WorldWideScience

Sample records for saralasin

  1. US Army Institute of Surgical Research Annual Research Progress Report for Fiscal Year 1984.

    Science.gov (United States)

    1984-10-01

    The effects of angiotensin I and angiotensin II on the isolated tracheal muscle of the cat. Pharm Pharmacol 28:298-301, 1976. 67 , blocked by aspirin ...Sar, 8-Ala) AII (saralasin), but was not blocked by aspirin . It thus appears k that the effect of AII on bronchial smooth muscle varies accord- ing...centrifuge and reconstituted in 0.5 ml gelatin-phosphate-buffered saline overnight at 4C. These samples were washed twice with 2 ml of petroleum ether

  2. Processing of angiotensin II (A-II) and (Sar1,Ala8)A-II by cultured bovine adrenocortical cells

    Energy Technology Data Exchange (ETDEWEB)

    Crozat, A.; Penhoat, A.; Saez, J.M.

    1986-06-01

    Bovine adrenocortical cells, cultured in a chemically defined medium, were used to study the fate of (/sup 125/I) iodoangiotensin II ((/sup 125/I)iodo-A-II) and its antagonist (Sar1,Ala8)A-II ((/sup 125/I)iodo-Saralasin). The binding of both ligands was time and temperature dependent. The maximum specific binding at 37 C, which was reached within 1 h, was followed by a decline with a half-life of about 2 h and 8 h for (/sup 125/I)iodo-A-II and (/sup 125/I)iodo-Saralasin, respectively. The decrease of the specific binding was parallel to the appearance in the medium of degraded ligand. At 4 C, the binding of (/sup 125/I)iodo-A-II was stable for 12 h and no degradation of ligand occurred. Under several experimental conditions, about 70% of the total (/sup 125/I)iodo-A-II bound was internalized, whereas, in the case of (/sup 125/I)iodo-Saralasin, less than 25% of the total bound ligand was internalized. These differences in the binding kinetics between A-II and its antagonist were mainly the differences in the rate of internalization of the bound ligands, more rapid for (/sup 125/I)iodo-A-II (t1/2 approximately equal to 10 min) than for (/sup 125/I)iodo-Saralasin (t1/2 = 90 min). On the other hand, the rate of degradation of internalized ligand was similar for both ligands (t1/2 = 15 min). Ionophore monensin enhanced the total cellular uptake of both ligands by increasing the amount of internalized ligands. Monensin did not modify the rate of internalization of the two ligands but markedly decreased their rate of degradation (t1/2 approximately equal to 60 min). These results indicate that both A-II and its antagonist are internalized and degraded by adrenocortical cells, but the rate of internalization of the antagonist is lower than that of the agonist.

  3. Processing of angiotensin II (A-II) and (Sar1,Ala8)A-II by cultured bovine adrenocortical cells.

    Science.gov (United States)

    Crozat, A; Penhoat, A; Saez, J M

    1986-06-01

    Bovine adrenocortical cells, cultured in a chemically defined medium, were used to study the fate of [125I] iodoangiotensin II ([125I]iodo-A-II) and its antagonist (Sar1,Ala8)A-II ([125I]iodo-Saralasin). The binding of both ligands was time and temperature dependent. The maximum specific binding at 37 C, which was reached within 1 h, was followed by a decline with a half-life of about 2 h and 8 h for [125I]iodo-A-II and [125I]iodo-Saralasin, respectively. The decrease of the specific binding was parallel to the appearance in the medium of degraded ligand. At 4 C, the binding of [125I]iodo-A-II was stable for 12 h and no degradation of ligand occurred. Under several experimental conditions, about 70% of the total [125I]iodo-A-II bound was internalized, whereas, in the case of [125I]iodo-Saralasin, less than 25% of the total bound ligand was internalized. These differences in the binding kinetics between A-II and its antagonist were mainly the differences in the rate of internalization of the bound ligands, more rapid for [125I]iodo-A-II (t1/2 approximately equal to 10 min) than for [125I]iodo-Saralasin (t1/2 = 90 min). On the other hand, the rate of degradation of internalized ligand was similar for both ligands (t1/2 = 15 min). Ionophore monensin enhanced the total cellular uptake of both ligands by increasing the amount of internalized ligands. Monensin did not modify the rate of internalization of the two ligands but markedly decreased their rate of degradation (t1/2 approximately equal to 60 min). These results indicate that both A-II and its antagonist are internalized and degraded by adrenocortical cells, but the rate of internalization of the antagonist is lower than that of the agonist. They also show that receptor-mediated endocytosis is the main pathway by which A-II is rapidly degraded by adrenocortical cells. Since A-II receptors are present in many tissues, the receptor-mediated degradation could explain the very short half-life in plasma of this

  4. Influence of the renin-angiotensin system on human forearm blood flow

    DEFF Research Database (Denmark)

    Stadeager, C; Hesse, B; Henriksen, O

    1990-01-01

    Although angiotensin II is a potent vasoconstrictor agent in all tissues, including the human forearm, equivocal effects on forearm blood flow (FBF) have been found after angiotensin blockade. In 13 healthy Na(+)-depleted subjects FBF was measured by the 133Xe washout technique; subcutaneous...... and muscle blood flows were determined separately. FBF was measured during supine rest, after the arm was lowered, and during lower body negative pressure (LBNP). The measurements were repeated during intra-arterial saralasin infusion in six subjects and after intravenous administration of enalapril in seven....... It is concluded that, in the human forearm, angiotensin II is not necessary for sympathetic vasoconstrictor reflexes but may, through a central effect, have some influence on arteriolar tone at rest....

  5. Determinants of CREB degradation and KChIP2 gene transcription in cardiac memory

    Science.gov (United States)

    Özgen, Nazira; Lau, David H.; Shlapakova, Iryna N.; Sherman, Warren; Feinmark, Steven J.; Danilo, Peter; Rosen, Michael R.

    2010-01-01

    Background Left ventricular pacing (LVP) to induce cardiac memory (CM) in dogs results in a decreased transient outward K current (Ito) and reduced mRNA and protein of the Ito channel accessory subunit, KChIP2. The KChIP2 decrease is attributed to a decrease in its transcription factor CREB (cAMP response element binding protein). Objective To determine the mechanisms responsible for the CREB decrease that is initiated by LVP. Methods CM was quantified as T wave vector displacement in 18 LVP dogs. In 5 dogs, Ang II receptor blocker, saralasin, was infused before and during pacing. In 3 dogs, proteasomal inhibitor, lactacystin, was injected into the left anterior descending artery before LVP. Epicardial biopsies were taken before and after LVP. Neonatal rat cardiomyocytes (NRCM) were incubated with H2O2 (50 μmol/L) for 1h with or without lactacystin. Results LVP significantly displaced the T wave vector and was associated with increased lipid peroxidation and increased tissue Ang II levels. Saralasin prevented T vector displacement and lipid peroxidation. CREB was significantly decreased after 2h of LVP and was comparably decreased in H2O2–treated NRM. Lactacystin inhibited the CREB decrease in LVP dogs and H2O2 -treated NRM. LVP and H2O2 both induced CREB ubiquitination and the H2O2-induced CREB decrease was prevented by knocking down ubiquitin. Conclusion LVP initiates myocardial Ang II production and ROS synthesis leading to CREB ubiquitination and its proteasomal degradation. This sequence of events would explain the pacing-induced reduction in KChIP2, and contribute to altered repolarization and the T wave changes of cardiac memory. PMID:20346417

  6. beta-Endorphin release by angiotensin II: studies on the mechanism of action.

    Science.gov (United States)

    Anhut, H; Knepel, W; Holland, A; Meyer, D K

    1982-07-01

    Blood-borne angiotensin II induces release of beta-endorphin-like immunoreactivity (beta-EI) from rat anterior pituitary gland. To study the mechanism of action we investigated in rats the effect of transection of subfornical organ efferent projections on angiotensin-induced beta-EI release in vivo and also the direct action of angiotensin II on beta-EI release from isolated adenohypophyses in vitro. (i) No effect of transection of subfornical organ efferents on the increase in plasma beta-EI following intravenous infusions of angiotensin II was found. (ii) When anterior pituitary quarters were continuously superfused in vitro, angiotensin II (1-10 nM) caused release of beta-EI into the superfusion medium in a dose-dependent manner. The stimulatory effect of angiotensin II (3 nM) was blocked by the receptor antagonist saralasin (300 nM). We conclude that beta-endorphin release by blood-borne angiotensin II, in contrast to other central effects of angiotensin, is not mediated by the subfornical organ; instead a direct action of angiotensin II on the adenohypophysis could be a mechanism of action responsible.

  7. Effect of Age on Hypertension: Analysis of Over 4,800 Referred Hypertensive Patients

    Directory of Open Access Journals (Sweden)

    Anderson Gunnar

    1999-01-01

    Full Text Available We evaluate in this study the factors associated with the effect of age on blood pressure in more than 4800 patients. Their physicians referred them to evaluate for secondary causes for their hypertension. Factors studied included history and physical examination, serum sodium, potassium and creatinine, a stimulated plasma renin and catecholamine. We also studied the blood pressure response to infusion of either saralasin (an angiotensin II analogue or enalapril (an angiotensin converting enzyme inhibitor, and plasma aldosterone and cortisol after infusion of saline. We measured serum thyroxin and thyroid stimulating hormone concentrations on 1061 consecutive patients in this series. The results of our study show that increased age is associated with a significant increase in the prevalence of hypertension and especially of systolic hypertension after age 60 years. Increased obesity between age 30-50 years is associated with significant increases in diastolic blood pressure and this trend is also seen in African-Americans who are heavier than whites. Increased age is associated with an increased prevalence of secondary forms of hypertension including atherosclerotic renovascular hypertension, renal insufficiency and primary hypothyroidism.

  8. Bovine ovarian cells have (pro)renin receptors and prorenin induces resumption of meiosis in vitro.

    Science.gov (United States)

    Dau, Andressa Minussi Pereira; da Silva, Eduardo Pradebon; da Rosa, Paulo Roberto Antunes; Bastiani, Felipe Tusi; Gutierrez, Karina; Ilha, Gustavo Freitas; Comim, Fabio Vasconcellos; Gonçalves, Paulo Bayard Dias

    2016-07-01

    The discovery of a receptor that binds prorenin and renin in human endothelial and mesangial cells highlights the possible effect of renin-independent prorenin in the resumption of meiosis in oocytes that was postulated in the 1980s.This study aimed to identify the (pro)renin receptor in the ovary and to assess the effect of prorenin on meiotic resumption. The (pro)renin receptor protein was detected in bovine cumulus-oocyte complexes, theca cells, granulosa cells, and in the corpus luteum. Abundant (pro)renin receptor messenger ribonucleic acid (mRNA) was detected in the oocytes and cumulus cells, while prorenin mRNA was identified in the cumulus cells only. Prorenin at concentrations of 10(-10), 10(-9), and 10(-8)M incubated with oocytes co-cultured with follicular hemisections for 15h caused the resumption of oocyte meiosis. Aliskiren, which inhibits free renin and receptor-bound renin/prorenin, at concentrations of 10(-7), 10(-5), and 10(-3)M blocked this effect (Pmeiosis resumption, cumulus-oocyte complexes and follicular hemisections were treated with prorenin and with angiotensin II or saralasin (angiotensin II antagonist). Prorenin induced the resumption of meiosis independently of angiotensin II. Furthermore, cumulus-oocyte complexes cultured with forskolin (200μM) and treated with prorenin and aliskiren did not exhibit a prorenin-induced resumption of meiosis (Pmeiosis in cattle. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Drinking behaviour in rats treated with isoprenaline, angiotensin II or angiotensin antagonists

    Science.gov (United States)

    Chiaraviglio, Emma

    1979-01-01

    1. Isoprenaline hydrochloride injected subcutaneously in rats given a choice test of 1·8% NaCl and water, first induced saline intake which started immediately and was almost concluded in 15 min, followed by a copious water intake. When either saline or water were given in a separate test, saline intake surpassed the water intake in the first 15 min. 2. The delay of 15, 30 or 60 min after injection of isoprenaline, 100 μg/kg, before drinking was allowed, significantly reduced saline intake but did not modify the amount of water subsequently drunk. 3. Isoprenaline caused a sudden drop in arterial blood pressure, the extent and duration depending on the dose. The time of maximum drop 3-4 min after injection coincided with the time the rat drank salt. 4. Isoprenaline-induced saline drinking was significantly reduced after bilateral nephrectomy but water intake was unaffected. 5. The beta-adrenoceptor blocking agent, propranolol, inhibited isoprenaline-induced NaCl and water intake, while the alpha-adrenoceptor antagonist phenoxybenzamine abolished isoprenaline-induced NaCl intake and enhanced water intake. 6. Saralasin acetate (P-113), a competitive inhibitor of angiotensin II, given into the third brain ventricle, prevented the isoprenaline-induced NaCl and water intake as well as angiotensin II-induced drinking. The angiotensin converting enzyme inhibitor SQ-20881 reduced the isoprenaline-induced NaCl and water intake. 7. In conclusion, hypotension might be a component of salt drinking evoked by isoprenaline although the dipsogenic action of beta-stimulation is mainly due to endogenous renin-angiotensin activation. PMID:231100