WorldWideScience

Sample records for sarcolemmal katp channel

  1. Increase of ATP-sensitive potassium (KATP channels in the heart of type-1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Chen Zhih-Cherng

    2012-01-01

    Full Text Available Abstract Background An impairment of cardiovascular function in streptozotocin (STZ-diabetic rats has been mentioned within 5 days-to-3 months of induction. ATP-sensitive potassium (KATP channels are expressed on cardiac sarcolemmal membranes. It is highly responsive to metabolic fluctuations and can have effects on cardiac contractility. The present study attempted to clarify the changes of cardiac KATP channels in diabetic disorders. Methods Streptozotocin-induced diabetic rats and neonatal rat cardiomyocytes treated with a high concentration of glucose (a D-glucose concentration of 30 mM was used and cells were cultured for 24 hr were used to examine the effect of hyperglycemia on cardiac function and the expression of KATP channels. KATP channels expression was found to be linked to cardiac tonic dysfunction, and we evaluated the expression levels of KATP channels by Western blot and Northern blot analysis. Results The result shows diazoxide produced a marked reduction of heart rate in control group. Furthermore, the methods of Northern blotting and Western blotting were employed to identify the gene expression of KATP channel. Two subunits of cardiac KATP channel (SUR2A and kir 6.2 were purchased as indicators and showed significantly decreased in both diabetic rats and high glucose treated rat cardiac myocytes. Correction of hyperglycemia by insulin or phlorizin restored the gene expression of cardiac KATP in these diabetic rats. Conclusions Both mRNA and protein expression of cardiac KATP channels are decreased in diabetic rats induced by STZ for 8 weeks. This phenomenon leads to result in desensitization of some KATP channel drugs.

  2. Sarcolemmal cardiac K(ATP) channels as a target for the cardioprotective effects of the fluorine-containing pinacidil analogue, flocalin.

    Science.gov (United States)

    Voitychuk, Oleg I; Strutynskyi, Ruslan B; Yagupolskii, Lev M; Tinker, Andrew; Moibenko, Olexiy O; Shuba, Yaroslav M

    2011-02-01

    A class of drugs known as K(ATP) -channel openers induce cardioprotection. This study examined the effects of the novel K(ATP) -channel opener, the fluorine-containing pinacidil derivative, flocalin, on cardiac-specific K(ATP) -channels, excitability of native cardiac myocytes and on the ischaemic heart. The action of flocalin was investigated on: (i) membrane currents through cardiac-specific K(ATP) -channels (I(KATP) ) formed by K(IR) 6.2/SUR2A heterologously expressed in HEK-293 cells (HEK-293(₆.₂/₂A) ); (ii) excitability and intracellular Ca²(+) ([Ca²(+) ](i) ) transients of cultured rat neonatal cardiac myocytes; and (iii) functional and ultrastructural characteristics of isolated guinea-pig hearts subjected to ischaemia-reperfusion. Flocalin concentration-dependently activated a glibenclamide-sensitive I(KATP) in HEK-293(₆.₂/₂A) cells with an EC₅₀= 8.1 ± 0.4 µM. In cardiac myocytes, flocalin (5 µM) hyperpolarized resting potential by 3-5 mV, markedly shortened action potential duration, reduced the amplitude of [Ca²(+) ](i) transients by 2-3-fold and suppressed contraction. The magnitude and extent of reversibility of these effects depended on the type of cardiac myocytes. In isolated hearts, perfusion with 5 µmol·L⁻¹ flocalin, before inducing ischaemia, facilitated restoration of contraction during reperfusion, decreased the number of extrasystoles, prevented the appearance of coronary vasoconstriction and reduced damage to the cardiac tissue at the ultrastructural level (state of myofibrils, membrane integrity, mitochondrial cristae structure). Flocalin induced potent cardioprotection by activating cardiac-type K(ATP) -channels with all the benefits of the presence of fluorine group in the drug structure: higher lipophilicity, decreased toxicity, resistance to oxidation and thermal degradation, decreased metabolism in the organism and prolonged therapeutic action. © 2011 The Authors. British Journal of Pharmacology © 2011 The

  3. The KATP channel in migraine pathophysiology

    DEFF Research Database (Denmark)

    Al-Karagholi, Mohammad Al-Mahdi; Hansen, Jakob Møller; Severinsen, Johanne

    2017-01-01

    BACKGROUND: To review the distribution and function of KATP channels, describe the use of KATP channels openers in clinical trials and make the case that these channels may play a role in headache and migraine. DISCUSSION: KATP channels are widely present in the trigeminovascular system and play...... an important role in the regulation of tone in cerebral and meningeal arteries. Clinical trials using synthetic KATP channel openers report headache as a prevalent-side effect in non-migraine sufferers, indicating that KATP channel opening may cause headache, possibly due to vascular mechanisms. Whether KATP...... channel openers can provoke migraine in migraine sufferers is not known. CONCLUSION: We suggest that KATP channels may play an important role in migraine pathogenesis and could be a potential novel therapeutic anti-migraine target....

  4. KATP Channels in the Cardiovascular System.

    Science.gov (United States)

    Foster, Monique N; Coetzee, William A

    2016-01-01

    KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease. Copyright © 2016 the American Physiological Society.

  5. Minoxidil opens mitochondrial KATP channels and confers cardioprotection

    Science.gov (United States)

    Sato, Toshiaki; Li, Yulong; Saito, Tomoaki; Nakaya, Haruaki

    2003-01-01

    ATP-sensitive potassium channel in the mitochondrial inner membrane (mitoKATP channel) rather than in the sarcolemma (sarcKATP channel) appears to play an important role in cardioprotection. We examined the effect of minoxidil, a potent antihypertensive agent and hair growth stimulator, on sarcKATP and mitoKATP channels in guinea-pig ventricular myocytes. Minoxidil activated a glybenclamide-sensitive sarcKATP channel current in the whole-cell recording mode with an EC50 of 182.6 μM. Minoxidil reversibly increased the flavoprotein oxidation, an index of mitoKATP channel activity, in a concentration-dependent manner. The EC50 for mitoKATP channel activation was estimated to be 7.3 μM; this value was notably ≈25-fold lower than that for sarcKATP channel activation. Minoxidil (10 μM) significantly attenuated the ouabain-induced increase of mitochondrial Ca2+ concentration, which was measured by loading cells with rhod-2 fluorescence. Furthermore, pretreatment with minoxidil (10 μM) before 20-min no-flow ischaemia significantly improved the recovery of developed tension measured after 60 min of reperfusion in coronary perfused guinea-pig ventricular muscles. These cardioprotective effects of minoxidil were completely abolished by the mitoKATP channel blocker 5-hydroxydecanoate (500 μM). Our results indicate that minoxidil exerts a direct cardioprotective effect on heart muscle cells, an effect mediated by the selective activation of mitoKATP channels. PMID:14691056

  6. Photobiomodulation on KATP Channels of Kir6.2-Transfected HEK-293 Cells

    Directory of Open Access Journals (Sweden)

    Fu-qing Zhong

    2014-01-01

    Full Text Available Background and Objective. ATP-sensitive potassium (KATP channel couples cell metabolism to excitability. To explore role of KATP channels in cellular photobiomodulation, we designed experiment to study effect of low intensity 808 nm laser irradiation on the activity of membrane KATP channel. Study Design/Materials and Methods. Plasmids encoding Kir6.2 was constructed and heterologously expressed in cultured mammalian HEK-293 cells. The patch-clamp and data acquisition systems were used to record KATP channel current before and after irradiation. A laser beam of Ga-As 808 nm at 5 mW/cm2 was used in experiments. A one-way ANOVA test followed by a post hoc Student-Newman-Keuls test was used to assess the statistical differences between data groups. Results. Obvious openings of KATP channels of Kir6.2-transfected HEK-293 cells and excised patches were recorded during and after low intensity 808 nm laser irradiation. Compared with the channels that did not undergo irradiation, open probability, current amplitude, and dwell time of KATP channels after irradiation improved. Conclusions. Low intensity 808 nm laser irradiation may activate membrane KATP channels of Kir6.2-transfected HEK-293 cells and in excised patches.

  7. Pharmacological and molecular comparison of K(ATP) channels in rat basilar and middle cerebral arteries

    DEFF Research Database (Denmark)

    Ploug, Kenneth Beri; Edvinsson, Lars; Olesen, Jes

    2006-01-01

    , we studied the possible involvement of endothelial K(ATP) channels by pressurized arteriography after luminal administration of synthetic K(ATP) channel openers to rat basilar and middle cerebral arteries. Furthermore, we examined the mRNA and protein expression profile of K(ATP) channels to rat...... basilar and middle cerebral arteries using quantitative real-time PCR (Polymerase Chain Reaction) and Western blotting, respectively. In the perfusion system, we found no significant responses after luminal application of three K(ATP) channel openers to rat basilar and middle cerebral arteries...

  8. Physiology and pathophysiology of K(ATP) channels in the pancreas and cardiovascular system: a review.

    Science.gov (United States)

    Seino, Susumu

    2003-01-01

    K(ATP) channels are present in pancreatic and extrapancreatic tissues such as heart and smooth muscle, and display diverse molecular composition. They contain two different structural subunits: an inwardly rectifying potassium channel subunit (Kir6.x) and a sulfonylurea receptor (SURX). Recent studies on genetically engineered Kir6.2 knockout mice have provided a better understanding of the physiological and pathophysiological roles of Kir6.2-containing K(ATP) channels. Kir6.2/SUR1 has a pivotal role in pancreatic insulin secretion. Kir6.2/SUR2A mediates the effects of K(ATP) channels openers on cardiac excitability and contractility and contributes to ischemic preconditioning. However, controversy remains on the physiological properties of the K(ATP) channels in vascular smooth muscle cells. Kir6.1 knockout mice exhibit sudden cardiac death due to cardiac ischemia, indicating that Kir6.1 rather than Kir6.2 is critical in the regulation of vascular tone. This article summarizes current understanding of the physiology and pathophysiology of Kir6.1- and Kir6.2-containing K(ATP) channels.

  9. KATP channels are not essential for pressure-dependent control of renin secretion

    DEFF Research Database (Denmark)

    Jensen, B L; Gambaryan, S; Scholz, H

    1998-01-01

    (IPRK). Cromakalim (0.1-10 muM) stimulated basal renin secretion up to threefold and caused vasorelaxation in the IPRK. Both effects of cromakalim were attenuated by glibenclamide. Cromakalim stimulated renin secretion from isolated juxtaglomerular (JG) cells and from microdissected afferent arterioles......This study aimed to investigate the functional role of ATP-sensitive K+ (KATP) channels in the control of renin secretion by renal perfusion pressure. We studied the effect of openers and blockers of KATP-channels on basal- and low-pressure-induced renin secretion from isolated perfused rat kidneys......, all of which suggests that KATP channel openers stimulate renin secretion at the level of JG cells. A decrease in the perfusion pressure from 13.3 to 9.33 kPa (100 mmHg to 70 mmHg) increased renin secretion twofold, and cromakalim further increased renin secretion. At 5.33 kPa (40 mmHg) renin...

  10. KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin

    Science.gov (United States)

    Grabauskas, Gintautas; Wu, Xiaoyin; Lu, Yuanxu; Heldsinger, Andrea; Song, Il; Zhou, Shi-Yi; Owyang, Chung

    2015-01-01

    Abstract Ghrelin is the only known hunger signal derived from the peripheral tissues. Ghrelin overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. The mechanisms by which ghrelin reduces the sensory signals evoked by anorexigenic hormones, which act via the vagus nerve to stimulate feeding, are unknown. Patch clamp recordings of isolated rat vagal neurons show that ghrelin hyperpolarizes neurons by activating K+ conductance. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition in vitro and in vivo. Patch clamp studies show that ghrelin inhibits currents evoked by leptin and CCK-8, which operate through independent ionic channels. The inhibitory actions of ghrelin were abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3-kinase (PI3K) or extracellular signal-regulated kinase 1 and 2 (Erk1/2) small interfering RNA. In vivo gene silencing of PI3K and Erk1/2 in the nodose ganglia prevented ghrelin inhibition of leptin- or CCK-8-evoked vagal firing. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a–Gαi–PI3K–Erk1/2–KATP pathway. The resulting hyperpolarization renders the neurons less responsive to signals evoked by anorexigenic hormones. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways. Key points Ghrelin, a hunger signalling peptide derived from the peripheral tissues, overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. Using in vivo and in vitro electrophysiological

  11. K-ATP channel expression and pharmacological in vivo and in vitro studies of the K-ATP channel blocker PNU-37883A in rat middle meningeal arteries

    DEFF Research Database (Denmark)

    Ploug, K.B.; Boni, L.J.; Baun, M.

    2008-01-01

    closed cranial window model and in myograph baths, respectively. Key results: Expression studies indicate that inwardly rectifying K+ (Kir)6.1/sulphonylurea receptor (SUR) 2B is the major K-ATP channel complex in rat MMA. PNU-37883A (0.5 mg kg(-1)) significantly inhibited the in vivo dilatory effect...... of levcromakalim (0.025 mg kg(-1)), pinacidil (0.38 mg kg(-1)) and P-1075 (0.016 mg kg(-1)) in rat MMA. In vitro PNU-37883A significantly inhibited the dilatory responses of the three K-ATP channel openers in rat MMA at 10(-7) and 3 x 10(-7) M. Conclusions and implications: We suggest that Kir6.1/SUR2B...

  12. Selective block of KATP channels: why the anti-diabetic sulphonylureas and rosiglitazone have more in common than we thought

    Science.gov (United States)

    Dart, Caroline

    2012-01-01

    Rosiglitazone, the thiazolidinedione class anti-diabetic withdrawn from Europe in 2010 amid reports of adverse cardiovascular effects, is revealed by Yu et al. in this issue of the British Journal of Pharmacology to be a selective blocker of ATP-sensitive potassium (KATP) channels. This seems little cause for excitement given that the closure of pancreatic KATP channels is integral to insulin secretion; and sulphonylureas, which inhibit KATP channels, are widely used to treat type II diabetes. However, rosiglitazone, whose primary targets are nuclear transcription factors that regulate genes involved in lipid metabolism, blocks KATP channels by a novel mechanism different to that of the sulphonylureas and has a worrying preference for blood flow–regulating vascular KATP channels. Identification of a new molecule that modulates KATP channel gating will not only tell us more about how these complex metabolic sensors work but also raises questions as to whether rosiglitazone suppresses the cardiovascular system's ability to cope with metabolic stress – a claim that has dogged the sulphonylureas for many years. LINKED ARTICLE This article is a commentary on Yu et al., pp. 26–36 of this issue. To view this paper visit http://dx.doi.org/10.1111/j.1476-5381.2012.01934.x PMID:22506686

  13. Functional K(ATP) channels in the rat retinal microvasculature: topographical distribution, redox regulation, spermine modulation and diabetic alteration.

    Science.gov (United States)

    Ishizaki, Eisuke; Fukumoto, Masanori; Puro, Donald G

    2009-05-15

    The essential task of the circulatory system is to match blood flow to local metabolic demand. However, much remains to be learned about this process. To better understand how local perfusion is regulated, we focused on the functional organization of the retinal microvasculature, which is particularly well adapted for the local control of perfusion. Here, we assessed the distribution and regulation of functional K(ATP) channels whose activation mediates the hyperpolarization induced by adenosine. Using microvascular complexes freshly isolated from the rat retina, we found a topographical heterogeneity in the distribution of functional K(ATP) channels; capillaries generate most of the K(ATP) current. The initiation of K(ATP)-induced responses in the capillaries supports the concept that the regulation of retinal perfusion is highly decentralized. Additional study revealed that microvascular K(ATP) channels are redox sensitive, with oxidants increasing their activity. Furthermore, the oxidant-mediated activation of these channels is driven by the polyamine spermine, whose catabolism produces oxidants. In addition, our observation that spermine-dependent oxidation occurs predominately in the capillaries accounts for why they generate most of the K(ATP) current detected in retinal microvascular complexes. Here, we also analysed retinal microvessels of streptozotocin-injected rats. We found that soon after the onset of diabetes, an increase in spermine-dependent oxidation at proximal microvascular sites boosts their K(ATP) current and thereby virtually eliminates the topographical heterogeneity of functional K(ATP) channels. We conclude that spermine-dependent oxidation is a previously unrecognized mechanism by which this polyamine modulates ion channels; in addition to a physiological role, spermine-dependent oxidation may also contribute to microvascular dysfunction in the diabetic retina.

  14. Dystrophin is required for the normal function of the cardio-protective K(ATP channel in cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Laura Graciotti

    Full Text Available Duchenne and Becker muscular dystrophy patients often develop a cardiomyopathy for which the pathogenesis is still unknown. We have employed the murine animal model of Duchenne muscular dystrophy (mdx, which develops a cardiomyopathy that includes some characteristics of the human disease, to study the molecular basis of this pathology. Here we show that the mdx mouse heart has defects consistent with alteration in compounds that regulate energy homeostasis including a marked decrease in creatine-phosphate (PC. In addition, the mdx heart is more susceptible to anoxia than controls. Since the cardio-protective ATP sensitive potassium channel (K(ATP complex and PC have been shown to interact we investigated whether deficits in PC levels correlate with other molecular events including K(ATP ion channel complex presence, its functionality and interaction with dystrophin. We found that this channel complex is present in the dystrophic cardiac cell membrane but its ability to sense a drop in the intracellular ATP concentration and consequently open is compromised by the absence of dystrophin. We further demonstrate that the creatine kinase muscle isoform (CKm is displaced from the plasma membrane of the mdx cardiac cells. Considering that CKm is a determinant of K(ATP channel complex function we hypothesize that dystrophin acts as a scaffolding protein organizing the K(ATP channel complex and the enzymes necessary for its correct functioning. Therefore, the lack of proper functioning of the cardio-protective K(ATP system in the mdx cardiomyocytes may be part of the mechanism contributing to development of cardiac disease in dystrophic patients.

  15. Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels.

    Science.gov (United States)

    Shyng, S L; Cukras, C A; Harwood, J; Nichols, C G

    2000-11-01

    Phosphatidylinositol 4,5-bisphosphate (PIP(2)) activates K(ATP) and other inward rectifier (Kir) channels. To determine residues important for PIP(2) regulation, we have systematically mutated each positive charge in the COOH terminus of Kir6.2 to alanine. The effects of these mutations on channel function were examined using (86)Rb efflux assays on intact cells and inside-out patch-clamp methods. Both methods identify essentially the same basic residues in two narrow regions (176-222 and 301-314) in the COOH terminus that are important for the maintenance of channel function and interaction with PIP(2). Only one residue (R201A) simultaneously affected ATP and PIP(2) sensitivity, which is consistent with the notion that these ligands, while functionally competitive, are unlikely to bind to identical sites. Strikingly, none of 13 basic residues in the terminal portion (residues 315-390) of the COOH terminus affected channel function when neutralized. The data help to define the structural requirements for PIP(2) sensitivity of K(ATP) channels. Moreover, the regions and residues defined in this study parallel those uncovered in recent studies of PIP(2) sensitivity in other inward rectifier channels, indicating a common structural basis for PIP(2) regulation.

  16. Disruption of ATP-sensitive potassium channel function in skeletal muscles promotes production and secretion of musclin

    International Nuclear Information System (INIS)

    Sierra, Ana; Subbotina, Ekaterina; Zhu, Zhiyong; Gao, Zhan; Koganti, Siva Rama Krishna; Coetzee, William A.; Goldhamer, David J.; Hodgson-Zingman, Denice M.; Zingman, Leonid V.

    2016-01-01

    Sarcolemmal ATP-sensitive potassium (K_A_T_P) channels control skeletal muscle energy use through their ability to adjust membrane excitability and related cell functions in accordance with cellular metabolic status. Mice with disrupted skeletal muscle K_A_T_P channels exhibit reduced adipocyte size and increased fatty acid release into the circulation. As yet, the molecular mechanisms underlying this link between skeletal muscle K_A_T_P channel function and adipose mobilization have not been established. Here, we demonstrate that skeletal muscle-specific disruption of K_A_T_P channel function in transgenic (TG) mice promotes production and secretion of musclin. Musclin is a myokine with high homology to atrial natriuretic peptide (ANP) that enhances ANP signaling by competing for elimination. Augmented musclin production in TG mice is driven by a molecular cascade resulting in enhanced acetylation and nuclear exclusion of the transcription factor forkhead box O1 (FOXO1) – an inhibitor of transcription of the musclin encoding gene. Musclin production/secretion in TG is paired with increased mobilization of fatty acids and a clear trend toward increased circulating ANP, an activator of lipolysis. These data establish K_A_T_P channel-dependent musclin production as a potential mechanistic link coupling “local” skeletal muscle energy consumption with mobilization of bodily resources from fat. Understanding such mechanisms is an important step toward designing interventions to manage metabolic disorders including those related to excess body fat and associated co-morbidities. - Highlights: • ATP-sensitive K"+ channels regulate musclin production by skeletal muscles. • Lipolytic ANP signaling is promoted by augmented skeletal muscle musclin production. • Skeletal muscle musclin transcription is promoted by a CaMKII/HDAC/FOXO1 pathway. • Musclin links adipose mobilization to energy use in K_A_T_P channel deficient skeletal muscle.

  17. Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels.

    Science.gov (United States)

    Ma, Weiyuan; Berg, Jim; Yellen, Gary

    2007-04-04

    A low-carbohydrate ketogenic diet remains one of the most effective (but mysterious) treatments for severe pharmacoresistant epilepsy. We have tested for an acute effect of physiological ketone bodies on neuronal firing rates and excitability, to discover possible therapeutic mechanisms of the ketogenic diet. Physiological concentrations of ketone bodies (beta-hydroxybutyrate or acetoacetate) reduced the spontaneous firing rate of neurons in slices from rat or mouse substantia nigra pars reticulata. This region is thought to act as a "seizure gate," controlling seizure generalization. Consistent with an anticonvulsant role, the ketone body effect is larger for cells that fire more rapidly. The effect of ketone bodies was abolished by eliminating the metabolically sensitive K(ATP) channels pharmacologically or by gene knock-out. We propose that ketone bodies or glycolytic restriction treat epilepsy by augmenting a natural activity-limiting function served by K(ATP) channels in neurons.

  18. Metabolism regulates the spontaneous firing of substantia nigra pars reticulata neurons via KATP and nonselective cation channels.

    Science.gov (United States)

    Lutas, Andrew; Birnbaumer, Lutz; Yellen, Gary

    2014-12-03

    Neurons use glucose to fuel glycolysis and provide substrates for mitochondrial respiration, but neurons can also use alternative fuels that bypass glycolysis and feed directly into mitochondria. To determine whether neuronal pacemaking depends on active glucose metabolism, we switched the metabolic fuel from glucose to alternative fuels, lactate or β-hydroxybutyrate, while monitoring the spontaneous firing of GABAergic neurons in mouse substantia nigra pars reticulata (SNr) brain slices. We found that alternative fuels, in the absence of glucose, sustained SNr spontaneous firing at basal rates, but glycolysis may still be supported by glycogen in the absence of glucose. To prevent any glycogen-fueled glycolysis, we directly inhibited glycolysis using either 2-deoxyglucose or iodoacetic acid. Inhibiting glycolysis in the presence of alternative fuels lowered SNr firing to a slower sustained firing rate. Surprisingly, we found that the decrease in SNr firing was not mediated by ATP-sensitive potassium (KATP) channel activity, but if we lowered the perfusion flow rate or omitted the alternative fuel, KATP channels were activated and could silence SNr firing. The KATP-independent slowing of SNr firing that occurred with glycolytic inhibition in the presence of alternative fuels was consistent with a decrease in a nonselective cationic conductance. Although mitochondrial metabolism alone can prevent severe energy deprivation and KATP channel activation in SNr neurons, active glucose metabolism appears important for keeping open a class of ion channels that is crucial for the high spontaneous firing rate of SNr neurons. Copyright © 2014 the authors 0270-6474/14/3416336-12$15.00/0.

  19. Possible role of opioids and KATP channels in neuroprotective effect of postconditioning in mice.

    Science.gov (United States)

    Pateliya, Bharat Bhai; Singh, Nirmal; Jaggi, Amteshwar Singh

    2008-09-01

    The present study was designed to investigate the possible role of opioids and K(ATP) channels in ischemic postconditioning-induced reversal of global cerebral ischemia and reperfusion (I/R) induced neuronal injury. Mice were subjected to global ischemia by bilateral carotid artery occlusion for 10 min followed by reperfusion for 24 h, to produce neuronal injury. Ischemic postconditioning was induced by three episodes of carotid artery occlusion and reperfusion of 10 s each, immediately after global ischemia. Morphine postconditioning was induced by administration of morphine (5 mg/kg i.v.), 5 min prior to reperfusion. Naloxone (5 mg/kg i.v.), opioid receptor antagonist, and glibenclamide (5 mg/kg i.v.), K(ATP) channel blocker were administered 10 min before global ischemia. Extent of cerebral injury was assessed by measuring cerebral infarct size using triphenyl tetrazolium chloride (TTC) staining. Short-term memory was evaluated using the elevated plus maze test, while degree of motor incoordination was evaluated using inclined beam-walking, rota-rod and lateral push tests. Bilateral carotid artery occlusion followed by reperfusion resulted in significant increase in infarct size, impairment in short-term memory and motor co-ordination. Ischemic/morphine postconditioning significantly attenuated I/R induced neuronal injury and behavioural alterations. Pretreatments with naloxone and glibenclamide attenuated the neuroprotective effects of ischemic/morphine postconditioning. It may be concluded that ischemic/morphine postconditioning protects I/R induced cerebral injury via activating opioid receptor and K(ATP) channel opening.

  20. High-dose fasudil preserves postconditioning against myocardial infarction under hyperglycemia in rats: role of mitochondrial KATP channels

    Directory of Open Access Journals (Sweden)

    Ichinomiya Taiga

    2012-03-01

    Full Text Available Abstract Background The current study was carried out to determine whether fasudil hydrochloride (fasudil, a Rho-kinase inhibitor, has myocardial postconditioning (PostC activity under hyperglycemia as well as normoglycemia, and if so, whether the effects could be mediated by mitochondrial ATP-sensitive potassium (m-KATP channels. Methods Male Sprague-Dawley rats were anesthetized with sodium pentobarbital. After opening the chest, all rats underwent 30-min coronary artery occlusion followed by 2-h reperfusion. The rats received low-dose (0.15 mg/kg or high-dose (0.5 mg/kg fasudil or diazoxide, an m-KATP channel opener, at 10 mg/kg, just before reperfusion under normoglycemic or hyperglycemic conditions. In another group, rats received 5-hydroxydecanoic acid (5HD, an m-KATP channel blocker, at 10 mg/kg, before high-dose fasudil. Myocardial infarct size was expressed as a percentage of area at risk (AAR. Results Under normoglycemia, low-dose and high-dose fasudil and diazoxide reduced myocardial infarct size (23 ± 8%, 21 ± 9% and 21 ± 10% of AAR, respectively compared with that in the control (42 ± 7%. Under hyperglycemia, low-dose fasudil (40 ± 11% and diazoxide (44 ± 14% could not exert this beneficial effect, but high-dose fasudil reduced myocardial infarct size in the same manner as under normoglycemia (21 ± 13%. 5HD prevented fasudil-induced reduction of myocardial infarct size (42 ± 13%. Conclusion Fasudil induces PostC against myocardial infarction via activation of m-KATP channels in the rat. Although hyperglycemia attenuates the PostC, high-dose fasudil can restore cardioprotection.

  1. Sar1-GTPase-dependent ER exit of KATP channels revealed by a mutation causing congenital hyperinsulinism

    DEFF Research Database (Denmark)

    Taneja, Tarvinder K; Mankouri, Jamel; Karnik, Rucha

    2009-01-01

    The ATP-sensitive potassium (K(ATP)) channel controls insulin secretion by coupling glucose metabolism to excitability of the pancreatic beta-cell membrane. The channel comprises four subunits each of Kir6.2 and the sulphonylurea receptor (SUR1), encoded by KCNJ11 and ABCC8, respectively. Mutatio...

  2. Cellular targets of inhalational anaesthetic- and opioid receptor ...

    African Journals Online (AJOL)

    Secondly, the cardioprotective effects occur independently of the ... cardioprotection take place and highlights the cellular ... Activation of sarcolemmal KATP channels hyperpolarizes cells, ..... respiration and its supramolecular organization.

  3. Reactive Oxygen Species and Mitochondrial KATP Channels Mediate Helium-Induced Preconditioning Against Myocardial Infarction In Vivo

    Science.gov (United States)

    Pagel, Paul S.; Krolikowski, John G.; Pratt, Phillip F.; Shim, Yon Hee; Amour, Julien; Warltier, David C.; Weihrauch, Dorothee

    2008-01-01

    Objectives Helium produces preconditioning by activating prosurvival kinases, but the roles of reactive oxygen species (ROS) or mitochondrial KATP channels in this process are unknown. We tested the hypothesis that ROS and mitochondrial KATP channels mediate helium-induced preconditioning in vivo. Design Randomized, prospective study. Setting University research laboratory. Participants Male New Zealand white rabbits. Interventions Rabbits (n=64) were instrumented for measurement of systemic hemodynamics and subjected to a 30 min left anterior descending coronary artery (LAD) occlusion and 3 h reperfusion. In separate experimental groups, rabbits (n=7 or 8 per group) were randomly assigned to receive 0.9% saline (control) or three cycles of 70% helium-30% oxygen administered for 5 min interspersed with 5 min of an air-oxygen mixture before LAD occlusion with or without the ROS scavengers N-acetylcysteine (NAC; 150 mg/kg) or N-2-mercaptoproprionyl glycine (2-MPG; 75 mg/kg), or the mitochondrial KATP antagonist 5-hydroxydecanoate (5-HD; 5 mg/kg). Statistical analysis of data was performed with analysis of variance for repeated measures followed by Bonferroni's modification of Student's t test. Measurements and Main Results Myocardial infarct size was determined using triphenyltetrazolium chloride staining and presented as a percentage of the left ventricular area at risk. Helium significantly (P<0.05) reduced infarct size (23±4% of the area at risk; mean±SD) compared with control (46±3%). NAC, 2-MPG, and 5-HD did not affect irreversible ischemic injury when administered alone (49±5, 45±6, and 45±3%), but these drugs blocked reductions in infarct size produced by helium (45±4, 45±2, and 44±3%). Conclusions The results suggest that ROS and mitochondrial KATP channels mediate helium-induced preconditioning in vivo. PMID:18662630

  4. Lupanine Improves Glucose Homeostasis by Influencing KATP Channels and Insulin Gene Expression

    Directory of Open Access Journals (Sweden)

    Mats Wiedemann

    2015-10-01

    Full Text Available The glucose-lowering effects of lupin seeds involve the combined action of several components. The present study investigates the influence of one of the main quinolizidine alkaloids, lupanine, on pancreatic beta cells and in an animal model of type-2 diabetes mellitus. In vitro studies were performed with insulin-secreting INS-1E cells or islets of C57BL/6 mice. In the in vivo experiments, hyperglycemia was induced in rats by injecting streptozotocin (65 mg/kg body weight. In the presence of 15 mmol/L glucose, insulin secretion was significantly elevated by 0.5 mmol/L lupanine, whereas the alkaloid did not stimulate insulin release with lower glucose concentrations. In islets treated with l-arginine, the potentiating effect of lupanine already occurred at 8 mmol/L glucose. Lupanine increased the expression of the Ins-1 gene. The potentiating effect on secretion was correlated to membrane depolarization and an increase in the frequency of Ca2+ action potentials. Determination of the current through ATP-dependent K+ channels (KATP channels revealed that lupanine directly inhibited the channel. The effect was dose-dependent but, even with a high lupanine concentration of 1 mmol/L or after a prolonged exposure time (12 h, the KATP channel block was incomplete. Oral administration of lupanine did not induce hypoglycemia. By contrast, lupanine improved glycemic control in response to an oral glucose tolerance test in streptozotocin-diabetic rats. In summary, lupanine acts as a positive modulator of insulin release obviously without a risk for hypoglycemic episodes.

  5. Sevoflurane postconditioning against cerebral ischemic neuronal injury is abolished in diet-induced obesity: role of brain mitochondrial KATP channels.

    Science.gov (United States)

    Yang, Zecheng; Chen, Yunbo; Zhang, Yan; Jiang, Yi; Fang, Xuedong; Xu, Jingwei

    2014-03-01

    Obesity is associated with increased infarct volumes and adverse outcomes following ischemic stroke. However, its effect on anesthetic postconditioning‑induced neuroprotection has not been investigated. The present study examined the effect of sevoflurane postconditioning on focal ischemic brain injury in diet‑induced obesity. Sprague‑Dawley rats were fed a high‑fat diet (HF; 45% kcal as fat) for 12 weeks to develop obesity syndrome. Rats fed a low‑fat diet (LF; 10% kcal as fat) served as controls. The HF or LF‑fed rats were subjected to focal cerebral ischemia for 60 min, followed by 24 h of reperfusion. Postconditioning was performed by exposure to sevoflurane for 15 min immediately at the onset of reperfusion. The involvement of the mitochondrial KATP (mitoKATP) channel was analyzed by the administration of a selective inhibitor of 5‑hydroxydecanoate (5‑HD) prior to sevoflurane postconditioning or by administration of diazoxide (DZX), a mitoKATP channel opener, instead of sevoflurane. The cerebral infarct volume, neurological score and motor coordination were evaluated 24 h after reperfusion. The HF‑fed rats had larger infarct volumes, and lower neurological scores than the LF‑fed rats and also failed to respond to neuroprotection by sevoflurane or DZX. By contrast, sevoflurane and DZX reduced the infarct volumes and improved the neurological scores and motor coordination in the LF‑fed rats. Pretreatment with 5‑HD inhibited sevoflurane‑induced neuroprotection in the LF‑fed rats, whereas it had no effect in the HF‑fed rats. Molecular studies demonstrated that the expression of Kir6.2, a significant mitoKATP channel component, was reduced in the brains of the HF‑fed rats compared with the LF‑fed rats. The results of this study indicate that diet‑induced obesity eliminates the ability of anesthetic sevoflurane postconditioning to protect the brain against cerebral ischemic neuronal injury, most likely due to an impaired brain

  6. BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures.

    Science.gov (United States)

    Giménez-Cassina, Alfredo; Martínez-François, Juan Ramón; Fisher, Jill K; Szlyk, Benjamin; Polak, Klaudia; Wiwczar, Jessica; Tanner, Geoffrey R; Lutas, Andrew; Yellen, Gary; Danial, Nika N

    2012-05-24

    Neuronal excitation can be substantially modulated by alterations in metabolism, as evident from the anticonvulsant effect of diets that reduce glucose utilization and promote ketone body metabolism. We provide genetic evidence that BAD, a protein with dual functions in apoptosis and glucose metabolism, imparts reciprocal effects on metabolism of glucose and ketone bodies in brain cells. These effects involve phosphoregulation of BAD and are independent of its apoptotic function. BAD modifications that reduce glucose metabolism produce a marked increase in the activity of metabolically sensitive K(ATP) channels in neurons, as well as resistance to behavioral and electrographic seizures in vivo. Seizure resistance is reversed by genetic ablation of the K(ATP) channel, implicating the BAD-K(ATP) axis in metabolic control of neuronal excitation and seizure responses. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. In vivo and in vitro attenuation of naloxone-precipitated experimental opioid withdrawal syndrome by insulin and selective KATP channel modulator.

    Science.gov (United States)

    Singh, Prabhat; Sharma, Bhupesh; Gupta, Surbhi; Sharma, B M

    2015-01-01

    Opiate exposure for longer duration develops state of dependence in humans and animals, which is revealed by signs and symptoms of withdrawal precipitated by opioid receptor antagonists. The sudden withdrawal of opioids produces a withdrawal syndrome in opioid-dependent subjects. Insulin and ATP-sensitive potassium (KATP) channel-mediated glucose homeostasis have been shown to modulate morphine withdrawal. Present study has been structured to investigate the role of insulin and pharmacological modulator of KATP channel (gliclazide) in experimental morphine withdrawal syndrome, both invivo and invitro. In this study, naloxone-precipitated morphine withdrawal syndrome in mice (invivo) as well as in rat ileum (invitro) were utilized to assess opioid withdrawal phenomenon. Morphine withdrawal syndromes like jumping and rearing frequency, forepaw licking, circling, fore paw tremor, wet dog shake, sneezing, overall morphine withdrawal severity (OMWS), serum glucose, brain malondialdehyde (MDA), glutathione (GSH), nitrite/nitrate, and calcium (Ca(+2)) were assessed. Naloxone has significantly increased morphine withdrawal syndrome, both invivo and invitro. Insulin and gliclazide have significantly attenuated, naloxone induced behavioral changes like jumping and rearing frequency, forepaw licking, wet dog shake, sneezing, straightening, circling, OMWS, and various biochemical impairments such as serum glucose, brain MDA, GSH, nitrite/nitrate, and Ca(+2) in morphine-dependent animals (invivo). In vitro, insulin and gliclazide have significantly reduced naloxone-induced contraction in morphine-withdrawn rat ileum preparation. Insulin and gliclazide (KATP channel blocker) have attenuated naloxone-precipitated morphine withdrawal syndrome, both invivo and invitro. Thus, insulin and KATP channel modulation may provide new avenues for research in morphine withdrawal.

  8. The metabolic impact of β-hydroxybutyrate on neurotransmission: Reduced glycolysis mediates changes in calcium responses and KATP channel receptor sensitivity.

    Science.gov (United States)

    Lund, Trine M; Ploug, Kenneth B; Iversen, Anne; Jensen, Anders A; Jansen-Olesen, Inger

    2015-03-01

    Glucose is the main energy substrate for neurons, and ketone bodies are known to be alternative substrates. However, the capacity of ketone bodies to support different neuronal functions is still unknown. Thus, a change in energy substrate from glucose alone to a combination of glucose and β-hydroxybutyrate might change neuronal function as there is a known coupling between metabolism and neurotransmission. The purpose of this study was to shed light on the effects of the ketone body β-hydroxybutyrate on glycolysis and neurotransmission in cultured murine glutamatergic neurons. Previous studies have shown an effect of β-hydroxybutyrate on glucose metabolism, and the present study further specified this by showing attenuation of glycolysis when β-hydroxybutyrate was present in these neurons. In addition, the NMDA receptor-induced calcium responses in the neurons were diminished in the presence of β-hydroxybutyrate, whereas a direct effect of the ketone body on transmitter release was absent. However, the presence of β-hydroxybutyrate augmented transmitter release induced by the KATP channel blocker glibenclamide, thus giving an indirect indication of the involvement of KATP channels in the effects of ketone bodies on transmitter release. Energy metabolism and neurotransmission are linked and involve ATP-sensitive potassium (KATP ) channels. However, it is still unclear how and to what degree available energy substrate affects this link. We investigated the effect of changing energy substrate from only glucose to a combination of glucose and R-β-hydroxybutyrate in cultured neurons. Using the latter combination, glycolysis was diminished, NMDA receptor-induced calcium responses were lower, and the KATP channel blocker glibenclamide caused a higher transmitter release. © 2014 International Society for Neurochemistry.

  9. Gene knockout of the KCNJ8-encoded Kir6.1 K(ATP) channel imparts fatal susceptibility to endotoxemia.

    Science.gov (United States)

    Kane, Garvan C; Lam, Chen-Fuh; O'Cochlain, Fearghas; Hodgson, Denice M; Reyes, Santiago; Liu, Xiao-Ke; Miki, Takashi; Seino, Susumu; Katusic, Zvonimir S; Terzic, Andre

    2006-11-01

    Sepsis, the systemic inflammatory response to infection, imposes a high demand for bodily adaptation, with the cardiovascular response a key determinant of outcome. The homeostatic elements that secure cardiac tolerance in the setting of the sepsis syndrome are poorly understood. Here, in a model of acute septic shock induced by endotoxin challenge with Escherichia coli lipopolysaccharide (LPS), knockout of the KCNJ8 gene encoding the vascular Kir6.1 K(ATP) channel pore predisposed to an early and profound survival disadvantage. The exaggerated susceptibility provoked by disruption of this stress-responsive sensor of cellular metabolism was linked to progressive deterioration in cardiac activity, ischemic myocardial damage, and contractile dysfunction. Deletion of KCNJ8 blunted the responsiveness of coronary vessels to cytokine- or metabolic-mediated vasodilation necessary to support myocardial perfusion in the wild-type (WT), creating a deficit in adaptive response in the Kir6.1 knockout. Application of a K(ATP) channel opener drug improved survival in the endotoxic WT but had no effect in the Kir6.1 knockout. Restoration of the dilatory capacity of coronary vessels was required to rescue the Kir6.1 knockout phenotype and reverse survival disadvantage in lethal endotoxemia. Thus, the Kir6.1-containing K(ATP) channel, by coupling vasoreactivity with metabolic demand, provides a vital feedback element for cardiovascular tolerance in endotoxic shock.

  10. Regulation of Substantia Nigra Pars Reticulata GABAergic Neuron Activity by H2O2 via Flufenamic Acid-Sensitive Channels and KATP Channels

    Science.gov (United States)

    Lee, Christian R.; Witkovsky, Paul; Rice, Margaret E.

    2011-01-01

    Substantia nigra pars reticulata (SNr) GABAergic neurons are key output neurons of the basal ganglia. Given the role of these neurons in motor control, it is important to understand factors that regulate their firing rate and pattern. One potential regulator is hydrogen peroxide (H2O2), a reactive oxygen species that is increasingly recognized as a neuromodulator. We used whole-cell current clamp recordings of SNr GABAergic neurons in guinea-pig midbrain slices to determine how H2O2 affects the activity of these neurons and to explore the classes of ion channels underlying those effects. Elevation of H2O2 levels caused an increase in the spontaneous firing rate of SNr GABAergic neurons, whether by application of exogenous H2O2 or amplification of endogenous H2O2 through inhibition of glutathione peroxidase with mercaptosuccinate. This effect was reversed by flufenamic acid (FFA), implicating transient receptor potential (TRP) channels. Conversely, depletion of endogenous H2O2 by catalase, a peroxidase enzyme, decreased spontaneous firing rate and firing precision of SNr neurons, demonstrating tonic control of firing rate by H2O2. Elevation of H2O2 in the presence of FFA revealed an inhibition of tonic firing that was prevented by blockade of ATP-sensitive K+ (KATP) channels with glibenclamide. In contrast to guinea-pig SNr neurons, the dominant effect of H2O2 elevation in mouse SNr GABAergic neurons was hyperpolarization, indicating a species difference in H2O2-dependent regulation. Thus, H2O2 is an endogenous modulator of SNr GABAergic neurons, acting primarily through presumed TRP channels in guinea-pig SNr, with additional modulation via KATP channels to regulate SNr output. PMID:21503158

  11. Role of nitric oxide and KATP channel in the protective effect mediated by nicorandil in bile duct ligation-induced liver fibrosis in rats.

    Science.gov (United States)

    Mohamed, Yasmin S; Ahmed, Lamiaa A; Salem, Hesham A; Agha, Azza M

    2018-05-01

    Liver fibrosis is one of the most serious conditions affecting patients worldwide. In the present study, the role of nitric oxide and KATP channel was investigated for the first time in the possible protection mediated by nicorandil in bile duct ligation-induced liver fibrosis in rats. Nicorandil (3 mg/kg/day) was given orally 24 h after bile duct ligation for 14 days till the end of the experiment. Nicorandil group showed marked improvement in liver function tests, hepatic oxidative stress and inflammatory markers as well as inducible and endothelial nitric oxide synthase protein expressions. Furthermore, nicorandil administration led to significant decrement of phosphorylated protein kinase C, fibrosis and hepatic stellate cells activation as indicated by decreased alpha smooth muscle actin expression. Oral co-administration of glibenclamide (5 mg/kg/day) (a KATP channel blocker) with nicorandil mostly showed similar improvement though not reaching to that of nicorandil group. However, co-adminstration of L-NAME (15 mg/kg/day) (an inhibitor of nitric oxide synthase) completely abolished the protective effects of nicorandil and produced more or less similar results to that of untreated bile duct ligated group. In conclusion, nicorandil is an effective therapy against the development of bile duct ligation-induced liver fibrosis in rats where nitric oxide plays a more prominent role in the protective effect of nicorandil than KATP channel opening. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. In Vitro Contractile Response of Rabbit Myometrium to BKCa and KATP Potassium Channel Openers

    Directory of Open Access Journals (Sweden)

    Soňa Fraňová

    2009-01-01

    Full Text Available The aim of the study was to evaluate the participation of ligand-sensitive potassium large conductance calcium-activated channels (BKCa and ATP-sensitive potassium channels in uterine smooth muscle reactivity during different stages of the experimentally induced proliferatory and secretory phase in the sexual cycle in ovariectomised rabbits in vitro. The myometrial reactivity to oxytocin (10-6 mol l-1 was investigated by an in vitro method in female rabbits 14 days after ovariectomy treated with 17β-estradiol - 1 mg/kg/day i.m. for 7 days, or with a combination of progesterone 2 mg/kg/day s.c. for 7 days and 17β-estradiol - 0.2 mg/ kg/day (day 3–7. The strips of myometrial smooth muscle were incubated with a specific opener (NS 1619 and an antagonist (TEA of potassium large conductance calcium-activated channel, or with a specific opener (pinacidil and an antagonist (glybenclamide of ATP-sensitive potassium channels before the administration of oxytocin. NS1619 produced more potent inhibition of the oxytocin-induced contraction during the gestagen dominance (experimental secretory phase than the one observed during the oestrogen dominance (experimental proliferatory phase. TEA antagonized the NS1619 induced inhibition of the myometrial contraction. In the matter of KATP potassium channels, after the administration of pinacidil we observed a similar situation in the changes of myometrial contractility. Pinacidil produced more pronounced inhibition of oxytocin-induced contraction during the secretory phase, and its effect was abolished by the selective inhibitor glybenclamide. Our experimental results indicate that both potassium large conductance calcium-activated channels and ATP-sensitive potassium channels significantly participate in the regulation of myometrial oxytocin-induced contractions and the activity of these channels is probably influenced by the levels of oestrogens and gestagens.

  13. Molecular structure of human KATP in complex with ATP and ADP.

    Science.gov (United States)

    Lee, Kenneth Pak Kin; Chen, Jue; MacKinnon, Roderick

    2017-12-29

    In many excitable cells, KATP channels respond to intracellular adenosine nucleotides: ATP inhibits while ADP activates. We present two structures of the human pancreatic KATP channel, containing the ABC transporter SUR1 and the inward-rectifier K + channel Kir6.2, in the presence of Mg 2+ and nucleotides. These structures, referred to as quatrefoil and propeller forms, were determined by single-particle cryo-EM at 3.9 Å and 5.6 Å, respectively. In both forms, ATP occupies the inhibitory site in Kir6.2. The nucleotide-binding domains of SUR1 are dimerized with Mg 2+ -ATP in the degenerate site and Mg 2+ -ADP in the consensus site. A lasso extension forms an interface between SUR1 and Kir6.2 adjacent to the ATP site in the propeller form and is disrupted in the quatrefoil form. These structures support the role of SUR1 as an ADP sensor and highlight the lasso extension as a key regulatory element in ADP's ability to override ATP inhibition. © 2017, Lee et al.

  14. Targeting Microglial KATP Channels to Treat Neurodegenerative Diseases: A Mitochondrial Issue

    Directory of Open Access Journals (Sweden)

    Manuel J. Rodríguez

    2013-01-01

    Full Text Available Neurodegeneration is a complex process involving different cell types and neurotransmitters. A common characteristic of neurodegenerative disorders is the occurrence of a neuroinflammatory reaction in which cellular processes involving glial cells, mainly microglia and astrocytes, are activated in response to neuronal death. Microglia do not constitute a unique cell population but rather present a range of phenotypes closely related to the evolution of neurodegeneration. In a dynamic equilibrium with the lesion microenvironment, microglia phenotypes cover from a proinflammatory activation state to a neurotrophic one directly involved in cell repair and extracellular matrix remodeling. At each moment, the microglial phenotype is likely to depend on the diversity of signals from the environment and of its response capacity. As a consequence, microglia present a high energy demand, for which the mitochondria activity determines the microglia participation in the neurodegenerative process. As such, modulation of microglia activity by controlling microglia mitochondrial activity constitutes an innovative approach to interfere in the neurodegenerative process. In this review, we discuss the mitochondrial KATP channel as a new target to control microglia activity, avoid its toxic phenotype, and facilitate a positive disease outcome.

  15. Gliadin Fragments and a Specific Gliadin 33-mer Peptide Close KATP Channels and Induce Insulin Secretion in INS-1E Cells and Rat Islets of Langerhans

    DEFF Research Database (Denmark)

    Dall, Morten; Calloe, Kirstine; Haupt-Jorgensen, Martin

    2013-01-01

    . A similar effect was observed in isolated rat islets (1.6-fold increase). In INS-1E cells, diazoxide reduced the stimulatory effect of gliadin digest. Additionally, gliadin digest was shown to decrease current through KATP-channels. A specific gliadin 33-mer had a similar effect, both on current and insulin...

  16. [Effect of K-ATP channel opener-pinacidil on the liver mitochondria function in rats with different resistance to hypoxia during stress].

    Science.gov (United States)

    Tkachenko, H M; Kurhaliuk, N M; Vovkanych, L S

    2004-01-01

    We have examined the influence of ATP-sensitive potassium (KATP) channel opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) on the changes of energy metabolism in the liver of rats under the stress conditions. The rats were divided in two groups with high and low resistance to hypoxia. The stress was modeled by placing the rats in a cage filled with water and closed with a net. The distance from water to the net was only 5 cm. The effects of KATP opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) on ADP-stimulating mitochondrial respiration by Chance, calcium capacity of organellas and processes of lipid peroxidation in the liver of rats with different resistance to hypoxia under the stress condition have been investigated. We have used the next substrates of oxidation: 0.35 mM succinate and 1 mM alpha-ketoglutarate. The additional analyses were conducted with the use of inhibitors: mitochondrial enzyme complex I 10 mM rotenone and succinate dehydrohenase 2 mM malonic acid. It was shown that the stress condition evoked the succinate oxidation and the decrease of alpha-ketoglutarate efficacy, the increase of calcium mitochondrial capacity and the intensification of lipid peroxidation processes. Under the presence of succinate, the increase of O2 uptake with simultaneous decrease of ADP/O ratio in rats with high resistance under stress was observed. Simultaneously, oxidation of alpha-ketoglutarate, a NAD-dependent substrate, was inhibited. Pinacidil caused the reorganization of mitochondrial energy metabolism in favour of NAD-dependent oxidation and the improvment of the protection against stress. The decrease of the efficacy of mitochondrial energy processes functioning was shown in animals with low resistance to hypoxia. KATP channel opener pinacidil has a protective effect on the processes of mitochondrial liver energy support under stress. These changes deal with the increase of alpha-ketoglutarate oxidation (respiratory rate and

  17. Three C-terminal residues from the sulphonylurea receptor contribute to the functional coupling between the KATP channel subunits SUR2A and Kir6.2

    Science.gov (United States)

    Dupuis, Julien P; Revilloud, Jean; Moreau, Christophe J; Vivaudou, Michel

    2008-01-01

    Cardiac ATP-sensitive potassium (KATP) channels are metabolic sensors formed by the association of the inward rectifier potassium channel Kir6.2 and the sulphonylurea receptor SUR2A. SUR2A adjusts channel gating as a function of intracellular ATP and ADP and is the target of pharmaceutical openers and blockers which, respectively, up- and down-regulate Kir6.2. In an effort to understand how effector binding to SUR2A translates into Kir6.2 gating modulation, we examined the role of a 65-residue SUR2A fragment linking transmembrane domain TMD2 and nucleotide-binding domain NBD2 that has been shown to interact with Kir6.2. This fragment of SUR2A was replaced by the equivalent residues of its close homologue, the multidrug resistance protein MRP1. The chimeric construct was expressed in Xenopus oocytes and characterized using the patch-clamp technique. We found that activation by MgADP and synthetic openers was greatly attenuated although apparent affinities were unchanged. Further chimeragenetic and mutagenetic studies showed that mutation of three residues, E1305, I1310 and L1313 (rat numbering), was sufficient to confer this defective phenotype. The same mutations had no effects on channel block by the sulphonylurea glibenclamide or by ATP, suggesting a role for these residues in activatory – but not inhibitory – transduction processes. These results indicate that, within the KATP channel complex, the proximal C-terminal of SUR2A is a critical link between ligand binding to SUR2A and Kir6.2 up-regulation. PMID:18450778

  18. Localization and function of ATP-sensitive potassium channels in human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Jens Jung; Kristensen, Michael; Hellsten, Ylva

    2003-01-01

    The present study investigated the localization of ATP-sensitive K+ (KATP) channels in human skeletal muscle and the functional importance of these channels for human muscle K+ distribution at rest and during muscle activity. Membrane fractionation based on the giant vesicle technique...... or the sucrose-gradient technique in combination with Western blotting demonstrated that the KATP channels are mainly located in the sarcolemma. This localization was confirmed by immunohistochemical measurements. With the microdialysis technique, it was demonstrated that local application of the KATP channel...... to in vitro conditions, the present study demonstrated that under in vivo conditions the KATP channels are active at rest and contribute to the accumulation of interstitial K+....

  19. Single K ATP channel opening in response to action potential firing in mouse dentate granule neurons.

    Science.gov (United States)

    Tanner, Geoffrey R; Lutas, Andrew; Martínez-François, Juan Ramón; Yellen, Gary

    2011-06-08

    ATP-sensitive potassium channels (K(ATP) channels) are important sensors of cellular metabolic state that link metabolism and excitability in neuroendocrine cells, but their role in nonglucosensing central neurons is less well understood. To examine a possible role for K(ATP) channels in modulating excitability in hippocampal circuits, we recorded the activity of single K(ATP) channels in cell-attached patches of granule cells in the mouse dentate gyrus during bursts of action potentials generated by antidromic stimulation of the mossy fibers. Ensemble averages of the open probability (p(open)) of single K(ATP) channels over repeated trials of stimulated spike activity showed a transient increase in p(open) in response to action potential firing. Channel currents were identified as K(ATP) channels through blockade with glibenclamide and by comparison with recordings from Kir6.2 knock-out mice. The transient elevation in K(ATP) p(open) may arise from submembrane ATP depletion by the Na(+)-K(+) ATPase, as the pump blocker strophanthidin reduced the magnitude of the elevation. Both the steady-state and stimulus-elevated p(open) of the recorded channels were higher in the presence of the ketone body R-β-hydroxybutyrate, consistent with earlier findings that ketone bodies can affect K(ATP) activity. Using perforated-patch recording, we also found that K(ATP) channels contribute to the slow afterhyperpolarization following an evoked burst of action potentials. We propose that activity-dependent opening of K(ATP) channels may help granule cells act as a seizure gate in the hippocampus and that ketone-body-mediated augmentation of the activity-dependent opening could in part explain the effect of the ketogenic diet in reducing epileptic seizures.

  20. Role of KATP channels in cephalic vasodilatation induced by calcitonin gene-related peptide, nitric oxide, and transcranial electrical stimulation in the rat

    DEFF Research Database (Denmark)

    Gozalov, Aydin; Jansen-Olesen, Inger; Klærke, Dan Arne

    2008-01-01

    OBJECTIVE: The objective of this study was to explore the role of K(ATP) channels in vasodilatation induced by calcitonin gene-related peptide (CGRP), nitric oxide (NO), and transcranial electrical stimulation (TES) in intracranial arteries of rat. BACKGROUND: Dilatation of cerebral and dural...... CGRP, NO, and endogenous CGRP after electrical stimulation. Also diameter changes of pial arteries, mean arterial blood pressure and local cerebral blood flow by Laser Doppler flowmetry (LCBF(Flux)) were measured. RESULTS: CGRP, NO, and TES caused dilatation of the 2 arteries in vivo and in vitro...

  1. Molecular Mechanisms in Exercise-Induced Cardioprotection

    Directory of Open Access Journals (Sweden)

    Saeid Golbidi

    2011-01-01

    Full Text Available Physical inactivity is increasingly recognized as modifiable behavioral risk factor for cardiovascular diseases. A partial list of proposed mechanisms for exercise-induced cardioprotection include induction of heat shock proteins, increase in cardiac antioxidant capacity, expression of endoplasmic reticulum stress proteins, anatomical and physiological changes in the coronary arteries, changes in nitric oxide production, adaptational changes in cardiac mitochondria, increased autophagy, and improved function of sarcolemmal and/or mitochondrial ATP-sensitive potassium channels. It is currently unclear which of these protective mechanisms are essential for exercise-induced cardioprotection. However, most investigations focus on sarcolemmal KATP channels, NO production, and mitochondrial changes although it is very likely that other mechanisms may also exist. This paper discusses current information about these aforementioned topics and does not consider potentially important adaptations within blood or the autonomic nervous system. A better understanding of the molecular basis of exercise-induced cardioprotection will help to develop better therapeutic strategies.

  2. Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase.

    Science.gov (United States)

    Shyng, S L; Barbieri, A; Gumusboga, A; Cukras, C; Pike, L; Davis, J N; Stahl, P D; Nichols, C G

    2000-01-18

    ATP-sensitive potassium channels (K(ATP) channels) regulate cell excitability in response to metabolic changes. K(ATP) channels are formed as a complex of a sulfonylurea receptor (SURx), a member of the ATP-binding cassette protein family, and an inward rectifier K(+) channel subunit (Kir6.x). Membrane phospholipids, in particular phosphatidylinositol (PI) 4,5-bisphosphate (PIP(2)), activate K(ATP) channels and antagonize ATP inhibition of K(ATP) channels when applied to inside-out membrane patches. To examine the physiological relevance of this regulatory mechanism, we manipulated membrane PIP(2) levels by expressing either the wild-type or an inactive form of PI-4-phosphate 5-kinase (PIP5K) in COSm6 cells and examined the ATP sensitivity of coexpressed K(ATP) channels. Channels from cells expressing the wild-type PIP5K have a 6-fold lower ATP sensitivity (K(1/2), the half maximal inhibitory concentration, approximately 60 microM) than the sensitivities from control cells (K(1/2) approximately 10 microM). An inactive form of the PIP5K had little effect on the K(1/2) of wild-type channels but increased the ATP-sensitivity of a mutant K(ATP) channel that has an intrinsically lower ATP sensitivity (from K(1/2) approximately 450 microM to K(1/2) approximately 100 microM), suggesting a decrease in membrane PIP(2) levels as a consequence of a dominant-negative effect of the inactive PIP5K. These results show that PIP5K activity, which regulates PIP(2) and PI-3,4,5-P(3) levels, is a significant determinant of the physiological nucleotide sensitivity of K(ATP) channels.

  3. Loss of ATP-Sensitive Potassium Channel Surface Expression in Heart Failure Underlies Dysregulation of Action Potential Duration and Myocardial Vulnerability to Injury.

    Directory of Open Access Journals (Sweden)

    Zhan Gao

    Full Text Available The search for new approaches to treatment and prevention of heart failure is a major challenge in medicine. The adenosine triphosphate-sensitive potassium (KATP channel has been long associated with the ability to preserve myocardial function and viability under stress. High surface expression of membrane KATP channels ensures a rapid energy-sparing reduction in action potential duration (APD in response to metabolic challenges, while cellular signaling that reduces surface KATP channel expression blunts APD shortening, thus sacrificing energetic efficiency in exchange for greater cellular calcium entry and increased contractile force. In healthy hearts, calcium/calmodulin-dependent protein kinase II (CaMKII phosphorylates the Kir6.2 KATP channel subunit initiating a cascade responsible for KATP channel endocytosis. Here, activation of CaMKII in a transaortic banding (TAB model of heart failure is coupled with a 35-40% reduction in surface expression of KATP channels compared to hearts from sham-operated mice. Linkage between KATP channel expression and CaMKII is verified in isolated cardiomyocytes in which activation of CaMKII results in downregulation of KATP channel current. Accordingly, shortening of monophasic APD is slowed in response to hypoxia or heart rate acceleration in failing compared to non-failing hearts, a phenomenon previously shown to result in significant increases in oxygen consumption. Even in the absence of coronary artery disease, failing myocardium can be further injured by ischemia due to a mismatch between metabolic supply and demand. Ischemia-reperfusion injury, following ischemic preconditioning, is diminished in hearts with CaMKII inhibition compared to wild-type hearts and this advantage is largely eliminated when myocardial KATP channel expression is absent, supporting that the myocardial protective benefit of CaMKII inhibition in heart failure may be substantially mediated by KATP channels. Recognition of Ca

  4. The metabolic impact of β-hydroxybutyrate on neurotransmission: Reduced glycolysis mediates changes in calcium responses and KATP channel receptor sensitivity

    DEFF Research Database (Denmark)

    Lund, Trine Meldgaard; Ploug, K.B.; Iversen, Anne

    2015-01-01

    -hydroxybutyrate might change neuronal function as there is a known coupling between metabolism and neurotransmission. The purpose of this study was to shed light on the effects of the ketone body β-hydroxybutyrate on glycolysis and neurotransmission in cultured murine glutamatergic neurons. Previous studies have shown...... an effect of β-hydroxybutyrate on glucose metabolism, and the present study further specified this by showing attenuation of glycolysis when β-hydroxybutyrate was present in these neurons. In addition, the NMDA receptor-induced calcium responses in the neurons were diminished in the presence of β...... to a combination of glucose and R-β-hydroxybutyrate in cultured neurons. Using the latter combination, glycolysis was diminished, NMDA receptor-induced calcium responses were lower, and the KATP channel blocker glibenclamide caused a higher transmitter release....

  5. Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: first demonstration of remote ischemic perconditioning

    DEFF Research Database (Denmark)

    Schmidt, Michael Rahbek; Smerup, M; Konstantinov, I E

    2006-01-01

    . Intermittent limb ischemia during myocardial ischemia reduces MI, preserves global systolic and diastolic function, and protects against arrhythmia during the reperfusion phase through a K(ATP) channel-dependent mechanism. Understanding this process may have important therapeutic implications for a range...

  6. Alterations in cardiac sarcolemmal Ca2+ pump activity during diabetes mellitus

    International Nuclear Information System (INIS)

    Heyliger, C.E.; Prakash, A.; McNeill, J.

    1987-01-01

    Diabetes mellitus is frequently associated with a primary cardiomyopathy. The mechanisms responsible for this heart disease are not clear, but an alteration in myocardial Ca 2+ transport is believed to be involved in its development. Even though sarcolemma plays a crucial role in cellular Ca 2+ transport, little appears to be known about its Ca 2+ transporting capability in the diabetic myocardium. In this regard, the authors have examined the status of the cardiac sarcolemmal Ca 2+ pump during diabetes mellitus. Purified sarcolemmal membranes were isolated from male Wistar diabetic rat hearts 8 wk after streptozotocin injection. Ca 2+ pump activity assessed by measuring its Ca 2+ -stimulated adenosine triphosphatase and Ca 2+ -uptake ability in the absence and presence of calmodulin was significantly depressed in the diabetic myocardium relative to controls. These results did not appear to have been influenced by the minimal sarcoplasmic reticular and mitochondrial contamination of this membrane preparation. Hence, it appears that the sarcolemmal Ca 2+ pump is defective in the diabetic myocardium and may be involved in the altered Ca 2+ transport of the heart during diabetes mellitus

  7. Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock.

    Science.gov (United States)

    Collin, Solène; Sennoun, Nacira; Dron, Anne-Gaëlle; de la Bourdonnaye, Mathilde; Montemont, Chantal; Asfar, Pierre; Lacolley, Patrick; Meziani, Ferhat; Levy, Bruno

    2011-05-01

    To study the activation and expression of vascular (aorta and small mesenteric arteries) potassium channels during septic shock with or without modulation of the NO pathway. Septic shock was induced in rats by peritonitis. Selective inhibitors of vascular K(ATP) (PNU-37883A) or BK(Ca) [iberiotoxin (IbTX)] channels were used to demonstrate their involvement in vascular hyporeactivity. Vascular response to phenylephrine was measured on aorta and small mesenteric arteries mounted on a wire myograph. Vascular expression of potassium channels was studied by PCR and Western blot, in the presence or absence of 1400W, an inducible NO synthase (iNOS) inhibitor. Aortic activation of the transcriptional factor nuclear factor-kappaB (NF-κB) was assessed by electrophoretic mobility shift assay. Arterial pressure as well as in vivo and ex vivo vascular reactivity were reduced by sepsis and improved by PNU-37883A but not by IbTX. Sepsis was associated with an up-regulation of mRNA and protein expression of vascular K(ATP) channels, while expression of vascular BK(Ca) channels remained unchanged. Selective iNOS inhibition blunted the sepsis-induced increase in aortic NO, decreased NF-κB activation, and down-regulated vascular K(ATP) channel expression. Vascular K(ATP) but not BK(Ca) channels are activated, over-expressed, and partially regulated by NO via NF-κB activation during septic shock. Their selective inhibition restores arterial pressure and vascular reactivity and decreases lactate concentration. The present data suggest that selective vascular K(ATP) channel inhibitors offer potential therapeutic perspectives for septic shock.

  8. Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria - An amazing defence tool against hyperosmotic stress

    Directory of Open Access Journals (Sweden)

    Daniela eTrono

    2015-12-01

    Full Text Available In plants, the existence of a mitochondrial potassium channel was firstly demonstrated about fifteen years ago in durum wheat as an ATP-dependent potassium channel (PmitoKATP. Since then, both properties of the original PmitoKATP and occurrence of different mitochondrial potassium channels in a number of plant species (monocotyledonous and dicotyledonous and tissues/organs (etiolated and green have been shown. Here, an overview of the current knowledge is reported; in particular, the issue of PmitoKATP physiological modulation is addressed. Similarities and differences with other potassium channels, as well as possible cross-regulation with other mitochondrial proteins (Plant Uncoupling Protein, Alternative Oxidase, Plant Inner Membrane Anion Channel are also described. PmitoKATP is inhibited by ATP and activated by superoxide anion, as well as by free fatty acids (FFAs and acyl-CoAs. Interestingly, channel activation increases electrophoretic potassium uptake across the inner membrane towards the matrix, so collapsing membrane potential (ΔΨ, the main component of the protonmotive force (Δp in plant mitochondria; moreover, cooperation between PmitoKATP and the K+/H+ antiporter allows a potassium cycle able to dissipate also ΔpH. Interestingly, ΔΨ collapse matches with an active control of mitochondrial reactive oxygen species (ROS production. Fully open channel is able to lower superoxide anion up to 35-fold compared to a condition of ATP-inhibited channel. On the other hand, ΔΨ collapse by PmitoKATP was unexpectedly found to not affect ATP synthesis via oxidative phosphorylation. This may probably occur by means of a controlled collapse due to ATP inhibition of PmitoKATP; this brake to the channel activity may allow a loss of the bulk phase Δp, but may preserve a non-classically detectable localized driving force for ATP synthesis. This ability may become crucial under environmental/oxidative stress. In particular, under moderate

  9. Effect of mitochondrial potassium channel on the renal protection mediated by sodium thiosulfate against ethylene glycol induced nephrolithiasis in rat model

    Directory of Open Access Journals (Sweden)

    N. Baldev

    2015-12-01

    Full Text Available Purpose: Sodium thiosulfate (STS is clinically reported to be a promising drug in preventing nephrolithiasis. However, its mechanism of action remains unclear. In the present study, we investigated the role of mitochondrial KATP channel in the renal protection mediated by STS. Materials and Methods: Nephrolithiasis was induced in Wistar rats by administrating 0.4% ethylene glycol (EG along with 1% ammonium chloride for one week in drinking water followed by only 0.75% EG for two weeks. Treatment groups received STS, mitochondrial KATP channel opener and closer exclusively or in combination with STS for two weeks. Results: Animals treated with STS showed normal renal tissue architecture, supported by near normal serum creatinine, urea and ALP activity. Diazoxide (mitochondria KATP channel opening treatment to the animal also showed normal renal tissue histology and improved serum chemistry. However, an opposite result was shown by glibenclamide (mitochondria KATP channel closer treated rats. STS administered along with diazoxide negated the renal protection rendered by diazoxide alone, while it imparted protection to the glibenclamide treated rats, formulating a mitochondria modulated STS action. Conclusion: The present study confirmed that STS render renal protection not only through chelation and antioxidant effect but also by modulating the mitochondrial KATP channel for preventing urolithiasis.

  10. Dioxin-induced acute cardiac mitochondrial oxidative damage and increased activity of ATP-sensitive potassium channels in Wistar rats

    International Nuclear Information System (INIS)

    Pereira, Susana P.; Pereira, Gonçalo C.; Pereira, Cláudia V.; Carvalho, Filipa S.; Cordeiro, Marília H.; Mota, Paula C.; Ramalho-Santos, João; Moreno, António J.; Oliveira, Paulo J.

    2013-01-01

    The environmental dioxin 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is classified as a Group 1 human carcinogen and teratogenic agent. We hypothesize that TCDD-induced oxidative stress may also interfere with mitochondrial ATP-sensitive potassium channels (mitoKATP), which are known to regulate and to be regulated by mitochondrial redox state. We investigated the effects of an acute treatment of male Wistar rats with TCDD (50 μg/kg i.p.) and measured the regulation of cardiac mitoKATP. While the function of cardiac mitochondria was slightly depressed, mitoKATP activity was 52% higher in animals treated with TCDD. The same effects were not observed in liver mitochondria isolated from the same animals. Our data also shows that regulation of mitochondrial ROS production by mitoKATP activity is different in both groups. To our knowledge, this is the first report to show that TCDD increases mitoKATP activity in the heart, which may counteract the increased oxidative stress caused by the dioxin during acute exposure. -- Highlights: •Acute TCDD treatment of Wistar rats causes cardiac oxidative stress. •Acute TCDD treatment causes cardiac mitochondrial alterations. •Mitochondrial liver vs. heart alterations are distinct. •TCDD treatment resulted in altered activity of cardiac mitochondrial K-ATP channels. -- Dioxin alters the regulation of cardiac mitochondrial ATP-sensitive potassium channels and disturbs mitochondrial physiology

  11. Nicorandil directly and cyclic GMP-dependently opens K+ channels in human bypass grafts

    Directory of Open Access Journals (Sweden)

    Marija Marinko

    2015-06-01

    Full Text Available As we previously demonstrated the role of different K+ channels in the action of nicorandil on human saphenous vein (HSV and human internal mammary artery (HIMA, this study aimed to analyse the contribution of the cGMP pathway in nicorandil-induced vasorelaxation and to determine the involvement of cGMP in the K+ channel-activating effect of nicorandil. An inhibitor of soluble guanylate cyclase (GC, ODQ, significantly inhibited nicorandil-induced relaxation, while ODQ plus glibenclamide, a selective ATP-sensitive K+ (KATP channel inhibitor, produced a further inhibition of both vessels. In HSV, ODQ in combination with 4-aminopyridine, a blocker of voltage-gated K+ (KV channels, did not modify the concentration-response to nicorandil compared with ODQ, whereas in HIMA, ODQ plus iberiotoxin, a selective blocker of large-conductance Ca2+-activated K+ (BKCa channels, produced greater inhibition than ODQ alone. We showed that the cGMP pathway plays a significant role in the vasorelaxant effect of nicorandil on HSV and HIMA. It seems that nicorandil directly opens KATP channels in both vessels and BKCa channels in HIMA, although it is possible that stimulation of GC contributes to KATP channels activation in HIMA. Contrary, the activation of KV channels in HSV is probably due to GC activation and increased levels of cGMP.

  12. Mitochondria from rat uterine smooth muscle possess ATP-sensitive potassium channel

    Directory of Open Access Journals (Sweden)

    Olga B. Vadzyuk

    2018-03-01

    Full Text Available The objective of this study was to detect ATP-sensitive K+ uptake in rat uterine smooth muscle mitochondria and to determine possible effects of its activation on mitochondrial physiology. By means of fluorescent technique with usage of K+-sensitive fluorescent probe PBFI (potassium-binding benzofuran isophthalate we showed that accumulation of K ions in isolated mitochondria from rat myometrium is sensitive to effectors of KATP-channel (ATP-sensitive K+-channel – ATP, diazoxide, glibenclamide and 5HD (5-hydroxydecanoate. Our data demonstrates that K+ uptake in isolated myometrium mitochondria results in a slight decrease in membrane potential, enhancement of generation of ROS (reactive oxygen species and mitochondrial swelling. Particularly, the addition of ATP into incubation medium led to a decrease in mitochondrial swelling and ROS production, and an increase in membrane potential. These effects were eliminated by diazoxide. If blockers of KATP-channel were added along with diazoxide, the effects of diazoxide were removed. So, we postulate the existence of KATP-channels in rat uterus mitochondria and assume that their functioning may regulate physiological conditions of mitochondria, such as matrix volume, ROS generation and polarization of mitochondrial membrane. Keywords: ATP-sensitive potassium channel, Diazoxide, 5-hydroxydecanoate, Myometrium, Mitochondria, Mitochondrial swelling, Mitochondrial membrane potential, ROS

  13. Alkali pH directly activates ATP-sensitive K+ channels and inhibits insulin secretion in beta-cells.

    Science.gov (United States)

    Manning Fox, Jocelyn E; Karaman, Gunce; Wheeler, Michael B

    2006-11-17

    Glucose stimulation of pancreatic beta-cells is reported to lead to sustained alkalization, while extracellular application of weak bases is reported to inhibit electrical activity and decrease insulin secretion. We hypothesize that beta-cell K(ATP) channel activity is modulated by alkaline pH. Using the excised patch-clamp technique, we demonstrate a direct stimulatory action of alkali pH on recombinant SUR1/Kir6.2 channels due to increased open probability. Bath application of alkali pH similarly activates native islet beta-cell K(ATP) channels, leading to an inhibition of action potentials, and hyperpolarization of membrane potential. In situ pancreatic perfusion confirms that these cellular effects of alkali pH are observable at a functional level, resulting in decreases in both phase 1 and phase 2 glucose-stimulated insulin secretion. Our data are the first to report a stimulatory effect of a range of alkali pH on K(ATP) channel activity and link this to downstream effects on islet beta-cell function.

  14. Purification, cloning, expression, and biochemical characterization of a monofunctional catalase, KatP, from Pigmentiphaga sp. DL-8.

    Science.gov (United States)

    Dong, Weiliang; Hou, Ying; Li, Shuhuan; Wang, Fei; Zhou, Jie; Li, Zhoukun; Wang, Yicheng; Huang, Fei; Fu, Lei; Huang, Yan; Cui, Zhongli

    2015-04-01

    Catalases are essential components of the cellular equipment used to cope with oxidative stress. The monofunctional catalase KatP was purified from Pigmentiphaga sp. using ammonium sulfate precipitation (ASP), diethylaminoethyl ion exchange chromatography (IEC), and hydrophobic interaction chromatography (HIC). The purified catalase formed polymer with an estimated monomer molecular mass of 54kDa, which were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and zymogram analysis. KatP exhibited a specific catalytic activity of 73,000U/mg, which was higher than that of catalase-1 of Comamonas terrigena N3H (55,900U/mg). Seven short tryptic fragments of this catalase were obtained by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF MS/MS), and the gene, katP, was cloned by PCR amplification and overexpressed in Escherichia coli BL21 (DE3). Based on the complete amino acid sequence, KatP was identified as a clade 3 monofunctional catalase. The specific activities of recombinant KatP for hydrogen peroxide (690,000U/mg) increased 9-fold over that of the parent strain. The Km and Vmax of recombinant KatP were 9.48mM and 81.2mol/minmg, respectively. The optimal pH and temperature for KatP were 7.0 and 37°C, respectively, and the enzyme displayed abroad pH-stable range of 4.0-11.0. The enzyme was inhibited by Zn(2+), Cu(2+), Cr(2+), and Mn(2+), whereas Fe(3+) and Mg(2+) stimulated KatP enzymatic activity. Interestingly, the catalase activity of recombinant KatP displayed high stability under different temperature and pH conditions, suggesting that KatP is a potential candidate for the production of catalase. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A K ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans.

    Science.gov (United States)

    MacDonald, Patrick E; De Marinis, Yang Zhang; Ramracheya, Reshma; Salehi, Albert; Ma, Xiaosong; Johnson, Paul R V; Cox, Roger; Eliasson, Lena; Rorsman, Patrik

    2007-06-01

    Glucagon, secreted from pancreatic islet alpha cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring beta cells, or to an intrinsic glucose sensing by the alpha cells themselves. We examined hormone secretion and Ca(2+) responses of alpha and beta cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn(2+) signalling was blocked, but was reversed by low concentrations (1-20 muM) of the ATP-sensitive K(+) (KATP) channel opener diazoxide, which had no effect on insulin release or beta cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 muM). Higher diazoxide concentrations (>/=30 muM) decreased glucagon and insulin secretion, and alpha- and beta-cell Ca(2+) responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (10 muM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na(+) (TTX) and N-type Ca(2+) channels (omega-conotoxin), but not L-type Ca(2+) channels (nifedipine), prevented glucagon secretion. Both the N-type Ca(2+) channels and alpha-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an alpha-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.

  16. Involvement of ATP-sensitive potassium channels and the opioid system in the anticonvulsive effect of zolpidem in mice.

    Science.gov (United States)

    Sheikhi, Mehdi; Shirzadian, Armin; Dehdashtian, Amir; Amiri, Shayan; Ostadhadi, Sattar; Ghasemi, Mehdi; Dehpour, Ahmad Reza

    2016-09-01

    Zolpidem is a hypnotic medication that mainly exerts its function through activating γ-aminobutyric acid (GABA)A receptors. There is some evidence that zolpidem may have anticonvulsive effects. However, the mechanisms underlying this effect have not been elucidated yet. In the present study, we used the pentylentetrazole (PTZ)-induced generalized seizure model in mice to investigate whether zolpidem can affect seizure threshold. We also further evaluated the roles of ATP-sensitive potassium (KATP) channels as well as μ-opioid receptors in the effects of zolpidem on seizure threshold. Our data showed that zolpidem in a dose-dependent manner increased the PTZ-induced seizure threshold. The noneffective (i.e., did not significantly alter the PTZ-induced seizure threshold by itself) doses of KATP channel blocker (glibenclamide) and nonselective opioid receptor antagonist (naloxone) were able to inhibit the anticonvulsive effect of zolpidem. Additionally, noneffective doses of either KATP channel opener (cromakalim) or nonselective μ-opioid receptor agonist (morphine) in combination with a noneffective dose of zolpidem exerted a significant anticonvulsive effect on PTZ-induced seizures in mice. A combination of noneffective doses of naloxone and glibenclamide, which separately did not affect zolpidem effect on seizure threshold, inhibited the anticonvulsive effects of zolpidem. These results suggest a role for KATP channels and the opioid system, alone or in combination, in the anticonvulsive effects of zolpidem. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A K ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans.

    Directory of Open Access Journals (Sweden)

    Patrick E MacDonald

    2007-06-01

    Full Text Available Glucagon, secreted from pancreatic islet alpha cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring beta cells, or to an intrinsic glucose sensing by the alpha cells themselves. We examined hormone secretion and Ca(2+ responses of alpha and beta cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn(2+ signalling was blocked, but was reversed by low concentrations (1-20 muM of the ATP-sensitive K(+ (KATP channel opener diazoxide, which had no effect on insulin release or beta cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 muM. Higher diazoxide concentrations (>/=30 muM decreased glucagon and insulin secretion, and alpha- and beta-cell Ca(2+ responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (10 muM were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM, glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na(+ (TTX and N-type Ca(2+ channels (omega-conotoxin, but not L-type Ca(2+ channels (nifedipine, prevented glucagon secretion. Both the N-type Ca(2+ channels and alpha-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an alpha-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.

  18. The Opening of ATP-Sensitive K+ Channels Protects H9c2 Cardiac Cells Against the High Glucose-Induced Injury and Inflammation by Inhibiting the ROS-TLR4-Necroptosis Pathway

    Directory of Open Access Journals (Sweden)

    Weijie Liang

    2017-02-01

    Full Text Available Background/Aims: Hyperglycemia activates multiple signaling molecules, including reactive oxygen species (ROS, toll-like receptor 4 (TLR4, receptor-interacting protein 3 (RIP3, a kinase promoting necroptosis, which mediate hyperglycemia-induced cardiac injury. This study explored whether inhibition of ROS-TLR4-necroptosis pathway contributed to the protection of ATP-sensitive K+ (KATP channel opening against high glucose-induced cardiac injury and inflammation. Methods: H9c2 cardiac cells were treated with 35 mM glucose (HG to establish a model of HG-induced insults. The expression of RIP3 and TLR4 were tested by western blot. Generation of ROS, cell viability, mitochondrial membrane potential (MMP and secretion of inflammatory cytokines were measured as injury indexes. Results: HG increased the expression of TLR4 and RIP3. Necrostatin-1 (Nec-1, an inhibitor of necroptosis or TAK-242 (an inhibitor of TLR4 co-treatment attenuated HG-induced up-regulation of RIP3. Diazoxide (DZ, a mitochondrial KATP channel opener or pinacidil (Pin, a non-selective KATP channel opener or N-acetyl-L-cysteine (NAC, a ROS scavenger pre-treatment blocked the up-regulation of TLR4 and RIP3. Furthermore, pre-treatment with DZ or Pin or NAC, or co-treatment with TAK-242 or Nec-1 attenuated HG-induced a decrease in cell viability, and increases in ROS generation, MMP loss and inflammatory cytokines secretion. However, 5-hydroxy decanoic acid (5-HD, a mitochondrial KATP channel blocker or glibenclamide (Gli, a non-selective KATP channel blocker pre-treatment did not aggravate HG-induced injury and inflammation. Conclusion: KATP channel opening protects H9c2 cells against HG-induced injury and inflammation by inhibiting ROS-TLR4-necroptosis pathway.

  19. Sarcolemmal cholesterol and caveolin-3 dependence of cardiac function, ischemic tolerance, and opioidergic cardioprotection

    Science.gov (United States)

    See Hoe, Louise E.; Schilling, Jan M.; Tarbit, Emiri; Kiessling, Can J.; Busija, Anna R.; Niesman, Ingrid R.; Du Toit, Eugene; Ashton, Kevin J.; Roth, David M.; Headrick, John P.; Patel, Hemal H.

    2014-01-01

    Cholesterol-rich caveolar microdomains and associated caveolins influence sarcolemmal ion channel and receptor function and protective stress signaling. However, the importance of membrane cholesterol content to cardiovascular function and myocardial responses to ischemia-reperfusion (I/R) and cardioprotective stimuli are unclear. We assessed the effects of graded cholesterol depletion with methyl-β-cyclodextrin (MβCD) and lifelong knockout (KO) or overexpression (OE) of caveolin-3 (Cav-3) on cardiac function, I/R tolerance, and opioid receptor (OR)-mediated protection. Langendorff-perfused hearts from young male C57Bl/6 mice were untreated or treated with 0.02–1.0 mM MβCD for 25 min to deplete membrane cholesterol and disrupt caveolae. Hearts were subjected to 25-min ischemia/45-min reperfusion, and the cardioprotective effects of morphine applied either acutely or chronically [sustained ligand-activated preconditioning (SLP)] were assessed. MβCD concentration dependently reduced normoxic contractile function and postischemic outcomes in association with graded (10–30%) reductions in sarcolemmal cholesterol. Cardioprotection with acute morphine was abolished with ≥20 μM MβCD, whereas SLP was more robust and only inhibited with ≥200 μM MβCD. Deletion of Cav-3 also reduced, whereas Cav-3 OE improved, myocardial I/R tolerance. Protection via SLP remained equally effective in Cav-3 KO mice and was additive with innate protection arising with Cav-3 OE. These data reveal the membrane cholesterol dependence of normoxic myocardial and coronary function, I/R tolerance, and OR-mediated cardioprotection in murine hearts (all declining with cholesterol depletion). In contrast, baseline function appears insensitive to Cav-3, whereas cardiac I/R tolerance parallels Cav-3 expression. Novel SLP appears unique, being less sensitive to cholesterol depletion than acute OR protection and arising independently of Cav-3 expression. PMID:25063791

  20. The uniqueness of the plant mitochondrial potassium channel

    Directory of Open Access Journals (Sweden)

    Donato Pastore

    2013-08-01

    Full Text Available The ATP-inhibited Plant Mitochondrial K+ Channel (PmitoKATPwas discovered about fifteen years ago in Durum WheatMitochondria (DWM. PmitoKATP catalyses the electrophoreticK+ uniport through the inner mitochondrial membrane;moreover, the co-operation between PmitoKATP and K+/H+antiporter allows such a great operation of a K+ cycle tocollapse mitochondrial membrane potential (ΔΨ and ΔpH, thusimpairing protonmotive force (Δp. A possible physiological roleof such ΔΨ control is the restriction of harmful reactive oxygenspecies (ROS production under environmental/oxidative stressconditions. Interestingly, DWM lacking Δp were found to benevertheless fully coupled and able to regularly accomplish ATPsynthesis; this unexpected behaviour makes necessary to recastin some way the classical chemiosmotic model. In the whole,PmitoKATP may oppose to large scale ROS production bylowering ΔΨ under environmental/oxidative stress, but, whenstress is moderate, this occurs without impairing ATP synthesisin a crucial moment for cell and mitochondrial bioenergetics.[BMB Reports 2013; 46(8: 391-397

  1. BAD and KATP channels regulate neuron excitability and epileptiform activity.

    Science.gov (United States)

    Martínez-François, Juan Ramón; Fernández-Agüera, María Carmen; Nathwani, Nidhi; Lahmann, Carolina; Burnham, Veronica L; Danial, Nika N; Yellen, Gary

    2018-01-25

    Brain metabolism can profoundly influence neuronal excitability. Mice with genetic deletion or alteration of Bad ( B CL-2 a gonist of cell d eath) exhibit altered brain-cell fuel metabolism, accompanied by resistance to acutely induced epileptic seizures; this seizure protection is mediated by ATP-sensitive potassium (K ATP ) channels. Here we investigated the effect of BAD manipulation on K ATP channel activity and excitability in acute brain slices. We found that BAD's influence on neuronal K ATP channels was cell-autonomous and directly affected dentate granule neuron (DGN) excitability. To investigate the role of neuronal K ATP channels in the anticonvulsant effects of BAD, we imaged calcium during picrotoxin-induced epileptiform activity in entorhinal-hippocampal slices. BAD knockout reduced epileptiform activity, and this effect was lost upon knockout or pharmacological inhibition of K ATP channels. Targeted BAD knockout in DGNs alone was sufficient for the antiseizure effect in slices, consistent with a 'dentate gate' function that is reinforced by increased K ATP channel activity. © 2018, Martínez-François et al.

  2. Role of ATP-sensitive potassium channels in the piracetam induced blockade of opioid effects.

    Science.gov (United States)

    Rehni, Ashish K; Singh, Nirmal; Jindal, Seema

    2007-12-01

    The present study has been designed to investigate the effect of piracetam on morphine/ buprenorphine-induced antinociception in rats and effect of piracetam on morphine or minoxidil induced relaxation in KCl-precontracted isolated rat aortic ring preparation. Nociceptive threshold was measured by the tail flick test in rats. The cumulative dose responses of morphine or minoxidil were recorded in KCl-precontracted isolated rat aortic ring preparation. Piracetam attenuated buprenorphine-induced antinociception in rats. Piracetam significantly reduced the morphine and minoxidil induced relaxation in KCl precontracted isolated rat aortic ring preparation suggesting that piracetam interferes with opioid receptor and ATP-sensitive potassium channel (KATP) opener mediated responses in vitro. Thus, it may be suggested that piracetam attenuates opioid effects by an opioid receptor-KATP channel linked mechanism.

  3. 1,4,2-Benzo/pyridodithiazine 1,1-dioxides structurally related to the ATP-sensitive potassium channel openers 1,2,4-Benzo/pyridothiadiazine 1,1-dioxides exert a myorelaxant activity linked to a distinct mechanism of action.

    Science.gov (United States)

    Pirotte, Bernard; de Tullio, Pascal; Florence, Xavier; Goffin, Eric; Somers, Fabian; Boverie, Stéphane; Lebrun, Philippe

    2013-04-25

    The synthesis of diversely substituted 3-alkyl/aralkyl/arylamino-1,4,2-benzodithiazine 1,1-dioxides and 3-alkylaminopyrido[4,3-e]-1,4,2-dithiazine 1,1-dioxides is described. Their biological activities on pancreatic β-cells and on smooth muscle cells were compared to those of the reference ATP-sensitive potassium channel (KATP channel) openers diazoxide and 7-chloro-3-isopropylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide. The aim was to assess the impact on biological activities of the replacement of the 1,2,4-thiadiazine ring by an isosteric 1,4,2-dithiazine ring. Most of the dithiazine analogues were found to be inactive on the pancreatic tissue, although some compounds bearing a 1-phenylethylamino side chain at the 3-position exerted a marked myorelaxant activity. Such an effect did not appear to be related to the opening of KATP channels but rather reflected a mechanism of action similar to that of calcium channel blockers. Tightly related 3-(1-phenylethyl)sulfanyl-4H-1,2,4-benzothiadiazine 1,1-dioxides were also found to exert a pronounced myorelaxant activity, resulting from both a KATP channel activation and a calcium channel blocker mechanism. The present work highlights the critical importance of an intracyclic NH group at the 4-position, as well as an exocyclic NH group linked to the 3-position of the benzo- and pyridothiadiazine dioxides, for activity on KATP channels.

  4. ATP sensitive potassium channels in the skeletal muscle functions : involvement of the KCNJ11(Kir6.2 gene in the determination of Warner Bratzer shear force

    Directory of Open Access Journals (Sweden)

    Domenico eTricarico

    2016-05-01

    Full Text Available The ATP-sensitive K+-channels (KATP are distributed in the tissues coupling metabolism with K+ ions efflux. KATP subunits are encoded by KCNJ8 (Kir6.1, KCNJ11 (Kir6.2, ABCC8 (SUR1 and ABCC9 (SUR2 genes, alternative RNA splicing give rise to SUR variants that confer distinct physiological properties on the channel. An high expression/activity of the sarco-KATP channel is observed in various rat fast-twitch muscles, characterized by elevated muscle strength, while a low expression/activity is observed in the slow-twitch muscles characterized by reduced strength and frailty. Down-regulation of the KATP subunits of fast-twitch fibres is found in conditions characterized by weakness and frailty. KCNJ11 gene knockout mice have reduced glycogen, lean phenotype, lower body fat, and weakness. KATP channel is also a sensor of muscle atrophy. The KCNJ11 gene is located on BTA15, close to a QTL for meat tenderness, it has also a role in glycogen storage, a key mechanism of the postmortem transformation of muscle into meat. The role of KCNJ11 gene in muscle function may underlie an effect of KCNJ11 genotypes on meat tenderness, as recently reported. The fiber phenotype and genotype are important in livestock production science. Quantitative traits including meat production and quality are influenced both by environment and genes. Molecular markers can play an important role in the genetic improvement of animals through breeding strategies. Many factors influence the muscle Warner-Bratzler shear force including breed, age, feeding, the biochemical and functional parameters. The role of KCNJ11gene and related genes on muscle tenderness will be discussed in the present review.

  5. Role of ATP-dependent K channels in the effects of erythropoietin in renal ischaemia injury

    Directory of Open Access Journals (Sweden)

    Tonguç Utku Yilmaz

    2015-01-01

    Interpretation & conclusions: Our results showed that the cell proliferative, cytoprotective and anti-apoptotic effects of EPO were associated with KATP channels in the renal tubular cell culture model under hypoxic/normal conditions.

  6. Characterisation of the sarcolemmal calcium pump in guinea pig hearts and its influence through g-strophanthin. Charakterisierung der sarkolemmalen Calciumpumpe des Meerschweinchenherzens und ihre Beeinflussung durch g-Strophanthin

    Energy Technology Data Exchange (ETDEWEB)

    Lell, R.

    1982-11-25

    In this work the sarcolemmal calcium transport of the guinea pig heart is studied with the help of the micropore filtration method on the sarcolemmal vesicles. The calcium ATPase could be better characterised by its ability to accumulate calcium in the sarcolemmal vesicles. The calcium pump is magnesium-dependent and positively activated by sodium and potassium. The pH-optimum of the activity lies around 6.8-7.0 depending on intracellular conditions. Up until a concentration of 30 micrograms protein per ml of reaction mixture the calcium accumulation increased proportionally. With higher concentrations it came to a relative decrease. The addition of digitoxin and g-strophanthin to the reaction mixture did not change the activity of the calcium pump. With a perfusion of the heart with a toxic concentration of 10/sup 06/ M g-strophanthin a glycoside intoxication on the beating heart was caused and a time-dependent inhibition of the calcium pump of sarcolemmal vesicles was detectable.

  7. The KATP channel in migraine pathophysiology: a novel therapeutic target for migraine.

    Science.gov (United States)

    Al-Karagholi, Mohammad Al-Mahdi; Hansen, Jakob Møller; Severinsen, Johanne; Jansen-Olesen, Inger; Ashina, Messoud

    2017-08-23

    To review the distribution and function of K ATP channels, describe the use of K ATP channels openers in clinical trials and make the case that these channels may play a role in headache and migraine. K ATP channels are widely present in the trigeminovascular system and play an important role in the regulation of tone in cerebral and meningeal arteries. Clinical trials using synthetic K ATP channel openers report headache as a prevalent-side effect in non-migraine sufferers, indicating that K ATP channel opening may cause headache, possibly due to vascular mechanisms. Whether K ATP channel openers can provoke migraine in migraine sufferers is not known. We suggest that K ATP channels may play an important role in migraine pathogenesis and could be a potential novel therapeutic anti-migraine target.

  8. Structural and functional determinants of conserved lipid interaction domains of inward rectifying Kir6.2 channels.

    Science.gov (United States)

    Cukras, Catherine A; Jeliazkova, Iana; Nichols, Colin G

    2002-06-01

    All members of the inward rectifiier K(+) (Kir) channel family are activated by phosphoinositides and other amphiphilic lipids. To further elucidate the mechanistic basis, we examined the membrane association of Kir6.2 fragments of K(ATP) channels, and the effects of site-directed mutations of these fragments and full-length Kir6.2 on membrane association and K(ATP) channel activity, respectively. GFP-tagged Kir6.2 COOH terminus and GFP-tagged pleckstrin homology domain from phospholipase C delta1 both associate with isolated membranes, and association of each is specifically reduced by muscarinic m1 receptor-mediated phospholipid depletion. Kir COOH termini are predicted to contain multiple beta-strands and a conserved alpha-helix (residues approximately 306-311 in Kir6.2). Systematic mutagenesis of D307-F315 reveals a critical role of E308, I309, W311 and F315, consistent with residues lying on one side of a alpha-helix. Together with systematic mutation of conserved charges, the results define critical determinants of a conserved domain that underlies phospholipid interaction in Kir channels.

  9. Quantitative determination of Na+-K+-ATPase and other sarcolemmal components in muscle cells

    International Nuclear Information System (INIS)

    Hansen, O.; Clausen, T.

    1988-01-01

    A recurring problem in the characterization of plasma membrane enzymes in tissues and cells is whether the samples tested are representative for the entire population of enzyme molecules present in the starting material. Measurements of [ 3 H]-ouabain binding, enzyme activity, and maximum transport capacity all indicate that the concentration of Na + -K + pumps in mammalian skeletal muscle is high. Studies on Na + -K + -ATPase activity in isolated sarcolemma, however, generally give little or no information on total cellular enzyme concentration. Due to the low and variable enzyme recovery, such subcellular preparations may, therefore, give misleading data on factors regulating Na + -K + -ATPase in heart and skeletal muscle cells. As the same isolation and purification procedures are used for the study of other sarcolemmal components, this inadequate recovery has general implications for statements on regulatory changes in the sarcolemmal composition of muscle cells. On the other hand, complete quantification of Na + -K + -ATPase in muscle tissue can now be achieved using simple procedures and the entire material. Recent studies have shown that regulatory changes in the entire population of Na + -K + pumps in muscle can be quantified in measurements of [ 3 H]-ouabain binding, K + -activated 3-O-methylfluorescein phosphatase activity, as well as maximum ouabain suppressible Na + -K + transport capacity

  10. Alloxan-induced diabetes reduces sarcolemmal Na+-K+ pump function in rabbit ventricular myocytes.

    Science.gov (United States)

    Hansen, Peter S; Clarke, Ronald J; Buhagiar, Kerrie A; Hamilton, Elisha; Garcia, Alvaro; White, Caroline; Rasmussen, Helge H

    2007-03-01

    The effect of diabetes on sarcolemmal Na(+)-K(+) pump function is important for our understanding of heart disease associated with diabetes and design of its treatment. We induced diabetes characterized by hyperglycemia but no other major metabolic disturbances in rabbits. Ventricular myocytes isolated from diabetic rabbits and controls were voltage clamped and internally perfused with the whole cell patch-clamp technique. Electrogenic Na(+)-K(+) pump current (I(p), arising from the 3:2 Na(+)-to-K(+) exchange ratio) was identified as the shift in holding current induced by Na(+)-K(+) pump blockade with 100 micromol/l ouabain in most experiments. There was no effect of diabetes on I(p) recorded when myocytes were perfused with pipette solutions containing 80 mmol/l Na(+) to nearly saturate intracellular Na(+)-K(+) pump sites. However, diabetes was associated with a significant decrease in I(p) measured when pipette solutions contained 10 mmol/l Na(+). The decrease was independent of membrane voltage but dependent on the intracellular concentration of K(+). There was no effect of diabetes on the sensitivity of I(p) to extracellular K(+). Pump inhibition was abolished by restoration of euglycemia or by in vivo angiotensin II receptor blockade with losartan. We conclude that diabetes induces sarcolemmal Na(+)-K(+) pump inhibition that can be reversed with pharmacological intervention.

  11. Effect of diet on insulin binding and glucose transport in rat sarcolemmal vesicles

    International Nuclear Information System (INIS)

    Grimditch, G.K.; Barnard, R.J.; Sternlicht, E.; Whitson, R.H.; Kaplan, S.A.

    1987-01-01

    The purpose of this study was to compare the effects of a high-fat, high-sucrose diet (HFS) and a low-fat, high-complex carbohydrate diet (LFC) on glucose tolerance, insulin binding, and glucose transport in rat skeletal muscle. During the intravenous glucose tolerance test, peak glucose values at 5 min were significantly higher in the HFS group; 0-, 20-, and 60-min values were similar. Insulin values were significantly higher in the HFS group at all time points (except 60 min), indicating whole-body insulin resistance. Skeletal muscle was responsible, in part, for this insulin resistance, because specific D-glucose transport in isolated sarcolemmal (SL) vesicles under basal conditions was similar between LFC and HFS rats, despite the higher plasma insulin levels. Scatchard analyses of insulin binding curves to sarcolemmal vesicles revealed that the K/sub a/ of the high-affinity binding sites was significantly reduced by the HFS diet; no other binding changes were noted. Specific D-glucose transport in SL vesicles after maximum insulin stimulation (1 U/kg) was significantly depressed in the HFS group, indicating that HFS feeding also caused a postbinding defect. These results indicate that the insulin resistance in skeletal muscle associated with a HFS diet is due to both a decrease in the K/sub a/ of the high-affinity insulin receptors and a postbinding defect

  12. Quantitative determination of Na sup + -K sup + -ATPase and other sarcolemmal components in muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, O.; Clausen, T. (Aarhus Univ. (Denmark))

    1988-01-01

    A recurring problem in the characterization of plasma membrane enzymes in tissues and cells is whether the samples tested are representative for the entire population of enzyme molecules present in the starting material. Measurements of ({sup 3}H)-ouabain binding, enzyme activity, and maximum transport capacity all indicate that the concentration of Na{sup +}-K{sup +} pumps in mammalian skeletal muscle is high. Studies on Na{sup +}-K{sup +}-ATPase activity in isolated sarcolemma, however, generally give little or no information on total cellular enzyme concentration. Due to the low and variable enzyme recovery, such subcellular preparations may, therefore, give misleading data on factors regulating Na{sup +}-K{sup +}-ATPase in heart and skeletal muscle cells. As the same isolation and purification procedures are used for the study of other sarcolemmal components, this inadequate recovery has general implications for statements on regulatory changes in the sarcolemmal composition of muscle cells. On the other hand, complete quantification of Na{sup +}-K{sup +}-ATPase in muscle tissue can now be achieved using simple procedures and the entire material. Recent studies have shown that regulatory changes in the entire population of Na{sup +}-K{sup +} pumps in muscle can be quantified in measurements of ({sup 3}H)-ouabain binding, K{sup +}-activated 3-O-methylfluorescein phosphatase activity, as well as maximum ouabain suppressible Na{sup +}-K{sup +} transport capacity.

  13. K+ channel openers restore verapamil-inhibited lung fluid resolution and transepithelial ion transport

    Directory of Open Access Journals (Sweden)

    Su Xue-Feng

    2010-05-01

    Full Text Available Abstract Background Lung epithelial Na+ channels (ENaC are regulated by cell Ca2+ signal, which may contribute to calcium antagonist-induced noncardiogenic lung edema. Although K+ channel modulators regulate ENaC activity in normal lungs, the therapeutical relevance and the underlying mechanisms have not been completely explored. We hypothesized that K+ channel openers may restore calcium channel blocker-inhibited alveolar fluid clearance (AFC by up-regulating both apical and basolateral ion transport. Methods Verapamil-induced depression of heterologously expressed human αβγ ENaC in Xenopus oocytes, apical and basolateral ion transport in monolayers of human lung epithelial cells (H441, and in vivo alveolar fluid clearance were measured, respectively, using the two-electrode voltage clamp, Ussing chamber, and BSA protein assays. Ca2+ signal in H441 cells was analyzed using Fluo 4AM. Results The rate of in vivo AFC was reduced significantly (40.6 ± 6.3% of control, P Ca3.1 (1-EBIO and KATP (minoxidil channel openers significantly recovered AFC. In addition to short-circuit current (Isc in intact H441 monolayers, both apical and basolateral Isc levels were reduced by verapamil in permeabilized monolayers. Moreover, verapamil significantly altered Ca2+ signal evoked by ionomycin in H441 cells. Depletion of cytosolic Ca2+ in αβγ ENaC-expressing oocytes completely abolished verapamil-induced inhibition. Intriguingly, KV (pyrithione-Na, K Ca3.1 (1-EBIO, and KATP (minoxidil channel openers almost completely restored the verapamil-induced decrease in Isc levels by diversely up-regulating apical and basolateral Na+ and K+ transport pathways. Conclusions Our observations demonstrate that K+ channel openers are capable of rescuing reduced vectorial Na+ transport across lung epithelial cells with impaired Ca2+ signal.

  14. Role of vascular potassium channels in the regulation of renal hemodynamics

    DEFF Research Database (Denmark)

    Sørensen, Charlotte Mehlin; Braunstein, Thomas Hartig; von Holstein-Rathlou, Niels-Henrik

    2012-01-01

    of one or more classes of K+ channels will lead to a change in hemodynamic resistance and therefore of renal blood flow and glomerular filtration pressure. Through these effects, the activity of renal vascular K+ channels influences renal salt and water excretion, fluid homeostasis, and ultimately blood...... pressure. Four main classes of K+ channels [calcium activated (KCa), inward rectifier (Kir), voltage activated (KV), and ATP sensitive (KATP)] are found in the renal vasculature. Several in vitro experiments have suggested a role for individual classes of K+ channels in the regulation of renal vascular...... function. Results from in vivo experiments are sparse. We discuss the role of the different classes of renal vascular K+ channels and their possible role in the integrated function of the renal microvasculature. Since several pathological conditions, among them hypertension, are associated with alterations...

  15. UniProt search blastx result: AK288448 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288448 J090034N14 P48545|IRK5_MOUSE G protein-activated inward rectifier potassiu...m channel 4 (GIRK4) (Potassium channel, inwardly rectifying subfamily J member 5) (Inward rectifier K(+) cha...nnel Kir3.4) (Heart KATP channel) (KATP-1) (Cardiac inward rectifier) (CIR) - Mus musculus (Mouse) 0 ...

  16. Po2 cycling protects diaphragm function during reoxygenation via ROS, Akt, ERK, and mitochondrial channels.

    Science.gov (United States)

    Zuo, Li; Pannell, Benjamin K; Re, Anthony T; Best, Thomas M; Wagner, Peter D

    2015-12-01

    Po2 cycling, often referred to as intermittent hypoxia, involves exposing tissues to brief cycles of low oxygen environments immediately followed by hyperoxic conditions. After experiencing long-term hypoxia, muscle can be damaged during the subsequent reintroduction of oxygen, which leads to muscle dysfunction via reperfusion injury. The protective effect and mechanism behind Po2 cycling in skeletal muscle during reoxygenation have yet to be fully elucidated. We hypothesize that Po2 cycling effectively increases muscle fatigue resistance through reactive oxygen species (ROS), protein kinase B (Akt), extracellular signal-regulated kinase (ERK), and certain mitochondrial channels during reoxygenation. Using a dihydrofluorescein fluorescent probe, we detected the production of ROS in mouse diaphragmatic skeletal muscle in real time under confocal microscopy. Muscles treated with Po2 cycling displayed significantly attenuated ROS levels (n = 5; P ROS, Akt, ERK, as well as chemical stimulators to close mitochondrial ATP-sensitive potassium channel (KATP) or open mitochondrial permeability transition pore (mPTP). All these blockers or stimulators abolished improved muscle function with Po2 cycling treatment. This current investigation has discovered a correlation between KATP and mPTP and the Po2 cycling pathway in diaphragmatic skeletal muscle. Thus we have identified a unique signaling pathway that may involve ROS, Akt, ERK, and mitochondrial channels responsible for Po2 cycling protection during reoxygenation conditions in the diaphragm. Copyright © 2015 the American Physiological Society.

  17. Effects of ketamine and its isomers on ischemic preconditioning in the isolated rat heart

    NARCIS (Netherlands)

    Molojavyi, A.; Preckel, B.; Comfère, T.; Müllenheim, J.; Thämer, V.; Schlack, W.

    2001-01-01

    BACKGROUND: Ischemic preconditioning protects the heart against subsequent ischemia. Opening of the adenosine triphosphate-sensitive potassium (KATP) channel is a key mechanism of preconditioning. Ketamine blocks KATP channels of isolated cardiomyocytes. The authors investigated the effects of

  18. St36 electroacupuncture activates nNOS, iNOS and ATP-sensitive potassium channels to promote orofacial antinociception in rats.

    Science.gov (United States)

    Almeida, R T; Galdino, G; Perez, A C; Silva, G; Romero, T R; Duarte, I D

    2017-02-01

    Orofacial pain is pain perceived in the face and/or oral cavity, generally caused by diseases or disorders of regional structures, by dysfunction of the nervous system, or through referral from distant sources. Treatment of orofacial pain is mainly pharmacological, but it has increased the number of reports demonstrating great clinical results with the use of non-pharmacological therapies, among them electroacupuncture. However, the mechanisms involved in the electroacupuncture are not well elucidated. Thus, the present study investigate the involvement of the nitric oxide synthase (NOS) and ATP sensitive K + channels (KATP) in the antinociception induced by electroacupuncture (EA) at acupoint St36. Thermal nociception was applied in the vibrissae region of rats, and latency time for face withdrawal was measured. Electrical stimulation of acupoint St36 for 20 minutes reversed the thermal withdrawal latency and this effect was maintained for 150 min. Intraperitoneal administration of specific inhibitors of neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and a KATP channels blocker reversed the antinociception induced by EA. Furthermore, nitrite concentration in cerebrospinal fluid (CSF) and plasma, increased 4 and 3-fold higher, respectively, after EA. This study suggests that NO participates of antinociception induced by EA by nNOS, iNOS and ATP-sensitive K + channels activation.

  19. Acute action of rotenone on excitability of catecholaminergic neurons in rostral ventrolateral medulla.

    Science.gov (United States)

    Zhang, Zhaoqiang; Shi, Limin; Du, Xixun; Jiao, Qian; Jiang, Hong

    2017-09-01

    The degeneration of the rostral ventrolateral medulla (RVLM) catecholaminergic neurons was responsible for some cardiovascular symptoms in Parkinson's disease (PD). Our previous study had observed the impairment of these neurons in the early stage of PD in the rotenone-induced PD rat model, but the related mechanisms remain unclear. Rotenone is a mitochondrial inhibitor, influencing the neuronal electrophysiological activity through activation of K-ATP channels that potentially participate in cell death processes. In the present study, effects of rotenone on electrophysiological properties of RVLM catecholaminergic neurons and its underlying mechanisms were investigated. In coronal slices of brain containing the RVLM through patch clamp technique, rotenone (0.5μM) induced gradual postsynaptic inhibition on the spontaneous firing and cell membrane hyperpolarization with outward currents of catecholaminergic neurons. The electrophysiological changes were blocked by glibenclamide (30μM), a blocker of K-ATP channels, and were nearly unchanged by diazoxide (100μM), an opener of K-ATP channels. Our results also showed that effects of rotenone on catecholaminergic neurons including reactive oxygen species (ROS) generation were prevented by pretreatment of coenzyme Q10 (CoQ10, 100μM), a scavenger of ROS. These suggest that rotenone-induced electrophysiological changes of RVLM catecholaminergic neurons are caused by the opening of K-ATP channels, which are partly related to ROS generation. The changes of K-ATP channels might account for the vulnerability of RVLM catecholaminergic neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. H2O2: A Dynamic Neuromodulator

    Science.gov (United States)

    Rice, Margaret E.

    2012-01-01

    Increasing evidence implicates hydrogen peroxide (H2O2) as an intra- and intercellular signaling molecule that can influence processes from embryonic development to cell death. Most research has focused on relatively slow signaling, on the order of minutes to days, via second messenger cascades. However, H2O2 can also mediate subsecond signaling via ion channel activation. This rapid signaling has been examined most thoroughly in the nigrostriatal dopamine (DA) pathway, which plays a key role in facilitating movement mediated by the basal ganglia. In DA neurons of the substantia nigra, endogenously generated H2O2 activates ATP-sensitive K+ (KATP) channels that inhibit DA neuron firing. In the striatum, H2O2 generated downstream from glutamatergic AMPA receptor activation in medium spiny neurons acts as a diffusible messenger that inhibits axonal DA release, also via KATP channels. The source of dynamically generated H2O2 is mitochondrial respiration; thus, H2O2 provides a novel link between activity and metabolism via KATP channels. Additional targets of H2O2 include transient receptor potential (TRP) channels. In contrast to the inhibitory effect of H2O2 acting via KATP channels, TRP channel activation is excitatory. This review describes emerging roles of H2O2 as a signaling agent in the nigrostriatal pathway and other basal ganglia neurons. PMID:21666063

  1. Ventricular action potential adaptation to regular exercise: role of β-adrenergic and KATP channel function.

    Science.gov (United States)

    Wang, Xinrui; Fitts, Robert H

    2017-08-01

    Regular exercise training is known to affect the action potential duration (APD) and improve heart function, but involvement of β-adrenergic receptor (β-AR) subtypes and/or the ATP-sensitive K + (K ATP ) channel is unknown. To address this, female and male Sprague-Dawley rats were randomly assigned to voluntary wheel-running or control groups; they were anesthetized after 6-8 wk of training, and myocytes were isolated. Exercise training significantly increased APD of apex and base myocytes at 1 Hz and decreased APD at 10 Hz. Ca 2+ transient durations reflected the changes in APD, while Ca 2+ transient amplitudes were unaffected by wheel running. The nonselective β-AR agonist isoproterenol shortened the myocyte APD, an effect reduced by wheel running. The isoproterenol-induced shortening of APD was largely reversed by the selective β 1 -AR blocker atenolol, but not the β 2 -AR blocker ICI 118,551, providing evidence that wheel running reduced the sensitivity of the β 1 -AR. At 10 Hz, the K ATP channel inhibitor glibenclamide prolonged the myocyte APD more in exercise-trained than control rats, implicating a role for this channel in the exercise-induced APD shortening at 10 Hz. A novel finding of this work was the dual importance of altered β 1 -AR responsiveness and K ATP channel function in the training-induced regulation of APD. Of physiological importance to the beating heart, the reduced response to adrenergic agonists would enhance cardiac contractility at resting rates, where sympathetic drive is low, by prolonging APD and Ca 2+ influx; during exercise, an increase in K ATP channel activity would shorten APD and, thus, protect the heart against Ca 2+ overload or inadequate filling. NEW & NOTEWORTHY Our data demonstrated that regular exercise prolonged the action potential and Ca 2+ transient durations in myocytes isolated from apex and base regions at 1-Hz and shortened both at 10-Hz stimulation. Novel findings were that wheel running shifted the

  2. The role of NH2-terminal positive charges in the activity of inward rectifier KATP channels.

    Science.gov (United States)

    Cukras, C A; Jeliazkova, I; Nichols, C G

    2002-09-01

    Approximately half of the NH(2) terminus of inward rectifier (Kir) channels can be deleted without significant change in channel function, but activity is lost when more than approximately 30 conserved residues before the first membrane spanning domain (M1) are removed. Systematic replacement of the positive charges in the NH(2) terminus of Kir6.2 with alanine reveals several residues that affect channel function when neutralized. Certain mutations (R4A, R5A, R16A, R27A, R39A, K47A, R50A, R54A, K67A) change open probability, whereas an overlapping set of mutants (R16A, R27A, K39A, K47A, R50A, R54A, K67A) change ATP sensitivity. Further analysis of the latter set differentiates mutations that alter ATP sensitivity as a consequence of altered open state stability (R16A, K39A, K67A) from those that may affect ATP binding directly (K47A, R50A, R54A). The data help to define the structural determinants of Kir channel function, and suggest possible structural motifs within the NH(2) terminus, as well as the relationship of the NH(2) terminus with the extended cytoplasmic COOH terminus of the channel.

  3. Glucose stimulates neurotensin secretion from the rat small intestine by mechanisms involving SGLT1 and GLUT2 leading to cell depolarization and calcium influx

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Bechmann, Louise Ellegaard; Hartmann, Bolette

    2015-01-01

    of secretion. Luminal glucose (20% wt/vol) stimulated secretion but vascular glucose (5, 10, or 15 mmol/l) was without effect. The underlying mechanisms depend on membrane depolarization and calcium influx, since the voltage-gated calcium channel inhibitor nifedipine and the KATP channel opener diazoxide......, suggesting that glucose stimulates secretion by initial uptake by this transporter. However, secretion was also sensitive to GLUT2 inhibition (by phloretin) and blockage of oxidative phosphorylation (2-4-dinitrophenol). Direct KATP channel closure by sulfonylureas stimulated secretion. Therefore, glucose...

  4. Kir6.2 activation by sulfonylurea receptors: a different mechanism of action for SUR1 and SUR2A subunits via the same residues

    Science.gov (United States)

    Principalli, Maria A; Dupuis, Julien P; Moreau, Christophe J; Vivaudou, Michel; Revilloud, Jean

    2015-01-01

    ATP-sensitive potassium channels (K-ATP channels) play a key role in adjusting the membrane potential to the metabolic state of cells. They result from the unique combination of two proteins: the sulfonylurea receptor (SUR), an ATP-binding cassette (ABC) protein, and the inward rectifier K+ channel Kir6.2. Both subunits associate to form a heterooctamer (4 SUR/4 Kir6.2). SUR modulates channel gating in response to the binding of nucleotides or drugs and Kir6.2 conducts potassium ions. The activity of K-ATP channels varies with their localization. In pancreatic β-cells, SUR1/Kir6.2 channels are partly active at rest while in cardiomyocytes SUR2A/Kir6.2 channels are mostly closed. This divergence of function could be related to differences in the interaction of SUR1 and SUR2A with Kir6.2. Three residues (E1305, I1310, L1313) located in the linker region between transmembrane domain 2 and nucleotide-binding domain 2 of SUR2A were previously found to be involved in the activation pathway linking binding of openers onto SUR2A and channel opening. To determine the role of the equivalent residues in the SUR1 isoform, we designed chimeras between SUR1 and the ABC transporter multidrug resistance-associated protein 1 (MRP1), and used patch clamp recordings on Xenopus oocytes to assess the functionality of SUR1/MRP1 chimeric K-ATP channels. Our results reveal that the same residues in SUR1 and SUR2A are involved in the functional association with Kir6.2, but they display unexpected side-chain specificities which could account for the contrasted properties of pancreatic and cardiac K-ATP channels. PMID:26416970

  5. The roles of KCa, KATP, and KV channels in regulating cutaneous vasodilation and sweating during exercise in the heat.

    Science.gov (United States)

    Louie, Jeffrey C; Fujii, Naoto; Meade, Robert D; McNeely, Brendan D; Kenny, Glen P

    2017-05-01

    We recently showed the varying roles of Ca 2+ -activated (K Ca ), ATP-sensitive (K ATP ), and voltage-gated (K V ) K + channels in regulating cholinergic cutaneous vasodilation and sweating in normothermic conditions. However, it is unclear whether the respective contributions of these K + channels remain intact during dynamic exercise in the heat. Eleven young (23 ± 4 yr) men completed a 30-min exercise bout at a fixed rate of metabolic heat production (400 W) followed by a 40-min recovery period in the heat (35°C, 20% relative humidity). Cutaneous vascular conductance (CVC) and local sweat rate were assessed at four forearm skin sites perfused via intradermal microdialysis with: 1 ) lactated Ringer solution (control); 2 ) 50 mM tetraethylammonium (nonspecific K Ca channel blocker); 3 ) 5 mM glybenclamide (selective K ATP channel blocker); or 4 ) 10 mM 4-aminopyridine (nonspecific K V channel blocker). Responses were compared at baseline and at 10-min intervals during and following exercise. K Ca channel inhibition resulted in greater CVC versus control at end exercise ( P = 0.04) and 10 and 20 min into recovery (both P exercise (all P ≤ 0.04), and 10 min into recovery ( P = 0.02). No differences in CVC were observed with K V channel inhibition during baseline ( P = 0.15), exercise (all P ≥ 0.06), or recovery (all P ≥ 0.14). With the exception of K V channel inhibition augmenting sweating during baseline ( P = 0.04), responses were similar to control with all K + channel blockers during each time period (all P ≥ 0.07). We demonstrated that K Ca and K ATP channels contribute to the regulation of cutaneous vasodilation during rest and/or exercise and recovery in the heat. Copyright © 2017 the American Physiological Society.

  6. ATP-sensitive K(+-channels in muscle cells: features and physiological role

    Directory of Open Access Journals (Sweden)

    O. B. Vadzyuk

    2014-08-01

    Full Text Available ATP-sensitive K+-channels of plasma membranes belong to the inward rectifier potassium channels type. They are involved in coupling of electrical activity of muscle cell with its metabolic­ state. These channels are heterooctameric and consist of two types of subunits: four poreforming (Kir 6.х and four regulatory (SUR, sulfonylurea receptor. The Kir subunits contain highly selective K+ filter and provide for high-velocity K+ currents. The SUR subunits contain binding sites for activators and blockers and have metabolic sensor, which enables channel activation under conditions of metabolic stress. ATP blocks K+ currents through the ATP-sensitive K+-channels in the most types of muscle cells. However, functional activity of these channels does not depend on absolute concentration of ATP but on the АТР/ADP ratio and presence of Mg2+. Physiologically active substances, such as phosphatidylinositol bisphosphate and fatty acid esters can regulate the activity of these structures in muscle cells. Activation of these channels under ischemic conditions underlies their cytoprotective action, which results in prevention of Ca2+ overload in cytosol. In contrast to ATP-sensitive K+-channels of plasma membranes, the data regarding the structure and function of ATP-sensitive K+-channels of mitochondrial membrane are contradictory. Pore-forming subunits of this channel have not been firmly identified yet. ATP-sensitive K+ transport through the mitochondrial­ membrane is easily tested by different methods, which are briefly reviewed in this paper. Interaction of mitoKATP with physiological and pharmacological ligands is discussed as well.

  7. Changes by short-term hypoxia in the membrane properties of pyramidal cells and the levels of purine and pyrimidine nucleotides in slices of rat neocortex; effects of agonists and antagonists of ATP-dependent potassium channels.

    Science.gov (United States)

    Pissarek, M; Garcia de Arriba, S; Schäfer, M; Sieler, D; Nieber, K; Illes, P

    1998-10-01

    In a first series of experiments, intracellular recordings were made from pyramidal cells in layers II-III of the rat primary somatosensory cortex. Superfusion of the brain slice preparations with hypoxic medium (replacement of 95%O2-5%CO2 with 95%N2-5%CO2) for up to 30 min led to a time-dependent depolarization (HD) without a major change in input resistance. Short periods of hypoxia (5 min) induced reproducible depolarizations which were concentration-dependently depressed by an agonist of ATP-dependent potassium (K(ATP)) channels, diazoxide (3-300 microM). The effect of 30 but not 300 microM diazoxide was reversed by washout. Tolbutamide (300 microM), an antagonist of K(ATP) channels, did not alter the HD when given alone. It did, however, abolish the inhibitory effect of diazoxide (30 microM) on the HD. Neither diazoxide (3-300 microM) nor tolbutamide (300 microM) influenced the membrane potential or the apparent input resistance of the neocortical pyramidal cells. Current-voltage (I-V) curves constructed at a membrane potential of -90 mV by injecting both de- and hyperpolarizing current pulses were not altered by diazoxide (30 microM) or tolbutamide (300 microM). Moreover, normoxic and hypoxic I-V curves did not cross each other, excluding a reversal of the HD at any membrane potential between -130 and -50 mV. The hypoxia-induced change of the I-V relation was the same both in the absence and presence of tolbutamide (300 microM). In a second series of experiments, nucleoside di- and triphosphates separated with anion exchange HPLC were measured in the neocortical slices. After 5 min of hypoxia, levels of nucleoside triphosphates declined by 29% (GTP), 34% (ATP), 44% (UTP) and 58% (CTP). By contrast, the levels of nucleoside diphosphates either did not change (UDP) or increased by 13% (GDP) and 40% (ADP). In slices subjected to 30 min of hypoxia the triphosphate levels continued to decrease, while the levels of GDP and ADP returned to control values. The tri

  8. Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds.

    Science.gov (United States)

    Yoshida, Ryusuke; Noguchi, Kenshi; Shigemura, Noriatsu; Jyotaki, Masafumi; Takahashi, Ichiro; Margolskee, Robert F; Ninomiya, Yuzo

    2015-11-01

    Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor-deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  9. CLC channel function and dysfunction in health and disease

    Directory of Open Access Journals (Sweden)

    Gabriel eStölting

    2014-10-01

    Full Text Available CLC channels and transporters are expressed in most tissues and fulfill diverse functions. There are four human CLC channels, ClC-1, ClC-2, ClC-Ka and ClC-Kb, and five CLC transporters, ClC-3 through -7. Some of the CLC channels additionally associate with accessory subunits. Whereas barttin is mandatory for the functional expression of CLC-K, GlialCam is a facultative subunit of ClC-2 which modifies gating and thus increases the functional variability within the CLC family. Isoform-specific ion conduction and gating properties optimize distinct CLC channels for their cellular tasks. ClC-1 preferentially conducts at negative voltages, and the resulting inward rectification provides a large resting chloride conductance without interference with the muscle action potential. Exclusive opening at voltages negative to the chloride reversal potential allows for ClC-2 to regulate intracellular chloride concentrations. ClC-Ka and ClC-Kb are equally suited for inward and outward currents to support transcellular chloride fluxes. Every human CLC channel gene has been linked to a genetic disease, and studying these mutations has provided much information about the physiological roles and the molecular basis of CLC channel function. Mutations in the gene encoding ClC-1 cause myotonia congenita, a disease characterized by sarcolemmal hyperexcitability and muscle stiffness. Loss-of-function of ClC-Kb/barttin channels in patients suffering from Bartter syndrome identified the determinants of chloride conductances in the limb of Henle. Mutations in CLCN2 were found in patients with CNS disorders but the functional role of this isoform is still not understood. Recent links between ClC-1 and epilepsy and ClC-Ka and heart failure suggested novel cellular functions of these proteins. This review aims to survey the knowledge about physiological and pathophysiological functions of human CLC channels in the light of recent discoveries from biophysical, physiological

  10. Long-pore Electrostatics in Inward-rectifier Potassium Channels

    Science.gov (United States)

    Robertson, Janice L.; Palmer, Lawrence G.; Roux, Benoît

    2008-01-01

    Inward-rectifier potassium (Kir) channels differ from the canonical K+ channel structure in that they possess a long extended pore (∼85 Å) for ion conduction that reaches deeply into the cytoplasm. This unique structural feature is presumably involved in regulating functional properties specific to Kir channels, such as conductance, rectification block, and ligand-dependent gating. To elucidate the underpinnings of these functional roles, we examine the electrostatics of an ion along this extended pore. Homology models are constructed based on the open-state model of KirBac1.1 for four mammalian Kir channels: Kir1.1/ROMK, Kir2.1/IRK, Kir3.1/GIRK, and Kir6.2/KATP. By solving the Poisson-Boltzmann equation, the electrostatic free energy of a K+ ion is determined along each pore, revealing that mammalian Kir channels provide a favorable environment for cations and suggesting the existence of high-density regions in the cytoplasmic domain and cavity. The contribution from the reaction field (the self-energy arising from the dielectric polarization induced by the ion's charge in the complex geometry of the pore) is unfavorable inside the long pore. However, this is well compensated by the electrostatic interaction with the static field arising from the protein charges and shielded by the dielectric surrounding. Decomposition of the static field provides a list of residues that display remarkable correspondence with existing mutagenesis data identifying amino acids that affect conduction and rectification. Many of these residues demonstrate interactions with the ion over long distances, up to 40 Å, suggesting that mutations potentially affect ion or blocker energetics over the entire pore. These results provide a foundation for understanding ion interactions in Kir channels and extend to the study of ion permeation, block, and gating in long, cation-specific pores. PMID:19001143

  11. The role of K –ATP channel in the preconditioning effect of magnesium in the rat isolated heart

    Directory of Open Access Journals (Sweden)

    Bazargan M.

    2007-05-01

    Full Text Available There is growing interest for beneficial effect of Mg in the cardiovascular disorders. A number of cardiovascular disorders including myocardial infarction, arrhythmias and congestive heart failure have been associated with low extracellular or intracellular concentrations of Mg. The aim of present study was to investigate the preconditioning effects of magnesium (Mg on cardiac function and infarct size in the globally ischemic-reperfusion in isolated rat heart. Rat hearts were Langendorff-perfused, subjected to 30 minutes of global ischemia and 90 minutes of reperfusion, and assigned to one of the following treatment groups with 7 hearts in each group: (1 control, (2 ischemic- reperfusion, (IR, (3 ischemic preconditioning, (IPC of 5 minutes of global ischemia - reperfusion before lethal ischemia; or pretreatment with (4 30 µmol/L of Diazoxide (Dia, (5 8 mmol/L magnesium, (6 10 µmol/L glibenclamid (Gli, (7 magnesium and Dia and (8 magnesium and Gli. Infarct size was measured by the triphenyltetrazolium chloride method. Left ventricular function was assessed by left ventricular developed pressure (LVDP, heart rate and coronary flow (CF. Mg limited infarct size (9.76 % vs 44.47% in IR, P< 0.001 as did Dia (10.2 % vs 44.4 % in IR P< 0.001 and IPC (8.69 % vs 44.47% in IR, P< 0.001. The protective effect of magnesium was abolished by Gli. Administration of Mg had an anti-infarct effect in ischemic-reperfusion isolated rat hearts and improved cardiac function. Blockade of K-ATP channel abolished the protective effects of magnesium and suggest that K-ATP channel has an important role in this effects.

  12. The experimental investigation of fibrinolytic system under the influence of flocalin in conditions of acute hypoxic kidney injury

    Directory of Open Access Journals (Sweden)

    A. I. Gozhenko

    2017-08-01

    Full Text Available In the experiments on rats subjected to acute hypoxic histochemical nephropathy, caused by sodium nitrite and 2,4-dinitrophenol, fibrinolytic activities of blood plasma, urine, renal cortex, medulla, and papilla after treatment with flocalin – the activator of KATP channels, were studied­. It was shown that in the conditions of acute kidney hypoxic injury flocalin administration resulted in the increase and essential restoration of fibrinolysis in blood plasma diminished under hypoxia, which was due to the growth of non-enzymatic fibrinolysis, whereas in urine and renal medulla the appreciable increase of enzymatic fibrinolytic activity took place. Moreover, the treatment of hypoxic nephropathy animals by flocalin resulted in the marked restoration of kidney ion regulatory and protein excretory functions that proves the positive influence of KATP channels activation on the one of the biochemical mechanisms of acute kidney injury as well as the protective effect of flocalin in relation to tubular cells of nephron. The obtained results testify to the beneficial effects of KATP channels activation in the conditions of acute hypoxic kidneys injury.

  13. Stimulation of Oxytocin Receptor during Early Reperfusion Period Protects the Heart against Ischemia/Reperfusion Injury: the Role of Mitochondrial ATPSensitive Potassium Channel, Nitric Oxide, and Prostaglandins

    Directory of Open Access Journals (Sweden)

    Alireza Imani

    2015-10-01

    Full Text Available Postconditioning is a simple and safe strategy for cardioprotection and infarct size limitation. Ourprevious study showed that oxytocin (OT exerts postconditioning effect on ischemic/reperfused isolated ratheart. The aim of this study was to investigate the involvement of OT receptor, mitochondrial ATP-sensitivepotassium channel (mKATP, nitric oxide (NO and cyclooxygenase (COX pathways in OTpostconditioning. Isolated rat hearts were divided into10 groups and underwent 30 min of regional ischemiafollowed by 120 min of reperfusion (n =6. In I/R (ischemia/reperfusion group, ischemia and reperfusionwere induced without any treatment. In OT group, oxytocin was perfused 5 min prior to beginning ofreperfusion for 25 min. In groups 3-6, atosiban (oxytocin receptor blocker, L-NAME (N-Nitro-L-ArginineMethyl Ester, non-specific nitric oxide synthase inhibitor, 5-HD (5-hydroxydecanoate, mKATP inhibitorand indomethacin (cyclooxygenase inhibitor were infused prior to oxytocin administration. In others, thementioned inhibitors were perfused prior to ischemia without oxytocin infusion. Infarct size, ventricularhemodynamic, coronary effluent, malondialdehyde (MDA and lactate dehydrogenase (LDH were measuredat the end of reperfusion. OT perfusion significantly reduced infarct size, MDA and LDH in comparison withIR group. Atosiban, 5HD, L-NAME and indomethacin abolished the postconditioning effect of OT. Perfusionof the inhibitors alone prior to ischemia had no effect on infarct size, hemodynamic parameters, coronaryeffluent and biochemical markers as compared with I/R group. In conclusion, this study indicates thatpostconditioning effects of OT are mediated by activation of mKATP and production of NO andProstaglandins (PGs.

  14. Role of aryl hydrocarbon receptor nuclear translocator in KATP channel-mediated insulin secretion in INS-1 insulinoma cells

    International Nuclear Information System (INIS)

    Kim, Ji-Seon; Zheng Haifeng; Kim, Sung Joon; Park, Jong-Wan; Park, Kyong Soo; Ho, Won-Kyung; Chun, Yang-Sook

    2009-01-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT) has been known to participate in cellular responses to xenobiotic and hypoxic stresses, as a common partner of aryl hydrocarbon receptor and hypoxia inducible factor-1/2α. Recently, it was reported that ARNT is essential for adequate insulin secretion in response to glucose input and that its expression is downregulated in the pancreatic islets of diabetic patients. In the present study, the authors addressed the mechanism by which ARNT regulates insulin secretion in the INS-1 insulinoma cell line. In ARNT knock-down cells, basal insulin release was elevated, but insulin secretion was not further stimulated by a high-glucose challenge. Electrophysiological analyses revealed that glucose-dependent membrane depolarization was impaired in these cells. Furthermore, K ATP channel activity and expression were reduced. Of two K ATP channel subunits, Kir6.2 was found to be positively regulated by ARNT at the mRNA and protein levels. Based on these results, the authors suggest that ARNT expresses K ATP channel and by so doing regulates glucose-dependent insulin secretion.

  15. The use of microelectrode array (MEA) to study the protective effects of potassium channel openers on metabolically compromised HL-1 cardiomyocytes

    International Nuclear Information System (INIS)

    Law, J K Y; Chan, M; Yeung, C K; Rudd, J A; Hofmann, B; Ingebrandt, S; Offenhäusser, A

    2009-01-01

    The microelectrode array (MEA) was used to evaluate the cardioprotective effects of adenosine triphosphate sensitive potassium (K ATP ) channel activation using potassium channel openers (KCOs) on HL-1 cardiomyocytes subjected to acute chemically induced metabolic inhibition. Beat frequency and extracellular action potential (exAP) amplitude were measured in the presence of metabolic inhibitors (sodium azide (NaN 3 ) or 2-deoxyglucose (2-DG)) or KCOs (pinacidil (PIN, a cyanoguanidine derivative, activates sarcolemmal K ATP channels) or SDZ PCO400 (SDZ, a benzopyran derivative, activates mitochondrial K ATP channels)). The protective effects of these KCOs on metabolically inhibited HL-1 cells were subsequently investigated. Signal shapes indicated that NaN 3 and 2-DG reduced the rate of the sodium (Na + ) influx signal as reflected by a reduction in beat frequency. PIN and SDZ appeared to reduce both rate of depolarization and extent of the Na + influx signals. Pre-treating cardiomyocytes with PIN (0.1 mM), but not SDZ, prevented the reduction of beat frequency associated with NaN 3 - or 2-DG-induced metabolic inhibition. The exAP amplitude was not affected by either KCO. The cardioprotective effect of PIN relative to SDZ may be due to the opening of different K ATP channels. This metabolic inhibition model on the MEA may provide a stable platform for the study of cardiac pathophysiology in the future

  16. Chronic exposure to KATP channel openers results in attenuated glucose sensing in hypothalamic GT1-7 neurons.

    Science.gov (United States)

    Haythorne, Elizabeth; Hamilton, D Lee; Findlay, John A; Beall, Craig; McCrimmon, Rory J; Ashford, Michael L J

    2016-12-01

    Individuals with Type 1 diabetes (T1D) are often exposed to recurrent episodes of hypoglycaemia. This reduces hormonal and behavioural responses that normally counteract low glucose in order to maintain glucose homeostasis, with altered responsiveness of glucose sensing hypothalamic neurons implicated. Although the molecular mechanisms are unknown, pharmacological studies implicate hypothalamic ATP-sensitive potassium channel (K ATP ) activity, with K ATP openers (KCOs) amplifying, through cell hyperpolarization, the response to hypoglycaemia. Although initial findings, using acute hypothalamic KCO delivery, in rats were promising, chronic exposure to the KCO NN414 worsened the responses to subsequent hypoglycaemic challenge. To investigate this further we used GT1-7 cells to explore how NN414 affected glucose-sensing behaviour, the metabolic response of cells to hypoglycaemia and K ATP activity. GT1-7 cells exposed to 3 or 24 h NN414 exhibited an attenuated hyperpolarization to subsequent hypoglycaemic challenge or NN414, which correlated with diminished K ATP activity. The reduced sensitivity to hypoglycaemia was apparent 24 h after NN414 removal, even though intrinsic K ATP activity recovered. The NN414-modified glucose responsiveness was not associated with adaptations in glucose uptake, metabolism or oxidation. K ATP inactivation by NN414 was prevented by the concurrent presence of tolbutamide, which maintains K ATP closure. Single channel recordings indicate that NN414 alters K ATP intrinsic gating inducing a stable closed or inactivated state. These data indicate that exposure of hypothalamic glucose sensing cells to chronic NN414 drives a sustained conformational change to K ATP , probably by binding to SUR1, that results in loss of channel sensitivity to intrinsic metabolic factors such as MgADP and small molecule agonists. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Increased expression of the auxiliary beta(2-subunit of ventricular L-type Ca(2+ channels leads to single-channel activity characteristic of heart failure.

    Directory of Open Access Journals (Sweden)

    Roger Hullin

    2007-03-01

    Full Text Available Increased activity of single ventricular L-type Ca(2+-channels (L-VDCC is a hallmark in human heart failure. Recent findings suggest differential modulation by several auxiliary beta-subunits as a possible explanation.By molecular and functional analyses of human and murine ventricles, we find that enhanced L-VDCC activity is accompanied by altered expression pattern of auxiliary L-VDCC beta-subunit gene products. In HEK293-cells we show differential modulation of single L-VDCC activity by coexpression of several human cardiac beta-subunits: Unlike beta(1 or beta(3 isoforms, beta(2a and beta(2b induce a high-activity channel behavior typical of failing myocytes. In accordance, beta(2-subunit mRNA and protein are up-regulated in failing human myocardium. In a model of heart failure we find that mice overexpressing the human cardiac Ca(V1.2 also reveal increased single-channel activity and sarcolemmal beta(2 expression when entering into the maladaptive stage of heart failure. Interestingly, these animals, when still young and non-failing ("Adaptive Phase", reveal the opposite phenotype, viz: reduced single-channel activity accompanied by lowered beta(2 expression. Additional evidence for the cause-effect relationship between beta(2-subunit expression and single L-VDCC activity is provided by newly engineered, double-transgenic mice bearing both constitutive Ca(V1.2 and inducible beta(2 cardiac overexpression. Here in non-failing hearts induction of beta(2-subunit overexpression mimicked the increase of single L-VDCC activity observed in murine and human chronic heart failure.Our study presents evidence of the pathobiochemical relevance of beta(2-subunits for the electrophysiological phenotype of cardiac L-VDCC and thus provides an explanation for the single L-VDCC gating observed in human and murine heart failure.

  18. Expression of adenosine triphosphate-sensitive potassium channels in rats with cirrhosis: correlationship with sympathetic activity and renal function

    Directory of Open Access Journals (Sweden)

    Julio Cesar Martins Monte

    2006-12-01

    Full Text Available Objective: The aim of this study was to perform a direct analysis ofKATP mRNA expression by RT-PCR in kidney and isolated aorta fromrats with cirrhosis (induced by carbon tetrachloride and controls.The present study also analyses the relation between induced cirrhosisand urinary excretion of sodium and sympathetic activity in cirrhoticrats. Methods: Rats were placed in metabolic cages and allowedfree access to food and water. Cirrhosis was induced by repeateddoses of carbon tetrachloride by gastric gavage. After some weeks,the kidney and aorta were dissected and utilized for RNA extraction.Blood and urine were analyzed for electrolytes. Renal function wasestimated by creatinine clearance and sodium urinary excretion.Serum catecholamines were measured by HPLC analysis. Results:First, RT-PCR analysis showed that KATP mRNA is expressed in liverwith cirrhosis and intense fibrosis, but not with moderate fibrosis.Second, RT-PCR analysis revealed that KATP mRNA was detectedonly in aorta dissected from rats with cirrhosis. Finally, an enhancedreabsorption of sodium without renal failure suggests a potentialmediator would increase the activity of the sympathetic system.Conclusion: These results suggest that KATP mRNA is expressed incirrhotic rats with sympathetic activation and renal dysfunction. Thischannel might be involved in another route where the vascular tonecan be modulated in cirrhosis.

  19. Disruption of ATP-sensitive potassium channel function in skeletal muscles promotes production and secretion of musclin

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, Ana, E-mail: ana-sierra@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Subbotina, Ekaterina, E-mail: ekaterina-subbotina@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Zhu, Zhiyong, E-mail: zhiyong-zhu@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Gao, Zhan, E-mail: zhan-gao@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Koganti, Siva Rama Krishna, E-mail: sivaramakrishna.koganti@ttuhc.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Coetzee, William A., E-mail: william.coetzee@nyumc.org [Department of Pediatrics, NYU School of Medicine, New York, NY 10016 (United States); Goldhamer, David J., E-mail: david.goldhamer@uconn.edu [Center for Regenerative Biology, Department of Molecular and Cell Biology, Advanced Technology Laboratory, University of Connecticut, 1392 Storrs Road Unit 4243, Storrs, Connecticut 06269 (United States); Hodgson-Zingman, Denice M., E-mail: denice-zingman@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, Iowa City, IA 52242 (United States); Zingman, Leonid V., E-mail: leonid-zingman@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, Iowa City, IA 52242 (United States); Department of Veterans Affairs, Medical Center, Iowa City, IA 52242 (United States)

    2016-02-26

    Sarcolemmal ATP-sensitive potassium (K{sub ATP}) channels control skeletal muscle energy use through their ability to adjust membrane excitability and related cell functions in accordance with cellular metabolic status. Mice with disrupted skeletal muscle K{sub ATP} channels exhibit reduced adipocyte size and increased fatty acid release into the circulation. As yet, the molecular mechanisms underlying this link between skeletal muscle K{sub ATP} channel function and adipose mobilization have not been established. Here, we demonstrate that skeletal muscle-specific disruption of K{sub ATP} channel function in transgenic (TG) mice promotes production and secretion of musclin. Musclin is a myokine with high homology to atrial natriuretic peptide (ANP) that enhances ANP signaling by competing for elimination. Augmented musclin production in TG mice is driven by a molecular cascade resulting in enhanced acetylation and nuclear exclusion of the transcription factor forkhead box O1 (FOXO1) – an inhibitor of transcription of the musclin encoding gene. Musclin production/secretion in TG is paired with increased mobilization of fatty acids and a clear trend toward increased circulating ANP, an activator of lipolysis. These data establish K{sub ATP} channel-dependent musclin production as a potential mechanistic link coupling “local” skeletal muscle energy consumption with mobilization of bodily resources from fat. Understanding such mechanisms is an important step toward designing interventions to manage metabolic disorders including those related to excess body fat and associated co-morbidities. - Highlights: • ATP-sensitive K{sup +} channels regulate musclin production by skeletal muscles. • Lipolytic ANP signaling is promoted by augmented skeletal muscle musclin production. • Skeletal muscle musclin transcription is promoted by a CaMKII/HDAC/FOXO1 pathway. • Musclin links adipose mobilization to energy use in K{sub ATP} channel deficient skeletal muscle.

  20. N-Acetylcysteine-induced vasodilatation is modulated by KATP channels, Na+/K+-ATPase activity and intracellular calcium concentration: An in vitro study.

    Science.gov (United States)

    Vezir, Özden; Çömelekoğlu, Ülkü; Sucu, Nehir; Yalın, Ali Erdinç; Yılmaz, Şakir Necat; Yalın, Serap; Söğüt, Fatma; Yaman, Selma; Kibar, Kezban; Akkapulu, Merih; Koç, Meryem İlkay; Seçer, Didem

    2017-08-01

    In this study, we aimed to investigate the role of ATP-sensitive potassium (K ATP ) channel, Na + /K + -ATPase activity, and intracellular calcium levels on the vasodilatory effect of N-acetylcysteine (NAC) in thoracic aorta by using electrophysiological and molecular techniques. Rat thoracic aorta ring preparations and cultured thoracic aorta cells were divided into four groups as control, 2mM NAC, 5mM NAC, and 10mM NAC. Thoracic aorta rings were isolated from rats for measurements of relaxation responses and Na + /K + -ATPase activity. In the cultured thoracic aorta cells, we measured the currents of K ATP channel, the concentration of intracellular calcium and mRNA expression level of K ATP channel subunits (KCNJ8, KCNJ11, ABCC8 and ABCC9). The relaxation rate significantly increased in all NAC groups compared to control. Similarly, Na + /K + - ATPase activity also significantly decreased in NAC groups. Outward K ATP channel current significantly increased in all NAC groups compared to the control group. Intracellular calcium concentration decreased significantly in all groups with compared control. mRNA expression level of ABCC8 subunit significantly increased in all NAC groups compared to the control group. Pearson correlation analysis showed that relaxation rate was significantly associated with K ATP current, intracellular calcium concentration, Na + /K + -ATPase activity and mRNA expression level of ABCC8 subunit. Our findings suggest that NAC relaxes vascular smooth muscle cells through a direct effect on K ATP channels, by increasing outward K+ flux, partly by increasing mRNA expression of K ATP subunit ABCC8, by decreasing in intracellular calcium and by decreasing in Na + /K + -ATPase activity. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. Levcromakalim- and isoprenaline-induced relaxation of human isolated airways--role of the epithelium and of K+ channel activation.

    Science.gov (United States)

    Black, J L; Johnson, P R; McKay, K O; Carey, D; Armour, C L

    1994-06-01

    In this study we have investigated the mechanism of action of levcromakalim and isoprenaline in human isolated airways with respect to the K+ channels they activate and the possibility that these smooth muscle relaxants activate K+ channels on the airway epithelium. Mechanical removal of the epithelial layer (mean percentage of epithelium present 20 +/- 3%, n = 20 tissues) did not affect the relaxation responses to levcromakalim or isoprenaline, either in terms of maximal relaxation or sensitivity. Whilst having no effect on isoprenaline-induced relaxation, studied from basal tone, the ATP-sensitive K+ channel blocker BRL 31660 (10, 30 and 50 microM) reduced relaxation responses induced (from basal tone) by levcromakalim from 74 +/- 6% (of the maximal response to isoprenaline) to 48 +/- 12% (n = 7), 9 +/- 9% (n = 4) and 0 (n = 4), respectively. Charybdotoxin, a blocker of high conductance Ca(2+)-activated K+ channels, at concentrations of 30 and 100 nM, had no effect on either levcromakalim- or or isoprenaline-induced relaxation responses and yet charybdotoxin was active at KCa channels in outside-out patches of hippocampal granule cells. Moreover, tetraethylammonium (10 mM) inhibited neither isoprenaline- nor levcromakalim-induced relaxation. This study has demonstrated that the relaxation responses elicited in human bronchus to isoprenaline and levcromakalim are likely to be the result of direct effects on the smooth muscle with no contribution from epithelial receptors or K+ channels. The actions of levcromakalim appear to be mediated only via activation of KATP channels. Further, we have made the important observation that, under the experimental conditions of our study, isoprenaline does not activate the KCa channel to produce relaxation in human bronchus.

  2. Membrane proteins involved in potassium shifts during muscle activity and fatigue

    DEFF Research Database (Denmark)

    Kristensen, Michael; Hansen, T.; Juel, C.

    2006-01-01

    while trying to manipulate the opening probability or transport capacity of these proteins during electrical stimulation of isolated soleus muscles. All experiments were made with excised muscle from male Wistar rats. Kir2.1 channels were almost undetectable in the sarcolemmal membrane but present...... muscle contractions, whereas Kir2.1 and NKCC1 may have a role in K+ reuptake. channels and cotransporters; T tubule...

  3. Disease progression and search for monogenic diabetes among children with new onset type 1 diabetes negative for ICA, GAD- and IA-2 Antibodies

    DEFF Research Database (Denmark)

    Pörksen, Sven; Laborie, Lene Bjerke; Nielsen, Lotte

    2010-01-01

    BACKGROUND: To investigate disease progression the first 12 months after diagnosis in children with type 1 diabetes negative (AAB negative) for pancreatic autoantibodies [islet cell autoantibodies(ICA), glutamic acid decarboxylase antibodies (GADA) and insulinoma-associated antigen-2 antibodies (IA......-2A)]. Furthermore the study aimed at determining whether mutations in KCNJ11, ABCC8, HNF1A, HNF4A or INS are common in AAB negative diabetes. MATERIALS AND METHODS: In 261 newly diagnosed children with type 1 diabetes, we measured residual β-cell function, ICA, GADA, and IA-2A at 1, 6 and 12 months...... of arginine at residue 1530 of SUR1 (ABCC8) by cysteine. Functional analyses of recombinant K-ATP channels showed that R1530C markedly reduced the sensitivity of the K-ATP channel to inhibition by MgATP. Morover, the channel was highly sensitive to sulphonylureas. However, there was no effect of sulfonylurea...

  4. Docetaxel modulates the delayed rectifier potassium current (IK) and ATP-sensitive potassium current (IKATP) in human breast cancer cells.

    Science.gov (United States)

    Sun, Tao; Song, Zhi-Guo; Jiang, Da-Qing; Nie, Hong-Guang; Han, Dong-Yun

    2015-04-01

    Ion channel expression and activity may be affected during tumor development and cancer growth. Activation of potassium (K(+)) channels in human breast cancer cells is reported to be involved in cell cycle progression. In this study, we investigated the effects of docetaxel on the delayed rectifier potassium current (I K) and the ATP-sensitive potassium current (I KATP) in two human breast cancer cell lines, MCF-7 and MDA-MB-435S, using the whole-cell patch-clamp technique. Our results show that docetaxel inhibited the I K and I KATP in both cell lines in a dose-dependent manner. Compared with the control at a potential of +60 mV, treatment with docetaxel at doses of 0.1, 1, 5, and 10 µM significantly decreased the I K in MCF-7 cells by 16.1 ± 3.5, 30.2 ± 5.2, 42.5 ± 4.3, and 46.4 ± 9% (n = 5, P < 0.05), respectively and also decreased the I KATP at +50 mV. Similar results were observed in MDA-MB-435S cells. The G-V curves showed no significant changes after treatment of either MCF-7 or MDA-MB-435S cells with 10 μM docetaxel. The datas indicate that the possible mechanisms of I K and I KATP inhibition by docetaxel may be responsible for its effect on the proliferation of human breast cancer cells.

  5. Da-Bu-Yin-Wan and Qian-Zheng-San to Neuroprotect the Mouse Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Xiao-Gang Gong

    2014-01-01

    Full Text Available Da-Bu-Yin-Wan (DBYW and Qian-Zheng-San (QZS, two classic traditional Chinese medicinal formulas, were clinically employed to treat Parkinson’s disease (PD. Our previous studies demonstrated neuroprotective effects of them on mitochondrial function in PD mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP. The purpose of this research was to investigate their possible mechanisms in the light of mitochondrial ATP-sensitive potassium (mitoKATP channels. The neuroprotective effect of DBYW and QZS on dopamine (DA neurons in substantia nigra (SN in the MPTP-induced PD mice was investigated by behavioral test (pole test and immunohistochemistry. Adenosine triphosphate (ATP level in the midbrain tissue was detected by firefly luciferase method. MitoKATP channel subunits SUR1 and Kir6.2 mRNA and protein expressions were tested by real-time PCR (RT-PCR and Western blot. It was observed that DBYW and/or QZS served to ameliorate MPTP-induced behavioral impairment and prevent the loss of substantia nigra dopamine neurons, as well as increase ATP level in the midbrain tissue and downregulate SUR1 expression at mRNA and protein levels with no marked influence on Kir6.2. We concluded that DBYW and QZS exhibit neuroprotective effects probably through the regulation of ATP level and mitoKATP channel subunit expressions.

  6. Glucose decouples intracellular Ca2+ activity from glucagon secretion in mouse pancreatic islet alpha-cells.

    Directory of Open Access Journals (Sweden)

    Sylvain J Le Marchand

    Full Text Available The mechanisms of glucagon secretion and its suppression by glucose are presently unknown. This study investigates the relationship between intracellular calcium levels ([Ca(2+](i and hormone secretion under low and high glucose conditions. We examined the effects of modulating ion channel activities on [Ca(2+](i and hormone secretion from ex vivo mouse pancreatic islets. Glucagon-secreting α-cells were unambiguously identified by cell specific expression of fluorescent proteins. We found that activation of L-type voltage-gated calcium channels is critical for α-cell calcium oscillations and glucagon secretion at low glucose levels. Calcium channel activation depends on K(ATP channel activity but not on tetrodotoxin-sensitive Na(+ channels. The use of glucagon secretagogues reveals a positive correlation between α-cell [Ca(2+](i and secretion at low glucose levels. Glucose elevation suppresses glucagon secretion even after treatment with secretagogues. Importantly, this inhibition is not mediated by K(ATP channel activity or reduction in α-cell [Ca(2+](i. Our results demonstrate that glucose uncouples the positive relationship between [Ca(2+](i and secretory activity. We conclude that glucose suppression of glucagon secretion is not mediated by inactivation of calcium channels, but instead, it requires a calcium-independent inhibitory pathway.

  7. Hydrogen sulfide: role in ion channel and transporter modulation in the eye

    Directory of Open Access Journals (Sweden)

    Ya Fatou eNjie-Mbye

    2012-07-01

    Full Text Available Hydrogen sulfide (H2S, a colorless gas with a characteristic smell of rotten eggs, has been portrayed for decades as a toxic environmental pollutant. Since evidence of its basal production in mammalian tissues a decade ago, H2S has attracted substantial interest as a potential inorganic gaseous mediator with biological importance in cellular functions. Current research suggests that, next to its counterparts nitric oxide and carbon monoxide, H2S is an important multifunctional signaling molecule with pivotal regulatory roles in various physiological and pathophysiological processes as diverse as learning and memory, modulation of synaptic activities, cell survival, inflammation and maintenance of vascular tone in the central nervous and cardiovascular systems. In contrast, there are few reports of a regulatory role of H2S in the eye. Accumulating reports on the pharmacological role of H2S in ocular tissues indicate the existence of a functional trans-sulfuration pathway and a potential physiological role for H2S as a gaseous neuromodulator in the eye. Thus, understanding the role of H2S in vision-related processes is imperative to our expanding knowledge of this molecule as a gaseous mediator in ocular tissues. This review aims to provide a comprehensive and current understanding of the potential role of H2S as a signaling molecule in the eye. This objective is achieved by discussing the involvement of H2S in the regulation of (1 ion channels such as calcium (L-type, T-type and intracellular stores, potassium (KATP and small conductance channels and chloride channels, (2 glutamate transporters such as EAAT1/GLAST and the L-cystine/glutamate antiporter. The role of H2S as an important mediator in cellular functions and physiological processes that are triggered by its interaction with ion channels/transporters in the eye will also be discussed.

  8. Direct action of angiotensin II on the conduction through papillary muscle preparations of rat heart immediately after reoxygenation

    Directory of Open Access Journals (Sweden)

    Daisuke Wakatsuki

    2012-02-01

    Conclusion: RES-induced conduction delay and block immediately after reoxygenation were accelerated by Ang II, which could be relevant to the maintenance of reperfusion arrhythmias. The mito-KATP channel may participate in the mechanism underlying this phenomenon.

  9. The protective effect of ursodeoxycholic acid in an in vitro model of the human fetal heart occurs via targeting cardiac fibroblasts.

    Science.gov (United States)

    Schultz, Francisca; Hasan, Alveera; Alvarez-Laviada, Anita; Miragoli, Michele; Bhogal, Navneet; Wells, Sarah; Poulet, Claire; Chambers, Jenny; Williamson, Catherine; Gorelik, Julia

    2016-01-01

    Bile acids are elevated in the blood of women with intrahepatic cholestasis of pregnancy (ICP) and this may lead to fetal arrhythmia, fetal hypoxia and potentially fetal death in utero. The bile acid taurocholic acid (TC) causes abnormal calcium dynamics and contraction in neonatal rat cardiomyocytes. Ursodeoxycholic acid (UDCA), a drug clinically used to treat ICP, prevents adverse effects of TC. During development, the fetus is in a state of relative hypoxia. Although this is essential for the development of the heart and vasculature, resident fibroblasts can transiently differentiate into myofibroblasts and form gap junctions with cardiomyocytes in vitro, resulting in cardiomyocyte depolarization. We expanded on previously published work using an in vitro hypoxia model to investigate the differentiation of human fetal fibroblasts into myofibroblasts. Recent evidence shows that potassium channels are involved in maintaining the membrane potential of ventricular fibroblasts and that ATP-dependent potassium (KATP) channel subunits are expressed in cultured fibroblasts. KATP channels are a valuable target as they are thought to have a cardioprotective role during ischaemic and hypoxic conditions. We investigated whether UDCA could modulate fibroblast membrane potential. We established the isolation and culture of human fetal cardiomyocytes and fibroblasts to investigate the effect of hypoxia, TC and UDCA on human fetal cardiac cells. UDCA hyperpolarized myofibroblasts and prevented TC-induced depolarisation, possibly through the activation of KATP channels that are expressed in cultured fibroblasts. Also, similar to the rat model, UDCA can counteract TC-induced calcium abnormalities in human fetal cultures of cardiomyocytes and myofibroblasts. Under normoxic conditions, we found a higher number of myofibroblasts in cultures derived from human fetal hearts compared to cells isolated from neonatal rat hearts, indicating a possible increased number of myofibroblasts

  10. The role of tissue oxygen tension in the control of local blood flow in the microcirculation of skeletal muscles

    DEFF Research Database (Denmark)

    Ngo, Thuc Anh

    2010-01-01

    In the microcirculation blood flow is highly regulated dependent on the metabolic activity of the tissues. Among several mechanisms, mechanisms involved in the coupling of changes in tissue oxygen tension due to changes in the metabolic activity of the tissue play an important role. In the systemic...... (inhibitor of KATP channels) in the superfusate abolished both vasodilatation and constriction to low and high oxygen superfusate, indicating that KATP channels are involved in both hypoxic vasodilatation and hyperoxic vasoconstriction. Red blood cells (RBCs) have been proposed to release ATP and...... as in the intact blood-perfused arteriole. This indicates that RBCs are not essential for hypoxic vasodilatation. In addition several potential pathways were evaluated. Application of DPCPX (inhibitor of adenosine A1 and A2 receptors) and L-NAME (inhibitor of NO-synthase) did not affect vasomotor responses to low...

  11. Sub-cellular Electrical Heterogeneity Revealed by Loose Patch Recording Reflects Differential Localization of Sarcolemmal Ion Channels in Intact Rat Hearts

    Directory of Open Access Journals (Sweden)

    Igor V. Kubasov

    2018-02-01

    Full Text Available The cardiac action potential (AP is commonly recoded as an integral signal from isolated myocytes or ensembles of myocytes (with intracellular microelectrodes and extracellular macroelectrodes, respectively. These signals, however, do not provide a direct measure of activity of ion channels and transporters located in two major compartments of a cardiac myocyte: surface sarcolemma and the T-tubule system, which differentially contribute to impulse propagation and excitation-contraction (EC coupling. In the present study we investigated electrical properties of myocytes within perfused intact rat heart employing loose patch recording with narrow-tip (2 μm diameter extracellular electrodes. Using this approach, we demonstrated two distinct types of electric signals with distinct waveforms (single peak and multi-peak AP; AP1 and AP2, respectively during intrinsic pacemaker activity. These two types of waveforms depend on the position of the electrode tip on the myocyte surface. Such heterogeneity of electrical signals was lost when electrodes of larger pipette diameter were used (5 or 10 μm, which indicates that the electric signal was assessed from a region of <5 μm. Importantly, both pharmacological and mathematical simulation based on transverse (T-tubular distribution suggested that while the AP1 and the initial peak of AP2 are predominantly attributable to the fast, inward Na+ current in myocyte's surface sarcolemma, the late components of AP2 are likely representative of currents associated with L-type Ca2+ channel and Na+/Ca2+ exchanger (NCX currents which are predominantly located in T-tubules. Thus, loose patch recording with narrow-tip pipette provides a valuable tool for studying cardiac electric activity on the subcellular level in the intact heart.

  12. Ketamine, but not S(+)-ketamine, blocks ischemic preconditioning in rabbit hearts in vivo

    NARCIS (Netherlands)

    Müllenheim, J.; Frässdorf, J.; Preckel, B.; Thämer, V.; Schlack, W.

    2001-01-01

    BACKGROUND: Ketamine blocks KATP channels in isolated cells and abolishes the cardioprotective effect of ischemic preconditioning in vitro. The authors investigated the effects of ketamine and S(+)-ketamine on ischemic preconditioning in the rabbit heart in vivo. METHODS: In 46

  13. The insulin sensitizing effect of topiramate involves KATP channel activation in the central nervous system.

    Science.gov (United States)

    Coomans, C P; Geerling, J J; van den Berg, S A A; van Diepen, H C; Garcia-Tardón, N; Thomas, A; Schröder-van der Elst, J P; Ouwens, D M; Pijl, H; Rensen, P C N; Havekes, L M; Guigas, B; Romijn, J A

    2013-10-01

    Topiramate improves insulin sensitivity, in addition to its antiepileptic action. However, the underlying mechanism is unknown. Therefore, the present study was aimed at investigating the mechanism of the insulin-sensitizing effect of topiramate both in vivo and in vitro. Male C57Bl/6J mice were fed a run-in high-fat diet for 6 weeks, before receiving topiramate or vehicle mixed in high-fat diet for an additional 6 weeks. Insulin sensitivity was assessed by hyperinsulinaemic-euglycaemic clamp. The extent to which the insulin sensitizing effects of topiramate were mediated through the CNS were determined by concomitant i.c.v. infusion of vehicle or tolbutamide, an inhibitor of ATP-sensitive potassium channels in neurons. The direct effects of topiramate on insulin signalling and glucose uptake were assessed in vivo and in cultured muscle cells. In hyperinsulinaemic-euglycaemic clamp conditions, therapeutic plasma concentrations of topiramate (∼4 μg·mL(-1) ) improved insulin sensitivity (glucose infusion rate + 58%). Using 2-deoxy-D-[(3) H]glucose, we established that topiramate improved the insulin-mediated glucose uptake by heart (+92%), muscle (+116%) and adipose tissue (+586%). Upon i.c.v. tolbutamide, the insulin-sensitizing effect of topiramate was completely abrogated. Topiramate did not directly affect glucose uptake or insulin signalling neither in vivo nor in cultured muscle cells. In conclusion, topiramate stimulates insulin-mediated glucose uptake in vivo through the CNS. These observations illustrate the possibility of pharmacological modulation of peripheral insulin resistance through a target in the CNS. © 2013 The British Pharmacological Society.

  14. Repaglinide at a cellular level

    DEFF Research Database (Denmark)

    Krogsgaard Thomsen, M; Bokvist, K; Høy, M

    2002-01-01

    To investigate the hormonal and cellular selectivity of the prandial glucose regulators, we have undertaken a series of experiments, in which we characterised the effects of repaglinide and nateglinide on ATP-sensitive potassium ion (KATP) channel activity, membrane potential and exocytosis in ra...

  15. Late preconditioning is blocked by racemic ketamine, but not by S(+)-ketamine

    NARCIS (Netherlands)

    Müllenheim, J.; Rulands, R.; Wietschorke, T.; Frässdorf, J.; Preckel, B.; Schlack, W.

    2001-01-01

    Racemic ketamine blocks K(ATP) channels in isolated cells and abolishes short-term cardioprotection against prolonged ischemia. We investigated the effects of racemic ketamine and S(+)-ketamine on ischemic late preconditioning (LPC) in the rabbit heart in vivo. A coronary occluder was chronically

  16. Glucagon-like peptide 1 (7-36) amide stimulates exocytosis in human pancreatic beta-cells by both proximal and distal regulatory steps in stimulus-secretion coupling

    DEFF Research Database (Denmark)

    Gromada, J; Bokvist, K; Ding, W G

    1998-01-01

    The effect of glucagon-like peptide 1(7-36) amide [GLP-1(7-36) amide] on membrane potential, whole-cell ATP-sensitive potassium channel (K[ATP]) and Ca2+ currents, cytoplasmic Ca2+ concentration, and exocytosis was explored in single human beta-cells. GLP-1(7-36) amide induced membrane...... depolarization that was associated with inhibition of whole-cell K(ATP) current. In addition, GLP-1(7-36) amide (and forskolin) produced greater than fourfold potentiation of Ca2+-dependent exocytosis. The latter effect resulted in part (40%) from acceleration of Ca2+ influx through voltage-dependent (L-type) Ca......2+ channels. More importantly, GLP-1(7-36) amide (via generation of cyclic AMP and activation of protein kinase A) potentiated exocytosis at a site distal to a rise in the cytoplasmic Ca2+ concentration. Photorelease of caged cAMP produced a two- to threefold potentiation of exocytosis when...

  17. The BK(Ca) channels deficiency as a possible reason for radiation-induced vascular hypercontractility.

    Science.gov (United States)

    Kyrychenko, Sergii; Tishkin, Sergey; Dosenko, Victor; Ivanova, Irina; Novokhatska, Tatiana; Soloviev, Anatoly

    2012-01-01

    It is likely that large-conductance Ca²⁺-activated K⁺ (BK(Ca)) channels channelopathy tightly involved in vascular malfunctions and arterial hypertension development. In the present study, we compared the results of siRNAs-induced α-BK(Ca) gene silencing and vascular abnormalities produced by whole-body ionized irradiation in rats. The experimental design comprised RT-PCR and patch clamp technique, thoracic aorta smooth muscle (SM) contractile recordings and arterial blood pressure (BP) measurements on the 30th day after whole body irradiation (6Gy) and following siRNAs KCNMA1 gene silencing in vivo. The expression profile of BK(Ca) mRNA transcripts in SM was significantly decreased in siRNAs-treated rats in a manner similar to irradiated SM. In contrast, the mRNA levels of K(v) and K(ATP) were significantly increased while L-type calcium channels mRNA transcripts demonstrated tendency to increment. The SMCs obtained from irradiated animals and after KCNMA1 gene silencing showed a significant decrease in total K⁺ current density amplitude. Paxilline (500 nM)-sensitive components of outward current were significantly decreased in both irradiated and gene silencing SMCs. KCNMA1 gene silencing increased SM sensitivity to norepinephrine while Ach-induced relaxation had decreased. The silencing of KCNMA1 had no significant effect on BP while radiation produced sustained arterial hypertension. Therefore, radiation alters the form and function of the BK(Ca) channel and this type of channelopathy may contribute to related vascular abnormalities. Nevertheless, it is unlikely that BK(Ca) can operate as a crucial factor for radiation-induced arterial hypertension. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Temperature dependence of cardiac sarcoplasmic reticulum and sarcolemma in the ventricle of catfish (Clarias gariepinus

    Directory of Open Access Journals (Sweden)

    El-Sabry Abu-Amra

    2015-10-01

    The sarcolemmal Ca2+ contribution of activator Ca2+ was greater at a test temperature of 30 °C as assessed by verapamil. Whereas the SR-Ca2+ contribution was higher at 20 and 30 °C and a frequency rate of 0.2 and 0.4 Hz as assessed by caffeine and adrenaline, respectively. Bradykinin potentiating factor (BPF7 which was isolated from jelly fish (Cassiopea andromeda decreased the cardiac force developed at a frequency rate of 0.2 Hz and a temperature of 20 °C, whereas it increased the force developed at frequency rates of 0.2 and 0.4 Hz at 30 °C. These results indicate that BPF7 may act like verapamil in reducing the cardiac force through blocking the sarcolemmal Ca2+ channels at low temperature and like adrenaline in an increase of the cardiac force developed at warm temperature and the high frequency rate through stimulation of SR-Ca2+ activator. Therefore, this study indicates that the sarcolemmal Ca2+ influx and the SR-Ca2+ release contributors of activator Ca2+ for cardiac force development in the catfish heart were significantly greater at warm temperature and at the pacing frequency rates of 0.2 and 0.4 Hz as assessed by verapamil, adrenaline, caffeine and BPF7. However, the relative contribution of the sarcolemmal Ca2+ influx in the development of cardiac force in the catfish heart was greater than that of SR-Ca2+ release.

  19. Effect of phosphodiesterase inhibitors on human arteries in vitro

    NARCIS (Netherlands)

    Vroom, M. B.; Pfaffendorf, M.; van Wezel, H. B.; van Zwieten, P. A.

    1996-01-01

    In the present study, we investigated if the relaxant effects of phosphodiesterase (PDE) III inhibitors on human vessels could be inhibited by a nitric oxide synthase blocker, L-NAME, or by a blocker of ATP-sensitive potassium channels (KATP), glibenclamide. The experiments were performed using an

  20. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations

    DEFF Research Database (Denmark)

    Pearson, Ewan R; Flechtner, Isabelle; Njølstad, Pål R

    2006-01-01

    BACKGROUND: Heterozygous activating mutations in KCNJ11, encoding the Kir6.2 subunit of the ATP-sensitive potassium (K(ATP)) channel, cause 30 to 58 percent of cases of diabetes diagnosed in patients under six months of age. Patients present with ketoacidosis or severe hyperglycemia and are treat...

  1. Paternal uniparental isodisomy of chromosome 11p15.5 within the pancreas causes isolated hyperinsulinaemic hypoglycaemia

    Directory of Open Access Journals (Sweden)

    Sarah E Flanagan

    2011-11-01

    Full Text Available BackgroundLoss of function mutations in the genes encoding the pancreatic β-cell ATP-sensitive potassium (KATP channel are identified in approximately 80% of patients with diazoxide-unresponsive hyperinsulinaemic-hypoglycaemia (HH. For a small number of patients HH can occur as part of a multisystem disease such as Beckwith-Wiedemann syndrome (BWS. In approximately 20% of patients, BWS results from chromosome 11 paternal uniparental disomy (UPD, which causes dysregulation of imprinted growth regulation genes at 11p15.5. There is a considerable range in the clinical features and phenotypic severity associated with BWS which is likely to be due to somatic mosaicism. The cause of HH in these patients is not known.Research Design and methodsWe undertook microsatellite analysis of 12 markers spanning chromosome 11p in two patients with severe HH and diffuse disease requiring a pancreatectomy. In both patients mutations in the KATP channel genes had not been identified. ResultsWe identified segmental paternal UPD in DNA extracted from pancreatic tissue in both patients. UPD was not observed in DNA extracted from the patient’s leukocytes or buccal samples. In both cases the UPD encompassed the differentially methylated region at chromosome 11p15.5. Despite this neither patient had any further features of BWS.ConclusionsPaternal UPD of the chromosome 11p15.5 differentially methylated region limited to the pancreatic tissue may represent a novel cause of isolated diazoxide unresponsive HH. Loss of heterozygosity studies should therefore be considered in all patients with severe HH who have undergone pancreatic surgery when KATP channel mutation(s have not been identified.

  2. Classification of H2O2 as a Neuromodulator that Regulates Striatal Dopamine Release on a Subsecond Time Scale

    Science.gov (United States)

    2012-01-01

    Here we review evidence that the reactive oxygen species, hydrogen peroxide (H2O2), meets the criteria for classification as a neuromodulator through its effects on striatal dopamine (DA) release. This evidence was obtained using fast-scan cyclic voltammetry to detect evoked DA release in striatal slices, along with whole-cell and fluorescence imaging to monitor cellular activity and H2O2 generation in striatal medium spiny neurons (MSNs). The data show that (1) exogenous H2O2 suppresses DA release in dorsal striatum and nucleus accumbens shell and the same effect is seen with elevation of endogenous H2O2 levels; (2) H2O2 is generated downstream from glutamatergic AMPA receptor activation in MSNs, but not DA axons; (3) generation of modulatory H2O2 is activity dependent; (4) H2O2 generated in MSNs diffuses to DA axons to cause transient DA release suppression by activating ATP-sensitive K+ (KATP) channels on DA axons; and (5) the amplitude of H2O2-dependent inhibition of DA release is attenuated by enzymatic degradation of H2O2, but the subsecond time course is determined by H2O2 diffusion rate and/or KATP-channel kinetics. In the dorsal striatum, neuromodulatory H2O2 is an intermediate in the regulation of DA release by the classical neurotransmitters glutamate and GABA, as well as other neuromodulators, including cannabinoids. However, modulatory actions of H2O2 occur in other regions and cell types, as well, consistent with the widespread expression of KATP and other H2O2-sensitive channels throughout the CNS. PMID:23259034

  3. Notch1 Mediates Preconditioning Protection Induced by GPER in Normotensive and Hypertensive Female Rat Hearts

    Directory of Open Access Journals (Sweden)

    Carmine Rocca

    2018-05-01

    Full Text Available G protein-coupled estrogen receptor (GPER is an estrogen receptor expressed in the cardiovascular system. G1, a selective GPER ligand, exerts cardiovascular effects through activation of the PI3K-Akt pathway and Notch signaling in normotensive animals. Here, we investigated whether the G1/GPER interaction is involved in the limitation of infarct size, and improvement of post-ischemic contractile function in female spontaneous hypertensive rat (SHR hearts. In this model, we also studied Notch signaling and key components of survival pathway, namely PI3K-Akt, nitric oxide synthase (NOS and mitochondrial K+-ATP (MitoKATP channels. Rat hearts isolated from female SHR underwent 30 min of global, normothermic ischemia and 120 min of reperfusion. G1 (10 nM alone or specific inhibitors of GPER, PI3K/NOS and MitoKATP channels co-infused with G1, just before I/R, were studied. The involvement of Notch1 was studied by Western blotting. Infarct size and left ventricular pressure were measured. To confirm endothelial-independent G1-induced protection by Notch signaling, H9c2 cells were studied with specific inhibitor, N-[N-(3,5 difluorophenacetyl-L-alanyl]-S-phenylglycine t-butyl ester (DAPT, 5 μM, of this signaling. Using DAPT, we confirmed the involvement of G1/Notch signaling in limiting infarct size in heart of normotensive animals. In the hypertensive model, G1-induced reduction in infarct size and improvement of cardiac function were prevented by the inhibition of GPER, PI3K/NOS, and MitoKATP channels. The involvement of Notch was confirmed by western blot in the hypertensive model and by the specific inhibitor in the normotensive model and cardiac cell line. Our results suggest that GPERs play a pivotal role in mediating preconditioning cardioprotection in normotensive and hypertensive conditions. The G1-induced protection involves Notch1 and is able to activate the survival pathway in the presence of comorbidity. Several pathological conditions

  4. Maternal protein restriction induces alterations in insulin signaling and ATP sensitive potassium channel protein in hypothalami of intrauterine growth restriction fetal rats.

    Science.gov (United States)

    Liu, Xiaomei; Qi, Ying; Gao, Hong; Jiao, Yisheng; Gu, Hui; Miao, Jianing; Yuan, Zhengwei

    2013-01-01

    It is well recognized that intrauterine growth restriction leads to the development of insulin resistance and type 2 diabetes mellitus in adulthood. To investigate the mechanisms behind this "metabolic imprinting" phenomenon, we examined the impact of maternal undernutrition on insulin signaling pathway and the ATP sensitive potassium channel expression in the hypothalamus of intrauterine growth restriction fetus. Intrauterine growth restriction rat model was developed through maternal low protein diet. The expression and activated levels of insulin signaling molecules and K(ATP) protein in the hypothalami which were dissected at 20 days of gestation, were analyzed by western blot and real time PCR. The tyrosine phosphorylation levels of the insulin receptor substrate 2 and phosphatidylinositol 3'-kinase p85α in the hypothalami of intrauterine growth restriction fetus were markedly reduced. There was also a downregulation of the hypothalamic ATP sensitive potassium channel subunit, sulfonylurea receptor 1, which conveys the insulin signaling. Moreover, the abundances of gluconeogenesis enzymes were increased in the intrauterine growth restriction livers, though no correlation was observed between sulfonylurea receptor 1 and gluconeogenesis enzymes. Our data suggested that aberrant intrauterine milieu impaired insulin signaling in the hypothalamus, and these alterations early in life might contribute to the predisposition of the intrauterine growth restriction fetus toward the adult metabolic disorders.

  5. Mitochondrial reactive oxygen species: which ROS signals cardioprotection?

    Czech Academy of Sciences Publication Activity Database

    Garlid, A. O.; Jabůrek, Martin; Jacobs, J. P.; Garlid, K. D.

    2013-01-01

    Roč. 305, č. 7 (2013), H960-H968 ISSN 0363-6135 R&D Projects: GA MŠk(CZ) ME09018; GA ČR(CZ) GAP301/11/0662 Institutional support: RVO:67985823 Keywords : KATP channels * ROS signaling * cardiac ischemia * cardioportection * mitochondria Subject RIV: ED - Physiology Impact factor: 4.012, year: 2013

  6. [Role of ATP-sensitive potassium channel activators in liver mitochondrial function in rats with different resistance to hypoxia].

    Science.gov (United States)

    Tkachenko, H M; Kurhaliuk, N M; Vovkanych, L S

    2003-01-01

    Effects of ATP-sensitive potassium (KATP) channels opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) in rats with different resistance to hypoxia on indices of ADP-stimulation of mitochondrial respiration by Chance, calcium capacity and processes of lipid peroxidation in liver has been investigated. We used next substrates of oxidation: 0.35 mM succinate, 1 mM alpha-ketoglutarate. Additional analyses contain the next inhibitors: mitochondrial fermentative complex I-10 mkM rotenone, succinate dehydrogenase 2 mM malonic acid. It was shown that effects of pinacidil induced the increasing of oxidative phosporylation efficacy and ATP synthesis together with lowering of calcium capacity in rats with low resistance to hypoxia. Effects of pinacidil were leveled by glibenclamide. These changes are connected with the increasing of respiratory rate, calcium overload and intensification of lipid peroxidation processes. A conclusion was made about protective effect of pinacidil on mitochondrial functioning by economization of oxygen-dependent processes, adaptive potentialities of organisms with low resistance to hypoxia being increased.

  7. Glibenclamide for the Treatment of Acute CNS Injury

    Directory of Open Access Journals (Sweden)

    J. Marc Simard

    2013-10-01

    Full Text Available First introduced into clinical practice in 1969, glibenclamide (US adopted name, glyburide is known best for its use in the treatment of diabetes mellitus type 2, where it is used to promote the release of insulin by blocking pancreatic KATP [sulfonylurea receptor 1 (Sur1-Kir6.2] channels. During the last decade, glibenclamide has received renewed attention due to its pleiotropic protective effects in acute CNS injury. Acting via inhibition of the recently characterized Sur1-Trpm4 channel (formerly, the Sur1-regulated NCCa-ATP channel and, in some cases, via brain KATP channels, glibenclamide has been shown to be beneficial in several clinically relevant rodent models of ischemic and hemorrhagic stroke, traumatic brain injury, spinal cord injury, neonatal encephalopathy of prematurity, and metastatic brain tumor. Glibenclamide acts on microvessels to reduce edema formation and secondary hemorrhage, it inhibits necrotic cell death, it exerts potent anti-inflammatory effects and it promotes neurogenesis—all via inhibition of Sur1. Two clinical trials, one in TBI and one in stroke, currently are underway. These recent findings, which implicate Sur1 in a number of acute pathological conditions involving the CNS, present new opportunities to use glibenclamide, a well-known, safe pharmaceutical agent, for medical conditions that heretofore had few or no treatment options.

  8. L-Lactate protects neurons against excitotoxicity: implication of an ATP-mediated signaling cascade

    KAUST Repository

    Jourdain, P.

    2016-02-19

    Converging experimental data indicate a neuroprotective action of L-Lactate. Using Digital Holographic Microscopy, we observe that transient application of glutamate (100 μM; 2 min) elicits a NMDA-dependent death in 65% of mouse cortical neurons in culture. In the presence of L-Lactate (or Pyruvate), the percentage of neuronal death decreases to 32%. UK5099, a blocker of the Mitochondrial Pyruvate Carrier, fully prevents L-Lactate-mediated neuroprotection. In addition, L-Lactate-induced neuroprotection is not only inhibited by probenicid and carbenoxolone, two blockers of ATP channel pannexins, but also abolished by apyrase, an enzyme degrading ATP, suggesting that ATP produced by the Lactate/Pyruvate pathway is released to act on purinergic receptors in an autocrine/paracrine manner. Finally, pharmacological approaches support the involvement of the P2Y receptors associated to the PI3-kinase pathway, leading to activation of KATP channels. This set of results indicates that L-Lactate acts as a signalling molecule for neuroprotection against excitotoxicity through coordinated cellular pathways involving ATP production, release and activation of a P2Y/KATP cascade.

  9. Remote ischaemic preconditioning and prevention of cerebral injury.

    Science.gov (United States)

    Rehni, Ashish K; Shri, Richa; Singh, Manjeet

    2007-03-01

    Bilateral carotid artery occlusion of 10 min followed by reperfusion for 24 hr was employed in present study to produce ischaemia and reperfusion induced cerebral injury in mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Short-term memory was evaluated using elevated plus maze. Inclined beam walking test was employed to assess motor incoordination. Bilateral carotid artery occlusion followed by reperfusion produced cerebral infarction and impaired short-term memory, motor co-ordination and lateral push response. A preceding episode of mesenteric artery occlusion for 15 min and reperfusion of 15 min (remote mesenteric ischaemic preconditioning) prevented markedly ischaemia-reperfusion-induced cerebral injury measured in terms of infarct size, loss of short-term memory, motor coordination and lateral push response. Glibenclamide (5 mg/kg, iv) a KATP channel blocker and caffeine (7 mg/kg, iv) an adenosine receptor blocker attenuated the neuroprotective effect of remote mesenteric ischaemic preconditioning. It may be concluded that neuroprotective effect of remote mesenteric ischaemic preconditioning may be due to activation of adenosine receptors and consequent activation of KATP channels in mice.

  10. L-Lactate protects neurons against excitotoxicity: implication of an ATP-mediated signaling cascade

    KAUST Repository

    Jourdain, P.; Allaman, I.; Rothenfusser, K.; Fiumelli, Hubert; Marquet, P.; Magistretti, Pierre J.

    2016-01-01

    Converging experimental data indicate a neuroprotective action of L-Lactate. Using Digital Holographic Microscopy, we observe that transient application of glutamate (100 μM; 2 min) elicits a NMDA-dependent death in 65% of mouse cortical neurons in culture. In the presence of L-Lactate (or Pyruvate), the percentage of neuronal death decreases to 32%. UK5099, a blocker of the Mitochondrial Pyruvate Carrier, fully prevents L-Lactate-mediated neuroprotection. In addition, L-Lactate-induced neuroprotection is not only inhibited by probenicid and carbenoxolone, two blockers of ATP channel pannexins, but also abolished by apyrase, an enzyme degrading ATP, suggesting that ATP produced by the Lactate/Pyruvate pathway is released to act on purinergic receptors in an autocrine/paracrine manner. Finally, pharmacological approaches support the involvement of the P2Y receptors associated to the PI3-kinase pathway, leading to activation of KATP channels. This set of results indicates that L-Lactate acts as a signalling molecule for neuroprotection against excitotoxicity through coordinated cellular pathways involving ATP production, release and activation of a P2Y/KATP cascade.

  11. Neonatal diabetes and congenital hyperinsulinism caused by mutations in ABCC8/SUR1 are associated with altered and opposite affinities for ATP and ADP

    Directory of Open Access Journals (Sweden)

    Joseph eBryan

    2015-04-01

    Full Text Available ATP-sensitive K+ (KATP channels composed of potassium inward-rectifier type 6.2 and sulfonylurea receptor type 1 subunits (Kir6.2/SUR14 are expressed in various cells in the brain and endocrine pancreas where they couple metabolic status to membrane potential. In β-cells, increases in cytosolic [ATP/ADP]c inhibit KATP channel activity, leading to membrane depolarization and exocytosis of insulin granules. Mutations in ABCC8 (SUR1 or KCNJ11 (Kir6.2 can result in gain or loss of channel activity and cause neonatal diabetes (ND or congenital hyperinsulinism (CHI, respectively. SUR1 is reported to be a Mg2+-dependent ATPase. A prevailing model posits that ATP hydrolysis at SUR1 is required to stimulate openings of the pore. However, recent work shows nucleotide binding, without hydrolysis, is sufficient to switch SUR1 to stimulatory conformations. The actions of nucleotides, ATP and ADP, on ND (SUR1E1506D and CHI (SUR1E1506K mutants, without Kir6.2, were compared to assess both models. Both substitutions significantly impair hydrolysis in SUR1 homologues. SUR1E1506D has greater affinity for MgATP than wildtype; SUR1E1506K has reduced affinity. Without Mg2+, SUR1E1506K has a greater affinity for ATP4- consistent with electrostatic attraction between ATP4-, unshielded by Mg2+, and the basic lysine. Further analysis of ND and CHI ABCC8 mutants in the second transmembrane and nucleotide binding domains (TMD2 & NBD2, found a relation between their affinities for ATP (± Mg2+ and their clinical phenotype. Increased affinity for ATP is associated with ND; decreased affinity with CHI. In contrast, MgADP showed a weaker relationship. Diazoxide, known to reduce insulin release in some CHI cases, potentiates switching of CHI mutants from non-stimulatory to stimulatory states consistent with diazoxide stabilizing a nucleotide-bound conformation. The results emphasize the greater importance of nucleotide binding vs hydrolysis in the regulation of KATP channels

  12. Disease progression and search for monogenic diabetes among children with new onset type 1 diabetes negative for ICA, GAD- and IA-2 Antibodies

    Directory of Open Access Journals (Sweden)

    de Beaufort Carine

    2010-09-01

    Full Text Available Abstract Background To investigate disease progression the first 12 months after diagnosis in children with type 1 diabetes negative (AAB negative for pancreatic autoantibodies [islet cell autoantibodies(ICA, glutamic acid decarboxylase antibodies (GADA and insulinoma-associated antigen-2 antibodies (IA-2A]. Furthermore the study aimed at determining whether mutations in KCNJ11, ABCC8, HNF1A, HNF4A or INS are common in AAB negative diabetes. Materials and methods In 261 newly diagnosed children with type 1 diabetes, we measured residual β-cell function, ICA, GADA, and IA-2A at 1, 6 and 12 months after diagnosis. The genes KCNJ11, ABCC8, HNF1A, HNF4A and INS were sequenced in subjects AAB negative at diagnosis. We expressed recombinant K-ATP channels in Xenopus oocytes to analyse the functional effects of an ABCC8 mutation. Results Twenty-four patients (9.1% tested AAB negative after one month. Patients, who were AAB-negative throughout the 12-month period, had higher residual β-cell function (P = 0.002, lower blood glucose (P = 0.004, received less insulin (P = 0.05 and had lower HbA1c (P = 0.02 12 months after diagnosis. One patient had a heterozygous mutation leading to the substitution of arginine at residue 1530 of SUR1 (ABCC8 by cysteine. Functional analyses of recombinant K-ATP channels showed that R1530C markedly reduced the sensitivity of the K-ATP channel to inhibition by MgATP. Morover, the channel was highly sensitive to sulphonylureas. However, there was no effect of sulfonylurea treatment after four weeks on 1.0-1.2 mg/kg/24 h glibenclamide. Conclusion GAD, IA-2A, and ICA negative children with new onset type 1 diabetes have slower disease progression as assessed by residual beta-cell function and improved glycemic control 12 months after diagnosis. One out of 24 had a mutation in ABCC8, suggesting that screening of ABCC8 should be considered in patients with AAB negative type 1 diabetes.

  13. High levels of sarcospan are well tolerated and act as a sarcolemmal stabilizer to address skeletal muscle and pulmonary dysfunction in DMD

    Science.gov (United States)

    Gibbs, Elizabeth M.; Marshall, Jamie L.; Ma, Eva; Nguyen, Thien M.; Hong, Grace; Lam, Jessica S.; Spencer, Melissa J.

    2016-01-01

    Abstract Duchenne muscular dystrophy (DMD) is a genetic disorder that causes progressive muscle weakness, ultimately leading to early mortality in affected teenagers and young adults. Previous work from our lab has shown that a small transmembrane protein called sarcospan (SSPN) can enhance the recruitment of adhesion complex proteins to the cell surface. When human SSPN is expressed at three-fold levels in mdx mice, this increase in adhesion complex abundance improves muscle membrane stability, preventing many of the histopathological changes associated with DMD. However, expressing higher levels of human SSPN (ten-fold transgenic expression) causes a severe degenerative muscle phenotype in wild-type mice. Since SSPN-mediated stabilization of the sarcolemma represents a promising therapeutic strategy in DMD, it is important to determine whether SSPN can be introduced at high levels without toxicity. Here, we show that mouse SSPN (mSSPN) can be overexpressed at 30-fold levels in wild-type mice with no deleterious effects. In mdx mice, mSSPN overexpression improves dystrophic pathology and sarcolemmal stability. We show that these mice exhibit increased resistance to eccentric contraction-induced damage and reduced fatigue following exercise. mSSPN overexpression improved pulmonary function and reduced dystrophic histopathology in the diaphragm. Together, these results demonstrate that SSPN overexpression is well tolerated in mdx mice and improves sarcolemma defects that underlie skeletal muscle and pulmonary dysfunction in DMD. PMID:27798107

  14. Incorporated sarcolemmal fish oil fatty acids shorten pig ventricular action potentials

    NARCIS (Netherlands)

    Verkerk, A.O.; Ginneken, van A.C.G.; Berecki, G.; Ruijter, den H.M.; Schumacher, C.A.; Veldkamp, M.W.; Baartscheer, A.; Casini, S.; Opthof, T.; Hovenier, R.; Fiolet, J.W.T.; Zock, P.L.; Coronel, R.

    2006-01-01

    Background: Omega-3 polyunsaturated fatty acids (W-PUFAs) from fish oil reduce the risk of sudden death presumably by preventing life-threatening arrhythmias. Acutely administered omega 3-PUFAs modulate the activity of several cardiac ion channels, but the chronic effects of a diet enriched with

  15. Incorporated sarcolemmal fish oil fatty acids shorten pig ventricular action potentials

    NARCIS (Netherlands)

    Verkerk, Arie O.; van Ginneken, Antoni C. G.; Berecki, Géza; den Ruijter, Hester M.; Schumacher, Cees A.; Veldkamp, Marieke W.; Baartscheer, Antonius; Casini, Simona; Opthof, Tobias; Hovenier, Robert; Fiolet, Jan W. T.; Zock, Peter L.; Coronel, Ruben

    2006-01-01

    BACKGROUND: Omega-3 polyunsaturated fatty acids (omega3-PUFAs) from fish oil reduce the risk of sudden death presumably by preventing life-threatening arrhythmias. Acutely administered omega3-PUFAs modulate the activity of several cardiac ion channels, but the chronic effects of a diet enriched with

  16. Hyperinsulinaemic hypoglycaemia and diabetes mellitus due to dominant ABCC8/KCNJ11 mutations.

    LENUS (Irish Health Repository)

    Kapoor, R R

    2011-10-01

    Dominantly acting loss-of-function mutations in the ABCC8\\/KCNJ11 genes can cause mild medically responsive hyperinsulinaemic hypoglycaemia (HH). As controversy exists over whether these mutations predispose to diabetes in adulthood we investigated the prevalence of diabetes in families with dominantly inherited ATP-sensitive potassium (K(ATP)) channel mutations causing HH in the proband.

  17. Tolbutamide attenuates diazoxide-induced aggravation of hypoxic cell injury.

    Science.gov (United States)

    Pissarek, M; Reichelt, C; Krauss, G J; Illes, P

    1998-11-23

    ATP-dependent potassium (KATP) channels of neurons are closed in the presence of physiological levels of intracellular ATP and open when ATP is depleted during hypoxia or metabolic damage. The present study investigates hypoxic alterations of purine and pyrimidine nucleotide levels supposed to intracellularly modulate KATP channels. In addition, the effects of the KATP channel activator diazoxide and its antagonist tolbutamide were investigated on ATP, GTP, CTP and UTP levels in slices of the parietal cortex. Hypoxia was evoked by saturation of the medium with 95% N2-5% CO2 instead of 95% O2-5% CO2 for 5 min. Nucleotide contents were measured by anion-exchange HPLC in neutralized perchloric acid extracts obtained from slices frozen immediately at the end of incubation. Hypoxia per se decreased purine and pyrimidine nucleoside triphosphate contents. Thus, ATP and GTP contents were reduced to 69.9 and 77.6% of the respective normoxic levels. UTP and CTP contents were even more decreased (to 60.9 and 41.6%),, probably because the salvage pathway of these pyrimidine nucleotides is less effective than that of the purine nucleotides ATP and GTP. While tolbutamide (30 microM) had no effect on the hypoxia-induced decrease of nucleotides, diazoxide at 300, but not 30 microM aggravated the decline of ATP, UTP and CTP to 51.8, 37.5 and 28.5% of the contents observed at normoxia; GTP levels also showed a tendency to decrease after diazoxide application. Tolbutamide (300 microM) antagonized the effects of diazoxide (300 but not 30 microM aggravated the decline of ATP, UTP and CTP to 51.8, 37.5 and 28.5% of the contents observed at normoxia; GTP levels also showed a tendency to decrease after diazoxide application. Tolbutamide (300 microM) antagonized the effects of diazoxide (300 MicroM). Nucleoside diphosphate (ADP, GDP and UDP) levels were uniformly increased by hypoxia. There was no hypoxia-induced increase of ADP contents in the presence of tolbutamide (300 microM). The ATP

  18. Oleate induces KATP channel-dependent hyperpolarization in mouse hypothalamic glucose-excited neurons without altering cellular energy charge.

    Science.gov (United States)

    Dadak, Selma; Beall, Craig; Vlachaki Walker, Julia M; Soutar, Marc P M; McCrimmon, Rory J; Ashford, Michael L J

    2017-03-27

    The unsaturated fatty acid, oleate exhibits anorexigenic properties reducing food intake and hepatic glucose output. However, its mechanism of action in the hypothalamus has not been fully determined. This study investigated the effects of oleate and glucose on GT1-7 mouse hypothalamic cells (a model of glucose-excited (GE) neurons) and mouse arcuate nucleus (ARC) neurons. Whole-cell and perforated patch-clamp recordings, immunoblotting and cell energy status measures were used to investigate oleate- and glucose-sensing properties of mouse hypothalamic neurons. Oleate or lowered glucose concentration caused hyperpolarization and inhibition of firing of GT1-7 cells by the activation of ATP-sensitive K + channels (K ATP ). This effect of oleate was not dependent on fatty acid oxidation or raised AMP-activated protein kinase activity or prevented by the presence of the UCP2 inhibitor genipin. Oleate did not alter intracellular calcium, indicating that CD36/fatty acid translocase may not play a role. However, oleate activation of K ATP may require ATP metabolism. The short-chain fatty acid octanoate was unable to replicate the actions of oleate on GT1-7 cells. Although oleate decreased GT1-7 cell mitochondrial membrane potential there was no change in total cellular ATP or ATP/ADP ratios. Perforated patch and whole-cell recordings from mouse hypothalamic slices demonstrated that oleate hyperpolarized a subpopulation of ARC GE neurons by K ATP activation. Additionally, in a separate small population of ARC neurons, oleate application or lowered glucose concentration caused membrane depolarization. In conclusion, oleate induces K ATP- dependent hyperpolarization and inhibition of firing of a subgroup of GE hypothalamic neurons without altering cellular energy charge. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Physical interaction of junctophilin and the CaV1.1 C terminus is crucial for skeletal muscle contraction.

    Science.gov (United States)

    Nakada, Tsutomu; Kashihara, Toshihide; Komatsu, Masatoshi; Kojima, Katsuhiko; Takeshita, Toshikazu; Yamada, Mitsuhiko

    2018-04-24

    Close physical association of Ca V 1.1 L-type calcium channels (LTCCs) at the sarcolemmal junctional membrane (JM) with ryanodine receptors (RyRs) of the sarcoplasmic reticulum (SR) is crucial for excitation-contraction coupling (ECC) in skeletal muscle. However, the molecular mechanism underlying the JM targeting of LTCCs is unexplored. Junctophilin 1 (JP1) and JP2 stabilize the JM by bridging the sarcolemmal and SR membranes. Here, we examined the roles of JPs in localization and function of LTCCs. Knockdown of JP1 or JP2 in cultured myotubes inhibited LTCC clustering at the JM and suppressed evoked Ca 2+ transients without disrupting JM structure. Coimmunoprecipitation and GST pull-down assays demonstrated that JPs physically interacted with 12-aa residues in the proximal C terminus of the Ca V 1.1. A JP1 mutant lacking the C terminus including the transmembrane domain (JP1ΔCT) interacted with the sarcolemmal/T-tubule membrane but not the SR membrane. Expression of this mutant in adult mouse muscles in vivo exerted a dominant-negative effect on endogenous JPs, impairing LTCC-RyR coupling at triads without disrupting JM morphology, and substantially reducing Ca 2+ transients without affecting SR Ca 2+ content. Moreover, the contractile force of the JP1ΔCT-expressed muscle was dramatically reduced compared with the control. Taken together, JPs recruit LTCCs to the JM through physical interaction and ensure robust ECC at triads in skeletal muscle.

  20. Maytenus erythroxylon Reissek (Celastraceae) ethanol extract presents antidiarrheal activity via antimotility and antisecretory mechanisms

    Science.gov (United States)

    Formiga, Rodrigo de Oliveira; Quirino, Zelma Glebya Maciel; Diniz, Margareth de Fátima Formiga Melo; Marinho, Alexsandro Fernandes; Tavares, Josean Fechine; Batista, Leônia Maria

    2017-01-01

    AIM To investigate the acute toxicity, phytochemical profile, antidiarrheal activity and mechanisms of action of Maytenus erythroxylon (M. erythroxylon) ethanol extract. METHODS A castor oil-induced diarrhea model was used to evaluate antidiarrheal activity. Intestinal transit and gastric emptying protocols were used to evaluate a possible antimotility effect. KATP channels, nitric oxide, presynaptic α2-adrenergic and tissue adrenergic receptors were investigated to uncover antimotility mechanisms of action and castor oil-induced enteropooling to elucidate antisecretory mechanisms. RESULTS All tested doses of the extract (62.5, 125, 250 and 500 mg/kg) possessed antidiarrheal activity, with a significant decrease of the evacuation index. This activity is possibly related to a reduced gastric emptying (125, 250 and 500 mg/kg) and to a decreased percentage of intestinal transit for all tested doses. That last effect seems to be modulated by nitric oxide, KATP channels and tissue adrenergic receptors. Besides, the extract also presented antisecretory effect due to a decrease of intestinal fluid accumulation. CONCLUSION The antidiarrheal effect of M. erythroxylon found in this study involves antimotility and antisecretory mechanisms that may be attributed to the chemical compounds found in this species: saponins, flavonoids, tannins, triterpenes and steroids. PMID:28706420

  1. PPARα-Independent Arterial Smooth Muscle Relaxant Effects of PPARα Agonists

    Directory of Open Access Journals (Sweden)

    Neerupma Silswal

    2012-01-01

    Full Text Available We sought to determine direct vascular effects of peroxisome proliferator-activated receptor alpha (PPARα agonists using isolated mouse aortas and middle cerebral arteries (MCAs. The PPARα agonists GW7647, WY14643, and gemfibrozil acutely relaxed aortas held under isometric tension and dilated pressurized MCAs with the following order of potency: GW7647≫WY14643>gemfibrozil. Responses were endothelium-independent, and the use of PPARα deficient mice demonstrated that responses were also PPARα-independent. Pretreating arteries with high extracellular K+ attenuated PPARα agonist-mediated relaxations in the aorta, but not in the MCA. In the aorta, the ATP sensitive potassium (KATP channel blocker glibenclamide also impaired relaxations whereas the other K+ channel inhibitors, 4-aminopyridine and Iberiotoxin, had no effect. In aortas, GW7647 and WY14643 elevated cGMP levels by stimulating soluble guanylyl cyclase (sGC, and inhibition of sGC with ODQ blunted relaxations to PPARα agonists. In the MCA, dilations were inhibited by the protein kinase C (PKC activator, phorbol 12,13-dibutyrate, and also by ODQ. Our results demonstrated acute, nonreceptor-mediated relaxant effects of PPARα agonists on smooth muscle of mouse arteries. Responses to PPARα agonists in the aorta involved KATP channels and sGC, whereas in the MCA the PKC and sGC pathways also appeared to contribute to the response.

  2. Bioelectric modulation of macrophage polarization

    Science.gov (United States)

    Li, Chunmei; Levin, Michael; Kaplan, David L.

    2016-02-01

    Macrophages play a critical role in regulating wound healing and tissue regeneration by changing their polarization state in response to local microenvironmental stimuli. The native roles of polarized macrophages encompass biomaterials and tissue remodeling needs, yet harnessing or directing the polarization response has been largely absent as a potential strategy to exploit in regenerative medicine to date. Recent data have revealed that specific alteration of cells’ resting potential (Vmem) is a powerful tool to direct proliferation and differentiation in a number of complex tissues, such as limb regeneration, craniofacial patterning and tumorigenesis. In this study, we explored the bioelectric modulation of macrophage polarization by targeting ATP sensitive potassium channels (KATP). Glibenclamide (KATP blocker) and pinacidil (KATP opener) treatment not only affect macrophage polarization, but also influence the phenotype of prepolarized macrophages. Furthermore, modulation of cell membrane electrical properties can fine-tune macrophage plasticity. Glibenclamide decreased the secretion and gene expression of selected M1 markers, while pinacidil augmented M1 markers. More interestingly, glibencalmide promoted macrophage alternative activation by enhancing certain M2 markers during M2 polarization. These findings suggest that control of bioelectric properties of macrophages could offer a promising approach to regulate macrophage phenotype as a useful tool in regenerative medicine.

  3. Embryonic Stem Cell Therapy of Heart Failure in Genetic Cardiomyopathy

    OpenAIRE

    Yamada, Satsuki; Nelson, Timothy J.; Crespo-Diaz, Ruben J.; Perez-Terzic, Carmen; Liu, Xiao-Ke; Miki, Takashi; Seino, Susumu; Behfar, Atta; Terzic, Andre

    2008-01-01

    Pathogenic causes underlying nonischemic cardiomyopathies are increasingly being resolved, yet repair therapies for these commonly heritable forms of heart failure are lacking. A case in point is human dilated cardiomyopathy 10 (CMD10; Online Mendelian Inheritance in Man #608569), a progressive organ dysfunction syndrome refractory to conventional therapies and linked to mutations in cardiac ATP-sensitive K+ (KATP) channel sub-units. Embryonic stem cell therapy demonstrates benefit in ischemi...

  4. Lebetin 2, a Snake Venom-Derived Natriuretic Peptide, Attenuates Acute Myocardial Ischemic Injury through the Modulation of Mitochondrial Permeability Transition Pore at the Time of Reperfusion.

    Directory of Open Access Journals (Sweden)

    Bochra Tourki

    Full Text Available Cardiac ischemia is one of the leading causes of death worldwide. It is now well established that natriuretic peptides can attenuate the development of irreversible ischemic injury during myocardial infarction. Lebetin 2 (L2 is a new discovered peptide isolated from Macrovipera lebetina venom with structural similarity to B-type natriuretic peptide (BNP. Our objectives were to define the acute cardioprotective actions of L2 in isolated Langendorff-perfused rat hearts after regional or global ischemia-reperfusion (IR. We studied infarct size, left ventricular contractile recovery, survival protein kinases and mitochondrial permeability transition pore (mPTP opening in injured myocardium. L2 dosage was determined by preliminary experiments at its ability to induce cyclic guanosine monophosphate (cGMP release without changing hemodynamic effects in normoxic hearts. L2 was found to be as effective as BNP in reducing infarct size after the induction of either regional or global IR. Both peptides equally improved contractile recovery after regional IR, but only L2 increased coronary flow and reduced severe contractile dysfunction after global ischemia. Cardioprotection afforded by L2 was abolished after isatin or 5-hydroxydecanote pretreatment suggesting the involvement of natriuretic peptide receptors and mitochondrial KATP (mitoKATP channels in the L2-induced effects. L2 also increased survival protein expression in the reperfused myocardium as evidenced by phosphorylation of signaling pathways PKCε/ERK/GSK3β and PI3K/Akt/eNOS. IR induced mitochondrial pore opening, but this effect was markedly prevented by L2 treatment. These data show that L2 has strong cardioprotective effect in acute ischemia through stimulation of natriuretic peptide receptors. These beneficial effects are mediated, at least in part, by mitoKATP channel opening and downstream activated survival kinases, thus delaying mPTP opening and improving IR-induced mitochondrial

  5. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice.

    Science.gov (United States)

    Coomans, Claudia P; Biermasz, Nienke R; Geerling, Janine J; Guigas, Bruno; Rensen, Patrick C N; Havekes, Louis M; Romijn, Johannes A

    2011-12-01

    Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated tissue-specific glucose uptake. Tolbutamide, an inhibitor of ATP-sensitive K(+) channels (K(ATP) channels), or vehicle was infused into the lateral ventricle in the basal state and during hyperinsulinemic-euglycemic conditions in postabsorptive, chow-fed C57Bl/6J mice and in postabsorptive C57Bl/6J mice with diet-induced obesity. Whole-body glucose uptake was measured by d-[(14)C]glucose kinetics and tissue-specific glucose uptake by 2-deoxy-d-[(3)H]glucose uptake. During clamp conditions, intracerebroventricular administration of tolbutamide impaired the ability of insulin to inhibit EGP by ∼20%. In addition, intracerebroventricular tolbutamide diminished insulin-stimulated glucose uptake in muscle (by ∼59%) but not in heart or adipose tissue. In contrast, in insulin-resistant mice with diet-induced obesity, intracerebroventricular tolbutamide did not alter the effects of insulin during clamp conditions on EGP or glucose uptake by muscle. Insulin stimulates glucose uptake in muscle in part through effects via K(ATP) channels in the central nervous system, in analogy with the inhibitory effects of insulin on EGP. High-fat diet-induced obesity abolished the central effects of insulin on liver and muscle. These observations stress the role of central insulin resistance in the pathophysiology of diet-induced insulin resistance.

  6. Expression of transient receptor potential ankyrin 1 (TRPA1 and its role in insulin release from rat pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    De-Shou Cao

    Full Text Available Several transient receptor potential (TRP channels are expressed in pancreatic beta cells and have been proposed to be involved in insulin secretion. However, the endogenous ligands for these channels are far from clear. Here, we demonstrate the expression of the transient receptor potential ankyrin 1 (TRPA1 ion channel in the pancreatic beta cells and its role in insulin release. TRPA1 is an attractive candidate for inducing insulin release because it is calcium permeable and is activated by molecules that are produced during oxidative glycolysis.Immunohistochemistry, RT-PCR, and Western blot techniques were used to determine the expression of TRPA1 channel. Ca²⁺ fluorescence imaging and electrophysiology (voltage- and current-clamp techniques were used to study the channel properties. TRPA1-mediated insulin release was determined using ELISA.TRPA1 is abundantly expressed in a rat pancreatic beta cell line and freshly isolated rat pancreatic beta cells, but not in pancreatic alpha cells. Activation of TRPA1 by allyl isothiocyanate (AITC, hydrogen peroxide (H₂O₂, 4-hydroxynonenal (4-HNE, and cyclopentenone prostaglandins (PGJ₂ and a novel agonist methylglyoxal (MG induces membrane current, depolarization, and Ca²⁺ influx leading to generation of action potentials in a pancreatic beta cell line and primary cultured pancreatic beta cells. Activation of TRPA1 by agonists stimulates insulin release in pancreatic beta cells that can be inhibited by TRPA1 antagonists such as HC030031 or AP-18 and by RNA interference. TRPA1-mediated insulin release is also observed in conditions of voltage-gated Na⁺ and Ca²⁺ channel blockade as well as ATP sensitive potassium (K(ATP channel activation.We propose that endogenous and exogenous ligands of TRPA1 cause Ca²⁺ influx and induce basal insulin release and that TRPA1-mediated depolarization acts synergistically with K(ATP channel blockade to facilitate insulin release.

  7. Supraoptic oxytocin and vasopressin neurons function as glucose and metabolic sensors

    Science.gov (United States)

    Song, Zhilin; Levin, Barry E.; Stevens, Wanida

    2014-01-01

    Neurons in the supraoptic nuclei (SON) produce oxytocin and vasopressin and express insulin receptors (InsR) and glucokinase. Since oxytocin is an anorexigenic agent and glucokinase and InsR are hallmarks of cells that function as glucose and/or metabolic sensors, we evaluated the effect of glucose, insulin, and their downstream effector ATP-sensitive potassium (KATP) channels on calcium signaling in SON neurons and on oxytocin and vasopressin release from explants of the rat hypothalamo-neurohypophyseal system. We also evaluated the effect of blocking glucokinase and phosphatidylinositol 3 kinase (PI3K; mediates insulin-induced mobilization of glucose transporter, GLUT4) on responses to glucose and insulin. Glucose and insulin increased intracellular calcium ([Ca2+]i). The responses were glucokinase and PI3K dependent, respectively. Insulin and glucose alone increased vasopressin release (P glucose in the presence of insulin. The oxytocin (OT) and vasopressin (VP) responses to insulin+glucose were blocked by the glucokinase inhibitor alloxan (4 mM; P ≤ 0.002) and the PI3K inhibitor wortmannin (50 nM; OT: P = 0.03; VP: P ≤ 0.002). Inactivating KATP channels with 200 nM glibenclamide increased oxytocin and vasopressin release (OT: P neurons functioning as glucose and “metabolic” sensors to participate in appetite regulation. PMID:24477542

  8. A brain-liver circuit regulates glucose homeostasis.

    Science.gov (United States)

    Pocai, Alessandro; Obici, Silvana; Schwartz, Gary J; Rossetti, Luciano

    2005-01-01

    Increased glucose production (GP) is the major determinant of fasting hyperglycemia in diabetes mellitus. Previous studies suggested that lipid metabolism within specific hypothalamic nuclei is a biochemical sensor for nutrient availability that exerts negative feedback on GP. Here we show that central inhibition of fat oxidation leads to selective activation of brainstem neurons within the nucleus of the solitary tract and the dorsal motor nucleus of the vagus and markedly decreases liver gluconeogenesis, expression of gluconeogenic enzymes, and GP. These effects require central activation of ATP-dependent potassium channels (K(ATP)) and descending fibers within the hepatic branch of the vagus nerve. Thus, hypothalamic lipid sensing potently modulates glucose metabolism via neural circuitry that requires the activation of K(ATP) and selective brainstem neurons and intact vagal input to the liver. This crosstalk between brain and liver couples central nutrient sensing to peripheral nutrient production and its disruption may lead to hyperglycemia.

  9. Cucurbita ficifolia Bouché increases insulin secretion in RINm5F cells through an influx of Ca(2+) from the endoplasmic reticulum.

    Science.gov (United States)

    Miranda-Perez, Maria Elizabeth; Ortega-Camarillo, Clara; Del Carmen Escobar-Villanueva, Maria; Blancas-Flores, Gerardo; Alarcon-Aguilar, Francisco Javier

    2016-07-21

    Cucurbita ficifolia Bouché(C. ficifolia) is a plant used in Mexican traditional medicine to control type 2 diabetes (T2D). The hypoglycemic effect of the fruit of C. ficifolia has been demonstrated in different experimental models and in T2D patients. It has been proposed that D-chiro-inositol (DCI) is the active compound of the fruit. Additionally, it has been reported that C. ficifolia increases the mRNA expression of insulin and Kir 6.2 (a component of the ATP-sensitive potassium (K(+)ATP) channel, which is activated by sulphonylurea) in RINm5F cells. However, it remains unclear whether C. ficifolia and DCI causes the secretion of insulin by increasing the concentration of intracellular calcium ([Ca(2+)]i) through K(+)ATP channel blockage or from the reservoir in the endoplasmic reticulum (ER). The aqueous extract of C. ficifolia was obtained and standardized with regard to its DCI content. RINm5F pancreatic β-cells were incubated with different concentrations (50, 100, 200 and 400μM) of DCI alone or C. ficifolia (9, 18, 36 and 72µg of extract/mL), and the [Ca(2+)]i of the cells was quantified. The cells were preloaded with the Ca(2+) fluorescent dye fluo4-acetoxymethyl ester (AM) and visualized by confocal microscopy. Insulin secretion was measured by an ELISA method. Subsequently, the effect of C. ficifolia on the K(+)ATP channel was evaluated. In this case, the blocker activator diazoxide was used to inhibit the C. ficifolia-induced calcium influx. In addition, the inositol 1,4,5-trisphosphate (IP3)-receptor-selective inhibitor 2-amino-thoxydiphenylborate (2-APB) was used to inhibit the influx of calcium from the ER that was induced by C. ficifolia. It was found that DCI alone did not increase [Ca(2+)]i or insulin secretion. In contrast, treatment with C. ficifolia increased [Ca(2+)]i 10-fold compared with the control group. Insulin secretion increased by 46.9%. In the presence of diazoxide, C. ficifolia decreased [Ca(2+)]i by 50%, while insulin secretion

  10. Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle

    DEFF Research Database (Denmark)

    Kristiansen, S; Hargreaves, Mark; Richter, Erik

    1996-01-01

    contractions may induce trafficking of GLUT-4-containing vesicles via a mechanism similar to neurotransmitter release. Our results demonstrate for the first time exercise-induced translocation of GLUT-4 and VAMP-2 to the plasma membrane of human muscle and increased sarcolemmal glucose transport.......A major effect of muscle contractions is an increase in sarcolemmal glucose transport. We have used a recently developed technique to produce sarcolemmal giant vesicles from human muscle biopsy samples obtained before and after exercise. Six men exercised for 10 min at 50% maximal O2 uptake (Vo2max...

  11. Ischemic preconditioning improves mitochondrial tolerance to experimental calcium overload.

    Science.gov (United States)

    Crestanello, Juan A; Doliba, Nicolai M; Babsky, Andriy M; Doliba, Natalia M; Niibori, Koki; Whitman, Glenn J R; Osbakken, Mary D

    2002-04-01

    Ca(2+) overload leads to mitochondrial uncoupling, decreased ATP synthesis, and myocardial dysfunction. Pharmacologically opening of mitochondrial K(ATP) channels decreases mitochondrial Ca(2+) uptake, improving mitochondrial function during Ca(2+) overload. Ischemic preconditioning (IPC), by activating mitochondrial K(ATP) channels, may attenuate mitochondrial Ca(2+) overload and improve mitochondrial function during reperfusion. The purpose of these experiments was to study the effect of IPC (1) on mitochondrial function and (2) on mitochondrial tolerance to experimental Ca(2+) overload. Rat hearts (n = 6/group) were subjected to (a) 30 min of equilibration, 25 min of ischemia, and 30 min of reperfusion (Control) or (b) two 5-min episodes of ischemic preconditioning, 25 min of ischemia, and 30 min of reperfusion (IPC). Developed pressure (DP) was measured. Heart mitochondria were isolated at end-Equilibration (end-EQ) and at end-Reperfusion (end-RP). Mitochondrial respiratory function (state 2, oxygen consumption with substrate only; state 3, oxygen consumption stimulated by ADP; state 4, oxygen consumption after cessation of ADP phosphorylation; respiratory control index (RCI, state 3/state 4); rate of oxidative phosphorylation (ADP/Deltat), and ADP:O ratio) was measured with polarography using alpha-ketoglutarate as a substrate in the presence of different Ca(2+) concentrations (0 to 5 x 10(-7) M) to simulate Ca(2+) overload. IPC improved DP at end-RP. IPC did not improve preischemic mitochondrial respiratory function or preischemic mitochondrial response to Ca(2+) loading. IPC improved state 3, ADP/Deltat, and RCI during RP. Low Ca(2+) levels (0.5 and 1 x 10(-7) M) stimulated mitochondrial function in both groups predominantly in IPC. The Control group showed evidence of mitochondrial uncoupling at lower Ca(2+) concentrations (1 x 10(-7) M). IPC preserved state 3 at high Ca(2+) concentrations. The cardioprotective effect of IPC results, in part, from

  12. Modulation of Visceral Nociception, Inflammation and Gastric Mucosal Injury by Cinnarizine

    Directory of Open Access Journals (Sweden)

    Omar M.E. Abdel-Salam

    2007-01-01

    Full Text Available The effect of cinnarizine, a drug used for the treatment of vertigo was assessed in animal models of visceral nociception, inflammation and gastric mucosal injury. Cinnarizine (1.25–20 mg/kg, s.c. caused dose-dependent inhibition of the abdominal constrictions evoked by i.p. injection of acetic acid by 38.7–99.4%. This effect of cinnarizine (2.5 mg/kg was unaffected by co-administration of the centrally acting dopamine D2 receptor antagonists, sulpiride, haloperidol or metoclopramide, the peripherally acting D2 receptor antagonist domperidone, but increased by the D2 receptor agonist bromocryptine and by the non-selective dopamine receptor antagonist chlorpromazine. The antinociception caused by cinnarizine was naloxone insenstive, but enhanced by propranolol, atropine and by yohimbine. The antinociceptive effect of cinnarizine was prevented by co-treatment with the adenosine receptor blocker theophylline or by the ATP-sensitive potassium channel (KATP blocker glibenclamide. Cinnarizine at 2.5 mg/kg reversed the baclofen-induced antinociception. Cinnarizine at 2.5 mg/kg reduced immobility time in the Porsolt’s forced-swimming test by 24%. Cinnarizine inhibited the paw oedema response to carrageenan and reduced gastric mucosal lesions caused by indomethacin in rats. It is suggested that cinnarizine exerts anti-infl ammatory, antinociceptive and gastric protective properties. The mechanism by which cinnarizine modulates pain transmission is likely to involve adenosine receptors and KATP channels.

  13. An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion

    Directory of Open Access Journals (Sweden)

    Kyle S. McCommis

    2016-08-01

    Full Text Available Objective: Transport of pyruvate into the mitochondrial matrix by the Mitochondrial Pyruvate Carrier (MPC is an important and rate-limiting step in its metabolism. In pancreatic β-cells, mitochondrial pyruvate metabolism is thought to be important for glucose sensing and glucose-stimulated insulin secretion. Methods: To evaluate the role that the MPC plays in maintaining systemic glucose homeostasis, we used genetically-engineered Drosophila and mice with loss of MPC activity in insulin-producing cells. Results: In both species, MPC deficiency results in elevated blood sugar concentrations and glucose intolerance accompanied by impaired glucose-stimulated insulin secretion. In mouse islets, β-cell MPC-deficiency resulted in decreased respiration with glucose, ATP-sensitive potassium (KATP channel hyperactivity, and impaired insulin release. Moreover, treatment of pancreas-specific MPC knockout mice with glibenclamide, a sulfonylurea KATP channel inhibitor, improved defects in islet insulin secretion and abnormalities in glucose homeostasis in vivo. Finally, using a recently-developed biosensor for MPC activity, we show that the MPC is rapidly stimulated by glucose treatment in INS-1 insulinoma cells suggesting that glucose sensing is coupled to mitochondrial pyruvate carrier activity. Conclusions: Altogether, these studies suggest that the MPC plays an important and ancestral role in insulin-secreting cells in mediating glucose sensing, regulating insulin secretion, and controlling systemic glycemia. Keywords: Stimulus-coupled secretion, Insulin, β-Cell, Diabetes, Pyruvate, Mitochondria, Drosophila

  14. Serum deprivation induces glucose response and intercellular coupling in human pancreatic adenocarcinoma PANC-1 cells.

    Science.gov (United States)

    Hiram-Bab, Sahar; Shapira, Yuval; Gershengorn, Marvin C; Oron, Yoram

    2012-03-01

    This study aimed to investigate whether the previously described differentiating islet-like aggregates of human pancreatic adenocarcinoma cells (PANC-1) develop glucose response and exhibit intercellular communication. Fura 2-loaded PANC-1 cells in serum-free medium were assayed for changes in cytosolic free calcium ([Ca]i) induced by depolarization, tolbutamide inhibition of K(ATP) channels, or glucose. Dye transfer, assayed by confocal microscopy or by FACS, was used to detect intercellular communication. Changes in messenger RNA (mRNA) expression of genes of interest were assessed by quantitative real-time polymerase chain reaction. Proliferation was assayed by the MTT method. Serum-deprived PANC-1 cell aggregates developed [Ca]i response to KCl, tolbutamide, or glucose. These responses were accompanied by 5-fold increase in glucokinase mRNA level and, to a lesser extent, of mRNAs for K(ATP) and L-type calcium channels, as well as increase in mRNA levels of glucagon and somatostatin. Trypsin, a proteinase-activated receptor 2 agonist previously shown to enhance aggregation, modestly improved [Ca]i response to glucose. Glucose-induced coordinated [Ca]i oscillations and dye transfer demonstrated the emergence of intercellular communication. These findings suggest that PANC-1 cells, a pancreatic adenocarcinoma cell line, can be induced to express a differentiated phenotype in which cells exhibit response to glucose and form a functional syncytium similar to those observed in pancreatic islets.

  15. Adrenergic mechanism responsible for pathological alteration in gastric mucosal blood flow in rats with ulcer bleeding

    Science.gov (United States)

    Semyachkina-Glushkovskaya, O. V.; Pavlov, A. N.; Semyachkin-Glushkovskiy, I. A.; Gekalyuk, A. S.; Ulanova, M. V.; Lychagov, V. V.; Tuchin, V. V.

    2014-09-01

    The adrenergic system plays an important role in regulation of central and peripheral circulation in normal state and during hemorrhage. Because the impaired gastric mucosal blood flow (GMBF) is the major cause of gastroduodenal lesions, including ulcer bleeding (UB), we studied the adrenergic mechanism responsible for regulation of GMBF in rats with a model of stress-induced UB (SUB) using the laser Doppler flowmetry (LDF). First, we examined the effect of adrenaline on GMBF in rats under normal state and during UB. In all healthy animals the submucosal adrenaline injection caused a decrease in local GMBF. During UB the submucosal injection of adrenaline was accompanied by less pronounced GMBF suppression in 30,3% rats with SUB vs. healthy ones. In 69,7% rats with SUB we observed the increase in local GMBF after submucosal injection of adrenaline. Second, we studied the sensitivity of gastric β2-adrenoreceptors and the activity of two factors which are involved in β2-adrenomediated vasorelaxation-KATP -channels and NO. The effects of submucosal injection of isoproterenol, ICI118551 and glybenclamide on GMBF as well as NO levels in gastric tissue were significantly elevated in rats with SUB vs. healthy rats. Thus, our results indicate that high activation of gastric β2-adrenoreceptors associated with the increased vascular KATP -channels activity and elevated NO production is the important adrenergic mechanism implicated in the pathogenesis of UB.

  16. Characterization of Imidazoline Receptors in Blood Vessels for the Development of Antihypertensive Agents

    Directory of Open Access Journals (Sweden)

    Mei-Fen Chen

    2014-01-01

    Full Text Available It has been indicated that activation of peripheral imidazoline I2-receptor (I-2R may reduce the blood pressure in spontaneously hypertensive rats (SHRs. Also, guanidinium derivatives show the ability to activate imidazoline receptors. Thus, it is of special interest to characterize the I-2R using guanidinium derivatives in blood vessels for development of antihypertensive agent(s. Six guanidinium derivatives including agmatine, amiloride, aminoguanidine, allantoin, canavanine, and metformin were applied in this study. Western blot analysis was used for detecting the expression of imidazoline receptor in tissues of Wistar rats. The isometric tension of aortic rings isolated from male rats was also estimated. The expression of imidazoline receptor on rat aorta was identified. However, guanidinium derivatives for detection of aortic relaxation were not observed except agmatine and amiloride which induced a marked relaxation in isolated aortic rings precontracted with phenylephrine or KCl. Both relaxations induced by agmatine and amiloride were attenuated by glibenclamide at concentration enough to block ATP-sensitive potassium (KATP channels. Meanwhile, only agmatine-induced relaxation was abolished by BU224, a selective antagonist of imidazoline I2-receptors. Taken together, we suggest that agmatine can induce vascular relaxation through activation of peripheral imidazoline I2-receptor to open KATP channels. Thus, agmatine-like compound has the potential to develop as a new therapeutic agent for hypertension in the future.

  17. Morphologic and Pharmacological Investigations in the Epicatechin Gastroprotective Effect

    Directory of Open Access Journals (Sweden)

    A. L. Rozza

    2012-01-01

    Full Text Available Previous studies of the gastroprotective activity of plants have highlighted the importance of the polyphenolic compound epicatechin (EC in the treatment of gastric ulcers. This paper aimed to evaluate and characterize the gastroprotective mechanism of action of EC using male rats. The gastroprotective action of EC was analyzed in gastric ulcers induced by ethanol or indomethacin. The involvement of sulfhydryl (SH groups, K+ATP channels, α2 adrenoceptors, gastric antisecretory activity, and the amount of mucus in the development of gastric ulcers were investigated. The lowest effective dose of EC providing gastroprotective effects was 50 mg/kg in the ethanol-induced gastric ulcers and 25 mg/kg in the indomethacin-induced gastric ulcers. The gastroprotection seen upon treatment with EC was significantly decreased in rats pretreated with a SH compound reagent or an α2-receptor antagonist, but not with a K+ATP channel blocker. Furthermore, oral treatment with EC increased mucus production and decreased H+ secretion. Immunohistochemistry demonstrated the involvement of superoxide dismutase (SOD, nitric oxide (NO, and heat shock protein-70 (HSP-70 in the gastroprotection. These results demonstrate that EC provides gastroprotection through reinforcement of the mucus barrier and neutralization of gastric juice and this protection occurs through the involvement of SH compounds, α2-adrenoceptors, NO, SOD, and HSP-70.

  18. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key

  19. GRAF1 deficiency blunts sarcolemmal injury repair and exacerbates cardiac and skeletal muscle pathology in dystrophin-deficient mice.

    Science.gov (United States)

    Lenhart, Kaitlin C; O'Neill, Thomas J; Cheng, Zhaokang; Dee, Rachel; Demonbreun, Alexis R; Li, Jianbin; Xiao, Xiao; McNally, Elizabeth M; Mack, Christopher P; Taylor, Joan M

    2015-01-01

    The plasma membranes of striated muscle cells are particularly susceptible to rupture as they endure significant mechanical stress and strain during muscle contraction, and studies have shown that defects in membrane repair can contribute to the progression of muscular dystrophy. The synaptotagmin-related protein, dysferlin, has been implicated in mediating rapid membrane repair through its ability to direct intracellular vesicles to sites of membrane injury. However, further work is required to identify the precise molecular mechanisms that govern dysferlin targeting and membrane repair. We previously showed that the bin-amphiphysin-Rvs (BAR)-pleckstrin homology (PH) domain containing Rho-GAP GTPase regulator associated with focal adhesion kinase-1 (GRAF1) was dynamically recruited to the tips of fusing myoblasts wherein it promoted membrane merging by facilitating ferlin-dependent capturing of intracellular vesicles. Because acute membrane repair responses involve similar vesicle trafficking complexes/events and because our prior studies in GRAF1-deficient tadpoles revealed a putative role for GRAF1 in maintaining muscle membrane integrity, we postulated that GRAF1 might also play an important role in facilitating dysferlin-dependent plasma membrane repair. We used an in vitro laser-injury model to test whether GRAF1 was necessary for efficient muscle membrane repair. We also generated dystrophin/GRAF1 doubledeficient mice by breeding mdx mice with GRAF1 hypomorphic mice. Evans blue dye uptake and extensive morphometric analyses were used to assess sarcolemmal integrity and related pathologies in cardiac and skeletal muscles isolated from these mice. Herein, we show that GRAF1 is dynamically recruited to damaged skeletal and cardiac muscle plasma membranes and that GRAF1-depleted muscle cells have reduced membrane healing abilities. Moreover, we show that dystrophin depletion exacerbated muscle damage in GRAF1-deficient mice and that mice with dystrophin/GRAF1

  20. Abcc9 is required for the transition to oxidative metabolism in the newborn heart.

    Science.gov (United States)

    Fahrenbach, John P; Stoller, Douglas; Kim, Gene; Aggarwal, Nitin; Yerokun, Babatunde; Earley, Judy U; Hadhazy, Michele; Shi, Nian-Qing; Makielski, Jonathan C; McNally, Elizabeth M

    2014-07-01

    The newborn heart adapts to postnatal life by shifting from a fetal glycolytic metabolism to a mitochondrial oxidative metabolism. Abcc9, an ATP-binding cassette family member, increases expression concomitant with this metabolic shift. Abcc9 encodes a membrane-associated receptor that partners with a potassium channel to become the major potassium-sensitive ATP channel in the heart. Abcc9 also encodes a smaller protein enriched in the mitochondria. We now deleted exon 5 of Abcc9 to ablate expression of both plasma membrane and mitochondria-associated Abcc9-encoded proteins, and found that the myocardium failed to acquire normal mature metabolism, resulting in neonatal cardiomyopathy. Unlike wild-type neonatal cardiomyocytes, mitochondria from Ex5 cardiomyocytes were unresponsive to the KATP agonist diazoxide, consistent with loss of KATP activity. When exposed to hydrogen peroxide to induce cell stress, Ex5 neonatal cardiomyocytes displayed a rapid collapse of mitochondria membrane potential, distinct from wild-type cardiomyocytes. Ex5 cardiomyocytes had reduced fatty acid oxidation, reduced oxygen consumption and reserve. Morphologically, Ex5 cardiac mitochondria exhibited an immature pattern with reduced cross-sectional area and intermitochondrial contacts. In the absence of Abcc9, the newborn heart fails to transition normally from fetal to mature myocardial metabolism.-Fahrenbach, J. P., Stoller, D., Kim, G., Aggarwal, N., Yerokun, B., Earley, J. U., Hadhazy, M., Shi, N.-Q., Makielski, J. C., McNally, E. M. Abcc9 is required for the transition to oxidative metabolism in the newborn heart. © FASEB.

  1. Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission

    Science.gov (United States)

    Camerino, Giulia M.; Bianchini, Elisa; Ciciliot, Stefano; Danieli-Betto, Daniela; Dobrowolny, Gabriella; Furlan, Sandra; Germinario, Elena; Goto, Katsumasa; Gutsmann, Martina; Kawano, Fuminori; Nakai, Naoya; Ohira, Takashi; Ohno, Yoshitaka; Picard, Anne; Salanova, Michele; Schiffl, Gudrun; Blottner, Dieter; Musarò, Antonio; Ohira, Yoshinobu; Betto, Romeo; Conte, Diana; Schiaffino, Stefano

    2012-01-01

    The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5–20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca2+-activated K+ channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures. PMID:22470446

  2. Adaptation of mouse skeletal muscle to long-term microgravity in the MDS mission.

    Directory of Open Access Journals (Sweden)

    Dorianna Sandonà

    Full Text Available The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5-20 day spaceflights. The mice drawer system (MDS program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1 into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca(2+-activated K(+ channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures.

  3. Both Low Blood Glucose and Insufficient Treatment Confer Risk of Neurodevelopmental Impairment in Congenital Hyperinsulinism

    DEFF Research Database (Denmark)

    Rasmussen, Annett Helleskov; Melikyan, Maria; Globa, Evgenia

    2017-01-01

    BACKGROUND/AIMS: Congenital hyperinsulinism (CHI) is a heterogeneous disease most frequently caused by KATP-channel (ABCC8 and KCNJ11) mutations, with neonatal or later onset, variable severity, and with focal or diffuse pancreatic involvement as the two major histological types. CHI confers a high...... seen in uni- or multivariate analysis. CONCLUSION: Not only very low blood glucose, but also insufficient treatment as expressed by delay until expert center hospitalization, increased the risk of neurodevelopmental impairment. This novel finding calls for improvements in spread of knowledge about CHI...

  4. Channelling and electromagnetic radiation of channelling particles

    International Nuclear Information System (INIS)

    Kalashnikov, N.

    1983-01-01

    A brief description is presented of the channelling of charged particles between atoms in the crystal lattice. The specificities are discussed of the transverse motion of channelling particles as are the origin and properties of quasi-characteristic radiation of channelling particles which accompany transfers from one band of permissible energies of the transverse motion of channelling particles to the other. (B.S.)

  5. Expression of Na+/HCO3- co-transporter proteins (NBCs) in rat and human skeletal muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas Møller; Kristensen, Michael; Juel, Carsten

    2004-01-01

    AIM: Sodium/bicarbonate co-transport (NBC) has been suggested to have a role in muscle pH regulation. We investigated the presence of NBC proteins in rat and human muscle samples and the fibre type distribution of the identified NBCs. METHODS AND RESULTS: Western blotting of muscle homogenates...... the T-tubules. The two NBCs localized in muscle have distinct fibre type distributions. CONCLUSIONS: Skeletal muscle possesses two variants of the sodium/bicarbonate co-transporter (NBC) isoforms, which have been called NBCe1 and NBCe2....... and sarcolemmal membranes (sarcolemmal giant vesicles) were used to screen for the presence of NBCs. Immunohistochemistry was used for the subcellular localization. The functional test revealed that approximately half of the pH recovery in sarcolemmal vesicles produced from rat muscle is mediated by bicarbonate...

  6. An Effective Channel Allocation Scheme to Reduce Co-Channel and Adjacent Channel Interference for WMN Backhaul

    International Nuclear Information System (INIS)

    Abbasi, S.; Ismaili, I.A.; Khuhawar, F.Y.

    2016-01-01

    Two folded work presents channel allocation scheme sustaining channel orthogonality and channel spacing to reduce CCI (Co-Channel Interference) and ACI (Adjacent Channel Interference) for inter flow of an intra-flow link. Proposed scheme as a part of radio resource allocation is applied on infrastructure based backhaul of wireless mesh network using directional antennas. The proposed approach is applied separately on 2.4 and 5GHz bands. Interference of connectivity graph is modelled by strongly connected directed graph and greedy algorithms are used for channel allocation. We have used OPNET Modeller suite to simulate network models for this research. The proposed arrangement reduces the channel interference and increases system throughput. In this research, the influence of channel is computed in terms of network throughput and delay. (author)

  7. Iptakalim inhibits nicotinic acetylcholine receptor-mediated currents in dopamine neurons acutely dissociated from rat substantia nigra pars compacta.

    Science.gov (United States)

    Hu, J; DeChon, J; Yan, K C; Liu, Q; Hu, G; Wu, J

    2006-07-31

    Iptakalim hydrochloride, a novel cardiovascular ATP-sensitive K(+) (K(ATP)) channel opener, has shown remarkable antihypertensive and neuroprotective effects in a variety of studies using in vivo and in vitro preparations. We recently found that iptakalim blocked human alpha4-containing nicotinic acetylcholine receptors (nAChRs) heterologously expressed in the human SH-EP1 cell line. In the present study, we examined the effects of iptakalim on several neurotransmitter-induced current responses in single DA neurons freshly dissociated from rat substantia nigra pars compacta (SNc), using perforated patch-clamp recordings combined with a U-tube rapid drug application. In identified DA neurons under voltage-clamp configuration, glutamate-, NMDA-, and GABA-induced currents were insensitive to co-application with iptakalim (100 microM), while whole-cell currents induced by ACh (1 mM+1 microM atropine) or an alpha4beta2 nicotinic acetylcholine receptors relatively selective agonist, RJR-2403 (300 microM), were eliminated by iptakalim. Iptakalim inhibited RJR-2403-induced current in a concentration-dependent manner, and reduced maximal RJR-2403-induced currents at the highest agonist concentration, suggesting a non-competitive block. In current-clamp mode, iptakalim failed to affect resting membrane potential and spontaneous action potential firing, but abolished RJR-2403-induced neuronal firing acceleration. Together, these results indicate that in dissociated SNc DA neurons, alpha4-containing nAChRs, rather than ionotropic glutamate receptors, GABA(A) receptors or perhaps K-ATP channels are the sensitive targets to mediate iptakalim's pharmacological roles.

  8. ABCC8 R1420H Loss-of-Function Variant in a Southwest American Indian Community: Association With Increased Birth Weight and Doubled Risk of Type 2 Diabetes.

    Science.gov (United States)

    Baier, Leslie J; Muller, Yunhua Li; Remedi, Maria Sara; Traurig, Michael; Piaggi, Paolo; Wiessner, Gregory; Huang, Ke; Stacy, Alyssa; Kobes, Sayuko; Krakoff, Jonathan; Bennett, Peter H; Nelson, Robert G; Knowler, William C; Hanson, Robert L; Nichols, Colin G; Bogardus, Clifton

    2015-12-01

    Missense variants in KCNJ11 and ABCC8, which encode the KIR6.2 and SUR1 subunits of the β-cell KATP channel, have previously been implicated in type 2 diabetes, neonatal diabetes, and hyperinsulinemic hypoglycemia of infancy (HHI). To determine whether variation in these genes affects risk for type 2 diabetes or increased birth weight as a consequence of fetal hyperinsulinemia in Pima Indians, missense and common noncoding variants were analyzed in individuals living in the Gila River Indian Community. A R1420H variant in SUR1 (ABCC8) was identified in 3.3% of the population (N = 7,710). R1420H carriers had higher mean birth weights and a twofold increased risk for type 2 diabetes with a 7-year earlier onset age despite being leaner than noncarriers. One individual homozygous for R1420H was identified; retrospective review of his medical records was consistent with HHI and a diagnosis of diabetes at age 3.5 years. In vitro studies showed that the R1420H substitution decreases KATP channel activity. Identification of this loss-of-function variant in ABCC8 with a carrier frequency of 3.3% affects clinical care as homozygous inheritance and potential HHI will occur in 1/3,600 births in this American Indian population. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  9. Citizens and service channels: channel choice and channel management implications

    NARCIS (Netherlands)

    Pieterson, Willem Jan

    2010-01-01

    The arrival of electronic channels in the 1990s has had a huge impact on governmental service delivery. The new channels have led to many new opportunities to improve public service delivery, not only in terms of citizen satisfaction, but also in cost reduction for governmental agencies. However,

  10. Single-channel kinetics of BK (Slo1 channels

    Directory of Open Access Journals (Sweden)

    Yanyan eGeng

    2015-01-01

    Full Text Available Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1 channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD attached to four surrounding transmembrane voltage sensing domains (VSD and a large intracellular cytosolic domain (CTD, also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with 5 closed states on the upper tier and 5 open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states.

  11. [Synopsis about the hypothesis of "information channel" of channel-collateral system].

    Science.gov (United States)

    Chang, Xi-Lang

    2008-10-01

    The author of the present paper founded a theorem about the "incompleteness of single channel structure" (nerve, blood vessel, lymphatic, interspace, aperture, etc.) through quantitative and qualitative analysis about the economic information channel in the human body, which eliminates the probability of single channel structure in the information channel of channel (meridian)-collateral system. After comprehensive analysis on the current researches, the author puts forward a neodoxy, i.e., the body "information channel" structure of the channel-collateral system, mainly follows the distribution regularity of systemic statistics, and is not a single specific entity; various layers of the information channel in the main stems of the channel-collaterals are composed of optimized structure tissues. Hence, the structure of this information channel of channel-collateral system is an overall-optimized, sequential and compatible systemic structure. From this neodoxy, the author brings forward a working principle of channel-collaterals, which is supported theoretically by bio-auxology. The longitudinal distribution of the main stems of meridian-collaterals is considered to result from that in the process of the animal evolution, in the animals moving forward, the microscopic complicated movement of intracorporeal information and energy molecules is related to the forward macroscopic and non-uniform movement of organism in trans-measure. Its impulse and kinetic momentum forms a main vector in the longitudinal direction of the body (the direction of the main stem of channel-collaterals). In order to adapt to and utilize natural regularities, the main stems of the channel-collaterals gradually differentiate and evolve in the living organism, forming a whole system. The "hypothesis of biological origin of channel-collateral system" and "that of information channel of the channel-collaterals in the body" constitute a relatively complete theoretical system framework.

  12. Channel box

    International Nuclear Information System (INIS)

    Tanabe, Akira.

    1993-01-01

    In a channel box of a BWR type reactor, protruding pads are disposed in axial position on the lateral side of a channel box opposing to a control rod and facing the outer side portion of the control rod in a reactor core loaded state. In the initial loading stage of fuel assemblies, channel fasteners and spacer pads are abutted against each other in the upper portion between the channel boxes sandwiching the control rod therebetween. Further, in the lower portion, a gap as a channel for the movement of the control rod is ensured by the support of fuel support metals. If the channel box is bent toward the control rod along with reactor operation, the pads are abutted against each other to always ensure the gap through which the control rod can move easily. Further, when the pads are brought into contact with each other, the bending deformation of the channel box is corrected by urging to each other. Thus, the control rod can always be moved smoothly to attain reactor safety operation. (N.H.)

  13. Simulation of propagation along an isolated skeletal muscle fiber in an isotropic volume conductor

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; F.A., Roberge

    1997-01-01

    This paper describes a model of the frog skeletal muscle fiber that includes the effects of the transverse tubular system (T system) on propagation. Uniform propagation on an isolated fiber suspended in Ringer's solution or in air is simulated by placing the cylindrical fiber model in a concentric...... three-dimensional isotropic volume conductor. The current through the T system outlets at the sarcolemmal surface is comparable in magnitude to the sarcolemmal current density, but is of opposite polarity. When it is added to the sarcolemmal current, the resulting triphasic waveform has a 100% increase...... of the extracellular potential. Compared to an isolated fiber in a large volume of Ringer's solution, uniform propagation within a 2-mu m-thick volume conductor annulus is slowed down from 1.92 to 0.72 m/s, and the extracellular potential is increased from 1 to 108 mV peak to peak, in agreement with published...

  14. Ion channeling

    International Nuclear Information System (INIS)

    Erramli, H.; Blondiaux, G.

    1994-01-01

    Channeling phenomenon was predicted, many years ago, by stark. The first channeling experiments were performed in 1963 by Davies and his coworkers. Parallely Robinson and Oen have investigated this process by simulating trajectories of ions in monocrystals. This technique has been combined with many methods like Rutherford Backscattering Spectrometry (R.B.S.), Particles Induced X-rays Emission (P.I.X.E) and online Nuclear Reaction (N.R.A.) to localize trace elements in the crystal or to determine crystalline quality. To use channeling for material characterization we need data about the stopping power of the incident particle in the channeled direction. The ratios of channeled to random stopping powers of silicon for irradiation in the direction have been investigated and compared to the available theoretical results. We describe few applications of ion channeling in the field of materials characterization. Special attention is given to ion channeling combined with Charged Particle Activation Analysis (C.P.A.A.) for studying the behaviour of oxygen atoms in Czochralski silicon lattices under the influence of internal gettering and in different gaseous atmospheres. Association between ion channeling and C.P.A.A was also utilised for studying the influence of the growing conditions on concentration and position of carbon atoms at trace levels in the MOVPE Ga sub (1-x) Al sub x lattice. 6 figs., 1 tab., 32 refs. (author)

  15. Channel characteristics and coordination in three-echelon dual-channel supply chain

    Science.gov (United States)

    Saha, Subrata

    2016-02-01

    We explore the impact of channel structure on the manufacturer, the distributer, the retailer and the entire supply chain by considering three different channel structures in radiance of with and without coordination. These structures include a traditional retail channel and two manufacturer direct channels with and without consistent pricing. By comparing the performance of the manufacturer, the distributer and the retailer, and the entire supply chain in three different supply chain structures, it is established analytically that, under some conditions, a dual channel can outperform a single retail channel; as a consequence, a coordination mechanism is developed that not only coordinates the dual channel but also outperforms the non-cooperative single retail channel. All the analytical results are further analysed through numerical examples.

  16. MONETARY TRANSMISSION CHANNELS IN ROMANIA – THE CREDIT CHANNEL

    Directory of Open Access Journals (Sweden)

    Magdalena RĂDULESCU

    2009-12-01

    Full Text Available The theoretical – intuitive analysis applied to the segment of monetary transmission evidences the fact that forming the traditional monetary impulses transmission channels are in a starting phase due to the long financial non – intermediary process which Romanian economy had known. In these conditions, the exchange rate channel, and also NBR currency purchases was, for a long time, an important way through which monetary authorities actions influenced macro economical behaviors. But starting with 2000, it is observed a credit channel reactivation and, especially, interest rate channel. Anyhow, the credit channel continues to be undermined by the existence of liquidity surplus within the system, by the phenomena of substitution of national currency credit with currency credits, and also moral hazardous displays. Albeit some of these phenomena also affect the interest rate channel, its role in sending monetary policy impulses is in a continuous progress. Apparently, it acts by way of nominal interest rates, their real level seeming less relevant. Once with remaking the two traditional channels, the companies and households balance is configured and consolidated, which shall potentate in the future the efficiency of the monetary policy. This paper analyses the credit channel in Romania, through an unrestricted VAR analysis.. It shows the responses of exchange rate, inflation rate, GDP, interest rate, imports and exports to a shock on non-governmental credit

  17. ZnO-channel thin-film transistors: Channel mobility

    International Nuclear Information System (INIS)

    Hoffman, R.L.

    2004-01-01

    ZnO-channel thin-film transistor (TFT) test structures are fabricated using a bottom-gate structure on thermally oxidized Si; ZnO is deposited via RF sputtering from an oxide target, with an unheated substrate. Electrical characteristics are evaluated, with particular attention given to the extraction and interpretation of transistor channel mobility. ZnO-channel TFT mobility exhibits severe deviation from that assumed by ideal TFT models; mobility extraction methodology must accordingly be recast so as to provide useful insight into device operation. Two mobility metrics, μ avg and μ inc , are developed and proposed as relevant tools in the characterization of nonideal TFTs. These mobility metrics are employed to characterize the ZnO-channel TFTs reported herein; values for μ inc as high as 25 cm2/V s are measured, comprising a substantial increase in ZnO-channel TFT mobility as compared to previously reported performance for such devices

  18. Disguising quantum channels by mixing and channel distance trade-off

    International Nuclear Information System (INIS)

    Fung, Chi-Hang Fred; Chau, H F

    2014-01-01

    We consider the reverse problem of the distinguishability of two quantum channels, which we call the disguising problem. Given two quantum channels, the goal here is to make the two channels identical by mixing with some other channels with minimal mixing probabilities. This quantifies how much one channel can disguise as the other. In addition, the possibility to trade-off between the two mixing probabilities allows one channel to be more preserved (less mixed) at the expense of the other. We derive lower- and upper-bounds of the trade-off curve and apply them to a few example channels. Optimal trade-off is obtained in one example. We relate the disguising problem and the distinguishability problem by showing that the former can lower and upper bound the diamond norm. We also show that the disguising problem gives an upper-bound on the key generation rate in quantum cryptography. (paper)

  19. Glibenclamide Mimics Metabolic Effects of Metformin in H9c2 Cells.

    Science.gov (United States)

    Salani, Barbara; Ravera, Silvia; Fabbi, Patrizia; Garibaldi, Silvano; Passalacqua, Mario; Brunelli, Claudio; Maggi, Davide; Cordera, Renzo; Ameri, Pietro

    2017-01-01

    Sulfonylureas, such as glibenclamide, are antidiabetic drugs that stimulate beta-cell insulin secretion by binding to the sulfonylureas receptors (SURs) of adenosine triphosphate-sensitive potassium channels (KATP). Glibenclamide may be also cardiotoxic, this effect being ascribed to interference with the protective function of cardiac KATP channels for which glibenclamide has high affinity. Prompted by recent evidence that glibenclamide impairs energy metabolism of renal cells, we investigated whether this drug also affects the metabolism of cardiac cells. The cardiomyoblast cell line H9c2 was treated for 24 h with glibenclamide or metformin, a known inhibitor of the mitochondrial respiratory chain. Cell viability was evaluated by sulforodhamine B assay. ATP and AMP were measured according to the enzyme coupling method and oxygen consumption by using an amperometric electrode, while Fo-F1 ATP synthase activity assay was evaluated by chemiluminescent method. Protein expression was measured by western blot. Glibenclamide deregulated energy balance of H9c2 cardiomyoblasts in a way similar to that of metformin. It inhibited mitochondrial complexes I, II and III with ensuing impairment of oxygen consumption and ATP synthase activity, ATP depletion and increased AMPK phosphorylation. Furthermore, glibenclamide disrupted mitochondrial subcellular organization. The perturbation of mitochondrial energy balance was associated with enhanced anaerobic glycolysis, with increased activity of phosphofructo kinase, pyruvate kinase and lactic dehydrogenase. Interestingly, some additive effects of glibenclamide and metformin were observed. Glibenclamide deeply alters cell metabolism in cardiac cells by impairing mitochondrial organization and function. This may further explain the risk of cardiovascular events associated with the use of this drug, alone or in combination with metformin. © 2017 The Author(s). Published by S. Karger AG, Basel.

  20. Selective blockade of protein kinase B protects the rat and human myocardium against ischaemic injury

    Science.gov (United States)

    Linares-Palomino, José; Husainy, Muhammad A; Lai, Vien K; Dickenson, John M; Galiñanes, Manuel

    2010-01-01

    Protein kinase B (PKB/Akt) plays a critical role in cell survival but the investigation of its involvement has been limited by the lack of specific pharmacological agents. In this study, using novel PKB inhibitors (VIII and XI), we investigated the role of PKB in cardioprotection of the rat and human myocardium, the location of PKB in relation to mitoKATP channels and p38 mitogen-activated protein kinase (p38 MAPK), and whether the manipulation of PKB can overcome the unresponsiveness to protection of the diabetic myocardium. Myocardial slices from rat left ventricle and from the right atrial appendage of patients undergoing elective cardiac surgery were subjected to 90 min ischaemia/120 min reoxygenation at 37°C. Tissue injury was assessed by creatine kinase (CK) released and determination of cell necrosis and apoptosis. The results showed that blockade of PKB activity caused significant reduction of CK release and cell death, a benefit that was as potent as ischaemic preconditioning and could be reproduced by blockade of phosphatidylinositol 3-kinase (PI-3K) with wortmannin and LY 294002. The protection was time dependent with maximal benefit seen when PKB and PI-3K were inhibited before ischaemia or during both ischaemia and reoxygenation. In addition, it was revealed that PKB is located downstream of mitoKATP channels but upstream of p38 MAPK. PKB inhibition induced a similar degree of protection in the human and rat myocardium and, importantly, it reversed the unresponsiveness to protection of the diabetic myocardium. In conclusion, inhibition of PKB plays a critical role in protection of the mammalian myocardium and may represent a clinical target for the reduction of ischaemic injury. PMID:20403980

  1. Gustatory stimuli representing different perceptual qualities elicit distinct patterns of neuropeptide secretion from taste buds.

    Science.gov (United States)

    Geraedts, Maartje C P; Munger, Steven D

    2013-04-24

    Taste stimuli that evoke different perceptual qualities (e.g., sweet, umami, bitter, sour, salty) are detected by dedicated subpopulations of taste bud cells that use distinct combinations of sensory receptors and transduction molecules. Here, we report that taste stimuli also elicit unique patterns of neuropeptide secretion from taste buds that are correlated with those perceptual qualities. We measured tastant-dependent secretion of glucagon-like peptide-1 (GLP-1), glucagon, and neuropeptide Y (NPY) from circumvallate papillae of Tas1r3(+/+), Tas1r3(+/-) and Tas1r3 (-/-) mice. Isolated tongue epithelia were mounted in modified Ussing chambers, permitting apical stimulation of taste buds; secreted peptides were collected from the basal side and measured by specific ELISAs. Appetitive stimuli (sweet: glucose, sucralose; umami: monosodium glutamate; polysaccharide: Polycose) elicited GLP-1 and NPY secretion and inhibited basal glucagon secretion. Sweet and umami stimuli were ineffective in Tas1r3(-/-) mice, indicating an obligatory role for the T1R3 subunit common to the sweet and umami taste receptors. Polycose responses were unaffected by T1R3 deletion, consistent with the presence of a distinct polysaccharide taste receptor. The effects of sweet stimuli on peptide secretion also required the closing of ATP-sensitive K(+) (KATP) channels, as the KATP channel activator diazoxide inhibited the effects of glucose and sucralose on both GLP-1 and glucagon release. Both sour citric acid and salty NaCl increased NPY secretion but had no effects on GLP-1 or glucagon. Bitter denatonium showed no effects on these peptides. Together, these results suggest that taste stimuli of different perceptual qualities elicit unique patterns of neuropeptide secretion from taste buds.

  2. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Kramer Gerhard

    2009-01-01

    Full Text Available Abstract This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom ( are derived for the degraded case with one receiver. Schemes to achieve the for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable is given for the general case.

  3. ATP Release Channels

    Directory of Open Access Journals (Sweden)

    Akiyuki Taruno

    2018-03-01

    Full Text Available Adenosine triphosphate (ATP has been well established as an important extracellular ligand of autocrine signaling, intercellular communication, and neurotransmission with numerous physiological and pathophysiological roles. In addition to the classical exocytosis, non-vesicular mechanisms of cellular ATP release have been demonstrated in many cell types. Although large and negatively charged ATP molecules cannot diffuse across the lipid bilayer of the plasma membrane, conductive ATP release from the cytosol into the extracellular space is possible through ATP-permeable channels. Such channels must possess two minimum qualifications for ATP permeation: anion permeability and a large ion-conducting pore. Currently, five groups of channels are acknowledged as ATP-release channels: connexin hemichannels, pannexin 1, calcium homeostasis modulator 1 (CALHM1, volume-regulated anion channels (VRACs, also known as volume-sensitive outwardly rectifying (VSOR anion channels, and maxi-anion channels (MACs. Recently, major breakthroughs have been made in the field by molecular identification of CALHM1 as the action potential-dependent ATP-release channel in taste bud cells, LRRC8s as components of VRACs, and SLCO2A1 as a core subunit of MACs. Here, the function and physiological roles of these five groups of ATP-release channels are summarized, along with a discussion on the future implications of understanding these channels.

  4. Gentamicin treatment in exercised mdx mice: Identification of dystrophin-sensitive pathways and evaluation of efficacy in work-loaded dystrophic muscle.

    Science.gov (United States)

    De Luca, Annamaria; Nico, Beatrice; Rolland, Jean-François; Cozzoli, Anna; Burdi, Rosa; Mangieri, Domenica; Giannuzzi, Viviana; Liantonio, Antonella; Cippone, Valentina; De Bellis, Michela; Nicchia, Grazia Paola; Camerino, Giulia Maria; Frigeri, Antonio; Svelto, Maria; Camerino, Diana Conte

    2008-11-01

    Aminoglycosides force read through of premature stop codon mutations and introduce new mutation-specific gene-corrective strategies in Duchenne muscular dystrophy. A chronic treatment with gentamicin (32 mg/kg/daily i.p., 8-12 weeks) was performed in exercised mdx mice with the dual aim to clarify the dependence on dystrophin of the functional, biochemical and histological alterations present in dystrophic muscle and to verify the long term efficiency of small molecule gene-corrective strategies in work-loaded dystrophic muscle. The treatment counteracted the exercise-induced impairment of in vivo forelimb strength after 6-8 weeks. We observed an increase in dystrophin expression level in all the fibers, although lower than that observed in normal fibers, and found a concomitant recovery of aquaporin-4 at sarcolemma. A significant reduction in centronucleated fibers, in the area of necrosis and in the percentage of nuclear factor-kB-positive nuclei was observed in gastrocnemious muscle of treated animals. Plasma creatine kinase was reduced by 70%. Ex vivo, gentamicin restored membrane ionic conductance in mdx diaphragm and limb muscle fibers. No effects were observed on the altered calcium homeostasis and sarcolemmal calcium permeability, detected by electrophysiological and microspectrofluorimetric approaches. Thus, the maintenance of a partial level of dystrophin is sufficient to reinforce sarcolemmal stability, reducing leakiness, inflammation and fiber damage, while correction of altered calcium homeostasis needs greater expression of dystrophin or direct interventions on the channels involved.

  5. Spark Channels

    Energy Technology Data Exchange (ETDEWEB)

    Haydon, S. C. [Department of Physics, University of New England, Armidale, NSW (Australia)

    1968-04-15

    A brief summary is given of the principal methods used for initiating spark channels and the various highly time-resolved techniques developed recently for studies with nanosecond resolution. The importance of the percentage overvoltage in determining the early history and subsequent development of the various phases of the growth of the spark channel is discussed. An account is then given of the recent photographic, oscillographic and spectroscopic investigations of spark channels initiated by co-axial cable discharges of spark gaps at low [{approx} 1%] overvoltages. The phenomena observed in the development of the immediate post-breakdown phase, the diffuse glow structure, the growth of the luminous filament and the final formation of the spark channel in hydrogen are described. A brief account is also given of the salient features emerging from corresponding studies of highly overvolted spark gaps in which the spark channel develops from single avalanche conditions. The essential differences between the two types of channel formation are summarized and possible explanations of the general features are indicated. (author)

  6. Joint source/channel coding of scalable video over noisy channels

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, G.; Zakhor, A. [Department of Electrical Engineering and Computer Sciences University of California Berkeley, California94720 (United States)

    1997-01-01

    We propose an optimal bit allocation strategy for a joint source/channel video codec over noisy channel when the channel state is assumed to be known. Our approach is to partition source and channel coding bits in such a way that the expected distortion is minimized. The particular source coding algorithm we use is rate scalable and is based on 3D subband coding with multi-rate quantization. We show that using this strategy, transmission of video over very noisy channels still renders acceptable visual quality, and outperforms schemes that use equal error protection only. The flexibility of the algorithm also permits the bit allocation to be selected optimally when the channel state is in the form of a probability distribution instead of a deterministic state. {copyright} {ital 1997 American Institute of Physics.}

  7. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Shlomo Shamai (Shitz

    2009-01-01

    Full Text Available This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom (s.d.o.f. are derived for the degraded case with one receiver. Schemes to achieve the s.d.o.f. for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable s.d.o.f. is given for the general case.

  8. A case with relapsed transient neonatal diabetes mellitus treated with sulfonylurea, ending chronic insulin requirement

    Directory of Open Access Journals (Sweden)

    Akihiko Ando

    2018-04-01

    Full Text Available We report a case of a woman with diabetes mellitus caused by a genetic defect in ABCC8-coding sulfonylurea receptor 1 (SUR1, a subunit of the ATP-sensitive potassium (KATP channel protein. She was diagnosed with diabetes at 7 days after birth. After intravenous insulin drip for 1 month, her hyperglycaemia remitted. At the age of 13 years, her diabetes relapsed, and after that she had been treated by intensive insulin therapy for 25 years with relatively poor glycaemic control. She was switched to oral sulfonylurea therapy and attained euglycaemia. In addition, her insulin secretory capacity was ameliorated gradually.

  9. Retinovascular physiology and pathophysiology: new experimental approach/new insights

    Science.gov (United States)

    Puro, Donald G.

    2012-01-01

    An important challenge in visual neuroscience is understand the physiology and pathophysiology of the intra-retinal vasculature, whose function is required for ophthalmoception by humans and most other mammals. In the quest to learn more about this highly specialized portion of the circulatory system, a newly developed method for isolating vast microvascular complexes from the rodent retina has opened the way for using techniques such as patch-clamping, fluorescence imaging and time-lapse photography to elucidate the functional organization of a capillary network and its pre-capillary arteriole. For example, the ability to obtain dual perforated-patch recordings from well-defined sites within an isolated microvascular complex permitted the first characterization of the electrotonic architecture of a capillary/arteriole unit. This analysis revealed that this operational unit is not simply a homogenous synctium, but has a complex functional organization that is dynamically modulated by extracellular signals such as angiotensin II. Another recent discovery is that a capillary and its pre-capillary arteriole have distinct physiological differences; capillaries have an abundance of ATP-sensitive potassium (KATP) channels and a dearth of voltage-dependent calcium channels (VDCCs) while the converse is true for arterioles. In addition, voltage transmission between abluminal cells and the endothelium is more efficient in the capillaries. Thus, the capillary network is well-equipped to generate and transmit voltages, and the pre-capillary arteriole is well-adapted to transduce a capillary-generated voltage into a change in abluminal cell calcium and thereby, a vasomotor response. Use of microvessels isolated from the diabetic retina has led to new insights concerning retinal vascular pathophysiology. For example, soon after the onset of diabetes, the efficacy of voltage transmission through the endothelium is diminished; arteriolar VDCCs is inhibited, and there is increased

  10. Quantum Channels With Memory

    International Nuclear Information System (INIS)

    Rybar, T.

    2012-01-01

    Quantum memory channels represent a very general, yet simple and comprehensible model for causal processes. As such they have attracted considerable research interest, mostly aimed on their transfer capabilities and structure properties. Most notably it was shown that memory channels can be implemented via physically naturally motivated collision models. We also define the concept of repeatable channels and show that only unital channels can be implemented repeat ably with pure memory channels. In the special case of qubit channels we also show that every unital qubit channel has a repeatable implementation. We also briefly explore the possibilities of stroboscopical simulation of channels and show that all random unitary channels can be stroboscopically simulated. Particularly in qubit case, all indivisible qubit channels are also random unitary, hence for qubit all indivisible channels can be stroboscopically simulated. Memory channels also naturally capture the framework of correlated experiments. We develop methods to gather and interpret data obtained in such setting and in detail examine the two qubit case. We also show that for control unitary interactions the measured data will never contradict a simple unitary evolution. Thus no memory effects can be spotted then. (author)

  11. Mimicking multi-channel scattering with single-channel approaches

    OpenAIRE

    Grishkevich, Sergey; Schneider, Philipp-Immanuel; Vanne, Yulian V.; Saenz, Alejandro

    2009-01-01

    The collision of two atoms is an intrinsic multi-channel (MC) problem as becomes especially obvious in the presence of Feshbach resonances. Due to its complexity, however, single-channel (SC) approximations, which reproduce the long-range behavior of the open channel, are often applied in calculations. In this work the complete MC problem is solved numerically for the magnetic Feshbach resonances (MFRs) in collisions between generic ultracold 6Li and 87Rb atoms in the ground state and in the ...

  12. Fine Channel Networks

    Science.gov (United States)

    1997-01-01

    A color image of fine channel networks on Mars; north toward top. The scene shows heavily cratered highlands dissected by dendritic open channel networks that dissect steep slopes of impact crater walls. This image is a composite of Viking high-resolution images in black and white and low-resolution images in color. The image extends from latitude 9 degrees S. to 5 degrees S. and from longitude 312 degrees to 320 degrees; Mercator projection. The dendritic pattern of the fine channels and their location on steep slopes leads to the interpretation that these are runoff channels. The restriction of these types of channels to ancient highland rocks suggests that these channels are old and date from a time on Mars when conditions existed for precipitation to actively erode rocks. After the channels reach a low plain, they appear to end. Termination may have resulted from burial by younger deposits or perhaps the flows percolated into the surface materials and continued underground.

  13. The insulin sensitizing effect of topiramate involves KATP channel activation in the central nervous system

    NARCIS (Netherlands)

    Coomans, C.P.; Geerling, J.J.; Berg, S.A.A. van den; Diepen, H.C. van; Garcia-Tardõn, N.; Thomas, A.; Schröder-Van Der Elst, J.P.; Ouwens, D.M.; Pijl, H.; Rensen, P.C.N.; Havekes, L.M.; Guigas, B.; Romijn, J.A.

    2013-01-01

    Background and Purpose Topiramate improves insulin sensitivity, in addition to its antiepileptic action. However, the underlying mechanism is unknown. Therefore, the present study was aimed at investigating the mechanism of the insulin-sensitizing effect of topiramate both in vivo and in vitro.

  14. The insulin sensitizing effect of topiramate involves KATP channel activation in the central nervous system

    NARCIS (Netherlands)

    Coomans, C. P.; Geerling, J. J.; van den Berg, S. A. A.; van Diepen, H. C.; Garcia-Tardón, N.; Thomas, A.; Schröder-van der Elst, J. P.; Ouwens, D. M.; Pijl, H.; Rensen, P. C. N.; Havekes, L. M.; Guigas, B.; Romijn, J. A.

    2013-01-01

    Topiramate improves insulin sensitivity, in addition to its antiepileptic action. However, the underlying mechanism is unknown. Therefore, the present study was aimed at investigating the mechanism of the insulin-sensitizing effect of topiramate both in vivo and in vitro. Male C57Bl/6J mice were fed

  15. BAD-Dependent Regulation of Fuel Metabolism and KATP Channel Activity Confers Resistance to Epileptic Seizures

    OpenAIRE

    Giménez-Cassina, Alfredo; Martínez-François, Juan Ramón; Fisher, Jill K.; Szlyk, Benjamin; Polak, Klaudia; Wiwczar, Jessica; Tanner, Geoffrey R.; Lutas, Andrew; Yellen, Gary; Danial, Nika N.

    2012-01-01

    Neuronal excitation can be substantially modulated by alterations in metabolism, as evident from the anticonvulsant effect of diets that reduce glucose utilization and promote ketone body metabolism. We provide genetic evidence that BAD, a protein with dual functions in apoptosis and glucose metabolism, imparts reciprocal effects on metabolism of glucose and ketone bodies in brain cells. These effects involve phospho-regulation of BAD and are independent of its apoptotic function. BAD modific...

  16. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume...... but are also essential for a number of physiological processes such as proliferation, controlled cell death, migration and endocrinology. The thesis have been focusing on two Channels, namely the swelling activated Cl- channel (ICl, swell) and the transient receptor potential Vanilloid (TRPV4) channel. I: Cl......- serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle...

  17. Understanding the role of the catalase/peroxide genes in H2O2 resistance of E. coli serotype O157:H7 biofilms

    Science.gov (United States)

    Introduction: Escherichia coli serotype O157:H7 defenses against H2O2 include the peroxiredoxin AhpC and three catalases: KatG (catalase-peroxidase), KatE (catalase), and the plasmid-encoded KatP (catalase/peroxidase). AhpC, KatG, and KatP are induced by OxyR in exponential phase, while KatE is indu...

  18. Planar patch clamp: advances in electrophysiology.

    Science.gov (United States)

    Brüggemann, Andrea; Farre, Cecilia; Haarmann, Claudia; Haythornthwaite, Ali; Kreir, Mohamed; Stoelzle, Sonja; George, Michael; Fertig, Niels

    2008-01-01

    Ion channels have gained increased interest as therapeutic targets over recent years, since a growing number of human and animal diseases have been attributed to defects in ion channel function. Potassium channels are the largest and most diverse family of ion channels. Pharmaceutical agents such as Glibenclamide, an inhibitor of K(ATP) channel activity which promotes insulin release, have been successfully sold on the market for many years. So far, only a small group of the known ion channels have been addressed as potential drug targets. The functional testing of drugs on these ion channels has always been the bottleneck in the development of these types of pharmaceutical compounds.New generations of automated patch clamp screening platforms allow a higher throughput for drug testing and widen this bottleneck. Due to their planar chip design not only is a higher throughput achieved, but new applications have also become possible. One of the advantages of planar patch clamp is the possibility of perfusing the intracellular side of the membrane during a patch clamp experiment in the whole-cell configuration. Furthermore, the extracellular membrane remains accessible for compound application during the experiment.Internal perfusion can be used not only for patch clamp experiments with cell membranes, but also for those with artificial lipid bilayers. In this chapter we describe how internal perfusion can be applied to potassium channels expressed in Jurkat cells, and to Gramicidin channels reconstituted in a lipid bilayer.

  19. A channel profile analyser

    International Nuclear Information System (INIS)

    Gobbur, S.G.

    1983-01-01

    It is well understood that due to the wide band noise present in a nuclear analog-to-digital converter, events at the boundaries of adjacent channels are shared. It is a difficult and laborious process to exactly find out the shape of the channels at the boundaries. A simple scheme has been developed for the direct display of channel shape of any type of ADC on a cathode ray oscilliscope display. This has been accomplished by sequentially incrementing the reference voltage of a precision pulse generator by a fraction of a channel and storing ADC data in alternative memory locations of a multichannel pulse height analyser. Alternative channels are needed due to the sharing at the boundaries of channels. In the flat region of the profile alternate memory locations are channels with zero counts and channels with the full scale counts. At the boundaries all memory locations will have counts. The shape of this is a direct display of the channel boundaries. (orig.)

  20. Ion channels in plants.

    Science.gov (United States)

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  1. Channel and Timeslot Co-Scheduling with Minimal Channel Switching for Data Aggregation in MWSNs

    Directory of Open Access Journals (Sweden)

    Sanggil Yeoum

    2017-05-01

    Full Text Available Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs. While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel and time slot scheduling for minimal channel switching in MWSNs, while achieving efficient and collision-free transmission between nodes. The proposed scheme constructs a duty-cycled tree while reducing the amount of channel switching. As a next step, collision-free time slots are assigned to every node based on the minimal data collection delay. The experimental results demonstrate that the validity of our scheme reduces the amount of channel switching by 17.5%, reduces energy consumption for channel switching by 28%, and reduces the schedule length by 46%, as compared to the existing schemes.

  2. Surface channeling

    International Nuclear Information System (INIS)

    Sizmann, R.; Varelas, C.

    1976-01-01

    There is experimental evidence that swift light ions incident at small angles towards single crystalline surfaces can lose an appreciable fraction of their kinetic energy during reflection. It is shown that these projectiles penetrate into the bulk surface region of the crystal. They can travel as channeled particles along long paths through the solid (surface channeling). The angular distribution and the depth history of the re-emerged projectiles are investigated by computer simulations. A considerable fraction of the penetrating projectiles re-emerges from the crystal with constant transverse energy if the angle of incidence is smaller than the critical angle for axial channeling. Analytical formulae are derived based on a diffusion model for surface channeling. A comparison with experimental data exhibits the relevance of the analytical solutions. (Auth.)

  3. An information-guided channel-hopping scheme for block-fading channels with estimation errors

    KAUST Repository

    Yang, Yuli

    2010-12-01

    Information-guided channel-hopping technique employing multiple transmit antennas was previously proposed for supporting high data rate transmission over fading channels. This scheme achieves higher data rates than some mature schemes, such as the well-known cyclic transmit antenna selection and space-time block coding, by exploiting the independence character of multiple channels, which effectively results in having an additional information transmitting channel. Moreover, maximum likelihood decoding may be performed by simply decoupling the signals conveyed by the different mapping methods. In this paper, we investigate the achievable spectral efficiency of this scheme in the case of having channel estimation errors, with optimum pilot overhead for minimum meansquare error channel estimation, when transmitting over blockfading channels. Our numerical results further substantiate the robustness of the presented scheme, even with imperfect channel state information. ©2010 IEEE.

  4. β-Adrenergic modulation of skeletal muscle contraction: key role of excitation-contraction coupling.

    Science.gov (United States)

    Cairns, Simeon P; Borrani, Fabio

    2015-11-01

    Our aim is to describe the acute effects of catecholamines/β-adrenergic agonists on contraction of non-fatigued skeletal muscle in animals and humans, and explain the mechanisms involved. Adrenaline/β-agonists (0.1-30 μm) generally augment peak force across animal species (positive inotropic effect) and abbreviate relaxation of slow-twitch muscles (positive lusitropic effect). A peak force reduction also occurs in slow-twitch muscles in some conditions. β2 -Adrenoceptor stimulation activates distinct cyclic AMP-dependent protein kinases to phosphorylate multiple target proteins. β-Agonists modulate sarcolemmal processes (increased resting membrane potential and action potential amplitude) via enhanced Na(+) -K(+) pump and Na(+) -K(+) -2Cl(-) cotransporter function, but this does not increase force. Myofibrillar Ca(2+) sensitivity and maximum Ca(2+) -activated force are unchanged. All force potentiation involves amplified myoplasmic Ca(2+) transients consequent to increased Ca(2+) release from sarcoplasmic reticulum (SR). This unequivocally requires phosphorylation of SR Ca(2+) release channels/ryanodine receptors (RyR1) which sensitize the Ca(2+) -induced Ca(2+) release mechanism. Enhanced trans-sarcolemmal Ca(2+) influx through phosphorylated voltage-activated Ca(2+) channels contributes to force potentiation in diaphragm and amphibian muscle, but not mammalian limb muscle. Phosphorylation of phospholamban increases SR Ca(2+) pump activity in slow-twitch fibres but does not augment force; this process accelerates relaxation and may depress force. Greater Ca(2+) loading of SR may assist force potentiation in fast-twitch muscle. Some human studies show no significant force potentiation which appears to be related to the β-agonist concentration used. Indeed high-dose β-agonists (∼0.1 μm) enhance SR Ca(2+) -release rates, maximum voluntary contraction strength and peak Wingate power in trained humans. The combined findings can explain how adrenaline

  5. Monogenic hyperinsulinemic hypoglycemia: current insights into the pathogenesis and management

    Directory of Open Access Journals (Sweden)

    Lord Katherine

    2013-02-01

    Full Text Available Abstract Hyperinsulinism (HI is the leading cause of persistent hypoglycemia in children, which if unrecognized may lead to development delays and permanent neurologic damage. Prompt recognition and appropriate treatment of HI are essential to avoid these sequelae. Major advances have been made over the past two decades in understanding the molecular basis of hyperinsulinism and mutations in nine genes are currently known to cause HI. Inactivating KATP channel mutations cause the most common and severe type of HI, which occurs in both a focal and a diffuse form. Activating mutations of glutamate dehydrogenase (GDH lead to hyperinsulinism/hyperammonemia syndrome, while activating mutations of glucokinase (GK, the “glucose sensor” of the beta cell, causes hyperinsulinism with a variable clinical phenotype. More recently identified genetic causes include mutations in the genes encoding short-chain 3-hydroxyacyl-CoA (SCHAD, uncoupling protein 2 (UCP2, hepatocyte nuclear factor 4-alpha (HNF-4α, hepatocyte nuclear factor 1-alpha (HNF-1α, and monocarboyxlate transporter 1 (MCT-1, which results in a very rare form of HI triggered by exercise. For a timely diagnosis, a critical sample and a glucagon stimulation test should be done when plasma glucose is ATP channel agonist, suggests a KATP defect, which frequently requires pancreatectomy. Surgery is palliative for children with diffuse KATPHI, but children with focal KATPHI are cured with a limited pancreatectomy. Therefore, distinguishing between diffuse and focal disease and localizing the focal lesion in the pancreas are crucial aspects of HI management. Since 2003, 18 F-DOPA PET scans have been used to differentiate diffuse and focal disease and localize focal lesions with higher sensitivity and specificity than more invasive interventional radiology techniques. Hyperinsulinism remains a challenging disorder, but recent advances in the understanding of its genetic basis and breakthroughs in

  6. Participation of the NO/cGMP/K+ATP pathway in the antinociception induced by Walker tumor bearing in rats

    International Nuclear Information System (INIS)

    Barbosa, A.L.R.; Pinheiro, C.A.; Oliveira, G.J.; Torres, J.N.L.; Moraes, M.O.; Ribeiro, R.A.; Vale, M.L.; Souza, M.H.L.P.

    2012-01-01

    Implantation of Walker 256 tumor decreases acute systemic inflammation in rats. Inflammatory hyperalgesia is one of the most important events of acute inflammation. The L-arginine/NO/cGMP/K + ATP pathway has been proposed as the mechanism of peripheral antinociception mediated by several drugs and physical exercise. The objective of this study was to investigate a possible involvement of the NO/cGMP/K + ATP pathway in antinociception induced in Walker 256 tumor-bearing male Wistar rats (180-220 g). The groups consisted of 5-6 animals. Mechanical inflammatory hypernociception was evaluated using an electronic version of the von Frey test. Walker tumor (4th and 7th day post-implantation) reduced prostaglandin E 2 - (PGE 2 , 400 ng/paw; 50 µL; intraplantar injection) and carrageenan-induced hypernociception (500 µg/paw; 100 µL; intraplantar injection). Walker tumor-induced analgesia was reversed (99.3% for carrageenan and 77.2% for PGE 2 ) by a selective inhibitor of nitric oxide synthase (L-NAME; 90 mg/kg, ip) and L-arginine (200 mg/kg, ip), which prevented (80% for carrageenan and 65% for PGE 2 ) the effect of L-NAME. Treatment with the soluble guanylyl cyclase inhibitor ODQ (100% for carrageenan and 95% for PGE 2 ; 8 µg/paw) and the ATP-sensitive K + channel (KATP) blocker glibenclamide (87.5% for carrageenan and 100% for PGE 2 ; 160 µg/paw) reversed the antinociceptive effect of tumor bearing in a statistically significant manner (P < 0.05). The present study confirmed an intrinsic peripheral antinociceptive effect of Walker tumor bearing in rats. This antinociceptive effect seemed to be mediated by activation of the NO/cGMP pathway followed by the opening of KATP channels

  7. Hydrogen sulfide regulates intracellular Ca2+ concentration in endothelial cells from excised rat aorta.

    Science.gov (United States)

    Moccia, Francesco; Bertoni, Giuseppe; Pla, Alessandra Florio; Dragoni, Silvia; Pupo, Emanuela; Merlino, Annalisa; Mancardi, Daniele; Munaron, Luca; Tanzi, Franco

    2011-09-01

    Hydrogen sulphide (H2S) is a recently discovered gasotransmitter that may regulate a growing number of endothelial functions, including nitric oxide (NO) release, proliferation, adhesion and migration, which are the key steps of angiogenesis. The mechanism whereby H2S impacts on endothelial physiology is still unclear: however, the aforementioned processes are driven by an increase in intracellular Ca2+ concentration ([Ca2+]i). In the present study, we exploited the excised rat aorta to gain insights into the regulation of [Ca2+]i by H2S within in situ endothelial cells (ECs). Sodium hydrosulphide (NaHS), a H2S donor, caused an elevation in [Ca2+]i, which disappeared in absence of extracellular Ca2+. NaHSinduced Ca2+ inflow was sensitive to high doses of Gd3+, but not BTP-2. Inhibition of the reverse-mode of the Na+-Ca2+ exchanger (NCX), with KB-R7943 or upon removal of extracellular Na+, abrogated the Ca2+ response to NaHS. Moreover, NaHS-elicited Ca2+ entry was significantly reduced by TEA and glybenclamide, which hinted at the involvement of ATP-dependent K+ (KATP) channels. Conversely, NaHS-evoked Ca2+ signal was not affected by the reducing agent, dithiothreitol. Acute addition of NaHS hindered both Ca2+ release and Ca2+ entry induced by ATP, a physiological agonist of ECs. Consistently, inhibition of endogenous H2S synthesis with DL-propargylglycine impaired ATP-induced Ca2+ inflow, whereas it did not affect Ca2+ mobilization. These data provide the first evidence that H2S may stimulate Ca2+ influx into ECs by recruiting the reverse-mode of NCX and KATP channels. In addition, they show that such gasotransmitter may modulate the Ca2+ signals elicited by physiological stimuli in intact endothelium.

  8. Embryonic stem cell therapy of heart failure in genetic cardiomyopathy.

    Science.gov (United States)

    Yamada, Satsuki; Nelson, Timothy J; Crespo-Diaz, Ruben J; Perez-Terzic, Carmen; Liu, Xiao-Ke; Miki, Takashi; Seino, Susumu; Behfar, Atta; Terzic, Andre

    2008-10-01

    Pathogenic causes underlying nonischemic cardiomyopathies are increasingly being resolved, yet repair therapies for these commonly heritable forms of heart failure are lacking. A case in point is human dilated cardiomyopathy 10 (CMD10; Online Mendelian Inheritance in Man #608569), a progressive organ dysfunction syndrome refractory to conventional therapies and linked to mutations in cardiac ATP-sensitive K(+) (K(ATP)) channel subunits. Embryonic stem cell therapy demonstrates benefit in ischemic heart disease, but the reparative capacity of this allogeneic regenerative cell source has not been tested in inherited cardiomyopathy. Here, in a Kir6.2-knockout model lacking functional K(ATP) channels, we recapitulated under the imposed stress of pressure overload the gene-environment substrate of CMD10. Salient features of the human malignant heart failure phenotype were reproduced, including compromised contractility, ventricular dilatation, and poor survival. Embryonic stem cells were delivered through the epicardial route into the left ventricular wall of cardiomyopathic stressed Kir6.2-null mutants. At 1 month of therapy, transplantation of 200,000 cells per heart achieved teratoma-free reversal of systolic dysfunction and electrical synchronization and halted maladaptive remodeling, thereby preventing end-stage organ failure. Tracked using the lacZ reporter transgene, stem cells engrafted into host heart. Beyond formation of cardiac tissue positive for Kir6.2, transplantation induced cell cycle activation and halved fibrotic zones, normalizing sarcomeric and gap junction organization within remuscularized hearts. Improved systemic function induced by stem cell therapy translated into increased stamina, absence of anasarca, and benefit to overall survivorship. Embryonic stem cells thus achieve functional repair in nonischemic genetic cardiomyopathy, expanding indications to the therapy of heritable heart failure. Disclosure of potential conflicts of interest is

  9. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    Science.gov (United States)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    On the discovery of coherent Bremsstrahlung in a single crystal at the Frascati National Laboratories / C. Barbiellini, G. P. Murtas and S. B. Dabagov -- Advances in coherent Bremsstrahlung and LPM-effect studies (to the lOOth anniversary from the birth of L. D. Landau) / N. F. Shul'ga -- Spectra of radiation and created particles at intermediate energy in oriented crystal taking into account energy loss / V. N. Baier and V. M. Katkov -- The coherent Bremsstrahlung beam at MAX-lab facility / K. Fissum ... [et al.] -- Radiation from thin, structured targets (CERN NA63) / A. Dizdar -- Hard incoherent radiation in thick crystals / N. F. Shul'ga, V. V. Syshchenko and A. I. Tarnovsky -- Coherent Bremsstrahlung in periodically deformed crystals with a complex base / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Induction of coherent x-ray Bremsstrahlung in crystals under the influence of acoustic waves / A. R. Mkrtchyan and V. V. Parazian -- Coherent processes in bent single crystals / V. A. Maisheev -- Experimental and theoretical investigation of complete transfer phenomenon for media with various heat exchange coefficients / A. R. Mkrtchyan, A. E. Movsisyan and V. R. Kocharyan -- Coherent pair production in crystals / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Negative particle planar and axial channeling and channeling collimation / R. A. Carrigan, Jr. -- CERN crystal-based collimation in modern hadron colliders / W. Scandale -- Studies and application of bent crystals for beam steering at 70 GeV IHEP accelerator / A. G. Afonin ... [et al.] -- Crystal collimation studies at the Tevatron (T-980) / N. V. Mokhov ... [et al.] -- Fabrication of crystals for channeling of particles in accellerators / A. Mazzolari ... [et al.] -- New possibilities to facilitate collimation of both positively and negatively charged particle beams by crystals / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- Increase of probability of particle capture into the channeling

  10. Potassium channels in brain mitochondria.

    Science.gov (United States)

    Bednarczyk, Piotr

    2009-01-01

    Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify

  11. Channel allocation and rate adaptation for relayed transmission over correlated fading channels

    KAUST Repository

    Hwang, Kyusung

    2009-09-01

    We consider, in this paper, channel allocation and rate adaptation scheme for relayed transmission over correlated fading channels via cross-layer design. Specifically, jointly considering the data link layer buffer occupancy and channel quality at both the source and relay nodes, we develop an optimal channel allocation and rate adaptation policy for a dual-hop relayed transmission. As such the overall transmit power for the relayed system is minimized while a target packet dropping rate (PDR) due to buffer over flows is guaranteed. In order to find such an optimal policy, the channel allocation and rate adaptation transmission framework is formulated as a constraint Markov decision process (CMDP). The PDR performance of the optimal policy is compared with that of two conventional suboptimal schemes, namely the channel quality based and the buffer occupancy based channel allocation schemes. Numerical results show that for a given power budget, the optimal scheme requires significantly less power than the conventional schemes in order to maintain a target PDR. ©2009 IEEE.

  12. On the secrecy capacity of the MISO wiretap channel under imperfect channel estimation

    KAUST Repository

    Rezki, Zouheir; Alomair, Basel; Alouini, Mohamed-Slim

    2014-01-01

    We consider a wiretap channel consisting of a source with multiple antennas, a legitimate receiver and an eavesdropper with a single antenna each. The channels between the source and the receivers undergo fast fading. We assume that the transmitter, in addition to the statistics of both channels, is only aware of a noisy version of the CSI to the legitimate receiver referred to as main channel. The legitimate receiver is aware of both its instantaneous channel gain and the transmitter's estimate of the main channel. On the other hand, the eavesdropper's receiver, in addition to its instantaneous channel realization, is aware of the actual main CSI and the transmitter's estimate as well. While the capacity of this channel is still open even with perfect CSI at the transmitter, we provide in this paper upper and lower bounds on the secrecy capacity. The upper bound is tighter than the one corresponding to perfect main CSI and the gap between the two upper bounds is characterized in function of the channel estimation error variance, at high-SNR. Furthermore, we show that our upper and lower bounds coincide in the case of no main CSI providing a trivial secrecy capacity.

  13. A linearization of quantum channels

    Science.gov (United States)

    Crowder, Tanner

    2015-06-01

    Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.

  14. Channel Characteristics and Transmission Performance for Various Channel Configurations at 60 GHz

    Directory of Open Access Journals (Sweden)

    Yang Haibing

    2007-01-01

    Full Text Available Extensive measurements are conducted in room environments at 60 GHz to analyze the channel characteristics for various channel configurations. Channel parameters retrieved from measurements are presented and analyzed based on generic channel models. Particularly, a simple single-cluster model is applied for the parameter retrieval and performance evaluation. By this model, power delay profiles are simply described by a -factor, a root-mean-squared delay spread, and a shape parameter. The considered channels are configured with the combination of omnidirectional, fan-beam, and pencil-beam antennas at transmitter and receiver sides. Both line-of-sight (LOS and non-LOS (NLOS channels are considered. Further, to evaluate the transmission performance, we analyze the link budget in the considered environments, then design and simulate an OFDM system with a data rate of 2 Gbps to compare the bit-error-rate (BER performance by using the measured and modeled channels. Both coded and uncoded OFDM systems are simulated. It is observed that the BER performance agrees well for the measured and modeled channels. In addition, directive configurations can provide sufficient link margins and BER performance for high data rate communications. To increase the coverage and performance in the NLOS area, it is preferable to apply directive antennas.

  15. Channel Characteristics and Transmission Performance for Various Channel Configurations at 60 GHz

    Directory of Open Access Journals (Sweden)

    Haibing Yang

    2007-05-01

    Full Text Available Extensive measurements are conducted in room environments at 60 GHz to analyze the channel characteristics for various channel configurations. Channel parameters retrieved from measurements are presented and analyzed based on generic channel models. Particularly, a simple single-cluster model is applied for the parameter retrieval and performance evaluation. By this model, power delay profiles are simply described by a K-factor, a root-mean-squared delay spread, and a shape parameter. The considered channels are configured with the combination of omnidirectional, fan-beam, and pencil-beam antennas at transmitter and receiver sides. Both line-of-sight (LOS and non-LOS (NLOS channels are considered. Further, to evaluate the transmission performance, we analyze the link budget in the considered environments, then design and simulate an OFDM system with a data rate of 2 Gbps to compare the bit-error-rate (BER performance by using the measured and modeled channels. Both coded and uncoded OFDM systems are simulated. It is observed that the BER performance agrees well for the measured and modeled channels. In addition, directive configurations can provide sufficient link margins and BER performance for high data rate communications. To increase the coverage and performance in the NLOS area, it is preferable to apply directive antennas.

  16. Volume of the space of qubit-qubit channels and state transformations under random quantum channels

    OpenAIRE

    Lovas, Attila; Andai, Attila

    2017-01-01

    The simplest building blocks for quantum computations are the qubit-qubit quantum channels. In this paper, we analyze the structure of these channels via their Choi representation. The restriction of a quantum channel to the space of classical states (i.e. probability distributions) is called the underlying classical channel. The structure of quantum channels over a fixed classical channel is studied, the volume of general and unital qubit channels with respect to the Lebesgue measure is comp...

  17. Performance Analysis of Iterative Channel Estimation and Multiuser Detection in Multipath DS-CDMA Channels

    Science.gov (United States)

    Li, Husheng; Betz, Sharon M.; Poor, H. Vincent

    2007-05-01

    This paper examines the performance of decision feedback based iterative channel estimation and multiuser detection in channel coded aperiodic DS-CDMA systems operating over multipath fading channels. First, explicit expressions describing the performance of channel estimation and parallel interference cancellation based multiuser detection are developed. These results are then combined to characterize the evolution of the performance of a system that iterates among channel estimation, multiuser detection and channel decoding. Sufficient conditions for convergence of this system to a unique fixed point are developed.

  18. On the secrecy capacity of the MISO wiretap channel under imperfect channel estimation

    KAUST Repository

    Rezki, Zouheir

    2014-12-01

    We consider a wiretap channel consisting of a source with multiple antennas, a legitimate receiver and an eavesdropper with a single antenna each. The channels between the source and the receivers undergo fast fading. We assume that the transmitter, in addition to the statistics of both channels, is only aware of a noisy version of the CSI to the legitimate receiver referred to as main channel. The legitimate receiver is aware of both its instantaneous channel gain and the transmitter\\'s estimate of the main channel. On the other hand, the eavesdropper\\'s receiver, in addition to its instantaneous channel realization, is aware of the actual main CSI and the transmitter\\'s estimate as well. While the capacity of this channel is still open even with perfect CSI at the transmitter, we provide in this paper upper and lower bounds on the secrecy capacity. The upper bound is tighter than the one corresponding to perfect main CSI and the gap between the two upper bounds is characterized in function of the channel estimation error variance, at high-SNR. Furthermore, we show that our upper and lower bounds coincide in the case of no main CSI providing a trivial secrecy capacity.

  19. Channel electron multipliers

    International Nuclear Information System (INIS)

    Seidman, A.; Avrahami, Z.; Sheinfux, B.; Grinberg, J.

    1976-01-01

    A channel electron multiplier is described having a tubular wall coated with a secondary-electron emitting material and including an electric field for accelerating the electrons, the electric field comprising a plurality of low-resistive conductive rings each alternating with a high-resistive insulating ring. The thickness of the low-resistive rings is many times larger than that of the high-resistive rings, being in the order of tens of microns for the low-resistive rings and at least one order of magnitude lower for the high-resistive rings; and the diameter of the channel tubular walls is also many times larger than the thickness of the high-resistive rings. Both single-channel and multiple-channel electron multipliers are described. A very important advantage, particularly in making multiple-channel multipliers, is the simplicity of the procedure that may be used in constructing such multipliers. Other operational advantages are described

  20. Coherifying quantum channels

    Science.gov (United States)

    Korzekwa, Kamil; Czachórski, Stanisław; Puchała, Zbigniew; Życzkowski, Karol

    2018-04-01

    Is it always possible to explain random stochastic transitions between states of a finite-dimensional system as arising from the deterministic quantum evolution of the system? If not, then what is the minimal amount of randomness required by quantum theory to explain a given stochastic process? Here, we address this problem by studying possible coherifications of a quantum channel Φ, i.e., we look for channels {{{Φ }}}{ \\mathcal C } that induce the same classical transitions T, but are ‘more coherent’. To quantify the coherence of a channel Φ we measure the coherence of the corresponding Jamiołkowski state J Φ. We show that the classical transition matrix T can be coherified to reversible unitary dynamics if and only if T is unistochastic. Otherwise the Jamiołkowski state {J}{{Φ }}{ \\mathcal C } of the optimally coherified channel is mixed, and the dynamics must necessarily be irreversible. To assess the extent to which an optimal process {{{Φ }}}{ \\mathcal C } is indeterministic we find explicit bounds on the entropy and purity of {J}{{Φ }}{ \\mathcal C }, and relate the latter to the unitarity of {{{Φ }}}{ \\mathcal C }. We also find optimal coherifications for several classes of channels, including all one-qubit channels. Finally, we provide a non-optimal coherification procedure that works for an arbitrary channel Φ and reduces its rank (the minimal number of required Kraus operators) from {d}2 to d.

  1. The Extended-Window Channel Estimator for Iterative Channel-and-Symbol Estimation

    Directory of Open Access Journals (Sweden)

    Barry John R

    2005-01-01

    Full Text Available The application of the expectation-maximization (EM algorithm to channel estimation results in a well-known iterative channel-and-symbol estimator (ICSE. The EM-ICSE iterates between a symbol estimator based on the forward-backward recursion (BCJR equalizer and a channel estimator, and may provide approximate maximum-likelihood blind or semiblind channel estimates. Nevertheless, the EM-ICSE has high complexity, and it is prone to misconvergence. In this paper, we propose the extended-window (EW estimator, a novel channel estimator for ICSE that can be used with any soft-output symbol estimator. Therefore, the symbol estimator may be chosen according to performance or complexity specifications. We show that the EW-ICSE, an ICSE that uses the EW estimator and the BCJR equalizer, is less complex and less susceptible to misconvergence than the EM-ICSE. Simulation results reveal that the EW-ICSE may converge faster than the EM-ICSE.

  2. Channel identification machines.

    Science.gov (United States)

    Lazar, Aurel A; Slutskiy, Yevgeniy B

    2012-01-01

    We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the filter(s) onto a space of input signals loss-free for both scalar and vector-valued test signals. The test signals are modeled as elements of a reproducing kernel Hilbert space (RKHS) with a Dirichlet kernel. Under appropriate limiting conditions on the bandwidth and the order of the test signal space, the filter projection converges to the impulse response of the filter. We show that our results hold for a wide class of RKHSs, including the space of finite-energy bandlimited signals. We also extend our channel identification results to noisy circuits.

  3. Channel Identification Machines

    Directory of Open Access Journals (Sweden)

    Aurel A. Lazar

    2012-01-01

    Full Text Available We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the filter(s onto a space of input signals loss-free for both scalar and vector-valued test signals. The test signals are modeled as elements of a reproducing kernel Hilbert space (RKHS with a Dirichlet kernel. Under appropriate limiting conditions on the bandwidth and the order of the test signal space, the filter projection converges to the impulse response of the filter. We show that our results hold for a wide class of RKHSs, including the space of finite-energy bandlimited signals. We also extend our channel identification results to noisy circuits.

  4. CHANNEL ESTIMATION TECHNIQUE

    DEFF Research Database (Denmark)

    2015-01-01

    A method includes determining a sequence of first coefficient estimates of a communication channel based on a sequence of pilots arranged according to a known pilot pattern and based on a receive signal, wherein the receive signal is based on the sequence of pilots transmitted over the communicat......A method includes determining a sequence of first coefficient estimates of a communication channel based on a sequence of pilots arranged according to a known pilot pattern and based on a receive signal, wherein the receive signal is based on the sequence of pilots transmitted over...... the communication channel. The method further includes determining a sequence of second coefficient estimates of the communication channel based on a decomposition of the first coefficient estimates in a dictionary matrix and a sparse vector of the second coefficient estimates, the dictionary matrix including...... filter characteristics of at least one known transceiver filter arranged in the communication channel....

  5. Research on Cost Information Sharing and Channel Choice in a Dual-Channel Supply Chain

    Directory of Open Access Journals (Sweden)

    Huihui Liu

    2016-01-01

    Full Text Available Many studies examine information sharing in an uncertain demand environment in a supply chain. However there is little literature on cost information sharing in a dual-channel structure consisting of a retail channel and a direct sales channel. Assuming that the retail sale cost and direct sale cost are random variables with a general distribution, the paper investigates the retailer’s choice on cost information sharing in a Bertrand competition model. Based on the equilibrium outcome of information sharing, the manufacturer’s channel choice is discussed in detail. Our paper provides several interesting conclusions. In both single- and dual-channel structures, the retailer has little motivation to share its private cost information which is verified to be valuable for the manufacturer. When the cost correlation between the two channels increases, our analyses show that the manufacturer’s profit improves. However, when channel choice is involved, the value of information could play a different role. The paper finds that a dual-channel structure can benefit the manufacturer only when the cost correlation is sufficiently low. In addition, if the cost correlation is weak, the cost fluctuation will bring out the advantage of a dual-channel structure and adding a new direct channel will help in risk pooling.

  6. Use of navigation channels by Lake Sturgeon: Does channelization increase vulnerability of fish to ship strikes?

    Directory of Open Access Journals (Sweden)

    Darryl W Hondorp

    Full Text Available Channelization for navigation and flood control has altered the hydrology and bathymetry of many large rivers with unknown consequences for fish species that undergo riverine migrations. In this study, we investigated whether altered flow distributions and bathymetry associated with channelization attracted migrating Lake Sturgeon (Acipenser fulvescens into commercial navigation channels, potentially increasing their exposure to ship strikes. To address this question, we quantified and compared Lake Sturgeon selection for navigation channels vs. alternative pathways in two multi-channel rivers differentially affected by channelization, but free of barriers to sturgeon movement. Acoustic telemetry was used to quantify Lake Sturgeon movements. Under the assumption that Lake Sturgeon navigate by following primary flow paths, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River were expected to choose navigation channels over alternative pathways and to exhibit greater selection for navigation channels than conspecifics in the less-channelized lower St. Clair River. Consistent with these predictions, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River selected the higher-flow and deeper navigation channels over alternative migration pathways, whereas in the less-channelized lower St. Clair River, individuals primarily used pathways alternative to navigation channels. Lake Sturgeon selection for navigation channels as migratory pathways also was significantly higher in the more-channelized lower Detroit River than in the less-channelized lower St. Clair River. We speculated that use of navigation channels over alternative pathways would increase the spatial overlap of commercial vessels and migrating Lake Sturgeon, potentially enhancing their vulnerability to ship strikes. Results of our study thus demonstrated an association between channelization and the path use of migrating Lake Sturgeon that could prove

  7. Voltage-Gated Calcium Channels

    Science.gov (United States)

    Zamponi, Gerald Werner

    Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.

  8. Evaluation channel performance in multichannel environments

    NARCIS (Netherlands)

    Gensler, S.; Dekimpe, M.; Skiera, B.

    2007-01-01

    Evaluating channel performance is crucial for actively managing multiple sales channels, and requires understanding the customers' channel preferences. Two key components of channel performance are (i) the existing customers' intrinsic loyalty to a particular channel and (ii) the channel's ability

  9. Channel Choice: A Literature Review

    DEFF Research Database (Denmark)

    Østergaard Madsen, Christian; Kræmmergaard, Pernille

    2015-01-01

    The channel choice branch of e-government studies citizens’ and businesses’ choice of channels for interacting with government, and how government organizations can integrate channels and migrate users towards the most cost-efficient channels. In spite of the valuable contributions offered...

  10. Reconfigurable virtual electrowetting channels.

    Science.gov (United States)

    Banerjee, Ananda; Kreit, Eric; Liu, Yuguang; Heikenfeld, Jason; Papautsky, Ian

    2012-02-21

    Lab-on-a-chip systems rely on several microfluidic paradigms. The first uses a fixed layout of continuous microfluidic channels. Such lab-on-a-chip systems are almost always application specific and far from a true "laboratory." The second involves electrowetting droplet movement (digital microfluidics), and allows two-dimensional computer control of fluidic transport and mixing. The merging of the two paradigms in the form of programmable electrowetting channels takes advantage of both the "continuous" functionality of rigid channels based on which a large number of applications have been developed to date and the "programmable" functionality of digital microfluidics that permits electrical control of on-chip functions. In this work, we demonstrate for the first time programmable formation of virtual microfluidic channels and their continuous operation with pressure driven flows using an electrowetting platform. Experimental, theoretical, and numerical analyses of virtual channel formation with biologically relevant electrolyte solutions and electrically-programmable reconfiguration are presented. We demonstrate that the "wall-less" virtual channels can be formed reliably and rapidly, with propagation rates of 3.5-3.8 mm s(-1). Pressure driven transport in these virtual channels at flow rates up to 100 μL min(-1) is achievable without distortion of the channel shape. We further demonstrate that these virtual channels can be switched on-demand between multiple inputs and outputs. Ultimately, we envision a platform that would provide rapid prototyping of microfluidic concepts and would be capable of a vast library of functions and benefitting applications from clinical diagnostics in resource-limited environments to rapid system prototyping to high throughput pharmaceutical applications.

  11. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  12. Preservation of meandering river channels in uniformly aggrading channel belts

    NARCIS (Netherlands)

    Lageweg, W.I. van de; Schuurman, F.; Cohen, K.M.; Dijk, W.M. van; Shimizu, Y.; Kleinhans, M.G.

    2016-01-01

    Channel belt deposits from meandering river systems commonly display an internal architecture of stacked depositional features with scoured basal contacts due to channel and bedform migration across a range of scales. Recognition and correct interpretation of these bounding surfaces is essential to

  13. Multi-channel service retailing: The effects of channel performance satisfaction on behavioral intentions.

    NARCIS (Netherlands)

    Birgelen, van M.; Jong, de A.; Ruyter, de J.C.

    2006-01-01

    Abstract The number of channels that retailers can use interchangeably to provide customer service has increased. We report on a study of clients of a large retail bank that investigates the channel performance satisfaction–behavioral intentions relationship when the traditional service channel

  14. Channel Planform Dynamics Monitoring and Channel Stability Assessment in Two Sediment-Rich Rivers in Taiwan

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Kuo

    2017-01-01

    Full Text Available Recurrent flood events induced by typhoons are powerful agents to modify channel morphology in Taiwan’s rivers. Frequent channel migrations reflect highly sensitive valley floors and increase the risk to infrastructure and residents along rivers. Therefore, monitoring channel planforms is essential for analyzing channel stability as well as improving river management. This study analyzed annual channel changes along two sediment-rich rivers, the Zhuoshui River and the Gaoping River, from 2008 to 2015 based on satellite images of FORMOSAT-2. Channel areas were digitized from mid-catchment to river mouth (~90 km. Channel stability for reaches was assessed through analyzing the changes of river indices including braid index, active channel width, and channel activity. In general, the valley width plays a key role in braided degree, active channel width, and channel activity. These indices increase as the valley width expands whereas the braid index decreases slightly close to the river mouth due to the change of river types. This downstream pattern in the Zhuoshui River was interrupted by hydraulic construction which resulted in limited changes downstream from the weir, due to the lack of water and sediment supply. A 200-year flood, Typhoon Morakot in 2009, induced significant changes in the two rivers. The highly active landscape in Taiwan results in very sensitive channels compared to other regions. An integrated Sensitivity Index was proposed for identifying unstable reaches, which could be a useful reference for river authorities when making priorities in river regulation strategy. This study shows that satellite image monitoring coupled with river indices analysis could be an effective tool to evaluate spatial and temporal changes in channel stability in highly dynamic river systems.

  15. Distribution Channels Conflict and Management

    OpenAIRE

    Kiran, Dr Vasanth; Majumdar, Dr Mousumi; Kishore, Dr Krishna

    2012-01-01

    Relationships in distribution channels tend to be long-term oriented and members of the channel rely on each other to jointly realize their goals by serving buyers. Despite the channels focus on serving buyers, conflicts often arise between channel members because of each members self-interest. When conflicts arise, the perceptions of a channel member based on normative, rational/instrumental, or emotional reasoning will influence relational norms like trust and commitment that characterize t...

  16. Quantum communication under channel uncertainty

    International Nuclear Information System (INIS)

    Noetzel, Janis Christian Gregor

    2012-01-01

    This work contains results concerning transmission of entanglement and subspaces as well as generation of entanglement in the limit of arbitrary many uses of compound- and arbitrarily varying quantum channels (CQC, AVQC). In both cases, the channel is described by a set of memoryless channels. Only forward communication between one sender and one receiver is allowed. A code is said to be ''good'' only, if it is ''good'' for every channel out of the set. Both settings describe a scenario, in which sender and receiver have only limited channel knowledge. For different amounts of information about the channel available to sender or receiver, coding theorems are proven for the CQC. For the AVQC, both deterministic and randomised coding schemes are considered. Coding theorems are proven, as well as a quantum analogue of the Ahlswede-dichotomy. The connection to zero-error capacities of stationary memoryless quantum channels is investigated. The notion of symmetrisability is defined and used for both classes of channels.

  17. Electrophysiological characterisation of KCNQ channel modulators

    DEFF Research Database (Denmark)

    Schrøder, R.L

    Potassium (K+) ion channels are ubiquitously expressed in mammalian cells, and each channel serves a precise physiological role due to its specific biophysical characteristics and expression pattern. A few K+ channels are targets for certain drugs, and in this thesis it is suggested that the KCNQ K......+ channels may be targets for neuroprotective, anti-epileptic and anti-nociceptive compounds. The importance of these channels is underscored by the fact that four out of five KCNQ channel subtypes are involved in severe human diseases. However, the pharmacology of the KCNQ channels is yet poorly understood...... as these channels were identified only recently. Therefore, there is a need for understanding the biophysical behavior and pharmacology of these ion channels. KCNQ channels belong to the group of voltage-activated K+ channels. The subfamily consists of KCNQ1-5, which is primarily expressed in the CNS, heart, ear...

  18. Eight channel fast scalar

    Energy Technology Data Exchange (ETDEWEB)

    Waddoup, W D; Stubbs, R J [Durham Univ. (UK)

    1977-11-01

    An eight channel 64-bit scaler has been constructed with a static CMOS memory. Scaling frequencies are independently variable, at each channel, as are the number of bits/channel. The scaler, when used in conjunction with a multichannel charge to time converter results in a very flexible, gated multichannel ADC.

  19. Automatic pickup of arrival time of channel wave based on multi-channel constraints

    Science.gov (United States)

    Wang, Bao-Li

    2018-03-01

    Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.

  20. Augmentation de l'expression de la chaine α1 de la laminine 111, un potentiel traitement pour la Dystrophie musculaire de Duchenne

    OpenAIRE

    Perrin, Arnaud

    2016-01-01

    La protéine hétérotrimérique laminine-111 permet le lien entre la matrice-extracellulaire et l’intégrine α7β1 du sarcolemme, remplaçant ainsi dans les muscles dystrophiques, des liens normalement assurés par le complexe de la dystrophine. L’injection de laminine-111 dans des souris mdx a permis, entre autre, l’augmentation de l'expression de l'intégrine α7β1, d’empêcher les bris du sarcolemme lors de la contraction musculaire, de restaurer un niveau normal de la créatine kinase sérique, ainsi...

  1. Functional modifications of acid-sensing ion channels by ligand-gated chloride channels.

    Directory of Open Access Journals (Sweden)

    Xuanmao Chen

    Full Text Available Together, acid-sensing ion channels (ASICs and epithelial sodium channels (ENaC constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR. Here we show that ASICs were reversibly inhibited by activation of GABA(A receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A receptor-mediated currents. Moreover, activation of the GABA(A receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A receptors, also modified ASICs in spinal neurons. We conclude that GABA(A receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.

  2. Coupling of SK channels, L-type Ca2+ channels, and ryanodine receptors in cardiomyocytes.

    Science.gov (United States)

    Zhang, Xiao-Dong; Coulibaly, Zana A; Chen, Wei Chun; Ledford, Hannah A; Lee, Jeong Han; Sirish, Padmini; Dai, Gu; Jian, Zhong; Chuang, Frank; Brust-Mascher, Ingrid; Yamoah, Ebenezer N; Chen-Izu, Ye; Izu, Leighton T; Chiamvimonvat, Nipavan

    2018-03-16

    Small-conductance Ca 2+ -activated K + (SK) channels regulate the excitability of cardiomyocytes by integrating intracellular Ca 2+ and membrane potentials on a beat-to-beat basis. The inextricable interplay between activation of SK channels and Ca 2+ dynamics suggests the pathology of one begets another. Yet, the exact mechanistic underpinning for the activation of cardiac SK channels remains unaddressed. Here, we investigated the intracellular Ca 2+ microdomains necessary for SK channel activation. SK currents coupled with Ca 2+ influx via L-type Ca 2+ channels (LTCCs) continued to be elicited after application of caffeine, ryanodine or thapsigargin to deplete SR Ca 2+ store, suggesting that LTCCs provide the immediate Ca 2+ microdomain for the activation of SK channels in cardiomyocytes. Super-resolution imaging of SK2, Ca v 1.2 Ca 2+ channel, and ryanodine receptor 2 (RyR2) was performed to quantify the nearest neighbor distances (NND) and localized the three molecules within hundreds of nanometers. The distribution of NND between SK2 and RyR2 as well as SK2 and Ca v 1.2 was bimodal, suggesting a spatial relationship between the channels. The activation mechanism revealed by our study paved the way for the understanding of the roles of SK channels on the feedback mechanism to regulate the activities of LTCCs and RyR2 to influence local and global Ca 2+ signaling.

  3. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides

    Science.gov (United States)

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-01-01

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor PI(4)P from the plasma membrane through Ca2+-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 or PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin. PMID:25670203

  4. New Channels, New Possibilities

    DEFF Research Database (Denmark)

    Pieterson, Willem; Ebbers, Wolfgang; Østergaard Madsen, Christian

    2017-01-01

    In this contribution we discuss the characteristics of what we call the fourth generation of public sector service channels: social robots. Based on a review of relevant literature we discuss their characteristics and place into multi-channel models of service delivery. We argue that social robots......-channel models of service delivery. This is especially relevant given the current lack of evaluations of such models, the broad range of channels available, and their different stages of deployment at governments around the world. Nevertheless, social robots offer an potentially very relevant addition...

  5. Ion channelling in diamond

    International Nuclear Information System (INIS)

    Derry, T.E.

    1978-06-01

    Diamond is one of the most extreme cases from a channelling point of view, having the smallest thermal vibration amplitude and the lowest atomic number of commonly-encountered crystals. These are the two parameters most important for determining channelling behaviour. It is of consiberable interest therefore to see how well the theories explaining and predicting the channeling properties of other substance, succeed with diamond. Natural diamond, although the best available form for these experiments, is rather variable in its physical properties. Part of the project was devoted to considering and solving the problem of obtaining reproducible results representative of the ideal crystal. Channelling studies were performed on several good crystals, using the Rutherford backscattering method. Critical angles for proton channelling were measured for incident energies from 0.6 to 4.5 MeV, in the three most open axes and three most open planes of the diamond structure, and for α-particle channelling at 0.7 and 1.0 MeV (He + ) in the same axes and planes. For 1.0 MeV protons, the crystal temperature was varied from 20 degrees Celsius to 700 degrees Celsius. The results are presented as curves of backscattered yield versus angle in the region of each axis or plane, and summarised in the form of tables and graphs. Generally the critical angles, axial minimum yields, and temperature dependence are well predicted by the accepted theories. The most valuable overall conclusion is that the mean thermal vibration amplitude of the atoms in a crytical determines the critical approach distance to the channel walls at which an ion can remain channelled, even when this distance is much smaller than the Thomas-Fermi screening distance of the atomic potential, as is the case in diamond. A brief study was made of the radiation damage caused by α-particle bombardment, via its effect on the channelling phenomenon. It was possible to hold damage down to negligible levels during the

  6. Ion Channel Trafficking: Control of Ion Channel Density as a Target for Arrhythmias?

    Directory of Open Access Journals (Sweden)

    Elise Balse

    2017-10-01

    Full Text Available The shape of the cardiac action potential (AP is determined by the contributions of numerous ion channels. Any dysfunction in the proper function or expression of these ion channels can result in a change in effective refractory period (ERP and lead to arrhythmia. The processes underlying the correct targeting of ion channels to the plasma membrane are complex, and have not been fully characterized in cardiac myocytes. Emerging evidence highlights ion channel trafficking as a potential causative factor in certain acquired and inherited arrhythmias, and therapies which target trafficking as opposed to pore block are starting to receive attention. In this review we present the current evidence for the mechanisms which underlie precise control of cardiac ion channel trafficking and targeting.

  7. Customer Responses to Channel Migration Strategies Toward the E-channel

    NARCIS (Netherlands)

    Trampe, Debra; Konus, Umut; Verhoef, Peter C.

    2014-01-01

    Many firms stimulate customers to use the E-channel for services, which provokes various consumer responses to such limits on their freedom of choice. In a study on bank customers, we examine the extent of customer reactance in response to various E-channel migration strategies, the potential of

  8. Multi-rate control over AWGN channels via analog joint source-channel coding

    KAUST Repository

    Khina, Anatoly; Pettersson, Gustav M.; Kostina, Victoria; Hassibi, Babak

    2017-01-01

    We consider the problem of controlling an unstable plant over an additive white Gaussian noise (AWGN) channel with a transmit power constraint, where the signaling rate of communication is larger than the sampling rate (for generating observations and applying control inputs) of the underlying plant. Such a situation is quite common since sampling is done at a rate that captures the dynamics of the plant and which is often much lower than the rate that can be communicated. This setting offers the opportunity of improving the system performance by employing multiple channel uses to convey a single message (output plant observation or control input). Common ways of doing so are through either repeating the message, or by quantizing it to a number of bits and then transmitting a channel coded version of the bits whose length is commensurate with the number of channel uses per sampled message. We argue that such “separated source and channel coding” can be suboptimal and propose to perform joint source-channel coding. Since the block length is short we obviate the need to go to the digital domain altogether and instead consider analog joint source-channel coding. For the case where the communication signaling rate is twice the sampling rate, we employ the Archimedean bi-spiral-based Shannon-Kotel'nikov analog maps to show significant improvement in stability margins and linear-quadratic Gaussian (LQG) costs over simple schemes that employ repetition.

  9. Multi-rate control over AWGN channels via analog joint source-channel coding

    KAUST Repository

    Khina, Anatoly

    2017-01-05

    We consider the problem of controlling an unstable plant over an additive white Gaussian noise (AWGN) channel with a transmit power constraint, where the signaling rate of communication is larger than the sampling rate (for generating observations and applying control inputs) of the underlying plant. Such a situation is quite common since sampling is done at a rate that captures the dynamics of the plant and which is often much lower than the rate that can be communicated. This setting offers the opportunity of improving the system performance by employing multiple channel uses to convey a single message (output plant observation or control input). Common ways of doing so are through either repeating the message, or by quantizing it to a number of bits and then transmitting a channel coded version of the bits whose length is commensurate with the number of channel uses per sampled message. We argue that such “separated source and channel coding” can be suboptimal and propose to perform joint source-channel coding. Since the block length is short we obviate the need to go to the digital domain altogether and instead consider analog joint source-channel coding. For the case where the communication signaling rate is twice the sampling rate, we employ the Archimedean bi-spiral-based Shannon-Kotel\\'nikov analog maps to show significant improvement in stability margins and linear-quadratic Gaussian (LQG) costs over simple schemes that employ repetition.

  10. Channel sialic acids limit hERG channel activity during the ventricular action potential.

    Science.gov (United States)

    Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S

    2013-02-01

    Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.

  11. Course on Ionic Channels

    CERN Document Server

    1986-01-01

    This book is based on a series of lectures for a course on ionic channels held in Santiago, Chile, on November 17-20, 1984. It is intended as a tutorial guide on the properties, function, modulation, and reconstitution of ionic channels, and it should be accessible to graduate students taking their first steps in this field. In the presentation there has been a deliberate emphasis on the spe­ cific methodologies used toward the understanding of the workings and function of channels. Thus, in the first section, we learn to "read" single­ channel records: how to interpret them in the theoretical frame of kinetic models, which information can be extracted from gating currents in re­ lation to the closing and opening processes, and how ion transport through an open channel can be explained in terms of fluctuating energy barriers. The importance of assessing unequivocally the origin and purity of mem­ brane preparations and the use of membrane vesicles and optical tech­ niques in the stUGY of ionic channels a...

  12. Quantum communication under channel uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Noetzel, Janis Christian Gregor

    2012-09-06

    This work contains results concerning transmission of entanglement and subspaces as well as generation of entanglement in the limit of arbitrary many uses of compound- and arbitrarily varying quantum channels (CQC, AVQC). In both cases, the channel is described by a set of memoryless channels. Only forward communication between one sender and one receiver is allowed. A code is said to be ''good'' only, if it is ''good'' for every channel out of the set. Both settings describe a scenario, in which sender and receiver have only limited channel knowledge. For different amounts of information about the channel available to sender or receiver, coding theorems are proven for the CQC. For the AVQC, both deterministic and randomised coding schemes are considered. Coding theorems are proven, as well as a quantum analogue of the Ahlswede-dichotomy. The connection to zero-error capacities of stationary memoryless quantum channels is investigated. The notion of symmetrisability is defined and used for both classes of channels.

  13. XPM-induced degradation of multilevel phase modulated channel caused by neighboring NRZ modulated channels

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Schiellerup, G.; Peucheret, Christophe

    2008-01-01

    The impact of XPM from NRZ modulated channels on an 8-level phase modulated channel in a WDM system was investigated. Requirements on launch power are found. 400 km transmission was achieved with negligible penalty.......The impact of XPM from NRZ modulated channels on an 8-level phase modulated channel in a WDM system was investigated. Requirements on launch power are found. 400 km transmission was achieved with negligible penalty....

  14. Neonatal Diabetes: An Expanding List of Genes Allows for Improved Diagnosis and Treatment

    Science.gov (United States)

    Naylor, Rochelle N.; Philipson, Louis H.; Bell, Graeme I.

    2011-01-01

    There has been major progress in recent years uncovering the genetic causes of diabetes presenting in the first year of life. Twenty genes have been identified to date. The most common causes accounting for the majority of cases are mutations in the genes encoding the two subunits of the ATP-sensitive potassium channel (KATP), KCNJ11 and ABCC8, and the insulin gene (INS), as well as abnormalities in chromosome 6q24. Patients with activating mutations in KCNJ11 and ABCC8 can be treated with oral sulfonylureas in lieu of insulin injections. This compelling example of personalized genetic medicine leading to improved glucose regulation and quality of life may—with continued research—be repeated for other forms of neonatal diabetes in the future. PMID:21993633

  15. On the secrecy capacity of the wiretap channel with imperfect main channel estimation

    KAUST Repository

    Rezki, Zouheir

    2014-10-01

    We study the secrecy capacity of fast fading channels under imperfect main channel (between the transmitter and the legitimate receiver) estimation at the transmitter. Lower and upper bounds on the ergodic secrecy capacity are derived for a class of independent identically distributed (i.i.d.) fading channels. The achievable rate follows from a standard wiretap code in which a simple on-off power control is employed along with a Gaussian input. The upper bound is obtained using an appropriate correlation scheme of the main and eavesdropper channels and is the best known upper bound so far. The upper and lower bounds coincide with recently derived ones in case of perfect main CSI. Furthermore, the upper bound is tight in case of no main CSI, where the secrecy capacity is equal to zero. Asymptotic analysis at high and low signal-to-noise ratio (SNR) is also given. At high SNR, we show that the capacity is bounded by providing upper and lower bounds that depend on the channel estimation error. At low SNR, however, we prove that the secrecy capacity is asymptotically equal to the capacity of the main channel as if there were no secrecy constraint. Numerical results are provided for i.i.d. Rayleigh fading channels.

  16. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate...... that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure...

  17. Channel Estimation in DCT-Based OFDM

    Science.gov (United States)

    Wang, Yulin; Zhang, Gengxin; Xie, Zhidong; Hu, Jing

    2014-01-01

    This paper derives the channel estimation of a discrete cosine transform- (DCT-) based orthogonal frequency-division multiplexing (OFDM) system over a frequency-selective multipath fading channel. Channel estimation has been proved to improve system throughput and performance by allowing for coherent demodulation. Pilot-aided methods are traditionally used to learn the channel response. Least square (LS) and mean square error estimators (MMSE) are investigated. We also study a compressed sensing (CS) based channel estimation, which takes the sparse property of wireless channel into account. Simulation results have shown that the CS based channel estimation is expected to have better performance than LS. However MMSE can achieve optimal performance because of prior knowledge of the channel statistic. PMID:24757439

  18. A new simple model for composite fading channels: Second order statistics and channel capacity

    KAUST Repository

    Yilmaz, Ferkan; Alouini, Mohamed-Slim

    2010-01-01

    In this paper, we introduce the most general composite fading distribution to model the envelope and the power of the received signal in such fading channels as millimeter wave (60 GHz or above) fading channels and free-space optical channels, which

  19. CANDU channel flow verification

    International Nuclear Information System (INIS)

    Mazalu, N.; Negut, Gh.

    1997-01-01

    The purpose of this evaluation was to obtain accurate information on each channel flow that enables us to assess precisely the level of reactor thermal power and, for reasons of safety, to establish which channel is boiling. In order to assess the channel flow parameters, computer simulations were done with the NUCIRC code and the results were checked by measurements. The complete channel flow measurements were made in the zero power cold condition. In hot conditions there were made flow measurements using the Shut Down System 1 (SDS 1) flow devices from 0.1 % F.P. up to 100 % F.P. The NUCIRC prediction for CANDU channel flows and the measurements by Ultrasonic Flow Meter at zero power cold conditions and SDS 1 flow channel measurements at different reactor power levels showed an acceptable agreement. The 100 % F.P. average errors for channel flow of R, shows that suitable NUCIRC flow assessment can be made. So, it can be done a fair prediction of the reactor power distribution. NUCIRC can predict accurately the onset of boiling and helps to warn at the possible power instabilities at high powers or it can detect the flow blockages. The thermal hydraulic analyst has in NUCIRC a suitable tool to do accurate predictions for the thermal hydraulic parameters for different steady state power levels which subsequently leads to an optimal CANDU reactor operation. (authors)

  20. Channel Simulation in Quantum Metrology

    Directory of Open Access Journals (Sweden)

    Laurenza Riccardo

    2018-04-01

    Full Text Available In this review we discuss how channel simulation can be used to simplify the most general protocols of quantum parameter estimation, where unlimited entanglement and adaptive joint operations may be employed. Whenever the unknown parameter encoded in a quantum channel is completely transferred in an environmental program state simulating the channel, the optimal adaptive estimation cannot beat the standard quantum limit. In this setting, we elucidate the crucial role of quantum teleportation as a primitive operation which allows one to completely reduce adaptive protocols over suitable teleportation-covariant channels and derive matching upper and lower bounds for parameter estimation. For these channels,wemay express the quantum Cramér Rao bound directly in terms of their Choi matrices. Our review considers both discrete- and continuous-variable systems, also presenting some new results for bosonic Gaussian channels using an alternative sub-optimal simulation. It is an open problem to design simulations for quantum channels that achieve the Heisenberg limit.

  1. Effect of channel-protein interaction on translocation of a protein-like chain through a finite channel

    International Nuclear Information System (INIS)

    Sun Ting-Ting; Ma Hai-Zhu; Jiang Zhou-Ting

    2012-01-01

    We study the translocation of a protein-like chain through a finite cylindrical channel using the pruned-enriched Rosenbluth method (PERM) and the modified orientation-dependent monomer-monomer interaction (ODI) model. Attractive channels (in cp = −2.0, −1.0, −0.5), repulsive channels (in cp = 0.5, 1.0, 2.0), and a neutral channel (in cp = 0) are discussed. The results of the chain dimension and the energy show that Z 0 = 1.0 is an important case to distinguish the types of the channels. For the strong attractive channel, more contacts form during the process of translocation. It is also found that an external force is needed to drive the chain outside of the channel with the strong attraction. While for the neutral, the repulsive, and the weak attractive channels, the translocation is spontaneous. (interdisciplinary physics and related areas of science and technology)

  2. Radar channel balancing with commutation

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  3. Cl- channels in apoptosis

    DEFF Research Database (Denmark)

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida

    2016-01-01

    A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K(+), Cl(-), and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl(-) channels LRRC8, TMEM16/anoctamin......, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also......(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated...

  4. Direct channel problems and phenomena

    International Nuclear Information System (INIS)

    Cutkosky, R.E.

    1975-01-01

    Direct channel problems and phenomena are considered covering the need for precision hadron spectroscopy, the data base for precision hadron spectroscopy, some relations between direct-channel and cross-channel effects, and spin rotation phenomena

  5. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    Reference is made to coolant channels for pressurised water and boiling water reactors and the arrangement described aims to improve heat transfer between the fuel rods and the coolant. Baffle means extending axially within the channel are provided and disposed relative to the fuel rods so as to restrict flow oscillations occurring within the coolant from being propagated transversely to the axis of the channel. (UK)

  6. An FPGA-Based Adaptable 200 MHz Bandwidth Channel Sounder for Wireless Communication Channel Characterisation

    Directory of Open Access Journals (Sweden)

    David L. Ndzi

    2011-01-01

    Full Text Available This paper describes the development of a fast adaptable FPGA-based wideband channel sounder with signal bandwidths of up to 200 MHz and channel sampling rates up to 5.4 kHz. The application of FPGA allows the user to vary the number of real-time channel response averages, channel sampling interval, and duration of measurement. The waveform, bandwidth, and frequency resolution of the sounder can be adapted for any channel under investigation. The design approach and technology used has led to a reduction in size and weight by more than 60%. This makes the sounder ideal for mobile time-variant wireless communication channels studies. Averaging allows processing gains of up to 30 dB to be achieved for measurement in weak signal conditions. The technique applied also improves reliability, reduces power consumption, and has shifted sounder design complexity from hardware to software. Test results show that the sounder can detect very small-scale variations in channels.

  7. Six-channel adaptive fibre-optic interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Romashko, R V; Bezruk, M N; Kamshilin, A A; Kulchin, Yurii N

    2012-06-30

    We have proposed and analysed a scheme for the multiplexing of orthogonal dynamic holograms in photorefractive crystals which ensures almost zero cross talk between the holographic channels upon phase demodulation. A six-channel adaptive fibre-optic interferometer was built, and the detection limit for small phase fluctuations in the channels of the interferometer was determined to be 2.1 Multiplication-Sign 10{sup -8} rad W{sup 1/2} Hz{sup -1/2}. The channel multiplexing capacity of the interferometer was estimated. The formation of 70 channels such that their optical fields completely overlap in the crystal reduces the relative detection limit in the working channel by just 10 %. We found conditions under which the maximum cross talk between the channels was within the intrinsic noise level in the channels (-47 dB).

  8. G-Channel Restoration for RWB CFA with Double-Exposed W Channel.

    Science.gov (United States)

    Park, Chulhee; Song, Ki Sun; Kang, Moon Gi

    2017-02-05

    In this paper, we propose a green (G)-channel restoration for a red-white-blue (RWB) color filter array (CFA) image sensor using the dual sampling technique. By using white (W) pixels instead of G pixels, the RWB CFA provides high-sensitivity imaging and an improved signal-to-noise ratio compared to the Bayer CFA. However, owing to this high sensitivity, the W pixel values become rapidly over-saturated before the red-blue (RB) pixel values reach the appropriate levels. Because the missing G color information included in the W channel cannot be restored with a saturated W, multiple captures with dual sampling are necessary to solve this early W-pixel saturation problem. Each W pixel has a different exposure time when compared to those of the R and B pixels, because the W pixels are double-exposed. Therefore, a RWB-to-RGB color conversion method is required in order to restore the G color information, using a double-exposed W channel. The proposed G-channel restoration algorithm restores G color information from the W channel by considering the energy difference caused by the different exposure times. Using the proposed method, the RGB full-color image can be obtained while maintaining the high-sensitivity characteristic of the W pixels.

  9. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies.

    Science.gov (United States)

    Janghra, Narinder; Morgan, Jennifer E; Sewry, Caroline A; Wilson, Francis X; Davies, Kay E; Muntoni, Francesco; Tinsley, Jonathon

    2016-01-01

    Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ -sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these tools to quantify

  10. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies.

    Directory of Open Access Journals (Sweden)

    Narinder Janghra

    Full Text Available Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ -sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these

  11. X-ray radiation channeling in micro-channel plates: Spectroscopy with a synchrotron radiation beam

    International Nuclear Information System (INIS)

    Mazuritskiy, M.I.; Dabagov, S.B.; Marcelli, A.; Dziedzic-Kocurek, K.; Lerer, A.M.

    2015-01-01

    We present here the angular distribution of the radiation propagated inside MultiChannel Plates with micro-channels of ∼3 μm diameter. The spectra collected at the exit of the channels present a complex distribution with contributions that can be assigned to the fluorescence radiation, originated from the excitation of the micro-channel walls. For radiation above the absorption edge, when the monochromatic energy in the region of the Si L-edge hits the micro-channel walls with a grazing angle θ ⩾ 5°, or at the O K-edge when θ ⩾ 2° a fluorescence radiation is detected. Additional information associated to the fine structures of the XANES spectra detected at the exit of MCPs are also presented and discussed

  12. HIPPI and Fibre Channel

    International Nuclear Information System (INIS)

    Tolmie, D.E.

    1992-01-01

    The High-Performance Parallel Interface (HIPPI) and Fibre Channel are near-gigabit per second data communications interfaces being developed in ANSI standards Task Group X3T9.3. HIPPI is the current interface of choice in the high-end and supercomputer arena, and Fibre Channel is a follow-on effort. HIPPI came from a local area network background, and Fibre Channel came from a mainframe to peripheral interface background

  13. Quantum channels with a finite memory

    International Nuclear Information System (INIS)

    Bowen, Garry; Mancini, Stefano

    2004-01-01

    In this paper we study quantum communication channels with correlated noise effects, i.e., quantum channels with memory. We derive a model for correlated noise channels that includes a channel memory state. We examine the case where the memory is finite, and derive bounds on the classical and quantum capacities. For the entanglement-assisted and unassisted classical capacities it is shown that these bounds are attainable for certain classes of channel. Also, we show that the structure of any finite-memory state is unimportant in the asymptotic limit, and specifically, for a perfect finite-memory channel where no information is lost to the environment, achieving the upper bound implies that the channel is asymptotically noiseless

  14. Calcium release-dependent inactivation precedes formation of the tubular system in developing rat cardiac myocytes.

    Science.gov (United States)

    Macková, Katarina; Zahradníková, Alexandra; Hoťka, Matej; Hoffmannová, Barbora; Zahradník, Ivan; Zahradníková, Alexandra

    2017-12-01

    Developing cardiac myocytes undergo substantial structural and functional changes transforming the mechanism of excitation-contraction coupling from the embryonic form, based on calcium influx through sarcolemmal DHPR calcium channels, to the adult form, relying on local calcium release through RYR calcium channels of sarcoplasmic reticulum stimulated by calcium influx. We characterized day-by-day the postnatal development of the structure of sarcolemma, using techniques of confocal fluorescence microscopy, and the development of the calcium current, measured by the whole-cell patch-clamp in isolated rat ventricular myocytes. We characterized the appearance and expansion of the t-tubule system and compared it with the appearance and progress of the calcium current inactivation induced by the release of calcium ions from sarcoplasmic reticulum as structural and functional measures of direct DHPR-RYR interaction. The release-dependent inactivation of calcium current preceded the development of the t-tubular system by several days, indicating formation of the first DHPR-RYR couplons at the surface sarcolemma and their later spreading close to contractile myofibrils with the growing t-tubules. Large variability of both of the measured parameters among individual myocytes indicates uneven maturation of myocytes within the growing myocardium.

  15. Improvement of Metroliner Telephone Channel Capacity and Modeling of Telephone Channel Demands

    Science.gov (United States)

    1972-03-01

    The channel capacity of the present Metroliner telephone system is analyzed and methods are proposed to increase that capacity without increasing the overall bandwidth. To determine the number of channels required, calculations have been carried out ...

  16. Channel erosion in a rapidly urbanizing region of Tijuana, Mexico: Enlargement downstream of channel hardpoints

    Science.gov (United States)

    Taniguchi, Kristine; Biggs, Trent; Langendoen, Eddy; Castillo, Carlos; Gudiño, Napoleon; Yuan, Yongping; Liden, Douglas

    2016-04-01

    Urban-induced erosion in Tijuana, Mexico, has led to excessive sediment deposition in the Tijuana Estuary in the United States. Urban areas in developing countries, in contrast to developed countries, are characterized by much lower proportions of vegetation and impervious surfaces due to limited access to urban services such as road paving and landscaping, and larger proportions of exposed soils. In developing countries, traditional watershed scale variables such as impervious surfaces may not be good predictors of channel enlargement. In this research, we surveyed the stream channel network of an erodible tributary of the Tijuana River Watershed, Los Laureles Canyon, at 125 locations, including repeat surveys from 2008. Structure from Motion (SfM) and 3D photo-reconstruction techniques were used to create digital terrain models of stream reaches upstream and downstream of channel hardpoints. Channels are unstable downstream of hardpoints, with incision up to 2 meters and widening up to 12 meters. Coordinated channelization is essential to avoid piece-meal approaches that lead to channel degradation. Watershed impervious area is not a good predictor of channel erosion due to the overriding importance of hardpoints and likely to the high sediment supply from the unpaved roads which prevents channel erosion throughout the stream network.

  17. Relaxation of Isolated Ventricular Cardiomyocytes by a Voltage-Dependent Process

    Science.gov (United States)

    Bridge, John H. B.; Spitzer, Kenneth W.; Ershler, Philip R.

    1988-08-01

    Cell contraction and relaxation were measured in single voltage-clamped guinea pig cardiomyocytes to investigate the contribution of sarcolemmal Na+-Ca2+ exchange to mechanical relaxation. Cells clamped from -80 to 0 millivolts displayed initial phasic and subsequent tonic contractions; caffeine reduced or abolished the phasic and enlarged the tonic contraction. The rate of relaxation from tonic contractions was steeply voltage-dependent and was significantly slowed in the absence of a sarcolemmal Na+ gradient. Tonic contractions elicited in the absence of a Na+ gradient promptly relaxed when external Na+ was applied, reflecting activation of Na+-Ca2+ exchange. It appears that a voltage-dependent Na+-Ca2+ exchange can rapidly mechanically relax mammalian heart muscle.

  18. Parallel inter channel interaction mechanisms

    International Nuclear Information System (INIS)

    Jovic, V.; Afgan, N.; Jovic, L.

    1995-01-01

    Parallel channels interactions are examined. For experimental researches of nonstationary regimes flow in three parallel vertical channels results of phenomenon analysis and mechanisms of parallel channel interaction for adiabatic condition of one-phase fluid and two-phase mixture flow are shown. (author)

  19. Matching Dyadic Distributions to Channels

    OpenAIRE

    Böcherer, Georg; Mathar, Rudolf

    2010-01-01

    Many communication channels with discrete input have non-uniform capacity achieving probability mass functions (PMF). By parsing a stream of independent and equiprobable bits according to a full prefix-free code, a modu-lator can generate dyadic PMFs at the channel input. In this work, we show that for discrete memoryless channels and for memoryless discrete noiseless channels, searching for good dyadic input PMFs is equivalent to minimizing the Kullback-Leibler distance between a dyadic PMF ...

  20. Multiplicative properties of quantum channels

    Science.gov (United States)

    Rahaman, Mizanur

    2017-08-01

    In this paper, we study the multiplicative behaviour of quantum channels, mathematically described by trace preserving, completely positive maps on matrix algebras. It turns out that the multiplicative domain of a unital quantum channel has a close connection to its spectral properties. A structure theorem (theorem 2.5), which reveals the automorphic property of an arbitrary unital quantum channel on a subalgebra, is presented. Various classes of quantum channels (irreducible, primitive, etc) are then analysed in terms of this stabilising subalgebra. The notion of the multiplicative index of a unital quantum channel is introduced, which measures the number of times a unital channel needs to be composed with itself for the multiplicative algebra to stabilise. We show that the maps that have trivial multiplicative domains are dense in completely bounded norm topology in the set of all unital completely positive maps. Some applications in quantum information theory are discussed.

  1. Long Channel Carbon Nanotube as an Alternative to Nanoscale Silicon Channels in Scaled MOSFETs

    Directory of Open Access Journals (Sweden)

    Michael Loong Peng Tan

    2013-01-01

    Full Text Available Long channel carbon nanotube transistor (CNT can be used to overcome the high electric field effects in nanoscale length silicon channel. When maximum electric field is reduced, the gate of a field-effect transistor (FET is able to gain control of the channel at varying drain bias. The device performance of a zigzag CNTFET with the same unit area as a nanoscale silicon metal-oxide semiconductor field-effect transistor (MOSFET channel is assessed qualitatively. The drain characteristic of CNTFET and MOSFET device models as well as fabricated CNTFET device are explored over a wide range of drain and gate biases. The results obtained show that long channel nanotubes can significantly reduce the drain-induced barrier lowering (DIBL effects in silicon MOSFET while sustaining the same unit area at higher current density.

  2. Local quantum channels preserving classical correlations

    International Nuclear Information System (INIS)

    Guo Zhihua; Cao Huaixin

    2013-01-01

    The aim of this paper is to discuss local quantum channels that preserve classical correlations. First, we give two equivalent characterizations of classical correlated states. Then we obtain the relationships among classical correlation-preserving local quantum channels, commutativity-preserving local quantum channels and commutativity-preserving quantum channels on each subsystem. Furthermore, for a two-qubit system, we show the general form of classical correlation-preserving local quantum channels. (paper)

  3. USACE Navigation Channels 2012

    Data.gov (United States)

    California Natural Resource Agency — This dataset represents both San Francisco and Los Angeles District navigation channel lines. All San Francisco District channel lines were digitized from CAD files...

  4. Isotachophoresis system having larger-diameter channels flowing into channels with reduced diameter and with selectable counter-flow

    Energy Technology Data Exchange (ETDEWEB)

    Mariella, Jr., Raymond P.

    2018-03-06

    An isotachophoresis system for separating a sample containing particles into discrete packets including a flow channel, the flow channel having a large diameter section and a small diameter section; a negative electrode operably connected to the flow channel; a positive electrode operably connected to the flow channel; a leading carrier fluid in the flow channel; a trailing carrier fluid in the flow channel; and a control for separating the particles in the sample into discrete packets using the leading carrier fluid, the trailing carrier fluid, the large diameter section, and the small diameter section.

  5. Sedimentary processes of the lower Monterey Fan channel and channel-mouth lobe

    Science.gov (United States)

    Klaucke, I.; Masson, D.G.; Kenyon, Neil H.; Gardner, J.V.

    2004-01-01

    The distribution of deposits, sediment transport pathways and processes on the lower Monterey Fan channel and channel-mouth lobe (CML) are studied through the integration of GLORIA and TOBI sidescan sonar data with 7-kHz subbottom profiler records and sediment cores for ground-truthing. The lower Monterey channel is characterised by an up to 30-m-deep channel with poorly developed levees and alternating muddy and silty muddy overbank deposits. The channel is discontinuous, disappearing where gradients are less than about 1:350. Ground-truthing of the large CML shows that the entire CML is characterised by widespread deposits of generally fine sand, with coarser sand at the base of turbidites. Sand is particularly concentrated in finger-like areas of low-backscatter intensity and is interpreted as the result of non-turbulent sediment-gravity flows depositing metres thick massive, fine sand. TOBI sidescan sonar data reveal recent erosional features in the form of scours, secondary channels, large flow slides, and trains of blocks at the distal end of the CML. Erosion is probably related to increasing gradient as the CML approaches Murray Fracture zone and to differential loading of sandy submarine fan deposits onto pelagic clays. Reworking of older flow slides by sediment transport processes on the lobe produces trains of blocks that are several metres in diameter and aligned parallel to the flow direction. ?? 2004 Elsevier B.V. All rights reserved.

  6. Achievable Rates of Secure Transmission in Gaussian MISO Channel with Imperfect Main Channel Estimation

    KAUST Repository

    Zhou, Xinyu; Rezki, Zouheir; Alomair, Basel; Alouini, Mohamed-Slim

    2016-01-01

    A Gaussian multiple-input single-output (MISO) fading channel is considered. We assume that the transmitter, in addition to the statistics of all channel gains, is aware instantaneously of a noisy version of the channel to the legitimate receiver. On the other hand, the legitimate receiver is aware instantaneously of its channel to the transmitter, whereas the eavesdropper instantaneously knows all channel gains. We evaluate an achievable rate using a Gaussian input without indexing an auxiliary random variable. A sufficient condition for beamforming to be optimal is provided. When the number of transmit antennas is large, beamforming also turns out to be optimal. In this case, the maximum achievable rate can be expressed in a simple closed form and scales with the logarithm of the number of transmit antennas. Furthermore, in the case when a noisy estimate of the eavesdropper’s channel is also available at the transmitter, we introduce the SNR difference and the SNR ratio criterions and derive the related optimal transmission strategies and the corresponding achievable rates.

  7. Achievable Rates of Secure Transmission in Gaussian MISO Channel with Imperfect Main Channel Estimation

    KAUST Repository

    Zhou, Xinyu

    2016-03-15

    A Gaussian multiple-input single-output (MISO) fading channel is considered. We assume that the transmitter, in addition to the statistics of all channel gains, is aware instantaneously of a noisy version of the channel to the legitimate receiver. On the other hand, the legitimate receiver is aware instantaneously of its channel to the transmitter, whereas the eavesdropper instantaneously knows all channel gains. We evaluate an achievable rate using a Gaussian input without indexing an auxiliary random variable. A sufficient condition for beamforming to be optimal is provided. When the number of transmit antennas is large, beamforming also turns out to be optimal. In this case, the maximum achievable rate can be expressed in a simple closed form and scales with the logarithm of the number of transmit antennas. Furthermore, in the case when a noisy estimate of the eavesdropper’s channel is also available at the transmitter, we introduce the SNR difference and the SNR ratio criterions and derive the related optimal transmission strategies and the corresponding achievable rates.

  8. Clofilium inhibits Slick and Slack potassium channels.

    Science.gov (United States)

    de Los Angeles Tejada, Maria; Stolpe, Kathleen; Meinild, Anne-Kristine; Klaerke, Dan A

    2012-01-01

    Slick and Slack high-conductance potassium channels have been recently discovered, and are found in the central nervous system and in the heart. Both channels are activated by Na(+) and Cl(-), and Slick channels are also inhibited by adenosine triphospate (ATP). An important role of setting the resting membrane potential and controlling the basal excitability of neurons has been suggested for these channels. In addition, no specific blockers for these channels are known up to the present. With the purpose of studying the pharmacological characteristics of Slick and Slack channels, the effects of exposure to the antiarrhythmic compound clofilium were evaluated. Clofilium was able to modulate the activity of Slick and Slack channels effectively, with a stronger effect on Slack than Slick channels. In order to evaluate the pharmacological behavior of Slick and Slack channels further, 38 commonly used potassium channel blockers were tested. Screening of these compounds did not reveal any modulators of Slick and Slack channels, except for clofilium. The present study provides a first approach towards elucidating the pharmacological characteristics of Slick and Slack channels and could be the basis for future studies aimed at developing potent and specific blockers and activators for these channels.

  9. Sensing with Ion Channels

    CERN Document Server

    Martinac, Boris

    2008-01-01

    All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

  10. Microstructural information from channeling measurements

    International Nuclear Information System (INIS)

    Quere, Y.

    1984-09-01

    Channeling is sensitive to nearly all structural changes in solids. One briefly recalls how particles are dechanneled by lattice defects and describes the main applications of channeling to materials science: detection of radiation damage, location of impurity atoms, precipitations in alloys... Channeling being a phenomenon characteristic of perfect crystals, any type of lattice imperfection (phonons, crystal defects, precipitation etc.) is expected to produce dechanneling. Consequently channeling and its opposite, dechanneling, have both been used to study structure and structural changes of materials

  11. Pharmacological modulation of SK3 channels

    DEFF Research Database (Denmark)

    Grunnet, M; Jespersen, Thomas; Angelo, K

    2001-01-01

    Small-conductance, calcium-activated K+ channels (SK channels) are voltage-insensitive channels that have been identified molecularly within the last few years. As SK channels play a fundamental role in most excitable cells and participate in afterhyperpolarization (AHP) and spike-frequency adapt...... at concentrations of 3 microM and above. Amitriptyline, a tricyclic antidepressive widely used clinically, inhibits SK3 channels with an IC50 of 39.1 +/- 10 microM (n=6)....

  12. Optimising the Quality of Experience during Channel Zapping : The Impact of Advertisements during Channel Zapping

    NARCIS (Netherlands)

    Kooij, R.E.; Klos, V.B.; Godana, B.E.; Nicolai, F.P.; Ahmed, O.K.

    2009-01-01

    Nowadays various digital television services are available. However, the user of these services experiences longer delays than the traditional analog TV while switching from channel to channel. The digital TV operator usually displays a black screen with the channel number during zapping. However,

  13. On the Capacity of the Dirty Paper Channel with Fast Fading and Discrete Channel States

    OpenAIRE

    Rini, Stefano; Shitz, Shlomo Shamai

    2016-01-01

    The "writing dirty paper" capacity result crucially dependents on the perfect channel knowledge at the transmitter as the presence of even a small uncertainty in the channel realization gravely hampers the ability of the transmitter to pre-code its transmission against the channel state. This is particularly disappointing as it implies that interference pre-coding in practical systems is effective only when the channel estimates at the users have very high precision, a condition which is gene...

  14. Downlink Channel Estimation in Cellular Systems with Antenna Arrays at Base Stations Using Channel Probing with Feedback

    Directory of Open Access Journals (Sweden)

    Biguesh Mehrzad

    2004-01-01

    Full Text Available In mobile communication systems with multisensor antennas at base stations, downlink channel estimation plays a key role because accurate channel estimates are needed for transmit beamforming. One efficient approach to this problem is channel probing with feedback. In this method, the base station array transmits probing (training signals. The channel is then estimated from feedback reports provided by the users. This paper studies the performance of the channel probing method with feedback using a multisensor base station antenna array and single-sensor users. The least squares (LS, linear minimum mean square error (LMMSE, and a new scaled LS (SLS approaches to the channel estimation are studied. Optimal choice of probing signals is investigated for each of these techniques and their channel estimation performances are analyzed. In the case of multiple LS channel estimates, the best linear unbiased estimation (BLUE scheme for their linear combining is developed and studied.

  15. TRP channels in kidney disease.

    NARCIS (Netherlands)

    Hsu, Y.J.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2007-01-01

    Mammalian TRP channel proteins form six-transmembrane cation-permeable channels that may be grouped into six subfamilies on the basis of amino acid sequence homology (TRPC, TRPV, TRPM, TRPA, TRPP, and TRPML). Recent studies of TRP channels indicate that they are involved in numerous fundamental cell

  16. Plasma channels for electron beam transport

    International Nuclear Information System (INIS)

    Schneider, R.F.; Smith, J.R.; Moffatt, M.E.; Nguyen, K.T.; Uhm, H.S.

    1988-01-01

    In recent years, there has been much interest in transport of intense relativistic electron beams using plasma channels. These channels are formed by either: ionization of an organic gas by UV photoionization or electron impact ionization of a low pressure gas utilizing a low energy (typically several hundred volts) electron gun. The second method is discussed here. As their electron gun, the authors used a 12 volt lightbulb filament which is biased to -400 volts with respect to the grounded 15 cm diameter drift tube. The electrons emitted from the filament are confined by an axial magnetic field of --100 Gauss to create a plasma channel which is less than 1 cm in radius. The channel density has been determined with Langmuir probes and the resulting line densities were found to be 10 11 to 10 12 per cm. When a multi-kiloamp electron beam is injected onto this channel, the beam space charge will eject the plasma electrons leaving the ions behind to charge neutralize the electron beam, hence allowing the beam to propagate. In this work, the authors performed experimental studies on the dynamics of the plasma channel. These include Langmuir probe measurements of a steady state (DC) channel, as well as time-resolved Langmuir probe studies of pulsed channels. In addition they performed experimental studies of beam propagation in these plasma channels. Specifically, they observed the behavior of current transport in these channels. Detailed results of beam transport and channel studies are presented

  17. Dimension measuring method for channel box

    International Nuclear Information System (INIS)

    Jo, Hiroto.

    1995-01-01

    The device of the present invention concerns detection of a channel box for spent fuel assemblies of a BWR type reactor, which measures a cross sectional shape and dimension of the channel box to check deformation amount such as expansion. That is, a customary fuel exchanger and a dimension measuring device are used. The lower end of the channel box is measured by a distance sensor of the dimension measuring device when it is aligned with a position of the distance sensor. The channel box is lowered at the same time while detecting axial position data of the fuel exchanger. The position of the channel box in an axial direction is detected based on axial position data of the fuel exchanger. The lower end of the channel box can accurately be recognized by the detection of both of them. Subsequent deformation measurement for the channel box at accurate axial positions is enabled. In addition, since the axial position data of the fuel exchanger per se are detected, an axial profile of the channel box can be measured even if a lifting speed of the channel box is varied on every region. (I.S.)

  18. On the low SNR capacity of MIMO fading channels with imperfect channel state information

    KAUST Repository

    Benkhelifa, Fatma

    2014-06-01

    The capacity of multiple-input multiple-output (MIMO) Rayleigh fading channels with full knowledge of channel state information (CSI) at both the transmitter and the receiver (CSI-TR) has been shown recently to scale at low signal-to-noise ratio (SNR) essentially as SNR log(1/SNR), independently of the number of transmit and receive antennas. In this paper, we investigate the ergodic capacity of MIMO Rayleigh fading channel with estimated channel state information at the transmitter (CSI-T) and possibly imperfect channel state information at the receiver (CSI-R). Our framework can be seen as a generalization of previous works as it can capture the perfect CSI-TR as a special case when the estimation error variance goes to zero. In this paper, we mainly focus on the low SNR regime, and we show that the capacity scales as (1-α) SNR log(1/SNR), where α is the estimation error variance. This characterization shows the loss of performance due to error estimation over the perfect channel state information at both the transmitter and the receiver. As a by-product of our new analysis, we show that our framework can be also extended to characterize the capacity of MIMO Rician fading channels at low SNR with possibly imperfect CSI-T and CSI-R. © 1972-2012 IEEE.

  19. On the low SNR capacity of MIMO fading channels with imperfect channel state information

    KAUST Repository

    Benkhelifa, Fatma

    2014-05-01

    The capacity of Multiple Input Multiple Output (MIMO) Rayleigh fading channels with full knowledge of channel state information (CSI) at both the transmitter and the receiver (CSI-TR) has been shown recently to scale at low Signal-to-Noise Ratio (SNR) essentially as SNR log(1=SNR), independently of the number of transmit and receive antennas. In this paper, we investigate the ergodic capacity of MIMO Rayleigh fading channel with estimated channel state information at the transmitter (CSI-T) and possibly imperfect channel state information at the receiver (CSI-R). Our framework can be seen as a generalization of previous works as it can capture the perfect CSI-TR as a special case when the estimation error variance goes to zero. In our work, we mainly focus on the low SNR regime and we show that the capacity scales as (1-α) SNR log(1=SNR), where α is the estimation error variance. This characterization shows the loss of performance due to error estimation over the perfect channel state information at both the transmitter and the receiver. As a by-product of our new analysis, we show that our framework can also be extended to characterize the capacity of MIMO Rician fading channels at low SNR with possibly imperfect CSI-T and CSI-R. © 2014 IFIP.

  20. An Adaptive Channel Estimation Algorithm Using Time-Frequency Polynomial Model for OFDM with Fading Multipath Channels

    Directory of Open Access Journals (Sweden)

    Liu KJ Ray

    2002-01-01

    Full Text Available Orthogonal frequency division multiplexing (OFDM is an effective technique for the future 3G communications because of its great immunity to impulse noise and intersymbol interference. The channel estimation is a crucial aspect in the design of OFDM systems. In this work, we propose a channel estimation algorithm based on a time-frequency polynomial model of the fading multipath channels. The algorithm exploits the correlation of the channel responses in both time and frequency domains and hence reduce more noise than the methods using only time or frequency polynomial model. The estimator is also more robust compared to the existing methods based on Fourier transform. The simulation shows that it has more than improvement in terms of mean-squared estimation error under some practical channel conditions. The algorithm needs little prior knowledge about the delay and fading properties of the channel. The algorithm can be implemented recursively and can adjust itself to follow the variation of the channel statistics.

  1. Demystifying Mechanosensitive Piezo Ion Channels.

    Science.gov (United States)

    Xu, X Z Shawn

    2016-06-01

    Mechanosensitive channels mediate touch, hearing, proprioception, and blood pressure regulation. Piezo proteins, including Piezo1 and Piezo2, represent a new class of mechanosensitive channels that have been reported to play key roles in most, if not all, of these modalities. The structural architecture and molecular mechanisms by which Piezos act as mechanosensitive channels, however, remain mysterious. Two new studies have now provided critical insights into the atomic structure and molecular basis of the ion permeation and mechano-gating properties of the Piezo1 channel.

  2. Calcium channel blocker overdose

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium-channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium-channel blockers are a type of medicine used ...

  3. VKCDB: Voltage-gated potassium channel database

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2004-01-01

    Full Text Available Abstract Background The family of voltage-gated potassium channels comprises a functionally diverse group of membrane proteins. They help maintain and regulate the potassium ion-based component of the membrane potential and are thus central to many critical physiological processes. VKCDB (Voltage-gated potassium [K] Channel DataBase is a database of structural and functional data on these channels. It is designed as a resource for research on the molecular basis of voltage-gated potassium channel function. Description Voltage-gated potassium channel sequences were identified by using BLASTP to search GENBANK and SWISSPROT. Annotations for all voltage-gated potassium channels were selectively parsed and integrated into VKCDB. Electrophysiological and pharmacological data for the channels were collected from published journal articles. Transmembrane domain predictions by TMHMM and PHD are included for each VKCDB entry. Multiple sequence alignments of conserved domains of channels of the four Kv families and the KCNQ family are also included. Currently VKCDB contains 346 channel entries. It can be browsed and searched using a set of functionally relevant categories. Protein sequences can also be searched using a local BLAST engine. Conclusions VKCDB is a resource for comparative studies of voltage-gated potassium channels. The methods used to construct VKCDB are general; they can be used to create specialized databases for other protein families. VKCDB is accessible at http://vkcdb.biology.ualberta.ca.

  4. Morphology of channels and channel-sand bodies in the Glauconitic sandstone member (Upper Mannville), Little Bow area, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, J.C.; Hermanson, S.W.; Lawton, D.C.

    1982-12-01

    Large channels in the Glauconitic sandstone member of southern Alberta have proved to be difficult exploration targets because of an irregular distribution of reservoir sands within the channels. In the Little Bow area, two channels are present in the lower part of the Glauconitic member and have cut into the underlying Calcareous member. The channels can be recognized where they truncate regional markers of the Calcareous member -- the Bantry shale and Ostracod limestone, and where channel-fill deposits exhibit uniform geophysical log characters, indicating sandstone- or mudstone-filled reaches. Sediments of the Glauconitic member adjacent to the channels comprise a series of splay sandstones and mudstones that prograded into interdistributary bays of the lower delta plain. The two channels associated with these deposits are interpreted as distributary channels. Sand bodies within the channels formed as lateral bars and are isolated by mudstones which mark the abandoned stream course. Geological exploration for these discontinuous channel sandstones is difficult, and high-resolutio seismic data integrated with sound geologic modelling are critical for successful prospect delineation.

  5. Glucose Induces Slow-Wave Sleep by Exciting the Sleep-Promoting Neurons in the Ventrolateral Preoptic Nucleus: A New Link between Sleep and Metabolism.

    Science.gov (United States)

    Varin, Christophe; Rancillac, Armelle; Geoffroy, Hélène; Arthaud, Sébastien; Fort, Patrice; Gallopin, Thierry

    2015-07-08

    Sleep-active neurons located in the ventrolateral preoptic nucleus (VLPO) play a crucial role in the induction and maintenance of slow-wave sleep (SWS). However, the cellular and molecular mechanisms responsible for their activation at sleep onset remain poorly understood. Here, we test the hypothesis that a rise in extracellular glucose concentration in the VLPO can promote sleep by increasing the activity of sleep-promoting VLPO neurons. We find that infusion of a glucose concentration into the VLPO of mice promotes SWS and increases the density of c-Fos-labeled neurons selectively in the VLPO. Moreover, we show in patch-clamp recordings from brain slices that VLPO neurons exhibiting properties of sleep-promoting neurons are selectively excited by glucose within physiological range. This glucose-induced excitation implies the catabolism of glucose, leading to a closure of ATP-sensitive potassium (KATP) channels. The extracellular glucose concentration monitors the gating of KATP channels of sleep-promoting neurons, highlighting that these neurons can adapt their excitability according to the extracellular energy status. Together, these results provide evidence that glucose may participate in the mechanisms of SWS promotion and/or consolidation. Although the brain circuitry underlying vigilance states is well described, the molecular mechanisms responsible for sleep onset remain largely unknown. Combining in vitro and in vivo experiments, we demonstrate that glucose likely contributes to sleep onset facilitation by increasing the excitability of sleep-promoting neurons in the ventrolateral preoptic nucleus (VLPO). We find here that these neurons integrate energetic signals such as ambient glucose directly to regulate vigilance states accordingly. Glucose-induced excitation of sleep-promoting VLPO neurons should therefore be involved in the drowsiness that one feels after a high-sugar meal. This novel mechanism regulating the activity of VLPO neurons reinforces the

  6. A Mathematical Model of Membrane Gas Separation with Energy Transfer by Molecules of Gas Flowing in a Channel to Molecules Penetrating this Channel from the Adjacent Channel

    Directory of Open Access Journals (Sweden)

    Szwast Maciej

    2015-06-01

    Full Text Available The paper presents the mathematical modelling of selected isothermal separation processes of gaseous mixtures, taking place in plants using membranes, in particular nonporous polymer membranes. The modelling concerns membrane modules consisting of two channels - the feeding and the permeate channels. Different shapes of the channels cross-section were taken into account. Consideration was given to co-current and counter-current flows, for feeding and permeate streams, respectively, flowing together with the inert gas receiving permeate. In the proposed mathematical model it was considered that pressure of gas changes along the length of flow channels was the result of both - the drop of pressure connected with flow resistance, and energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel. The literature on membrane technology takes into account only the drop of pressure connected with flow resistance. Consideration given to energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel constitute the essential novelty in the current study. The paper also presents results of calculations obtained by means of a computer program which used equations of the derived model. Physicochemical data concerning separation of the CO2/CH4 mixture with He as the sweep gas and data concerning properties of the membrane made of PDMS were assumed for calculations.

  7. Calcium channel blocker poisoning

    Directory of Open Access Journals (Sweden)

    Miran Brvar

    2005-04-01

    Full Text Available Background: Calcium channel blockers act at L-type calcium channels in cardiac and vascular smooth muscles by preventing calcium influx into cells with resultant decrease in vascular tone and cardiac inotropy, chronotropy and dromotropy. Poisoning with calcium channel blockers results in reduced cardiac output, bradycardia, atrioventricular block, hypotension and shock. The findings of hypotension and bradycardia should suggest poisoning with calcium channel blockers.Conclusions: Treatment includes immediate gastric lavage and whole-bowel irrigation in case of ingestion of sustainedrelease products. All patients should receive an activated charcoal orally. Specific treatment includes calcium, glucagone and insulin, which proved especially useful in shocked patients. Supportive care including the use of catecholamines is not always effective. In the setting of failure of pharmacological therapy transvenous pacing, balloon pump and cardiopulmonary by-pass may be necessary.

  8. Channel selection for automatic seizure detection

    DEFF Research Database (Denmark)

    Duun-Henriksen, Jonas; Kjaer, Troels Wesenberg; Madsen, Rasmus Elsborg

    2012-01-01

    Objective: To investigate the performance of epileptic seizure detection using only a few of the recorded EEG channels and the ability of software to select these channels compared with a neurophysiologist. Methods: Fifty-nine seizures and 1419 h of interictal EEG are used for training and testing...... of an automatic channel selection method. The characteristics of the seizures are extracted by the use of a wavelet analysis and classified by a support vector machine. The best channel selection method is based upon maximum variance during the seizure. Results: Using only three channels, a seizure detection...... sensitivity of 96% and a false detection rate of 0.14/h were obtained. This corresponds to the performance obtained when channels are selected through visual inspection by a clinical neurophysiologist, and constitutes a 4% improvement in sensitivity compared to seizure detection using channels recorded...

  9. UMTS Common Channel Sensitivity Analysis

    DEFF Research Database (Denmark)

    Pratas, Nuno; Rodrigues, António; Santos, Frederico

    2006-01-01

    and as such it is necessary that both channels be available across the cell radius. This requirement makes the choice of the transmission parameters a fundamental one. This paper presents a sensitivity analysis regarding the transmission parameters of two UMTS common channels: RACH and FACH. Optimization of these channels...... is performed and values for the key transmission parameters in both common channels are obtained. On RACH these parameters are the message to preamble offset, the initial SIR target and the preamble power step while on FACH it is the transmission power offset....

  10. Defect Distributions in Channeling Experiments

    DEFF Research Database (Denmark)

    Andersen, Hans Henrik; Sigmund, P.

    1965-01-01

    A simple collision model allows to calculate energy losses of perfectly channeled particles. The maximum energy loss is related in a simple way to the displacement energy of lattice atoms perpendicular to the channel. From that, one obtains rather definite predictions on the possibility...... of radiation damage by channeled particles. As an application, one gets a necessary criterion for the occurence of super tails in channeling experiments. The theory involves some assumptions on the behaviour of Born-Mayer potentials which are verified by comparison to experimental displacement energies....

  11. Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission

    Science.gov (United States)

    Du, Xiaona; Hao, Han; Gigout, Sylvain; Huang, Dongyang; Yang, Yuehui; Li, Li; Wang, Caixue; Sundt, Danielle; Jaffe, David B.; Zhang, Hailin; Gamper, Nikita

    2014-01-01

    Peripheral sensory ganglia contain somata of afferent fibres conveying somatosensory inputs to the central nervous system. Growing evidence suggests that the somatic/perisomatic region of sensory neurons can influence peripheral sensory transmission. Control of resting membrane potential (Erest) is an important mechanism regulating excitability, but surprisingly little is known about how Erest is regulated in sensory neuron somata or how changes in somatic/perisomatic Erest affect peripheral sensory transmission. We first evaluated the influence of several major ion channels on Erest in cultured small-diameter, mostly capsaicin-sensitive (presumed nociceptive) dorsal root ganglion (DRG) neurons. The strongest and most prevalent effect on Erest was achieved by modulating M channels, K2P and 4-aminopiridine-sensitive KV channels, while hyperpolarization-activated cyclic nucleotide-gated, voltage-gated Na+, and T-type Ca2+ channels to a lesser extent also contributed to Erest. Second, we investigated how varying somatic/perisomatic membrane potential, by manipulating ion channels of sensory neurons within the DRG, affected peripheral nociceptive transmission in vivo. Acute focal application of M or KATP channel enhancers or a hyperpolarization-activated cyclic nucleotide-gated channel blocker to L5 DRG in vivo significantly alleviated pain induced by hind paw injection of bradykinin. Finally, we show with computational modelling how somatic/perisomatic hyperpolarization, in concert with the low-pass filtering properties of the t-junction within the DRG, can interfere with action potential propagation. Our study deciphers a complement of ion channels that sets the somatic Erest of nociceptive neurons and provides strong evidence for a robust filtering role of the somatic and perisomatic compartments of peripheral nociceptive neuron. PMID:25168672

  12. On the ergodic secrecy capacity of the wiretap channel under imperfect main channel estimation

    KAUST Repository

    Rezki, Zouheir

    2011-11-01

    The ergodic secrecy capacity of the wiretap channel is known when the main channel (between the transmitter and the legitimate receiver) state information (CSI) is perfect at the transmitter and the coherence period is sufficiently large to enable random coding arguments in each block. In a fast fading scenario, when the codeword length spans many coherence periods, the secrecy capacity is still not known. In this paper, we present a framework that characterizes this secrecy capacity under imperfect main channel estimation at the transmitter. Inner and outer bounds on the ergodic secrecy capacity are derived for a class of independent identically distributed (i.i.d.) fading channels. The achievable rate is a simple on-off scheme using a Gaussian input. The upper bound is obtained using an appropriate correlation scheme of the main and the eavesdropper channels. The upper and the lower bounds coincide with recently derived ones in the perfect main CSI extreme. Furthermore, the lower bound matches the upper bound in no main CSI extreme, where the secrecy capacity is equal to zero. Numerical results are provided for independent identically distributed (i.i.d.) Rayleigh fading channels. © 2011 IEEE.

  13. Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells.

    Directory of Open Access Journals (Sweden)

    Erin K Purcell

    Full Text Available The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitability are unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type potassium current by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (~30%, ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology.

  14. Dependence of Ca outflow and depression of frog myocardium contraction on ryodipine concentration.

    Science.gov (United States)

    Narusevicius, E; Gendviliene, V; Macianskiene, R; Hmelj-Dunai, G; Velena, A; Duburs, G

    1988-02-01

    The effect of ryodipine on calcium outflow from tissues, on contraction force, the duration of action potentials and the relaxation phase time-constant in the contraction cycles of myocardial strips was studied using frog heart preparations. It was found that calcium outflow (delta Ca) as a function on ryodipine concentration can be represented as: (formula; see text) A linear correlation exists between Ca2+, contraction blocking and the shortening of the action potential in the presence of various ryodipine concentrations. Ryodipine (10(-5) mol/l) decreased the relaxation time-constant by about 20% as compared to controls. It was concluded that calcium outflow from myocardial tissues in response to ryodipine is due to blockade of calcium entry into the cells and their output through the Na+--Ca2+ exchange system. Frog heart myocardial contractions are essentially under the control of calcium entry through sarcolemmal calcium channels.

  15. Post-Translational Modifications of TRP Channels

    Directory of Open Access Journals (Sweden)

    Olaf Voolstra

    2014-04-01

    Full Text Available Transient receptor potential (TRP channels constitute an ancient family of cation channels that have been found in many eukaryotic organisms from yeast to human. TRP channels exert a multitude of physiological functions ranging from Ca2+ homeostasis in the kidney to pain reception and vision. These channels are activated by a wide range of stimuli and undergo covalent post-translational modifications that affect and modulate their subcellular targeting, their biophysical properties, or channel gating. These modifications include N-linked glycosylation, protein phosphorylation, and covalent attachment of chemicals that reversibly bind to specific cysteine residues. The latter modification represents an unusual activation mechanism of ligand-gated ion channels that is in contrast to the lock-and-key paradigm of receptor activation by its agonists. In this review, we summarize the post-translational modifications identified on TRP channels and, when available, explain their physiological role.

  16. Optical Communications Channel Combiner

    Science.gov (United States)

    Quirk, Kevin J.; Quirk, Kevin J.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    NASA has identified deep-space optical communications links as an integral part of a unified space communication network in order to provide data rates in excess of 100 Mb/s. The distances and limited power inherent in a deep-space optical downlink necessitate the use of photon-counting detectors and a power-efficient modulation such as pulse position modulation (PPM). For the output of each photodetector, whether from a separate telescope or a portion of the detection area, a communication receiver estimates a log-likelihood ratio for each PPM slot. To realize the full effective aperture of these receivers, their outputs must be combined prior to information decoding. A channel combiner was developed to synchronize the log-likelihood ratio (LLR) sequences of multiple receivers, and then combines these into a single LLR sequence for information decoding. The channel combiner synchronizes the LLR sequences of up to three receivers and then combines these into a single LLR sequence for output. The channel combiner has three channel inputs, each of which takes as input a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The cross-correlation between the channels LLR time series are calculated and used to synchronize the sequences prior to combining. The output of the channel combiner is a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The unit is controlled through a 1 Gb/s Ethernet UDP/IP interface. A deep-space optical communication link has not yet been demonstrated. This ground-station channel combiner was developed to demonstrate this capability and is unique in its ability to process such a signal.

  17. On the capacity of nakagami-m fading Channels with full channel state information at low SNR

    KAUST Repository

    Rezki, Zouheir

    2012-06-01

    The capacity of flat Rayleigh fading channels with full channel state information (CSI) at the transmitter and at the receiver at asymptotically low SNR has been recently shown to scale essentially as SNR log(1/SNR)}. In this paper, we investigate the Nakagami-m fading channel capacity with full CSI, and show that the capacity of this channel scales essentially as m/ Omega SNR log(1/SNR), where m is the Nakagami-m fading parameter and where Ω is the channel mean-square. We also show that one-bit CSI at the transmitter is enough to achieve this asymptotic capacity using an On-Off power control scheme. Our framework may be seen as a generalization of previous works as it captures the Rayleigh fading channel as a special case by taking m=1. © 2012 IEEE.

  18. Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves.

    Science.gov (United States)

    Bierer, Julie Arenberg; Faulkner, Kathleen F

    2010-04-01

    The goal of this study was to evaluate the ability of a threshold measure, made with a restricted electrode configuration, to identify channels exhibiting relatively poor spatial selectivity. With a restricted electrode configuration, channel-to-channel variability in threshold may reflect variations in the interface between the electrodes and auditory neurons (i.e., nerve survival, electrode placement, and tissue impedance). These variations in the electrode-neuron interface should also be reflected in psychophysical tuning curve (PTC) measurements. Specifically, it is hypothesized that high single-channel thresholds obtained with the spatially focused partial tripolar (pTP) electrode configuration are predictive of wide or tip-shifted PTCs. Data were collected from five cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp., Sylmar, CA). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the pTP configuration for which a fraction of current (sigma) from a center-active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. Forward-masked PTCs were obtained for channels with the highest, lowest, and median tripolar (sigma = 1 or 0.9) thresholds. The probe channel and level were fixed and presented with either the monopolar (sigma = 0) or a more focused pTP (sigma > or = 0.55) configuration. The masker channel and level were varied, whereas the configuration was fixed to sigma = 0.5. A standard, three-interval, two-alternative forced choice procedure was used for thresholds and masked levels. Single-channel threshold and variability in threshold across channels systematically increased as the compensating current, sigma, increased and the presumed electrical field became more focused. Across subjects, channels with the highest single-channel thresholds, when measured with a

  19. Information transfer through quantum channels

    International Nuclear Information System (INIS)

    Kretschmann, D.

    2007-01-01

    This PhD thesis represents work done between Aug. 2003 and Dec. 2006 in Reinhard F. Werner's quantum information theory group at Technische Universitaet Braunschweig, and Artur Ekert's Centre for Quantum Computation at the University of Cambridge. My thesis falls into the field of abstract quantum information theory. This work investigates both fundamental properties of quantum channels and their asymptotic capacities for classical as well as quantum information transfer. Stinespring's theorem is the basic structure theorem for quantum channels. It implies that every quantum channel can be represented as a unitary evolution on an enlarged system. In Ch. 3 we present a continuity theorem for Stinespring's representation: two quantum channels are similar if and only if it is possible to find unitary implementations that are likewise similar, with dimension-independent norm bounds. The continuity theorem allows to derive a formulation of the information-disturbance tradeoff in terms of quantum channels, and a continuity estimate for the no-broadcasting principle. In Ch. 4 we then apply the continuity theorem to give a strengthened no-go proof for quantum bit commitment, an important cryptographic primitive. This result also provides a natural characterization of those protocols that fall outside the standard setting of unconditional security, and thus may allow secure bit commitment. We present a new such protocol whose security relies on decoherence in the receiver's lab. Ch. 5 reviews the capacities of quantum channels for the transfer of both classical and quantum information, and investigates several variations in the notion of channel capacity. Memory effects are then investigated in detail in Ch. 6. We advertise a model which is sufficiently general to encompass all causal automata: every quantum process in which the outputs up to any given time t do not depend on the inputs at times t'>t can be represented as a concatenated memory channel. We then explain how

  20. Information transfer through quantum channels

    Energy Technology Data Exchange (ETDEWEB)

    Kretschmann, D.

    2007-03-12

    This PhD thesis represents work done between Aug. 2003 and Dec. 2006 in Reinhard F. Werner's quantum information theory group at Technische Universitaet Braunschweig, and Artur Ekert's Centre for Quantum Computation at the University of Cambridge. My thesis falls into the field of abstract quantum information theory. This work investigates both fundamental properties of quantum channels and their asymptotic capacities for classical as well as quantum information transfer. Stinespring's theorem is the basic structure theorem for quantum channels. It implies that every quantum channel can be represented as a unitary evolution on an enlarged system. In Ch. 3 we present a continuity theorem for Stinespring's representation: two quantum channels are similar if and only if it is possible to find unitary implementations that are likewise similar, with dimension-independent norm bounds. The continuity theorem allows to derive a formulation of the information-disturbance tradeoff in terms of quantum channels, and a continuity estimate for the no-broadcasting principle. In Ch. 4 we then apply the continuity theorem to give a strengthened no-go proof for quantum bit commitment, an important cryptographic primitive. This result also provides a natural characterization of those protocols that fall outside the standard setting of unconditional security, and thus may allow secure bit commitment. We present a new such protocol whose security relies on decoherence in the receiver's lab. Ch. 5 reviews the capacities of quantum channels for the transfer of both classical and quantum information, and investigates several variations in the notion of channel capacity. Memory effects are then investigated in detail in Ch. 6. We advertise a model which is sufficiently general to encompass all causal automata: every quantum process in which the outputs up to any given time t do not depend on the inputs at times t'>t can be represented as a concatenated memory

  1. TRP channels: an overview

    DEFF Research Database (Denmark)

    Pedersen, Stine Falsig; Owsianik, Grzegorz; Nilius, Bernd

    2005-01-01

    The TRP ("transient receptor potential") family of ion channels now comprises more than 30 cation channels, most of which are permeable for Ca2+, and some also for Mg2+. On the basis of sequence homology, the TRP family can be divided in seven main subfamilies: the TRPC ('Canonical') family......, the TRPV ('Vanilloid') family, the TRPM ('Melastatin') family, the TRPP ('Polycystin') family, the TRPML ('Mucolipin') family, the TRPA ('Ankyrin') family, and the TRPN ('NOMPC') family. The cloning and characterization of members of this cation channel family has exploded during recent years, leading...... to a plethora of data on the roles of TRPs in a variety of tissues and species, including mammals, insects, and yeast. The present review summarizes the most pertinent recent evidence regarding the structural and functional properties of TRP channels, focusing on the regulation and physiology of mammalian TRPs....

  2. On Channel Estimation for OFDM/TDM Using MMSE-FDE in a Fast Fading Channel

    Directory of Open Access Journals (Sweden)

    Gacanin Haris

    2009-01-01

    Full Text Available Abstract MMSE-FDE can improve the transmission performance of OFDM combined with time division multiplexing (OFDM/TDM, but knowledge of the channel state information and the noise variance is required to compute the MMSE weight. In this paper, a performance evaluation of OFDM/TDM using MMSE-FDE with pilot-assisted channel estimation over a fast fading channel is presented. To improve the tracking ability against fast fading a robust pilot-assisted channel estimation is presented that uses time-domain filtering on a slot-by-slot basis and frequency-domain interpolation. We derive the mean square error (MSE of the channel estimator and then discuss a tradeoff between improving the tracking ability against fading and the noise reduction. The achievable bit error rate (BER performance is evaluated by computer simulation and compared with conventional OFDM. It is shown that the OFDM/TDM using MMSE-FDE achieves a lower BER and a better tracking ability against fast fading in comparison with conventional OFDM.

  3. A Crash Course in Calcium Channels.

    Science.gov (United States)

    Zamponi, Gerald W

    2017-12-20

    Much progress has been made in understanding the molecular physiology and pharmacology of calcium channels. Recently, there have been tremendous advances in learning about calcium channel structure and function through crystallography and cryo-electron microscopy studies. Here, I will give an overview of our knowledge about calcium channels, and highlight two recent studies that give important insights into calcium channel structure.

  4. Effects of dislocations on electron channeling

    International Nuclear Information System (INIS)

    George, Juby; Pathak, A P

    2009-01-01

    The phenomenon of electron channeling in a crystal affected by dislocations is considered. Earlier we had considered the quantum aspects of the positron channeling in a crystal bent by dislocations where the effects of longitudinal motion of the particle were also considered along with the transverse motion. In this paper, the effective potential for the electron case is found for the two regions of dislocation-affected channel. There is considerable shift in the potential minima due to dislocations. The frequency and the corresponding spectrum of the channeling radiation due to electrons channeling through the perfect channel and the two regions of dislocation-affected channels are calculated. The spectral distribution of radiation intensity changes with the parameters of dislocation. The continuity of wavefunctions and their derivatives is used at the three boundaries and the reflection and transmission coefficients are found using these boundary conditions in the same way as in the positron case.

  5. Omni channel fashion shopping

    NARCIS (Netherlands)

    Kemperman, A.D.A.M.; van Delft, L.; Borgers, A.W.J.; Pantano, E.

    2015-01-01

    This chapter gives insight into consumers' online and offline fashion shopping behavior, consumers' omni-channel usage during the shopping process, and consumer fashion shopper segments. Based on a literature review, omni-channel shopping behavior during the shopping process was operationalized.

  6. Flavonoid Regulation of HCN2 Channels*

    Science.gov (United States)

    Carlson, Anne E.; Rosenbaum, Joel C.; Brelidze, Tinatin I.; Klevit, Rachel E.; Zagotta, William N.

    2013-01-01

    The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating. Fisetin sped HCN2 activation and shifted the conductance-voltage relationship to more depolarizing potentials with a half-maximal effective concentration (EC50) of 1.8 μm. When applied together, fisetin and cAMP regulated HCN2 gating in a nonadditive fashion. Fisetin did not potentiate HCN2 channels lacking their CNBD, and two independent fluorescence-based binding assays reported that fisetin bound to the purified CNBD. These data suggest that the CNBD mediates the fisetin potentiation of HCN2 channels. Moreover, binding assays suggest that fisetin and cAMP partially compete for binding to the CNBD. NMR experiments demonstrated that fisetin binds within the cAMP-binding pocket, interacting with some of the same residues as cAMP. Together, these data indicate that fisetin is a partial agonist for HCN2 channels. PMID:24085296

  7. Transportation channels calculation method in MATLAB

    International Nuclear Information System (INIS)

    Averyanov, G.P.; Budkin, V.A.; Dmitrieva, V.V.; Osadchuk, I.O.; Bashmakov, Yu.A.

    2014-01-01

    Output devices and charged particles transport channels are necessary components of any modern particle accelerator. They differ both in sizes and in terms of focusing elements depending on particle accelerator type and its destination. A package of transport line designing codes for magnet optical channels in MATLAB environment is presented in this report. Charged particles dynamics in a focusing channel can be studied easily by means of the matrix technique. MATLAB usage is convenient because its information objects are matrixes. MATLAB allows the use the modular principle to build the software package. Program blocks are small in size and easy to use. They can be executed separately or commonly. A set of codes has a user-friendly interface. Transport channel construction consists of focusing lenses (doublets and triplets). The main of the magneto-optical channel parameters are total length and lens position and parameters of the output beam in the phase space (channel acceptance, beam emittance - beam transverse dimensions, particles divergence and image stigmaticity). Choice of the channel operation parameters is based on the conditions for satisfying mutually competing demands. And therefore the channel parameters calculation is carried out by using the search engine optimization techniques.

  8. A Perspective on the MIMO Wiretap Channel

    KAUST Repository

    Oggier, Frederique; Hassibi, Babak

    2015-01-01

    A wiretap channel is a communication channel between a transmitter Alice and a legitimate receiver Bob, in the presence of an eavesdropper Eve. The goal of communication is to achieve reliability between Alice and Bob, but also confidentiality despite Eve’s presence. Wiretap channels are declined in all kinds of flavors, depending on the underlying channels used by the three players: discrete memoryless channels, additive Gaussian noise channels, or fading channels, to name a few. In this survey, we focus on the case where the three players use multiple-antenna channels with Gaussian noise to communicate. After summarizing known results for multiple-input–multiple-output (MIMO) channels, both in terms of achievable reliable data rate (capacity) and code design, we introduce the MIMO wiretap channel. We then state the MIMO wiretap capacity, summarize the idea of the proof(s) behind this result, and comment on the insights given by the proofs on the physical meaning of the secrecy capacity. We finally discuss design criteria for MIMO wiretap codes.

  9. A Perspective on the MIMO Wiretap Channel

    KAUST Repository

    Oggier, Frederique

    2015-10-01

    A wiretap channel is a communication channel between a transmitter Alice and a legitimate receiver Bob, in the presence of an eavesdropper Eve. The goal of communication is to achieve reliability between Alice and Bob, but also confidentiality despite Eve’s presence. Wiretap channels are declined in all kinds of flavors, depending on the underlying channels used by the three players: discrete memoryless channels, additive Gaussian noise channels, or fading channels, to name a few. In this survey, we focus on the case where the three players use multiple-antenna channels with Gaussian noise to communicate. After summarizing known results for multiple-input–multiple-output (MIMO) channels, both in terms of achievable reliable data rate (capacity) and code design, we introduce the MIMO wiretap channel. We then state the MIMO wiretap capacity, summarize the idea of the proof(s) behind this result, and comment on the insights given by the proofs on the physical meaning of the secrecy capacity. We finally discuss design criteria for MIMO wiretap codes.

  10. MARKETING CHANNELS

    Directory of Open Access Journals (Sweden)

    Ljiljana Stošić Mihajlović

    2014-07-01

    Full Text Available Marketing channel is a set of entities and institutions, completion of distribution and marketing activities, attend the efficient and effective networking of producers and consumers. Marketing channels include the total flows of goods, money and information taking place between the institutions in the system of marketing, establishing a connection between them. The functions of the exchange, the physical supply and service activities, inherent in the system of marketing and trade. They represent paths which products and services are moving after the production, which will ultimately end up buying and eating by the user.

  11. Channel Bottom Morphology in the Deltaic Reach of the Song Hau (mekong) River Channel in Vietnam

    Science.gov (United States)

    Allison, M. A.; Weathers, H. D., III; Meselhe, E. A.

    2016-02-01

    Boat-based, channel bathymetry and bankline elevation studies were conducted in the tidal and estuarine Mekong River channel using multibeam bathymetry and LIDAR corrected for elevation by RTK satellite positioning. Two mapping campaigns, one at high discharge in October 2014 and one at low discharge in March 2015, were conducted in the lower 100 km reach of the Song Hau distributary channel to (1) examine bottom morphology and its relationship to sediment transport, and (2) to provide information to setup the grid for a multi-dimensional and reduced complexity models of channel hydrodynamics and sediment dynamics. Sand fields were identified in multibeam data by the presence of dunes that were as large as 2-4 m high and 40-80 m wavelength and by clean sands in bottom grabs. Extensive areas of sand at the head and toe of mid-channel islands displayed 10-25 m diameter circular pits that could be correlated with bucket dredge, sand mining activities observed at some of the sites. Large areas of the channel floor were relict (containing little or no modern sediment) in the high discharge campaign, identifiable by the presence of along channel erosional furrows and terraced outcrops along the channel floor and margins. Laterally extensive flat areas were also observed in the channel thalweg. Both these and the relict areas were sampled by bottom grab as stiff silty clays. Complex cross-channel combinations of these morphologies were observed in some transects, suggesting strong bottom steering of tidal and riverine currents. Relative to high discharge, transects above and below the salt penetration limit showed evidence of shallowing in the thalweg and adjacent sloping areas at low discharge in March 2015. This shallowing, combined with the reduced extent of sand fields and furrowed areas, and soft muds in grabs, suggests seasonal trapping of fine grained sediment is occurring by estuarine and tidal circulation.

  12. Interior point decoding for linear vector channels

    International Nuclear Information System (INIS)

    Wadayama, T

    2008-01-01

    In this paper, a novel decoding algorithm for low-density parity-check (LDPC) codes based on convex optimization is presented. The decoding algorithm, called interior point decoding, is designed for linear vector channels. The linear vector channels include many practically important channels such as inter-symbol interference channels and partial response channels. It is shown that the maximum likelihood decoding (MLD) rule for a linear vector channel can be relaxed to a convex optimization problem, which is called a relaxed MLD problem

  13. Interior point decoding for linear vector channels

    Energy Technology Data Exchange (ETDEWEB)

    Wadayama, T [Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Aichi, 466-8555 (Japan)], E-mail: wadayama@nitech.ac.jp

    2008-01-15

    In this paper, a novel decoding algorithm for low-density parity-check (LDPC) codes based on convex optimization is presented. The decoding algorithm, called interior point decoding, is designed for linear vector channels. The linear vector channels include many practically important channels such as inter-symbol interference channels and partial response channels. It is shown that the maximum likelihood decoding (MLD) rule for a linear vector channel can be relaxed to a convex optimization problem, which is called a relaxed MLD problem.

  14. LDGM Codes for Channel Coding and Joint Source-Channel Coding of Correlated Sources

    Directory of Open Access Journals (Sweden)

    Javier Garcia-Frias

    2005-05-01

    Full Text Available We propose a coding scheme based on the use of systematic linear codes with low-density generator matrix (LDGM codes for channel coding and joint source-channel coding of multiterminal correlated binary sources. In both cases, the structures of the LDGM encoder and decoder are shown, and a concatenated scheme aimed at reducing the error floor is proposed. Several decoding possibilities are investigated, compared, and evaluated. For different types of noisy channels and correlation models, the resulting performance is very close to the theoretical limits.

  15. Recent Advances in the Cellular and Molecular Mechanisms of Hypothalamic Neuronal Glucose Detection

    Directory of Open Access Journals (Sweden)

    Xavier Fioramonti

    2017-11-01

    Full Text Available The hypothalamus have been recognized for decades as one of the major brain centers for the control of energy homeostasis. This area contains specialized neurons able to detect changes in nutrients level. Among them, glucose-sensing neurons use glucose as a signaling molecule in addition to its fueling role. In this review we will describe the different sub-populations of glucose-sensing neurons present in the hypothalamus and highlight their nature in terms of neurotransmitter/neuropeptide expression. This review will particularly discuss whether pro-opiomelanocortin (POMC neurons from the arcuate nucleus are directly glucose-sensing. In addition, recent observations in glucose-sensing suggest a subtle system with different mechanisms involved in the detection of changes in glucose level and their involvement in specific physiological functions. Several data point out the critical role of reactive oxygen species (ROS and mitochondria dynamics in the detection of increased glucose. This review will also highlight that ATP-dependent potassium (KATP channels are not the only channels mediating glucose-sensing and discuss the new role of transient receptor potential canonical channels (TRPC. We will discuss the recent advances in the determination of glucose-sensing machinery and propose potential line of research needed to further understand the regulation of brain glucose detection.

  16. Three-dimensional (3-D) video systems: bi-channel or single-channel optics?

    Science.gov (United States)

    van Bergen, P; Kunert, W; Buess, G F

    1999-11-01

    This paper presents the results of a comparison between two different three-dimensional (3-D) video systems, one with single-channel optics, the other with bi-channel optics. The latter integrates two lens systems, each transferring one half of the stereoscopic image; the former uses only one lens system, similar to a two-dimensional (2-D) endoscope, which transfers the complete stereoscopic picture. In our training centre for minimally invasive surgery, surgeons were involved in basic and advanced laparoscopic courses using both a 2-D system and the two 3-D video systems. They completed analog scale questionnaires in order to record a subjective impression of the relative convenience of operating in 2-D and 3-D vision, and to identify perceived deficiencies in the 3-D system. As an objective test, different experimental tasks were developed, in order to measure performance times and to count pre-defined errors made while using the two 3-D video systems and the 2-D system. Using the bi-channel optical system, the surgeon has a heightened spatial perception, and can work faster and more safely than with a single-channel system. However, single-channel optics allow the use of an angulated endoscope, and the free rotation of the optics relative to the camera, which is necessary for some operative applications.

  17. Structure of conducting channel of lightning

    International Nuclear Information System (INIS)

    Alanakyan, Yu. R.

    2013-01-01

    The spatial distribution of the plasma density in a lightning channel is studied theoretically. It is shown that the electric-field double layer is formed at the channel boundary. In this case, the electron temperature changes abruptly and ions are accelerated by the electric field of the double layer. The ion momentum flux density is close to the surrounding gas pressure. Cleaning of the channel from heavy particles occurs in particle-exchange processes between the plasma channel and the surrounding air. Hydrogen ions are accumulated inside the expanding channel from the surrounding air, which is enriched by hydrogen-contained molecules. In this case, the plasma channel is unstable and splits to a chain of equidistant bunches of plasma. The hydrogen-enrich bunches burn diffusely after recombination exhibiting the bead lightning behavior

  18. Multi-channel Kondo necklace

    International Nuclear Information System (INIS)

    Fazekas, P.; Kee Haeyoung.

    1993-06-01

    A multi-channel generalization of Doniach's Kondo necklace model is formulated, and its phase diagram studied in the mean-field approximation. Our intention is to introduce the possible simplest model which displays some of the features expected from the overscreened Kondo lattice. The N conduction electron channels are represented by N sets of pseudospins τ J , j = 1 1,..., N which are all antiferromagnetically coupled to a periodic array of modul S = 1/2 spins. Exploiting permutation symmetry in the channel index j allows us to write down the self-consistency equation for general N. For N > 2, we find that the critical temperature is rising with increasing Kondo interaction; we interpret this effect by pointing out that the Kondo coupling creates the composite pseudospin objects which undergo an ordering transition. The relevance of our findings to the underlying fermionic multi-channel problem is discussed. (author). 33 refs, 1 fig

  19. The elusive character of discontinuous deep-water channels: New insights from Lucia Chica channel system, offshore California

    Science.gov (United States)

    Maier, K.L.; Fildani, A.; Paull, C.K.; Graham, S.A.; McHargue, T.R.; Caress, D.W.; McGann, M.

    2011-01-01

    New high-resolution autonomous underwater vehicle (AUV) seafloor images, with 1 m lateral resolution and 0.3 m vertical resolution, reveal unexpected seafloor rugosity and low-relief (thalwegs were interpreted originally from lower-resolution images, but newly acquired AUV data indicate that a single sinuous channel fed a series of discontinuous lower-relief channels. These discontinuous channels were created by at least four avulsion events. Channel relief, defined as the height from the thalweg to the levee crest, controls avulsions and overall stratigraphic architecture of the depositional area. Flowstripped turbidity currents separated into and reactivated multiple channels to create a distributary pattern and developed discontinuous trains of cyclic scours and megaflutes, which may be erosional precursors to continuous channels. The diverse features now imaged in the Lucia Chica channel system (offshore California) are likely common in modern and ancient systems with similar overall morphologies, but have not been previously mapped with lower-resolution detection methods in any of these systems. ?? 2011 Geological Society of America.

  20. Modulation of ERG channels by XE991

    DEFF Research Database (Denmark)

    Elmedyb, Pernille; Calloe, Kirstine; Schmitt, Nicole

    2007-01-01

    In neuronal tissue, KCNQ2-5 channels conduct the physiologically important M-current. In some neurones, the M-current may in addition be conducted partly by ERG potassium channels, which have widely overlapping expression with the KCNQ channel subunits. XE991 and linopiridine are known to be stan......In neuronal tissue, KCNQ2-5 channels conduct the physiologically important M-current. In some neurones, the M-current may in addition be conducted partly by ERG potassium channels, which have widely overlapping expression with the KCNQ channel subunits. XE991 and linopiridine are known...... to be standard KCNQ potassium channel blockers. These compounds have been used in many different tissues as specific pharmacological tools to discern native currents conducted by KCNQ channels from other potassium currents. In this article, we demonstrate that ERG1-2 channels are also reversibly inhibited by XE......991 in the micromolar range (EC(50) 107 microM for ERG1). The effect has been characterized in Xenopus laevis oocytes expressing ERG1-2 and in the mammalian HEK293 cell line stably expressing ERG1 channels. The IC(50) values for block of KCNQ channels by XE991 range 1-65 microM. In conclusion, great...

  1. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus.

    Science.gov (United States)

    Zhao, Xiao-Jie; Zhao, Zhan; Yang, Dan-Dan; Cao, Lu-Lu; Zhang, Ling; Ji, Juan; Gu, Jun; Huang, Ji-Ye; Sun, Xiu-Lan

    2017-04-01

    Stress-induced disturbance of the hypothalamic-pituitary-adrenal (HPA) axis is strongly implicated in incidence of mood disorders. A heightened neuroinflammatory response and oxidative stress play a fundamental role in the dysfunction of the HPA axis. We have previously demonstrated that iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could prevent oxidative injury and neuroinflammation against multiple stimuli-induced brain injury. The present study was to demonstrate the impacts of Ipt in stress-induced HPA axis disorder and depressive behavior. We employed 2 stress paradigms: 8 weeks of continuous restraint stress (chronic restraint stress, CRS) and 2h of restraint stress (acute restraint stress, ARS), to mimic both chronic stress and severe acute stress. Prolonged (4 weeks) and short-term (a single injection) Ipt treatment was administered 30min before each stress paradigm. We found that HPA axis was altered after stress, with different responses to CRS (lower ACTH and CORT, higher AVP, but normal CRH) and ARS (higher CRH, ACTH and CORT, but normal AVP). Both prolonged and short-term Ipt treatment normalized stress-induced HPA axis disorders and abnormal behaviors in mice. CRS and ARS up-regulated mRNA levels of inflammation-related molecules (TNFα, IL-1β, IL-6 and TLR4) and oxidative stress molecules (gp91phox, iNOS and Nrf2) in the mouse hypothalamus. Double immunofluorescence showed CRS and ARS increased microglia activation (CD11b and TNFα) and oxidative stress in neurons (NeuN and gp91phox), which were alleviated by Ipt. Therefore, the present study reveals that Ipt could prevent against stress-induced HPA axis disorders and depressive behavior by alleviating inflammation and oxidative stress in the hypothalamus. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Sediment sorting at a side channel bifurcation

    Science.gov (United States)

    van Denderen, Pepijn; Schielen, Ralph; Hulscher, Suzanne

    2017-04-01

    Side channels have been constructed to reduce the flood risk and to increase the ecological value of the river. In various Dutch side channels large aggradation in these channels occurred after construction. Measurements show that the grain size of the deposited sediment in the side channel is smaller than the grain size found on the bed of the main channel. This suggest that sorting occurs at the bifurcation of the side channel. The objective is to reproduce with a 2D morphological model the fining of the bed in the side channel and to study the effect of the sediment sorting on morphodynamic development of the side channel. We use a 2D Delft3D model with two sediment fractions. The first fraction corresponds with the grain size that can be found on the bed of the main channel and the second fraction corresponds with the grain size found in the side channel. With the numerical model we compute several side channel configurations in which we vary the length and the width of the side channel, and the curvature of the upstream channel. From these computations we can derive the equilibrium state and the time scale of the morphodynamic development of the side channel. Preliminary results show that even when a simple sediment transport relation is used, like Engelund & Hansen, more fine sediment enters the side channel than coarse sediment. This is as expected, and is probably related to the bed slope effects which are a function of the Shields parameter. It is expected that by adding a sill at the entrance of the side channel the slope effect increases. This might reduce the amount of coarse sediment which enters the side channel even more. It is unclear whether the model used is able to reproduce the effect of such a sill correctly as modelling a sill and reproducing the correct hydrodynamic and morphodynamic behaviour is not straightforward in a 2D model. Acknowledgements: This research is funded by STW, part of the Dutch Organization for Scientific Research under

  3. Decreasing vortex flux in channels

    International Nuclear Information System (INIS)

    Migaj, V.K.; Nosova, I.S.

    1979-01-01

    A new method for reducing vortex flow losses in power plant channels is suggested. The method is based on vortex splitting in vortex flow areas with transverse barriers placed on the channel walls. The upper barrier ends are at the level of the upper boundary of the vortex area and don't protrude to the active flow beyond this boundary. The effectiveness of the method suggested is illustrated taking as an example the investigation of square and flat channels with abrupt widening in one plane, diffusers with widening in one plane, or a rectangualr bend. It is shown that splitting the vortex areas with transverse barriers in the channels results in reduction of hydraulic losses by 10-25%. The above method is characteristic of an extreme simplicity, its application doesn't require changes in the channel shape nor installation of any devices in the flow

  4. Marketing channels and competitive advantage

    Directory of Open Access Journals (Sweden)

    Jovičić Dragoljub

    2005-01-01

    Full Text Available Issue that can already be seen and will be very clear in the future is that the central problem in the market of tube caps will not be the product or the price or promotion, but marketing channels. Therefore, the competitive advantage will most probably be built on marketing channels and not the production - as it has been so far, so, the questions of choice functioning and modification of marketing channels, as well as selection of the most appropriate members of channels will become more and more important. Accordingly, it may freely be said that the choice, i.e. the movement of marketing channels represents one of the strategic decisions which has to be made by a company management and which will subsequently very significantly influence the functioning and efficacy of not only the system of distribution, but also the entire business transactions.

  5. Effective IPTV channel management method over heterogeneous environments

    Science.gov (United States)

    Joo, Hyunchul; Lee, Dai-boong; Song, Hwangjun

    2007-09-01

    This paper presents an effective IPTV channel management method using SVC (scalable video coding) that considers concurrently both channel zapping time and network utilization. A broadcasting channel is encoded in two-layered bitstream (base-layer channel and enhancement-layer channel) to supply for heterogeneous environments. The proposed algorithm locates only a limited numbers of base-layer channels close to users to reduce the network delay part of channel zapping time and adjusts the length of GOP (group of picture) into each base-layer channel to decrease the video decoding delay part of channel zapping time, which are performed based on user's channel preference information. Finally, the experimental results are provided to show the performance of the proposed schemes.

  6. Channel follower leakage restrictor

    International Nuclear Information System (INIS)

    Williamson, H.E.; Smith, B.A.

    1977-01-01

    An improved means is provided to control coolant leakage between the flow channel and the lower tie plate of a nuclear fuel assembly. The means includes an opening in the lower tie plate and a movable element adjacent thereto. The coolant pressure within the tie plate biases the movable means toward the inner surface of the surrounding flow channel to compensate for any movement of the flow channel away from the lower tie plate to thereby control the leakage of coolant flow from the fuel assemblies to the spaces among the fuel assemblies of the core. 9 figures

  7. Dividing Streamline Formation Channel Confluences by Physical Modeling

    Directory of Open Access Journals (Sweden)

    Minarni Nur Trilita

    2010-02-01

    Full Text Available Confluence channels are often found in open channel network system and is the most important element. The incoming flow from the branch channel to the main cause various forms and cause vortex flow. Phenomenon can cause erosion of the side wall of the channel, the bed channel scour and sedimentation in the downstream confluence channel. To control these problems needed research into the current width of the branch channel. The incoming flow from the branch channel to the main channel flow bounded by a line distributors (dividing streamline. In this paper, the wide dividing streamline observed in the laboratory using a physical model of two open channels, a square that formed an angle of 30º. Observations were made with a variety of flow coming from each channel. The results obtained in the laboratory observation that the width of dividing streamline flow is influenced by the discharge ratio between the channel branch with the main channel. While the results of a comparison with previous studies showing that the observation in the laboratory is smaller than the results of previous research.

  8. Information geometry of Gaussian channels

    International Nuclear Information System (INIS)

    Monras, Alex; Illuminati, Fabrizio

    2010-01-01

    We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated by distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desirable properties like stability and covariance. As a by-product, we also obtain some general results in Gaussian channel estimation that are the continuous-variable analogs of previously known results in finite dimensions. We prove that optimal probe states are always pure and bounded in the number of ancillary modes, even in the presence of constraints on the reduced state input in the channel. This has experimental and computational implications. It limits the complexity of optimal experimental setups for channel estimation and reduces the computational requirements for the evaluation of the metric: Indeed, we construct a converging algorithm for its computation. We provide explicit formulas for computing the multiparametric quantum Fisher information for dissipative channels probed with arbitrary Gaussian states and provide the optimal observables for the estimation of the channel parameters (e.g., bath couplings, squeezing, and temperature).

  9. CHANNEL EVOLUTION IN MODIFIED ALLUVIAL STREAMS.

    Science.gov (United States)

    Simon, Andrew; Hupp, Cliff R.

    1987-01-01

    This study (a) assesses the channel changes and network trends of bed level response after modifications between 1959 and 1972 of alluvial channels in western Tennessee and (b) develops a conceptual model of bank slope development to qualitatively assess bank stability and potential channel widening. A six-step, semiquantitative model of channel evolution in disturbed channels was developed by quantifying bed level trends and recognizing qualitative stages of bank slope development. Development of the bank profile is defined in terms of three dynamic and observable surfaces: (a) vertical face (70 to 90 degrees), (b) upper bank (25 to 50 degrees), and (c) slough line (20 to 25 degrees).

  10. Multi-channel Kondo necklace

    Energy Technology Data Exchange (ETDEWEB)

    Fazekas, P; Haeyoung, Kee

    1993-06-01

    A multi-channel generalization of Doniach`s Kondo necklace model is formulated, and its phase diagram studied in the mean-field approximation. Our intention is to introduce the possible simplest model which displays some of the features expected from the overscreened Kondo lattice. The N conduction electron channels are represented by N sets of pseudospins {tau}{sub J}, j = 1 1,..., N which are all antiferromagnetically coupled to a periodic array of modul S = 1/2 spins. Exploiting permutation symmetry in the channel index j allows us to write down the self-consistency equation for general N. For N > 2, we find that the critical temperature is rising with increasing Kondo interaction; we interpret this effect by pointing out that the Kondo coupling creates the composite pseudospin objects which undergo an ordering transition. The relevance of our findings to the underlying fermionic multi-channel problem is discussed. (author). 33 refs, 1 fig.

  11. Stream Channel Stability.

    Science.gov (United States)

    1981-04-01

    Cycles of wetting and drying are also t ,v itiue swelling and shrinkage of the soil. S 11ied blocks or peds of soil fabric ,,ks. id downslope soil creep ...hydrographs of water and sediment at the point in question. By feeding the output from the hydrology-transport model into the finite element model...the banks as undercut banks fail. Channel irregularities such as seepage zones, cattle crossings, overbank drainage, buried channels, organic deposits

  12. Mode Switching for the Multi-Antenna Broadcast Channel Based on Delay and Channel Quantization

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2009-01-01

    Full Text Available Imperfect channel state information degrades the performance of multiple-input multiple-output (MIMO communications; its effects on single-user (SU and multiuser (MU MIMO transmissions are quite different. In particular, MU-MIMO suffers from residual interuser interference due to imperfect channel state information while SU-MIMO only suffers from a power loss. This paper compares the throughput loss of both SU and MU-MIMO in the broadcast channel due to delay and channel quantization. Accurate closed-form approximations are derived for achievable rates for both SU and MU-MIMO. It is shown that SU-MIMO is relatively robust to delayed and quantized channel information, while MU-MIMO with zero-forcing precoding loses its spatial multiplexing gain with a fixed delay or fixed codebook size. Based on derived achievable rates, a mode switching algorithm is proposed, which switches between SU and MU-MIMO modes to improve the spectral efficiency based on average signal-to-noise ratio (SNR, normalized Doppler frequency, and the channel quantization codebook size. The operating regions for SU and MU modes with different delays and codebook sizes are determined, and they can be used to select the preferred mode. It is shown that the MU mode is active only when the normalized Doppler frequency is very small, and the codebook size is large.

  13. Channel box dimension measuring method

    International Nuclear Information System (INIS)

    Oshima, Hirotake; Jo, Hiroto.

    1994-01-01

    The present invention provides a method for measuring the entire length of a channel box of a fuel assembly of a BWR type reactor. Namely, four sensors are used as one set that generate ultrasonic waves from oblique upper portion, oblique lower portion, upper portion and lower portion of the channel box respectively. The distances between the four sensors and each of the portions of the channel box are measured respectively for both of a reference member and a member to be measured. The entire length of the channel box is measured by calculating the measured values and the angles of the obliquely disposed sensors according to a predetermined formula. According to the method of the present invention, the inclination of the channel box to be measured can be corrected. In addition, accuracy of the measurement is improved and the measuring time is saved as well as the measuring device and operation can be simplified. (I.S.)

  14. Quantum capacity of Pauli channels with memory

    International Nuclear Information System (INIS)

    Huang Peng; He Guangqiang; Lu Yuan; Zeng Guihua

    2011-01-01

    The amount of coherent quantum information that can be reliably transmitted down the memory Pauli channels with Markovian correlated noise is investigated. Two methods for evaluating the quantum capacity of the memory Pauli channels are proposed to try to trace the memory effect on the transmissions of quantum information. We show that the evaluation of quantum capacity can be reduced to the calculation of the initial memory state of each successive transmission. Furthermore, we derive quantum capacities of the memory phase flip channel, bit flip channel and bit-phase flip channel. Also, a lower bound of the quantum capacity of the memory depolarizing channel is obtained. An increase of the degree of memory of the channels has a positive effect on the increase of their quantum capacities.

  15. Flooding correlations in narrow channel

    International Nuclear Information System (INIS)

    Kim, S. H.; Baek, W. P.; Chang, S. H.

    1999-01-01

    Heat transfer in narrow gap is considered as important phenomena in severe accidents in nuclear power plants. Also in heat removal of electric chip. Critical heat flux(CHF) in narrow gap limits the maximum heat transfer rate in narrow channel. In case of closed bottom channel, flooding limited CHF occurrence is observed. Flooding correlations will be helpful to predict the CHF in closed bottom channel. In present study, flooding data for narrow channel geometry were collected and the work to recognize the effect of the span, w and gap size, s were performed. And new flooding correlations were suggested for high-aspect-ratio geometry. Also, flooding correlation was applied to flooding limited CHF data

  16. Transient receptor potential channels in essential hypertension

    DEFF Research Database (Denmark)

    Liu, Daoyan; Scholze, Alexandra; Zhu, Zhiming

    2006-01-01

    The role of nonselective cation channels of the transient receptor potential channel (TRPC) family in essential hypertension has not yet been investigated.......The role of nonselective cation channels of the transient receptor potential channel (TRPC) family in essential hypertension has not yet been investigated....

  17. On the secrecy capacity of the broadcast wiretap channel with imperfect channel state information

    KAUST Repository

    Hyadi, Amal

    2014-12-01

    In this paper, we consider secure broadcasting over fast fading channels. Assuming imperfect main channel state information (CSI) at the transmitter, we first provide an upper and a lower bounds on the ergodic secrecy capacity when a common message is broadcasted to multiple legitimate receivers in the presence of one eavesdropper. For this case, we show that the secrecy rate is limited by the legitimate receiver having, on average, the worst main channel link. Then, we present an expression for the achievable secrecy sum-rate when each legitimate receiver is interested in an independent message. The special cases of high SNR, perfect and no-main CSI are also analyzed. Numerical results are presented to illustrate the obtained results for the case of independent but not necessarily identically distributed Rayleigh fading channels.

  18. Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers

    NARCIS (Netherlands)

    Rooze, J.; Andre, M.; Gulik, van der G.J.S.; Fernandez-Rivas, D.; Gardeniers, J.G.E.; Rebrov, E.; Schouten, J.C.; Keurentjes, J.T.F.

    2012-01-01

    Decreasing the constriction size and residence time in hydrodynamic cavitation is predicted to give increased hot spot temperatures at bubble collapse and increased radical formation rate. Cavitation in a 100 × 100 µm2 rectangular micro channel and in a circular 750 µm diameter milli channel has

  19. Multi-reaction-channel fitting calculations in a coupled-channel model : Photoinduced strangeness production

    NARCIS (Netherlands)

    Scholten, O.; Usov, A.

    To describe photo- and meson-induced reactions on the nucleon, one is faced with a rather extensive coupled-channel problem Ignoring the effects of channel coupling, as one would do in describing a certain reaction at the tree level; invariably creates a large inconsistency between the different

  20. Grafting voltage and pharmacological sensitivity in potassium channels.

    Science.gov (United States)

    Lan, Xi; Fan, Chunyan; Ji, Wei; Tian, Fuyun; Xu, Tao; Gao, Zhaobing

    2016-08-01

    A classical voltage-gated ion channel consists of four voltage-sensing domains (VSDs). However, the roles of each VSD in the channels remain elusive. We developed a GVTDT (Graft VSD To Dimeric TASK3 channels that lack endogenous VSDs) strategy to produce voltage-gated channels with a reduced number of VSDs. TASK3 channels exhibit a high host tolerance to VSDs of various voltage-gated ion channels without interfering with the intrinsic properties of the TASK3 selectivity filter. The constructed channels, exemplified by the channels grafted with one or two VSDs from Kv7.1 channels, exhibit classical voltage sensitivity, including voltage-dependent opening and closing. Furthermore, the grafted Kv7.1 VSD transfers the potentiation activity of benzbromarone, an activator that acts on the VSDs of the donor channels, to the constructed channels. Our study indicates that one VSD is sufficient to voltage-dependently gate the pore and provides new insight into the roles of VSDs.

  1. On the capacity of Rician fading channels with full channel state information at low SNR

    KAUST Repository

    Rezki, Zouheir

    2012-06-01

    The capacity of flat Rayleigh fading channels with full channel state information (CSI) at the transmitter and at the receiver at asymptotically low SNR has been recently shown to scale essentially as SNR log (1/SNR). In this paper, we investigate the Rician fading channel capacity with full CSI, and show that the capacity of this channel scales essentially as 1/1+K SNR log (1 /SNR), where K is the Rician factor. This characterization includes perfect CSI at both the transmitter and the receiver or noisy CSI at the transmitter and perfect CSI at the receiver. We also show that one-bit CSI at the transmitter is enough to achieve this asymptotic capacity using an On-Off power control scheme. Our framework may be seen as a generalization of previous works as it captures the Rayleigh fading channel as a special case by letting K goes to zero. © 2012 IEEE.

  2. Quantum Correlations Evolution Asymmetry in Quantum Channels

    International Nuclear Information System (INIS)

    Li Meng; Huang Yun-Feng; Guo Guang-Can

    2017-01-01

    It was demonstrated that the entanglement evolution of a specially designed quantum state in the bistochastic channel is asymmetric. In this work, we generalize the study of the quantum correlations, including entanglement and quantum discord, evolution asymmetry to various quantum channels. We found that the asymmetry of entanglement and quantum discord only occurs in some special quantum channels, and the behavior of the entanglement evolution may be quite different from the behavior of the quantum discord evolution. To quantum entanglement, in some channels it decreases monotonously with the increase of the quantum channel intensity. In some other channels, when we increase the intensity of the quantum channel, it decreases at first, then keeps zero for some time, and then rises up. To quantum discord, the evolution becomes more complex and you may find that it evolutes unsmoothly at some points. These results illustrate the strong dependence of the quantum correlations evolution on the property of the quantum channels. (paper)

  3. Consolidation equipment for irradiated nuclear fuel channels

    International Nuclear Information System (INIS)

    Taguchi, M.; Komatsu, Y.; Ose, T.

    1989-01-01

    The authors have developed and put into use a new type of mechanical consolidation equipment for irradiated nuclear fuel channels. This includes round-slice cutting of the top 100mm of the fuel channel with a guillotine cutter, and press cutting of the two corners of the remaining length of the fuel channel. Four guillotine blades work in combination with receiving blades arranged inside the fuel channel to cut the top 100mm, including the clips and spacers, of the fuel channel into a round slice. A press assembled in the consolidation equipment then presses the slice to achieve volume reduction. The press cutting operation uses two press cutting blades arranged inside the fuel channel and the receiving blades outside the fuel channel. The remaining length of fuel channel is cut off into L-shaped pieces by press cutting. This consolidation equipment is highly efficient because the round-slice cutting, pressing, and press cutting are all achieved by one unit

  4. Mechanosensitive Channels: In Touch with Piezo

    OpenAIRE

    Xiao, Rui; Xu, X.Z. Shawn

    2010-01-01

    Mechanosensory transduction underlies touch, hearing and proprioception and requires mechanosensitive channels that are directly gated by forces; however, the molecular identities of these channels remain largely elusive. A new study has identified Piezo1 and Piezo2 as a novel class of mechanosensitive channels.

  5. Channelling versus inversion

    DEFF Research Database (Denmark)

    Gale, A.S.; Surlyk, Finn; Anderskouv, Kresten

    2013-01-01

    Evidence from regional stratigraphical patterns in Santonian−Campanian chalk is used to infer the presence of a very broad channel system (5 km across) with a depth of at least 50 m, running NNW−SSE across the eastern Isle of Wight; only the western part of the channel wall and fill is exposed. W......−Campanian chalks in the eastern Isle of Wight, involving penecontemporaneous tectonic inversion of the underlying basement structure, are rejected....

  6. Trade-off capacities of the quantum Hadamard channels

    International Nuclear Information System (INIS)

    Bradler, Kamil; Hayden, Patrick; Touchette, Dave; Wilde, Mark M.

    2010-01-01

    Coding theorems in quantum Shannon theory express the ultimate rates at which a sender can transmit information over a noisy quantum channel. More often than not, the known formulas expressing these transmission rates are intractable, requiring an optimization over an infinite number of uses of the channel. Researchers have rarely found quantum channels with a tractable classical or quantum capacity, but when such a finding occurs, it demonstrates a complete understanding of that channel's capabilities for transmitting classical or quantum information. Here we show that the three-dimensional capacity region for entanglement-assisted transmission of classical and quantum information is tractable for the Hadamard class of channels. Examples of Hadamard channels include generalized dephasing channels, cloning channels, and the Unruh channel. The generalized dephasing channels and the cloning channels are natural processes that occur in quantum systems through the loss of quantum coherence or stimulated emission, respectively. The Unruh channel is a noisy process that occurs in relativistic quantum information theory as a result of the Unruh effect and bears a strong relationship to the cloning channels. We give exact formulas for the entanglement-assisted classical and quantum communication capacity regions of these channels. The coding strategy for each of these examples is superior to a naieve time-sharing strategy, and we introduce a measure to determine this improvement.

  7. On the capacity of multiaccess fading channels with full channel state information at low power regime

    KAUST Repository

    Rezki, Zouheir

    2013-06-01

    We study the throughput capacity region of the Gaussian multiaccess (MAC) fading channel with perfect channel state information (CSI) at the receiver (CSI-R) and at the transmitters (CSI-T), at low power regime. We show that it has a multidimensional rectangle structure and thus is simply characterized by single user capacity points. More specifically, we show that at low power regime, the boundary surface of the capacity region shrinks to a single point corresponding to the sum rate maximizer and that the coordinates of this point coincide with single user capacity bounds. Inspired from this result, we propose an on-off scheme, compute its achievable rate, and provide a necessary condition on the fading channels under which this scheme achieves single user capacity bounds of the MAC channel at asymptotically low power regime. We argue that this necessary condition characterizes a class of fading that encompasses all known wireless channels, where the capacity region of the MAC channel has a simple expression in terms of users\\' average power constraints only. © 2013 IEEE.

  8. Bandwidth efficient channel estimation method for airborne hyperspectral data transmission in sparse doubly selective communication channels

    Science.gov (United States)

    Vahidi, Vahid; Saberinia, Ebrahim; Regentova, Emma E.

    2017-10-01

    A channel estimation (CE) method based on compressed sensing (CS) is proposed to estimate the sparse and doubly selective (DS) channel for hyperspectral image transmission from unmanned aircraft vehicles to ground stations. The proposed method contains three steps: (1) the priori estimate of the channel by orthogonal matching pursuit (OMP), (2) calculation of the linear minimum mean square error (LMMSE) estimate of the received pilots given the estimated channel, and (3) estimate of the complex amplitudes and Doppler shifts of the channel using the enhanced received pilot data applying a second round of a CS algorithm. The proposed method is named DS-LMMSE-OMP, and its performance is evaluated by simulating transmission of AVIRIS hyperspectral data via the communication channel and assessing their fidelity for the automated analysis after demodulation. The performance of the DS-LMMSE-OMP approach is compared with that of two other state-of-the-art CE methods. The simulation results exhibit up to 8-dB figure of merit in the bit error rate and 50% improvement in the hyperspectral image classification accuracy.

  9. Planar channeling in superlattices: Theory

    International Nuclear Information System (INIS)

    Ellison, J.A.; Picraux, S.T.; Allen, W.R.; Chu, W.K.

    1988-01-01

    The well-known continuum model theory for planar channeled energetic particles in perfect crystals is extended to layered crystalline structures and applied to superlattices. In a strained-layer structure, the planar channels with normals which are not perpendicular to the growth direction change their direction at each interface, and this dramatically influences the channeling behavior. The governing equation of motion for a planar channeled ion in a strained-layer superlattice with equal layer thicknesses is a one degree of freedom nonlinear oscillator which is periodically forced with a sequence of δ functions. These δ functions, which are of equal spacing and amplitude with alternating sign, represent the tilts at each of the interfaces. Thus upon matching an effective channeled particle wavelength, corresponding to a natural period of the nonlinear oscillator, to the period of the strained-layer superlattice, corresponding to the periodic forcing, strong resonance effects are expected. The condition of one effective wavelength per period corresponds to a rapid dechanneling at a well-defined depth (catastrophic dechanneling), whereas two wavelengths per period corresponds to no enhanced dechanneling after the first one or two layers (resonance channeling). A phase plane analysis is used to characterize the channeled particle motion. Detailed calculations using the Moliere continuum potential are compared with our previously described modified harmonic model, and new results are presented for the phase plane evolution, as well as the dechanneling as a function of depth, incident angle, energy, and layer thickness. General scaling laws are developed and nearly universal curves are obtained for the dechanneling versus depth under catastrophic dechanneling

  10. Anion channels: master switches of stress responses.

    Science.gov (United States)

    Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar

    2012-04-01

    During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Evolutionary origins of mechanosensitive ion channels.

    Science.gov (United States)

    Martinac, Boris; Kloda, Anna

    2003-01-01

    According to the recent revision, the universal phylogenetic tree is composed of three domains: Eukarya (eukaryotes), Bacteria (eubacteria) and Archaea (archaebacteria). Mechanosensitive (MS) ion channels have been documented in cells belonging to all three domains suggesting their very early appearance during evolution of life on Earth. The channels show great diversity in conductance, selectivity and voltage dependence, while sharing the property of being gated by mechanical stimuli exerted on cell membranes. In prokaryotes, MS channels were first documented in Bacteria followed by their discovery in Archaea. The finding of MS channels in archaeal cells helped to recognize and establish the evolutionary relationship between bacterial and archaeal MS channels and to show that this relationship extends to eukaryotic Fungi (Schizosaccharomyces pombe) and Plants (Arabidopsis thaliana). Similar to their bacterial and archaeal homologues, MS channels in eukaryotic cell-walled Fungi and Plants may serve in protecting the cellular plasma membrane from excessive dilation and rupture that may occur during osmotic stress. This review summarizes briefly some of the recent developments in the MS channel research field that may ultimately lead to elucidation of the biophysical and evolutionary principles underlying the mechanosensory transduction in living cells.

  12. Radio propagation measurement and channel modelling

    CERN Document Server

    Salous, Sana

    2013-01-01

    While there are numerous books describing modern wireless communication systems that contain overviews of radio propagation and radio channel modelling, there are none that contain detailed information on the design, implementation and calibration of radio channel measurement equipment, the planning of experiments and the in depth analysis of measured data. The book would begin with an explanation of the fundamentals of radio wave propagation and progress through a series of topics, including the measurement of radio channel characteristics, radio channel sounders, measurement strategies

  13. Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers

    NARCIS (Netherlands)

    Rooze, J.; André, M.; van der Gulik, G-J.S.; Fernandez Rivas, David; Gardeniers, Johannes G.E.; Rebrov, E.V.; Schouten, J.C.; Keurentjes, J.T.F.

    2012-01-01

    Decreasing the constriction size and residence time in hydrodynamic cavitation is predicted to give increased hot spot temperatures at bubble collapse and increased radical formation rate. Cavitation in a 100 × 100 μm2 rectangular micro channel and in a circular 750 μm diameter milli channel has

  14. Electronic Commerce and Retail Channel Substitution

    NARCIS (Netherlands)

    M.C.W. Janssen (Maarten); R. van der Noll

    2002-01-01

    textabstractWe analyze a market where firms compete in a conventional and an electronic retail channel. Consumers easily compare prices online, but some incur purchase uncertainties on the online channel. We investigate the market shares of the two retail channels and the prices that are charged. We

  15. Applying alpha-channeling to mirror machines

    Energy Technology Data Exchange (ETDEWEB)

    Zhmoginov, A. I.; Fisch, N. J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States)

    2012-05-15

    The {alpha}-channeling effect entails the use of radio-frequency waves to expel and cool high-energetic {alpha} particles born in a fusion reactor; the device reactivity can then be increased even further by redirecting the extracted energy to fuel ions. Originally proposed for tokamaks, this technique has also been shown to benefit open-ended fusion devices. Here, the fundamental theory and practical aspects of {alpha} channeling in mirror machines are reviewed, including the influence of magnetic field inhomogeneity and the effect of a finite wave region on the {alpha}-channeling mechanism. For practical implementation of the {alpha}-channeling effect in mirror geometry, suitable contained weakly damped modes are identified. In addition, the parameter space of candidate waves for implementing the {alpha}-channeling effect can be significantly extended through the introduction of a suitable minority ion species that has the catalytic effect of moderating the transfer of power from the {alpha}-channeling wave to the fuel ions.

  16. Improved Sparse Channel Estimation for Cooperative Communication Systems

    Directory of Open Access Journals (Sweden)

    Guan Gui

    2012-01-01

    Full Text Available Accurate channel state information (CSI is necessary at receiver for coherent detection in amplify-and-forward (AF cooperative communication systems. To estimate the channel, traditional methods, that is, least squares (LS and least absolute shrinkage and selection operator (LASSO, are based on assumptions of either dense channel or global sparse channel. However, LS-based linear method neglects the inherent sparse structure information while LASSO-based sparse channel method cannot take full advantage of the prior information. Based on the partial sparse assumption of the cooperative channel model, we propose an improved channel estimation method with partial sparse constraint. At first, by using sparse decomposition theory, channel estimation is formulated as a compressive sensing problem. Secondly, the cooperative channel is reconstructed by LASSO with partial sparse constraint. Finally, numerical simulations are carried out to confirm the superiority of proposed methods over global sparse channel estimation methods.

  17. Green channel cargo inspection system

    International Nuclear Information System (INIS)

    Shi Yuanping; Yu Jingsheng; Sun Hongqiang; Hao Pu; Cai Wenxia

    2011-01-01

    A radiation detection device was installed in the lanes of a highway toll station, radioactive rays which was collimated emitted through the measured, and arrived the detector. The average density of the fresh agricultural products belonged to Green channel and other prohibited items vary greatly, the absorption of radiation are different between the Green Channel Cargo and other substances. Prior to the experimental group, different standard samples which represent different models and goods were measured, the different standard samples were stored in a computer database. When the trucks get through the Green Channel, the detector will detect the radiation signal and bring to the computer, the computer will process the measured data, and make a conclusion whether the goods are Green Channel cargo. (authors)

  18. Mechanosensitive Piezo Channels in the Gastrointestinal Tract.

    Science.gov (United States)

    Alcaino, C; Farrugia, G; Beyder, A

    2017-01-01

    Sensation of mechanical forces is critical for normal function of the gastrointestinal (GI) tract and abnormalities in mechanosensation are linked to GI pathologies. In the GI tract there are several mechanosensitive cell types-epithelial enterochromaffin cells, intrinsic and extrinsic enteric neurons, smooth muscle cells and interstitial cells of Cajal. These cells use mechanosensitive ion channels that respond to mechanical forces by altering transmembrane ionic currents in a process called mechanoelectrical coupling. Several mechanosensitive ionic conductances have been identified in the mechanosensory GI cells, ranging from mechanosensitive voltage-gated sodium and calcium channels to the mechanogated ion channels, such as the two-pore domain potassium channels K2P (TREK-1) and nonselective cation channels from the transient receptor potential family. The recently discovered Piezo channels are increasingly recognized as significant contributors to cellular mechanosensitivity. Piezo1 and Piezo2 are nonselective cationic ion channels that are directly activated by mechanical forces and have well-defined biophysical and pharmacologic properties. The role of Piezo channels in the GI epithelium is currently under investigation and their role in the smooth muscle syncytium and enteric neurons is still not known. In this review, we outline the current state of knowledge on mechanosensitive ion channels in the GI tract, with a focus on the known and potential functions of the Piezo channels. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Upgrading a marketing channels role

    Directory of Open Access Journals (Sweden)

    Tišma-Borota Ankica

    2002-01-01

    Full Text Available As one of the marketing mix instruments, marketing channels were usually behind other instruments (product, price and promotion. Many companies regarded marketing channels as something that was 'left' after more important strategies of price, product and promotion were created. In recent past, things have changed and marketing channels became more interesting for research. This change came as a result of change in global market functioning especially in competitive advantage, distributors' strength and increasing technology.

  20. Calcium homeostasis modulator (CALHM) ion channels.

    Science.gov (United States)

    Ma, Zhongming; Tanis, Jessica E; Taruno, Akiyuki; Foskett, J Kevin

    2016-03-01

    Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca(2+) concentration ([Ca(2+)]o). In the presence of physiological [Ca(2+)]o (∼1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong depolarizations. Reducing [Ca(2+)]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca(2+) o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four transmembrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ∼14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca(2+) and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca(2+)]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neurotransmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca(2+) o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology.

  1. The minimum yield in channeling

    International Nuclear Information System (INIS)

    Uguzzoni, A.; Gaertner, K.; Lulli, G.; Andersen, J.U.

    2000-01-01

    A first estimate of the minimum yield was obtained from Lindhard's theory, with the assumption of a statistical equilibrium in the transverse phase-space of channeled particles guided by a continuum axial potential. However, computer simulations have shown that this estimate should be corrected by a fairly large factor, C (approximately equal to 2.5), called the Barrett factor. We have shown earlier that the concept of a statistical equilibrium can be applied to understand this result, with the introduction of a constraint in phase-space due to planar channeling of axially channeled particles. Here we present an extended test of these ideas on the basis of computer simulation of the trajectories of 2 MeV α particles in Si. In particular, the gradual trend towards a full statistical equilibrium is studied. We also discuss the introduction of this modification of standard channeling theory into descriptions of the multiple scattering of channeled particles (dechanneling) by a master equation and show that the calculated minimum yields are in very good agreement with the results of a full computer simulation

  2. On the ergodic secrecy capacity of the wiretap channel under imperfect main channel estimation

    KAUST Repository

    Rezki, Zouheir; Khisti, Ashish J.; Alouini, Mohamed-Slim

    2011-01-01

    imperfect main channel estimation at the transmitter. Inner and outer bounds on the ergodic secrecy capacity are derived for a class of independent identically distributed (i.i.d.) fading channels. The achievable rate is a simple on-off scheme using a

  3. Gabapentin Modulates HCN4 Channel Voltage-Dependence

    Directory of Open Access Journals (Sweden)

    Han-Shen Tae

    2017-08-01

    Full Text Available Gabapentin (GBP is widely used to treat epilepsy and neuropathic pain. There is evidence that GBP can act on hyperpolarization-activated cation (HCN channel-mediated Ih in brain slice experiments. However, evidence showing that GBP directly modulates HCN channels is lacking. The effect of GBP was tested using two-electrode voltage clamp recordings from human HCN1, HCN2, and HCN4 channels expressed in Xenopus oocytes. Whole-cell recordings were also made from mouse spinal cord slices targeting either parvalbumin positive (PV+ or calretinin positive (CR+ inhibitory neurons. The effect of GBP on Ih was measured in each inhibitory neuron population. HCN4 expression was assessed in the spinal cord using immunohistochemistry. When applied to HCN4 channels, GBP (100 μM caused a hyperpolarizing shift in the voltage of half activation (V1/2 thereby reducing the currents. Gabapentin had no impact on the V1/2 of HCN1 or HCN2 channels. There was a robust increase in the time to half activation for HCN4 channels with only a small increase noted for HCN1 channels. Gabapentin also caused a hyperpolarizing shift in the V1/2 of Ih measured from HCN4-expressing PV+ inhibitory neurons in the spinal dorsal horn. Gabapentin had minimal effect on Ih recorded from CR+ neurons. Consistent with this, immunohistochemical analysis revealed that the majority of CR+ inhibitory neurons do not express somatic HCN4 channels. In conclusion, GBP reduces HCN4 channel-mediated currents through a hyperpolarized shift in the V1/2. The HCN channel subtype selectivity of GBP provides a unique tool for investigating HCN4 channel function in the central nervous system. The HCN4 channel is a candidate molecular target for the acute analgesic and anticonvulsant actions of GBP.

  4. Laboratory Experiments on Meandering Meltwater Channels

    Science.gov (United States)

    Fernandez, R.; Berens, J.; Parker, G.; Stark, C. P.

    2017-12-01

    Meandering channels of all scales and flowing over a wide variety of media have common planform patterns. Although the analogy in planform suggests there is a common underlying framework, the constitutive relations driving planform evolution through vertical incision/deposition and lateral migration differ from medium to medium. The driving processes in alluvial and mixed bedrock-alluvial meandering channels have been studied substantially over the last decades. However, this is not the case for meandering channels in other media such as ice or soluble rock. Here we present results from experiments conducted at the Ven Te Chow Hydrosystems Laboratory of the University of Illinois at Urbana-Champaign on meltwater meandering channels. A rivulet is carved into an ice block and water is allowed to flow at a constant discharge. Planform evolution is analyzed with time lapse imaging and complemented with rubber molds of the channel once the experiment is over. These molds give us the full 3D structure of the meandering, including incisional overhang. Vertical incision rates are measured throughout the run by taking elevations along the channel, and these measurements are complemented with analysis from the molds. We show examples of meandering of intense amplitude with deep overhangs. Features resembling scroll bars document cyclically punctuated melting. We report on lateral migration rates, incision rates, sinuosity, channel depths, channel widths, reach averaged velocities, bend wavelengths and amplitudes and compare them to values reported in the literature for alluvial rivers.

  5. Uncertainty analysis for hot channel

    International Nuclear Information System (INIS)

    Panka, I.; Kereszturi, A.

    2006-01-01

    The fulfillment of the safety analysis acceptance criteria is usually evaluated by separate hot channel calculations using the results of neutronic or/and thermo hydraulic system calculations. In case of an ATWS event (inadvertent withdrawal of control assembly), according to the analysis, a number of fuel rods are experiencing DNB for a longer time and must be regarded as failed. Their number must be determined for a further evaluation of the radiological consequences. In the deterministic approach, the global power history must be multiplied by different hot channel factors (kx) taking into account the radial power peaking factors for each fuel pin. If DNB occurs it is necessary to perform a few number of hot channel calculations to determine the limiting kx leading just to DNB and fuel failure (the conservative DNBR limit is 1.33). Knowing the pin power distribution from the core design calculation, the number of failed fuel pins can be calculated. The above procedure can be performed by conservative assumptions (e.g. conservative input parameters in the hot channel calculations), as well. In case of hot channel uncertainty analysis, the relevant input parameters (k x, mass flow, inlet temperature of the coolant, pin average burnup, initial gap size, selection of power history influencing the gap conductance value) of hot channel calculations and the DNBR limit are varied considering the respective uncertainties. An uncertainty analysis methodology was elaborated combining the response surface method with the one sided tolerance limit method of Wilks. The results of deterministic and uncertainty hot channel calculations are compared regarding to the number of failed fuel rods, max. temperature of the clad surface and max. temperature of the fuel (Authors)

  6. Achromatic Cooling Channel with Li Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Balbekov, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2002-04-29

    A linear cooling channel with Li lenses, solenoids, and 201 MHz RF cavities is considered. A special lattice design is used to minimize chromatic aberrations by suppression of several betatron resonances. Transverse emittance of muon beam decreases from 2 mm to 0.5 mm at the channel of about 110 m length. Longitudinal heating is modest, therefore transmission of the channel is rather high: 96% without decay and 90% with decay. Minimal beam emittance achievable by similar channel estimated as about 0.25 mm at surface field of Li lenses 10 T.

  7. Channeling ion implantation through palladium films

    International Nuclear Information System (INIS)

    Ishiwara, H.; Furukawa, S.

    1975-01-01

    The possibility of channeling ion implantation into semiconductors through polycrystalline metallic layers is studied. Minimum values and standard deviations of channeling angular yield in polycrystalline Pd 2 Si layers formed on Si have been measured by protons and 4 He, and 14 N ion backscattering and channeling measurements. Depth distributions of the spread of crystallite orientations and scattering centers such as lattice defects have been separately derived by using the above two quantities. It has been concluded that the channeling-ion-implantation technique will become a practical one by using the parallel scanning system

  8. Indoor MIMO Channel Measurement and Modeling

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ødum; Andersen, Jørgen Bach

    2005-01-01

    Forming accurate models of the multiple input multiple output (MIMO) channel is essential both for simulation as well as understanding of the basic properties of the channel. This paper investigates different known models using measurements obtained with a 16x32 MIMO channel sounder for the 5.8GHz...... band. The measurements were carried out in various indoor scenarios including both temporal and spatial aspects of channel changes. The models considered include the so-called Kronecker model, a model proposed by Weichselberger et. al., and a model involving the full covariance matrix, the most...

  9. Operator-sum representation for bosonic Gaussian channels

    International Nuclear Information System (INIS)

    Ivan, J. Solomon; Sabapathy, Krishna Kumar; Simon, R.

    2011-01-01

    Operator-sum or Kraus representations for single-mode bosonic Gaussian channels are developed, and several of their consequences explored. The fact that the two-mode metaplectic operators acting as unitary purification of these channels do not, in their canonical form, mix the position and momentum variables is exploited to present a procedure which applies uniformly to all families in the Holevo classification. In this procedure the Kraus operators of every quantum-limited Gaussian channel can be simply read off from the matrix elements of a corresponding metaplectic operator. Kraus operators are employed to bring out, in the Fock basis, the manner in which the antilinear, unphysical matrix transposition map when accompanied by injection of a threshold classical noise becomes a physical channel, denoted D(κ) in the Holevo classification. The matrix transposition channels D(κ), D(κ -1 ) turn out to be a dual pair in the sense that their Kraus operators are related by the adjoint operation. The amplifier channel with amplification factor κ and the beam-splitter channel with attenuation factor κ -1 turn out to be mutually dual in the same sense. The action of the quantum-limited attenuator and amplifier channels as simply scaling maps on suitable quasiprobabilities in phase space is examined in the Kraus picture. Consideration of cumulants is used to examine the issue of fixed points. The semigroup property of the amplifier and attenuator families leads in both cases to a Zeno-like effect arising as a consequence of interrupted evolution. In the cases of entanglement-breaking channels a description in terms of rank 1 Kraus operators is shown to emerge quite simply. In contradistinction, it is shown that there is not even one finite rank operator in the entire linear span of Kraus operators of the quantum-limited amplifier or attenuator families, an assertion far stronger than the statement that these are not entanglement breaking channels. A characterization of

  10. On luminescence bleaching of tidal channel sediments

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel; Pejrup, Morten; Murray, Andrew S.

    2015-01-01

    We investigate the processes responsible for bleaching of the quartz OSL signal from tidal channel sediment. Tidal dynamics are expected to play an important role for complete bleaching of tidal sediments. However, no studies have examined the amount of reworking occurring in tidal channels...... and on tidal flats due to the mixing caused by currents and waves. We apply bed level data to evaluate the amount of vertical sediment reworking in modern tidal channels and at a tidal flat. Cycles of deposition and erosion are measured with a bed level sensor, and the results show that gross sedimentation...... was several times higher than net sedimentation. We propose that tidal channel sediment is bleached either on the tidal flat before it is transported to the tidal channels and incorporated in channel-fill successions or, alternatively, on the shallow intertidal part of the channel banks. Based...

  11. ASIC3 channels in multimodal sensory perception.

    Science.gov (United States)

    Li, Wei-Guang; Xu, Tian-Le

    2011-01-19

    Acid-sensing ion channels (ASICs), which are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG) family, act as membrane-bound receptors for extracellular protons as well as nonproton ligands. At least five ASIC subunits have been identified in mammalian neurons, which form both homotrimeric and heterotrimeric channels. The highly proton sensitive ASIC3 channels are predominantly distributed in peripheral sensory neurons, correlating with their roles in multimodal sensory perception, including nociception, mechanosensation, and chemosensation. Different from other ASIC subunit composing ion channels, ASIC3 channels can mediate a sustained window current in response to mild extracellular acidosis (pH 7.3-6.7), which often occurs accompanied by many sensory stimuli. Furthermore, recent evidence indicates that the sustained component of ASIC3 currents can be enhanced by nonproton ligands including the endogenous metabolite agmatine. In this review, we first summarize the growing body of evidence for the involvement of ASIC3 channels in multimodal sensory perception and then discuss the potential mechanisms underlying ASIC3 activation and mediation of sensory perception, with a special emphasis on its role in nociception. We conclude that ASIC3 activation and modulation by diverse sensory stimuli represent a new avenue for understanding the role of ASIC3 channels in sensory perception. Furthermore, the emerging implications of ASIC3 channels in multiple sensory dysfunctions including nociception allow the development of new pharmacotherapy.

  12. On the capacity of multiple access and broadcast fading channels with full channel state information at low SNR

    KAUST Repository

    Rezki, Zouheir

    2014-01-01

    We study the throughput capacity region of the Gaussian multi-access (MAC) fading channel with perfect channel state information (CSI) at the receiver and at the transmitters, at low power regime. We show that it has a multidimensional rectangle structure and thus is simply characterized by single user capacity points.More specifically, we show that at low power regime, the boundary surface of the capacity region shrinks to a single point corresponding to the sum rate maximizer and that the coordinates of this point coincide with single user capacity bounds. Inspired from this result, we propose an on-off scheme, compute its achievable rate, and show that this scheme achieves single user capacity bounds of the MAC channel for a wide class of fading channels at asymptotically low power regime. We argue that this class of fading encompasses all known wireless channels for which the capacity region of the MAC channel has even a simpler expression in terms of users\\' average power constraints only. Using the duality of Gaussian MAC and broadcast channels (BC), we deduce a simple characterization of the BC capacity region at low power regime and show that for a class of fading channels (including Rayleigh fading), time-sharing is asymptotically optimal. © 2014 IEEE.

  13. 47 CFR 95.29 - Channels available.

    Science.gov (United States)

    2010-10-01

    ... with no more than 5 watts ERP. (g) Fixed stations in GMRS systems authorized before March 18, 1968... transmission of another GMRS station on a different channel or channels), the licensee of the GMRS system must... GMRS system from the following 462 MHz channels: 462.5500, 462.5750, 462.6000, 462.6250, 462.6500, 462...

  14. Study of condensation of refrigerants in a micro-channel for development of future compact micro-channel condensers

    Science.gov (United States)

    Chowdhury, Sourav

    2009-12-01

    Mini- and micro-channel technology has gained considerable ground in the recent years in industry and is favored due to its several advantages stemming from its high surface to volume ratio and high values of proof pressure it can withstand. Micro-channel technology has paved the way to development of highly compact heat exchangers with low cost and mass penalties. In the present work, the issues related to the sizing of compact micro-channel condensers have been explored. The considered designs encompass both the conventional and MEMS fabrication techniques. In case of MEMS-fabricated micro-channel condenser, wet etching of the micro-channel structures, followed by bonding of two such wafers with silicon nitride layers at the interface was attempted. It was concluded that the silicon nitride bonding requires great care in terms of high degree of surface flatness and absence of roughness and also high degree of surface purity and thus cannot be recommended for mass fabrication. Following this investigation, a carefully prepared experimental setup and test micro-channel with hydraulic diameter 700 mum and aspect ratio 7:1 was fabricated and overall heat transfer and pressure drop aspects of two condensing refrigerants, R134a and R245fa were studied at a variety of test conditions. To the best of author's knowledge, so far no data has been reported in the literature on condensation in such high aspect ratio micro-channels. Most of the published experimental works on condensation of refrigerants are concerning conventional hydraulic diameter channels (> 3mm) and only recently some experimental data has been reported in the sub-millimeter scale channels for which the surface tension and viscosity effects play a dominant role and the effect of gravity is diminished. It is found that both experimental data and empirically-derived correlations tend to under-predict the present data by an average of 25%. The reason for this deviation could be because a high aspect ratio

  15. Quantum-capacity-approaching codes for the detected-jump channel

    International Nuclear Information System (INIS)

    Grassl, Markus; Wei Zhaohui; Ji Zhengfeng; Zeng Bei

    2010-01-01

    The quantum-channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasures and bit flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity-approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel.

  16. CFD analyses of coolant channel flowfields

    Science.gov (United States)

    Yagley, Jennifer A.; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    The flowfield characteristics in rocket engine coolant channels are analyzed by means of a numerical model. The channels are characterized by large length to diameter ratios, high Reynolds numbers, and asymmetrical heating. At representative flow conditions, the channel length is approximately twice the hydraulic entrance length so that fully developed conditions would be reached for a constant property fluid. For the supercritical hydrogen that is used as the coolant, the strong property variations create significant secondary flows in the cross-plane which have a major influence on the flow and the resulting heat transfer. Comparison of constant and variable property solutions show substantial differences. In addition, the property variations prevent fully developed flow. The density variation accelerates the fluid in the channels increasing the pressure drop without an accompanying increase in heat flux. Analyses of the inlet configuration suggest that side entry from a manifold can affect the development of the velocity profile because of vortices generated as the flow enters the channel. Current work is focused on studying the effects of channel bifurcation on the flow field and the heat transfer characteristics.

  17. Hydrodynamic optical-field-ionized plasma channels

    Science.gov (United States)

    Shalloo, R. J.; Arran, C.; Corner, L.; Holloway, J.; Jonnerby, J.; Walczak, R.; Milchberg, H. M.; Hooker, S. M.

    2018-05-01

    We present experiments and numerical simulations which demonstrate that fully ionized, low-density plasma channels could be formed by hydrodynamic expansion of plasma columns produced by optical field ionization. Simulations of the hydrodynamic expansion of plasma columns formed in hydrogen by an axicon lens show the generation of 200 mm long plasma channels with axial densities of order ne(0 ) =1 ×1017cm-3 and lowest-order modes of spot size WM≈40 μ m . These simulations show that the laser energy required to generate the channels is modest: of order 1 mJ per centimeter of channel. The simulations are confirmed by experiments with a spherical lens which show the formation of short plasma channels with 1.5 ×1017cm-3≲ne(0 ) ≲1 ×1018cm-3 and 61 μ m ≳WM≳33 μ m . Low-density plasma channels of this type would appear to be well suited as multi-GeV laser-plasma accelerator stages capable of long-term operation at high pulse repetition rates.

  18. Relativistic electron-beam transport in curved channels

    International Nuclear Information System (INIS)

    Vittitoe, C.N.; Morel, J.E.; Wright, T.P.

    1982-01-01

    Collisionless single particle trajectories are modeled for a single plasma channel having one section curved in a circular arc. The magnetic field is developed by superposition of straight and curved channel segments. The plasma density gives charge and beam-current neutralization. High transport efficiencies are found for turning a relativistic electron beam 90 0 under reasonable conditions of plasma current, beam energy, arc radius, channel radius, and injection distributions in velocity and in position at the channel entrance. Channel exit distributions in velocity and position are found consistent with those for a straight plasma channel of equivalent length. Such transport problems are important in any charged particle-beam application constrained by large diode-to-target distance or by requirements of maximum power deposition in a confined area

  19. Comparison between the effects of positive noncatastrophic HMB ESD stress in n-channel and p-channel power MOSFET's

    Science.gov (United States)

    Zupac, Dragan; Kosier, Steven L.; Schrimpf, Ronald D.; Galloway, Kenneth F.; Baum, Keith W.

    1991-10-01

    The effect of noncatastrophic positive human body model (HBM) electrostatic discharge (ESD) stress on n-channel power MOSFETs is radically different from that on p-channel MOSFETs. In n-channel transistors, the stress causes negative shifts of the current-voltage characteristics indicative of positive charge trapping in the gate oxide. In p-channel transistors, the stress increases the drain-to-source leakage current, probably due to localized avalanche electron injection from the p-doped drain.

  20. Tracking channel bed resiliency in forested mountain catchments using high temporal resolution channel bed movement

    Science.gov (United States)

    Martin, Sarah E.; Conklin, Martha H.

    2018-01-01

    This study uses continuous-recording load cell pressure sensors in four, high-elevation (1500-1800 m), Sierra Nevada headwater streams to collect high-temporal-resolution, bedload-movement data for investigating the channel bed movement patterns within these streams for water years 2012-2014. Data show an annual pattern where channel bed material in the thalweg starts to build up in early fall, peaks around peak snow melt, and scours back to baseline levels during hydrograph drawdown and base flow. This pattern is punctuated by disturbance and recovery of channel bed material associated with short-term storm events. A conceptual model, linking sediment sources at the channel margins to patterns of channel bed fill and scour in the thalweg, is proposed building on the results of Martin et al. (2014). The material in the thalweg represents a balance between sediment supply from the channel margins and sporadic, conveyor-belt-like downstream transport in the thalweg. The conceptual model highlights not only the importance of production and transport rates but also that seasonal connectedness between the margins and thalweg is a key sediment control, determining the accumulation rate of sediment stores at the margins and the redistribution of sediment from margins to thalweg that feeds the conveyor belt. Disturbance and recovery cycles are observed at multiple temporal scales; but long term, the channel beds are stable, suggesting that the beds act as short-term storage for sediment but are in equilibrium interannually. The feasibility of use for these sensors in forested mountain stream environments is tested. Despite a high failure rate (50%), load cell pressure sensors show potential for high-temporal-resolution bedload measurements, allowing for the collection of channel bed movement data to move beyond time-integrated change measurements - where many of the subtleties of bedload movement patterns may be missed - to continuous and/or real-time measurements. This

  1. From membrane tension to channel gating: A principal energy transfer mechanism for mechanosensitive channels.

    Science.gov (United States)

    Zhang, Xuejun C; Liu, Zhenfeng; Li, Jie

    2016-11-01

    Mechanosensitive (MS) channels are evolutionarily conserved membrane proteins that play essential roles in multiple cellular processes, including sensing mechanical forces and regulating osmotic pressure. Bacterial MscL and MscS are two prototypes of MS channels. Numerous structural studies, in combination with biochemical and cellular data, provide valuable insights into the mechanism of energy transfer from membrane tension to gating of the channel. We discuss these data in a unified two-state model of thermodynamics. In addition, we propose a lipid diffusion-mediated mechanism to explain the adaptation phenomenon of MscS. © 2016 The Protein Society.

  2. Language Planning, Channel Management, and ESP.

    Science.gov (United States)

    Kennedy, Chris

    Channel management, a concept developed in marketing to refer to the process by which a product is moved from production to consumption, uses a channel of distribution operating at several levels, each responsible for one or more of the activities of moving the product forward to the consumer. The function of channel management is to select the…

  3. Controlled beta-quench treatment of fuel channels

    International Nuclear Information System (INIS)

    Moeckel, Andreas; Cremer, Ingo; Kratzer, Anton; Walter, Dirk; Perkins, Richard A.

    2007-01-01

    The trend towards higher fuel assembly discharge burnups poses new challenges for fuel channels in terms of their dimensional behavior and corrosion resistance. Beta-quenching of fuel channels has been applied by the nuclear industry to improve the dimensional stability of this component. This led AREVA NP to develop a new technique for beta quenching of fuel channels that combines the effect of beta-quenching with the optimization of the microstructure in order to improve the dimensional behavior of fuel channels by randomizing the crystallographic texture, while maintaining the excellent corrosion behavior of the fuel channels by providing intermetallic phase particles of optimum average size. The first fuel channels with these optimized material properties have been placed in the core of a German boiling water reactor (BWR) nuclear power plant in spring of 2004. Some more channels will follow in 2007 to broaden in-pile experience and to receive irradiation feedback from two other nuclear power plants. (authors)

  4. Assesment of strength and integrity of fuel channels

    International Nuclear Information System (INIS)

    2000-01-01

    Detailed analysis to base strength and integrity of fuel channels was necessary for the licensing process. Description of tasks performed in this direction in 1999 is presented: fuel channel independent strength calculations, assessment of present fuel channels state, analysis of dynamic processes during partial group distribution header rupture, structural integrity analysis of fuel channels located next to broke channel

  5. MITOCHONDRIAL BKCa CHANNEL

    Directory of Open Access Journals (Sweden)

    Enrique eBalderas

    2015-03-01

    Full Text Available Since its discovery in a glioma cell line 15 years ago, mitochondrial BKCa channel (mitoBKCa has been studied in brain cells and cardiomyocytes sharing general biophysical properties such as high K+ conductance (~300 pS, voltage-dependency and Ca2+-sensitivity. Main advances in deciphering the molecular composition of mitoBKCa have included establishing that it is encoded by the Kcnma1 gene, that a C-terminal splice insert confers mitoBKCa ability to be targeted to cardiac mitochondria, and evidence for its potential coassembly with β subunits. Notoriously, β1 subunit directly interacts with cytochrome c oxidase and mitoBKCa can be modulated by substrates of the respiratory chain. mitoBKCa channel has a central role in protecting the heart from ischemia, where pharmacological activation of the channel impacts the generation of reactive oxygen species and mitochondrial Ca2+ preventing cell death likely by impeding uncontrolled opening of the mitochondrial transition pore. Supporting this view, inhibition of mitoBKCa with Iberiotoxin, enhances cytochrome c release from glioma mitochondria. Many tantalizing questions remain. Some of them are: how is mitoBKCa coupled to the respiratory chain? Does mitoBKCa play non-conduction roles in mitochondria physiology? Which are the functional partners of mitoBKCa? What are the roles of mitoBKCa in other cell types? Answers to these questions are essential to define the impact of mitoBKCa channel in mitochondria biology and disease.

  6. Channel Responses and Hydromodification in Southern California

    Science.gov (United States)

    Hawley, R. J.; Dust, D. W.; Bledsoe, B. P.

    2007-12-01

    Hydromodification (changes in watershed hydrologic characteristics, and the resulting hydraulics and channel forms due to urbanization) is ubiquitous in Southern California. In this region, the effects of hydromodification are driven and compounded by the arid/semiarid climate, high relief, erodible soils, high urbanization rates, and relatively low frequency of retention/detention. We conducted a preliminary survey of over 50 stream reaches along a gradient from least disturbed to fully urbanized. All stages of the Channel Evolution Model (CEM) of Schumm et al. (1984) were observed, from stable to degrading, widening, aggrading, and quasi-equilibrium channels. Several sites have CEM stages II through V in close proximity due to headcutting, hardpoints, and infrastructure. We also observed channels in undeveloped watersheds impacted by downstream urbanization via headcutting. A range of intervention measures was observed, with the frequent evolutionary endpoint as a concrete engineered flood control channel. We also observed multiple channel evolution sequences that deviate from the CEM for single-thread, incising channels. An alternative channel response, particularly on smaller urbanized streams is a stabilized, vegetation encroached low-flow channel with regular baseflow supplied by residential irrigation runoff. The limited cases of unimpacted streams that remain tend to be high gradient, high energy systems that are naturally proximate to the transition between braided and meandering form for a given sediment size.

  7. Reliability Improved Design for a Safety System Channel

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Eung Se; Kim, Yun Goo [KHNP, Daejeon (Korea, Republic of)

    2016-05-15

    Nowadays, these systems are implemented with a same platform type, such as a qualified programmable logic controller (PLC). The platform intensively uses digital communication with fiber-optic links to reduce cabling costs and to achieve effective signal isolation. These communication interface and redundancies within a channel increase the complexness of an overall system design. This paper proposes a simpler channel architecture design to reduce the complexity and to enhance overall channel reliability. Simplified safety channel configuration is proposed and the failure probabilities are compared with baseline safety channel configuration using an estimated generic value. The simplified channel configuration achieves 40 percent failure reduction compare to baseline safety channel configuration. If this configuration can be implemented within a processor module, overall safety channel reliability is increase and costs of fabrication and maintenance will be greatly reduced.

  8. Reliability Improved Design for a Safety System Channel

    International Nuclear Information System (INIS)

    Oh, Eung Se; Kim, Yun Goo

    2016-01-01

    Nowadays, these systems are implemented with a same platform type, such as a qualified programmable logic controller (PLC). The platform intensively uses digital communication with fiber-optic links to reduce cabling costs and to achieve effective signal isolation. These communication interface and redundancies within a channel increase the complexness of an overall system design. This paper proposes a simpler channel architecture design to reduce the complexity and to enhance overall channel reliability. Simplified safety channel configuration is proposed and the failure probabilities are compared with baseline safety channel configuration using an estimated generic value. The simplified channel configuration achieves 40 percent failure reduction compare to baseline safety channel configuration. If this configuration can be implemented within a processor module, overall safety channel reliability is increase and costs of fabrication and maintenance will be greatly reduced

  9. LDPC Code Design for Nonuniform Power-Line Channels

    Directory of Open Access Journals (Sweden)

    Sanaei Ali

    2007-01-01

    Full Text Available We investigate low-density parity-check code design for discrete multitone channels over power lines. Discrete multitone channels are well modeled as nonuniform channels, that is, different bits experience various channel parameters. We propose a coding system for discrete multitone channels that allows for using a single code over a nonuniform channel. The number of code parameters for the proposed system is much greater than the number of code parameters in conventional channel. Therefore, search-based optimization methods are impractical. We first formulate the problem of optimizing the rate of an irregular low-density parity-check code, with guaranteed convergence over a general nonuniform channel, as an iterative linear programming which is significantly more efficient than search-based methods. Then we use this technique for a typical power-line channel. The methodology of this paper is directly applicable to all decoding algorithms for which a density evolution analysis is possible.

  10. The effect of search channel elimination on purchase incidence, order size and channel choice

    NARCIS (Netherlands)

    Konus, U.; Neslin, S.A.; Verhoef, P.C.

    This study investigates the impact of eliminating a search channel on purchase incidence, order size, channel choice and, ultimately, sales and profits. We analyze customer panel data from a large retailer over a five-year period. The retailer conducted a randomized field test in which the firm

  11. Fuel channel refilling

    International Nuclear Information System (INIS)

    Shoukri, M.; Abdul-Razzak, A.

    1990-04-01

    Analysis of existing data on fuel channel refilling is presented. The analysis focuses on the data obtained using the Stern Laboratories Cold Water Injection Test (CWIT) Facility. The two-fluid model thermal-hydraulics computer code CATHENA is also used to simulate experimental results on fuel channel refilling from both the CWIT and RD-14 facilities. Conclusions related to single and double break tests, including the effect of non-condensible gases, are presented. A set of recommendations is given for further analysis and separate effect experiments. (67 figs., 5 tabs., 24 refs.)

  12. Voltage-gated lipid ion channels

    DEFF Research Database (Denmark)

    Blicher, Andreas; Heimburg, Thomas Rainer

    2013-01-01

    Synthetic lipid membranes can display channel-like ion conduction events even in the absence of proteins. We show here that these events are voltage-gated with a quadratic voltage dependence as expected from electrostatic theory of capacitors. To this end, we recorded channel traces and current...... histograms in patch-experiments on lipid membranes. We derived a theoretical current-voltage relationship for pores in lipid membranes that describes the experimental data very well when assuming an asymmetric membrane. We determined the equilibrium constant between closed and open state and the open...... probability as a function of voltage. The voltage-dependence of the lipid pores is found comparable to that of protein channels. Lifetime distributions of open and closed events indicate that the channel open distribution does not follow exponential statistics but rather power law behavior for long open times...

  13. FMCG companies specific distribution channels

    Directory of Open Access Journals (Sweden)

    Ioana Barin

    2009-12-01

    Full Text Available Distribution includes all activities undertaken by the producer, alone or in cooperation, since the end of the final finished products or services until they are in possession of consumers. The distribution consists of the following major components: distribution channels or marketing channels, which together form a distribution network; logistics o rphysical distribution. In order to effective achieve, distribution of goods requires an amount of activities and operational processes related to transit of goods from producer to consumer, the best conditions, using existing distribution channels and logistics system. One of the essential functions of a distribution is performing acts of sale, through which, with the actual movement of goods, their change of ownership takes place, that the successive transfer of ownership from producer to consumer. This is an itinerary in the economic cycle of goods, called the distribution channel.

  14. Pricing Decisions of Competing Tobacco Enterprises with Online Channel

    Directory of Open Access Journals (Sweden)

    Rong Zhang

    2015-01-01

    Full Text Available According to the new measurement of launching online distribution channels of tobacco enterprises in China, this paper investigates the tobacco firm’s pricing decisions on the supply chain which consists of two manufacturers and one retailer under three dual-channel structures. Three dual-channel structures include no online channel, only one online channel by one manufacture, and two online channels by two manufacturers. We apply the Stackelberg game to analyze the equilibrium pricing strategies under different structures and try to explore the necessity and advantages of launching online sales channels. The results demonstrate that the substitutability of a product has significant impact on introducing online sales channels, and the online dual-channel structure could result in less profit for manufacturers compared to the traditional retail channel structure; and thus, a dual-channel structure with online sales is not the best strategy for traditional manufacturers. Moreover, when the product is less substitutable, the effect of the tobacco control on the online sales channel is inferior to the traditional channels and vice versa.

  15. Separation of Particles in Channels Rotary Engine

    Directory of Open Access Journals (Sweden)

    Zyatikov Pavel

    2015-01-01

    Full Text Available The article considers the separation of particles in channels with different relative length. It is shown that the intensity of turbulence at the inlet section of the channel varies considerably in its length. The dependence of the turbulence damping along the channel expressing by fraction of the distance is shown. The ratio of the particle separation efficiency out the gas flow in the rotor channel is defined. The values of particle separation efficiency in the channel for the angle α=π/4 in turbulent aerosol flow is shows, including without mixing the particles.

  16. Channel uranium-graphite reactor mounting

    International Nuclear Information System (INIS)

    Polushkin, K.K.; Kuznetsov, A.G.; Zheleznyakov, B.N.

    1981-01-01

    According to theoretical principles of general engineering technology the engineering experience of construction-mounting works at the NPP with channel uranium-graphite reactors is systematized. Main parameters and structural features of the 1000 MW channel uranium-graphite reactors are considered. The succession of mounting operations, premounting equipment and pipelines preparation and mounting works technique are described. The most efficient methods of fitting, welding and machining of reactor elements are recommended. Main problems of technical control service are discussed. A typical netted diagram of main equipment of channel uranium-graphite reactors mounting is given

  17. Omni-channel Retail Information Systems

    DEFF Research Database (Denmark)

    Tambo, Torben

    2014-01-01

    key players in the industry of retailing (Wilson, 2012; Verizon, 2012) and covers the idea that anything can be sold anywhere with consistent marketing, reasonable efficiency of the supply chain channels and responsible customer service. This article aims at contributing to a characterisation...... and definition of omni-channel retail information systems (OCRIS) by using the information systems research tradition as a distinctive starting point (Treiblmaier and Strebinger, 2008; Avgerou, 2001; Parboteah et al., 2009). Omni-channel retailing has evolved since 2010 with the ultimate aim of aligning physical...

  18. Skeletal Muscle Na+ Channel Disorders

    Directory of Open Access Journals (Sweden)

    Dina eSimkin

    2011-10-01

    Full Text Available Five inherited human disorders affecting skeletal muscle contraction have been traced to mutations in the gene encoding the voltage-gated sodium channel Nav1.4. The main symptoms of these disorders are myotonia or periodic paralysis caused by changes in skeletal muscle fiber excitability. Symptoms of these disorders vary from mild or latent disease to incapacitating or even death in severe cases. As new human sodium channel mutations corresponding to disease states become discovered, the importance of understanding the role of the sodium channel in skeletal muscle function and disease state grows.

  19. Planar Superconducting Millimeter-Wave/Terahertz Channelizing Filter

    Science.gov (United States)

    Ehsan, Negar; U-yen, Kongpop; Brown, Ari; Hsieh, Wen-Ting; Wollack, Edward; Moseley, Samuel

    2013-01-01

    This innovation is a compact, superconducting, channelizing bandpass filter on a single-crystal (0.45 m thick) silicon substrate, which operates from 300 to 600 GHz. This device consists of four channels with center frequencies of 310, 380, 460, and 550 GHz, with approximately 50-GHz bandwidth per channel. The filter concept is inspired by the mammalian cochlea, which is a channelizing filter that covers three decades of bandwidth and 3,000 channels in a very small physical space. By using a simplified physical cochlear model, and its electrical analog of a channelizing filter covering multiple octaves bandwidth, a large number of output channels with high inter-channel isolation and high-order upper stopband response can be designed. A channelizing filter is a critical component used in spectrometer instruments that measure the intensity of light at various frequencies. This embodiment was designed for MicroSpec in order to increase the resolution of the instrument (with four channels, the resolution will be increased by a factor of four). MicroSpec is a revolutionary wafer-scale spectrometer that is intended for the SPICA (Space Infrared Telescope for Cosmology and Astrophysics) Mission. In addition to being a vital component of MicroSpec, the channelizing filter itself is a low-resolution spectrometer when integrated with only an antenna at its input, and a detector at each channel s output. During the design process for this filter, the available characteristic impedances, possible lumped element ranges, and fabrication tolerances were identified for design on a very thin silicon substrate. Iterations between full-wave and lumped-element circuit simulations were performed. Each channel s circuit was designed based on the availability of characteristic impedances and lumped element ranges. This design was based on a tabular type bandpass filter with no spurious harmonic response. Extensive electromagnetic modeling for each channel was performed. Four channels

  20. Roughness coefficients for stream channels in Arizona

    Science.gov (United States)

    Aldridge, B.N.; Garrett, J.M.

    1973-01-01

    When water flows in an open channel, energy is lost through friction along the banks and bed of the channel and through turbulence within the channel. The amount of energy lost is governed by channel roughness, which is expressed in terms of a roughness coefficient. An evaluation of the roughness coefficient is necessary in many hydraulic computations that involve flow in an open channel. Owing to the lack of satisfactory quantitative procedure, the ability of evaluate roughness coefficients can be developed only through experience; however, a basic knowledge of the methods used to assign the coefficients and the factors affecting them will be a great help. One of the most commonly used equations in open-channel hydraulics is that of Manning. The Manning equation is       1.486

  1. Water Transport and Removal in PEMFC Gas Flow Channel with Various Water Droplet Locations and Channel Surface Wettability

    Directory of Open Access Journals (Sweden)

    Yanzhou Qin

    2018-04-01

    Full Text Available Water transport and removal in the proton exchange membrane fuel cell (PEMFC is critically important to fuel cell performance, stability, and durability. Water emerging locations on the membrane-electrode assembly (MEA surface and the channel surface wettability significantly influence the water transport and removal in PEMFC. In most simulations of water transport and removal in the PEMFC flow channel, liquid water is usually introduced at the center of the MEA surface, which is fortuitous, since water droplet can emerge randomly on the MEA surface in PEMFC. In addition, the commonly used no-slip wall boundary condition greatly confines the water sliding features on hydrophobic MEA/channel surfaces, degrading the simulation accuracy. In this study, water droplet is introduced with various locations along the channel width direction on the MEA surface, and water transport and removal is investigated numerically using an improved model incorporating the sliding flow property by using the shear wall boundary condition. It is found that the water droplet can be driven to the channel sidewall by aerodynamics when the initial water location deviates from the MEA center to a certain amount, forming the water corner flow in the flow channel. The channel surface wettability on the water transport is also studied and is shown to have a significant impact on the water corner flow in the flow channel.

  2. A Survey of Channel Modeling for UAV Communications

    KAUST Repository

    Khuwaja, Aziz Altaf; Chen, Yunfei; Zhao, Nan; Alouini, Mohamed-Slim; Dobbins, Paul

    2018-01-01

    Unmanned aerial vehicles (UAVs) have gained great interest for rapid deployment in both civil and military applications. UAV communication has its own distinctive channel characteristics compared with widely used cellular and satellite systems. Thus, accurate channel characterization is crucial for the performance optimization and design of efficient UAV communication systems. However, several challenges exist in UAV channel modeling. For example, propagation characteristics of UAV channels are still less explored for spatial and temporal variations in non-stationary channels. Also, airframe shadowing has not yet been investigated for small size rotary UAVs. This paper provides an extensive survey on the measurement campaigns launched for UAV channel modeling using low altitude platforms and discusses various channel characterization efforts. We also review the contemporary perspective of UAV channel modeling approaches and outline some future research challenges in this domain.

  3. A Survey of Channel Modeling for UAV Communications

    KAUST Repository

    Khuwaja, Aziz Altaf

    2018-01-23

    Unmanned aerial vehicles (UAVs) have gained great interest for rapid deployment in both civil and military applications. UAV communication has its own distinctive channel characteristics compared with widely used cellular and satellite systems. Thus, accurate channel characterization is crucial for the performance optimization and design of efficient UAV communication systems. However, several challenges exist in UAV channel modeling. For example, propagation characteristics of UAV channels are still less explored for spatial and temporal variations in non-stationary channels. Also, airframe shadowing has not yet been investigated for small size rotary UAVs. This paper provides an extensive survey on the measurement campaigns launched for UAV channel modeling using low altitude platforms and discusses various channel characterization efforts. We also review the contemporary perspective of UAV channel modeling approaches and outline some future research challenges in this domain.

  4. Quantum and Private Capacities of Low-Noise Channels

    Science.gov (United States)

    Leditzky, Felix; Leung, Debbie; Smith, Graeme

    2018-04-01

    We determine both the quantum and the private capacities of low-noise quantum channels to leading orders in the channel's distance to the perfect channel. It has been an open problem for more than 20 yr to determine the capacities of some of these low-noise channels such as the depolarizing channel. We also show that both capacities are equal to the single-letter coherent information of the channel, again to leading orders. We thus find that, in the low-noise regime, superadditivity and degenerate codes have a negligible benefit for the quantum capacity, and shielding does not improve the private capacity beyond the quantum capacity, in stark contrast to the situation when noisier channels are considered.

  5. Channel CAT: A Tactical Link Analysis Tool

    Science.gov (United States)

    1997-09-01

    NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS CHANNEL CAT : A TACTICAL LINK ANALYSIS TOOL by Michael Glenn Coleman September 1997 Thesis...REPORT TYPE AND DATES COVERED September 1997 Master’s Thesis 4. TITLE AND SUBTITLE CHANNEL CAT : A TACTICAL LINK ANALYSIS TOOL 5. FUNDING NUMBERS 6...tool, the Channel Capacity Analysis Tool (Channel CAT ), designed to provide an automated tool for the anlysis of design decisions in developing client

  6. Channeling and dynamic chaos

    Energy Technology Data Exchange (ETDEWEB)

    Bolotin, IU L; Gonchar, V IU; Truten, V I; Shulga, N F

    1986-01-01

    It is shown that axial channeling of relativistic electrons can give rise to the effect of dynamic chaos which involves essentially chaotic motion of a particle in the channel. The conditions leading to the effect of dynamic chaos and the manifestations of this effect in physical processes associated with the passage of particles through a crystal are examined using a silicon crystal as an example. 7 references.

  7. Fuel assembly and fuel channel box

    International Nuclear Information System (INIS)

    Sakuma, Toraki; Hirakawa, Hiromasa; Ishizaki, Hideaki; Nakajima, Junjiro; Aizawa, Yasuhiro.

    1992-01-01

    A fuel channel box has a square cylindrical shape and, in the transversal cross sectional shape, the wall thickness of a corner portion is greater than that of a central portion of the side wall except for an upper portion thereof. The upper portion of the channel box includes a region to be in contact with an upper lattice plate and a region to attach a channel spacer. Then, the wall thickness of these regions is uniform in the transversal cross section and they have the same wall thickness with that of the corner portion which has the increased wall thickness. With such a constitution, the upper portion of the channel box receives a counter force applied from the upper lattice plate upon occurrence of earthquakes and moderate it to reduce local stresses and deformation. Further, a similar region with increased wall thickness is disposed also to the lower portion of the channel box, thereby enabling to suppress the amount of coolants leaked from a portion between the lower portion and a lower tie plate, and improve the mechanical integrity of the channel box. (I.N.)

  8. A new simple model for composite fading channels: Second order statistics and channel capacity

    KAUST Repository

    Yilmaz, Ferkan

    2010-09-01

    In this paper, we introduce the most general composite fading distribution to model the envelope and the power of the received signal in such fading channels as millimeter wave (60 GHz or above) fading channels and free-space optical channels, which we term extended generalized-K (EGK) composite fading distribution. We obtain the second-order statistics of the received signal envelope characterized by the EGK composite fading distribution. Expressions for probability density function, cumulative distribution function, level crossing rate and average fade duration, moments, amount of fading and average capacity are derived. Numerical and computer simulation examples validate the accuracy of the presented mathematical analysis. © 2010 IEEE.

  9. Ion channeling revisited

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Corona, Aldo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nguyen, Anh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    A MS Excel program has been written that calculates accidental, or unintentional, ion channeling in cubic bcc, fcc and diamond lattice crystals or polycrystalline materials. This becomes an important issue when simulating the creation by energetic neutrons of point displacement damage and extended defects using beams of ions. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different powers of the argument. The program then offers an extremely convenient way to calculate axial and planar half-angles and minimum yield or dechanneling probabilities, effects on half-angles of amorphous overlayers, accidental channeling probabilities for randomly oriented crystals or crystallites, and finally a way to automatically generate stereographic projections of axial and planar channeling half-angles. The program can generate these projections and calculate these probabilities for axes and [hkl] planes up to (555).

  10. Voltage-gated calcium channels of Paramecium cilia.

    Science.gov (United States)

    Lodh, Sukanya; Yano, Junji; Valentine, Megan S; Van Houten, Judith L

    2016-10-01

    Paramecium cells swim by beating their cilia, and make turns by transiently reversing their power stroke. Reversal is caused by Ca 2+ entering the cilium through voltage-gated Ca 2+ (Ca V ) channels that are found exclusively in the cilia. As ciliary Ca 2+ levels return to normal, the cell pivots and swims forward in a new direction. Thus, the activation of the Ca V channels causes cells to make a turn in their swimming paths. For 45 years, the physiological characteristics of the Paramecium ciliary Ca V channels have been known, but the proteins were not identified until recently, when the P. tetraurelia ciliary membrane proteome was determined. Three Ca V α1 subunits that were identified among the proteins were cloned and confirmed to be expressed in the cilia. We demonstrate using RNA interference that these channels function as the ciliary Ca V channels that are responsible for the reversal of ciliary beating. Furthermore, we show that Pawn (pw) mutants of Paramecium that cannot swim backward for lack of Ca V channel activity do not express any of the three Ca V 1 channels in their ciliary membrane, until they are rescued from the mutant phenotype by expression of the wild-type PW gene. These results reinforce the correlation of the three Ca V channels with backward swimming through ciliary reversal. The PwB protein, found in endoplasmic reticulum fractions, co-immunoprecipitates with the Ca V 1c channel and perhaps functions in trafficking. The PwA protein does not appear to have an interaction with the channel proteins but affects their appearance in the cilia. © 2016. Published by The Company of Biologists Ltd.

  11. On the domestic fuel channel for BWR

    International Nuclear Information System (INIS)

    Fukada, Hiroshi

    1979-01-01

    Kobe Steel Ltd. started the domestic manufacture of fuel channel boxes for BWRs in 1967, and entered the actual production stage four years after that. Since 1976, the mass production system was adopted with the increase of the demand. The requirements about the surface contamination and the dimensional accuracy over whole length are very strict in the fuel channel boxes, moreover, special consideration must be given so as to prevent the deformation in use. The unique working methods such as electron beam welding, high temperature press forming and so on are employed in Kobe Steel Ltd. to satisfy such strict requirements, therefore the quality of the produced fuel channel boxes is superior to imported ones. At present, the fuel channel boxes domestically made by Kobe Steel Ltd. are used for almost all BWRs in Japan. The functions of fuel channel boxes are to flow boiling coolant uniformly upward, to guide control rods, and to increase the rigidity of fuel assembly. The fuel channel boxes are the square tubes of zircaloy 4 of 134.06 mm inside width, 2.03 mm thickness, and 4118 or 4239 mm length. The progress of the development and the features of the fuel channel boxes and the manufacturing processes are described. Zircaloy plates are formed into channels, and two channels are electron beam-welded after the edge preparation, to make a box. Ultrasonic examination and stress relief treatment are applied, and clips and spacers are welded. (Kako, I.)

  12. Almost all quantum channels are equidistant

    Science.gov (United States)

    Nechita, Ion; Puchała, Zbigniew; Pawela, Łukasz; Życzkowski, Karol

    2018-05-01

    In this work, we analyze properties of generic quantum channels in the case of large system size. We use random matrix theory and free probability to show that the distance between two independent random channels converges to a constant value as the dimension of the system grows larger. As a measure of the distance we use the diamond norm. In the case of a flat Hilbert-Schmidt distribution on quantum channels, we obtain that the distance converges to 1/2 +2/π , giving also an estimate for the maximum success probability for distinguishing the channels. We also consider the problem of distinguishing two random unitary rotations.

  13. Optimal processing of reversible quantum channels

    Energy Technology Data Exchange (ETDEWEB)

    Bisio, Alessandro, E-mail: alessandro.bisio@unipv.it [QUIT Group, Dipartimento di Fisica, INFN Sezione di Pavia, via Bassi 6, 27100 Pavia (Italy); D' Ariano, Giacomo Mauro; Perinotti, Paolo [QUIT Group, Dipartimento di Fisica, INFN Sezione di Pavia, via Bassi 6, 27100 Pavia (Italy); Sedlák, Michal [Department of Optics, Palacký University, 17. Listopadu 1192/12, CZ-771 46 Olomouc (Czech Republic); Institute of Physics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 11 Bratislava (Slovakia)

    2014-05-01

    We consider the general problem of the optimal transformation of N uses of (possibly different) unitary channels to a single use of another unitary channel in any finite dimension. We show how the optimal transformation can be fully parallelized, consisting in a preprocessing channel followed by a parallel action of all the N unitaries and a final postprocessing channel. Our techniques allow to achieve an exponential reduction in the number of the free parameters of the optimization problem making it amenable to an efficient numerical treatment. Finally, we apply our general results to find the analytical solution for special cases of interest like the cloning of qubit phase gates.

  14. Pore size matters for potassium channel conductance

    Science.gov (United States)

    Moldenhauer, Hans; Pincuntureo, Matías

    2016-01-01

    Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K+ channels discriminate K+ over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K+ channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K+ channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K+ channels, accounting for their diversity in unitary conductance. PMID:27619418

  15. Cryogenic microwave channelized receiver

    International Nuclear Information System (INIS)

    Rauscher, C.; Pond, J.M.; Tait, G.B.

    1996-01-01

    The channelized receiver being presented demonstrates the use of high temperature superconductor technology in a microwave system setting where superconductor, microwave-monolithic-integrated-circuit, and hybrid-integrated-circuit components are united in one package and cooled to liquid-nitrogen temperatures. The receiver consists of a superconducting X-band four-channel demultiplexer with 100-MHz-wide channels, four commercial monolithically integrated mixers, and four custom-designed hybrid-circuit detectors containing heterostructure ramp diodes. The composite receiver unit has been integrated into the payload of the second-phase NRL high temperature superconductor space experiment (HTSSE-II). Prior to payload assembly, the response characteristics of the receiver were measured as functions of frequency, temperature, and drive levels. The article describes the circuitry, discusses the key issues related to design and implementation, and summarizes the experimental results

  16. Optimal super dense coding over memory channels

    OpenAIRE

    Shadman, Zahra; Kampermann, Hermann; Macchiavello, Chiara; Bruß, Dagmar

    2011-01-01

    We study the super dense coding capacity in the presence of quantum channels with correlated noise. We investigate both the cases of unitary and non-unitary encoding. Pauli channels for arbitrary dimensions are treated explicitly. The super dense coding capacity for some special channels and resource states is derived for unitary encoding. We also provide an example of a memory channel where non-unitary encoding leads to an improvement in the super dense coding capacity.

  17. Open-channel effects on heavy-quarkonium spectra: a phenomenological study within a one-open-channel approximation

    International Nuclear Information System (INIS)

    Matsuda, Y.; Kato, K.; Yabusaki, N.; Hirano, M.; Nakanishi, R.; Sakai, M.

    1997-01-01

    Open-channel effects on charmonium (S- and D-waves) and bottomonium (S-wave) J P = 1 - spectra are investigated within a one-open-channel approximation. Mass shifts and decay widths of these states just above the threshold are obtained by taking into account a coupling between confined quarkonium states and decaying states of the open channel. The final-state interaction (FSI) between the decaying meson and antimeson plays a very important role in producing a reasonable magnitude of coupling; the FSI provides the open-channel poles (R 1 , R 2 ) at the appropriate positions on the complex energy plane. The result is found to be independent of the detailed form of the transition potential and the final-state interaction. (author)

  18. Multiple flow profiles for two-phase flow in single microfluidic channels through site-selective channel coating.

    Science.gov (United States)

    Logtenberg, Hella; Lopez-Martinez, Maria J; Feringa, Ben L; Browne, Wesley R; Verpoorte, Elisabeth

    2011-06-21

    An approach to control two-phase flow systems in a poly(dimethylsiloxane) (PDMS) microfluidic device using spatially selective surface modification is demonstrated. Side-by-side flows of ethanol : water solutions containing different polymers are used to selectively modify both sides of a channel by laminar flow patterning. Introduction of air pockets during modification allows for control over the length of the channel section that is modified. This approach makes it possible to achieve slug flow and side-by-side flow of water : 1-octanol simultaneously within the same PDMS channel, without the need of additional structural elements. A key finding is that conditioning of the PDMS channels with 1-octanol before polymer deposition is crucial to achieving stable side-by-side flows.

  19. Channel perceptions and usage: beyond media richness factors

    NARCIS (Netherlands)

    Pieterson, Willem Jan; Teerling, Marije; Ebbers, Wolfgang E.; Wimmer, Maria A.; Scholl, Hans J.; Ferro, Enrico

    2008-01-01

    In this paper, we asses how service channel perceptions affect channel choice and channel usage. Building on communication theories, such as the Media Richness Theory, we explore how different channel characteristics are perceived by citizens in a Dutch governmental service chain. The results of our

  20. Quantum incompatibility of channels with general outcome operator algebras

    Science.gov (United States)

    Kuramochi, Yui

    2018-04-01

    A pair of quantum channels is said to be incompatible if they cannot be realized as marginals of a single channel. This paper addresses the general structure of the incompatibility of completely positive channels with a fixed quantum input space and with general outcome operator algebras. We define a compatibility relation for such channels by identifying the composite outcome space as the maximal (projective) C*-tensor product of outcome algebras. We show theorems that characterize this compatibility relation in terms of the concatenation and conjugation of channels, generalizing the recent result for channels with quantum outcome spaces. These results are applied to the positive operator valued measures (POVMs) by identifying each of them with the corresponding quantum-classical (QC) channel. We also give a characterization of the maximality of a POVM with respect to the post-processing preorder in terms of the conjugate channel of the QC channel. We consider another definition of compatibility of normal channels by identifying the composite outcome space with the normal tensor product of the outcome von Neumann algebras. We prove that for a given normal channel, the class of normally compatible channels is upper bounded by a special class of channels called tensor conjugate channels. We show the inequivalence of the C*- and normal compatibility relations for QC channels, which originates from the possibility and impossibility of copying operations for commutative von Neumann algebras in C*- and normal compatibility relations, respectively.

  1. Secondary Channel Bifurcation Geometry: A Multi-dimensional Problem

    Science.gov (United States)

    Gaeuman, D.; Stewart, R. L.

    2017-12-01

    The construction of secondary channels (or side channels) is a popular strategy for increasing aquatic habitat complexity in managed rivers. Such channels, however, frequently experience aggradation that prevents surface water from entering the side channels near their bifurcation points during periods of relatively low discharge. This failure to maintain an uninterrupted surface water connection with the main channel can reduce the habitat value of side channels for fish species that prefer lotic conditions. Various factors have been proposed as potential controls on the fate of side channels, including water surface slope differences between the main and secondary channels, the presence of main channel secondary circulation, transverse bed slopes, and bifurcation angle. A quantitative assessment of more than 50 natural and constructed secondary channels in the Trinity River of northern California indicates that bifurcations can assume a variety of configurations that are formed by different processes and whose longevity is governed by different sets of factors. Moreover, factors such as bifurcation angle and water surface slope vary with discharge level and are continuously distributed in space, such that they must be viewed as a multi-dimensional field rather than a single-valued attribute that can be assigned to a particular bifurcation.

  2. Multi-channel polarized thermal emitter

    Science.gov (United States)

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P

    2013-07-16

    A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

  3. Basolateral K+ channels in airway epithelia. II. Role in Cl- secretion and evidence for two types of K+ channel

    International Nuclear Information System (INIS)

    McCann, J.D.; Welsh, M.J.

    1990-01-01

    We previously described a Ca2(+)-activated K+ channel (KCLIC) in airway epithelial cells. To determine whether the KCLIC channel is a basolateral membrane channel and to understand its role in Cl- secretion, we studied airway epithelial cells grown on permeable supports. When cells were stimulated with A23187, charybdotoxin (ChTX) inhibited Cl- secretion and 86Rb efflux at the same concentrations, indicating that the KCLIC channel is required for Ca2(+)-stimulated Cl- secretion. We also investigated the function of K+ channels in adenosine 3',5'-cyclic monophosphate-stimulated secretion. Addition of isoproterenol caused a biphasic increase in Cl- secretion; the time course of the transient component correlated with the time course of the isoproterenol-induced increase in Ca2+ concentration [( Ca2+]c). ChTX inhibited the transient component, but not the prolonged component of secretion; Ba2+ inhibited the sustained component. These results suggest that when cells are grown on permeable supports isoproterenol-induced secretion depends on activation of two types of K+ channel: the KCLIC channel that is stimulated initially and a ChTX-insensitive K+ channel that is stimulated during sustained secretion. This conclusion was supported by measurement of 86Rb efflux from cell monolayers

  4. Consideration of hot channel factors in design for providing operating margins on coolant channel outlet temperature

    International Nuclear Information System (INIS)

    Sharma, V.K.; Surendar, C.; Bapat, C.N.

    1994-01-01

    The Indian Pressurized Heavy Water Reactors (IPHWR) are horizontal pressure tube reactors using natural uranium oxide fuel in the form of short (495 mm) clusters. The fuel clusters in the Zr-Nb pressure tubes are cooled by high pressure, high temperature and subcooled circulating heavy water. Coolant flow distribution to individual channels is designed to match the power distribution so as to obtain uniform coolant outlet temperature. However, during operation, the coolant outlet temperature in individual channels deviate from their nominal value due to: tolerances in process design; effects of grid frequency on the pump speed; deviation in channel powers from the nominal values due to on-power fuelling and movement of reactivity devices, and so on. Thus an operating margin, between the highest permissible and nominal coolant outlet temperatures, is required taking into account various hot channel factors that contribute to higher coolant outlet temperatures. The paper discusses the methodology adopted to assess various hot channel factors which would provide optimum operating margins while ensuring sub-cooling. (author)

  5. Pricing Decisions of a Dual-Channel Closed-Loop Supply Chain under Uncertain Demand of Indirect Channel

    Directory of Open Access Journals (Sweden)

    Jie Gao

    2016-01-01

    Full Text Available The dual-channel closed-loop supply chain (CLSC which is composed of one manufacturer and one retailer under uncertain demand of an indirect channel is constructed. In this paper, we establish three pricing models under decentralized decision making, namely, the Nash game between the manufacturer and the retailer, the manufacturer-Stackelberg game, and the retailer-Stackelberg game, to investigate pricing decisions of the CLSC in which the manufacturer uses the direct channel and indirect channel to sell products and entrusts the retailer to collect the used products. We numerically analyze the impact of customer acceptance of the direct channel (θ on pricing decisions and excepted profits of the CLSC. The results show that when the variable θ changes in a certain range, the wholesale price, retail price, and expected profits of the retailer all decrease when θ increases, while the direct online sales price and manufacturer’s expected profits in the retailer-Stackelberg game all increase when θ increases. However, the optimal recycling transfer price and optimal acquisition price of used product are unaffected by θ.

  6. Authentication over Noisy Channels

    OpenAIRE

    Lai, Lifeng; Gamal, Hesham El; Poor, H. Vincent

    2008-01-01

    In this work, message authentication over noisy channels is studied. The model developed in this paper is the authentication theory counterpart of Wyner's wiretap channel model. Two types of opponent attacks, namely impersonation attacks and substitution attacks, are investigated for both single message and multiple message authentication scenarios. For each scenario, information theoretic lower and upper bounds on the opponent's success probability are derived. Remarkably, in both scenarios,...

  7. Study of material properties using channeling radiation

    International Nuclear Information System (INIS)

    Pantell, R.H.; Kephart, J.O.; Klein, R.K.; Park, H.; Berman, B.L.; Datz, S.

    1986-01-01

    A possible application for channeling radiation is for investigating the properties of crystals in which the channeling occurs. In this paper we present some general considerations concerning channeling radiation as a measurement technique, and then we proceed to describe several specific examples

  8. Well-Defined Microapertures for Ion Channel Biosensors

    NARCIS (Netherlands)

    Halza, Erik; Bro, Tobias Hedegaard; Bilenberg, Brian; Kocer, Armagan

    2013-01-01

    Gated ion channels are excitable nanopores in biological membranes. They sense and respond to different triggers in nature. The sensory characteristics of these channels can be modified by protein engineering tools and the channels can be functionally reconstituted into synthetic lipid bilayer

  9. Quantum channels and their entropic characteristics

    International Nuclear Information System (INIS)

    Holevo, A S; Giovannetti, V

    2012-01-01

    One of the major achievements of the recently emerged quantum information theory is the introduction and thorough investigation of the notion of a quantum channel which is a basic building block of any data-transmitting or data-processing system. This development resulted in an elaborated structural theory and was accompanied by the discovery of a whole spectrum of entropic quantities, notably the channel capacities, characterizing information-processing performance of the channels. This paper gives a survey of the main properties of quantum channels and of their entropic characterization, with a variety of examples for finite-dimensional quantum systems. We also touch upon the 'continuous-variables' case, which provides an arena for quantum Gaussian systems. Most of the practical realizations of quantum information processing were implemented in such systems, in particular based on principles of quantum optics. Several important entropic quantities are introduced and used to describe the basic channel capacity formulae. The remarkable role of specific quantum correlations—entanglement—as a novel communication resource is stressed.

  10. HANARO core channel flow-rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Il; Chae, Hee Tae; Im, Don Soon; Kim, Seon Duk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    HANARO core consists of 23 hexagonal flow tubes and 16 cylindrical flow tubes. To get the core flow distribution, we used 6 flow-rate measuring dummy fuel assemblies (instrumented dummy fuel assemblies). The differential pressures were measured and converted to flow-rates using the predetermined relationship between AP and flow-rate for each instrumented dummy fuel assemblies. The flow-rate for the cylindrical flow channels shows +-7% relative errors and that for the hexagonal flow channels shows +-3.5% relative errors. Generally the flow-rates of outer core channels show smaller values compared to those of inner core. The channels near to the core inlet pipe and outlet pipes also show somewhat lower flow-rates. For the lower flow channels, the thermal margin was checked by considering complete linear power histories. From the experimental results, the gap flow-rate was estimated to be 49.4 kg/s (cf. design flow of 50 kg/s). 15 tabs., 9 figs., 10 refs. (Author) .new.

  11. Algebraic Side-Channel Attack on Twofish

    Directory of Open Access Journals (Sweden)

    Chujiao Ma

    2017-05-01

    Full Text Available While algebraic side-channel attack (ASCA has been successful in breaking simple cryptographic algorithms, it has never been done on larger or more complex algorithms such as Twofish. Compared to other algorithms that ASCA has been used on, Twofish is more difficult to attack due to the key-dependent S-boxes as well as the complex key scheduling. In this paper, we propose the first algebraic side-channel attack on Twofish, and examine the importance of side-channel information in getting past the key-dependent S-boxes and the complex key scheduling. The cryptographic algorithm and side-channel information are both expressed as boolean equations and a SAT solver is used to recover the key. While algebraic attack by itself is not sufficient to break the algorithm, with the help of side-channel information such as Hamming weights, we are able to correctly solve for 96 bits of the 128 bits key in under 2 hours with known plaintext/ciphertext.

  12. Micro-channel plates and vacuum detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gys, T., E-mail: Thierry.Gys@cern.ch

    2015-07-01

    A micro-channel plate is an array of miniature electron multipliers that are each acting as a continuous dynode chain. The compact channel structure results in high spatial and time resolutions and robustness to magnetic fields. Micro-channel plates have been originally developed for night vision applications and integrated as an amplification element in image intensifiers. These devices show single-photon sensitivity with very low noise and have been used as such for scintillating fiber tracker readout in high-energy physics experiments. Given their very short transit time spread, micro-channel plate photomultiplier tubes are also being used in time-of-flight and particle identification detectors. The present paper will cover the history of the micro-channel plate development, basic features, and some of their applications. Emphasis will be put on various new manufacturing processes that have been developed over the last few years, and that result in a significant improvement in terms of efficiency, noise, and lifetime performance.

  13. Subchannel analysis code development for CANDU fuel channel

    International Nuclear Information System (INIS)

    Park, J. H.; Suk, H. C.; Jun, J. S.; Oh, D. J.; Hwang, D. H.; Yoo, Y. J.

    1998-07-01

    Since there are several subchannel codes such as COBRA and TORC codes for a PWR fuel channel but not for a CANDU fuel channel in our country, the subchannel analysis code for a CANDU fuel channel was developed for the prediction of flow conditions on the subchannels, for the accurate assessment of the thermal margin, the effect of appendages, and radial/axial power profile of fuel bundles on flow conditions and CHF and so on. In order to develop the subchannel analysis code for a CANDU fuel channel, subchannel analysis methodology and its applicability/pertinence for a fuel channel were reviewed from the CANDU fuel channel point of view. Several thermalhydraulic and numerical models for the subchannel analysis on a CANDU fuel channel were developed. The experimental data of the CANDU fuel channel were collected, analyzed and used for validation of a subchannel analysis code developed in this work. (author). 11 refs., 3 tabs., 50 figs

  14. Simulation of channelled ion ranges in crystalline silicon

    International Nuclear Information System (INIS)

    Kabadayi, Oender; Guemues, Hasan

    2004-01-01

    We present results from a channelled ion range simulation model based on separation of ion trajectories into three different categories known as random, channelled, and well-channelled. We present this for boron projectiles incident along the Si direction. Stopping powers for channelled particles, well-channelled, and random particles are determined using experimental ratios of random and channelled stopping powers for a boron/silicon system. We have found the particle range distributions and the mean range of particles in crystalline channels. A new program code has been developed for the implementation of the presented model. The results are compared with experimental data as well as Crystal-transport and range of ions in matter, stopping and ranges of ions in matter, and projected range algorithm programs. We have found good agreement between our calculations and experiment, with an average discrepancy of 7%. Our model is also able to simulate the observed shift towards larger depths for the main ion distribution under channelling conditions

  15. Assessing the Consequences of a Channel Switch

    OpenAIRE

    Xinlei (Jack) Chen; George John; Om Narasimhan

    2008-01-01

    Switching marketing channels is an expensive and sticky decision. While a number of theories suggest efficiency and strategic differences between channels, there is virtually no work on combining these ideas into an empirically workable methodology to assess the impact of a channel switch. In this study, we undertake to close this gap with an empirical study of the sports drink market, featuring competing producers and heterogeneous channels. We estimate demand and cost parameters for a numbe...

  16. Degenerate RFID Channel Modeling for Positioning Applications

    Directory of Open Access Journals (Sweden)

    A. Povalac

    2012-12-01

    Full Text Available This paper introduces the theory of channel modeling for positioning applications in UHF RFID. It explains basic parameters for channel characterization from both the narrowband and wideband point of view. More details are given about ranging and direction finding. Finally, several positioning scenarios are analyzed with developed channel models. All the described models use a degenerate channel, i.e. combined signal propagation from the transmitter to the tag and from the tag to the receiver.

  17. Subunit Stoichiometry of Human Muscle Chloride Channels

    OpenAIRE

    Fahlke, Christoph; Knittle, Timothy; Gurnett, Christina A.; Campbell, Kevin P.; George, Alfred L.

    1997-01-01

    Voltage-gated Cl? channels belonging to the ClC family appear to function as homomultimers, but the number of subunits needed to form a functional channel is controversial. To determine subunit stoichiometry, we constructed dimeric human skeletal muscle Cl? channels in which one subunit was tagged by a mutation (D136G) that causes profound changes in voltage-dependent gating. Sucrose-density gradient centrifugation experiments indicate that both monomeric and dimeric hClC-1 channels in their ...

  18. Reservoir architecture patterns of sandy gravel braided distributary channel

    Directory of Open Access Journals (Sweden)

    Senlin Yin

    2016-06-01

    Full Text Available The purpose of this study was to discuss shape, scale and superimposed types of sandy gravel bodies in sandy-gravel braided distributary channel. Lithofacies analysis, hierarchy bounding surface analysis and subsurface dense well pattern combining with outcrops method were used to examine reservoir architecture patterns of sandy gravel braided distributary channel based on cores, well logging, and outcrops data, and the reservoir architecture patterns of sandy gravel braided distributary channels in different grades have been established. The study shows: (1 The main reservoir architecture elements for sandy gravel braided channel delta are distributary channel and overbank sand, while reservoir flow barrier elements are interchannel and lacustrine mudstone. (2 The compound sand bodies in the sandy gravel braided delta distributary channel take on three shapes: sheet-like distributary channel sand body, interweave strip distributary channel sand body, single strip distributary channel sand body. (3 Identification marks of single distributary channel include: elevation of sand body top, lateral overlaying, “thick-thin-thick” feature of sand bodies, interchannel mudstone and overbank sand between distributary channels and the differences in well log curve shape of sand bodies. (4 Nine lithofacies types were distinguished in distributary channel unit interior, different channel units have different lithofacies association sequence.

  19. A Channelization-Based DOA Estimation Method for Wideband Signals

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2016-07-01

    Full Text Available In this paper, we propose a novel direction of arrival (DOA estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR using direct wideband radio frequency (RF digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method.

  20. Bywalled plasma formation in vacuum prolonged channels

    International Nuclear Information System (INIS)

    Korenev, S.A.; Rubin, N.B.

    1982-01-01

    To produce homogeneous along the channel length plasma the application of incomplete rate-in surface dielectric discharge for generating the bywalled plasma in prolonged cylindrical channels at a pressure of the residual gas of P approximately 10 -5 Torr is proposed. Experimental set-up consisted of a pulse voltage generator and a plasma channel. The plasma channel was a coaxial system of three tubes inserted into each other. The first outer tube is made of a stainless steel, the second - of a dielectric material, the third - of smallsized stainless steel greed. It is demonstrated that the plasma being formed in the process is sufficiently homogeneous by concentration of the components, by the channel length and azimuth. The length of the experimental channel under investigation was 1.6 m, its diameter amounted 0.05 m. The maximum concentration of electron component was 10 17 m -3

  1. Electronic trade effect of marketing channels

    OpenAIRE

    Lovreta Stipe; Stojković Dragan

    2009-01-01

    E-commerce has caused many significant changes in marketing channels. Consumers had obtained multiple benefits from e-commerce. In addition, it has increased the level of competition in marketing channels. However, the focus of this paper is multichannel strategy and integration of physical (store) and electronic marketing channels. E-commerce has induced dynamic development of multichannel strategy. This strategy has evolved as a consequence of multichannel consumer orientation. In developed...

  2. Dysfunctional HCN ion channels in neurological diseases

    Directory of Open Access Journals (Sweden)

    Jacopo C. DiFrancesco

    2015-03-01

    Full Text Available Hyperpolarization-activated cyclic nucleotide-gated (HCN channels are expressed as four different isoforms (HCN1-4 in the heart and in the central and peripheral nervous systems. HCN channels are activated by membrane hyperpolarization at voltages close to resting membrane potentials and carry the hyperpolarization-activated current, dubbed If (funny current in heart and Ih in neurons. HCN channels contribute in several ways to neuronal activity and are responsible for many important cellular functions, including cellular excitability, generation and modulation of rhythmic activity, dendritic integration, transmission of synaptic potentials and plasticity phenomena. Because of their role, defective HCN channels are natural candidates in the search for potential causes of neurological disorders in humans. Several data, including growing evidence that some forms of epilepsy are associated with HCN mutations, support the notion of an involvement of dysfunctional HCN channels in different experimental models of the disease. Additionally, some anti-epileptic drugs are known to modify the activity of the Ih current. HCN channels are widely expressed in the peripheral nervous system and recent evidence has highlighted the importance of the HCN2 isoform in the transmission of pain. HCN channels are also present in the midbrain system, where they finely regulate the activity of dopaminergic neurons, and a potential role of these channels in the pathogenesis of Parkinson’s disease has recently emerged. The function of HCN channels is regulated by specific accessory proteins, which control the correct expression and modulation of the neuronal Ih current. Alteration of these proteins can severely interfere with the physiological channel function, potentially predisposing to pathological conditions. In this review we address the present knowledge of the association between HCN dysfunctions and neurological diseases, including clinical, genetic and

  3. Choosing channel quantization levels and viterbi decoding for space diversity reception over the additive white Guassian noise channel

    Science.gov (United States)

    Kalson, S.

    1986-01-01

    Previous work in the area of choosing channel quantization levels for a additive white Gaussian noise channel composed of one receiver-demodulator is reviewed, and how this applies to the Deep Space Network composed of several receiver-demodulators (space diversity reception) is shown. Viterbi decoding for the resulting quantized channel is discussed.

  4. Calcium channels in the brain as targets for the calcium-channel modulators used in the treatment of neurological disorders

    NARCIS (Netherlands)

    Peters, Thies; WILFFERT, B; VANHOUTTE, PM; VANZWIETEN, PA

    1991-01-01

    Recent investigations of calcium channels in brain cells by voltage-clamp techniques have revealed that, in spite of electrophysiological similarities, the pharmacological properties of these channels differ considerably from channels in peripheral tissues, e.g., heart and smooth muscle. Therefore,

  5. Ergodic Capacity for the SIMO Nakagami- Channel

    Directory of Open Access Journals (Sweden)

    Vagenas EfstathiosD

    2009-01-01

    Full Text Available This paper presents closed-form expressions for the ergodic channel capacity of SIMO (single-input and multiple output wireless systems operating in a Nakagami- fading channel. As the performance of SIMO channel is closely related to the diversity combining techniques, we present closed-form expressions for the capacity of maximal ratio combining (MRC, equal gain combining (EGC, selection combining (SC, and switch and stay (SSC diversity systems operating in Nakagami- fading channels. Also, the ergodic capacity of a SIMO system in a Nakagami- fading channel without any diversity technique is derived. The latter scenario is further investigated for a large amount of receive antennas. Finally, numerical results are presented for illustration.

  6. Slack, Slick, and Sodium-Activated Potassium Channels

    Science.gov (United States)

    Kaczmarek, Leonard K.

    2013-01-01

    The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. PMID:24319675

  7. Superconducting muon channel at J-PARC

    International Nuclear Information System (INIS)

    Shimomura, K.; Koda, A.; Strasser, P.; Kawamura, N.; Fujimori, H.; Makimura, S.; Higemoto, W.; Nakahara, K.; Ishida, K.; Nishiyama, K.; Nagamine, K.; Miyake, Y.

    2009-01-01

    The Muon Science Laboratory at the Materials and Life Science Facility is now under construction in Japan Proton Accelerator Research Complex (J-PARC), where four types of muon channels are planned to be installed. A conventional superconducting muon channel will be installed at the first stage, which can extract surface (positive) muons and decay positive/negative muons up to 120 MeV/c, and the expected muon yield is a few 10 6 /s at 60 MeV/c (for both positive and negative). This channel will be used for various kinds of experiments like muon catalyzed fusion, μSR and nondestructive elements analysis. The present status of the superconducting muon channel is briefly reported.

  8. Hydraulic jumps in a channel

    DEFF Research Database (Denmark)

    Bonn, D.; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present a study of hydraulic jumps with flow predominantly in one direction, created either by confining the flow to a narrow channel with parallel walls or by providing an inflow in the form of a narrow sheet. In the channel flow, we find a linear height profile upstream of the jump as expected......'s mixing-length theory with a mixing length that is proportional to the height of the fluid layer. Using averaged boundary-layer equations, taking into account the friction with the channel walls and the eddy viscosity, the flow both upstream and downstream of the jump can be understood. For the downstream...... subcritical flow, we assume that the critical height is attained close to the channel outlet. We use mass and momentum conservation to determine the position of the jump and obtain an estimate which is in rough agreement with our experiment. We show that the averaging method with a varying velocity profile...

  9. HYTRAN: hydraulic transient code for investigating channel flow stability

    International Nuclear Information System (INIS)

    Kao, H.S.; Cardwell, W.R.; Morgan, C.D.

    1976-01-01

    HYTRAN is an analytical program used to investigate the possibility of hydraulic oscillations occurring in a reactor flow channel. The single channel studied is ordinarily the hot channel in the reactor core, which is parallel to other channels and is assumed to share a constant pressure drop with other channels. Since the channel of highest thermal state is studied, provision is made for two-phase flow that can cause a flow instability in the channel. HYTRAN uses the CHATA(1) program to establish a steady-state condition. A heat flux perturbation is then imposed on the channel, and the flow transient is calculated as a function of time

  10. The Marketing Channels of China Auto Industry

    Institute of Scientific and Technical Information of China (English)

    our reporter

    2001-01-01

    <正> After the 1990’s, the multi-channel structure of sales has still existed although the market mechanism is playing a main role in Chinese auto marketing circulation. Now, the channels of automobile marketing in China are as follows: 1. Manufacturer-established marketing channels

  11. Low-Complexity Bayesian Estimation of Cluster-Sparse Channels

    KAUST Repository

    Ballal, Tarig

    2015-09-18

    This paper addresses the problem of channel impulse response estimation for cluster-sparse channels under the Bayesian estimation framework. We develop a novel low-complexity minimum mean squared error (MMSE) estimator by exploiting the sparsity of the received signal profile and the structure of the measurement matrix. It is shown that due to the banded Toeplitz/circulant structure of the measurement matrix, a channel impulse response, such as underwater acoustic channel impulse responses, can be partitioned into a number of orthogonal or approximately orthogonal clusters. The orthogonal clusters, the sparsity of the channel impulse response and the structure of the measurement matrix, all combined, result in a computationally superior realization of the MMSE channel estimator. The MMSE estimator calculations boil down to simpler in-cluster calculations that can be reused in different clusters. The reduction in computational complexity allows for a more accurate implementation of the MMSE estimator. The proposed approach is tested using synthetic Gaussian channels, as well as simulated underwater acoustic channels. Symbol-error-rate performance and computation time confirm the superiority of the proposed method compared to selected benchmark methods in systems with preamble-based training signals transmitted over clustersparse channels.

  12. Low-Complexity Bayesian Estimation of Cluster-Sparse Channels

    KAUST Repository

    Ballal, Tarig; Al-Naffouri, Tareq Y.; Ahmed, Syed

    2015-01-01

    This paper addresses the problem of channel impulse response estimation for cluster-sparse channels under the Bayesian estimation framework. We develop a novel low-complexity minimum mean squared error (MMSE) estimator by exploiting the sparsity of the received signal profile and the structure of the measurement matrix. It is shown that due to the banded Toeplitz/circulant structure of the measurement matrix, a channel impulse response, such as underwater acoustic channel impulse responses, can be partitioned into a number of orthogonal or approximately orthogonal clusters. The orthogonal clusters, the sparsity of the channel impulse response and the structure of the measurement matrix, all combined, result in a computationally superior realization of the MMSE channel estimator. The MMSE estimator calculations boil down to simpler in-cluster calculations that can be reused in different clusters. The reduction in computational complexity allows for a more accurate implementation of the MMSE estimator. The proposed approach is tested using synthetic Gaussian channels, as well as simulated underwater acoustic channels. Symbol-error-rate performance and computation time confirm the superiority of the proposed method compared to selected benchmark methods in systems with preamble-based training signals transmitted over clustersparse channels.

  13. Monitoring inter-channel nonlinearity based on differential pilot

    Science.gov (United States)

    Wang, Wanli; Yang, Aiying; Guo, Peng; Lu, Yueming; Qiao, Yaojun

    2018-06-01

    We modify and simplify the inter-channel nonlinearity (NL) estimation method by using differential pilot. Compared to previous works, the inter-channel NL estimation method we propose has much lower complexity and does not need modification of the transmitter. The performance of inter-channel NL monitoring with different launch power is tested. For both QPSK and 16QAM systems with 9 channels, the estimation error of inter-channel NL is lower than 1 dB when the total launch power is bigger than 12 dBm after 1000 km optical transmission. At last, we compare our inter-channel NL estimation method with other methods.

  14. Dark matter annihilation with s-channel internal Higgsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jason; Liao, Jiajun, E-mail: liaoj@hawaii.edu; Marfatia, Danny

    2016-08-10

    We study the scenario of fermionic dark matter that annihilates to standard model fermions through an s-channel axial vector mediator. We point out that the well-known chirality suppression of the annihilation cross section can be alleviated by s-channel internal Higgsstrahlung. The shapes of the cosmic ray spectra are identical to that of t-channel internal Higgsstrahlung in the limit of a heavy mediating particle. Unlike the general case of t-channel bremsstrahlung, s-channel Higgsstrahlung can be the dominant annihilation process even for Dirac dark matter. Since the s-channel mediator can be a standard model singlet, collider searches for the mediator are easily circumvented.

  15. Dark matter annihilation with s-channel internal Higgsstrahlung

    International Nuclear Information System (INIS)

    Kumar, Jason; Liao, Jiajun; Marfatia, Danny

    2016-01-01

    We study the scenario of fermionic dark matter that annihilates to standard model fermions through an s-channel axial vector mediator. We point out that the well-known chirality suppression of the annihilation cross section can be alleviated by s-channel internal Higgsstrahlung. The shapes of the cosmic ray spectra are identical to that of t-channel internal Higgsstrahlung in the limit of a heavy mediating particle. Unlike the general case of t-channel bremsstrahlung, s-channel Higgsstrahlung can be the dominant annihilation process even for Dirac dark matter. Since the s-channel mediator can be a standard model singlet, collider searches for the mediator are easily circumvented.

  16. Channel and delay estimation for base-station–based cooperative communications in frequency-selective fading channels

    Directory of Open Access Journals (Sweden)

    Hongjun Xu

    2011-07-01

    Full Text Available A channel and delay estimation algorithm for both positive and negative delay, based on the distributed Alamouti scheme, has been recently discussed for base-station–based asynchronous cooperative systems in frequency-flat fading channels. This paper extends the algorithm, the maximum likelihood estimator, to work in frequency-selective fading channels. The minimum mean square error (MMSE performance of channel estimation for both packet schemes and normal schemes is discussed in this paper. The symbol error rate (SER performance of equalisation and detection for both time-reversal space-time block code (STBC and single-carrier STBC is also discussed in this paper. The MMSE simulation results demonstrated the superior performance of the packet scheme over the normal scheme with an improvement in performance of up to 6 dB when feedback was used in the frequency-selective channel at a MSE of 3 x 10–2. The SER simulation results showed that, although both the normal and packet schemes achieved similar diversity orders, the packet scheme demonstrated a 1 dB coding gain over the normal scheme at a SER of 10–5. Finally, the SER simulations showed that the frequency-selective fading system outperformed the frequency-flat fading system.

  17. Chaos in quantum channels

    Energy Technology Data Exchange (ETDEWEB)

    Hosur, Pavan; Qi, Xiao-Liang [Department of Physics, Stanford University,476 Lomita Mall, Stanford, California 94305 (United States); Roberts, Daniel A. [Center for Theoretical Physics and Department of Physics, Massachusetts Institute of Technology,77 Massachusetts Ave, Cambridge, Massachusetts 02139 (United States); Yoshida, Beni [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena CA 91125 (United States)

    2016-02-01

    We study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. These results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.

  18. Spark channel propagation in a microbubble liquid

    Energy Technology Data Exchange (ETDEWEB)

    Panov, V. A.; Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru; Vetchinin, S. P.; Pecherkin, V. Ya.; Son, E. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-11-15

    Experimental study on the development of the spark channel from the anode needle under pulsed electrical breakdown of isopropyl alcohol solution in water with air microbubbles has been performed. The presence of the microbubbles increases the velocity of the spark channel propagation and increases the current in the discharge gap circuit. The observed rate of spark channel propagation in microbubble liquid ranges from 4 to 12 m/s, indicating the thermal mechanism of the spark channel development in a microbubble liquid.

  19. Spin chain model for correlated quantum channels

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, Davide [International School for Advanced Studies SISSA/ISAS, via Beirut 2-4, I-34014 Trieste (Italy); Giovannetti, Vittorio; Montangero, Simone [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy)], E-mail: monta@sns.it

    2008-11-15

    We analyze the quality of the quantum information transmission along a correlated quantum channel by studying the average fidelity between input and output states and the average output purity, giving bounds for the entropy of the channel. Noise correlations in the channel are modeled by the coupling of each channel use with an element of a one-dimensional interacting quantum spin chain. Criticality of the environment chain is seen to emerge in the changes of the fidelity and of the purity.

  20. An approach to implement virtual channels for flowing magnetic beads

    International Nuclear Information System (INIS)

    Tang, Shih-Hao; Chiang, Hung-Wei; Hsieh, Min-Chien; Chang, Yen-Di; Yeh, Po-Fan; Tsai, Jui-che; Shieh, Wung-Yang

    2014-01-01

    This work demonstrates the feasibility of a novel microfluidic system with virtual channels formed by ‘walls’ of magnetic fields, including collecting channels, transporting channels and function channels. The channels are defined by the nickel patterns. With its own ferromagnetism, nickel can be magnetized using an external magnetic field; the nickel structures then generate magnetic fields that can either guide or trap magnetic beads. A glass substrate is sandwiched between the liquid containing magnetic beads and the chip with nickel structures, preventing the liquid from directly contacting the nickel. In this work, collecting channels, transporting channels and function channels are displayed sequentially. In the collecting channel portion, channels with different shapes are compared. Next, in the transporting channel portion we demonstrate I-, S- and Y-shaped channels can steer magnetic beads smoothly. Finally, in the function channel portion, a switchable trapping channel implemented with a bistable mechanism performs the passing and blocking of a magnetic bead. (paper)

  1. Differential Effects of TRPA and TRPV Channels on Behaviors of

    Directory of Open Access Journals (Sweden)

    Jennifer Thies

    2016-01-01

    Full Text Available TRPA and TRPV ion channels are members of the transient receptor potential (TRP cation channel superfamily, which mediates various sensory transductions. In Caenorhabditis elegans , the TRPV channels are known to affect chemosensation, while the TRPA-1 channel is associated with thermosensation and mechanosensation. We examined thermosensation, chemosensation, and osmosensation in strains lacking TRPA-1 or TRPV channels. We found that TRPV channel knockout worms exhibited similar behavioral deficits associated with thermotaxis as the TRPA-1 channel knockout, suggesting a dual role for TRPV channels. In contrast, chemosensation responses, assessed by both avoidance reversal behavior and NaCl osmosensation, were dependent on TRPV channels but seemed independent of TRPA-1 channel. Our findings suggest that, in addition to TRPA-1 channel, TRPV channels are necessary for thermotaxis and may activate, or modulate, the function of TRPA-1 channels. In contrast, TRPA-1 channels do not have a dual responsibility, as they have no functional role in odorant avoidance or osmosensation.

  2. Perceived quality of channel zapping

    NARCIS (Netherlands)

    Kooij, R.E.; Ahmed, K.; Brunnström, K.

    2006-01-01

    The end user experience of service quality is critical to the success of a service provider's IPTV deployment program. A key element involved in validating IPTV quality of experience (QoE) is how quickly and reliably users can change TV channels, often referred to as channel zapping. Currently there

  3. An accurate mobility model for the I-V characteristics of n-channel enhancement-mode MOSFETs with single-channel boron implantation

    International Nuclear Information System (INIS)

    Chingyuan Wu; Yeongwen Daih

    1985-01-01

    In this paper an analytical mobility model is developed for the I-V characteristics of n-channel enhancement-mode MOSFETs, in which the effects of the two-dimensional electric fields in the surface inversion channel and the parasitic resistances due to contact and interconnection are included. Most importantly, the developed mobility model easily takes the device structure and process into consideration. In order to demonstrate the capabilities of the developed model, the structure- and process-oriented parameters in the present mobility model are calculated explicitly for an n-channel enhancement-mode MOSFET with single-channel boron implantation. Moreover, n-channel MOSFETs with different channel lengths fabricated in a production line by using a set of test keys have been characterized and the measured mobilities have been compared to the model. Excellent agreement has been obtained for all ranges of the fabricated channel lengths, which strongly support the accuracy of the model. (author)

  4. Pharmaceutical Distribution Market Channels in Poland

    Directory of Open Access Journals (Sweden)

    Agnieszka Woś

    2009-09-01

    Full Text Available Distribution on the pharmaceutical market in Poland is interesting and the most difficult sphere to manage. Numerous varied and specialized companies operating on the market cause that the processes of choosing middlemen in distribution channels are very complex. The hereby article presents the role and location of the companies operating within distribution channels on the pharmaceutical market. It draws attention to the development of non-pharmacy and non-wholesale sales channels.

  5. A self-regulating model of bedrock river channel geometry

    Science.gov (United States)

    Stark, C. P.

    2006-02-01

    The evolution of many mountain landscapes is controlled by the incision of bedrock river channels. While the rate of incision is set by channel shape through its mediation of flow, the channel shape is itself set by the history of bedrock erosion. This feedback between channel geometry and incision determines the speed of landscape response to tectonic or climatic forcing. Here, a model for the dynamics of bedrock channel shape is derived from geometric arguments, a normal flow approximation for channel flow, and a threshold bed shear stress assumption for bedrock abrasion. The model dynamics describe the competing effects of channel widening, tilting, bending, and variable flow depth. Transient solutions suggest that channels may take ~1-10 ky to adapt to changes in discharge, implying that channel disequilibrium is commonplace. If so, landscape evolution models will need to include bedrock channel dynamics if they are to probe the effects of climate change.

  6. Dense Clustered Multi-Channel Wireless Sensor Cloud

    Directory of Open Access Journals (Sweden)

    Sivaramakrishnan Sivakumar

    2015-08-01

    Full Text Available Dense Wireless Sensor Network Clouds have an inherent issue of latency and packet drops with regards to data collection. Though there is extensive literature that tries to address these issues through either scheduling, channel contention or a combination of the two, the problem still largely exists. In this paper, a Clustered Multi-Channel Scheduling Protocol (CMSP is designed that creates a Voronoi partition of a dense network. Each partition is assigned a channel, and a scheduling scheme is adopted to collect data within the Voronoi partitions. This scheme collects data from the partitions concurrently and then passes it to the base station. CMSP is compared using simulation with other multi-channel protocols like Tree-based Multi-Channel, Multi-Channel MAC and Multi-frequency Media Access Control for wireless sensor networks. Results indicate CMSP has higher throughput and data delivery ratio at a lower power consumption due to network partitioning and hierarchical scheduling that minimizes load on the network.

  7. Promotion through Marketing Channels : The Case of Kosovo

    OpenAIRE

    MSc. Hidajet Karaxha; MSc. Sejd Tolaj; Dr.Sc. Ilia Kristo

    2016-01-01

    In order for a product to be put in the hands of the customer, requires a mechanism which is called distribution channel and which enables the connection between the consumer and producer. One of the many strategies applied by Kosovar companies for the involvement of the members of the channel is also the promotion through distribution channels. Therefore, the strategies which involve the members of the channel have a higher probability to be positively accepted by the members of the channel,...

  8. Secret Sharing over Fast-Fading MIMO Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Bloch Matthieu

    2009-01-01

    Full Text Available Secret sharing over the fast-fading MIMO wiretap channel is considered. A source and a destination try to share secret information over a fast-fading MIMO channel in the presence of an eavesdropper who also makes channel observations that are different from but correlated to those made by the destination. An interactive, authenticated public channel with unlimited capacity is available to the source and destination for the secret sharing process. This situation is a special case of the "channel model with wiretapper" considered by Ahlswede and Csiszár. An extension of their result to continuous channel alphabets is employed to evaluate the key capacity of the fast-fading MIMO wiretap channel. The effects of spatial dimensionality provided by the use of multiple antennas at the source, destination, and eavesdropper are then investigated.

  9. Plasma Channel Diagnostic Based on Laser Centroid Oscillations

    International Nuclear Information System (INIS)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2010-01-01

    A technique has been developed for measuring the properties of discharge-based plasma channels by monitoring the centroid location of a laser beam exiting the channel as a function of input alignment offset between the laser and the channel. The centroid position of low-intensity ( 14 Wcm -2 ) laser pulses focused at the input of a hydrogen-filled capillary discharge waveguide was scanned and the exit positions recorded to determine the channel shape and depth with an accuracy of a few %. In addition, accurate alignment of the laser beam through the plasma channel can be provided by minimizing laser centroid motion at the channel exit as the channel depth is scanned either by scanning the plasma density or the discharge timing. The improvement in alignment accuracy provided by this technique will be crucial for minimizing electron beam pointing errors in laser plasma accelerators.

  10. Glibenclamide for the treatment of ischemic and hemorrhagic stroke.

    Science.gov (United States)

    Caffes, Nicholas; Kurland, David B; Gerzanich, Volodymyr; Simard, J Marc

    2015-03-04

    Ischemic and hemorrhagic strokes are associated with severe functional disability and high mortality. Except for recombinant tissue plasminogen activator, therapies targeting the underlying pathophysiology of central nervous system (CNS) ischemia and hemorrhage are strikingly lacking. Sur1-regulated channels play essential roles in necrotic cell death and cerebral edema following ischemic insults, and in neuroinflammation after hemorrhagic injuries. Inhibiting endothelial, neuronal, astrocytic and oligodendroglial sulfonylurea receptor 1-transient receptor potential melastatin 4 (Sur1-Trpm4) channels and, in some cases, microglial KATP (Sur1-Kir6.2) channels, with glibenclamide is protective in a variety of contexts. Robust preclinical studies have shown that glibenclamide and other sulfonylurea agents reduce infarct volumes, edema and hemorrhagic conversion, and improve outcomes in rodent models of ischemic stroke. Retrospective studies suggest that diabetic patients on sulfonylurea drugs at stroke presentation fare better if they continue on drug. Additional laboratory investigations have implicated Sur1 in the pathophysiology of hemorrhagic CNS insults. In clinically relevant models of subarachnoid hemorrhage, glibenclamide reduces adverse neuroinflammatory and behavioral outcomes. Here, we provide an overview of the preclinical studies of glibenclamide therapy for CNS ischemia and hemorrhage, discuss the available data from clinical investigations, and conclude with promising preclinical results that suggest glibenclamide may be an effective therapeutic option for ischemic and hemorrhagic stroke.

  11. Glibenclamide for the Treatment of Ischemic and Hemorrhagic Stroke

    Directory of Open Access Journals (Sweden)

    Nicholas Caffes

    2015-03-01

    Full Text Available Ischemic and hemorrhagic strokes are associated with severe functional disability and high mortality. Except for recombinant tissue plasminogen activator, therapies targeting the underlying pathophysiology of central nervous system (CNS ischemia and hemorrhage are strikingly lacking. Sur1-regulated channels play essential roles in necrotic cell death and cerebral edema following ischemic insults, and in neuroinflammation after hemorrhagic injuries. Inhibiting endothelial, neuronal, astrocytic and oligodendroglial sulfonylurea receptor 1–transient receptor potential melastatin 4 (Sur1–Trpm4 channels and, in some cases, microglial KATP (Sur1–Kir6.2 channels, with glibenclamide is protective in a variety of contexts. Robust preclinical studies have shown that glibenclamide and other sulfonylurea agents reduce infarct volumes, edema and hemorrhagic conversion, and improve outcomes in rodent models of ischemic stroke. Retrospective studies suggest that diabetic patients on sulfonylurea drugs at stroke presentation fare better if they continue on drug. Additional laboratory investigations have implicated Sur1 in the pathophysiology of hemorrhagic CNS insults. In clinically relevant models of subarachnoid hemorrhage, glibenclamide reduces adverse neuroinflammatory and behavioral outcomes. Here, we provide an overview of the preclinical studies of glibenclamide therapy for CNS ischemia and hemorrhage, discuss the available data from clinical investigations, and conclude with promising preclinical results that suggest glibenclamide may be an effective therapeutic option for ischemic and hemorrhagic stroke.

  12. The secret life of ion channels: Kv1.3 potassium channels and proliferation.

    Science.gov (United States)

    Pérez-García, M Teresa; Cidad, Pilar; López-López, José R

    2018-01-01

    Kv1.3 channels are involved in the switch to proliferation of normally quiescent cells, being implicated in the control of cell cycle in many different cell types and in many different ways. They modulate membrane potential controlling K + fluxes, sense changes in potential, and interact with many signaling molecules through their intracellular domains. From a mechanistic point of view, we can describe the role of Kv1.3 channels in proliferation with at least three different models. In the "membrane potential model," membrane hyperpolarization resulting from Kv1.3 activation provides the driving force for Ca 2+ influx required to activate Ca 2+ -dependent transcription. This model explains most of the data obtained from several cells from the immune system. In the "voltage sensor model," Kv1.3 channels serve mainly as sensors that transduce electrical signals into biochemical cascades, independently of their effect on membrane potential. Kv1.3-dependent proliferation of vascular smooth muscle cells (VSMCs) could fit this model. Finally, in the "channelosome balance model," the master switch determining proliferation may be related to the control of the Kv1.3 to Kv1.5 ratio, as described in glial cells and also in VSMCs. Since the three mechanisms cannot function independently, these models are obviously not exclusive. Nevertheless, they could be exploited differentially in different cells and tissues. This large functional flexibility of Kv1.3 channels surely gives a new perspective on their functions beyond their elementary role as ion channels, although a conclusive picture of the mechanisms involved in Kv1.3 signaling to proliferation is yet to be reached.

  13. Square root approximation to the poisson channel

    NARCIS (Netherlands)

    Tsiatmas, A.; Willems, F.M.J.; Baggen, C.P.M.J.

    2013-01-01

    Starting from the Poisson model we present a channel model for optical communications, called the Square Root (SR) Channel, in which the noise is additive Gaussian with constant variance. Initially, we prove that for large peak or average power, the transmission rate of a Poisson Channel when coding

  14. Molecular determinants in TRPV5 channel assembly.

    NARCIS (Netherlands)

    Chang, Q.; Gyftogianni, E.; Graaf, K.F.J. van de; Hoefs, S.J.G.; Weidema, A.F.; Bindels, R.J.M.; Hoenderop, J.G.J.

    2004-01-01

    The epithelial Ca(2+) channels TRPV5 and TRPV6 mediate the Ca(2+) influx in 1,25-dihydroxyvitamin D(3)-responsive epithelia and are therefore essential in the maintenance of the body Ca(2+) balance. These Ca(2+) channels assemble in (hetero)tetrameric channel complexes with different functional

  15. Molecular determinants in TRPV5 channel assembly

    NARCIS (Netherlands)

    Chang, Qing; Gyftogianni, Emmanouela; van de Graaf, Stan F. J.; Hoefs, Susan; Weidema, Freek A.; Bindels, René J. M.; Hoenderop, Joost G. J.

    2004-01-01

    The epithelial Ca(2+) channels TRPV5 and TRPV6 mediate the Ca(2+) influx in 1,25-dihydroxyvitamin D(3)-responsive epithelia and are therefore essential in the maintenance of the body Ca(2+) balance. These Ca(2+) channels assemble in (hetero)tetrameric channel complexes with different functional

  16. Coolant channel module CCM

    International Nuclear Information System (INIS)

    Hoeld, Alois

    2007-01-01

    A complete and detailed description of the theoretical background of an '(1D) thermal-hydraulic drift-flux based mixture-fluid' coolant channel model and its resulting module CCM will be presented. The objective of this module is to simulate as universally as possible the steady state and transient behaviour of the key characteristic parameters of a single- or two-phase fluid flowing within any type of heated or non-heated coolant channel. Due to the possibility that different flow regimes can appear along any channel, such a 'basic (BC)' 1D channel is assumed to be subdivided into a number of corresponding sub-channels (SC-s). Each SC can belong to only two types of flow regime, an SC with just a single-phase fluid, containing exclusively either sub-cooled water or superheated steam, or an SC with a two-phase mixture flow. After an appropriate nodalisation of such a BC (and therefore also its SC-s) a 'modified finite volume method' has been applied for the spatial discretisation of the partial differential equations (PDE-s) which represent the basic conservation equations of thermal-hydraulics. Special attention had to be given to the possibility of variable SC entrance or outlet positions (which describe boiling boundaries or mixture levels) and thus the fact that an SC can even disappear or be created anew. The procedure yields for each SC type (and thus the entire BC), a set of non-linear ordinary 1st order differential equations (ODE-s). To link the resulting mean nodal with the nodal boundary function values, both of which are present in the discretised differential equations, a special quadratic polygon approximation procedure (PAX) had to be constructed. Together with the very thoroughly tested packages for drift-flux, heat transfer and single- and two-phase friction factors this procedure represents the central part of the here presented 'Separate-Region' approach, a theoretical model which provides the basis to the very effective working code package CCM

  17. Chloride channels as tools for developing selective insecticides.

    Science.gov (United States)

    Bloomquist, Jeffrey R

    2003-12-01

    Ligand-gated chloride channels underlie inhibition in excitable membranes and are proven target sites for insecticides. The gamma-aminobutyric acid (GABA(1)) receptor/chloride ionophore complex is the primary site of action for a number of currently used insecticides, such as lindane, endosulfan, and fipronil. These compounds act as antagonists by stabilizing nonconducting conformations of the chloride channel. Blockage of the GABA-gated chloride channel reduces neuronal inhibition, which leads to hyperexcitation of the central nervous system, convulsions, and death. We recently investigated the mode of action of the silphinenes, plant-derived natural compounds that structurally resemble picrotoxinin. These materials antagonize the action of GABA on insect neurons and block GABA-mediated chloride uptake into mouse brain synaptoneurosomes in a noncompetitive manner. In mammals, avermectins have a blocking action on the GABA-gated chloride channel consistent with a coarse tremor, whereas at longer times and higher concentrations, activation of the channel suppresses neuronal activity. Invertebrates display ataxia, paralysis, and death as the predominant signs of poisoning, with a glutamate-gated chloride channel playing a major role. Additional target sites for the avermectins or other chloride channel-directed compounds might include receptors gated by histamine, serotonin, or acetylcholine.The voltage-sensitive chloride channels form another large gene family of chloride channels. Voltage-dependent chloride channels are involved in a number of physiological processes including: maintenance of electrical excitability, chloride ion secretion and resorption, intravesicular acidification, and cell volume regulation. A subset of these channels is affected by convulsants and insecticides in mammals, although the role they play in acute lethality in insects is unclear. Given the wide range of functions that they mediate, these channels are also potential targets for

  18. Measuring Balance Across Multiple Radar Receiver Channels.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.; Bickel, Douglas L.

    2018-03-01

    When radar receivers employ multiple channels, the general intent is for the receive channels to be as alike as possible, if not as ideal as possible. This is usually done via prudent hardware design, supplemented by system calibration. Towards this end, we require a quality metric for ascertaining the goodness of a radar channel, and the degree of match to sibling channels. We propose a relevant and useable metric to do just that. Acknowledgements This report was the result of an unfunded research and development activity.

  19. Spiking neural P systems with multiple channels.

    Science.gov (United States)

    Peng, Hong; Yang, Jinyu; Wang, Jun; Wang, Tao; Sun, Zhang; Song, Xiaoxiao; Luo, Xiaohui; Huang, Xiangnian

    2017-11-01

    Spiking neural P systems (SNP systems, in short) are a class of distributed parallel computing systems inspired from the neurophysiological behavior of biological spiking neurons. In this paper, we investigate a new variant of SNP systems in which each neuron has one or more synaptic channels, called spiking neural P systems with multiple channels (SNP-MC systems, in short). The spiking rules with channel label are introduced to handle the firing mechanism of neurons, where the channel labels indicate synaptic channels of transmitting the generated spikes. The computation power of SNP-MC systems is investigated. Specifically, we prove that SNP-MC systems are Turing universal as both number generating and number accepting devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Customers’ Perception regarding Assurance of Bancassurance Channel

    Directory of Open Access Journals (Sweden)

    Choudhury Mousumi

    2016-12-01

    Full Text Available Bancassurance has evolved as a strong distribution channel in India. Bancassurance means that the insurance company and the bank come together to offer insurance products from the counter of the banks to the bank’s customer. The present study attempts to analyse customers’ perception regarding assurance of bancassurance channel in providing insurance-related services. The study also tries to find out the impact of various demographic variables on customers’ perception regarding assurance of bancassurance channel. The study finds that customers consider bancassurance channel having high assurance in providing insurance services. It is also found in the study that there is no significant association between the demographic variables considered in the study and customers’ perception regarding assurance of bancassurance channel.