathogenic EHV-1 strain Ab4 that developed EHM did not have a more pronounced viremia.

  14. Prevalence and Clinical Significance of Herpesvirus Infection in Populations of Australian Marsupials

    Science.gov (United States)

    Stalder, Kathryn; Vaz, Paola K.; Gilkerson, James R.; Baker, Rupert; Whiteley, Pam; Ficorilli, Nino; Tatarczuch, Liliana; Portas, Timothy; Skogvold, Kim; Anderson, Garry A.; Devlin, Joanne M.

    2015-01-01

    Herpesviruses have been reported in several marsupial species, but molecular classification has been limited to four herpesviruses in macropodids, a gammaherpesvirus in two antechinus species (Antechinus flavipes and Antechinus agilis), a gammaherpesvirus in a potoroid, the eastern bettong (Bettongia gaimardi) and two gammaherpesviruses in koalas (Phascolarctos cinereus). In this study we examined a range of Australian marsupials for the presence of herpesviruses using molecular and serological techniques, and also assessed risk factors associated with herpesvirus infection. Our study population included 99 koalas (Phascolarctos cinereus), 96 eastern grey kangaroos (Macropus giganteus), 50 Tasmanian devils (Sarcophilus harrisii) and 33 common wombats (Vombatus ursinius). In total, six novel herpesviruses (one alphaherpesvirus and five gammaherpesviruses) were identified in various host species. The overall prevalence of detection of herpesvirus DNA in our study population was 27.2% (95% confidence interval (CI) of 22.6–32.2%), but this varied between species and reached as high as 45.4% (95% CI 28.1–63.7%) in common wombats. Serum antibodies to two closely related macropodid herpesviruses (macropodid herpesvirus 1 and 2) were detected in 44.3% (95% CI 33.1–55.9%) of animals tested. This also varied between species and was as high as 92% (95% CI 74.0–99.0%) in eastern grey kangaroos. A number of epidemiological variables were identified as positive predictors for the presence of herpesvirus DNA in the marsupial samples evaluated. The most striking association was observed in koalas, where the presence of Chlamydia pecorum DNA was strongly associated with the presence of herpesvirus DNA (Odds Ratio = 60, 95% CI 12.1–297.8). Our results demonstrate the common presence of herpesviruses in Australian marsupials and provide directions for future research. PMID:26222660

  15. Prevalence and Clinical Significance of Herpesvirus Infection in Populations of Australian Marsupials.

    Directory of Open Access Journals (Sweden)

    Kathryn Stalder

    Full Text Available Herpesviruses have been reported in several marsupial species, but molecular classification has been limited to four herpesviruses in macropodids, a gammaherpesvirus in two antechinus species (Antechinus flavipes and Antechinus agilis, a gammaherpesvirus in a potoroid, the eastern bettong (Bettongia gaimardi and two gammaherpesviruses in koalas (Phascolarctos cinereus. In this study we examined a range of Australian marsupials for the presence of herpesviruses using molecular and serological techniques, and also assessed risk factors associated with herpesvirus infection. Our study population included 99 koalas (Phascolarctos cinereus, 96 eastern grey kangaroos (Macropus giganteus, 50 Tasmanian devils (Sarcophilus harrisii and 33 common wombats (Vombatus ursinius. In total, six novel herpesviruses (one alphaherpesvirus and five gammaherpesviruses were identified in various host species. The overall prevalence of detection of herpesvirus DNA in our study population was 27.2% (95% confidence interval (CI of 22.6-32.2%, but this varied between species and reached as high as 45.4% (95% CI 28.1-63.7% in common wombats. Serum antibodies to two closely related macropodid herpesviruses (macropodid herpesvirus 1 and 2 were detected in 44.3% (95% CI 33.1-55.9% of animals tested. This also varied between species and was as high as 92% (95% CI 74.0-99.0% in eastern grey kangaroos. A number of epidemiological variables were identified as positive predictors for the presence of herpesvirus DNA in the marsupial samples evaluated. The most striking association was observed in koalas, where the presence of Chlamydia pecorum DNA was strongly associated with the presence of herpesvirus DNA (Odds Ratio = 60, 95% CI 12.1-297.8. Our results demonstrate the common presence of herpesviruses in Australian marsupials and provide directions for future research.

  16. Detection of human herpesvirus 7 infection in young children presenting with exanthema subitum

    OpenAIRE

    Ivna de Melo Magalhães; Rebeca Vazquez Novo Martins; Renata Oliveira Vianna; Natalia Moysés; Larissa Alves Afonso; Solange Artimos de Oliveira; Silvia Maria Baeta Cavalcanti

    2011-01-01

    In this study, we assessed the prevalence of human herpesvirus-7 (HHV-7) in 141 serum samples from children less than four years of age with exanthematic disease. All samples were negative for measles, rubella, dengue fever and parvovirus B19 infection. Testing for the presence of human herpesvirus-6 (HHV-6)-specific high avidity IgG antibodies by indirect immunofluorescence assay (IFA) revealed two main groups: one composed of 57 patients with recent primary HHV-6 infection and another group...

  17. No Evidence of Herpesvirus Infection in West Highland White Terriers With Canine Idiopathic Pulmonary Fibrosis.

    Science.gov (United States)

    Roels, E; Dourcy, M; Holopainen, S; Rajamäki, M M; Gillet, L; Ehlers, B; Clercx, C

    2016-11-01

    In humans, horses, and rodents, an association between pulmonary fibrotic disorders and gammaherpesvirus infection has been suggested. In dogs, canine idiopathic pulmonary fibrosis (CIPF), a progressive fibrotic lung disease of unknown origin and poorly understood pathophysiology, has been reported to occur in West Highland white terriers (WHWTs). The present study investigated the potential association between CIPF and herpesvirus infection. A PCR assay, using a mixture of degenerate and deoxyinosine-substituted primers targeting highly conserved regions of the DNA polymerase gene (DPOL) of herpesviruses, was applied on both lung and blood samples from WHWTs affected with CIPF and controls. Herpesvirus DPOL sequence could not be amplified from any of 46 lung samples (28 affected WHWTs and 18 control dogs of various breeds) and 38 blood samples (19 CIPF WHWTs and 19 control age-matched WHWTs) included. An association between CIPF and herpesvirus infection is therefore unlikely. Investigation of other causes of the disease is warranted. © The Author(s) 2016.

  18. Systemic herpesvirus and morbillivirus co-infection in a striped dolphin (Stenella coeruleoalba).

    Science.gov (United States)

    Soto, S; González, B; Willoughby, K; Maley, M; Olvera, A; Kennedy, S; Marco, A; Domingo, M

    2012-01-01

    During 2007 a dolphin morbillivirus epizootic affected the western Mediterranean and several striped dolphins (Stenella coeruleoalba) stranded on the Catalonian coasts. One of those animals had severe lymphoid depletion, necrosis and syncytial formation in lymph nodes and spleen, with large basophilic nuclear inclusions compatible with herpesvirus detected by immunohistochemical and ultrastructural examination. Non-suppurative encephalitis with associated morbillivirus antigen and morbillivirus antigen within alveolar macrophages were also observed. A pan-herpesvirus nested polymerase chain reaction amplified a sequence virtually identical to two cetacean herpesvirus sequences previously identified in systemic infections in an Atlantic Cuvier's beaked whale (Ziphius cavirostris) and in a Mediterranean striped dolphin. The herpesviral infection was probably secondary to the immunosuppression caused by the morbillivirus. To our knowledge, this is the first report of a cetacean co-infected by dolphin morbillivirus and herpesvirus with evidence of lesions attributable to both viruses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Human herpesviruses respiratory infections in patients with acute respiratory distress (ARDS).

    Science.gov (United States)

    Bonizzoli, Manuela; Arvia, Rosaria; di Valvasone, Simona; Liotta, Francesco; Zakrzewska, Krystyna; Azzi, Alberta; Peris, Adriano

    2016-08-01

    Acute respiratory distress syndrome (ARDS) is today a leading cause of hospitalization in intensive care unit (ICU). ARDS and pneumonia are closely related to critically ill patients; however, the etiologic agent is not always identified. The presence of human herpes simplex virus 1, human cytomegalovirus and Epstein-Barr virus in respiratory samples of critically ill patients is increasingly reported even without canonical immunosuppression. The main aim of this study was to better understand the significance of herpesviruses finding in lower respiratory tract of ARDS patients hospitalized in ICU. The presence of this group of herpesviruses, in addition to the research of influenza viruses and other common respiratory viruses, was investigated in respiratory samples from 54 patients hospitalized in ICU, without a known microbiological causative agent. Moreover, the immunophenotype of each patient was analyzed. Herpesviruses DNA presence in the lower respiratory tract seemed not attributable to an impaired immunophenotype, whereas a significant correlation was observed between herpesviruses positivity and influenza virus infection. A higher ICU mortality was significantly related to the presence of herpesvirus infection in the lower respiratory tract as well as to impaired immunophenotype, as patients with poor outcome showed severe lymphopenia, affecting in particular T (CD3+) cells, since the first days of ICU hospitalization. In conclusion, these results indicate that herpesviruses lower respiratory tract infection, which occurs more frequently following influenza virus infection, can be a negative prognostic marker. An independent risk factor for ICU patients with ARDS is an impaired immunophenotype.

  20. Cloning and Analysis of microRNAs Encoded by the Primate γ-Herpesvirus Rhesus Monkey Rhadinovirus

    OpenAIRE

    Schäfer, Alexandra; Cai, Xuezhong; Bilello, John P.; Desrosiers, Ronald C; Cullen, Bryan R.

    2007-01-01

    Several pathogenic human herpesviruses have recently been shown to express virally encoded microRNAs in infected cells. Although the function of these microRNAs is largely unknown, they are hypothesized to play a role in mediating viral replication by down-regulating cellular mRNAs encoding antiviral factors. Here, we report the cloning and analysis of microRNAs encoded by Rhesus Monkey Rhadinovirus (RRV), an animal virus model for the pathogenic human γ-herpesvirus Kaposi’s Sarcoma-Associate...

  1. Epidemiology, disease and control of infections in ruminants by herpesviruses - an overview : review article

    Directory of Open Access Journals (Sweden)

    J.R. Patel

    2008-05-01

    Full Text Available There are at least 16 recognised herpesviruses that naturally infect cattle, sheep, goats and various species of deer and antelopes. Six of the viruses are recognised as distinct alphaherpesviruses and 9 as gammaherpesviruses. Buffalo herpesvirus (BflHV and ovine herpesvirus-1 (OvHV-1 remain officially unclassified. The prevalence of ruminant herpesviruses varies from worldwide to geographically restricted in distribution. Viruses in both subfamilies Alphaherpesvirinae and Gammaherpesvirinae cause mild to moderate and severe disease in respective natural or secondary ruminant hosts. Accordingly, the economic and ecological impact of the viruses is also variable. The molecular characteristics of some members have been investigated in detail. This has led to the identification of virulence-associated genes and construction of deletion mutants and recombinant viruses. Some of the latter have been developed as commercial vaccines. This paper aims to give an overview of the epidemiology and pathogenesis of infection by these viruses, immuno-prophylaxis and mechanisms of recovery from infection. Since there are 128 ruminant species in the family Bovidae, it is likely that some herpesviruses remain undiscovered. We conclude that currently known ruminant alphaherpesviruses occur only in their natural hosts and do not cross stably into other ruminant species. By contrast, gammaherpesviruses have a much broader host range as evidenced by the fact that antibodies reactive to alcelaphine herpesvirus type 1 have been detected in 4 subfamilies in the family Bovidae, namely Alcelaphinae, Hippotraginae, Ovibovinae and Caprinae. New gammaherpesviruses within these subfamilies are likely to be discovered in the future.

  2. Viral Interleukin-6: Role in Kaposi's Sarcoma-Associated Herpesvirus–Associated Malignancies

    Science.gov (United States)

    Sakakibara, Shuhei

    2011-01-01

    Viral interleukin-6 (vIL-6) is a product of Kaposi's sarcoma-associated herpesvirus (KSHV) expressed in latently infected cells and to a higher degree during viral replication. A distinctive feature of vIL-6 is the ability to directly bind and activate gp130 signaling in the absence of other receptor subunits. Secretion of vIL-6 is generally poor, but vIL-6 can activate gp130 from inside the cell. Due to the wide cell distribution of gp130, vIL-6 has the potential to induce a wide range of biological effects. Expression of vIL-6 is variable in KSHV-associated Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), multicentric Castleman's disease (MCD), and in a newly described MCD-like systemic inflammatory syndrome observed in human immunodeficiency virus-positive patients. PEL effusions usually contain vIL-6 at high concentrations; since vIL-6 induces vascular endothelial growth factor, vIL-6 likely contributes to vascular permeability and formation of PEL effusions. Lymph nodes affected with MCD contain vIL-6-positive cells, and vIL-6 levels rise in conjunction with flares of the disease and likely contribute to symptoms of inflammation. The development of vIL-6 inhibitors is a potentially important advance in the treatment of KSHV-associated malignancies where vIL-6 is expressed. PMID:21767154

  3. Detection of bovine herpesvirus 2 and bovine herpesvirus 4 DNA in trigeminal ganglia of naturally infected cattle by polymerase chain reaction.

    Science.gov (United States)

    Campos, F S; Franco, A C; Oliveira, M T; Firpo, R; Strelczuk, G; Fontoura, F E; Kulmann, M I R; Maidana, S; Romera, S A; Spilki, F R; Silva, A D; Hübner, S O; Roehe, P M

    2014-06-25

    Establishment of latent infection within specific tissues in the host is a common biological feature of the herpesviruses. In the case of bovine herpesvirus 2 (BoHV-2), latency is established in neuronal tissues, while bovine herpesvirus 4 (BoHV-4) and ovine herpesvirus 2 (OvHV-2) latent virus targets on cells of the monocytic lineage. This study was conducted in quest of BoHV-2, BoHV-4 and OvHV-2 DNA in two hundred trigeminal ganglia (TG) specimens, derived from one hundred clinically healthy cattle, majority of them naturally infected with bovine herpesvirus 1 (BoHV-1) and bovine herpesvirus 5 (BoHV-5). Total DNA extracted from ganglia was analyzed by polymerase chain reaction (PCR) designed to amplify part of the genes coding for BoHV-2, and BoHV-4 glycoprotein B and, for OvHV-2, the gene coding for phosphoribosylformylglycinamidine synthase-like protein. BoHV-2 DNA was detected in TG samples of two (2%) and BoHV-4 DNA in nine (9%) of the animals, whereas OvHV-2 DNA could not be detected in any of the TG DNA. The two animals in which BoHV-2 DNA was identified were also co-infected with BoHV-1 and BoHV-5. Within the nine animals in which BoHV-4 DNA was detected, six were also co-infected with BoHV-1 and BoHV-5. This report provides for the first time evidence that viral DNA from BoHV-2 and BoHV-4 can be occasionally detected in TG of naturally infected cattle. Likewise, in this report we provided for the first time evidence that the co-infection of cattle with three distinct bovine herpesviruses might be a naturally occurring phenomenon. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Herpesvirus Herpesvirus

    OpenAIRE

    A. Bascones-Martínez; X. Pousa-Castro

    2011-01-01

    El Herpesvirus (HSV) destaca por ser el principal responsable de un gran número de infecciones de la región orofacial, así como de la región genital. El virus del herpes simple es el prototipo de una gran familia de virus de doble cadena de ADN, los herpesviridiae, que causan una gran morbilidad en humanos. La infección en las células de la mucosa epitelial da lugar a una serie de signos clínicos y a la infección latente a nivel de las neuronas sensoriales. Durante la fase de infección produc...

  5. RNA N6-adenosine methylation (m6A) steers epitranscriptomic control of herpesvirus replication.

    Science.gov (United States)

    Ye, Fengchun

    2017-01-01

    Latency is a hallmark of all herpesviruses, during which the viral genomes are silenced through DNA methylation and suppressive histone modifications. When latent herpesviruses reactivate to undergo productive lytic replication, the suppressive epigenetic marks are replaced with active ones to allow for transcription of viral genes. Interestingly, by using Kaposi's sarcoma-associated herpesvirus (KSHV) as a model, we recently demonstrated that the newly transcribed viral RNAs are also subjected to post-transcriptional N6-adenosine methylation (m6A). Blockade of this post-transcriptional event abolishes viral protein expression and halts virion production. We found that m6A modification controls RNA splicing, stability, and protein translation to regulate viral lytic gene expression and replication. Thus, our finding for the first time reveals a critical role of this epitranscriptomic mechanism in the control of herpesviral replication, which shall shed lights on development of novel strategies for the control of herpesviral infection.

  6. Delta-9 tetrahydrocannabinol (THC inhibits lytic replication of gamma oncogenic herpesviruses in vitro

    Directory of Open Access Journals (Sweden)

    Friedman Herman

    2004-09-01

    Full Text Available Abstract Background The major psychoactive cannabinoid compound of marijuana, delta-9 tetrahydrocannabinol (THC, has been shown to modulate immune responses and lymphocyte function. After primary infection the viral DNA genome of gamma herpesviruses persists in lymphoid cell nuclei in a latent episomal circular form. In response to extracellular signals, the latent virus can be activated, which leads to production of infectious virus progeny. Therefore, we evaluated the potential effects of THC on gamma herpesvirus replication. Methods Tissue cultures infected with various gamma herpesviruses were cultured in the presence of increasing concentrations of THC and the amount of viral DNA or infectious virus yield was compared to those of control cultures. The effect of THC on Kaposi's Sarcoma Associated Herpesvirus (KSHV and Epstein-Barr virus (EBV replication was measured by the Gardella method and replication of herpesvirus saimiri (HVS of monkeys, murine gamma herpesvirus 68 (MHV 68, and herpes simplex type 1 (HSV-1 was measured by yield reduction assays. Inhibition of the immediate early ORF 50 gene promoter activity was measured by the dual luciferase method. Results Micromolar concentrations of THC inhibit KSHV and EBV reactivation in virus infected/immortalized B cells. THC also strongly inhibits lytic replication of MHV 68 and HVS in vitro. Importantly, concentrations of THC that inhibit virus replication of gamma herpesviruses have no effect on cell growth or HSV-1 replication, indicating selectivity. THC was shown to selectively inhibit the immediate early ORF 50 gene promoter of KSHV and MHV 68. Conclusions THC specifically targets viral and/or cellular mechanisms required for replication and possibly shared by these gamma herpesviruses, and the endocannabinoid system is possibly involved in regulating gamma herpesvirus latency and lytic replication. The immediate early gene ORF 50 promoter activity was specifically inhibited by THC

  7. Virulence and genotype of a bovine herpesvirus 1 isolate from semen of a subclinically infected bull

    NARCIS (Netherlands)

    Oirschot, van J.T.; Rijsewijk, F.A.M.; Straver, P.J.; Ruuls, R.C.; Quak, J.; Davidse, A.; Westenbrink, E.; Gielkens, A.L.J.; Dijk, van J.E.; Moerman, A.

    1995-01-01

    A bovine herpesvirus 1 (BHV-1) isolate from the semen of a subclinically infected bull was administered to cattle by various routes to assess its virulence. Cattle that were artificially inseminated or inoculated intrapreputially did not develop clinical signs, but did transmit the virus to contact

  8. Feline herpesvirus infection in a group of semi-captive cheetahs : case report

    Directory of Open Access Journals (Sweden)

    M. Van Vuuren

    1999-07-01

    Full Text Available Clinical disease caused by feline herpesvirus type-1 in wild felid species is similar to that in domestic cats. Herpesviruses are endemic in free-ranging lions in South Africa but actual clinical disease due to them has not been reported in free-ranging felids. The first reports of feline herpesvirus infection associated with clinical disease in wild felids came fromAustralia and the USA in 1970. Subsequent reports of clinical disease in cheetahs and other wild felid species were limited to captive animals. This report deals with clinical disease in a group of semi-captive cheetahs in which 18 animals were affected, and included 12 adult males, 4 adult females and 2 subadults. No mortalities occurred in this group, the most common clinical signs being sneezing, nasal discharge and loss of appetite.

  9. African great apes are naturally infected with roseoloviruses closely related to human herpesvirus 7.

    Science.gov (United States)

    Lavergne, Anne; Donato, Damien; Gessain, Antoine; Niphuis, Henk; Nerrienet, Eric; Verschoor, Ernst J; Lacoste, Vincent

    2014-11-01

    Primates are naturally infected with herpesviruses. During the last 15 years, the search for homologues of human herpesviruses in nonhuman primates allowed the identification of numerous viruses belonging to the different herpesvirus subfamilies and genera. No simian homologue of human herpesvirus 7 (HHV7) has been reported to date. To investigate the putative existence of HHV7-like viruses in African great apes, we applied the consensus-degenerate hybrid oligonucleotide primers (CODEHOP) program-mediated PCR strategy to blood DNA samples from the four common chimpanzee subspecies (Pan troglodytes verus, P. t. ellioti, P. t. troglodytes, and P. t. schweinfurthii), pygmy chimpanzees (Pan paniscus), as well as lowland gorillas (Gorilla gorilla gorilla). This study led to the discovery of a novel roseolovirus close to HHV7 in each of these nonhuman primate species and subspecies. Generation of the partial glycoprotein B (1,111-bp) and full-length DNA polymerase (3,036/3,042-bp) gene sequences allowed the deciphering of their evolutionary relationships. Phylogenetic analyses revealed that HHV7 and its African great ape homologues formed well-supported monophyletic lineages whose topological resemblance to the host phylogeny is suggestive of virus-host codivergence. Notably, the evolutionary branching points that separate HHV7 from African great ape herpesvirus 7 are remarkably congruent with the dates of divergence of their hosts. Our study shows that African great apes are hosts of human herpesvirus homologues, including HHV7 homologues, and that the latter, like other DNA viruses that establish persistent infections, have cospeciated with their hosts. Human herpesviruses are known to possess simian homologues. However, surprisingly, none has been identified to date for human herpesvirus 7 (HHV7). This study is the first to describe simian homologues of HHV7. The extensive search performed on almost all African great ape species and subspecies, i.e., common

  10. Recurrent ocular surface inflammation associated with human herpesvirus 6 infection.

    Science.gov (United States)

    Boto-de-los-Bueis, Ana; Romero Gómez, Maria P; del Hierro Zarzuelo, Almudena; Sanchez, Eugenia G; Mediero, Soraya; Noval, Susana

    2015-05-01

    To report a case of atypical herpes keratitis and bilateral conjunctivitis associated with human herpesvirus 6 (HHV-6). An immunocompetent 34-year-old man was referred for herpetic epithelial keratitis in his left eye, which was non-responsive to topical acyclovir. Biomicroscopy revealed a central dendritic ulcer with a white stromal infiltrate beneath the ulcer. The corneal scraping multiplex polymerase chain reaction (CLART ENTHERPEX, Genomica, Spain) was positive for HHV-6 and negative for herpes simplex virus, varicella zoster virus, cytomegalovirus, and Epstein-Barr virus. An improvement of the keratitis and visual acuity was achieved with topical fluorometholone and systemic valacyclovir. One year later, the patient complained of redness of the eyes. A slit-lamp examination disclosed bilateral follicular conjunctivitis, and HHV-6 DNA was once again detected in a conjunctival scraping of both eyes. Human herpesvirus 6 may be another causative agent for corneal ulcers and conjunctivitis in isolation. Stromal necrosis is a rare manifestation of herpetic dendritic keratitis. In these cases, we should consider the presence of HHV-6 in the differential diagnosis, even in immunocompetent patients.

  11. Herpesvirus-like respiratory infection in African penguins Spheniscus demersus admitted to a rehabilitation centre.

    Science.gov (United States)

    Parsons, Nola J; Gous, Tertius A; van Wilpe, Erna; Strauss, Venessa; Vanstreels, Ralph Eric

    2015-10-16

    Rehabilitation is an important strategy for the conservation of the Endangered African penguin Spheniscus demersus, and disease has been raised as a concern in the management of the species, both in the wild and in rehabilitation centres. We report 8 cases of herpesvirus-like respiratory infection in African penguin chicks undergoing rehabilitation between 2010 and 2013 at a facility in Cape Town, South Africa. Infection was confirmed through the identification of viral inclusions in the tracheal epithelium and demonstration of particles consistent with herpesvirus by electron microscopy, whereas virus isolation in eggs, serology and PCR testing failed to detect the virus. Only penguin chicks were affected; they were in poor body condition, and in 2 cases infection occurred prior to admission to the rehabilitation centre. The role played by the herpesvirus-like infection in the overall respiratory disease syndrome is uncertain, due to identification of lesions in only a small proportion of the chicks as well as to the occurrence of other concurrent pathological processes. Further studies are advised to characterise the specific virus involved through the development of sensitive diagnostic methods and to clarify the epidemiology and significance of these infections in wild African penguins.

  12. Host entry by gamma-herpesviruses--lessons from animal viruses?

    Science.gov (United States)

    Gillet, Laurent; Frederico, Bruno; Stevenson, Philip G

    2015-12-01

    The oncogenicity of gamma-herpesviruses (γHVs) motivates efforts to control them and their persistence makes early events key targets for intervention. Human γHVs are often assumed to enter naive hosts orally and infect B cells directly. However, neither assumption is supported by direct evidence, and vaccination with the Epstein-Barr virus (EBV) gp350, to block virion binding to B cells, failed to reduce infection rates. Thus, there is a need to re-evaluate assumptions about γHV host entry. Given the difficulty of analysing early human infections, potentially much can be learned from animal models. Genomic comparisons argue that γHVs colonized mammals long before humans speciation, and so that human γHVs are unlikely to differ dramatically in behaviour from those of other mammals. Murid Herpesvirus-4 (MuHV-4), which like EBV and the Kaposi's Sarcoma-associated Herpesvirus (KSHV) persists in memory B cells, enters new hosts via olfactory neurons and exploits myeloid cells to spread. Integrating these data with existing knowledge of human and veterinary γHVs suggests a new model of host entry, with potentially important implications for infection control. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Kaposi's Sarcoma Associated-Herpes Virus (KSHV Seroprevalence in Pregnant Women in South Africa

    Directory of Open Access Journals (Sweden)

    Malope-Kgokong Babatyi I

    2010-08-01

    Full Text Available Abstract Background Factors previously associated with Kaposi's sarcoma-associated herpesvirus (KSHV transmission in Africa include sexual, familial, and proximity to river water. We measured the seroprevalence of KSHV in relation to HIV, syphilis, and demographic factors among pregnant women attending public antenatal clinics in the Gauteng province of South Africa. Methods We tested for antibodies to KSHV lytic K8.1 and latent Orf73 antigens in 1740 pregnant women attending antenatal clinics who contributed blood to the "National HIV and Syphilis Sero-Prevalence Survey - South Africa, 2001". Information on HIV and syphilis serology, age, education, residential area, gravidity, and parity was anonymously linked to evaluate risk factors for KSHV seropositivity. Clinics were grouped by municipality regions and their proximity to the two main river catchments defined. Results KSHV seropositivity (reactive to either lytic K8.1 and latent Orf73 was nearly twice that of HIV (44.6% vs. 23.1%. HIV and syphilis seropositivity was 12.7% and 14.9% in women without KSHV, and 36.1% and 19.9% respectively in those with KSHV. Women who are KSHV seropositive were 4 times more likely to be HIV positive than those who were KSHV seronegative (AOR 4.1 95%CI: 3.4 - 5.7. Although, women with HIV infection were more likely to be syphilis seropositive (AOR 1.8 95%CI: 1.3 - 2.4, no association between KSHV and syphilis seropositivity was observed. Those with higher levels of education had lower levels of KSHV seropositivity compared to those with lower education levels. KSHV seropositivity showed a heterogeneous pattern of prevalence in some localities. Conclusions The association between KSHV and HIV seropositivity and a lack of common association with syphilis, suggests that KSHV transmission may involve geographical and cultural factors other than sexual transmission.

  14. Natural killer cells in herpesvirus infections [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Christian Münz

    2017-07-01

    Full Text Available Natural killer (NK cells are potent innate cytotoxic lymphocytes for the destruction of infected and transformed cells. Although they were originally considered to be ready-made assassins after their hematopoietic development, it has recently become clear that their activity is regulated by mechanisms such as repertoire composition, licensing, priming, and adaptive memory-like differentiation. Some of these mechanisms are influenced by infectious disease agents, including herpesviruses. In this review, we will compare expansion, stimulation, and effector functions of NK cell populations after infections with β- and γ1-herpesviruses because, though closely related, these pathogens seem to drive completely opposite NK cell responses. The discussed findings suggest that different NK cell subsets expand and perform protective functions during infectious diseases and might be used diagnostically to predict resistance to the causative pathogens as well as treat them by adoptive transfer of the respective populations.

  15. Caprine herpesvirus 1 (CpHV-1) vaginal infection of goats: clinical efficacy of fig latex.

    Science.gov (United States)

    Camero, Michele; Marinaro, Mariarosaria; Losurdo, Michele; Larocca, Vittorio; Bodnar, Livia; Patruno, Giovanni; Buonavoglia, Canio; Tempesta, Maria

    2016-01-01

    The latex of Ficus carica Linn. (Moraceae) has been shown to interfere with the replication of caprine herpesvirus (CpHV)-1 in vitro. The present study was undertaken to determine the efficacy of vaginal administration of fig latex in goats experimentally infected with CpHV-1. The fig latex reduced the clinical signs of the herpetic disease although it slightly influenced the titres of CpHV-1 shed. Thus, the fig latex maintained a partial efficacy in vivo.

  16. Serologic and molecular evidence for Testudinid herpesvirus 2 infection in wild Agassiz's desert tortoises, Gopherus agassizii.

    Science.gov (United States)

    Jacobson, Elliott R; Berry, Kristin H; Wellehan, James F X; Origgi, Francesco; Childress, April L; Braun, Josephine; Schrenzel, Mark; Yee, Julie; Rideout, Bruce

    2012-07-01

    Following field observations of wild Agassiz's desert tortoises (Gopherus agassizii) with oral lesions similar to those seen in captive tortoises with herpesvirus infection, we measured the prevalence of antibodies to Testudinid herpesvirus (TeHV) 3 in wild populations of desert tortoises in California. The survey revealed 30.9% antibody prevalence. In 2009 and 2010, two wild adult male desert tortoises, with gross lesions consistent with trauma and puncture wounds, respectively, were necropsied. Tortoise 1 was from the central Mojave Desert and tortoise 2 was from the northeastern Mojave Desert. We extracted DNA from the tongue of tortoise 1 and from the tongue and nasal mucosa of tortoise 2. Sequencing of polymerase chain reaction products of the herpesviral DNA-dependent DNA polymerase gene and the UL39 gene respectively showed 100% nucleotide identity with TeHV2, which was previously detected in an ill captive desert tortoise in California. Although several cases of herpesvirus infection have been described in captive desert tortoises, our findings represent the first conclusive molecular evidence of TeHV2 infection in wild desert tortoises. The serologic findings support cross-reactivity between TeHV2 and TeHV3. Further studies to determine the ecology, prevalence, and clinical significance of this virus in tortoise populations are needed.

  17. Association of classic lichen planus with human herpesvirus-7 infection.

    Science.gov (United States)

    Nahidi, Yalda; Tayyebi Meibodi, Naser; Ghazvini, Kiarash; Esmaily, Habibollah; Esmaeelzadeh, Maryam

    2017-01-01

    Lichen planus is a mucocutaneous papulosquamous itchy disease with unknown etiology. A number of factors such as immune mechanisms, viral agents, and drugs have been implicated in pathogenesis of lichen planus. In recent years, several studies have indicated the role of viral agents in this disease, including human herpesvirus-7 (HHV-7). Studies have given contradictory results, which is why we decided to study the possible association between lichen planus with HHV-7. In this case-control study, which was conducted on 60 cutaneous classic lichen planus samples as well as 60 healthy control skin samples after matching the two groups in terms of gender and age, tissue samples of patients and controls were studied by real time polymerase chain reaction to detect for HHV-7. According to this study, HHV-7 DNA was found in 18 samples of the case group (30.0%) and in six (10.0%) of the control group (P = 0.006). The results of this study support the likely role of HHV-7 in pathogenesis of lichen planus. As an exogenous antigen, this virus may be involved in cellular immune-mediated destruction of keratinocytes. © 2016 The International Society of Dermatology.

  18. Detection of human herpesvirus 7 infection in young children presenting with exanthema subitum.

    Science.gov (United States)

    Magalhães, Ivna de Melo; Martins, Rebeca Vazquez Novo; Vianna, Renata Oliveira; Moysés, Natalia; Afonso, Larissa Alves; Oliveira, Solange Artimos; Cavalcanti, Silvia Maria Baeta

    2011-05-01

    In this study, we assessed the prevalence of human herpesvirus-7 (HHV-7) in 141 serum samples from children less than four years of age with exanthematic disease. All samples were negative for measles, rubella, dengue fever and parvovirus B19 infection. Testing for the presence of human herpesvirus-6 (HHV-6)-specific high avidity IgG antibodies by indirect immunofluorescence assay (IFA) revealed two main groups: one composed of 57 patients with recent primary HHV-6 infection and another group of 68 patients showing signs of past HHV-6 infection. Another 16 samples had indeterminate primary HHV-6 infection, by both IgG IFA and IgM IFA. Serum samples were subjected to a nested polymerase chain reaction to detect the presence of HHV-7 DNA. Among patients with a recent primary HHV-6 infection, HHV-7 DNA was present in 1.7% of individuals; however, 5.8% of individuals tested positive for HHV-7 DNA in the group with past primary HHV-6 infection. Among the 16 samples with indeterminate diagnosis, 25% (4/16) had HHV-7 DNA (p exanthema. However, a relationship between clinical manifestations and the detection of virus DNA does not always exist. Therefore, a careful interpretation is necessary to diagnose a primary infection or a virus-associated disease. In conclusion, we detected HHV-7 DNA in young children from the state of Rio de Janeiro, Brazil.

  19. Detection of human herpesvirus 7 infection in young children presenting with exanthema subitum

    Directory of Open Access Journals (Sweden)

    Ivna de Melo Magalhães

    2011-05-01

    Full Text Available In this study, we assessed the prevalence of human herpesvirus-7 (HHV-7 in 141 serum samples from children less than four years of age with exanthematic disease. All samples were negative for measles, rubella, dengue fever and parvovirus B19 infection. Testing for the presence of human herpesvirus-6 (HHV-6-specific high avidity IgG antibodies by indirect immunofluorescence assay (IFA revealed two main groups: one composed of 57 patients with recent primary HHV-6 infection and another group of 68 patients showing signs of past HHV-6 infection. Another 16 samples had indeterminate primary HHV-6 infection, by both IgG IFA and IgM IFA. Serum samples were subjected to a nested polymerase chain reaction to detect the presence of HHV-7 DNA. Among patients with a recent primary HHV-6 infection, HHV-7 DNA was present in 1.7% of individuals; however, 5.8% of individuals tested positive for HHV-7 DNA in the group with past primary HHV-6 infection. Among the 16 samples with indeterminate diagnosis, 25% (4/16 had HHV-7 DNA (p < 0.002. We hypothesise that HHV-7 might be the agent that causes exanthema. However, a relationship between clinical manifestations and the detection of virus DNA does not always exist. Therefore, a careful interpretation is necessary to diagnose a primary infection or a virus-associated disease. In conclusion, we detected HHV-7 DNA in young children from the state of Rio de Janeiro, Brazil.

  20. Reduction in daily milk yield associated with subclinical bovine herpesvirus 1 infection.

    Science.gov (United States)

    Statham, J M E; Randall, L V; Archer, S C

    2015-10-03

    The aim of this observational cohort study was to investigate the potential economic impact of subclinical bovine herpesvirus 1 (BoHV-1) infection in a commercial UK dairy herd in terms of milk yield depression. Infection status of cows (infected or not infected) was assigned from serology on a single occasion. A multi-level linear model was used to evaluate the impact of infection status on milk production, using milk records that were routinely collected over two years. BoHV-1 seropositive cows produced 2.6 kg/day less milk over the study period compared with cows that were seronegative. This result highlights the importance of appropriate management of risks associated with subclinical infection with BoHV-1 as part of proactive herd health and production management. British Veterinary Association.

  1. THE IMPACT OF PERSISTENT HERPESVIRUS INFECTION ON IMMUNITY AND VACCINATION RESPONSE

    Directory of Open Access Journals (Sweden)

    Volyanskiy AYu

    2016-09-01

    Full Text Available In this review we summarize current knowledge on the ability of latent herpesviruses to modulate the immunity and response to vaccination. Nearly all humans are latently infected with multiple herpesviruses but little is known about virus-host interactions. Meanwhile, the study of the immune response to Epshtein-Barr virus (EBV and сytomegalovirus (CMV has revealed significant regulatory effects on the immune system. During the primary infection a human cytomegalovirus is predominately found in peripheral blood monocytes and polymorphonuclear leukocytes. However, the virus can not be replicated in these cells. CMV induces the survival and differentiation of infected monocytes into long-lived macrophages capable of supporting viral replication and the release of virions, which infect CD34+ myeloid progenitor cells. CMV latently persists in myeloid progenitor cells and monocytes and reactivates during their differentiation into macrophages. CMV-infected monocytes exhibit a unique reprogramming of their differentiation and secret both pro-inflammatory M1- and anti-inflammatory M2-associated cytokines. But cytomegalovirus induced macrophage phenotype skewed towards pro-inflammatory M1 type. MV has profound effects on the composition and function of both T cells and NK cells. CMV constantly reactivates during differentiation of monocytes into macrophages. Consequently, persons with latent CMV infection have substantially increased numbers and proportions of CD8+ T cells that lead to exhaustion and an early onset of immunosenescence. Also, it has been shown that the latent CMV virus infection markedly increases the proportion of NK cells expressing the activating NKG2C receptor. So, it has been proposed that CMV alters the composition of T cell and NK cell subsets and accelerates immune aging. Given the capacity of CMV to alter a macrophage, as well as NK and T cell responses it is reasonable to hypothesize that latent infection would alter the

  2. Concomitant infection of Neospora caninum and Bovine Herpesvirus type 5 in spontaneous bovine abortions

    Directory of Open Access Journals (Sweden)

    Maia S. Marin

    2013-11-01

    Full Text Available Bovine Herpesvirus type 5 (BoHV-5 has not been conclusively demonstrated to cause bovine abortion. Brain lesions produced by Neospora caninum and Bovine Herpesvirus type 1 (BoHV-1 exhibit common features. Therefore, careful microscopic evaluation and additional diagnostic procedures are required to achieve an accurate final etiological diagnosis. The aim of the present work was to investigate the occurrence of infections due to BoHV-1, BoHV-5 and N. caninum in 68 cases of spontaneous bovine abortions which showed microscopic lesions in the fetal central nervous system. This study allowed the identification of 4 (5.9% fetuses with dual infection by BoHV-5 and N. caninum and 33 (48.5% cases in which N. caninum was the sole pathogen identified. All cases were negative to BoHV-1. The results of this study provide evidence that dual infection by BoHV-5 and N. caninum occur during pregnancy in cattle; however, the role of BoHV-5 as a primary cause of bovine abortion needs further research. Molecular diagnosis of BoHV-5 and N. caninum confirmed the importance of applying complementary assays to improve the sensitivity of diagnosing bovine abortion.

  3. Fatal columbid herpesvirus-1 infections in three species of Australian birds of prey.

    Science.gov (United States)

    Phalen, D N; Holz, P; Rasmussen, L; Bayley, C

    2011-05-01

    We document columbid herpesvirus-1 (CoHV-1) infection in two barking owls (Ninox connivens), a powerful owl (Ninox strenua) and an Australian hobby (Falco longipennis). Antemortem signs of infection were non-specific and the birds either died soon after they were identified as ill or were found dead unexpectedly. Gross postmortem findings were also not specific. Microscopically, marked to massive splenic and hepatic necrosis with the presence of eosinophilic inclusion bodies in remaining splenocytes and hepatocytes was found in all birds. Herpesvirus virions were identified in liver sections from one of the boobook owls by electron microscopy. Using CoHV-1-specific primers and polymerase chain reaction, CoHV-1 DNA was amplified from tissue samples from all birds. A comparison of these sequences to previously reported sequences of CoHV-1 found them to be identical or to vary by a single base pair. These findings increase the number of known species of birds of prey that are susceptible to CoHV-1 infection and indicate that rock pigeons (Columbia livia) should not be included in the diet of captive Australian birds of prey. © 2011 The Authors. Australian Veterinary Journal © 2011 Australian Veterinary Association.

  4. Naturally transmitted herpesvirus papio-2 infection in a black and white colobus monkey.

    Science.gov (United States)

    Troan, Brigid V; Perelygina, Ludmila; Patrusheva, Irina; Wettere, Arnaud J van; Hilliard, Julia K; Loomis, Michael R; Voe, Ryan S De

    2007-12-15

    A 6.5-year-old female eastern black and white colobus monkey (Colobus guereza) was evaluated after acute onset of ataxia and inappetence. The monkey was ataxic and lethargic, but no other abnormalities were detected via physical examination, radiography, or clinicopathologic analyses. During the next 2 days, the monkey's clinical condition deteriorated, and its WBC count decreased dramatically. Cytologic examination of a CSF sample revealed marked lymphohistiocytic inflammation. Despite supportive care, the monkey became apneic; after 20 hours of mechanical ventilation, fatal cardiac arrest occurred. At necropsy, numerous petechiae were detected within the white matter tracts of the brain; microscopic lesions of multifocal necrosis and hemorrhage with intranuclear inclusions identified in the brain and adrenal glands were consistent with an acute herpesvirus infection. A specific diagnosis of herpesvirus papio-2 (HVP-2) infection was made on the basis of results of serologic testing; PCR assay of tissue specimens; live virus isolation from the lungs; and immunohistochemical identification of the virus within brain, spinal cord, and adrenal gland lesions. Via phylogenetic tree analysis, the colobus HVP-2 isolate was grouped with neuroinvasive strains of the virus. The virus was most likely transmitted to the colobus monkey through toys shared with a nearby colony of baboons (the natural host of HVP-2). To the authors' knowledge, this is the first reported case of natural transmission of HVP-2 to a nonhost species. Infection with HVP-2 should be a differential diagnosis for acute encephalopathy in primate monkeys and humans, particularly following exposure to baboons.

  5. Susceptibility of human placenta derived mesenchymal stromal/stem cells to human herpesviruses infection.

    Directory of Open Access Journals (Sweden)

    Simone Avanzi

    Full Text Available Fetal membranes (FM derived mesenchymal stromal/stem cells (MSCs are higher in number, expansion and differentiation abilities compared with those obtained from adult tissues, including bone marrow. Upon systemic administration, ex vivo expanded FM-MSCs preferentially home to damaged tissues promoting regenerative processes through their unique biological properties. These characteristics together with their immune-privileged nature and immune suppressive activity, a low infection rate and young age of placenta compared to other sources of SCs make FM-MSCs an attractive target for cell-based therapy and a valuable tool in regenerative medicine, currently being evaluated in clinical trials. In the present study we investigated the permissivity of FM-MSCs to all members of the human Herpesviridae family, an issue which is relevant to their purification, propagation, conservation and therapeutic use, as well as to their potential role in the vertical transmission of viral agents to the fetus and to their potential viral vector-mediated genetic modification. We present here evidence that FM-MSCs are fully permissive to infection with Herpes simplex virus 1 and 2 (HSV-1 and HSV-2, Varicella zoster virus (VZV, and Human Cytomegalovirus (HCMV, but not with Epstein-Barr virus (EBV, Human Herpesvirus-6, 7 and 8 (HHV-6, 7, 8 although these viruses are capable of entering FM-MSCs and transient, limited viral gene expression occurs. Our findings therefore strongly suggest that FM-MSCs should be screened for the presence of herpesviruses before xenotransplantation. In addition, they suggest that herpesviruses may be indicated as viral vectors for gene expression in MSCs both in gene therapy applications and in the selective induction of differentiation.

  6. Kaposi’s Sarcoma Herpesvirus Genome Persistence

    Directory of Open Access Journals (Sweden)

    Franceline Juillard

    2016-08-01

    Full Text Available Kaposi’s sarcoma-associated herpesvirus (KSHV has an etiologic role in Kaposi’s sarcoma, primary effusion lymphoma and multicentric Castleman’s disease. These diseases are most common in immunocompromised individuals, especially those with AIDS. Similar to all herpesviruses, KSHV infection is lifelong. KSHV infection in tumor cells is primarily latent, with only a small subset of cells undergoing lytic infection. During latency, the KSHV genome persists as a multiple copy, extrachromosomal episome in the nucleus. In order to persist in proliferating tumor cells, the viral genome replicates once per cell cycle and then segregates to daughter cell nuclei. KSHV only expresses several genes during latent infection. Prominent among these genes, is the latency-associated nuclear antigen (LANA. LANA is responsible for KSHV genome persistence and also exerts transcriptional regulatory effects. LANA mediates KSHV DNA replication and in addition, is responsible for segregation of replicated genomes to daughter nuclei. LANA serves as a molecular tether, bridging the viral genome to mitotic chromosomes to ensure that KSHV DNA reaches progeny nuclei. N-terminal LANA attaches to mitotic chromosomes by binding histones H2A/H2B at the surface of the nucleosome. C-terminal LANA binds specific KSHV DNA sequence and also has a role in chromosome attachment. In addition to the essential roles of N- and C-terminal LANA in genome persistence, internal LANA sequence is also critical for efficient episome maintenance. LANA’s role as an essential mediator of virus persistence makes it an attractive target for inhibition in order to prevent or treat KSHV infection and disease.

  7. Equine herpesvirus 2 (EHV-2 infection in thoroughbred horses in Argentina

    Directory of Open Access Journals (Sweden)

    Fernández Fernando M

    2005-11-01

    Full Text Available Abstract Background Equine herpesvirus 2 is a gamma-herpesvirus that infects horses worldwide. Although EHV-2 has been implicated in immunosuppression in foals, upper respiratory tract disease, conjunctivitis, general malaise and poor performance, its precise role as a pathogen remains uncertain. The purpose of the present study was to analyse the incidence of EHV-2 in an Argentinean horse population and correlate it with age and clinical status of the animals. Results A serological study on 153 thoroughbred racing horses confirmed the presence of EHV-2 in the Argentinean equine population. A virus neutralization test showed a total of 79.7 % animals were sero-positive for EHV-2. An increase in antibodies titre with age as well as infection at earlier ages were observed. EHV-2 was isolated from 2 out of 22 nasal swabs from horses showing respiratory symptoms. The virus grew slowly and showed characteristic cytopathic effect after several blind passages on RK13 cells. The identity of the isolates was confirmed by nested PCR and restriction enzyme assay (REA. Conclusion This is the first report on the presence of EHV-2 in Argentina and adds new data to the virus distribution map. Though EHV-2 was isolated from foals showing respiratory symptoms, further studies are needed to unequivocally associate this virus with clinical symptoms.

  8. Risk of Kaposi's sarcoma-associated herpes virus transmission from donor allografts among Italian posttransplant Kaposi's sarcoma patients.

    Science.gov (United States)

    Parravicini, C; Olsen, S J; Capra, M; Poli, F; Sirchia, G; Gao, S J; Berti, E; Nocera, A; Rossi, E; Bestetti, G; Pizzuto, M; Galli, M; Moroni, M; Moore, P S; Corbellino, M

    1997-10-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a newly discovered herpes virus found in all forms of Kaposi's sarcoma (KS) including KS among immunosuppressed transplant patients. It is unknown whether this virus is transmitted by organ transplantation or is reactivated during immunosuppression among those patients infected before transplantation. To investigate the risk of KSHV transmission during organ transplantation, we conducted a case-control study of transplant recipients with and without KS matched to their respective donors. Sera were collected at time of transplantation and tested in a randomized and blinded fashion using four KSHV serologic assays testing for antibodies to both latent and lytic phase antigens. Ten (91%) of 11 organ recipients who developed KS were seropositive prior to transplantation by one or more of the assays compared with two (12%) of 17 control organ recipients (OR = 75, 95% CI = 4.7, 3500). KS cases were more likely to have been born in southern Italy where KS is endemic than the recipient controls or either donor group. Only four (36%) of 11 donors to case patients and three (18%) of 17 donors to control patients were seropositive (P = .38, two-tailed Fisher's exact test). KSHV transmission could not be ruled out for the single KS patient seronegative at transplantation and clear evidence for organ-related transmission was found for another KS patient outside of the case-control study. Antibodies to KSHV are detectable in the sera from most transplant recipients before initiation of immunosuppressive treatment suggesting that KS among immunosuppressed transplant patients is primarily due to virus reactivation. KSHV transmission, however, from an infected allograft can occur, and our study reports the first documented case of person-to-person transmission of KSHV.

  9. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection

    Directory of Open Access Journals (Sweden)

    Diogo Piedade

    2016-06-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2, human cytomegalovirus (HCMV, human herpesvirus 8 (HHV-8, and the Epstein–Barr virus (EBV. In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis.

  10. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection.

    Science.gov (United States)

    Piedade, Diogo; Azevedo-Pereira, José Miguel

    2016-06-02

    MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein-Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis.

  11. CD1d expression and invariant NKT cell responses in herpesvirus infections

    Directory of Open Access Journals (Sweden)

    Rusung eTan

    2015-06-01

    Full Text Available Invariant natural killer T (iNKT cells are a highly conserved subset of unconventional T lymphocytes that express a canonical, semi-invariant T cell receptor (TCR and surface markers shared with the natural killer cell lineage. iNKT cells recognize exogenous and endogenous glycolipid antigens restricted by non-polymorphic CD1d molecules, and are highly responsive to the prototypical agonist, α-galactosylceramide. Upon activation, iNKT cells rapidly coordinate signaling between innate and adaptive immune cells through the secretion of proinflammatory cytokines, leading to the maturation of antigen-presenting cells and expansion of antigen-specific CD4+ and CD8+ T cells. Because of their potent immunoregulatory properties, iNKT cells have been extensively studied and are known to play a pivotal role in mediating immune responses against microbial pathogens including viruses. Here, we review evidence that herpesviruses manipulate CD1d expression to escape iNKT cell surveillance and establish lifelong latency in humans. Collectively, published findings suggest that iNKT cells play critical roles in anti-herpesvirus immune responses and could be harnessed therapeutically to limit viral infection and viral-associated disease.

  12. Human herpesvirus 6 in cerebrospinal fluid of patients infected with HIV: frequency and clinical significance

    Science.gov (United States)

    Bossolasco, S.; Marenzi, R.; Dahl, H.; Vago, L.; Terreni, M. R.; Broccolo, F.; Lazzarin, A.; Linde, A.; Cinque, P.

    1999-01-01

    The objective was to evaluate the frequency of human herpesvirus 6 (HHV-6) DNA detection in the CSF of patients infected with HIV and its relation to brain disease and systemic HHV-6 infection.
 Nested polymerase chain reaction (PCR) was used to analyse CSF samples from 365 consecutive HIV infected patients with neurological symptoms. When available, plasma and brain tissues from patients whose CSF was HHV-6 positive were also studied.
 HHV-6 was found in the CSF of eight of the 365 patients (2.2%): two had type A and four type B; the HHV-6 variant could not be defined in the remaining two. All eight patients had neurological symptoms and signs related to concomitant opportunistic brain diseases, including cytomegalovirus (CMV) encephalitis in five patients whose CSF was also positive for CMV-DNA. Opportunistic infections but no other unexplained lesions were also found in the brain of all of the four patients who underwent neuropathological examination. Both HHV-6 and CMV were also detected in the plasma of respectively five and seven of seven patients whose CSF was HHV-6 positive.
 In conclusion, HHV-6 type A or B DNA was infrequently found in the CSF of HIV infected patients, in association with both CMV brain infection and systemic HHV-6 replication. However, no certain relation between HHV-6 and brain disease was found.

 PMID:10567500

  13. LACK OF ASSOCIATION BETWEEN HERPESVIRUS DETECTION IN SALIVA AND GINGIVITIS IN HIV‑INFECTED CHILDREN.

    Science.gov (United States)

    Otero, Renata A; Nascimento, Flávia N N; Souza, Ivete P R; Silva, Raquel C; Lima, Rodrigo S; Robaina, Tatiana F; Câmara, Fernando P; Santos, Norma; Castro, Gloria F

    2015-01-01

    The aims of this study were to compare the detection of human herpesviruses (HHVs) in the saliva of HIV-infected and healthy control children, and to evaluate associations between viral infection and gingivitis and immunodeficiency. Saliva samples were collected from 48 HIV-infected and 48 healthy control children. Clinical and laboratory data were collected during dental visits and from medical records. A trained dentist determined gingival indices and extension of gingivitis. Saliva samples were tested for herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), varicella zoster virus (VZV), Epstein-Barr virus (EBV), and cytomegalovirus (CMV) by nested polymerase chain reaction assays. Thirty-five HIV-infected and 16 control children had gingivitis. Seventeen (35.4%) HIV-infected children and 13 (27%) control children were positive for HHVs. CMV was the most commonly detected HHV in both groups (HIV-infected, 25%; control, 12.5%), followed by HSV-1 (6.2% in both groups) and HSV-2 (HIV-infected, 4.2%; control, 8.3%). The presence of HHVs in saliva was not associated with the presence of gingivitis in HIV-1-infected children (p = 0.104) or healthy control children (p = 0.251), or with immunosuppression in HIV-infected individuals (p = 0.447). Gingivitis was correlated with HIV infection (p = 0.0001). These results suggest that asymptomatic salivary detection of HHVs is common in HIV-infected and healthy children, and that it is not associated with gingivitis.

  14. Detection of elephant endotheliotropic herpesvirus infection among healthy Asian elephants (Elephas maximus) in South India.

    Science.gov (United States)

    Stanton, Jeffrey J; Nofs, Sally A; Zachariah, Arun; Kalaivannan, N; Ling, Paul D

    2014-04-01

    Elephant endotheliotropic herpesviruses (EEHVs) can cause fatal hemorrhagic disease in Asian (Elephas maximus) and African (Loxodonta africana) elephants. Of the seven known EEHV species, EEHV1 is recognized as the most common cause of hemorrhagic disease among Asian elephants in human care worldwide. Recent data collected from ex situ Asian elephants located in multiple North American and European institutions suggest that subclinical EEHV1 infection is common in this population of elephants. Although fatal EEHV1-associated hemorrhagic disease has been reported in range countries, data are lacking regarding the prevalence of subclinical EEHV infections among in situ Asian elephants. We used previously validated EEHV-specific quantitative real-time PCR assays to detect subclinical EEHV infection in three regionally distinct Asian elephant cohorts, totaling 46 in situ elephants in South India, during October and November 2011. Using DNA prepared from trunk washes, we detected EEHV1, EEHV3/4, and EEHV5 at frequencies of 7, 9, and 20% respectively. None of the trunk washes was positive for EEHV2 or 6. At least one EEHV species was detectable in 35% (16/46) of the samples that were screened. These data suggest that subclinical EEHV infection among in situ Asian elephants occurs and that Asian elephants may be natural hosts for EEHV1, EEHV3 or 4, and EEHV5, but not EEHV2 and EEHV6. The methodology described in this study provides a foundation for further studies to determine prevalences of EEHV infection in Asian elephants throughout the world.

  15. Effects of the synthetic corticosteroid dexamethasone on bovine herpesvirus 1 productive infection.

    Science.gov (United States)

    Zhu, Liqian; Thompson, Jesse; Ma, Fangrui; Eudy, James; Jones, Clinton

    2017-05-01

    Sensory neurons are a primary site for life-long latency of bovine herpesvirus 1 (BoHV-1). The synthetic corticosteroid dexamethasone induces reactivation from latency and productive infection, in part because the BoHV-1 genome contains more than 100 glucocorticoid receptor (GR) responsive elements (GREs). Two GREs in the immediate early transcription unit 1 promoter are required for dexamethasone induction. Recent studies also demonstrated that the serum and glucocorticoid receptor protein kinase (SGK) family stimulated BoHV-1 replication. Consequently, we hypothesized that dexamethasone influences several aspects of productive infection. In this study, we demonstrated that dexamethasone increased expression of the immediate early protein bICP4, certain late transcripts, and UL23 (thymidine kinase) by four hours after infection. SGK1 expression and Akt phosphorylation were also stimulated during early stages of infection and dexamethasone treatment further increased this effect. These studies suggest that stress, as mimicked by dexamethasone treatment, has the potential to stimulate productive infection by multiple pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Binding of transmembrane mucins to galectin-3 limits herpesvirus 1 infection of human corneal keratinocytes.

    Science.gov (United States)

    Woodward, A M; Mauris, J; Argüeso, P

    2013-05-01

    Epithelial cells lining mucosal surfaces impose multiple barriers to viral infection. At the ocular surface, the carbohydrate-binding protein galectin-3 maintains barrier function by cross-linking transmembrane mucins on the apical glycocalyx. Despite these defense mechanisms, many viruses have evolved to exploit fundamental cellular processes on host cells. Here, we use affinity assays to show that herpes simplex virus type 1 (HSV-1), but not HSV-2, binds human galectin-3. Knockdown of galectin-3 in human corneal keratinocytes by small interfering RNA significantly impaired HSV-1 infection, but not expression of nectin-1, indicating that galectin-3 is a herpesvirus entry mediator. Interestingly, exposure of epithelial cell cultures to transmembrane mucin isolates decreased viral infectivity. Moreover, HSV-1 failed to elute the biological counterreceptor MUC16 from galectin-3 affinity columns, suggesting that association of transmembrane mucins to galectin-3 provides protection against viral infection. Together, these results indicate that HSV-1 exploits galectin-3 to enhance virus attachment to host cells and support a protective role for transmembrane mucins under physiological conditions by masking viral entry mediators on the epithelial glycocalyx.

  17. Update on infections with human herpesviruses 6A, 6B, and 7.

    Science.gov (United States)

    Agut, H; Bonnafous, P; Gautheret-Dejean, A

    2017-03-01

    Human herpesviruses 6A, 6B, and 7 (HHV-6A, HHV-6B, HHV-7) are genetically related to cytomegalovirus. They belong to the Roseolovirus genus and to the Betaherpesvirinae subfamily. They infect T cells, monocytes-macrophages, epithelial cells, and central nervous system cells. These viruses are ubiquitous and are responsible for lifelong chronic infections, most often asymptomatic, in the vast majority of the general adult population. HHV-6B is responsible for exanthema subitum, which is a benign disease of infants. HHV-6A and HHV-6B also cause opportunistic infections in immunocompromised patients: encephalitis, hepatitis, bone marrow suppression, colitis, and pneumonitis. Their etiological role in chronic diseases such as multiple sclerosis, cardiomyopathy, and thyroiditis is still controversial. The pathogenicity of HHV-7 is less clear and seems to be much more restricted. Chromosomal integration of HHV-6A and HHV-6B is transmissible from parents to offspring and observed in about 1% of the general population. This integration raises the question of potential associated diseases and can be a confounding factor for the diagnosis of active infections by both viruses. The diagnosis of HHV-6A, HHV-6B, and HHV-7 infections is rather based on gene amplification (PCR), which allows for the detection and quantification of the viral genome, than on serology, which is mainly indicated in case of primary infection. Ganciclovir, foscarnet, and cidofovir inhibit the replication of HHV-6A, HHV-6B, and HHV-7. Severe infections may thus be treated but these therapeutic indications are still poorly defined. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Prevalence of canid herpesvirus-1 infection in stillborn and dead neonatal puppies in Denmark.

    Science.gov (United States)

    Larsen, Rikke W; Kiupel, Matti; Balzer, Hans-Jörg; Agerholm, Jørgen S

    2015-01-08

    Canid herpesvirus-1 (CaHV-1) infection in puppies less than three weeks of age is often reported to be associated with a lethal generalized necrotizing inflammation and since the discovery of the virus in 1965 several reports of neonatal infections have been published. However, the significance of CaHV-1 for peri- and neonatal mortality in puppies remains unclear. Therefore, we examined stillborn and dead neonatal puppies in Denmark to determine the prevalence of infection and further to correlate infection levels with necropsy findings to assess the possible significance of the infection. From a cross-sectional study of 57 dead puppies, 22.8% (n = 13) were confirmed positive for CaHV-1 by real-time polymerase chain reaction (PCR) of tissue pools of lung/liver and/or spleen/kidney. Specimens from PCR positive cases were further investigated by histology and in situ hybridization (ISH). High levels of CaHV-1 DNA were present in only one case in which lesions and ISH staining consistent with CaHV-1 infection were found as well. CaHV-1 concentrations in the other cases were low and a range of lesions not consistent with CaHV-1 were found. Similar, ISH staining was mostly negative in these except for one case with a few positive cells. CaHV-1 infection in stillborn and dead neonatal puppies in Denmark seems to be common, but the direct significance for puppy mortality remains unclear as only one of 13 PCR positive puppies (7.7%) had pathognomonic lesions.

  19. Inhibition of the phosphatidylinositol 3-kinase-Akt pathway enhances gamma-2 herpesvirus lytic replication and facilitates reactivation from latency.

    Science.gov (United States)

    Peng, Li; Wu, Ting-Ting; Tchieu, Jason H; Feng, Jun; Brown, Helen J; Feng, Jiaying; Li, Xudong; Qi, Jing; Deng, Hongyu; Vivanco, Igor; Mellinghoff, Ingo K; Jamieson, Christina; Sun, Ren

    2010-02-01

    Cellular signalling pathways are critical in regulating the balance between latency and lytic replication of herpesviruses. Here, we investigated the effect of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway on replication of two gamma-2 herpesviruses, murine gammaherpesvirus-68 (MHV-68) and human herpesvirus-8/Kaposi's sarcoma-associated herpesvirus (HHV-8/KSHV). We found that de novo infection of MHV-68 induced PI3K-dependent Akt activation and the lytic replication of MHV-68 was enhanced by inhibiting the PI3K-Akt pathway with both chemical inhibitors and RNA interference technology. Inhibiting the activity of Akt using Akt inhibitor VIII also facilitated the reactivation of KSHV from latency. Both lytic replication and latency depend on the activity of viral transactivator RTA and we further show that the activity of RTA is increased by reducing Akt1 expression. The data suggest that the PI3K-Akt pathway suppresses the activity of RTA and thereby contributes to the maintenance of viral latency and promotes tumorigenesis.

  20. Serologic and molecular evidence for testudinid herpesvirus 2 infection in wild Agassiz’s desert tortoise, Gopherus agassizii

    Science.gov (United States)

    Jacobson, Elliott R.; Berry, Kristin H.; Wellehan, James F. X.; Origgi, Francesco; Childress, April L.; Braun, Josephine; Schrenzel, Mark; Yee, Julie; Rideout, Bruce

    2012-01-01

    Following field observations of wild Agassiz’s desert tortoises (Gopherus agassizii) with oral lesions similar to those seen in captive tortoises with herpesvirus infection, we measured the prevalence of antibodies to Testudinid herpesvirus (TeHV) 3 in wild populations of desert tortoises in California. The survey revealed 30.9% antibody prevalence. In 2009 and 2010, two wild adult male desert tortoises, with gross lesions consistent with trauma and puncture wounds, respectively, were necropsied. Tortoise 1 was from the central Mojave Desert and tortoise 2 was from the northeastern Mojave Desert. We extracted DNA from the tongue of tortoise 1 and from the tongue and nasal mucosa of tortoise 2. Sequencing of polymerase chain reaction products of the herpesviral DNA-dependent DNA polymerase gene and the UL39 gene respectively showed 100% nucleotide identity with TeHV2, which was previously detected in an ill captive desert tortoise in California. Although several cases of herpesvirus infection have been described in captive desert tortoises, our findings represent the first conclusive molecular evidence of TeHV2 infection in wild desert tortoises. The serologic findings support cross-reactivity between TeHV2 and TeHV3. Further studies to determine the ecology, prevalence, and clinical significance of this virus in tortoise populations are needed.

  1. Herpesviruses shape tumour microenvironment through exosomal transfer of viral microRNAs.

    Directory of Open Access Journals (Sweden)

    Ohad Yogev

    2017-08-01

    Full Text Available Metabolic changes within the cell and its niche affect cell fate and are involved in many diseases and disorders including cancer and viral infections. Kaposi's sarcoma-associated herpesvirus (KSHV is the etiological agent of Kaposi's sarcoma (KS. KSHV latently infected cells express only a subset of viral genes, mainly located within the latency-associated region, among them 12 microRNAs. Notably, these miRNAs are responsible for inducing the Warburg effect in infected cells. Here we identify a novel mechanism enabling KSHV to manipulate the metabolic nature of the tumour microenvironment. We demonstrate that KSHV infected cells specifically transfer the virus-encoded microRNAs to surrounding cells via exosomes. This flow of genetic information results in a metabolic shift toward aerobic glycolysis in the surrounding non-infected cells. Importantly, this exosome-mediated metabolic reprogramming of neighbouring cells supports the growth of infected cells, thereby contributing to viral fitness. Finally, our data show that this miRNA transfer-based regulation of cell metabolism is a general mechanism used by other herpesviruses, such as EBV, as well as for the transfer of non-viral onco-miRs. This exosome-based crosstalk provides viruses with a mechanism for non-infectious transfer of genetic material without production of new viral particles, which might expose them to the immune system. We suggest that viruses and cancer cells use this mechanism to shape a specific metabolic niche that will contribute to their fitness.

  2. Antibodies to ovine herpesvirus 2 glycoproteins decrease virus infectivity and prevent malignant catarrhal fever in rabbits.

    Science.gov (United States)

    Cunha, Cristina W; Knowles, Donald P; Taus, Naomi S; O'Toole, Donal; Nicola, Anthony V; Aguilar, Hector C; Li, Hong

    2015-02-25

    Ovine herpesvirus-2 (OvHV-2) is the etiological agent of sheep-associated malignant catarrhal fever (SA-MCF), a fatal lymphoproliferative disease of many species in the order Artiodactyla. Development of a vaccine is critical to prevent mortality. Because OvHV-2 has not been cultured in vitro, SA-MCF research is hindered by the lack of in vitro tools to study viral constituents and specific host immune responses. As an alternative, in this study the neutralizing activity of antibodies against OvHV-2 glycoproteins gB and gH/gL was evaluated in vivo using rabbits. OvHV-2-specific antibodies were developed in rabbits by immunization using biolistic delivery of plasmids expressing the genes of interest. A lethal dose of OvHV-2 was incubated with the antisera and then nebulized into rabbits. Virus neutralization was assessed by measuring infection parameters associated with the virus infectious dose. Anti-gB or anti-gH/gL antibodies alone blocked infection in five out of six rabbits (83%), while a combination of anti-gB and anti-gH/gL antibodies protected all six rabbits (100%) from infection. These results indicate that antibodies to OvHV-2 gB and gH/gL are capable of neutralizing virions, and consequently, reduce virus infectivity and prevent SA-MCF in rabbits. Thus, OvHV-2 gB and gH/gL are suitable targets to be tested in a SA-MCF vaccine aimed at stimulating neutralizing antibody responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Current status of herpesvirus identification in the oral cavity of HIV-infected children

    Directory of Open Access Journals (Sweden)

    Raquel dos Santos Pinheiro

    2013-01-01

    Full Text Available INTRODUCTION: Some viruses of the Herpesviridae family are frequently the etiologic agents of oral lesions associated with HIV. The aim of this study was to identify the presence of herpes simplex virus types 1 and 2 (HSV-1, HSV-2, Varicella Zoster virus (VZV, Epstein-Barr virus (EBV, human cytomegalovirus (HCMV, human herpesvirus type 6, type 7 and type 8 (HHV-6, HHV-7 and HHV-8 in the oral cavity of HIV-infected children/adolescents and verify the association between viral subtypes and clinical factors. METHODS: The cells of oral mucosa were collected from 50 HIV infected children/adolescents, 3-13 years old (mean age 8.66. The majority (66% of selected were girls, and they were all outpatients at the pediatric AIDS clinic of a public hospital in Rio de Janeiro. Nested-PCR was used to identify the viral types. RESULTS: Absence of immunosuppression was observed in 66% of the children. Highly active antiretroviral therapy (HAART was used by 72.1% of selected and moderate viral load was observed in 56% of the children/adolescents. Viral types were found in 86% of the children and the subtypes were: HSV-1 (4%, HSV-2 (2%, VZV (4%, EBV (0%, HCMV (24%, HHV6 (18%, HHV-7 (68%, HHV8 (0%. CONCLUSIONS: The use of HAART has helped to reduce oral lesions, especially with herpes virus infections. The health professionals who work with these patients should be aware of such lesions because of their predictive value and the herpes virus can be found circulating in the oral cavity without causing lesions.

  4. Respiratory and neurological disease in rabbits experimentally infected with equid herpesvirus 1.

    Science.gov (United States)

    Kanitz, Fábio A; Cargnelutti, Juliana F; Anziliero, Deniz; Gonçalves, Kelley V; Masuda, Eduardo K; Weiblen, Rudi; Flores, Eduardo F

    2015-10-01

    Equid herpesvirus type 1 (EHV-1) is an important pathogen of horses worldwide, associated with respiratory, reproductive and/or neurological disease. A mouse model for EHV-1 infection has been established but fails to reproduce some important aspects of the viral pathogenesis. Then, we investigated the susceptibility of rabbits to EHV-1 aiming at proposing this species as an alternative model for EHV-1 infection. Weanling rabbits inoculated intranasal with EHV-1 Kentucky D (10(7) TCID50/animal) shed virus in nasal secretions up to day 8-10 post-inoculation (pi), presented viremia up to day 14 pi and seroconverted to EHV-1 (virus neutralizing titers 4 to 64). Most rabbits (75%) developed respiratory disease, characterized by serous to hemorrhagic nasal discharge and mild to severe dyspnea. Some animals (20%) presented neurological signs as circling, bruxism and opisthotonus. Six animals died during acute disease (days 3-6); infectious virus and/or viral DNA were detected in the lungs, trigeminal ganglia (TG), olfactory bulbs (OBs) and cerebral cortex/brain (CC). Histological examination showed necrohemorrhagic, multifocal to coalescent bronchointerstitial pneumonia and diffuse alveolar edema. In two rabbits euthanized at day 50 pi, latent EHV-1 DNA was detected in the OBs. Dexamethasone administration at day 50 pi resulted in virus reactivation, demonstrated by virus shedding, viremia, clinical signs, and increase in VN titers and/or by detection of virus DNA in lungs, OBs, TGs and/or CC. These results demonstrate that rabbits are susceptible to EHV-1 infection and develop respiratory and neurological signs upon experimental inoculation. Thus, rabbits may be used to study selected aspects of EHV-1 biology and pathogenesis, extending and complementing the mouse model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Serological and biomolecular survey on canine herpesvirus-1 infection in a dog breeding kennel.

    Science.gov (United States)

    Bottinelli, Marco; Rampacci, Elisa; Stefanetti, Valentina; Marenzoni, Maria Luisa; Malmlov, Ashley M; Coletti, Mauro; Passamonti, Fabrizio

    2016-06-01

    Canine herpesvirus-1 (CaHV-1) is a globally distributed pathogen causing reproductive, respiratory, ocular and neurological disorders in adult dogs and neonatal death in puppies. This pathogen is considered poorly immunogenic, and neutralizing antibodies are found for only a short time following exposure. Further, seroprevalence can be affected by several epidemiological factors. A virological survey was conducted in a high-density population breeding kennel in Central Italy. There were several factors predisposing animals to CaHV-1 infection, such as age, number of pregnancies, experience with mating and dog shows, cases of abortion, management and environmental hygiene. Serum neutralization (SN) and nested PCR assays were used to estimate prevalence of CaHV-1. None of the submitted samples tested positive for nested PCR, and none of the sera tested CaHV-1 positive. No association was observed between antibody titers and risk factors, and no sign of viral reactivation was detected in either males or females. These results suggest that CaHV-1 is not circulating within this kennel and that further studies are needed in order to better understand the distribution of the virus within Italy.

  6. Experimental Infection of New Zealand White Rabbits (Oryctolagus cuniculi) with Leporid herpesvirus 4

    Science.gov (United States)

    Sunohara-Neilson, Janet R; Brash, Marina; Carman, Susy; Nagy, Éva; Turner, Patricia V

    2013-01-01

    Leporid herpesvirus 4 (LHV4) is a novel alphaherpesvirus recently identified in domestic rabbits (Oryctolagus cuniculi). Little is known about the pathogenesis or time course of disease induced by this virus. We therefore intranasally inoculated 22 female New Zealand white rabbits with 8.4 × 104 CCID50 of a clinical viral isolate. Rabbits were monitored for clinical signs, viral shedding in oculonasal secretions, and development and persistence of serum antibodies. Rabbits were euthanized at 3, 5, 7, 14, and 22 d postinfection (dpi) to evaluate gross and microscopic changes. Clinical signs were apparent between 3 to 8 dpi, and included oculonasal discharge, respiratory distress, and reduced appetite, and viral shedding occurred between 2 and 8 dpi. Seroconversion was seen at 11 dpi and persisted to the end of the study (day 22). Severe necrohemorrhagic bronchopneumonia and marked pulmonary edema were noted by 5 dpi and were most severe at 7 dpi. Pulmonary changes largely resolved by 22 dpi. In addition, multifocal splenic necrosis was present at 5 dpi and progressed to submassive necrosis by 7 dpi. Eosinophilic herpesviral intranuclear inclusion bodies were detected in the nasal mucosa, skin, spleen, and lung between 3 to 14 dpi. LHV4 is a pathogen that should be considered for rabbits that present with acute respiratory disease. LHV4 infection can be diagnosed based on characteristic microscopic changes in the lungs and spleen and by virus isolation. Serum antibody levels may be used to monitor viral prevalence in colonies. PMID:24210019

  7. Conjunctivitis, tracheitis, and pneumonia associated with herpesvirus infection in green sea turtles.

    Science.gov (United States)

    Jacobson, E R; Gaskin, J M; Roelke, M; Greiner, E C; Allen, J

    1986-11-01

    Fourteen juvenile (15- to 20-month-old) green sea turtles (Chelonia mydas), representative of a group of sea turtles with clinical signs of respiratory tract disease, were euthanatized and submitted for necropsy. Macroscopically, lesions included periglottal necrosis, tracheitis with intraluminal caseous and laminated necrotic debris, and severe pneumonia. Several turtles had caseous conjunctival exudate covering the eyes. Microscopically, the turtles had fibrinonecrotic inflammation around the glottal opening, tracheitis, and severe bronchopneumonia and interstitial pneumonia. In multifocal areas, periglottal and tracheal epithelial cells adjacent to areas of necrosis had hypertrophic nuclei with amphophilic intranuclear inclusions. A mixed population of primarily gram-negative microorganisms was isolated from the tracheal and glottal lesions. Attempts at viral isolation in cultures of green sea turtle kidney cells resulted in the development of cytopathic effects characterized by giant cell formation and development of intranuclear inclusions. Using electron microscopy, intranuclear viral particles (88 to 99 nm in diameter) were seen in inclusion-containing tracheal and glottal epithelial cells and infected green sea turtle kidney cells; particles were consistently seen enveloping from nuclear membranes, and mature particles (132 to 147 nm) were found in the cytoplasm. On the basis of size, conformation, location, and presence of an envelope, the particles most closely resembled those of herpes-viruses.

  8. Quantitative molecular viral loads in 7 horses with naturally occurring equine herpesvirus-1 infection.

    Science.gov (United States)

    Estell, K E; Dawson, D R; Magdesian, K G; Swain, E; Laing, S T; Siso, S; Mapes, S; Pusterla, N

    2015-11-01

    Data associating quantitative viral load with severity, clinical signs and survival in equine herpesvirus-1 myeloencephalopathy (EHM) have not been reported. To report the clinical signs, treatment, and temporal progression of viral loads in 7 horses with naturally occurring EHM and to examine the association of these factors with survival. Retrospective case series. The population included 7 horses with EHM presented to the University of California, Davis William R. Pritchard Veterinary Medical Teaching Hospital from May to September 2011. Horses were graded using a neurological grading scale. Daily quantitative PCR was performed on nasal secretions and whole blood. Treatment, survival, outcome and histopathology were reported. At presentation, one horse was neurological grade 5/5, 3 were grade 4/5 and 3 were grade 3/5. All were treated with anti-inflammatory drugs, valacyclovir and management in a sling if necessary. All were infected with equine herpesvirus-1 of DNA polymerase D752 genotype. Peak viral load in nasal secretions and blood of 5 survivors ranged from 6.9 × 10(3) to 2.81 × 10(5) (median 5.11 × 10(4) ) and from 143 to 4340 gB gene copies/million eukaryotic cells (median 3146), respectively. The 2 nonsurvivors presented with grade 3/5 neurological signs and progressed to encephalopathy. Peak viral load was higher in nonsurvivors, with levels in nasal secretions of 1.9 × 10(9) and 2.2 × 10(9) and in blood of 2.05 × 10(4) and 1.02 × 10(5) gB gene copies/million eukaryotic cells. Case fatality was 2/7. Nonsurvivors had viral loads 1000-fold higher in nasal secretions and 10-fold higher in blood than survivors. There was no relationship between severity of clinical signs at presentation and survival. Thus, encephalopathy and high viral load were negatively associated with survival in this population. Further research should be performed to determine whether high viral loads are associated with encephalopathy and poor prognosis. The Summary is

  9. Mustelid herpesvirus-2, a novel herpes infection in northern sea otters (Enhydra lutris kenyoni).

    Science.gov (United States)

    Tseng, Marion; Fleetwood, Michelle; Reed, Aimee; Gill, Verena A; Harris, R Keith; Moeller, Robert B; Lipscomb, Thomas P; Mazet, Jonna A K; Goldstein, Tracey

    2012-01-01

    Oral ulcerations and plaques with epithelial eosinophilic intranuclear inclusions were observed in northern sea otters (Enhydra lutris kenyoni) that died or were admitted for rehabilitation after the 1989 Exxon Valdez oil spill (EVOS) in Alaska, USA. Transmission electron microscopy demonstrated the presence of herpesviral virions. Additionally, a serologic study from 2004 to 2005 found a high prevalence of exposure to a herpesvirus in live-captured otters. Tissues from 29 otters after the EVOS and nasal swabs from 83 live-captured otters in the Kodiak Archipelago were tested for herpesviral DNA. Analysis identified a novel herpesvirus in the gamma subfamily, most closely related to Mustelid herpesvirus-1 from badgers. Results indicated that this herpesvirus is associated with ulcerative lesions but is also commonly found in secretions of healthy northern sea otters.

  10. Validation of a sensitive PCR assay for the detection of Chelonid fibropapilloma-associated herpesvirus in latent turtle infections

    DEFF Research Database (Denmark)

    Alfaro Nuñez, Luis Alonso; Gilbert, M Thomas P

    2014-01-01

    The Chelonid fibropapilloma-associated herpesvirus (CFPHV) is hypothesized to be the causative agent of fibropapillomatosis, a neoplastic disease in sea turtles, given its consistent detection by PCR in fibropapilloma tumours. CFPHV has also been detected recently by PCR in tissue samples from...... assay. Thus, a new assay for the detection of CFPHV DNA markers is presented, and adoption of its methodology is recommended in future CFPHV screens among sea turtles....... clinically healthy (non exhibiting fibropapilloma tumours) turtles, thus representing presumably latent infections of the pathogen. Given that template copy numbers of viruses in latent infections can be very low, extremely sensitive PCR assays are needed to optimize detection efficiency. In this study...

  11. Impact of ethanolic lamiaceae extracts on herpesvirus infectivity in cell culture.

    Science.gov (United States)

    Reichling, Jürgen; Nolkemper, Silke; Stintzing, Florian C; Schnitzler, Paul

    2008-12-01

    Extracts of medicinal plants are increasingly of interest as novel drugs for antimicrobial and antiviral agents, since microorganisms might develop resistance to commonly used antimicrobial or antiviral agents. Ethanolic extracts from Lamiaceae plants prunella, peppermint, rosemary and thyme were phytochemically characterised. The inhibitory activity of four 20% ethanolic plant extracts and four 80% ethanolic extracts against herpes simplex virus (HSV) strains was tested in cell culture. Rosmarinic acid, a typical compound in Lamiaceae species, was identified in the extracts except for thyme 20% ethanolic extract. In addition, some other phenolic compounds such as apigenin- and luteolin-derivatives were identified in different amounts. All extracts exhibited high and concentration-dependent levels of antiviral activity against free acyclovir-sensitive and acyclovir-resistant HSV-1 strains with 50% inhibitory concentrations of 0.05-0.82 microg/ml. Mechanistically, exposure of free virions as well as host cells to prunella and peppermint 80% ethanolic extracts at maximum non-cytotoxic concentrations prior to infection reduced plaque formation drastically. Thus, both extracts revealed a dual mode of action similar to aqueous lemon balm extracts. Since infectivity of acyclovir-susceptible and acyclovir-resistant HSV strains was significantly reduced with Lamiaceae extracts, the results obtained indicate that ethanolic plant extracts affected herpesvirus prior to and during adsorption and in a different way than acyclovir. Based on its dual mode of action, e.g. antiviral effect against free virions and blocking virus attachment to host cells, prunella and peppermint 80% ethanolic extracts are promising antiviral agents in recurrent herpes labialis for topical therapeutic applications. 2008 S. Karger AG, Basel.

  12. Herpesviruses in human periodontal disease.

    Science.gov (United States)

    Contreras, A; Slots, J

    2000-02-01

    Recent studies have identified various herpesviruses in human periodontal disease. Epstein-Barr virus type 1 (EBV-1) infects periodontal B-lymphocytes and human cytomegalovirus (HCMV) infects periodontal monocytes/ macrophages and T-lymphocytes. EBV-1, HCMV and other herpesviruses are present more frequently in periodontitis lesions and acute necrotizing ulcerative gingivitis-lesions than in gingivitis or periodontally healthy sites. Reactivation of HCMV in periodontitis lesions tends to be associated with progressing periodontal disease. Herpesvirus-associated periodontitis lesions harbor elevated levels of periodontopathic bacteria, including Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Bacteriodes forsythus, Prevotella intermedia, Prevotella nigrescens and Treponema denticola. It may be that active periodontal herpesvirus infection impairs periodontal defenses, thereby permitting subgingival overgrowth of periodontopathic bacteria. Alteration between latent and active herpesvirus infection in the periodontium might lead to transient local immunosuppression and explain in part the episodic progressive nature of human periodontitis. Tissue tropism of herpesvirus infections might help explain the localized pattern of tissue destruction in periodontitis. Absence of herpesvirus infection or viral reactivation might explain why some individuals carry periodontopathic bacteria while still maintaining periodontal health. Further studies are warranted to delineate whether the proposed herpesvirus-periodontopathic bacteria model might account for some of the pathogenic features of human periodontal disease.

  13. Human herpesvirus-8 infection leads to expansion of the preimmune/natural effector B cell compartment.

    Directory of Open Access Journals (Sweden)

    Silvia Della Bella

    Full Text Available BACKGROUND: Human herpesvirus-8 (HHV-8 is the etiological agent of Kaposi's sarcoma (KS and of some lymphoproliferative disorders of B cells. Most malignancies develop after long-lasting viral dormancy, and a preventing role for both humoral and cellular immune control is suggested by the high frequency of these pathologies in immunosuppressed patients. B cells, macrophages and dendritic cells of peripheral lymphoid organs and blood represent the major reservoir of HHV-8. Due to the dual role of B cells in HHV-8 infection, both as virus reservoir and as agents of humoral immune control, we analyzed the subset distribution and the functional state of peripheral blood B cells in HHV-8-infected individuals with and without cKS. METHODOLOGY/PRINCIPAL FINDINGS: Circulating B cells and their subsets were analyzed by 6-color flow cytometry in the following groups: 1- patients HHV-8 positive with classic KS (cKS (n = 47; 2- subjects HHV-8 positive and cKS negative (HSP (n = 10; 3- healthy controls, HHV-8 negative and cKS negative (HC (n = 43. The number of B cells belonging to the preimmune/natural effector compartment, including transitional, pre-naïve, naïve and MZ-like subsets, was significantly higher among HHV-8 positive subjects, with or without cKS, while was comparable to healthy controls in the antigen-experienced T-cell dependent compartment. The increased number of preimmune/natural effector B cells was associated with increased resistance to spontaneous apoptosis, while it did not correlate with HHV-8 viral load. CONCLUSIONS/SIGNIFICANCE: Our results indicate that long-lasting HHV-8 infection promotes an imbalance in peripheral B cell subsets, perturbing the equilibrium between earlier and later steps of maturation and activation processes. This observation may broaden our understanding of the complex interplay between viral and immune factors leading HHV-8-infected individuals to develop HHV-8-associated malignancies.

  14. Elephant endotheliotropic herpesvirus 5, a newly recognized elephant herpesvirus associated with clinical and subclinical infections in captive Asian elephants (Elephas maximus).

    Science.gov (United States)

    Atkins, Lisa; Zong, Jian-Chao; Tan, Jie; Mejia, Alicia; Heaggans, Sarah Y; Nofs, Sally A; Stanton, Jeffrey J; Flanagan, Joseph P; Howard, Lauren; Latimer, Erin; Stevens, Martina R; Hoffman, Daryl S; Hayward, Gary S; Ling, Paul D

    2013-03-01

    Elephant endotheliotropic herpesviruses (EEHVs) can cause acute hemorrhagic disease with high mortality rates in Asian elephants (Elephas maximus). Recently, a new EEHV type known as EEHV5 has been described, but its prevalence and clinical significance remain unknown. In this report, an outbreak of EEHV5 infection in a herd of captive Asian elephants in a zoo was characterized. In February 2011, a 42-yr-old wild-born female Asian elephant presented with bilaterally swollen temporal glands, oral mucosal hyperemia, vesicles on the tongue, and generalized lethargy. The elephant had a leukopenia and thrombocytopenia. She was treated with flunixin meglumine, famciclovir, and fluids. Clinical signs of illness resolved gradually over 2 wk, and the white blood cell count and platelets rebounded to higher-than-normal values. EEHV5 viremia was detectable starting 1 wk before presentation and peaked at the onset of clinical illness. EEHV5 shedding in trunk secretions peaked after viremia resolved and continued for more than 2 mo. EEHV5 trunk shedding from a female herd mate without any detectable viremia was detected prior to onset of clinical disease in the 42-yr-old elephant, indicating reactivation rather than primary infection in this elephant. Subsequent EEHV5 viremia and trunk shedding was documented in the other five elephants in the herd, who remained asymptomatic, except for 1 day of temporal gland swelling in an otherwise-healthy 1-yr-old calf. Unexpectedly, the two elephants most recently introduced into the herd 40 mo previously shed a distinctive EEHV5 strain from that seen in the other five elephants. This is the first report to document the kinetics of EEHV5 infection in captive Asian elephants and to provide evidence that this virus can cause illness in some animals.

  15. Seroepidemiology of infection with Neospora caninum, Leptospira, and bovine herpesvirus type 1 in water buffaloes (Bubalus bubalis) in Veracruz State, Mexico

    Science.gov (United States)

    We aimed to determine the seroprevalence of infection with N. caninum, Leptospira, and bovine herpesvirus type 1 and risk factors associated with these infections in water buffaloes in Veracruz State, Mexico. Through a cross-sectional study, 144 water buffaloes (Bubalus bubalis) raised in 5 ranches ...

  16. Validation of a serum neutralization test for detection of antibodies specific to cyprinid herpesvirus 3 in infected common and koi carp (Cyprinus carpio)

    DEFF Research Database (Denmark)

    Cabon, J.; Louboutin, L.; Castric, J.

    2017-01-01

    Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a serious infective, notifiable disease affecting common carp and varieties. In survivors, infection is generally characterized by a subclinical latency phase with restricted viral replication. The CyHV-3 genome is difficult to detect i...

  17. The Crystal Structure of PF-8, the DNA Polymerase Accessory Subunit from Kaposi's Sarcoma-Associated Herpesvirus▿

    Science.gov (United States)

    Baltz, Jennifer L.; Filman, David J.; Ciustea, Mihai; Silverman, Janice Elaine Y.; Lautenschlager, Catherine L.; Coen, Donald M.; Ricciardi, Robert P.; Hogle, James M.

    2009-01-01

    Kaposi's sarcoma-associated herpesvirus is an emerging pathogen whose mechanism of replication is poorly understood. PF-8, the presumed processivity factor of Kaposi's sarcoma-associated herpesvirus DNA polymerase, acts in combination with the catalytic subunit, Pol-8, to synthesize viral DNA. We have solved the crystal structure of residues 1 to 304 of PF-8 at a resolution of 2.8 Å. This structure reveals that each monomer of PF-8 shares a fold common to processivity factors. Like human cytomegalovirus UL44, PF-8 forms a head-to-head dimer in the form of a C clamp, with its concave face containing a number of basic residues that are predicted to be important for DNA binding. However, there are several differences with related proteins, especially in loops that extend from each monomer into the center of the C clamp and in the loops that connect the two subdomains of each protein, which may be important for determining PF-8's mode of binding to DNA and to Pol-8. Using the crystal structures of PF-8, the herpes simplex virus catalytic subunit, and RB69 bacteriophage DNA polymerase in complex with DNA and initial experiments testing the effects of inhibition of PF-8-stimulated DNA synthesis by peptides derived from Pol-8, we suggest a model for how PF-8 might form a ternary complex with Pol-8 and DNA. The structure and the model suggest interesting similarities and differences in how PF-8 functions relative to structurally similar proteins. PMID:19759157

  18. Aspects of bovine herpesvirus-1 infection in dairy and beef herds in the Republic of Ireland

    Directory of Open Access Journals (Sweden)

    Doherty Michael L

    2011-06-01

    Full Text Available Abstract Background Infection with bovine herpesvirus-1 (BHV-1 causes a wide range of disease manifestations, including respiratory disease and abortion, with world-wide distribution. The primary objective of the present study was to describe aspects of BHV-1 infection and control on Irish farms, including herd-level seroprevalence (based on pooled sera and vaccine usage. Methods The characteristics of a diagnostic indirect BHV-1 antibody ELISA test when used on serum pools were evaluated using laboratory replicates for use in the seroprevalence study. The output from this indirect ELISA was expressed as a percentage positivity (PP value. A proposed cut off (PCO PP was applied in a cross-sectional study of a stratified random sample of 1,175 Irish dairy and beef cattle herds in 2009, using serum pools, to estimate herd seroprevalence. The study was observational, based primarily on the analysis of existing samples, and only aggregated results were reported. For these reasons, ethical approval was not required. Bulk milk samples from a subset of 111 dairy herds were analysed using the same ELISA. Information regarding vaccine usage was determined in a telephone survey. Results A PCO PP of 7.88% was determined to give 97.1% sensitivity and 100% specificity relative to the use of the ELISA on individual sera giving maximization of the prevalence independent Youden's index, on receiver operating characteristics analysis of replicate results. The herd-level BHV-1 seroprevalence was 74.9% (95% CI - 69.9%-79.8%, with no significant difference between dairy and beef herds. 95.5% agreement in herd classification was found between bulk milk and serum pools. Only 1.8 percent of farmers used BHV-1 marker vaccine, 80% of which was live while 75% of vaccinated herds were dairy. A significant association was found between herd size (quartiles and seroprevalence (quartiles. Conclusions The results from this study indicate BHV-1 infection is endemic, although

  19. Fatal elephant endotheliotropic herpesvirus-1 and -4 co-infection in a juvenile Asian elephant in Europe

    DEFF Research Database (Denmark)

    Seilern-Moy, Katharina; Bertelsen, Mads Frost; Leifsson, Páll S.

    2016-01-01

    Introduction Elephant endotheliotropic herpesvirus-1 (EEHV-1) is one of the major causes of fatality in juvenile Asian elephants (Elephas maximus). On occasions, other EEHV genotypes, i.e. EEHV-3, -4 and -5, have also been reported as the cause of Asian elephant deaths. In this case report we...... describe the investigation into a juvenile Asian elephant fatality in a European zoo. Case Presentation: A fatal case of haemorrhagic disease in a juvenile Asian elephant from a European zoo was diagnosed with co-infection of EEHV-1 and -4. EEHV-4 had a wider organ distribution and a higher viral load...

  20. Association between malaria exposure and Kaposi's sarcoma-associated herpes virus seropositivity in Uganda.

    Science.gov (United States)

    Nalwoga, Angela; Cose, Stephen; Wakeham, Katie; Miley, Wendell; Ndibazza, Juliet; Drakeley, Christopher; Elliott, Alison; Whitby, Denise; Newton, Robert

    2015-05-01

    Unlike other herpes viruses, Kaposi's sarcoma-associated herpes virus (KSHV) is not ubiquitous worldwide and is most prevalent in sub-Saharan Africa. The reasons for this are unclear. As part of a wider investigation of factors that facilitate transmission in Uganda, a high prevalence country, we examined the association between antimalaria antibodies and seropositivity against KSHV. Antibodies against P. falciparum merozoite surface protein (PfMSP)-1, P. falciparum apical membrane antigen (PfAMA)-1 and KSHV antigens (ORF73 and K8.1) were measured in samples from 1164 mothers and 1227 children. Kaposi's sarcoma-associated herpes virus seroprevalence was 69% among mothers and 15% children. Among mothers, KSHV seroprevalence increased with malaria antibody titres: from 60% to 82% and from 54% to 77%, comparing those with the lowest and highest titres for PfMSP-1 and PfAMA-1, respectively (P < 0.0001). Among children, only antibodies to PfAMA-1 were significantly associated with KSHV seropositivity, (P < 0.0001). In both mothers and children, anti-ORF73 antibodies were more strongly associated with malaria antibodies than anti-K8.1 antibodies. The association between malaria exposure and KSHV seropositivity suggests that malaria is a cofactor for KSHV infection or reactivation. © 2015 The Authors. Tropical Medicine & International Health published by John Wiley & Sons Ltd.

  1. Emydid herpesvirus 1 infection in northern map turtles (Graptemys geographica) and painted turtles (Chrysemys picta).

    Science.gov (United States)

    Ossiboff, Robert J; Newton, Alisa L; Seimon, Tracie A; Moore, Robert P; McAloose, Denise

    2015-05-01

    A captive, juvenile, female northern map turtle (Graptemys geographica) was found dead following a brief period of weakness and nasal discharge. Postmortem examination identified pneumonia with necrosis and numerous epithelial, intranuclear viral inclusion bodies, consistent with herpesviral pneumonia. Similar intranuclear inclusions were also associated with foci of hepatocellular and splenic necrosis. Polymerase chain reaction (PCR) screening of fresh, frozen liver for the herpesviral DNA-dependent DNA polymerase gene yielded an amplicon with 99.2% similarity to recently described emydid herpesvirus 1 (EmyHV-1). Molecular screening of turtles housed in enclosures that shared a common circulation system with the affected map turtle identified 4 asymptomatic, EmyHV-1 PCR-positive painted turtles (Chrysemys picta) and 1 asymptomatic northern map turtle. Herpesvirus transmission between painted and map turtles has been previously suggested, and our report provides the molecular characterization of a herpesvirus in asymptomatic painted turtles that can cause fatal herpesvirus-associated disease in northern map turtles. © 2015 The Author(s).

  2. Experimental infection of rabbits with ovine herpesvirus 2 from sheep nasal secretions

    Science.gov (United States)

    Malignant catarrhal fever (MCF) is a generally fatal disease that primarily occurs in ruminants and is caused by a group of gammaherpesviruses. Outside of Africa MCF is mainly caused by ovine herpesvirus 2 (OvHV-2) which is carried subclinically by sheep. Cell-free virus is present in nasal secret...

  3. The first endogenous herpesvirus, identified in the tarsier genome, and novel sequences from primate rhadinoviruses and lymphocryptoviruses.

    Directory of Open Access Journals (Sweden)

    Amr Aswad

    2014-06-01

    Full Text Available Herpesviridae is a diverse family of large and complex pathogens whose genomes are extremely difficult to sequence. This is particularly true for clinical samples, and if the virus, host, or both genomes are being sequenced for the first time. Although herpesviruses are known to occasionally integrate in host genomes, and can also be inherited in a Mendelian fashion, they are notably absent from the genomic fossil record comprised of endogenous viral elements (EVEs. Here, we combine paleovirological and metagenomic approaches to both explore the constituent viral diversity of mammalian genomes and search for endogenous herpesviruses. We describe the first endogenous herpesvirus from the genome of the Philippine tarsier, belonging to the Roseolovirus genus, and characterize its highly defective genome that is integrated and flanked by unambiguous host DNA. From a draft assembly of the aye-aye genome, we use bioinformatic tools to reveal over 100,000 bp of a novel rhadinovirus that is the first lemur gammaherpesvirus, closely related to Kaposi's sarcoma-associated virus. We also identify 58 genes of Pan paniscus lymphocryptovirus 1, the bonobo equivalent of human Epstein-Barr virus. For each of the viruses, we postulate gene function via comparative analysis to known viral relatives. Most notably, the evidence from gene content and phylogenetics suggests that the aye-aye sequences represent the most basal known rhadinovirus, and indicates that tumorigenic herpesviruses have been infecting primates since their emergence in the late Cretaceous. Overall, these data show that a genomic fossil record of herpesviruses exists despite their extremely large genomes, and expands the known diversity of Herpesviridae, which will aid the characterization of pathogenesis. Our analytical approach illustrates the benefit of intersecting evolutionary approaches with metagenomics, genetics and paleovirology.

  4. Equine herpesvirus-1 infection disrupts interferon regulatory factor-3 (IRF-3) signaling pathways in equine endothelial cells.

    Science.gov (United States)

    Sarkar, Sanjay; Balasuriya, Udeni B R; Horohov, David W; Chambers, Thomas M

    2016-05-01

    Equine herpesvirus-1 (EHV-1) is a major respiratory viral pathogen of horses, causing upper respiratory tract disease, abortion, neonatal death, and neurological disease that may lead to paralysis and death. EHV-1 replicates initially in the respiratory epithelium and then spreads systemically to endothelial cells lining the small blood vessels in the uterus and spinal cord leading to abortion and EHM in horses. Like other herpesviruses, EHV-1 employs a variety of mechanisms for immune evasion including suppression of type-I interferon (IFN) production in equine endothelial cells (EECs). Previously we have shown that the neuropathogenic T953 strain of EHV-1 inhibits type-I IFN production in EECs and this is mediated by a viral late gene product. But the mechanism of inhibition was not known. Here we show that T953 strain infection of EECs induced degradation of endogenous IRF-3 protein. This in turn interfered with the activation of IRF-3 signaling pathways. EHV-1 infection caused the activation of the NF-κB signaling pathways, suggesting that inhibition of type-I IFN production is probably due to interference in IRF-3 and not NF-κB signal transduction. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Hematological and cerebrospinal fluid changes in cattle naturally and experimentally infected with the bovine herpesvirus 5

    Directory of Open Access Journals (Sweden)

    Júlio Augusto Naylor Lisbôa

    2009-11-01

    Full Text Available Bovine herpesvirus 5 (BoHV-5 meningoencephalitis is one of the main causes of mortality by encephalopathy in Brazilian cattle herds. However, the neurological signs observed are common to several encephalopathies and do not contribute decisively to a diagnosis. In order to verify hematological and cerebrospinal fluid (CSF changes, blood and CSF samples from naturally and experimentally infected bovines were evaluated. In natural cases (n=17, the samples were collected only once, and in experimental cases (n=7, the samples were sequentially obtained throughout disease progression. While routine methods were used to examine the samples, BoHV-5 infection was confirmed by a PCR assay. Blood analyses did not reveal any consistent hematological alterations and the leukogram results occasionally showed increases in leukocyte and segmented neutrophil. Hyperfibrinogenemia was noted in all experimentally infected calves and in half of the natural cases. Pleocytosis with mononuclear cells was a remarkable finding in CSF collected from both groups of animals and was present even in experimentally infected calves that remained asymptomatic. Therefore, CSF evaluation can be used as an auxiliary method in ante-mortem BoHV-5 diagnosis.A meningoencefalite determinada pelo herpesvírus bovino 5 (BoHV-5 é considerada uma das principais causas de mortalidade por encefalopatia em bovinos no Brasil. O diagnóstico clínico da infecção é difícil de ser realizado pois os sinais neurológicos ocasionados pela infecção com o BoHV-5 são comuns aos observados em encefalopatias bovinas de diferentes etiologias. Com o objetivo de determinar as alterações hematológicas e do líquido cefalorraquidiano, foram avaliadas amostras de sangue total e líquor colhidas de animais infectados tanto naturalmente quanto experimentalmente. Nos casos naturais da doença (n=17, as amostras foram coletadas apenas uma vez. Nos casos de infecção experimental (n=7, as amostras foram

  6. The effects of equine rhinovirus, influenza virus and herpesvirus infection on tracheal clearance rate in horses.

    OpenAIRE

    Willoughby, R; Ecker, G.; McKee, S; Riddolls, L; Vernaillen, C; Dubovi, E; Lein, D; Mahony, J B; Chernesky, M; Nagy, E.

    1992-01-01

    The response of horses exposed to three common respiratory viruses was studied by measuring tracheal mucociliary clearance rates in the trachea. Tracheal clearance rates (TCR) were determined before, during illness and following recovery in horses exposed to equine rhinovirus (ERhV-2), equine influenza virus (EIV) and equine herpesvirus (EHV-4) by means of lateral scintigraphs made following an injection of technetium-99m sulphide colloid into the tracheal lumen. In six horses exposed to ERhV...

  7. IMMUNITY AND DYNAMICS OF INFECTIONS IN HERPESVIRUS-CARRYING PREGNANT WOMEN WITH UNDIFFERENTIATED FORMS OF CONNECTIVE TISSUE DYSPLASIA HERPES VIRUSES

    Directory of Open Access Journals (Sweden)

    L. N. Dorohova

    2011-01-01

    Full Text Available Abstract. We have studied some immune parameters in pregnant women with undifferentiated forms of connective tissue dysplasia (n = 51, who harboured herpesviruses, i.e., cytomegalovirus and Herpes Simplex virus. A relative insufficiency of CD3+ lymphocytes, along with deficiency of CD4+T cells, and predominance of CD16+ cells (NK cells, and CD20+ cells were revealed, accompanied by increase in IgM and the decrease in IgA and IgG levels. Disturbances of cellular and humoral immunity in such patients were more expressed than in women without undifferentiated forms of connective tissue dysplasia (n = 50, being associated with increased  frequency  of  infection  manifesting  as  inflammatory  placental  lesion  with  secondary  placental insufficiency and more pessimistic perinatal outcomes. The results obtained justify a need for second preventive measures  in  pregnant,  herpesvirus-carrying  women with undifferentiated connective tissue dysplasia. (Med. Immunol., 2011, vol. 13, N 2-3, pp 175-180

  8. Tissue distribution of psittacid herpesviruses in latently infected parrots, repeated sampling of latently infected parrots and prevalence of latency in parrots submitted for necropsy.

    Science.gov (United States)

    Tomaszewski, Elizabeth K; Wigle, William; Phalen, David N

    2006-11-01

    Psittacid herpesvirus-1 (PsHV-1) is the cause of an acute fatal disease in parrots and is implicated as the cause of papillomatous lesions of the digestive tract. Not all infections cause disease and some parrots are infected asymptomatically. Latently infected parrots are potential sources for virus dissemination. Tissues from parrots that died spontaneously with a history of coming from flocks where a PsHV-1 outbreak had occurred were examined for PsHV-1 DNA. Fourteen of 16 parrots examined were infected with at least 1 variant of PsHV-1; of these 13 (93%) had viral DNA in either or both the oral and cloacal mucosa, suggesting that most latently infected parrots could be detected by sampling these sites. Nine of 9 parrots shown to be infected 5 years prior to this study were positive again on repeat sampling and were infected with the same virus genotype. Opportunistic sampling of parrots submitted for diagnostic necropsy indicated that the prevalence of PsHV-1 in parrots in the sampled population was approximately 9.3%. PsHV-1 genotypes 1, 2, and 3 were found in these birds, but genotype 4 was not. Six necropsy specimens were found to be infected with two PsHV-1 genotypes and it was concluded that infection with one serotype did not protect against infection with another. Psittacid herpesvirus 2 (PsHV-2) was identified in 4 African grey parrots and a blue and gold macaw. Prior to this study PsHV-2 had only been found in African grey parrots.

  9. Efficacy of the early administration of valacyclovir hydrochloride for the treatment of neuropathogenic equine herpesvirus type-1 infection in horses.

    Science.gov (United States)

    Maxwell, Lara K; Bentz, Bradford G; Gilliam, Lyndi L; Ritchey, Jerry W; Pusterla, Nicola; Eberle, R; Holbrook, Todd C; McFarlane, Dianne; Rezabek, Grant B; Meinkoth, James; Whitfield, Chase; Goad, Carla L; Allen, George P

    2017-10-01

    OBJECTIVE To determine whether prophylactic administration of valacyclovir hydrochloride versus initiation of treatment at the onset of fever would differentially protect horses from viral replication and clinical disease attributable to equine herpesvirus type-1 (EHV-1) infection. ANIMALS 18 aged mares. PROCEDURES Horses were randomly assigned to receive an oral placebo (control), treatment at detection of fever, or prophylactic treatment (initiated 1 day prior to viral challenge) and then inoculated intranasally with a neuropathogenic strain of EHV-1. Placebo or valacyclovir was administered orally for 7 or 14 days after EHV-1 inoculation or detection of fever (3 horses/group). Effects of treatment on viral replication and clinical disease were evaluated. Plasma acyclovir concentrations and viremia were assessed to determine inhibitory concentrations of valacyclovir. RESULTS Valacyclovir administration decreased shedding of virus and viremia, compared with findings for control horses. Rectal temperatures and clinical disease scores in horses that received valacyclovir prophylactically for 2 weeks were lower than those in control horses. The severity of but not the risk for ataxia was decreased by valacyclovir administration. Viremia was decreased when steady-state trough plasma acyclovir concentrations were > 0.8 μg/mL, supporting the time-dependent activity of acyclovir. CONCLUSIONS AND CLINICAL RELEVANCE Valacyclovir treatment significantly decreased viral replication and signs of disease in EHV-1-infected horses; effects were greatest when treatment was initiated before viral inoculation, but treatment was also effective when initiated as late as 2 days after inoculation. During an outbreak of equine herpesvirus myeloencephalopathy, antiviral treatment may be initiated in horses at various stages of infection, including horses that have not yet developed signs of viral disease.

  10. Seroepizootiology of the herpesvirus Papio (HVP) infection in healthy baboons (Papio hamadryas) of high- and low-lymphoma risk populations.

    Science.gov (United States)

    Voevodin, A F; Ponomarjeva, T I; Lapin, B A

    1985-01-01

    Seroepizootiology of Herpesvirus Papio (HVP) infection was studied in three groups of healthy hamadryas baboons (Papio hamadryas): the main Sukhumi (high-lymphoma) stock, forest Sukhumi (lymphoma-free) stock and newly imported wild animals. The prevalence to HVP infection, as judged by anti-VCA-HVP positivity, was approximately the same in both Sukhumi stocks (86% and 90% respectively) and it was significantly lower in the pooled group of newly imported baboons. It is interesting that prevalence of HVP infection in the different independent groups varied markedly (35-79%). Geometric mean titers of positives in all groups were approximately the same. The prevalence of HVP infection was age-dependent. It increased during the first years of life reaching the maximum (about 100%) at the age of 5 years being stable up to the age of 18 years and "decreased" at very old ages (over 18 years). The prevalence of HVP infection in newly imported baboons increased with age up to 71% in a group of the "oldest" monkeys and did not plateau. No significant sex differences in anti-HVP titers were found. Anti-EA-HVP-positive (with one exception) and anti-HUPNA-positive animals were found only in the main Sukhumi stock. Thus, "serologic activity" against HVP infection was the highest in the ligh-lymphoma stock.

  11. Cross-sectional and longitudinal investigation of human herpesvirus 8 seroprevalence in HIV-1-infected individuals in Osaka, Japan.

    Science.gov (United States)

    Watanabe, Dai; Yamamoto, Yudai; Suzuki, Sachiko; Ashida, Misa; Matsumoto, Erina; Yukawa, Satomi; Hirota, Kazuyuki; Ikuma, Motoko; Ueji, Takashi; Kasai, Daisuke; Nishida, Yasuharu; Uehira, Tomoko; Shirasaka, Takuma

    2017-04-01

    High human herpesvirus 8 (HHV-8) seroprevalence has been reported in men who have sex with men (MSM) and are infected with HIV-1. However, it is unclear when they become infected with HHV-8. Thus, we conducted cross-sectional and longitudinal investigations of HHV-8 seroprevalence in HIV-1-infected individuals in Osaka, Japan. Plasma was collected from 121 individuals infected with HIV-1 and the anti-HHV-8 antibody titer was measured using an enzyme-linked immunosorbent assay with whole virus lysate. Subjects were classified into those with and without a past medical history of HHV-8-associated disease; the latter group was then classified into 3 subgroups based on the assumed route of HIV-1 infection: blood products, homosexual contact, and other routes. HHV-8 seroprevalence was compared among the groups and measured again approximately 3 years after the baseline measurement. The relationship between HHV-8 seropositivity and possible associated factors was also investigated. All 15 subjects with HHV-8-associated disease were seropositive, and all 11 subjects in the blood product group were seronegative. In the MSM group, 25 (30%) of 79 subjects were HHV-8 seropositive and, in the non-MSM group, 1 (6%) of 16 subjects was (p HIV-1-infected MSM, suggesting that, currently, HHV-8 is an epidemic pathogen in this population. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  12. Human herpesvirus 8 in primary effusion lymphoma in an HIV-seronegative male. A case report.

    Science.gov (United States)

    Munichor, Mariana; Cohen, Hector; Sarid, Ronit; Manov, Irena; Iancu, Theodore C

    2004-01-01

    AIDS-related body cavity-based lymphoma, or primary effusion lymphoma (PEL), is a distinct clinicopathologic entity that occurs predominantly in immunosuppressed patients infected with human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus. Although it rarely occurs in human immunodeficiency virus (HIV)-negative patients, we report such a case here. A 74-year-old male, who was HIV and Epstein-Barr virus (EBV) negative, was admitted to the hospital with dyspnea and chest pain. Chest radiography and computed tomography showed right pleural effusion. Cytologic analysis of the pleural effusion revealed a high grade lymphoma with round nuclei, prominent nucleoli and abundant cytoplasm. Polymerase chain reaction performed on the pleural effusion was positive for HHV-8 and negative for EBV. On molecular studies, the immunoglobulin heavy and kappa light chains were rearranged. Flow cytometry revealed a hyperploid fraction with DNA index of 1.29 expressing CD30. Immunostaining for HHV-8 from a cell block was positive. Electron microscopy revealed lymphomalike cells, many in various stages of apoptosis, with large nucleoli and clusters of viruslike particles in the nucleoplasm. A firm diagnosis of PEL can be established by the examination of cells from the lymphomatous effusion by a combination of cytology, molecular genetics, phenotypic features, immunostaining and electron microscopy. To our knowledge, this is the first case in which immunostaining for anti-HHV-8 monoclonal antibodies was used to support the diagnosis.

  13. Manipulation of the host cell membrane by human γ-herpesviruses EBV and KSHV for pathogenesis.

    Science.gov (United States)

    Wei, Fang; Zhu, Qing; Ding, Ling; Liang, Qing; Cai, Qiliang

    2016-10-01

    The cell membrane regulates many physiological processes including cellular communication, homing and metabolism. It is therefore not surprising that the composition of the host cell membrane is manipulated by intracellular pathogens. Among these, the human oncogenic herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) exploit the host cell membrane to avoid immune surveillance and promote viral replication. Accumulating evidence has shown that both EBV and KSHV directly encode several similar membrane-associated proteins, including receptors and receptor-specific ligands (cytokines and chemokines), to increase virus fitness in spite of host antiviral immune responses. These proteins are expressed individually at different phases of the EBV/KSHV life cycle and employ various mechanisms to manipulate the host cell membrane. In recent decades, much effort has been made to address how these membrane-based signals contribute to viral tumorigenesis. In this review, we summarize and highlight the recent understanding of how EBV and KSHV similarly manipulate host cell membrane signals, particularly how remodeling of the cell membrane allows EBV and KSHV to avoid host antiviral immune responses and favors their latent and lytic infection.

  14. The Effectiveness of Onion Extract Allium sativum to Prevent Koi Herpesvirus (KHV Infection on Common Carp Cyprinus carpio

    Directory of Open Access Journals (Sweden)

    Sri Nuryati

    2008-07-01

    Full Text Available Common carp is one of consumption fish that has delicious meat, high pritein level, and easy in farming. The serious problem in common carp farming is koi herpesvirus infection.  Onion extract potency to improve immune system was estimated to prevent disease infection.  The testing of the garlic extract through food could be used as efforts to increase endurance of common carp fish Cyprinus carpio to koi herpesvirus infection that was considered from blood parameter. Fish that was used was measuring 9-11 cm with the treatment of food containing  30, 50, and 70 gr/100 ml onion extract. Fish was acclimated for seven days  in 60×30×30 cm3 aquarium before used. Garlic extract diet in food gave increasing of fish immune system that was infected by koi herpesvirus. The increased of leucocytes of blood fish with onion extract diet was faster than possitive control. The dose of B treatment (50 gr/100 ml was the best dose gave short incubation periode comparing other treatment. Survival rate (SR of this B treatment was highest, i.e. 91.7%, while survival rate of negative control was 50%. Key word: common carp, Cyprinus carpio, onion, Allium sativum, koi herpesvirus   ABSTRAK Salah satu jenis ikan konsumsi air tawar yang banyak digemari oleh masyarakat adalah ikan mas Cyprinus carpio karena rasa dagingnya gurih, memiliki kadar protein tinggi dan cukup mudah dalam pemeliharaannya. Permasalahan yang muncul  saat ini adalah wabah Koi Herpes Virus (KHV. Potensi ekstrak bawang putih sebagai anti mikroba spektrum luas, diduga dapat mengobati dan mencegah penyakit ikan. Pengujian bawang putih secara in vivo melalui pakan dapat digunakan sebagai upaya untuk meningkatkan ketahanan tubuh ikan mas Cyprinus carpio terhadap infeksi penyakit KHV yang ditinjau dari gambaran darahnya. Ikan uji yang digunakan adalah ikan mas berukuran 9-11 cm dengan perlakuan pakan yang mengandung bawang putih sebanyak 30, 50, dan 70 gr/100 ml. Sebelum dilakukan penelitian ikan

  15. Reference gene selection for quantitative real-time PCR analysis in virus infected cells: SARS corona virus, Yellow fever virus, Human Herpesvirus-6, Camelpox virus and Cytomegalovirus infections

    Directory of Open Access Journals (Sweden)

    Müller Marcel A

    2005-02-01

    Full Text Available Abstract Ten potential reference genes were compared for their use in experiments investigating cellular mRNA expression of virus infected cells. Human cell lines were infected with Cytomegalovirus, Human Herpesvirus-6, Camelpox virus, SARS coronavirus or Yellow fever virus. The expression levels of these genes and the viral replication were determined by real-time PCR. Genes were ranked by the BestKeeper tool, the GeNorm tool and by criteria we reported previously. Ranking lists of the genes tested were tool dependent. However, over all, β-actin is an unsuitable as reference gene, whereas TATA-Box binding protein and peptidyl-prolyl-isomerase A are stable reference genes for expression studies in virus infected cells.

  16. Regulation of Innate Immune Responses by Bovine Herpesvirus 1 and Infected Cell Protein 0 (bICP0

    Directory of Open Access Journals (Sweden)

    Clinton Jones

    2009-09-01

    Full Text Available Bovine herpesvirus 1 (BoHV-1 infected cell protein 0 (bICP0 is an important transcriptional regulatory protein that stimulates productive infection. In transient transfection assays, bICP0 also inhibits interferon dependent transcription. bICP0 can induce degradation of interferon stimulatory factor 3 (IRF3, a cellular transcription factor that is crucial for activating beta interferon (IFN-β promoter activity. Recent studies also concluded that interactions between bICP0 and IRF7 inhibit trans-activation of IFN-β promoter activity. The C3HC4 zinc RING (really important new gene finger located near the amino terminus of bICP0 is important for all known functions of bICP0. A recombinant virus that contains a single amino acid change in a well conserved cysteine residue of the C3HC4 zinc RING finger of bICP0 grows poorly in cultured cells, and does not reactivate from latency in cattle confirming that the C3HC4 zinc RING finger is crucial for viral growth and pathogenesis. A bICP0 deletion mutant does not induce plaques in permissive cells, but induces autophagy in a cell type dependent manner. In summary, the ability of bICP0 to stimulate productive infection, and repress IFN dependent transcription plays a crucial role in the BoHV-1 infection cycle.

  17. Expansion of effector memory TCR Vbeta4+ CD8+ T cells is associated with latent infection-mediated resistance to transplantation tolerance.

    Science.gov (United States)

    Stapler, Dale; Lee, Eun D; Selvaraj, Saranya A; Evans, Andrew G; Kean, Leslie S; Speck, Samuel H; Larsen, Christian P; Gangappa, Shivaprakash

    2008-03-01

    Therapies that control largely T cell-dependent allograft rejection in humans also possess the undesirable effect of impairing T cell function, leaving transplant recipients susceptible to opportunistic viruses. Prime among these opportunists are the ubiquitous herpesviruses. To date, studies are lacking that address the effect of viruses that establish a true latent state on allograft tolerance or the effect of tolerance protocols on the immune control of latent viruses. By using a mixed chimerism-based tolerance-induction protocol, we found that mice undergoing latent infection with gammaHV68, a murine gamma-herpesvirus closely related to human gamma-herpesviruses such as EBV and Kaposi's sarcoma-associated herpesvirus, significantly resist tolerance to allografts. Limiting the degree of virus reactivation or innate immune response did not reconstitute chimerism in latently infected mice. However, gammaHV68-infected mice showed increased frequency of CD8+ T cell alloreactivity and, interestingly, expansion of virus-induced, alloreactive, "effector/effector memory" TCR Vbeta4+CD8+ T cells driven by the gammaHV68-M1 gene was associated with resistance to tolerance induction in studies using gammaHV68-M1 mutant virus. These results define the viral gene and immune cell types involved in latent infection-mediated resistance to allograft tolerance and underscore the influence of latent herpesviruses on allograft survival.

  18. Immunophenotypic analysis of the Kaposi sarcoma herpesvirus (KSHV; HHV-8)-infected B cells in HIV+ multicentric Castleman disease (MCD).

    Science.gov (United States)

    Chadburn, A; Hyjek, E M; Tam, W; Liu, Y; Rengifo, T; Cesarman, E; Knowles, D M

    2008-11-01

    Kaposi sarcoma herpesvirus (KSHV) is aetiologically related to Kaposi sarcoma, classical and extracavitary primary effusion lymphoma (PEL; EC-PEL) and multicentric Castleman disease (MCD), entities preferentially occurring in HIV-infected individuals. Characterization of HIV-associated PELs/EC-PELs suggests that the KSHV-infected malignant cells originate from a pre-terminal stage of B-cell differentiation. However, only limited phenotypic studies have been performed on HIV+ MCD, including for PR domain containing 1 with zinc finger domain/B lymphocyte-induced maturation protein 1 (PRDM1/BLIMP1), a key regulator of terminal B-cell differentiation. The aim was to characterize KSHV-infected cells in 17 cases of HIV+ MCD. Double immunohistochemistry and immunohistochemistry-in situ hybridization were used to characterize the KSHV-infected cells in MCD; the results were compared with the phenotypic profiles of 39 PELs/EC-PELs and seven PEL cell lines. Whereas the immunophenotype of KSHV-infected cells in MCD and malignant KSHV+ PEL cells was similar (PAX5, Bcl-6-; PRDM1/BLIMP1, IRF4/MUM1+; Ki67+), the MCD KSHV-infected cells differed, as they expressed OCT2, cytoplasmic lambda immunoglobulin; variably expressed CD27; lacked CD138; and were Epstein-Barr virus negative. Although both PEL and MCD originate from KSHV-infected pre-terminally differentiated B cells, these findings, with previously reported genetic studies, indicate HIV+ MCD may arise from extrafollicular B cells, whereas PELs may originate from cells that have traversed the germinal centre.

  19. Growth of cyprinid herpesvirus 2 (CyHV-2) in cell culture and experimental infection of goldfish Carassius auratus.

    Science.gov (United States)

    Ito, Takafumi; Kurita, Jun; Ozaki, Akiyuki; Sano, Motohiko; Fukuda, Hideo; Ototake, Mitsuru

    2013-09-03

    Herpesviral haematopoietic necrosis has caused great economic damage to goldfish Carassius auratus aquaculture in Japan. The existence of cyprinid herpesvirus 2 (CyHV-2), the causative agent, has also been reported from several other countries. To prevent spread to other areas, basic virological information such as viral kinetics in infected fish is essential. Experimental infection trials using reliably prepared CyHV-2 for defining viral kinetics are difficult to carry out because successful and sustainable propagation of this virus in cell culture has previously been limited. Here we describe a method for sustainable propagation of CyHV-2 in cell culture, and the results of fish infection experiments using the propagated virus. We found that goldfish fin (GFF) cells and standard Ryukin Takafumi (SRTF) cells established from goldfish fin can be used for continuous propagation of CyHV-2. Experimental infections using 2 varieties of goldfish, Ryukin and Edonishiki, were performed with the virus passaged 7 times in GFF cells. In transmission experiments with water temperature at 20°C, cumulative mortality was 30% in Ryukin infected by immersion, and 90 and 100% in Edonishiki and Ryukin intraperitoneally injected with the virus, respectively. In an experiment carried out at 25°C, 90% of Edonishiki challenged by immersion died. PCR detection of viral DNA from the organs of infected fish showed that systemic infection occurs and also that the kidney is a main viral multiplication site. Moreover, CyHV-2 was successfully re-isolated in GFF cells from the dead fish.

  20. Evasion of innate cytosolic DNA sensing by a gammaherpesvirus facilitates establishment of latent infection1

    Science.gov (United States)

    Sun, Chenglong; Schattgen, Stefan A.; Pisitkun, Prapaporn; Jorgensen, Joan P.; Hilterbrand, Adam T.; Wang, Lucas J.; West, John A.; Hansen, Kathrine; Horan, Kristy A.; Jakobsen, Martin R.; O'Hare, Peter; Adler, Heiko; Sun, Ren; Ploegh, Hidde L.; Damania, Blossom; Upton, Jason W.; Fitzgerald, Katherine A.; Paludan, Søren R.

    2014-01-01

    Herpesviruses are DNA viruses harboring the capacity to establish lifelong latent-recurrent infections. There is currently limited knowledge on viruses targeting the innate DNA sensing pathway and also on how the innate system impacts on the latent reservoir of herpesvirus infections. Here we report that murine gammaherpesvirus MHV68, in contrast to alpha- and beta-herpesviruses, induce very limited innate immune responses through DNA-stimulated pathways, which correspondingly played only a minor role in control of MHV68 infections in vivo. Similarly, Kaposi's sarcoma-associated herpesvirus also did not stimulate immune signaling through the DNA sensing pathways. Interestingly, a MHV68 mutant lacking the deubiquitinase (DUB) activity, embedded within the large tegument protein ORF64, gained the capacity to stimulate the DNA-activated STING pathway. We found that ORF64 targeted a step in the DNA-activated pathways upstream of the bifurcation into the STING and AIM2 pathways, and lack of the ORF64 DUB was associated with impaired delivery of viral DNA to the nucleus, which instead localized to the cytoplasm. Correspondingly, the ORF64 DUB active site mutant virus exhibited impaired ability to establish latent infection in wild type but not STING-deficient mice. Thus, gammaherpesviruses evade immune activation by the cytosolic DNA sensing pathway, which in the MHV68 model facilitates establishment of infections. PMID:25595793

  1. Co-infections and Pathogenesis of KSHV-Associated Malignancies

    Directory of Open Access Journals (Sweden)

    Suhani eThakker

    2016-02-01

    Full Text Available Kaposi’s sarcoma-associated herpesvirus (KSHV, also known as human herpes virus 8 (HHV-8 is one of the several carcinogenic viruses that infect humans. KSHV infection has been implicated in the development of Kaposi’s sarcoma (KS, primary effusion lymphoma (PEL, and multicentric Castleman’s Disease (MCD. While KSHV infection is necessary for the development of KSHV associated malignancies, it is not sufficient to induce tumoriegenesis. Evidently, other co-factors are essential for the progression of KSHV induced malignancies. One of the most important co-factors, necessary for the progression of KSHV induced tumors, is immune suppression that frequently arises during co-infection with HIV and also by other immune suppressants. In this mini-review, we discuss the roles of co-infection with HIV and other pathogens on KSHV infection and pathogenesis.

  2. Coinfection with human herpesvirus 8 is associated with persistent inflammation and immune activation in virologically suppressed HIV-infected patients.

    Directory of Open Access Journals (Sweden)

    Mar Masiá

    Full Text Available Infection with co-pathogens is one of the postulated factors contributing to persistent inflammation and non-AIDS events in virologically-suppressed HIV-infected patients. We aimed to investigate the relationship of human herpesvirus-8 (HHV-8, a vasculotropic virus implicated in the pathogenesis of Kaposi's sarcoma, with inflammation and subclinical atherosclerosis in HIV-infected patients.Prospective study including virologically suppressed HIV-infected patients. Several blood biomarkers (highly-sensitive C-reactive protein [hsCRP], tumour necrosis factor-α, interleukin-6, monocyte chemoattractant protein-1, vascular cell adhesion molecule-1, intercellular cell adhesion molecule-1, malondialdehyde, plasminogen activator inhibitor [PAI-1], D-dimer, sCD14, sCD163, CD4/CD38/HLA-DR, and CD8/CD38/HLA-DR, serological tests for HHV-8 and the majority of herpesviruses, carotid intima-media thickness, and endothelial function through flow-mediated dilatation of the brachial artery were measured.A total of 136 patients were included, 34.6% of them infected with HHV-8. HHV-8-infected patients were more frequently co-infected with herpes simplex virus type 2 (HSV-2 (P<0.001, and less frequently with hepatitis C virus (HCV (P = 0.045, and tended to be older (P = 0.086. HHV-8-infected patients had higher levels of hsCRP (median [interquartile range], 3.63 [1.32-7.54] vs. 2.08 [0.89-4.11] mg/L, P = 0.009, CD4/CD38/HLA-DR (7.67% [4.10-11.86]% vs. 3.86% [2.51-7.42]%, P = 0.035 and CD8/CD38/HLA-DR (8.02% [4.98-14.09]% vs. 5.02% [3.66-6.96]%, P = 0.018. After adjustment for the traditional cardiovascular risk factors, HCV and HSV-2 infection, the associations remained significant: adjusted difference between HHV-8 positive and negative patients (95% confidence interval for hsCRP, 74.19% (16.65-160.13%; for CD4/CD38/HLA-DR, 89.65% (14.34-214.87%; and for CD8/CD38/HLA-DR, 58.41% (12.30-123.22%. Flow-mediated dilatation and total carotid intima

  3. The effects of equine rhinovirus, influenza virus and herpesvirus infection on tracheal clearance rate in horses.

    Science.gov (United States)

    Willoughby, R; Ecker, G; McKee, S; Riddolls, L; Vernaillen, C; Dubovi, E; Lein, D; Mahony, J B; Chernesky, M; Nagy, E

    1992-04-01

    The response of horses exposed to three common respiratory viruses was studied by measuring tracheal mucociliary clearance rates in the trachea. Tracheal clearance rates (TCR) were determined before, during illness and following recovery in horses exposed to equine rhinovirus (ERhV-2), equine influenza virus (EIV) and equine herpesvirus (EHV-4) by means of lateral scintigraphs made following an injection of technetium-99m sulphide colloid into the tracheal lumen. In six horses exposed to ERhV-2, TCR remained within normal limits. Exposure to EIV resulted in reduced TCR in six of seven horses, with TCR remaining below the 95% confidence limits of normal values for each horse for up to 32 days despite the resolution of clinical signs. Moderate changes were observed in six horses exposed to EHV-4, but significant reductions in TCR were evident in three animals. Measurement of TCR was a useful, minimally-invasive technique which demonstrated that respiratory viruses may cause persistent changes in TCR, even though clinical signs are not evident.

  4. Novel marmoset (Callithrix jacchus model of human Herpesvirus 6A and 6B infections: immunologic, virologic and radiologic characterization.

    Directory of Open Access Journals (Sweden)

    Emily Leibovitch

    2013-01-01

    Full Text Available Human Herpesvirus 6 (HHV-6 is a ubiquitous virus with an estimated seroprevalence of 95% in the adult population. HHV-6 is associated with several neurologic disorders, including multiple sclerosis, an inflammatory demyelinating disease affecting the CNS. Animal models of HHV-6 infection would help clarify its role in human disease but have been slow to develop because rodents lack CD46, the receptor for cellular entry. Therefore, we investigated the effects of HHV-6 infections in a non-human primate, the common marmoset Callithrix jacchus. We inoculated a total of 12 marmosets with HHV-6A and HHV-6B intravenously and HHV-6A intranasally. Animals were monitored for 25 weeks post-inoculation clinically, immunologically and by MRI. Marmosets inoculated with HHV-6A intravenously exhibited neurologic symptoms and generated virus-specific antibody responses, while those inoculated intravenously with HHV-6B were asymptomatic and generated comparatively lower antibody responses. Viral DNA was detected at a low frequency in paraffin-embedded CNS tissue of a subset of marmosets inoculated with HHV-6A and HHV-6B intravenously. When different routes of HHV-6A inoculation were compared, intravenous inoculation resulted in virus-specific antibody responses and infrequent detection of viral DNA in the periphery, while intranasal inoculation resulted in negligible virus-specific antibody responses and frequent detection of viral DNA in the periphery. Moreover, marmosets inoculated with HHV-6A intravenously exhibited neurologic symptoms, while marmosets inoculated with HHV-6A intranasally were asymptomatic. We demonstrate that a marmoset model of HHV-6 infection can serve to further define the contribution of this ubiquitous virus to human neurologic disorders.

  5. Herpesviruses provide helper functions for avian adeno-associated parvovirus.

    Science.gov (United States)

    Bauer, H J; Monreal, G

    1986-01-01

    The avian herpesviruses infectious laryngotracheitis virus (ILTV) and herpesvirus of turkeys (HVT), as well as the mammalian herpesvirus pseudorabies virus (PRV) were able to provide complete helper activity for the production of infectious avian adeno-associated virus (AAAV) in chicken cells. The presence of AAAV in the infected chicken cell reduced the multiplication of HVT. ILTV or PRV, however, were not affected if used as helper viruses. Infectious AAAV was determined by an indirect immunofluorescence assay and infectious herpesvirus by plaque assays.

  6. Tissular Distribution of Argentinean Strains of Bovine Herpesvirus Type 4 (BoHV-4 in Experimentally-Infected Calves

    Directory of Open Access Journals (Sweden)

    Pedro Edgardo Morán

    2017-09-01

    Full Text Available Although bovine herpesvirus type 4 (BoHV-4 is primarily associated with reproductive disorders of cattle, it can produce a variety of clinical signs. To determine the distribution, the presence and type of microscopic lesions caused by BoHV-4 strains of different genotypes an in vivo model, calves were infected with three phylogenetically different Argentinean BoHV-4 strains. Samples from nasal and ocular secretions, peripheral blood leukocytes, tissues and serum were analyzed. BoHV-4 was isolated from nasal and ocular secretions at 7 and 14 days post-inoculation (dpi. Viral DNA was detected by nested PCR in peripheral blood leukocytes at 14 and 21 dpi for two out of three strains and in tissues, such as nervous system, trachea, pulmonary and retropharyngeal lymph nodes, spleen and kidney, at 21 dpi. Antibody levels detected by viral seroneutralization test were mostly low and varied widely for the different strains. The tissue distribution of the BoHV-4 strains and the variations observed in the levels of neutralizing anti-bodies indicate that certain differences can be established among the patterns of biological behavior of each strain. This is an initial step to get insight into the biological characteristics of Argentinean BoHV-4 isolates. However, further evaluation involving a higher number of inoculated animals will be required to be conclusive on this aspect.

  7. Transmission of Human Herpesvirus Type 8 Infection Within Families in American Indigenous Populations From the Brazilian Amazon

    Science.gov (United States)

    Borges, Jaila D.; Souza, Vanda A. U. F.; Giambartolomei, Claudia; Dudbridge, Frank; Freire, Wilton S.; Gregório, Shinai Arriel; Torrez, Pasesa Pascuala Quispe; Quiroga, Mariana; Mayaud, Philippe; Pannuti, Claudio S.; Nascimento, Maria Cláudia

    2012-01-01

    Background The intrafamilial dynamics of endemic infection with human herpesvirus type 8 (HHV-8) in Amerindian populations is unknown. Methods Serum samples were obtained from 517 Amerindians and tested for HHV-8 anti–latent nuclear antigen (anti-LANA) and antilytic antibodies by immunofluorescence assays. Logistic regression and mixed logistic models were used to estimate the odds of being HHV-8 seropositive among intrafamilial pairs. Results HHV-8 seroprevalence by either assay was 75.4% (95% confidence interval [CI]: 71.5%–79.1%), and it was age-dependent (Ptrend 4) number of siblings (OR, 3.20, 95% CI: 1.33–7.67). In separate analyses by serological assay, there was strong dependence in mother–offspring (OR 8.94, 95% CI: 2.94–27.23) and sibling pairs aged ≥10 years (OR, 11.91, 95% CI: 2.23–63.64) measured by LANA but not lytic antibodies. Conclusions This pattern of familial dependence suggests that, in this endemic population, HHV-8 transmission mainly occurs from mother to offspring and between close siblings during early childhood, probably via saliva. The mother to offspring dependence was derived chiefly from anti-LANA antibodies. PMID:22474036

  8. Kinetics of viral loads and genotypic analysis of elephant endotheliotropic herpesvirus-1 infection in captive Asian elephants (Elephas maximus).

    Science.gov (United States)

    Stanton, Jeffrey J; Zong, Jian-Chao; Eng, Crystal; Howard, Lauren; Flanagan, Joe; Stevens, Martina; Schmitt, Dennis; Wiedner, Ellen; Graham, Danielle; Junge, Randall E; Weber, Martha A; Fischer, Martha; Mejia, Alicia; Tan, Jie; Latimer, Erin; Herron, Alan; Hayward, Gary S; Ling, Paul D

    2013-03-01

    Elephant endotheliotropic herpesviruses (EEHVs) can cause fatal hemorrhagic disease in juvenile Asian elephants (Elphas maximus); however, sporadic shedding of virus in trunk washes collected from healthy elephants also has been detected. Data regarding the relationship of viral loads in blood compared with trunk washes are lacking, and questions about whether elephants can undergo multiple infections with EEHVs have not been addressed previously. Real-time quantitative polymerase chain reaction was used to determine the kinetics of EEHV1 loads, and genotypic analysis was performed on EEHV1 DNA detected in various fluid samples obtained from five Asian elephants that survived detectable EEHV1 DNAemia on at least two separate occasions. In three elephants displaying clinical signs of illness, preclinical EEHV1 DNAemia was detectable, and peak whole-blood viral loads occurred 3-8 days after the onset of clinical signs. In two elephants with EEHV1 DNAemia that persisted for 7-21 days, no clinical signs of illness were observed. Detection of EEHV1 DNA in trunk washes peaked approximately 21 days after DNAemia, and viral genotypes detected during DNAemia matched those detected in subsequent trunk washes from the same elephant. In each of the five elephants, two distinct EEHV1 genotypes were identified in whole blood and trunk washes at different time points. In each case, these genotypes represented both an EEHV1A and an EEHV1B subtype. These data suggest that knowledge of viral loads could be useful for the management of elephants before or during clinical illness. Furthermore, sequential infection with both EEHV1 subtypes occurs in Asian elephants, suggesting that they do not elicit cross-protective sterilizing immunity. These data will be useful to individuals involved in the husbandry and clinical care of Asian elephants.

  9. Bovine viral diarrhoea, bovine herpesvirus and parainfluenza-3 virus infection in three cattle herds in Egypt in 2000.

    Science.gov (United States)

    Aly, N M; Shehab, G G; Abd el-Rahim, I H A

    2003-12-01

    This study reported field outbreaks of bovine viral diarrhoea virus (BVDV) infection, either alone or mixed with bovine herpesvirus-1 (BHV-1) and/or parainfluenza-3 virus (PI-3V) in Egypt during 2000. In Lower Egypt, young calves in three cattle herds in El-Minufiya Province, El-Fayoum Province and in governmental quarantine in El-Behira Province, showed symptoms of enteritis, either alone or accompanied by respiratory manifestations. The affected herds were visited and the diseased animals were clinically examined. Many epidemiological aspects, such as morbidities, mortalities and case fatalities, as well as the abortive rate, were calculated. Ethylenediamine tetra-acetic acid-blood samples, sterile nasal swabs and serum samples were obtained for virological and serological diagnosis. The laboratory investigations revealed that the main cause of calf mortalities in the three herds was infection with BVDV, either alone, as on the El-Minufiya farm, or mixed with PI-3V, as on the El-Fayoum farm, or mixed with both BHV-1 and PI-3V, as in the herd in governmental quarantine in El-Behira Province. A total of nine dead calves from the three herds were submitted for thorough post-mortem examination. Tissue samples from recently dead calves were obtained for immunohistochemical and histopathological studies. The most prominent histopathological findings were massive degeneration, necrosis and erosions of the lining epithelium of the alimentary tract. Most of the lymphoreticular organs were depleted of lymphocytes. In pneumonic cases, bronchopneumonia and atypical interstitial pneumonia were evident. The present study suggested that the immunosuppressive effect of BVDV had predisposed the animals to secondary infection with BHV-1 and PI-3V. This study concluded that concurrent infection with BVDV, BHV-1 and PI-3V should be considered as one of the infectious causes of pneumoenteritis and, subsequently, the high morbidities and mortalities among young calves in Egypt

  10. Development of a case definition for clinical feline herpesvirus infection in cheetahs (Acinonyx jubatus) housed in zoos.

    Science.gov (United States)

    Witte, Carmel L; Lamberski, Nadine; Rideout, Bruce A; Fields, Victoria; Teare, Cyd Shields; Barrie, Michael; Haefele, Holly; Junge, Randall; Murray, Suzan; Hungerford, Laura L

    2013-09-01

    The identification of feline herpesvirus (FHV) infected cheetahs (Acinonyx jubatus) and characterization of shedding episodes is difficult due to nonspecific clinical signs and limitations of diagnostic tests. The goals of this study were to develop a case definition for clinical FHV and describe the distribution of signs. Medical records from six different zoologic institutions were reviewed to identify cheetahs with diagnostic test results confirming FHV. Published literature, expert opinion, and results of a multiple correspondence analysis (MCA) were used to develop a clinical case definition based on 69 episodes in FHV laboratory confirmed (LC) cheetahs. Four groups of signs were identified in the MCA: general ocular signs, serious ocular lesions, respiratory disease, and cutaneous lesions. Ocular disease occurred with respiratory signs alone, with skin lesions alone, and with both respiratory signs and skin lesions. Groups that did not occur together were respiratory signs and skin lesions. The resulting case definition included 1) LC cheetahs; and 2) clinically compatible (CC) cheetahs that exhibited a minimum of 7 day's duration of the clinical sign groupings identified in the MCA or the presence of corneal ulcers or keratitis that occurred alone or in concert with other ocular signs and skin lesions. Exclusion criteria were applied. Application of the case definition to the study population identified an additional 78 clinical episodes, which represented 58 CC cheetahs. In total, 28.8% (93/322) of the population was identified as LC or CC. The distribution of identified clinical signs was similar across LC and CC cheetahs. Corneal ulcers and/or keratitis, and skin lesions were more frequently reported in severe episodes; in mild episodes, there were significantly more cheetahs with ocular-only or respiratory-only disease. Our results provide a better understanding of the clinical presentation of FHV, while presenting a standardized case definition that can

  11. Incidence of multiple Herpesvirus infection in HIV seropositive patients, a big concern for Eastern Indian scenario

    Directory of Open Access Journals (Sweden)

    Guha Shubhasish K

    2010-07-01

    Full Text Available Abstract Background Human immunodeficiency virus (HIV infection is associated with an increased risk for human herpes viruses (HHVs and their related diseases and they frequently cause disease deterioration and therapeutic failures. Methods for limiting the transmission of HHVs require a better understanding of the incidence and infectivity of oral HHVs in HIV-infected patients. This study was designed to determine the seroprevalence of human herpes viruses (CMV, HSV 2, EBV-1, VZV antibodies and to evaluate their association with age, sex as well as other demographic and behavioral factors. Results A study of 200 HIV positive patients from Eastern India attending the Calcutta Medical College Hospital, Kolkata, West Bengal, Apex Clinic, Calcutta Medical College Hospital and ART Center, School of Tropical Medicine, Kolkata, West Bengal was done. Serum samples were screened for antibodies to the respective viruses using the indirect ELISA in triplicates. CytoMegalo virus (CMV, Herpes Simplex virus type 2 (HSV-2, Varicella Zoster virus (VZV, and Epstein Barr virus (EBV-1 were detected in 49%, 47%, 32.5%, and 26% respectively. Conclusion This study has contributed baseline data and provided insights in viral OI and HIV co-infection in Eastern India. This would undoubtedly serve as a basis for further studies on this topic.

  12. Pre-infection frequencies of equine herpesvirus-1 specific, cytotoxic T lymphocytes correlate with protection against abortion following experimental infection of pregnant mares.

    Science.gov (United States)

    Kydd, J H; Wattrang, E; Hannant, D

    2003-12-15

    In general, vaccines containing inactivated equine herpesvirus-1 (EHV-1) fail to prevent abortion in pregnant mares following infection with a virulent strain of EHV-1. We have tested the hypothesis that resistance to EHV-1-induced abortion in pregnant mares is associated with high frequencies of EHV-1 specific, major histocompatibility complex (MHC) class I-restricted, cytotoxic T lymphocytes (CTL) in the circulation. To test this theory, three groups of pregnant mares were assembled with varying backgrounds of infection or vaccination in an attempt to mimic the immune status of the general population. Group 1 mares (n=9) were untreated controls selected at random. Group 2 mares (n=5) were vaccinated three times intramuscularly with inactivated EHV-1. Group 3 mares (n=3) had been infected with EHV-1 on four previous occasions. The frequency of CTL in blood leucocytes was measured by limiting dilution analysis at three time points; at the beginning of pregnancy (approximately 28 weeks before infection) in the Group 2 and Group 3 mares (4-7 weeks of gestation) (Group 1 was unavailable for sampling) and then 2 weeks before (30-40 weeks of gestation) and 3 weeks after experimental infection in all the mares. Serum samples were collected to monitor complement fixing (CF) antibody titres. Mares in all three groups were infected experimentally with EHV-1 strain Ab4/8 by the intranasal route after which they were monitored clinically to determine the outcome of pregnancy and samples were collected to determine the duration of nasopharyngeal shedding and cell-associated viraemia. The untreated control mares showed low pre-infection CTL. After experimental infection, they all seroconverted, aborted and demonstrated expected clinical and virological signs. Some vaccinated mares (3/5) had elevated titres of CF antibody prior to their first vaccination. All the vaccinated mares seroconverted after vaccination and exhibited higher CTL frequencies than controls before infection

  13. [Histological and ultrastructural changes in calves infected with bovine herpesvirus 2].

    Science.gov (United States)

    Veselinova, A; Dilovski, M; Feodorov, V

    1980-01-01

    We studied the hide, neck knots, as well as the liver of calves infected intradermally with strain KOS-Haskovo of Bovid Herpes Virus 2. On the spot of the injection we found necrotic changes in the superficial strata of the epidermis, hydropic distrophy of St. spinosum and also eosinophil intranuclear inclusions in separate epithelial cells. Intranuclear acidophil inclusions were proved also in the macrophages of the lymph knots, whereas in the liver we found a reactive lithic micronecroses. The ontogenic cycle of development took place in the cytoplasm of the infected cell and during this process the nucleocapsid was formed in the nucleus, whereas the virion was formed in the cytoplasm with the membrane elements. It was proved that changes were due to the virus which has a wide range of alteration in the bodies of the calves.

  14. Antibodies to ovine herpesvirus 2 glycoprotein antibodies decrease virus infectivity and prevent malignant catarrhal fever in rabbits

    Science.gov (United States)

    Ovine herpesvirus-2 (OvHV-2) is the etiological agent of sheep-associated malignant catarrhal fever (SA-MCF), a generally fatal lymphoproliferative disease of many species in the order Artiodactyla. Development of a vaccine is critical to prevent mortality. Because OvHV-2 has not been cultured in vi...

  15. Human Cytomegalovirus Intrahost Evolution – A New Avenue for Understanding and Controlling Herpesvirus Infections

    Science.gov (United States)

    Renzette, Nicholas; Gibson, Laura; Jensen, Jeffrey D.; Kowalik, Timothy F.

    2014-01-01

    Human cytomegalovirus (HCMV) is exquisitely adapted to the human host, and much research has focused on its evolution over long timescales spanning millennia. Here, we review recent data exploring the evolution of the virus on much shorter timescales, on the order of days or months. We describe the intrahost genetic diversity of the virus isolated from humans, and how this diversity contributes to HCMV spatiotemporal evolution. We propose mechanisms to explain the high levels of intrahost diversity and discuss how this new information may shed light on HCMV infection and pathogenesis. PMID:25154343

  16. Prevalence factors associated with equine herpesvirus type 1 infection in equids with upper respiratory tract infection and/or acute onset of neurological signs from 2008 to 2014.

    Science.gov (United States)

    Pusterla, N; Mapes, S; Akana, N; Barnett, C; MacKenzie, C; Gaughan, E; Craig, B; Chappell, D; Vaala, W

    2016-01-16

    The objective of the present case-control study was to determine prevalence factors associated with the detection of equine herpesvirus type 1 (EHV-1) by quantitative PCR (qPCR) in horses presented to veterinarians with clinical signs related to an upper respiratory tract infection and/or acute onset of neurological disease from March 2008 to December 2014. Nasal secretions and whole blood from 4228 equids with acute onset of fever, respiratory signs and/or neurological deficits were tested by qPCR for EHV-1. Categorical analyses were performed to determine the association between observations and EHV-1. A total of 117/4228 (2.7 per cent) equids tested qPCR-positive for EHV-1, with most of the isolates belonging to the non-neuropathogenic genotype (N752). EHV-1 PCR-positive equids were over-represented in racing horses. Depression, anorexia, nasal discharge and coughing were significantly less frequently reported in the EHV-1 qPCR-positive equids compared with the EHV-1 qPCR-negative cases. Neurological deficits were more frequently reported in the EHV-1 qPCR-positive cases. This study provides contemporary information on the frequency of EHV-1 detection by qPCR in blood and nasal secretions from horses with fever, respiratory signs and neurological deficits. British Veterinary Association.

  17. Piracy on the molecular level: human herpesviruses manipulate cellular chemotaxis.

    Science.gov (United States)

    Cornaby, Caleb; Tanner, Anne; Stutz, Eric W; Poole, Brian D; Berges, Bradford K

    2016-03-01

    Cellular chemotaxis is important to tissue homeostasis and proper development. Human herpesvirus species influence cellular chemotaxis by regulating cellular chemokines and chemokine receptors. Herpesviruses also express various viral chemokines and chemokine receptors during infection. These changes to chemokine concentrations and receptor availability assist in the pathogenesis of herpesviruses and contribute to a variety of diseases and malignancies. By interfering with the positioning of host cells during herpesvirus infection, viral spread is assisted, latency can be established and the immune system is prevented from eradicating viral infection.

  18. Interference with the Autophagic Process as a Viral Strategy to Escape from the Immune Control: Lesson from Gamma Herpesviruses

    Directory of Open Access Journals (Sweden)

    Roberta Santarelli

    2015-01-01

    Full Text Available We summarized the most recent findings on the role of autophagy in antiviral immune response. We described how viruses have developed strategies to subvert the autophagic process. A particular attention has been given to Epstein-Barr and Kaposi’s sarcoma associated Herpesvirus, viruses studied for many years in our laboratory. These two viruses belong to γ-Herpesvirus subfamily and are associated with several human cancers. Besides the effects on the immune response, we have described how autophagy subversion by viruses may also concur to the enhancement of their replication and to viral tumorigenesis.

  19. High human herpesvirus 8 (HHV-8 prevalence, clinical correlates and high incidence among recently HIV-1-infected subjects in Sao Paulo, Brazil.

    Directory of Open Access Journals (Sweden)

    Mariana Dias Batista

    Full Text Available BACKGROUND: Human herpesvirus 8 (HHV-8 is the etiological agent for Kaposi Sarcoma, which occurs especially in HIV-infected subjects. HHV-8 infection and its clinical correlates have not been well characterized in recently HIV-1-infected subjects, especially men who have sex with men (MSM. METHODOLOGY/ PRINCIPAL FINDINGS: We assessed the HHV-8 seroprevalence, clinical correlates, and incidence after one year of follow-up in a cohort of 228 recently HIV-1-infected individuals, of whom 83.6% were MSM, using indirect immunofluorescence assay. The prevalence of HHV-8 infection at the time of cohort enrollment was 25.9% (59/228. In the univariate model, there were significant associations with male gender, black ethnicity, MSM practice, and previous hepatitis B virus and syphilis infections. In the multivariate model we could still demonstrate association with MSM, hepatitis B, and black ethnicity. No differences in mean CD4+ cell counts or HIV viral load according to HHV-8 status were found. In terms of incidence, there were 23/127 (18.1% seroconversions in the cohort after 1 year. CONCLUSIONS: HHV-8 is highly prevalent among recently HIV-1-infected subjects. Correlations with other sexually transmitted infections suggest common transmission routes.

  20. Controlled release delivery of penciclovir via a silicone (MED-4750) polymer: kinetics of drug delivery and efficacy in preventing primary feline herpesvirus infection in culture.

    Science.gov (United States)

    Semenkow, Samantha L; Johnson, Nicole M; Maggs, David J; Margulies, Barry J

    2014-02-22

    Herpesviruses are ubiquitous pathogens that infect and cause recurrent disease in multiple animal species. Feline herpesvirus-1 (FHV-1), a member of the alphaherpesvirus family, causes respiratory illness and conjunctivitis, and approximately 80% of domestic cats are latently infected. Oral administration of famciclovir or topical application of cidofovir has been shown in masked, placebo-controlled prospective trials to reduce clinical signs and viral shedding in experimentally inoculated cats. However, to the authors' knowledge, other drugs have not been similarly assessed or were not safe or effective. Likewise, to our knowledge, no drugs have been assessed in a placebo-controlled manner in cats with recrudescent herpetic disease. Controlled-release devices would permit long-term administration of these drugs and enhance compliance. We therefore engineered implantable cylindrical devices made from silicone (MED-4750) impregnated with penciclovir, for long-term, steady-state delivery of this drug. Our data show that these devices release penciclovir with a burst of drug delivery until the tenth day of release, then at an average rate of 5.063 ± 1.704 μg per day through the next 50 days with near zero-order kinetics (in comparison to MED-4750-acyclovir devices, which show the same burst kinetics and average 2.236 ± 0.625 μg/day thereafter). Furthermore, these devices suppress primary infection of FHV-1 in a cell culture system. The clinical deployment of these silicone-penciclovir devices may allow long-term treatment of FHV-1 infection with a single intervention that could last the life of the host cat.

  1. T-cell immunity to herpesviruses in immune disorders

    NARCIS (Netherlands)

    Scherrenburg, J.

    2009-01-01

    Epstein-Barr virus (EBV) and Cytomegalovirus (CMV) are wide-spread herpesviruses, which establish life-long persistence in the host upon primary infection. Primary infection with herpesviruses causes usually only mild symptoms, however in some situations, such as during immunosuppression or human

  2. Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism.

    Science.gov (United States)

    Sychev, Zoi E; Hu, Alex; DiMaio, Terri A; Gitter, Anthony; Camp, Nathan D; Noble, William S; Wolf-Yadlin, Alejandro; Lagunoff, Michael

    2017-03-01

    Kaposi's Sarcoma associated Herpesvirus (KSHV), an oncogenic, human gamma-herpesvirus, is the etiological agent of Kaposi's Sarcoma the most common tumor of AIDS patients world-wide. KSHV is predominantly latent in the main KS tumor cell, the spindle cell, a cell of endothelial origin. KSHV modulates numerous host cell-signaling pathways to activate endothelial cells including major metabolic pathways involved in lipid metabolism. To identify the underlying cellular mechanisms of KSHV alteration of host signaling and endothelial cell activation, we identified changes in the host proteome, phosphoproteome and transcriptome landscape following KSHV infection of endothelial cells. A Steiner forest algorithm was used to integrate the global data sets and, together with transcriptome based predicted transcription factor activity, cellular networks altered by latent KSHV were predicted. Several interesting pathways were identified, including peroxisome biogenesis. To validate the predictions, we showed that KSHV latent infection increases the number of peroxisomes per cell. Additionally, proteins involved in peroxisomal lipid metabolism of very long chain fatty acids, including ABCD3 and ACOX1, are required for the survival of latently infected cells. In summary, novel cellular pathways altered during herpesvirus latency that could not be predicted by a single systems biology platform, were identified by integrated proteomics and transcriptomics data analysis and when correlated with our metabolomics data revealed that peroxisome lipid metabolism is essential for KSHV latent infection of endothelial cells.

  3. Three novel herpesviruses of endangered Clemmys and Glyptemys turtles.

    Science.gov (United States)

    Ossiboff, Robert J; Raphael, Bonnie L; Ammazzalorso, Alyssa D; Seimon, Tracie A; Newton, Alisa L; Chang, Tylis Y; Zarate, Brian; Whitlock, Alison L; McAloose, Denise

    2015-01-01

    The rich diversity of the world's reptiles is at risk due to significant population declines of broad taxonomic and geographic scope. Significant factors attributed to these declines include habitat loss, pollution, unsustainable collection and infectious disease. To investigate the presence and significance of a potential pathogen on populations of critically endangered bog turtles (Glyptemys muhlenbergii) as well sympatric endangered wood (G. insculpta) and endangered spotted (Clemmys guttata) turtles in the northeastern United States, choanal and cloacal swabs collected from 230 turtles from 19 sites in 5 states were screened for herpesvirus by polymerase chain reaction. We found a high incidence of herpesvirus infection in bog turtles (51.5%; 105/204) and smaller numbers of positive wood (5) and spotted (1) turtles. Sequence and phylogenetic analysis revealed three previously uncharacterized alphaherpesviruses. Glyptemys herpesvirus 1 was the predominant herpesvirus detected and was found exclusively in bog turtles in all states sampled. Glyptemys herpesvirus 2 was found only in wood turtles. Emydid herpesvirus 2 was found in a small number of bog turtles and a single spotted turtle from one state. Based on these findings, Glyptemys herpesvirus 1 appears to be a common infection in the study population, whereas Glyptemys herpesvirus 2 and Emydid herpesvirus 2 were not as frequently detected. Emydid herpesvirus 2 was the only virus detected in more than one species. Herpesviruses are most often associated with subclinical or mild infections in their natural hosts, and no sampled turtles showed overt signs of disease at sampling. However, infection of host-adapted viruses in closely related species can result in significant disease. The pathogenic potential of these viruses, particularly Emydid herpesvirus 2, in sympatric chelonians warrants additional study in order to better understand the relationship of these viruses with their endangered hosts.

  4. Three novel herpesviruses of endangered Clemmys and Glyptemys turtles.

    Directory of Open Access Journals (Sweden)

    Robert J Ossiboff

    Full Text Available The rich diversity of the world's reptiles is at risk due to significant population declines of broad taxonomic and geographic scope. Significant factors attributed to these declines include habitat loss, pollution, unsustainable collection and infectious disease. To investigate the presence and significance of a potential pathogen on populations of critically endangered bog turtles (Glyptemys muhlenbergii as well sympatric endangered wood (G. insculpta and endangered spotted (Clemmys guttata turtles in the northeastern United States, choanal and cloacal swabs collected from 230 turtles from 19 sites in 5 states were screened for herpesvirus by polymerase chain reaction. We found a high incidence of herpesvirus infection in bog turtles (51.5%; 105/204 and smaller numbers of positive wood (5 and spotted (1 turtles. Sequence and phylogenetic analysis revealed three previously uncharacterized alphaherpesviruses. Glyptemys herpesvirus 1 was the predominant herpesvirus detected and was found exclusively in bog turtles in all states sampled. Glyptemys herpesvirus 2 was found only in wood turtles. Emydid herpesvirus 2 was found in a small number of bog turtles and a single spotted turtle from one state. Based on these findings, Glyptemys herpesvirus 1 appears to be a common infection in the study population, whereas Glyptemys herpesvirus 2 and Emydid herpesvirus 2 were not as frequently detected. Emydid herpesvirus 2 was the only virus detected in more than one species. Herpesviruses are most often associated with subclinical or mild infections in their natural hosts, and no sampled turtles showed overt signs of disease at sampling. However, infection of host-adapted viruses in closely related species can result in significant disease. The pathogenic potential of these viruses, particularly Emydid herpesvirus 2, in sympatric chelonians warrants additional study in order to better understand the relationship of these viruses with their endangered hosts.

  5. RANAVIRUS EPIZOOTIC IN CAPTIVE EASTERN BOX TURTLES (TERRAPENE CAROLINA CAROLINA) WITH CONCURRENT HERPESVIRUS AND MYCOPLASMA INFECTION: MANAGEMENT AND MONITORING.

    Science.gov (United States)

    Sim, Richard R; Allender, Matthew C; Crawford, LaTasha K; Wack, Allison N; Murphy, Kevin J; Mankowski, Joseph L; Bronson, Ellen

    2016-03-01

    Frog virus 3 (FV3) and FV3-like viruses are members of the genus Ranavirus (family Iridoviridae) and are becoming recognized as significant pathogens of eastern box turtles (Terrapene carolina carolina) in North America. In July 2011, 5 turtles from a group of 27 in Maryland, USA, presented dead or lethargic with what was later diagnosed as fibrinonecrotic stomatitis and cloacitis. The presence of FV3-like virus and herpesvirus was detected by polymerase chain reaction (PCR) in the tested index cases. The remaining 22 animals were isolated, segregated by severity of clinical signs, and treated with nutritional support, fluid therapy, ambient temperature management, antibiotics, and antiviral therapy. Oral swabs were tested serially for FV3-like virus by quantitative real-time PCR (qPCR) and tested at day 0 for herpesvirus and Mycoplasma sp. by conventional PCR. With oral swabs, 77% of the 22 turtles were FV3-like virus positive; however, qPCR on tissues taken during necropsy revealed the true prevalence was 86%. FV3-like virus prevalence and the median number of viral copies being shed significantly declined during the outbreak. The prevalence of herpesvirus and Mycoplasma sp. by PCR of oral swabs at day 0 was 55% and 68%, respectively. The 58% survival rate was higher than previously reported in captive eastern box turtles for a ranavirus epizootic. All surviving turtles brumated normally and emerged the following year with no clinical signs during subsequent monitoring. The immediate initiation of treatment and intensive supportive care were considered the most important contributing factors to the successful outcome in this outbreak.

  6. Human Herpesvirus-8 Infection Associated with Kaposi Sarcoma, Multicentric Castleman's Disease, and Plasmablastic Microlymphoma in a Man with AIDS: A Case Report with Review of Pathophysiologic Processes

    Directory of Open Access Journals (Sweden)

    Christian Eaton

    2011-01-01

    Full Text Available Kaposi sarcoma (KS, multicentric Castleman's disease (MCD, and plasmablastic microlymphoma, are all linked to human herpesvirus-8 (HHV-8 infection and HIV-induced immunodeficiency. Herein, we describe the case of a Kenyan man diagnosed with HIV in 2000. He deferred highly active antiretroviral therapy (HAART and remained in good health until his CD4+ count declined in 2006. He was hospitalized with bacterial pneumonia in 2008, after which he agreed to take HAART but did so sporadically. In 2010, he was hospitalized with fever, lymphadenopathy, pancytopenia, and an elevated HHV-8 viral load. A lymph node biopsy showed findings consistent with KS, MCD, and plasmablastic microlymphoma. Eight months after starting liposomal doxorubicin, Rituximab, and a new HAART regimen, he has improved clinically, and his HIV and HHV-8 viral loads are suppressed. These three conditions, found in the same lymph node, underscore the inflammatory and malignant potential of HHV-8, particularly in the milieu of HIV-induced immunodeficiency.

  7. The Ozobranchus leech is a candidate mechanical vector for the fibropapilloma-associated turtle herpesvirus found latently infecting skin tumors on Hawaiian green turtles (Chelonia mydas)

    Science.gov (United States)

    Greenblatt, R.J.; Work, Thierry M.; Balazs, G.; Sutton, C.A.; Casey, R.N.; Casey, J.W.

    2004-01-01

    Fibropapillomatosis (FP) of marine turtles is a neoplastic disease of ecological concern. A fibropapilloma-associated turtle herpesvirus (FPTHV) is consistently present, usually at loads exceeding one virus copy per tumor cell. DNA from an array of parasites of green turtles (Chelonia mydas) was examined with quantitative PCR (qPCR) to determine whether any carried viral loads are sufficient to implicate them as vectors for FPTHV. Marine leeches (Ozobranchus spp.) were found to carry high viral DNA loads; some samples approached 10 million copies per leech. Isopycnic sucrose density gradient/qPCR analysis confirmed that some of these copies were associated with particles of the density of enveloped viruses. The data implicate the marine leech Ozobranchus as a mechanical vector for FPTHV. Quantitative RT-PCR analysis of FPTHV gene expression indicated that most of the FPTHV copies in a fibropapilloma have restricted DNA polymerase expression, suggestive of latent infection.

  8. CXCL10/CXCR3-Dependent Mobilization of Herpes Simplex Virus-Specific CD8+TEMand CD8+TRMCells within Infected Tissues Allows Efficient Protection against Recurrent Herpesvirus Infection and Disease.

    Science.gov (United States)

    Srivastava, Ruchi; Khan, Arif A; Chilukuri, Sravya; Syed, Sabrina A; Tran, Tien T; Furness, Julie; Bahraoui, Elmostafa; BenMohamed, Lbachir

    2017-07-15

    Herpes simplex virus 1 (HSV-1) establishes latency within the sensory neurons of the trigeminal ganglia (TG). HSV-specific memory CD8 + T cells play a critical role in preventing HSV-1 reactivation from TG and subsequent virus shedding in tears that trigger recurrent corneal herpetic disease. The CXC chemokine ligand 10 (CXCL10)/CXC chemokine receptor 3 (CXCR3) chemokine pathway promotes T cell immunity to many viral pathogens, but its importance in CD8 + T cell immunity to recurrent herpes has been poorly elucidated. In this study, we determined how the CXCL10/CXCR3 pathway affects TG- and cornea-resident CD8 + T cell responses to recurrent ocular herpesvirus infection and disease using a well-established murine model in which HSV-1 reactivation was induced from latently infected TG by UV-B light. Following UV-B-induced HSV-1 reactivation, a significant increase in both the number and function of HSV-specific CXCR3 + CD8 + T cells was detected in TG and corneas of protected C57BL/6 (B6) mice, but not in TG and corneas of nonprotected CXCL10 -/- or CXCR3 -/- deficient mice. This increase was associated with a significant reduction in both virus shedding and recurrent corneal herpetic disease. Furthermore, delivery of exogenous CXCL10 chemokine in TG of CXCL10 -/- mice, using the neurotropic adeno-associated virus type 8 (AAV8) vector, boosted the number and function of effector memory CD8 + T cells (T EM ) and tissue-resident memory CD8 + T cells (T RM ), but not of central memory CD8 + T cells (T CM ), locally within TG, and improved protection against recurrent herpesvirus infection and disease in CXCL10 -/- deficient mice. These findings demonstrate that the CXCL10/CXCR3 chemokine pathway is critical in shaping CD8 + T cell immunity, locally within latently infected tissues, which protects against recurrent herpesvirus infection and disease. IMPORTANCE We determined how the CXCL10/CXCR3 pathway affects CD8 + T cell responses to recurrent ocular herpesvirus

  9. Anti-CD20 Monoclonal Antibody Treatment of Human Herpesvirus 8-Associated, Body Cavity-Based Lymphoma with an Unusual Phenotype in a Human Immunodeficiency Virus-Negative Patient

    Science.gov (United States)

    Pérez, Celeste L.; Rudoy, Silvia

    2001-01-01

    Human herpesvirus 8 (HHV-8), or Kaposi's sarcoma-associated herpesvirus, is a gammaherpesvirus first detected in Kaposi's sarcoma tumor cells and subsequently in primary effusion lymphoma (PEL) tumor cells and peripheral blood mononuclear cells from PEL patients. PEL has been recognized as an individual nosologic entity based on its distinctive features and consistent association with HHV-8 infection. PEL is an unusual form of body cavity-based B-cell lymphoma (BCBL). It occurs predominantly in human immunodeficiency virus (HIV)-positive patients but occasionally also in elderly HIV-negative patients. We describe a case of PEL, with ascites, bilateral pleural effusions, and a small axillary lymphadenopathy, in a 72-year-old HIV-negative man. PCR performed on a lymph node specimen and in liquid effusion was positive for HHV-8 and negative for Epstein-Barr virus. The immunophenotype of the neoplastic cells was B CD19+ CD20+ CD22+ with coexpression of CD10 and CD23 and with clonal kappa light chain rearrangement. The patient was treated with Rituximab, a chimeric (human-mouse) anti-CD20 monoclonal antibody. Thirteen months later, the patient continued in clinical remission. This is the first report of an HHV-8-associated BCBL in an HIV-negative patient in Argentina. PMID:11527816

  10. Bovine herpesvirus 1 can efficiently infect the human (SH-SY5Y) but not the mouse neuroblastoma cell line (Neuro-2A).

    Science.gov (United States)

    Thunuguntla, Prasanth; El-Mayet, Fouad S; Jones, Clinton

    2017-03-15

    Bovine herpesvirus 1 (BoHV-1) is a significant bovine pathogen that establishes a life-long latent infection in sensory neurons. Previous attempts to develop immortalized bovine neuronal cells were unsuccessful. Consequently, our understanding of the BoHV-1 latency-reactivation cycle has relied on studying complex virus-host interactions in calves. In this study, we tested whether BoHV-1 can infect human (SH-SY5Y) or mouse (Neuro-2A) neuroblastoma cells. We provide new evidence that BoHV-1 efficiently infects SH-SY5Y cells and yields virus titers approximately 100 fold less than bovine kidney cells. Conversely, virus titers from productively infected Neuro-2A cells were approximately 10,000 fold less than bovine kidney cells. Using a β-Gal expressing virus (gC-Blue), we demonstrate that infection of Neuro-2A cells (actively dividing or differentiated) does not result in efficient virus spread, unlike bovine kidney or SH-SY5Y cells. Additional studies demonstrated that lytic cycle viral gene expression (bICP4 and gE) was readily detected in SH-SY5Y cells: conversely bICP4 was not readily detected in productively infected Neuro-2A cells. Finally, infection of SH-SY5Y and bovine kidney cells, but not Neuro-2A cells, led to rapid activation of the Akt protein kinase. These studies suggest that the Neuro-2A cell line may be a novel cell culture model to identify factors that regulate BoHV-1 productive infection in neuronal cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A Toolbox for Herpesvirus miRNA Research: Construction of a Complete Set of KSHV miRNA Deletion Mutants

    Directory of Open Access Journals (Sweden)

    Vaibhav Jain

    2016-02-01

    Full Text Available Kaposi’s sarcoma-associated herpesvirus (KSHV encodes 12 viral microRNAs (miRNAs that are expressed during latency. Research into KSHV miRNA function has suffered from a lack of genetic systems to study viral miRNA mutations in the context of the viral genome. We used the Escherichia coli Red recombination system together with a new bacmid background, BAC16, to create mutants for all known KSHV miRNAs. The specific miRNA deletions or mutations and the integrity of the bacmids have been strictly quality controlled using PCR, restriction digestion, and sequencing. In addition, stable viral producer cell lines based on iSLK cells have been created for wildtype KSHV, for 12 individual miRNA knock-out mutants (ΔmiR-K12-1 through -12, and for mutants deleted for 10 of 12 (ΔmiR-cluster or all 12 miRNAs (ΔmiR-all. NGS, in combination with SureSelect technology, was employed to sequence the entire latent genome within all producer cell lines. qPCR assays were used to verify the expression of the remaining viral miRNAs in a subset of mutants. Induction of the lytic cycle leads to efficient production of progeny viruses that have been used to infect endothelial cells. Wt BAC16 and miR mutant iSLK producer cell lines are now available to the research community.

  12. Prevalence of antibodies to human herpesvirus-8 in populations with and without risk for infection in São Paulo State

    Directory of Open Access Journals (Sweden)

    Souza V.A.U.F.

    2004-01-01

    Full Text Available Human herpesvirus 8 (HHV-8 is a newly described herpesvirus that is etiologically associated with all forms of Kaposi's sarcoma (KS. Seroepidemiological studies have shown high prevalence rates of HHV-8 antibodies among men who have sex with men (MSM and AIDS patients, African children, Brazilian Amerindians, and elderly individuals in certain regions of Europe. The aim of the present study was to determine the prevalence of HHV-8 antibodies in healthy children and young adults from different cities in São Paulo State, and in a population at high risk for HHV-8 infection: HIV-negative MSM, and AIDS patients with and without KS. Antibodies to HHV-8 latency-associated nuclear antigen and lytic-phase antigens were detected by immunofluorescence assays. In 643 healthy children and young adults from the general population attending a vaccination program for yellow fever in ten different cities in São Paulo State, the prevalence of HHV-8 antibodies detected by the presence of latent or lytic antigens ranged from 1.0 to 4.1% in the different age groups (mean = 2.5%. In the MSM group, the prevalence was 31/95 (32.6%. In the group of patients with AIDS, the prevalence was 39.2% (51/130 for non-KS patients and 98.7% (77/78 for AIDS patients with the diagnosis of KS confirmed by histopathological examination. We conclude that HHV-8 has a restricted circulation among healthy children and young adults in the general population of São Paulo State and a high prevalence among MSM and AIDS patients.

  13. Is the drug-induced hypersensitivity syndrome (DIHS due to human herpesvirus 6 infection or to allergy-mediated viral reactivation? Report of a case and literature review

    Directory of Open Access Journals (Sweden)

    Borgia Guglielmo

    2010-03-01

    Full Text Available Abstract Background Drug-Induced Hypersensitivity Syndrome (DIHS is a severe and rare systemic reaction triggered by a drug (usually an antiepileptic drug. We present a case of DISH and we review studies on the clinical features and treatment of DIHS, and on its pathogenesis in which two elements (Herpesvirus infection and the drug interact with the immune system to trigger such a syndrome that can lead to death in about 20% of cases. Case presentation We report the case of a 26-year old woman with fever, systemic maculopapular rash, lymphadenopathy, hepatitis and eosinophilic leukocytosis. She had been treated with antibiotics that gave no benefit. She was taking escitalopram and lamotrigine for a bipolar disease 30 days before fever onset. Because the patient's general condition deteriorated, betamethasone and acyclovir were started. This treatment resulted in a mild improvement of symptoms. Steroids were rapidly tapered and this was followed with a relapse of fever and a worsening of laboratory parameters. Human herpesvirus 6 (HHV-6 DNA was positive as shown by PCR. Drug-Induced Hypersensitivity Syndrome (DIHS was diagnosed. Symptoms regressed on prednisone (at a dose of 50 mg/die that was tapered very slowly. The patient recovered completely. Conclusions The search for rare causes of fever led to complete resolution of a very difficult case. As DIHS is a rare disease the most relevant issue is to suspect and include it in differential diagnosis of fevers of unknown origin. Once diagnosed, the therapy is easy (steroidal administration and often successful. However our case strongly confirms that attention should be paid on the steroidal tapering that should be very slow to avoid a relapse.

  14. Herpesviruses and breast milk.

    Science.gov (United States)

    Pietrasanta, C; Ghirardi, B; Manca, M F; Uccella, S; Gualdi, C; Tota, E; Pugni, L; Mosca, F

    2014-06-30

    Breast milk has always been the best source of nourishment for newborns. However, breast milk can carry a risk of infection, as it can be contaminated with bacterial or viral pathogens. This paper reviews the risk of acquisition of varicella-zoster virus (VZV) and cytomegalovirus (CMV), herpesviruses frequently detected in breastfeeding mothers, via breast milk, focusing on the clinical consequences of this transmission and the possible strategies for preventing it. Maternal VZV infections are conditions during which breastfeeding may be temporarily contraindicated, but expressed breast milk should always be given to the infant. CMV infection acquired through breast milk rarely causes disease in healthy term newborns; an increased risk of CMV disease has been documented in preterm infants. However, the American Academy of Pediatrics (AAP) does not regard maternal CMV seropositivity as a contraindication to breastfeeding; according to the AAP, in newborns weighing less than 1500 g, the decision should be taken after weighing the benefits of breast milk against the risk of transmission of infection. The real efficacy of the different methods of inactivating CMV in breast milk should be compared in controlled clinical trials, rigorously examining the negative consequences that each of these methods can have on the immunological and nutritional properties of the milk itself, with a view to establish the best risk-benefit ratio of these strategies before they are recommended for use in clinical practice.

  15. Herpesviruses and breast milk

    Directory of Open Access Journals (Sweden)

    C. Pietrasanta

    2014-06-01

    Full Text Available Breast milk has always been the best source of nourishment for newborns. However, breast milk can carry a risk of infection, as it can be contaminated with bacterial or viral pathogens. This paper reviews the risk of acquisition of varicella-zoster virus (VZV and cytomegalovirus (CMV, herpesviruses frequently detected in breastfeeding mothers, via breast milk, focusing on the clinical consequences of this transmission and the possible strategies for preventing it. Maternal VZV infections are conditions during which breastfeeding may be temporarily contraindicated, but expressed breast milk should always be given to the infant. CMV infection acquired through breast milk rarely causes disease in healthy term newborns; an increased risk of CMV disease has been documented in preterm infants. However, the American Academy of Pediatrics (AAP does not regard maternal CMV seropositivity as a contraindication to breastfeeding; according to the AAP, in newborns weighing less than 1500 g, the decision should be taken after weighing the benefits of breast milk against the risk of transmission of infection. The real efficacy of the different methods of inactivating CMV in breast milk should be compared in controlled clinical trials, rigorously examining the negative consequences that each of these methods can have on the immunological and nutritional properties of the milk itself, with a view to establish the best risk-benefit ratio of these strategies before they are recommended for use in clinical practice.

  16. Secretory expression of bovine herpesvirus type 1/5 glycoprotein E in Pichia pastoris for the differential diagnosis of vaccinated or infected cattle.

    Science.gov (United States)

    Siedler, Bianca S; Roloff, Bárbara C; de Sá, Gizele L; Neis, Alessandra; Conceição, Fabrício R; Hartwig, Daiane D; Borsuk, Sibele; Dellagostin, Odir A; Campos, Fabrício S; Roehe, Paulo M; Hartleben, Claudia P; McBride, Alan J A

    2017-02-01

    Bovine herpesvirus (BoHV) glycoprotein E (gE) is a non-essential envelope glycoprotein and the deletion of gE has been used to develop BoHV-1 and BoHV-5 differential vaccine strains. The DIVA (Differentiation of Infected from Vaccinated Animals) strategy, using marker vaccines based on gE-negative BoHV strains, allows the identification of vaccinated or infected animals in immunoassays designed to detect anti-gE antibodies. In this study a codon optimized synthetic sequence of gE containing highly conserved regions from BoHV-1 and BoHV-5 was expressed in Pichia pastoris. Following expression, the recombinant gE (rgE) was secreted and purified from the culture medium. The rgE was identified by Western blotting (WB) using sera from cattle naturally infected with BoHV-1 and/or BoHV-5, or sera from bovines experimentally infected with wild-type BoHV-5. Sera collected from cattle vaccinated with a BoHV-5 gI/gE/US9¯ marker vaccine failed to recognise rgE. Expression of rgE, based on a sequence containing highly conserved regions from BoHV-1 and BoHV-5, in P. pastoris enabled the production of large quantities of rgE suitable for use in immunoassays for the differentiation vaccinated or infected cattle. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Fatal Human herpesvirus 1 (HHV-1 infection in captive marmosets (Callithrix jacchus and Callithrix penicillata in Brazil: clinical and pathological characterization

    Directory of Open Access Journals (Sweden)

    Renata A. Casagrande

    2014-11-01

    Full Text Available Fatal Human herpesvirus 1 (HHV-1 was diagnosed in 12 captive marmosets (Callithrix jacchus and Callithrix penicillata from metropolitan region of São Paulo, São Paulo State. Clinical signs were variable among the cases, but most affected marmosets presented signs associated with viral epithelial replication: oral, lingual and facial skin ulcers and hypersalivation, and viral replication in the central nervous system: prostration, seizure and aggressive behavior. Consistent microscopic findings were diffuse mild to severe nonsuppurative necrotizing meningoencephalitis with gliosis, vasculitis and neuronal necrosis. Additionally, in the brain, oral cavity, skin, adrenal gland and myoenteric plexus intranuclear inclusion bodies were present. Immunohistochemistry confirmed the presence of the HHV-1 antigen in association with lesions in the brain, oral and lingual mucosa, facial skin, adrenal gland and myoenteric plexus. HHV-1-specific polymerase chain reaction (PCR analysis of the brain was carried out and the virus was detected in 7/8 infected marmosets. It is concluded that HHV-1 causes widespread fatal infection in marmosets.

  18. KSHV/HHV-8 and HIV infection in Kaposi's sarcoma development

    Directory of Open Access Journals (Sweden)

    Kaaya Ephata

    2007-02-01

    Full Text Available Abstract Kaposi's sarcoma (KS is a highly and abnormally vascularized tumor-like lesion affecting the skin, lymphnodes and viscera, which develops from early inflammatory stages of patch/plaque to late, nodular tumors composed predominant of spindle cells (SC. These SC are infected with the Kaposi's sarcoma-associated herpesvirus or human herpesvirus-8 (KSHV/HHV-8. KS is promoted during HIV infection by various angiogenic and pro-inflammatory factors including HIV-Tat. The latency associated nuclear antigen type 1 (LANA-1 protein is well expressed in SC, highly immunogenic and considered important in the generation and maintenance of HHV-8 associated malignancies. Various studies favour an endothelial origin of the KS SC, expressing "mixed" lymphatic and vascular endothelial cell markers, possibly representing hybrid phenotypes of endothelial cells (EC. A significant number of SC during KS development are apparently not HHV8 infected, which heterogeneity in viral permissiveness may indicate that non-infected SC may continuously be recruited in to the lesion from progenitor cells and locally triggered to develop permissiveness to HHV8 infection. In the present study various aspects of KS pathogenesis are discussed, focusing on the histopathological as well as cytogenetic and molecular genetic changes in KS.

  19. β-Catenin, a Transcription Factor Activated by Canonical Wnt Signaling, Is Expressed in Sensory Neurons of Calves Latently Infected with Bovine Herpesvirus 1.

    Science.gov (United States)

    Liu, Yilin; Hancock, Morgan; Workman, Aspen; Doster, Alan; Jones, Clinton

    2016-01-06

    Like many Alphaherpesvirinae subfamily members, bovine herpesvirus 1 (BoHV-1) expresses an abundant transcript in latently infected sensory neurons, the latency-related (LR)-RNA. LR-RNA encodes a protein (ORF2) that inhibits apoptosis, interacts with Notch family members, interferes with Notch-mediated transcription, and stimulates neurite formation in cells expressing Notch. An LR mutant virus containing stop codons at the amino terminus of ORF2 does not reactivate from latency or replicate efficiently in certain tissues, indicating that LR gene products are important. In this study, β-catenin, a transcription factor activated by the canonical Wnt signaling pathway, was frequently detected in ORF2-positive trigeminal ganglionic neurons of latently infected, but not mock-infected, calves. Conversely, the lytic cycle regulatory protein (BoHV-1 infected cell protein 0, or bICP0) was not frequently detected in β-catenin-positive neurons in latently infected calves. During dexamethasone-induced reactivation from latency, mRNA expression levels of two Wnt antagonists, Dickkopf-1 (DKK-1) and secreted Frizzled-related protein 2 (SFRP2), were induced in bovine trigeminal ganglia (TG), which correlated with reduced β-catenin protein expression in TG neurons 6 h after dexamethasone treatment. ORF2 and a coactivator of β-catenin, mastermind-like protein 1 (MAML1), stabilized β-catenin protein levels and stimulated β-catenin-dependent transcription in mouse neuroblastoma cells more effectively than MAML1 or ORF2 alone. Neuroblastoma cells expressing ORF2, MAML1, and β-catenin were highly resistant to cell death following serum withdrawal, whereas most cells transfected with only one of these genes died. The Wnt signaling pathway interferes with neurodegeneration but promotes neuronal differentiation, suggesting that stabilization of β-catenin expression by ORF2 promotes neuronal survival and differentiation. Bovine herpesvirus 1 (BoHV-1) is an important pathogen of

  20. Susceptibility of KSHV-Infected PEL Cell Lines to the Human Complement System.

    Science.gov (United States)

    Yoo, Seung-Min; Jeon, Hyungtaek; Lee, Suhyuk; Lee, Myung-Shin

    2016-03-01

    Pleural effusion lymphoma (PEL) is a rare B-cell lymphoma that has a very poor prognosis with a median survival time of around 6 months. PEL is caused by Kaposi's sarcoma-associated herpesvirus, and is often co-infected with the Epstein Barr virus. The complement system is fundamental in the innate immune system against pathogen invasion and tumor development. In the present study, we investigated the activation of the complement system in PEL cells using human serum complements. Interestingly, two widely used PEL cell lines, BCP-1 and BCBL-1, showed different susceptibility to the complement system, which may be due to CD46 expression on their cell membranes. Complement activation did not induce apoptosis but supported cell survival considerably. Our results demonstrated the susceptibility of PEL to the complement system and its underlying mechanisms, which would provide insight into understanding the pathogenesis of PEL.

  1. Anguillid herpesvirus 1 transcriptome

    NARCIS (Netherlands)

    Beurden, van S.J.; Gatherer, D.; Kerr, K.; Galbraith, J.; Herzyk, P.; Peeters, B.P.H.; Rottier, P.J.M.; Engelsma, M.Y.; Davidson, A.J.

    2012-01-01

    We used deep sequencing of poly(A) RNA to characterize the transcriptome of an economically important eel virus, anguillid herpesvirus 1 (AngHV1), at a stage during the lytic life cycle when infectious virus was being produced. In contrast to the transcription of mammalian herpesviruses, the overall

  2. Comparison between DNA Detection in Trigeminal Nerve Ganglia and Serology to Detect Cattle Infected with Bovine Herpesviruses Types 1 and 5.

    Science.gov (United States)

    Puentes, Rodrigo; Campos, Fabrício Souza; Furtado, Agustin; Torres, Fabrício Dias; Franco, Ana Cláudia; Maisonnave, Jacqueline; Roehe, Paulo Michel

    2016-01-01

    Bovine herpesviruses (BoHVs) types 1 (BoHV-1) and 5 (BoHV-5) are alphaherpesviruses of major importance to the bovine production chain. Such viruses are capable of establishing latent infections in neuronal tissues. Infected animals tend to develop a serological response to infection; however, such response-usually investigated by antibody assays in serum-may eventually not be detected in laboratory assays. Nevertheless, serological tests such as virus neutralization (VN) and various enzyme-linked immunosorbent assays (ELISAs) are widely employed to check individual or herd status of BoHV infections. The correlation between detection of antibodies and the presence of viral nucleic acids as indicatives of infection in infected cattle has not been deeply examined. In order to investigate such correlation, 248 bovine serum samples were tested by VN to BoHV-1 and BoHV-5, as well as in a widely employed (though not type-differential) gB ELISA (IDEXX IBR gB X2 Ab Test) in search for antibodies to BoHVs. Immediately after blood withdrawal, cattle were slaughtered and trigeminal ganglia (TG) excised for DNA extraction and viral nucleic acid detection (NAD) by nested PCR. Neutralizing antibodies to BoHV-1 and/or BoHV-5 were detected in 44.8% (111/248) of sera, whereas the gB ELISA detected antibodies in 51.2% (127/248) of the samples. However, genomes of either BoHV-1, BoHV-5, or both, were detected in TGs of 85.9% (213/248) of the animals. These findings reveal that the assays designed to detect antibodies to BoHV-1 and/or BoHV-5 employed here may fail to detect a significant number of latently infected animals (in this study, 35.7%). From such data, it is clear that antibody assays are poorly correlated with detection of viral genomes in BoHV-1 and BoHV-5-infected animals.

  3. Regulation of Notch-mediated transcription by a bovine herpesvirus 1 encoded protein (ORF2) that is expressed in latently infected sensory neurons.

    Science.gov (United States)

    Liu, Yilin; Jones, Clinton

    2016-08-01

    Bovine herpesvirus 1 (BoHV-1) is an Alphaherpesvirinae subfamily member that establishes life-long latency in sensory neurons. The latency-related RNA (LR-RNA) is abundantly expressed during latency. An LR mutant virus containing stop codons at the amino-terminus of open reading frame (ORF)2 does not reactivate from latency and replicates less efficiently in tonsils and trigeminal ganglia. ORF2 inhibits apoptosis, interacts with Notch family members, and interferes with Notch-dependent transcription suggesting ORF2 expression enhances survival of infected neurons. The Notch signaling pathway is crucial for neuronal differentiation and survival suggesting that interactions between ORF2 and Notch family members regulate certain aspects of latency. Consequently, for this study, we compared whether ORF2 interfered with the four mammalian Notch family members. ORF2 consistently interfered with Notch1-3-mediated transactivation of three cellular promoters. Conversely, Notch4-mediated transcription was not consistently inhibited by ORF2. Electrophoretic shift mobility assays using four copies of a consensus-DNA binding site for Notch/CSL (core binding factor (CBF)-1, Suppressor of Hairless, Lag-2) as a probe revealed ORF2 interfered with Notch1 and 3 interactions with a CSL family member bound to DNA. Additional studies demonstrated ORF2 enhances neurite sprouting in mouse neuroblastoma cells that express Notch1-3, but not Notch4. Collectively, these studies indicate that ORF2 inhibits Notch-mediated transcription and signaling by interfering with Notch interacting with CSL bound to DNA.

  4. Co-infection with Bovine Herpesvirus 4 and Histophilus somni Significantly Extends the Service Period in Dairy Cattle with Purulent Vaginal Discharge.

    Science.gov (United States)

    Szenci, O; Sassi, G; Fodor, L; Molnár, L; Szelényi, Z; Tibold, J; Mádl, I; Egyed, L

    2016-02-01

    The aim of the study was to investigate the effect of Bovine Herpesvirus 4 (BoHV-4) and Histophilus (H.) somni on fertility rate of cows in a Hungarian Holstein-Friesian dairy herd with purulent vaginal discharge (PVD). Non-pregnant cows (n = 188) with mature corpus luteum were treated with cloprostenol and 3 days later if they did not show oestrus, were examined by rectal palpation. Animals showing PVD (n = 60/31.9%/) and 14 controls with normal vaginal discharge (Score 0) were randomly selected and further examined by ultrasonography and blood samples were collected for detecting BoHV-4 DNA and transcervical guarded swabs were collected from the uterus for bacteriological examination. Although the majority of the examined animals were infected with BoHV-4 and H. somni including the control animals as well, in group of animals with PVD score 3, fewer animals became pregnant and the duration between the first treatment to pregnancy was significantly extended. Based on these clinical and comparative data, our results confirm that these two microorganisms together may impair important reproductive parameters which may cause large economic losses to dairy farms. © 2015 Blackwell Verlag GmbH.

  5. Molecular characterisation and genetic variation of Elephant Endotheliotropic Herpesvirus infection in captive young Asian elephants in Thailand.

    Science.gov (United States)

    Sripiboon, Supaphen; Jackson, Bethany; Ditcham, William; Holyoake, Carly; Robertson, Ian; Thitaram, Chatchote; Tankaew, Pallop; Letwatcharasarakul, Preeda; Warren, Kristin

    2016-10-01

    Elephant Endotheliotropic Herpesvirus (EEHV) is emerging as a new threat for elephant conservation, since being identified as the cause of severe, often fatal, haemorrhagic disease in young Asian elephants. To describe positive cases and the molecular relatedness of virus detected in elephants in Thailand, we re-examined all available of EEHV samples occurring in young elephants in Thailand between 2006 and 2014 (n=24). Results indicated 75% (18/24) of suspected cases were positive for EEHV by semi-nested PCR. Further gene analysis identified these positive cases as EEHV1A (72%, 13/18 cases), EEHV1B (11%, 2/18) and EEHV4 (17%, 3/18). This study is the first to phylogenetically analyse and provide an overview of most of the known EEHV cases that have occurred in Thailand. Positive individuals ranged in age from one to nine years, with no sex association detected, and occurred across geographical locations throughout the country. All individuals, except one, were captive-born. No history of direct contact among the cases was recorded, and this together with the fact that various subtype clusters of virus were found, implied that none of the positive cases were epidemiologically related. These results concur with the hypothesis that EEHV1 is likely to be an ancient endogenous pathogen in Asian elephants. It is recommended that active surveillance and routine monitoring for EEHV should be undertaken in all elephant range countries, to gain a better understanding of the epidemiology, transmission and prevention of this disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Human Herpesvirus-8 Infection and Oral Shedding in Amerindian and Non-Amerindian Populations in the Brazilian Amazon Region

    Science.gov (United States)

    de Souza, Vanda A. U. F.; Sumita, Laura M.; Nascimento, Maria-Claudia; Oliveira, Juliane; Mascheretti, Melissa; Quiroga, Mariana; Freire, Wilton S.; Tateno, Adriana; Boulos, Marcos; Mayaud, Philippe; Pannuti, Claudio S.

    2012-01-01

    Background Human herpesvirus type 8 (HHV-8) is hyperendemic in Amerindian populations, but its modes of transmission are unknown. Methods Antibodies against either HHV-8 lytic antigen or HHV-8 latency-associated nuclear antigen (LANA) were detected, by immunofluorescence assays, in 339 Amerindians and 181 non-Amerindians from the Brazilian Amazon. Serological markers of oro-fecal (hepatitis A), parenteral (hepatitis B and C), and sexual (herpes simplex virus type 2 and syphilis) transmission were measured by specific ELISAs. Salivary HHV-8 DNA was detected by use of a nested polymerase chain reaction assay and was sequenced. Results Antibodies against either lytic antigen or LANA were detected in 79.1% of Amerindians and in 6.1% of non-Amerindians (adjusted seroprevalence ratio [SR], 12.63 [95% confidence interval {CI}, 7.1–22.4]; P< .0001). HHV-8 seroprevalence increased with age among Amerindians (PTrend< .001) and already had high prevalence in childhood but was not sex specific in either population. The 2 populations did not differ in seroprevalence of oro-fecal or parenteral markers, but seroprevalence of markers of sexual transmission was lower among Amerindians. HHV-8 DNA in saliva was detected in 47 (23.7%) of 198 HHV-8 seropositive Amerindians. Detection of HHV-8 DNA decreased with age (PTrend< .04) and was more common in men (SR, 2.14 [95% CI, 1.3–3.5]; P= .003). A total of 36 (76.6%) of the 47 saliva HHV-8 DNA samples were sequenced, and all clustered as subtype E. Conclusion The data support the hypothesis of early acquisition and horizontal transmission, via saliva, of HHV-8 subtype E in Amerindian populations. PMID:17703414

  7. CRISPR/Cas9, a powerful tool to target human herpesviruses

    NARCIS (Netherlands)

    van Diemen, Ferdy R; Lebbink, Robert Jan|info:eu-repo/dai/nl/318915006

    Over 90% of the adult population is infected with one or multiple herpesviruses. These viruses are characterized by their ability to establish latency, where the host is unable to clear the invader from infected cells resulting in a lifelong infection. Herpesviruses cause a wide variety of

  8. Type I IFN Response to Papiine herpesvirus 2 (Herpesvirus papio 2; HVP2) Determines Neuropathogenicity in Mice

    OpenAIRE

    Rogers, K. M.; Deatheridge, M.; Breshears, M.A.; Chapman, S; Black, D; Ritchey, J W; Payton, M.; Eberle, R

    2009-01-01

    Isolates of baboon α-herpesvirus Papiine herpesvirus 2 (HVP2) exhibit one of two distinct phenotypes in mice: extremely neurovirulent or apathogenic. Previous studies implicated the type I interferon (IFN) response as being a major factor in controlling infection by apathogenic isolates. To further investigate the possibility that the host IFN-β response underlies the pathogenicity of the two HVP2 subtypes, the susceptibility of mice lacking the IFN-β receptor (IFNAR−/−) to infection was exam...

  9. Effects of experimentally induced infections of goldfish Carassius auratus with cyprinid herpesvirus 2 (CyHV-2) at various water temperatures.

    Science.gov (United States)

    Ito, Takafumi; Maeno, Yukio

    2014-08-11

    In this study, we examined the influence of water temperature on the development of herpesviral haematopoietic necrosis (HVHN) in goldfish Carassius auratus after experimentally induced infection with cyprinid herpesvirus 2 (CyHV-2). In Expt 1, Ryukin goldfish were infected with CyHV-2 by intraperitoneal injection and maintained at 4 different water temperatures. Cumulative mortalities of the 15, 20, 25 and 30°C groups were 10, 90, 90 and 60%, respectively. Therefore, the temperature range of 20-25°C is considered highly permissive for HVHN. One of 6 surviving fish of the 15°C group died after a rapid temperature increase to 25°C at 30 d post infection. All 3 Edonishiki goldfish, co-reared with the surviving Ryukin in tanks where the water temperature was increased from 15 to 25°C, died. In Expt 2, Edonishiki goldfish were exposed to CyHV-2 by bath immersion at 13 or 24°C, resulting in cumulative mortalities of 0 and 87%, respectively, at 28 d post-exposure. No mortality of the surviving Edonishiki in the 13°C treatment was observed when the water temperature was increased to 24°C. In addition, in Expt 2, no mortality was observed in any Ranchu co-reared with CyHV-2-immersed Edonishiki in the group where water temperature was increased from 13 to 24°C, even after re-immersion challenge with CyHV-2. It is interesting to note that CyHV-2 DNA was detected in the kidneys of 4 of the 5 surviving Ranchu co-reared with the CyHV-2-immersed Edonishiki group where the water temperature was increased from 13 to 24°C. Therefore, it is likely that the surviving Edonishiki of the 13°C group were virus carriers. This study indicates that most fish infected with CyHV-2 at 13-15°C acquire resistance to HVHN, but as carriers they are able to infect naïve fish.

  10. Antiviral therapy in herpes- virus infections

    African Journals Online (AJOL)

    Repro

    Herpesviruses are large, enveloped DNA viruses.There are currently 8 known human herpesviruses and 1 primate species that is a rare human pathogen. Most people have been infected with sev- eral human herpesviruses. In immuno- competent individuals primary infections with herpesviruses are generally mild, self-.

  11. Proteomic characterization of murid herpesvirus 4 extracellular virions.

    Directory of Open Access Journals (Sweden)

    Sarah Vidick

    Full Text Available Gammaherpesvirinae, such as the human Epstein-Barr virus (EBV and the Kaposi's sarcoma associated herpesvirus (KSHV are highly prevalent pathogens that have been associated with several neoplastic diseases. As EBV and KSHV are host-range specific and replicate poorly in vitro, animal counterparts such as Murid herpesvirus-4 (MuHV-4 have been widely used as models. In this study, we used MuHV-4 in order to improve the knowledge about proteins that compose gammaherpesviruses virions. To this end, MuHV-4 extracellular virions were isolated and structural proteins were identified using liquid chromatography tandem mass spectrometry-based proteomic approaches. These analyses allowed the identification of 31 structural proteins encoded by the MuHV-4 genome which were classified as capsid (8, envelope (9, tegument (13 and unclassified (1 structural proteins. In addition, we estimated the relative abundance of the identified proteins in MuHV-4 virions by using exponentially modified protein abundance index analyses. In parallel, several host proteins were found in purified MuHV-4 virions including Annexin A2. Although Annexin A2 has previously been detected in different virions from various families, its role in the virion remains controversial. Interestingly, despite its relatively high abundance in virions, Annexin A2 was not essential for the growth of MuHV-4 in vitro. Altogether, these results extend previous work aimed at determining the composition of gammaherpesvirus virions and provide novel insights for understanding MuHV-4 biology.

  12. Sequencing of bovine herpesvirus 4 v.test strain reveals important genome features

    Directory of Open Access Journals (Sweden)

    Gillet Laurent

    2011-08-01

    Full Text Available Abstract Background Bovine herpesvirus 4 (BoHV-4 is a useful model for the human pathogenic gammaherpesviruses Epstein-Barr virus and Kaposi's Sarcoma-associated Herpesvirus. Although genome manipulations of this virus have been greatly facilitated by the cloning of the BoHV-4 V.test strain as a Bacterial Artificial Chromosome (BAC, the lack of a complete genome sequence for this strain limits its experimental use. Methods In this study, we have determined the complete sequence of BoHV-4 V.test strain by a pyrosequencing approach. Results The long unique coding region (LUR consists of 108,241 bp encoding at least 79 open reading frames and is flanked by several polyrepetitive DNA units (prDNA. As previously suggested, we showed that the prDNA unit located at the left prDNA-LUR junction (prDNA-G differs from the other prDNA units (prDNA-inner. Namely, the prDNA-G unit lacks the conserved pac-2 cleavage and packaging signal in its right terminal region. Based on the mechanisms of cleavage and packaging of herpesvirus genomes, this feature implies that only genomes bearing left and right end prDNA units are encapsulated into virions. Conclusions In this study, we have determined the complete genome sequence of the BAC-cloned BoHV-4 V.test strain and identified genome organization features that could be important in other herpesviruses.

  13. A Caprine Herpesvirus 1 Vaccine Adjuvanted with MF59™ Protects against Vaginal Infection and Interferes with the Establishment of Latency in Goats

    Science.gov (United States)

    Marinaro, Mariarosaria; Rezza, Giovanni; Del Giudice, Giuseppe; Colao, Valeriana; Tarsitano, Elvira; Camero, Michele; Losurdo, Michele; Buonavoglia, Canio; Tempesta, Maria

    2012-01-01

    The immunogenicity and the efficacy of a beta-propiolactone-inactivated caprine herpesvirus 1 (CpHV-1) vaccine adjuvanted with MF59™ were tested in goats. Following two subcutaneous immunizations, goats developed high titers of CpHV-1-specific serum and vaginal IgG and high serum virus neutralization (VN) titers. Peripheral blood mononuclear cells (PBMC) stimulated in vitro with inactivated CpHV-1 produced high levels of soluble IFN-gamma and exhibited high frequencies of IFN-gamma producing cells while soluble IL-4 was undetectable. On the other hand, control goats receiving the inactivated CpHV-1 vaccine without adjuvant produced only low serum antibody responses. A vaginal challenge with virulent CpHV-1 was performed in all vaccinated goats and in naïve goats to assess the efficacy of the two vaccines. Vaginal disease was not detected in goats vaccinated with inactivated CpHV-1 plus MF59™ and these animals had undetectable levels of infectious challenge virus in their vaginal washes. Goats vaccinated with inactivated CpHV-1 in the absence of adjuvant exhibited a less severe disease when compared to naïve goats but shed titers of challenge virus that were similar to those of naïve goats. Detection and quantitation of latent CpHV-1 DNA in sacral ganglia in challenged goats revealed that the inactivated CpHV-1 plus MF59™ vaccine was able to significantly reduce the latent viral load when compared either to the naïve goats or to the goats vaccinated with inactivated CpHV-1 in the absence of adjuvant. Thus, a vaccine composed of inactivated CpHV-1 plus MF59™ as adjuvant was strongly immunogenic and induced effective immunity against vaginal CpHV-1 infection in goats. PMID:22511971

  14. The C terminus of the synovial sarcoma-associated SSX proteins interacts with the LIM homeobox protein LHX4.

    NARCIS (Netherlands)

    Bruijn, D.R.H. de; Dijk, A.H.A.; Willemse, M.P.; Geurts van Kessel, A.H.M.

    2008-01-01

    As a result of the synovial sarcoma-associated t(X;18) translocation, the SS18 gene on chromosome 18 is fused to either one of the three closely related SSX genes on the X chromosome. The SS18 protein is thought to act as a transcriptional co-activator, whereas the SSX proteins are thought to act as

  15. A Novel γ2-Herpesvirus of the Rhadinovirus 2 Lineage in Chimpanzees

    Science.gov (United States)

    Lacoste, Vincent; Mauclère, Philippe; Dubreuil, Guy; Lewis, John; Georges-Courbot, Marie-Claude; Gessain, Antoine

    2001-01-01

    Old World monkeys and, recently, African great apes have been shown, by serology and polymerase chain reaction (PCR), to harbor different γ2-herpesviruses closely related to Kaposi's sarcoma-associated Herpesvirus (KSHV). Although the presence of two distinct lineages of KSHV-like rhadinoviruses, RV1 and RV2, has been revealed in Old World primates (including African green monkeys, macaques, and, recently, mandrills), viruses belonging to the RV2 genogroup have not yet been identified from great apes. Indeed, the three yet known γ2-herpesviruses in chimpanzees (PanRHV1a/PtRV1, PanRHV1b) and gorillas (GorRHV1) belong to the RV1 group. To investigate the putative existence of a new RV2 Rhadinovirus in chimpanzees and gorillas we have used the degenerate consensus primer PCR strategy for the Herpesviral DNA polymerase gene on 40 wild-caught animals. This study led to the discovery, in common chimpanzees, of a novel γ2-herpesvirus belonging to the RV2 genogroup, termed Pan Rhadino-herpesvirus 2 (PanRHV2). Use of specific primers and internal oligonucleotide probes demonstrated the presence of this novel γ2-herpesvirus in three wild-caught animals. Comparison of a 1092-bp fragment of the DNA polymerase obtained from these three animals of the Pan troglodytes troglodytes subspecies, one from Gabon and the two others from Cameroon, revealed <1% of nucleotide divergence. The geographic colocalization as well as the phylogenetic “relationship” of the human and simian γ2-herpesviruses support the model according to which herpesviruses have diversified from a common ancestor in a manner mediating cospeciation of herpesviruses with their host species. By demonstrating the existence of two distinct Rhadinovirus lineages in common chimpanzees, our finding indicates the possible existence of a novel human γ2-herpesvirus belonging to the RV2 genogroup. [The Herpesviral DNA polymerase sequence data determined herein have been deposited at the GenBank database under

  16. Modified live infectious bursal disease virus (IBDV) vaccine delays infection of neonatal broiler chickens with variant IBDV compared to turkey herpesvirus (HVT)-IBDV vectored vaccine.

    Science.gov (United States)

    Kurukulasuriya, Shanika; Ahmed, Khawaja Ashfaque; Ojkic, Davor; Gunawardana, Thushari; Goonewardene, Kalhari; Gupta, Ashish; Chow-Lockerbie, Betty; Popowich, Shelly; Willson, Philip; Tikoo, Suresh K; Gomis, Susantha

    2017-02-07

    Chickens are commonly processed around 35-45days of age in broiler chicken industry hence; diseases that occur at a young age are of paramount economic importance. Early age infection with infectious bursal disease virus (IBDV) results in long-lasting immunosuppression and profound economic losses. To our knowledge, this is the first study comparing the protection efficacy of modified live (MdLV) IBDV and herpesvirus turkey (HVT)-IBDV vaccines against early age variant IBDV (varIBDV) infection in chicks. Experiments were carried out in IBDV maternal antibody (MtAb) positive chicks (n=330), divided into 6 groups (n=50-60/group), namely Group 1 (saline), Group 2 (saline+varIBDV), Group 3 (HVT-IBDV), Group 4 (HVT-IBDV+varIBDV), Group 5 (MdLV) and Group 6 (MdLV+varIBDV). HVT-IBDV vaccination was given via the in ovo route to 18-day-old embryonated eggs. MdLV was administered via the subcutaneous route in day-old broilers. Group 2, Group 4 and Group 6 were orally challenged with varIBDV (SK-09, 3×10 3 EID 50 ) at day 6 post-hatch. IBDV seroconversion, bursal weight to body weight ratio (BBW) and bursal histopathology were assessed at 19 and 35days of age. Histopathological examination at day 19 revealed that varIBDV-SK09 challenge caused severe bursal atrophy and lower BBW in HVT-IBDV but not in MdLV vaccinated chicks. However by day 35, all challenged groups showed bursal atrophy and seroconversion. Interestingly, RT-qPCR analysis after varIBDV-SK09 challenge demonstrated an early (9days of age) and significantly high viral load (∼5744 folds) in HVT-IBDV vaccinated group vs unvaccinated challenged group (∼2.25 folds). Furthermore, flow cytometry analysis revealed inhibition of cytotoxic CD8 + T-cell response (CD44-downregulation) and decreased splenic lymphocytes counts in chicks after HVT-IBDV vaccination. Overall, our data suggest that MdLV delays varIBDV pathogenesis, whereas, HVT-IBDV vaccine is potentially immunosuppressive, which may increase the risk of

  17. Experimental infection of Pacific oyster Crassostrea gigas spat by ostreid herpesvirus 1: demonstration of oyster spat susceptibility

    Directory of Open Access Journals (Sweden)

    Schikorski David

    2011-02-01

    Full Text Available Abstract In 2008 and 2009, acute mortalities occurred in France among Pacific cupped oyster, Crassostrea gigas, spat. Different hypothesis including the implication of environmental factors, toxic algae and/or pathogens have been explored. Diagnostic tests indicated that OsHV-1 including a particular genotype, termed OsHV-1 μVar, was detected in most of samples and especially in moribund oysters with the highlighting of virus particles looking like herpes viruses by TEM examination. In this study, an experimental protocol to reproduce OsHV-1 infection in laboratory conditions was developed. This protocol was based on the intramuscular injection of filtered (0.22 μm tissue homogenates prepared from naturally OsHV-1 infected spat collected on French coasts during mortality outbreaks in 2008. Results of the experimental trials showed that mortalities were induced after injection. Moreover, filtered tissue homogenates induced mortalities whereas the same tissue homogenates exposed to an ultraviolet (UV treatment did not induce any mortality suggesting that oyster spat mortalities require the presence of a UV sensitive agent. Furthermore, analysis of injected oyster spat revealed the detection of high amounts of OsHV-1 DNA by real-time quantitative PCR. Finally, TEM analysis demonstrated the presence of herpes virus particles. The developed protocol allowed to maintain sources of infective virus which can be useful for the development of further studies concerning the transmission and the development of OsHV-1 infection.

  18. Lipoteichoic acid (LTA and lipopolysaccharides (LPS from periodontal pathogenic bacteria facilitate oncogenic herpesvirus infection within primary oral cells.

    Directory of Open Access Journals (Sweden)

    Lu Dai

    Full Text Available Kaposi's sarcoma (KS remains the most common tumor arising in patients with HIV/AIDS, and involvement of the oral cavity represents one of the most common clinical manifestations of this tumor. HIV infection incurs an increased risk for periodontal diseases and oral carriage of a variety of bacteria. Whether interactions involving pathogenic bacteria and oncogenic viruses in the local environment facilitate replication or maintenance of these viruses in the oral cavity remains unknown. In the current study, our data indicate that pretreatment of primary human oral fibroblasts with two prototypical pathogen-associated molecular patterns (PAMPs produced by oral pathogenic bacteria-lipoteichoic acid (LTA and lipopolysaccharide (LPS, increase KSHV entry and subsequent viral latent gene expression during de novo infection. Further experiments demonstrate that the underlying mechanisms induced by LTA and/or LPS include upregulation of cellular receptor, increasing production of reactive oxygen species (ROS, and activating intracellular signaling pathways such as MAPK and NF-κB, and all of which are closely associated with KSHV entry or gene expression within oral cells. Based on these findings, we hope to provide the framework of developing novel targeted approaches for treatment and prevention of oral KSHV infection and KS development in high-risk HIV-positive patients.

  19. Lipoteichoic Acid (LTA) and Lipopolysaccharides (LPS) from Periodontal Pathogenic Bacteria Facilitate Oncogenic Herpesvirus Infection within Primary Oral Cells

    Science.gov (United States)

    Dai, Lu; DeFee, Michael R.; Cao, Yueyu; Wen, Jiling; Wen, Xiaofei; Noverr, Mairi C.; Qin, Zhiqiang

    2014-01-01

    Kaposi’s sarcoma (KS) remains the most common tumor arising in patients with HIV/AIDS, and involvement of the oral cavity represents one of the most common clinical manifestations of this tumor. HIV infection incurs an increased risk for periodontal diseases and oral carriage of a variety of bacteria. Whether interactions involving pathogenic bacteria and oncogenic viruses in the local environment facilitate replication or maintenance of these viruses in the oral cavity remains unknown. In the current study, our data indicate that pretreatment of primary human oral fibroblasts with two prototypical pathogen-associated molecular patterns (PAMPs) produced by oral pathogenic bacteria–lipoteichoic acid (LTA) and lipopolysaccharide (LPS), increase KSHV entry and subsequent viral latent gene expression during de novo infection. Further experiments demonstrate that the underlying mechanisms induced by LTA and/or LPS include upregulation of cellular receptor, increasing production of reactive oxygen species (ROS), and activating intracellular signaling pathways such as MAPK and NF-κB, and all of which are closely associated with KSHV entry or gene expression within oral cells. Based on these findings, we hope to provide the framework of developing novel targeted approaches for treatment and prevention of oral KSHV infection and KS development in high-risk HIV-positive patients. PMID:24971655

  20. Detection of human herpesvirus-7 by qualitative nested-PCR: comparison between healthy individuals and liver transplant recipients

    OpenAIRE

    Thomasini, Ronaldo Luis; Martins, Juliana de Moraes; Parola, Daniela Corte; Bonon, Sandra Helena Alves; Boin, Ilka de Fátima Santana Ferreira; Leonardi, Luis Sérgio; Leonardi, Marília; Costa, Sandra Cecília Botelho

    2008-01-01

    Diagnosis of human herpesvirus-7 active infection in transplant patients has proved difficult, because this virus is ubiquitous and can cause persistent infections in the host. The significance of viral DNA detected in leukocytes by PCR is unclear and cross-reaction in serological tests may occur. This study aimed to evaluate nested-PCR to detect human herpesvirus-7 active infection in liver transplant recipients compared to healthy individuals. human herpesvirus-7 nested-PCR was performed on...

  1. The anti-fibrotic effect of inhibition of TGFβ-ALK5 signalling in experimental pulmonary fibrosis in mice is attenuated in the presence of concurrent γ-herpesvirus infection

    Directory of Open Access Journals (Sweden)

    Natalia Smoktunowicz

    2015-09-01

    Full Text Available TGFβ-ALK5 pro-fibrotic signalling and herpesvirus infections have been implicated in the pathogenesis and exacerbation of pulmonary fibrosis. In this study we addressed the role of TGFβ-ALK5 signalling during the progression of fibrosis in a two-hit mouse model of murine γ-herpesvirus 68 (MHV-68 infection on the background of pre-existing bleomycin-induced pulmonary fibrosis. Assessment of total lung collagen levels in combination with ex vivo micro-computed tomography (µCT analysis of whole lungs demonstrated that MHV-68 infection did not enhance lung collagen deposition in this two-hit model but led to a persistent and exacerbated inflammatory response. Moreover, µCT reconstruction and analysis of the two-hit model revealed distinguishing features of diffuse ground-glass opacities and consolidation superimposed on pre-existing fibrosis that were reminiscent of those observed in acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF. Virally-infected murine fibrotic lungs further displayed evidence of extensive inflammatory cell infiltration and increased levels of CCL2, TNFα, IL-1β and IL-10. Blockade of TGFβ-ALK5 signalling attenuated lung collagen accumulation in bleomycin-alone injured mice, but this anti-fibrotic effect was reduced in the presence of concomitant viral infection. In contrast, inhibition of TGFβ-ALK5 signalling in virally-infected fibrotic lungs was associated with reduced inflammatory cell aggregates and increased levels of the antiviral cytokine IFNγ. These data reveal newly identified intricacies for the TGFβ-ALK5 signalling axis in experimental lung fibrosis, with different outcomes in response to ALK5 inhibition depending on the presence of viral infection. These findings raise important considerations for the targeting of TGFβ signalling responses in the context of pulmonary fibrosis.

  2. Human Herpesvirus 8 (HHV8 sequentially shapes the NK cell repertoire during the course of asymptomatic infection and Kaposi sarcoma.

    Directory of Open Access Journals (Sweden)

    Stéphanie Dupuy

    2012-01-01

    Full Text Available The contribution of innate immunity to immunosurveillance of the oncogenic Human Herpes Virus 8 (HHV8 has not been studied in depth. We investigated NK cell phenotype and function in 70 HHV8-infected subjects, either asymptomatic carriers or having developed Kaposi's sarcoma (KS. Our results revealed substantial alterations of the NK cell receptor repertoire in healthy HHV8 carriers, with reduced expression of NKp30, NKp46 and CD161 receptors. In addition, down-modulation of the activating NKG2D receptor, associated with impaired NK-cell lytic capacity, was observed in patients with active KS. Resolution of KS after treatment was accompanied with restoration of NKG2D levels and NK cell activity. HHV8-latently infected endothelial cells overexpressed ligands of several NK cell receptors, including NKG2D ligands. The strong expression of NKG2D ligands by tumor cells was confirmed in situ by immunohistochemical staining of KS biopsies. However, no tumor-infiltrating NK cells were detected, suggesting a defect in NK cell homing or survival in the KS microenvironment. Among the known KS-derived immunoregulatory factors, we identified prostaglandin E2 (PGE2 as a critical element responsible for the down-modulation of NKG2D expression on resting NK cells. Moreover, PGE2 prevented up-regulation of the NKG2D and NKp30 receptors on IL-15-activated NK cells, and inhibited the IL-15-induced proliferation and survival of NK cells. Altogether, our observations are consistent with distinct immunoevasion mechanisms that allow HHV8 to escape NK cell responses stepwise, first at early stages of infection to facilitate the maintenance of viral latency, and later to promote tumor cell growth through suppression of NKG2D-mediated functions. Importantly, our results provide additional support to the use of PGE2 inhibitors as an attractive approach to treat aggressive KS, as they could restore activation and survival of tumoricidal NK cells.

  3. Non-detection of human herpesvirus 8 (HHV-8) DNA in HHV-8-seropositive blood donors from three Brazilian regions.

    Science.gov (United States)

    Levi, José Eduardo; Nascimento, Maria Claudia; Sumita, Laura Masami; de Souza, Vanda Akico Ueda Fick; Freire, Wilton S; Mayaud, Philippe; Pannuti, Claudio S

    2011-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the etiologic agent of all forms of Kaposi's sarcoma, primary effusion lymphoma and the plasmablastic cell variant of multicentric Castleman disease. In endemic areas of sub-Saharan Africa, blood transfusions have been associated with a substantial risk of HHV-8 transmission. By contrast, several studies among healthy blood donors from North America have failed to detect HHV-8 DNA in samples of seropositive individuals. In this study, using a real-time PCR assay, we investigated the presence of HHV-8 DNA in whole-blood samples of 803 HHV-8 blood donors from three Brazilian states (São Paulo, Amazon, Bahia) who tested positive for HHV-8 antibodies, in a previous multicenter study. HHV-8 DNA was not detected in any sample. Our findings do not support the introduction of routine HHV-8 screening among healthy blood donors in Brazil. (WC = 140).

  4. Herpesviruses, the missing link between gingivitis and periodontitis?

    Science.gov (United States)

    Slots, Jørgen

    2004-10-01

    Herpesviruses appear to assume a major etiopathogenic role in various types of destructive periodontal disease. Human cytomegalovirus (HCMV), Epstein-Barr virus (EBV) and HCMV-EBV co-infection are closely associated with disease-active periodontitis in juveniles and adults, with acute necrotizing ulcerative gingivitis in children, and with periodontal abscesses. In particular, HCMV reactivation in periodontitis lesions seems to be linked to advancing disease. HCMV infects periodontal monocytes/macrophages and T-lymphocytes, and EBV infects periodontal B-lymphocytes. Herpesvirus-infected inflammatory cells generate a great variety of pro-inflammatory cytokines and may possess diminished ability to defend against bacterial challenge. Herpesvirus-associated periodontal sites tend to harbor elevated levels of periodontopathic bacteria, including Dialister pneumosintes, Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia, Prevotella nigrescens, Treponema denticola, Campylobacter rectus and Actinobacillus actinomycetemcomitans. In summary, the available data suggest that periodontitis occurs more frequently and progresses more rapidly in herpesvirus-infected than in non-infected periodontal sites. An infectious disease model based on herpesvirus-bacteria-host immune response interactions is presented to explain how a gingivitis lesion or a stable periodontal site with increased probing depth may convert into a tissue-destroying periodontitis lesion.

  5. Prolonged persistence of bovine herpesvirus in small cattle herds: a model-based analysis

    NARCIS (Netherlands)

    Mollema, E.; Jong, de M.C.M.; Boven, van R.M.

    2005-01-01

    Herpesviruses can remain dormant in once-infected hosts and, upon reactivation, cause such hosts to become infectious. This phenomenon of latency and reactivation may enable herpesviruses to persist for a long time in small host populations. To quantify the effect of reactivation on persistence, the

  6. Genetically diverse herpesviruses in South American Atlantic coast seabirds.

    Directory of Open Access Journals (Sweden)

    Claudia Niemeyer

    Full Text Available Different herpesviruses have been associated with respiratory and enteric disease and mortality among seabirds and waterfowl. In 2011, a respiratory disease outbreak affected 58.3% (98/168 of the Magellanic penguins undergoing rehabilitation due to an oil spill off the southern Brazilian coast. Etiology was attributed to a novel herpesvirus identified by histopathology, immunohistochemistry, electron microscopy and molecular studies with partial DNA sequencing. Since migration, rehabilitation and translocation may facilitate the spread of pathogens between populations and trigger the onset of clinical disease in animals with latent infections, investigation of herpesvirus occurrence in asymptomatic seabirds was performed. Samples from free-ranging seabirds were collected in Argentinian Patagonia (Magellanic penguins and the Abrolhos Archipelago in Brazil (Brown boobies, Masked boobies, Red-billed tropicbirds, White-tailed tropicbirds and South American tern. Furthermore, asymptomatic seabirds housed at the facility where the outbreak occurred were also sampled. In total, 354 samples from eight seabird species were analyzed by PCR for herpesvirus. Four different sequences of herpesviruses were identified, one in Yellow-nosed Albatross, one in Boobies and Tropicbirds and two in Magellanic penguins. Magellanic penguin herpesvirus 1 was identified during the penguin outbreak at the rehabilitation facility in Brazil, while Magellanic penguin herpesvirus 2 was recovered from free-ranging penguins at four reproduction sites in Argentina. Phylogenic analysis of the herpesviruses sequences tentatively identified suggested that the one found in Suliformes and the one associated with the outbreak are related to sequences of viruses that have previously caused seabird die-offs. These findings reinforce the necessity for seabird disease surveillance programs overall, and particularly highlight the importance of quarantine, good hygiene, stress management and

  7. Genetically diverse herpesviruses in South American Atlantic coast seabirds.

    Science.gov (United States)

    Niemeyer, Claudia; Favero, Cíntia Maria; Shivaprasad, H L; Uhart, Marcela; Musso, Cesar Meyer; Rago, María Virginia; Silva-Filho, Rodolfo Pinho; Canabarro, Paula Lima; Craig, María Isabel; Olivera, Valeria; Pereda, Ariel; Brandão, Paulo Eduardo; Catão-Dias, José Luiz

    2017-01-01

    Different herpesviruses have been associated with respiratory and enteric disease and mortality among seabirds and waterfowl. In 2011, a respiratory disease outbreak affected 58.3% (98/168) of the Magellanic penguins undergoing rehabilitation due to an oil spill off the southern Brazilian coast. Etiology was attributed to a novel herpesvirus identified by histopathology, immunohistochemistry, electron microscopy and molecular studies with partial DNA sequencing. Since migration, rehabilitation and translocation may facilitate the spread of pathogens between populations and trigger the onset of clinical disease in animals with latent infections, investigation of herpesvirus occurrence in asymptomatic seabirds was performed. Samples from free-ranging seabirds were collected in Argentinian Patagonia (Magellanic penguins) and the Abrolhos Archipelago in Brazil (Brown boobies, Masked boobies, Red-billed tropicbirds, White-tailed tropicbirds and South American tern). Furthermore, asymptomatic seabirds housed at the facility where the outbreak occurred were also sampled. In total, 354 samples from eight seabird species were analyzed by PCR for herpesvirus. Four different sequences of herpesviruses were identified, one in Yellow-nosed Albatross, one in Boobies and Tropicbirds and two in Magellanic penguins. Magellanic penguin herpesvirus 1 was identified during the penguin outbreak at the rehabilitation facility in Brazil, while Magellanic penguin herpesvirus 2 was recovered from free-ranging penguins at four reproduction sites in Argentina. Phylogenic analysis of the herpesviruses sequences tentatively identified suggested that the one found in Suliformes and the one associated with the outbreak are related to sequences of viruses that have previously caused seabird die-offs. These findings reinforce the necessity for seabird disease surveillance programs overall, and particularly highlight the importance of quarantine, good hygiene, stress management and pre

  8. Genetically diverse herpesviruses in South American Atlantic coast seabirds

    Science.gov (United States)

    Favero, Cíntia Maria; Shivaprasad, H. L.; Uhart, Marcela; Musso, Cesar Meyer; Rago, María Virginia; Silva-Filho, Rodolfo Pinho; Canabarro, Paula Lima; Craig, María Isabel; Olivera, Valeria; Pereda, Ariel; Brandão, Paulo Eduardo; Catão-Dias, José Luiz

    2017-01-01

    Different herpesviruses have been associated with respiratory and enteric disease and mortality among seabirds and waterfowl. In 2011, a respiratory disease outbreak affected 58.3% (98/168) of the Magellanic penguins undergoing rehabilitation due to an oil spill off the southern Brazilian coast. Etiology was attributed to a novel herpesvirus identified by histopathology, immunohistochemistry, electron microscopy and molecular studies with partial DNA sequencing. Since migration, rehabilitation and translocation may facilitate the spread of pathogens between populations and trigger the onset of clinical disease in animals with latent infections, investigation of herpesvirus occurrence in asymptomatic seabirds was performed. Samples from free-ranging seabirds were collected in Argentinian Patagonia (Magellanic penguins) and the Abrolhos Archipelago in Brazil (Brown boobies, Masked boobies, Red-billed tropicbirds, White-tailed tropicbirds and South American tern). Furthermore, asymptomatic seabirds housed at the facility where the outbreak occurred were also sampled. In total, 354 samples from eight seabird species were analyzed by PCR for herpesvirus. Four different sequences of herpesviruses were identified, one in Yellow-nosed Albatross, one in Boobies and Tropicbirds and two in Magellanic penguins. Magellanic penguin herpesvirus 1 was identified during the penguin outbreak at the rehabilitation facility in Brazil, while Magellanic penguin herpesvirus 2 was recovered from free-ranging penguins at four reproduction sites in Argentina. Phylogenic analysis of the herpesviruses sequences tentatively identified suggested that the one found in Suliformes and the one associated with the outbreak are related to sequences of viruses that have previously caused seabird die-offs. These findings reinforce the necessity for seabird disease surveillance programs overall, and particularly highlight the importance of quarantine, good hygiene, stress management and pre

  9. LANA-Mediated Recruitment of Host Polycomb Repressive Complexes onto the KSHV Genome during De Novo Infection.

    Directory of Open Access Journals (Sweden)

    Zsolt Toth

    2016-09-01

    Full Text Available One of the hallmarks of the latent phase of Kaposi's sarcoma-associated herpesvirus (KSHV infection is the global repression of lytic viral gene expression. Following de novo KSHV infection, the establishment of latency involves the chromatinization of the incoming viral genomes and recruitment of the host Polycomb repressive complexes (PRC1 and PRC2 to the promoters of lytic genes, which is accompanied by the inhibition of lytic genes. However, the mechanism of how PRCs are recruited to the KSHV episome is still unknown. Utilizing a genetic screen of latent genes in the context of KSHV genome, we identified the latency-associated nuclear antigen (LANA to be responsible for the genome-wide recruitment of PRCs onto the lytic promoters following infection. We found that LANA initially bound to the KSHV genome right after infection and subsequently recruited PRCs onto the viral lytic promoters, thereby repressing lytic gene expression. Furthermore, both the DNA and chromatin binding activities of LANA were required for the binding of LANA to the KSHV promoters, which was necessary for the recruitment of PRC2 to the lytic promoters during de novo KSHV infection. Consequently, the LANA-knockout KSHV could not recruit PRCs to its viral genome upon de novo infection, resulting in aberrant lytic gene expression and dysregulation of expression of host genes involved in cell cycle and proliferation pathways. In this report, we demonstrate that KSHV LANA recruits host PRCs onto the lytic promoters to suppress lytic gene expression following de novo infection.

  10. Salinity influences disease-induced mortality of the oyster Crassostrea gigas and infectivity of the ostreid herpesvirus 1 (OsHV-1)

    OpenAIRE

    Fuhrmann, Marine; Petton, Bruno; Quillien, Virgile; Faury, Nicole; Morga, Benjamin; Pernet, Fabrice

    2016-01-01

    Mortality of young Pacific oysters Crassostrea gigas associated with the ostreid herpesvirus 1 (OsHV-1) is occurring worldwide. Here, we examined for the first time the effect of salinity on OsHV-1 transmission and disease-related mortality of C. gigas, as well as salinity-related effects on the pathogen itself. To obtain donors for OsHV-1 transmission, we transferred laboratory-raised oysters to an estuary during a disease outbreak and then back to the laboratory. Oysters that tested OsHV-1 ...

  11. Prevalence and risk factors of gammaherpesvirus infection in domestic cats in Central Europe.

    Science.gov (United States)

    Ertl, Reinhard; Korb, Melanie; Langbein-Detsch, Ines; Klein, Dieter

    2015-09-17

    Gammaherpesviruses (GHVs) are a large group of dsDNA viruses that can infect humans and several animal species. The two human GHVs, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus are known for their oncogenic properties in individuals with immunodeficiency. Recently, the first feline GHV, Felis catus gammaherpesvirus 1 (FcaGHV1) was discovered and frequently found in domestic cats in Australia, Singapore and the USA. FcaGHV1 is more likely to be detected in cats co-infected with the feline immunodeficiency virus (FIV). The prevalence of FcaGHV1 in pet cats from Germany and Austria was 16.2 % (95 % CI = 12.38-20.02). The odds for GHV infection were greater for FIV positive (OR = 4.5), male (OR = 13.32) and older (OR = 2.36) cats. Furthermore, FcaGHV1 viral loads were significantly higher in FIV-infected cats compared to matched controls. GHV infections are common in domestic cats in Central Europe. The worldwide distribution of FcaGHV1 can be assumed. A potential role as a co-factor in FIV-induced pathogeneses is supported.

  12. Antibody screening identifies 78 putative host proteins involved in Cyprinid herpesvirus 3 infection or propagation in common carp, Cyprinus carpio L.

    Science.gov (United States)

    Gotesman, M; Soliman, H; El-Matbouli, M

    2014-01-01

    Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a serious and notifiable disease afflicting common and koi carp, Cyprinus carpio L., termed koi herpesvirus disease (KHVD). Significant progress has been achieved in the last 15 years, since the initial reports surfaced from Germany, USA and Israel of the CyHV-3 virus, in terms of pathology and detection. However, relatively few studies have been carried out in understanding viral replication and propagation. Antibody-based affinity has been used for detection of CyHV-3 in enzyme-linked immunosorbent assay and PCR-based techniques, and immunohistological assays have been used to describe a CyHV-3 membrane protein, termed ORF81. In this study, monoclonal antibodies linked to N-hydroxysuccinimide (NHS)-activated spin columns were used to purify CyHV-3 and host proteins from tissue samples originating in either CyHV-3 symptomatic or asymptomatic fish. The samples were next analysed either by polyacrylamide gel electrophoresis (PAGE) and subsequently by electrospray ionization coupled to mass spectrometry (ESI-MS) or by ESI-MS analysis directly after purification. A total of 78 host proteins and five CyHV-3 proteins were identified in the two analyses. These data can be used to develop novel control methods for CyHV-3, based on pathways or proteins identified in this study. PMID:23347276

  13. A Murine Herpesvirus Closely Related to Ubiquitous Human Herpesviruses Causes T-Cell Depletion.

    Science.gov (United States)

    Patel, Swapneel J; Zhao, Guoyan; Penna, Vinay R; Park, Eugene; Lauron, Elvin J; Harvey, Ian B; Beatty, Wandy L; Plougastel-Douglas, Beatrice; Poursine-Laurent, Jennifer; Fremont, Daved H; Wang, David; Yokoyama, Wayne M

    2017-05-01

    The human roseoloviruses human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7 comprise the Roseolovirus genus of the human Betaherpesvirinae subfamily. Infections with these viruses have been implicated in many diseases; however, it has been challenging to establish infections with roseoloviruses as direct drivers of pathology, because they are nearly ubiquitous and display species-specific tropism. Furthermore, controlled study of infection has been hampered by the lack of experimental models, and until now, a mouse roseolovirus has not been identified. Herein we describe a virus that causes severe thymic necrosis in neonatal mice, characterized by a loss of CD4+ T cells. These phenotypes resemble those caused by the previously described mouse thymic virus (MTV), a putative herpesvirus that has not been molecularly characterized. By next-generation sequencing of infected tissue homogenates, we assembled a contiguous 174-kb genome sequence containing 128 unique predicted open reading frames (ORFs), many of which were most closely related to herpesvirus genes. Moreover, the structure of the virus genome and phylogenetic analysis of multiple genes strongly suggested that this virus is a betaherpesvirus more closely related to the roseoloviruses, HHV-6A, HHV-6B, and HHV-7, than to another murine betaherpesvirus, mouse cytomegalovirus (MCMV). As such, we have named this virus murine roseolovirus (MRV) because these data strongly suggest that MRV is a mouse homolog of HHV-6A, HHV-6B, and HHV-7.IMPORTANCE Herein we describe the complete genome sequence of a novel murine herpesvirus. By sequence and phylogenetic analyses, we show that it is a betaherpesvirus most closely related to the roseoloviruses, human herpesviruses 6A, 6B, and 7. These data combined with physiological similarities with human roseoloviruses collectively suggest that this virus is a murine roseolovirus (MRV), the first definitively described rodent roseolovirus, to our knowledge. Many biological and

  14. Frequency of herpesvirus infection in 129 elementary school children in Antioquia, Colombia Frecuencia de infección por herpesvirus en 129 niños en edad escolar en Antioquia

    OpenAIRE

    John Stewart; Joanne Patton; Ana Eugenia Arango Restrepo; Jorge Eliécer Ossa Londoño

    1990-01-01

    With the aim of making a preliminary approach to the frequency of human herpesviral infections in our local population, a serological survey was carried out among children entering school for the first time, in three different locations, namely: the city, the village and the countryside. Except for Herpes simplex type 2 and Varicella-Zoster viruses which presented infection frequencies of O and 44.5%, respective...

  15. Use of Archived Neonatal Bloodspots for Examining Associations Between Prenatal Exposure to Potentially Traumatic or Stressful Life Events, Maternal Herpesvirus Infection and Lifetime History of Generalized Anxiety Disorder in Offspring

    Directory of Open Access Journals (Sweden)

    Amanda M. Simanek

    2016-08-01

    Full Text Available Background: Lifetime prevalence of anxiety disorders is over 32% among U.S. adolescents, warranting further investigation into early life risk factors for such conditions. We conducted a pilot study to examine the role that maternal herpesvirus infection may play in the pathway between maternal trauma and stress during pregnancy and offspring generalized anxiety disorder (GAD. Methods: Participants included 69 women in the Detroit Neighborhood Health Study with data on past exposure to 19 potentially traumatic (PTEs and 9 stressful life events (SLEs. Lifetime history of GAD in the youngest biologic child between 6-17 years old born in Michigan (i.e., index child of each woman was ascertained via the Diagnostic Interview Schedule for Children, 4th edition, parent version. We obtained written informed consent from participants for retrieval of archived neonatal bloodspot samples corresponding to their index child from the Michigan Neonatal Biobank (MNB and testing of these samples for markers of maternal herpes simplex virus (HSV-1 and cytomegalovirus (CMV seropositivity. Logistic regression was used to examine the association between maternal PTEs or SLEs during pregnancy and offspring GAD. Results: A total of 18.1% and 31.9% of women experienced ≥ 1 PTE or SLE during pregnancy, respectively, and 10.8% of offspring met the criteria for lifetime history of GAD. We obtained maternal consent for retrieval of and tested bloodspot samples corresponding to the index child of 22 women (38%, of which 4.5% and 40.9% were seropositive for HSV-1 and CMV, respectively. We observed positive, although not statistically significant associations between ≥ 1 PTE or SLE during pregnancy and offspring lifetime history of GAD. While a greater proportion of offspring with lifetime history of GAD were born to women seropositive for CMV and HSV-1, compared to those without lifetime history, these differences were not statistically significant and we did not further

  16. The Kaposi Sarcoma Herpesvirus Latency-associated Nuclear Antigen DNA Binding Domain Dorsal Positive Electrostatic Patch Facilitates DNA Replication and Episome Persistence.

    Science.gov (United States)

    Li, Shijun; Tan, Min; Juillard, Franceline; Ponnusamy, Rajesh; Correia, Bruno; Simas, J Pedro; Carrondo, Maria A; McVey, Colin E; Kaye, Kenneth M

    2015-11-20

    Kaposi sarcoma-associated herpesvirus (KSHV) has a causative role in several human malignancies. KSHV latency-associated nuclear antigen (LANA) mediates persistence of viral episomes in latently infected cells. LANA mediates KSHV DNA replication and segregates episomes to progeny nuclei. The structure of the LANA DNA binding domain was recently solved, revealing a positive electrostatic patch opposite the DNA binding surface, which is the site of BET protein binding. Here we investigate the functional role of the positive patch in LANA-mediated episome persistence. As expected, LANA mutants with alanine or glutamate substitutions in the central, peripheral, or lateral portions of the positive patch maintained the ability to bind DNA by EMSA. However, all of the substitution mutants were deficient for LANA DNA replication and episome maintenance. Mutation of the peripheral region generated the largest deficiencies. Despite these deficiencies, all positive patch mutants concentrated to dots along mitotic chromosomes in cells containing episomes, similar to LANA. The central and peripheral mutants, but not the lateral mutants, were reduced for BET protein interaction as assessed by co-immunoprecipitation. However, defects in BET protein binding were independent of episome maintenance function. Overall, the reductions in episome maintenance closely correlated with DNA replication deficiencies, suggesting that the replication defects account for the reduced episome persistence. Therefore, the electrostatic patch exerts a key role in LANA-mediated DNA replication and episome persistence and may act through a host cell partner(s) other than a BET protein or by inducing specific structures or complexes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Off-the-Shelf Virus-Specific T Cells to Treat BK Virus, Human Herpesvirus 6, Cytomegalovirus, Epstein-Barr Virus, and Adenovirus Infections After Allogeneic Hematopoietic Stem-Cell Transplantation.

    Science.gov (United States)

    Tzannou, Ifigeneia; Papadopoulou, Anastasia; Naik, Swati; Leung, Kathryn; Martinez, Caridad A; Ramos, Carlos A; Carrum, George; Sasa, Ghadir; Lulla, Premal; Watanabe, Ayumi; Kuvalekar, Manik; Gee, Adrian P; Wu, Meng-Fen; Liu, Hao; Grilley, Bambi J; Krance, Robert A; Gottschalk, Stephen; Brenner, Malcolm K; Rooney, Cliona M; Heslop, Helen E; Leen, Ann M; Omer, Bilal

    2017-11-01

    Purpose Improvement of cure rates for patients treated with allogeneic hematopoietic stem-cell transplantation (HSCT) will require efforts to decrease treatment-related mortality from severe viral infections. Adoptively transferred virus-specific T cells (VSTs) generated from eligible, third-party donors could provide broad antiviral protection to recipients of HSCT as an immediately available off-the-shelf product. Patient and Methods We generated a bank of VSTs that recognized five common viral pathogens: Epstein-Barr virus (EBV), adenovirus (AdV), cytomegalovirus (CMV), BK virus (BKV), and human herpesvirus 6 (HHV-6). The VSTs were administered to 38 patients with 45 infections in a phase II clinical trial. Results A single infusion produced a cumulative complete or partial response rate of 92% (95% CI, 78.1% to 98.3%) overall and the following rates by virus: 100% for BKV (n = 16), 94% for CMV (n = 17), 71% for AdV (n = 7), 100% for EBV (n = 2), and 67% for HHV-6 (n = 3). Clinical benefit was achieved in 31 patients treated for one infection and in seven patients treated for multiple coincident infections. Thirteen of 14 patients treated for BKV-associated hemorrhagic cystitis experienced complete resolution of gross hematuria by week 6. Infusions were safe, and only two occurrences of de novo graft-versus host disease (grade 1) were observed. VST tracking by epitope profiling revealed persistence of functional VSTs of third-party origin for up to 12 weeks. Conclusion The use of banked VSTs is a feasible, safe, and effective approach to treat severe and drug-refractory infections after HSCT, including infections from two viruses (BKV and HHV-6) that had never been targeted previously with an off-the-shelf product. Furthermore, the multispecificity of the VSTs ensures extensive antiviral coverage, which facilitates the treatment of patients with multiple infections.

  18. Host transcript accumulation during lytic KSHV infection reveals several classes of host responses.

    Directory of Open Access Journals (Sweden)

    Sanjay Chandriani

    Full Text Available Lytic infection by Kaposi's sarcoma-associated herpesvirus (KSHV is associated with an extensive shutoff of host gene expression, mediated chiefly by accelerated mRNA turnover due to expression of the viral SOX protein. We have previously identified a small number of host mRNAs that can escape SOX-mediated degradation. Here we present a detailed, transcriptome-wide analysis of host shutoff, with careful microarray normalization to allow rigorous determination of the magnitude and extent of transcript loss. We find that the extent of transcript reduction represents a continuum of susceptibilities of transcripts to virus-mediated shutoff. Our results affirm that the levels of over 75% of host transcripts are substantially reduced during lytic infection, but also show that another approximately 20% of cellular mRNAs declines only slightly (less than 2-fold during the course of infection. Approximately 2% of examined cellular genes are strongly upregulated during lytic infection, most likely due to transcriptional induction of mRNAs that display intrinsic SOX-resistance.

  19. Frequency of herpesvirus infection in 129 elementary school children in Antioquia, Colombia Frecuencia de infección por herpesvirus en 129 niños en edad escolar en Antioquia

    Directory of Open Access Journals (Sweden)

    John Stewart

    1990-01-01

    Full Text Available

    With the aim of making a preliminary approach to the frequency of human herpesviral infections in our local population, a serological survey was carried out among children entering school for the first time, in three different locations, namely: the city, the village and the countryside. Except for Herpes simplex type 2 and Varicella-Zoster viruses which presented infection frequencies of O and 44.5%, respectively, the other herpetic infections were widely distributed: Herpes simplex virus type 1, 78%; Epstein-Barr Virus, 94%; Cytomegalovirus, 98%; and Human Herspesvirus 6,100%. No association was found between the frequencies of infection and the following variables: procedency, age, sex, number of persons In the family, order number of the child within the family; also, there was no association between the frequencies of infection with the different types of virus. 

    Con el propósito de hacer una primera aproximación al estudio de la frecuencia de las Infecciones herpéticas del hombre en nuestro medio, se realizó una encuesta serológica entre estudiantes de primer ano de primaria de diferentes procedencias. A excepción del Herpes símplex tipo 2 y la Varicela-Zoster, que presentaron frecuencias de O y 44.5%, respectivamente, las demás infecciones herpéticas se encontraron ampliamente distribuidas: Herpes símplex tipo 1, 78%; Epstein-Barr, 94%; Citomegalovirus, 98% y Herpes humano 6, 100%. No se encontró ninguna asociación entre las frecuencias de infección y las diferentes variables analizadas: procedencia, sexo, edad, número de personas en la familia y número de orden del escolar en la familia; Igualmente, se pudo apreciar que no existe ninguna asociación entre la infección por los diferentes agentes estudiados.

  20. Application of scanning cytometry and confocal-microscopy-based image analysis for investigation the role of cytoskeletal elements during equine herpesvirus type 1 (EHV-1) infection of primary murine neurons.

    Science.gov (United States)

    Słońska, A; Cymerys, J; Godlewski, M M; Bańbura, M W

    2016-11-01

    Equine herpesvirus type 1 (EHV-1), a member of Alphaherpesvirinae, has a broad host range in vitro, allowing for study of the mechanisms of productive viral infection, including intracellular transport in various cell cultures. In the current study, quantitative methods (scanning cytometry and real-time PCR) and confocal-microscopy-based image analysis were used to investigate the contribution of microtubules and neurofilaments in the transport of virus in primary murine neurons separately infected with two EHV-1 strains. Confocal-microscopy analysis revealed that viral antigen co-localized with the β-tubulin fibres within the neurites of infected cells. Alterations in β-tubulin and neurofilaments were evaluated by confocal microscopy and scanning cytometry. Real-time PCR analysis demonstrated that inhibitor-induced (nocodazole, EHNA) disruption of microtubules and dynein significantly reduced EHV-1 replication in neurons. Our results suggest that microtubules together with the motor protein - dynein, are involved in EHV-1 replication process in neurons. Moreover, the data presented here and our earlier results support the hypothesis that microtubules and actin filaments play an important role in the EHV-1 transport in primary murine neurons, and that both cytoskeletal structures complement each-other. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Detection of human herpesvirus-7 by qualitative nested-PCR: comparison between healthy individuals and liver transplant recipients Detecção de herpesvirus humano-7 por nested-PCR qualitativo: comparação entre indivíduos sadios e receptores de transplante hepático

    OpenAIRE

    Ronaldo Luis Thomasini; Juliana de Moraes Martins; Daniela Corte Parola; Sandra Helena Alves Bonon; Ilka de Fátima Santana Ferreira Boin; Luis Sérgio Leonardi; Marília Leonardi; Sandra Cecília Botelho Costa

    2008-01-01

    Diagnosis of human herpesvirus-7 active infection in transplant patients has proved difficult, because this virus is ubiquitous and can cause persistent infections in the host. The significance of viral DNA detected in leukocytes by PCR is unclear and cross-reaction in serological tests may occur. This study aimed to evaluate nested-PCR to detect human herpesvirus-7 active infection in liver transplant recipients compared to healthy individuals. human herpesvirus-7 nested-PCR was performed on...

  2. The suppression of apoptosis by α-herpesvirus

    Science.gov (United States)

    You, Yu; Cheng, An-Chun; Wang, Ming-Shu; Jia, Ren-Yong; Sun, Kun-Feng; Yang, Qiao; Wu, Ying; Zhu, Dekang; Chen, Shun; Liu, Ma-Feng; Zhao, Xin-Xin; Chen, Xiao-Yue

    2017-01-01

    Apoptosis, an important innate immune mechanism that eliminates pathogen-infected cells, is primarily triggered by two signalling pathways: the death receptor pathway and the mitochondria-mediated pathway. However, many viruses have evolved various strategies to suppress apoptosis by encoding anti-apoptotic factors or regulating apoptotic signalling pathways, which promote viral propagation and evasion of the host defence. During its life cycle, α-herpesvirus utilizes an elegant multifarious anti-apoptotic strategy to suppress programmed cell death. This progress article primarily focuses on the current understanding of the apoptosis-inhibition mechanisms of α-herpesvirus anti-apoptotic genes and their expression products and discusses future directions, including how the anti-apoptotic function of herpesvirus could be targeted therapeutically. PMID:28406478

  3. Herpesvirus-Associated Acute Urticaria: An Age Matched Case-Control Study

    Science.gov (United States)

    Mareri, Arianna; Adler, Stuart P.; Nigro, Giovanni

    2013-01-01

    Background Acute and recurrent acute urticaria are often associated with multiple factors including infections and recent data suggest a role for herpesviruses. Objective To test the null hypothesis, that is, there is no association of herpesvirus infections with urticaria. Methods Thirty-seven patients between one month and 15 years of age were age matched to 37 controls who were healthy or had mild acute respiratory infections but without urticaria. Patients and controls were followed for 1 to 6 years. Diagnostic studies included DNA detection by real-time PCR for herpes simplex virus (HSV) types 1 and 2, Epstein-Barr virus (EBV), cytomegalovirus (CMV) and human herpesvirus-6 (HHV-6). Tests for other infections included adenovirus, parvovirus B 19, respiratory syncytial virus, influenza A, Group A streptococci, rotavirus, and parasites. Results Specific infections were diagnosed in 26 of 37 cases and among 9 of 37 control children (P=0.0002). Single or concomitant herpesvirus infections occurred in 24 cases and in 4 controls (65% vs 11 %, p=0.0003). Cases had 10 HHV-6 infections, 8 CMV infections, 5 EBV infections, and 4 HSV-1 infections. Conclusion Herpesvirus infections are associated with acute or recurrent acute urticaria. PMID:24386470

  4. Piracy of prostaglandin E2/EP receptor-mediated signaling by Kaposi's sarcoma-associated herpes virus (HHV-8) for latency gene expression: strategy of a successful pathogen.

    Science.gov (United States)

    George Paul, Arun; Sharma-Walia, Neelam; Kerur, Nagaraj; White, Carl; Chandran, Bala

    2010-05-01

    Kaposi's sarcoma-associated herpes virus (KSHV) is implicated in the pathogenesis of KS, a chronic inflammation-associated malignancy. Cyclooxygenase-2 (COX-2) and its metabolite prostaglandin E2 (PGE2), two pivotal proinflammatory/oncogeneic molecules, are proposed to play roles in the expression of major KSHV latency-associated nuclear antigen-1 (LANA-1). Microsomal PGE2 synthase, PGE2, and its receptors (EP1, EP2, EP3, and EP4) were detected in KS lesions with the distinct staining of EP2/EP4 in KS lesions. In latently infected endothelial TIVE-LTC cells, EP receptor antagonists downregulated LANA-1 expression as well as Ca(2+), p-Src, p-PI3K, p-PKCzeta/lambda, and p-NF-kappaB, which are also some of the signal molecules proposed to be important in KS pathogenesis. Exogenous PGE2 and EP receptor agonists induced the LANA-1 promoter in 293 cells, and YY1, Sp1, Oct-1, Oct-6, C/EBP, and c-Jun transcription factors seem to be involved in this induction. PGE2/EP receptor-induced LANA-1 promoter activity was downregulated significantly by the inhibition of Ca(2+), p-Src, p-PI3K, p-PKCzeta/lambda, and p-NF-kappaB. These findings implicate the inflammatory PGE2/EP receptors and the associated signal molecules in herpes virus latency and uncover a novel paradigm that shows the evolution of KSHV genome plasticity to use inflammatory response for its survival advantage of maintaining latent gene expression. These data also suggest that potential use of anti-COX-2 and anti-EP receptor therapy may not only ameliorate the chronic inflammation associated with KS but could also lead to elimination of the KSHV latent infection and the associated KS lesions. (c)2010 AACR.

  5. Therapeutic trials for a rabbit model of EBV-associated Hemophagocytic Syndrome (HPS): effects of vidarabine or CHOP, and development of Herpesvirus papio (HVP)-negative lymphomas surrounded by HVP-infected lymphoproliferative disease.

    Science.gov (United States)

    Hayashi, K; Joko, H; Koirala, T R; Onoda, S; Jin, Z-S; Munemasa, M; Ohara, N; Oda, W; Tanaka, T; Oka, T; Kondo, E; Yoshino, T; Takahashi, K; Yamada, M; Akagi, T

    2003-10-01

    Epstein-Barr virus-associated hemophagocytic syndrome (EBV-AHS), which is often associated with fatal infectious mononucleosis or T-cell lymphoproliferative diseases (LPD), is a distinct disease characterized by high mortality. Treatment of patients with EBV-AHS has proved challenging. To develop some therapeutic interventions for EBV-AHS, we examined the effectiveness of an antiviral agent (vidarabine) or chemotherapy (CHOP), using a rabbit model for EBV-AHS. Fourteen untreated rabbits were inoculated intravenously with cell-free virions of the EBV-like virus Herpesvirus papio (HVP). All of the rabbits died of HVP-associated (LPD) and hemophagocytic syndrome (HPS) between 21 and 31 days after inoculation. Furthermore, three HVP-infected rabbits treated with vidarabine died between days 23 and 28 after inoculation, and their clinicopathological features were no different from those of untreated rabbits, indicating that this drug is not effective at all to treat HVP-induced rabbit LPD and HPS. Three of the infected rabbits that were treated with one course, with an incomplete set of three courses, or with three full courses of CHOP treatment died of HVP-induced LPD and HPS with a bleeding tendency and/or with opportunistic infections. They died on the 26th, 62nd and 105th day after virus inoculation, respectively. CHOP treatment transiently suppressed the HVP-induced LPD and contributed to the prolonged survival time of two infected rabbits. However, it did not remove all of the HVP-infected cells from the infected rabbits, and residual HVP-infected lymphocytes caused recurrences of rabbit LPD and HPS. The most interesting finding of this experiment was observed in the infected rabbit with the longest survival time of 105 days: HVP-negative lymphomas surrounded by HVP-induced LPD developed in the larynx and ileum of this rabbit, causing an obstruction of the lumen. We concluded that these were not secondary lymphomas caused by CHOP treatment, because no suspicious

  6. Coordinated and sequential transcription of the cyprinid herpesvirus-3 annotated genes.

    Science.gov (United States)

    Ilouze, Maya; Dishon, Arnon; Kotler, Moshe

    2012-10-01

    Cyprinid herpesvirus-3 (CyHV-3) is the cause of a fatal disease in carp and koi fish. The disease is seasonal and appears when water temperatures range from 18 to 28°C. CyHV-3 is a member of the Alloherpesviridae, a family in the Herpesvirales order that encompasses mammalian, avian and reptilian viruses. CyHV-3 is a large double-stranded DNA (dsDNA) herpesvirus with a genome of approximately 295kbp, divergent from other mammalian, avian and reptilian herpesviruses, but bearing several genes similar to cyprinid herpesvirus-1 (CyHV-1), CyHV-2, anguillid herpesvirus-1 (AngHV-1), ictalurid herpesvirus-1 (IcHV-1) and ranid herpes virus-1 (RaHV-1). Here we show that viral DNA synthesis commences 4-8h post-infection (p.i.), and is completely inhibited by pre-treatment with cytosine β-d-arabinofuranoside (Ara-C). Transcription of CyHV-3 genes initiates after infection as early as 1-2h p.i., and precedes viral DNA synthesis. All 156 annotated open reading frames (ORFs) of the CyHV-3 genome are transcribed into RNAs, most of which can be classified into immediate early (IE or α), early (E or β) and late (L or γ) classes, similar to all other herpesviruses. Several ORFs belonging to these groups are clustered along the viral genome. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Aberrant herpesvirus-induced polyadenylation correlates with cellular messenger RNA destruction.

    Directory of Open Access Journals (Sweden)

    Yeon J Lee

    2009-05-01

    Full Text Available Regulation of messenger RNA (mRNA stability plays critical roles in controlling gene expression, ensuring transcript fidelity, and allowing cells to respond to environmental cues. Unregulated enhancement of mRNA turnover could therefore dampen cellular responses to such signals. Indeed, several herpesviruses instigate widespread destruction of cellular mRNAs to block host gene expression and evade immune detection. Kaposi's sarcoma-associated herpesvirus (KSHV promotes this phenotype via the activity of its viral SOX protein, although the mechanism of SOX-induced mRNA turnover has remained unknown, given its apparent lack of intrinsic ribonuclease activity. Here, we report that KSHV SOX stimulates cellular transcriptome turnover via a unique mechanism involving aberrant polyadenylation. Transcripts in SOX-expressing cells exhibit extended poly(A polymerase II-generated poly(A tails and polyadenylation-linked mRNA turnover. SOX-induced polyadenylation changes correlate with its RNA turnover function, and inhibition of poly(A tail formation blocks SOX activity. Both nuclear and cytoplasmic poly(A binding proteins are critical cellular cofactors for SOX function, the latter of which undergoes striking nuclear relocalization by SOX. SOX-induced mRNA turnover therefore represents both a novel mechanism of host shutoff as well as a new model system to probe the regulation of poly(A tail-stimulated mRNA turnover in mammalian cells.

  8. A Single Viral Gene Determines Lethal Cross-Species Neurovirulence of Baboon Herpesvirus HVP2

    OpenAIRE

    Black, Darla; Ohsawa, Kazutaka; Tyler, Shaun; Maxwell, Lara; Eberle, R

    2014-01-01

    Alpha-herpesviruses can produce more severe infections in non-natural host species than in their natural host. Isolates of the baboon alpha-herpesvirus Papiine herpesvirus 2 (HVP2) are either very neurovirulent in mice (subtype nv) or non-virulent (subtype ap), but no such difference is evident in the natural baboon host. Comparative genome sequencing was used to identify subtype-specific sequence differences (SSDs) between HVP2nv and HVP2ap isolates. Some genes were identified that despite e...

  9. Is There a Link between Human Herpesvirus Infection and Toll-like Receptors in the Pathogenesis of Pityriasis Rosea? A Case-control Study.

    Science.gov (United States)

    El-Ela, Mostafa Abou; Shaarawy, Eman; El-Komy, Mohamed; Fawzy, Marwa; Hay, Rania Abdel; Hegazy, Rehab; Sharobim, Amin; Moustafa, Nadine; Rashed, Laila; Sayed Amr, Khalda Sayed

    2016-12-01

    Human herpesvirus (HHV) 6 and 7 are involved in the pathogenesis of pityriasis rosea (PR). Our aim was to evaluate the role of the innate immune response in PR through the detection of Toll-like receptors (TLR) 2, 3, 4, 7, 8, and 9 expression in the skin of affected patients and to detect the possibility of being induced by HHV-6 and/or HHV-7 viral coexistence in these patients. Twenty-four patients with PR and 24 healthy controls were included in this case-control study. Biopsy was obtained from the PR lesion and from the healthy skin of controls for detection of HHV-6 and 7 as well as TLRs 2, 3, 4, 7, 8, and 9 gene expression using real-time polymerase chain reaction (PCR). Significantly elevated expression of all studied TLRs and significantly higher viral load of HHV-6 and 7 in PR cases were detected. A significant higher expression of TLR2 and 4 in HHV-7 positive cases and a significant positive correlation between TLR9 and HHV-7 viral load were documented. HHV6 and 7 may also be involved in the pathogenesis of PR via TLR pathways.

  10. Primed for success: Oyster parents treated with poly(I:C) produce offspring with enhanced protection against Ostreid herpesvirus type I infection.

    Science.gov (United States)

    Green, Timothy J; Helbig, Karla; Speck, Peter; Raftos, David A

    2016-10-01

    The Pacific oyster (Crassostrea gigas) is farmed globally. Ostreid herpesvirus (OsHV-1) causes severe mortalities of farmed C. gigas. Management of OsHV-1 has proven difficult. Oysters treated with poly(I:C) exhibit enhanced protection (EP) against OsHV-1. This chemical treatment is highly effective, but it is not feasible to treat every oyster on a farm. To circumvent this practical limitation, previous studies on arthropods have suggested that EP can be transferred from parents to their offspring (trans-generational EP, TGEP). This suggests that the treatment of relatively few parents could be used to produce large numbers of offspring with TGEP. Here, we investigated TGEP in oysters to test whether it might be used as a cost effective management tool to control OsHV-1. We found that offspring (D-veliger larvae) produced from poly(I:C)-treated parents had double the chance of surviving exposure to OsHV-1 compared to controls. Furthermore, the larvae of poly(I:C)-treated parents contained elevated levels of mRNA encoding a key transcription factor that regulates antiviral immunity (IRF2). Poly(I:C) treatment had no effect on the survival of oyster parents. Hence, the enhanced immunity of their offspring could not be explained by genetic selection, and instead may reflect epigenetic reprogramming or maternal provisioning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Ensaio imunoenzimático comercial no diagnóstico sorológico das infecções por herpesvírus bovino 1 A commercial enzyme immune assay in serodiagnosis of bovine herpesvirus 1 infections

    Directory of Open Access Journals (Sweden)

    Kerlei Cristina Médici

    2000-04-01

    Full Text Available Avaliou-se o desempenho de um ensaio imunoenzimático, obtido de fonte comercial, na identificação de anticorpos contra herpesvírus bovino tipo 1 (BHV-1, induzidos tanto por infecção natural quanto por vacinação, em 1000 amostras de soros sangüíneos de bovinos. A análise comparativa dos resultados obtidos no sistema avaliado e na técnica padrão de soroneutralização mostrou uma concordância de 97,05% (K=0,94 entre as duas metodologias de diagnóstico sorológico.The performance of a commercial immune assay in the identification antibody of natural infection or vaccination against bovine herpesvirus type 1 (BHV-1 in 1000 samples of bovine serum was evaluated. The comparative analysis from the result of the evaluated system and standard serum neutralization technique showed a rate of agreement of 97.05% (K=0.94 between the two serologic diagnotic methods.

  12. COX-2/PGE2: molecular ambassadors of Kaposi's sarcoma-associated herpes virus oncoprotein-v-FLIP

    Science.gov (United States)

    Sharma-Walia, N; Patel, K; Chandran, K; Marginean, A; Bottero, V; Kerur, N; Paul, A G

    2012-01-01

    Kaposi's sarcoma herpesvirus (KSHV) latent oncoprotein viral FLICE (FADD-like interferon converting enzyme)-like inhibitory protein (v-FLIP) or K13, a potent activator of NF-κB, has well-established roles in KSHV latency and oncogenesis. KSHV-induced COX-2 represents a novel strategy employed by KSHV to promote latency and inflammation/angiogenesis/invasion. Here, we demonstrate that v-FLIP/K13 promotes tumorigenic effects via the induction of host protein COX-2 and its inflammatory metabolite PGE2 in an NF-κB-dependent manner. In addition to our previous studies demonstrating COX-2/PGE2's role in transcriptional regulation of KSHV latency promoter and latent gene expression, the current study adds to the complexity that though LANA-1 (latency associated nuclear antigen) is utilizing COX-2/PGE2 as critical factors for its transcriptional regulation, it is the v-FLIP/K13 gene in the KSHV latency cluster that maintains continuous COX-2/PGE2 levels in the infected cells. We demonstrate that COX-2 inhibition, via its chemical inhibitors (NS-398 or celecoxib), reduced v-FLIP/K13-mediated NF-κB induction, and extracellular matrix (ECM) interaction-mediated signaling, mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) levels, and subsequently downregulated detachment-induced apoptosis (anoikis) resistance. vFLIP expression mediated the secretion of cytokines, and spindle cell differentiation activated the phosphorylation of p38, RSK, FAK, Src, Akt and Rac1-GTPase. The COX-2 inhibition in v-FLIP/K13-HMVECs reduced inflammation and invasion/metastasis-related genes, along with reduced anchorage-independent colony formation via modulating ‘extrinsic' as well as ‘intrinsic' cell death pathways. COX-2 blockade in v-FLIP/K13-HMVEC cells drastically augmented cell death induced by removal of essential growth/survival factors secreted in the microenvironment. Transformed cells obtained from anchorage-independent colonies of COX-2 inhibitor-treated v

  13. Common Infections with Polyomaviruses and Herpesviruses and Neuropsychological Development at 4 Years of Age, the Rhea Birth Cohort in Crete, Greece

    Science.gov (United States)

    Karachaliou, Marianna; Chatzi, Leda; Roumeliotaki, Theano; Kampouri, Mariza; Kyriklaki, Andriani; Koutra, Katerina; Chalkiadaki, Georgia; Michel, Angelika; Stiakaki, Eftichia; Kogevinas, Manolis; Pawlita, Michael; Waterboer, Tim; de Sanjose, Silvia

    2016-01-01

    Background: Viral infections of the central nervous system may have detrimental effects for the developing brain, but the effects of less virulent common infections are unclear. We aim to investigate the impact of common viral infections of early childhood on neuropsychological performance of children at age four. Methods: We used cross-sectional…

  14. Detection of Quiescent Infections with Multiple Elephant Endotheliotropic Herpesviruses (EEHVs), Including EEHV2, EEHV3, EEHV6, and EEHV7, within Lymphoid Lung Nodules or Lung and Spleen Tissue Samples from Five Asymptomatic Adult African Elephants.

    Science.gov (United States)

    Zong, Jian-Chao; Heaggans, Sarah Y; Long, Simon Y; Latimer, Erin M; Nofs, Sally A; Bronson, Ellen; Casares, Miguel; Fouraker, Michael D; Pearson, Virginia R; Richman, Laura K; Hayward, Gary S

    2015-12-30

    More than 80 cases of lethal hemorrhagic disease associated with elephant endotheliotropic herpesviruses (EEHVs) have been identified in young Asian elephants worldwide. Diagnostic PCR tests detected six types of EEHV in blood of elephants with acute disease, although EEHV1A is the predominant pathogenic type. Previously, the presence of herpesvirus virions within benign lung and skin nodules from healthy African elephants led to suggestions that African elephants may be the source of EEHV disease in Asian elephants. Here, we used direct PCR-based DNA sequencing to detect EEHV genomes in necropsy tissue from five healthy adult African elephants. Two large lung nodules collected from culled wild South African elephants contained high levels of either EEHV3 alone or both EEHV2 and EEHV3. Similarly, a euthanized U.S. elephant proved to harbor multiple EEHV types distributed nonuniformly across four small lung nodules, including high levels of EEHV6, lower levels of EEHV3 and EEHV2, and a new GC-rich branch type, EEHV7. Several of the same EEHV types were also detected in random lung and spleen samples from two other elephants. Sanger PCR DNA sequence data comprising 100 kb were obtained from a total of 15 different strains identified, with (except for a few hypervariable genes) the EEHV2, EEHV3, and EEHV6 strains all being closely related to known genotypes from cases of acute disease, whereas the seven loci (4.0 kb) obtained from EEHV7 averaged 18% divergence from their nearest relative, EEHV3. Overall, we conclude that these four EEHV species, but probably not EEHV1, occur commonly as quiescent infections in African elephants. Acute hemorrhagic disease characterized by high-level viremia due to infection by members of the Proboscivirus genus threatens the future breeding success of endangered Asian elephants worldwide. Although the genomes of six EEHV types from acute cases have been partially or fully characterized, lethal disease predominantly involves a variety

  15. A novel herpesvirus associated with respiratory disease in Bourke's parrots (Neopsephotus bourkii).

    Science.gov (United States)

    Shivaprasad, H L; Phalen, D N

    2012-12-01

    A novel herpesvirus infection in nine Bourke's parrots (Neopsephotus bourkii, formerly Neophema bourkii) housed in an outdoor aviary comprised of multiple species of birds was diagnosed based on histopathology, electron microscopy and polymerase chain reaction (PCR). Clinical signs in the parrots included anorexia, ruffled feathers, depression, loss of weight and respiratory distress. The most common gross lesions were moderately congested and oedematous lungs and a mild fibrinous exudate in the air sacs and lumen of the trachea. Histological examination revealed mild to severe bronchopneumonia and airsacculitis with syncytial cells containing eosinophilic intranuclear inclusion bodies in most birds. Other less frequent changes included tracheitis, syringitis, sinusitis, rhinitis, otitis media and conjunctivitis. Attempts to culture the virus in chicken embryos and chicken embryo liver cells were unsuccessful. Examination by transmission electron microscopy of syncytial cells from the lungs of two birds revealed intranuclear virus particles typical of the family Herpesviridae. DNA from a novel herpesvirus was amplified from lung tissue by PCR using degenerate primers derived from conserved avian herpesvirus sequences. The virus belongs in the genus Iltovirus of the Alphaherpesvirinae subfamily. It is not closely related to Psittacid herpesvirus 1 that causes Pacheco's disease but does group phylogenetically with a clade of herpesviruses that cause respiratory disease in a number of avian species. The proposed name for this herpesvirus is Psittacid herpesvirus 3.

  16. Multiple sclerosis and herpesvirus interaction

    Directory of Open Access Journals (Sweden)

    Guilherme Sciascia do Olival

    2013-09-01

    Full Text Available Multiple sclerosis is the most common autoimmune inflammatory demyelinating disease of the central nervous system, and its etiology is believed to have both genetic and environmental components. Several viruses have already been implicated as triggers and there are several studies that implicate members of the Herpesviridae family in the pathogenesis of MS. The most important characteristic of these viruses is that they have periods of latency and exacerbations within their biological sanctuary, the central nervous system. The Epstein-Barr, cytomegalovirus, human herpesvirus 6 and human herpesvirus 7 viruses are the members that are most studied as being possible triggers of multiple sclerosis. According to evidence in the literature, the herpesvirus family is strongly involved in the pathogenesis of this disease, but it is unlikely that they are the only component responsible for its development. There are probably multiple triggers and more studies are necessary to investigate and define these interactions.

  17. Epidemiology and molecular detection of equine herpesviruses in western Algeria in 2011.

    Science.gov (United States)

    Laabassi, F; Hue, E; Fortier, C; Morilland, E; Legrand, L; Hans, A; Pronost, S

    2017-08-01

    An episode of acute equine respiratory infection was reported in western Algeria (Tiaret province) between February and March 2011, affecting a large population of horses. Nasal swabs (n=100) were taken from horses aged between 1 and 27 years, presenting with cough and mucopurulent nasal discharge. The prevalence of equine respiratory virus infections was examined using quantitative polymerase chain reaction (qPCR). One, or more, of four equine respiratory viruses were detected in the nasal swabs of 90 of 100 horses (90%) and the detection rate of equine herpesvirus type 1 (EHV-1), equine herpesvirus type 4 (EHV-4), equine herpesvirus type 2 (EHV-2) and equine herpesvirus type 5 (EHV-5) were 2%, 14%, 90% and 75%, respectively. Equine influenza virus and equine arteritis virus were not detected in any samples. Among the 90 infected horses, 70 were co-infected with EHV-2 and EHV-5 and 14 others were co-infected with EHV-4, EHV-2 and EHV-5. The present study shows a positivity rate of 97.3% for EHV-5 in young horses aged <3years; a finding which decreased with age. Viral load of EHV-5 was significantly higher in <3years whereas no effect of age was observed with EHV-2. The study shows that equine herpesviruses 1, 2, 4 and 5 are endemic in horse populations from Algeria as detected for the first time by qPCR. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Complete Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and Analyses Integration Sites Define a New Human Endogenous Virus with Potential to Reactivate as an Emerging Infection.

    Science.gov (United States)

    Tweedy, Joshua; Spyrou, Maria Alexandra; Pearson, Max; Lassner, Dirk; Kuhl, Uwe; Gompels, Ursula A

    2016-01-15

    Human herpesvirus-6A and B (HHV-6A, HHV-6B) have recently defined endogenous genomes, resulting from integration into the germline: chromosomally-integrated "CiHHV-6A/B". These affect approximately 1.0% of human populations, giving potential for virus gene expression in every cell. We previously showed that CiHHV-6A was more divergent than CiHHV-6B by examining four genes in 44 European CiHHV-6A/B cardiac/haematology patients. There was evidence for gene expression/reactivation, implying functional non-defective genomes. To further define the relationship between HHV-6A and CiHHV-6A we used next-generation sequencing to characterize genomes from three CiHHV-6A cardiac patients. Comparisons to known exogenous HHV-6A showed CiHHV-6A genomes formed a separate clade; including all 85 non-interrupted genes and necessary cis-acting signals for reactivation as infectious virus. Greater single nucleotide polymorphism (SNP) density was defined in 16 genes and the direct repeats (DR) terminal regions. Using these SNPs, deep sequencing analyses demonstrated superinfection with exogenous HHV-6A in two of the CiHHV-6A patients with recurrent cardiac disease. Characterisation of the integration sites in twelve patients identified the human chromosome 17p subtelomere as a prevalent site, which had specific repeat structures and phylogenetically related CiHHV-6A coding sequences indicating common ancestral origins. Overall CiHHV-6A genomes were similar, but distinct from known exogenous HHV-6A virus, and have the capacity to reactivate as emerging virus infections.

  19. γ-Herpesvirus load as surrogate marker of early death in HIV-1 lymphoma patients submitted to high dose chemotherapy and autologous peripheral blood stem cell transplantation.

    Science.gov (United States)

    Pratesi, Chiara; Zanussi, Stefania; Tedeschi, Rosamaria; Bortolin, Maria Teresa; Talamini, Renato; Rupolo, Maurizio; Scaini, Chiara; Basaglia, Giancarlo; Di Maso, Matteo; Mazzucato, Mario; Zanet, Ernesto; Tirelli, Umberto; Michieli, Mariagrazia; Carbone, Antonino; De Paoli, Paolo

    2015-01-01

    Autologous stem cell transplantation (ASCT) is a feasible procedure for human immunodeficiency virus-1 (HIV-1) lymphoma patients, whose underlying disease and intrinsic HIV-1- and ASCT-associated immunodeficiency might increase the risk for γ-herpesvirus load persistence and/or reactivation. We evaluated this hypothesis by investigating the levels of Epstein-Barr virus (EBV)- and Kaposi sarcoma-associated herpesvirus (KSHV)-DNA levels in the peripheral blood of 22 HIV-1-associated lymphoma patients during ASCT, highlighting their relationship with γ-herpesvirus lymphoma status, immunological parameters, and clinical events. EBV-DNA was detected in the pre-treatment plasma and peripheral blood mononuclear cells (PBMCs) of 12 (median 12,135 copies/mL) and 18 patients (median 417 copies/10(6) PBMCs), respectively; the values in the two compartments were correlated (r = 0.77, p = 0.0001). Only EBV-positive lymphomas showed detectable levels of plasma EBV-DNA. After debulking chemotherapy, plasma EBV-DNA was associated with lymphoma chemosensitivity (p = 0.03) and a significant higher mortality risk by multivariate Cox analysis adjusted for EBV-lymphoma status (HR, 10.46, 95% CI, 1.11-98.32, p = 0.04). After infusion, EBV-DNA was detectable in five EBV-positive lymphoma patients who died within six months. KSHV-DNA load was positive in only one patient, who died from primary effusion lymphoma. Fluctuations in levels of KSHV-DNA reflected the patient's therapy and evolution of his underlying lymphoma. Other γ-herpesvirus-associated malignancies, such as multicentric Castleman disease and Kaposi sarcoma, or end-organ complications after salvage treatment were not found. Overall, these findings suggest a prognostic and predictive value of EBV-DNA and KSHV-DNA, the monitoring of which could be a simple, complementary tool for the management of γ-herpesvirus-positive lymphomas in HIV-1 patients submitted to ASCT.

  20. ß-catenin, a transcription factor activated by canonical Wnt signaling, is expressed in sensory neurons of calves latently infected with bovine herpesvirus 1

    Science.gov (United States)

    Like many a-herpesvirinae subfamily members, bovine herpes virus 1 (BoHV-1) expresses an abundant transcript in latently infected sensory neurons: the latency-related (LR) RNA. LR-RNA encodes a protein (ORF2) that inhibits apoptosis, interacts with Notch family members, interferes with Notch mediate...

  1. Herpesvirus BACs: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Charles Warden

    2011-01-01

    Full Text Available The herpesviridae are a large family of DNA viruses with large and complicated genomes. Genetic manipulation and the generation of recombinant viruses have been extremely difficult. However, herpesvirus bacterial artificial chromosomes (BACs that were developed approximately 10 years ago have become useful and powerful genetic tools for generating recombinant viruses to study the biology and pathogenesis of herpesviruses. For example, BAC-directed deletion mutants are commonly used to determine the function and essentiality of viral genes. In this paper, we discuss the creation of herpesvirus BACs, functional analyses of herpesvirus mutants, and future applications for studies of herpesviruses. We describe commonly used methods to create and mutate herpesvirus BACs (such as site-directed mutagenesis and transposon mutagenesis. We also evaluate the potential future uses of viral BACs, including vaccine development and gene therapy.

  2. Modelling the effect of surveillance programmes on spread of bovine herpesvirus 1 between certified cattle herds

    NARCIS (Netherlands)

    Graat, E.A.M.; Jong, de M.C.M.; Frankena, K.; Franken, P.

    2001-01-01

    For the eradication of an infectious agent, like bovine herpesvirus 1 (BHV-1), surveillance and certification can be used to reduce the transmission between herds. The goal of surveillance is that a certified herd that becomes infected is detected timely so that infection of several other certified

  3. Non-Detection of Human Herpesvirus 8 (HHV-8) DNA in HHV-8-Seropositive Blood Donors from Three Brazilian Regions

    Science.gov (United States)

    Levi, José Eduardo; Nascimento, Maria Claudia; Sumita, Laura Masami; de Souza, Vanda Akico Ueda Fick; Freire, Wilton S.; Mayaud, Philippe; Pannuti, Claudio S.

    2011-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the etiologic agent of all forms of Kaposi's sarcoma, primary effusion lymphoma and the plasmablastic cell variant of multicentric Castleman disease. In endemic areas of sub-Saharan Africa, blood transfusions have been associated with a substantial risk of HHV-8 transmission. By contrast, several studies among healthy blood donors from North America have failed to detect HHV-8 DNA in samples of seropositive individuals. In this study, using a real-time PCR assay, we investigated the presence of HHV-8 DNA in whole-blood samples of 803 HHV-8 blood donors from three Brazilian states (São Paulo, Amazon, Bahia) who tested positive for HHV-8 antibodies, in a previous multicenter study. HHV-8 DNA was not detected in any sample. Our findings do not support the introduction of routine HHV-8 screening among healthy blood donors in Brazil. (WC = 140). PMID:21858163

  4. Neonatal Immunization with a Single IL-4/Antigen Dose Induces Increased Antibody Responses after Challenge Infection with Equine Herpesvirus Type 1 (EHV-1) at Weanling Age.

    Science.gov (United States)

    Wagner, Bettina; Perkins, Gillian; Babasyan, Susanna; Freer, Heather; Keggan, Alison; Goodman, Laura B; Glaser, Amy; Torsteinsdóttir, Sigurbjorg; Svansson, Vilhjálmur; Björnsdóttir, Sigríður

    2017-01-01

    Neonatal foals respond poorly to conventional vaccines. These vaccines typically target T-helper (Th) cell dependent B-cell activation. However, Th2-cell immunity is impaired in foals during the first three months of life. In contrast, neonatal basophils are potent interleukin-4 (IL-4) producers. The purpose of this study was to develop a novel vaccine triggering the natural capacity of neonatal basophils to secrete IL-4 and to evaluate if vaccination resulted in B-cell activation and antibody production against EHV-1 glycoprotein C (gC). Neonatal vaccination was performed by oral biotinylated IgE (IgE-bio) treatment at birth followed by intramuscular injection of a single dose of streptavidin-conjugated gC/IL-4 fusion protein (Sav-gC/IL-4) for crosslinking of receptor-bound IgE-bio (group 1). Neonates in group 2 received the intramuscular Sav-gC/IL-4 vaccine only. Group 3 remained non-vaccinated at birth. After vaccination, gC antibody production was not detectable. The ability of the vaccine to induce protection was evaluated by an EHV-1 challenge infection after weaning at 7 months of age. Groups 1 and 2 responded to EHV-1 infection with an earlier onset and overall significantly increased anti-gC serum antibody responses compared to control group 3. In addition, group 1 weanlings had a decreased initial fever peak after infection indicating partial protection from EHV-1 infection. This suggested that the neonatal vaccination induced a memory B-cell response at birth that was recalled at weanling age after EHV-1 challenge. In conclusion, early stimulation of neonatal immunity via the innate arm of the immune system can induce partial protection and increased antibody responses against EHV-1.

  5. Neonatal Immunization with a Single IL-4/Antigen Dose Induces Increased Antibody Responses after Challenge Infection with Equine Herpesvirus Type 1 (EHV-1 at Weanling Age.

    Directory of Open Access Journals (Sweden)

    Bettina Wagner

    Full Text Available Neonatal foals respond poorly to conventional vaccines. These vaccines typically target T-helper (Th cell dependent B-cell activation. However, Th2-cell immunity is impaired in foals during the first three months of life. In contrast, neonatal basophils are potent interleukin-4 (IL-4 producers. The purpose of this study was to develop a novel vaccine triggering the natural capacity of neonatal basophils to secrete IL-4 and to evaluate if vaccination resulted in B-cell activation and antibody production against EHV-1 glycoprotein C (gC. Neonatal vaccination was performed by oral biotinylated IgE (IgE-bio treatment at birth followed by intramuscular injection of a single dose of streptavidin-conjugated gC/IL-4 fusion protein (Sav-gC/IL-4 for crosslinking of receptor-bound IgE-bio (group 1. Neonates in group 2 received the intramuscular Sav-gC/IL-4 vaccine only. Group 3 remained non-vaccinated at birth. After vaccination, gC antibody production was not detectable. The ability of the vaccine to induce protection was evaluated by an EHV-1 challenge infection after weaning at 7 months of age. Groups 1 and 2 responded to EHV-1 infection with an earlier onset and overall significantly increased anti-gC serum antibody responses compared to control group 3. In addition, group 1 weanlings had a decreased initial fever peak after infection indicating partial protection from EHV-1 infection. This suggested that the neonatal vaccination induced a memory B-cell response at birth that was recalled at weanling age after EHV-1 challenge. In conclusion, early stimulation of neonatal immunity via the innate arm of the immune system can induce partial protection and increased antibody responses against EHV-1.

  6. Antiviral activity of exopolysaccharides from Arthrospira platensis against koi herpesvirus.

    Science.gov (United States)

    Reichert, M; Bergmann, S M; Hwang, J; Buchholz, R; Lindenberger, C

    2017-10-01

    Although koi herpesvirus (KHV) has a history of causing severe economic losses in common carp and koi farms, there are still no treatments available on the market. Thus, the aim of this study was to test exopolysaccharides (EPS) for its antiviral activity against KHV, by monitoring inhibition and cytotoxic effects in common carp brain cells. These substances can be easily extracted from extracellular algae supernatant and were identified as groups of sulphated polysaccharides. In order to reach this aim, Arthrospira platensis, which is well known for its antiviral activity of intra- and extracellular compounds towards mammalian herpesviruses, was investigated as standard organism and compared to commercial antiviral drug, ganciclovir, which inhibits the viral DNA polymerization. The antiviral activity of polysaccharides of A. platensis against KHV was confirmed in vitro using qualitative assessment of KHV life cycle genes, and it was found by RT-PCR that EPS, applied at a concentration of >18 μg mL(-1) and a multiplicity of infection (MOI) of 0.45 of KHV, suppressed the viral replication in common carp brain (CCB) cells even after 22 days post-infection, entirely. Further, this study presents first data indicating an enormous potential using polysaccharides as an additive for aquacultures to lower or hinder the spread of the KHV and koi herpesvirus disease (KHVD) in future. © 2017 John Wiley & Sons Ltd.

  7. Herpesvirus glycoproteins undergo multiple antigenic changes before membrane fusion.

    Directory of Open Access Journals (Sweden)

    Daniel L Glauser

    Full Text Available Herpesvirus entry is a complicated process involving multiple virion glycoproteins and culminating in membrane fusion. Glycoprotein conformation changes are likely to play key roles. Studies of recombinant glycoproteins have revealed some structural features of the virion fusion machinery. However, how the virion glycoproteins change during infection remains unclear. Here using conformation-specific monoclonal antibodies we show in situ that each component of the Murid Herpesvirus-4 (MuHV-4 entry machinery--gB, gH/gL and gp150--changes in antigenicity before tegument protein release begins. Further changes then occurred upon actual membrane fusion. Thus virions revealed their final fusogenic form only in late endosomes. The substantial antigenic differences between this form and that of extracellular virions suggested that antibodies have only a limited opportunity to block virion membrane fusion.

  8. Selective anti-herpesvirus agents.

    Science.gov (United States)

    De Clercq, Erik

    2013-01-23

    This review article focuses on the anti-herpesvirus agents effective against herpes simplex virus, varicella-zoster virus and cytomegalovirus, which have either been licensed for clinical use (idoxuridine, trifluridine, brivudin, acyclovir, valaciclovir, valganciclovir, famciclovir and foscarnet) or are under clinical development (CMX001 [the hexadecyloxypropyl prodrug of cidofovir], the helicase-primase inhibitor BAY 57-1293 [now referred to as AIC316], FV-100 [the valine ester of Cf 1743] and the terminase inhibitor letermovir [AIC246]).

  9. Molecular Detection of Equine Herpesvirus Types 1 and 4 Infection in Healthy Horses in Isfahan Central and Shahrekord Southwest Regions, Iran.

    Science.gov (United States)

    Taktaz Hafshejani, Taghi; Nekoei, Shahin; Vazirian, Behnam; Doosti, Abbas; Khamesipour, Faham; Anyanwu, Madubuike Umunna

    2015-01-01

    This study was undertaken to investigate molecularly the occurrence of EHV-1 and EHV-4 infection among equine population in regions, Iran. Blood samples from 53 and 37 randomly selected horses settled in Isfahan and Shahrekord, Iran, respectively, were collected. Detection of EHV-1 and EHV-4 genes in the blood samples was done using polymerase chain reaction (PCR). Out of 53 and 37 samples from Isfahan and Shahrekord, 4 (18.18%) and 3 (8.10%) were positive for PCR of EHV-1, respectively. Nine (16.98%) and 6 (16.21%) were positive for PCR of EHV-4, while 6 (11.32%) and 3 (8.10%) were positive for PCR of both EHV-1 and EHV-4, in Isfahan and Shahrekord, respectively. Of the 7 blood samples positive for EHV-1, 4 (16.66%) and 3 (8.10%) were from horses >3 years old while 2 (18.18%) and 1 (16.66%) were from 2-3 years old horses, in Isfahan and Shahrekord, respectively. Out of the 7 and 3 samples positive for PCR of EHV-1 in Isfahan and Shahrekord, 4 (22.2%) and 1 (7.69%) were Standardbred, while 3 (14.28%) and 2 (13.33%) were Thoroughbreds, respectively. EHV-4 was detected in blood of 4 (22.22%) and 2 (15.83%) Standardbreds and from 4 (19.04%) and 4 (26.66%) Thoroughbred horses in Isfahan and Shahrekord, respectively. This study has shown that horses settled in Isfahan central and Shahrekord southwest regions, Iran, are infected by EHV-1 and EHV-4 and thus serve as potential reservoirs and disseminators of the viruses.

  10. Human Herpesvirus-6A/B Binds to Spermatozoa Acrosome and Is the Most Prevalent Herpesvirus in Semen from Sperm Donors

    DEFF Research Database (Denmark)

    Kaspersen, Maja Døvling; Larsen, Peter; Kofod-Olsen, Emil

    2012-01-01

    ejaculate that was positive for one or more human herpesvirus. Of these 27.3% (n = 15) had a double herpesvirus infection. If corrected for the presence of multiple ejaculates from some donors, the adjusted frequency of herpesviruses in semen was 27.2% with HSV-1 in 0.4%; HSV-2 in 0.1%; EBV in 6.3%; HCMV...... was shown to associate with sperm within minutes in a concentration dependent manner. Confocal microscopy demonstrated that HHV-6B associated with the sperm head, but only to sperm with an intact acrosome. Taken together, our data suggest that HHV-6A/B could be transported to the uterus via binding...

  11. Sphingosine kinase-2 maintains viral latency and survival for KSHV-infected endothelial cells.

    Directory of Open Access Journals (Sweden)

    Lu Dai

    Full Text Available Phosphorylation of sphingosine by sphingosine kinases (SphK1 and SphK2 generates sphingosine-1-phosphate (S1P, a bioactive sphingolipid which promotes cancer cell survival and tumor progression in vivo. We have recently reported that targeting SphK2 induces apoptosis for human primary effusion lymphoma (PEL cell lines infected by the Kaposi's sarcoma-associated herpesvirus (KSHV, and this occurs in part through inhibition of canonical NF-κB activation. In contrast, pharmacologic inhibition of SphK2 has minimal impact for uninfected B-cell lines or circulating human B cells from healthy donors. Therefore, we designed additional studies employing primary human endothelial cells to explore mechanisms responsible for the selective death observed for KSHV-infected cells during SphK2 targeting. Using RNA interference and a clinically relevant pharmacologic approach, we have found that targeting SphK2 induces apoptosis selectively for KSHV-infected endothelial cells through induction of viral lytic gene expression. Moreover, this effect occurs through repression of KSHV-microRNAs regulating viral latency and signal transduction, including miR-K12-1 which targets IκBα to facilitate activation of NF-κB, and ectopic expression of miR-K12-1 restores NF-κB activation and viability for KSHV-infected endothelial cells during SphK2 inhibition. These data illuminate a novel survival mechanism and potential therapeutic target for KSHV-infected endothelial cells: SphK2-associated maintenance of viral latency.

  12. Molecular biology of human herpesvirus 8: novel functions and virus-host interactions implicated in viral pathogenesis and replication.

    Science.gov (United States)

    Cousins, Emily; Nicholas, John

    2014-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the second identified human gammaherpesvirus. Like its relative Epstein-Barr virus, HHV-8 is linked to B-cell tumors, specifically primary effusion lymphoma and multicentric Castleman's disease, in addition to endothelial-derived KS. HHV-8 is unusual in its possession of a plethora of "accessory" genes and encoded proteins in addition to the core, conserved herpesvirus and gammaherpesvirus genes that are necessary for basic biological functions of these viruses. The HHV-8 accessory proteins specify not only activities deducible from their cellular protein homologies but also novel, unsuspected activities that have revealed new mechanisms of virus-host interaction that serve virus replication or latency and may contribute to the development and progression of virus-associated neoplasia. These proteins include viral interleukin-6 (vIL-6), viral chemokines (vCCLs), viral G protein-coupled receptor (vGPCR), viral interferon regulatory factors (vIRFs), and viral antiapoptotic proteins homologous to FLICE (FADD-like IL-1β converting enzyme)-inhibitory protein (FLIP) and survivin. Other HHV-8 proteins, such as signaling membrane receptors encoded by open reading frames K1 and K15, also interact with host mechanisms in unique ways and have been implicated in viral pathogenesis. Additionally, a set of micro-RNAs encoded by HHV-8 appear to modulate expression of multiple host proteins to provide conditions conducive to virus persistence within the host and could also contribute to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.

  13. Effect of extremely low frequency electromagnetic fields (ELF-EMF) on Kaposi's sarcoma-associated herpes virus in BCBL-1 cells.

    Science.gov (United States)

    Pica, Francesca; Serafino, Annalucia; Divizia, Maurizio; Donia, Domenica; Fraschetti, Marzia; Sinibaldi-Salimei, Paola; Giganti, Maria Gabriella; Volpi, Antonio

    2006-04-01

    Association between extremely low frequency electromagnetic fields (ELF-EMF) and human cancers is controversial, and few studies have been conducted on their influence on oncogenic viruses. We studied the effects of 1 mT, 50 Hz sine waves, applied for 24-72 h, on Kaposi's sarcoma (KS)-associated herpesvirus (KSHV or HHV-8) in BCBL-1, a latently infected primary effusion lymphoma (PEL) cell line. ELF-EMF exposure did not affect the growth and viability of BCBL-1 cells, either stimulated or not with TPA. The total amount of KSHV DNA detected in ELF-EMF exposed cultures not stimulated with TPA did not differ from that of the unexposed controls (P = ns). However, in the presence of TPA stimulation, total KSHV DNA content was found higher in ELF-EMF exposed than in control BCBL-1 cultures (P = .024) at 72 h exposure, but not earlier. Viral DNA increase significantly correlated with increased mean fluorescence intensity/cell for the lytic antigen gp K8.1A/B (P EMF exposure consisted mainly of defective viral particles. (c) 2005 Wiley-Liss, Inc.

  14. Role of herpesviruses in chronic periodontitis and their association with clinical parameters and in increasing severity of the disease

    Science.gov (United States)

    Kazi, Mohammad Mukhit Abdul Gaffar; Bharadwaj, Renu

    2017-01-01

    Objective: This study aims to assess the role of herpesviruses in chronic periodontitis and their association with clinical parameters and in increasing severity. Materials and Methods: This was a prospective case–control study. Ethical approval and prior consent were taken. A subgingival plaque sample was collected from a total of 300 patients and 300 controls and processed for DNA extraction and multiplex polymerase chain reaction for detection of herpesviruses. Results: The most predominant age group affected was 41–50 followed by 31–40 years and male patients outnumbered the female patients. Herpes simplex virus (HSV)-1 (46.6%) was the most common Herpesvirus followed by HSV-2 (34.6%), Epstein–Barr viruses (EBV) (30.6%), and cytomegalovirus (CMV) (19.3%) in chronic periodontitis. Herpesviruses were significantly associated with increasing severity of the disease and had shown differences in their association with clinical parameters. Multiple herpesvirus infection was seen in patients with severe chronic periodontitis. The most common combination was HSV-1 + HSV-2 and HSV-1 + HSV-2 + EBV. Conclusions: HSV-1 was the most common herpesviruses implicated in the etiology of the chronic periodontitis followed by HSV-2, EBV and CMV. A herpesvirus differs in association with clinical parameters and plays an important role in increasing severity of the disease. PMID:28932137

  15. Genome-wide gene expression analysis of anguillid herpesvirus 1

    NARCIS (Netherlands)

    Beurden, van S.J.; Peeters, B.P.H.; Rottier, P.J.M.; Davison, A.A.; Engelsma, M.Y.

    2013-01-01

    Background Whereas temporal gene expression in mammalian herpesviruses has been studied extensively, little is known about gene expression in fish herpesviruses. Here we report a genome-wide transcription analysis of a fish herpesvirus, anguillid herpesvirus 1, in cell culture, studied during the

  16. Neuropatogênese experimental da infecção pelo herpesvírus bovino tipo 5 em coelhos Experimental neuropathogenesis of bovine herpesvirus 5 infection in rabbits

    Directory of Open Access Journals (Sweden)

    Eduardo Furtado Flores

    2009-01-01

    estudar diversos aspectos da infecção pelo BoHV-5.Several aspects of the biology of bovine herpesvirus 5 (BoHV-5 have been studied in rabbits, which develop acute infection and neurological disease upon experimental inoculation. The acute infection is followed by the establishment of latent infection, which can be naturally or artificially reactivated. The first experiments in rabbits established a protocol for virus inoculation and monitoring the infection, and characterized the main virological, clinical and pathological aspects of the acute infection. The pathogenesis of acute infection, from the initial viral replication at site of inoculation, pathways and kinetics of viral transport to the brain, distribution and virus replication in the central nervous system (CNS, cellular and tissue tropism, clinical signs and CNS pathology have been extensively studied using this animal model. Subsequently, several biological and molecular aspects of latent BoHV-5 infection have also been elucidated upon inoculation of rabbits. Rabbits have also been used to investigate the phenotype (neuroinvasiveness, neurogrowth of field isolates and recombinant vaccine candidates, protection by passive immunity, vaccine protection, the efficacy of anti-viral drugs and support therapies for neurological disease. This animal model was also used to investigate the origin and distribution of electric impulses involved in seizures - a hallmark of BoHV-5 induced neurological infection - and also to test the efficacy of anti-convulsivants. In spite of the possible differences between rabbits and cattle - the natural host of the virus - the observations taken from this experimental model have greatly contributed to the knowledge of the biology of BoHV-5 infection. The present article presents a review of the main published and unpublished results and observations by our group, comprising more than a decade of studies on the pathogenesis of BoHV-5 infection in the rabbit model.

  17. Koi herpesvirus disease in carp

    Directory of Open Access Journals (Sweden)

    Jeremić Svetlana

    2007-01-01

    Full Text Available A disease in the koi carp (Cyprinus carpio koi and the common carp (Cyprinus carpio carpio, caused by the herpesvirus and accompanied by a high mortality rate, has spread across numerous fish ponds all over the world since 1998, resulting in massive mortality and significant financial losses. The herpesvirus-like virus, called the koi herpesvirus (KHV has been isolated and identified from the koi and the common carp in the course of the incidences of massive mortalities. The first appearance of a disease with a high mortality in the common and the koi carp caused by the koi herpesvirus (KHV was described in 1998 in Israel and the United States of America (USA. Since that time, a large number of cases of outbreaks of this disease have been confirmed throughout the world, including the USA, Israel, and a large number of European countries. The deaths occurred seasonally, in late spring or early autumn, when the water temperature was from 18-28ºC. The most important factor of the environment that affects the occurrence and gravity of this disease is the water temperature. This disease is currently considered one of the factors that present the biggest threat to populations of the common and the koi carp. Diseased fish are disoriented, their movements uncoordinated, their breathing rapid, gills swollen, and they have local skin lesions. The virus was isolated from tissue of diseased fish and cultivated on a KF-1 (koi fin cells cell line. Electronic microscopy examinations revealed virus identical viral particles of the Herpesviridae family. Analyses of the virion polypeptide and DNA established differences between the KHV and the previously known herpesvirus of the Cyprinida family, Herpesvirus cyprini (CHV, and the virus of the channel catfish (Channel catfish virus - CCV. In the years 2004 and 2005, high mortality was established among one-year and two-year carp fry on three fish ponds. At two ponds, the deaths occurred among one year and two

  18. Restriction of human herpesvirus 6B replication by p53

    DEFF Research Database (Denmark)

    Øster, Bodil; Kofod-Olsen, Emil; Bundgaard, Bettina

    2008-01-01

    Human herpesvirus 6B (HHV-6B) induces significant accumulation of p53 in both the nucleus and cytoplasm during infection. Activation of p53 by DNA damage is known to induce either growth arrest or apoptosis; nevertheless, HHV-6B-infected cells are arrested in their cell cycle independently of p53......, and only a minor fraction of the infected cells undergoes apoptosis. Using pifithrin-alpha, a p53 inhibitor, and p53-null cells, this study showed that infected epithelial cells accumulated viral transcripts and proteins to a significantly higher degree in the absence of active p53. Moreover, HHV-6B......-induced cytopathic effects were greatly enhanced in the absence of p53. This suggests that, in epithelial cells, some of the functions of p53 leading to cell-cycle arrest and apoptosis are restrained by HHV-6B infection, whereas other cellular defences, causing inhibition of virus transcription, are partially...

  19. Plasma Viral miRNAs Indicate a High Prevalence of Occult Viral Infections

    Directory of Open Access Journals (Sweden)

    Enrique Fuentes-Mattei

    2017-06-01

    Full Text Available Prevalence of Kaposi sarcoma-associated herpesvirus (KSHV/HHV-8 varies greatly in different populations. We hypothesized that the actual prevalence of KSHV/HHV8 infection in humans is underestimated by the currently available serological tests. We analyzed four independent patient cohorts with post-surgical or post-chemotherapy sepsis, chronic lymphocytic leukemia and post-surgical patients with abdominal surgical interventions. Levels of specific KSHV-encoded miRNAs were measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR, and KSHV/HHV-8 IgG were measured by immunoassay. We also measured specific miRNAs from Epstein Barr Virus (EBV, a virus closely related to KSHV/HHV-8, and determined the EBV serological status by ELISA for Epstein-Barr nuclear antigen 1 (EBNA-1 IgG. Finally, we identified the viral miRNAs by in situ hybridization (ISH in bone marrow cells. In training/validation settings using independent multi-institutional cohorts of 300 plasma samples, we identified in 78.50% of the samples detectable expression of at least one of the three tested KSHV-miRNAs by RT-qPCR, while only 27.57% of samples were found to be seropositive for KSHV/HHV-8 IgG (P < 0.001. The prevalence of KSHV infection based on miRNAs qPCR is significantly higher than the prevalence determined by seropositivity, and this is more obvious for immuno-depressed patients. Plasma viral miRNAs quantification proved that EBV infection is ubiquitous. Measurement of viral miRNAs by qPCR has the potential to become the “gold” standard method to detect certain viral infections in clinical practice.

  20. Plasma Viral miRNAs Indicate a High Prevalence of Occult Viral Infections.

    Science.gov (United States)

    Fuentes-Mattei, Enrique; Giza, Dana Elena; Shimizu, Masayoshi; Ivan, Cristina; Manning, John T; Tudor, Stefan; Ciccone, Maria; Kargin, Osman Aykan; Zhang, Xinna; Mur, Pilar; do Amaral, Nayra Soares; Chen, Meng; Tarrand, Jeffrey J; Lupu, Florea; Ferrajoli, Alessandra; Keating, Michael J; Vasilescu, Catalin; Yeung, Sai-Ching Jim; Calin, George A

    2017-06-01

    Prevalence of Kaposi sarcoma-associated herpesvirus (KSHV/HHV-8) varies greatly in different populations. We hypothesized that the actual prevalence of KSHV/HHV8 infection in humans is underestimated by the currently available serological tests. We analyzed four independent patient cohorts with post-surgical or post-chemotherapy sepsis, chronic lymphocytic leukemia and post-surgical patients with abdominal surgical interventions. Levels of specific KSHV-encoded miRNAs were measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and KSHV/HHV-8 IgG were measured by immunoassay. We also measured specific miRNAs from Epstein Barr Virus (EBV), a virus closely related to KSHV/HHV-8, and determined the EBV serological status by ELISA for Epstein-Barr nuclear antigen 1 (EBNA-1) IgG. Finally, we identified the viral miRNAs by in situ hybridization (ISH) in bone marrow cells. In training/validation settings using independent multi-institutional cohorts of 300 plasma samples, we identified in 78.50% of the samples detectable expression of at least one of the three tested KSHV-miRNAs by RT-qPCR, while only 27.57% of samples were found to be seropositive for KSHV/HHV-8 IgG (P<0.001). The prevalence of KSHV infection based on miRNAs qPCR is significantly higher than the prevalence determined by seropositivity, and this is more obvious for immuno-depressed patients. Plasma viral miRNAs quantification proved that EBV infection is ubiquitous. Measurement of viral miRNAs by qPCR has the potential to become the "gold" standard method to detect certain viral infections in clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Simulation modelling to support national policy making in the control of bovine herpesvirus 1

    NARCIS (Netherlands)

    Vonk Noordegraaf, A.

    2002-01-01

    Bovine herpesvirus 1 (BHV1) is the causative agent of infectious bovine rhinotracheitis (IBR), a respiratory disease in cattle. Increased international legislation, together with a high prevalence of BHV1 infected cattle in The Netherlands, put pressure on Dutch

  2. Remodeling nuclear architecture allows efficient transport of herpesvirus capsids by diffusion.

    Science.gov (United States)

    Bosse, Jens B; Hogue, Ian B; Feric, Marina; Thiberge, Stephan Y; Sodeik, Beate; Brangwynne, Clifford P; Enquist, Lynn W

    2015-10-20

    The nuclear chromatin structure confines the movement of large macromolecular complexes to interchromatin corrals. Herpesvirus capsids of approximately 125 nm assemble in the nucleoplasm and must reach the nuclear membranes for egress. Previous studies concluded that nuclear herpesvirus capsid motility is active, directed, and based on nuclear filamentous actin, suggesting that large nuclear complexes need metabolic energy to escape nuclear entrapment. However, this hypothesis has recently been challenged. Commonly used microscopy techniques do not allow the imaging of rapid nuclear particle motility with sufficient spatiotemporal resolution. Here, we use a rotating, oblique light sheet, which we dubbed a ring-sheet, to image and track viral capsids with high temporal and spatial resolution. We do not find any evidence for directed transport. Instead, infection with different herpesviruses induced an enlargement of interchromatin domains and allowed particles to diffuse unrestricted over longer distances, thereby facilitating nuclear egress for a larger fraction of capsids.

  3. Dissecting the host response to a gamma-herpesvirus

    DEFF Research Database (Denmark)

    Doherty, P C; Christensen, Jan Pravsgaard; Belz, G T

    2001-01-01

    cells, which is apparently MHC independent, could represent some sort of 'smoke screen' used by MHV-68 to subvert immunity. Although MHV-68 is neither Epstein-Barr virus nor human herpesvirus-8, the results generated from this system suggest possibilities that may usefully be addressed with these human...... acting in the absence of the CD4+ subset seem initially to control the lytic phase in the lung following respiratory challenge, but are then unable to prevent the reactivation of replicative infection in epithelia and the eventual death of CD4+ T-cell-deficient mice. This could reflect the fact...

  4. Infecção aguda e latente em ovinos inoculados com o herpesvírus bovino tipo 5 (BHV-5 Acute and latent infection in sheep inoculated with bovine herpesvirus type-5 (BHV-5

    Directory of Open Access Journals (Sweden)

    Adriana M. Silva

    1998-07-01

    ções naturais de ovinos por este vírus podem potencialmente ocorrer. Ness sentido, uma possível participação da espécie ovina como reservatório natural desse vírus deve ser melhor investigada.Experimental inoculation of lambs with bovine herpesvirus type 5 (BHV-5 reproduced several aspects of the BHV-5 infection in cattle. Intranasal inoculation was followed by efficient viral replication and shedding, establishment and reactivation of latency, and even the development of meningoencephalitis in one animal. Lambs inoculated with the brazilian isolate EVI-88 showed transient hipertermia, nasal hiperemia and discharge ranging from serous to muco-purulent. The animals shed virus in nasal secretions in titers up to 107.11 TCID50/ml during up to 16 days. One lamb showed clinical signs of encephalitis on day 10 post inoculation (pi, being euthanized in extremis on day 13. Infectious virus was recovered from several areas of the brain of this lamb, including anterior and posterior cerebrum, dorso- and ventro-lateral hemisphere, cerebellum, pons, midbrain and olfactory bulb. Histological changes were observed in several regions of the brain, most consistently in the anterior cerebrum, ventro-lateral cortex and midbrain, and consisted mainly of meningitis, perivascular mononuclear cuffing, focal gliosis, neuronal necrosis and intranuclear inclusions. Four lambs used as sentinels acquired the infection and shed virus starting at the 2nd day pi during up to 7 days. Lambs inoculated with the argentinian isolate A663 showed only mild respiratory signs, although they shed virus for up to 15 days. Administration of dexamethazone to the animals starting at day 50 pi was followed by reactivation of the latent infection and viral shedding during up to 11 days by 76.9% (10/13 of the inoculated lambs and 100% (3/3 of the sentinels. These results demonstrate that sheep are susceptible to BHV-5 acute and latent infection and suggest that natural infections by this virus in sheep may

  5. Bovine Herpesvirus 4 infections and bovine mastitis

    NARCIS (Netherlands)

    Wellenberg, Gerardus Johannus

    2002-01-01

    Mastitis is an often occurring disease in dairy cattle with an enormous economic impact for milk producers worldwide. Despite intensive research, which is historically based on the detection of bacterial udder pathogens, still around 20-35% of clinical cases of bovine mastitis have an unknown

  6. Phylogenetic analysis of Columbid herpesvirus-1 in rock pigeons, birds of prey and non-raptorial birds in Poland.

    Science.gov (United States)

    Woźniakowski, Grzegorz J; Samorek-Salamonowicz, Elżbieta; Szymański, Piotr; Wencel, Piotr; Houszka, Marek

    2013-03-21

    The identity of herpesviruses isolated in Europe from domestic pigeons (Columbid herpesvirus-1 - CoHV-1) as well as falcons and owls remains unknown. All these herpesviruses are antigenically and genetically related. The falcons and owls are thought to have become infected during the ingestion of pigeon meat thus suggesting the virus's capacity to infect a wide range of hosts. The aim of the conducted study was to detect the occurrence of CoHV-1 and estimating the similarities and differences in the DNA-dependent DNA polymerase gene of herpesviruses isolated from domestic pigeons, birds of prey and non-raptorial free-ranging birds in Poland. The study has shown the presence of CoHV-1 in 20.4% (18/88) in the examined birds. In case of one CoHV-1, infected Peregrine Falcon (Falco peregrinus), neurological signs were observed. Nucleotide sequencing of the DNA-dependent DNA polymerase gene, showed a high similarity among Polish strains (100%), independently from the species of the affected birds. Only one compared CoHV-1 strain - KP 21/23 originating from Germany showed a slightly lower similarity at a level of 99.1%. Further analysis has shown the identity of DNA-dependent DNA polymerase of CoHV-1 strains and other herpesviruses present in poultry as well as other birds ranged from 35.4 to 44.9%. Interestingly CoHV-1 infection was also confirmed for the first time in four non-raptorial birds. The current study has shown a high similarity of CoHV-1 strains and the possible transmission of herpesviruses between domestic rock pigeons and free-ranging birds including raptors and non-raptorial birds. Further studies focused on cloning and the analysis of the whole CoHV-1 genome which is needed to explain the role of the observed similarities and differences between field strains of columbid herpesviruses.

  7. [Acute herpesvirus-gastritis in a cat].

    Science.gov (United States)

    Breuer, W; Hermanns, W

    2003-04-01

    Gastritis in cats is caused, among other things, by infectious agents, like bacteria, metazoic parasites or viruses. Herpesvirus-gastritis has not as yet been documented in cats. Therefore in this paper such a case will be described. In this case the mucous membrane of the stomach shows multifocal acute necroses with evidence of intranuclear inclusion bodies in epithelial cells of the gastric glands. By means of electron microscopy the causative virus can be specified as herpesvirus.

  8. Human Herpesvirus Type-8-associated Large B Cell Lymphoma (HHV-8-LBL). A Non- Serous Extra-Cavitary Variant of Primary Effusion Lymphoma in an HIV-Infected Man: A Case Report and Review of the Literature

    Science.gov (United States)

    Foster, William R.; Bischin, Alina; Dorer, Russell; Aboulafia, David M.

    2017-01-01

    BACKGROUND Primary effusion lymphoma (PEL) is a rare non-Hodgkin lymphoma subtype primarily seen in human immunodeficiency virus (HlV)-infected individuals with low CD4+ cell counts and elevated HIV viral loads. It is always associated with human herpesvirus type-8 (HHV-8) and in 80% of cases is also associated with Epstein Barr Virus (EBV). Less commonly, PEL presents in patients with advanced age and other conditions associated with altered immunity, including malignancy, liver cirrhosis, and immunosuppressive medications. It is a tumor of B-cell lineage; however, it shows a “null” phenotype, rarely expressing pan-B cell surface antigens. It does usually express CD45, CD30, CD38, CD138 and MUM1 and is characterized by lymphomatous effusions in body cavities but not lymphadenopathy. It is an aggressive lymphoma; average median survival time is less than a year. HHV-8-associated large B-cell Lymphoma (HHV-8-LBL) is a second variant of PEL that is both solid and extra-cavitary. It has immunoblastic and/or anaplastic morphological features, a distinct immuno-histochemical staining pattern, and may have a different clinical presentation than classic PEL. METHODS We describe the case of a 57-year-old HIV-infected man who presented with a slow growing and asymptomatic abdominal mass. An excisional biopsy showed malignant large cells with prominent cytoplasm that were positive for pan-B cell antigen CD20, HHV-8 and EBV, and negative for CD138, CD10, BCL-6, CD3 and CD30. Ki-67 labeling index was 90%. He was diagnosed with stage IIIA HHV-8-LBL, and he was treated with six cycles of R-EPOCH (rituximab, etoposide, vincristine, doxorubicin, cyclophosphamide, and prednisone) infusion chemotherapy. He remains in complete remission (CR) 12 months post-treatment. We also performed a Medline and Embase search to better understand the clinical findings of this patient and the unique attributes of HHV-8-LBL. Focusing our search on English language articles, we identified 83

  9. Efficacy of four commercially available multivalent modified-live virus vaccines against clinical disease, viremia, and viral shedding in early-weaned beef calves exposed simultaneously to cattle persistently infected with bovine viral diarrhea virus and cattle acutely infected with bovine herpesvirus 1.

    Science.gov (United States)

    Chamorro, Manuel F; Walz, Paul H; Passler, Thomas; Palomares, Roberto; Newcomer, Benjamin W; Riddell, Kay P; Gard, Julie; Zhang, Yijing; Galik, Patricia

    2016-01-01

    To evaluate the efficacy of 4 commercially available multivalent modified-live virus vaccines against clinical disease, viremia, and viral shedding caused by bovine viral diarrhea virus (BVDV) and bovine herpesvirus 1 (BHV1) in early-weaned beef calves. 54 early-weaned beef steers (median age, 95 days). Calves were randomly assigned to 1 of 5 groups and administered PBSS (group A [control]; n = 11) or 1 of 4 commercially available modified-live virus vaccines that contained antigens against BHV1, BVDV types 1 (BVDV1) and 2 (BVDV2), parainfluenza type 3 virus, and bovine respiratory syncytial virus (groups B [11], C [10], D [11], and E [11]). Forty-five days after vaccination, calves were exposed simultaneously to 6 cattle persistently infected with BVDV and 8 calves acutely infected with BHV1 for 28 days (challenge exposure). For each calf, serum antibody titers against BVDV and BHV1 were determined before vaccination and before and after challenge exposure. Virus isolation was performed on nasal secretions, serum, and WBCs at predetermined times during the 28-day challenge exposure. None of the calves developed severe clinical disease or died. Mean serum anti-BHV1 antibody titers did not differ significantly among the treatment groups at any time and gradually declined during the study. Mean serum anti-BVDV antibody titers appeared to be negatively associated with the incidence of viremia and BVDV shedding. The unvaccinated group (A) had the lowest mean serum anti-BVDV antibody titers. The mean serum anti-BVDV antibody titers for group D were generally lower than those for groups B, C, and E. Results indicated differences in vaccine efficacy for the prevention of BVDV viremia and shedding in early-weaned beef calves.

  10. Mise au point sur les herpesvirus humains 6A, 6B et 7

    OpenAIRE

    Agut, H; Bonnafous, P.; Gautheret-Dejean, A.

    2016-01-01

    International audience; Human herpesviruses 6A, 6B, and 7 (HHV-6A, HHV-6B, HHV-7) are genetically related to cytomegalovirus. They belong to the Roseolovirus genus and to the Betaherpesvirinae subfamily. They infect T cells, monocytes-macrophages, epithelial cells, and central nervous system cells. These viruses are ubiquitous and are responsible for lifelong chronic infections, most often asymptomatic, in the vast majority of the general adult population. HHV-6B is responsible for exanthema ...

  11. Latent KSHV Infected Endothelial Cells Are Glutamine Addicted and Require Glutaminolysis for Survival.

    Directory of Open Access Journals (Sweden)

    Erica L Sanchez

    2015-07-01

    Full Text Available Kaposi's Sarcoma-associated Herpesvirus (KSHV is the etiologic agent of Kaposi's Sarcoma (KS. KSHV establishes a predominantly latent infection in the main KS tumor cell type, the spindle cell, which is of endothelial cell origin. KSHV requires the induction of multiple metabolic pathways, including glycolysis and fatty acid synthesis, for the survival of latently infected endothelial cells. Here we demonstrate that latent KSHV infection leads to increased levels of intracellular glutamine and enhanced glutamine uptake. Depletion of glutamine from the culture media leads to a significant increase in apoptotic cell death in latently infected endothelial cells, but not in their mock-infected counterparts. In cancer cells, glutamine is often required for glutaminolysis to provide intermediates for the tri-carboxylic acid (TCA cycle and support for the production of biosynthetic and bioenergetic precursors. In the absence of glutamine, the TCA cycle intermediates alpha-ketoglutarate (αKG and pyruvate prevent the death of latently infected cells. Targeted drug inhibition of glutaminolysis also induces increased cell death in latently infected cells. KSHV infection of endothelial cells induces protein expression of the glutamine transporter, SLC1A5. Chemical inhibition of SLC1A5, or knockdown by siRNA, leads to similar cell death rates as glutamine deprivation and, similarly, can be rescued by αKG. KSHV also induces expression of the heterodimeric transcription factors c-Myc-Max and related heterodimer MondoA-Mlx. Knockdown of MondoA inhibits expression of both Mlx and SLC1A5 and induces a significant increase in cell death of only cells latently infected with KSHV, again, fully rescued by the supplementation of αKG. Therefore, during latent infection of endothelial cells, KSHV activates and requires the Myc/MondoA-network to upregulate the glutamine transporter, SLC1A5, leading to increased glutamine uptake for glutaminolysis. These findings

  12. [Human herpesvirus-8 DNA in patients with certain demyelinating disorders].

    Science.gov (United States)

    Olut, Ali Ilgin; Ozünlü, Haluk; Tan, Ersin; Kocagöz, Tanal

    2005-04-01

    Infectious etiology of the demyelinating diseases is an intensive matter of research. Among the suspected pathogens, herpesviruses had attracted particular attention because of their capacity to remain latent in nervous tissues, axonal transportation of some members within neurons, relapsing-remitting characteristic of the infections, and capability of inducing demyelination both in human host and animal models. Human herpesvirus-8 (HHV-8) is the least studied of this group even some of the HHV-8 related disorders such as HIV associated Castleman's disease, some lymphomas, monoclonal gammopathy of uncertain significance (MGUS), may be seen in patients with demyelinating conditions. The aim of this study was the investigation of a probable relationship between HHV-8 infection and certain demyelinating diseases. For this purpose, the presence of HHV-8 DNA has been investigated by polymerase chain reaction in the blood samples of 14 multiple sclerosis (MS), six chronic inflammatory demyelinizing polyneuropathy (CIDP), three Guillain-Barre syndrome (GBS), and one Miller-Fisher syndrome patients, together with 24 age- and sex-matched healthy subjects as control. As a result, one of MS, two of CIDP and all of the GBS patients were found HHV-8 DNA positive, whereas all the subjects in control group were negative. Although the interpretation of the results of this study does not seem to be possible owing to the limited number of patients, it emphasizes the need for larger scale, detailed studies on this subject since no other report dealing with this matter has been encountered in the literature.

  13. Drug-induced hypersensitivity syndrome with human herpesvirus-6 reactivation

    Directory of Open Access Journals (Sweden)

    Najeeba Riyaz

    2012-01-01

    Full Text Available A 45-year-old man, on carbamazepine for the past 3 months, was referred as a case of atypical measles. On examination, he had high-grade fever, generalized itchy rash, cough, vomiting and jaundice. A provisional diagnosis of drug hypersensitivity syndrome to carbamazepine was made with a differential diagnosis of viral exanthema with systemic complications. Laboratory investigations revealed leukocytosis with eosnophilia and elevated liver enzymes. Real-time multiplex polymerase chain reaction (PCR on throat swab and blood was suggestive of human herpesvirus-6 (HHV-6. Measles was ruled out by PCR and serology. The diagnosis of drug-induced hypersensitivity syndrome (DIHS was confirmed, which could explain all the features manifested by the patient. HHV-6 infects almost all humans by age 2 years. It infects and replicates in CD4 T lymphocytes and establishes latency in human peripheral blood monocytes or macrophages and early bone marrow progenitors. In DIHS, allergic reaction to the causative drug stimulates T cells, which leads to reactivation of the herpesvirus genome. DIHS is treated by withdrawal of the culprit drug and administration of systemic steroids. Our patient responded well to steroids and HHV-6 was negative on repeat real-time multiplex PCR at the end of treatment.

  14. Novel heparan sulfate-binding peptides for blocking herpesvirus entry.

    Directory of Open Access Journals (Sweden)

    Pranay Dogra

    Full Text Available Human cytomegalovirus (HCMV infection can lead to congenital hearing loss and mental retardation. Upon immune suppression, reactivation of latent HCMV or primary infection increases morbidity in cancer, transplantation, and late stage AIDS patients. Current treatments include nucleoside analogues, which have significant toxicities limiting their usefulness. In this study we screened a panel of synthetic heparin-binding peptides for their ability to prevent CMV infection in vitro. A peptide designated, p5+14 exhibited ~ 90% reduction in murine CMV (MCMV infection. Because negatively charged, cell-surface heparan sulfate proteoglycans (HSPGs, serve as the attachment receptor during the adsorption phase of the CMV infection cycle, we hypothesized that p5+14 effectively competes for CMV adsorption to the cell surface resulting in the reduction in infection. Positively charged Lys residues were required for peptide binding to cell-surface HSPGs and reducing viral infection. We show that this inhibition was not due to a direct neutralizing effect on the virus itself and that the peptide blocked adsorption of the virus. The peptide also inhibited infection of other herpesviruses: HCMV and herpes simplex virus 1 and 2 in vitro, demonstrating it has broad-spectrum antiviral activity. Therefore, this peptide may offer an adjunct therapy for the treatment of herpes viral infections and other viruses that use HSPGs for entry.

  15. Patterns of human herpesvirus-8 oral shedding among diverse cohorts of human herpesvirus-8 seropositive persons.

    Science.gov (United States)

    Bender Ignacio, Rachel A; Goldman, Jason D; Magaret, Amalia S; Selke, Stacy; Huang, Meei-Li; Gantt, Soren; Johnston, Christine; Phipps, Warren T; Schiffer, Joshua T; Zuckerman, Richard A; McClelland, R Scott; Celum, Connie; Corey, Larry; Wald, Anna; Casper, Corey

    2016-01-01

    Human herpesvirus-8 (HHV-8), the etiologic agent of Kaposi sarcoma (KS), establishes lifelong latent infection with periodic lytic replication ("shedding") at mucosal sites, especially the oropharynx. Patterns of HHV-8 shedding are not well understood, and require elucidation to better predict risk of HHV-8 related malignancies in those infected. We sought to characterize patterns of HHV-8 oropharyngeal shedding among diverse cohorts that enrolled HHV-8 seropositive persons. We quantified HHV-8 oral shedding using PCR among HHV-8 seropositive persons who collected at least 14 days of oral swabs in 22 studies on 3 continents. We excluded persons taking antivirals during sampling or any prior use of antiretrovirals in those who were HIV-infected. 248 participants were enrolled from the US, Peru, Cameroon, Uganda, and Kenya; 61 % were men, 58 % were HIV seropositive, and 16 % had KS. Overall, 3,123 of 10,557 samples (29.6 %) had HHV-8 detected. Quantity of virus shed was highly correlated with shedding rate, (ρ = 0.72, p < 0.0001). HHV-8 was detected in ≥1 sample in 55 % of participants with a median of 7 % of days in the US and Kenya, 0 % in Uganda and Peru, and 18 % in Cameroon. Median episode duration was three days, and episodes with high median quantity lasted longer (42 vs 3 days, p < 0.0001). In persons with multiple observations over time, 66 % of shedding rate variance was attributable to differences between individuals. In HHV-8 infected individuals from diverse settings, oral mucosal shedding rate, quantity, and duration were correlated; individual shedding was highly variable. Studies are needed to determine factors accounting for between-person variation and the relationship of HHV-8 shedding to development of associated diseases.

  16. The alpha-herpesviruses: molecular pathfinders in nervous system circuits

    Science.gov (United States)

    Ekstrand, Mats I.; Enquist, L.W.; Pomeranz, Lisa E.

    2012-01-01

    Several neuroinvasive viruses can be used to study the mammalian nervous system. In particular, infection by pseudorabies virus (PRV), an α-herpesvirus with broad host range, reveals chains of functionally connected neurons in the nervous systems of a variety of mammals. The specificity of PRV trans-neuronal spread has been established in several systems. One attenuated strain, PRV-Bartha, causes a reduced inflammatory response and also spreads only from infected post- to pre-synaptic neurons. We review the basics of PRV tracing and then discuss new developments and novel approaches that have enabled a more detailed understanding of the architecture of the nervous system. As questions and techniques evolve in the field of neuroscience, advances in PRV tracing will certainly follow. PMID:18280208

  17. Herpesviruses and Intermediate Filaments: Close Encounters with the Third Type

    Directory of Open Access Journals (Sweden)

    Laura Hertel

    2011-07-01

    Full Text Available Intermediate filaments (IF are essential to maintain cellular and nuclear integrity and shape, to manage organelle distribution and motility, to control the trafficking and pH of intracellular vesicles, to prevent stress-induced cell death, and to support the correct distribution of specific proteins. Because of this, IF are likely to be targeted by a variety of pathogens, and may act in favor or against infection progress. As many IF functions remain to be identified, however, little is currently known about these interactions. Herpesviruses can infect a wide variety of cell types, and are thus bound to encounter the different types of IF expressed in each tissue. The analysis of these interrelationships can yield precious insights into how IF proteins work, and into how viruses have evolved to exploit these functions. These interactions, either known or potential, will be the focus of this review.

  18. Rapid quantitative PCR assays for the simultaneous detection of herpes simplex virus, varicella zoster virus, cytomegalovirus, Epstein-Barr virus, and human herpesvirus 6 DNA in blood and other clinical specimens

    NARCIS (Netherlands)

    Engelmann, I.; Petzold, D. R.; Kosinska, A.; Hepkema, B. G.; Schulz, T. F.; Heim, A.

    Rapid diagnosis of human herpesvirus primary infections or reactivations is facilitated by quantitative PCRs. Quantitative PCR assays with a standard thermal cycling profile permitting simultaneous detection of herpes simplex virus (HSV), varicella zoster virus (VZV), cytomegalovirus (CMV),

  19. Human herpesvirus 8-associated neoplasms: the roles of viral replication and antiviral treatment.

    Science.gov (United States)

    Gantt, Soren; Casper, Corey

    2011-08-01

    In this review, we highlight the importance of human herpesvirus 8 (HHV-8) lytic replication and the potential for antiviral therapies to prevent or treat HHV-8-related neoplasms. Diseases caused by HHV-8 infection include Kaposi sarcoma, multicentric Castleman disease (MCD), and primary effusion lymphoma (PEL), which occur primarily in patients with HIV infection. Kaposi sarcoma is the most common AIDS-associated malignancy worldwide. MCD and PEL occur less commonly but, like Kaposi sarcoma, are associated with poor treatment outcomes. Like all herpesviruses, HHV-8 is capable of either latent or lytic infection of cells. Although HHV-8 infection of tumor cells is predominately latent, accumulating data point to the importance of both lytic phase viral gene products and production of infectious virus. Antiviral agents that target herpesvirus DNA synthesis, such as ganciclovir, inhibit HHV-8 lytic replication and can prevent Kaposi sarcoma. Several HIV protease inhibitors may interfere with tumor growth and angiogenesis, and one protease inhibitor, nelfinavir, directly inhibits HHV-8 replication in vitro. Controlled trials are indicated to determine the clinical utility of antiviral suppression of HHV-8 replication, and identify the optimal antiretroviral regimens, for the prevention and treatment of Kaposi sarcoma.

  20. Biphasic euchromatin-to-heterochromatin transition on the KSHV genome following de novo infection.

    Directory of Open Access Journals (Sweden)

    Zsolt Toth

    Full Text Available The establishment of latency is an essential step for the life-long persistent infection and pathogenesis of Kaposi's sarcoma-associated herpesvirus (KSHV. While the KSHV genome is chromatin-free in the virions, the viral DNA in latently infected cells has a chromatin structure with activating and repressive histone modifications that promote latent gene expression but suppress lytic gene expression. Here, we report a comprehensive epigenetic study of the recruitment of chromatin regulatory factors onto the KSHV genome during the pre-latency phase of KSHV infection. This demonstrates that the KSHV genome undergoes a biphasic chromatinization following de novo infection. Initially, a transcriptionally active chromatin (euchromatin, characterized by high levels of the H3K4me3 and acetylated H3K27 (H3K27ac activating histone marks, was deposited on the viral episome and accompanied by the transient induction of a limited number of lytic genes. Interestingly, temporary expression of the RTA protein facilitated the increase of H3K4me3 and H3K27ac occupancy on the KSHV episome during de novo infection. Between 24-72 hours post-infection, as the levels of these activating histone marks declined on the KSHV genome, the levels of the repressive H3K27me3 and H2AK119ub histone marks increased concomitantly with the decline of lytic gene expression. Importantly, this transition to heterochromatin was dependent on both Polycomb Repressive Complex 1 and 2. In contrast, upon infection of human gingiva-derived epithelial cells, the KSHV genome underwent a transcription-active euchromatinization, resulting in efficient lytic gene expression. Our data demonstrate that the KSHV genome undergoes a temporally-ordered biphasic euchromatin-to-heterochromatin transition in endothelial cells, leading to latent infection, whereas KSHV preferentially adopts a transcriptionally active euchromatin in oral epithelial cells, resulting in lytic gene expression. Our results

  1. Equine Multinodular Pulmonary Fibrosis in association with asinine herpesvirus type 5 and equine herpesvirus type 5: a case report

    Directory of Open Access Journals (Sweden)

    Back Helena

    2012-09-01

    Full Text Available Abstract A standardbred gelding with a history of 10 days pyrexia and lethargy was referred to the Equine Hospital at the Swedish University of Agricultural Sciences in Uppsala, Sweden. The horse had tachypnea with increased respiratory effort and was in thin body condition. Laboratory findings included leukocytosis, hyperfibrinogenemia and hypoxemia. Thoracic radiographs showed signs of pneumonia with a multifocal nodular pattern, which in combination with lung biopsy findings indicated Equine Multinodular Pulmonary Fibrosis (EMPF. EMPF is a recently described disease in adult horses with clinical signs of fever, weight loss and respiratory problems. The pathological findings include loss of functional pulmonary parenchyma due to extensive nodular interstitial fibrosis which has been related to infection with the equine herpesvirus type 5 (EHV-5. In this case, lung biopsy and tracheal wash samples tested positive for both asinine herpesvirus type 5 (AHV-5 and EHV-5 using PCR assays. The horse failed to respond to treatment and was euthanized for humane reasons. Postmortem examination confirmed the diagnosis of EMPF. This case suggests that not only EHV-5 alone should be considered in association with the development of this disease.

  2. Phosphoproteomic Analysis of KSHV-Infected Cells Reveals Roles of ORF45-Activated RSK during Lytic Replication.

    Directory of Open Access Journals (Sweden)

    Denis Avey

    2015-07-01

    Full Text Available Kaposi's Sarcoma-Associated Herpesvirus (KSHV is an oncogenic virus which has adapted unique mechanisms to modulate the cellular microenvironment of its human host. The pathogenesis of KSHV is intimately linked to its manipulation of cellular signaling pathways, including the extracellular signal-regulated kinase (ERK mitogen-activated protein kinase (MAPK pathway. We have previously shown that KSHV ORF45 contributes to the sustained activation of both ERK and p90 ribosomal S6 kinase (RSK, a major functional mediator of ERK/MAPK signaling during KSHV lytic replication. ORF45-activated RSK is required for optimal KSHV lytic gene expression and progeny virion production, though the underlying mechanisms downstream of this activation are still unclear. We hypothesized that the activation of RSK by ORF45 causes differential phosphorylation of cellular and viral substrates, affecting biological processes essential for efficient KSHV lytic replication. Accordingly, we observed widespread and significant differences in protein phosphorylation upon induction of lytic replication. Mass-spectrometry-based phosphoproteomic screening identified putative substrates of ORF45-activated RSK in KSHV-infected cells. Bioinformatic analyses revealed that nuclear proteins, including several transcriptional regulators, were overrepresented among these candidates. We validated the ORF45/RSK-dependent phosphorylation of several putative substrates by employing KSHV BAC mutagenesis, kinase inhibitor treatments, and/or CRISPR-mediated knockout of RSK in KSHV-infected cells. Furthermore, we assessed the consequences of knocking out these substrates on ORF45/RSK-dependent regulation of gene expression and KSHV progeny virion production. Finally, we show data to support that ORF45 regulates the translational efficiency of a subset of viral/cellular genes with complex secondary structure in their 5' UTR. Altogether, these data shed light on the mechanisms by which KSHV ORF45

  3. Detection of bovine herpesvirus type 4 antibodies and bovine lymphotropic herpesvirus in New Zealand dairy cows.

    Science.gov (United States)

    de Boer, M W; Zheng, T; Buddle, B M; McDougall, S

    2014-11-01

    To detect the presence of bovine herpesvirus (BoHV) type 4 in New Zealand dairy cows with clinical metritis. Serum samples taken from 92 dairy cows with clinical metritis, each from a different farm, were tested for the presence of antibodies against BoHV-4 using a commercially available, indirect ELISA. Peripheral blood mononuclear cells (PBMC) were collected from 10 BoHV-4 seropositive cows, and PBMC were examined by a pan-herpesvirus nested PCR to detect herpesvirus. PCR products were sequenced directly and a proportion of the PCR products were cloned and sequenced to identify the virus present. Antibodies to BoHV-4 were detected in 23/92 (25%) serum samples. The pan-herpesvirus PCR was positive in 8/10 PBMC samples. Cloning and sequencing identified that all of the eight PCR-positive PBMC contained bovine lymphotropic herpesvirus (BLHV); no BoHV-4 DNA was detected. This study reports the finding of the presence of apparent antibodies to BoHV-4, and BLHV DNA in New Zealand dairy cows affected by metritis. Bovine herpesvirus type 4 and BLHV are reported to have the potential to cause reproduction failure in cows. This is the first report of apparent BoHV-4 antibodies, and BLHV in New Zealand. The importance and epidemiology of these viruses in cattle in New Zealand requires further investigation.

  4. Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome

    OpenAIRE

    Messerle, Martin; Crnkovic, Irena; Hammerschmidt, Wolfgang; Ziegler, Heike; Koszinowski, Ulrich H

    1997-01-01

    A strategy for cloning and mutagenesis of an infectious herpesvirus genome is described. The mouse cytomegalovirus genome was cloned and maintained as a 230 kb bacterial artificial chromosome (BAC) in E. coli. Transfection of the BAC plasmid into eukaryotic cells led to a productive virus infection. The feasibility to introduce targeted mutations into the BAC cloned virus genome was shown by mutation of the immediate-early 1 gene and generation of a mutant virus. Thus, the complete constructi...

  5. Herpesviruses dUTPases: A New Family of Pathogen-Associated Molecular Pattern (PAMP Proteins with Implications for Human Disease

    Directory of Open Access Journals (Sweden)

    Marshall V. Williams

    2016-12-01

    Full Text Available The human herpesviruses are ubiquitous viruses and have a prevalence of over 90% in the adult population. Following a primary infection they establish latency and can be reactivated over a person’s lifetime. While it is well accepted that human herpesviruses are implicated in numerous diseases ranging from dermatological and autoimmune disease to cancer, the role of lytic proteins in the pathophysiology of herpesvirus-associated diseases remains largely understudies. Only recently have we begun to appreciate the importance of lytic proteins produced during reactivation of the virus, in particular the deoxyuridine triphosphate nucleotidohydrolases (dUTPase, as key modulators of the host innate and adaptive immune responses. In this review, we provide evidence from animal and human studies of the Epstein–Barr virus as a prototype, supporting the notion that herpesviruses dUTPases are a family of proteins with unique immunoregulatory functions that can alter the inflammatory microenvironment and thus exacerbate the immune pathology of herpesvirus-related diseases including myalgic encephalomyelitis/chronic fatigue syndrome, autoimmune diseases, and cancer.

  6. The Murid Herpesvirus-4 gL regulates an entry-associated conformation change in gH.

    Directory of Open Access Journals (Sweden)

    Laurent Gillet

    2008-07-01

    Full Text Available The glycoprotein H (gH/gL heterodimer is crucial for herpesvirus membrane fusion. Yet how it functions is not well understood. The Murid Herpesvirus-4 gH, like that of other herpesviruses, adopts its normal virion conformation by associating with gL. However, gH switched back to a gL-independent conformation after virion endocytosis. This switch coincided with a conformation switch in gB and with capsid release. Virions lacking gL constitutively expressed the down-stream form of gH, prematurely switched gB to its down-stream form, and showed premature capsid release with poor infectivity. These data argue that gL plays a key role in regulating a gH and gB functional switch from cell binding to membrane fusion.

  7. Incidence of Herpesvirus hominis antibodies among blood donor populations.

    Science.gov (United States)

    Roome, A P; Montefiore, D; Waller, D

    1975-10-01

    The microneutralization test was used to determine the occurrence of antibodies to Herpesvirus hominis Type 1 and Type 2 in sera from patients attending the Special Clinic, Bristol Royal Infirmary, with proven herpes genitalis, and in sera taken from blood donors in Bath, Dursley, and Bristol, as well as from donors in three different prison populations. The findings in patients with herpes genitalis indicate that the test accurately reflects the antibody response expected in relation to the type of herpes virus isolated from the lesions. The incidence of Type 2 antibodies among the blood donors ranged from 5 per cent. for donors from the Bath area up to 60 per cent. among donors from Dartmoor prison. The findings suggested that Type 2 herpes infection could spread among longterm prison populations, and it is postulated that this may be due to both homosexual contact, and also by non-sexual contact, either directly or via fomites.

  8. A point mutation in a herpesvirus polymerase determines neuropathogenicity.

    Directory of Open Access Journals (Sweden)

    Laura B Goodman

    2007-11-01

    Full Text Available Infection with equid herpesvirus type 1 (EHV-1 leads to respiratory disease, abortion, and neurologic disorders in horses. Molecular epidemiology studies have demonstrated that a single nucleotide polymorphism resulting in an amino acid variation of the EHV-1 DNA polymerase (N752/D752 is significantly associated with the neuropathogenic potential of naturally occurring strains. To test the hypothesis that this single amino acid exchange by itself influences neuropathogenicity, we generated recombinant viruses with differing polymerase sequences. Here we show that the N752 mutant virus caused no neurologic signs in the natural host, while the D752 virus was able to cause inflammation of the central nervous system and ataxia. Neurologic disease induced by the D752 virus was concomitant with significantly increased levels of viremia (p = 0.01, but the magnitude of virus shedding from the nasal mucosa was similar between the N752 and D752 viruses. Both viruses replicated with similar kinetics in fibroblasts and epithelial cells, but exhibited differences in leukocyte tropism. Last, we observed a significant increase (p < 0.001 in sensitivity of the N752 mutant to aphidicolin, a drug targeting the viral polymerase. Our results demonstrate that a single amino acid variation in a herpesvirus enzyme can influence neuropathogenic potential without having a major effect on virus shedding from infected animals, which is important for horizontal spread in a population. This observation is very interesting from an evolutionary standpoint and is consistent with data indicating that the N752 DNA pol genotype is predominant in the EHV-1 population, suggesting that decreased viral pathogenicity in the natural host might not be at the expense of less efficient inter-individual transmission.

  9. Equid herpesvirus type 1 activates platelets.

    Directory of Open Access Journals (Sweden)

    Tracy Stokol

    Full Text Available Equid herpesvirus type 1 (EHV-1 causes outbreaks of abortion and neurological disease in horses. One of the main causes of these clinical syndromes is thrombosis in placental and spinal cord vessels, however the mechanism for thrombus formation is unknown. Platelets form part of the thrombus and amplify and propagate thrombin generation. Here, we tested the hypothesis that EHV-1 activates platelets. We found that two EHV-1 strains, RacL11 and Ab4 at 0.5 or higher plaque forming unit/cell, activate platelets within 10 minutes, causing α-granule secretion (surface P-selectin expression and platelet microvesiculation (increased small events double positive for CD41 and Annexin V. Microvesiculation was more pronounced with the RacL11 strain. Virus-induced P-selectin expression required plasma and 1.0 mM exogenous calcium. P-selectin expression was abolished and microvesiculation was significantly reduced in factor VII- or X-deficient human plasma. Both P-selectin expression and microvesiculation were re-established in factor VII-deficient human plasma with added purified human factor VIIa (1 nM. A glycoprotein C-deficient mutant of the Ab4 strain activated platelets as effectively as non-mutated Ab4. P-selectin expression was abolished and microvesiculation was significantly reduced by preincubation of virus with a goat polyclonal anti-rabbit tissue factor antibody. Infectious virus could be retrieved from washed EHV-1-exposed platelets, suggesting a direct platelet-virus interaction. Our results indicate that EHV-1 activates equine platelets and that α-granule secretion is a consequence of virus-associated tissue factor triggering factor X activation and thrombin generation. Microvesiculation was only partly tissue factor and thrombin-dependent, suggesting the virus causes microvesiculation through other mechanisms, potentially through direct binding. These findings suggest that EHV-1-induced platelet activation could contribute to the thrombosis

  10. Cytomegalovirus and other herpesviruses infections in heart and bone marrow transplant recipients Infecções causadas por citomegalovírus e outros vírus do grupo herpes em transplantados cardíacos e de medula óssea

    Directory of Open Access Journals (Sweden)

    Adriana Weinberg

    1990-10-01

    Full Text Available From January 1988 to January 1989 all the heart transplant and bone marrow recipients at the Instituto do Coração of the Hospital das Clínicas of the University of São Paulo Medical School were studied for the incidence and morbidity associated with herpesviruses infections after transplantation. Five bone marrow and 5 heart transplant recipients were followed for a mean of 4.2 months post-transplantation. All the patients were seropositive for cytomegalovirus (CMV before admission and 80% experienced one or more recurrences during the observation period. Of the 12 episodes of CMV infection, that were identified in this study, 83% were accompanied by clinical or laboratory abnormalities. However, there was only one case of severe disease. The overall incidence of infection for herpes simplex (HSV was 50%. Although most of HSV reactivations were oral or genital, one case of HSV hepatitis occurred. One of the 6 episodes of HSV infections that were treated with acyclovir showed an unsatisfactory response and was successfully managed with ganciclovir. All the individuals had anti-varicella zoster virus antibodies, but none of them developed infection. The study emphasizes the importance of active diagnostic surveillance of herpesvirus infections in transplant patients. Both CMV and HSV reactivations showed high incidence and important morbidity and thus, deserve prophylactic therapy.De janeiro de 1988 a janeiro de 1989 todos os pacientes submetidos a transplante de coração ou de medula óssea no Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo foram estudados quanto à incidência e morbidade das infecções pós-transplante causadas por vírus do grupo herpes. Cinco recipientes de medula óssea e 5 transplantados cardíacos foram observados por um período médio de 4.2 meses após o transplante. Todos os pacientes tinham sorologia positiva para citomegalovírus (CMV antes do transplante

  11. Protein Composition of the Bovine Herpesvirus 1.1 Virion

    Science.gov (United States)

    Barber, Kaley A.; Daugherty, Hillary C.; Ander, Stephanie E.; Jefferson, Victoria A.; Shack, Leslie A.; Pechan, Tibor; Nanduri, Bindu; Meyer, Florencia

    2017-01-01

    Bovine herpesvirus (BoHV) type 1 is an important agricultural pathogen that infects cattle and other ruminants worldwide. Acute infection of the oro-respiratory tract leads to immune suppression and allows commensal bacteria to infect an otherwise healthy lower respiratory tract. This condition is known as the Bovine Respiratory Disease (BRD). BoHV-1 latently infects the host for life and periodical stress events re-initiate BRD, translating into high morbidity and large economic losses. To gain a better understanding of the biology of BoHV-1 and the disease it causes, we elucidated the protein composition of extracellular virions using liquid chromatography-mass spectrometry analysis. We detected 33 viral proteins, including the expected proteins of the nucleocapsid and envelope as well as other regulatory proteins present in the viral tegument. In addition to viral proteins, we have also identified packaged proteins of host origin. This constitutes the first proteomic characterization of the BoHV virion. PMID:29056670

  12. Human Asymptomatic Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP13/14 (UL47) Preferentially Recall Polyfunctional Effector Memory CD44high CD62Llow CD8+ TEM Cells and Protect Humanized HLA-A*02:01 Transgenic Mice against Ocular Herpesvirus Infection.

    Science.gov (United States)

    Srivastava, Ruchi; Khan, Arif A; Garg, Sumit; Syed, Sabrina A; Furness, Julie N; Vahed, Hawa; Pham, Tiffany; Yu, Howard T; Nesburn, Anthony B; BenMohamed, Lbachir

    2017-01-15

    Herpes simplex virus 1 (HSV-1) infection is widespread among humans. The HSV-1 virion protein 13/14 (VP13/14), also known as UL47, is a tegument antigen targeted by CD8+ T cells from HSV-seropositive individuals. However, whether VP13/14-specific CD8+ T cells play a role in the natural protection seen in asymptomatic (ASYMP) individuals (individuals who have never had a clinical herpetic disease) has not been elucidated. Using predictive computer-assisted algorithms, we identified 10 potential HLA-A*02:01-restricted CD8+ T-cell epitopes from the 693-amino-acid sequence of the VP13/14 protein. Three out of 10 epitopes exhibited a high to moderate affinity of binding to soluble HLA-A*02:01 molecules. The phenotype and function of CD8+ T cells specific for each epitope were compared in HLA-A*02:01-positive ASYMP individuals and symptomatic (SYMP) individuals (individuals who have frequent clinical herpetic diseases) using determination of a combination of tetramer frequency and the levels of granzyme B, granzyme K, perforin, gamma interferon, tumor necrosis factor alpha, and interleukin-2 production and CD107a/b cytotoxic degranulation. High frequencies of multifunctional CD8+ T cells directed against three epitopes, VP13/14 from amino acids 286 to 294 (VP13/14286-294), VP13/14 from amino acids 504 to 512 (VP13/14504-512), and VP13/14 from amino acids 544 to 552 (VP13/14544-552), were detected in ASYMP individuals, while only low frequencies were detected in SYMP individuals. The three epitopes also predominantly recalled more CD45RAlow CD44high CCR7low CD62Llow CD8+ effector memory T cells (TEM cells) in ASYMP individuals than SYMP individuals. Moreover, immunization of HLA-A*02:01 transgenic mice with the three CD8+ TEM-cell epitopes from ASYMP individuals induced robust and polyfunctional HSV-specific CD8+ TEM cells associated with strong protective immunity against ocular herpesvirus infection and disease. Our findings outline the phenotypic and functional

  13. Human Asymptomatic Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP13/14 (UL47) Preferentially Recall Polyfunctional Effector Memory CD44high CD62Llow CD8+ TEM Cells and Protect Humanized HLA-A*02:01 Transgenic Mice against Ocular Herpesvirus Infection

    Science.gov (United States)

    Srivastava, Ruchi; Khan, Arif A.; Garg, Sumit; Syed, Sabrina A.; Furness, Julie N.; Vahed, Hawa; Pham, Tiffany; Yu, Howard T.; Nesburn, Anthony B.

    2016-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) infection is widespread among humans. The HSV-1 virion protein 13/14 (VP13/14), also known as UL47, is a tegument antigen targeted by CD8+ T cells from HSV-seropositive individuals. However, whether VP13/14-specific CD8+ T cells play a role in the natural protection seen in asymptomatic (ASYMP) individuals (individuals who have never had a clinical herpetic disease) has not been elucidated. Using predictive computer-assisted algorithms, we identified 10 potential HLA-A*02:01-restricted CD8+ T-cell epitopes from the 693-amino-acid sequence of the VP13/14 protein. Three out of 10 epitopes exhibited a high to moderate affinity of binding to soluble HLA-A*02:01 molecules. The phenotype and function of CD8+ T cells specific for each epitope were compared in HLA-A*02:01-positive ASYMP individuals and symptomatic (SYMP) individuals (individuals who have frequent clinical herpetic diseases) using determination of a combination of tetramer frequency and the levels of granzyme B, granzyme K, perforin, gamma interferon, tumor necrosis factor alpha, and interleukin-2 production and CD107a/b cytotoxic degranulation. High frequencies of multifunctional CD8+ T cells directed against three epitopes, VP13/14 from amino acids 286 to 294 (VP13/14286–294), VP13/14 from amino acids 504 to 512 (VP13/14504–512), and VP13/14 from amino acids 544 to 552 (VP13/14544–552), were detected in ASYMP individuals, while only low frequencies were detected in SYMP individuals. The three epitopes also predominantly recalled more CD45RAlow CD44high CCR7low CD62Llow CD8+ effector memory T cells (TEM cells) in ASYMP individuals than SYMP individuals. Moreover, immunization of HLA-A*02:01 transgenic mice with the three CD8+ TEM-cell epitopes from ASYMP individuals induced robust and polyfunctional HSV-specific CD8+ TEM cells associated with strong protective immunity against ocular herpesvirus infection and disease. Our findings outline the phenotypic and

  14. Bovine Herpesvirus 4 in Parana State, Brazil: case report, viral isolation, and molecular identification

    Directory of Open Access Journals (Sweden)

    Ernesto Renato Kruger

    2015-03-01

    Full Text Available Bovine Herpesvirus 4 (BoHV-4 is a member of Gammaherpesvirinaesub-family and belongs to genus Rhadinovirus. This virus has been associated with different clinical manifestations and research activity has put forward a strong correlation among virus infection, postpartum metritis, and abortion. The goal of this work was to characterize a virus strain isolate from a cow’s uterine outflow. From swabs drawn of uterine secretion, a virus strain was isolated and characterized by its cytopathology, morphology, and molecular biology approaches. In culture there was CPE development, characterized mainly by long strands with several small balloons along them, radiated from infected cells. Electron microscopy analysis revealed virus particles that had icosahedrical capsid symmetry surrounded by a loose envelope, typical of a herpesvirus. A 2,571 bp PCR product after HindIII digestion generated four fragments, whose base pair composition were 403, 420, 535, and 1,125 bp. Restriction enzymes HindIII and BamHI generated the expected diagnostic bands as well as a 2,350 bp hypermolar fragment as a result of BamHI treatment to demonstrate that agent was a bovine herpesvirus 4, appertaining to DN-599 group.

  15. Nuclear Exodus: Herpesviruses Lead the Way.

    Science.gov (United States)

    Bigalke, Janna M; Heldwein, Ekaterina E

    2016-09-29

    Most DNA viruses replicate in the nucleus and exit it either by passing through the nuclear pores or by rupturing the nuclear envelope. Unusually, herpesviruses have evolved a complex mechanism of nuclear escape whereby nascent capsids bud at the inner nuclear membrane to form perinuclear virions that subsequently fuse with the outer nuclear membrane, releasing capsids into the cytosol. Although this general scheme is accepted in the field, the players and their roles are still debated. Recent studies illuminated critical mechanistic features of this enigmatic process and uncovered surprising parallels with a novel cellular nuclear export process. This review summarizes our current understanding of nuclear egress in herpesviruses, examines the experimental evidence and models, and outlines outstanding questions with the goal of stimulating new research in this area.

  16. Molecular piracy of chemokine receptors by herpesviruses.

    Science.gov (United States)

    Murphy, P M

    1994-01-01

    To succeed as a biological entity, viruses must exploit normal cellular functions and elude the host immune system; they often do so by molecular mimicry. One way that mimicry may occur is when viruses copy and modify host genes. The best studied examples of this are the oncogenes of RNA retroviruses, but a growing number of examples are also known for DNA viruses. So far they all come from just two groups of DNA viruses, the herpesviruses and poxviruses, and the majority of examples are for genes whose products regulate immune responses, such as cytokines, cytokine receptors, and complement control proteins. This review will focus on human and herpesvirus receptors for chemokines, a family of leukocyte chemoattractant and activating factors that are thought to be important mediators of inflammation. Although the biological roles of the viral chemokine receptor homologues are currently unknown, their connection to specific sets of chemokines has suggested a number of possible functions.

  17. Nuclear Exodus: Herpesviruses Lead the Way

    Science.gov (United States)

    Bigalke, Janna M.; Heldwein, Ekaterina E.

    2016-01-01

    Most DNA viruses replicate in the nucleus and exit it either by passing through the nuclear pores or by rupturing the nuclear envelope. Unusually, herpesviruses have evolved a complex mechanism of nuclear escape whereby nascent capsids bud at the inner nuclear membrane to form perinuclear virions that subsequently fuse with the outer nuclear membrane, releasing capsids into the cytosol. Although this general scheme is accepted in the field, the players and their roles are still debated. Recent studies illuminated critical mechanistic features of this enigmatic process and uncovered surprising parallels with a novel cellular nuclear export process. This review summarizes our current understanding of nuclear egress in herpesviruses, examines the experimental evidence and models, and outlines outstanding questions with the goal of stimulating new research in this area. PMID:27482898

  18. Compartmented neuronal cultures reveal two distinct mechanisms for alpha herpesvirus escape from genome silencing.

    Science.gov (United States)

    Koyuncu, Orkide O; MacGibeny, Margaret A; Hogue, Ian B; Enquist, Lynn W

    2017-10-01

    Alpha herpesvirus genomes encode the capacity to establish quiescent infections (i.e. latency) in the peripheral nervous system for the life of their hosts. Multiple times during latency, viral genomes can reactivate to start a productive infection, enabling spread of progeny virions to other hosts. Replication of alpha herpesviruses is well studied in cultured cells and many aspects of productive replication have been identified. However, many questions remain concerning how a productive or a quiescent infection is established. While infections in vivo often result in latency, infections of dissociated neuronal cultures in vitro result in a productive infection unless lytic viral replication is suppressed by DNA polymerase inhibitors or interferon. Using primary peripheral nervous system neurons cultured in modified Campenot tri-chambers, we previously reported that reactivateable, quiescent infections by pseudorabies virus (PRV) can be established in the absence of any inhibitor. Such infections were established in cell bodies only when physically isolated axons were infected at a very low multiplicity of infection (MOI). In this report, we developed a complementation assay in compartmented neuronal cultures to investigate host and viral factors in cell bodies that prevent establishment of quiescent infection and promote productive replication of axonally delivered genomes (i.e. escape from silencing). Stimulating protein kinase A (PKA) signaling pathways in isolated cell bodies, or superinfecting cell bodies with either UV-inactivated PRV or viral light particles (LP) promoted escape from genome silencing and prevented establishment of quiescent infection but with different molecular mechanisms. Activation of PKA in cell bodies triggers a slow escape from silencing in a cJun N-terminal kinase (JNK) dependent manner. However, escape from silencing is induced rapidly by infection with UVPRV or LP in a PKA- and JNK-independent manner. We suggest that viral tegument

  19. Fetal exposure to herpesviruses may be associated with pregnancy-induced hypertensive disorders and preterm birth in a Caucasian population.

    Science.gov (United States)

    Gibson, C S; Goldwater, P N; MacLennan, A H; Haan, E A; Priest, K; Dekker, G A

    2008-03-01

    To investigate the role of fetal viral infection in the development of a range of adverse pregnancy outcomes (APOs), including pregnancy-induced hypertensive disorders (PIHD), antepartum haemorrhage (APH), birthweight <10th percentile (small for gestational age, SGA) and preterm birth (PTB). Population-based case-control study. Laboratory-based study. The newborn screening cards of 717 adverse pregnancy cases and 609 controls. Newborn screening cards were tested for RNA from enteroviruses and DNA from herpesviruses using polymerase chain reaction (PCR). The herpesviruses were detected using two PCRs, one detecting nucleic acids from herpes simplex virus (HSV)-1, HSV-2, Epstein-Barr virus (EBV), cytomegalovirus (CMV) and human herpesvirus (HHV)-8, hereafter designated Herpes PCR group A viruses, and the other detecting nucleic acids from varicella-zoster virus (VZV), HHV-6 and HHV-7, hereafter designated Herpes PCR group B viruses. Odds ratios and 95% CIs for specific APOs. For both term and PTBs, the risk of developing PIHD was increased in the presence of DNA from Herpes PCR group B viruses (OR 3.57, 95% CI 1.10-11.70), CMV (OR 3.89, 95% CI 1.67-9.06), any herpesvirus (OR 5.70, 95% CI 1.85-17.57) and any virus (OR 5.17, 95% CI 1.68-15.94). The presence of CMV was associated with PTB (OR 1.61, 95% CI 1.14-2.27). No significant association was observed between SGA or APH and exposure to viral infection. Fetal exposure to herpesvirus infection was associated with PIHD for both term and PTBs in this exploratory study. Exposure to CMV may also be associated with PTB. These findings need confirmation in future studies.

  20. Beta and Gamma Human Herpesviruses: Agonistic and Antagonistic Interactions with the Host Immune System

    Directory of Open Access Journals (Sweden)

    Mario E. Cruz-Muñoz

    2018-01-01

    Full Text Available Viruses are the most abundant and diverse biological entities in the planet. Historically, our main interest in viruses has focused on their pathogenic role, recognized by pandemics that have decimated the world population. However, viral infections have also played a major role in the evolution of cellular organisms, both through interchanging of genes with novel functions and shaping the immune system. Examples abound of infections that seriously compromise the host integrity, but evidence of plant and insect viruses mutualistic relationships have recently surfaced in which infected hosts are better suited for survival, arguing that virus-host interactions are initially parasitic but become mutualistic over years of co-evolution. A similar mutual help scenario has emerged with commensal gut bacteria. EBV is a herpesvirus that shares more than a hundred million years of co-evolution with humans, today successfully infecting close to 100% of the adult world population. Infection is usually acquired early in childhood persisting for the host lifetime mostly without apparent clinical symptoms. Disturbance of this homeostasis is rare and results in several diseases, of which the best understood are infectious mononucleosis and several EBV-associated cancers. Less understood are recently found inborn errors of the immune system that result in primary immunodeficiencies with an increased predisposition almost exclusive to EBV-associated diseases. Puzzling to these scenarios of broken homeostasis is the co-existence of immunosuppression, inflammation, autoimmunity and cancer. Homologous to EBV, HCMV, HHV-6 and HHV-7 are herpesviruses that also latently infect most individuals. Several lines of evidence support a mutualistic equilibrium between HCMV/EBV and hosts, that when altered trigger diseases in which the immune system plays a critical role. Interestingly, these beta and gamma herpesviruses persistently infect all immune lineages and early

  1. The Interplay between Natural Killer Cells and Human Herpesvirus-6

    Directory of Open Access Journals (Sweden)

    Eva Eliassen

    2017-12-01

    Full Text Available Human Herpesvirus 6 (HHV-6 is a set of two closely related herpes viruses known as HHV-6A and HHV-6B. Both are lymphotropic viruses that establish latency in the host. The ability to evade the immune responses of effector cells is likely a major factor contributing to the development of a persistent HHV-6A/B (collectively termed HHV-6 infection. Natural killer (NK cells are lymphocytes that, along with neutrophils and monocytes/macrophages, participate in the critical innate immune response during viral infections, but can also mediate the antigen-specific memory responses generally associated with adaptive immunity. NK cells compose the first barrier that viruses must break through to continue replication and dissemination, and a weak NK cell response may predispose an individual to chronic viral infections. Both HHV-6A and HHV-6B can interfere with NK cell-mediated anti-viral responses but the mechanisms by which each of these viruses affect NK cell activity differs. In this review, we will explore the nuanced relationships between the two viruses and NK cells, discussing, in addition, relevant disease associations.

  2. Validation of a qPCR assay for the detection of Ictalurid herpesvirus-2 (IcHV-2) in fish tissues and cell culture supernatants.

    Science.gov (United States)

    Goodwin, A E; Marecaux, E

    2010-04-01

    Ictalurid herpesvirus-2 (IcHV-2) is a pathogen of cultured black bullhead, Ameiurus melas (Rafinesque), and has been shown to produce high mortality in experimental exposures of channel catfish, Ictalurus punctatus (Rafinesque). During acute infections, the virus grows readily in cell cultures but produces a cytopathic effect (CPE) similar to that of Ictalurid herpesvirus-1 (IcHV-1) and the channel catfish reovirus. We have developed a quantitative PCR assay that can be used to detect IcHV-2 in fish tissues and cell culture supernatants. The assay does not amplify other fish herpesviruses tested or host DNA. It is quantitative over a range of eight logs, and the limit of detection is cell cultures, and for the detection of latent infections in carrier fish.

  3. Dual-color Herpesvirus Capsids Discriminate Inoculum from Progeny and Reveal Axonal Transport Dynamics.

    Science.gov (United States)

    Scherer, Julian; Yaffe, Zachary A; Vershinin, Michael; Enquist, Lynn W

    2016-08-31

    Alpha herpesviruses, such as herpes simplex virus and pseudorabies virus (PRV), are neuroinvasive dsDNA viruses that establish life-long latency in peripheral nervous system (PNS) neurons of their native hosts. Following reactivation, the infection can spread back to the initial mucosal site of infection or, in rare cases, to the central nervous system with usually serious outcomes. During entry and egress, viral capsids depend on microtubule-based molecular motors for efficient and fast transport. In axons of PNS neurons, cytoplasmic dynein provides force for retrograde movements towards the soma, and kinesins move cargo in the opposite, anterograde direction. The dynamic properties of virus particles in cells can be imaged by fluorescent protein fusions to the small capsid protein VP26, which are incorporated into capsids. However, single-color fluorescent protein tags fail to distinguish virus inoculum from progeny. Therefore, we established a dual-color system by growing a recombinant PRV expressing a red fluorescent VP26 fusion (PRV180) on a stable cell line expressing a green VP26 fusion (PK15-mNG-VP26). The resulting dual-color virus preparation (PRV180G) contains capsids tagged with both red and green fluorescent proteins, and 97% of particles contain detectable levels of mNG-VP26. After replication in neuronal cells, all PRV180G progeny exclusively contain mRFP-VP26 tagged capsids. We used PRV180G for an analysis of axonal capsid transport dynamics in PNS neurons. Fast dual-color total internal reflection fluorescence (TIRF) microscopy, single particle tracking and motility analyses reveal robust, bidirectional capsid motility mediated by cytoplasmic dynein and kinesin during entry, whereas egressing progeny particles are exclusively transported by kinesins. Alpha herpesviruses are neuroinvasive viruses that infect the peripheral nervous system (PNS) of infected hosts as an integral part of their life cycle. Establishment of a quiescent or latent infection

  4. Cellular Mechanisms of Alpha Herpesvirus Egress: Live Cell Fluorescence Microscopy of Pseudorabies Virus Exocytosis

    Science.gov (United States)

    Hogue, Ian B.; Bosse, Jens B.; Hu, Jiun-Ruey; Thiberge, Stephan Y.; Enquist, Lynn W.

    2014-01-01

    Egress of newly assembled herpesvirus particles from infected cells is a highly dynamic process involving the host secretory pathway working in concert with viral components. To elucidate the location, dynamics, and molecular mechanisms of alpha herpesvirus egress, we developed a live-cell fluorescence microscopy method to visualize the final transport and exocytosis of pseudorabies virus (PRV) particles in non-polarized epithelial cells. This method is based on total internal reflection fluorescence (TIRF) microscopy to selectively image fluorescent virus particles near the plasma membrane, and takes advantage of a virus-encoded pH-sensitive probe to visualize the precise moment and location of particle exocytosis. We performed single-particle tracking and mean squared displacement analysis to characterize particle motion, and imaged a panel of cellular proteins to identify those spatially and dynamically associated with viral exocytosis. Based on our data, individual virus particles travel to the plasma membrane inside small, acidified secretory vesicles. Rab GTPases, Rab6a, Rab8a, and Rab11a, key regulators of the plasma membrane-directed secretory pathway, are present on the virus secretory vesicle. These vesicles undergo fast, directional transport directly to the site of exocytosis, which is most frequently near patches of LL5β, part of a complex that anchors microtubules to the plasma membrane. Vesicles are tightly docked at the site of exocytosis for several seconds, and membrane fusion occurs, displacing the virion a small distance across the plasma membrane. After exocytosis, particles remain tightly confined on the outer cell surface. Based on recent reports in the cell biological and alpha herpesvirus literature, combined with our spatial and dynamic data on viral egress, we propose an integrated model that links together the intracellular transport pathways and exocytosis mechanisms that mediate alpha herpesvirus egress. PMID:25474634

  5. Cellular mechanisms of alpha herpesvirus egress: live cell fluorescence microscopy of pseudorabies virus exocytosis.

    Directory of Open Access Journals (Sweden)

    Ian B Hogue

    2014-12-01

    Full Text Available Egress of newly assembled herpesvirus particles from infected cells is a highly dynamic process involving the host secretory pathway working in concert with viral components. To elucidate the location, dynamics, and molecular mechanisms of alpha herpesvirus egress, we developed a live-cell fluorescence microscopy method to visualize the final transport and exocytosis of pseudorabies virus (PRV particles in non-polarized epithelial cells. This method is based on total internal reflection fluorescence (TIRF microscopy to selectively image fluorescent virus particles near the plasma membrane, and takes advantage of a virus-encoded pH-sensitive probe to visualize the precise moment and location of particle exocytosis. We performed single-particle tracking and mean squared displacement analysis to characterize particle motion, and imaged a panel of cellular proteins to identify those spatially and dynamically associated with viral exocytosis. Based on our data, individual virus particles travel to the plasma membrane inside small, acidified secretory vesicles. Rab GTPases, Rab6a, Rab8a, and Rab11a, key regulators of the plasma membrane-directed secretory pathway, are present on the virus secretory vesicle. These vesicles undergo fast, directional transport directly to the site of exocytosis, which is most frequently near patches of LL5β, part of a complex that anchors microtubules to the plasma membrane. Vesicles are tightly docked at the site of exocytosis for several seconds, and membrane fusion occurs, displacing the virion a small distance across the plasma membrane. After exocytosis, particles remain tightly confined on the outer cell surface. Based on recent reports in the cell biological and alpha herpesvirus literature, combined with our spatial and dynamic data on viral egress, we propose an integrated model that links together the intracellular transport pathways and exocytosis mechanisms that mediate alpha herpesvirus egress.

  6. Isolation and characterization of a novel herpesvirus from a free-ranging eastern grey kangaroo (Macropus giganteus).

    Science.gov (United States)

    Vaz, Paola Karinna; Motha, Julian; McCowan, Christina; Ficorilli, Nino; Whiteley, Pam Lizette; Wilks, Colin Reginald; Hartley, Carol Anne; Gilkerson, James Rudkin; Browning, Glenn Francis; Devlin, Joanne Maree

    2013-01-01

    We isolated a macropodid herpesvirus from a free-ranging eastern grey kangaroo (Macropus giganteous) displaying clinical signs of respiratory disease and possibly neurologic disease. Sequence analysis of the herpesvirus glycoprotein G (gG) and glycoprotein B (gB) genes revealed that the virus was an alphaherpesvirus most closely related to macropodid herpesvirus 2 (MaHV-2) with 82.7% gG and 94.6% gB amino acid sequence identity. Serologic analyses showed similar cross-neutralization patterns to those of MaHV-2. The two viruses had different growth characteristics in cell culture. Most notably, this virus formed significantly larger plaques and extensive syncytia when compared with MaHV-2. No syncytia were observed for MaHV-2. Restriction endonuclease analysis of whole viral genomes demonstrated distinct restriction endonuclease cleavage patterns for all three macropodid herpesviruses. These studies suggest that a distinct macropodid alphaherpesvirus may be capable of infecting and causing disease in eastern grey kangaroos.

  7. New Paradigms for the Study of Ocular Alphaherpesvirus Infections: Insights into the Use of Non-Traditional Host Model Systems

    Directory of Open Access Journals (Sweden)

    Matthew R. Pennington

    2017-11-01

    Full Text Available Ocular herpesviruses, most notably human alphaherpesvirus 1 (HSV-1, canid alphaherpesvirus 1 (CHV-1 and felid alphaherpesvirus 1 (FHV-1, infect and cause severe disease that may lead to blindness. CHV-1 and FHV-1 have a pathogenesis and induce clinical disease in their hosts that is similar to HSV-1 ocular infections in humans, suggesting that infection of dogs and cats with CHV-1 and FHV-1, respectively, can be used as a comparative natural host model of herpesvirus-induced ocular disease. In this review, we discuss both strengths and limitations of the various available model systems to study ocular herpesvirus infection, with a focus on the use of these non-traditional virus-natural host models. Recent work has demonstrated the robustness and reproducibility of experimental ocular herpesvirus infections in dogs and cats, and, therefore, these non-traditional models can provide additional insights into the pathogenesis of ocular herpesvirus infections.

  8. The ORF59 DNA polymerase processivity factor homologs of Old World primate RV2 rhadinoviruses are highly conserved nuclear antigens expressed in differentiated epithelium in infected macaques

    Directory of Open Access Journals (Sweden)

    Burnside Kellie L

    2009-11-01

    Full Text Available Abstract Background ORF59 DNA polymerase processivity factor of the human rhadinovirus, Kaposi's sarcoma-associated herpesvirus (KSHV, is required for efficient copying of the genome during virus replication. KSHV ORF59 is antigenic in the infected host and is used as a marker for virus activation and replication. Results We cloned, sequenced and expressed the genes encoding related ORF59 proteins from the RV1 rhadinovirus homologs of KSHV from chimpanzee (PtrRV1 and three species of macaques (RFHVMm, RFHVMn and RFHVMf, and have compared them with ORF59 proteins obtained from members of the more distantly-related RV2 rhadinovirus lineage infecting the same non-human primate species (PtrRV2, RRV, MneRV2, and MfaRV2, respectively. We found that ORF59 homologs of the RV1 and RV2 Old World primate rhadinoviruses are highly conserved with distinct phylogenetic clustering of the two rhadinovirus lineages. RV1 and RV2 ORF59 C-terminal domains exhibit a strong lineage-specific conservation. Rabbit antiserum was developed against a C-terminal polypeptide that is highly conserved between the macaque RV2 ORF59 sequences. This anti-serum showed strong reactivity towards ORF59 encoded by the macaque RV2 rhadinoviruses, RRV (rhesus and MneRV2 (pig-tail, with no cross reaction to human or macaque RV1 ORF59 proteins. Using this antiserum and RT-qPCR, we determined that RRV ORF59 is expressed early after permissive infection of both rhesus primary fetal fibroblasts and African green monkey kidney epithelial cells (Vero in vitro. RRV- and MneRV2-infected foci showed strong nuclear expression of ORF59 that correlated with production of infectious progeny virus. Immunohistochemical studies of an MneRV2-infected macaque revealed strong nuclear expression of ORF59 in infected cells within the differentiating layer of epidermis corroborating previous observations that differentiated epithelial cells are permissive for replication of KSHV-like rhadinoviruses

  9. Antibodies against bovine herpesvirus (BHV) 5 may be differentiated from antibodies against BHV1 in a BHV1 glycoprotein E blocking ELISA

    NARCIS (Netherlands)

    Wellenberg, G.J.; Mars, M.H.; Oirschot, van J.T.

    2001-01-01

    We examined whether antibodies against bovine herpesvirus (BHV) 5 cross-react with BHV1 antigens and whether they could interfere with BHV1 eradication programmes. Six calves were experimentally infected with different doses of BHV5 strain N569; homologous antibodies were ?rst detectable on day 11

  10. Ovine herpesvirus 2 glycoproteins B, H, and L are sufficient for, and viral glycoprotein Ov8 can enhance, cell-cell membrane fusion

    Science.gov (United States)

    Ovine herpesvirus 2 (OvHV-2) is a gammaherpesvirus in the genus Macavirus that is carried asymptomatically by sheep. Infection of poorly adapted animals with OvHV-2 results in sheep associated malignant catarrhal fever, a fatal disease characterized by lymphoproliferation and vasculitis. There is no...

  11. Spontaneous fatal Human herpesvirus 1 encephalitis in two domestic rabbits (Oryctolagus cuniculus).

    Science.gov (United States)

    de Matos, Ricardo; Russell, Duncan; Van Alstine, William; Miller, Andrew

    2014-09-01

    Despite the particular susceptibility of the rabbit to experimental infection with Human herpesvirus 1 (HHV-1) and the high seroprevalence of HHV-1 in human beings, reports of natural infection in pet rabbits are rare. The current report describes 2 cases of HHV encephalitis in pet rabbits in North America. Antemortem clinical signs included seizures, ptyalism, and muscle tremors. Results of complete blood cell count and plasma biochemistry panel were unremarkable except for a mild leukocytosis in both cases. Both rabbits died after a short period of hospitalization. Rabbit 1 presented mild optic chiasm hemorrhage on gross examination, while rabbit 2 had no gross lesions. Histologic findings for both cases included lymphocytic and/or lymphoplasmacytic encephalitis with necrosis and the presence of intranuclear inclusion bodies in neurons and glial cells. Polymerase chain reaction (PCR) analysis of affected brain tissue using primers specific for Human herpesvirus 1 and 2 confirmed diagnosis of HHV encephalitis for rabbit 1. Immunohistochemical staining (poly- and monoclonal) and PCR analysis using primers specific to HHV-1 confirmed the diagnosis of HHV-1 encephalitis for rabbit 2. The owner of rabbit 2 was suspected to be the source of infection due to close contact during an episode of herpes labialis. Given the high susceptibility of rabbits to experimental HHV-1, high seroprevalence of HHV-1 in human beings, and severity of clinical disease in this species, clinician awareness and client education is important for disease prevention. Human herpesvirus 1 encephalitis should be considered as a differential diagnosis for rabbits with neurologic disease. © 2014 The Author(s).

  12. Cloning of the koi herpesvirus (KHV gene encoding thymidine kinase and its use for a highly sensitive PCR based diagnosis

    Directory of Open Access Journals (Sweden)

    Gilad Oren

    2005-03-01

    Full Text Available Abstract Background Outbreaks with mass mortality among common carp Cyprinus carpio carpio and koi Cyprinus carpio koi have occurred worldwide since 1998. The herpes-like virus isolated from diseased fish is different from Herpesvirus cyprini and channel catfish virus and was accordingly designated koi herpesvirus (KHV. Diagnosis of KHV infection based on viral isolation and current PCR assays has a limited sensitivity and therefore new tools for the diagnosis of KHV infections are necessary. Results A robust and sensitive PCR assay based on a defined gene sequence of KHV was developed to improve the diagnosis of KHV infection. From a KHV genomic library, a hypothetical thymidine kinase gene (TK was identified, subcloned and expressed as a recombinant protein. Preliminary characterization of the recombinant TK showed that it has a kinase activity using dTTP but not dCTP as a substrate. A PCR assay based on primers selected from the defined DNA sequence of the TK gene was developed and resulted in a 409 bp amplified fragment. The TK based PCR assay did not amplify the DNAs of other fish herpesviruses such as Herpesvirus cyprini (CHV and the channel catfish virus (CCV. The TK based PCR assay was specific for the detection of KHV and was able to detect as little as 10 fentograms of KHV DNA corresponding to 30 virions. The TK based PCR was compared to previously described PCR assays and to viral culture in diseased fish and was shown to be the most sensitive method of diagnosis of KHV infection. Conclusion The TK based PCR assay developed in this work was shown to be specific for the detection of KHV. The TK based PCR assay was more sensitive for the detection of KHV than previously described PCR assays; it was as sensitive as virus isolation which is the golden standard method for KHV diagnosis and was able to detect as little as 10 fentograms of KHV DNA corresponding to 30 virions.

  13. Bovine herpesvirus 4-associated postpartum metritis in a Spanish dairy herd.

    Science.gov (United States)

    Monge, A; Elvira, L; Gonzalez, J V; Astiz, S; Wellenberg, G J

    2006-02-01

    In more than 10 Spanish dairy cows, a bovine herpesvirus 4 (BHV4) associated postpartum metritis was confirmed by virus isolation, BHV4-glycoprotein B (gB) PCR and/or serology. In this study, 12 cows with, and, at the time of sampling, 3 cows without clinical signs of acute postpartum metritis from one large dairy herd in Spain were examined for bacterial and viral infections. Blood, placenta/caruncles and uterine contents were collected between day 1 and day 20 post-calving, and examined for the presence of bacteria and for viruses by virus isolation, BHV4 DNA by BHV4-gB PCR and/or BHV4 antibody titres. Bovine herpesvirus 4 was detected in 83% of the cases with clinical signs of acute postpartum metritis by virus isolation and/or BHV4-gB PCR. An increase of BHV4 antibodies was detected in all examined postpartum metritis cows and in the 3 cows without clinical metritis. Two of these 3 cows developed severe metritis a few dayss after collecting the first blood sample. A concurrent infections of BHV4 and bacteria, mainly Arcanobacterium pyogenes and Streptococcus sp., were detected in 73% of the examined uterine contents collected from postpartum metritis affected cows. This case-report study showed a clear association between BHV4 infections and acute postpartum metritis in dairy cows. In addition, the BHV4-associated postpartum metritis appeared to be an emerging syndrome in this Spanish herd.

  14. Channel catfish virus: a new herpesvirus of ictalurid fish.

    Science.gov (United States)

    Wolf, K; Darlington, R W

    1971-10-01

    Channel catfish virus was studied in ictalurid fish cell culture, the only system of fish, amphibian, avian, and mammalian cells found to be susceptible. Channel catfish virus infection resulted in intranuclear inclusions and extensive syncytium formation. Replication occurred from 10 to 33 C, but not higher. Best growth was from 25 to 33 C, and the amount of virus released nearly equalled the amount which remained cell-associated. The virus was labile to lipid solvents, and indirect determinations with labeled precursors and a metabolic inhibitor showed evidence of deoxyribonucleic acid. Electron microscopy showed progeny virus, about 100 nm in diameter, in various stages of development in cell nuclei by 4 hr. Present also were nuclear masses of exceptionally electron-dense lamellar material, with a unit dimension of 10 to 15 nm. Virus was enveloped at the nuclear membrane and in cytoplasmic vacuoles, resulting in virions having a diameter of 175 to 200 nm. Negative staining demonstrated icosehedral symmetry and 162 capsomeres. Our data indicate that channel catfish virus is a herpesvirus.

  15. Channel Catfish Virus: a New Herpesvirus of Ictalurid Fish

    Science.gov (United States)

    Wolf, Ken; Darlington, Robert W.

    1971-01-01

    Channel catfish virus was studied in ictalurid fish cell culture, the only system of fish, amphibian, avian, and mammalian cells found to be susceptible. Channel catfish virus infection resulted in intranuclear inclusions and extensive syncytium formation. Replication occurred from 10 to 33 C, but not higher. Best growth was from 25 to 33 C, and the amount of virus released nearly equalled the amount which remained cell-associated. The virus was labile to lipid solvents, and indirect determinations with labeled precursors and a metabolic inhibitor showed evidence of deoxyribonucleic acid. Electron microscopy showed progeny virus, about 100 nm in diameter, in various stages of development in cell nuclei by 4 hr. Present also were nuclear masses of exceptionally electron-dense lamellar material, with a unit dimension of 10 to 15 nm. Virus was enveloped at the nuclear membrane and in cytoplasmic vacuoles, resulting in virions having a diameter of 175 to 200 nm. Negative staining demonstrated icosehedral symmetry and 162 capsomeres. Our data indicate that channel catfish virus is a herpesvirus. Images PMID:4108571

  16. Herpesvirus gB: A Finely Tuned Fusion Machine

    National Research Council Canada - National Science Library

    Cooper, Rebecca S; Heldwein, Ekaterina E

    2015-01-01

    .... Surprisingly, in herpesviruses, these functions are distributed among multiple proteins: the conserved fusogen gB, the conserved gH/gL heterodimer of poorly defined function, and various non-conserved receptor-binding proteins...

  17. Integrity of the Linker of Nucleoskeleton and Cytoskeleton Is Required for Efficient Herpesvirus Nuclear Egress.

    Science.gov (United States)

    Klupp, Barbara G; Hellberg, Teresa; Granzow, Harald; Franzke, Kati; Dominguez Gonzalez, Beatriz; Goodchild, Rose E; Mettenleiter, Thomas C

    2017-10-01

    Herpesvirus capsids assemble in the nucleus, while final virion maturation proceeds in the cytoplasm. This requires that newly formed nucleocapsids cross the nuclear envelope (NE), which occurs by budding at the inner nuclear membrane (INM), release of the primary enveloped virion into the perinuclear space (PNS), and subsequent rapid fusion with the outer nuclear membrane (ONM). During this process, the NE remains intact, even at late stages of infection. In addition, the spacing between the INM and ONM is maintained, as is that between the primary virion envelope and nuclear membranes. The linker of nucleoskeleton and cytoskeleton (LINC) complex consists of INM proteins with a luminal SUN (Sad1/UNC-84 homology) domain connected to ONM proteins with a KASH (Klarsicht, ANC-1, SYNE homology) domain and is thought to be responsible for spacing the nuclear membranes. To investigate the role of the LINC complex during herpesvirus infection, we generated cell lines constitutively expressing dominant negative (dn) forms of SUN1 and SUN2. Ultrastructural analyses revealed a significant expansion of the PNS and the contiguous intracytoplasmic lumen, most likely representing endoplasmic reticulum (ER), especially in cells expressing dn-SUN2. After infection, primary virions accumulated in these expanded luminal regions, also very distant from the nucleus. The importance of the LINC complex was also confirmed by reduced progeny virus titers in cells expressing dn-SUN2. These data show that the intact LINC complex is required for efficient nuclear egress of herpesviruses, likely acting to promote fusion of primary enveloped virions with the ONM. IMPORTANCE While the viral factors for primary envelopment of nucleocapsids at the inner nuclear membrane are known to the point of high-resolution structures, the roles of cellular components and regulators remain enigmatic. Furthermore, the machinery responsible for fusion with the outer nuclear membrane is unsolved. We show here

  18. Herpesviruses and Newcastle disease viruses in white storks (Ciconia ciconia).

    Science.gov (United States)

    Kaleta, E F; Kummerfeld, N

    1983-01-01

    Three herpesviruses were isolated from white storks (Ciconia ciconia). All isolates reacted in cross-neutralisation tests with homologous antisera and with sera prepared against a herpesvirus from a black stork (Ciconia nigra). These data indicate serologic relatedness of the herpesviruses from both stork species. Antisera prepared against herpesviruses from the domestic chicken (viruses of Marek's disease and infectious laryngotracheitis), turkey, duck and pigeon as well as from the blue-fronted amazon (Amazona aestiva), prairie falcon (Falco mexicanus), eagle owl (Bubo bubo), Lake Victoria cormorant (Phalacrocorax melanoleucos), bobwhite quail (Colinus virginianus) and desmoiselle crane (Anthropoides virgo) did not react with the stork herpesviruses. Neutralising antibodies against stork herpesvirus were detected in the majority of 72 blood samples from white and black storks. In addition, three Newcastle disease viruses (NDV) could be isolated from white storks. One isolate was highly virulent the two others were avirulent for the chicken. Haemagglutination inhibition tests have shown that some storks have antibodies against Paramyxovirus- (PMV)-1 (NDV), PMV-2 and PMV-3. No antibodies could be detected in stork sera against PMV-4, -6 and -7.

  19. Fluorescent Protein Approaches in Alpha Herpesvirus Research

    Directory of Open Access Journals (Sweden)

    Ian B. Hogue

    2015-11-01

    Full Text Available In the nearly two decades since the popularization of green fluorescent protein (GFP, fluorescent protein-based methodologies have revolutionized molecular and cell biology, allowing us to literally see biological processes as never before. Naturally, this revolution has extended to virology in general, and to the study of alpha herpesviruses in particular. In this review, we provide a compendium of reported fluorescent protein fusions to herpes simplex virus 1 (HSV-1 and pseudorabies virus (PRV structural proteins, discuss the underappreciated challenges of fluorescent protein-based approaches in the context of a replicating virus, and describe general strategies and best practices for creating new fluorescent fusions. We compare fluorescent protein methods to alternative approaches, and review two instructive examples of the caveats associated with fluorescent protein fusions, including describing several improved fluorescent capsid fusions in PRV. Finally, we present our future perspectives on the types of powerful experiments these tools now offer.

  20. Fluorescent Protein Approaches in Alpha Herpesvirus Research

    Science.gov (United States)

    Hogue, Ian B.; Bosse, Jens B.; Engel, Esteban A.; Scherer, Julian; Hu, Jiun-Ruey; del Rio, Tony; Enquist, Lynn W.

    2015-01-01

    In the nearly two decades since the popularization of green fluorescent protein (GFP), fluorescent protein-based methodologies have revolutionized molecular and cell biology, allowing us to literally see biological processes as never before. Naturally, this revolution has extended to virology in general, and to the study of alpha herpesviruses in particular. In this review, we provide a compendium of reported fluorescent protein fusions to herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV) structural proteins, discuss the underappreciated challenges of fluorescent protein-based approaches in the context of a replicating virus, and describe general strategies and best practices for creating new fluorescent fusions. We compare fluorescent protein methods to alternative approaches, and review two instructive examples of the caveats associated with fluorescent protein fusions, including describing several improved fluorescent capsid fusions in PRV. Finally, we present our future perspectives on the types of powerful experiments these tools now offer. PMID:26610544

  1. Genomic study of Argentinean Equid herpesvirus 1 strains Estudio genómico de cepas argentinas de Herpesvirus equino 1

    Directory of Open Access Journals (Sweden)

    Nadia A Fuentealba

    2011-12-01

    Full Text Available Equid herpesvirus 1 (EHV-1 infection has a signifcant economic impact on equine production, causing abortion, respiratory disease, neonatal death and neurological disorders. The identifcation of specifc EHV-1 genes related to virulence and pathogenicity has been the aim of several research groups. The purpose of the present study was to analyze different genomic regions of Argentinean EHV-1 strains and to determine their possible relationship with virulence or clinical signs. Twenty-fve EHV-1 Argentinean isolates recovered from different clinical cases between 1979 and 2007 and two reference strains were amplifed and sequenced. The sequence alignments were carried out using Clustal X version 1.92 and the putative amino acid sequences were deduced using Bio-Edit version 7.05. Minor changes were observed. No changes that could be involved in the different virulence in the mouse model of three EHV-1 Argentinean strains were found. No genetic variants were observed. The genomic regions analyzed are unsuitable for differentiation between abortigenic strains and those isolated from neonatal deaths.La infección por Herpesvirus equino 1 (EHV-1 tiene un signifcativo impacto económico en la producción equina mundial al causar abortos, enfermedad respiratoria, muertes perinatales y desórdenes neurológicos. La identifcación de genes específcos relacionados con la virulencia y patogenicidad de este virus ha sido el propósito de varios grupos de investigación. En este trabajo se analizaron diferentes regiones genómicas de cepas argentinas de EHV-1 para determinar la posible relación entre la estructura genómica y la virulencia o los signos clínicos producidos. Veinticinco cepas aisladas de diferentes casos clínicos observados entre los años 1979 y 2007 y dos cepas de referencia fueron amplifcadas y secuenciadas. El alineamiento de las secuencias se realizó con el programa Clustal X versión 1.92; el programa Bio-Edit versión 7.05 permiti

  2. Next-Generation Sequencing Analysis Reveals Differential Expression Profiles of MiRNA-mRNA Target Pairs in KSHV-Infected Cells.

    Directory of Open Access Journals (Sweden)

    Coralie Viollet

    Full Text Available Kaposi's sarcoma associated herpesvirus (KSHV causes several tumors, including primary effusion lymphoma (PEL and Kaposi's sarcoma (KS. Cellular and viral microRNAs (miRNAs have been shown to play important roles in regulating gene expression. A better knowledge of the miRNA-mediated pathways affected by KSHV infection is therefore important for understanding viral infection and tumor pathogenesis. In this study, we used deep sequencing to analyze miRNA and cellular mRNA expression in a cell line with latent KSHV infection (SLKK as compared to the uninfected SLK line. This approach revealed 153 differentially expressed human miRNAs, eight of which were independently confirmed by qRT-PCR. KSHV infection led to the dysregulation of ~15% of the human miRNA pool and most of these cellular miRNAs were down-regulated, including nearly all members of the 14q32 miRNA cluster, a genomic locus linked to cancer and that is deleted in a number of PEL cell lines. Furthermore, we identified 48 miRNAs that were associated with a total of 1,117 predicted or experimentally validated target mRNAs; of these mRNAs, a majority (73% were inversely correlated to expression changes of their respective miRNAs, suggesting miRNA-mediated silencing mechanisms were involved in a number of these alterations. Several dysregulated miRNA-mRNA pairs may facilitate KSHV infection or tumor formation, such as up-regulated miR-708-5p, associated with a decrease in pro-apoptotic caspase-2 and leukemia inhibitory factor LIF, or down-regulated miR-409-5p, associated with an increase in the p53-inhibitor MDM2. Transfection of miRNA mimics provided further evidence that changes in miRNAs are driving some observed mRNA changes. Using filtered datasets, we also identified several canonical pathways that were significantly enriched in differentially expressed miRNA-mRNA pairs, such as the epithelial-to-mesenchymal transition and the interleukin-8 signaling pathways. Overall, our data

  3. Equid herpesvirus 1 and rhodococcus equi coinfection in a foal with bronchointerstitial pneumonia.

    Science.gov (United States)

    Perez-Ecija, Alejandro; Mendoza, Francisco Javier; Estepa, José Carlos; Bautista, María José; Pérez, José

    2016-10-01

    A 2-month-old foal with septic shock and severe respiratory distress was referred to the Veterinary Teaching Hospital. Due to poor prognosis, the foal was euthanized. Histopathology showed lesions suggestive of Rhodococcus equi infection associated with a diffuse interstitial infiltrate of foamy macrophages and syncytial cells presenting large acidophilic intranuclear inclusion bodies, fibrin exudates and hyaline membranes. Bacteriological examination from lung and respiratory exudates confirmed R. equi infection, whilst immunohistochemistry and PCR yielded a positive result for Equid herpesvirus type 1 (EHV-1). Several etiologies have been proposed for bronchointerstitial pneumonia in foals, although a multifactorial origin for this lesional pattern could be possible. This work is the first one describing a combined EHV-1 and R. equi infection in a foal affected with bronchointerstitial pneumonia.

  4. The bovine herpesvirus type 1 UL3.5 open reading frame encodes a virion structural protein.

    Science.gov (United States)

    Schikora, B; Lu, Z; Kutish, G F; Rock, D; Magyar, G; Letchworth, G J

    1998-01-05

    The bovine herpesvirus type 1 (BHV-1) open reading frame (ORF) UL3.5 is similar to ORFs found in pseudorabies virus, infectious laryngotracheitis virus, equine herpesvirus type 1, and varicella zoster virus, but clearly absent from herpes simplex virus. The published sequence for this ORF predicts a 126-amino-acid (13.2 kDa) protein product with an isoelectric point of 12.3. We confirmed the UL3.5 sequence, expressed the ORF as a glutathione-S-transferase fusion protein, and made rabbit antibodies against the purified fusion protein. The antiserum detected a 13-kDa protein in Western blots of MDBK cells infected with BHV-1, but not with other herpesviruses or uninfected cells. The BHV-1 UL3.5 protein was characterized as a component of the virion envelope or tegument because it was expressed as a late protein, it was present in the cytoplasm but not the nucleus of infected cells, and it was removed from purified virions by detergent extraction.

  5. Prevalence of Mycoplasma agassizii and Chelonian herpesvirus in captive tortoises (Testudo sp.) in the United Kingdom.

    Science.gov (United States)

    Soares, Jorge F; Chalker, Victoria J; Erles, Kerstin; Holtby, Sonya; Waters, Michael; McArthur, Stuart

    2004-03-01

    During the months of April to August in 1999 and 2002, oral swabs were collected from 146 tortoises (Testudo sp.) in private collections in the United Kingdom and tested by polymerase chain reaction (PCR) for the presence of Mycoplasma agassizii and Chelonian herpesvirus (ChHV). The presence of M. agassizii was confirmed by restriction digestion of the PCR product. A 307-bp fragment of the ChHV UL5 homologue gene was sequenced and found to show most similarity to equine herpesvirus type 1. A prevalence of 15.8 and 8.2% was found for M. agassizii and ChHV, respectively. Comparison of the carriage of both M. agassizii and ChHV in different species of tortoises correlated the presence of M. agassizii with Testudo horsfieldii and ChHV with Testudo marginata and Testudo graeca iberia. An association of ChHV with stomatitis was also found. Mixed infections with both agents were detected. The findings further demonstrate this pathogen-tortoise association and the cross transmission of these infections if different tortoise species are housed together.

  6. Herpesvirus pan encodes a functional homologue of BHRF1, the Epstein-Barr virus v-Bcl-2

    Directory of Open Access Journals (Sweden)

    Williams Tracey

    2005-02-01

    Full Text Available Abstract Background Epstein-Barr virus (EBV latently infects about 90% of the human population and is associated with benign and malignant diseases of lymphoid and epithelial origin. BHRF1, an early lytic cycle antigen, is an apoptosis suppressing member of the Bcl-2 family. In vitro studies imply that BHRF1 is dispensable for both virus replication and transformation. However, the fact that BHRF1 is highly conserved not only in all EBV isolates studied to date but also in the analogous viruses Herpesvirus papio and Herpesvirus pan that infect baboons and chimpanzees respectively, suggests BHRF1 may play an important role in vivo. Results Herpesvirus papio BHRF1 has been shown to function in an analogous manner to EBV BHRF1 in response to DNA damaging agents in human keratinocytes. In this study we show that the heterologous expression of the previously uncharacterised Herpesvirus pan BHRF1 in the human Burkitt's lymphoma cell line Ramos-BL provides similar anti-apoptotic functions to that of EBV BHRF1 in response to apoptosis triggered by serum withdrawal, etoposide treatment and ultraviolet (UV radiation. We also map the amino acid changes onto the recently solved structure of the EBV BHRF1 and reveal that these changes are unlikely to alter the 3D structure of the protein. Conclusions These findings show that the functional conservation of BHRF1 extends to a lymphoid background, suggesting that the primate virus proteins interact with cellular proteins that are themselves highly conserved across the higher primates. Further weight is added to this suggestion when we show that the difference in amino acid sequences map to regions on the 3D structure of EBV BHRF1 that are unlikely to change the conformation of the protein.

  7. PCR detection of multiple human herpesvirus DNA in saliva from HIV-infected individuals in Teresina, State of Piauí, Brazil Detecção por PCR do DNA de vários herpesvírus humanos na saliva de indivíduos infectados pelo HIV em Teresina, Estado do Piauí, Brasil

    Directory of Open Access Journals (Sweden)

    Kátia Silene Sousa Carvalho

    2010-12-01

    Full Text Available INTRODUCTION: Human herpesviruses are frequently associated with orofacial diseases in humans (HSV-1, EBV, CMV and HHV-8, some can also cause systemic disease (CMV and HHV-8. The transmission of these viruses occurs by contact with infected secretions, especially saliva. Human immunodeficiency virus infection is associated with an increased risk of HHVs and related diseases. METHODS: This work aimed to detect HSV-1, EBV, CMV and HHV-8 DNA in saliva of HIV-infected patients from Teresina, northeast Brazil, by PCR and compare these findings with age and sex matched HIV-seronegative individuals. RESULTS: No difference in prevalence was verified between HHV detection in the saliva of HIV-seropositive individuals and controls. The individual frequencies of these viruses in these two populations were different. HIV seropositivity correlated positively with the presence of CMV (OR: 18.2, p= 0.00032 and EBV (OR: 3.44, p= 0.0081. No association between CD4 counts and the prevalence of HHVs in the saliva was observed; however, a strong association was determined between seropositivity and the presence of multiple HHV DNAs in saliva (OR: 4.83, p = 0.0028. CONCLUSIONS: These findings suggest the asymptomatic salivary shedding of HHVs is a common event between HIV-seropositive and seronegative individuals from Teresina, Piauí, Brazil, and, especially for HIV-seropositive patients, saliva is a risk factor for the acquisition/transmission of multiple HHVs.INTRODUÇÃO: Alguns herpesvírus humanos são frequentemente associados a doenças orofaciais em humanos. A transmissão destes vírus ocorre através do contato com secreções contaminadas, especialmente a saliva. A infecção pelo vírus da imunodeficiência humana é considerada um fator de risco para a aquisição de HHVs e doenças correlatas. MÉTODOS: Este trabalho teve como objetivo detectar por PCR o DNA de HSV-1, EBV, CMV e HHV-8 na saliva de pacientes infectados com HIV em Teresina, nordeste do

  8. Development and evaluation of an enzyme-linked immunosorbent assay for the serological diagnosis of the bovine herpesvirus 1 infection/ Desenvolvimento e avaliação de um ensaio imunoenzimático para o diagnóstico sorológico da infecção pelo herpesvírus bovino 1

    Directory of Open Access Journals (Sweden)

    Amauri A. Alfieri

    2005-06-01

    Full Text Available An indirect enzyme-linked immunosorbent assay (ELISA using non-purified antigen was developed for serological diagnosis of the bovine herpesvirus 1 (BoHV-1 infection. Some blocking substances to prevent nonspecific reactions were evaluated in different concentrations and combinations. The best results were obtained using 5% skim milk powder as blocking solution and the serum/conjugated buffer added with 10% MDBK cells, 10% equine serum, 1% skim milk powder. The system was evaluated with a collection of positives (n=60 and negatives (n=62 bovine serum previously analyzed by seroneutralization (SN technique for the BoHV-1 antibodies. The indirect ELISA standardized showed 98.3% of sensitivity and 95.2% of specificity (kappa: 0.93 when compared with the SN technique. These results would allow its implantation in the laboratorial routine for the serological diagnosis of the BoHV-1 infection. The use of non-purified antigen in ELISA facilitate the elaboration, reduces the production cost and makes possible the application of these technique in seroepidemiological study of the BoHV-1 infection in cattle herds.Um ensaio imunoenzimático (ELISA indireto utilizando antígeno não purificado foi desenvolvido para o diagnóstico sorológico da infecção pelo herpesvírus bovino 1 (BoHV-1. Nos experimentos de padronização várias substâncias bloqueadoras de reações inespecíficas foram avaliadas em diferentes concentrações e associações. Os melhores resultados foram obtidos utilizando-se leite em pó desnatado (5% como solução de bloqueio e o tampão de diluição dos soros/conjugado acrescido de células MDBK (10%, soro de eqüino (10% e leite em pó desnatado (1%. O sistema foi avaliado frente a uma coleção de soros bovinos positivos (n=60 e negativos (n=62 para o BoHV-1 por meio da técnica de soro-neutralização (SN. O ELISA indireto padronizado nesse estudo, quando comparado com a SN, apresentou 98,3% de sensibilidade e 96,8% de

  9. [First detection of psittacid herpesvirus 2 in Congo African grey parrots (Psittacus erithacus erithacus) associated with pharyngeal papillomas and cloacal inflammation in Germany].

    Science.gov (United States)

    Legler, Marko; Kothe, Ruth; Wohlsein, Peter; Hewicker-Trautwein, Marion; Kummerfeld, Norbert; Rautenschlein, Silke

    2014-01-01

    Congo African Grey Parrots (GP; Psittacus erithacus erithacus) from four different avicultures, presented in the Clinic for Exotic Pets, Reptiles and Birds, University of Veterinary Medicine Hannover, Foundation, showed choanal papillomas or hyperemia of the cloacal mucosa. Histologically, the mucosal choanal proliferations were diagnosed as exophytic papillomas and a mild hyperplasia of the cloacal mucosa with lympho-histiocytic inflammation with no visible inclusion bodies was found. Herpesvirus genome was detected by nested PCR in pooled choanal and cloacal swabs from clinically diseased parrots and healthy contact animals. Sequencing of parts of the herpesvirus DNA-polymerase gene indicated 98-100% homology of the detected herpesviruses with the Psittacid Herpesvirus 2 (PsHV-2). In one aviculture with cloacal inflammation papillomavirus-DNA was concurrently found to a PsHV-2 infection. In addition to the four avicultures with clinical symptoms 25 more flocks of grey parrots, in total 57 Congo-GP and 13 Timneh-GP, were examined for a herpesvirus infection. A total of six out of 29 studied parrot avicultures were tested positive for PsHV-2. The detection of this virus also in flocks of GP, which were bred in Europe, shows the establishment of this infection in the GP population in captivity. As indicated in the literature as well as in our study PsHV-2 could be only detected in Congo-GP, independently if they were kept either alone or in mixed avicultures with amazon and macaw species. These findings suggest that PsHV-2 is adapted to this Psittacus species.

  10. Characterization of field isolates of Suid herpesvirus 1 (Aujeszky's disease virus) as derivatives of attenuated vaccine strains

    DEFF Research Database (Denmark)

    Christensen, Laurids Siig; Medveczky, I.; Strandbygaard, Bertel

    1992-01-01

    Field isolates of suid herpesvirus 1 (Aujeszky's disease virus) from Poland and Hungary were identified by restriction fragment pattern analysis as derivatives of attenuated vaccine strains. The Polish isolates were found to be related to the BUK-TK-900 strain (Suivac A) which is widely used...... as a live vaccine in Poland, and the Hungarian isolates were related to the Bartha K-61 vaccine strain widely used in Hungary. Pigs experimentally infected with derivatives of BUK-TK-900 or BUK-TK-900 itself were found to develop gI-antibodies, while pigs infected with derivatives of Bartha K-61 showed a g...

  11. Prevalence of herpesviruses in gingivitis and chronic periodontitis: relationship to clinical parameters and effect of treatment

    Directory of Open Access Journals (Sweden)

    Rucha Shah

    2016-01-01

    Full Text Available Background: Assess the prevalence of herpesviruses in healthy subjects, gingivitis, and chronic periodontitis patients, to assess the relationship between the prevalence of herpesviruses and periodontal clinical parameters, and to evaluate the effect of phase-I therapy on the level of viral detection. Materials and Methods: Hundred patients consisting of 20 healthy subjects, 40 gingivitis, and 40 chronic periodontitis were included in the study. Clinical parameters recorded included plaque index, gingival index, sulcus bleeding index, probing depth, and clinical attachment level. The gingivitis and chronic periodontitis patients received phase-I periodontal therapy including oral hygiene instructions, full mouth scaling for gingivitis patients and scaling and root planing for chronic periodontitis patients. Gingival crevicular fluid (GCF was collected, and the presence of herpes simplex virus-1 (HSV-1, HSV-2, cytomegalovirus, and Epstein–Barr virus (EBV was analyzed using polymerase chain reaction (PCR. Recording of periodontal parameters as well as GCF collection was performed at baseline and 6 weeks postphase-I therapy. Results: At baseline, the levels of HSV-1 and EBV detection were lower in healthy controls as compared to gingivitis (P < 0.05 and chronic periodontitis cases (P < 0.001. Phase-I therapy led to reduction in the amount of HSV-1 and EBV in gingivitis patients (P < 0.05 and for HSV-1, human cytomegalovirus and EBV in chronic periodontitis patients (P < 0.05 in comparison to baseline. The prevalence of EBV in chronic periodontitis patients was positively associated with increased gingival index, probing depth and loss of clinical attachment (P < 0.05. Conclusions: Higher prevalence of HSV-1 and EBV viruses in GCF of gingivitis and chronic periodontitis suggests a strong association between these viruses and periodontal diseases and periodontal therapy can lead to a reduction in herpesviruses at infected sites.

  12. Detection of Human Herpesviruses (HHVs) in Semen of Human Male Infertile Patients

    Science.gov (United States)

    CHEN, Mo; CAI, Li-Yi; KANNO, Naoko; KATO, Takako; LU, Jinxing; JIN, Fan; WANG, Honghua; SEKITA, Masayo; HIGUCHI, Masashi; YOSHIDA, Saishu; YAKO, Hideji; UEHARU, Hiroki; IZUMI, Shun-Ichiro; KATO, Yukio

    2013-01-01

    Recently we demonstrated an ectopic expression of the human herpesvirus 1 thymidine kinase (HHV1-TK) gene by functioning of an intrinsic endogenous promoter in the transgenic rat (TG-rat), suggesting that HHV1 infection in humans induces expression of the TK gene with the ectopic promoter in the testis and results in accumulation of HHV1-TK protein, triggering male infertility similar to that in the TG-rat. Hence, in this study, we started to investigate a relationship between infection of herpesvirus and human male infertility. Semen was donated by Chinese male infertile patients (153 men, aged 21–49 years) with informed consent, followed by DNA preparation and analysis by PCR and DNA sequencing. Semen volume, sperm number and density, and sperm motility were examined. DNAs of HHV1, HHV4, HHV5 and HHV6 were confirmed by PCR, electrophoresis and DNA sequencing. Finally, virus DNA was identified in 59 patients (39%). The number of carriers was 39 (25%) for HHV1, 6 (4%) for HHV4, 33 (22%) for HHV5 and 3 (2%) for HHV6, respectively. Moreover, double-infection was found in 22 out of 59 specimens (37%), most of which were double-infection of HHV1 and HHV5 (15 out of 22 carriers). Though slight severity was present in some of the carriers, the relationship between virus infection and sperm impairment was not conclusive. Accordingly, it is essential to examine whether the viral HHV1-TK gene is expressed in the testis of the infertile human HHV carrier. PMID:23748714

  13. CYTOKINES AND HERPESVIRUSES IN CHILDREN WITH MULTIPLE SCLEROSIS

    Directory of Open Access Journals (Sweden)

    G. F. Zheleznikova

    2015-01-01

    Full Text Available It was determined earlier (G.P. Ivanova, 2012 that a chronic course of leukoencephalitis in teenagers caused by inadequate response of cytokine system to the combination of two herpesviruses (HV — EBV and HHV-6, leads to the development of multiple sclerosis (MS in 44% of cases. The research objective was to characterize the cytokine response in children with MS with simultaneous screening of the presence of active HV infections. 39 children with the diagnosis “MS” were under observation, 34 of them had relapsing-remitting (RR MS, and 5 children had a progressing course of MS (PMS. Concentration of cytokines IL-1β, IL-6, IL-8, IL-10, IFNα, IFNγ, and IL-4 was identified in blood serum and cerebrospinal liquid (CSF by enzyme-linked immunosorbent assay, HV DNA was revealed by PCR. Cytokine status in children with MS had some differences depending on the phase of the disease, clinical severity of the relapse and the course of MS. The relapse phase of RRMS was associated with the accumulation of IL-8, IL-10, and IL-6 in the blood, and index IFNγ/IL-4 modulations in accordance with the clinical severity of the relapse. A severe aggravation of the disease in children with PMS was accompanied by the increase of IL-8 system response. HV DNA was revealed in 27 patients from 39 ones (69% in blood and in 17 patients (44% in CSF with the predominance of EBV (93%, frequently in combination with HHV-6. During an acute period the frequency of HV DNA identification increased 2–3 times to compare with the remission period. Unlike children with RRMS, a mixed-infection of 3–4 herpes viruses was revealed in all 5 patients with PMS. According to the results summary it is possible to make a conclusion that HV-infection has an important role in MS pathogenesis in teenagers, taking part in the aggravation and progression of the disease by its effect on the cytokine system response. EBV-infection dominates among HV, however the risk of MS development

  14. [Detection of psittacid herpesvirus 1 in Amazon parrots with cloacal papilloma (internal papillomatosis of parrots, IPP) in an aviary of different psittacine species].

    Science.gov (United States)

    Legler, Marko; Kothe, Ruth; Rautenschlein, Silke; Kummerfeld, Norbert

    2008-12-01

    Amazon parrots (Amazona aestiva aestiva;Amazona ochrocephala, n=6) from an aviary with different psittacine species (n=100) were submitted to the Clinic for Pet Animals, Reptiles, Pet- and Wild birds with the clinical picture ofa cloacal prolaps. The cloacal mucosa showed papillomas, and internal papillomatosis of parrots (IPP) was suspected. Hepatomegaly was detected in the radiographs of the clinically diseased amazon parrots, indicating the involvement of the liver in the disease process. The cloacal area was enlarged and showed higher densities in the radiographic picture. One of the amazons had an increased level of bile acids in the plasma supporting the suspicion of the involvement of the liver. Macroscopical and histological investigation of amazons with cloacal prolaps revealed a papillomic adenoma of the cloacal mucosa accompanied by varying degrees of bile duct carcinomas in the liver and adenocarcinomas of the pancreas. Herpesvirus genome was detected by nested PCR in cloacal swabs, liver, and cloacal tissue samples. Sequencing of part of the herpesvirus DNA-polymerase gene indicated 95% homology of the detected herpesviruses with the Psittacid Herpesvirus (PsHV) 1. No cytopathic herpesvirus was recovered from cloacal swabs and liver samples after up to four passages in chicken embryofibroblast cultures. Cloacal and choanal swabs, which were taken from the remaining 47 healthy amazon parrots and 5 Green-winged Macaws (Ara chloroptera) of the aviary, were negative for herpesvirus in the nested PCR. Only birds with cloacal papillomas and the Green-winged Macaws were tested positive for herpesvirus DNA in the nested PCR. We may speculate that there is correlation between the infection with PsHV-1 and the development of cloacal adenomas, adenocarcinomas in the pancreas and carcinomas of the bile ducts. Our results indicate that there may be a higher susceptibility in certain amazon species, while other species may not get infected even if housed in close

  15. Viral infections and bovine mastitis: a review.

    Science.gov (United States)

    Wellenberg, G J; van der Poel, W H M; Van Oirschot, J T

    2002-08-02

    This review deals with the role of viruses in the aetiology of bovine mastitis. Bovine herpesvirus 1, bovine herpesvirus 4, foot-and-mouth disease virus, and parainfluenza 3 virus have been isolated from milk from cows with clinical mastitis. Intramammary inoculations of bovine herpesvirus 1 or parainfluenza 3 virus-induced clinical mastitis, while an intramammary inoculation of foot-and-mouth disease virus resulted in necrosis of the mammary gland. Subclinical mastitis has been induced after a simultaneous intramammary and intranasal inoculation of lactating cows with bovine herpesvirus 4. Bovine leukaemia virus has been detected in mammary tissue of cows with subclinical mastitis, but whether this virus was able to induce bovine mastitis has not been reported. Bovine herpesvirus 2, vaccinia, cowpox, pseudocowpox, vesicular stomatitis, foot-and-mouth disease viruses, and bovine papillomaviruses can play an indirect role in the aetiology of bovine mastitis. These viruses can induce teat lesions, for instance in the ductus papillaris, which result in a reduction of the natural defence mechanisms of the udder and indirectly in bovine mastitis due to bacterial pathogens. Bovine herpesvirus 1, bovine viral diarrhoea virus, bovine immunodeficiency virus, and bovine leukaemia virus infections may play an indirect role in bovine mastitis, due to their immunosuppressive properties. But, more research is warranted to underline their indirect role in bovine mastitis. We conclude that viral infections can play a direct or indirect role in the aetiology of bovine mastitis; therefore, their importance in the aetiology of bovine mastitis and their economical impact needs further attention.

  16. Global distribution of Chelonid fibropapilloma-associated herpesvirus among clinically healthy sea turtles

    DEFF Research Database (Denmark)

    Alfaro Nuñez, Luis Alonso; Bertelsen, Mads Frost; Bojesen, Anders Miki

    2014-01-01

    BackgroundFibropapillomatosis (FP) is a neoplastic disease characterized by cutaneous tumours that has been documented to infect all sea turtle species. Chelonid fibropapilloma-associated herpesvirus (CFPHV) is believed to be the aetiological agent of FP, based principally on consistent PCR...... clinically healthy individual sea turtles; representing four other species were also screened.ResultsCFPHV DNA sequences were obtained from 37/37 (100%) FP exhibiting green turtles, and 45/300 (15%) clinically healthy animals spanning all five species. Although the frequency of infected individuals per...... for two of the markers (UL18 and UL22) in turtles from Turks and Caicos separate to all others, regardless of host species or geographic origin.ConclusionPresence of CFPHV DNA within globally distributed samples for all five species of sea turtle was confirmed. While 100% of the FP exhibiting green...

  17. Promyelocytic leukemia-nuclear body proteins: herpesvirus enemies, accomplices, or both?

    Science.gov (United States)

    Saffert, Ryan T; Kalejta, Robert F

    2008-05-01

    The promyelocytic leukemia (PML) protein gathers other cellular proteins, such as Daxx and Sp100, to form subnuclear structures termed PML-nuclear bodies (PML-NBs) or ND10 domains. Many infecting viral genomes localize to PML-NBs, leading to speculation that these structures may represent the most efficient subnuclear location for viral replication. Conversely, many viral proteins modify or disrupt PML-NBs, suggesting that viral replication may be more efficient in the absence of these structures. Thus, a debate remains as to whether PML-NBs inhibit or enhance viral replication. Here we review and discuss recent data indicating that for herpesviruses, PML-NB proteins inhibit viral replication in cell types where productive, lytic replication occurs, while at the same time may enhance the establishment of lifelong latent infections in other cell types.

  18. [In vitro study of the interactions between bovine herpesvirus 4 and the bovine host cells].

    Science.gov (United States)

    Vanderplasschen, A

    1999-01-01

    This work was devoted to the study of the interactions between bovine herpesvirus 4 (BHV-4) and bovine cells in vitro. It led to the discovery of two interesting properties of BVH-4 replication cycle: first, the cellular receptor heparan sulfate was proven to mediate BVH-4 binding to target cells. This is the first description of the implication of heparan sulfate in the binding process of a gammaherpesvirus. Second, using synchronised cells, the replication of BVH-4 DNA was proven to be dependent on the S phase of the cell cycle. This dependence could explain some properties of BVH-4 infection in vitro and could play an important role in the biology of the infection in vivo. Finally, in order to produce monoclonal antibodies against BVH-4 IE1 and IE2 proteins, the genes coding for these proteins were cloned and expressed in prokaryotic cells.

  19. Prevalence of Bovine Herpesvirus-1 in cattle and buffaloes in Punjab

    Directory of Open Access Journals (Sweden)

    Gurpreet Kaur

    2013-12-01

    Full Text Available Aim: The aim of the present study was to identify the prevalence of Bovine Herpesvirus-1 (BHV-1 in cattle and buffaloes in the Punjab using PCR as diagnostic tool. Materials and Methods: A total of 63 samples (Semen- 57, placental cotyledons-1, vaginal secretions-1, foetal stomach contents-1 and tracheal swabs-3 from cattle and buffaloes were processed for identification of BHV-1 using PCR. Results: From January 2007 to December 2010 (Semen- 57, placental cotyledons-1, vaginal secretions-1, foetal stomach contents-1 and tracheal swabs-3 from cattle and buffaloes were collected. The DNA was extracted from a total of 63 samples and subjected to PCR revealed that none of the sample positive for the BHV-1 infection. Conclusion: From the study it was concluded that the farms screened were free from BHV-1 infection. [Vet World 2013; 6(6.000: 343-345

  20. Selection and characterization of brivudin resistant bovine herpesvirus type 5

    Directory of Open Access Journals (Sweden)

    Mário Celso Sperotto Brum

    2010-03-01

    Full Text Available Bovine herpesvirus type 5 (BoHV-5 is the agent of meningoencephalitis, an important disease of cattle in South America. The neuropathogenesis of BoHV-5 infection is poorly understood and most previous research focused on the role of envelope glicoproteins in neurovirulence. Thymidine kinase (TK is a viral enzyme necessary for virus replication in neurons and, therefore, represents a potential target for virus attenuation. The selection and characterization of BoHV-5 variants resistant to the nucleoside analog brivudin (BVDU, which selects TK-defective viruses is here described. Several BVDU-resistant clones were obtained after multiple passages in tissue culture in the presence of BVDU and one clone (BoHV-5/R-27 was further characterized. The selected clone replicated to similar titers and produced plaques with similar size and morphology to those of wild-type virus (SV507/99. The genetic stability of the resistant virus was demonstrated after ten passages in cell culture in the absence of the drug. Moreover, the drug-resistant virus showed reduced virulence in a rabbit model: virus inoculation in four rabbits did not result in disease, in contrast with 75% morbidity (3/4 and 50% mortality (2/2 among rabbits inoculated with the parental virus. These results demonstrate that BoHV-5 is sensitive to BVDU and that drug-resistant mutants can be readily selected upon BVDU treatment. BVDU-resistant mutants, likely defective in TK, retained their ability to replicate in tissue culture yet were attenuated for rabbits. This strategy to obtain TK-defective BoHV-5 may be useful to study the role of TK in BoHV-5 neuropathogenesis and for vaccine development.

  1. Human Herpesviruses in Chronic Fatigue Syndrome

    Science.gov (United States)

    Wallace, Howard L.; Natelson, Benjamin; Gause, William; Hay, John

    1999-01-01

    We have conducted a double-blind study to assess the possible involvement of the human herpesviruses (HHVs) HHV6, HHV7, Epstein-Barr virus (EBV), and cytomegalovirus in chronic fatigue syndrome (CFS) patients compared to age-, race-, and gender-matched controls. The CFS patient population was composed of rigorously screened civilian and Persian Gulf War veterans meeting the Centers for Disease Control and Prevention’s CFS case definition criteria. Healthy control civilian and veteran populations had no evidence of CFS or any other exclusionary medical or psychiatric condition. Patient peripheral blood mononuclear cells were analyzed by PCR for the presence of these HHVs. Using two-tailed Fisher’s exact test analyses, we were unable to ascertain any statistically significant differences between the CFS patient and control populations in terms of the detection of one or more of these viruses. This observation was upheld when the CFS populations were further stratified with regard to the presence or absence of major axis I psychopathology and patient self-reported gradual versus acute onset of disease. In tandem, we performed serological analyses of serum anti-EBV and anti-HHV6 antibody titers and found no significant differences between the CFS and control patients. PMID:10066657

  2. Subset-directed antiviral treatment of 142 herpesvirus patients with chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    A Martin Lerner

    2010-05-01

    Full Text Available A Martin Lerner1, Safedin Beqaj2, James T Fitzgerald3, Ken Gill4, Carol Gill4, James Edington41Department of Medicine, William Beaumont Hospital, Royal Oak; 2Wayne State University School of Medicine, Detroit; 3Department of Medical Education, University of Michigan Medical School, Ann Arbor, Michigan; 4The Dr A Martin Lerner Chronic Fatigue Syndrome Foundation, Beverly Hills, Michigan, USAPurpose: We hypothesized that chronic fatigue syndrome (CFS may be caused by single or multiple Epstein–Barr virus (EBV, cytomegalovirus (HCMV, or human herpesvirus 6 (HHV6 infection. To determine if CFS life-altering fatigue and associated findings including muscle aches, tachycardia at rest, chest aches, left ventricular dysfunction, syncope, and elevated herpesvirus serum antibody titers are reversed by long-term subset-directed valacyclovir and/or valganciclovir.Patients and methods: Data were collected at physician visits every 4–6 weeks from 142 CFS patients at one clinic from 2001 to 2007. To be included in this study, patients had to be followed for at least six months. The data captured included over 7000 patient visits and over 35,000 fields of information. Severity of fatigue was monitored by a validated Energy Index Point Score® (EIPS®. Baseline and follow-up serum antibody titers to EBV, HCMV, and HHV6, as well as coinfections with Borrelia burgdorferi, Anaplasma phagocytophila, Babesia microti, and antistreptolysin O, 24-hour ECG Holter monitors, 2D echocardiograms, cardiac dynamic studies, symptoms, and toxicity were captured and monitored. International criteria for CFS plus a specifically designed CFS diagnostic panel were used.Results and conclusions: The Group A herpesvirus CFS patients (no coinfections returned to a near-normal to normal life (P = 0.0001. The long-term EIPS value increased (primary endpoint, P < 0.0001 with subset-directed long-term valacyclovir and/or valganciclovir therapy. Secondary endpoints (cardiac, immunologic

  3. Mutations in the C-terminal region affect subcellular localization of crucian carp herpesvirus (CaHV) GPCR.

    Science.gov (United States)

    Wang, Jun; Gui, Lang; Chen, Zong-Yan; Zhang, Qi-Ya

    2016-08-01

    G protein-coupled receptors (GPCRs) are known as seven transmembrane domain receptors and consequently can mediate diverse biological functions via regulation of their subcellular localization. Crucian carp herpesvirus (CaHV) was recently isolated from infected fish with acute gill hemorrhage. CaHV GPCR of 349 amino acids (aa) was identified based on amino acid identity. A series of variants with truncation/deletion/substitution mutation in the C-terminal (aa 315-349) were constructed and expressed in fathead minnow (FHM) cells. The roles of three key C-terminal regions in subcellular localization of CaHV GPCR were determined. Lysine-315 (K-315) directed the aggregation of the protein preferentially at the nuclear side. Predicted N-myristoylation site (GGGWTR, aa 335-340) was responsible for punctate distribution in periplasm or throughout the cytoplasm. Predicted phosphorylation site (SSR, aa 327-329) and GGGWTR together determined the punctate distribution in cytoplasm. Detection of organelles localization by specific markers showed that the protein retaining K-315 colocalized with the Golgi apparatus. These experiments provided first evidence that different mutations of CaHV GPCR C-terminals have different affects on the subcellular localization of fish herpesvirus-encoded GPCRs. The study provided valuable information and new insights into the precise interactions between herpesvirus and fish cells, and could also provide useful targets for antiviral agents in aquaculture.

  4. Exploiting 2A peptides to elicit potent neutralizing antibodies by a multi-subunit herpesvirus glycoprotein complex.

    Science.gov (United States)

    Wussow, Felix; Chiuppesi, Flavia; Meng, Zhuo; Martinez, Joy; Nguyen, Jenny; Barry, Peter A; Diamond, Don J

    2018-01-01

    Neutralizing antibodies (NAb) interfering with glycoprotein complex-mediated virus entry into host cells are thought to contribute to the protection against herpesvirus infection. However, using herpesvirus glycoprotein complexes as vaccine antigens can be complicated by the necessity of expressing multiple subunits simultaneously to allow efficient complex assembly and formation of conformational NAb epitopes. By using a novel bacterial artificial chromosome (BAC) clone of the clinically deployable Modified Vaccinia Ankara (MVA) vector and exploiting ribosomal skipping mediated by 2A peptides, MVA vectors were generated that expressed self-processing subunits of the human cytomegalovirus (HCMV) pentamer complex (PC) composed of gH, gL, UL128, UL130, and UL131A. These MVA vectors expressed 2A-linked HCMV PC subunits that were efficiently cleaved and transported to the cell surface as protein complexes forming conformational neutralizing epitopes. In addition, vaccination of mice by only two immunizations with these MVA vectors resulted in potent HCMV NAb responses that remained stable over a period of at least six months. This method of eliciting NAb by 2A-linked, self-processing HCMV PC subunits could contribute to develop a HCMV vaccine candidate and may serve as a template to facilitate the development of subunit vaccine strategies against other herpesviruses. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Features of Human Herpesvirus-6A and -6B Entry

    Directory of Open Access Journals (Sweden)

    Takahiro Maeki

    2012-01-01

    Full Text Available Human herpesvirus-6 (HHV-6 is a T lymphotropic herpesvirus belonging to the Betaherpesvirinae subfamily. HHV-6 was long classified into variants A and B (HHV-6A and HHV-6B; however, recently, HHV-6A and HHV-6B were reclassified as different species. The process of herpesvirus entry into target cells is complicated, and in the case of HHV-6A and HHV-6B, the detailed mechanism remains to be elucidated, although both viruses are known to enter cells via endocytosis. In this paper, (1 findings about the cellular receptor and its ligand for HHV-6A and HHV-6B are summarized, and (2 a schematic model of HHV-6A’s replication cycle, including its entry, is presented. In addition, (3 reports showing the importance of lipids in both the HHV-6A envelope and target-cell membrane for viral entry are reviewed, and (4 glycoproteins involved in cell fusion are discussed.

  6. First detection of murine herpesvirus 68 in adult Ixodes ricinus ticks.

    Science.gov (United States)

    Kúdelová, Marcela; Jánošová, Monika; Belvončíková, Petra

    2018-01-19

    Murine herpesvirus 68 (MHV-68) is a natural pathogen that infects murid rodents, which serves as hosts for Ixodes ricinus ticks. For the first time, MHV-68 was detected in immature I. ricinus ticks feeding on Lacerta viridis lizards trapped in Slovakia, which supports the idea that ticks can acquire the virus from feeding on infected hosts. The recent discovery of MHV-68 infection and MHV-68 M3 gene transcripts in Dermacentor reticulatus ticks collected in Slovakia also supports this suggestion. Here, for the first time, we report MHV-68 infection, which was detected by nested PCR, in I. ricinus adults collected from the vegetation, and the viral load in infected ticks was determined by quantitative PCR. The viral incidence in ticks was 38.1% (21/55), and the viral load varied from 1.5 × 10 3 to 2.85 × 10 4 genome copies per tick. These results suggest that the I. ricinus ticks became infected with MHV-68 from biting infected rodents; thus, I. ricinus ticks may play a role in the spread of this virus in nature.

  7. Oncogenic Herpesvirus Utilizes Stress-Induced Cell Cycle Checkpoints for Efficient Lytic Replication.

    Directory of Open Access Journals (Sweden)

    Giuseppe Balistreri

    2016-02-01

    Full Text Available Kaposi's sarcoma herpesvirus (KSHV causes Kaposi's sarcoma and certain lymphoproliferative malignancies. Latent infection is established in the majority of tumor cells, whereas lytic replication is reactivated in a small fraction of cells, which is important for both virus spread and disease progression. A siRNA screen for novel regulators of KSHV reactivation identified the E3 ubiquitin ligase MDM2 as a negative regulator of viral reactivation. Depletion of MDM2, a repressor of p53, favored efficient activation of the viral lytic transcription program and viral reactivation. During lytic replication cells activated a p53 response, accumulated DNA damage and arrested at G2-phase. Depletion of p21, a p53 target gene, restored cell cycle progression and thereby impaired the virus reactivation cascade delaying the onset of virus replication induced cytopathic effect. Herpesviruses are known to reactivate in response to different kinds of stress, and our study now highlights the molecular events in the stressed host cell that KSHV has evolved to utilize to ensure efficient viral lytic replication.

  8. Mass mortality associated with koi herpesvirus in wild common carp in Canada.

    Science.gov (United States)

    Garver, Kyle A; Al-Hussinee, Lowia; Hawley, Laura M; Schroeder, Tamara; Edes, Sandra; LePage, Veronique; Contador, Elena; Russell, Spencer; Lord, Stephen; Stevenson, Roselynn M W; Souter, Brian; Wright, Elizabeth; Lumsden, John S

    2010-10-01

    Koi herpesvirus (KHV) was identified as being associated with more than one mortality event affecting common carp in Canada. The first was an extensive mortality event that occurred in 2007 in the Kawartha Lakes region, Ontario, affecting Lakes Scugog and Pigeon. Fish had branchial necrosis and hepatic vasculitis with an equivocal interstitial nephritis. Several fish also had branchial columnaris. Subsequent mortality events occurred in 2008 in additional bodies of water in south-central Ontario, such as Lake Katchewanooka and outside of Ontario in Lake Manitoba, Manitoba. Koi herpesvirus was detected in fish submitted for examination from all of these lakes by polymerase chain reaction (PCR), and sequence of the PCR product revealed 100% homology to KHV strains U and I. Real-time PCR analysis of KHV-infected wild carp revealed viral loads ranging from 6.02×10(1) to 2.4×10(6) copies μg(-1) host DNA. This is the first report of KHV in Canada.

  9. Cloning of Bovine herpesvirus type 1 and type 5 as infectious bacterial artifical chromosomes

    Directory of Open Access Journals (Sweden)

    Ackermann Mathias

    2009-10-01

    Full Text Available Abstract Background Bovine herpesviruses type 1 (BoHV1 and type 5 (BoHV5 are two closely related pathogens of cattle. The identity of the two viruses on the amino acid level averages 82%. Despite their high antigenetic similarities the two pathogens induce distinctive clinical signs. BoHV1 causes respiratory and genital tract infections while BoHV5 leads to severe encephalitis in calves. Findings The viral genomes of BoHV1 and BoHV5 were cloned as infectious bacterial artificial chromosomes (BACs. First, recombinant viruses carrying the genetic elements for propagation in bacteria were generated. Second, DNA from these recombinant viruses were transferred into prokaryotic cells. Third, DNA from these bacteria were transferred into eukaryotic cells. Progeny viruses from BAC transfections showed similar kinetics as their corresponding wild types. Conclusion The two viral genomes of BoHV1 and BoHV5 cloned as BACs are accessible to the tools of bacterial genetics. The ability to easily manipulate the viral genomes on a molecular level in future experiments will lead to a better understanding of the difference in pathogenesis induced by these two closely related bovine herpesviruses.

  10. Crystal structure of the conserved herpesvirus fusion regulator complex gH—gL

    Energy Technology Data Exchange (ETDEWEB)

    Chowdary, Tirumala K.; Cairns, Tina M.; Atanasiu, Doina; Cohen, Gary H.; Eisenberg, Roselyn J.; Heldwein, Ekaterina E. [UPENN; (Tufts-MED)

    2015-02-09

    Herpesviruses, which cause many incurable diseases, infect cells by fusing viral and cellular membranes. Whereas most other enveloped viruses use a single viral catalyst called a fusogen, herpesviruses, inexplicably, require two conserved fusion-machinery components, gB and the heterodimer gH–gL, plus other nonconserved components. gB is a class III viral fusogen, but unlike other members of its class, it does not function alone. We determined the crystal structure of the gH ectodomain bound to gL from herpes simplex virus 2. gH–gL is an unusually tight complex with a unique architecture that, unexpectedly, does not resemble any known viral fusogen. Instead, we propose that gH–gL activates gB for fusion, possibly through direct binding. Formation of a gB–gH–gL complex is critical for fusion and is inhibited by a neutralizing antibody, making the gB–gH–gL interface a promising antiviral target.

  11. Diagnosing herpesvirus infections by real time amplification and rapid culture.

    NARCIS (Netherlands)

    J. Guldemeester; A.D.M.E. Osterhaus (Albert); H.G.M. Niesters (Bert); G.J.J. van Doornum (Gerard)

    2003-01-01

    textabstractProcedures using real-time technique were developed to demonstrate the presence of herpes simplex virus type 1 (HSV-1) and HSV-2, varicella zoster virus (VZV), and cytomegalovirus (CMV) in miscellaneous clinical specimens. The assays were compared to rapid culture using centrifugation

  12. Antiviral therapy in herpes- virus infections

    African Journals Online (AJOL)

    Repro

    pesviruses — herpes simplex virus (HSV), varicella zoster virus (VZV) ... virus infections. Herpesviruses are commonly seen in clinical practice. This article discusses their management in some detail. MAIN TOPIC. 332 C M E June 2003 Vol.21 No.6. After primary infection, ... A typical primary attack lasts about 10 - 14 days.

  13. The impact of herpesviruses on reproductive performance in horses

    NARCIS (Netherlands)

    Schulman, Martin

    2016-01-01

    The thesis addresses the largely-undefined influence of the equine herpesviruses (EHVs) and in particular EHV-1 and -4 on reproductive performance in horse-breeding systems. These pathogens cause significant losses to the international equine breeding industry primarily through infectious abortion

  14. Seroprevalence and risk factors associated with bovine herpesvirus ...

    African Journals Online (AJOL)

    Bovine herpesvirus 1 (BoHV-1) and bovine viral diarrhea virus (BVDV) are well known etiological agents of cattle that produce important economic losses due to reproductive failures and calf mortality, as well as enteric and respiratory disease. Tamaulipas is located northeast of Mexico, an important cattle production and ...

  15. The vaccines for Bovine Herpesvirus Type 1: A review | Zhao ...

    African Journals Online (AJOL)

    Bovine herpesvirus type 1 (BoHV-1) is the pathogen of Infectious Bovine Rhinothracheitis (IBR) disease, causing great economic losses in the livestock industry. Vaccine is a powerful means to control the virus. Here, the review described the currently available knowledge regarding to the advance in the field of BoHV-1 ...

  16. Advances in development and evaluation of bovine herpesvirus 1 vaccines

    NARCIS (Netherlands)

    Oirschot, van J.T.; Kaashoek, M.J.; Rijsewijk, F.A.M.

    1996-01-01

    This review deals with conventional and modern bovine herpesvirus 1 (BHV1) vaccines. Conventional vaccines are widely used to prevent clinical signs of infectious bovine rhinotracheitis. The use of conventional vaccines, however, does not appear to have resulted in reduction of the prevalence of

  17. The genome of herpesvirus papio 2 is closely related to the genomes of human herpes simplex viruses.

    Science.gov (United States)

    Bigger, John E; Martin, David W

    2003-06-01

    Infection of baboons (Papio species) with herpesvirus papio 2 (HVP-2) produces a disease that is clinically similar to herpes simplex virus (HSV-1 and HSV-2) infection of humans. The development of a primate model of simplexvirus infection based on HVP-2 would provide a powerful resource to study virus biology and test vaccine strategies. In order to characterize the molecular biology of HVP-2 and justify further development of this model system we have constructed a physical map of the HVP-2 genome. The results of these studies have identified the presence of 26 reading frames that closely resemble HSV homologues. Furthermore, the HVP-2 genome shares a collinear arrangement with the genome of HSV. These studies further validate the development of the HVP-2 model as a surrogate system to study the biology of HSV infections.

  18. Comprehensive Serology Based on a Peptide ELISA to Assess the Prevalence of Closely Related Equine Herpesviruses in Zoo and Wild Animals.

    Directory of Open Access Journals (Sweden)

    Azza Abdelgawad

    Full Text Available Equine herpesvirus type 1 (EHV-1 causes respiratory disorders and abortion in equids while EHV-1 regularly causes equine herpesvirus myeloencephalopathy (EHM, a stroke-like syndrome following endothelial cell infection in horses. Both EHV-1 and EHV-9 infections of non-definitive hosts often result in neuronal infection and high case fatality rates. Hence, EHV-1 and EHV-9 are somewhat unusual herpesviruses and lack strict host specificity, and the true extent of their host ranges have remained unclear. In order to determine the seroprevalence of EHV-1 and EHV-9, a sensitive and specific peptide-based ELISA was developed and applied to 428 sera from captive and wild animals representing 30 species in 12 families and five orders. Members of the Equidae, Rhinocerotidae and Bovidae were serologically positive for EHV-1 and EHV-9. The prevalence of EHV-1 in the sampled wild zebra populations was significantly higher than in zoos suggesting captivity may reduce exposure to EHV-1. Furthermore, the seroprevalence for EHV-1 was significantly higher than for EHV-9 in zebras. In contrast, EHV-9 antibody prevalence was high in captive and wild African rhinoceros species suggesting that they may serve as a reservoir or natural host for EHV-9. Thus, EHV-1 and EHV-9 have a broad host range favoring African herbivores and may have acquired novel natural hosts in ecosystems where wild equids are common and are in close contact with other perissodactyls.

  19. Synergistic immune responses induced by endogenous retrovirus and herpesvirus antigens result in increased production of inflammatory cytokines in multiple sclerosis patients

    DEFF Research Database (Denmark)

    Brudek, Tomasz; Christensen, Tove; Hansen, Hans Jacob

    2008-01-01

    Human endogenous retroviruses (HERV) and herpesviruses are increasingly associated with the pathogenesis of the neurological inflammatory disease multiple sclerosis (MS). Herpesviruses are capable of HERV activation and simultaneous presence of HERV and herpesvirus antigens have a synergistic...

  20. Vaccination with a gE-negative bovine herpesvirus type 1 vaccine confers insufficient protection to a bovine herpesvirus type 5 challenge

    NARCIS (Netherlands)

    Silva, A.D.; Spilki, F.R.; Franco, A.C.; Esteves, P.A.; Hubner, S.O.; Driemeier, D.; Oliveira, A.P.; Rijsewijk, F.A.M.; Roehe, P.M.

    2006-01-01

    In the present study, cross-protection to bovine herpesvirus type 5 (BHV-5) induced by bovine herpesvirus type 1 (BHV-1) vaccination was examined following inoculation of rabbits and calves with a glycoprotein E (gE)-negative BHV-1 vaccine and subsequent challenge with BHV-5. Rabbits (n = 5) and

  1. Antibody-independent control of gamma-herpesvirus latency via B cell induction of anti-viral T cell responses.

    Directory of Open Access Journals (Sweden)

    Kelly B McClellan

    2006-06-01

    Full Text Available B cells can use antibody-dependent mechanisms to control latent viral infections. It is unknown whether this represents the sole function of B cells during chronic viral infection. We report here that hen egg lysozyme (HEL-specific B cells can contribute to the control of murine gamma-herpesvirus 68 (gammaHV68 latency without producing anti-viral antibody. HEL-specific B cells normalized defects in T cell numbers and proliferation observed in B cell-/- mice during the early phase of gammaHV68 latency. HEL-specific B cells also reversed defects in CD8 and CD4 T cell cytokine production observed in B cell-/- mice, generating CD8 and CD4 T cells necessary for control of latency. Furthermore, HEL-specific B cells were able to present virally encoded antigen to CD8 T cells. Therefore, B cells have antibody independent functions, including antigen presentation, that are important for control of gamma-herpesvirus latency. Exploitation of this property of B cells may allow enhanced vaccine responses to chronic virus infection.

  2. Human herpesvirus 6 major immediate early promoter has strong activity in T cells and is useful for heterologous gene expression

    Directory of Open Access Journals (Sweden)

    Yamanishi Koichi

    2011-01-01

    Full Text Available Abstract Background Human herpesvirus-6 (HHV-6 is a beta-herpesvirus. HHV-6 infects and replicates in T cells. The HHV-6-encoded major immediate early gene (MIE is expressed at the immediate-early infection phase. Human cytomegalovirus major immediate early promoter (CMV MIEp is commercially available for the expression of various heterologous genes. Here we identified the HHV-6 MIE promoter (MIEp and compared its activity with that of CMV MIEp in various cell lines. Methods The HHV-6 MIEp and some HHV-6 MIEp variants were amplified by PCR from HHV-6B strain HST. These fragments and CMV MIEp were subcloned into the pGL-3 luciferase reporter plasmid and subjected to luciferase reporter assay. In addition, to investigate whether the HHV-6 MIEp could be used as the promoter for expression of foreign genes in a recombinant varicella-zoster virus, we inserted HHV-6 MIEp-DsRed expression casette into the varicella-zoster virus genome. Results HHV-6 MIEp showed strong activity in T cells compared with CMV MIEp, and the presence of intron 1 of the MIE gene increased its activity. The NF-κB-binding site, which lies within the R3 repeat, was critical for this activity. Moreover, the HHV-6 MIEp drove heterologous gene expression in recombinant varicella-zoster virus-infected cells. Conclusions These data suggest that HHV-6 MIEp functions more strongly than CMV MIEp in various T-cell lines.

  3. Zebra-borne neurotropic equid herpesvirus 1 meningoencephalitis in a Thomson's gazelle ( Eudorcas thomsonii).

    Science.gov (United States)

    Sakaguchi, Kanako; Kim, Kenneth; Langohr, Ingeborg; Wise, Annabel G; Maes, Roger K; Pirie, Gordon; Yanai, Tokuma; Haridy, Mohie; Gaschen, Lorrie; Del Piero, Fabio

    2017-07-01

    We describe the histopathologic, immunohistochemical, and molecular features of a case of meningoencephalitis in a Thomson's gazelle ( Eudorcas thomsonii) naturally infected with zebra-borne equid herpesvirus 1 (EHV-1) and the implications for the molecular detection of zebra-borne EHV-1. A 4-y-old female Thomson's gazelle was submitted for postmortem examination; no gross abnormalities were noted except for meningeal congestion. Microscopic evaluation demonstrated multifocal nonsuppurative meningoencephalitis with intranuclear eosinophilic and amphophilic inclusion bodies and EHV-9 antigen in neurons. PCR demonstrated the presence of a herpesvirus with a nucleotide sequence 99-100% identical to the corresponding sequences of zebra-borne EHV-1 and of EHV-9 strains. To determine whether EHV-1 or EHV-9 was involved, a PCR with a specific primer set for EHV-9 ORF59/60 was used. The sequence was identical to that of 3 recognized zebra-borne EHV-1 strains and 91% similar to that of EHV-9. This isolate was designated as strain LM2014. The partial glycoprotein G ( gG) gene sequence of LM2014 was also identical to the sequence of 2 zebra-borne EHV-1 strains (T-529 isolated from an onager, 94-137 from a Thomson's gazelle). The histologic lesions of encephalitis and antigen localization in this gazelle indicate prominent viral neurotropism, and lesions were very similar to those seen in EHV-1- and EHV-9-infected non-equid species. Histologic lesions caused by EHV-9 and zebra-borne EHV-1 are therefore indistinguishable.

  4. LATENCIA DEL HERPESVIRUS BOVINO-1: EL PAPEL DE LOS TRANSCRITOS RELACIONADOS CON LATENCIA (RL Bovine Herpesvirus-1: The Role of Latency-Related Genes

    Directory of Open Access Journals (Sweden)

    JULIÁN RUIZ

    Full Text Available El herpesvirus bovino-1 es un virus de distribución mundial causante de graves pérdidas económicas debidas principalmente a la disminución de la eficiencia y en los indicadores de salud y productividad de cualquier hato ganadero infectado. Luego de la infección inicial del tracto respiratorio de los animales, el virus establece un estado de latencia viral en las neuronas sensoriales del ganglio trigémino y en los centros germinales de las tonsilas faríngeas. Periódicamente, el virus es reactivado y excretado en secreciones a través de las cuales puede infectar a otros animales susceptibles. Durante dicho estado de latencia hay disminución dramática de la expresión de genes virales, llevando solo a la expresión de dos transcritos: El RNA codificado por el gen relacionado con latencia (RL y el ORF-E viral. Múltiples estudios demuestran como el RL y el ORF-E están involucrados en la regulación del complejo ciclo de latencia y reactivación de la infección. La presente revisión de literatura se enfocará en describir y analizar los distintos estudios que han llevado a dilucidar el papel jugado por el gen RL y el ORF-E, sus transcritos y sus productos proteicos en el establecimiento, mantenimiento y reactivación de la latencia del HVB-1.Bovine herpesvirus-1 is a world wide spread virus that causes significant economic losses due mainly to a decrease in the efficiency and in the health and productivity indicators in all the infected herds. After a primary infection of the respiratory tract of the animals, the virus establishes viral latency state in sensory neurons of trigeminal ganglia and germinal centers of pharyngeal tonsils. Periodically, the virus reactivates from latency, is shed through secretions, and can infect other susceptible animals. During latency there is a dramatic reduction of viral gen expression; only two transcripts are abundantly expressed: the latency related (LR RNA and the viral ORF-E. Multiple studies have

  5. Herpesvirus telomerase RNA (vTR with a mutated template sequence abrogates herpesvirus-induced lymphomagenesis.

    Directory of Open Access Journals (Sweden)

    Benedikt B Kaufer

    2011-10-01

    Full Text Available Telomerase reverse transcriptase (TERT and telomerase RNA (TR represent the enzymatically active components of telomerase. In the complex, TR provides the template for the addition of telomeric repeats to telomeres, a protective structure at the end of linear chromosomes. Human TR with a mutation in the template region has been previously shown to inhibit proliferation of cancer cells in vitro. In this report, we examined the effects of a mutation in the template of a virus encoded TR (vTR on herpesvirus-induced tumorigenesis in vivo. For this purpose, we used the oncogenic avian herpesvirus Marek's disease virus (MDV as a natural virus-host model for lymphomagenesis. We generated recombinant MDV in which the vTR template sequence was mutated from AATCCCAATC to ATATATATAT (vAU5 by two-step Red-mediated mutagenesis. Recombinant viruses harboring the template mutation replicated with kinetics comparable to parental and revertant viruses in vitro. However, mutation of the vTR template sequence completely abrogated virus-induced tumor formation in vivo, although the virus was able to undergo low-level lytic replication. To confirm that the absence of tumors was dependent on the presence of mutant vTR in the telomerase complex, a second mutation was introduced in vAU5 that targeted the P6.1 stem loop, a conserved region essential for vTR-TERT interaction. Absence of vTR-AU5 from the telomerase complex restored virus-induced lymphoma formation. To test if the attenuated vAU5 could be used as an effective vaccine against MDV, we performed vaccination-challenge studies and determined that vaccination with vAU5 completely protected chickens from lethal challenge with highly virulent MDV. Taken together, our results demonstrate 1 that mutation of the vTR template sequence can completely abrogate virus-induced tumorigenesis, likely by the inhibition of cancer cell proliferation, and 2 that this strategy could be used to generate novel vaccine candidates

  6. Acute phase protein expression during elephant endotheliotropic herpesvirus-1 viremia in Asian elephants (Elephas maximus).

    Science.gov (United States)

    Stanton, Jeffrey J; Cray, Carolyn; Rodriguez, Marilyn; Arheart, Kristopher L; Ling, Paul D; Herron, Alan

    2013-09-01

    Infection of Asian elephants (Elephas maximus) with elephant endotheliotropic herpesvirus (EEHV) can be associated with rapid, lethal hemorrhagic disease and has been documented in elephant herds in human care and in the wild. Recent reports describe real-time quantitative polymerase chain reaction (qPCR) assays used to monitor clinically ill elephants and also to detect subclinical EEHV1 infection in apparently healthy Asian elephants. Acute phase proteins have been demonstrated to increase with a variety of infectious etiologies in domesticated mammals but have not yet been described in elephants. In addition, the immune response of Asian elephants to EEHV1 infection has not been described. In this study, whole blood and trunk wash samples representing repeated measures from eight elephants were examined for the presence of EEHV1 using a qPCR assay. Elephants were classified into groups, as follows: whole blood negative and positive and trunk wash negative and positive. Serum amyloid A (SAA) and haptoglobin (HP) levels were compared between these groups. A significant difference in SAA was observed with nearly a threefold higher mean value during periods of viremia (P=0.011). Higher values of SAA were associated with >10,000 virus genome copies/ml EEHV1 in whole blood. There were no significant differences in HP levels, although some individual animals did exhibit increased levels with infection. These data indicate that an inflammatory process is stimulated during EEHV1 viremia. Acute phase protein quantitation may aid in monitoring the health status of Asian elephants.

  7. Molecular detection of murine herpesvirus 68 in ticks feeding on free-living reptiles.

    Science.gov (United States)

    Ficová, Martina; Betáková, Tatiana; Pančík, Peter; Václav, Radovan; Prokop, Pavol; Halásová, Zuzana; Kúdelová, Marcela

    2011-11-01

    The MHV-68 (designed as Murid herpesvirus 4 (MuHV 4) strain 68) isolated from two rodents, Myodes glareolus and Apodemus flavicollis, is considered as a natural pathogen of free-living murid rodents. Recently, the detection of MHV antibodies in the blood of animals living in the same biotope as MHV-infected mice has suggested that ticks may have a role in the transmission of this pathogen. Ixodes ricinus is one the most abundant tick species in Europe known to transmit multiple pathogens causing human and animal diseases. In this study, nymphs and larvae feeding on 116 individuals of a temperate lizard species-the green lizard Lacerta viridis captured in the Slovak Karst National Park, were examined for MHV-68. The specific sequence of virion glycoprotein 150 was amplified in DNA individually isolated from I. ricinus ticks using single-copy sensitive nested polymerase chain reaction. MHV-68 was detected in ten of 649 nymphs and in five of 150 larvae, respectively. We found that 9.6% of green lizards fed at least one MHV-68-infected immature tick. Occurrence of MHV-68 within all ticks tested was 1.8%. This study is first to show that immature I. ricinus ticks feeding on free-living lizards in a Central European region could be infected with gammaherpesvirus (MHV-68), naturally infecting free-living murid rodents. Our results provide evidence supporting the hypothesis that ticks may play a mediating role in circulation of MHV-68 in nature.

  8. Reactivation of chromosomally integrated human herpesvirus-6 by telomeric circle formation.

    Directory of Open Access Journals (Sweden)

    Bhupesh K Prusty

    Full Text Available More than 95% of the human population is infected with human herpesvirus-6 (HHV-6 during early childhood and maintains latent HHV-6 genomes either in an extra-chromosomal form or as a chromosomally integrated HHV-6 (ciHHV-6. In addition, approximately 1% of humans are born with an inheritable form of ciHHV-6 integrated into the telomeres of chromosomes. Immunosuppression and stress conditions can reactivate latent HHV-6 replication, which is associated with clinical complications and even death. We have previously shown that Chlamydia trachomatis infection reactivates ciHHV-6 and induces the formation of extra-chromosomal viral DNA in ciHHV-6 cells. Here, we propose a model and provide experimental evidence for the mechanism of ciHHV-6 reactivation. Infection with Chlamydia induced a transient shortening of telomeric ends, which subsequently led to increased telomeric circle (t-circle formation and incomplete reconstitution of circular viral genomes containing single viral direct repeat (DR. Correspondingly, short t-circles containing parts of the HHV-6 DR were detected in cells from individuals with genetically inherited ciHHV-6. Furthermore, telomere shortening induced in the absence of Chlamydia infection also caused circularization of ciHHV-6, supporting a t-circle based mechanism for ciHHV-6 reactivation.

  9. Gambaran Histopatologi Insang Ikan Mas di Daerah Endemik Koi Herpesvirus (HISTOPATHOGIC FINDINGS OF GILLS OF THE COMMON CARPS IN THE ENDEMIC AREA OF KOI HERPESVIRUS

    Directory of Open Access Journals (Sweden)

    Raden Wasito

    2013-11-01

    Full Text Available Koi herpesvirus (KHV  is the cause of  a lethal disease that affects common carp (Cyprinus carpio  andkoi (Cyprinus carpio koi. Although, it has been reported that common carps could act as carriers for KHV,their histopathologic findings, especially the gills  have not been identified up to now. In the present study,12  normal, healthy looking common carps including their gills were collected from the endemic area ofKHV in  Sleman, Yogyakarta. All fish were necropsied and the gills were collected and fixed in 10% bufferformalin. Then, the gills were processed histopathologically using routine hematoxyline-eosin stain andexamined under the microscope. Histopathologic examination of the gills exhibited an apparent infiltrationof inflammatory cells, especially lymphocytes. The large oval to polygonal basophilic cells containing largeintranuclear inclusion bodies were also identified. Gills epithelial cells show mass hyperplasia and adhesionwith necrotic changes. Thus, results of this study has led to a reasonable conclusion that KHV infection ispresent in the normal, healthy common carps. One possibility is those KHV  are live viruses (carriers forKHV and might could act as a source of infection is being discussed.

  10. Virus and host-specific differences in oral human herpesvirus shedding kinetics among Ugandan women and children.

    Science.gov (United States)

    Matrajt, Laura; Gantt, Soren; Mayer, Bryan T; Krantz, Elizabeth M; Orem, Jackson; Wald, Anna; Corey, Lawrence; Schiffer, Joshua T; Casper, Corey

    2017-10-12

    Human herpesviruses (HHV) establish lifelong latent infection and are transmitted primarily via shedding at mucosal surfaces. Each HHV causes a unique spectrum of disease depending on the infected individual's age and immunity. We collected weekly oral swabs from young children and mothers in 32 Ugandan households for a median of one year. We characterized kinetics of oral shedding during primary and chronic infection for each virus. Cytomegalovirus (CMV), Epstein-Barr virus (EBV), and HHV-6 were shed at high rates following primary infection. The rate of oral herpes simplex virus (HSV) shedding was lower overall, and children and mothers with chronic HSV infection had lower shedding rates than children with primary infection. CMV shedding rate and viral load were higher in children with primary infection compared to children with chronic infection, and even lower in mothers with chronic infection. HHV-6 shedding rate and viral load were similar between children with primary or chronic infection, but lower in mothers. EBV shedding rate and quantity decreased less dramatically in mothers versus children, with HIV-positive mothers shedding at a higher rate than HIV-negative mothers. Each HHV has a distinct pattern of oral shedding which depends partially on the age and immune status of the host.

  11. A paradigm linking herpesvirus immediate-early gene expression apoptosis and myalgic encephalomyelitis chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    A Martin Lerner

    2011-02-01

    Full Text Available A Martin Lerner1, Safedin Beqaj21Department of Medicine, William Beaumont Hospital, Royal Oak, MI, USA; 2DCL Medical Laboratories, Indianapolis, IN, USAAbstract: There is no accepted science to relate herpesviruses (Epstein–Barr virus [EBV], human cytomegalovirus [HCMV], and human herpesvirus 6 [HHV6] as causes of myalgic encephalomyelitis (ME/chronic fatigue syndrome (CFS. ME/CFS patients have elevated serum immunoglobulin (IgG serum antibody titers to EBV, HCMV, and HHV6, but there is no herpesvirus DNA-emia, herpesvirus antigenemia, or uniformly elevated IgM serum antibody titers to the complete virions. We propose that herpesvirus EBV, HCMV, and HHV6 immediate-early gene expression in ME/CFS patients leads to host cell dysregulation and host cell apoptosis without lytic herpesvirus replication. Specific antiviral nucleosides, which alleviate ME/CFS, namely valacyclovir for EBV ME/CFS and valganciclovir for HCMV/HHV6 ME/CFS, inhibit herpesvirus DNA polymerases and/or thymidine kinase functions, thus inhibiting lytic virus replication. New host cell recruitment thus ceases. In the absence of new herpesvirus, nonpermissive herpesvirus replication stops, and ME/CFS recovery ensues.Keywords: ME/CFS, Epstein–Barr virus (EBV, human cytomegalovirus (HCMV, HHV6, abortive replication

  12. Seroprevalence of Human Herpesvirus Type 2 in a Reference Center for Pregnant Women in Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Lyana Lima

    2017-09-01

    Full Text Available Introduction: Pregnant women stand as an relevant group for research about Human Herpesvirus (HHV-2 infection owing to the risk of mother-to-child transmission. Methods: Women attending in a prenatal care center were tested for HHV-2 IgM and IgG by ELISA. Quantitative PCR test was the chosen method to ascertain viremia. Results: The seroprevalence of IgG and IgM anti-HHV-2 was 20.6% and 2.2% respectively. HHV-2 viremia was found in one pregnant woman with HHV-2 IgM, leading to the assumption of primary infection. Conclusion: The significantly high prevalence of HHV-2 found and the ascertainment of primary infection in a pregnant woman underline the need for constant HHV-2 follow-up and diagnosis in order to avoid sexual transmission.

  13. Use of whole genome deep sequencing to define emerging minority variants in virus envelope genes in herpesvirus treated with novel antimicrobial K21.

    Science.gov (United States)

    Tweedy, Joshua G; Prusty, Bhupesh K; Gompels, Ursula A

    2017-10-01

    New antivirals are required to prevent rising antimicrobial resistance from replication inhibitors. The aim of this study was to analyse the range of emerging mutations in herpesvirus by whole genome deep sequencing. We tested human herpesvirus 6 treatment with novel antiviral K21, where evidence indicated distinct effects on virus envelope proteins. We treated BACmid cloned virus in order to analyse mechanisms and candidate targets for resistance. Illumina based next generation sequencing technology enabled analyses of mutations in 85 genes to depths of 10,000 per base detecting low prevalent minority variants (genes including two envelope glycoproteins. Strikingly, treatment with K21 did not accumulate the passage mutations; instead a high frequency mutation was selected in envelope protein gQ2, part of the gH/gL complex essential for herpesvirus infection. This introduced a stop codon encoding a truncation mutation previously observed in increased virion production. There was reduced detection of the glycoprotein complex in infected cells. This supports a novel pathway for K21 targeting virion envelopes distinct from replication inhibition. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Use of a Recombinant Gamma-2 Herpesvirus Vaccine Vector against Dengue Virus in Rhesus Monkeys.

    Science.gov (United States)

    Bischof, Georg F; Magnani, Diogo M; Ricciardi, Michael; Shin, Young C; Domingues, Aline; Bailey, Varian K; Gonzalez-Nieto, Lucas; Rakasz, Eva G; Watkins, David I; Desrosiers, Ronald C

    2017-08-15

    Research on vaccine approaches that can provide long-term protection against dengue virus infection is needed. Here we describe the construction, immunogenicity, and preliminary information on the protective capacity of recombinant, replication-competent rhesus monkey rhadinovirus (RRV), a persisting herpesvirus. One RRV construct expressed nonstructural protein 5 (NS5), while a second recombinant expressed a soluble variant of the E protein (E85) of dengue virus 2 (DENV2). Four rhesus macaques received a single vaccination with a mixture of both recombinant RRVs and were subsequently challenged 19 weeks later with 1 × 10 5 PFU of DENV2. During the vaccine phase, plasma of all vaccinated monkeys showed neutralizing activity against DENV2. Cellular immune responses against NS5 were also elicited, as evidenced by major histocompatibility complex class I (MHC-I) tetramer staining in the one vaccinated monkey that was Mamu-A*01 positive. Unlike two of two unvaccinated controls, two of the four vaccinated monkeys showed no detectable viral RNA sequences in plasma after challenge. One of these two monkeys also showed no anamnestic increases in antibody levels following challenge and thus appeared to be protected against the acquisition of DENV2 following high-dose challenge. Continued study will be needed to evaluate the performance of herpesviral and other persisting vectors for achieving long-term protection against dengue virus infection. IMPORTANCE Continuing studies of vaccine approaches against dengue virus (DENV) infection are warranted, particularly ones that may provide long-term immunity against all four serotypes. Here we investigated whether recombinant rhesus monkey rhadinovirus (RRV) could be used as a vaccine against DENV2 infection in rhesus monkeys. Upon vaccination, all animals generated antibodies capable of neutralizing DENV2. Two of four vaccinated monkeys showed no detectable viral RNA after subsequent high-dose DENV2 challenge at 19 weeks

  15. Herpesvirus-associated papillomatosis in a green lizard.

    Science.gov (United States)

    Literak, I; Robesova, B; Majlathova, V; Majlath, I; Kulich, P; Fabian, P; Roubalova, E

    2010-01-01

    Papillomatous skin lesions from a green lizard (Lacerta viridis) were examined histologically, using electron microscopy and DNA was isolated from the lesions for herpes-viral DNA detection. Histology confirmed the lesions to be squamous epithelial papillomas. Using electron microscopy, no virus particles were detected. The specific sequence of herpesviral DNA-directed DNA polymerase (EC 2.7.7.7) was amplified using degenerate primers in a nested format. The 235-base-pair (bp) sequence was sequenced and compared with previously published DNA-directed DNA polymerase sequences from various reptile herpesviruses. The sequence from the green lizard showed significant similarity with sequence of fibropapilloma-associated turtle herpesviruses from sea turtles.

  16. A simple method for purification of herpesvirus DNA

    DEFF Research Database (Denmark)

    Christensen, Laurids Siig; Normann, Preben

    1992-01-01

    A rapid and reliable method for purification of herpesvirus DNA from cell cultures is described. The method is based on the isolation of virus particles and/or nucleocapsids by differential centrifugation and exploits the solubilizing and denaturing capabilities of cesium trifluoroacetate during...... isopycnic centrifugation, so that phenol/chloroform extractions can be omitted. The method was used for the purification of DNA from several members of the Alfaherpesvirinae subfamily....

  17. Nuclear Factor kappa B is required for the production of infectious human herpesvirus 8 virions

    Directory of Open Access Journals (Sweden)

    Negin N Blattman

    2014-04-01

    Full Text Available Human herpesvirus 8 (HHV8 infection leads to potent activation of nuclear factor kappa B (NFB in primary and transformed cells. We used recombinant HHV8 (rKSHV.219 expressing green fluorescent protein under the constitutive cellular promoter elongation factor 2 and red fluorescent protein under an early HHV8 lytic gene promoter T1.1, to monitor replication during infection of human foreskin fibroblasts (HF, noting changes in NFB activity. In primary HF, NFB levels do not affect HHV8 ability to establish infection or maintain latency. Furthermore, there was no effect on the percent of cells undergoing reactivation from latency, and there were similar numbers of released and cell associated HHV8 viral particles following reactivation in the presence of inhibitors. Reactivation of HHV8 in latently infected HF in the presence of NFB inhibitors resulted in production of viral particles that did not efficiently establish infection, due to deficiencies in binding and/or entry into normally permissive cells. Exogenous expression of glycoprotein M, an envelope protein involved in viral binding and entry was able to partially overcome the deficiency induced by NFB inhibitors. Our data indicate that in primary cells, NFB is not required for infection, establishment of latency, or entry into the lytic cycle, but is required for the expression of virion associated genes involved in the initial steps of virion infectivity. These studies suggest that strategies to inhibit NFB may prevent HHV8 spread and should be considered as a potential therapeutic target for preventing HHV8 associated diseases.

  18. Characterization of ovine herpesvirus 2-induced malignant catarrhal fever in rabbits.

    Science.gov (United States)

    Li, Hong; Cunha, Cristina W; Gailbreath, Katherine L; O'Toole, Donal; White, Stephen N; Vanderplasschen, Alain; Dewals, Benjamin; Knowles, Donald P; Taus, Naomi S

    2011-06-02

    Malignant catarrhal fever (MCF) is a frequently fatal lymphoproliferative disease syndrome primarily of ruminant species, caused by gammaherpesviruses in the genus Macavirus. Ovine herpesvirus 2 (OvHV-2), carried by sheep, causes sheep-associated MCF worldwide, while Alcelaphine herpesvirus 1 (AlHV-1), carried by wildebeest, causes wildebeest-associated MCF, mainly in Africa. Diseases in rabbits can be induced by both viruses, which are clinically and pathologically similar; however, recent studies revealed different expression of viral genes associated with latency or lytic replication during clinical disease between the two viruses. In this study, we further characterized experimentally induced MCF in rabbits by nebulization with OvHV-2 from sheep nasal secretions to elucidate the course of viral replication, along with in vivo incorporation of 5-Bromo-2'-Deoxyuridine (BrdU), to evaluate lymphoproliferation. All six rabbits nebulized with OvHV-2 developed MCF between 24 and 29 days post infection. OvHV-2 DNA levels in peripheral blood leukocytes (PBL) remained undetectable during the incubation period and increased dramatically a few days before onset of clinical signs. During the clinical stage, we found that predominantly lytic gene expression was detected in PBL and tissues, and both T and B cells were proliferating. The data showed that the viral gene expression profile and lymphoproliferation in rabbits with OvHV-2 induced MCF were different from that in rabbits with AlHV-1 induced MCF, suggesting that OvHV-2 and AlHV-1 may play a different role in MCF pathogenesis. Copyright © 2011. Published by Elsevier B.V.

  19. Perinatal HIV-infection in Sankt Petersburg and Modern Therapy Concomitant Viral Infections

    OpenAIRE

    V. N. Timchenko; E. B. Yastrebova; O. V. Bulina

    2016-01-01

    The study included 338 HIV-infected children (B-23) and 350 children with perinatal contact HIV infection (R-75), consisting on the dispensary in the department of maternal and child the St. Petersburg City AIDS Center. In 32 persons (9.5%) diagnosed with secondary infections. In the structure of viral opportunistic infections (herpesvirus, SARS) amounted to 39.8%, bacterial (bronchitis, tonsillitis, pyoderma, tuberculosis) — 34.8%, fungal and parasitic (candidiasis of the oral mucosa, PCP) —...

  20. Analysis of the shedding of three β-herpesviruses in urine and saliva of children with renal disease.

    Science.gov (United States)

    Yamamoto, Yasuto; Morooka, Masashi; Hashimoto, Shuji; Ihra, Masaru; Yoshikawa, Tetsushi

    2014-03-01

    Cytomegalovirus (CMV), human herpesvirus 6 (HHV-6) and 7 (HHV-7) are important pathogens in immunocompromised patients. To elucidate the kinetics of the three β-herpesviruses in saliva and urine samples were collected serially from children with renal diseases. Twenty children with renal diseases were enrolled in this study. A total of 240 saliva and urine samples were collected monthly from the patients over a 1-year period. Viral DNAs loads were measured by real-time PCR. In 10 CMV seropositive patients CMV DNA was detected rarely in saliva and CMV DNA load was lower than the other two β-herpesviruses DNA loads. All patients were seropositive for HHV-6B and the virus was detected frequently in saliva. Two of 20 patients were HHV-7 seronegative. High copies of viral DNA were detected continuously in saliva of the HHV-7 seropositive patients. Although neither CMV nor HHV-6B DNA load was different among the three renal diseases, HHV-7 DNA load was different among the diseases (P = 0.039). HHV-6B DNA loads were significantly higher in patients with immunosuppressive treatment compared to those without treatment (P = 0.013). Although CMV DNA was detected in urine samples collected from 5 of 10 CMV seropositive patients, HHV-6B and HHV-7 DNA were detected at relatively low frequencies in urine. No remarkable temporal associations between viral DNA excretion and proteinuria or immunosuppressive treatment were demonstrated. The pattern of viral DNA excretion in saliva and urine were different among the three viruses. No temporal correlation was observed between viral infection and renal diseases. © 2013 Wiley Periodicals, Inc.

  1. Human herpesvirus 6B inhibits cell proliferation by a p53-independent pathway

    DEFF Research Database (Denmark)

    Øster, Bodil; Kaspersen, M.D.; Kofod-Olsen, Emil

    2006-01-01

    BACKGROUND: Various forms of cellular stress can activate the tumour suppressor protein p53, an important regulator of cell cycle arrest, apoptosis, and cellular senescence. Cells infected by human herpesvirus 6B (HHV-6B) accumulate aberrant amounts of p53. OBJECTIVES: The aim of this study...... was to investigate the role of p53 accumulation in the HHV-6B-induced cell cycle arrest. STUDY DESIGN: The role of p53 was studied using the p53 inhibitor pifithrin-a, and cells genetically deficient in functional p53 by homologous recombination. RESULTS: In response to HHV-6B infection, epithelial cells were...... arrested in the G1/S phase of the cell cycle concomitant with an aberrant accumulation of p53. However, the known p53-induced mediator of cell cycle arrest, p21, was not upregulated. Approximately 90% of the cells expressed HHV-6B p41, indicative of viral infection. The presence of pifithrin-a, a p53...

  2. Chromatin Modulation of Herpesvirus Lytic Gene Expression: Managing Nucleosome Density and Heterochromatic Histone Modifications

    Directory of Open Access Journals (Sweden)

    Thomas M. Kristie

    2016-03-01

    Full Text Available Like their cellular hosts, herpesviruses are subject to the regulatory impacts of chromatin assembled on their genomes. Upon infection, these viruses are assembled into domains of chromatin with heterochromatic signatures that suppress viral gene expression or euchromatic characteristics that promote gene expression. The organization and modulation of these chromatin domains appear to be intimately linked to the coordinated expression of the different classes of viral genes and thus ultimately play an important role in the progression of productive infection or the establishment and maintenance of viral latency. A recent report from the Knipe laboratory (J. S. Lee, P. Raja, and D. M. Knipe, mBio 7:e02007-15, 2016 contributes to the understanding of the dynamic modulation of chromatin assembled on the herpes simplex virus genome by monitoring the levels of characteristic heterochromatic histone modifications (histone H3 lysine 9 and 27 methylation associated with a model viral early gene during the progression of lytic infection. Additionally, this study builds upon previous observations that the viral immediate-early protein ICP0 plays a role in reducing the levels of heterochromatin associated with the early genes.

  3. A Point Mutation in a Herpesvirus Co-Determines Neuropathogenicity and Viral Shedding

    Directory of Open Access Journals (Sweden)

    Mathias Franz

    2017-01-01

    Full Text Available A point mutation in the DNA polymerase gene in equine herpesvirus type 1 (EHV-1 is one determinant for the development of neurological disease in horses. Three recently conducted infection experiments using domestic horses and ponies failed to detect statistically significant differences in viral shedding between the neuropathogenic and non-neuropathogenic variants. These results were interpreted as suggesting the absence of a consistent selective advantage of the neuropathogenic variant and therefore appeared to be inconsistent with a systematic increase in the prevalence of neuropathogenic strains. To overcome potential problems of low statistical power related to small group sizes in these infection experiments, we integrated raw data from all three experiments into a single statistical analysis. The results of this combined analysis showed that infection with the neuropathogenic EHV-1 variant led to a statistically significant increase in viral shedding. This finding is consistent with the idea that neuropathogenic strains could have a selective advantage and are therefore systematically increasing in prevalence in domestic horse populations. However, further studies are required to determine whether a selective advantage indeed exists for neuropathogenic strains.

  4. Down-regulation of the cyprinid herpesvirus-3 annotated genes in cultured cells maintained at restrictive high temperature.

    Science.gov (United States)

    Ilouze, Maya; Dishon, Arnon; Kotler, Moshe

    2012-10-01

    Cyprinid herpesvirus-3 (CyHV-3) is a member of the Alloherpesviridae, in the order Herpesvirales. It causes a fatal disease in carp and koi fish. The disease is seasonal and is active when water temperatures ranges from 18 to 28 °C. Little is known about how and where the virus is preserved between the permissive seasons. The hallmark of the herpesviruses is their ability to become latent, persisting in the host in an apparently inactive state for varying periods of time. Hence, it could be expected that CyHV-3 enter a latent period. CyHV-3 has so far been shown to persist in fish maintained under restrictive temperatures, while shifting the fish to permissive conditions reactivates the virus. Previously, we demonstrated that cultured cells infected with CyHV-3 at 22 °C and subsequently transferred to a restrictive temperature of 30 °C preserve the virus for 30 days. The present report shows that cultured carp cells maintained and exposed to CyHV-3 at 30 °C are abortively infected; that is, autonomous viral DNA synthesis is hampered and the viral genome is not multiplied. Under these conditions, 91 of the 156 viral annotated ORFs were initially transcribed. These transcripts were down-regulated and gradually shut off over 18 days post-infection, while two viral transcripts encoded by ORFs 114 and 115 were preserved in the infected cells for 18 days p.i. These experiments, carried out in cultured cells, suggest that fish could be infected at a high non-permissive temperature and harbor the viral genome without producing viral particles. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Cyclin-dependent kinase-like function is shared by the beta- and gamma- subset of the conserved herpesvirus protein kinases.

    Directory of Open Access Journals (Sweden)

    Chad V Kuny

    2010-09-01

    Full Text Available The UL97 protein of human cytomegalovirus (HCMV, or HHV-5 (human herpesvirus 5, is a kinase that phosphorylates the cellular retinoblastoma (Rb tumor suppressor and lamin A/C proteins that are also substrates of cellular cyclin-dependent kinases (Cdks. A functional complementation assay has further shown that UL97 has authentic Cdk-like activity. The other seven human herpesviruses each encode a kinase with sequence and positional homology to UL97. These UL97-homologous proteins have been termed the conserved herpesvirus protein kinases (CHPKs to distinguish them from other human herpesvirus-encoded kinases. To determine if the Cdk-like activities of UL97 were shared by all of the CHPKs, we individually expressed epitope-tagged alleles of each protein in human Saos-2 cells to test for Rb phosphorylation, human U-2 OS cells to monitor nuclear lamina disruption and lamin A phosphorylation, or S. cerevisiae cdc28-13 mutant cells to directly assay for Cdk function. We found that the ability to phosphorylate Rb and lamin A, and to disrupt the nuclear lamina, was shared by all CHPKs from the beta- and gamma-herpesvirus families, but not by their alpha-herpesvirus homologs. Similarly, all but one of the beta and gamma CHPKs displayed bona fide Cdk activity in S. cerevisiae, while the alpha proteins did not. Thus, we have identified novel virally-encoded Cdk-like kinases, a nomenclature we abbreviate as v-Cdks. Interestingly, we found that other, non-Cdk-related activities reported for UL97 (dispersion of promyelocytic leukemia protein nuclear bodies (PML-NBs and disruption of cytoplasmic or nuclear aggresomes showed weak conservation among the CHPKs that, in general, did not segregate to specific viral families. Therefore, the genomic and evolutionary conservation of these kinases has not been fully maintained at the functional level. Our data indicate that these related kinases, some of which are targets of approved or developmental antiviral drugs

  6. Investigating the biology of alpha herpesviruses with MS-based proteomics.

    Science.gov (United States)

    Engel, Esteban A; Song, Ren; Koyuncu, Orkide O; Enquist, Lynn W

    2015-06-01

    Viruses are intracellular parasites that can only replicate and spread in cells of susceptible hosts. Alpha herpesviruses (α-HVs) contain double-stranded DNA genomes of at least 120 kb, encoding for 70 or more genes. The viral genome is contained in an icosahedral capsid that is surrounded by a proteinaceous tegument layer and a lipid envelope. Infection starts in epithelial cells and spreads to the peripheral nervous system. In the natural host, α-HVs establish a chronic latent infection that can be reactivated and rarely spread to the CNS. In the nonnatural host, viral infection will in most cases spread to the CNS with often fatal outcome. The host response plays a crucial role in the outcome of viral infection. α-HVs do not encode all the genes required for viral replication and spread. They need a variety of host gene products including RNA polymerase, ribosomes, dynein, and kinesin. As a result, the infected cell is dramatically different from the uninfected cell revealing a complex and dynamic interplay of viral and host components required to complete the virus life cycle. In this review, we describe the pivotal contribution of MS-based proteomics studies over the past 15 years to understand the complicated life cycle and pathogenesis of four α-HV species from the alphaherpesvirinae subfamily: Herpes simplex virus-1, varicella zoster virus, pseudorabies virus and bovine herpes virus-1. We describe the viral proteome dynamics during host infection and the host proteomic response to counteract such pathogens. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Characterization of ovine herpesvirus 2-induced malignant catarrhal fever in rabbits

    Science.gov (United States)

    Malignant catarrhal fever (MCF) is a frequently fatal lymphoproliferative disease syndrome primarily of ruminant species, caused by gammaherpesviruses in the genus Macavirus. Ovine herpesvirus 2 (OvHV-2),carried by sheep,causes sheep-associated MCF worldwide,while Alcelaphine herpesvirus 1 (AlHV-1)...

  8. Standardization of a polymerase chain reaction (Semi Nested–PCR to detect bovine herpesvirus type 1 in aborted fetus and semen from naturally infected cattle/ Otimização da reação em cadeia pela polimerase (Semi Nested-PCR para a detecção do herpesvírus bovino tipo 1 em fragmentos de órgãos fetais e em sêmen de bovinos naturalmente infectados

    Directory of Open Access Journals (Sweden)

    Amauri Alcindo Alfieri

    2003-05-01

    Full Text Available The glycoprotein D gene of bovine herpesvirus type 1 (BHV-1 was detected in clinical samples from naturally infected cattle by semi-nested polymerase chain reaction (SN-PCR. Different protocols were tested to increase the sensitivity and specificity of the technique. An association of DNA extraction methods using phenol/chloroform/isoamyl alcohol followed by silica/guanidine isothiocyanate yield greater concentration and quality of amplified DNA. After optimization of primers and reaction conditions, the genome of BHV-1 (Los Angeles strain was detected by SN-PCR in tissue culture supernatant and artificially infected semen at the 1 and 0.1 TCID50 limit, respectively. When used on clinical specimens from naturally infected cattle, the SN-PCR yield positive results in semen of seropositive bull and in organ fragments of aborted cattle fetus. The SN-PCR was a viable alternative, which was faster, sensitive, specific and less laborious to be used in the routine diagnosis of BHV-1 infection and semen health monitoring.A reação em cadeia pela polimerase (PCR foi empregada para a detecção parcial do gene da glicoproteína D do herpesvírus bovino tipo 1 (BHV-1 em material biológico proveniente de bovinos naturalmente infectados. Para o aumento da sensibilidade e da especificidade da PCR, foram avaliados diferentes protocolos. Para a extração do DNA, a associação dos métodos fenol/clorofórmio/álcool isoamílico e sílica/tiocianato de guanidina, proporcionou a amplificação do DNA em maior concentração e qualidade. Após a otimização dos primers e condições da reação foi possível detectar, por meio da Semi Nested-PCR (SN-PCR, o genoma da estirpe Los Angeles do BHV-1 em sobrenadante de cultura celular, sem processamento prévio, até o limite de 1 TCID50. Em sêmen artificialmente infectado o limite de detecção do BHV-1 foi de 0,1 TCID50. Quando utilizada em material biológico, proveniente de bovinos naturalmente infectados, a SN

  9. Global distribution of Chelonid fibropapilloma-associated herpesvirus among clinically healthy sea turtles.

    Science.gov (United States)

    Alfaro-Núñez, Alonzo; Frost Bertelsen, Mads; Bojesen, Anders Miki; Rasmussen, Isabel; Zepeda-Mendoza, Lisandra; Tange Olsen, Morten; Gilbert, Marcus Thomas Pius

    2014-10-25

    Fibropapillomatosis (FP) is a neoplastic disease characterized by cutaneous tumours that has been documented to infect all sea turtle species. Chelonid fibropapilloma-associated herpesvirus (CFPHV) is believed to be the aetiological agent of FP, based principally on consistent PCR-based detection of herpesvirus DNA sequences from FP tumours. We used a recently described PCR-based assay that targets 3 conserved CFPHV genes, to survey 208 green turtles (Chelonia mydas). This included both FP tumour exhibiting and clinically healthy individuals. An additional 129 globally distributed clinically healthy individual sea turtles; representing four other species were also screened. CFPHV DNA sequences were obtained from 37/37 (100%) FP exhibiting green turtles, and 45/300 (15%) clinically healthy animals spanning all five species. Although the frequency of infected individuals per turtle population varied considerably, most global populations contained at least one CFPHV positive individual, with the exception of various turtle species from the Arabian Gulf, Northern Indian Ocean and Puerto Rico. Haplotype analysis of the different gene markers clustered the CFPHV DNA sequences for two of the markers (UL18 and UL22) in turtles from Turks and Caicos separate to all others, regardless of host species or geographic origin. Presence of CFPHV DNA within globally distributed samples for all five species of sea turtle was confirmed. While 100% of the FP exhibiting green turtles yielded CFPHV sequences, surprisingly, so did 15% of the clinically healthy turtles. We hypothesize that turtle populations with zero (0%) CFPHV frequency may be attributed to possible environmental differences, diet and/or genetic resistance in these individuals. Our results provide first data on the prevalence of CFPHV among seemingly healthy turtles; a factor that may not be directly correlated to the disease incidence, but may suggest of a long-term co-evolutionary latent infection interaction between

  10. Close but Distinct Regions of Human Herpesvirus 8 Latency-Associated Nuclear Antigen 1 Are Responsible for Nuclear Targeting and Binding to Human Mitotic Chromosomes

    Science.gov (United States)

    Piolot, Tristan; Tramier, Marc; Coppey, Maité; Nicolas, Jean-Claude; Marechal, Vincent

    2001-01-01

    Human herpesvirus 8 is associated with all forms of Kaposi's sarcoma, AIDS-associated body cavity-based lymphomas, and some forms of multicentric Castleman's disease. Herpesvirus 8, like other gammaherpesviruses, can establish a latent infection in which viral genomes are stably maintained as multiple episomes. The latent nuclear antigen (LANA or LNAI) may play an essential role in the stable maintenance of latent episomes, notably by interacting concomitantly with the viral genomes and the metaphase chromosomes, thus ensuring an efficient transmission of the neoduplicated episomes to the daughter cells. To identify the regions responsible for its nuclear and subnuclear localization in interphase and mitotic cells, LNAI and various truncated forms were fused to a variant of green fluorescent protein. This enabled their localization and chromosome binding activity to be studied by low-light-level fluorescence microscopy in living HeLa cells. The results demonstrate that nuclear localization of LNAI is due to a unique signal, which maps between amino acids 24 and 30. Interestingly, this nuclear localization signal closely resembles those identified in EBNA1 from Epstein-Barr virus and herpesvirus papio. A region encompassing amino acids 5 to 22 was further proved to mediate the specific interaction of LNA1 with chromatin during interphase and the chromosomes during mitosis. The presence of putative phosphorylation sites in the chromosome binding sites of LNA1 and EBNA1 suggests that their activity may be regulated by specific cellular kinases. PMID:11264383

  11. Infection

    Science.gov (United States)

    2010-09-01

    whether BMPs maintain their osteoinductive capability in infected human wounds. The authors are aware of only one series describing the use of BMP in an...et al. Osteogenic protein-1 induces bone formation in the presence of bacterial infection in a rat intramuscular osteoinduction model. J Orthop Trauma

  12. Presence of herpesvirus DNA in cerebrospinal fluid of patients with tick-borne encephalitis and enteroviral meningoencephalitis.

    Science.gov (United States)

    Labská, Klára; Roubalová, Kateřina; Pícha, Dušan; Marešová, Vilma

    2015-07-01

    Reactivation of HHVs in the CNS due to inflammation has not been well described yet. The primary aim of this study was to investigate the frequency of HHV DNA detection in the cerebrospinal fluid (CSF) of immunocompetent patients with meningoencephalitis of other than HHV origin. The secondary aim of this study was to evaluate the impact of herpesvirus co-infection on the clinical course and patient outcome. Ninety-six patients with clinically and laboratory proven tick-borne encephalitis (TBE) and 77 patients with a confirmed diagnosis of enteroviral meningitis (EVM), along with a control group of 107 patients without evidence of inflammation in the CSF were retrospectively tested by nested PCR for the presence of DNA of the neurotropic herpesviruses HSV1, HSV2, VZV, and HHV6 in the CSF. The clinical course, laboratory tests, antiviral treatment, and neurological complications in a 6-month follow-up were compared between the groups positive or negative for HHV DNA in the CSF. HHV DNA was found in the CSF of 12 (6.9%) patients (6.3% and 7.8% in the TBE and EVM groups, respectively) and in 1 (0.9%) control patient. None of the patients had recent blisters or rash. The clinical course was comparably mild in all patients. No permanent neurological sequelae were observed. Only the CSF total protein level was significantly higher in HHV DNA-positive than in HHV-negative patients. © 2015 Wiley Periodicals, Inc.

  13. Structure of a herpesvirus nuclear egress complex subunit reveals an interaction groove that is essential for viral replication

    Science.gov (United States)

    Leigh, Kendra E.; Sharma, Mayuri; Mansueto, My Sam; Boeszoermenyi, Andras; Filman, David J.; Hogle, James M.; Wagner, Gerhard; Coen, Donald M.; Arthanari, Haribabu

    2015-01-01

    Herpesviruses require a nuclear egress complex (NEC) for efficient transit of nucleocapsids from the nucleus to the cytoplasm. The NEC orchestrates multiple steps during herpesvirus nuclear egress, including disruption of nuclear lamina and particle budding through the inner nuclear membrane. In the important human pathogen human cytomegalovirus (HCMV), this complex consists of nuclear membrane protein UL50, and nucleoplasmic protein UL53, which is recruited to the nuclear membrane through its interaction with UL50. Here, we present an NMR-determined solution-state structure of the murine CMV homolog of UL50 (M50; residues 1–168) with a strikingly intricate protein fold that is matched by no other known protein folds in its entirety. Using NMR methods, we mapped the interaction of M50 with a highly conserved UL53-derived peptide, corresponding to a segment that is required for heterodimerization. The UL53 peptide binding site mapped onto an M50 surface groove, which harbors a large cavity. Point mutations of UL50 residues corresponding to surface residues in the characterized M50 heterodimerization interface substantially decreased UL50–UL53 binding in vitro, eliminated UL50–UL53 colocalization, prevented disruption of nuclear lamina, and halted productive virus replication in HCMV-infected cells. Our results provide detailed structural information on a key protein–protein interaction involved in nuclear egress and suggest that NEC subunit interactions can be an attractive drug target. PMID:26150520

  14. Possible Role of Human Herpesvirus 6 as a Trigger of Autoimmune Disease

    Directory of Open Access Journals (Sweden)

    Francesco Broccolo

    2013-01-01

    Full Text Available Human herpesvirus 6 (HHV-6 infection is common and has a worldwide distribution. Recently, HHV-6A and HHV-6B have been reclassified into two distinct species based on different biological features (genetic, antigenic, and cell tropism and disease associations. A role for HHV-6A/B has been proposed in several autoimmune disorders (AD, including multiple sclerosis (MS, autoimmune connective tissue diseases, and Hashimoto's thyroiditis. The focus of this review is to discuss the above-mentioned AD associated with HHV-6 and the mechanisms proposed for HHV-6A/B-induced autoimmunity. HHV-6A/B could trigger autoimmunity by exposing high amounts of normally sequestered cell antigens, through lysis of infected cells. Another potential trigger is represented by molecular mimicry, with the synthesis of viral proteins that resemble cellular molecules, as a mechanism of immune escape. The virus could also induce aberrant expression of histocompatibility molecules thereby promoting the presentation of autoantigens. CD46-HHV-6A/B interaction is a new attractive mechanism proposed: HHV-6A/B (especially HHV-6A could participate in neuroinflammation in the context of MS by promoting inflammatory processes through CD46 binding. Although HHV-6A/B has the ability to trigger all the above-mentioned mechanisms, more studies are required to fully elucidate the possible role of HHV-6A/B as a trigger of AD.

  15. [Acute liver failure due to human herpesvirus 6 in an infant].

    Science.gov (United States)

    Tronconi, G M; Mariani, B; Pajno, R; Fomasi, M; Cococcioni, L; Biffi, V; Bove, M; Corsin, P; Garbetta, G; Barera, G

    2012-01-01

    We report a case of a 4-months infant with fever in the absence of other specific symptoms that has rapidly and unexpectedly developed acute liver failure (ALF) with coagulopathy and complicated with bone marrow failure without encephalopathy. The main viral infection agents (hepatitis virus A, B, C, Citomegalovirus, Ebstain Barr virus, Parvovirus B19, Adenovirus), drug-induced hepatotoxicity and metabolic disorders associated to ALF were excluded. Quantitative determination of Human Herpesvirus 6 (HHV6) genome was positive with a significant number of copies for mL. A favorable evolution of the clinical symptoms and a progressive hematochemical resolution were obtained. Plasma and Vitamin K were administrated as a support therapy for treating coagulopathy. The present case report and the cases' review from the literature, evidence the importance of always including screening for HHV6 infection in the diagnostic approach to acute onset of liver failure. HHV6 is a common virus in the pediatric population with a greater number of cases of fulminant viral non-A, non-B,