WorldWideScience

Sample records for sar wave mode

  1. SAR Imaging of Wave Tails: Recognition of Second Mode Internal Wave Patterns and Some Mechanisms of their Formation

    Science.gov (United States)

    da Silva, Jose C. B.; Magalhaes, J. M.; Buijsman, M. C.; Garcia, C. A. E.

    2016-08-01

    Mode-2 internal waves are usually not as energetic as larger mode-1 Internal Solitary Waves (ISWs), but they have attracted a great deal of attention in recent years because they have been identified as playing a significant role in mixing shelf waters [1]. This mixing is particularly effective for mode-2 ISWs because the location of these waves in the middle of the pycnocline plays an important role in eroding the barrier between the base of the surface mixed layer and the stratified deep layer below. An urgent problem in physical oceanography is therefore to account for the magnitude and distribution of ISW-driven mixing, including mode-2 ISWs. Several generation mechanisms of mode-2 ISWs have been identified. These include: (1) mode-1 ISWs propagating onshore (shoaling) and entering the breaking instability stage, or propagating over a steep sill; (2) a mode-1 ISW propagating offshore (antishoaling) over steep slopes of the shelf break, and undergoing modal transformation; (3) intrusion of the whole head of a gravity current into a three-layer fluid; (4) impingement of an internal tidal beam on the pycnocline, itself emanating from critical bathymetry; (5) nonlinear disintegration of internal tide modes; (6) lee wave mechanism. In this paper we provide methods to identify internal wave features denominated "Wave Tails" in SAR images of the ocean surface, which are many times associated with second mode internal waves. The SAR case studies that are presented portray evidence of the aforementioned generation mechanisms, and we further discuss possible methods to discriminate between the various types of mode-2 ISWs in SAR images, that emerge from these physical mechanisms. Some of the SAR images correspond to numerical simulations with the MITgcm in fully nonlinear and nonhydrostatic mode and in a 2D configuration with realistic stratification, bathymetry and other environmental conditions.Results of a global survey with some of these observations are presented

  2. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A

    Science.gov (United States)

    Ardhuin, Fabrice; Collard, Fabrice; Chapron, Bertrand; Girard-Ardhuin, Fanny; Guitton, Gilles; Mouche, Alexis; Stopa, Justin E.

    2015-04-01

    Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1A wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. Since deviations from a straight line should be proportional to the orbital velocity toward the satellite, swell height can be estimated, from 1.5 to 5 m in the present case. The evolution of this 13 s period swell across the ice pack is consistent with an exponential attenuation on a length scale of 200 km.

  3. Wave directional spectrum from SAR imagery

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.; Vethamony, P.

    Gaussian smoothed SAR image spectra have been evaluated from 512 x 512 pixel sub- scenes of image mode ERS-1 SAR scenes off Goa, Visakhapatnam, Paradeep and Portugal. The two recently acquired scenes off Portugal showed the signature of swell...

  4. Wave directional spectrum from SAR imagery

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.; Vethamony, P.

    Gaussian smoothed SAR image spectra have been evaluated from 512 x 512 pixel subscenes of image mode ERS-1 SAR scenes off Goa, Visakhapatnam, Paradeep and Portugal. The two recently acquired scenes off Portugal showed the signature of swell...

  5. Ocean Wave Parameters Retrieval from Sentinel-1 SAR Imagery

    Directory of Open Access Journals (Sweden)

    Weizeng Shao

    2016-08-01

    Full Text Available In this paper, a semi-empirical algorithm for significant wave height (Hs and mean wave period (Tmw retrieval from C-band VV-polarization Sentinel-1 synthetic aperture radar (SAR imagery is presented. We develop a semi-empirical function for Hs retrieval, which describes the relation between Hs and cutoff wavelength, radar incidence angle, and wave propagation direction relative to radar look direction. Additionally, Tmw can be also calculated through Hs and cutoff wavelength by using another empirical function. We collected 106 C-band stripmap mode Sentinel-1 SAR images in VV-polarization and wave measurements from in situ buoys. There are a total of 150 matchup points. We used 93 matchups to tune the coefficients of the semi-empirical algorithm and the rest 57 matchups for validation. The comparison shows a 0.69 m root mean square error (RMSE of Hs with a 18.6% of scatter index (SI and 1.98 s RMSE of Tmw with a 24.8% of SI. Results indicate that the algorithm is suitable for wave parameters retrieval from Sentinel-1 SAR data.

  6. Significant wave heights from Sentinel-1 SAR: Validation and applications

    Science.gov (United States)

    Stopa, J. E.; Mouche, A.

    2017-03-01

    Two empirical algorithms are developed for wave mode images measured from the synthetic aperture radar aboard Sentinel-1 A. The first method, called CWAVE_S1A, is an extension of previous efforts developed for ERS2 and the second method, called Fnn, uses the azimuth cutoff among other parameters to estimate significant wave heights (Hs) and average wave periods without using a modulation transfer function. Neural networks are trained using colocated data generated from WAVEWATCH III and independently verified with data from altimeters and in situ buoys. We use neural networks to relate the nonlinear relationships between the input SAR image parameters and output geophysical wave parameters. CWAVE_S1A performs well and has reduced precision compared to Fnn with Hs root mean square errors within 0.5 and 0.6 m, respectively. The developed neural networks extend the SAR's ability to retrieve useful wave information under a large range of environmental conditions including extratropical and tropical cyclones in which Hs estimation is traditionally challenging.Plain Language SummaryTwo empirical algorithms are developed to estimate integral wave parameters from high resolution synthetic aperture radar (SAR) ocean images measured from recently launched the Sentinel 1 satellite. These methods avoid the use of the complicated image to wave mapping typically used to estimate sea state parameters. In addition, we are able to estimate wave parameters that are not able to be measured using existing techniques for the Sentinel 1 satellite. We use a machine learning technique to create a model that relates the ocean image properties to geophysical wave parameters. The models are developed using data from a numerical model because of the sufficiently large sample of global ocean conditions. We then verify that our developed models perform well with respect to independently measured wave observations from other satellite sensors and buoys. We successfully created models that

  7. Massachusetts Bay - Internal wave packets digitized from SAR imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery at 1:350,000 scale in Massachusetts Bay. Internal waves are nonsinusoidal waves that...

  8. THE SIMULATION OF THE SAR IMAGE OF INTERNAL SOLITARY WAVES IN ALBORAN SEA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    SAR imaging mechanism of internal wave is studied. The numerical modelling of internal waves is obtained by the two-level scheme. The simulaed SAR images that have better expressed the features of internal waves are given by the internal waves SAR imaging theory and numerical modelling result.

  9. Observation of Directional Ocean Wave Spectra in China Seas and Northwest Pacific Ocean Using SAR Retrieval Software

    Science.gov (United States)

    Liu, Xiaoyan; Zeng, Kan; He, Mingxia

    2014-11-01

    A software to retrieve directional ocean wave spectra from SAR images has been developed for China seas and northwest Pacific. The software, written with C programming language, is based on the MPI method proposed by Hasselmann. It is designed to support the wave mode SAR data of ERS, Envisat, Sentinel and so on. The directional ocean wave spectra produced by this software are validated with buoy data in global ocean area, northwest Pacific and China seas and the retrieved significant wave height (SWH) errors are 5.2%, 4.9% and 9.3% respectively. About 15,000 directional ocean wave spectra are obtained with the software from the wave mode data of Envisat/ASAR over the China seas and northwest Pacific during the period between Jan 2003 and Jan 2012. The preliminary analysis is presented.

  10. A Preliminary Assessment of the S-3A SRAL Performances in SAR Mode

    Science.gov (United States)

    Dinardo, Salvatore; Scharroo, Remko; Bonekamp, Hans; Lucas, Bruno; Loddo, Carolina; Benveniste, Jerome

    2016-08-01

    The present work aims to assess and characterize the S3-A SRAL Altimeter performance in closed-loop tracking mode and in open ocean conditions. We have processed the Sentinel-3 SAR data products from L0 until L2 using an adaptation of the ESRIN GPOD CryoSat-2 Processor SARvatore.During the Delay-Doppler processing, we have chosen to activate the range zero-padding option.The L2 altimetric geophysical parameters, that are to be validated, are the sea surface height above the ellipsoid (SSH), sea level anomaly (SLA), the significant wave height (SWH) and wind speed (U10), all estimated at 20 Hz.The orbit files are the POD MOE, while the geo- corrections are extracted from the RADS database.In order to assess the accuracy of the wave&wind products, we have been using an ocean wave&wind speed model output (wind speed at 10 meter high above the sea surface) from the ECMWF.We have made a first order approximation of the sea state bias as -4.7% of the SWH.In order to assess the precision performance of SRAL SAR mode, we compute the level of instrumental noise (range, wave height and wind speed) for different conditions of sea state.

  11. PERFORMANCE ANALYSIS OF AZIMUTH ELECTRONIC BEAM STEERING MODE SPACEBORNE SAR

    Institute of Scientific and Technical Information of China (English)

    Han Xiaodong; Xu Wei; Han Xiaolei

    2013-01-01

    Pointing angle and pattern of the antenna can be changed swiftly to actualize the azimuth beam scanning by using electronic beam steering,which makes the Synthetic Aperture Radar (SAR)system more flexible and achieve a high resolution or cover a long strip within short time span.When the pointing angle is steered away from boresight,some aberrations may appear on the antenna pattern,e.g.,the grating lobe appears,the main lobe gain decrease,and antenna pattern broadens,e.g.,the aberrations result in the worsening of system performance,and complicate the corresponding performance analysis method.Conventional computation methods of performance parameters do not account for the rapid change of the antenna pattern.It introduces remarkable errors when the scanning angle is large.In this paper,a method of calculating performance parameters is proposed for the beam steering mode,which achieves the parameters by the energy accumulation in time domain.Actually,the proposed method simulates the working process of SAR and obtains accurate performance parameters.Furthermore,we analyze the effects of the grating lobe on the Azimuth Ambiguity to Signal Ratio (AASR),and present the generic Pulse Repetition Frequency (PRF) choosing principle which can also prevent the ambiguous area from weighting by the grating lobe.Finally,the effect of the antenna configuration on the performance parameters is analyzed by a system example.

  12. Compressive and Adaptive Millimeter-wave SAR

    CERN Document Server

    Mrozack, Alex; Marks, Daniel L; Richard, Jonathan; Everitt, Henry O; Brady, David J

    2014-01-01

    We apply adaptive sensing techniques to the problem of locating sparse metallic scatterers using high-resolution, frequency modulated continuous wave W-band RADAR. Using a single detector, a frequency stepped source, and a lateral translation stage, inverse synthetic aperture RADAR reconstruction techniques are used to search for one or two wire scatterers within a specified range, while an adaptive algorithm determined successive sampling locations. The two-dimensional location of each scatterer is thereby identified with sub-wavelength accuracy in as few as 1/4 the number of lateral steps required for a simple raster scan. The implications of applying this approach to more complex scattering geometries are explored in light of the various assumptions made.

  13. Massachusetts Bay - Internal Wave Packets Digitized from SAR Imagery and Intersected with Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with bathymetry for Massachusetts Bay. The internal wave packets were...

  14. Massachusetts Bay - Internal Wave Packets Digitized from SAR Imagery and Intersected with Tidal Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with tidal zones for Massachusetts Bay. The internal wave packets were...

  15. An imaging algorithm based on keystone transform for one-stationary bistatic SAR of spotlight mode

    Science.gov (United States)

    Qiu, Xiaolan; Behner, Florian; Reuter, Simon; Nies, Holger; Loffeld, Otmar; Huang, Lijia; Hu, Donghui; Ding, Chibiao

    2012-12-01

    This article proposes an imaging algorithm based on Keystone Transform for bistatic SAR with a stationary receiver. It can efficiently be applied to high-resolution spotlight mode, and can directly be process the bistatic SAR data which have been ranged compressed by the synchronization reference pulses. Both simulation and experimental results validate the good performance of this algorithm.

  16. New Characterization of SAR Mode Altimetry Data over Inland Waters

    Science.gov (United States)

    Fabry, Pierre; Bercher, Nicolas

    2016-08-01

    Radar altimetry over the inland water domain is a difficult topic that still requires a lot of human expertise as well as manual editing and verifications. This is mainly due to the fact that inland water scenes are highly variable, both in space and time, which leads to a much broader range of radar signatures than in oceanography. The remark is particularly true for LRM altimetry and remains valid in many cases in SAR mode (SARM). In preparation for the operational Sentinel-3 mission and to better benefit from the improved SARM along-track resolution it is required to:1. better characterize the SARM Individual Echoes, Multi-Look Stacks, 20Hz waveforms as well as the Range Integrated Power (RIP) over the inland water domain,2. step toward processing schemes that account for the actual content of the illuminated scene.In this work, we introduce an automated technique to assess the water fraction within the Beam-limited Doppler footprint through its intersection area of with a water mask. This framework opens up new ways toward the automated characterization and processing of altimetry, in the future, thanks to regularly updated water masks.

  17. Characterization of SAR Mode Altimetry over Inland Water

    Science.gov (United States)

    Fabry, Pierre; Bercher, Nicolas

    2015-12-01

    Radar altimetry over the inland water domain is a difficult topic that still requires a lot of human expertise as well as manual editing and verifications. This is mainly due to the fact that inland water scenes are highly variable, both in space and time, which leads to a much broader range of radar signatures than in oceanography. The remark is particularly true for LRM altimetry and remains valid in many cases in SAR mode (SARM). In preparation for the operational Sentinel-3 mission and to better benefit from the improved SARM along-track resolution it is required to: 1. better characterize the SARM Individual Echoes, Multi-Look Stacks, 20Hz waveforms as well as the Range Integrated Power (RIP) over the inland water domain, 2. step toward processing schemes that account for the actual content of the illuminated scene. In this work, we introduce an automated technique to assess the water fraction within the Beam-limited Doppler footprint through its intersection area of with a water mask. This framework opens up new ways toward the automated characterization and processing of altimetry data based on regularly updated water masks.

  18. On the retrieval of significant wave heights from spaceborne Synthetic Aperture Radar (ERS-SAR using the Max-Planck Institut (MPI algorithm

    Directory of Open Access Journals (Sweden)

    Violante-Carvalho Nelson

    2005-01-01

    Full Text Available Synthetic Aperture Radar (SAR onboard satellites is the only source of directional wave spectra with continuous and global coverage. Millions of SAR Wave Mode (SWM imagettes have been acquired since the launch in the early 1990's of the first European Remote Sensing Satellite ERS-1 and its successors ERS-2 and ENVISAT, which has opened up many possibilities specially for wave data assimilation purposes. The main aim of data assimilation is to improve the forecasting introducing available observations into the modeling procedures in order to minimize the differences between model estimates and measurements. However there are limitations in the retrieval of the directional spectrum from SAR images due to nonlinearities in the mapping mechanism. The Max-Planck Institut (MPI scheme, the first proposed and most widely used algorithm to retrieve directional wave spectra from SAR images, is employed to compare significant wave heights retrieved from ERS-1 SAR against buoy measurements and against the WAM wave model. It is shown that for periods shorter than 12 seconds the WAM model performs better than the MPI, despite the fact that the model is used as first guess to the MPI method, that is the retrieval is deteriorating the first guess. For periods longer than 12 seconds, the part of the spectrum that is directly measured by SAR, the performance of the MPI scheme is at least as good as the WAM model.

  19. On the feasibility of the use of wind SAR to downscale waves on shallow water

    Science.gov (United States)

    Gutiérrez, O. Q.; Filipponi, F.; Taramelli, A.; Valentini, E.; Camus, P.; Méndez, F. J.

    2016-01-01

    In recent years, wave reanalyses have become popular as a powerful source of information for wave climate research and engineering applications. These wave reanalyses provide continuous time series of offshore wave parameters; nevertheless, in coastal areas or shallow water, waves are poorly described because spatial resolution is not detailed. By means of wave downscaling, it is possible to increase spatial resolution in high temporal coverage simulations, using forcing from wind and offshore wave databases. Meanwhile, the reanalysis wave databases are enough to describe the wave climate at the limit of simulations; wind reanalyses at an adequate spatial resolution to describe the wind structure near the coast are not frequently available. Remote sensing synthetic aperture radar (SAR) has the ability to detect sea surface signatures and estimate wind fields at high resolution (up to 300 m) and high frequency. In this work a wave downscaling is done on the northern Adriatic Sea, using a hybrid methodology and global wave and wind reanalysis as forcing. The wave fields produced were compared to wave fields produced with SAR winds that represent the two dominant wind regimes in the area: the bora (ENE direction) and sirocco (SE direction). Results show a good correlation between the waves forced with reanalysis wind and SAR wind. In addition, a validation of reanalysis is shown. This research demonstrates how Earth observation products, such as SAR wind fields, can be successfully up-taken into oceanographic modeling, producing similar downscaled wave fields when compared to waves forced with reanalysis wind.

  20. SAR detected river mixing and coastal wave/current difusion

    Science.gov (United States)

    Diez, Margarita; Martinez-Benjamin, Juan Jose; Sekula, Emil

    2014-05-01

    The Synthetic Aperture Radar SAR is an active radar which emits its energy in the centimetre frequencies. Due to the large orbital velocity of the satellite (7.5km s-1) approximately, the path of the antenna itself may be converted as a virtual antenna of a much larger size. The SAR instrument may also be installed on a plane, or on a helicopter. The SAR backscattering depends on the roughness of the small scale surface of the ocean. When the surface is rougher (mostly due to capillary waves in the surface) the intensity of the receiving signal is stronger due to Bragg resonant dispersion [1,2] and a white zone is observed in the image when the surface is very rough. Rivers and tensioactive slicks and spills are well detected as dark areas in the ocean surface. An image selection of SAR images in order to identify coastal river plumes or oil spills of more than 1000 ERS-1/2 and RADARSAT Synthetic Aperture Radar SAR images for the test site in the NW Mediterranean seawere clasified and stored by [2,3,7] during the "Clean Seas" International project and the "Marine pollution and surface dynamics in the NW Mediterranean Sea" European Spatial Agency ESA project AO-ID C1P.2240. A geometry of gray scale ranges and boundaries of spatial dynamic surface features may contain new helpful information about the turbulent structure at different distances from the coast. Already we used multi-fractal analysis techniques to investigate man-made oil spills [3-5] We apply these techniques to the analysis of ocean surface multi-fractal features (eddies, mushroom-like currents, etc.) to understand the scale to scale transport and coastal effects. (Redondo et al. 1998)(Diez et al. 2008) [4,7]. The effect of bathymetry and local currents are important in describing the ocean surface behavior. In the NW Mediterranean the maximum eddy size agrees remarkably well with the limit imposed by the local Rossby deformation radius using the usual thermocline induced stratification, the

  1. Surface acoustic wave mode conversion resonator

    Science.gov (United States)

    Martin, S. J.; Gunshor, R. L.; Melloch, M. R.; Datta, S.; Pierret, R. F.

    1983-08-01

    The fact that a ZnO-on-Si structure supports two distinct surface waves, referred to as the Rayleigh and the Sezawa modes, if the ZnO layer is sufficiently thick is recalled. A description is given of a unique surface wave resonator that operates by efficiently converting between the two modes at the resonant frequency. Since input and output coupling is effected through different modes, the mode conversion resonator promises enhanced out-of-band signal rejection. A Rayleigh wave traversing the resonant cavity in one direction is reflected as a Sezawa wave. It is pointed out that the off-resonance rejection of the mode conversion resonator could be enhanced by designing the transducers to minimize the level of cross coupling between transducers and propagating modes.

  2. THE REALIZATION OF THE PPP AUTOFOCUS METHOD IN PFA FOR SPOTLIGHT MODE SAR IMAGING

    Institute of Scientific and Technical Information of China (English)

    Fu Wenxian; Hong Wen; Li Shaohong

    2002-01-01

    This paper first studies the phase errors for fine-resolution spotlight mode SAR imaging and decomposes the phase errors into two kinds, one is caused by translation and the other by rotation. Mathematical analysis and computer simulations show the above mentioned motion kinds and their corresponding damages on spotlight mode SAR imaging. Based on this analysis, a single PPP is introduced for spotlight mode SAR imaging with the PFA on the assumption that relative rotation between APC and imaged scene is uniform. The selected single point is used first to correct the quadratic and higher order phase errors and then to adjust the linear errors. After this compensation, the space-invariant phase errors caused by translation are almost corrected. Finally results are presented with the simulated data.

  3. THE REALIZATION OF THE PPP AUTOFOCUS METHOD IN PFA FOR SPOTLIGHT MODE SAR IMAGING

    Institute of Scientific and Technical Information of China (English)

    FuWenxian; HongWen; 等

    2002-01-01

    This paper first studies the phase errors for fine-resolution spotlight mode SAR imaging and decomposes the phase errors into two kinds, one is caused by translation and the other by rotation.Mathematical analysis and computer simulations show the sbove mentioned motion kinds and their corresponding damages on spotlight mode SAR imaging.Based on this analysis, a single PPP is introduced for spotlight mode SAR imaging with the PFA on the assumption that relative rotation between APC and imaged sceme is uniform.The selected single point is used first to correct the quadratic and higher order phase errors and then to adjust the linear errors.After this compensation, the space-invariant phase errors caused by translation are almost corrected.Finally results are presented with the simulated data.

  4. CROSS-TRACK THREE APERTURES MILLIMETER WAVE SAR SIDE-LOOKING THREE-DIMENSIONAL IMAGING

    Institute of Scientific and Technical Information of China (English)

    Teng Xiumin; Li Daojing; Li Liechen; Liu Bo; Pan Zhouhao

    2012-01-01

    The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper.Three apertures are distributed along the cross-track direction,and three virtual phase centers will be obtained through one-input and three-output.These three virtual phase centers form a sparse array which can be used to obtain the cross-track resolution.Because the cross-track array is short,the cross-track resolution is low.When the system works in side-looking mode,the cross-track resolution and height resolution will be coupling,and the low cross-track resolution will partly be transformed into the height uncertainty.The beam pattern of the real aperture is used as a weight to improve the Peak to SideLobe Ratio (PSLR) and Integrated SideLobe Ratio (ISLR) of the cross-track sparse array.In order to suppress the high cross-track sidelobes,a weighting preprocessing method is proposed.The 3D images of a point target and a simulation scene are achieved to verify the feasibility of the proposed method.And the imaging result of the real data obtained by the cross-track three-baseline MMW InSAR prototype is presented as a beneficial attempt.

  5. Magnetohydrodynamic waves driven by p-modes

    CERN Document Server

    Khomenko, Elena

    2013-01-01

    Waves are observed at all layers of the solar atmosphere and the magnetic field plays a key role in their propagation. While deep down in the atmosphere the p-modes are almost entirely of acoustic nature, in the upper layers magnetic forces are dominating, leading to a large variety of new wave modes. Significant advances have been made recently in our understanding of the physics of waves interaction with magnetic structures, with the help of analytical theories, numerical simulations, as well as high-resolution observations. In this contribution, we review recent observational findings and current theoretical ideas in the field, with an emphasis on the following questions: (i) Peculiarities of the observed wave propagation in network, plage and facular regions; (ii) Role of the mode transformation and observational evidences of this process; (iii) Coupling of the photosphere, chromosphere, and above by means of waves propagating in magnetic structures.

  6. Whistler mode waves in the Jovian magnetosheath

    Science.gov (United States)

    Lin, Naiguo; Kellogg, P. J.; Thiessen, J. P.; Lengyel-Frey, D.; Tsurutani, B. T.; Phillips, J. L.

    1994-01-01

    During the Ulysses flyby of Jupiter in February 1992, the spacecraft traversed the Jovian magnetosheath for a few hours during the inbound pass and for aa few days during the outbound pass. Burstlike electomagnetic waves at frequencies of approximately 0.1-0.4 of the local electron cyclotron frequency have been observed by the Unified Radio and Plasma Wave (URAP) experiement. The waves were more often observed in the regions which were probably the outer or the middle magnetosheath, especially near the bow shock, and rarely seen in the magnetosphere/magnetosheath boundary layer. The propagation angles of the waves are estimated by comparing the measurements of the wave electric and magnetic fields in the spacecraft spin plane with the corresponding values calculated using the cold plasma dispersion relation under local field and plasma conditions. It is found that the waves propagate obliquely with wave angles between approximately 30 deg and 50 deg. These waves are likely to be the whistler mode waves which are excited by suprathermal electrons with a few hundred eV and a slight anisotropy (T(sub perp)/T(sub parallel) approximately 1.1-1.5). They are probably similar in nature to the lion roars observed in the Earth's magnetosheath. Signature of coupling between the mirror and the whistler mode have also been observed. The plasma conditions which favor the excitation of the whistler mode instability during the wave events exists as observed by the plasma experiement of Ulysses.

  7. Parameterized first-guess spectrum method for retrieving directional spectrum of swell-dominated waves and huge waves from SAR images

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A method to retrieve ocean wave spectra from SAR images, named Parameterized First-guess Spectrum Method (PFSM), was proposed after interpretation of the theory to ocean wave imaging and analysis of the drawbacks of the retrieving model generally used. In this method, with additional information and satellite parameters, the separating wave-number is first calculated to determine the maximum wave-number beyond which the linear relation can be used. The separating wave-number can be calculated using the additional information on wind velocity and parameters of SAR satellite. And then the SAR spectrum can be divided into SAR spectrum of wind wave and of swell according to the result of separating wave-number. The portion of SAR spectrum generated by wind wave, is used to search for the most suitable parameters of ocean wind wave spectrum, including propagation direction of ocean wave, phase speed of dominating wave and the angle spreading coefficient. The swell spectrum is acquired by directly inversing the linear relation of ocean wave spectrum to SAR spectrum given the portion of SAR spectrum generated by swell. We used the proposed method to retrieve the ocean wave spectrum from ERS-SAR data from the South China Sea and compared the result with altimeter data. The agreement indicates that the PFSM is reliable.

  8. SAR image change detection algorithm based on stationary wavelet and bi-dimensional intrinsic mode function

    Science.gov (United States)

    Huang, S. Q.; Wang, Z. L.; Xie, T. G.; Li, Z. C.

    2017-09-01

    Speckle noise in synthetic aperture radar (SAR) image is produced by the coherent imaging mechanism, which brings a great impact on the change information acquisition of multi-temporal SAR images. Two-dimensional stationary wavelet transform (SWT) and bi-dimensional empirical mode decomposition (BEMD) are the non-stationary signal processing theory of multi-scale transform. According to their implementation process and SAR image characteristic, this paper proposed a new multi-temporal SAR image change detection method based on the combination of the stationary wavelet transform and the bi-dimensional intrinsic mode function (BIMF) features, called SWT-BIMF algorithm. The contribution of the new algorithm includes two aspects. One is the design of the two selections of decomposition features, that is, the speckle noise filtering; another is the selected features to perform the enhance processing, so more effective change information will obtain. The feasibility of the SWT-BIMF algorithm is verified by the measured SAR image data, and good experimental results are obtained.

  9. Spin-wave modes of ferromagnetic films

    Science.gov (United States)

    Arias, R. E.

    2016-10-01

    The spin-wave modes of ferromagnetic films have been studied for a long time experimentally as well as theoretically, either in the magnetostatic approximation or also considering the exchange interaction. A theoretical method is presented that allows one to determine with ease the exact frequency dispersion relations of dipole-exchange modes under general conditions: an obliquely applied magnetic field, and surface boundary conditions that allow for partial pinning, which may be of different origins. The method is a generalization of Green's theorem to the problem of solving the linear dynamics of ferromagnetic spin-wave modes. Convolution integral equations for the magnetization and the magnetostatic potential of the modes are derived on the surfaces of the film. For the translation-invariant film these become simple local algebraic equations at each in-plane wave vector. Eigenfrequencies result from imposing a 6 ×6 determinant to be null, and spin-wave modes follow everywhere through solving linear 6 ×6 inhomogeneous systems. An interpretation of the results is that the Green's functions represent six independent plane-wave solutions to the equations of motion, with six associated complex perpendicular wave vectors: volume modes correspond to the cases in which two of these are purely real at a given frequency. Furthermore, the convolution extinction equations enforce the boundary conditions: this is possible at specific eigenfrequencies for a given in-plane wave vector. Magnetostatic modes may also be obtained in detail. At low frequencies and for some obliquely applied magnetic fields, magnetostatic and dipole-exchange volume modes may have forward or backward character depending on the frequency range.

  10. Long wave polar modes in semiconductor heterostructures

    CERN Document Server

    Trallero-Giner, C; Garca̕-Moliner, F 0

    1998-01-01

    Long Wave Polar Modes in Semiconductor Heterostructures is concerned with the study of polar optical modes in semiconductor heterostructures from a phenomenological approach and aims to simplify the model of lattice dynamics calculations. The book provides useful tools for performing calculations relevant to anyone who might be interested in practical applications. The main focus of Long Wave Polar Modes in Semiconductor Heterostructures is planar heterostructures (quantum wells or barriers, superlattices, double barrier structures etc) but there is also discussion on the growing field of quan

  11. A comparison of wave mode identification techniques

    Directory of Open Access Journals (Sweden)

    S. N. Walker

    2004-09-01

    Full Text Available The four point measurements available from the Cluster mission enable spatiotemporal effects in data sets to be resolved. One application of these multipoint measurements is the determination of the wave vectors and hence the identification of wave modes that exist within the plasma. Prior to multi-satellite missions, wave identification techniques were based upon the interpretation of observational data using theoretically defined relations. However, such techniques are limited by the quality of the data and the type of plasma model employed. With multipoint measurements, wave modes can be identified and their wave directions determined purely from the available observations. This paper takes two such methods, a phase differencing technique and k-filtering and compares their results. It is shown that both methods can resolve the k vector for the dominant mirror mode present in the data. The phase differencing method shows that the nature of the wave environment is constantly changing and as such both methods result in an average picture of the wave environment in the period analysed. The k-filtering method is able to identify other modes that are present.

  12. Demonstration of Shear Waves, Lamb Waves, and Rayleigh Waves by Mode Conversion.

    Science.gov (United States)

    Leung, W. P.

    1980-01-01

    Introduces an experiment that can be demonstrated in the classroom to show that shear waves, Rayleigh waves, and Lamb waves can be easily generated and observed by means of mode conversion. (Author/CS)

  13. Are "EIT Waves" Fast-Mode MHD Waves?

    CERN Document Server

    Wills-Davey, M J; Stenflo, J O

    2007-01-01

    We examine the nature of large-scale, coronal, propagating wave fronts (``EIT waves'') and find they are incongruous with solutions using fast-mode MHD plane-wave theory. Specifically, we consider the following properties: non-dispersive single pulse manifestions, observed velocities below the local Alfven speed, and different pulses which travel at any number of constant velocities, rather than at the ``predicted'' fast-mode speed. We discuss the possibility of a soliton-like explanation for these phenomena, and show how it is consistent with the above-mentioned aspects.

  14. On The TerraSAR-X Dual-Mode For Oil Slick Observation

    Science.gov (United States)

    Velotto, D.; Migliaccio, M.; Nunziata, F.; Lehner, S.

    2010-04-01

    In this study a polarimetric approach is for the first time developed and applied to X-band Synthetic Aperture Radar (SAR) data for sea oil slick observation. Following this an electromagnetic model which, based on the Co-polarized Phase Difference (CPD), allows describing the slick-free and slick-covered sea surface scattering is proposed. Single Look Complex (SSC) TerraSAR-X (TSX) data, gathered in dual polarimetric mode, in which both certified oil slicks and look-alikes are present, are analyzed. Several experiments are shown here and discussed in detail.

  15. On the generation of internal wave modes by surface waves

    Science.gov (United States)

    Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian

    2016-04-01

    Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.

  16. The physical basis for estimating wave energy spectra from SAR imagery

    Science.gov (United States)

    Lyzenga, David R.

    1987-01-01

    Ocean surface waves are imaged by synthetic aperture radar (SAR) through a combination of the effects of changes in the surface slope, surface roughness, and surface motion. Over a limited range of conditions, each of these effects can be described in terms of a linear modulation-transfer function. In such cases, the wave-height spectrum can be estimated in a straightforward manner from the SAR image-intensity spectrum. The range of conditions over which this assumption of linearity is valid is investigated using a numerical simulation model, and the implications of various departures from linearity are discussed.

  17. Titan's surface from the Cassini RADAR radiometry data during SAR mode

    Science.gov (United States)

    Paganelli, F.; Janssen, M.A.; Lopes, R.M.; Stofan, E.; Wall, S.D.; Lorenz, R.D.; Lunine, J.I.; Kirk, R.L.; Roth, L.; Elachi, C.

    2008-01-01

    We present initial results on the calibration and interpretation of the high-resolution radiometry data acquired during the Synthetic Aperture Radar (SAR) mode (SAR-radiometry) of the Cassini Radar Mapper during its first five flybys of Saturn's moon Titan. We construct maps of the brightness temperature at the 2-cm wavelength coincident with SAR swath imaging. A preliminary radiometry calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, outlining signatures that characterize various terrains and surface features. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007.

  18. Oceanic pycnocline depth retrieval from SAR imagery in the existence of solitary internal waves

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Oceanic pycnocline depth is usually inferred from in situ measurements. It is attempted to estimate the depth remotely. As solitary internal waves occur on oceanic pycnocline and propagate along it, it is possible to retrieve the depth indirectly in virtue of the solitary internal waves. A numerical model is presented for retrieving the pycnocline depth from synthetic aperture radar (SAR) images where the solitary internal waves are visible and when ocean waters are fully stratified. This numerical model is constructed by combining the solitary internal wave model and a two-layer ocean model. It is also assumed that the observed groups of solitary internal wave packets on the SAR imagery are generated by local semidiurnal tides. A case study in the East China Sea shows a good agreement with in situ CTD (conductivity-temperature-depth) data.

  19. Indoor Operations by FMCW Millimeter Wave SAR Onboard Small UAS: A Simulation Approach

    Directory of Open Access Journals (Sweden)

    Antonio Fulvio Scannapieco

    2016-01-01

    Full Text Available A dedicated system simulator is presented in this paper for indoor operations onboard small Unmanned Aerial Systems (UAS by a novel millimeter wave radar sensor. The sensor relies on the principle of Synthetic Aperture Radar (SAR applied to a Frequency Modulated Continuous Wave (FMCW radar system. Input to the simulator are both design parameters for Synthetic Aperture Radar (SAR, which should be able to cope with the stringent requirements set by indoor operations, and information about platform navigation and observed scene. The scene generation task is described in detail. This is based on models for point target response on either a completely absorbing background or fluctuating background and ray tracing (RT techniques. Results obtained from scene processing are finally discussed, giving further insights on expected results from high-resolution observation of an assigned control volume by this novel SAR sensor.

  20. Guided-mode resonant wave plates.

    Science.gov (United States)

    Magnusson, Robert; Shokooh-Saremi, Mehrdad; Johnson, Eric G

    2010-07-15

    We introduce half-wave and quarter-wave retarders based on the dispersion properties of guided-mode resonance elements. We design the wave plates using numerical electromagnetic models joined with the particle swarm optimization method. The wave plates operate in reflection. We provide computed results for reflectance and phase in the telecommunication spectral region near 1.55 microm wavelength. A surface-relief grating etched in glass and overcoated with silicon yields a half-wave plate with nearly equal amplitudes of the TE and TM polarization components and pi phase difference across a bandwidth exceeding 50 nm. Wider operational bandwidths are obtainable with more complex designs involving glass substrates and mixed silicon/hafnium dioxide resonant gratings. The results indicate a potential new approach to fashion optical retarders.

  1. Mode selective control of drift wave turbulence

    DEFF Research Database (Denmark)

    Schröder, C.; Klinger, T.; Block, D.;

    2001-01-01

    Experiments on spatiotemporal open-loop synchronization of drift wave turbulence in a magnetized cylindrical plasma are reported. The synchronization effect is modeled by a rotating current profile with prescribed mode structure. Numerical simulations of an extended Hasegawa-Wakatani model show g...

  2. Wave impedance retrieving via Bloch modes analysis

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Ha, S.; Sukhorukov, A.

    2011-01-01

    of the Bloch mode, respectively. Case studies prove that our ap-proach can determine material and wave effective parameters of lossy and lossless metamaterials. In some examples when the passivity is violated we made further analysis and showed that this is due to the failure of concept of impedance retrieving...

  3. Comparison of Polarimetric SAR Techniques for the Measurement of Directional Ocean Wave Spectra

    Science.gov (United States)

    2005-07-25

    II . ORIENTATION ANGLE INTENSITY MODULATION The first polarimetric SAR technique has been investigated for improving the visibility of...Buoy, Bodega Bay). Modulations in the polarization orientation angle induced by azimuth traveling ocean waves in the study area were visible in the

  4. Development of Signal Processing Algorithms for High Resolution Airborne Millimeter Wave FMCW SAR

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.

    2005-01-01

    For airborne earth observation applications, there is a special interest in lightweight, cost effective, imaging sensors of high resolution. The combination of Frequency Modulated Continuous Wave (FMCW) technology and Synthetic Aperture Radar (SAR) techniques can lead to such a sensor. In this paper

  5. SAR IMAGING SIMULATION OF HORIZONTAL FULLY TWO-DIMENSIONAL INTERNAL WAVES

    Institute of Scientific and Technical Information of China (English)

    SHEN Hui; HE Yi-Jun

    2006-01-01

    Based on the research of Lynett and Liu, a new horizontal fully two-dimensional internal wave propagation model with rotation effect was deduced, which can be used to simulate the characteristics of internal waves in a horizontal fully two-dimensional plane. By combining the imaging mechanism of Synthetic Aperture Radar(SAR), a simulation procedure was fatherly acquired, which can simulate the propagation characteristics of oceanic internal waves into SAR images. In order to evaluate the validity of the proposed simulation procedure, case studies are performed in South China Sea and results from simulation procedure are analyzed in detail. A very good consistency was found between the simulation results and satellite images. The proposed simulation procedure will be a possible foundation for the quantitative interpretation of internal waves from fully two-dimensional satellite images.

  6. Wave impedance retrieving via Bloch modes analysis

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Ha, S.; Sukhorukov, A.;

    2011-01-01

    of the Bloch mode, respectively. Case studies prove that our ap-proach can determine material and wave effective parameters of lossy and lossless metamaterials. In some examples when the passivity is violated we made further analysis and showed that this is due to the failure of concept of impedance retrieving......-ciples violation, like antiresonance behaviour with Im(ε) mode analysis of periodic metamaterials to extract the dominating (fundamental) Bloch mode. Then it is possible to determine the Bloch and wave impedances by the surface and volume aver-aging of the electromagnetic field......The main bottleneck in the restoration of electromagnetic effective parameters is connected to the impedance retrieving. The S-parameters method gives the input (Bloch) impedance, which, being then used for permittivity and permeability determination, causes some fundamental physics prin...

  7. Simulations of SAR wave spectra using high spectral resolution estimates from the SCR and ROWS instruments

    Science.gov (United States)

    Lyzenga, D.

    1985-01-01

    A numerical model for predicting the synthetic aperture radar (SAR) image of a moving ocean surface is described, and results are presented for two SIR-B data sets collected off the coast of Chile. Wave height spectra measured by the NASA radar ocean wave spectrometer (ROWS) and surface contour radar (SCR) were used as inputs to this model, and results are compared with actual SIR-B image spectra from orbits 91 and 106.

  8. A Non-linear Scaling Algorithm Based on chirp-z Transform for Squint Mode FMCW-SAR

    Directory of Open Access Journals (Sweden)

    Yu Bin-bin

    2012-03-01

    Full Text Available A non-linear scaling chirp-z imaging algorithm for squint mode Frequency Modulated Continuous Wave Synthetic Aperture Radar (FMCW-SAR is presented to solve the problem of the focus accuracy decline. Based on the non-linear characteristics in range direction for the echo signal in Doppler domain, a non-linear modulated signal is introduced to perform a non-linear scaling based on chirp-z transform. Then the error due to range compression and range migration correction can be reduced, therefore the range resolution of radar image is improved. By using the imaging algorithm proposed, the imaging performances for point targets, compared with that from the original chirp-z algorithm, are demonstrated to be improved in range resolution and image contrast, and to be maintained the same in azimuth resolution.

  9. Analysis on coherence changes of dam surface in TerraSAR Strip mode interferograms

    Science.gov (United States)

    Li, Tao; Gong, Chunlong; Xia, Min; Jin, Zonghuang

    2011-10-01

    The high resolution images of TerraSAR has made it able to reflect the detail characters of large-scale manmade structures, so monitoring local deformation of large-sized buildings comes to be available. Former research had shown that InSAR phase of the dam surface was stable and consecutive. This paper aimed to make a further proof of the viability of monitoring dam's deformation using 3-meter-resolution strip mode images of TerraSAR. So we made a time series analysis of dam surface's coherence for the next step. Our dataset had eleven images covering three medium size basins of Shenzhen. Coherence of different features in the basin area including dams was extracted to make a comparative analysis. Two different combination methods were designed to create interferometric pairs to find the influence of time baseline and perpendicular baseline to coherence of different cultures. In our research, it was find out that coherence of dam surface was mainly influenced by time baseline. In short time baseline pairs (eleven days), coherence of dam surface was about 0.2 higher than vegetation slope in average. DInSAR process was suitable for short time baseline interferometric pairs, other methods such as PS will be needed for long time baseline interferometric pairs.

  10. Automatic determination of important mode-mode correlations in many-mode vibrational wave functions.

    Science.gov (United States)

    König, Carolin; Christiansen, Ove

    2015-04-14

    We introduce new automatic procedures for parameterizing vibrational coupled cluster (VCC) and vibrational configuration interaction wave functions. Importance measures for individual mode combinations in the wave function are derived based on upper bounds to Hamiltonian matrix elements and/or the size of perturbative corrections derived in the framework of VCC. With a threshold, this enables an automatic, system-adapted way of choosing which mode-mode correlations are explicitly parameterized in the many-mode wave function. The effect of different importance measures and thresholds is investigated for zero-point energies and infrared spectra for formaldehyde and furan. Furthermore, the direct link between important mode-mode correlations and coordinates is illustrated employing water clusters as examples: Using optimized coordinates, a larger number of mode combinations can be neglected in the correlated many-mode vibrational wave function than with normal coordinates for the same accuracy. Moreover, the fraction of important mode-mode correlations compared to the total number of correlations decreases with system size. This underlines the potential gain in efficiency when using optimized coordinates in combination with a flexible scheme for choosing the mode-mode correlations included in the parameterization of the correlated many-mode vibrational wave function. All in all, it is found that the introduced schemes for parameterizing correlated many-mode vibrational wave functions lead to at least as systematic and accurate calculations as those using more standard and straightforward excitation level definitions. This new way of defining approximate calculations offers potential for future calculations on larger systems.

  11. Evaluating SAR polarization modes at L-band for forest classification purposes in Eastern Amazon, Brazil

    Science.gov (United States)

    Liesenberg, Veraldo; Gloaguen, Richard

    2013-04-01

    Single, interferometric dual, and quad-polarization mode data were evaluated for the characterization and classification of seven land use classes in an area with shifting cultivation practices located in the Eastern Amazon (Brazil). The Advanced Land-Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) data were acquired during a six month interval. A clear-sky Landsat-5/TM image acquired at the same period was used as additional ground reference and as ancillary input data in the classification scheme. We evaluated backscattering intensity, polarimetric features, interferometric coherence and texture parameters for classification purposes using support vector machines (SVM) and feature selection. Results showed that the forest classes were characterized by low temporal backscattering intensity variability, low coherence and high entropy. Quad polarization mode performed better than dual and single polarizations but overall accuracies remain low and were affected by precipitation events on the date and prior SAR date acquisition. Misclassifications were reduced by integrating Landsat data and an overall accuracy of 85% was attained. The integration of Landsat to both quad and dual polarization modes showed similarity at the 5% significance level. SVM was not affected by SAR dimensionality and feature selection technique reveals that co-polarized channels as well as SAR derived parameters such as Alpha-Entropy decomposition were important ranked features after Landsat' near-infrared and green bands. We show that in absence of Landsat data, polarimetric features extracted from quad-polarization L-band increase classification accuracies when compared to single and dual polarization alone. We argue that the joint analysis of SAR and their derived parameters with optical data performs even better and thus encourage the further development of joint techniques under the Reducing Emissions from Deforestation and Degradation (REDD) mechanism.

  12. Preliminary Assessment of Wind and Wave Retrieval from Chinese Gaofen-3 SAR Imagery.

    Science.gov (United States)

    Shao, Weizeng; Sheng, Yexin; Sun, Jian

    2017-07-25

    The Chinese Gaofen-3 (GF-3) synthetic aperture radar (SAR) launched by the China Academy of Space Technology (CAST) has operated at C-band since September 2016. To date, we have collected 16/42 images in vertical-vertical (VV)/horizontal-horizontal (HH) polarization, covering the National Data Buoy Center (NDBC) buoy measurements of the National Oceanic and Atmospheric Administration (NOAA) around U.S. western coastal waters. Wind speeds from NDBC in situ buoys are up to 15 m/s and buoy-measured significant wave height (SWH) has ranged from 0.5 m to 3 m. In this study, winds were retrieved using the geophysical model function (GMF) together with the polarization ratio (PR) model and waves were retrieved using a new empirical algorithm based on SAR cutoff wavelength in satellite flight direction, herein called CSAR_WAVE. Validation against buoy measurements shows a 1.4/1.9 m/s root mean square error (RMSE) of wind speed and a 24/23% scatter index (SI) of SWH for VV/HH polarization. In addition, wind and wave retrieval results from 166 GF-3 images were compared with the European Centre for Medium-Range Weather Forecasts (ECMWF) re-analysis winds, as well as the SWH from the WaveWatch-III model, respectively. Comparisons show a 2.0 m/s RMSE for wind speed with a 36% SI of SWH for VV-polarization and a 2.2 m/s RMSE for wind speed with a 37% SI of SWH for HH-polarization. Our work gives a preliminary assessment of the wind and wave retrieval results from GF-3 SAR images for the first time and will provide guidance for marine applications of GF-3 SAR.

  13. First Experiment of IECAS P-Band Quad-Pol SAR System in Circular Imaging Mode

    Science.gov (United States)

    Hong, Wen; Li, Yang; Yin, Qiang; Lin, Yun; Chen, Erxue; Pottier, Eric

    2013-01-01

    Within the framework of the DRAGON2 project, the Institute of Electronics, Chinese Academy of Sciences (IECAS) continuously had a tight collaboration with the European and the Chinese partners. Our contribution to the joint research, separated by 4 working packages: land cover analysis, earth surface deformation monitoring and DEM extraction, forest vertical structure parameters extraction, and PolSARpro software continued development, is reviewed in the beginning. Furthermore, a joint study between IECAS - NKLMIT and University of Rennes-1 -Institute of Electronics and Telecommunications, about DEM based soil moisture inversion using POLSAR data is reviewed. Besides, a compact-pol calibration algorithm for a wide-band ground-based SAR system and a supervised land cover classification method are proposed here. Finally, the first experiment of IECAS P-band quad-pol SAR system in circular imaging mode is introduced.

  14. Impact of the interfaces for wind and wave modeling - interpretation using COAWST, SAR and point measurements

    DEFF Research Database (Denmark)

    -ocean-atmosphere-wave-sediment-transport (COAWST) modeling system. The roughness length has been calculated using seven schemes (Charnock, Fan, Oost, Drennen, Liu, Andreas, Taylor-Yelland). The stress approach is applied through a wave boundary layer model in SWAN. The experiments are done to a case where the Synthetic Aperture Radar (SAR) image......Air and sea interacts, where winds generate waves and waves affect the winds. This topic is ever relevant for offshore functions such as shipping, portal routines, wind farm operation and maintenance. In a coupled modeling system, the atmospheric modeling and the wave modeling interfere with each...... other through an interface. In most modeling system the interface is described through the roughness length. The roughness length is parameterized with the basic idea of the Charnock formulation while the coefficients could be functions of simply wind speed, or wave parameters. More advanced interfaces...

  15. Massachusetts Bay - Internal Wave Packets Extracted from SAR Imagery Binned in 1x1 minute grid cells

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets extracted from SAR imagery that were binned in 1x1 minute latitude/longitude polygon grid cells. Statistics were...

  16. Massachusetts Bay - Internal wave packets digitized from SAR imagery and intersected with a bathymetrically derived slope surface

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with a bathymetrically derived slope surface for Massachusetts Bay. The...

  17. Pulse-to-pulse correlation in CryoSat SAR mode radar altimeter echoes from the sea surface

    Science.gov (United States)

    Smith, W. H.

    2012-12-01

    Serial correlation among successive radar echoes returned from the ocean surface is an important design constraint in satellite altimetry. Walsh [1974, 1982] established the conventional wisdom. Taking the radar footprint to be a uniformly radiating disk, he derived a theoretically expected echo decorrelation time of about 0.5 milliseconds. Following Walsh, ocean altimeters usually employ a pulse repetition frequency (PRF) around 2 kHz, in order to obtain statistically independent echoes at (so it is thought) the maximum possible rate. CryoSat, designed for ranging to ice surfaces, employs a PRF of 18.2 kHz in its SAR mode. CryoSat SAR echo sequences over ocean surfaces can be used to empirically determine the ocean echo decorrelation, and thus to test Walsh's model. Such a test is presented in this paper. The analysis begins by forming the ensemble average of complex cross products of pairs of echoes separated by a time lag L * PRI, where the pulse repetition interval (PRI) is 55 microseconds and the echo lag L runs from 0 to 32. The L = 0 case yields the conventional pulse-limited waveform, which is used to determine the sea state in each ensemble average. The averages of lagged echo cross products reveal the complex coherency, with sampling in both slow time (lag, L), and fast time (range, sampled in waveform gates). Data from many areas and sea states are analyzed, and the results are explained using a simple theory approximating the complex coherency expected from a Gaussian radar pulse. This theory generalizes the classical Brown [1977] waveform model to lagged echo cross products, and generalizes Walsh's work to the case of footprints with non-uniform illumination and diffuse edges. Phase is due to vertical motion of the antenna. Amplitude variations in fast time are due to horizontal motion of the antenna, and are independent of wave height; their functional form confirms Brown's assumption that scattering is independent of azimuth. In slow time, the

  18. Significant wave height estimation using azimuth cutoff of C-band RADARSAT-2 single-polarization SAR images

    Institute of Scientific and Technical Information of China (English)

    REN Lin; YANG Jingsong; ZHENG Gang; WANG Juan

    2015-01-01

    This paper proposes two simple models, look-up table (LUT) model and empirical model, to directly retrieve significant wave height (Hs) using synthetic aperture radar (SAR) azimuth cutoff (λc). Both models aim at C-band VV, HH, VH, and HV single-polarization SAR images. The LUT model relatesHs toλc, while the empirical model relatesHs to bothλc and SAR range-to-velocity (β). The LUT model coefficients are derived by simulation under different sea states and observation conditions, which depend on incidence angle (θ), wave direction (dw), andβbut are independent of polarization. The empirical model coefficients are obtained by fitting the collocated data, which only depend on polarization. To fit empirical model coefficients and validate the two models, C-band RADARSAT-2 fine quad-polarization (VV+HH+VH+HV) single-look complex (SLC) SAR images and collocated buoy data are collected. RetrievedHs, using Yang model and the two models proposed in this paper from four kinds of polarization SAR data, are compared with buoyHs. Results show that both LUT and empirical models have the capacity of retrievingHs from C-band RADARSAT-2 co-polarization SAR data, while Yang model is not suitable for these kinds of SAR data. Moreover, the empirical model is also valid for cross-polarization SAR data showing clear ocean wave stripes.

  19. A Fast Back Projection Algorithm for Spotlight Mode Bi-SAR Imaging

    Directory of Open Access Journals (Sweden)

    Zhang Wen-bin

    2013-09-01

    Full Text Available A Fast Back Projection (FBP algorithm for spotlight mode Bistatic Synthetic Aperture Radar (Bi-SAR was presented. Sync channel signal from land receiver was taken as matched filter for echo signal in the phase of range compression, and the secondary phase calibration decreased the approximation error effects for FBP algorithm in the phase of azimuth compression. Computational complexity of this algorithm was O(N2.5 . In addition, this algorithm was validated on Graphic Processing Unit (GPU by simulation data and measured data.

  20. Lynx multi-mode SAR in support of NATO Unified Vision 2012 trial

    Science.gov (United States)

    Dunkel, R.; Verge, T.; Linnehan, R.; Doerry, A.

    2013-05-01

    In June 2012, General Atomics Aeronautical Systems, Inc. (GA-ASI) Reconnaissance Systems Group participated in the NATO Unified Vision 2012 (UV12) Joint ISR (JISR) Trial at Orland Main Air Station in Brekstad, Norway. GA-ASI supplied a modified King Air 200 as a Predator B/MQ-9 Reaper Remotely Piloted Aircraft (RPA) surrogate outfitted with a Lynx Block 30 Multi-mode Synthetic Aperture Radar/Ground Moving Target Indicator (SAR/GMTI), a FLIR Star SAFIRE 3800HD Electro-optical/Infrared (EO/IR) sensor, and a L-3 Tactical Common Data Link. This airborne platform was combined with GA-ASI's new System for Tactical Archival, Retrieval, and Exploitation (STARE) for full integration into the NATO ISR exploitation community. UV12 was an event sponsored by the NATO Joint Capability Group on Intelligence, Surveillance, and Reconnaissance (ISR) to focus on the interoperability of national ISR assets and improving JISR concept of operations. The Predator B RPA surrogate flew alongside multiple NATO ISR assets in nine missions that showcased the platform's all-weather ISR capabilities focusing on the Lynx SAR/GMTI and Maritime Wide Area Search (MWAS) modes. The inclusion of the STARE technology allowed GA-ASI's radar and Full Motion Video (FMV) data to be seamlessly processed and passed to joint networks where the data was fused with other NATO ISR products, resulting in a full battlefield reconnaissance picture.

  1. Assessment of induced SAR in children exposed to electromagnetic plane waves between 10 MHz and 5.6 GHz.

    Science.gov (United States)

    Bakker, J F; Paulides, M M; Christ, A; Kuster, N; van Rhoon, G C

    2010-06-07

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels from the basic restrictions on the induced whole-body-averaged specific absorption rate (SAR(wb)) and the peak 10 g spatial-averaged SAR (SAR(10g)). The objective of this study is to assess if the SAR in children remains below the basic restrictions upon exposure at the reference levels. Finite difference time domain (FDTD) modeling was used to calculate the SAR in six children and two adults when exposed to all 12 orthogonal plane wave configurations. A sensitivity study showed an expanded uncertainty of 53% (SAR(wb)) and 58% (SAR(10g)) due to variations in simulation settings and tissue properties. In this study, we found that the basic restriction on the SAR(wb) is occasionally exceeded for children, up to a maximum of 45% in small children. The maximum SAR(10g) values, usually found at body protrusions, remain under the limit for all scenarios studied. Our results are in good agreement with the literature, suggesting that the recommended ICNIRP reference levels may need fine tuning.

  2. New Spin-Wave Mode in Weak Ferromagnetic Fermi Liquids

    OpenAIRE

    Petkova, Penka I.

    1999-01-01

    We study a phenomenological model for weak ferromagnetic Fermi liquids and investigate the properties of the spin waves in the model. The Landau kinetic equation is used to derive, in addition to the known Goldstone mode, a new spin-wave mode -- the first Silin-like ferromagnetic mode. We discuss the role of the interaction parameter F^a_1 on the behavior of the Goldstone mode and the first Silin-like ferromagnetic mode.

  3. An Empirical Algorithm for Wave Retrieval from Co-Polarization X-Band SAR Imagery

    Directory of Open Access Journals (Sweden)

    Weizeng Shao

    2017-07-01

    Full Text Available In this study, we proposed an empirical algorithm for significant wave height (SWH retrieval from TerraSAR-X/TanDEM (TS-X/TD-X X-band synthetic aperture radar (SAR co-polarization (vertical-vertical (VV and horizontal-horizontal (HH images. As the existing empirical algorithm at X-band, i.e., XWAVE, is applied for wave retrieval from HH-polarization TS-X/TD-X image, polarization ratio (PR has to be used for inverting wind speed, which is treated as an input in XWAVE. Wind speed encounters saturation in tropical cyclone. In our work, wind speed is replaced by normalized radar cross section (NRCS to avoiding using SAR-derived wind speed, which does not work in high winds, and the empirical algorithm can be conveniently implemented without converting NRCS in HH-polarization to NRCS in VV-polarization by using X-band PR. A total of 120 TS-X/TD-X images, 60 in VV-polarization and 60 in HH-polarization, with homogenous wave patterns, and the coincide significant wave height data from European Centre for Medium-Range Weather Forecasts (ECMWF reanalysis field at a 0.125° grid were collected as a dataset for tuning the algorithm. The range of SWH is from 0 to 7 m. We then applied the algorithm to 24 VV and 21 HH additional SAR images to extract SWH at locations of 30 National Oceanic and Atmospheric Administration (NOAA National Data Buoy Center (NDBC buoys. It is found that the algorithm performs well with a SWH stander deviation (STD of about 0.5 m for both VV and HH polarization TS-X/TD-X images. For large wave validation (SWH 6–7 m, we applied the empirical algorithm to a tropical cyclone Sandy TD-X image acquired in 2012, and obtained good result with a SWH STD of 0.3 m. We concluded that the proposed empirical algorithm works for wave retrieval from TS-X/TD-X image in co-polarization without external sea surface wind information.

  4. Satellite-based RAR performance simulation for measuring directional ocean wave spectrum based on SAR inversion spectrum

    Institute of Scientific and Technical Information of China (English)

    REN Lin; MAO Zhihua; HUANG Haiqing; GONG Fang

    2010-01-01

    Some missions have been carried out to measure wave directional spectrum by synthetic aperture radar (SAR) and airborne real aperture radar (RAR) at a low incidence. Both them have their own advantages and limitations. Scientists hope that SAR and satellite-based RAR can complement each other for the research on wave properties in the future. For this study, the authors aim to simulate the satellite-based RAR system to validate performance for measuring the directional wave spectrum. The principal measurements are introduced and the simulation methods based on the one developed by Hauser are adopted and slightly modified. To enhance the authenticity of input spectrum and the wave spectrum measuring consistency for SAR and satellite-based RAR, the wave height spectrum inversed from Envisat ASAR data by cross spectrum technology is used as the input spectrum of the simulation system. In the process of simulation, the sea surface, backscattering signal, modulation spectrum and the estimated wave height spectrum are simulated in each look direction. Directional wave spectrum are measured based on the simulated observations from 0° to 360~. From the estimated wave spectrum, it has an 180° ambiguity like SAR, but it has no special high wave number cut off in all the direction. Finally, the estimated spectrum is compared with the input one in terms of the dominant wave wavelength, direction and SWH and the results are promising. The simulation shows that satellite-based RAR should be capable of measuring the directional wave properties. Moreover, it indicates satellite-based RAR basically can measure waves that SAR can measure.

  5. The Quest for B Modes from Inflationary Gravitational Waves

    Science.gov (United States)

    Kamionkowski, Marc; Kovetz, Ely D.

    2016-09-01

    The search for the curl component (B mode) in the cosmic microwave background (CMB) polarization induced by inflationary gravitational waves is described. The canonical single-field slow-roll model of inflation is presented, and we explain the quantum production of primordial density perturbations and gravitational waves. It is shown how these gravitational waves then give rise to polarization in the CMB. We then describe the geometric decomposition of the CMB polarization pattern into a curl-free component (E mode) and curl component (B mode) and show explicitly that gravitational waves induce B modes. We discuss the B modes induced by gravitational lensing and by Galactic foregrounds and show how both are distinguished from those induced by inflationary gravitational waves. Issues involved in the experimental pursuit of these B modes are described, and we summarize some of the strategies being pursued. We close with a brief discussion of some other avenues toward detecting/characterizing the inflationary gravitational-wave background.

  6. Study of a condition for the mode conversion from purely perpendicular electrostatic waves to electromagnetic waves

    Science.gov (United States)

    Kalaee, Mohammad Javad; Katoh, Yuto

    2016-07-01

    One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.

  7. Surface-wave mode coupling : modelling and inverting waveforms including body-wave phases

    NARCIS (Netherlands)

    Marquering, H.A.

    1996-01-01

    This thesis is concerned with a similar problem as addressed by Li & Tanimoto (1993) in the surfacewave mode approach. In this thesis it is shown that surface-wave mode coupling is required when body-wave phases in laterally heterogeneous media are modelled by surface-wave mode summation. An efficie

  8. Wave observation in the marginal ice zone with the TerraSAR-X satellite

    Science.gov (United States)

    Gebhardt, Claus; Bidlot, Jean-Raymond; Gemmrich, Johannes; Lehner, Susanne; Pleskachevsky, Andrey; Rosenthal, Wolfgang

    2016-07-01

    This article investigates the penetration of ocean waves into the marginal ice zone (MIZ), observed by satellite, and likewise provides a basis for the future cross-validation of respective models. To this end, synthetic aperture radar images from the TerraSAR-X satellite (TS-X) and numerical simulations of the European Centre for Medium-Range Weather Forecasts (ECMWF) are used. The focus is an event of swell waves, developed during a storm passage in the Atlantic, penetrating deeply into the MIZ off the coast of Eastern Greenland in February 2013. The TS-X scene which is the basis for this investigation extends from the ice-free open ocean to solid ice. The variation of the peak wavelength is analysed and potential sources of variability are discussed. We find an increase in wavelength which is consistent with the spatial dispersion of deep water waves, even within the ice-covered region.

  9. Decentralized adaptive sliding mode control for beam synchronization of tethered InSAR system

    Science.gov (United States)

    Zhang, Jinxiu; Zhang, Zhigang; Wu, Baolin

    2016-10-01

    Beam synchronization problem of tethered interferometric synthetic aperture radar (InSAR) is addressed in this paper. Two antennas of the system are carried by separate satellites connected through a tether to obtain a preferable baseline. A Total Zero Doppler Steering (TZDS) is implemented to mother-satellite to cancel the residual Doppler. Subsequently attitude reference trajectories for the two satellites are generated to achieve the beam synchronization and TZDS. Thereafter, a decentralized adaptive sliding mode control law is proposed to track these reference trajectories in the presence of model uncertainties and external disturbances. Finally, the stability of closed-loop system is proved by the corollary of Barbalat's Lemma. Simulation results show the proposed control law is effective to achieve beam synchronization of the system.

  10. Geometric Effects on the Amplification of First Mode Instability Waves

    Science.gov (United States)

    Kirk, Lindsay C.; Candler, Graham V.

    2013-01-01

    The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. The DAKOTA optimization software package was used to optimize an axisymmetric geometry to maximize the amplification of the waves at first mode frequencies as computed by the 2D STABL hypersonic boundary layer stability analysis tool. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature were examined separately to determine the individual effects on the first mode amplification. Finally, all geometric parameters were allowed to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. Since first mode waves are known to be most unstable in the form of oblique wave, the geometries were optimized using a broad range of wave frequencies as well as a wide range of oblique wave angles to determine the geometry that most amplifies the first mode waves. Since first mode waves are seen most often in flows with low Mach numbers at the edge of the boundary layer, the edge Mach number for each geometry was recorded to determine any relationship between edge Mach number and the stability of first mode waves. Results indicate that an axisymmetric cone with a sharp nose and a slight flare at the aft end under the Mach 6 freestream conditions used here will lower the Mach number at the edge of the boundary layer to less than 4, and the corresponding stability analysis showed maximum first mode N factors of 3.

  11. The Quest for B Modes from Inflationary Gravitational Waves

    CERN Document Server

    Kamionkowski, Marc

    2015-01-01

    The search for the curl component (B mode) in the cosmic microwave background (CMB) polarization induced by inflationary gravitational waves is described. The canonical single-field slow-roll model of inflation is presented, and we explain the quantum production of primordial density perturbations and gravitational waves. It is shown how these gravitational waves then give rise to polarization in the CMB. We then describe the geometric decomposition of the CMB polarization pattern into a curl-free component (E mode) and curl component (B mode) and show explicitly that gravitational waves induce B modes. We discuss the B modes induced by gravitational lensing and by Galactic foregrounds and show how both are distinguished from those induced by inflationary gravitational waves. Issues involved in the experimental pursuit of these B modes are described, and we summarize some of the strategies being pursued. We close with a brief discussion of some other avenues toward detecting/characterizing the inflationary gr...

  12. Plate-mode waves in phononic crystal thin slabs: mode conversion.

    Science.gov (United States)

    Chen, Jiu-Jiu; Bonello, Bernard; Hou, Zhi-Lin

    2008-09-01

    We have computed the dispersion curves of plate-mode waves propagating in periodic composite structures composed of isotropic aluminum cylinders embedded in an isotropic nickel background. The phononic crystal has a square symmetry and the calculation is based on the plane-wave expansion method. Along GammaX or GammaM directions, shear-horizontal modes do not couple to the Lamb wave modes which are polarized in the sagittal plane. Whatever the direction of propagation in between GammaX and GammaM, shear-horizontal modes convert to Lamb waves and couple with the flexural and dilatational modes. This phenomenon is demonstrated both through the mode splitting in the lower-order symmetric band structure and through the calculation of all three components of the particle displacements. The phononic case is different from the pure isotropic plate case where shear-horizontal waves decouple from Lamb waves whatever the direction of propagation.

  13. Resolution analysis of GEO spaceborne-airborne bistatic SAR based on sliding spotlight mode

    Institute of Scientific and Technical Information of China (English)

    Meng Lian; Yicheng Jiang; Bin Hu

    2016-01-01

    For a synthetic aperture radar (SAR) system mounted on a geostationary Earth orbit (GEO) satelite, the track can be curvilinear. Thus, a bistatic SAR system based up on geostationary transmitter and “receive-only” SAR sys-tem onboard airplanes, namely GEO spaceborne-airborne bistatic (GEO SA-Bi SAR), is significantly different from the traditional bistatic SAR. This paper mainly studies the resolu-tion characteristic of the sliding spotlight GEO SA-Bi SAR system. Firstly, the common azimuth coverage and coherent accumulated time are theoreticaly analyzed in detail. Then, based on the gradient method, the accurate two dimensional resolution of a GEO SA-Bi SAR system is analyticaly calcu-lated. Finaly, the simulation data show the correctness and effectiveness of the proposed resolution analysis method.

  14. The imaging algorithm of millimeter-wave forward-looking SAR

    Science.gov (United States)

    Chen, Lei; Li, Xingguang; Chen, Dianren

    2017-01-01

    It is studied a new type millimeter-wave forward-looking synthetic aperture radar (SAR) imaging algorithm in this paper, analyzes the imaging principle, echo model of point target is given, deduced the forward-looking synthetic aperture radar RD imaging algorithm, and using MATLAB imaging simulation of point target in 6, a point target simulation results from the peak of 64 * 64 slice contour and azimuth, distance to the envelope of the imaging results were analyzed, found that the distance and azimuth focusing effect is good and the side lobe does not appear distorted and tilted, proved that the system of the millimeter wave synthetic aperture radar imaging of forward-looking , simulation results demonstrate the validity of the system.

  15. Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks

    DEFF Research Database (Denmark)

    Wright, J.C.; Bonoli, P.T.; Brambilla, M.;

    2004-01-01

    Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k(perpendi......Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k......). Two full wave codes, a massively-parallel-processor (MPP) version of the TORIC-2D finite Larmor radius code [M. Brambilla, Plasma Phys. Controlled Fusion 41, 1 (1999)] and also an all orders spectral code AORSA2D [E. F. Jaeger , Phys. Plasmas 9, 1873 (2002)], have been developed which for the first......)] to gain new understanding into the nature of FWMC in tokamaks. The massively-parallel-processor version of TORIC is also now capable of running with sufficient resolution to model planned lower hybrid range of frequencies experiments in the Alcator C-Mod. (C) 2004 American Institute of Physics....

  16. The performance and potentials of the CryoSat-2 SAR and SARIn modes for lake level estimation

    DEFF Research Database (Denmark)

    Nielsen, Karina; Stenseng, Lars; Andersen, Ole Baltazar

    2017-01-01

    Over the last few decades, satellite altimetry has proven to be valuable for monitoring lake levels. With the new generation of altimetry missions, CryoSat-2 and Sentinel-3, which operate in Synthetic Aperture Radar (SAR) and SAR Interferometric (SARIn) modes, the footprint size is reduced...... to approximately 300 m in the along-track direction. Here, the performance of these new modes is investigated in terms of uncertainty of the estimated water level from CryoSat-2 data and the agreement with in situ data. The data quality is compared to conventional low resolution mode (LRM) altimetry products from...... of that of the Envisat results. Generally, the CryoSat-2 lake levels also show a better agreement with the in situ data. The lower uncertainty of the CryoSat-2 results entails a more detailed description of water level variations....

  17. Beam interactions with surface waves and higher-order modes in oversized backward wave oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, Kazuo; Kojima, Akihiko; Kawabe, Fumiaki; Yambe, Kiyoyuki [Niigata University, Niigata (Japan); Amin, Ruhul [Islamic University of Technology, Gazipur (Bangladesh)

    2014-10-15

    Beam interactions with surface waves and higher-order modes in an oversized backward wave oscillator (BWO) are studied. In addition to the well-known Cherenkov interaction, the slow cyclotron interaction occurs due to transverse perturbations of the electron beam. The Cherenkov interaction dominates the slow cyclotron interaction. Growth rates of both the interactions for the higher order modes are small compared with those for the surface-wave modes in an oversized BWO. The coaxial slow-wave structure exhibits a reduced number of higher-order modes, which consequently reduces the mode competition problem and improves beam interactions with higher order modes. For higher values of beam currents, the slow cyclotron wave grows at a faster rate than the Cherenkov waves.

  18. Investigation of dominant spin wave modes by domain walls collision

    Energy Technology Data Exchange (ETDEWEB)

    Ramu, M.; Purnama, I.; Goolaup, S.; Chandra Sekhar, M.; Lew, W. S., E-mail: wensiang@ntu.edu.sg [School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)

    2014-06-28

    Spin wave emission due to field-driven domain wall (DW) collision has been investigated numerically and analytically in permalloy nanowires. The spin wave modes generated are diagonally symmetric with respect to the collision point. The non-propagating mode has the highest amplitude along the middle of the width. The frequency of this mode is strongly correlated to the nanowire geometrical dimensions and is independent of the strength of applied field within the range of 0.1 mT to 1 mT. For nanowire with film thickness below 5 nm, a second spin wave harmonic mode is observed. The decay coefficient of the spin wave power suggests that the DWs in a memory device should be at least 300 nm apart for them to be free of interference from the spin waves.

  19. PIC simulations of wave-mode conversion on the plasmapause

    Science.gov (United States)

    Horký, Miroslav; Omura, Yoshiharu; Santolík, Ondřej

    2017-04-01

    We study a conversion process from the electron Bernstein modes to electromagnetic free space modes using a 2D-3V electromagnetic PIC code with predefined particle density irregularities. We use a Gaussian profile of the particle density irregularity along the external magnetic field. Our results show the electron Bernstein modes generated by the ring-beam instability in the dense plasma region as well as their conversion into the electromagnetic waves. The resulting free space mode waves propagate out of the dense region perpendicular to magnetic field with the corresponding energy flux. Our simulation results are compared with measured data from Cluster and Van Allen Probes spacecraft. This wave mode conversion process might help us to explain generation of electromagnetic waves over the plasmapause density gradient.

  20. Low frequency wave modes of liquid-filled flexible tubes

    Science.gov (United States)

    Chou, Yuan-Fang; Peng, Tzu-Huan

    2015-09-01

    Many canals in the human body are liquid-filled thin wall flexible tubes. In general the P-wave and S-wave velocities of tube material are much slower than the sound velocity of the liquid. It is interested to study the dynamic deformation of the wall caused by pressure fluctuation of liquid. In the low frequency range, the liquid pressure is essentially axial symmetric. Therefore, axial symmetric wave propagation modes are investigated. The calculated spectrum shows there are two modes with zero frequency limit. Phase velocities of these two modes are much smaller than the sound velocity of the liquid. They are also slower than the P-wave velocity of the tube material. At very low wave number, radial displacements of both liquid particles and tube are very small compared to their axial counter parts. As the frequency goes higher, boundary waves are observed.

  1. Assessment of induced SAR in children exposed to electromagnetic plane waves between 10 MHz and 5.6 GHz

    Science.gov (United States)

    Bakker, J. F.; Paulides, M. M.; Christ, A.; Kuster, N.; van Rhoon, G. C.

    2010-06-01

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels from the basic restrictions on the induced whole-body-averaged specific absorption rate (SARwb) and the peak 10 g spatial-averaged SAR (SAR10g). The objective of this study is to assess if the SAR in children remains below the basic restrictions upon exposure at the reference levels. Finite difference time domain (FDTD) modeling was used to calculate the SAR in six children and two adults when exposed to all 12 orthogonal plane wave configurations. A sensitivity study showed an expanded uncertainty of 53% (SARwb) and 58% (SAR10g) due to variations in simulation settings and tissue properties. In this study, we found that the basic restriction on the SARwb is occasionally exceeded for children, up to a maximum of 45% in small children. The maximum SAR10g values, usually found at body protrusions, remain under the limit for all scenarios studied. Our results are in good agreement with the literature, suggesting that the recommended ICNIRP reference levels may need fine tuning.

  2. Preliminary Study of a Millimeter Wave FMCW InSAR for UAS Indoor Navigation

    Directory of Open Access Journals (Sweden)

    Antonio F. Scannapieco

    2015-01-01

    Full Text Available Small autonomous unmanned aerial systems (UAS could be used for indoor inspection in emergency missions, such as damage assessment or the search for survivors in dangerous environments, e.g., power plants, underground railways, mines and industrial warehouses. Two basic functions are required to carry out these tasks, that is autonomous GPS-denied navigation with obstacle detection and high-resolution 3Dmapping with moving target detection. State-of-the-art sensors for UAS are very sensitive to environmental conditions and often fail in the case of poor visibility caused by dust, fog, smoke, flames or other factors that are met as nominal mission scenarios when operating indoors. This paper is a preliminary study concerning an innovative radar sensor based on the interferometric Synthetic Aperture Radar (SAR principle, which has the potential to satisfy stringent requirements set by indoor autonomous operation. An architectural solution based on a frequency-modulated continuous wave (FMCW scheme is proposed after a detailed analysis of existing compact and lightweight SAR. A preliminary system design is obtained, and the main imaging peculiarities of the novel sensor are discussed, demonstrating that high-resolution, high-quality observation of an assigned control volume can be achieved.

  3. Preliminary Study of a Millimeter Wave FMCW InSAR for UAS Indoor Navigation

    Science.gov (United States)

    Scannapieco, Antonio F.; Renga, Alfredo; Moccia, Antonio

    2015-01-01

    Small autonomous unmanned aerial systems (UAS) could be used for indoor inspection in emergency missions, such as damage assessment or the search for survivors in dangerous environments, e.g., power plants, underground railways, mines and industrial warehouses. Two basic functions are required to carry out these tasks, that is autonomous GPS-denied navigation with obstacle detection and high-resolution 3D mapping with moving target detection. State-of-the-art sensors for UAS are very sensitive to environmental conditions and often fail in the case of poor visibility caused by dust, fog, smoke, flames or other factors that are met as nominal mission scenarios when operating indoors. This paper is a preliminary study concerning an innovative radar sensor based on the interferometric Synthetic Aperture Radar (SAR) principle, which has the potential to satisfy stringent requirements set by indoor autonomous operation. An architectural solution based on a frequency-modulated continuous wave (FMCW) scheme is proposed after a detailed analysis of existing compact and lightweight SAR. A preliminary system design is obtained, and the main imaging peculiarities of the novel sensor are discussed, demonstrating that high-resolution, high-quality observation of an assigned control volume can be achieved. PMID:25621606

  4. Preliminary study of a millimeter wave FMCW InSAR for UAS indoor navigation.

    Science.gov (United States)

    Scannapieco, Antonio F; Renga, Alfredo; Moccia, Antonio

    2015-01-22

    Small autonomous unmanned aerial systems (UAS) could be used for indoor inspection in emergency missions, such as damage assessment or the search for survivors in dangerous environments, e.g., power plants, underground railways, mines and industrial warehouses. Two basic functions are required to carry out these tasks, that is autonomous GPS-denied navigation with obstacle detection and high-resolution 3Dmapping with moving target detection. State-of-the-art sensors for UAS are very sensitive to environmental conditions and often fail in the case of poor visibility caused by dust, fog, smoke, flames or other factors that are met as nominal mission scenarios when operating indoors. This paper is a preliminary study concerning an innovative radar sensor based on the interferometric Synthetic Aperture Radar (SAR) principle, which has the potential to satisfy stringent requirements set by indoor autonomous operation. An architectural solution based on a frequency-modulated continuous wave (FMCW) scheme is proposed after a detailed analysis of existing compact and lightweight SAR. A preliminary system design is obtained, and the main imaging peculiarities of the novel sensor are discussed, demonstrating that high-resolution, high-quality observation of an assigned control volume can be achieved.

  5. SAR ice thickness mapping in the Beaufort Sea during autumn 2015 using wave dispersion in pancake ice

    Science.gov (United States)

    Wadhams, Peter; Aulicino, Giuseppe; Parmiggiani, Flavio

    2017-04-01

    Pancake and frazil ice represent an important component of the Arctic and Antarctic cryosphere, especially in the Marginal Ice Zones. In particular, pancake ice is the result of a freezing process that takes place in turbulent surface conditions, typically associated with wind and wave fields. The retrieval of its thickness by remote sensing is, in general, a very difficult task. This study presents our ongoing work in the EU SPICES project, in which we aim to use the results of theory and observations developed so far in order to refine a processing system for routinely deriving ice thicknesses in frazil-pancake regions of the Arctic and Antarctic. The change in dispersion of ocean waves as they penetrate into pancake icefield is analyzed in order to derive ice thickness estimation. The spectral changes in wave spectra from imagery provided by space-borne SAR systems (mainly Cosmo-SkyMed and Sentinel-1 satellites) is used to retrieve pancake ice thickness run trough by the R/V Sikuliaq research cruise in the Beaufort Sea (October-November 2015). During several experiments, a line of wave buoys was deployed along a pre-declared line, which could thus be covered by simultaneous overhead Cosmo-SkyMed images. The inversion procedures was then applied to SAR images, the final goal being the comparison between the ice thicknesses measured in situ and those inferred from SAR wave number analysis with the application of a viscous theory. Results show a broad agreement between observed thicknesses and those retrieved from the SAR, the latter slightly overestimating the former in several case studies. In the case of November 1, for example, the agreement is excellent (SAR retrievals 4.9, 5.0, 6.5 cm; observed mean 6.7 cm); on October 11 the agreement is also very good between the SAR retriveal (21 cm) and the output from an along-track EM-sounder; on October 23-24 the SAR retrieval of 18.1 cm is double the observed pancake thickness of 8.7 cm, but this difference can be

  6. A Step Towards the Characterization of SAR Mode Altimetry to Inform Hydrodynamic Models

    Science.gov (United States)

    Fabry, Pierre; Bercher, Nicolas; Ambrozio, Americo; Restano, Marco; Benveniste, Jerome

    2016-08-01

    Inland water scenes are highly variable, both in space and time, which leads to a much broader range of radar signatures than ocean surfaces. This applies to both LRM and "SAR" mode (SARM) altimetry. Nevertheless the enhanced along-track resolution of SARM altimeters should help improve the accuracy and precision of inland water height measurements from satellite. The SHAPE project - Sentinel-3 Hydrologic Altimetry Processor prototypE - which is funded by ESA through the Scientific Exploitation of Operational Missions Programme Element (contract number 4000115205/15/I-BG) aims at preparing for the exploitation of Sentinel-3 data over the inland water domain. In order to define refine the L1B processor and the retrackers for alti-hydrology applications, we need to characterise the SARM Individual Echoes, Multi- Look Stacks as well as 20Hz waveforms over the inland water domain.This paper deals with the continuation of works presented in 2015 [Fabry et Bercher, Venice 2015b] [Fabry et Bercher, Frascati 2015a/c] where we introduced an automated technique to assess the water fraction within the Beam-Doppler limited footprint through its intersection area with a water mask. We hereby refine the utilisation of these water classes and run the classification on a wider dataset so as to improve the readout of the Range Integrated Power1 (RIP) parameters and the waveforms versus the Water Fraction.

  7. Whistler Mode Waves in Collisionless Magnetic Reconnection

    Institute of Scientific and Technical Information of China (English)

    GUO Jun; LU Quan-Ming; WANG Shui; WANG Yu-Ming; DOU Xian-Kang

    2004-01-01

    A 21/2-dimensional electromagnetic particle-in-cell (PIC) simulation code is used to investigate the wave phenomena in the plasma sheet of collisionless magnetic reconnection. The results show that these waves have the following characteristics: they are right-hand circularity polarized, with propagation direction nearly parallel to local magnetic field, and frequency between 0.07 and 0.17 times of local electron cyclotron frequency. Therefore we conclude that such waves are Whistler waves, and their possible excitation mechanisms are also discussed.

  8. Resonant mode for gravitational wave detectors based on atom interferometry

    Science.gov (United States)

    Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; Rajendran, Surjeet

    2016-11-01

    We describe an atom interferometric gravitational wave detector design that can operate in a resonant mode for increased sensitivity. By oscillating the positions of the atomic wave packets, this resonant detection mode allows for coherently enhanced, narrow-band sensitivity at target frequencies. The proposed detector is flexible and can be rapidly switched between broadband and narrow-band detection modes. For instance, a binary discovered in broadband mode can subsequently be studied further as the inspiral evolves by using a tailored narrow-band detector response. In addition to functioning like a lock-in amplifier for astrophysical events, the enhanced sensitivity of the resonant approach also opens up the possibility of searching for important cosmological signals, including the stochastic gravitational wave background produced by inflation. We give an example of detector parameters which would allow detection of inflationary gravitational waves down to ΩGW˜10-14 for a two-satellite space-based detector.

  9. Phased array tuning for optimal ultrasonic guided wave mode selection

    Science.gov (United States)

    Bostron, J. H.; Rose, J. L.; Moose, C. A.

    2014-02-01

    Ultrasonic guided waves have become widely used in a variety of nondestructive evaluation applications due to their efficiency in defect detection, ability to inspect hidden areas, and other reasons. With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. However, work continues to find optimal mode and frequency selection. An "optimal" mode could give the highest sensitivity to defects or the greatest penetration power, increasing inspection efficiency. In this work, we consider the use of guided interface waves for bond evaluation. A phased comb array transducer is used to sweep in the phase velocity - frequency space in an effort to determine optimal modes.

  10. CRRES observations of ion composition during EMIC mode wave events

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Elizabeth [Los Alamos National Laboratory; Larsen, Brian [Los Alamos National Laboratory

    2010-12-13

    EMIC mode waves may play an important role in the dynamics of the growth and loss of the radiation belts. CRRES mission analysis has provided extensive information on the distributions of EMIC mode waves. Less well studied and understood is the role that ion composition plays in the formation of the EMIC mode waves. The CRESS plasma mass spectrometer LOMICS measured all ion species of interest up to 45 keV/q. This preliminary study will examine the characteristics of heavy ions during a multitude of wave events, in particular, the effect of ion composition on wave-particle interactions, amplitude, and frequency. The relevance of such data to the upcoming RBSP mission will be highlighted.

  11. Single-mode dispersive waves and soliton microcomb dynamics

    Science.gov (United States)

    Yi, Xu; Yang, Qi-Fan; Zhang, Xueyue; Yang, Ki Youl; Li, Xinbai; Vahala, Kerry

    2017-03-01

    Dissipative Kerr solitons are self-sustaining optical wavepackets in resonators. They use the Kerr nonlinearity to both compensate dispersion and offset optical loss. Besides providing insights into nonlinear resonator physics, they can be applied in frequency metrology, precision clocks, and spectroscopy. Like other optical solitons, the dissipative Kerr soliton can radiate power as a dispersive wave through a process that is the optical analogue of Cherenkov radiation. Dispersive waves typically consist of an ensemble of optical modes. Here, a limiting case is studied in which the dispersive wave is concentrated into a single cavity mode. In this limit, its interaction with the soliton induces hysteresis behaviour in the soliton's spectral and temporal properties. Also, an operating point of enhanced repetition-rate stability occurs through balance of dispersive-wave recoil and Raman-induced soliton-self-frequency shift. The single-mode dispersive wave can therefore provide quiet states of soliton comb operation useful in many applications.

  12. Investigation into Mass Loading Sensitivity of Sezawa Wave Mode-Based Surface Acoustic Wave Sensors

    OpenAIRE

    N. Ramakrishnan; Parthiban, R.; Sawal Hamid Md Ali; Md. Shabiul Islam; Ajay Achath Mohanan

    2013-01-01

    In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW) device is investigated through finite element method (FEM) simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film...

  13. Mode perturbation method for optimal guided wave mode and frequency selection.

    Science.gov (United States)

    Philtron, J H; Rose, J L

    2014-09-01

    With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. However, work continues to find optimal mode and frequency selection for a given application. This "optimal" mode could give the highest sensitivity to defects or the greatest penetration power, increasing inspection efficiency. Since material properties used for modeling work may be estimates, in many cases guided wave mode and frequency selection can be adjusted for increased inspection efficiency in the field. In this paper, a novel mode and frequency perturbation method is described and used to identify optimal mode points based on quantifiable wave characteristics. The technique uses an ultrasonic phased array comb transducer to sweep in phase velocity and frequency space. It is demonstrated using guided interface waves for bond evaluation. After searching nearby mode points, an optimal mode and frequency can be selected which has the highest sensitivity to a defect, or gives the greatest penetration power. The optimal mode choice for a given application depends on the requirements of the inspection.

  14. Gravitational wave polarization modes in $f(R)$ theories

    CERN Document Server

    Rizwana, Kausar H; Philippe, Jetzer

    2016-01-01

    Many studies have been carried out in the literature to evaluate the number of polarization modes of gravitational waves in modified theories, in particular in $f(R)$ theories. In the latter ones, besides the usual two transverse-traceless tensor modes present in general relativity, there are two additional scalar ones: a massive longitudinal mode and a massless transverse mode (the so-called breathing mode). This last mode has often been overlooked in the literature, due to the assumption that the application of the Lorenz gauge implies transverse-traceless wave solutions. We however show that this is in general not possible and, in particular, that the traceless condition cannot be imposed due to the fact that we no longer have a Minkowski background metric. Our findings are in agreement with the results found using the Newman-Penrose formalism, and thus clarify the inconsistencies found so far in the literature.

  15. Amplitude or Higgs modes in d-wave superconductors

    Science.gov (United States)

    Barlas, Yafis; Varma, C. M.

    2013-02-01

    In Lorentz-invariant systems spontaneously broken gauge symmetry results in three types of fundamental excitations: density excitations, Higgs bosons (amplitude modes), and Goldstone bosons (phase modes). The density and phase modes are coupled by electromagnetic interactions while the amplitude modes are not. In s-wave superconductors, the Higgs mode, which can be observed only under special conditions, has been detected. We show that unconventional d-wave superconductors, such as the high-temperature cuprate superconductors, should have a rich assortment of Higgs bosons, each in a different irreducible representation of the point-group symmetry of the lattice. We also show that these modes have a characteristic singular spectral structure and discuss conditions for their observability.

  16. Electron acceleration by Landau resonance with whistler mode wave packets

    Science.gov (United States)

    Gurnett, D. A.; Reinleitner, L. A.

    1983-01-01

    Recent observations of electrostatic waves associated with whistler mode chorus emissions provide evidence that electrons are being trapped by Landau resonance interactions with the chorus. In this paper, the trapping, acceleration and escape of electrons in Landau resonance with a whistler mode wave packet are discussed. It is shown that acceleration can occur by both inhomogeneous and dispersive effects. The maximum energy gained is controlled by the points where trapping and escape occur. Large energy changes are possible if the frequency of the wave packet or the magnetic field strength increase between the trapping and escape points. Various trapping and escape mechanisms are discussed.

  17. Holes and chaotic pulses of traveling waves coupled to a long-wave mode

    CERN Document Server

    Herrero, H; Herrero, Henar; Riecke, Hermann

    1997-01-01

    Localized traveling-wave pulses and holes, i.e. localized regions of vanishing wave amplitude, are investigated in a real Ginzburg-Landau equation coupled to a long-wave mode. In certain parameter regimes the pulses exhibit a Hopf bifurcation which leads to a breathing motion. Subsequently the oscillations undergo period-doubling bifurcations and become chaotic.

  18. Pulse mode operation of Love wave devices for biosensing applications

    OpenAIRE

    Newton, MI; McHale, G; Martin, F; Gizeli, E.; Melzak, KA

    2001-01-01

    In this work we present a novel pulse mode Love wave biosensor that monitors both changes in amplitude and phase. A series of concentrations of 3350 molecular weight poly(ethylene glycol) (PEG) solutions are used as a calibration sequence for the pulse mode system using a network analyzer and high frequency oscilloscope. The operation of the pulse mode system is then compared to the continuous wave network analyzer by showing a sequence of deposition and removal of a model mass layer of palmi...

  19. Stratospheric Annular Modes Induced By Stationary Wave Forcing

    Science.gov (United States)

    Körnich, H.; Schmitz, G.

    The variability of the winter stratosphere shows distinguishable features in the north- ern and southern hemisphere. Since these differences are based on the different plan- etary waves of the underlying atmosphere, we explore the mechanism how stationary wave forcing in the troposphere can induce a stratospheric Annular Mode using a simple GCM. The model KMCM (Kühlungsborn Mechanistic Circulation Model) extends from the ground up to 60 km height and produces a reasonable winter climate. It takes into account the different large-scale wave forcings in the troposphere as prescribed pro- cesses. This allows us to examine the stratospheric Annular-Mode generation depend- ing on different wave forcings under perpetual January conditions. Principal com- ponent analysis is applied to identify the variability patterns of the geopotential and of the zonally averaged zonal wind. By this way, it is shown that the amplitude and composition of the orographic and thermal eddy forcing determines the stratospheric Annular Mode and the related downward propagation in the temperature field. Further model simplifications are introduced in order to understand the mechanism of the stratospheric AM-generation. Using a linear model version we illuminate the influence of the different wave forcing processes on the Annular Modes. Addition- ally, a constant-troposphere model is used to clarify the importance of transient and stationary waves. Finally, the Annular Mode is interpreted in terms of the dynamical coupling of the troposphere and stratosphere.

  20. A Method for Sea Surface Wind Field Retrieval from SAR Image Mode Data

    Institute of Scientific and Technical Information of China (English)

    SHAO Weizeng; SUN Jian; GUAN Changlong; SUN Zhanfeng

    2014-01-01

    To retrieve wind field from SAR images, the development for surface wind field retrieval from SAR images based on the improvement of new inversion model is present. Geophysical Model Functions (GMFs) have been widely applied for wind field retrieval from SAR images. Among them CMOD4 has a good performance under low and moderate wind conditions. Although CMOD5 is developed recently with a more fundamental basis, it has ambiguity of wind speed and a shape gradient of normalized radar cross section under low wind speed condition. This study proposes a method of wind field retrieval from SAR image by com-bining CMOD5 and CMOD4 Five VV-polarisation RADARSAT2 SAR images are implemented for validation and the retrieval re-sults by a combination method (CMOD5 and CMOD4) together with CMOD4 GMF are compared with QuikSCAT wind data. The root-mean-square error (RMSE) of wind speed is 0.75 m s-1 with correlation coefficient 0.84 using the combination method and the RMSE of wind speed is 1.01 m s-1 with correlation coefficient 0.72 using CMOD4 GMF alone for those cases. The proposed method can be applied to SAR image for avoiding the internal defect in CMOD5 under low wind speed condition.

  1. Dual mode acoustic wave sensor for precise pressure reading

    Science.gov (United States)

    Mu, Xiaojing; Kropelnicki, Piotr; Wang, Yong; Randles, Andrew Benson; Chuan Chai, Kevin Tshun; Cai, Hong; Gu, Yuan Dong

    2014-09-01

    In this letter, a Microelectromechanical system acoustic wave sensor, which has a dual mode (lateral field exited Lamb wave mode and surface acoustic wave (SAW) mode) behavior, is presented for precious pressure change read out. Comb-like interdigital structured electrodes on top of piezoelectric material aluminium nitride (AlN) are used to generate the wave modes. The sensor membrane consists of single crystalline silicon formed by backside-etching of the bulk material of a silicon on insulator wafer having variable device thickness layer (5 μm-50 μm). With this principle, a pressure sensor has been fabricated and mounted on a pressure test package with pressure applied to the backside of the membrane within a range of 0 psi to 300 psi. The temperature coefficient of frequency was experimentally measured in the temperature range of -50 °C to 300 °C. This idea demonstrates a piezoelectric based sensor having two modes SAW/Lamb wave for direct physical parameter—pressure readout and temperature cancellation which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications using the dual mode behavior of the sensor and differential readout at the same time.

  2. Single-mode dispersive waves and soliton microcomb dynamics

    CERN Document Server

    Yi, Xu; Zhang, Xueyue; Yang, Ki Youl; Vahala, Kerry

    2016-01-01

    Dissipative Kerr solitons are self-sustaining optical wavepackets in resonators. They use the Kerr nonlinearity to both compensate dispersion and to offset optical loss. Besides providing insights into nonlinear resonator physics, they can be applied in frequency metrology, precision clocks, and spectroscopy. Like other optical solitons, the dissipative Kerr soliton can radiate power in the form of a dispersive wave through a process that is the optical analogue of Cherenkov radiation. Dispersive waves typically consist of an ensemble of optical modes. A limiting case is demonstrated in which the dispersive wave is concentrated into a single cavity mode. In this limit, its interaction with the soliton is shown to induce bistable behavior in the spectral and temporal properties of the soliton. Also, an operating point of enhanced repetition-rate stability is predicted and observed. The single-mode dispersive wave can therefore provide quiet states of soliton comb operation useful in many applications.

  3. Gravitational-wave modes from precessing black-hole binaries

    CERN Document Server

    Boyle, Michael; Ossokine, Serguei; Pfeiffer, Harald P

    2014-01-01

    Gravitational waves from precessing black-hole binaries exhibit features that are absent in nonprecessing systems. The most prominent of these is a parity-violating asymmetry that beams energy and linear momentum preferentially along or opposite to the orbital angular momentum, leading to recoil of the binary. The asymmetry will appear as amplitude and phase modulations at the orbital frequency. For strongly precessing systems, it accounts for at least 3% amplitude modulation for binaries in the sensitivity band of ground-based gravitational-wave detectors, and can exceed 50% for massive systems. Such asymmetric features are also clearly visible when the waves are decomposed into modes of spin-weighted spherical harmonics, and are inherent in the waves themselves---rather than resulting from residual eccentricity in numerical simulations, or from mode-mixing due to precession. In particular, there is generically no instantaneous frame for which the mode decomposition will have any symmetry. We introduce a met...

  4. Coupling between whistler waves and slow-mode solitary waves

    CERN Document Server

    Tenerani, Anna; Pegoraro, Francesco; Contel, Olivier Le

    2012-01-01

    The interplay between electron-scale and ion-scale phenomena is of general interest for both laboratory and space plasma physics. In this paper we investigate the linear coupling between whistler waves and slow magnetosonic solitons through two-fluid numerical simulations. Whistler waves can be trapped in the presence of inhomogeneous external fields such as a density hump or hole where they can propagate for times much longer than their characteristic time scale, as shown by laboratory experiments and space measurements. Space measurements have detected whistler waves also in correspondence to magnetic holes, i.e., to density humps with magnetic field minima extending on ion-scales. This raises the interesting question of how ion-scale structures can couple to whistler waves. Slow magnetosonic solitons share some of the main features of a magnetic hole. Using the ducting properties of an inhomogeneous plasma as a guide, we present a numerical study of whistler waves that are trapped and transported inside pr...

  5. Two-Mode Wave Solutions to the Degasperis-Procesi Equation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zheng-Di; BI Qin-Sheng

    2008-01-01

    @@ By introducing a new type of solutions, called the multiple-mode wave solutions which can be expressed in nonlinear superposition of single-mode waves with different speeds, we investigate the two-mode wave solutions in Degasperis-Procesi equation and two cases are derived.The explicit expressions for the two-mode waves as well as the existence conditions are presented.It is shown that the two-mode waves may be the nonlinear combinations of many types of single-mode waves, such as periodic waves, solitons, compactons, etc., and more complicated multiple-mode waves can be obtained if higher order or more single-mode waves are taken into consideration.It is pointed out that the two-mode wave solutions can be employed to display the typical mechanism of the interactions between different single-mode waves.

  6. High Resolution Processing with an Active Phased Array SAR

    NARCIS (Netherlands)

    Nijenboer, F.J.; Otten, M.P.G.

    1999-01-01

    The Dutch PHARUS system is a polarimetric active phased array SAR capable of performing advanced SAR modes. Advanced SAR modes that are being investigated are: spotlight SAR, sliding spotlight SAR, stepped frequency SAR and interferometric SAR. The flight experiments and automatic beam steering

  7. Massachusetts Bay - Internal Wave Packets Extracted from SAR Imagery Binned in 30x30 second latitude/longitude polygon grid cells

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets extracted from SAR imagery that were binned in 30x30 second latitude/longitude polygon grid cells. Statistics were...

  8. Piezoelectric transducer parameter selection for exciting a single mode from multiple modes of Lamb waves

    Institute of Scientific and Technical Information of China (English)

    Rang Hai-Yan; Yu Jian-Bo

    2011-01-01

    Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surfacebonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for the two transducer shapes,giving the responses of these transducers in Lamb wave fields. The analytical study is supported by a numerical simulation using the finite element method. Symmetric and antisymmetric components in the wave propagation responses are inspected in detail with respect to test parameters such as the transducer geometry,the length and the excitation frequency. By placing only one piezoelectric transducer on the top or the bottom surface of the plate and weakening the strength of one mode while enhancing the strength of the other modes to find the centre frequency,with which the peak wave amplitude ratio between the S0 and A0 modes is maximum,a single mode excitation from the multiple modes of the Lamb waves can be achieved approximately. Experimental data are presented to show the validity of the analyses. The results are used to optimize the Lamb wave detection system.

  9. Slow-Mode MHD Wave Penetration into a Coronal Null Point due to the Mode Transmission

    Science.gov (United States)

    Afanasyev, Andrey N.; Uralov, Arkadiy M.

    2016-11-01

    Recent observations of magnetohydrodynamic oscillations and waves in solar active regions revealed their close link to quasi-periodic pulsations in flaring light curves. The nature of that link has not yet been understood in detail. In our analytical modelling we investigate propagation of slow magnetoacoustic waves in a solar active region, taking into account wave refraction and transmission of the slow magnetoacoustic mode into the fast one. The wave propagation is analysed in the geometrical acoustics approximation. Special attention is paid to the penetration of waves in the vicinity of a magnetic null point. The modelling has shown that the interaction of slow magnetoacoustic waves with the magnetic reconnection site is possible due to the mode transmission at the equipartition level where the sound speed is equal to the Alfvén speed. The efficiency of the transmission is also calculated.

  10. The Performance and Potentials of the CryoSat-2 SAR and SARIn Modes for Lake Level Estimation

    Directory of Open Access Journals (Sweden)

    Karina Nielsen

    2017-05-01

    Full Text Available Over the last few decades, satellite altimetry has proven to be valuable for monitoring lake levels. With the new generation of altimetry missions, CryoSat-2 and Sentinel-3, which operate in Synthetic Aperture Radar (SAR and SAR Interferometric (SARIn modes, the footprint size is reduced to approximately 300 m in the along-track direction. Here, the performance of these new modes is investigated in terms of uncertainty of the estimated water level from CryoSat-2 data and the agreement with in situ data. The data quality is compared to conventional low resolution mode (LRM altimetry products from Envisat, and the performance as a function of the lake area is tested. Based on a sample of 145 lakes with areas ranging from a few to several thousand km 2 , the CryoSat-2 results show an overall superior performance. For lakes with an area below 100 km 2 , the uncertainty of the lake levels is only half of that of the Envisat results. Generally, the CryoSat-2 lake levels also show a better agreement with the in situ data. The lower uncertainty of the CryoSat-2 results entails a more detailed description of water level variations.

  11. Whistler modes with wave magnetic fields exceeding the ambient field.

    Science.gov (United States)

    Stenzel, R L; Urrutia, J M; Strohmaier, K D

    2006-03-10

    Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background.

  12. No further gravitational wave modes in $F(T)$ gravity

    CERN Document Server

    Bamba, Kazuharu; De Laurentis, Mariafelicia; Nojiri, Shin'ichi; Sáez-Gómez, Diego

    2013-01-01

    We explore the possibility of further gravitational wave modes in $F(T)$ gravity, where $T$ is the torsion scalar in teleparallelism. It is explicitly demonstrated that gravitational wave modes in $F(T)$ gravity are equivalent to those in General Relativity. This result is achieved by calculating the Minkowskian limit for a class of analytic function of $F(T)$. This consequence is also confirmed by the preservative analysis around the flat background in the weak field limit with the scalar-tensor representation of $F(T)$ gravity.

  13. Quasi-Normal Modes and Gravitational Wave Astronomy

    CERN Document Server

    Ferrari, V

    2007-01-01

    We review the main results obtained in the literature on quasi-normal modes of compact stars and black holes, in the light of recent exciting developments of gravitational wave detectors. Quasi-normal modes are a fundamental feature of the gravitational signal emitted by compact objects in many astrophysical processes; we will show that their eigenfrequencies encode interesting information on the nature and on the inner structure of the emitting source and we will discuss whether we are ready for a gravitational wave asteroseismology.

  14. No further gravitational wave modes in F(T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bamba, Kazuharu, E-mail: bamba@kmi.nagoya-u.ac.jp [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Capozziello, Salvatore, E-mail: capozziello@na.infn.it [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Dipartimento di Fisica, Università di Napoli “Federico II” (Italy); INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126 Napoli (Italy); De Laurentis, Mariafelicia, E-mail: felicia@na.infn.it [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Dipartimento di Fisica, Università di Napoli “Federico II” (Italy); INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126 Napoli (Italy); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Sáez-Gómez, Diego, E-mail: diego.saezgomez@uct.ac.za [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Astrophysics, Cosmology and Gravity Centre (ACGC) and Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa); Fisika Teorikoaren eta Zientziaren Historia Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea, 644 Posta Kutxatila, 48080 Bilbao (Spain)

    2013-11-25

    We explore the possibility of further gravitational wave modes in F(T) gravity, where T is the torsion scalar in teleparallelism. It is explicitly demonstrated that gravitational wave modes in F(T) gravity are equivalent to those in General Relativity. This result is achieved by calculating the Minkowskian limit for a class of analytic function of F(T). This consequence is also confirmed by the preservative analysis around the flat background in the weak field limit with the scalar–tensor representation of F(T) gravity.

  15. Wave propagation of coupled modes in the DNA double helix

    Energy Technology Data Exchange (ETDEWEB)

    Tabi, C B; Ekobena Fouda, H P [Laboratory of Biophysics, Department of Physics, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde (Cameroon); Mohamadou, A [Condensed Matter Laboratory, Department of Physics, Faculty of Science, University of Douala, PO Box 24157, Douala (Cameroon); Kofane, T C, E-mail: contab408@hotmail.com [Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde (Cameroon)

    2011-03-15

    The remarkable dynamics of waves propagating along the DNA molecule is described by the coupled nonlinear Schroedinger equations. We consider both the single and the coupled nonlinear excitation modes and, under numerical simulations of the Peyrard-Bishop model, with the use of realistic values of parameters, their biological implications are studied. Furthermore, the characteristics of the coupled mode solution are discussed and we show that such a solution can describe the local opening observed within the transcription and the replication phenomena.

  16. Optical rogue waves in whispering-gallery-mode resonators

    Science.gov (United States)

    Coillet, Aurélien; Dudley, John; Genty, Goëry; Larger, Laurent; Chembo, Yanne K.

    2014-01-01

    We report a theoretical study showing that rogue waves can emerge in whispering-gallery-mode resonators as the result of the chaotic interplay between Kerr nonlinearity and anomalous group-velocity dispersion. The nonlinear dynamics of the propagation of light in a whispering-gallery-mode resonator is investigated using the Lugiato-Lefever equation, and we give evidence of a range of parameters where rare and extreme events associated with non-Gaussian statistics of the field maxima are observed.

  17. Optical Rogue Waves in Whispering-Gallery-Mode Resonators

    CERN Document Server

    Coillet, Aurélien; Genty, Goery; Larger, Laurent; Chembo, Yanne K

    2014-01-01

    We report a theoretical study showing that rogue waves can emerge in whispering gallery mode resonators as the result of the chaotic interplay between Kerr nonlinearity and anomalous group-velocity dispersion. The nonlinear dynamics of the propagation of light in a whispering gallery-mode resonator is investigated using the Lugiato-Lefever equation, and we evidence a range of parameters where rare and extreme events associated with a non-gaussian statistics of the field maxima are observed.

  18. Thermal effects on parallel resonance energy of whistler mode wave

    Indian Academy of Sciences (India)

    Devendraa Siingh; Shubha Singh; R P Singh

    2006-02-01

    In this short communication, we have evaluated the effect of thermal velocity of the plasma particles on the energy of resonantly interacting energetic electrons with the propagating whistler mode waves as a function of wave frequency and -value for the normal and disturbed magnetospheric conditions. During the disturbed conditions when the magnetosphere is depleted in electron density, the resonance energy of the electron enhances by an order of magnitude at higher latitudes, whereas the effect is small at low latitudes. An attempt is made to explain the enhanced wave activity observed during magnetic storm periods.

  19. Mean flow generation mechanism by inertial waves and normal modes

    Science.gov (United States)

    Will, Andreas; Ghasemi, Abouzar

    2016-04-01

    The mean flow generation mechanism by nonlinearity of the inertial normal modes and inertial wave beams in a rotating annular cavity with longitudinally librating walls in stable regime is discussed. Inertial normal modes (standing waves) are excited when libration frequency matches eigenfrequencies of the system. Inertial wave beams are produced by Ekman pumping and suction in a rotating cylinder and form periodic orbits or periodic ray trajectories at selected frequencies. Inertial wave beams emerge as concentrated shear layers in a librating annular cavity, while normal modes appear as global recirculation cells. Both (inertial wave beam and mode) are helical and thus intrinsically non-linear flow structures. No second mode or wave is necessary for non-linearity. We considered the low order normal modes (1,1), (2,1) and (2,2) which are expected to be excited in the planetary objects and investigate the mean flow generation mechanism using two independent solutions: 1) analytical solution (Borcia 2012) and 2) the wave component of the flow (ω0 component) obtained from the direct numerical simulation (DNS). It is well known that a retrograde bulk mean flow is generated by the Ekman boundary layer and E1/4-Stewartson layer close to the outer cylinder side wall due to libration. At and around the normal mode resonant frequencies we found additionally a prograde azimuthal mean flow (Inertial Normal Mode Mean Flow: INMMF) in the bulk of the fluid. The fluid in the bulk is in geostrophic balance in the absence of the inertial normal modes. However, when INMMF is excited, we found that the geostrophic balance does not hold in the region occupied by INMMF. We hypothesize that INMMF is generated by the nonlinearity of the normal modes or by second order effects. Expanding the velocity {V}(u_r,u_θ,u_z) and pressure (p) in a power series in ɛ (libration amplitude), the Navier-Stokes equations are segregated into the linear and nonlinear parts at orders ɛ1 and ɛ^2

  20. Investigation into Mass Loading Sensitivity of Sezawa Wave Mode-Based Surface Acoustic Wave Sensors

    Directory of Open Access Journals (Sweden)

    N. Ramakrishnan

    2013-02-01

    Full Text Available In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW device is investigated through finite element method (FEM simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio.

  1. Investigation into mass loading sensitivity of sezawa wave mode-based surface acoustic wave sensors.

    Science.gov (United States)

    Mohanan, Ajay Achath; Islam, Md Shabiul; Ali, Sawal Hamid; Parthiban, R; Ramakrishnan, N

    2013-02-06

    In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW) device is investigated through finite element method (FEM) simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher) than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio.

  2. Identification of surface wave higher modes using a methodology based on seismic noise and coda waves

    Science.gov (United States)

    Rivet, Diane; Campillo, Michel; Sanchez-Sesma, Francisco; Shapiro, Nikolaï M.; Singh, Shri Krishna

    2015-11-01

    Dispersion analysis of Rayleigh waves is performed to assess the velocity of complex structures such as sedimentary basins. At short periods several modes of the Rayleigh waves are often exited. To perform a reliable inversion of the velocity structure an identification of these modes is thus required. We propose a novel method to identify the modes of surface waves. We use the spectral ratio of the ground velocity for the horizontal components over the vertical component (H/V) measured on seismic coda. We then compare the observed values with the theoretical H/V ratio for velocity models deduced from surface wave dispersion when assuming a particular mode. We first invert the Rayleigh wave measurements retrieved from ambient noise cross-correlation with the assumptions that (1) the fundamental mode and (2) the first overtone are excited. Then we use these different velocity models to predict theoretical spectral ratios of the ground velocity for the horizontal components over the vertical component (H/V). These H/V ratios are computed under the hypothesis of equipartition of a diffuse field in a layered medium. Finally we discriminate between fundamental and higher modes by comparing the theoretical H/V ratio with the H/V ratio measured on seismic coda. In an application, we reconstruct Rayleigh waves from cross-correlations of ambient seismic noise recorded at seven broad-band stations in the Valley of Mexico. For paths within the soft quaternary sediments basin, the maximum energy is observed at velocities higher than expected for the fundamental mode. We identify that the dominant mode is the first higher mode, which suggests the importance of higher modes as the main vectors of energy in such complex structures.

  3. Triple-mode squeezing with dressed six-wave mixing.

    Science.gov (United States)

    Wen, Feng; Li, Zepei; Zhang, Yiqi; Gao, Hong; Che, Junling; Che, Junling; Abdulkhaleq, Hasan; Zhang, Yanpeng; Wang, Hongxing

    2016-05-12

    The theory of proof-of-principle triple-mode squeezing is proposed via spontaneous parametric six-wave mixing process in an atomic-cavity coupled system. Special attention is focused on the role of dressed state and nonlinear gain on triple-mode squeezing process. Using the dressed state theory, we find that optical squeezing and Autler-Towns splitting of cavity mode can be realized with nonlinear gain, while the efficiency and the location of maximum squeezing point can be effectively shaped by dressed state in atomic ensemble. Our proposal can find applications in multi-channel communication and multi-channel quantum imaging.

  4. HOW TO ADJUST THE QUARTER WAVE LINE ON THE HALF-WAVE OPERATING MODE

    Directory of Open Access Journals (Sweden)

    Patsiuk V.I

    2008-08-01

    Full Text Available On the basis of the equations of the established mode the closed formulas for distribution of voltage, currents and active capacity along a non-uniform line with the concentrated elements are received. Inclusion of throttles and condenser batteries in a quarter wave line is examined with the purpose of giving to it of properties half-wave.

  5. Holes and chaotic pulses of traveling waves coupled to a long-wave mode

    Science.gov (United States)

    Herrero, Henar; Riecke, Hermann

    1997-02-01

    It is shown that localized traveling-wave pulses and holes can be stabilized by a coupling to a long-wave mode. Simulations of suitable real Ginzburg-Landau equations reveal a small parameter regime in which the pulses exhibit a breathing motion (presumably related to a front bifurcation), which subsequently becomes chaotic via period-doubling bifurcations.

  6. Quasinormal modes and classical wave propagation in analogue black holes

    CERN Document Server

    Berti, E; Lemos, J P S; Berti, Emanuele; Cardoso, Vitor; Lemos, Jose' P. S.

    2004-01-01

    Many properties of black holes can be studied using acoustic analogues in the laboratory through the propagation of sound waves. We investigate in detail sound wave propagation in a rotating acoustic (2+1)-dimensional black hole, which corresponds to the ``draining bathtub'' fluid flow. We compute the quasinormal mode frequencies of this system and discuss late-time power-law tails. Due to the presence of an ergoregion, waves in a rotating acoustic black hole can be superradiantly amplified. We also compute reflection coefficients and instability timescales for the acoustic black hole bomb, the equivalent of the Press-Teukolsky black hole bomb. Finally we discuss quasinormal modes and late-time tails in a non-rotating canonical acoustic black hole, corresponding to an incompressible, spherically symmetric (3+1)-dimensional fluid flow.

  7. Guided wave modes in porous cylinders: experimental results.

    Science.gov (United States)

    Wisse, C J; Smeulders, D M J; van Dongen, M E H; Chao, G

    2002-09-01

    In this paper guided wave modes in porous media are investigated. A water-saturated porous cylinder is mounted in the test section of a shock tube. Between the porous sample and the wall of the shock tube a water-filled annulus exists. For very small annulus width, bulk waves are generated and one-dimensional modeling is sufficient. Otherwise two-dimensional effects become important and multiple guided wave modes occur. Using a newly developed traversable positioning system in the shock tube, the frequency-dependent phase velocities and damping coefficients in the 1-120 kHz frequency range were measured. Prony's method was used for data processing. Agreement was found between the experimental data and the two-dimensional modeling of the shock tube which was based on Biot's theory.

  8. Surface wave and linear operating mode of a plasma antenna

    Energy Technology Data Exchange (ETDEWEB)

    Bogachev, N. N., E-mail: bgniknik@yandex.ru; Bogdankevich, I. L.; Gusein-zade, N. G.; Rukhadze, A. A. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2015-10-15

    The relation between the propagation conditions of a surface electromagnetic wave along a finiteradius plasma cylinder and the linear operating mode of a plasma antenna is investigated. The solution to the dispersion relation for a surface wave propagating along a finite-radius plasma cylinder is analyzed for weakly and strongly collisional plasmas. Computer simulations of an asymmetrical plasma dipole antenna are performed using the KARAT code, wherein the dielectric properties of plasma are described in terms of the Drude model. The plasma parameters corresponding to the linear operating mode of a plasma antenna are determined. It is demonstrated that the characteristics of the plasma antenna in this mode are close to those of an analogous metal antenna.

  9. Pulse mode operation of Love wave devices for biosensing applications.

    Science.gov (United States)

    Newton, M I; McHale, G; Martin, F; Gizeli, E; Melzak, K A

    2001-12-01

    In this work we present a novel pulse mode Love wave biosensor that monitors both changes in amplitude and phase. A series of concentrations of 3350 molecular weight poly(ethylene glycol) (PEG) solutions are used as a calibration sequence for the pulse mode system using a network analyzer and high frequency oscilloscope. The operation of the pulse mode system is then compared to the continuous wave network analyzer by showing a sequence of deposition and removal of a model mass layer of palmitoyl-oleoyl-sn-glycerophosphocholine (POPC) vesicles. This experimental apparatus has the potential for making many hundreds of measurements a minute and so allowing the dynamics of fast interactions to be observed.

  10. An 11-bit ENOB, accuracy-programmable, and non-calibrating time-mode SAR ADC

    Institute of Scientific and Technical Information of China (English)

    Fan Hua; Han Xue; Wei Qi; Yang Huazhong

    2013-01-01

    A 10 or 12 bit programmable successive approximation register (SAR) ADC incorporating improved time-domain comparator for bridge stress monitoring systems is presented.Techniques for improving the accuracy of time-domain comparator are presented.The application of these approaches is illustrated using results from an experimental 10 or 12 bit programmable SAR ADC.Prototyped in a 0.18-μm,6M1P CMOS process,the ADC,at 12 bit,100 kS/s,achieves a Nyquist signal-to-noise-plus-distortion ratio (SNDR) of 68 dB (11 ENOB),a spurious free dynamic range (SFDR) of 77.48 dB,while dissipating 558 μW from a 1.8-V supply.Its differential nonlinearity (DNL) and integral nonlinearity (INL) are 0.2/-0.74 LSB and + 1.27/-0.97 LSB,respectively.

  11. Wave Mode Discrimination of Coded Ultrasonic Guided Waves Using Two-Dimensional Compressed Pulse Analysis.

    Science.gov (United States)

    Malo, Sergio; Fateri, Sina; Livadas, Makis; Mares, Cristinel; Gan, Tat-Hean

    2017-07-01

    Ultrasonic guided waves testing is a technique successfully used in many industrial scenarios worldwide. For many complex applications, the dispersive nature and multimode behavior of the technique still poses a challenge for correct defect detection capabilities. In order to improve the performance of the guided waves, a 2-D compressed pulse analysis is presented in this paper. This novel technique combines the use of pulse compression and dispersion compensation in order to improve the signal-to-noise ratio (SNR) and temporal-spatial resolution of the signals. The ability of the technique to discriminate different wave modes is also highlighted. In addition, an iterative algorithm is developed to identify the wave modes of interest using adaptive peak detection to enable automatic wave mode discrimination. The employed algorithm is developed in order to pave the way for further in situ applications. The performance of Barker-coded and chirp waveforms is studied in a multimodal scenario where longitudinal and flexural wave packets are superposed. The technique is tested in both synthetic and experimental conditions. The enhancements in SNR and temporal resolution are quantified as well as their ability to accurately calculate the propagation distance for different wave modes.

  12. DE-1 and COSMOS 1809 observations of lower hybrid waves excited by VLF whistler mode waves

    Science.gov (United States)

    Bell, T. F; Inan, U. S.; Lauben, D.; Sonwalkar, V. S.; Helliwell, R. A.; Sobolev, Ya. P.; Chmyrev, V. M.; Gonzalez, S.

    1994-01-01

    Past work demostrates that strong lower hybrid (LH) waves can be excited by electromagnetic whistler mode waves throughout large regions of the topside ionosphere and magnetosphere. The effects of the excited LH waves upon the suprathermal ion population in the topside ionosphere and magnetosphere depend upon the distribution of LH wave amplitude with wavelength lambda. The present work reports plasma wave data from the DE-1 and COSMOS 1809 spacecraft which suggests that the excited LH wave spectrum has components for which lambda less than or equal to 3.5 m when excitation occurs at a frequency roughly equal to the local lower hybrid resonance frequency. This wavelength limit is a factor of approximately 3 below that reported in past work and suggests that the excited LH waves can interact with suprathermal H(+) ions with energy less than or equal to 6 eV. This finding supports recent work concerning the heating of suprathermal ions above thunderstorm cells.

  13. On the unstable mode merging of gravity-inertial waves with Rossby waves

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2011-08-01

    Full Text Available We recapitulate the results of the combined theory of gravity-inertial-Rossby waves in a rotating, stratified atmosphere. The system is shown to exhibit a "local" (JWKB instability whenever the phase speed of the low-frequency-long wavelength westward propagating Rossby wave exceeds the phase speed ("Kelvin" speed of the high frequency-short wavelength gravity-inertial wave. This condition ensures that mode merging, leading to instability, takes place in some intermediate band of frequencies and wave numbers. The contention that such an instability is "spurious" is not convincing. The energy source of the instability resides in the background enthalpy which can be released by the action of the gravitational buoyancy force, through the combined wave modes.

  14. Space-Variant Post-Filtering for Wavefront Curvature Correction in Polar-Formatted Spotlight-Mode SAR Imagery

    Energy Technology Data Exchange (ETDEWEB)

    DOREN,NEALL E.

    1999-10-01

    Wavefront curvature defocus effects occur in spotlight-mode SAR imagery when reconstructed via the well-known polar-formatting algorithm (PFA) under certain imaging scenarios. These include imaging at close range, using a very low radar center frequency, utilizing high resolution, and/or imaging very large scenes. Wavefront curvature effects arise from the unrealistic assumption of strictly planar wavefronts illuminating the imaged scene. This dissertation presents a method for the correction of wavefront curvature defocus effects under these scenarios, concentrating on the generalized: squint-mode imaging scenario and its computational aspects. This correction is accomplished through an efficient one-dimensional, image domain filter applied as a post-processing step to PF.4. This post-filter, referred to as SVPF, is precalculated from a theoretical derivation of the wavefront curvature effect and varies as a function of scene location. Prior to SVPF, severe restrictions were placed on the imaged scene size in order to avoid defocus effects under these scenarios when using PFA. The SVPF algorithm eliminates the need for scene size restrictions when wavefront curvature effects are present, correcting for wavefront curvature in broadside as well as squinted collection modes while imposing little additional computational penalty for squinted images. This dissertation covers the theoretical development, implementation and analysis of the generalized, squint-mode SVPF algorithm (of which broadside-mode is a special case) and provides examples of its capabilities and limitations as well as offering guidelines for maximizing its computational efficiency. Tradeoffs between the PFA/SVPF combination and other spotlight-mode SAR image formation techniques are discussed with regard to computational burden, image quality, and imaging geometry constraints. It is demonstrated that other methods fail to exhibit a clear computational advantage over polar-formatting in conjunction

  15. Focusing phenomenon and near-trapped modes of SH waves

    Science.gov (United States)

    Chen, Jeng-Tzong; Lee, Jia-Wei; Tu, Ya-Ching

    2016-09-01

    In this study, the null-field boundary integral equation method (BIEM) and the image method are used to solve the SH wave scattering problem containing semi-circular canyons and circular tunnels. To fully utilize the analytical property of circular geometry, the polar coordinates are used to expand the closed-form fundamental solution to the degenerate kernel, and the Fourier series is also introduced to represent the boundary density. By collocating boundary points to match boundary condition on the boundary, a linear algebraic system is constructed. The unknown coefficients in the algebraic system can be easily determined. In this way, a semi-analytical approach is developed. Following the experience of near-trapped modes in water wave problems of the full plane, the focusing phenomenon and near-trapped modes for the SH wave problem of the half-plane are solved, since the two problems obey the same mathematical model. In this study, it is found that the SH wave problem containing two semi-circular canyons and a circular tunnel has the near-trapped mode and the focusing phenomenon for a special incident angle and wavenumber. In this situation, the amplification factor for the amplitude of displacement is over 300.

  16. Rayleigh waves ellipticity and mode mis-identification in multi-channel analysis of surface waves

    DEFF Research Database (Denmark)

    Boaga, Jacopo; Cassiani, Giorgio; Strobbia, Claudio

    dispersion curve which is then inverted. Typically, single component vertical and multi channel receivers are used. In most cases the inversion of the dispersion properties is carried out assuming that the experimental dispersion curve corresponds to a single mode, mostly the fundamental Rayleigh mode......-identification known as ‘osculation’ (‘kissing’). In general it is called ‘osculation point’ the point where the energy peak shifts at low frequencies from the fundamental to the first higher mode. This jump occurs, with a continuous smooth transition, around a well-define frequency where the two modes get very close...... the vertical component of ground motion, as the mode osculation is linked to the Rayleigh wave ellipticity polarization, and therefore we conclude that multi-component data, using also horizontal receivers, can help discern the multi-modal nature of surface waves. Finally we introduce a-priori detectors...

  17. Kelvin waves in ECMWF analysis: normal-mode diagnostics

    Science.gov (United States)

    Blaauw, Marten; Zagar, Nedjeljka

    2013-04-01

    Equatorial Kelvin waves show a large spread in spatial and temporal variability similar to their source of tropical convective forcing. Once decoupled from their source, Kelvin waves are modulated during their ascent by changes in the background wind and stability. In this presentation, we focus on the seasonal and interannual variability of Kelvin waves in relation with variability of (i) tropical convection and (ii) background zonal wind and static stability. Global data is extracted from ECMWF operational analysis from January 2007 till May 2011 on 91 model levels (top level at 0.01 hPa) and ~ 25 km horizontal resolution. Using three-dimensional orthogonal normal-mode expansions, we project input mass and wind data simultaneously onto balanced rotational modes and unbalanced inertia-gravity modes including Kelvin modes. Next, an inverse transformation of Kelvin modes to physical space is performed under the linearity assumption, allowing a study on the spatial and temporal variability of Kelvin wave zonal wind and temperature. Results show an annual cycle in KW zonal wind in agreement with other studies. Minima resp. maxima in zonal wind amplitudes are found in the Indian ocean resp. Western Pacific and are most pronounced in the tropical tropopause at 150 hPa in January and 100 hPa in July. The annual cycle is enhanced (reduced) through interaction with a descending westerly QBO phase and enhanced (reduced) convective forcing. We also note a gradual eastward shift of KW zonal wind maxima till January 2010 in correspondence with an eastward shift of tropical convection.

  18. SARS Basics

    Science.gov (United States)

    ... and Resources Related Links Clinician Registry Travelers' Health SARS Basics Fact Sheet Language: English Español (Spanish) Format: ... 3 pages] SARS [3 pages] SARS [3 pages] SARS? Severe acute respiratory syndrome (SARS) is a viral ...

  19. Empirical Mode Decomposition of the atmospheric wave field

    Directory of Open Access Journals (Sweden)

    A. J. McDonald

    2007-03-01

    Full Text Available This study examines the utility of the Empirical Mode Decomposition (EMD time-series analysis technique to separate the horizontal wind field observed by the Scott Base MF radar (78° S, 167° E into its constituent parts made up of the mean wind, gravity waves, tides, planetary waves and instrumental noise. Analysis suggests that EMD effectively separates the wind field into a set of Intrinsic Mode Functions (IMFs which can be related to atmospheric waves with different temporal scales. The Intrinsic Mode Functions resultant from application of the EMD technique to Monte-Carlo simulations of white- and red-noise processes are compared to those obtained from the measurements and are shown to be significantly different statistically. Thus, application of the EMD technique to the MF radar horizontal wind data can be used to prove that this data contains information on internal gravity waves, tides and planetary wave motions.

    Examination also suggests that the EMD technique has the ability to highlight amplitude and frequency modulations in these signals. Closer examination of one of these regions of amplitude modulation associated with dominant periods close to 12 h is suggested to be related to a wave-wave interaction between the semi-diurnal tide and a planetary wave. Application of the Hilbert transform to the IMFs forms a Hilbert-Huang spectrum which provides a way of viewing the data in a similar manner to the analysis from a continuous wavelet transform. However, the fact that the basis function of EMD is data-driven and does not need to be selected a priori is a major advantage. In addition, the skeleton diagrams, produced from the results of the Hilbert-Huang spectrum, provide a method of presentation which allows quantitative information on the instantaneous period and amplitude squared to be displayed as a function of time. Thus, it provides a novel way to view frequency and amplitude-modulated wave phenomena and potentially non

  20. Novel Polarimetric SAR Interferometry Algorithms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric SAR interferometry (PolInSAR) is a recently developed synthetic aperture radar (SAR) imaging mode that combines the capabilities of radar polarimetry...

  1. Visualizing a Dusty Plasma Shock Wave via Interacting Multiple-Model Mode Probabilities

    OpenAIRE

    Oxtoby, Neil P.; Ralph, Jason F.; Durniak, Céline; Samsonov, Dmitry

    2011-01-01

    Particles in a dusty plasma crystal disturbed by a shock wave are tracked using a three-mode interacting multiple model approach. Color-coded mode probabilities are used to visualize the shock wave propagation through the crystal.

  2. Dominant Mode Wave Impedance of Regular Polygonal Waveguides

    Directory of Open Access Journals (Sweden)

    Vyacheslav V. Komarov

    2014-01-01

    Full Text Available Polygonal metal waveguides are analyzed analytically and numerically. Classical equation for the wave impedance of arbitrary shaped waveguides is completed with approximate expression for the cutoff wavelength of the dominant mode. Proposed approach is tested with the help of 3D finite difference time domain models of microwave waveguides junctions. Obtained data are used for computer-aided design of microwave transition from coaxial line to cylindrical waveguide.

  3. Simulation of mode conversion process from upper-hybrid waves to LO-mode waves in the vicinity of the plasmapause

    Directory of Open Access Journals (Sweden)

    M. J. Kalaee

    2010-06-01

    Full Text Available In order to clarify the role of the mode conversion process in the generation mechanism of LO-mode waves in the equatorial region of the plasmasphere, we have investigated the linear mode conversion process among upper-hybrid-resonance (UHR-mode, Z-mode and LO-mode waves by a numerical simulation solving Maxwell's equations and the equation of motion of a cold electron fluid. The wave coupling process occurring in the cold magnetized plasma are examined in detail. In order to give a realistic initial plasma condition in the numerical experiments, we use initial parameters inferred from observation data obtained around the generation region of LO-mode waves obtained by the Akebono satellite. A density gradient is estimated from the observed UHR frequency, and wave normal angles are estimated from the dispersion relation of cold plasma by comparing observed wave electric fields. Then, we perform numerical experiments of mode conversion processes using the density gradient of background plasma and the wave normal angle of incident upper hybrid mode waves determined from the observation results. We found that the characteristics of reproduced LO-mode waves in each simulation run are consistent with observations.

  4. Wave turbulence in integrable systems: nonlinear propagation of incoherent optical waves in single-mode fibers

    OpenAIRE

    2011-01-01

    International audience; We study theoretically, numerically and experimentally the nonlinear propagation of partially incoherent optical waves in single mode optical fibers. We revisit the traditional treatment of the wave turbulence theory to provide a statistical kinetic description of the integrable scalar NLS equation. In spite of the formal reversibility and of the integrability of the NLS equation, the weakly nonlinear dynamics reveals the existence of an irreversible evolution toward a...

  5. Elastic Wave-equation Reflection Traveltime Inversion Using Dynamic Warping and Wave Mode Decomposition

    KAUST Repository

    Wang, T.

    2017-05-26

    Elastic full waveform inversion (EFWI) provides high-resolution parameter estimation of the subsurface but requires good initial guess of the true model. The traveltime inversion only minimizes traveltime misfits which are more sensitive and linearly related to the low-wavenumber model perturbation. Therefore, building initial P and S wave velocity models for EFWI by using elastic wave-equation reflections traveltime inversion (WERTI) would be effective and robust, especially for the deeper part. In order to distinguish the reflection travletimes of P or S-waves in elastic media, we decompose the surface multicomponent data into vector P- and S-wave seismogram. We utilize the dynamic image warping to extract the reflected P- or S-wave traveltimes. The P-wave velocity are first inverted using P-wave traveltime followed by the S-wave velocity inversion with S-wave traveltime, during which the wave mode decomposition is applied to the gradients calculation. Synthetic example on the Sigbee2A model proves the validity of our method for recovering the long wavelength components of the model.

  6. Acoustic mode coupling induced by nonlinear internal waves: evaluation of the mode coupling matrices and applications.

    Science.gov (United States)

    Yang, T C

    2014-02-01

    This paper applies the mode coupling equation to calculate the mode-coupling matrix for nonlinear internal waves appearing as a train of solitons. The calculation is applied to an individual soliton up to second order expansion in sound speed perturbation in the Dyson series. The expansion is valid so long as the fractional sound speed change due to a single soliton, integrated over range and depth, times the wavenumber is smaller than unity. Scattering between the solitons are included by coupling the mode coupling matrices between the solitons. Acoustic fields calculated using this mode-coupling matrix formulation are compared with that obtained using a parabolic equation (PE) code. The results agree very well in terms of the depth integrated acoustic energy at the receivers for moving solitary internal waves. The advantages of using the proposed approach are: (1) The effects of mode coupling can be studied as a function of range and time as the solitons travel along the propagation path, and (2) it allows speedy calculations of sound propagation through a packet or packets of solitons saving orders of magnitude computations compared with the PE code. The mode coupling theory is applied to at-sea data to illustrate the underlying physics.

  7. Plasma depletion layer: the role of the slow mode waves

    Directory of Open Access Journals (Sweden)

    Y. L. Wang

    2004-12-01

    Full Text Available The plasma depletion layer (PDL is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to their corresponding values in the upstream magnetosheath. The depletion layer usually occurs during northward (IMF conditions with low magnetic shear across the magnetopause. We have previously validated the Raeder global model by comparing the computed formation of a magnetosheath density depletion with in-situ observations. We also have performed a detailed force analysis and found the varying roles that different MHD forces play along the path of a plasma parcel flowing around the magnetopause. That study resulted in a new description of the behavior of magnetosheath magnetic flux tubes which better explains the plasma depletion along a flux tube. The slow mode waves have been observed in the magnetosheath and have been used to explain the formation of the PDL in some of the important PDL models. In this study, we extend our former work by investigating the possible role of the slow mode waves for the formation of the PDL, using global MHD model simulations. We propose a new technique to test where a possible slow mode front may occur in the magnetosheath by comparing the slow mode group velocity with the local flow velocity. We find that the slow mode fronts can exist in certain regions in the magnetosheath under certain solar wind conditions. The existence and location of such fronts clearly depend on the IMF. We do not see from our global simulation results either the sharpening of the slow mode front into a slow mode shock or noticeable changes of the flow and field in the magnetosheath across the slow mode front, which implies that the slow mode front is not likely responsible for the formation of the PDL, at least for the stable solar wind conditions used in these simulations. Also, we do not see the two-layered slow mode structures shown in some observations and proposed in certain PDL

  8. Mode Conversion Behavior of Guided Wave in a Pipe Inspection System Based on a Long Waveguide.

    Science.gov (United States)

    Sun, Feiran; Sun, Zhenguo; Chen, Qiang; Murayama, Riichi; Nishino, Hideo

    2016-10-19

    To make clear the mode conversion behavior of S0-mode lamb wave and SH0-plate wave converting to the longitudinal mode guided wave and torsional mode guided wave in a pipe, respectively, the experiments were performed based on a previous built pipe inspection system. The pipe was wound with an L-shaped plate or a T-shaped plate as the waveguide, and the S0-wave and SH0-wave were excited separately in the waveguide. To carry out the objective, a meander-line coil electromagnetic acoustic transducer (EMAT) for S0-wave and a periodic permanent magnet (PPM) EMAT for SH0-wave were developed and optimized. Then, several comparison experiments were conducted to compare the efficiency of mode conversion. Experimental results showed that the T(0,1) mode, L(0,1) mode, and L(0,2) mode guided waves can be successfully detected when converted from the S0-wave or SH0-wave with different shaped waveguides. It can also be inferred that the S0-wave has a better ability to convert to the T(0,1) mode, while the SH0-wave is easier to convert to the L(0,1) mode and L(0,2) mode, and the L-shaped waveguide has a better efficiency than T-shaped waveguide.

  9. Mode Conversion Behavior of Guided Wave in a Pipe Inspection System Based on a Long Waveguide

    Directory of Open Access Journals (Sweden)

    Feiran Sun

    2016-10-01

    Full Text Available To make clear the mode conversion behavior of S0-mode lamb wave and SH0-plate wave converting to the longitudinal mode guided wave and torsional mode guided wave in a pipe, respectively, the experiments were performed based on a previous built pipe inspection system. The pipe was wound with an L-shaped plate or a T-shaped plate as the waveguide, and the S0-wave and SH0-wave were excited separately in the waveguide. To carry out the objective, a meander-line coil electromagnetic acoustic transducer (EMAT for S0-wave and a periodic permanent magnet (PPM EMAT for SH0-wave were developed and optimized. Then, several comparison experiments were conducted to compare the efficiency of mode conversion. Experimental results showed that the T(0,1 mode, L(0,1 mode, and L(0,2 mode guided waves can be successfully detected when converted from the S0-wave or SH0-wave with different shaped waveguides. It can also be inferred that the S0-wave has a better ability to convert to the T(0,1 mode, while the SH0-wave is easier to convert to the L(0,1 mode and L(0,2 mode, and the L-shaped waveguide has a better efficiency than T-shaped waveguide.

  10. Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan;

    2014-01-01

    We propose and demonstrate all-optical mode-selective wavelength conversion in a silicon waveguide. The mode-selective wavelength conversion relies on strong four-wave mixing when pump and signal light are on the same spatial mode, while weak four-wave mixing is obtained between different modes due...

  11. Amplification of azimuthal modes with odd wave numbers during dynamical bar-mode growth in rotating stars

    CERN Document Server

    Kojima, Yasufumi

    2008-01-01

    Nonlinear growth of the bar-mode deformation is studied for a differentially rotating star with supercritical rotational energy. In particular, the growth mechanism of some azimuthal modes with odd wave numbers is examined by comparing a simplified mathematical model with a realistic simulation. Mode coupling to even modes, i.e., the bar mode and higher harmonics, significantly enhances the amplitudes of odd modes, unless they are exactly zero initially. Therefore, other modes which are not axially symmetric cannot be neglected at late times in the growth of the unstable bar-mode even when starting from an almost axially symmetric state.

  12. Mode control of guided wave in magnetic hollow cylinder using electromagnetic acoustic transducer array

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akiniri; Kojima, Fumio; Morikawa, Atsushi [Dept. of Systems Science, Graduate School of System Informatics, Kobe University, Kobe (Japan)

    2015-03-15

    The aim of this work is to demonstrate a method for exciting and receiving torsional and longitudinal mode guided waves with an electromagnetic acoustic transducer (EMAT) ring array. First of all, a three-dimensional guided wave simulator is developed in order to numerically analyze the propagation of the guided wave. The finite difference time domain method is used for the simulator. Second, two guided wave testing systems using an EMAT ring array are provided: one is for torsional mode (T-mode) guided wave and the other is for longitudinal mode (L-mode). The EMATs used in the both systems are the same in design. A method to generate and receive the T- and L-mode guided waves with the same EMAT is proposed. Finally, experimental and numerical results are compared and discussed. The results of experiments and simulation agree well, showing the potential of the EMAT ring array as a mode controllable guided wave transmitter and receiver.

  13. Variational Symplectic Particle-in-cell Simulation of Nonlinear Mode Conversion from Extraordinary waves to Bernstein Waves

    CERN Document Server

    Xiao, Jianyuan; Qin, Hong; Yu, Zhi; Xiang, Nong

    2015-01-01

    In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and cur...

  14. Two Mode Resonator and Contact Model for Standing Wave Piezomotor

    DEFF Research Database (Denmark)

    Andersen, B.; Blanke, Mogens; Helbo, J.

    2001-01-01

    The paper presents a model for a standing wave piezoelectric motor with a two bending mode resonator. The resonator is modelled using Hamilton's principle and the Rayleigh-Ritz method. The contact is modelled using the Lagrange Multiplier method under the assumption of slip and it is showed how...... to solve the set of differential-algebraic equations. Detailled simulations show resonance frequencies as function of the piezoelement's position, tip trajectories and contact forces. The paper demonstrates that contact stiffness and stick should be included in such model to obtain physically realistic...

  15. Propagation and linear mode conversion of magnetosonic and electromagnetic ion cyclotron waves in the radiation belts

    Science.gov (United States)

    Horne, Richard B.; Miyoshi, Yoshizumi

    2016-10-01

    Magnetosonic waves and electromagnetic ion cyclotron (EMIC) waves are important for electron acceleration and loss from the radiation belts. It is generally understood that these waves are generated by unstable ion distributions that form during geomagnetically disturbed times. Here we show that magnetosonic waves could be a source of EMIC waves as a result of propagation and a process of linear mode conversion. The converse is also possible. We present ray tracing to show how magnetosonic (EMIC) waves launched with large (small) wave normal angles can reach a location where the wave normal angle is zero and the wave frequency equals the so-called crossover frequency whereupon energy can be converted from one mode to another without attenuation. While EMIC waves could be a source of magnetosonic waves below the crossover frequency, magnetosonic waves could be a source of hydrogen band waves but not helium band waves.

  16. Multimode filter composed of single-mode surface acoustic wave/bulk acoustic wave resonators

    Science.gov (United States)

    Huang, Yulin; Bao, Jingfu; Tang, Gongbin; Wang, Yiling; Omori, Tatsuya; Hashimoto, Ken-ya

    2017-07-01

    This paper discusses the possibility of realizing multimode filters composed of multiple single-mode resonators by using radio frequency surface and bulk acoustic wave (SAW/BAW) technologies. First, the filter operation and design principle are given. It is shown that excellent filter characteristics are achievable by combining multiple single-mode resonators with identical capacitance ratios provided that their resonance frequencies and clamped capacitances are set properly. Next, the effect of balun performance is investigated. It is shown that the total filter performance is significantly degraded by balun imperfections such as the common-mode rejection. Then, two circuits are proposed to improve the common-mode rejection, and their effectiveness is demonstrated.

  17. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    CERN Document Server

    Gao, Zhen; Zhang, Baile

    2016-01-01

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices.

  18. Exchange anisotropy pinning of a standing spin-wave mode

    Science.gov (United States)

    Magaraggia, R.; Kennewell, K.; Kostylev, M.; Stamps, R. L.; Ali, M.; Greig, D.; Hickey, B. J.; Marrows, C. H.

    2011-02-01

    Standing spin waves in a thin film are used as sensitive probes of interface pinning induced by an antiferromagnet through exchange anisotropy. Using coplanar waveguide ferromagnetic resonance, pinning of the lowest energy spin-wave thickness mode in Ni80Fe20/Ir25Mn75 exchange-biased bilayers was studied for a range of Ir25Mn75 thicknesses. We show that pinning of the standing mode can be used to amplify, relative to the fundamental resonance, frequency shifts associated with exchange bias. The shifts provide a unique “fingerprint” of the exchange bias and can be interpreted in terms of an effective ferromagnetic film thickness and ferromagnet-antiferromagnet interface anisotropy. Thermal effects are studied for ultrathin antiferromagnetic Ir25Mn75 thicknesses, and the onset of bias is correlated with changes in the pinning fields. The pinning strength magnitude is found to grow with cooling of the sample, while the effective ferromagnetic film thickness simultaneously decreases. These results suggest that exchange bias involves some deformation of magnetic order in the interface region.

  19. Electron Bernstein Wave Emission and Mode Conversion Physics on NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Diem, S J; Caughman, J B; Efthimion, P; Kugel, H; LeBlanc, B P; Preinhaelter, J; Sabbagh, S A; Urban, J

    2008-05-21

    NSTX is a spherical tokamak (ST) that operates with ne up to 1020 m-3 and BT less than 0.6 T, cutting off low harmonic electron cyclotron (EC) emission widely used for Te measurements on conventional aspect ratio tokamaks. The electron Bernstein wave (EBW) can propagate in ST plasmas and is emitted at EC harmonics. These properties suggest thermal EBW emission (EBE) may be used for local Te measurements in the ST. Practically, a robust Te(R,t) EBE diagnostic requires EBW transmission efficiencies of > 90% for a wide range of plasma conditions. EBW emission and coupling physics were studied on NSTX with an obliquely viewing EBW to O-mode (B-X-O) diagnostic with two remotely steered antennas, coupled to absolutely calibrated radiometers. While Te(R,t) measurements with EBW emission on NSTX were possible, they were challenged by several issues. Rapid fluctuations in edge ne scale length resulted in > 20% changes in the low harmonic B-X-O transmission efficiency. Also, B-X-O transmission efficiency 2 during H-modes was observed to decay by a factor of 5-10 to less than a few percent. The B-X-O transmission behavior during H-modes was reproduced by EBE simulations that predict that EBW collisional damping can significantly reduce emission when Te < 30 eV inside the B-X-O mode conversion (MC) layer. Initial edge lithium conditioning experiments during H-modes have shown that evaporated lithium can increase Te inside the B-X-O MC layer, significantly increasing B-X-O transmission.

  20. Wave Processes in Arctic Seas, Observed from TerraSAR-X

    Science.gov (United States)

    2015-09-30

    and validate modelling data for the spatial and temporal evolution of sea state in the MIZ. Further goals are the development of near-real time... spatial and temporal variability of the wave field in the emerging ice-free regions; • investigate wave damping in sea ice and the related ice breakup...the reason for the somewhat reduced wave heights in the southern region of the swath. The most pronounced drop in wave height is observed in the

  1. Wave Propagation and Quasinormal Mode Excitation on Schwarzschild Spacetime

    CERN Document Server

    Dolan, Sam R

    2011-01-01

    To seek a deeper understanding of wave propagation on the Schwarzschild spacetime, we investigate the relationship between (i) the lightcone of an event and its caustics (self-intersections), (ii) the large-$l$ asymptotics of quasinormal (QN) modes, and (iii) the singular structure of the retarded Green function (GF) for the scalar field. First, we recall that the GF has a (partial) representation as a sum over QN modes. Next, we extend a recently-developed expansion method to obtain asymptotic expressions for QN wavefunctions and their residues. We employ these asymptotics to show (approximately) that the QN mode sum is singular on the lightcone, and to obtain approximations for the GF which are valid close to the lightcone. These approximations confirm a little-known prediction: the singular part of the GF undergoes a transition each time the lightcone passes through a caustic, following a repeating four-fold sequence. We conclude with a discussion of implications and extensions of this work.

  2. Higher Order Mode Coupler Heating in Continuous Wave Operation

    Science.gov (United States)

    Solyak, N.; Awida, M.; Hocker, A.; Khabibobulline, T.; Lunin, A.

    Electromagnetic heating due to higher order modes (HOM) propagation is particularly a concern for continuous wave (CW) particle accelerator machines. Power on the order of several watts could flow out of the cavity's HOM ports in CW operations. The upgrade of the Linac Coherent Light Source (LCLS-II) at SLAC requires a major modification of the design of the higher order mode (HOM) antenna and feed through of the conventional ILC elliptical 9-cell cavity in order to utilize it for LCLS-II. The HOM antenna is required to bear higher RF losses, while relatively maintaining the coupling level of the higher order modes. In this paper, we present a detailed analysis of the heating expected in the HOM coupler with a thorough thermal quench study in comparison with the conventional ILC design. We discuss also how the heat will be removed from the cavity through RF cables with specially designed cooling straps. Finally, we report on the latest experimental results of cavity testing in vertical and horizontal cryostats.

  3. Wind speed estimation using C-band compact polarimetric SAR for wide swath imaging modes

    Science.gov (United States)

    Denbina, Michael; Collins, Michael J.

    2016-03-01

    We have investigated the use of C-band compact polarimetric synthetic aperture radar for estimation of ocean surface wind speeds. Using 1399 buoy observations collocated with Radarsat-2 scenes, compact polarimetric data was simulated for two of the Radarsat Constellation's planned wide swath imaging modes. Provided the wind direction is known or can be estimated, our results demonstrate that wind speed can be estimated from the right-vertical polarization channel of the compact polarimetry using a combination of the CMOD5 geophysical model function and a linear model. If wind speed estimation without wind direction input is desired, the randomly-polarized component of the backscattered power can be used in a similar fashion to that of the linear cross-polarizations, but is less affected by increases in the noise effective sigma-zero of the data. A model is proposed for the randomly-polarized power as a function of incidence angle and wind speed, independent of wind direction. The results suggest that compact polarimetry is a strong alternative to linearly polarized synthetic aperture radar data for wind speed estimation applications, particularly for wide swath imaging modes with a high noise floor.

  4. Corrugated waveguide mode purifier for TEM output in a dual-mode operation overmoded coaxial millimeter-wave generator

    Science.gov (United States)

    Bai, Zhen; Zhang, Jun; Zhong, Huihuang; Zhang, Dian

    2017-01-01

    A coaxial corrugated waveguide mode purifier is designed for a dual-mode operation overmoded coaxial millimeter-wave generator. With the purifier, the mixed TEM and TM01 modes output are purified into a pure TEM mode. Particle-in-cell (PIC) simulation shows that the purifier would not decrease the total output power of the generator, and plays an independent role to the upstream structure. Effects of mode composition ratio and phase difference on the purification ability of the purifier are also researched by both electromagnetism and PIC simulations, which show that the purifier has a certain tolerance for both the mode composition ratio and phase difference.

  5. Wave propagation in gravitational systems completeness of quasinormal modes

    CERN Document Server

    Ching, E S C; Suen, W M; Young, K

    1996-01-01

    The dynamics of relativistic stars and black holes are often studied in terms of the quasinormal modes (QNM's) of the Klein-Gordon (KG) equation with different effective potentials V(x). In this paper we present a systematic study of the relation between the structure of the QNM's of the KG equation and the form of V(x). In particular, we determine the requirements on V(x) in order for the QNM's to form complete sets, and discuss in what sense they form complete sets. Among other implications, this study opens up the possibility of using QNM expansions to analyse the behavior of waves in relativistic systems, even for systems whose QNM's do {\\it not} form a complete set. For such systems, we show that a complete set of QNM's can often be obtained by introducing an infinitesimal change in the effective potential.

  6. Frequency conversion through spontaneous degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin;

    2014-01-01

    Frequency conversion through spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers. Different FWM processes are observed, phasematching between fiber modes of orthogonal polarization, intermodal phasematching across bandgaps, and intramodal...

  7. Assessment of Rosia Jiu Mining Area Through TerraSAR-X New Imaging Modes

    Science.gov (United States)

    Poenaru, V.; Popescu, A.; Patrascu, C.; Cuculici, Roxana

    2015-05-01

    The paper evaluates new Staring Spotlight mode capabilities to monitor the mining activities impacts on the environment to ensure an effective management and to prevent possible natural and technological hazards. The societal and environmental impacts are huge such as: the topographic alteration, changes in the soil structure and vegetation coverage, influence on the underground water resources and on the rain water draining regime and air pollution. Rosia Jiu opencast test site is affected by subsidence phenomena caused by the closing of the hollows remained from the underground exploitation of lignite and by altering of the hidro-geological conditions, due to the applying of a forced and high intensity dewatering of the aquifer system within the area. A methodology based on deformation maps is designed for monitoring of the elastic deformation, early warning stage and detection of the risk occurrence. Intense mining activities from the summer - autumn seasons implied as interferometric pairs to have very low coherence making almost impossible to find PS candidates.

  8. Prediction of the Fundamental Mode Lamb Wave Reflection from a Crack-Like Discontinuity Using Eigen-Mode Expansion

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Seok [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of); Jang, Chang Heui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Jong Po [ANSCO Corp., Daejeon (Korea, Republic of)

    2010-06-15

    Based on the idea of eigen-mode expansion, a method to analyze the reflection of Lamb wave from a finite vertical discontinuity of plate is theoretically derived and verified by experiment. The theoretical prediction is in good agreement with the experimental result, and this strongly suggests that eigen-mode expansion method could be used for solution of inverse scattering problem for ultrasonic testing using Lamb wave

  9. Antisymmetric-Symmetric Mode Conversion of Ultrasonic Lamb Waves and Negative Refraction on Thin Steel Plate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young H. [Dept. of Physics and Earth Science, Korea Science Academy of KAIST, Busan (Korea, Republic of); Sung, Jin Woo [Dept. of Physics and Astronomy, Seoul National University, Seoul, (Korea, Republic of)

    2013-06-15

    In this study, focusing of ultrasonic Lamb wave by negative refraction with mode conversion from antisymmetric to symmetric mode was investigated. When a wave propagates backward by negative refraction, the energy flux is antiparallel to the phase velocity. Backward propagation of Lamb wave is quite well known, but the behavior of backward Lamb wave at an interface has rarely been investigated. A pin-type transducer is used to detect Lamb wave propagating on a steel plate with a step change in thickness. Conversion from forward to backward propagating mode leads to negative refraction and thus wave focusing. By comparing the amplitudes of received Lamb waves at a specific frequency measured at different distance between transmitter and interface, the focusing of Lamb wave due to negative refraction was confirmed.

  10. Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide.

    Science.gov (United States)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan; Peucheret, Christophe

    2014-01-13

    We propose and demonstrate all-optical mode-selective wavelength conversion in a silicon waveguide. The mode-selective wavelength conversion relies on strong four-wave mixing when pump and signal light are on the same spatial mode, while weak four-wave mixing is obtained between different modes due to phase mismatch. A two-mode division multiplexing circuit with tapered directional coupler based (de)multiplexers and a multimode waveguide is designed and fabricated for this application. Experimental results show clear eye-diagrams and moderate power penalties for the wavelength conversion of both modes.

  11. Intermodal four-wave mixing in a higher-order-mode fiber

    OpenAIRE

    Cheng, Ji; Pedersen, Martin E. V.; Charan, Kriti; Wang, Ke; Xu, Chris; Grüner-Nielsen, Lars; Jakobsen, Dan

    2012-01-01

    We demonstrate a high-efficiency intermodal four-wave-mixing process in an all-fiber system, comprising a picosecond fiber laser and a high-order-mode (HOM) fiber. Two pump photons in the LP01 mode of the fiber can generate an anti-Stokes photon in the LP01 mode and a Stokes photon in the LP02 mode. The wavelength dependent mode profiles of the HOM fiber produce significant spatial overlap between the modes involved. The anti-Stokes wave at 941 nm is generated with 20% conversion efficiency w...

  12. Analysis of Dual- and Full-Circular Polarimetric SAR Modes for Rice Phenology Monitoring: An Experimental Investigation through Ground-Based Measurements

    Directory of Open Access Journals (Sweden)

    Yuta Izumi

    2017-04-01

    Full Text Available Circularly polarized synthetic aperture radar (CP-SAR is known to be insensitive to polarization mismatch losses caused by the Faraday rotation effect and antenna misalignment. Additionally, the dual-circular polarimetric (DCP mode has proven to have more polarimetric information than that of the corresponding mode of linear polarization, i.e., the dual-linear polarimetric (DLP mode. Owing to these benefits, this paper investigates the feasibility of CP-SAR for rice monitoring. A ground-based CP-radar system was exploited, and C-band anechoic chamber data of a self-cultivated Japanese rice paddy were acquired from germination to ripening stages. Temporal variations of polarimetric observables derived from full-circular polarimetric (FCP and DCP as well as synthetically generated DLP data are analyzed and assessed with regard to their effectiveness in phenology retrieval. Among different observations, the H / α ¯ plane and triangle plots obtained by three scattering components (surface, double-bounce, and volume scattering for both the FCP and DCP modes are confirmed to have reasonable capability in discriminating the relevant intervals of rice growth.

  13. SAR Computation inside Fetus by RF Coil during MR Imaging Employing Realistic Numerical Pregnant Woman Model

    Science.gov (United States)

    Kikuchi, Satoru; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi; Ikehira, Hiroo

    This paper presents the computational electromagnetic dosimetry inside an anatomically based pregnant woman models exposed to electromagnetic wave during magnetic resonance imaging. The two types of pregnant woman models corresponding to early gestation and 26 weeks gestation were used for this study. The specific absorption rate (SAR) in and around a fetus were calculated by radiated electromagnetic wave from highpass and lowpass birdcage coil. Numerical calculation results showed that high SAR region is observed at the body in the vicinity of gaps of the coil, and is related to concentrated electric field in the gaps of human body such as armpit and thigh. Moreover, it has confirmed that the SAR in the fetus is less than International Electrotechnical Commission limit of 10W/kg, when whole-body average SARs are 2W/kg and 4W/kg, which are the normal operating mode and first level controlled operating mode, respectively.

  14. Mode Selective Actuator-Sensor System for Lamb Wave-Based Structural Health Monitoring

    OpenAIRE

    Schmidt, Daniel; Wierach, Peter; Sinapius, Michael

    2014-01-01

    International audience; Structural Health Monitoring (SHM) based on Lamb waves, a type of ultrasonic guided waves, is a promising method for in-service inspection of composite structures. In this study mode selective actuators and sensors are investigated to excite a particular Lamb wave mode in composite plates. The actuator and sensor exhibit an interdigital transducer design. In order to describe the complex displacement fields of

  15. Controlling Spiral Waves by Modulations Resonant with the Intrinsic System Mode

    Institute of Scientific and Technical Information of China (English)

    XIAO Jing-Hua; HU Gang; HU Bam-Bi

    2004-01-01

    We investigate the spiral wave control in the two-dimensional complex Ginzburg-Landau equation. External drivings which are not resonant with spiral waves but with intrinsic system modes are used to successfully annihilate spiral waves and direct the system to various target states. The novel control mechanism is intuitively explained and the richness and flexibility the control results are emphasized.

  16. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Zhang, Baile, E-mail: blzhang@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, Singapore 637371 (Singapore)

    2016-01-25

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find use in the design of integrated surface-wave devices with suppressed crosstalk.

  17. Whistler mode waves driven by anisotropic electrons in the Martian magnetosphere

    Science.gov (United States)

    Harada, Y.; Andersson, L.; Fowler, C. M.; Mitchell, D. L.; Halekas, J. S.; Mazelle, C. X.; Espley, J. R.; DiBraccio, G. A.; McFadden, J. P.; Brain, D. A.; Xu, S.; Ruhunusiri, S.; Larson, D. E.; Lillis, R. J.; Hara, T.; Livi, R.; Jakosky, B. M.

    2016-12-01

    We present MAVEN observations of narrowband electromagnetic waves at frequencies between the local electron cyclotron and lower hybrid frequencies in the Martian magnetosphere. Although Phobos-2 first measured bursts of electric field waves below the electron cyclotron frequency, the lack of magnetic field wave data hindered definitive identification of the wave mode and generation mechanisms. We analyze electric and magnetic field wave spectra obtained by MAVEN and demonstrate that the observed narrowband waves have properties consistent with whistler mode. We utilize electron measurements to compute linear growth rates of whistler mode and show that cyclotron resonance with anisotropic electrons on open and closed field lines can produce the observed narrowband features. Additionally, a statistical survey reveals that the narrowband wave events and anisotropic electrons have similar spatial distributions, providing further support for this scenario. Interestingly, some of the observed waves display complex frequency-time structures that resemble whistler-mode chorus waves in the terrestrial inner magnetosphere, including discrete elements of rising tones and two bands above and below half the electron cyclotron frequency. Whistler mode waves driven by anisotropic electrons, previously observed in intrinsic magnetospheres and at unmagnetized airless bodies, are now confirmed by MAVEN at Mars.

  18. Well-posedness and generalized plane waves simulations of a 2D mode conversion model

    CERN Document Server

    Imbert-Gérard, Lise-Marie

    2015-01-01

    Certain types of electro-magnetic waves propagating in a plasma can undergo a mode conversion process. In magnetic confinement fusion, this phenomenon is very useful to heat the plasma, since it permits to transfer the heat at or near the plasma center. This work focuses on a mathematical model of wave propagation around the mode conversion region, from both theoretical and numerical points of view. It aims at developing, for a well-posed equation, specific basis functions to study a wave mode conversion process. These basis functions, called generalized plane waves, are intrinsically based on variable coefficients. As such, they are particularly adapted to the mode conversion problem. The design of generalized plane waves for the proposed model is described in detail. Their implementation within a discontinuous Galerkin method then provides numerical simulations of the process. These first 2D simulations for this model agree with qualitative aspects studied in previous works.

  19. Rayleigh surface waves, phonon mode conversion, and thermal transport in nanostructures

    Science.gov (United States)

    Maurer, Leon; Knezevic, Irena

    We study the effects of phonon mode conversion and Rayleigh (surface) waves on thermal transport in nanostructures. We present a technique to calculate thermal conductivity in the elastic-solid approximation: a finite-difference time-domain (FDTD) solution of the elastic or scalar wave equations combined with the Green-Kubo formula. The technique is similar to an equilibrium molecular dynamics simulation, captures phonon wave behavior, and scales well to nanostructures that are too large to simulate with many other techniques. By imposing fixed or free boundary conditions, we can selectively turn off mode conversion and Rayleigh waves to study their effects. In the example case of graphenelike nanoribbons with rough edges, we find that mode conversion among bulk modes has little effect on thermal transport, but that conversion between bulk and Rayleigh waves can significantly reduce thermal conductivity. With increasing surface disorder, Rayleigh waves readily become trapped by the disorder and draw energy away from the propagating bulk modes, which lowers thermal conductivity. We discuss the implications on the accuracy of popular phonon-surface scattering models that stem from scalar wave equations and cannot capture mode conversion to Rayleigh waves.

  20. Novel Polarimetric SAR Interferometry Algorithms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...

  1. Phase-delayed laser diode array allows ultrasonic guided wave mode selection and tuning

    Science.gov (United States)

    Karppinen, Pasi; Salmi, Ari; Moilanen, Petro; Karppinen, Timo; Zhao, Zuomin; Myllylä, Risto; Timonen, Jussi; Hæggström, Edward

    2013-04-01

    Selecting and tuning modes are useful in ultrasonic guided wave non-destructive testing (NDT) since certain modes at various center frequencies are sensitive to specific types of defects. Ideally one should be able to select both the mode and the center frequency of the launched waves. We demonstrated that an affordable laser diode array can selectively launch either the S0 or A0 ultrasonic wave mode at a chosen center frequency into a polymer plate. A fiber-coupled diode array (4 elements) illuminated a 2 mm thick acrylic plate. A predetermined time delay matching the selected mode and frequency was employed between the output of the elements. The generated ultrasound was detected by a 215 kHz piezo receiver. Our results imply that this array permits non-contacting guided wave ultrasonic NDT. The solution is small, affordable, and robust in comparison to conventional pulsed lasers. In addition, it does not require experienced operators.

  2. Ultrasonic guided wave propagation across waveguide transitions: energy transfer and mode conversion.

    Science.gov (United States)

    Puthillath, Padmakumar; Galan, Jose M; Ren, Baiyang; Lissenden, Cliff J; Rose, Joseph L

    2013-05-01

    Ultrasonic guided wave inspection of structures containing adhesively bonded joints requires an understanding of the interaction of guided waves with geometric and material discontinuities or transitions in the waveguide. Such interactions result in mode conversion with energy being partitioned among the reflected and transmitted modes. The step transition between an aluminum layer and an aluminum-adhesive-aluminum multi-layer waveguide is analyzed as a model structure. Dispersion analysis enables assessment of (i) synchronism through dispersion curve overlap and (ii) wavestructure correlation. Mode-pairs in the multi-layer waveguide are defined relative to a prescribed mode in a single layer as being synchronized and having nearly perfect wavestructure matching. Only a limited number of mode-pairs exist, and each has a unique frequency range. A hybrid model based on semi-analytical finite elements and the normal mode expansion is implemented to assess mode conversion at a step transition in a waveguide. The model results indicate that synchronism and wavestructure matching is associated with energy transfer through the step transition, and that the energy of an incident wave mode in a single layer is transmitted almost entirely to the associated mode-pair, where one exists. This analysis guides the selection of incident modes that convert into transmitted modes and improve adhesive joint inspection with ultrasonic guided waves.

  3. Intermodal four-wave mixing in a higher-order-mode fiber.

    Science.gov (United States)

    Cheng, Ji; Pedersen, Martin E V; Charan, Kriti; Wang, Ke; Xu, Chris; Grüner-Nielsen, Lars; Jakobsen, Dan

    2012-10-15

    We demonstrate a high-efficiency intermodal four-wave-mixing process in an all-fiber system, comprising a picosecond fiber laser and a high-order-mode (HOM) fiber. Two pump photons in the LP(01) mode of the fiber can generate an anti-Stokes photon in the LP(01) mode and a Stokes photon in the LP(02) mode. The wavelength dependent mode profiles of the HOM fiber produce significant spatial overlap between the modes involved. The anti-Stokes wave at 941 nm is generated with 20% conversion efficiency with input pulse energy of 20 nJ. The guidance of the anti-Stokes and Stokes waves in the HOM fiber enhances system stability.

  4. Spatial averaging of fields from half-wave dipole antennas and corresponding SAR calculations in the NORMAN human voxel model between 65 MHz and 2 GHz.

    Science.gov (United States)

    Findlay, R P; Dimbylow, P J

    2009-04-21

    If an antenna is located close to a person, the electric and magnetic fields produced by the antenna will vary in the region occupied by the human body. To obtain a mean value of the field for comparison with reference levels, the Institute of Electrical and Electronic Engineers (IEEE) and International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommend spatially averaging the squares of the field strength over the height the body. This study attempts to assess the validity and accuracy of spatial averaging when used for half-wave dipoles at frequencies between 65 MHz and 2 GHz and distances of lambda/2, lambda/4 and lambda/8 from the body. The differences between mean electric field values calculated using ten field measurements and that of the true averaged value were approximately 15% in the 600 MHz to 2 GHz range. The results presented suggest that the use of modern survey equipment, which takes hundreds rather than tens of measurements, is advisable to arrive at a sufficiently accurate mean field value. Whole-body averaged and peak localized SAR values, normalized to calculated spatially averaged fields, were calculated for the NORMAN voxel phantom. It was found that the reference levels were conservative for all whole-body SAR values, but not for localized SAR, particularly in the 1-2 GHz region when the dipole was positioned very close to the body. However, if the maximum field is used for normalization of calculated SAR as opposed to the lower spatially averaged value, the reference levels provide a conservative estimate of the localized SAR basic restriction for all frequencies studied.

  5. Analysis of π-mode Stopband in an Asymmetric Millimeter-Wave Helical Slow-Wave Structure

    Science.gov (United States)

    Datta, S. K.; Kumar, Lalit; Basu, B. N.

    2008-11-01

    A simple closed form formula for the estimation of π-mode stopband in an azimuthally asymmetric helical slow-wave structure (SWS) was developed following coupled-mode analysis of multiple reflections of the degenerate space-harmonic modes from the support rod discontinuities. The method incorporates the effects of circuit loss, and accrues the accuracy of 3D electromagnetic analysis by allowing the use of dispersion characteristics obtainable from any standard electromagnetic modeling. The formula is simple and amenable to easy computation, even using a scientific calculator, and without resorting to exhaustive and time-intensive numerical computation, and at the same time, without sacrificing the accuracy in results. The analysis was benchmarked against published results and excellent agreement observed. The analysis was further used for demonstrating the stopband phenomenon for a typical millimeter-wave helical slow-wave structure. Compared to low frequency structures, the stopband phenomenon for a millimeter-wave structure was found to be more pronounced, and an interesting inference was drawn as to how asymmetry induced stopband might be made to advantage in combating π-mode instabilities in a millimeter-wave traveling-wave tube.

  6. Time delay controlled annular array transducers for omnidirectional guided wave mode control in plate like structures

    Science.gov (United States)

    Koduru, Jaya P.; Rose, Joseph L.

    2014-10-01

    Guided waves in plate like structures offer several modes with unique characteristics that can be taken advantage for nondestructive inspection applications. Conditions relating to the structure under inspection like the surrounding media, liquid loading, coatings etc require the use of special modes for successful inspection. Therefore, transducers that can excite mode controlled guided waves are essential for defect detection and discrimination in structures. Array transducers with annular elements can generate omnidirectional guided waves in plate like structures. However, the wave modes excited are limited to a particular wavelength governed by the element spacing. This limitation on the annular array transducers can be overcome by controlling the phase at each element relative to one another. In this work, annular array transducer construction techniques are theoretically examined and the optimum phase delays between the annular elements to excite a desired guided wave mode are calculated. A five element comb type annular array transducer is fabricated utilizing 1-3 type piezocomposite material. The mode control capability of the transducer is experimentally verified by selectively exciting the A0 and S0 guided wave modes in an aluminum plate like structure.

  7. Energy flow, energy density of Timoshenko beam and wave mode incoherence

    Science.gov (United States)

    Zhou, Jun; Rao, Zhushi; Ta, Na

    2015-10-01

    Time-averaged energy flow and energy density are of significance in vibration analysis. The wave decomposition method is more fruitful and global in physical sense than the state variables depicted point by point. By wave approach, the Timoshenko beam vibration field is decomposed into two distinct modes: travelling and evanescent waves. Consequently, the power and energy functions defined on these waves' amplitude and phase need to be established. However, such formulas on Timoshenko beam are hardly found in literatures. Furthermore, the incoherence between these two modes is of theoretical and practical significance. This characteristic guarantees that the resultant power or energy of a superposed wave field is equal to the sum of the power or energy that each wave mode would generate individually. Unlike Euler-Bernoulli beam, such incoherence in the Timoshenko beam case has not been theoretically proved so far. Initially, the power and energy formulas based on wave approach and the corresponding incoherence proof are achieved by present work, both in theoretical and numerical ways. Fortunately, the theoretical and numerical results show that the travelling and evanescent wave modes are incoherent with each other both on power and energy functions. Notably, the energy function is unconventional and self-defined in order to obtain the incoherence. Some remarkable power transmission characteristics of the evanescent wave are also illustrated meanwhile.

  8. Optical Synthesis of Terahertz and Millimeter-Wave Frequencies with Discrete Mode Diode Lasers

    CERN Document Server

    O'Brien, Stephen; Bitauld, David; Brandonisio, Nicola; Amann, Andreas; Phelan, Richard; Kelly, Brian; O'Gorman, James

    2010-01-01

    It is shown that optical synthesis of terahertz and millimeter-wave frequencies can be achieved using two-mode and mode-locked discrete mode diode lasers. These edge-emitting devices incorporate a spatially varying refractive index profile which is designed according to the spectral output desired of the laser. We first demonstrate a device which supports two primary modes simultaneously with high spectral purity. In this case sinusoidal modulation of the optical intensity at terahertz frequencies can be obtained. Cross saturation of the material gain in quantum well lasers prevents simultaneous lasing of two modes with spacings in the millimeter-wave region. We show finally that by mode-locking of devices that are designed to support a minimal set of four primary modes, we obtain a sinusoidal modulation of the optical intensity in this frequency region.

  9. Two-mode polarized traveling wave deflecting structure

    Institute of Scientific and Technical Information of China (English)

    谭建豪; 顾强; 方文程; 童德春; 赵振堂

    2015-01-01

    In this paper, we propose a two-mode polarizable deflecting structure, as a new concept for bunch measure-ment and beam control. With two modes of HEM11 and HEM12 operating in the same structure on horizontal and vertical directions, respectively, the operation status can be switched between the two polarization modes. They can be operated simultaneously with two independent input power sources. With two-mode deflecting structure, the bunch distortion caused by the geometric wake-fields in the accelerating structure can be mea-sured by one structure.

  10. Intermodal parametric gain of degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    OpenAIRE

    Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2013-01-01

    Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process.

  11. Three-dimensional coupled mode analysis of internal-wave acoustic ducts.

    Science.gov (United States)

    Shmelev, Alexey A; Lynch, James F; Lin, Ying-Tsong; Schmidt, Henrik

    2014-05-01

    A fully three-dimensional coupled mode approach is used in this paper to describe the physics of low frequency acoustic signals propagating through a train of internal waves at an arbitrary azimuth. A three layer model of the shallow water waveguide is employed for studying the properties of normal modes and their coupled interaction due to the presence of nonlinear internal waves. Using a robust wave number integration technique for Fourier transform computation and a direct global matrix approach, an accurate three-dimensional coupled mode full field solution is obtained for the tonal signal propagation through straight and parallel internal waves. This approach provides accurate results for arbitrary azimuth and includes the effects of backscattering. This enables one to provide an azimuthal analysis of acoustic propagation and separate the effects of mode coupled transparent resonance, horizontal reflection and refraction, the horizontal Lloyd's mirror, horizontal ducting and anti-ducting, and horizontal tunneling and secondary ducting.

  12. Intermodal parametric gain of degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2013-01-01

    Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process.......Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process....

  13. Mode Selectivity with Quantum-state-preserving Frequency Conversion Using Four-wave Mixing

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Reddy, Dileep V.; McKinstrie, Colin J.

    2013-01-01

    We consider quantum frequency conversion using four-wave mixing Bragg scattering and the prospects for multiplexing using the temporal modes.We find that there is an optimal strength parameter, but that the fiber length is less critical.......We consider quantum frequency conversion using four-wave mixing Bragg scattering and the prospects for multiplexing using the temporal modes.We find that there is an optimal strength parameter, but that the fiber length is less critical....

  14. Realization of Arbitrary Inverse Unitary Transformation of Single Mode Fibre by Using Three Wave Plates

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-Kai; REN Ji-Gang; PENG Cheng-Zhi; JIANG Shuo; WANG Xiang-Bin

    2007-01-01

    We report a method to realize the arbitrary inverse unitary transformation imposed by a single-mode fibre on photon's polarization by the succession of two quarter-wave plates and a half-wave plate. The process of realization by polarization state vector. The method is meaningful in quantum communication experiment such as quantum teleportation, in which an unknown arbitrary quantum state should be kept to be unchanged in the case of using a single-mode fibre for time delay.

  15. Impact of neutron star crust on gravizational waves from the axial w-modes

    Institute of Scientific and Technical Information of China (English)

    Wen De-Hua; Fu Hong-Yang; Chen Wei

    2011-01-01

    The imprints of the neutron star crust on the gravitational waves emitted from the axial w-modes are investigated by adopting two typical equations of state (EOSs) of the crust matter and two representative EOSs of the core matter. It is shown that there is a significant effect of the crust EOSs on the gravitational waves from the axial w-mode oscillation for a stiff core EOS.

  16. The propagation and growth of whistler mode waves generated by electron beams in earth's bow shock

    Science.gov (United States)

    Tokar, R. L.; Gurnett, D. A.

    1985-01-01

    In this study, the propagation and growth of whistler mode waves generated by electron beams within earth's bow shock is investigated using a planar model for the bow shock and a model electron distribution function. Within the shock, the model electron distribution function possesses a field-aligned T greater than T beam that is directed toward the magnetosheath. Waves with frequencies between about 1 and 100 Hz with a wide range of wave normal angles are generated by the beam via Landau and anomalous cyclotron resonances. However, because the growth rate is small and because the wave packets traverse the shock quickly, these waves do not attain large amplitudes. Waves with frequencies between about 30 and 150 Hz with a wide range of wave normal angles are generated by the beam via the normal cyclotron resonance. The ray paths for most of these waves are directed toward the solar wind although some wave packets, due to plasma convection travel transverse to the shock normal. These wave packets grow to large amplitudes because they spend a long time in the growth region. The results suggest that whistler mode noise within the shock should increase in amplitude with increasing upstream theta sub Bn. The study provides an explanation for the origin of much of the whistler mode turbulence observed at the bow shock.

  17. The Generation of Coronal Loop Waves below the Photosphere by p-Mode Forcing

    CERN Document Server

    Hindman, Bradley W

    2008-01-01

    Recent observations of coronal-loop waves by TRACE and within the corona as a whole by CoMP clearly indicate that the dominant oscillation period is 5 minutes, thus implicating the solar p modes as a possible source. We investigate the generation of tube waves within the solar convection zone by the buffeting of p modes. The tube waves--in the form of longitudinal sausage waves and transverse kink waves--are generated on the many magnetic fibrils that lace the convection zone and pierce the solar photosphere. Once generated by p-mode forcing, the tube waves freely propagate up and down the tubes, since the tubes act like light fibers and form a waveguide for these magnetosonic waves. Those waves that propagate upward pass through the photosphere and enter the upper atmosphere where they can be measured as loop oscillations and other forms of propagating coronal waves. We treat the magnetic fibrils as vertically aligned, thin flux tubes and compute the energy flux of tube waves that can generated and driven in...

  18. A Study on Space-Borne SAR Mosaic Mode for an Agile Satellite%基于敏捷卫星平台的星载SAR Mosaic模式研究

    Institute of Scientific and Technical Information of China (English)

    韩晓磊; 李世强; 王宇; 韩晓东; 禹卫东

    2013-01-01

    Mosaic模式是聚束和ScanSAR的混合模式,能同时实现高分辨率、大场景成像.提出了一种易实现的Mosaic模式,它的距离向波束切换通过电扫描完成,方位向波束扫描通过机械扫描实现.敏捷卫星能通过控制俯仰机动,方便地实现方位向机械扫描,适于实施这种Mosaic模式.针对这种Mosaic模式的特点,提出了一种新的系统设计方法.该方法从零斜视角位置开始,递推求解一系列关于Burst斜视角和驻留时间的非线性方程组,得到系统参数和时间分配方案.此外,还提出了一种基于等效展宽天线方向图的Mosaic模式性能参数近似计算方法,它能直观、便利地得到Mosaic模式各种性能参数.%The Mosaic mode is a hybrid mode of spotlight and ScanSAR,and it can image a large coverage at a high resolution.In the paper,an easily realized Mosaic mode is proposed.In the mode,the beam switching in range is realized by electrical beam steering,whereas the beam steering in azimuth is realized by mechanical beam steering.The agile satellite can realize the mechanical beam steering by pitching maneuver expediently.Thus,it is fit for the implementation of the Mosaic mode.In this paper,a new system design method is presented for the Mosaic mode.Beginning with the broadside position,the nonlinear system in the unknown squint angle and dwell time of the burst is iteratively solved.In this way,the system parameters and timeline of the Mosaic mode are obtained.Moreover,a new approximate computation method for the performance parameters is obtained based on the equivalent stretch of the azimuth antenna pattern.It can achieve the performance parameters of the Mosaic mode visually and expediently.

  19. Parametric instability induced by X-mode wave heating at EISCAT

    Science.gov (United States)

    Wang, Xiang; Zhou, Chen; Liu, Moran; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu

    2016-10-01

    In this paper, we present results of parametric instability induced by X-mode wave heating observed by EISCAT (European Incoherent Scatter Scientific Association) radar at Tromsø, Norway. Three typical X-mode ionospheric heating experiments on 22 October 2013, 19 October 2012, and 21 February 2013 are investigated in details. Both parametric decay instability (PDI) and oscillating two-stream instability are observed during the X-mode heating period. We suggest that the full dispersion relationship of the Langmuir wave can be employed to analyze the X-mode parametric instability excitation. A modified kinetic electron distribution is proposed and analyzed, which is able to satisfy the matching condition of parametric instability excitation. Parallel electric field component of X-mode heating wave can also exceed the parametric instability excitation threshold under certain conditions.

  20. The Bistatic SAR Imaging Algorithm Based on the Slanting Flight Mode%基于斜飞模式的双基地SAR成像算法

    Institute of Scientific and Technical Information of China (English)

    彭岁阳; 张军; 沈振康

    2011-01-01

    The slanting flight mode bistatic SAR system has a flexible configuration and broad application prospects. However, because of the transceiver platform's movement in the range direction,the equation of instantaneous slant range gets very complex, and motion compensation also becomes rather difficult. Through an analysis of squint flight mode geometries, the thesis expounds the keystone of motion compensation in the range domain on slant flight mode, and presents two methods of motion compensation - the taylor approximation method and model approximation method. Then through analyzing the echo which has compensated the deviation in the range domain,the bistatic SAR Algorithm with range walk correction in time domain is conducted completely. Simulation results show that the motion compensation model approximation method is superior to the first-order taylor approximation method, and is equal to the second-order taylor approximation method, as well as verify the effectiveness of the method of slanting flight mode bistatic SAR imaging.%斜飞模式双基地SAR系统配置灵活,具有广阔的应用前景.但由于收发平台存在距离向的运动,瞬时斜距方程非常复杂,运动补偿也更困难.本文通过分析斜飞模式下的几何构形,阐述了斜飞模式下距离向运动补偿的基本原理,并设计了两种运动补偿方法——泰勒近似法和模型近似法.然后通过对距离向偏移补偿后的回波分析,完整的推导了基于时域距离走动的双基地SAR成像算法.仿真实验表明模型近似法运动补偿的效果要优于泰勒一阶近似法,与泰勒二阶近似法相当,并验证了本文方法对斜飞模式双基地SAR成像的有效性.

  1. Kinetic full wave analyses of O-X-B mode conversion of EC waves in tokamak plasmas

    Science.gov (United States)

    Fukuyama, Atsushi; Khan, Shabbir Ahmad; Igami, Hiroe; Idei, Hiroshi

    2016-10-01

    For heating and current drive in a high-density plasma of tokamak, especially spherical tokamak, the use of electron Bernstein waves and the O-X-B mode conversion were proposed and experimental observations have been reported. In order to evaluate the power deposition profile and the current drive efficiency, kinetic full wave analysis using an integral form of dielectric tensor has been developed. The incident angle dependence of wave structure and O-X-B mode conversion efficiency is examined using one-dimensional analysis in the major radius direction. Two-dimensional analyses on the horizontal plane and the poloidal plane are also conducted, and the wave structure and the power deposition profile are compared with those of previous analyses using ray tracing method and cold plasma approximation. This work is supported by JSPS KAKENHI Grant Number JP26630471.

  2. Plasma heating via electron Bernstein wave heating using ordinary and extraodinary mode

    Directory of Open Access Journals (Sweden)

    A. Parvazian

    2008-03-01

    Full Text Available Magnetically confined plasma can be heated with high power microwave sources. In spherical torus the electron plasma frequency exeeds the electron cyclotron frequency (EC and, as a consequence, electromagnetic waves at fundamental and low harmonic EC cannot propagate within the plasma. In contrast, electron Bernstein waves (EBWs readily propagate in spherical torus plasma and are absorbed strongly at the electron cyclotron resonances. In order to proagate EBWs beyond the upper hybrid resonance (UHR, that surrounds the plasma, the EBWs must convert via one of two processes to either ordinary (O-mode or extraordinary (X-mode electromagnetic waves. O-mode and X-mode electromagnetic waves lunched at the plasma edge can convert to the electron Bernstein waves (EBWs which can propagate without and cut-off into the core of the plasma and damp on electrons. Since the electron Bernstein wave (EBW has no cut-off limits, it is well suited to heat an over-dense plasma by resonant absorption. An important problem is to calculate mode conversion coefficient that is very sensitive to density. Mode conversion coefficient depends on Budden parameter ( ñ and density scale length (Ln in upper hybrid resonance (UHR. In Mega Ampere Spherical Tokamak (MAST, the optimized conversion efficiency approached 72.5% when Ln was 4.94 cm and the magnetic field was 0.475 Tesla in the core of the plasma.

  3. Application of Fault Location Mode Based on Travelling Waves for Neutral Non-effective Grounding Systems

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Fault location for distribution feeders short circuit especially single-phase grounding fault is an important task in distribution system with non-effectively grounded neutral.Fault location mode for distribution feeders using fault generated current and voltage transient traveling waves was investigated.The characteristics of transient traveling waves resulted from each short circuit fault and their transmission disciplinarian in distribution feeders are analyzed.This paper proposed that double end travelling waves theory which measures arriving time of fault initiated surge at both ends of the monitored line is fit for distribution feeders but single end traveling waves theory not.According to different distribution feeders,on the basis of analyzing original traveling waves reflection rule in line terminal, Current-voltage mode,voltage-voltage mode and current-current mode for fault location based on traveling waves are proposed and aerial mode component of original traveling waves is used to realize fault location.Experimental test verify the feasibility and correctness of the proposed method.

  4. Thermal chiral vortical and magnetic waves: new excitation modes in chiral fluids

    CERN Document Server

    Kalaydzhyan, Tigran

    2016-01-01

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark-gluon plasma, liquid helium 3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in a external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density, the chiral vortical and chiral magnetic waves. We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the excitation reduces to a charge diffusion mode or is completely absent. We also correct the dispersion relation for the chiral magnetic wave.

  5. Emission of Whistler-mode waves and diffusion of electrons around interplanetary shocks

    Science.gov (United States)

    Pierre, F.; Solomon, J.; Cornilleau-Wehrlin, N.; Canu, P.; Scime, E. E.; Phillips, J. L.; Balogh, A.; Forsyth, R.

    1995-01-01

    Whistler-mode wave emissions are frequently observed at and downstream of interplanetary shocks. Using electron distribution functions measured onboard Ulysses in the energy range 1.6 to 862 eV, we calculate the temperature anisotropy and the wave growth rate of the electromagnetic electron cyclotron instability, Results of the calculations are compared to the whistler wave spectra observed simultaneously. For the studied events there is a good correlation between the wave growth rates and the wave spectra. Particularly, upstream of the shock front where no wave emissions are observed, the anisotropy lies below the wave instability threshold, i.e. the critical anisotropy Ac; on the contrary, downstream of the shock, the anisotropy exceeds Ac in some frequency range. Moreover. the tact that the anisotropy is close to Ac in a large frequency range gives prominence to the effect of velocity space diffusion of the electrons by the waves.

  6. A Study of Saturn's Normal Mode Oscillations and Their Forcing of Density Waves in the Rings

    Science.gov (United States)

    Friedson, Andrew James; Cao, Lyra

    2016-10-01

    Analysis of Cassini Visual and Infrared Mapping Spectrometer (VIMS) ring occultation profiles has revealed the presence of spiral density waves in Saturn's C ring that are consistent with being driven by gravitational perturbations associated with normal-mode oscillations of the planet [1]. These waves allow the C ring to serve as a sort of seismometer, since their pattern speeds (i.e., azimuthal phase speeds) can in principle be mapped onto the frequencies of the predominant normal oscillations of the planet. The resonant mode frequencies in turn are sensitive to Saturn's internal structure and rotational state. Characterization of the normal modes responsible for the forcing holds the potential to supply important new constraints on Saturn's internal structure and rotation. We perform numerical calculations to determine the resonant frequencies of the normal modes of a uniformly rotating planet for various assumptions regarding its internal stratification and compare the implied pattern speeds to those of density waves observed in the C ring. A question of particular interest that we address is whether quasi-toroidal modes are responsible for exciting a mysterious class of slowly propagating density waves in the ring. We also explore the implications of avoided crossings between modes for explaining observed fine splitting in the pattern speeds of spiral density waves having the same number of spiral arms, and weigh the role that convective overstability may play in exciting large-scale quasi-toroidal modes in Saturn. [1] Hedman, M.M. and Nicholson, P.D. 2014. MNRAS 444, 1369.

  7. Transformation of mode-2 internal solitary wave over a pseudo slope-shelf

    Science.gov (United States)

    Cheng, Ming-Hung; Hsieh, Chih-Min; Hsu, John R.-C.; Hwang, Robert R.

    2017-09-01

    Numerical simulations are performed to investigate the effect of wave amplitude in a numerical wave tank on the evolution of a convex mode-2 internal solitary wave (ISW) propagating over a pseudo slope-shelf. A finite volume method based on a Cartesian grid system is adopted to solve the Navier-Stokes equations using Improved Delayed Detached Eddy Simulation model for the turbulent closure. Numerical results reveal three types of waveform during wave generation on the flat bottom: (1) pseudo vortex shedding in the case of very large initial amplitude; (2) PacMan phenomenon in large amplitude; and (3) smooth mode-2 ISW for small amplitude. During wave propagation on the plateau, the first type of waveform induces a quasi-elevated mode-1 ISW; the second generates chaotic internal waves with significant reduction in amplitude; while the third renders a slightly deformed mode-2 ISW across the plateau. Moreover, the decrease in the magnitude of leading trough is more intense than that in the leading crest due to strong wave-obstacle interaction in the case of very large initial wave amplitude.

  8. Tracing p-mode Waves from the Photosphere to the Corona in Active Regions

    Science.gov (United States)

    Zhao, Junwei; Felipe, Tobías; Chen, Ruizhu; Khomenko, Elena

    2016-10-01

    Atmosphere above sunspots is abundant with different types of waves. Among these waves are running penumbral waves in the chromosphere, quasi-periodic oscillations in the lower coronal loops, and recently reported running waves in sunspots’ photosphere, all of which were interpreted as magnetoacoustic waves by some authors. Are these waves in different atmospheric layers related to each other, what is the nature of these waves, and where are the ultimate sources of these waves? Applying a time–distance helioseismic analysis over a suite of multi-wavelength observations above a sunspot, we demonstrate that the helioseismic p-mode waves are able to channel up from the photosphere through the chromosphere and transition region into the corona, and that the magnetoacoustic waves observed in different atmospheric layers are a same wave originating from the photosphere but exhibiting differently under different physical conditions. We also show waves of different frequencies travel along different paths, which can be used to derive the physical properties of the atmosphere above sunspots. Our numerical simulation of traveling of waves from a subphotospheric source qualitatively resembles the observed properties of the waves and offers an interpretation of the shapes of the wavefronts above the photosphere.

  9. Traveling Wave Modes of a Plane Layered Anelastic Earth

    Science.gov (United States)

    2016-05-20

    variable in the standing wave free oscillation problem is the frequency , which makes the eigenvalue problem nonlinear. The choice of the wavenumber as...38) By making the assignment Irn = κn Iqn, (39) the quadratic generalized eigenvalue problem Eq. (34) can be converted to a linear generalized...elastic eigenfunctions and the complex frequency dependent elastic moduli. The lateral standing-wave nature of the earth free oscillation problem leads to

  10. Diffuse auroral precipitation by resonant interaction with electron cyclotron harmonic and whistler mode waves

    Science.gov (United States)

    Tripathi, A. K.; Singhal, R. P.; Singh, K. P.; Singh, O. N.

    2013-05-01

    Bounce-averaged pitch angle diffusion coefficients of electrons due to resonant interaction with electrostatic electron cyclotron harmonic (ECH) and whistler mode waves have been calculated. Temporal growth rates obtained by solving the appropriate dispersion relation have been used to represent the distribution of wave energy with frequency. Calculations have been performed at two spatial locations L=4.6 and L=6.8. The results obtained suggest that ECH waves can put electrons on strong pitch angle diffusion at both spatial locations. However, at L=4.6, electrons with energy <100 eV and at L=6.8 electrons with energy up to ∼500 eV can be put on strong diffusion contributing to diffuse auroral precipitation. Whistler mode waves can put electrons of energy ≤5 keV on strong pitch angle diffusion at L=6.8 whereas at L=4.6 observed wave fields are insufficient to put electrons on strong diffusion. ECH waves contribute up to 17% of the total electron energy precipitation flux due to both ECH and whistler mode waves. A case study has been performed to calculate pitch angle diffusion coefficients using Gaussian function to represent wave energy distribution with frequency. It is found that, for electron energy <500 eV, the calculated diffusion coefficients using Gaussian function to represent ECH wave energy distribution are several orders of magnitude smaller or negligible as compared to diffusion coefficients calculated by temporal growth rates. However, the calculated pitch angle diffusion coefficients using Gaussian function for whistler mode wave energy distribution are in very good agreement with diffusion coefficients calculated by temporal growth rates. It is concluded that representing the ECH wave energy distribution with frequency by a Gaussian function grossly underestimates the low energy (<500 eV) electron precipitation flux due to ECH waves.

  11. Temperature Compensation of Aluminum Nitride Lamb Wave Resonators Utilizing the Lowest-Order Symmetric Mode

    Science.gov (United States)

    2012-12-14

    82. D. P. Morgan, Surface- Wave Devices for Signal Processing, Holland: Elsevier, 1991. 83. L. E. McNeil, M. Grimsditch, and R. H. French ... Vibrational spectroscopy of aluminum nitride,” J. Am. Ceram. Soc., vol. 76, pp. 1132–1136, May 1993. 84. K. Hashimoto, Surface Acoustic Wave Devices in...Temperature Compensation of Aluminum Nitride Lamb Wave Resonators Utilizing the Lowest-Order Symmetric Mode Chih-Ming Lin Electrical Engineering and

  12. Electron Whistler Mode Waves Associated with Collisionless Magnetic Reconnection

    Institute of Scientific and Technical Information of China (English)

    GUO Jun; YU Bin; GUO Guang-Hai; ZHAO Bo

    2011-01-01

    @@ The results of particle-in-cell (PIC) simulations are presented on the evolution of the electron whistler waves during the collisionless magnetic reconnection.The simulation results show that the electron whistler waves with frequency higher than the lower hybrid frequency are found to occur in the electrons outflow region.Moreover, the present results indicate that these electron whistler waves with high-frequency in the region greater than an ion inertial scale of the x-line are irrelevant to the fast reconnection, but are generated as a result of the reconnection processes.%The results of particle-in-cell (PIC) simulations are presented on the evolution of the electron whistler waves during the collisionless magnetic reconnection. The simulation results show that the electron whistler waves with frequency higher than the lower hybrid frequency are found to occur in the electrons outflow region. Moreover,the present results indicate that these electron whistler waves with high-frequency in the region greater than an ion inertial scale of the x-line are irrelevant to the fast reconnection, but are generated as a result of the reconnection processes.

  13. Spatial mode structures of electrostatic drift waves in a collisional cylindrical helicon plasma

    DEFF Research Database (Denmark)

    Schröder, C.; Grulke, O.; Klinger, T.;

    2004-01-01

    In a cylindrical helicon plasma, mode structures of coherent drift waves are studied in the poloidal plane, the plane perpendicular to the ambient magnetic field. The mode structures rotate with a constant angular velocity in the direction of the electron diamagnetic drift and show significant...

  14. Mode-Selective Wavelength Conversion Based on Four-Wave Mixing in a Multimode Silicon Waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan

    2013-01-01

    We report all-optical mode-selective wavelength conversion based on four-wave mixing in a multimode Si waveguide. A two-mode division multiplexing circuit using tapered directional coupler based (de)multiplexers is used for the application. Experimental results show clear eye-diagrams and moderate...

  15. SAR Altimetry Applications over Water

    CERN Document Server

    Martin-Puig, C; Ruffini, G; Raney, R K; Benveniste, J

    2008-01-01

    The application of Synthetic Aperture Radar (SAR) techniques to classical radar altimetry offers the potential for greatly improved Earth surface mapping. This paper provides an overview of the progress of SAMOSA, Development of SAR Altimetry Studies and Applications over Ocean, Coastal zones and Inland waters, an on-going ESA-funded project. The main objective of SAMOSA is to better quantify the improvement of SAR altimetry over conventional altimetry on water surfaces. More specifically, one of the tasks focuses on the reduction of SAR mode data to pulse-limited altimeter data, and a theoretical modelling to characterize the expected gain between high Pulse Repetition Frequency (PRF) reduced SAR mode data and low PRF classical Low-Resolution Mode (LRM) data. To this end, theoretical modelling using the Cramer-Rao bound (CRB) will be used and the results will be compared to previous theoretical estimates [7], using an analysis akin to that in [8].

  16. Circumferential resonance modes of solid elastic cylinders excited by obliquely incident acoustic waves.

    Science.gov (United States)

    Fan, Ying; Honarvar, Farhang; Sinclair, Anthony N; Jafari, Mohammad-Reza

    2003-01-01

    When an immersed solid elastic cylinder is insonified by an obliquely incident plane acoustic wave, some of the resonance modes of the cylinder are excited. These modes are directly related to the incidence angle of the insonifying wave. In this paper, the circumferential resonance modes of such immersed elastic cylinders are studied over a large range of incidence angles and frequencies and physical explanations are presented for singular features of the frequency-incidence angle plots. These features include the pairing of one axially guided mode with each transverse whispering gallery mode, the appearance of an anomalous pseudo-Rayleigh in the cylinder at incidence angles greater than the Rayleigh angle, and distortional effects of the longitudinal whispering gallery modes on the entire resonance spectrum of the cylinder. The physical explanations are derived from Resonance Scattering Theory (RST), which is employed to determine the interior displacement field of the cylinder and its dependence on insonification angle.

  17. All-optical mode conversion via spatially-multimode four-wave mixing

    CERN Document Server

    Danaci, Onur; Glasser, Ryan T

    2016-01-01

    We experimentally demonstrate the conversion of a Gaussian beam to an approximate Bessel-Gauss mode by making use of a non-collinear four-wave mixing process in hot atomic vapor. The presence of a strong, spatially non-Gaussian pump both converts the probe beam into a non-Gaussian mode, and generates a conjugate beam that is in a similar non-Gaussian mode. The resulting probe and conjugate modes are compared to the output of a Gaussian beam incident on an annular aperture that is then spatially filtered according to the phase-matching conditions imposed by the four-wave mixing process. We find that the resulting experimental data agrees well with both numerical simulations, as well as analytical formulae describing the effects of annular apertures on Gaussian modes. These results show that spatially-multimode gain platforms may be used as a new method of mode conversion.

  18. Landslide deformation monitoring using point-like target offset tracking with multi-mode high-resolution TerraSAR-X data

    Science.gov (United States)

    Shi, Xuguo; Zhang, Lu; Balz, Timo; Liao, Mingsheng

    2015-07-01

    Many landslides in the Three Georges area have shown active deformations associated with water level fluctuations since the full operation of the Three Georges Dam. Such active deformations of landslide bodies need to be closely monitored for disaster prevention and warning. One way to do this is to employ SAR pixel offset tracking, a powerful technique that can be used for measuring two-dimensional large displacements. As an improvement of the original pixel offset tracking technique, the point-like target (PT) offset tracking method focuses on stable point-like targets and thus can obtain more reliable measurements. In this paper, the PT offset tracking method is employed to investigate historical evolution of the Shuping landslide, using time series TerraSAR-X data acquired in both Stripmap (SM) and High-resolution Spotlight (HS) modes. Artificial corner reflectors (CR) installed at/near the landslide are identified as PTs and used to analyze the spatial-temporal pattern of landslide deformations. Results showed that the maximum accumulative deformation of the Shuping landslide reached more than 1.5 m over a time span of two years. A correlation analysis between the deformation trends and the fluctuation of reservoir water level indicated that most deformations of the landslide happened during the water level declining period.

  19. Phased annular array transducers for omnidirectional guided wave mode control in isotropic plate like structures

    Science.gov (United States)

    Koduru, Jaya P.; Momeni, Sepandarmaz; Rose, Joseph L.

    2013-12-01

    Ultrasonic guided waves are fast emerging as a reliable tool for continuous structural health monitoring. Their multi-modal nature along with their long range propagation characteristics offer several possibilities for interrogating structures. Transducers commonly used to generate guided waves in structures excite multiple modes at any frequency; their complex scattering and reflection from defects and boundaries often complicates the extraction of useful information. Often it is desirable to control the guided wave modes propagating in a structure to take advantage of their unique properties for different applications. Earlier attempts at guided wave mode control involved developing fixed wavelength linear and annular array transducers. Their only disadvantage is that the transducer is limited to a particular wavelength and a change in wavelength necessitates a change in the transducer. In this paper, we propose the development of an annular array transducer that can generate mode controlled omnidirectional guided waves by independently controlling the amplitude and phase of the array elements. A simplified actuator model that approximates the transducer loading on the structure to a constant pressure load under the array elements is assumed and an optimization problem is set up to compute the excitation voltage and phase of the elements. A five element annular array transducer is designed utilizing 1-3 type piezocomposite materials. The theoretical computations are experimentally verified on an aluminum plate like structure by exciting A0 and S0 guided wave modes.

  20. Study of Rotating-Wave Electromagnetic Modes for Applications in Space Exploration

    Science.gov (United States)

    Velazco, J. E.

    2016-08-01

    Rotating waves are circularly polarized electromagnetic wave fields that behave like traveling waves but have discrete resonant frequencies of standing waves. In JPL's Communications Ground Systems Section (333), we are making use of this peculiar type of electromagnetic modes to develop a new generation of devices and instruments for direct applications in space exploration. In this article, we present a straightforward analysis about the phase velocity of these wave modes. A derivation is presented for the azimuthal phase velocity of transverse magnetic rotating modes inside cylindrical cavity resonators. Computer simulations and experimental measurements are also presented that corroborate the theory developed. It is shown that the phase velocity of rotating waves inside cavity resonators increases with radial position within the cavity and decreases when employing higher-order operating modes. The exotic features of rotating modes, once better understood, have the potential to enable the implementation of a plethora of new devices that range from amplifiers and frequency multipliers to electron accelerators and ion thrusters.

  1. A mode filter for plasma waves in the Hall-MHD approximation

    Directory of Open Access Journals (Sweden)

    C. Vocks

    Full Text Available A filter method is presented which allows a qualitative and quantitative identification of wave modes observed with plasma experiments on satellites. Hitherto existing mode filters are based on the MHD theory and thus they are restricted to low frequencies well below the ion cyclotron frequency. The present method is generalized to cover wave modes up to the characteristic ion frequencies. The spectral density matrix determined by the observations is decomposed using the eigenvectors of the linearized Hall-MHD equations. As the wave modes are dispersive in this formalism, a precise determination of the k->-vectors requires the use of multi-point measurements. Therefore the method is particularly relevant to multi-satellite missions. The method is tested using simulated plasma data. The Hall-MHD filter is able to identify the modes excited in the model plasma and to assign the correct energetic contributions. By comparison with the former method it is shown that the simple MHD filter leads to large errors if the frequency is not well below the ion cyclotron frequency. Further the range of validity of the linear theory is examined rising the simulated wave amplitudes.

    Key words. Magnetospheric physics (MHD waves and instabilities; plasma waves and instabilities

  2. Wave Damping Observed in Upwardly Propagating Sausage-mode Oscillations Contained within a Magnetic Pore

    Science.gov (United States)

    Grant, S. D. T.; Jess, D. B.; Moreels, M. G.; Morton, R. J.; Christian, D. J.; Giagkiozis, I.; Verth, G.; Fedun, V.; Keys, P. H.; Van Doorsselaere, T.; Erdélyi, R.

    2015-06-01

    We present observational evidence of compressible MHD wave modes propagating from the solar photosphere through to the base of the transition region in a solar magnetic pore. High cadence images were obtained simultaneously across four wavelength bands using the Dunn Solar Telescope. Employing Fourier and wavelet techniques, sausage-mode oscillations displaying significant power were detected in both intensity and area fluctuations. The intensity and area fluctuations exhibit a range of periods from 181 to 412 s, with an average period ˜290 s, consistent with the global p-mode spectrum. Intensity and area oscillations present in adjacent bandpasses were found to be out of phase with one another, displaying phase angles of 6.°12, 5.°82, and 15.°97 between the 4170 Å continuum-G-band, G-band-Na i D1, and Na i D1-Ca ii K heights, respectively, reiterating the presence of upwardly propagating sausage-mode waves. A phase relationship of ˜0° between same-bandpass emission and area perturbations of the pore best categorizes the waves as belonging to the “slow” regime of a dispersion diagram. Theoretical calculations reveal that the waves are surface modes, with initial photospheric energies in excess of 35,000 W m-2. The wave energetics indicate a substantial decrease in energy with atmospheric height, confirming that magnetic pores are able to transport waves that exhibit appreciable energy damping, which may release considerable energy into the local chromospheric plasma.

  3. Standing Slow-Mode Waves in Hot Coronal Loops: Observations, Modeling, and Coronal Seismology

    CERN Document Server

    Wang, Tongjiang

    2010-01-01

    Strongly damped Doppler shift oscillations are observed frequently associated with flarelike events in hot coronal loops. In this paper, a review of the observed properties and the theoretical modeling is presented. Statistical measurements of physical parameters (period, decay time, and amplitude) have been obtained based on a large number of events observed by SOHO/SUMER and Yohkoh/BCS. Several pieces of evidence are found to support their interpretation in terms of the fundamental standing longitudinal slow mode. The high excitation rate of these oscillations in small- or micro-flares suggest that the slow mode waves are a natural response of the coronal plasma to impulsive heating in closed magnetic structure. The strong damping and the rapid excitation of the observed waves are two major aspects of the waves that are poorly understood, and are the main subject of theoretical modeling. The slow waves are found mainly damped by thermal conduction and viscosity in hot coronal loops. The mode coupling seems ...

  4. A Resonant Mode for Gravitational Wave Detectors based on Atom Interferometry

    CERN Document Server

    Graham, Peter W; Kasevich, Mark A; Rajendran, Surjeet

    2016-01-01

    We describe a new atom interferometric gravitational wave detector design that can operate in a resonant mode for increased sensitivity. By oscillating the positions of the atomic wavepackets, this resonant detection mode allows for coherently enhanced, narrow-band sensitivity at target frequencies. The proposed detector is flexible and can be rapidly switched between broadband and narrow-band detection modes without changing hardware. For instance, a new binary discovered in broadband mode can subsequently be studied further as the inspiral evolves by using a tailored narrow-band detector response. In addition to functioning like a lock-in amplifier for astrophysical events, the enhanced sensitivity of the resonant approach also opens up the possibility of searching for important cosmological signals, including the stochastic gravitational wave background produced by inflation. We give an example of detector parameters which would allow detection of inflationary gravitational waves down to $\\Omega_\\text{GW} ...

  5. Survivability mode and extreme loads on the mooring lines of the Wave Dragon Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Parmeggiani, S.; Kofoed, J.P.

    2010-11-15

    This report is a product of the cooperation agreement between Wave Dragon and Aalborg University regarding phase 2 of the development of the Wave Dragon Wave Energy Converter. The research is carried out by testing the 1:51.8 scale model of the Wave Dragon, aiming at the assessment of the survivability of the device in extreme waves and evaluation of the design loads for the mooring component. The outcome of the research will be used as input for future research work aimed at the design of the mooring system and the certification of the structural design for the full scale Wave Dragon demonstrator. (Author)

  6. Spatio-temporal evolutions of non-orthogonal equatorial wave modes derived from observations

    Science.gov (United States)

    Barton, Cory

    Equatorial waves have been studied extensively due to their importance to the tropical climate and weather systems. Historically, their activity is diagnosed mainly in the wavenumber-frequency domain. Recently, many studies have projected observational data onto parabolic cylinder functions (PCFs), which represent the meridional structure of individual wave modes, to attain time-dependent spatial wave structures. The non-orthogonality of wave modes has yet posed a problem when attempting to separate data into wave fields where the waves project onto the same structure functions. We propose the development and application of a new methodology for equatorial wave expansion of instantaneous flows using the full equatorial wave spectrum. By creating a mapping from the meridional structure function amplitudes to the equatorial wave class amplitudes, we are able to diagnose instantaneous wave fields and determine their evolution. Because all meridional modes are shared by some subset of the wave classes, we require constraints on the wave class amplitudes to yield a closed system with a unique solution for all waves' spatial structures, including IG waves. A synthetic field is analyzed using this method to determine its accuracy for data of a single vertical mode. The wave class spectra diagnosed using this method successfully match the correct dispersion curves even if the incorrect depth is chosen for the spatial decomposition. In the case of more than one depth scale, waves with varying equivalent depth may be similarly identified using the dispersion curves. The primary vertical mode is the 200 m equivalent depth mode, which is that of the peak projection response. A distinct spectral power peak along the Kelvin wave dispersion curve for this value validates our choice of equivalent depth, although the possibility of depth varying with time and height is explored. The wave class spectra diagnosed assuming this depth scale mostly match their expected dispersion curves

  7. Whistler-Mode Waves Growth by a Generalized Relativistic Kappa-Type Distribution

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qing-Hua; JIANG Bin; SHI Xiang-Hua; LI Jun-Qiu

    2009-01-01

    The instability of field-aligned Whistler-mode waves in space plasmas is studied by using a recently developed generalized relativistic kappa-type (KT) distribution. Numerical calculations are performed for a direct compar-ison between the new KT distribution and the current kappa distribution. We show that the wave growth for the KT distribution tends to occur in the lower wave frequency (e.g., ω 0.1Ωe) due to a larger fractional num-ber of the resonant electrons ηrel (which controls the wave growth), while primarily locating in the higher wave frequency for the kappa distribution. Moreover, the relativistic anisotropy Arel by the KT distribution is found to be smaller than that by the kappa distribution, leading to a smaller peak of wave growth. The results present a further understanding of plasma wave instability particularly in those plasmas where relativistic electrons are present.

  8. Spatial-mode-interaction-induced dispersive-waves and their active tuning in microresonators

    CERN Document Server

    Yang, Qi-Fan; Yang, Ki Youl; Vahala, Kerry

    2016-01-01

    The nonlinear propagation of optical pulses in dielectric waveguides and resonators provides a laboratory to investigate a wide range of remarkable interactions. Many of the resulting phenomena find applications in optical systems. One example is dispersive wave generation, the optical analog of Cherenkov radiation. These waves have an essential role in fiber spectral broadeners that are routinely used in spectrocopy and metrology. Dispersive waves form when a soliton pulse begins to radiate power as a result of higher-order dispersion. Recently, dispersive wave generation in microcavities has been reported by phase matching the waves to dissipative Kerr cavity (DKC) solitons. Here, it is shown that spatial mode interactions within a microcavity can also be used to induce dispersive waves. These interactions are normally avoided altogether in DKC soliton generation. The soliton self frequency shift is also shown to induce fine tuning control of the dispersive wave frequency. Both this mechanism and spatial mo...

  9. Rayleigh-wave mode separation by high-resolution linear radon transform

    Science.gov (United States)

    Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.

    2009-01-01

    Multichannel analysis of surface waves (MASW) method is an effective tool for obtaining vertical shear wave profiles from a single non-invasive measurement. One key step of the MASW method is generation of a dispersion image and extraction of a reliable dispersion curve from raw multichannel shot records. Because different Rayleigh-wave modes normally interfere with each other in the time and space domain, it is necessary to perform mode separation and reconstruction to increase the accuracy of phase velocities determined from a dispersion image. In this paper, we demonstrate the effectiveness of high-resolution linear Radon transform (LRT) as a means of separating and reconstructing multimode, dispersive Rayleigh-wave energy. We first introduce high-resolution LRT methods and Rayleigh-wave mode separation using high-resolution LRT. Next, we use synthetic data and a real-world example to demonstrate the effectiveness of Rayleigh-wave mode separation using high-resolution LRT. Our synthetic and real-world results demonstrate that (1) high-resolution LRT successfully separates and reconstructs multimode dispersive Rayleigh-wave energy with high resolution allowing the multimode energy to be more accurately determined. The horizontal resolution of the Rayleigh-wave method can be increased by extraction of dispersion curves from a pair of traces in the mode-separated shot gather and (2) multimode separation and reconstruction expand the usable frequency range of higher mode dispersive energy, which increases the depth of investigation and provides a means for accurately determining cut-off frequencies. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  10. Head-on collision of the second mode internal solitary waves

    Science.gov (United States)

    Terletska, Kateryna; Maderich, Vladimir; Jung, Kyung Tae

    2017-04-01

    Second mode internal waves are widespread in offshore areas, and they frequently follow the first mode internal waves on the oceanic shelf. Large amplitude internal solitary waves (ISW) of second mode containing trapped cores associated with closed streamlines can also transport plankton and nutrients. An interaction of ISWs with trapped cores takes place in a specific manner. It motivated us to carry out a computational study of head-on collision of ISWs of second mode propagating in a laboratory-scale numerical tank using the nonhydrostatic 3D numerical model based on the Navier-Stokes equations for a continuously stratified fluid. Three main classes of ISW of second mode propagating in the pycnocline layer of thickness h between homogeneous deep layers can be identified: (i) the weakly nonlinear waves; (ii) the stable strongly nonlinear waves with trapped cores; and (iii) the shear unstable strongly nonlinear waves (Maderich et al., 2015). Four interaction regimes for symmetric collision were separated from simulation results using this classification: (A) an almost elastic interaction of the weakly nonlinear waves; (B) a non-elastic interaction of waves with trapped cores when ISW amplitudes were close to critical non-dimensional amplitude a/h; (C) an almost elastic interaction of stable strongly nonlinear waves with trapped cores; (D) non-elastic interaction of the unstable strongly nonlinear waves. The unexpected result of simulation was that relative loss of energy due to the collision was maximal for regime B. New regime appeared when ISW of different amplitudes belonged to class (ii) collide. In result of interaction the exchange of mass between ISW occurred: the trapped core of smaller wave was entrained by core of larger ISW without mixing forming a new ISW of larger amplitude whereas in smaller ISW core of smaller wave totally substituted by fluid from larger wave. Overall, the wave characteristics induced by head-on collision agree well with the

  11. Diffuse auroral electron scattering by electron cyclotron harmonic and whistler mode waves during an isolated substorm

    Science.gov (United States)

    Horne, R. B.; Thorne, R. M.; Meredith, N. P.; Anderson, R. R.

    2003-07-01

    There are two main theories for the origin of diffuse auroral electron precipitation: precipitation by electrostatic ECH waves and precipitation by whistler mode waves. Here we analyze a case event where whistler mode hiss, chorus, and ECH waves are intensified during a weak substorm injection event to identify the source of particle precipitation. Examination of the particle data shows that there are three sources of free energy: a temperature anisotropy, a loss cone, and a pancake distribution. Instability analysis shows that the temperature anisotropy excites whistler mode hiss whereas both the temperature anisotropy and the pancake distribution contribute to the excitation of chorus. ECH waves are driven unstable by the loss cone. Wave propagation studies show that the path integrated gain of hiss and chorus is almost unaffected by changes in the depth of the loss cone, whereas ECH waves are very sensitive. Analysis of the changes in the resonant energy during propagation shows that the hiss resonates with electrons above a few keV while chorus resonates below a few hundred eV. As a result, neither hiss nor chorus are likely to cause significant electron precipitation from a few hundred eV to a few keV for this event. On the other hand, ECH waves resonate with electrons in the energy range between that for chorus and hiss. ECH waves can scatter electrons with pitch angles of up to 80° into the loss cone. We conclude that ECH waves are responsible for the formation of the pancake distribution and are probably the main component of diffuse auroral precipitation during this event. We suggest that substorm-injected electrons are responsible for the intensification of hiss and ECH waves and that rapid scattering of electrons by ECH waves forms the pancake distribution which then excites chorus. We also suggest that rapid pitch angle scattering by ECH waves could be responsible for double frequency banded chorus emissions.

  12. Observation of Relativistic Electron Microbursts in Conjunction with Intense Radiation Belt Whistler-Mode Waves

    Science.gov (United States)

    Kersten, K.; Cattell, C. A.; Breneman, A.; Goetz, K.; Kellogg, P. J.; Wygant, J. R.; Wilson, L. B., III; Blake, J. B.; Looper, M. D.; Roth, I.

    2011-01-01

    We present multi-satellite observations of large amplitude radiation belt whistler-mode waves and relativistic electron precipitation. On separate occasions during the Wind petal orbits and STEREO phasing orbits, Wind and STEREO recorded intense whistler-mode waves in the outer nightside equatorial radiation belt with peak-to-peak amplitudes exceeding 300 mV/m. During these intervals of intense wave activity, SAMPEX recorded relativistic electron microbursts in near magnetic conjunction with Wind and STEREO. This evidence of microburst precipitation occurring at the same time and at nearly the same magnetic local time and L-shell with a bursty temporal structure similar to that of the observed large amplitude wave packets suggests a causal connection between the two phenomena. Simulation studies corroborate this idea, showing that nonlinear wave.particle interactions may result in rapid energization and scattering on timescales comparable to those of the impulsive relativistic electron precipitation.

  13. Finite-Difference Simulation of Elastic Wave with Separation in Pure P- and S-Modes

    Directory of Open Access Journals (Sweden)

    Ke-Yang Chen

    2014-01-01

    Full Text Available Elastic wave equation simulation offers a way to study the wave propagation when creating seismic data. We implement an equivalent dual elastic wave separation equation to simulate the velocity, pressure, divergence, and curl fields in pure P- and S-modes, and apply it in full elastic wave numerical simulation. We give the complete derivations of explicit high-order staggered-grid finite-difference operators, stability condition, dispersion relation, and perfectly matched layer (PML absorbing boundary condition, and present the resulting discretized formulas for the proposed elastic wave equation. The final numerical results of pure P- and S-modes are completely separated. Storage and computing time requirements are strongly reduced compared to the previous works. Numerical testing is used further to demonstrate the performance of the presented method.

  14. Massive, massless and ghost modes of gravitational waves from higher-order gravity

    CERN Document Server

    Bogdanos, Charalampos; De Laurentis, Mariafelicia; Nesseris, Savvas

    2009-01-01

    We linearize the field equations for higher order theories that contain scalar invariants other than the Ricci scalar. We find that besides a massless spin-2 field (the standard graviton), the theory contains also spin-0 and spin-2 massive modes with the latter being, in general, ghost modes. Then, we investigate the possible detectability of such additional polarization modes of a stochastic gravitational wave by ground-based and space interferometric detectors. Finally, we extend the formalism of the cross-correlation analysis, including the additional polarization modes, and calculate the detectable energy density of the spectrum for a stochastic background of the relic gravity waves that corresponds to our model. For the situation considered here, we find that these massive modes are certainly of interest for direct detection by the LISA experiment.

  15. Exploitation of transverse spatial modes in spontaneous four wave mixing photon-pair sources

    Science.gov (United States)

    Cruz-Ramirez, Hector; Ramirez-Alarcon, Roberto; Cruz-Delgado, Daniel; Monroy-Ruz, Jorge; Ortiz-Ricardo, Erasto; Dominguez-Serna, Francisco; Garay-Palmett, Karina; U'Ren, Alfred B.

    2016-09-01

    We present a source for which multiple spontaneous four-wave mixing (SFWM) processes are supported in a few mode birefringent fiber, each process associated with a particular combination of transverse modes for the four participating waves. Within the weakly guiding regime, for which the propagation modes may be well approximated by linearly polarized (LP) modes, the departure from circular symmetry due to the fiber birefringence translates into orbital angular momentum (OAM) and parity conservation rules, i.e. reflecting elements from both azimuthal and rectangular symmetries. In our source: i) each process is group-velocity-matched so that it is, by design, nearly-factorable, and ii) the spectral separation between neighboring processes is greater than the marginal spectral width of each process. Consequently, there is a direct correspondence between the joint amplitude of each process and each of the Schmidt mode pairs of the overall two-photon state. The present paper covers work presented in Refs.1 and.2

  16. Guided Waves in Asymmetric Hyperbolic Slab Waveguides. The TM Mode Case

    CERN Document Server

    Lyashko, Ekaterina I

    2016-01-01

    Nonlinear guided wave modes in an asymmetric slab waveguide formed by an isotropic dielectric layer placed on a linear or nonlinear substrate and covered by a hyperbolic material are investigated. Optical axis is normal to the slab plane. The dispersion relations for TM waves are found. It is shown that there are additional cut-off frequencies for each TM mode. The effects of the nonlinearity on the dispersion relations are investigated and discussed. There are the modes, which are corresponded with situation where the peak of electric field is localized in the nonlinear substrate. These modes are absent in the linear waveguide. To excite these modes the power must exceed certain threshold value.

  17. Color M-mode and pulsed wave tissue Doppler echocardiography

    DEFF Research Database (Denmark)

    Møller, J E; Søndergaard, E; Poulsen, S H;

    2001-01-01

    To assess the association between color M-mode flow propagation velocity and the early diastolic mitral annular velocity (E(m)) obtained with tissue Doppler echocardiography and to assess the prognostic implications of the indexes, echocardiography was performed on days 1 and 5, and 1 and 3 months...

  18. High-Energy Four-Wave Mixing, with Large-Mode-Area Higher-Order Modes in Optical Fibres

    DEFF Research Database (Denmark)

    Rishøj, Lars Søgaard; Steinvurzel, P. E.; Chen, Y.;

    2012-01-01

    We demonstrate, for the first time, four-wave mixing, in the 1-μm spectral regime, in an LMA silica fiber. Pumping a 618-μm2 LP07 mode (λo = 1038.4 nm) with a 1064.6-nm Nd:YAG laser results in the generation of modulation instability, and multiple Stokes/anti-Stokes lines, opening up the prospect...

  19. Observational evidence for travelling wave modes bearing distance proportional shifts

    CERN Document Server

    Guruprasad, V

    2015-01-01

    Discrepancies of range between the Space Surveillance Network radars and the Deep Space Network in tracking the 1998 earth flyby of NEAR, and between ESA's Doppler and range data in Rosetta's 2009 flyby, reveal a consistent excess delay, or lag, equal to instantaneous one-way travel time in the telemetry signals. These lags readily explain all details of the flyby anomaly, and are shown to be symptoms of chirp d'Alembertian travelling wave solutions, relating to traditional sinusoidal waves by a rotation of the spectral decomposition due to the clock acceleration caused by the Doppler rates during the flybys. The lags thus relate to special relativity, but yield distance proportional shifts like those of cosmology at short range.

  20. Propagation of Superluminous L-O Mode Waves During Geomagnetic Activities

    Institute of Scientific and Technical Information of China (English)

    XIAO Fuliang; CHEN Lunjin; ZHENG Huinan; ZHOU Qinghua; WANG Shui

    2008-01-01

    The effect of the azimuthal angle ψ of the wave vector k on the propagation characteristics of the superluminous L-O mode waves (together with a case of the R-X mode) during different geomagnetic activities using a three-dimensional (3D) ray-tracing method is investigated.This work is primarily an extension of our previous two-dimensional study in which the wave azimuthal angle was not considered.We present numerical simulations for this mode which is generated in the source cavity along a 70° night geomagnetic field line at the specific altitude of 1.5RE (where RE is the Earth's radius).It is found that,as in the two-dimensional case,the trajectory of L-O mode starting in the source meridian plane (or the wave azimuthal angle ψ=180°) can reach the lowest latitude;whereas it basically stays at relatively higher latitudes starting off the source meridian plane (or ψ≠180°).The results reveal that under appropriate conditions,the superluminous L-O mode waves may exist in the radiation belts of the Earth,but this remains to be supplemented by observational data.

  1. Surfing gravitational waves: can bigravity survive growing tensor modes?

    CERN Document Server

    Amendola, Luca; Martinelli, Matteo; Pettorino, Valeria; Zumalacarregui, Miguel

    2015-01-01

    The theory of bigravity offers one of the simplest possibilities to describe a massive graviton while having self-accelerating cosmological solutions without a cosmological constant. However, it has been shown recently that bigravity is affected by early-time fast growing modes on the tensor sector. Here we argue that we can only trust the linear analysis up to when perturbations are in the linear regime and use a cut-off to stop the growing of the metric perturbations. This analysis, although more consistent, still leads to growing tensor modes that are unacceptably large for the theory to be compatible with measurements of the cosmic microwave background (CMB), both in temperature and polarization spectra. In order to suppress the growing modes and make the model compatible with CMB spectra, we find it necessary to either fine-tune the initial conditions, modify the theory or set the cut-off for the tensor perturbations of the second metric much lower than unity. Initial conditions such that the growing mod...

  2. Plasma production by helicon waves with single mode number in low magnetic fields

    CERN Document Server

    Sato, G; Hatakeyama, R; Sato, Genta; Oohara, Wataru; Hatakeyama, Rikizo

    2004-01-01

    Radio-frequency discharges are performed in low magnetic fields (0-10 mT) using three types of helicon-wave exciting antennas with the azimuthal mode number of $|m|$ = 1. The most pronounced peak of plasma density is generated in the case of phased helical antenna at only a few mT, where the helicon wave with $|m| = 1$ is purely excited and propagates. An analysis based on the dispersion relation well explains the density-peak phenomenon in terms of the correspondence between the antenna one-wavelength and the helicon wavelength. The $m=+1$ helicon wave propagates even in high magnetic fields where the density peaks are not observed, but the $m=-1$ helicon wave disappers. It is expected theoretically that the $m=-1$ helicon wave shows cutoff behavior in a low density region, [M. Kramer, Phys. Plasmas 6, 1052 (1999)], and the cutoff of $m=-1$ helicon wave experimentally observed coincides with the calculated one.

  3. Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves

    Science.gov (United States)

    Okabe, Yoji; Fujibayashi, Keiji; Shimazaki, Mamoru; Soejima, Hideki; Ogisu, Toshimichi

    2010-11-01

    A new ultrasonic propagation system has been constructed using macrofiber composite (MFC) actuators and fiber Bragg grating (FBG) sensors. The MFCs and FBGs can be integrated into composite laminates because of their small size and high fracture strain. The developed system can send and receive broadband Lamb waves. In this research, this system was used to detect delamination damage in composite laminates. First, the multiple modes of Lamb waves in a carbon-fiber-reinforced plastic (CFRP) quasi-isotropic laminate were identified by transmitting and receiving the symmetric and antisymmetric modes separately. Then, the mode conversions at both tips of a delamination were investigated through an experiment and a two-dimensional finite element analysis (FEA). A new delamination detection method was proposed on the basis of the mode conversions, and experiments were carried out on laminates with an artificial delamination. When antisymmetric modes were excited, the frequency dispersion of the received A1 mode changed, depending on the delamination length owing to the mode conversion between the A1 mode and the S0 mode. This phenomenon was confirmed through the FEA and these results prove that this new method is effective in detecting a delamination in CFRP laminates.

  4. Higher-order Laguerre-Gauss mode generation and interferometry for gravitational wave detectors

    CERN Document Server

    Granata, Massimo; Ward, Robert; Barsuglia, Matteo

    2010-01-01

    We report on the first demonstration of higher-order Laguerre-Gauss (LG) mode generation and interferometry in a table-top experimental setup and in a manner scalable to the requirements of gravitational wave detection. Because higher-order LG modes have a wider spatial profile than the fundamental Gaussian mode, interferometric gravitational wave detectors which use higher-order LG modes will be less susceptible to mirror thermal noise, which is expected to limit the sensitivity of all currently planned terrestrial detectors. In our experiment we used a diffractive optical element to convert a fundamental LG00 Gaussian beam into an LG33 mode, with a purity of 88%. We then injected this mode into a mode-cleaner cavity, increasing the purity of the transmitted LG33 beam up to 98%. The ratio between the power of the LG00 mode delivered by our laser and the power of the LG33 transmitted by the cavity was 36%. By measuring the transmission of our setup using the LG00 mode, we inferred that the conversion efficien...

  5. Identification of low-frequency kinetic wave modes in the Earth's ion foreshock

    Directory of Open Access Journals (Sweden)

    X. Blanco-Cano

    Full Text Available In this work we use ion and magnetic field data from the AMPTE-UKS mission to study the characteristics of low frequency (ωr « Ωp waves observed upstream of the Earth's bow shock. We test the application of various plasma-field correlations and magnetic ratios derived from linear Vlasov theory to identify the modes in this region. We evaluate (for a parameter space consistent with the ion foreshock the Alfvén ratio, the parallel compressibility, the cross-helicity, the noncoplanar ratio, the magnetic compression and the polarization for the two kinetic instabilities that can be generated in the foreshock by the interaction of hot diffuse ions with the solar wind: the left-hand resonant and the right-hand resonant ion beam instabilities. Comparison of these quantities with the observed plasma-field correlations and various magnetic properties of the waves observed during 10 intervals on 30 October 1984, where the waves are associated with diffuse ions, allows us to identify regions with Alfvénic waves and regions where the predominant mode is the right-hand resonant instability. In all the cases the waves are transverse, propagating at angles ≤ 33° and are elliptically polarized. Our results suggest that while the observed Alfvén waves are generated locally by hot diffuse ions, the right-handed waves may result from the superposition of waves generated by two different types of beam distribution (i.e. cold beam and diffuse ions. Even when there was good agreement between the values of observed transport ratios and the values given by the theory, some discrepancies were found. This shows that the observed waves are different from the theoretical modes and that mode identification based only on polarization quantities does not give a complete picture of the waves' characteristics and can lead to mode identification of waves whose polarization may agree with theoretical predictions even when

  6. Extreme Loads on the Mooring Lines and Survivability Mode for the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, E.

    2011-01-01

    One of the main challenges Wave Energy Converters have to face on the road towards commercialization is to ensure survivability in extreme condition at a reasonable capital costs. For a floating device like the Wave Dragon, a reliable mooring system is essential. The control strategy of the Wave...... by approximately 20-30% by lowering the crest level and balancing the device to lean a little towards the front....

  7. Diffusion Simulation of Outer Radiation Belt Electron Dynamics Induced by Superluminous L-O Mode Waves

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-Liang; HE Zhao-Guo; ZHANG Sai; SU Zhen-Peng; CHEN Liang-Xu

    2011-01-01

    Temporal evolution of outer radiation belt electron dynamics resulting from superluminous L-O mode waves is simulated at L=6.5. Diffusion rates are evaluated and then used as inputs to solve a 2D momentum-pitch-angle diffusion equation, particularly with and without cross diffusion terms. Simulated results demonstrate that phase space density(PSD) of energetic electrons due to L-O mode waves can enhance significantly within 24 h, covering a broader pitch-angle range in the absence of cross terms than that in the presence of cross terms. PSD evolution is also determined by the peak wave frequency, particularly at high kinetic energies. This result indicates that superluminous waves can be a potential candidate responsible for outer radiation belt electron dynamics.

  8. Dynamic evolution of outer radiation belt electrons driven by superluminous R-X mode waves

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We present initial results on the temporal evolution of the phase space density (PSD) of the outer radiation belt energetic electrons driven by the superluminous R-X mode waves. We calculate diffusion rates in pitch angle and momentum assuming the standard Gaussian distributions in both wave frequency and wave normal angle at the location L=6.5. We solve a 2D momentum-pitch-angle Fokker-Planck equation using those diffusion rates as inputs. Numerical results show that R-X mode can produce significant acceleration of relativistic electrons around geostationary orbit,supporting previous findings that superluminous waves potentially contribute to dramatic variation in the outer radiation belt electron dynamics.

  9. Ion-Acoustic Wave Scattering description using Case-Van Kampen modes

    Science.gov (United States)

    Berumen, Jorge; Chu, Feng; Hood, Ryan; Mattingly, Sean; Skiff, Fred

    2016-10-01

    We present an experimental characterization of the ion acoustic wave scattering using Case-Van Kampen modes. The experiment is performed in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional with typical conditions: n 109cm-3 Te 7 eV and B 1 kG. A 5 ring antenna with diameter similar to the plasma diameter is used for launching the waves. A survey of the ion velocity distribution function's zeroth and first order as well as density fluctuations at different frequencies is done using Laser-Induced Fluorescence (LIF) as the main diagnostics method. Analysis of the scattering of the waves and its dependence on wave frequency is done utilizing Case-Van Kampen modes and the use of Morrison's G-transform. This research is supported by the Department of Energy under Grant No. DOE DE-FG02-99ER54543.

  10. Laser vibrometer measurement of guided wave modes in rail track

    CSIR Research Space (South Africa)

    Loveday, PW

    2014-11-01

    Full Text Available in 19 rails [11]. Development of transducers or transducer arrays to effectively excite or 20 sense specific modes of propagation may also be based on SAFE models of the rail. 21 Three – dimensional finite elements were used to model piezoelectric... piezoelectric sandwich transducer comprising a back mass, four 12 piezoelectric ceramic rings, a front mass and a centre bolt was used to excite the rail. 13 The transducer, which resembles an ultrasonic cleaning transducer, was attached 14 under the head...

  11. Polarization switch of four-wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin;

    2015-01-01

    Degenerate spontaneous four-wave mixing is considered in a large mode area hybrid photonic crystal fiber. Numerical and experimental results show birefringence assisted four-wave mixing for a certain polarization state of the pump field. The parametric gain can be turned on and off by switching...... the polarization state of the pump field between the two principal axis of the hybrid photonic crystal fiber. (C) 2015 Optical Society of America...

  12. Polarization switch of four-wave mixing in large mode area hybrid photonic crystal fibers.

    Science.gov (United States)

    Petersen, Sidsel R; Alkeskjold, Thomas T; Olausson, Christina B; Lægsgaard, Jesper

    2015-02-15

    Degenerate spontaneous four-wave mixing is considered in a large mode area hybrid photonic crystal fiber. Numerical and experimental results show birefringence assisted four-wave mixing for a certain polarization state of the pump field. The parametric gain can be turned on and off by switching the polarization state of the pump field between the two principal axis of the hybrid photonic crystal fiber.

  13. Blockage, trapping and waveguide modes for flexural waves in a semi-infinite double grating

    CERN Document Server

    Jones, Ian S; Movchan, Alexander B

    2015-01-01

    The paper presents a novel view on the scattering of a flexural wave in a Kirchhoff plate by a semi-infinite discrete system. Blocking and channelling of flexural waves are of special interest. A quasi-periodic two-source Green's function is used in the analysis of the waveguide modes. An additional "effective waveguide" approximation has been constructed. Comparisons are presented for these two methods in addition to an analytical solution for a finite truncated system.

  14. Quantitative Mode Stability for the Wave Equation on the Kerr Spacetime

    CERN Document Server

    Shlapentokh-Rothman, Yakov

    2013-01-01

    We give a quantitative refinement and simple proofs of mode stability type statements for the wave equation on Kerr backgrounds in the full sub-extremal range (|a| < M). As an application, we are able to quantitatively control the energy flux along the horizon and null infinity and establish integrated local energy decay for solutions to the wave equation in any bounded-frequency regime.

  15. Size dependence of spin-wave modes in Ni80Fe20 nanodisks

    Science.gov (United States)

    Lupo, P.; Kumar, D.; Adeyeye, A. O.

    2015-07-01

    We investigate the radial and azimuthal spin-wave (SW) resonance modes in permalloy (Py: Ni80Fe20) disks at zero external magnetic field, as function of disk diameter and thickness, using broadband ferromagnetic resonance spectroscopy. We observed, from both experimental and micromagnetic simulation results that the number of SW absorption peaks increases with disk diameter. Numerically calculated SW mode profiles revealed a characteristic minimum size, which does not scale proportionately with the increasing disk diameter. We show that higher order modes could thus be avoided with an appropriate choice of the disk diameter (smaller than the minimum mode size). Moreover, based on the mode profiles, the existence of azimuthal SW modes with even number of crests or troughs can be ruled out. These results could be useful in enhancing our fundamental understanding as well as engineering of new magnonic devices.

  16. Size dependence of spin-wave modes in Ni80Fe20 nanodisks

    Directory of Open Access Journals (Sweden)

    P. Lupo

    2015-07-01

    Full Text Available We investigate the radial and azimuthal spin-wave (SW resonance modes in permalloy (Py: Ni80Fe20 disks at zero external magnetic field, as function of disk diameter and thickness, using broadband ferromagnetic resonance spectroscopy. We observed, from both experimental and micromagnetic simulation results that the number of SW absorption peaks increases with disk diameter. Numerically calculated SW mode profiles revealed a characteristic minimum size, which does not scale proportionately with the increasing disk diameter. We show that higher order modes could thus be avoided with an appropriate choice of the disk diameter (smaller than the minimum mode size. Moreover, based on the mode profiles, the existence of azimuthal SW modes with even number of crests or troughs can be ruled out. These results could be useful in enhancing our fundamental understanding as well as engineering of new magnonic devices.

  17. Degeneration of Four Wave Mixing in 500 m Step Index Two Mode Fiber

    Directory of Open Access Journals (Sweden)

    J. Jamaludin

    2016-12-01

    Full Text Available Four wave mixing (FWM in two-mode fiber was experimentally demonstrated at 24.7 dBm of output Erbium doped fiber amplifier (EDFA. The 0.5 km two mode fiber in laser cavity enhances the performance of four wave mixing by suppressing the homogenous broadening effect in erbium-doped fiber and perform a stable oscillation. At output EDFA approaches to 24.7 dBm, FWM is generated and the increasing of output EDFA induced the optical signal to noise ratio (OSNR of all laser peaks.

  18. The slow-mode nature of compressible wave power in solar wind turbulence

    CERN Document Server

    Howes, G G; Klein, K G; Chen, C H K; Salem, C S; TenBarge, J M

    2011-01-01

    We use a large, statistical set of measurements from the Wind spacecraft at 1 AU, and supporting synthetic spacecraft data based on kinetic plasma theory, to show that the compressible component of inertial range solar wind turbulence is primarily in the kinetic slow mode. The zero-lag cross correlation C(delta n, delta B_parallel) between proton density fluctuations delta n and the field-aligned (compressible) component of the magnetic field delta B_parallel is negative and close to -1. The typical dependence of C(delta n,delta B_parallel) on the ion plasma beta_i is consistent with a spectrum of compressible wave energy that is almost entirely in the kinetic slow mode. This has important implications for both the nature of the density fluctuation spectrum and for the cascade of kinetic turbulence to short wavelengths, favoring evolution to the kinetic Alfven wave mode rather than the (fast) whistler mode.

  19. Overmoded subterahertz surface wave oscillator with pure TM{sub 01} mode output

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guangqiang; Zeng, Peng; Wang, Dongyang [Northwest Institute of Nuclear Technology, P. O. Box 69-1, Xi' an 710024 (China); Science and Technology on High Power Microwave Laboratory, Xi' an 710024 (China); Wang, Jianguo, E-mail: wanguiuc@mail.xjtu.edu.cn [Northwest Institute of Nuclear Technology, P. O. Box 69-1, Xi' an 710024 (China); School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Li, Shuang [Northwest Institute of Nuclear Technology, P. O. Box 69-1, Xi' an 710024 (China); Science and Technology on High Power Microwave Laboratory, Xi' an 710024 (China); School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-02-15

    Overmoded O-type Cerenkov generators using annular electron beams are facing the problem of multi-modes output due to the inevitable structural discontinuities. A simple but effective method to achieve the pure TM{sub 01} mode output is applied on the 0.14 THz overmoded surface wave oscillator (SWO) in this paper. In spite of still using an overmoded slow wave structure to ensure the easy fabrication, the followed smooth circular waveguide is shrinkingly tapered to the output waveguide with appropriate radius that it cuts off other higher modes except TM{sub 01} mode. Moreover, the modified device here has the same power capacity as the previous one according to the numerical analysis. By optimized lengths of the transition waveguide and tapered waveguide, particle-in-cell simulation results indicate that the subterahertz wave with output power increased 14.2% at the same frequency is obtained from the proposed SWO under the previous input conditions, and importantly, the output power is all carried by TM{sub 01} mode as expected. Further simulation results in the pulse regime confirm the feasibility of the optimized structure in the actual experiments. This simple and viable design is also applicable to overmoded devices in the lower frequency band of subterahertz wave.

  20. Pairwise entanglement and readout of atomic-ensemble and optical wave-packet modes in traveling-wave Raman interactions

    CERN Document Server

    Wasilewski, W; Wasilewski, Wojciech

    2005-01-01

    We analyze quantum entanglement of Stokes light and atomic electronic polarization excited during single-pass, linear-regime, stimulated Raman scattering in terms of optical wave-packet modes and atomic-ensemble spatial modes. The output of this process is confirmed to be decomposable into multiple discrete, bosonic mode pairs, each pair undergoing independent evolution into a two-mode squeezed state. For this we extend the Bloch-Messiah reduction theorem, previously known for discrete linear systems (S. L. Braunstein, Phys. Rev. A, vol. 71, 055801 (2005)). We present typical mode functions in the case of one-dimensional scattering in an atomic vapor. We find that in the absence of dispersion, one mode pair dominates the process, leading to a simple interpretation of entanglement in this continuous-variable system. However, many mode pairs are excited in the presence of dispersion-induced temporal walkoff of the Stokes, as witnessed by the photon-count statistics. We also consider the readout of the stored at...

  1. Voltage mode electronically tunable full-wave rectifier

    Science.gov (United States)

    Petrović, Predrag B.; Vesković, Milan; Đukić, Slobodan

    2017-01-01

    The paper presents a new realization of bipolar full-wave rectifier of input sinusoidal signals, employing one MO-CCCII (multiple output current controlled current conveyor), a zero-crossing detector (ZCD), and one resistor connected to fixed potential. The circuit provides the operating frequency up to 10 MHz with increased linearity and precision in processing of input voltage signal, with a very low harmonic distortion. The errors related to the signal processing and errors bound were investigated and provided in the paper. The PSpice simulations are depicted and agree well with the theoretical anticipation. The maximum power consumption of the converter is approximately 2.83 mW, at ±1.2 V supply voltages.

  2. Propagating modes in a periodic wave guide in the semi-classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Faure, Frederic [LPMMC, Maison des Magisteres Jean Perrin, CNRS, BP 166, Grenoble (France)]. E-mail: frederic.faure@ujf-grenoble.fr

    2002-02-15

    It is well known that the number of propagating modes in a uniform wave guide is the transverse section divided by the wavelength {lambda} (for a two-dimensional (2D) wave guide). In this paper we study the number of propagating modes N{sub modes} in the limit of small {lambda}, in the case where the section is non-constant but periodic. Using results of a study done by Asch and Knauf (Asch J and Knauf A 1998 Nonlinearity 11 175-200), we show that for small {lambda}, N{sub modes} grows like {mu}{sub b}/{lambda} where {mu}{sub b} is the measure of the ballistic classical trajectories inside the guide. In the case of an ergodic wave guide, where there are no ballistic trajectories but only diffusive trajectories, we show that N{sub modes} grows like {radical}D/{radical}{lambda}where D is the diffusion constant. These results are generalized for any Hamiltonian periodic in one direction, and numerical results with the kicked Harper model are given. N{sub modes} can be related to the Landauer conductance. (author)

  3. Gravitational waves from the evolution of the f-mode instability in neutron stars

    CERN Document Server

    Passamonti, A; Kokkotas, K

    2012-01-01

    We study the dynamical evolution of the gravitational-wave driven instability of the f-mode in rapidly rotating relativistic stars. With an approach based on linear perturbation theory we describe the evolution of the mode amplitude and follow the trajectory of a newborn neutron star through its instability window. The influence on the f-mode instability of the magnetic field and the presence of an unstable r-mode is also considered. Two different configurations are studied in more detail; a standard N = 1 polytrope with a typical mass and radius and a more extreme polytropic N = 2/3 model which describes a supramassive neutron star. We study several evolutions with different initial rotation rates and temperature and determine the gravitational waves radiated during the instability. For reasonable values of the mode saturation amplitude, i.e. with a mode energy of about 1e6 Msun c^2, the gravitational-wave signal can be detected by the Einstein Telescope detector from the Virgo cluster. The magnetic field af...

  4. Standing wave plasmon modes interact in an antenna-coupled nanowire

    Science.gov (United States)

    Day, Jared; Large, Nicolas; Nordlander, Peter; Halas, Naomi

    2015-03-01

    In a standing wave optical cavity, the coupling of cavity modes, e.g. through a nonlinear medium, results in a rich variety of nonlinear dynamical phenomena, such as frequency pushing and pulling, mode-locking and pulsing, and modal instabilities. Metallic nanowires of finite length support a hierarchy of longitudinal surface plasmon modes with standing wave properties: the plasmonic analog of a Fabry-Pérot cavity. Here we show that positioning the nanowire within the gap of a plasmonic nanoantenna introduces a passive, hybridization-based coupling of the standing-wave nanowire plasmon modes with the antenna structure, mediating an interaction between the nanowire plasmon modes themselves. Frequency pushing and pulling, and the enhancement and suppression of specific plasmon modes, can be controlled and manipulated by nanoantenna position and shape. Dark-field spectroscopy, CL spectroscopy and imaging, and finite-difference time-domain calculations are performed to investigate these surface plasmon ``drift.'' Near-field coupling of nanoantennas to nanowire optical cavities shows that plasmon hybridization is a powerful strategy for controlling the radiative LDOS of nanowires, and could ultimately enable strategies for active control of emission properties in nanowire-based devices. Work funded by the Welch Foundation (C-1220, C-1222), the NSSEFF (N00244-09-1-0067), the ONR (N00014-10-1-0989), and the NSF (ECCS-1040478, CNS-0821727).

  5. Mirror waves and mode transition observed in the magnetosheath by Double Star TC-1

    Directory of Open Access Journals (Sweden)

    J. Du

    2009-01-01

    Full Text Available The Double Star TC-1 magnetosheath pass on 26 February 2004 is used to investigate magnetic field fluctuations. Strong compressional signatures which last for more than an hour have been found near the magnetopause behind a quasi-perpendicular bow shock. These compressional structures are most likely mirror mode waves. There is a clear wave transition in the magnetosheath which probably results from the change of the interplanetary magnetic field (IMF cone angle. The wave characteristics in the magnetosheath are strongly controlled by the type of the upstream bow shock.

  6. WAVE DAMPING OBSERVED IN UPWARDLY PROPAGATING SAUSAGE-MODE OSCILLATIONS CONTAINED WITHIN A MAGNETIC PORE

    Energy Technology Data Exchange (ETDEWEB)

    Grant, S. D. T.; Jess, D. B.; Keys, P. H. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Moreels, M. G.; Doorsselaere, T. Van [Center for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Morton, R. J. [Mathematics and Information Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Christian, D. J. [Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330 (United States); Giagkiozis, I.; Verth, G.; Erdélyi, R. [Solar Physics and Space Plasma Research Centre (SPRC), The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Fedun, V., E-mail: sgrant19@qub.ac.uk [Space Systems Laboratory, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2015-06-10

    We present observational evidence of compressible MHD wave modes propagating from the solar photosphere through to the base of the transition region in a solar magnetic pore. High cadence images were obtained simultaneously across four wavelength bands using the Dunn Solar Telescope. Employing Fourier and wavelet techniques, sausage-mode oscillations displaying significant power were detected in both intensity and area fluctuations. The intensity and area fluctuations exhibit a range of periods from 181 to 412 s, with an average period ∼290 s, consistent with the global p-mode spectrum. Intensity and area oscillations present in adjacent bandpasses were found to be out of phase with one another, displaying phase angles of 6.°12, 5.°82, and 15.°97 between the 4170 Å continuum–G-band, G-band–Na i D{sub 1}, and Na i D{sub 1}–Ca ii K heights, respectively, reiterating the presence of upwardly propagating sausage-mode waves. A phase relationship of ∼0° between same-bandpass emission and area perturbations of the pore best categorizes the waves as belonging to the “slow” regime of a dispersion diagram. Theoretical calculations reveal that the waves are surface modes, with initial photospheric energies in excess of 35,000 W m{sup −2}. The wave energetics indicate a substantial decrease in energy with atmospheric height, confirming that magnetic pores are able to transport waves that exhibit appreciable energy damping, which may release considerable energy into the local chromospheric plasma.

  7. Noncontact excitation of guided waves (A0 mode) using an electromagnetic acoustic transducer (EMAT)

    Science.gov (United States)

    Fromme, Paul

    2016-02-01

    Fatigue damage can develop in aircraft structures at locations of stress concentration, such as fasteners, and has to be detected before reaching a critical size to ensure safe aircraft operation. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Electromagnetic acoustic transducers (EMAT) for the noncontact excitation of guided ultrasonic waves were developed. The transducer development for the specific excitation of the A0 Lamb wave mode with an out-of-plane Lorentz force is explained. The achieved radial and angular dependency of the excited guided wave pulses were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed. The application of the developed transducers for defect detection in aluminum components using fully noncontact guided wave measurements was demonstrated. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer.

  8. Partial Reflection and Trapping of a Fast-mode Wave in Solar Coronal Arcade Loops

    CERN Document Server

    Kumar, Pankaj

    2015-01-01

    We report on the first direct observation of a fast-mode wave propagating along and perpendicular to cool (171 {\\AA}) arcade loops observed by the SDO/AIA. The wave was associated with an impulsive/compact flare, near the edge of a sunspot. The EUV wavefront expanded radially outward from the flare center and decelerated in the corona from 1060-760 km/s within ~3-4 minute. Part of the EUV wave propagated along a large-scale arcade of cool loops and was partially reflected back to the flare site. The phase speed of the wave was about 1450 km/s, which is interpreted as a fast-mode wave. A second overlying loop arcade, orientated perpendicular to the cool arcade, is heated and becomes visible in the AIA hot channels. These hot loops sway in time with the EUV wave, as it propagated to and fro along the lower loop arcade. We suggest that an impulsive energy release at one of the footpoints of the arcade loops causes the onset of an EUV shock wave that propagates along and perpendicular to the magnetic field.

  9. Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran, E-mail: tigran@caltech.edu [Department of Physics, University of Illinois, 845 W Taylor Street, Chicago, IL 60607 (United States); Jet Propulsion Laboratory, 4800 Oak Grove Dr, M/S 298, Pasadena, CA 91109 (United States); Murchikova, Elena [TAPIR, California Institute of Technology, MC 350-17, Pasadena, CA 91125 (United States)

    2017-06-15

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium {sup 3}He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves) and transverse velocity (chiral Alfvén wave). We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.

  10. Interaction of a mode-2 internal solitary wave with narrow isolated topography

    Science.gov (United States)

    Deepwell, David; Stastna, Marek; Carr, Magda; Davies, Peter A.

    2017-07-01

    Numerical and experimental studies of the transit of a mode-2 internal solitary wave over an isolated ridge are presented. All studies used a quasi-two-layer fluid with a pycnocline centred at the mid-depth. The wave amplitude and total fluid depth were both varied, while the topography remained fixed. The strength of the interaction between the internal solitary waves and the hill was found to be characterized by three regimes: weak, moderate, and strong interactions. The weak interaction exhibited negligible wave modulation and bottom surface stress. The moderate interaction generated weak and persistent vorticity in the lower layer, in addition to negligible wave modulation. The strong interaction clearly showed material from the trapped core of the mode-2 wave extracted in the form of a thin filament while generating a strong vortex at the hill. A criterion for the strength of the interaction was found by non-dimensionalizing the wave amplitude by the lower layer depth, a /ℓ . A passive tracer was used to measure the conditions for resuspension of boundary material due to the interaction. The speed and prevalence of cross boundary layer transport increased with a /ℓ .

  11. Observations and modelling of the wave mode evolution of an impulse-driven 3 mHz ULF wave

    Directory of Open Access Journals (Sweden)

    D. M. Wright

    2010-09-01

    Full Text Available A combination of an HF Doppler sounder, a network of ground magnetometers, upstream solar wind monitors and a numerical model is used to examine the temporal evolution of an Ultra Low Frequency (ULF wave. The event occurred on 16 April 1998 and followed a solar wind density and pressure increase seen in the upstream ACE spacecraft data. The magnetometer and HF Doppler sounder data show that the event develops into a low-m (−6 field line resonance. HF signals that propagate via the ionosphere exhibit Doppler shifts due to a number of processes that give rise to a time-dependent phase path. The ULF electric and magnetic fields are calculated by a one-dimensional model which calculates the wave propagation from the magnetosphere, through the ionosphere to the ground with an oblique magnetic field. These values are then used to determine a model HF Doppler shift which is subsequently compared to HF Doppler observations. The ULF magnetic field at the ground and Doppler observations are then used to provide model inputs at various points throughout the event. We find evidence that the wave mode evolved from a mixture of fast and Alfvén modes at the beginning of the event to an almost purely shear Alfvénic mode after 6 wavecycles (33 min.

  12. Mode conversion of large-amplitude electromagnetic waves in relativistic critical density plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pesch, T.C.; Kull, H.J. [Aachen Univ., Institute of Theoretical Physics A, RWTH (Germany)

    2009-01-15

    The propagation of linearly polarized large-amplitude electromagnetic waves in critical density plasmas is studied in the framework of the Akiezer-Polovin model. A new mechanism of mode conversion is presented. The well-known periodic solutions are generalized to quasiperiodic solutions taking into account additional electrostatic oscillations. Nearly periodic circle-like solutions are found to be stabilized by intrinsic mode coupling whereas for nearly periodic eight-like solutions an effective mode conversion mechanism is discovered. Finally, the modulation timescales are considered. (authors)

  13. Coupling-of-modes analysis of thin film plate acoustic wave resonators utilizing the S0 Lamb mode.

    Science.gov (United States)

    Yantchev, Ventsislav

    2010-04-01

    In this work the applicability of the coupling-of-modes (COM) approach to the analysis of thin AlN film plate acoustic resonators (FPAR), utilizing the S0 Lamb wave, is discussed. Analysis based on the Floquet-Bloch theorem as well as COM parameter extraction from a micromachined FPAR test structure are simultaneously used to verify the applicability of the COM approach. Finite element model simulation is used to further study the contribution of the higher order mass loading effects over the Lamb wave propagation under a periodical grating. A possibility to achieve zero sensitivity of the FPAR resonance with respect to the grating strip thickness is identified and physically interpreted for the first time.

  14. Current Mode Full-Wave Rectifier Based on a Single MZC-CDTA

    Directory of Open Access Journals (Sweden)

    Neeta Pandey

    2013-01-01

    Full Text Available This paper presents a current mode full-wave rectifier based on single modified Z copy current difference transconductance amplifier (MZC-CDTA and two switches. The circuit is simple and is suitable for IC implementation. The functionality of the circuit is verified with SPICE simulation using 0.35 μm TSMC CMOS technology parameters.

  15. Correlation coefficient measurement of the mode-locked laser tones using four-wave mixing.

    Science.gov (United States)

    Anthur, Aravind P; Panapakkam, Vivek; Vujicic, Vidak; Merghem, Kamel; Lelarge, Francois; Ramdane, Abderrahim; Barry, Liam P

    2016-06-01

    We use four-wave mixing to measure the correlation coefficient of comb tones in a quantum-dash mode-locked laser under passive and active locked regimes. We study the uncertainty in the measurement of the correlation coefficient of the proposed method.

  16. Single mode cavities for parametric oscillatory instability suppression in laser gravitational wave detectors

    Science.gov (United States)

    Poplavskiy, Mikhail V.

    Parametric oscillatory instability will be a serious problem restricting the power circulating in laser gravitation wave detectors (aLIGO). For parametric oscillatory instability suppression we suggest to use practically "single mode" Fabry-Perot (FP) cavity with little changed mirror's specular surface.

  17. Inter-modal four-wave mixing study in a two-mode fiber.

    Science.gov (United States)

    Friis, S M M; Begleris, I; Jung, Y; Rottwitt, K; Petropoulos, P; Richardson, D J; Horak, P; Parmigiani, F

    2016-12-26

    We demonstrate efficient four-wave mixing among different spatial modes in a 1-km long two-mode fiber at telecommunication wavelengths. Two pumps excite the LP01 and LP11 modes, respectively, while the probe signal excites the LP01 mode, and the phase conjugation (PC) and Bragg scattering (BS) idlers are generated in the LP11 mode. For these processes we experimentally characterize their phase matching efficiency and bandwidth and find that they depend critically on the wavelength separation of the two pumps, in good agreement with the numerical study we carried out. We also confirm experimentally that BS has a larger bandwidth than PC for the optimum choice of the pump wavelength separation.

  18. Multi-mode of Four and Six Wave Parametric Amplified Process

    Science.gov (United States)

    Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng

    2017-03-01

    Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.

  19. Wave modes of collective vortex gyration in dipolar-coupled-dot-array magnonic crystals

    Science.gov (United States)

    Han, Dong-Soo; Vogel, Andreas; Jung, Hyunsung; Lee, Ki-Suk; Weigand, Markus; Stoll, Hermann; Schütz, Gisela; Fischer, Peter; Meier, Guido; Kim, Sang-Koog

    2013-07-01

    Lattice vibration modes are collective excitations in periodic arrays of atoms or molecules. These modes determine novel transport properties in solid crystals. Analogously, in periodical arrangements of magnetic vortex-state disks, collective vortex motions have been predicted. Here, we experimentally observe wave modes of collective vortex gyration in one-dimensional (1D) periodic arrays of magnetic disks using time-resolved scanning transmission x-ray microscopy. The observed modes are interpreted based on micromagnetic simulation and numerical calculation of coupled Thiele equations. Dispersion of the modes is found to be strongly affected by both vortex polarization and chirality ordering, as revealed by the explicit analytical form of 1D infinite arrays. A thorough understanding thereof is fundamental both for lattice vibrations and vortex dynamics, which we demonstrate for 1D magnonic crystals. Such magnetic disk arrays with vortex-state ordering, referred to as magnetic metastructure, offer potential implementation into information processing devices.

  20. A global shear velocity model of the mantle from normal modes and surface waves

    Science.gov (United States)

    durand, S.; Debayle, E.; Ricard, Y. R.; Lambotte, S.

    2013-12-01

    We present a new global shear wave velocity model of the mantle based on the inversion of all published normal mode splitting functions and the large surface wave dataset measured by Debayle & Ricard (2012). Normal mode splitting functions and surface wave phase velocity maps are sensitive to lateral heterogeneities of elastic parameters (Vs, Vp, xi, phi, eta) and density. We first only consider spheroidal modes and Rayleigh waves and restrict the inversion to Vs, Vp and the density. Although it is well known that Vs is the best resolved parameter, we also investigate whether our dataset allows to extract additional information on density and/or Vp. We check whether the determination of the shear wave velocity is affected by the a priori choice of the crustal model (CRUST2.0 or 3SMAC) or by neglecting/coupling poorly resolved parameters. We include the major discontinuities, at 400 and 670 km. Vertical smoothing is imposed through an a priori gaussian covariance matrix on the model and we discuss the effect of coupling/decoupling the inverted structure above and below the discontinuities. We finally discuss the large scale structure of our model and its geodynamical implications regarding the amount of mass exchange between the upper and lower mantle.

  1. Separation of Lamb waves modes using polarization filter of 3D laser measured signals

    Science.gov (United States)

    Ambrozinski, Lukasz; Stepinski, Tadeusz; Uhl, Tadeusz

    2015-04-01

    Interpretation of Lamb waves signals can rise serious difficulties due to their multi-modal nature. Different modes propagating with different velocities can be misleading with damage reflected components. As a solution to this problem we propose a technique capable of modes separation based on a polarization filter. Both S0 and A0 Lamb modes exhibit elliptical polarization, however, their polarization parameters, i.e. the ratios of in-plane and out-of-plane displacements and phase-shifts between these components are different. Furthermore, these parameters can be considered constant in a narrow frequency band. Therefore, if the vertical and horizontal components of the wave motion are available, it is possible to apply signal processing technique referred to as oblique polarization filter. This operation is based on phase-shifts and amplifications of the in- and out-of-plane components, which results in orthogonal, linearly polarized A0 and S0 waves signals. In this paper the proposed technique will be illustrated using both numerical simulations and experimental data. The simulations of wave propagation were performed using local interaction simulation approach (LISA) assuming isotropic material. The experiments were performed using 3D laser scanning Doppler vibrometer that allowed to capture the in-plane and out-of-plane wave components.

  2. Chromospheric Heating and the Excitation of Magnetic Tube Waves Through p-Mode Buffeting

    Science.gov (United States)

    Hindman, Bradley W.

    1997-05-01

    The dissipation of magnetic tube waves may be the primary source of energy in the thermal balance of the solar chromosphere and corona. In this paper, I compute an upper limit on the energy flux of tube waves that can be driven into the chromosphere if the waves are excited by buffeting of magnetic flux tubes by p--modes. In addition, I estimate the p--mode line widths which result from this transfer of energy from the modes to the flux tube waves. To obtain the upper limit, I assume that the solar magnetic field has a fibril structure consisting of a large set of well--separated, identical tubes. Each tube is axisymmetric, vertical and slender. I approximate the solar atmosphere with a truncated isentropic polytrope, chosen such that it's upper surface matches the tau_ {5000}=1 layer of the photospheric model of Maltby (1986). The response of the fibrils is described using the thin flux tube approximation, ignoring multiple scattering between the tubes, and assuming that the p--modes force the tubes incoherently. The effects of the region above the surface of the polytrope, where a flaring flux tube is poorly represented by the thin flux equations, are simulated through a boundary condition applied at the polytrope's surface. By varying this boundary condition the influence of any upper atmosphere can be reproduced. To compute an upper limit, I chose the boundary condition which optimizes the upward flux of waves. I find that the largest flux of tube waves that can be sent into chromosphere is 29 ergs cm(-2) s(-1) for a fibril field with a 1% filling factor. This flux is miniscule when compared to the energy flux necessary to heat the chromosphere or corona. Therefore, tube waves generated by the buffeting of magnetic fibrils by acoustic waves are inconsequential in the energy balance of the upper atmosphere. Furthermore, using the same boundary conditions, I find that the line width of a p--mode due to the absorption of that mode by the fibrils can be a

  3. Data conditioning for gravitational wave detectors a Kalman filter for regressing suspension violin mode

    CERN Document Server

    Finn, L S; Finn, Lee Samuel; Mukherjee, Soma

    2001-01-01

    Interferometric gravitational wave detectors operate by sensing the differential light travel time between free test masses. Correspondingly, they are sensitive to anything that changes the physical distance between the test masses, including physical motion of the masses themselves. In ground-based detectors the test masses are suspended as pendula and, consequently, thermal or other excitations of the suspension wires' violin modes lead to a strong, albeit narrow-band, ``signal'' in the detector wave-band that can confound attempts to observe gravitational waves. Here we describe the design of a Kalman filter that determines the time-dependent vibrational state of a detector's suspension ``violin'' modes from the detector output. From the estimated state we can predict that component of the detector output due to suspension excitations, thermal or otherwise, and subtractively remove those disturbances from the detector output. We demonstrate the filter's effectiveness both through numerical simulations and ...

  4. Resonant transmission and mode modulation of acoustic waves in H-shaped metallic gratings

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yu-Qiang; Fan, Ren-Hao; Zhang, Kun; Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn, E-mail: dongxiang87@gmail.com [National Laboratory of solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Qi, Dong-Xiang, E-mail: rwpeng@nju.edu.cn, E-mail: dongxiang87@gmail.com [National Laboratory of solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); School of Science, Jiangnan University, Wuxi 214122 (China)

    2015-04-15

    In this work, we demonstrate that resonant full transmission of acoustic waves exists in subwavelength H-shaped metallic gratings, and transmission peaks can be efficiently tuned by adjusting the grating geometry. We investigate this phenomenon through both numerical simulations and theoretical calculations based on rigorous-coupled wave analysis. The transmission peaks are originated from Fabry-Perot resonances together with the couplings between the diffractive wave on the surface and the multiple guided modes in the slits. Moreover, the transmission modes can be efficiently tuned by adjusting the cavity geometry, without changing the grating thickness. The mechanism is analyzed based on an equivalent circuit model and verified by both the theoretical calculations and the numerical simulations. This research has potential application in acoustic-device miniaturization over a wide range of wavelengths.

  5. Lightning on Venus inferred from whistler-mode waves in the ionosphere.

    Science.gov (United States)

    Russell, C T; Zhang, T L; Delva, M; Magnes, W; Strangeway, R J; Wei, H Y

    2007-11-29

    The occurrence of lightning in a planetary atmosphere enables chemical processes to take place that would not occur under standard temperatures and pressures. Although much evidence has been reported for lightning on Venus, some searches have been negative and the existence of lightning has remained controversial. A definitive detection would be the confirmation of electromagnetic, whistler-mode waves propagating from the atmosphere to the ionosphere. Here we report observations of Venus' ionosphere that reveal strong, circularly polarized, electromagnetic waves with frequencies near 100 Hz. The waves appear as bursts of radiation lasting 0.25 to 0.5 s, and have the expected properties of whistler-mode signals generated by lightning discharges in Venus' clouds.

  6. The impact of magnetic geometry on wave modes in cylindrical plasmas

    CERN Document Server

    Chang, Lei

    2015-01-01

    Both space and laboratory plasmas can be associated with static magnetic field, and the field geometry varies from uniform to non-uniform. This thesis investigates the impact of magnetic geometry on wave modes in cylindrical plasmas. The cylindrical configuration is chosen so as to explore this impact in a tractable but experimentally realisable configuration. Three magnetic geometries are considered: uniform, focused and rippled. These studies suggest suppressing drift waves in a uniformly magnetised plasma by increasing the field strength, enhancing the efficiency of helicon wave production of plasma by using a focused magnetic field, and forming a gap eigenmode on a linear plasma device by introducing a local defect to the system's periodicity, which is useful for understanding the gap-mode formation and interaction with energetic particles in fusion plasmas.

  7. Amplitude controlled array transducers for mode selection and beam steering of guided waves in plates

    Science.gov (United States)

    Kannajosyula, H.; Lissenden, C. J.; Rose, J. L.

    2013-01-01

    We present a method for mode selection of guided wave modes and beam steering using purely amplitude variation across a one dimensional linear array of transducers. The method is distinct from apodization of phased array transducers that involves amplitude variation in addition to time delays and merely aims to improve the spectral characteristics of the transducer. The relationship between amplitude variation and the pitch of the array is derived by considering the resulting transduction as analogous to a spatio-temporal filter approach. It is also shown analytically and through numerical examples that the proposed method results in bidirectional guided waves when the steering angle is zero. Further, for non-zero steering angles, the waves travel in four directions, including the desired direction. Experimental studies are suggested.

  8. Non-WKB Models of the FIP Effect: The Role of Slow Mode Waves

    CERN Document Server

    Laming, J Martin

    2011-01-01

    A model for element abundance fractionation between the solar chromosphere and corona is further developed. The ponderomotive force due to Alfven waves propagating through, or reflecting from the chromosphere in solar conditions generally accelerates chromospheric ions, but not neutrals, into the corona. This gives rise to what has become known as the First Ionization Potential (FIP) Effect. We incorporate new physical processes into the model. The chromospheric ionization balance is improved, and the effect of different approximations is discussed. We also treat the parametric generation of slow mode waves by the parallel propagating Alfven waves. This is also an effect of the ponderomotive force, arising from the periodic variation of the magnetic pressure driving an acoustic mode, which adds to the background longitudinal pressure. This can have subtle effects on the fractionation, rendering it quasi-mass independent in the lower regions of the chromosphere. We also briefly discuss the change in the fracti...

  9. Resonantly pumped continuous-wave mode-locked Ho:YAP laser

    Science.gov (United States)

    Duan, X. M.; Lin, W. M.; Cui, Z.; Yao, B. Q.; Li, H.; Dai, T. Y.

    2016-04-01

    In this paper, we report a continuous-wave mode-locked Ho:YAP laser for the first time to our knowledge. Mode-locked pulse was produced by using an acousto-optic modulator. A 1.91-μm Tm-fiber laser as the pump source, at incident pump power of 25.9 W, the maximum output power of 2.87 W at 2117.8 nm was achieved in continuous-wave mode-locked regime. Pulse as short as 254.8 ps was obtained at repetition frequency of 81.52 MHz. In addition, the beam quality factor M 2 value of 1.6 was obtained.

  10. Effect of localized microstructural evolution on higher harmonic generation of guided wave modes

    Science.gov (United States)

    Choi, Gloria; Liu, Yang; Yao, Xiaochu; Lissenden, Cliff J.

    2015-03-01

    Higher harmonic generation of ultrasonic waves has the potential to be used to detect precursors to macroscale damage of phenomenon like fatigue due to microstructural evolution contributing to nonlinear material behavior. Aluminum plates having various plastic zone sizes were plastically deformed to different levels. The fundamental shear horizontal mode was then generated in the plate samples via a magnetostrictive transducer. After propagating through the plastic zone the primary wave mode (SH0) and its third harmonic (sh0) were received by a second transducer. Results of a parallel numerical study using the S1-s2 Lamb mode pair, where sensitivity to changes in third order elastic constants were investigated, are described within the context of the experimental results. Specimens used within both studies are geometrically similar and have double edge notches for dog bone samples that introduce localized plastic deformation. Through both studies, the size of the plastic zone with respect to the propagation distance and damage intensity influence the higher harmonics.

  11. Observations and mode identification of sausage waves in a magnetic pore

    Science.gov (United States)

    Moreels, M. G.; Freij, N.; Erdélyi, R.; Van Doorsselaere, T.; Verth, G.

    2015-07-01

    Aims: We aim to determine the phase speed of an oscillation in a magnetic pore using only intensity images at one height. The observations were obtained using the CRisp Imaging SpectroPolarimeter at the Swedisch 1-m Solar Telescope and show variations in both cross-sectional area and intensity in a magnetic pore. Methods: We have designed and tested an observational method to extract the wave parameters that are important for seismology. We modelled the magnetic pore as a straight cylinder with a uniform plasma both inside and outside the flux tube and identify different wave modes. Using analytic expressions, we are able to distinguish between fast and slow modes and obtain the phase speed of the oscillations. Results: We found that the observed oscillations are slow modes with a phase speed around 5 km s-1. We also have strong evidence that the oscillations are standing harmonics. Appendix A is available in electronic form at http://www.aanda.org

  12. Detailed phase matching characterization of inter-modal four-wave mixing in a two-mode fiber

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Jung, Y.; Begleris, I.

    2016-01-01

    We experimentally characterize the phase matching properties of two inter-modal four-wave mixing processes in a graded index fiber guiding the LP01 and LP11 mode-groups.......We experimentally characterize the phase matching properties of two inter-modal four-wave mixing processes in a graded index fiber guiding the LP01 and LP11 mode-groups....

  13. Survivability Mode and Extreme Loads on the Mooring Lines of the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter

    of the survivability of the device in extreme waves and evaluation of the design loads for the mooring component. The testing has been carried out in October 2010 by PhD student Stefano Parmeggiani and Master students Giovanna Bevilacqua and Giacomo Girardi Ferruzza at the Hydraulic and Coastal Laboratories...... of the department of Civil Engineering at Aalborg University. The outcome of the research will be used as input for future research work aimed at the design of the mooring system and the certification of the structural design for the full scale Wave Dragon demonstrator....

  14. Bright-dark rogue wave in mode-locked fibre laser (Conference Presentation)

    Science.gov (United States)

    Kbashi, Hani; Kolpakov, Stanislav; Martinez, Amós; Mou, Chengbo; Sergeyev, Sergey V.

    2017-05-01

    Bright-Dark Rogue Wave in Mode-Locked Fibre Laser Hani Kbashi1*, Amos Martinez1, S. A. Kolpakov1, Chengbo Mou, Alex Rozhin1, Sergey V. Sergeyev1 1Aston Institute of Photonic Technologies, School of Engineering and Applied Science Aston University, Birmingham, B4 7ET, UK kbashihj@aston.ac.uk , 0044 755 3534 388 Keywords: Optical rogue wave, Bright-Dark rogue wave, rogue wave, mode-locked fiber laser, polarization instability. Abstract: Rogue waves (RWs) are statistically rare localized waves with high amplitude that suddenly appear and disappear in oceans, water tanks, and optical systems [1]. The investigation of these events in optics, optical rogue waves, is of interest for both fundamental research and applied science. Recently, we have shown that the adjustment of the in-cavity birefringence and pump polarization leads to emerge optical RW events [2-4]. Here, we report the first experimental observation of vector bright-dark RWs in an erbium-doped stretched pulse mode-locked fiber laser. The change of induced in-cavity birefringence provides an opportunity to observe RW events at pump power is a little higher than the lasing threshold. Polarization instabilities in the laser cavity result in the coupling between two orthogonal linearly polarized components leading to the emergence of bright-dark RWs. The observed clusters belongs to the class of slow optical RWs because their lifetime is of order of a thousand of laser cavity roundtrip periods. References: 1. D. R. Solli, C. Ropers, P. Koonath,and B. Jalali, Optical rogue waves," Nature, 450, 1054-1057, 2007. 2. S. V. Sergeyev, S. A. Kolpakov, C. Mou, G. Jacobsen, S. Popov, and V. Kalashnikov, "Slow deterministic vector rogue waves," Proc. SPIE 9732, 97320K (2016). 3. S. A. Kolpakov, H. Kbashi, and S. V. Sergeyev, "Dynamics of vector rogue waves in a fiber laser with a ring cavity," Optica, 3, 8, 870, (2016). 5. S. Kolpakov, H. Kbashi, and S. Sergeyev, "Slow optical rogue waves in a unidirectional fiber laser

  15. Drift Wave versus Interchange Turbulence in Tokamak Geometry Linear versus Nonlinear Mode Structure

    CERN Document Server

    Scott, B D

    2002-01-01

    The competition between drift wave and interchange physics in general E-cross-B drift turbulence is studied with computations in three dimensional tokamak flux tube geometry. For a given set of background scales, the parameter space can be covered by the plasma beta and drift wave collisionality. At large enough plasma beta the turbulence breaks out into ideal ballooning modes and saturates only by depleting the free energy in the background pressure gradient. At high collisionality it finds a more gradual transition to resistive ballooning. At moderate beta and collisionality it retains drift wave character, qualitatively identical to simple two dimensional slab models. The underlying cause is the nonlinear vorticity advection through which the self sustained drift wave turbulence supersedes the linear instabilities, scattering them apart before they can grow, imposing its own physical character on the dynamics. This vorticity advection catalyses the gradient drive, while saturation occurs solely through tur...

  16. Fundamental modes of new dispersive SH-waves in piezoelectromagnetic plate

    Indian Academy of Sciences (India)

    A A Zakharenko

    2013-11-01

    Fundamental modes of new dispersive shear-horizontal (SH) acoustic waves propagating in the (6 mm) piezoelectromagnetic plate are studied. These SH-waves can propagate when the following boundary conditions are exploited for both the upper and lower surfaces of the plate: (1) when the surfaces are mechanically free, electrically and magnetically closed and (2) when the surfaces are mechanically free, electrically and magnetically open. The SH-waves depend on the electromagnetic wave speed $V_{\\text{EM}} = 1/\\sqrt{( )}$ and can only exist when the electromagnetic constant ≠ 0. The calculations (first evidence) were performed for the PZT-5H–Terfenol-D which is a composite with a large value of . The limit cases of large values of (2 = 0.5 , 2 = 0.9 ), and 2 = 0.99 ) are studied because they satisfy the limitation condition of 2 < .

  17. Spinor-electron wave guided modes in coupled quantum wells structures by solving the Dirac equation

    Energy Technology Data Exchange (ETDEWEB)

    Linares, Jesus [Area de Optica, Departamento de Fisica Aplicada, Facultade de Fisica, Escola Universitaria de Optica e Optometria, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Galicia (Spain)], E-mail: suso.linares.beiras@usc.es; Nistal, Maria C. [Area de Optica, Departamento de Fisica Aplicada, Facultade de Fisica, Escola Universitaria de Optica e Optometria, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Galicia (Spain)

    2009-05-04

    A quantum analysis based on the Dirac equation of the propagation of spinor-electron waves in coupled quantum wells, or equivalently coupled electron waveguides, is presented. The complete optical wave equations for Spin-Up (SU) and Spin-Down (SD) spinor-electron waves in these electron guides couplers are derived from the Dirac equation. The relativistic amplitudes and dispersion equations of the spinor-electron wave-guided modes in a planar quantum coupler formed by two coupled quantum wells, or equivalently by two coupled slab electron waveguides, are exactly derived. The main outcomes related to the spinor modal structure, such as the breaking of the non-relativistic degenerate spin states, the appearance of phase shifts associated with the spin polarization and so on, are shown.

  18. Second-Order Resonant Interaction of Ring Current Protons with Whistler-Mode Waves

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-Liang; CHEN Liang-Xu; HE Hui-Yong; ZHOU Qing-Hua

    2008-01-01

    We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory.The diffusion coefficients are proportional to the electric field amplitude E,much greater than those for the regular first-order resonance.which are proportional to the electric field amplitudes square E2.Numerical calculations for the pitch angle scattering are performed for typical energies of protons Ek=50ke V and 100ke V at locations L=2 and L=3.5.The timescale for the loss process of protons by the Whistler waves is found to approach one hour,comparable to that by the EMIC waves,suggesting that Whistler waves may also contribute significantly to the ring current decay under appropriate conditions.

  19. Explaining Inverted Temperature Loops in the Quiet Solar Corona with Magnetohydrodynamic Wave Mode Conversion

    CERN Document Server

    Schiff, Avery J

    2016-01-01

    Coronal loops trace out bipolar, arch-like magnetic fields above the Sun's surface. Recent measurements that combine rotational tomography, extreme ultraviolet imaging, and potential-field extrapolation have shown the existence of large loops with inverted temperature profiles; i.e., loops for which the apex temperature is a local minimum, not a maximum. These "down loops" appear to exist primarily in equatorial quiet regions near solar minimum. We simulate both these and the more prevalent large-scale "up loops" by modeling coronal heating as a time-steady superposition of: (1) dissipation of incompressible Alfven-wave turbulence, and (2) dissipation of compressive waves formed by mode conversion from the initial population of Alfven waves. We found that when a large percentage (> 99%) of the Alfven waves undergo this conversion, heating is greatly concentrated at the footpoints and stable "down loops" are created. In some cases we found loops with three maxima that are also gravitationally stable. Models th...

  20. Interaction of energetic electrons with dust whistler-mode waves in magnetospheric dusty plasmas

    Science.gov (United States)

    Jafari, S.

    2016-04-01

    In this Letter, a new conceptual approach has been presented to investigate the interaction of energetic electrons with dust whistler-mode waves in magnetospheric dusty (complex) plasmas. Dust whistler-mode waves generated in the presence of charged dust grains in the magnetized dusty plasma, can scatter the launched electrons into the loss-cone leading to precipitation into the upper atmosphere which is an important loss process in the radiation belts and provides a major source of energy for the diffuse and pulsating aurora. To study the scattered electrons and chaotic regions, a Hamiltonian model of the electron-dust wave interaction has been employed in the magnetospheric plasma by considering the launched electron beam self-fields. Numerical simulations indicate that an electron beam interacting with the whistler-mode wave can easily trigger chaos in the dust-free plasma, while in the presence of dust charged grains in the plasma, the chaotic regions are quenched to some extent in the magnetosphere. Consequently, the rate of scattered electrons into the loss-cone reduces for the regions that the dust grains are present.

  1. Multiple-mode Lamb wave scattering simulations using 3D elastodynamic finite integration technique.

    Science.gov (United States)

    Leckey, Cara A C; Rogge, Matthew D; Miller, Corey A; Hinders, Mark K

    2012-02-01

    We have implemented three-dimensional (3D) elastodynamic finite integration technique (EFIT) simulations to model Lamb wave scattering for two flaw-types in an aircraft-grade aluminum plate, a rounded rectangle flat-bottom hole and a disbond of the same shape. The plate thickness and flaws explored in this work include frequency-thickness regions where several Lamb wave modes exist and sometimes overlap in phase and/or group velocity. For the case of the flat-bottom hole the depth was incrementally increased to explore progressive changes in multiple-mode Lamb wave scattering due to the damage. The flat-bottom hole simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining unexpected results in experimental waveforms. For the rounded rectangle disbond flaw, which would be difficult to implement experimentally, we found that Lamb wave behavior differed significantly from the flat-bottom hole flaw. Most of the literature in this field is restricted to low frequency-thickness regions due to difficulties in interpreting data when multiple modes exist. We found that benchmarked 3D EFIT simulations can yield an understanding of scattering behavior for these higher frequency-thickness regions and in cases that would be difficult to set up experimentally. Additionally, our results show that 2D simulations would not have been sufficient for modeling the complicated scattering that occurred.

  2. Multiplexed Millimeter Wave Communication with Dual Orbital Angular Momentum (OAM) Mode Antennas.

    Science.gov (United States)

    Hui, Xiaonan; Zheng, Shilie; Chen, Yiling; Hu, Yiping; Jin, Xiaofeng; Chi, Hao; Zhang, Xianmin

    2015-05-19

    Communications using the orbital angular momentum (OAM) of radio waves have attracted much attention in recent years. In this paper, a novel millimeter-wave dual OAM mode antenna is cleverly designed, using which a 60 GHz wireless communication link with two separate OAM channels is experimentally demonstrated. The main body of the dual OAM antenna is a traveling-wave ring resonator using two feeding ports fed by a 90° hybrid coupler. A parabolic reflector is used to focus the beams. All the antenna components are fabricated by 3D printing technique and the electro-less copper plating surface treatment process. The performances of the antenna, such as S-parameters, near-fields, directivity, and isolation between the two OAM modes are measured. Experimental results show that this antenna can radiate two coaxially propagating OAM modes beams simultaneously. The multiplexing and de-multiplexing are easily realized in the antennas themselves. The two OAM mode channels have good isolation of more than 20 dB, thus ensuring the reliable transmission links at the same time.

  3. Waves and rays in plano-concave laser cavities: I. Geometric modes in the paraxial approximation

    Science.gov (United States)

    Barré, N.; Romanelli, M.; Lebental, M.; Brunel, M.

    2017-05-01

    Eigenmodes of laser cavities are studied theoretically and experimentally in two companion papers, with the aim of making connections between undulatory and geometric properties of light. In this first paper, we focus on macroscopic open-cavity lasers with localized gain. The model is based on the wave equation in the paraxial approximation; experiments are conducted with a simple diode-pumped Nd:YAG laser with a variable cavity length. After recalling fundamentals of laser beam optics, we consider plano-concave cavities with on-axis or off-axis pumping, with emphasis put on degenerate cavity lengths, where modes of different order resonate at the same frequency, and combine to form surprising transverse beam profiles. Degeneracy leads to the oscillation of so-called geometric modes whose properties can be understood, to a certain extent, also within a ray optics picture. We first provide a heuristic description of these modes, based on geometric reasoning, and then show more rigorously how to derive them analytically by building wave superpositions, within the framework of paraxial wave optics. The numerical methods, based on the Fox-Li approach, are described in detail. The experimental setup, including the imaging system, is also detailed and relatively simple to reproduce. The aim is to facilitate implementation of both the numerics and of the experiments, and to show that one can have access not only to the common higher-order modes but also to more exotic patterns.

  4. Electron heating via mode converted ion Bernstein waves in the Alcator C-Mod tokamak

    Science.gov (United States)

    Bonoli, P. T.

    1996-11-01

    Highly localized electron heating (FWHM ≈ 0.5) has also been observed in D-(^3He) plasmas at 7.9 T. In this case the ^3He cyclotron resonance is on-axis and the fundamental D resonance and mode conversion layer are on the high field side of the tokamak. The concentration of ^3He in these experiments was in the range n_^3He / ne ~= (0.2 - 0.3) and the location of the mode conversion layer was controlled by changing the ^3He concentration or the toroidal magnetic field. The rf heating profiles were deduced using an rf power modulation technique in which the local electron heating rate was obtained from a ``break in slope'' analysis of the measured electron temperature versus time. Detailed comparisons with 1-D and toroidal full-wave ICRF models (FELICE and FISIC codes) have been carried out. The 1-D predictions for the fractional electron power absorption and damping location are found to be in qualitative agreement with the experiment. However discrepancies have been found between the full-wave toroidal code predictions and experiment. This disagreement is thought to be due to a lack of radial and poloidal resolution in the solution of the mode converted ion Bernstein wave in toroidal geometry and will be discussed. A fast wave current drive package has been modified to study the current generated via the mode converted IBW. Based on these numerical results and the experimental results for power absorption, off-axis current of up to 200 kA is predicted for C-Mod with unidirectional wave spectrum, which should be sufficient for studying reversed shear advanced tokamak plasmas. Work supported by USDOE Contract No. DE-AC02-78ET51013. Ôn behalf of the Alcator Group

  5. Observations of Quasi-Periodic Whistler Mode Waves by the Van Allen Probes

    Science.gov (United States)

    Hospodarsky, George; Wilkinson, Darrelle; Kurth, William; Kletzing, Craig; Santolik, Ondrej

    2016-10-01

    Observed in Earth's inner magnetosphere, quasi-periodic whistler mode emissions (QP) are electromagnetic waves in the frequency range from a few hundred Hz to a few kHz that exhibit a periodic modulation (typically a few minutes) of their wave intensity. These waves were first detected at high latitude ground stations, but more recently have been observed by a number of spacecraft, including the twin Van Allen Probes. The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument simultaneously measures the vector wave magnetic field and electric field, allowing wave propagation parameters, such as wave normal angle and Poynting vector, to be obtained. Almost four years of Van Allen Probes data have been examined and a statistical survey of the occurrence and properties of the QP emissions has been performed. The QP emissions were found to have periods ranging from 1 to 16 minutes with events lasting from less than 1 hour up to 6 hours. Some events were detected on successive orbits and a number of events were simultaneously detected by both spacecraft, even during large spacecraft separations, providing an opportunity to investigate the source and propagation properties of these waves.

  6. Whistler mode waves and the electron heat flux in the solar wind: cluster observations

    Energy Technology Data Exchange (ETDEWEB)

    Lacombe, C.; Alexandrova, O.; Cornilleau-Wehrlin, N.; Mangeney, A.; De Conchy, Y.; Maksimovic, M. [LESIA, Observatoire de Paris, PSL Research University, CNRS, UPMC Université Paris 06, Université Paris-Diderot, 5 Place Jules Janssen, F-92190 Meudon (France); Matteini, L. [Imperial College, London SW7 2AZ (United Kingdom); Santolík, O. [Institute of Atmospheric Physics ASCR, 141 31 Prague (Czech Republic)

    2014-11-20

    The nature of the magnetic field fluctuations in the solar wind between the ion and electron scales is still under debate. Using the Cluster/STAFF instrument, we make a survey of the power spectral density and of the polarization of these fluctuations at frequencies f in [1, 400] Hz, during five years (2001-2005), when Cluster was in the free solar wind. In ∼10% of the selected data, we observe narrowband, right-handed, circularly polarized fluctuations, with wave vectors quasi-parallel to the mean magnetic field, superimposed on the spectrum of the permanent background turbulence. We interpret these coherent fluctuations as whistler mode waves. The lifetime of these waves varies between a few seconds and several hours. Here, we present, for the first time, an analysis of long-lived whistler waves, i.e., lasting more than five minutes. We find several necessary (but not sufficient) conditions for the observation of whistler waves, mainly a low level of background turbulence, a slow wind, a relatively large electron heat flux, and a low electron collision frequency. When the electron parallel beta factor β {sub e∥} is larger than 3, the whistler waves are seen along the heat flux threshold of the whistler heat flux instability. The presence of such whistler waves confirms that the whistler heat flux instability contributes to the regulation of the solar wind heat flux, at least for β {sub e∥} ≥ 3, in slow wind at 1 AU.

  7. Quasi-B-mode generated by high-frequency gravitational waves and corresponding perturbative photon fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangyu, E-mail: cqufangyuli@hotmail.com [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); Wen, Hao [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Fang, Zhenyun [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); Wei, Lianfu; Wang, Yiwen; Zhang, Miao [Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-10-15

    Interaction of very low-frequency primordial (relic) gravitational waves (GWs) to cosmic microwave background (CMB) can generate B-mode polarization. Here, for the first time we point out that the electromagnetic (EM) response to high-frequency GWs (HFGWs) would produce quasi-B-mode distribution of the perturbative photon fluxes. We study the duality and high complementarity between such two B-modes, and it is shown that such two effects are from the same physical origin: the tensor perturbation of the GWs and not the density perturbation. Based on this quasi-B-mode in HFGWs and related numerical calculation, it is shown that the distinguishing and observing of HFGWs from the braneworld would be quite possible due to their large amplitude, higher frequency and very different physical behaviors between the perturbative photon fluxes and background photons, and the measurement of relic HFGWs may also be possible though face to enormous challenge.

  8. Quasi-B-mode generated by high-frequency gravitational waves and corresponding perturbative photon fluxes

    Science.gov (United States)

    Li, Fangyu; Wen, Hao; Fang, Zhenyun; Wei, Lianfu; Wang, Yiwen; Zhang, Miao

    2016-10-01

    Interaction of very low-frequency primordial (relic) gravitational waves (GWs) to cosmic microwave background (CMB) can generate B-mode polarization. Here, for the first time we point out that the electromagnetic (EM) response to high-frequency GWs (HFGWs) would produce quasi-B-mode distribution of the perturbative photon fluxes. We study the duality and high complementarity between such two B-modes, and it is shown that such two effects are from the same physical origin: the tensor perturbation of the GWs and not the density perturbation. Based on this quasi-B-mode in HFGWs and related numerical calculation, it is shown that the distinguishing and observing of HFGWs from the braneworld would be quite possible due to their large amplitude, higher frequency and very different physical behaviors between the perturbative photon fluxes and background photons, and the measurement of relic HFGWs may also be possible though face to enormous challenge.

  9. Detection of coatings within liquid-filled tubes and containers by mode conversion of leaky Lamb waves

    Directory of Open Access Journals (Sweden)

    M. Schmitt

    2013-05-01

    Full Text Available In this paper, a new acoustic sensor principle for coating detection within liquid-filled tubes and containers based on mode conversion of leaky Lamb waves is introduced. Leaky Lamb waves are excited and detected by single-phase transducers, which are attached on the outer side of a tube or container. By transmission time and amplitude measurements, coating formation within the liquid-filled tube and container is detected non-invasively. This new sensor principle is subdivided into the separate considerations of Lamb wave excitation, mode conversion and inverse mode conversion. The Lamb wave excitation by a single-phase transducer is visualized by scanning laser Doppler vibrometer imaging. The mode conversion process of leaky Lamb waves is measured by membrane hydrophone measurements and Schlieren visualization; afterwards, the measured emission angles are compared with the theoretical one. The inverse mode conversion process of pressure waves back to leaky Lamb waves is visualized by Schlieren images. By merging the results of Lamb wave excitation, mode conversion and inverse mode conversion, the new sensor concept is explained. Theoretical considerations and measurement results of adhesive tape coating inside a liquid-filled plastic tube and a liquid-filled stainless steel container verify the new acoustic sensor principle. Finally the measuring sensitivity and the technical realization are discussed.

  10. ICRF fast wave current drive and mode conversion current drive in EAST tokamak

    Science.gov (United States)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.

    2017-10-01

    Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.

  11. PRF Ambiguity Detrmination for Radarsat ScanSAR System

    Science.gov (United States)

    Jin, Michael Y.

    1998-01-01

    PRF ambiguity is a potential problem for a spaceborne SAR operated at high frequencies. For a strip mode SAR, there were several approaches to solve this problem. This paper, however, addresses PRF ambiguity determination algorithms suitable for a burst mode SAR system such as the Radarsat ScanSAR. The candidate algorithms include the wavelength diversity algorithm, range look cross correlation algorithm, and multi-PRF algorithm.

  12. The iterative solution of wave propagation in transverse magnetic mode for graded positive-negative

    Science.gov (United States)

    Nur Pratiwi, Beta; Suparmi, A.; Cari, C.; Arya Nugraha, Dewanta

    2017-01-01

    The iterative solution was used to obtain the electromagnetic wave propagation in transverse magnetic (TM) mode for a graded positive-negative refractive index. The graded graphs of negative permittivity and negative permeability were obtained in hyperbolic functions. By using hyperbolic function for permittivity and permeability in Maxwell equation and by separation variable, we obtained the electromagnetic differential equation. From the differential equation, we used the approachment using MacLaurin series to obtain the wave vector and magnetic fields equation. The distribution of the magnetic fields were given in graph visualization using Matlab software.

  13. Formation of whispering gallery modes by scattering of an electromagnetic plane wave by two cylinders

    Science.gov (United States)

    Abramov, Arnold; Kostikov, Alexander

    2017-03-01

    We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder.

  14. New Squarer Circuits and a Current-Mode Full-Wave Rectifier Topology Suitable for Integration

    Directory of Open Access Journals (Sweden)

    S. Minaei

    2010-12-01

    Full Text Available In this paper, three squarer configurations and a current-mode (CM full-wave rectifier circuit are suggested. The first and second squarer configurations respectively use two PMOS and two NMOS transistors while the third one employs three PMOS and one NMOS transistors. A CM full-wave rectifier with high output impedance current is developed. All of the proposed circuits provide several advantages such as low number of components and less power consumption. The proposed circuits are simulated using SPICE program to demonstrate their performance and workability.

  15. Strong Scattering of High Power Millimeter Waves in Tokamak Plasmas with Tearing Modes

    DEFF Research Database (Denmark)

    Westerhof, E.; Nielsen, Stefan Kragh; Oosterbeek, J.W.;

    2009-01-01

    In tokamak plasmas with a tearing mode, strong scattering of high power millimeter waves, as used for heating and noninductive current drive, is shown to occur. This new wave scattering phenomenon is shown to be related to the passage of the O point of a magnetic island through the high power...... heating beam. The density determines the detailed phasing of the scattered radiation relative to the O-point passage. The scattering power depends strongly nonlinearly on the heating beam power. ©2009 The American Physical Society...

  16. Propagation of a Scattered Electromagnetic Wave with P-Polarization (TE) Mode in Atmospheric Plasma

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhong-He; HU Xi-Wei; LIU Ming-Hai; LAN Chao-Hui; HE Yong; ZHANG Shu; PAN Yuan

    2006-01-01

    @@ The finite-difference-time-domain method is applied to simulate the two-dimensional propagation ofa p-polarization mode electromagnetic wave in atmospheric plasma and metal layer for strong electron-neutral collisions. It is indicated that for a giving electron density profile, the p-polarization attenuation is very different from the spolarization attenuation and it depends even strongly on the incident angle. The mechanism of p-polarization attenuation is analysed by the interference of wave and the relationship between the attenuation property and the main parameters is given.

  17. Lommel pulses: an analytic form for localized waves of the focus wave mode type with bandlimited spectrum.

    Science.gov (United States)

    Sheppard, Colin J R; Saari, Peeter

    2008-01-07

    A criticism of the focus wave mode (FWM) solution for localized pulses is that it contains backward propagating components that are difficult to generate in many practical situations. We describe a form of FWM where the strength of the backward propagating components is identically zero and derive special cases where the field can be written in an analytic form. In particular, a free-space version of "backward light" pulse is considered, which moves in the opposite direction with respect to all its spectral constituents.

  18. A Nonlinear Coupled-Mode System for Water Waves over a General Bathymetry

    Science.gov (United States)

    Athanassoulis, G. A.; Belibassakis, K. A.

    2003-04-01

    In the present work we consider the problem of non-linear gravity waves propagating over a general bathymetry. The simpler two dimensional problem (one horizontal dimension) is first examined. An essential feature of this problem is that the wave field is not spatially periodic. Extra difficulties are introduced by the fact that we wish to drop the assumptions of smallness of the free-surface and bottom slope. The interaction of free-surface gravity waves with uneven bottom topography requires, in principle, the solution of a complicated nonlinear boundary value problem. Under the assumptions of incompressibility and irrotationality, the problem of evolution of water waves, over a variable bathymetry region, admits of at least two different varia-tional formulations: A Hamiltonian one, proposed by Petrov (1964) and exploited further by Zakharov (1968) and various other authors thenceforth, and an unconstrained one, proposed by Luke (1967). Our main concern herewith is to develop a non-linear theory for the case of a smooth, generally shaped bathymetry, without imposing any mild-slope type assumptions neither on the free-surface nor on the bottom boundary. The present development is based on Luke's variational principle, in which the admissible fields are free of essential conditions, except, of course, for the smoothness and completeness (compatibility) prerequisites. The vertical structure of the wave field is exactly represented by means of a modal-type series expansion of the wave potential (Athanassoulis and Belibassakis 2000). This series expansion contains the usual propagating and evanescent modes, plus two additional modes, called the free-surface mode and the sloping-bottom mode, introduced in order to consistently treat the non-vertical end-conditions at the free-surface and the bottom boundaries. A similar technique has been successfully applied to the solution of the linearised (Athanassoulis and Belibassakis 1999) and the second-order (Belibassakis and

  19. Development of a dual mode satellite traveling wave tube 11GHz, 12W/6W

    Science.gov (United States)

    Deml, L.

    1981-02-01

    A high power 11GHz dual mode traveling wave tube (TWT) was developed for use in communication satellites. The tube is based on the technology of previous space-qualified tubes (TL12006, TL12022, and TL12025). The tube operates at 12 or 6W, separated by 3dB, without a dramatic efficiency loss in the low power mode. Gain, efficiency and nonlinear distortion criteria are all met, by channel tuning the tube within the operating band (from 10.9 to 11.8 GHz). The channel bandwidth is 100MHz.

  20. Full-Wave Calculations of the O-X Mode Conversion Process

    DEFF Research Database (Denmark)

    Hansen, F.R.; Lynov, Jens-Peter; Maroli, C.

    1988-01-01

    A two-point boundary-value problem has been formulated that describes the conversion between ordinary (O) and extraordinary (X) wave modes in a cold inhomogeneous plasma. Numerical solutions to this problem have been obtained for various values of the WKB parameter k0L; where k0 is the vacuum...... wavenumber and L the density-gradient scale length. The results are compared with three different theoretical expressions for the O-X mode conversion efficiency derived by others in the WKB limit of k0 L >> l. Most of the results presented in this paper are obtained for a collisionless plasma with finite...... density near the plasma cut-off density. However, some examples are also given of wave propagation from vacuum. In these examples, collision effects are added to the equations in order to remove the singularity otherwise present at the position of the upper hybrid resonance layer....

  1. Width dependent transition of quantized spin-wave modes in Ni{sub 80}Fe{sub 20} square nanorings

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Rousseau, Olivier [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Otani, YoshiChika [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2014-10-28

    We investigated optically induced ultrafast magnetization dynamics in square shaped Ni{sub 80}Fe{sub 20} nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.

  2. Normal mode Rossby waves and their effects on chemical composition in the late summer stratosphere

    Directory of Open Access Journals (Sweden)

    D. Pendlebury

    2007-08-01

    Full Text Available During past MANTRA campaigns, ground-based measurements of several long-lived chemical species have revealed quasi-periodic fluctuations on time scales of several days. These fluctuations could confound efforts to detect long-term trends from MANTRA, and need to be understood and accounted for. Using the Canadian Middle Atmosphere Model, we investigate the role of dynamical variability in the late summer stratosphere due to normal mode Rossby waves and the impact of this variability on fluctuations in chemical species. Wavenumber~1, westward travelling waves are considered with average periods of 5, 10 and 16 days. Time-lagged correlations between the temperature and nitrous oxide, methane and ozone fields are calculated in order to assess the possible impact of these waves on the chemical species, although transport may be the dominant effect. Using Fourier-wavelet decomposition and correlating the fluctuations between the temperature and chemical fields, we determine that variations in the chemical species are well-correlated with the 5-day wave and the 10-day wave between 30 and 60 km. Interannual variability of the waves is also examined.

  3. On-chip temperature-compensated Love mode surface acoustic wave device for gravimetric sensing

    Science.gov (United States)

    Liu, Q.; Flewitt, A. J.

    2014-11-01

    Love mode surface acoustic wave (SAW) sensors have been recognized as one of the most sensitive devices for gravimetric sensors in liquid environments such as bio sensors. Device operation is based upon measuring changes in the transmitted (S21) frequency and phase of the first-order Love wave resonance associated with the device upon on attachment of mass. However, temperature variations also cause a change in the first order S21 parameters. In this work, shallow grooved reflectors and a "dotted" single phase unidirectional interdigitated transducer (D-SPUDT) have been added to the basic SAW structure, which promote unidirectional Love wave propagation from the device's input interdigitated transducers. Not only does this enhance the first-order S21 signal but also it allows propagation of a third-order Love wave. The attenuation coefficient of the third-order wave is sufficiently great that, whilst there is a clear reflected S11 signal, the third-order wave does not propagate into the gravimetric sensing area of the device. As a result, whilst the third-order S11 signal is affected by temperature changes, it is unaffected by mass attachment in the sensing area. It is shown that this signal can be used to remove temperature effects from the first-order S21 signal in real time. This allows gravimetric sensing to take place in an environment without the need for any other temperature measurement or temperature control; this is a particular requirement of gravimetric biosensors.

  4. Acoustoelastic effects on mode waves in a fluid-filled pressurized borehole in triaxially stressed formations

    Institute of Scientific and Technical Information of China (English)

    Ping'en Li; Youquan Yin; Xianyue Su

    2006-01-01

    Based on the nonlinear theory of acoustoelasticity,considering the triaxial terrestrial stress,the fluid static pressure in the borehole and the fluid nonlinear effect jointly,the dispersion curves of the monopole Stoneley wave and dipole flexural wave propagating along the borehole axis in a homogeneous isotropic formation are investigated by using the perturbation method.The relation of the sensitivity coefficient and the velocity-stress coefficient to frequency are also analyzed.The results show that variations of the phase velocity dispersion curve are mainly affected by three sensitivity coefficients related to third-order elastic constant.The borehole stress concentration causes a split of the flexural waves and an intersection of the dispersion curves of the flexural waves polarized in directions parallel and normal to the uniaxial horizontal stress direction.The stress-induced formation anisotropy is only dependent on the horizontal deviatoric terrestrial stress and independent of the horizontal mean terrestrial stress,the superimposed stress and the fluid static pressure.The horizontal terrestrial stress ratio ranging from 0 to 1 reduces the stress-induced formation anisotropy.This makes the intersection of flexural wave dispersion curves not distinguishable.The effect of the fluid nonlinearity on the dispersion curve of the mode wave is small and can be ignored.

  5. Double pass locking and spatial mode locking for gravitational wave detectors

    CERN Document Server

    Cusack, B J; Slagmolen, B; Vine, G D; Gray, M B; McClelland, D E

    2002-01-01

    We present novel techniques for overcoming problems relating to the use of high-power lasers in mode cleaner cavities for second generation laser interferometric gravitational wave detectors. Rearranging the optical components into a double pass locking regime can help to protect locking detectors from damage. Modulator thermal lensing can be avoided by using a modulation-free technique such as tilt locking, or its recently developed cousin, flip locking.

  6. On-chip temperature-compensated Love mode surface acoustic wave device for gravimetric sensing

    OpenAIRE

    Liu, Q.; A. J. Flewitt

    2014-01-01

    This is the accepted manuscript. The following article appeared in Applied Physics Letters and may be found at http://scitation.aip.org/content/aip/journal/apl/105/21/10.1063/1.4902989. Copyright 2014 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. Love mode surface acoustic wave (SAW) sensors have been recognized as one of the most sensitive devices for gravime...

  7. Double pass locking and spatial mode locking for gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cusack, Benedict J; Shaddock, Daniel A; Slagmolen, Bram J J; Vine, Glenn de; Gray, Malcolm B; McClelland, David E [Department of Physics, Faculty of Science, The Australian National University, ACT 0200 (Australia)

    2002-04-07

    We present novel techniques for overcoming problems relating to the use of high-power lasers in mode cleaner cavities for second generation laser interferometric gravitational wave detectors. Rearranging the optical components into a double pass locking regime can help to protect locking detectors from damage. Modulator thermal lensing can be avoided by using a modulation-free technique such as tilt locking, or its recently developed cousin, flip locking.

  8. The Properties of Large Amplitude Whistler Mode Waves in the Magnetosphere: Propagation and Relationship with Geomagnetic Activity

    Science.gov (United States)

    Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Wygant, J. R.; Goetz, K.; Breneman, A.; Kersten, K.

    2011-01-01

    Wepresent resultsof a studyof the characteristicsof very large amplitude whistler mode waves inside the terrestrial magnetosphere at radial distances of less than 15 RE using waveform capture data from the Wind spacecraft. We observed 247 whistler mode waves with at least one electric field component (105/247 had !80 mV/m peak!to!peak amplitudes) and 66 whistler mode waves with at least one search coil magnetic field component (38/66 had !0.8 nT peak!to!peak amplitudes). Wave vectors determined from events with three magnetic field components indicate that 30/46 propagate within 20 of the ambient magnetic field, though some are more oblique (up to "50 ). No relationship was observed between wave normal angle and GSM latitude. 162/247 of the large amplitude whistler mode waves were observed during magnetically active periods (AE > 200 nT). 217 out of 247 total whistler mode waves examined were observed inside the radiation belts. We present a waveform capture with the largest whistler wave magnetic field amplitude (^8 nT peak!to!peak) ever reported in the radiation belts. The estimated Poynting flux magnitude associated with this wave is ^300 mW/m2, roughly four orders of magnitude above estimates from previous satellite measurements. Such large Poynting flux values are consistent with rapid energization of electrons.

  9. Lamb mode selection for accurate wall loss estimation via guided wave tomography

    Energy Technology Data Exchange (ETDEWEB)

    Huthwaite, P.; Ribichini, R.; Lowe, M. J. S.; Cawley, P. [Department of Mechanical Engineering, Imperial College, London, SW7 2AZ (United Kingdom)

    2014-02-18

    Guided wave tomography offers a method to accurately quantify wall thickness losses in pipes and vessels caused by corrosion. This is achieved using ultrasonic waves transmitted over distances of approximately 1–2m, which are measured by an array of transducers and then used to reconstruct a map of wall thickness throughout the inspected region. To achieve accurate estimations of remnant wall thickness, it is vital that a suitable Lamb mode is chosen. This paper presents a detailed evaluation of the fundamental modes, S{sub 0} and A{sub 0}, which are of primary interest in guided wave tomography thickness estimates since the higher order modes do not exist at all thicknesses, to compare their performance using both numerical and experimental data while considering a range of challenging phenomena. The sensitivity of A{sub 0} to thickness variations was shown to be superior to S{sub 0}, however, the attenuation from A{sub 0} when a liquid loading was present was much higher than S{sub 0}. A{sub 0} was less sensitive to the presence of coatings on the surface of than S{sub 0}.

  10. Implementing guided wave mode control by use of a phased transducer array.

    Science.gov (United States)

    Li, J; Rose, J L

    2001-05-01

    A multi-channel time-delay system has been built and applied to a transducer array for implementing guided wave mode control. The time-delay system has a capability of sending high energy controllable tone-burst signals from eight independent channels with arbitrary time delays from 0 to 30 microseconds with resolution of 0.025 microsecond. Software time delays are also provided for summing up received signals of each channel. Theoretical discussions indicate the impact of the time delay capability on the bandwidth and sensitivity improvement of a transducer array for guided wave generation. Determination of both physical and software time delay values is based on a knowledge of dispersion curves and element spacing. Based on reference signals, a non-knowledge-based automatic time-delay searching algorithm was introduced for guided wave mode selection. Experiments were conducted with a phased comb transducer array mounted on a carbon steel pipe. The experimental results show that signal to noise ratio has been greatly improved by use of the time-delay system. Some other benefits of the phased array, including unidirection generation and mode control flexibility, are discussed.

  11. Fast-mode Coronal EUV Wave Trains Associated with Solar Flares and CMEs

    Science.gov (United States)

    Liu, Wei; Ofman, Leon; Downs, Cooper; Karlicky, Marian; Chen, Bin

    2017-08-01

    As a new observational phenomenon, Quasi-periodic, Fast Propagating EUV wave trains (QFPs) are fast-mode magnetosonic waves closely related to quasi-periodic pulsations commonly detected in solar flares (traditionally with non-imaging observations). They can provide critical clues to flare energy release and serve as new tools for coronal seismology. We report recent advances in observing and modeling QFPs, including evidence of heating and cooling cycles revealed with differential emission measure (DEM) analysis that are consistent with alternating compression and rarefaction expected for magnetosonic waves. Through a statistical survey, we found a preferential association of QFPs with eruptive flares (with CMEs) rather than confined flares (without CMEs). We also identified some correlation with quasi-periodic radio bursts observed at JVLA and Ondrejov observatories. We will discuss the implications of these results and the potential roles of QFPs in coronal heating and energy transport.

  12. Tunneling and mode conversion of fast magnetosonic waves in the magnetospheres of Earth and Mercury

    CERN Document Server

    Kazakov, Yevgen O

    2014-01-01

    Narrow-band linearly polarized waves, having a resonant structure and a peak frequency between the local cyclotron frequency of protons and heavy ions, have been detected in the magnetospheres of Earth and of Mercury. Some of these wave events have been suggested to be driven by linear mode conversion (MC) of the fast magnetosonic waves at the ion-ion hybrid (IIH) resonances. Since the resonant IIH frequency is linked to the plasma composition, solving the inverse problem allows one to infer the concentration of the heavy ions from the measured frequency spectra. In this paper, we identify the conditions when the MC efficiency is maximized in the magnetospheric plasmas and discuss how this can be applied for estimating the heavy ion concentration in the magnetospheres of Earth and Mercury.

  13. Pitch angle scattering of diffuse auroral electrons by whistler mode waves

    Energy Technology Data Exchange (ETDEWEB)

    Villalon, E. [Northeastern Univ., Boston, MA (United States); Burke, W.J. [Hanscom Air Force Base, MA (United States)

    1995-10-01

    Resonant electron-whistler interactions in the plasma sheet are investigated as possible explanations of the nearly isotropic fluxes of low-energy electrons observed above the diffuse aurora. Whistler mode waves, propagating near the resonance cone with frequencies near or larger than half the equatorial electron cyclotron frequency, can interact with low-energy plasma sheet electrons. A Hamiltonian formulation is developed for test particles interacting with the coherent chorus emission spectra. The authors consider the second-order resonance condition which requires that inhomogeneities in the Earth`s magnetic field be compensated by a finite bandwidth of wave frequencies to maintain resonance for extended distances along field lines. These second-order interactions are very efficient in scattering the electrons toward the atmospheric loss cone. Numerical calculations are presented for the magnetic shell L=5.5 for wave amplitudes of {approximately}10{sup {minus}6} V/m, using different frequency and magnetospheric conditions. 34 refs., 7 figs.

  14. TerraSAR-X mission

    Science.gov (United States)

    Werninghaus, Rolf

    2004-01-01

    The TerraSAR-X is a German national SAR- satellite system for scientific and commercial applications. It is the continuation of the scientifically and technologically successful radar missions X-SAR (1994) and SRTM (2000) and will bring the national technology developments DESA and TOPAS into operational use. The space segment of TerraSAR-X is an advanced high-resolution X-Band radar satellite. The system design is based on a sound market analysis performed by Infoterra. The TerraSAR-X features an advanced high-resolution X-Band Synthetic Aperture Radar based on the active phased array technology which allows the operation in Spotlight-, Stripmap- and ScanSAR Mode with various polarizations. It combines the ability to acquire high resolution images for detailed analysis as well as wide swath images for overview applications. In addition, experimental modes like the Dual Receive Antenna Mode allow for full-polarimetric imaging as well as along track interferometry, i.e. moving target identification. The Ground Segment is optimized for flexible response to (scientific and commercial) User requests and fast image product turn-around times. The TerraSAR-X mission will serve two main goals. The first goal is to provide the strongly supportive scientific community with multi-mode X-Band SAR data. The broad spectrum of scientific application areas include Hydrology, Geology, Climatology, Oceanography, Environmental Monitoring and Disaster Monitoring as well as Cartography (DEM Generation) and Interferometry. The second goal is the establishment of a commercial EO-market in Europe which is driven by Infoterra. The commercial goal is the development of a sustainable EO-business so that the e.g. follow-on systems can be completely financed by industry from the profit. Due to its commercial potential, the TerraSAR-X project will be implemented based on a public-private partnership with the Astrium GmbH. This paper will describe first the mission objectives as well as the

  15. Coronal Seismology of Flare-Excited Standing Slow-Mode Waves Observed by SDO/AIA

    Science.gov (United States)

    Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.

    2016-05-01

    Flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA in 94 and 131 Å bandpasses. Based on the interpretation in terms of a slow-mode wave, quantitative evidence of thermal conduction suppression in hot (>9 MK) loops has been obtained for the first time from measurements of the polytropic index and phase shift between the temperature and density perturbations (Wang et al. 2015, ApJL, 811, L13). This result has significant implications in two aspects. One is that the thermal conduction suppression suggests the need of greatly enhanced compressive viscosity to interpret the observed strong wave damping. The other is that the conduction suppression provides a reasonable mechanism for explaining the long-duration events where the thermal plasma is sustained well beyond the duration of impulsive hard X-ray bursts in many flares, for a time much longer than expected by the classical Spitzer conductive cooling. In this study, we model the observed standing slow-mode wave in Wang et al. (2015) using a 1D nonlinear MHD code. With the seismology-derived transport coefficients for thermal conduction and compressive viscosity, we successfully simulate the oscillation period and damping time of the observed waves. Based on the parametric study of the effect of thermal conduction suppression and viscosity enhancement on the observables, we discuss the inversion scheme for determining the energy transport coefficients by coronal seismology.

  16. Simulations of Propagation and Radiation of A0-mode Lamb Wave in Ultrasonic Waveguide Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jin Ho; Joo, Young Sang; Kim, Jong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Rhee, Hui Nam [Sunchon National University, Sunchon (Korea, Republic of)

    2010-10-15

    As the sodium coolant of a sodium-cooled fast reactor (SFR) is opaque to light, a conventional visual inspection cannot be used for carrying out an in-service inspection of the internal structures under a sodium level. An ultrasonic wave should be applied for an under-sodium viewing of the internal structures in a reactor vessel. Recently, a new plate type ultrasonic waveguide sensor has been developed for the versatile applications in the under-sodium viewing application. In the plate type ultrasonic waveguide sensor, the A0 mode Lamb wave is utilized for the long distance propagation and the effective radiation capability in a fluid. And a radiation beam steering technique is presented which is capable of steering an ultrasonic radiation beam of a waveguide sensor without a mechanical movement of the sensor module. In this paper, the numerical simulation of the propagation and radiation of A0-mode Lamb wave in ultrasonic leaky wave generation from waveguide sensor is performed by using the finite element method (FEM). The objective of this research is to compare the previous theoretical and experimental results with its numerical simulation

  17. MODELING OF REFLECTIVE PROPAGATING SLOW-MODE WAVE IN A FLARING LOOP

    Energy Technology Data Exchange (ETDEWEB)

    Fang, X.; Yuan, D.; Van Doorsselaere, T.; Keppens, R.; Xia, C. [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven (Belgium)

    2015-11-01

    Quasi-periodic propagating intensity disturbances have been observed in large coronal loops in extreme ultraviolet images over a decade, and are widely accepted to be slow magnetosonic waves. However, spectroscopic observations from Hinode/EIS revealed their association with persistent coronal upflows, making this interpretation debatable. We perform a 2.5D magnetohydrodynamic simulation to imitate the chromospheric evaporation and the following reflected patterns in a flare loop. Our model encompasses the corona, transition region, and chromosphere. We demonstrate that the quasi periodic propagating intensity variations captured by the synthesized Solar Dynamics Observatory/Atmospheric Imaging Assembly 131, 94 Å emission images match the previous observations well. With particle tracers in the simulation, we confirm that these quasi periodic propagating intensity variations consist of reflected slow mode waves and mass flows with an average speed of 310 km s{sup −1} in an 80 Mm length loop with an average temperature of 9 MK. With the synthesized Doppler shift velocity and intensity maps of the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation Fe xix line emission, we confirm that these reflected slow mode waves are propagating waves.

  18. Mode transformation and frequency change with height in 3D numerical simulations of magneto-acoustic wave propagation in sunspots

    CERN Document Server

    Felipe, T; Collados, M

    2010-01-01

    Three-dimensional numerical simulations of magnetoacoustic wave propagation are performed in a sunspot atmosphere with a computational domain covering from the photosphere to the chromosphere. The wave source, with properties resembling the solar spectrum, is located at different distances from the axis of the sunspot for each simulation. These results are compared with the theory of mode transformation and also with observational features. Simulations show that the dominant oscillation frequency in the chromosphere decreases with the radial distance from the sunspot axis. The energy flux of the different wave modes involved, including de Alfv\\'en mode, is evaluated and discussed.

  19. Mode separation in frequency-wavenumber domain through compressed sensing of far-field Lamb waves

    Science.gov (United States)

    Gao, Fei; Zeng, Liang; Lin, Jing; Luo, Zhi

    2017-07-01

    This method based on Lamb waves shows great potential for long-range damage detection. Mode superposition resulting from multi-modal and dispersive characteristics makes signal interpretation and damage feature extraction difficult. Mode separation in the frequency-wavenumber (f-k) domain using a 1D sparse sensing array is a promising solution. However, due to the lack of prior knowledge about damage location, this method based on 1D linear measurement, for the mode extraction of arbitrary reflections caused by defects that are not in line with the sensor array, is restricted. In this paper, an improved compressed sensing method under the far-field assumption is established, which is beneficial to the reconstruction of reflections in the f-k domain. Hence, multiple components consisting of structure and damage features could be recovered via a limited number of measurements. Subsequently, a mode sweeping process based on theoretical dispersion curves has been designed for mode characterization and direction of arrival estimation. Moreover, 2D f-k filtering and inverse transforms are applied to the reconstructed f-k distribution in order to extract the purified mode of interest. As a result, overlapping waveforms can be separated and the direction of defects can be estimated. A uniform linear sensor array consisting of 16 laser excitations is finally employed for experimental investigations and the results demonstrate the efficiency of the proposed method.

  20. Near Gap Excitation of Collective Modes in a Charge Density Wave

    Science.gov (United States)

    Leuenberger, Dominik; Sobota, Jonathan; Yang, Shuolong; Kemper, Alexander; Giraldo, Paula; Moore, Rob; Fisher, Ian; Kirchmann, Patrick; Devereaux, Thomas; Shen, Zhi-Xun

    2015-03-01

    We present time- and angle-resolved photoemission spectroscopy (trARPES) measurements on the charge density wave system's (CDW) CeTe3. Optical excitation transiently populates the unoccupied band structure and reveals a CDW gap size of 2 Δ = 0 . 59 eV. In addition, the occupied Te- 5 p band dispersion is coherently modified by three collective modes. First, the spatial polarization of the modes is analyzed by fits of a transient model dispersion and DFT frozen phonon calculations. We thereby demonstrate how the rich information from trARPES allows identification of collective modes and their spatial polarization, which explains the mode-dependent coupling to charge order. Second, the exciting photon energy hν was gradually lowered towards 2 Δ , at constant optical excitation density. The coherent response of the amplitude mode deviates from the optical conductivity, which is dominated by direct interband transitions between the lower and upper CDW bands. The measured hν -dependence can be reproduced by a calculated joint density of states for optical transition between bands with different orbital character. This finding suggests, that the coherent response of the CDW amplitude mode is dominated by photo-doping of the charge ordering located in the Te-planes.

  1. Nonlinear viscous damping and gravitational wave detectability of the f-mode instability in neutron stars

    CERN Document Server

    Passamonti, A

    2011-01-01

    We study the damping of the gravitational radiation-driven f-mode instability in ro- tating neutron stars by nonlinear bulk viscosity in the so-called supra-thermal regime. In this regime the dissipative action of bulk viscosity is known to be enhanced as a result of nonlinear contributions with respect to the oscillation amplitude. Our anal- ysis of the f-mode instability is based on a time-domain code that evolves linear perturbations of rapidly rotating polytropic neutron star models. The extracted mode frequency and eigenfunctions are subsequently used in standard energy integrals for the gravitational wave growth and viscous damping. We find that nonlinear bulk vis- cosity has a moderate impact on the size of the f-mode instability window, becoming an important factor and saturating the mode's growth at a relatively large oscillation amplitude. We show that a similar result holds for the damping of the inertial r-mode instability by nonlinear bulk viscosity. In addition, we show that the action of bulk v...

  2. Characterizing Atacama B-mode Search Detectors with a Half-Wave Plate

    CERN Document Server

    Simon, S M; Campusano, L E; Choi, S K; Crowley, K T; Essinger-Hileman, T; Gallardo, P; Ho, S P; Kusaka, A; Nati, F; Palma, G A; Page, L A; Raghunathan, S; Staggs, S T

    2015-01-01

    The Atacama B-Mode Search (ABS) instrument is a cryogenic ($\\sim$10 K) crossed-Dragone telescope located at an elevation of 5190 m in the Atacama Desert in Chile that observed for three seasons between February 2012 and October 2014. ABS observed the Cosmic Microwave Background (CMB) at large angular scales ($40<\\ell<500$) to limit the B-mode polarization spectrum around the primordial B-mode peak from inflationary gravity waves at $\\ell \\sim100$. The ABS focal plane consists of 480 transition-edge sensor (TES) bolometers. They are coupled to orthogonal polarizations from a planar ortho-mode transducer (OMT) and observe at 145 GHz. ABS employs an ambient-temperature, rapidly rotating half-wave plate (HWP) to mitigate systematic effects and move the signal band away from atmospheric $1/f$ noise, allowing for the recovery of large angular scales. We discuss how the signal at the second harmonic of the HWP rotation frequency can be used for data selection and for monitoring the detector responsivities.

  3. Observation of wedge waves and their mode transformation by laser ultrasonic technique

    Institute of Scientific and Technical Information of China (English)

    Jing Jia; Zhonghua Shen; Lijuan Wang; Ling Yuan

    2011-01-01

    Wedge waves (WWs) in wedges, including their dispersion characteristics and mode transformation, are investigated using the laser ultrasound technique. Pulsed laser excitation and optical deflection beam method for detection are used to record WWs. Numerous WWs are detected by scanning the excitation laser along the wedge tip. Dispersions of WWs are obtained by using the two-dimensional (2D) Fourier transformation method, and different WW orders are revealed on the wedges. Mode transformation is determined by fixing the distance between the excitation and detection position, as well as by scanning the samples along the normal direction of the wedge tip.%@@ Wedge waves (WWs) in wedges, including their dispersion characteristics and mode transformation, are investigated using the laser ultrasound technique. Pulsed laser excitation and optical deflection beam method for detection are used to record WWs. Numerous WWs are detected by scanning the excitation laser along the wedge tip. Dispersions of WWs are obtained by using the two-dimensional (2D) Fourier transformation method, and different WW orders are revealed on the wedges. Mode transformation is determined by fixing the distance between the excitation and detection position, as well as by scanning the samples along the normal direction of the wedge tip.

  4. Wave Damping Observed in Upwardly Propagating Sausage-mode Oscillations contained within a Magnetic Pore

    CERN Document Server

    Grant, S D T; Moreels, M G; Morton, R J; Christian, D J; Giagkiozis, I; Verth, G; Fedun, V; Keys, P H; Van Doorsselaere, T; Erdelyi, R

    2015-01-01

    We present observational evidence of compressible magnetohydrodynamic wave modes propagating from the solar photosphere through to the base of the transition region in a solar magnetic pore. High cadence images were obtained simultaneously across four wavelength bands using the Dunn Solar Telescope. Employing Fourier and wavelet techniques, sausage-mode oscillations displaying significant power were detected in both intensity and area fluctuations. The intensity and area fluctuations exhibit a range of periods from 181-412s, with an average period ~290s, consistent with the global p-mode spectrum. Intensity and area oscillations present in adjacent bandpasses were found to be out-of-phase with one another, displaying phase angles of 6.12 degrees, 5.82 degrees and 15.97 degrees between 4170 Angstrom continuum - G-band, G-band - Na I D1 and Na I D1 - Ca II K heights, respectively, reiterating the presence of upwardly-propagating sausage-mode waves. A phase relationship of ~0 degrees between same-bandpass emissi...

  5. Nonlinear terahertz spectroscopy of Higgs mode in s-wave superconductors

    Science.gov (United States)

    Matsunaga, Ryusuke; Shimano, Ryo

    2017-02-01

    We review our recent experiments of ultrafast dynamics in s-wave superconductors Nb1-x Ti x N by using nonlinear terahertz (THz) spectroscopy. The free oscillation of the Higgs mode, i.e. the amplitude mode of the superconducting order parameter, is observed after instantaneous injection of quasiparticles at the superconducting gap edge by an intense monocycle THz pulse. The ultrafast nonequilibrium dynamics of the order parameter under the strong AC driving field with the photon energy tuned below the superconducting gap is also investigated. A resonant nonlinear interaction between the Higgs mode and the electromagnetic field is revealed, as manifested by an efficient THz third-harmonic generation from the superconductor.

  6. High-frequency normal-mode statistics in shallow water: the combined effect of random surface and internal waves.

    Science.gov (United States)

    Raghukumar, Kaustubha; Colosi, John A

    2015-05-01

    In an earlier article, the statistical properties of mode propagation were studied at a frequency of 1 kHz in a shallow water environment with random sound-speed perturbations from linear internal waves, using a hybrid transport theory and Monte Carlo numerical simulations. Here, the analysis is extended to include the effects of random linear surface waves, in isolation and in combination with internal waves. Mode coupling rates for both surface and internal waves are found to be significant, but strongly dependent on mode number. Mode phase randomization by surface waves is found to be dominated by coupling effects, and therefore a full transport theory treatment of the range evolution of the cross mode coherence matrix is needed. The second-moment of mode amplitudes is calculated using transport theory, thereby providing the mean intensity while the fourth-moment is calculated using Monte Carlo simulations, which provides the scintillation index. The transport theory results for second-moment statistics are shown to closely reproduce Monte Carlo simulations. Both surface waves and internal waves strongly influence the acoustic field fluctuations.

  7. THE EFFECT OF GAZE ANGLE ON THE EVALUATIONS OF SAR AND TEMPERATURE RISE IN HUMAN EYE UNDER PLANE-WAVE EXPOSURES FROM 0.9 TO 10 GHZ.

    Science.gov (United States)

    Diao, Yinliang; Leung, Sai-Wing; Chan, Kwok Hung; Sun, Weinong; Siu, Yun-Ming; Kong, Richard

    2016-12-01

    This article investigates the effect of gaze angle on the specific absorption rate (SAR) and temperature rise in human eye under electromagnetic exposures from 0.9 to 10 GHz. Eye models in different gaze angles are developed based on biometric data. The spatial-average SARs in eyes are investigated using the finite-difference time-domain method, and the corresponding maximum temperature rises in lens are calculated by the finite-difference method. It is found that the changes in the gaze angle produce a maximum variation of 35, 12 and 20 % in the eye-averaged SAR, peak 10 g average SAR and temperature rise, respectively. Results also reveal that the eye-averaged SAR is more sensitive to the changes in the gaze angle than peak 10 g average SAR, especially at higher frequencies. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Progress Toward Demonstrating SAR Monitoring of Chinese Seas

    Science.gov (United States)

    Huang, Weigen; Johannessen, Johnny; Alpers, Werner; Yang, Jingsong

    2010-12-01

    "Demonstrating SAR monitoring of Chinese seas" is a project of the ESA-MOST Dragon 2 program. This paper presents the progress of the project. Retrieval algorithms for SAR monitoring of sea surface currents, oceanic internal waves, sea surface winds, oil spills and ships have been advanced. SAR monitoring of Chinese seas in near-real-time is now in demonstration phase.

  9. Frequencies of wave packets of whistler-mode chorus inside its source region: a case study

    Directory of Open Access Journals (Sweden)

    O. Santolik

    2008-06-01

    Full Text Available Whistler-mode chorus is a structured wave emission observed in the Earth's magnetosphere in a frequency range from a few hundreds of Hz to several kHz. We investigate wave packets of chorus using high-resolution measurements recorded by the WBD instrument on board the four Cluster spacecraft. A night-side chorus event observed during geomagnetically disturbed conditions is analyzed. We identify lower and upper frequencies for a large number of individual chorus wave packets inside the chorus source region. We investigate how these observations are related to the central position of the chorus source which has been previously estimated from the Poynting flux measurements. We observe typical frequency bandwidths of chorus of approximately 10% of the local electron cyclotron frequency. Observed time scales are around 0.1 s for the individual wave packets. Our results indicate a lower occurrence probability for lower frequencies in the vicinity of the central position of the source compared to measurements recorded closer to the outer boundaries of the source. This is in agreement with recent research based on the backward wave oscillator theory.

  10. Whistler mode waves and the electron heat flux in the solar wind: Cluster observations

    CERN Document Server

    Lacombe, Catherine; Matteini, Lorenzo; Santolik, Ondrej; Cornilleau-Wehrlin, Nicole; Mangeney, Andre; de Conchy, Yvonne; Maksimovic, Milan

    2014-01-01

    The nature of the magnetic field fluctuations in the solar wind between the ion and electron scales is still under debate. Using the Cluster/STAFF instrument, we make a survey of the power spectral density and of the polarization of these fluctuations at frequencies $f\\in[1,400]$ Hz, during five years (2001-2005), when Cluster was in the free solar wind. In $\\sim 10\\%$ of the selected data, we observe narrow-band, right-handed, circularly polarized fluctuations, with wave vectors quasi-parallel to the mean magnetic field, superimposed on the spectrum of the permanent background turbulence. We interpret these coherent fluctuations as whistler mode waves. The life time of these waves varies between a few seconds and several hours. Here we present, for the first time, an analysis of long-lived whistler waves, i.e. lasting more than five minutes. We find several necessary (but not sufficient) conditions for the observation of whistler waves, mainly a low level of the background turbulence, a slow wind, a relative...

  11. WAVE-VORTEX MODE COUPLING IN ASTROPHYSICAL ACCRETION DISKS UNDER COMBINED RADIAL AND VERTICAL STRATIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Salhi, A. [Departement de Physique, Faculte des Sciences de Tunis, 1060 Tunis (Tunisia); Lehner, T. [LUTH, UMR 8102 CNRS, Observatoire de Paris-Meudon, 5 place de Janssen, F-92195 Meudon (France); Godeferd, F.; Cambon, C. [Laboratoire de Mecanique des Fluides et d' Acoustique, Ecole Centrale de Lyon, Universite de Lyon, UMR 5509, CNRS, INSA, UCB, F-69134 Ecully Cedex (France)

    2013-07-10

    We examine accretion disk flow under combined radial and vertical stratification utilizing a local Cartesian (or ''shearing box'') approximation. We investigate both axisymmetric and nonaxisymmetric disturbances with the Boussinesq approximation. Under axisymmetric disturbances, a new dispersion relation is derived. It reduces to the Solberg-Hoieland criterion in the case without vertical stratification. It shows that, asymptotically, stable radial and vertical stratification cannot induce any linear instability; Keplerian flow is accordingly stable. Previous investigations strongly suggest that the so-called bypass concept of turbulence (i.e., that fine-tuned disturbances of any inviscid smooth shear flow can reach arbitrarily large transient growth) can also be applied to Keplerian disks. We present an analysis of this process for three-dimensional plane-wave disturbances comoving with the shear flow of a general rotating shear flow under combined stable radial and vertical rotation. We demonstrate that large transient growth occurs for K{sub 2}/k{sub 1} >> 1 and k{sub 3} = 0 or k{sub 1} {approx} k{sub 3}, where k{sub 1}, K{sub 2}, and k{sub 3} are the azimuthal, radial, and vertical components of the initial wave vector, respectively. By using a generalized ''wave-vortex'' decomposition of the disturbance, we show that the large transient energy growth in a Keplerian disk is mainly generated by the transient dynamics of the vortex mode. The analysis of the power spectrum of total (kinetic+potential) energy in the azimuthal or vertical directions shows that the contribution coming from the vortex mode is dominant at large scales, while the contribution coming from the wave mode is important at small scales. These findings may be confirmed by appropriate numerical simulations in the high Reynolds number regime.

  12. Comparison of formulas for resonant interactions between energetic electrons and oblique whistler-mode waves

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jinxing, E-mail: lijx@pku.edu.cn [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California 90095 (United States); Bortnik, Jacob; Thorne, Richard M. [Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California 90095 (United States); Xie, Lun, E-mail: xielun@pku.edu.cn; Pu, Zuyin; Fu, Suiyan; Guo, Ruilong [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Chen, Lunjin [W. B. Hanson Center for Space Sciences, Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States); Ni, Binbin [Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan, Hubei 430072 (China); Tao, Xin [Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yao, Zhonghua [Mullard Space Science Laboratory, University College London, Dorking (United Kingdom)

    2015-05-15

    Test particle simulation is a useful method for studying both linear and nonlinear wave-particle interactions in the magnetosphere. The gyro-averaged equations of particle motion for first-order and other cyclotron harmonic resonances with oblique whistler-mode waves were first derived by Bell [J. Geophys. Res. 89, 905 (1984)] and the most recent relativistic form was given by Ginet and Albert [Phys. Fluids B 3, 2994 (1991)], and Bortnik [Ph.D. thesis (Stanford University, 2004), p. 40]. However, recently we found there was a (−1){sup l−1} term difference between their formulas of perpendicular motion for the lth-order resonance. This article presents the detailed derivation process of the generalized resonance formulas, and suggests a check of the signs for self-consistency, which is independent of the choice of conventions, that is, the energy variation equation resulting from the momentum equations should not contain any wave magnetic components, simply because the magnetic field does not contribute to changes of particle energy. In addition, we show that the wave centripetal force, which was considered small and was neglect in previous studies of nonlinear interactions, has a profound time derivative and can significantly enhance electron phase trapping especially in high frequency waves. This force can also bounce the low pitch angle particles out of the loss cone. We justify both the sign problem and the missing wave centripetal force by demonstrating wave-particle interaction examples, and comparing the gyro-averaged particle motion to the full particle motion under the Lorentz force.

  13. Gravitational-wave observations of binary black holes: Effect of non-quadrupole modes

    CERN Document Server

    Varma, Vijay; Husa, Sascha; Bustillo, Juan Calderon; Hannam, Mark; Puerrer, Michael

    2014-01-01

    We study the effect of non-quadrupolar modes in the detection and parameter estimation of gravitational waves (GWs) from non-spinning black-hole binaries. We evaluate the loss of signal-to-noise ratio and the systematic errors in the estimated parameters when one uses a quadrupole-mode template family to detect GW signals with all the relevant modes, for target signals with total masses $20 M_\\odot \\leq M \\leq 250 M_\\odot$ and mass ratios $1 \\leq q \\leq 18$. Target signals are constructed by matching numerical-relativity simulations describing the late inspiral, merger and ringdown of the binary with post-Newtonian/effective-one-body waveforms describing the early inspiral. We find that waveform templates modeling only the quadrupolar modes of the GW signal are sufficient (loss of detection rate $< 10\\%$) for the detection of GWs with mass ratios $q\\leq4$ using advanced GW observatories. Neglecting the effect of non-quadrupole modes will introduce systematic errors in the estimated parameters. The systemat...

  14. Validation of burst overlapping for ALOS-2 PALSAR-2 ScanSAR-ScanSAR interferometry

    Science.gov (United States)

    Natsuaki, Ryo; Motohka, Takeshi; Ohki, Masato; Watanabe, Manabu; Suzuki, Shinichi

    2016-10-01

    The Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) aboard the Advanced Land Observing Satellite- 2 (ALOS-2, "DAICHI-2") is the latest L-band spaceborne synthetic aperture radar (SAR). PALSAR-2 observes the world mainly with 10 m resolution / 70 km swath Stripmap mode and 25 m resolution / 350 km swath ScanSAR mode. The 3-m resolution Stripmap mode is mainly used upon Japan. 350 km ScanSAR observation could detect large scale deformation e.g., the Mw 7.8 Gorkha, Nepal earthquake and its aftershocks in 2015. ALOS-2 ScanSAR is the first one that supports ScanSAR-ScanSAR interferometry in L-band spaceborne SAR. However, because of the parameter setting error for the orbit estimation, ALOS-2 PALSAR-2 ScanSAR could achieve little number of interferometric pair until the software modification on February 8, 2015. That is, the burst overlap timing required for the interferometric analysis was insufficient and it depends on the observation date. In this paper, we report the investigation results of this case and discuss the current status of the ALOS-2 ScanSAR InSAR. Some archives achieved before February 8, 2015 can be used for interferometric analysis with after Feb. 8. However, most of them have no interferometric pair. We also report that the archives acquired after February 8, have enough burst overlapping.

  15. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave.

    Science.gov (United States)

    Zhang, Wending; Huang, Ligang; Wei, Keyan; Li, Peng; Jiang, Biqiang; Mao, Dong; Gao, Feng; Mei, Ting; Zhang, Guoquan; Zhao, Jianlin

    2016-05-16

    Theoretical analysis and experimental demonstration are presented for the generation of cylindrical vector beams (CVBs) via mode conversion in fiber from HE11 mode to TM01 and TE01 modes, which have radial and azimuthal polarizations, respectively. Intermodal coupling is caused by an acoustic flexural wave applied on the fiber, whereas polarization control is necessary for the mode conversion, i.e. HE11x→TM01 and HE11y→TE01 for acoustic vibration along the x-axis. The frequency of the RF driving signal for actuating the acoustic wave is determined by the phase matching condition that the period of acoustic wave equals the beatlength of two coupled modes. With phase matching condition tunability, this approach can be used to generate different types of CVBs at the same wavelength over a broadband. Experimental demonstration was done in the visible and communication bands.

  16. Electron acceleration by whistler-mode waves around the magnetic null during 3D reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Fuliang [School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha, 410004 (China); Zong Qiugang; Pu Zuyin; He Jiansen; Wang Yongfu [School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Su Zhenpeng; Zheng Huinan [CAS Key Laboratory for Basic Plasma Physics, School of Earth and Space Sciences, University of Science and Technology of China, Hefei (China); Cao Jinbin, E-mail: qgzong@pku.edu.c [State Key Laboratory of Space Weather, PO Box 8701, Beijing 100080 (China)

    2010-05-15

    The magnetic field configuration around a magnetic null pair and its associated electron behavior during 3D magnetic reconnection have recently been reported from in situ observations. Electrons are suggested to be temporarily trapped in the central reconnection region as indicated by an electron density peak observed near the magnetic null (He J-S et al 2008 Geophys. Res. Lett. 35 L14104). It is highly interesting that energetic electron beams of a few kiloelectronvolts are found to be related to the magnetic null structure. However, the acceleration mechanism is still not fully understood. In this paper, we show that strong whistler-mode electromagnetic waves are indeed found around the magnetic null. Further we propose a new electron acceleration scenario of trapped electrons near the magnetic null points driven by the whistler-mode waves, which is confirmed by numerical results. It is demonstrated that whistler waves can enhance the phase space density (PSD) of electrons for energies of approx2 keV by a factor of 100 at lower pitch angles very rapidly, typically within 2 s. The accelerated electrons may escape from the loss cone of the magnetic cusp mirrors around the magnetic null, leading to the observed energetic beams. (brief communication)

  17. Effect of polarization orientation angle shift on X-band TDM SAR COSSC product of TerraSAR-X and TanDEM-X

    Science.gov (United States)

    Gupta, Asmita; Kumar, Shashi; Pandey, Uttara

    2016-05-01

    Polarization orientation angle (POA) shift in the backscattered SAR wave induced, due to irregularity of the target surface. Polarimetric signatures of the backscatter SAR wave gets affected by the POA shift, causes error in the decomposition modelling as shift in POA makes coherency matrix asymmetric. POA shift compensation is very necessary to avoid misinterpretation of decomposition modelling results. POA shift effect has been observed using coherency matrix and decomposition model results. This study is conducted over Dudhwa National Park in the state of Uttar Pradesh, using high resolution, TDM SAR COSSC Product of TerraSAR-X and TanDEM-X in Bistatic mode. Present study mainly focused on the comparative analysis of resultant scattering component of decomposition model before and after POA shift compensation. Shift in POA is investigated using circular polarization technique. Yamaguchi four component decomposition model is used to express total backscatter information in terms of volume, double bounce, surface and helix scattering. Volume scattering is overestimated however double bounce and surface scattering is under estimated in decomposition model due to POA shift present in the backscatter SAR wave. Different scattering mechanisms resulted after POA compensation were analyzed using 100 random points taken from forest structure. The results obtained by TerraSAR-X and TanDEM-X shows an overall increase in double bounce scattering and decrease in volume scattering component after POA shift compensation. It is observed that there is negligible effect of POA shift on surface scattering. POA shift compensation necessarily required to improve the accuracy of decomposition models used in the forest parameter retrieval applications.

  18. Signal Processing for Digital Beamforming FMCW SAR

    Directory of Open Access Journals (Sweden)

    Qin Xin

    2014-01-01

    Full Text Available According to the limitations of single channel Frequency Modulation Continuous Wave (FMCW Synthetic Aperture Radar (SAR, Digital Beamforming (DBF technology is introduced to improve system performance. Combined with multiple receive apertures, DBF FMCW SAR can obtain high resolution in low pulse repetition frequency, which can increase the processing gain and decrease the sampling frequency. The received signal model of DBF FMCW SAR is derived. The continuous antenna motion which is the main characteristic of FMCW SAR received signal is taken into account in the whole signal processing. The detailed imaging diagram of DBF FMCW SAR is given. A reference system is also demonstrated in the paper by comparing with a single channel FMCW SAR. The validity of the presented diagram is demonstrated with a point target simulation results.

  19. Whistler mode waves and Hall fields detected by MMS during a dayside magnetopause crossing

    Science.gov (United States)

    Contel, O. Le; Retinò, A.; Breuillard, H.; Mirioni, L.; Robert, P.; Chasapis, A.; Lavraud, B.; Chust, T.; Rezeau, L.; Wilder, F. D.; Graham, D. B.; Argall, M. R.; Gershman, D. J.; Lindqvist, P.-A.; Khotyaintsev, Y. V.; Marklund, G.; Ergun, R. E.; Goodrich, K. A.; Burch, J. L.; Torbert, R. B.; Needell, J.; Chutter, M.; Rau, D.; Dors, I.; Russell, C. T.; Magnes, W.; Strangeway, R. J.; Bromund, K. R.; Leinweber, H. K.; Plaschke, F.; Fischer, D.; Anderson, B. J.; Le, G.; Moore, T. E.; Pollock, C. J.; Giles, B. L.; Dorelli, J. C.; Avanov, L.; Saito, Y.

    2016-06-01

    We present Magnetospheric Multiscale (MMS) mission measurements during a full magnetopause crossing associated with an enhanced southward ion flow. A quasi-steady magnetospheric whistler mode wave emission propagating toward the reconnection region with quasi-parallel and oblique wave angles is detected just before the opening of the magnetic field lines and the detection of escaping energetic electrons. Its source is likely the perpendicular temperature anisotropy of magnetospheric energetic electrons. In this region, perpendicular and parallel currents as well as the Hall electric field are calculated and found to be consistent with the decoupling of ions from the magnetic field and the crossing of a magnetospheric separatrix region. On the magnetosheath side, Hall electric fields are found smaller as the density is larger but still consistent with the decoupling of ions. Intense quasi-parallel whistler wave emissions are detected propagating both toward and away from the reconnection region in association with a perpendicular anisotropy of the high-energy part of the magnetosheath electron population and a strong perpendicular current, which suggests that in addition to the electron diffusion region, magnetosheath separatrices could be a source region for whistler waves.

  20. Formation of whispering gallery modes by scattering of an electromagnetic plane wave by two cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, Arnold, E-mail: qulaser@gmail.com [Kuang-Chi Institute of Advanced Technology, Shenzhen, 518057 (China); Kostikov, Alexander [Donbass State Engineering Academy, 84303, Kramatorsk, Donetsk (Ukraine)

    2017-03-26

    We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder. - Highlights: • We consider scattering of electromagnetic plane waves by two cylinders. • WGMs occur because of the presence of additional cylinder at specific location. • The accuracy for the locations is much less than required for specific values of single cylinder. • The interference of waves scattered by additional cylinders and incident on the main is responsible for the effect.

  1. High-Precision Half-Wave Rectifier Circuit In Dual Phase Output Mode

    Directory of Open Access Journals (Sweden)

    Theerayut Jamjaem

    2009-12-01

    Full Text Available This paper present high-precision half-wave rectifier circuit in dual phase output mode by 0.5 μm CMOS technology, +/- 1.5 V low voltage, it has received input signal and sent output current signal, respond in high frequency. The main structure compound with CMOS inverter circuit, common source circuit, and current mirror circuit. Simulation and confirmation quality of working by PSpice program, then it able to operating at maximum frequency about 100 MHz, maximum input current range about 400 μAp-p, high precision output signal, low power dissipation, and uses a little transistor.Keywords-component; half-wave; rectifier circuit; highprecession; dual phase;

  2. Non Linear Internal Waves: Modeling of Their Influence on Acoustic Mode Energy Fluctuations and Characterization Using SAR Systems

    Science.gov (United States)

    2007-12-01

    2 Figure 2. Classic secant profile for KdV soliton at two different times, viewed in a moving coordinate system. Adapted from...scientists to give mathematical representation to this phenomenon were Korteweg and De Vries ( KdV ) in 1897 who based their work on the observations...dnoidal representations, have been found. However, the KdV equation or the extended KdV equation (Apel et al., 2007) offer results whose accuracy is

  3. A Research on Airborne Squint Hybrid SAR

    Institute of Scientific and Technical Information of China (English)

    BIANYong; ZHOUYinqing; LIChunsheng

    2004-01-01

    In this paper, we establish the squint mode hybrid SAR (Synthetic aperture radar) geometry. Based on the squint mode SAR geometry, the hybrid SAR signal model in squint case is derived. Based on this signal model, the hybrid SAR imaging process parameter is discussed. Aimed at the squint case, we analyze not only the relationship between the resolution and SAR system parameters, but also the relation between the time extension of the maximum azimuth signal and SAR system parameters. This research establishes the theoretical foundation for the design of squint hybrid SAR and serves as a good guide for the future work of improving the resolution of squint hybrid SAR. Based on the two-step algorithm, by considering the squint angle and cubic phase term, we are going to use the deramp SC-Chirp Scaling algorithm for squint hybrid SAR imaging. This algorithm uses the deramp method for the first step processing, and the SC-Chirp Scaling algorithm for the second step processing. The process procedure of this algorithm includes the squint angle, has the explicit physical meaning, therefore is convenient for analysis. The computer simulation result proves the validity of the analysis.

  4. Higher Order Mode Filter Design for Double Quarter Wave Crab Cavity for the LHC High Luminosity Upgrade

    CERN Document Server

    Xiao, B P; Ben-Zv, I; Burt, Graeme Campbell; Calaga, Rama; Capatina, Ofelia; Hall, B; Jones, T; Skaritka, J; Verdú-Andrés, S; Wu, Q

    2015-01-01

    A Double Quarter Wave Crab Cavity (DQWCC) was designed for the Large Hadron Collider (LHC) luminosity upgrade. A compact Higher Order Mode (HOM) filter with wide stop band at the deflecting mode is developed for this cavity. Multi-physics finite element simulation results are presented. The integration of this design to the cavity cryomodule is described.

  5. Higher order mode filter design for double quarter wave crab cavity for the LHC high luminosity upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Burt, G. [Lancaster Univ. (United Kingdom); Calaga, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Capatina, O. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Hall, B. [Lancaster Univ. (United Kingdom); Jones, T. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Skaritka, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Verdu-Andres, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    A Double Quarter Wave Crab Cavity (DQWCC) was designed for the Large Hadron Collider (LHC) luminosity upgrade. A compact Higher Order Mode (HOM) filter with wide stop band at the deflecting mode is developed for this cavity. Multiphysics finite element simulation results are presented. The integration of this design to the cavity cryomodule is described.

  6. Study of inter-modal four wave mixing in two few-mode fibres with different phase matching properties

    DEFF Research Database (Denmark)

    Parmigiani, F.; Jung, Y.; Friis, Søren Michael Mørk

    2016-01-01

    We experimentally study inter-modal four-wave mixing (FWM) in few-mode fibres with different phase matching properties. The possibility of transmitting two spatial modes without intermodal FWM cross-talk in the C-band is presented....

  7. Modified High Frequency Radial Spin Wave Mode Spectrum in a Chirality-Controlled Nanopillar

    Science.gov (United States)

    Kolthammer, J. E.; Rudge, J.; Choi, B. C.; Hong, Y. K.

    2016-09-01

    Circular magnetic spin valve nanopillars in a dual vortex configuration have dynamic characteristics strongly dependent on the interlayer dipole coupling. We report here on frequency domain properties of such nanopillars obtained by micromagnetic simulations. After the free layer is chirality switched with spin transfer torque, a radial spin wave eigenmode spectrum forms in the free layer with unusually large edge amplitude. The structure of these modes indicate a departure from the magnetostatic processes typically observed experimentally and treated analytically in low aspect ratio isolated disks. Our findings give new details of dynamic chirality control and relxation in nanopillars and raise potential signatures for experiments.

  8. Majorana zero modes in the hopping-modulated one-dimensional p-wave superconducting model.

    Science.gov (United States)

    Gao, Yi; Zhou, Tao; Huang, Huaixiang; Huang, Ran

    2015-11-20

    We investigate the one-dimensional p-wave superconducting model with periodically modulated hopping and show that under time-reversal symmetry, the number of the Majorana zero modes (MZMs) strongly depends on the modulation period. If the modulation period is odd, there can be at most one MZM. However if the period is even, the number of the MZMs can be zero, one and two. In addition, the MZMs will disappear as the chemical potential varies. We derive the condition for the existence of the MZMs and show that the topological properties in this model are dramatically different from the one with periodically modulated potential.

  9. Two-Mode Resonator and Contact Model for Standing Wave Piezomotor

    DEFF Research Database (Denmark)

    Andersen, B.; Blanke, Mogens; Helbo, J.

    2001-01-01

    The paper presents a model for a standing wave piezoelectric motor with a two bending mode resonator. The resonator is modelled using Hamilton's principle and the Rayleigh-Ritz method. The contact is modelled using the Lagrange Multiplier method under the assumption of slip and it is showed how...... to solve the set of differential-algebraic equations. Detailed simulations show resonance frequencies as function of the piezoelement's position, tip trajectories and contact forces. The paper demonstrates that contact stiffness and stick should be included in such model to obtain physically realistic...

  10. Constraining stochastic gravitational wave background from weak lensing of CMB B-modes

    CERN Document Server

    Shaikh, Shabbir; Rotti, Aditya; Souradeep, Tarun

    2016-01-01

    A stochastic gravitational wave background (SGWB) will affect the CMB anisotropies via weak lensing. Unlike weak lensing due to large scale structure which only deflects photon trajectories, a SGWB has an additional effect of rotating the polarization vector along the trajectory. We study the relative importance of these two effects, deflection \\& rotation, specifically in the context of E-mode to B-mode power transfer caused by weak lensing due to SGWB. Using weak lensing distortion of the CMB as a probe, we derive constraints on the spectral energy density ($\\Omega_{GW}$) of the SGWB, sourced at different redshifts, without assuming any particular model for its origin. We present these bounds on $\\Omega_{GW}$ for different power-law models characterizing the SGWB, indicating the threshold above which observable imprints of SGWB must be present in CMB.

  11. Characterizing Atacama B-mode Search Detectors with a Half-Wave Plate

    Science.gov (United States)

    Simon, S. M.; Appel, J. W.; Campusano, L. E.; Choi, S. K.; Crowley, K. T.; Essinger-Hileman, T.; Gallardo, P.; Ho, S. P.; Kusaka, A.; Nati, F.; Palma, G. A.; Page, L. A.; Raghunathan, S.; Staggs, S. T.

    2016-08-01

    The Atacama B-Mode Search (ABS) instrument is a cryogenic (˜ 10 K) crossed-Dragone telescope located at an elevation of 5190 m in the Atacama Desert in Chile that observed for three seasons between February 2012 and October 2014. ABS observed the cosmic microwave background (CMB) at large angular scales (40ABS focal plane consists of 480 transition-edge sensor (TES) bolometers. They are coupled to orthogonal polarizations from a planar ortho-mode transducer and observe at 145 GHz. ABS employs an ambient-temperature, rapidly rotating half-wave plate (HWP) to mitigate systematic effects and move the signal band away from atmospheric 1 / f noise, allowing for the recovery of large angular scales. We discuss how the signal at the second harmonic of the HWP rotation frequency can be used for data selection and for monitoring the detector responsivities.

  12. Higher and sub-harmonic Lamb wave mode generation due to debond-induced contact nonlinearity

    Science.gov (United States)

    Guha, Anurup; Bijudas, C. R.

    2016-04-01

    Non-cumulative higher and sub-harmonic Lamb wave mode generation as a result of partial-debond of piezoelectric wafer transducers (PWT) bonded onto an Aluminium plate, is numerically investigated and experimentally validated. The influence of excitation frequency on the extent of nonlinearity due to clapping mechanism of the partially-debonded PWTs is discussed. A set of specific frequency range is arrived at based on the Eigen-value and Harmonic analyses of PWTs used in the model. It is found that, at these frequencies, which are integral multiple of the first width-direction mode of a PWT, significantly higher amplitudes of higher-harmonics are observed. It is also seen that at specific debond-positions and lengths, sharp sub-harmonics in addition to higher-harmonics are present. Signal processing is carried out using Fast Fourier transform, which is normalized for comparisons.

  13. Degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper

    2013-01-01

    Spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers, in which photonic bandgap guidance and index guidance is combined. Calculations show the parametric gain is maximum on the edge of a photonic bandgap, for a large range of pump...... wavelengths. The FWM products are observed on the edges of a transmission band experimentally, in good agreement with the numerical results. Thereby the bandedges can be used to control the spectral positions of FWM products through a proper fiber design. The parametric gain control combined with a large mode...... area fiber design potentially allows for power scaling of light at wavelengths not easily accessible with e.g. rare earth ions....

  14. Degenerate four wave mixing in large mode area hybrid photonic crystal fibers.

    Science.gov (United States)

    Petersen, Sidsel R; Alkeskjold, Thomas T; Lægsgaard, Jesper

    2013-07-29

    Spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers, in which photonic bandgap guidance and index guidance is combined. Calculations show the parametric gain is maximum on the edge of a photonic bandgap, for a large range of pump wavelengths. The FWM products are observed on the edges of a transmission band experimentally, in good agreement with the numerical results. Thereby the bandedges can be used to control the spectral positions of FWM products through a proper fiber design. The parametric gain control combined with a large mode area fiber design potentially allows for power scaling of light at wavelengths not easily accessible with e.g. rare earth ions.

  15. Water-waves modes trapped in a canal by a body with the rough surface

    CERN Document Server

    Cardone, G; Nazarov, S A

    2009-01-01

    The problem about a body in a three dimensional infinite channel is considered in the framework of the theory of linear water-waves. The body has a rough surface characterized by a small parameter $\\epsilon>0$ while the distance of the body to the water surface is also of order $\\epsilon$. Under a certain symmetry assumption, the accumulation effect for trapped mode frequencies is established, namely, it is proved that, for any given $d>0$ and integer $N>0$, there exists $\\epsilon(d,N)>0$ such that the problem has at least $N$ eigenvalues in the interval $(0,d)$ of the continuous spectrum in the case $\\epsilon\\in(0,\\epsilon(d,N)) $. The corresponding eigenfunctions decay exponentially at infinity, have finite energy, and imply trapped modes.

  16. Constraining stochastic gravitational wave background from weak lensing of CMB B-modes

    Science.gov (United States)

    Shaikh, Shabbir; Mukherjee, Suvodip; Rotti, Aditya; Souradeep, Tarun

    2016-09-01

    A stochastic gravitational wave background (SGWB) will affect the CMB anisotropies via weak lensing. Unlike weak lensing due to large scale structure which only deflects photon trajectories, a SGWB has an additional effect of rotating the polarization vector along the trajectory. We study the relative importance of these two effects, deflection & rotation, specifically in the context of E-mode to B-mode power transfer caused by weak lensing due to SGWB. Using weak lensing distortion of the CMB as a probe, we derive constraints on the spectral energy density (ΩGW) of the SGWB, sourced at different redshifts, without assuming any particular model for its origin. We present these bounds on ΩGW for different power-law models characterizing the SGWB, indicating the threshold above which observable imprints of SGWB must be present in CMB.

  17. Double Quarter Wave Crab Cavity Field Profile Analysis and Higher Order Mode Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Carlos [Brookhaven National Lab. (BNL), Upton, NY (United States). Accelerator R and D Div.; Stony Brook Univ., NY (United States). Physics and Astronomy Dept.; Xiao, B. P. [Brookhaven National Lab. (BNL), Upton, NY (United States). Accelerator R and D Div.; Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Accelerator R and D Div.; Stony Brook Univ., NY (United States). Physics and Astronomy Dept.

    2014-06-01

    The Large Hadron Collider (LHC) is underway for a major upgrade to increase its luminosity by an order of magnitude beyond its original design specifications. This novel machine configuration known as the High Luminosity LHC (HL-LHC) will rely on various innovative technologies including very compact and ultra-precise superconducting crab cavities for beam rotation. A double quarter wave crab cavity (DQWCC) has been designed at Brookhaven National Laboratory for the HL-LHC. This cavity as well as the structural support components were fabricated and assembled at Niowave. The field profile of the crabbing mode for the DQWCC was investigated using a phase shift bead pulling technique and compared with simulated results to ensure proper operation or discover discrepancies from modeled results and/or variation in fabrication tolerances. Higher-Order Mode (HOM) characterization was also performed and correlated with simulations.

  18. Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations

    Directory of Open Access Journals (Sweden)

    O. Le Contel

    2009-06-01

    Full Text Available We report on quasi-parallel whistler emissions detected by the near-earth satellites of the THEMIS mission before, during, and after local dipolarization. These emissions are associated with an electron temperature anisotropy α=Te/T||e>1 consistent with the linear theory of whistler mode anisotropy instability. When the whistler mode emissions are observed the measured electron anisotropy varies inversely with β||e (the ratio of the electron parallel pressure to the magnetic pressure as predicted by Gary and Wang (1996. Narrow band whistler emissions correspond to the small α existing before dipolarization whereas the broad band emissions correspond to large α observed during and after dipolarization. The energy in the whistler mode is leaving the current sheet and is propagating along the background magnetic field, towards the Earth. A simple time-independent description based on the Liouville's theorem indicates that the electron temperature anisotropy decreases with the distance along the magnetic field from the equator. Once this variation of α is taken into account, the linear theory predicts an equatorial origin for the whistler mode. The linear theory is also consistent with the observed bandwidth of wave emissions. Yet, the anisotropy required to be fully consistent with the observations is somewhat larger than the measured one. Although the discrepancy remains within the instrumental error bars, this could be due to time-dependent effects which have been neglected. The possible role of the whistler waves in the substorm process is discussed.

  19. Gravitational Waves from F-modes Excited by the Inspiral of Highly Eccentric Neutron Star Binaries

    Science.gov (United States)

    Chirenti, Cecilia; Gold, Roman; Miller, M. Coleman

    2017-03-01

    As gravitational wave instrumentation becomes more sensitive, it is interesting to speculate about subtle effects that could be analyzed using upcoming generations of detectors. One such effect that has great potential for revealing the properties of very dense matter is fluid oscillations of neutron stars. These have been found in numerical simulations of the hypermassive remnants of double neutron star mergers and of highly eccentric neutron star orbits. Here we focus on the latter and sketch out some ideas for the production, gravitational-wave detection, and analysis of neutron star oscillations. These events will be rare (perhaps up to several tens per year could be detected using third-generation detectors such as the Einstein Telescope or the Cosmic Explorer), but they would have unique diagnostic power for the analysis of cold, catalyzed, dense matter. Furthermore, these systems are unusual in that analysis of the tidally excited f-modes of the stars could yield simultaneous measurements of their masses, moments of inertia, and tidal Love numbers, using the frequency, damping time, and amplitude of the modes. They would thus present a nearly unique opportunity to test the I-Love-Q relation observationally. The analysis of such events will require significant further work in nuclear physics and general relativistic nonlinear mode coupling, and thus we discuss further directions that will need to be pursued. For example, we note that for nearly grazing encounters, numerical simulations show that the energy delivered to the f-modes may be up to two orders of magnitude greater than predicted in the linear theory.

  20. Signal processing for FMCW SAR

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.; Ligthart, L.P.

    2007-01-01

    The combination of frequency-modulated continuous-wave (FMCW) technology and synthetic aperture radar (SAR) techniques leads to lightweight cost-effective imaging sensors of high resolution. One limiting factor to the use of FMCW sensors is the well-known presence of nonlinearities in the

  1. On the exploitation of mode localization in surface acoustic wave MEMS

    Science.gov (United States)

    Hanley, T. H.; Gallacher, B. J.; Grigg, H. T. D.

    2017-05-01

    Mode localization sensing has been recently introduced as an alternative resonant sensing protocol. It has been shown to exhibit several advantages over other resonant methods, in particular a potential for higher sensitivity and rejection of common mode noise. This paper expounds the principles of utilising surface acoustic waves (SAW) to create a mode localization sensor. A generalised geometry consisting of a pair of coupled resonant cavities is introduced and an analytical solution found for the displacement fields within the cavities. The solution is achieved by coupling the internal cavity solutions using a ray tracing method. The results of the analytical solution are compared to a numerical solution found using commercial finite element method (FEM) software; exact agreement is found between the two solutions. The insight gained from the analytical model enables the determination of critical design parameters. A brief analysis is presented showing analogous operation to previous examples of mode localization sensors. The sensitivity of the device is shown to depend nonlinearly on the number of periods in the array coupling the two cavities.

  2. SAR observations of coastal zone conditions

    Science.gov (United States)

    Meadows, G. A.; Kasischke, E. S.; Shuchman, R. A.

    1980-01-01

    Applications of Synthetic Aperture Radar (SAR) technology to the observation of coastal zones phenomena are detailed. The conditions observed include gravity wave detection, surf zone location, surface currents, and long-period 'surf beats'. Algorithms have been developed and successfully tested that determine significant wave and current parameters from the sea surface backscatter of microwave energy. Doppler information from the SAR optical correlator allows a rough estimation of near shore surface flow velocities that has been found in agreement with both theory and in situ observations as well. Seasat SAR data of the Scotland and North Carolina coasts are considered, as well as the results of bathymetric updating of coastal area charts.

  3. Experimental study on slow flexural waves around the defect modes in a phononic crystal beam using fiber Bragg gratings

    Science.gov (United States)

    Chuang, Kuo-Chih; Zhang, Zhi-Qiang; Wang, Hua-Xin

    2016-12-01

    This work experimentally studies influences of the point defect modes on the group velocity of flexural waves in a phononic crystal Timoshenko beam. Using the transfer matrix method with a supercell technique, the band structures and the group velocities around the defect modes are theoretically obtained. Particularly, to demonstrate the existence of the localized defect modes inside the band gaps, a high-sensitivity fiber Bragg grating sensing system is set up and the displacement transmittance is measured. Slow propagation of flexural waves via defect coupling in the phononic crystal beam is then experimentally demonstrated with Hanning windowed tone burst excitations.

  4. Bistatic Experiment Using TerraSAR-X and DLR’s new F-SAR System

    OpenAIRE

    Baumgartner, Stefan; Rodriguez-Cassolà, Marc; Nottensteiner, Anton; Horn, Ralf; Scheiber, Rolf; Steinbrecher, Ulrich; Metzig, Robert; Limbach, Markus; Mittermayer, Josef; Krieger, Gerhard; Moreira, Alberto; Schwerdt, Marco

    2008-01-01

    A bistatic X-band experiment was successfully performed early November 2007. TerraSAR-X was used as transmitter and DLR’s new airborne radar system F-SAR, which was programmed to acquire data in a quasi-continuous mode to avoid echo window synchronization issues, was used as bistatic receiver. Precise phase and time referencing between both systems, which is essential for obtaining high resolution SAR images, was derived during the bistatic processing. Hardware setup and performance analyses ...

  5. GRECO-SAR: An Orbital Polarimetric SAR Simulator of Deterministic Complex Targets for Vessel Classification Studies

    OpenAIRE

    Margarit Martín, Gerard; Mallorquí Franquet, Jordi Joan; Rius Casals, Juan Manuel; Sanz Marcos, Jesús

    2006-01-01

    This paper presents a synthetic aperture radar (SAR) simulator that is able to generate polarimetric SAR (POLSAR) and polarimetric inverse SAR data of complex targets. It solves the electromagnetic problem via high-frequency approximations, such as physical optics and the physical theory of diffraction, with notable computational efficiency. In principle, any orbital monostatic sensor working at any band, resolution, and operating mode can be modeled. To make simulations more realistic, the t...

  6. Higher-order Laguerre-Gauss modes in (non-) planar four-mirror cavities for future gravitational wave detectors.

    Science.gov (United States)

    Noack, Andreas; Bogan, Christina; Willke, Benno

    2017-02-15

    One of the limiting noise sources in the current generation of gravitational wave detectors, such as the advanced laser interferometer gravitational wave observatory (aLIGO), is the thermal noise in the interferometer's test mass coatings. One proposed method to reduce the coupling of this noise source to the gravitational wave readout is using a laser beam in the higher-order spatial LG33 mode within the interferometer. Here we show that the current four-mirror cavities of aLIGO are not compatible with Laguerre-Gauss modes due to astigmatism. A non-degeneracy of modes of the same order could be observed in experiment and simulation. We demonstrate that a non-planar cavity could be used instead as it compensates for the astigmatism and transmits the LG33 mode undisturbed.

  7. Explaining Inverted-temperature Loops in the Quiet Solar Corona with Magnetohydrodynamic Wave-mode Conversion

    Science.gov (United States)

    Schiff, Avery J.; Cranmer, Steven R.

    2016-11-01

    Coronal loops trace out bipolar, arch-like magnetic fields above the Sun’s surface. Recent measurements that combine rotational tomography, extreme-ultraviolet imaging, and potential-field extrapolation have shown the existence of large loops with inverted-temperature profiles, i.e., loops for which the apex temperature is a local minimum, not a maximum. These “down loops” appear to exist primarily in equatorial quiet regions near solar minimum. We simulate both these and the more prevalent large-scale “up loops” by modeling coronal heating as a time-steady superposition of (1) dissipation of incompressible Alfvén wave turbulence and (2) dissipation of compressive waves formed by mode conversion from the initial population of Alfvén waves. We found that when a large percentage (>99%) of the Alfvén waves undergo this conversion, heating is greatly concentrated at the footpoints and stable “down loops” are created. In some cases we found loops with three maxima that are also gravitationally stable. Models that agree with the tomographic temperature data exhibit higher gas pressures for “down loops” than for “up loops,” which is consistent with observations. These models also show a narrow range of Alfvén wave amplitudes: 3 to 6 km s‑1 at the coronal base. This is low in comparison to typical observed amplitudes of 20–30 km s‑1 in bright X-ray loops. However, the large-scale loops we model are believed to compose a weaker diffuse background that fills much of the volume of the corona. By constraining the physics of loops that underlie quiescent streamers, we hope to better understand the formation of the slow solar wind.

  8. Highly resolved effects of whistler-mode hiss waves in March 2013

    Science.gov (United States)

    Ripoll, J. F.; Santolik, O.; Reeves, G. D.; Kurth, W. S.; Kletzing, C.

    2015-12-01

    We present a simulation of effects of whistler-mode waves on radiation belt electrons for the entire month of March 2013. Frequency dependent wave intensities as well as ambient plasma density are obtained from the EMFISIS Waves instrument onboard the Van Allen Probes using fine temporal (8 hours) and spatial (0.1L) resolutions. Pitch angle diffusion that produces electron scattering is computed using the Lyons et al. [1972] model, from L=1.8 to L=5.5 and energy in [0.05, 6] MeV. Electron lifetimes are deduced from the steady state of electron pitch angle diffusion. Such a computation requires 4000 thousands processors during 10 hours. It leads to a fine description of the hiss effects in the plasmasphere and in its exterior neighborhood. Losses follow a complex and dynamic filamentary structure, imposed by the wave properties (mainly frequency and amplitude), that sculpts the slot as such. Their daily structure in the (E-L) plane is characteristic [Lyons & Thorne, 1973], dynamic, and similar to recent slot observations from the Van Allen probes [Reeves et al., 2015]. Low energy electrons are less influenced by intense hiss scattering below L=4, which favors their travel down to the vicinity of the Earth, explaining thus the existence of a wide inner belt. On the other hand MeV electrons evolve in a more hostile environment that will depopulate them as they migrate from L~5 down to L~2.5. Ultra-relativistic electrons are not sensible to hiss waves before two and three Earth radii.

  9. 2, Pulse-mode expansions and refractive indices in plane-wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Shore, B.W.; Sacks, R.; Karr, T.; Morris, J.; Paisner, J.A.

    1987-06-20

    This memo presents basic background theory for treating simultaneous propagation of electromagnetic pulses of various colors, directed along a common ray, through a molecular vapor. The memo discusses some techniques for expanding the positive frequency part of the transverse electric field into pulse modes, characterized by carrier frequencies within a modulated envelope. We discuss, in the approximation of plane waves with slowly varying envelopes, a set of uncoupled envelope equations in which a polarization mode-envelope acts as a source for an electric-field envelope. These equations, when taken with a prescription for the polarization field, are the basic equations of plane-wave pulse propagation through a molecular medium. We discuss two ways of treating dispersive media, one based upon expansions in the frequency domain and the other based in the time domain. In both cases we find envelope equations that involve group velocities. This memo represents a portion of a more extensive treatment of propagation to be presented separately. Many of the equations presented here have been described in various books and articles. They are collected and described here as a summary and review of contemporary theory.

  10. Robust polarization filter for separation of Lamb wave modes acquired using a 3D laser vibrometer

    Science.gov (United States)

    Ambroziński, Łukasz; Stepinski, Tadeusz

    2017-09-01

    Interpretation of signals related to Lamb waves propagation and scattering can rise serious difficulties due to the multi-modal nature of these waves. Different modes propagating with different velocities can be mixed up and hinder extraction of damage reflected components. As a feasible solution to this problem we propose a technique for separation of the propagating modes using a new type of polarization filter. The proposed directional polarization filter (DPF) can be applied if two components of particle movement, the in-plane and the out-of-plane, are available, for instance, from the measurement performed using laser vibrometer. The DPF is robust in the sense that it does not need a complete amplitude information of both components. Operation principle of the DPF is presented and illustrated by the simulated results in the form of B-scans obtained for an aluminum plate. The simulated results are verified by the experimental data obtained by processing the signals captured using a 3D laser vibrometer.

  11. Inertial waves and modes excited by the libration of a rotating cube

    CERN Document Server

    Boisson, J; Maas, L R M; Cortet, P -P; Moisy, F

    2013-01-01

    We report experimental measurements of the flow in a cubic container submitted to a longitudinal libration, i.e. a rotation modulated in time. Velocity fields in a vertical and a horizontal plane are measured in the librating frame using a corotating particle image velocimetry system. When the libration frequency $\\sigma_0$ is smaller than twice the mean rotation rate $\\Omega_0$, inertial waves can propagate in the interior of the fluid. At arbitrary excitation frequencies $\\sigma_0<2\\Omega_0$, the oscillating flow shows two contributions: (i) a basic flow induced by the libration motion, and (ii) inertial wave beams propagating obliquely upward and downward from the horizontal edges of the cube. In addition to these two contributions, inertial modes may also be excited at some specific resonant frequencies. We characterize in particular the resonance of the mode of lowest order compatible with the symmetries of the forcing, noted [2,1,+]. By comparing the measured flow fields to the expected inviscid iner...

  12. Constraining the r-mode saturation amplitude from a hypothetical detection of r-mode gravitational waves from a newborn neutron star - sensitivity study

    CERN Document Server

    Mytidis, Antonis; Whiting, Bernard

    2015-01-01

    This paper consists of two related parts: In the first part we derive an expression of the moment of inertia (MOI) of a neutron star as a function of observables from a hypothetical r-mode gravitational wave detection. For a given r-mode detection we show how the value of the MOI of a neutron star constrains the equation of state (EOS) of the matter in the core of the neutron star. Subsequently, for each candidate EOS, we derive a possible value of the saturation amplitude, \\alpha, of the r-mode oscillations on the neutron star. Additionally, we argue that a r-mode detection will provide clues about the cooling rate mechanism of the neutron star. The above physics that can be derived from a hypothetical r-mode detection constitute our motivation for the second part of the paper. In that part we present a detection strategy to efficiently search for r-modes in gravitational-wave data. R-mode signals were injected into simulated noise colored with the advanced LIGO (aLIGO) and Einstein Telescope (ET) sensitivit...

  13. Influence of wave frequency variation on anomalous cyclotron resonance interaction of energetic electrons with finite amplitutude ducted whistler-mode wave

    CERN Document Server

    Erokhin, N S; Rycroft, M J; Nunn, D G

    1996-01-01

    The influence of wave frequency variation on the anomalous cyclotron resonance $\\omega=\\omega_{Be}+kv_{\\|}$ interaction (ACRI) of energetic electrons with a ducted finite amplitude whistler-mode wave propagating through the so-called transient plasma layer (TPL) in the magnetosphere or in the ionosphere is studied both analytically and numerically. The anomalous cyclotron resonance interaction takes place in the case when the whistler-mode wave amplitude $B_{W}$ is consistent with the gradient of magnetic field interacting energetic electrons (synchronous particles) is determined. The efficiencies of both the pitch-angle scattering of resonant electrons and their transverse acceleration are studied and the efficiencies dependence on the magnitude and sign of the wave frequency drift is considered. It has been shown that in the case of ACRI occuring under conditions relevant to VLF-emission in the magnetosphere, the energy and pitch-angle changes of synchronous electrons may be enchanced by a factor $10^2 \\div...

  14. The mid-high latitude whistler mode chorus waves observed around substorm onsets

    Institute of Scientific and Technical Information of China (English)

    YANG JunYing; CAO JinBin; YAN ChunXiao; LI LiuYuan; MA YuDuan

    2008-01-01

    Using the data of LFEW/TC-2, we studied the dawn side chorus around substorm onsets during a strong geomagnetic storm in November 2004. During this storm, LFEW/TC-2 observed 14 dawnside chorus events. Nine of them were associated with substorms and occurred within 40 min around the substorm onsets. The fre-quencies of waves have a very good correlation with the half equatorial electron cyclotron frequencies. Chorus can be excited in the region near magnetic equato-rial plane and then propagate to the mid and high latitudes. When the wave fre-quencies reach the local lower hybrid frequencies, chorus can be reflected due to the lower hybrid resonance. The time delay between the chorus and its echo is about 28 min. Previous observations show that the chorus can propagate at most to the magnetic latitudes of 40°. LFEW/TC-2 found for the first time that the chorus in space could propagate to the magnetic latitude of 70°. Since most of the previous chorus observatlons are made close to the magnetic equatorial plane, our results are Important for the studies of excitation and propagation of whistler mode wave, and relevant relativistic electron acceleration in the magnetosphere.

  15. The mid-high latitude whistler mode chorus waves observed around substorm onsets

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using the data of LFEW/TC-2, we studied the dawn side chorus around substorm onsets during a strong geomagnetic storm in November 2004. During this storm, LFEW/TC-2 observed 14 dawnside chorus events. Nine of them were associated with substorms and occurred within 40 min around the substorm onsets. The fre-quencies of waves have a very good correlation with the half equatorial electron cyclotron frequencies. Chorus can be excited in the region near magnetic equato-rial plane and then propagate to the mid and high latitudes. When the wave fre-quencies reach the local lower hybrid frequencies, chorus can be reflected due to the lower hybrid resonance. The time delay between the chorus and its echo is about 28 min. Previous observations show that the chorus can propagate at most to the magnetic latitudes of 40°. LFEW/ TC-2 found for the first time that the chorus in space could propagate to the magnetic latitude of 70°. Since most of the previous chorus observations are made close to the magnetic equatorial plane, our results are important for the studies of excitation and propagation of whistler mode wave, and relevant relativistic electron acceleration in the magnetosphere.

  16. Mode Conversion of Langmuir to Electromagnetic Waves with Parallel Inhomogeneity in the Solar Wind and the Corona

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.

    2008-06-09

    Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o- and x-mode waves are produced for Ω ∝ (ωL)1/3(ωc/ω) somewhat less than 1, contrary to previous ideas. Only o mode is produced for Ω and somewhat greater than 1.5. Here ωc is the (angular) electron cyclotron frequency, ω the angular wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as Ω increases. (4) As Ω increases the total electromagnetic field changes from linear to circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as Ω increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group speeds for each mode and are of order 50 – 70%. (7) The interference effect and the disappearance of the x mode at Ω somewhat greater than 1 can be accounted for semiquantitatively using a WKB-like analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x- mode radiation for

  17. Analysis of the hot-cavity mode composition of an X-band overmoded relativistic backward wave oscillators

    Science.gov (United States)

    Yuan, Yuzhang; Zhang, Jun; Zhong, Huihuang; Zhang, Dian

    2016-07-01

    Overmoded RBWO (Relativistic Backward Wave Oscillators) is utilized more and more often for its high power capacity. However, both sides of SWS (Slow Wave Structure) of overmoded RBWO consist multi TM0n modes; in order to achieve the design of reflector, it is essential to make clear of the mode composition of TM0n. NUDT (National University of Defence Technology) had done research of the output mode composition in overmoded O-type Cerenkov HPM (High Power Microwave) Oscillators in detail, but in the area where the electron beam exists, the influence of electron beam must be taken into account. Hot-cavity dispersion equation is figured out in this article first, and then analyzes the hot-cavity mode composition of an X-band overmoded RBWO tentatively. The results show that in collimating hole, the hot-cavity mode analysis is more accurate.

  18. How important is mode-coupling in global surface wave tomography?

    Science.gov (United States)

    Mikesell, Dylan; Nolet, Guust; Voronin, Sergey; Ritsema, Jeroen; Van Heijst, Hendrik-Jan

    2016-04-01

    To investigate the influence of mode coupling for fundamental mode Rayleigh waves with periods between 64 and 174s, we analysed 3,505,902 phase measurements obtained along minor arc trajectories as well as 2,163,474 phases along major arcs. This is a selection of five frequency bands from the data set of Van Heijst and Woodhouse, extended with more recent earthquakes, that served to define upper mantle S velocity in model S40RTS. Since accurate estimation of the misfits (as represented by χ2) is essential, we used the method of Voronin et al. (GJI 199:276, 2014) to obtain objective estimates of the standard errors in this data set. We adapted Voronin's method slightly to avoid that systematic errors along clusters of raypaths can be accommodated by source corrections. This was done by simultaneously analysing multiple clusters of raypaths originating from the same group of earthquakes but traveling in different directions. For the minor arc data, phase errors at the one sigma level range from 0.26 rad at a period of 174s to 0.89 rad at 64s. For the major arcs, these errors are roughly twice as high (0.40 and 2.09 rad, respectively). In the subsequent inversion we removed any outliers that could not be fitted at the 3 sigma level in an almost undamped inversion. Using these error estimates and the theory of finite-frequency tomography to include the effects of scattering, we solved for models with χ2 = N (the number of data) both including and excluding the effect of mode coupling between Love and Rayleigh waves. We shall present some dramatic differences between the two models, notably near ocean-continent boundaries (e.g. California) where mode conversions are likely to be largest. But a sharpening of other features, such as cratons and high-velocity blobs in the oceanic domain, is also observed when mode coupling is taken into account. An investigation of the influence of coupling on azimuthal anisotropy is still under way at the time of writing of this

  19. 60-GHz Millimeter-wave Over Fiber with Directly Modulated Dual-mode Laser Diode

    Science.gov (United States)

    Tsai, Cheng-Ting; Lin, Chi-Hsiang; Lin, Chun-Ting; Chi, Yu-Chieh; Lin, Gong-Ru

    2016-06-01

    A directly modulated dual-mode laser diode (DMLD) with third-order intermodulation distortion (IMD3) suppression is proposed for a 60-GHz millimeter-wave over fiber (MMWoF) architecture, enabling new fiber-wireless communication access to cover 4-km single-mode-fiber (SMF) and 3-m wireless 16-QAM OFDM transmissions. By dual-mode injection-locking, the throughput degradation of the DMLD is mitigated with saturation effect to reduce its threshold, IMD3 power and relative intensity noise to 7.7 mA, ‑85 dBm and ‑110.4 dBc/Hz, respectively, providing huge spurious-free dynamic range of 85.8 dB/Hz2/3. This operation suppresses the noise floor of the DMLD carried QPSK-OFDM spectrum by 5 dB. The optical receiving power is optimized to restrict the power fading effect for improving the bit error rate to 1.9 × 10‑3 and the receiving power penalty to 1.1 dB. Such DMLD based hybrid architecture for 60-GHz MMW fiber-wireless access can directly cover the current optical and wireless networks for next-generation indoor and short-reach mobile communications.

  20. Quasi-periodic Fast-mode Wave Trains Within a Global EUV Wave and Sequential Transverse Oscillations Detected by SDO-AIA

    Science.gov (United States)

    Liu, Wei; Ofman, Leon; Nitta, Nariaki; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D.

    2012-01-01

    We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances greater than approximately solar radius/2 along the solar surface, with initial velocities up to 1400 kilometers per second decelerating to approximately 650 kilometers per second. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by approximately 50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.

  1. Ultra-High-Speed Travelling Wave Protection of Transmission Line Using Polarity Comparison Principle Based on Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-01-01

    Full Text Available The traditional polarity comparison based travelling wave protection, using the initial wave information, is affected by initial fault angle, bus structure, and external fault. And the relationship between the magnitude and polarity of travelling wave is ignored. Because of the protection tripping and malfunction, the further application of this protection principle is affected. Therefore, this paper presents an ultra-high-speed travelling wave protection using integral based polarity comparison principle. After empirical mode decomposition of the original travelling wave, the first-order intrinsic mode function is used as protection object. Based on the relationship between the magnitude and polarity of travelling wave, this paper demonstrates the feasibility of using travelling wave magnitude which contains polar information as direction criterion. And the paper integrates the direction criterion in a period after fault to avoid wave head detection failure. Through PSCAD simulation with the typical 500 kV transmission system, the reliability and sensitivity of travelling wave protection were verified under different factors’ affection.

  2. Oblique Whistler-Mode Waves in the Earth's Inner Magnetosphere: Energy Distribution, Origins, and Role in Radiation Belt Dynamics

    Science.gov (United States)

    Artemyev, Anton; Agapitov, Oleksiy; Mourenas, Didier; Krasnoselskikh, Vladimir; Shastun, Vitalii; Mozer, Forrest

    2016-04-01

    In this paper we review recent spacecraft observations of oblique whistler-mode waves in the Earth's inner magnetosphere as well as the various consequences of the presence of such waves for electron scattering and acceleration. In particular, we survey the statistics of occurrences and intensity of oblique chorus waves in the region of the outer radiation belt, comprised between the plasmapause and geostationary orbit, and discuss how their actual distribution may be explained by a combination of linear and non-linear generation, propagation, and damping processes. We further examine how such oblique wave populations can be included into both quasi-linear diffusion models and fully nonlinear models of wave-particle interaction. On this basis, we demonstrate that varying amounts of oblique waves can significantly change the rates of particle scattering, acceleration, and precipitation into the atmosphere during quiet times as well as in the course of a storm. Finally, we discuss possible generation mechanisms for such oblique waves in the radiation belts. We demonstrate that oblique whistler-mode chorus waves can be considered as an important ingredient of the radiation belt system and can play a key role in many aspects of wave-particle resonant interactions.

  3. Conversion of electrostatic upper hybrid emissions to electromagnetic O and X mode waves in the Earth's magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Budden, K.G.; Jones, D.

    1987-02-01

    The linear conversion of electrostatic upper hybrid emissions via the Z mode to electromagnetic ordinary (O) mode waves has for some time been invoked for the source of Terrestrial and Saturnian myriametric and Jovian kilometric radiations. The conversion occurs by virtue of the emissions' propagation in concentration gradients, and for it to be efficient it is necessary for the gradient to be normal to the ambient magnetic field. Suitable concentration gradients are believed to occur at the plasmapause and at the magnetopause. Ray theory predicts only O mode production whereas full wave theory in a cold plasma shows that both O and X (extraordinary) mode are produced, their relative intensities depending on the plasma parameters. Full wave theory in a warm plasma, besides yielding more accurate information on the O and X modes also provides an insight into the effect of conversion on the source plasma wave. Results obtained from these three levels of theory are compared using plasma parameters derived from wave experiments on spacecraft.

  4. Seismic Noise Generation by Ocean Waves: Views from Normal-mode Theory

    Science.gov (United States)

    Tanimoto, T.

    2012-12-01

    The continuous seismic records (noise) and the cross-correlation techniques are making a huge impact on study for the crust and upper mantle. Such studies rely on microseisms for frequencies about 0.05-0.3 Hz that are excited by ocean waves but detailed processes for the excitation are still vague. Our views of noise excitation have been influenced by the results in Longuet-Higgins (1950) who showed how colliding ocean waves generate the dominant secondary microseisms. There are two main points to his results; the first is the generation of pressure at deep ocean bottom, even though ocean waves have energy only in the upper 100-200 meters. This result on deep penetrating pressure was originally derived for an incompressible fluid. The second is the existence of specific ocean depths that preferentially excite secondary microseisms (0.15 Hz). This result was derived for a medium with a compressible fluid layer over an elastic half-space. The purpose of this study is to examine these two points from the views of the normal-mode theory. The first point was shown in Tanimoto (2007, GJI). Excitation by the advection term in the Navier-Stokes equation was shown to lead to the equivalent result with Longuet-Higgins (1950). Mathematically, dominant contributions are from colliding ocean waves and the resulting force exactly matches the Longuet-Higgins pressure formula in the low-frequency range (below 0.05 Hz). It is somewhat surprising that a result in an incompressible fluid emerged in the analysis of elastic medium with compressible ocean. However, in the low frequency range, the eigenfunctions of Rayleigh waves become (almost) constant in the ocean, meaning that the entire fluid layer moves coherently up and down just like an incompressible medium. Then the emergence of the Longuet-Higgins pressure formula is not surprising. However, as Longuet-Higgins (1950) noted, such a situation does not apply to noise at 0.15 Hz as it is above such a frequency range. In a

  5. Obtaining natural oscillatory modes of bays and harbors via Empirical Orthogonal Function analysis of tsunami wave fields

    Science.gov (United States)

    Tolkova, Elena; Power, William

    2011-06-01

    To a tsunami wave, bays and harbors represent oscillatory systems, whose resonance (normal) modes determine the response to tsunami and consequently the potential hazard. The direct way to obtain the resonance modes of a water reservoir is by solving the boundary problem for the eigenfunctions of the linearized shallow-water wave equation. The principal difficulty of posing such a problem for a basin coupled to an ocean is specifying the boundary between the two. The technique developed in this work allows the normal modes of a semi-enclosed water body to be obtained without a-priori restricting the resonator area. The technique utilizes complex Empirical Orthogonal Function analysis of modeled tsunami wave fields. On the examples of Poverty Bay in New Zealand and Monterey Bay in California (United States), we demonstrate that the normal modes can be identified and isolated using the EOFs of a data set comprised of the concatenated time-series collected from different tsunami scenarios in a basin. The analysis of the modeled tsunami wave fields for the normal modes can also answer the question of how likely and under which conditions the different modes are exited, due to feasible natural events.

  6. Strong fast long-period waves in the Efpalio 2010 earthquake records: explanation in terms of leaking modes

    Science.gov (United States)

    Vackář, Jiří; Zahradník, Jiří; Sokos, Efthimios

    2014-01-01

    The January 18, 2010, shallow earthquake in the Corinth Gulf, Greece ( M w 5.3) generated unusually strong long-period waves (periods 4-8 s) between the P and S wave arrival. These periods, being significantly longer than the source duration, indicated a structural effect. The waves were observed in epicentral distances 40-250 km and were significant on radial and vertical component. None of existing velocity models of the studied region provided explanation of the waves. By inverting complete waveforms, we obtained an 1-D crustal model explaining the observation. The most significant feature of the best-fitting model (as well as the whole suite of models almost equally well fitting the waveforms) is a strong velocity step at depth about 4 km. In the obtained velocity model, the fast long-period wave was modeled by modal summation and identified as a superposition of several leaking modes. In this sense, the wave is qualitatively similar to P long or Pnl waves, which however are usually reported in larger epicentral distances. The main innovation of this paper is emphasis to smaller epicentral distances. We studied properties of the wave using synthetic seismograms. The wave has a normal dispersion. Azimuthal and distance dependence of the wave partially explains its presence at 46 stations of 70 examined. Depth dependence shows that the studied earthquake was very efficient in the excitation of these waves just due to its shallow centroid depth (4.5 km).

  7. Probability of relativistic electron trapping by parallel and oblique whistler-mode waves in Earth's radiation belts

    Energy Technology Data Exchange (ETDEWEB)

    Artemyev, A. V., E-mail: ante0226@gmail.com; Vasiliev, A. A.; Neishtadt, A. I. [Space Research Institute, RAS, Moscow, Russia, 117997 (Russian Federation); Mourenas, D.; Krasnoselskikh, V. [LPC2E/CNRS—University of Orleans, 3A, Avenue de la Recherche Scientifique, F-45071 Orleans Cedex (France); Agapitov, O. V. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)

    2015-11-15

    We investigate electron trapping by high-amplitude whistler-mode waves propagating at small as well as large angles relative to geomagnetic field lines. The inhomogeneity of the background magnetic field can result in an effective acceleration of trapped particles. Here, we derive useful analytical expressions for the probability of electron trapping by both parallel and oblique waves, paving the way for a full analytical description of trapping effects on the particle distribution. Numerical integrations of particle trajectories allow to demonstrate the accuracy of the derived analytical estimates. For realistic wave amplitudes, the levels of probabilities of trapping are generally comparable for oblique and parallel waves, but they turn out to be most efficient over complementary energy ranges. Trapping acceleration of <100 keV electrons is mainly provided by oblique waves, while parallel waves are responsible for the trapping acceleration of >100 keV electrons.

  8. MAGNETOHYDRODYNAMIC SEISMOLOGY OF A CORONAL LOOP SYSTEM BY THE FIRST TWO MODES OF STANDING KINK WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Hao, Q.; Cheng, X.; Chen, P. F.; Ding, M. D. [School of Astronomy and Space Science and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, Nanjing 210046 (China); Erdélyi, R. [Solar Physics and Space Plasma Research Center (SP2RC), School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom); Srivastava, A. K.; Dwivedi, B. N., E-mail: guoyang@nju.edu.cn [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-02-01

    We report the observation of the first two harmonics of the horizontally polarized kink waves excited in a coronal loop system lying southeast of AR 11719 on 2013 April 11. The detected periods of the fundamental mode (P {sub 1}), its first overtone (P {sub 2}) in the northern half, and that in the southern one are 530.2 ± 13.3, 300.4 ± 27.7, and 334.7 ± 22.1 s, respectively. The periods of the first overtone in the two halves are the same considering uncertainties in the measurement. We estimate the average electron density, temperature, and length of the loop system as (5.1 ± 0.8) × 10{sup 8} cm{sup –3}, 0.65 ± 0.06 MK, and 203.8 ± 13.8 Mm, respectively. As a zeroth-order estimation, the magnetic field strength, B = 8.2 ± 1.0 G, derived by the coronal seismology using the fundamental kink mode matches with that derived by a potential field model. The extrapolation model also shows the asymmetric and nonuniform distribution of the magnetic field along the coronal loop. Using the amplitude profile distributions of both the fundamental mode and its first overtone, we observe that the antinode positions of both the fundamental mode and its first overtone shift toward the weak field region along the coronal loop. The results indicate that the density stratification and the temperature difference effects are larger than the magnetic field variation effect on the period ratio. On the other hand, the magnetic field variation has a greater effect on the eigenfunction of the first overtone than the density stratification does for this case.

  9. Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber

    Directory of Open Access Journals (Sweden)

    Yosef London

    2017-04-01

    Full Text Available An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.

  10. Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber

    Science.gov (United States)

    London, Yosef; Diamandi, Hilel Hagai; Zadok, Avi

    2017-04-01

    An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.

  11. Elastic-wave-mode separation in TTI media with inverse-distance weighted interpolation involving position shading

    Science.gov (United States)

    Wang, Jian; Meng, Xiaohong; Zheng, Wanqiu

    2017-10-01

    The elastic-wave reverse-time migration of inhomogeneous anisotropic media is becoming the hotspot of research today. In order to ensure the accuracy of the migration, it is necessary to separate the wave mode into P-wave and S-wave before migration. For inhomogeneous media, the Kelvin–Christoffel equation can be solved in the wave-number domain by using the anisotropic parameters of the mesh nodes, and the polarization vector of the P-wave and S-wave at each node can be calculated and transformed into the space domain to obtain the quasi-differential operators. However, this method is computationally expensive, especially for the process of quasi-differential operators. In order to reduce the computational complexity, the wave-mode separation of mixed domain can be realized on the basis of a reference model in the wave-number domain. But conventional interpolation methods and reference model selection methods reduce the separation accuracy. In order to further improve the separation effect, this paper introduces an inverse-distance interpolation method involving position shading and uses the reference model selection method of random points scheme. This method adds the spatial weight coefficient K, which reflects the orientation of the reference point on the conventional IDW algorithm, and the interpolation process takes into account the combined effects of the distance and azimuth of the reference points. Numerical simulation shows that the proposed method can separate the wave mode more accurately using fewer reference models and has better practical value.

  12. Properties of whistler mode wave packets at the leading edge of steepened magnetosonic waves - Comet Giacobini-Zinner

    Science.gov (United States)

    Tsurutani, Bruce T.; Smith, Edward J.; Brinca, Armando L.; Thorne, Richard M.; Matsumoto, Hiroshi

    1989-01-01

    The physical characteristics of high-frequency wave packets detected at the steepened edge of magnetosonic waves near Comet Giacobini-Zinner are explored, based on an examination of over 45 well-defined events. The results suggest that the wave packets play an important role in the reorientation and reduction in field magnitude from the steepened magnetosonic waves to the upstream ambient field. The observed properties of the wave packets are shown to be consistent with anomalously Doppler-shifted right-hand polarized waves.

  13. Terrain Measurement with SAR/InSAR

    Science.gov (United States)

    Li, Deren; Liao, Mingsheng; Balz, Timo; Zhang, Lu; Yang, Tianliang

    2016-08-01

    Terrain measurement and surface motion estimation are the most important applications for commercial and scientific SAR missions. In Dragon-3, we worked on these applications, especially regarding DEM generation, surface motion estimation with SAR time- series for urban subsidence monitoring and landslide motion estimation, as well as developing tomographic SAR processing methods in urban areas.

  14. Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser.

    Science.gov (United States)

    Lin, Yung-Hsiang; Yang, Chun-Yu; Liou, Jia-Hong; Yu, Chin-Ping; Lin, Gong-Ru

    2013-07-15

    A photonic crystal fiber (PCF) with high-quality graphene nano-particles uniformly dispersed in the hole cladding are demonstrated to passively mode-lock the erbium-doped fiber laser (EDFL) by evanescent-wave interaction. The few-layer graphene nano-particles are obtained by a stabilized electrochemical exfoliation at a threshold bias. These slowly and softly exfoliated graphene nano-particle exhibits an intense 2D band and an almost disappeared D band in the Raman scattering spectrum. The saturable phenomena of the extinction coefficient β in the cladding provides a loss modulation for the intracavity photon intensity by the evanescent-wave interaction. The evanescent-wave mode-locking scheme effectively enlarges the interaction length of saturable absorption with graphene nano-particle to provide an increasing transmittance ΔT of 5% and modulation depth of 13%. By comparing the core-wave and evanescent-wave mode-locking under the same linear transmittance, the transmittance of the graphene nano-particles on the end-face of SMF only enlarges from 0.54 to 0.578 with ΔT = 3.8% and the modulation depth of 10.8%. The evanescent wave interaction is found to be better than the traditional approach which confines the graphene nano-particles at the interface of two SMF patchcords. When enlarging the intra-cavity gain by simultaneously increasing the pumping current of 980-nm and 1480-nm pumping laser diodes (LDs) to 900 mA, the passively mode-locked EDFL shortens its pulsewidth to 650 fs and broadens its spectral linewidth to 3.92 nm. An extremely low carrier amplitude jitter (CAJ) of 1.2-1.6% is observed to confirm the stable EDFL pulse-train with the cladding graphene nano-particle based evanescent-wave mode-locking.

  15. Transmission of evanescent wave modes through a slab of negative-refractive-index material.

    Science.gov (United States)

    de Wolf, David A

    2011-02-01

    There has been a long-standing argument about Pendry's suggestion that a plane harmonic evanescent (surface) wave along the interface between free space and a slab of ɛ=-1, μ=-1 double-negative (DNG) medium will emerge on the far side with recovery of phase and amplitude. While this is possible, it is subject to parameter restrictions. This work generalizes previous work and now gives analytical criteria for when to expect such a recovery in a Smith-Kroll DNG medium. Basically this requires, among other things, a relatively narrow bandwidth and relatively small transverse-mode component. There also is a very strong dependence on the ratio of slabwidth to plasma wavelength.

  16. Temporal coupled mode theory of standing wave resonant cavities for infrared photodetection.

    Science.gov (United States)

    Lesmanne, Emeline; De Lamaestre, Roch Espiau; Fowler, David; Boutami, Salim; Badano, Giacomo

    2015-03-23

    Standing wave resonating cavities have been proposed in the past to increase the performance of infrared detectors by minimizing the volume of photogeneration, hence the noise, while maintaining the same quantum efficiency. We present an approach based on the temporal coupled mode theory to explain their behavior and limitations. If the ratio of the imaginary part of the absorber's dielectric function to the index of the incident medium ε″(d)/n₀ is larger than 1.4, then the absorption cross section σ(a) can attain its maximum value, which for an isolated cavity is approximately 2λ/π. Besides, for σ(a) to exceed the cavity width, the incident medium refractive index must be close to unity. Metallic loss is negligible in the infrared, making those resonators suitable for integration in infrared photodetectors.

  17. Dispersion flattened, low-loss porous fiber for single-mode terahertz wave guidance

    Science.gov (United States)

    Islam, Raonaqul; Rana, Sohel

    2015-05-01

    A porous-core circular photonic crystal fiber is designed for low-loss terahertz (THz) wave propagation. The circular arrangement of air holes, both in the periodic cladding and the porous core, makes it possible to guide most of the optical power through low-loss air, which is confirmed by the rigorous analysis of modal properties of the fiber while maintaining the single-mode propagation condition. The simulation results, found by using an efficient finite element method, show that a flattened dispersion of ±0.09 ps/THz/cm within 0.9 to 1.3 THz and an ultra-low material loss of 0.053 cm-1 at f=1 THz is obtained for the reported design at optimal parameters. This kind of structure can be fabricated using capillary stacking or a sol-gel technique and is expected to be useful for wideband imaging and telecom applications.

  18. Excitation of kinetic geodesic acoustic modes by drift waves in nonuniform plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Z. [Inst. Fusion Theory and Simulation, Zhejiang Univ., Hangzhou 310027 (China); Chen, L. [Inst. Fusion Theory and Simulation, Zhejiang Univ., Hangzhou 310027 (China); Dept. Physics and Astronomy, Univ. of California, Irvine, California 92697-4575 (United States); Zonca, F. [Inst. Fusion Theory and Simulation, Zhejiang Univ., Hangzhou 310027 (China); Associazione Euratom-ENEA sulla Fusione, C.P. 65 - I-00044 - Frascati (Italy)

    2014-02-15

    Effects of system nonuniformities and kinetic dispersiveness on the spontaneous excitation of Geodesic Acoustic Mode (GAM) by Drift Wave (DW) turbulence are investigated based on nonlinear gyrokinetic theory. The coupled nonlinear equations describing parametric decay of DW into GAM and DW lower sideband are derived and then solved both analytically and numerically to investigate the effects on the parametric decay process due to system nonuniformities, such as nonuniform diamagnetic frequency, finite radial envelope of DW pump, and kinetic dispersiveness. It is found that the parametric decay process is a convective instability for typical tokamak parameters when finite group velocities of DW and GAM associated with kinetic dispersiveness and finite radial envelope are taken into account. When, however, nonuniformity of diamagnetic frequency is taken into account, the parametric decay process becomes, time asymptotically, a quasi-exponentially growing absolute instability.

  19. Detection of coatings within liquid-filled tubes and containers by mode conversion of leaky Lamb waves

    OpenAIRE

    SCHMITT, M; Schmidt, K.; Olfert, S.; Rautenberg, J.; Lindner, G; B. Henning; L. M. Reindl

    2013-01-01

    In this paper, a new acoustic sensor principle for coating detection within liquid-filled tubes and containers based on mode conversion of leaky Lamb waves is introduced. Leaky Lamb waves are excited and detected by single-phase transducers, which are attached on the outer side of a tube or container. By transmission time and amplitude measurements, coating formation within the liquid-filled tube and container is detected non-invasively. This new sensor principle is subdivid...

  20. Size dependence of spin-wave modes in Ni{sub 80}Fe{sub 20} nanodisks

    Energy Technology Data Exchange (ETDEWEB)

    Lupo, P.; Kumar, D.; Adeyeye, A. O., E-mail: eleaao@nus.edu.sg [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576 (Singapore)

    2015-07-15

    We investigate the radial and azimuthal spin-wave (SW) resonance modes in permalloy (Py: Ni{sub 80}Fe{sub 20}) disks at zero external magnetic field, as function of disk diameter and thickness, using broadband ferromagnetic resonance spectroscopy. We observed, from both experimental and micromagnetic simulation results that the number of SW absorption peaks increases with disk diameter. Numerically calculated SW mode profiles revealed a characteristic minimum size, which does not scale proportionately with the increasing disk diameter. We show that higher order modes could thus be avoided with an appropriate choice of the disk diameter (smaller than the minimum mode size). Moreover, based on the mode profiles, the existence of azimuthal SW modes with even number of crests or troughs can be ruled out. These results could be useful in enhancing our fundamental understanding as well as engineering of new magnonic devices.

  1. Different photodynamic effect between continuous wave and pulsed laser irradiation modes in k562 cells in vitro

    Science.gov (United States)

    Klimenko, V. V.; Bogdanov, A. A.; Knyazev, N. A.; Rusanov, A. A.; Dubina, M. V.

    2014-10-01

    Photodynamic therapy is a cancer treatment method is used primarily continuous mode laser radiation. At high power density irradiation occurs intense consumption of molecular oxygen and this caused hypoxic tumor tissue, which leads to inefficiency PDT. In this paper, pulsed and continuous irradiation modes during PDT photosensitizer Radachlorin were compared. A mathematical model for the generation of singlet oxygen 1O2 in tumor cells during photodynamic therapy with tissue oxygenation was developed. Our study theoretically and experimentally demonstrates the increased singlet oxygen generation efficiency in a pulsed irradiation mode compared to continuous wave mode with the same power density 20mW/cm2. Experimental in vitro showed that pulsed irradiation mode mostly induces apoptosis k562 tumor cells at irradiation doses of k562 1.25 - 2.5J/cm2 while the continuous mode induced necrosis.

  2. A theoretical investigation on the parametric instability excited by X-mode polarized electromagnetic wave at Tromsø

    Science.gov (United States)

    Wang, Xiang; Cannon, Patrick; Zhou, Chen; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu

    2016-04-01

    Recent ionospheric modification experiments performed at Tromsø, Norway, have indicated that X-mode pump wave is capable of stimulating high-frequency enhanced plasma lines, which manifests the excitation of parametric instability. This paper investigates theoretically how the observation can be explained by the excitation of parametric instability driven by X-mode pump wave. The threshold of the parametric instability has been calculated for several recent experimental observations at Tromsø, illustrating that our derived equations for the excitation of parametric instability for X-mode heating can explain the experimental observations. According to our theoretical calculation, a minimum fraction of pump wave electric field needs to be directed along the geomagnetic field direction in order for the parametric instability threshold to be met. A full-wave finite difference time domain simulation has been performed to demonstrate that a small parallel component of pump wave electric field can be achieved during X-mode heating in the presence of inhomogeneous plasma.

  3. Part of evanescent modes in the normally incident gravity surface wave's energy layout around a submerged obstacle

    Science.gov (United States)

    Charland, J.; Rey, V.; Touboul, J.

    2012-04-01

    Part of evanescent modes in the normally incident gravity surface wave's energy layout around a submerged obstacle Jenna Charland *1, Vincent Rey *2, Julien Touboul *2 *1 Mediterraneen Institute of Oceanography. Institut des Sciences de l'Ingénieur Toulon-Var. Avenue Georges Pompidou, BP 56, 83162 La Valette du Var Cedex, France. Centre National de la Recherche Scientifique, Délégation Normandie. Projet soutenu financièrement par la Délégation Générale de l'Armement. *2 Mediterraneen Institute of Oceanography. Institut des Sciences de l'Ingénieur Toulon-Var. Avenue Georges Pompidou, BP 56, 83162 La Valette du Var Cedex, France. During the last decades various studies have been performed to understand the wave propagation over varying bathymetries. Few answers related to this non linear problem were given by the Patarapanich's studies which described the reflection coefficient of a submerged plate as a function of the wavelength. Later Le-Thi-Minh [2] demonstrated the necessity of taking into account the evanescent modes to better describe the propagation of waves over a varying bathymetry. However, all these studies stare at pseudo-stationary state that allows neither the comprehension of the transient behaviour of propagative modes nor the role of the evanescent modes in this unstationnary process. Our study deals with the wave establishment over a submerged plate or step and focuses on the evanescent modes establishment. Rey [3] described the propagation of a normally incident surface gravity wave over a varying topography on the behaviour of the fluid using a linearized potential theory solved by a numerical model using an integral method. This model has a large field of application and has been adapted to our case. This code still solves a stationary problem but allows us to calculate the contribution of the evanescent modes in the energy layout around a submerged plate or a submerged step. The results will show the importance of the trapped energy

  4. Coupling of symmetric and asymmetric modes in a high-power, high-efficiency traveling-wave amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Banna, S. [Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, (Israel); Schaechter, L. [Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, (Israel); Nation, J. A. [School of Electrical Engineering and Laboratory of Plasma Studies, Cornell University Ithaca, New York 14853 (United States); Wang, P. [School of Electrical Engineering and Laboratory of Plasma Studies, Cornell University Ithaca, New York 14853 (United States)

    2000-04-01

    A three-dimensional model has been developed for the investigation of the coupling of symmetric (TM{sub 01}) and asymmetric (HEM{sub 11}) modes in a high-power, high-efficiency traveling-wave amplifier. In the framework of a simplified model it is shown that the coupling between these two modes is determined by a single parameter that depends on the beam characteristics. For a specific set of parameters corresponding to operation at 35 GHz, simulations indicate that an initial HEM{sub 11} power of 0.5 MW at the input end is sufficient to deflect electrons to the wall. The build-up of this parasitic mode is investigated over many round trips of the wave in the structure and a threshold criterion for self-sustain oscillation is established. Finally a way for suppressing the HEM{sub 11} mode is analyzed. (c) 2000 The American Physical Society.

  5. Magnetic field dependence of the lowest-frequency edge-localized spin wave mode in a magnetic nanotriangle.

    Science.gov (United States)

    Lin, C S; Lim, H S; Wang, Z K; Ng, S C; Kuok, M H; Adeyeye, A O

    2011-03-01

    An understanding of the spin dynamics of nanoscale magnetic elements is important for their applications in magnetic sensing and storage. Inhomogeneity of the demagnetizing field in a non-ellipsoidal magnetic element results in localization of spin waves near the edge of the element. However, relative little work has been carried out to investigate the effect of the applied magnetic fields on the nature of such localized modes. In this study, micromagnetic simulations are performed on an equilateral triangular nanomagnet to investigate the magnetic field dependence of the mode profiles of the lowest-frequency spin wave. Our findings reveal that the lowest-frequency mode is localized at the base edge of the equilateral triangle. The characteristics of its mode profile change with the ground state magnetization configuration of the nanotriangle, which, in turn, depends on the magnitude of the in-plane applied magnetic field.

  6. Resonance between coherent whistler mode waves and electrons in the topside ionosphere

    Science.gov (United States)

    Neubert, T.; Bell, T. F.; Storey, L. R. O.

    1987-01-01

    Landau resonance and cyclotron resonance of coherent whistler mode waves and energetic electrons are explored for magnetoplasmas with appreciable gradients in the plasma density and magnetic field strength. It is shown that in the topside ionosphere of the earth near the ion transition height the gradients in plasma density and magnetic field strength along a magnetic field line may match in a way which enhances both Landau and cyclotron interactions between waves and electrons at the loss cone pitch angle. The pitch angle scattering induced by a signal from a ground-based VLF transmitter in the ionosphere above the transmitter has been estimated and compared to the pitch angle scattering induced by naturally occurring ELF hiss through cyclotron resonance. It is found that the expected scattering due to plasmapheric hiss is an order of magnitude larger than that due to Landau resonance in the topside ionosphere. Pitch angle scattering due to cyclotron resonance in the topside ionosphere, however, may be larger by a factor of 2. It is suggested that the 'fast Trimpi' effect may be caused by a cyclotron resonance interaction in the topside ionosphere.

  7. Analysis of annular phased array transducers for ultrasonic guided wave mode control

    Science.gov (United States)

    Kannajosyula, H.; Lissenden, C. J.; Rose, J. L.

    2013-08-01

    Exact and asymptotic analyses of annular phased array transducers (PAT) for elastic guided wave mode selection are presented. For the purpose of analysis, the transducer-substrate interaction is formulated in terms of a three-dimensional analogy to filters as applied one-dimensionally in areas such as signal processing and control theory. This enables the deduction of most of the properties of the annular array purely from the Fourier analysis of any actuating function that represents the loading due to the transducer. A generalized mathematical model of the actuating function due to the annular PAT is constructed. The Fourier spectrum is analyzed for resonances in the wavenumber domain. Formulas for phase and time delays are presented. The phenomena of outgoing and incoming waves are also studied. Numerical analysis of the wavenumber spectrum for the annular PAT with a finite number of elements is performed to further illustrate the results deduced from exact and asymptotic analyses. Finite element simulations are presented to further verify the phenomena predicted through the wavenumber spectrum analysis.

  8. Interfacial slip on a transverse-shear mode acoustic wave device

    Science.gov (United States)

    Ellis, Jonathan S.; Hayward, Gordon L.

    2003-12-01

    This article describes a mathematical relationship between the slip parameter α and the slip length b for a slip boundary condition applied to the transverse-shear model for a quartz-crystal acoustic wave device. The theory presented here reduces empirical determination of slip to a one-parameter fit. It shows that the magnitude and phase of the slip parameter, which describes the relative motion of the surface and liquid in the transverse-shear model, can be linked to the slip length. Furthermore, the magnitude and phase of the slip parameter are shown to depend on one another. An experiment is described to compare the effects of liquid-surface affinity on the resonant properties of a transverse-shear mode wave device by applying different polar and nonpolar liquids to surfaces of different polarity. The theory is validated with slip values determined from the transverse-shear model and compared to slip length values from literature. Agreement with literature values of slip length is within one order of magnitude.

  9. Optically tunable microwave, millimeter-wave and submillimeter-wave utilizing single-mode Fabry-Pérot laser diode subject to optical feedback.

    Science.gov (United States)

    Wu, Jian-Wei; Nakarmi, Bikash; Won, Yong Hyub

    2016-02-01

    In this paper, we use optical feedback injection technique to generate tunable microwave, millimeter-wave and submillimeter-wave signals using single-mode Fabry-Pérot laser diode. The beat frequency of the proposed generator ranges from 30.4 GHz to 3.40 THz. The peak power ratio between two resonating modes at the output spectrum of can be less than 0.5 dB by judiciously selecting feedback wavelength. In the stabilization test, the peak fluctuation of photonic signal is as low as 0.19 dB within half hour. Aside from locking regions, where the laser is easily locked by the injection beam, the side-mode suppression ratio is well over 25 dB with the maximum value of 36.6 dB at 30.4 GHz beat frequency. In addition, the minimum beat frequency interval between two adjacent photonic signals is as low as 10 GHz.

  10. Advanced configuration of gravitational-wave interferometer on the base of "sensitive mode" in "white-light cavity"

    OpenAIRE

    Karapetyan, G. G.

    2002-01-01

    A novel conception of "sensitive mode" (SM) is proposed to apply in gravitational-wave advanced interferometer configuration. The SM is resonant oscillation of electromagnetic field in "white-light cavity", where the resonance line is broadened without decreasing cavity quality. The frequency of the SM is greatly susceptible to the change of cavity length, and the SM is established in a cavity with time constant smaller than a conventional mode. Due to these advantages the sensitivity and ban...

  11. Differences in the onset mode of ventricular tachyarrhythmia between patients with J wave in anterior leads and those with J wave in inferolateral leads.

    Science.gov (United States)

    Kamakura, Tsukasa; Wada, Mitsuru; Ishibashi, Kohei; Inoue, Yuko Y; Miyamoto, Koji; Okamura, Hideo; Nagase, Satoshi; Noda, Takashi; Aiba, Takeshi; Yasuda, Satoshi; Shimizu, Wataru; Kamakura, Shiro; Kusano, Kengo

    2017-04-01

    The pathophysiological mechanism of J wave in anterior leads (A-leads) and inferolateral leads (L-leads) remains unclear. We investigated the onset mode and circadian distribution of ventricular tachyarrhythmia (VTA) episodes between patients with early repolarization syndrome (ERS) and Brugada syndrome (BrS). The study enrolled 35 patients with ERS and 52 patients with type 1 BrS with spontaneous ventricular fibrillation who were divided into 4 groups: ERS(A+L) (n = 15), patients with ERS who had a non-type 1 Brugada pattern electrocardiogram in any A-leads (second to fourth intercostal spaces) in control and/or after drug provocation tests; ERS(L) (n = 20), patients with ERS with J wave only in L-leads; BrS(A) (n = 24), patients with BrS without J wave in L-leads; and BrS(A+L) (n = 28), patients with BrS with J wave in L-leads. The onset mode of 206 VTAs obtained from electrocardiograms or implantable cardioverter-defibrillators and the circadian distribution of 352 VTAs were investigated in the 4 groups. Three groups with J wave in A-leads, ERS(A+L), BrS(A), and BrS(A+L), had higher incidences of nocturnal (63%, 43%, and 47%, respectively) and sudden onset VTAs (67%, 97%, and 86%, respectively) with longer coupling intervals of premature ventricular contractions (388.8, 397.3, and 385.6 ms, respectively) than the ERS(L) group with J wave only in L-leads (25%, P = .0019; 19%, P J wave in A-leads and patients with J wave in only L-leads. The underlying mechanism of J wave may differ between A-leads and L-leads. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  12. Symmetry reduction and boundary modes for Fe chains on an s-wave superconductor.

    Science.gov (United States)

    Chen, Yu-Qin; Wu, Yi-Ming; Liu, Xiong-Jun

    2016-11-30

    We investigate the superconducting phases and boundary modes for a quasi-1D system formed by up to three Fe chains on an s-wave superconductor, motivated by a recent experiment. While the Rashba type spin-orbit coupling together with a magnetic ordering is necessary to drive the system to be of nontrivial topology, we show that the onsite [Formula: see text] spin-orbit term, inter-chain diagonal hopping couplings, and magnetic disorders in the Fe chains are crucial in determining the symmetry classes of superconducting phases, which can be topologically trivial or nontrivial in different parameter regimes. In general multiple low-energy Andreev bound states, as well as a single Majorana zero mode if the phase is topological, are obtained in the ends of Fe chains. The nontrivial symmetry reduction mechanism is uncovered to provide an understanding of the present results, and may explain the zero-bias peak observed in the experiment. The present study can be applied to generic multiple-chain system.

  13. One-Wave Optical Phase Conjugation Mirror by Actively Coupling Arbitrary Light Fields into a Single-Mode Reflector

    Science.gov (United States)

    Lee, KyeoReh; Lee, Junsung; Park, Jung-Hoon; Park, Ji-Ho; Park, YongKeun

    2015-10-01

    Rewinding the arrow of time via phase conjugation is an intriguing phenomenon made possible by the wave property of light. Here, we demonstrate the realization of a one-wave optical phase conjugation mirror using a spatial light modulator. An adaptable single-mode filter is created, and a phase-conjugate beam is then prepared by reverse propagation through this filter. Our method is simple, alignment free, and fast while allowing high power throughput in the time-reversed wave, which has not been simultaneously demonstrated before. Using our method, we demonstrate high throughput full-field light delivery through highly scattering biological tissue and multimode fibers, even for quantum dot fluorescence.

  14. Linear and nonlinear MHD mode coupling of the fast magnetoacoustic wave about a 3D magnetic null point

    Science.gov (United States)

    Thurgood, J. O.; McLaughlin, J. A.

    2012-09-01

    Context. Coronal magnetic null points have been implicated as possible locations for localised heating events in 2D models. We investigate this possibility about fully 3D null points. Aims: We investigate the nature of the fast magnetoacoustic wave about a fully 3D magnetic null point, with a specific interest in its propagation, and we look for evidence of MHD mode coupling and/or conversion to the Alfvén mode. Methods: A special fieldline and flux-based coordinate system was constructed to permit the introduction of a pure fast magnetoacoustic wave in the vicinity of proper and improper 3D null points. We considered the ideal, β = 0, MHD equations, which are solved using the LARE3D numerical code. The constituent modes of the resulting wave were isolated and identified using the special coordinate system. Numerical results were supported by analytical work derived from perturbation theory and a linear implementation of the WKB method. Results: An initially pure fast wave is found to be permanently decoupled from the Alfvén mode both linearly and nonlinearly for both proper and improper 3D null points. The pure fast mode also generates and sustains a nonlinear disturbance aligned along the equilibrium magnetic field. The resulting pure fast magnetoacoustic pulse has transient behaviour, which is found to be governed by the (equilibrium) Alfvén-speed profile, and a refraction effect focuses all the wave energy towards the null point. Conclusions: Thus, the main results from previous 2D work do indeed carry over to the fully 3D magnetic null points and so we conclude that 3D null points are locations for preferential heating in the corona by 3D fast magnetoacoustic waves.

  15. Multi-Mode Electromagnetic Ultrasonic Lamb Wave Tomography Imaging for Variable-Depth Defects in Metal Plates

    Directory of Open Access Journals (Sweden)

    Songling Huang

    2016-05-01

    Full Text Available This paper proposes a new cross-hole tomography imaging (CTI method for variable-depth defects in metal plates based on multi-mode electromagnetic ultrasonic Lamb waves (LWs. The dispersion characteristics determine that different modes of LWs are sensitive to different thicknesses of metal plates. In this work, the sensitivities to thickness variation of A0- and S0-mode LWs are theoretically studied. The principles and procedures for the cooperation of A0- and S0-mode LW CTI are proposed. Moreover, the experimental LW imaging system on an aluminum plate with a variable-depth defect is set up, based on A0- and S0-mode EMAT (electromagnetic acoustic transducer arrays. For comparison, the traditional single-mode LW CTI method is used in the same experimental platform. The imaging results show that the computed thickness distribution by the proposed multi-mode method more accurately reflects the actual thickness variation of the defect, while neither the S0 nor the A0 single-mode method was able to distinguish thickness variation in the defect region. Moreover, the quantification of the defect’s thickness variation is more accurate with the multi-mode method. Therefore, theoretical and practical results prove that the variable-depth defect in metal plates can be successfully quantified and visualized by the proposed multi-mode electromagnetic ultrasonic LW CTI method.

  16. Multi-Mode Electromagnetic Ultrasonic Lamb Wave Tomography Imaging for Variable-Depth Defects in Metal Plates.

    Science.gov (United States)

    Huang, Songling; Zhang, Yu; Wang, Shen; Zhao, Wei

    2016-05-02

    This paper proposes a new cross-hole tomography imaging (CTI) method for variable-depth defects in metal plates based on multi-mode electromagnetic ultrasonic Lamb waves (LWs). The dispersion characteristics determine that different modes of LWs are sensitive to different thicknesses of metal plates. In this work, the sensitivities to thickness variation of A0- and S0-mode LWs are theoretically studied. The principles and procedures for the cooperation of A0- and S0-mode LW CTI are proposed. Moreover, the experimental LW imaging system on an aluminum plate with a variable-depth defect is set up, based on A0- and S0-mode EMAT (electromagnetic acoustic transducer) arrays. For comparison, the traditional single-mode LW CTI method is used in the same experimental platform. The imaging results show that the computed thickness distribution by the proposed multi-mode method more accurately reflects the actual thickness variation of the defect, while neither the S0 nor the A0 single-mode method was able to distinguish thickness variation in the defect region. Moreover, the quantification of the defect's thickness variation is more accurate with the multi-mode method. Therefore, theoretical and practical results prove that the variable-depth defect in metal plates can be successfully quantified and visualized by the proposed multi-mode electromagnetic ultrasonic LW CTI method.

  17. On the retrieval of significant wave heights from spaceborne Synthetic Aperture Radar using the Max-Planck Institut algorithm.

    Science.gov (United States)

    Violante-Carvalho, Nelson

    2005-12-01

    Synthetic Aperture Radar (SAR) onboard satellites is the only source of directional wave spectra with continuous and global coverage. Millions of SAR Wave Mode (SWM) imagettes have been acquired since the launch in the early 1990's of the first European Remote Sensing Satellite ERS-1 and its successors ERS-2 and ENVISAT, which has opened up many possibilities specially for wave data assimilation purposes. The main aim of data assimilation is to improve the forecasting introducing available observations into the modeling procedures in order to minimize the differences between model estimates and measurements. However there are limitations in the retrieval of the directional spectrum from SAR images due to nonlinearities in the mapping mechanism. The Max-Planck Institut (MPI) scheme, the first proposed and most widely used algorithm to retrieve directional wave spectra from SAR images, is employed to compare significant wave heights retrieved from ERS-1 SAR against buoy measurements and against the WAM wave model. It is shown that for periods shorter than 12 seconds the WAM model performs better than the MPI, despite the fact that the model is used as first guess to the MPI method, that is the retrieval is deteriorating the first guess. For periods longer than 12 seconds, the part of the spectrum that is directly measured by SAR, the performance of the MPI scheme is at least as good as the WAM model.

  18. Evidence of Boundary Reflection of Kelvin and First-Mode Rossby Waves from Topex/Poseidon Sea Level Data

    Science.gov (United States)

    Boulanger, Jean-Philippe; Fu, Lee-Lueng

    1996-01-01

    The TOPEX/POSEIDON sea level data lead to new opportunities to investigate some theoretical mechanisms suggested to be involved in the El Nino-Southern Oscillation phenomenon in the tropical Pacific ocean. In particular, we are interested in studying the western boundary reflection, a process crucial for the delayed action oscillator theory, by using the TOPEX/POSEIDON data from November 1992 to May 1995. We first projected the sea level data onto Kelvin and first-mode Ross waves. Then we estimated the contribution of wind forcing to these waves by using a single baroclinic mode simple wave model forced by the ERS-1 wind data. Wave propagation was clearly observed with amplitudes well explained by the wind forcing in the ocean interior. Evidence of wave reflection was detected at both the western and eastern boundaries of the tropical Pacific ocean. At the eastern boundary, Kelvin waves were seen to reflect as first-mode Rossby waves during the entire period. The reflection efficiency (in terms of wave amplitude) of the South American coasts was estimated to be 80% of that of an infinite meridional wall. At the western boundary, reflection was observed in April-August 1993, in January-June 1994, and, later, in December 1994 to February 1995. Although the general roles of these reflection events in the variability observed in the equatorial Pacific ocean are not clear, the data suggest that the reflections in January-June 1994 have played a role in the onset of the warm conditions observed in late 1994 to early 1995. Indeed, during the January-June 1994 period, as strong downwelling first-mode Rossby waves reflected into downwelling Kelvin waves, easterly wind and cold sea surface temperature anomalies located near the date line weakened and eventually reversed in June-July 1994. The presence of the warm anomalies near the date line then favored convection and westerly wind anomalies that triggered strong downwelling Kelvin waves propagating throughout the basin

  19. High frequency normal mode statistics in a shallow water waveguide: the effect of random linear internal waves.

    Science.gov (United States)

    Raghukumar, Kaustubha; Colosi, John A

    2014-07-01

    Using transport theory and Monte Carlo numerical simulation, the statistical properties of mode propagation at a frequency of 1 kHz are studied in a shallow water environment with random sound-speed perturbations from linear internal waves. The environment is typical of summer conditions in the mid-Atlantic bight during the Shallow Water 2006 experiment. Observables of interest include the second and fourth moments of the mode amplitudes, which are relevant to full-field mean intensity and scintillation index. It is found that mode phase randomization has a strong adiabatic component while at the same time mode coupling rates are significant. As a consequence, a computationally efficient transport theory is presented, which models cross-mode correlation adiabatically, but accounts for mode coupling using the mode energy equations of Creamer [(1996). J. Acoust. Soc. Am. 99, 2825-2838]. The theory also has closed-form expressions for the internal wave scattering matrix and a correction for an edge effect. The hybrid transport theory is shown to accurately reproduce many statistical quantities from the Monte Carlo simulations.

  20. Set of modes for the description of wave propagation through slabs with a transverse variation of the refractive index

    NARCIS (Netherlands)

    Hoenders, B. J.; Bertolotti, M.; Uitham, R.

    2007-01-01

    The scattering of electromagnetic waves by a slab whose refractive index is changing along its boundary planes is exactly calculated in a closed analytical form. The key feature of the calculation is the introduction of a new set of modes. As a specific example, we calculate the reflected and transm

  1. An Alternative Millimeter Wave Oscillator using a Dielectric Puck in the Whispering Gallery Mode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A majority of millimeter wave based systems used for space exploration, communications and research, require a millimeter wave oscillator. These oscillators have...

  2. Tidal inertial waves in differentially rotating convective envelopes of low-mass stars. I. Free oscillation modes

    Science.gov (United States)

    Guenel, M.; Baruteau, C.; Mathis, S.; Rieutord, M.

    2016-05-01

    Context. Star-planet tidal interactions may result in the excitation of inertial waves in the convective region of stars. In low-mass stars, their dissipation plays a prominent role in the long-term orbital evolution of short-period planets. Turbulent convection can sustain differential rotation in their envelopes with an equatorial acceleration (as in the Sun) or deceleration, which can modify the propagation properties of the waves. Aims: We explore in this first paper the general propagation properties of free linear inertial waves in a differentially rotating homogeneous fluid inside a spherical shell. We assume that the angular velocity background flow depends on the latitudinal coordinate alone, close to what is expected in the external convective envelope of low-mass stars. Methods: We use an analytical approach in the inviscid case to get the dispersion relation, from which we compute the characteristic trajectories along which energy propagates. This allows us to study the existence of attractor cycles and infer the different families of inertial modes. We also use high-resolution numerical calculations based on a spectral method for the viscous problem. Results: We find that modes that propagate in the whole shell (D modes) behave the same way as with solid-body rotation. However, another family of inertial modes exists (DT modes), which can only propagate in a restricted part of the convective zone. Our study shows that they are less common than D modes and that the characteristic rays and shear layers often focus towards a wedge - or point-like attractor. More importantly, we find that for non-axisymmetric oscillation modes, shear layers may cross a corotation resonance with a local accumulation of kinetic energy. Their damping rate scales very differently from the value we obtain for standard D modes, and we show an example where it is independent of viscosity (Ekman number) in the astrophysical regime in which it is small.

  3. Z-shaped magnetostrictive patch for efficient transduction of a torsional wave mode in a cylindrical waveguide

    Science.gov (United States)

    Park, Chan Il; Cho, Seung Hyun; Kim, Yoon Young

    2006-10-01

    An earlier investigation [C. I. Park et al., Appl. Phys. Lett. 87, 224105 (2005)] using topology optimization showed that if V-shaped yokes are attached to magnetostrictive strips obliquely bonded on the surface of a cylindrical waveguide, the transduction efficiency of ultrasonic torsional waves can be substantially increased. However, some unwanted wave modes are also generated unless some damping treatment is applied. This investigation shows that if the strips are reconfigured as Z-shaped patches, the transduction efficiency gained by the optimization technique can be maintained without the generation of unwanted modes. By experiments using the Z-shaped patches, the transduction characteristics including the frequency characteristics of an ultrasonic torsional wave are also investigated.

  4. Sensitivity study using machine learning algorithms on simulated r-mode gravitational wave signals from newborn neutron stars

    CERN Document Server

    Mytidis, Antonis; Panagopoulos, Orestis P; Whiting, Bernard

    2015-01-01

    This is a follow-up sensitivity study on r-mode gravitational wave signals from newborn neutron stars illustrating the applicability of machine learning algorithms for the detection of long-lived gravitational-wave transients. In this sensitivity study we examine three machine learning algorithms (MLAs): artificial neural networks (ANNs), support vector machines (SVMs) and constrained subspace classifiers (CSCs). The objective of this study is to compare the detection efficiency that MLAs can achieve with the efficiency of conventional detection algorithms discussed in an earlier paper. Comparisons are made using 2 distinct r-mode waveforms. For the training of the MLAs we assumed that some information about the distance to the source is given so that the training was performed over distance ranges not wider than half an order of magnitude. The results of this study suggest that machine learning algorithms are suitable for the detection of long-lived gravitational-wave transients and that when assuming knowle...

  5. Modification of ordinary-mode reflectometry system to detect lower-hybrid waves in Alcator C-Moda)

    Science.gov (United States)

    Baek, S. G.; Shiraiwa, S.; Parker, R. R.; Dominguez, A.; Kramer, G. J.; Marmar, E. S.

    2012-10-01

    Backscattering experiments to detect lower-hybrid (LH) waves have been performed in Alcator C-Mod, using the two modified channels (60 GHz and 75 GHz) of an ordinary-mode reflectometry system with newly developed spectral recorders that can continuously monitor spectral power at a target frequency. The change in the baseline of the spectral recorder during the LH wave injection is highly correlated to the strength of the X-mode non-thermal electron cyclotron emission. In high density plasmas where an anomalous drop in the lower hybrid current drive efficiency is observed, the observed backscattered signals are expected to be generated near the last closed flux surface, demonstrating the presence of LH waves within the plasma. This experimental technique can be useful in identifying spatially localized LH electric fields in the periphery of high-density plasmas.

  6. Cavity mode waves during terahertz radiation from rectangular Bi(2)Sr(2)CaCu(2)O(8 + δ) mesas.

    Science.gov (United States)

    Klemm, Richard A; Laberge, Erica R; Morley, Dustin R; Kashiwagi, Takanari; Tsujimoto, Manabu; Kadowaki, Kazuo

    2011-01-19

    We re-examined the angular dependence of the radiation from the intrinsic Josephson junctions in rectangular mesas of Bi(2)Sr(2)CaCu(2)O(8 + δ), in order to determine if the cavity mode part of the radiation arises from waves across the width w or along the length l of the mesas, associated with 'hot spots' (Wang et al 2010 Phys. Rev. Lett. 105 057002). We derived analytical forms for the angular dependence expected in both cases for a general cavity mode in which the width of the mesa corresponds to an integer multiple of one-half the wavelength of the radiation. Assuming the coherent radiation from the ac Josephson current source and the cavity magnetic surface current density source combine incoherently, fits to the data of Kadowaki et al (2010 J. Phys. Soc. Japan 79 023703) on a mesa with mean l/ω = 5.17 for both wave directions using two models for the incoherent combination were made, which correspond to standing and traveling waves, respectively. The results suggest that the combined output from the uniform ac Josephson current source plus a cavity wave forming along the rectangle length is equally probable as that of the combined output from the uniform ac Josephson current plus a cavity wave across the width. However, for mesas in which nl/2ω is integral, where n is the index of the rectangular TM(z)(n, 0) mode, it is shown that standing cavity mode waves along the length of the mesa do not radiate in the xz plane perpendicular to the length of the mesa, suggesting experiments on such mesas could help to resolve the question.

  7. Cavity mode waves during terahertz radiation from rectangular Bi2Sr2CaCu2O8 + δ mesas

    Science.gov (United States)

    Klemm, Richard A.; LaBerge, Erica R.; Morley, Dustin R.; Kashiwagi, Takanari; Tsujimoto, Manabu; Kadowaki, Kazuo

    2011-01-01

    We re-examined the angular dependence of the radiation from the intrinsic Josephson junctions in rectangular mesas of Bi2Sr2CaCu2O8 + δ, in order to determine if the cavity mode part of the radiation arises from waves across the width w or along the length \\ell of the mesas, associated with 'hot spots' (Wang et al 2010 Phys. Rev. Lett. 105 057002). We derived analytical forms for the angular dependence expected in both cases for a general cavity mode in which the width of the mesa corresponds to an integer multiple of one-half the wavelength of the radiation. Assuming the coherent radiation from the ac Josephson current source and the cavity magnetic surface current density source combine incoherently, fits to the data of Kadowaki et al (2010 J. Phys. Soc. Japan 79 023703) on a mesa with mean \\ell /w=5.17 for both wave directions using two models for the incoherent combination were made, which correspond to standing and traveling waves, respectively. The results suggest that the combined output from the uniform ac Josephson current source plus a cavity wave forming along the rectangle length is equally probable as that of the combined output from the uniform ac Josephson current plus a cavity wave across the width. However, for mesas in which n\\ell /2w is integral, where n is the index of the rectangular TMzn, 0 mode, it is shown that standing cavity mode waves along the length of the mesa do not radiate in the xz plane perpendicular to the length of the mesa, suggesting experiments on such mesas could help to resolve the question.

  8. Radiation losses and dark mode for spin-wave propagation through a discrete magnetic micro-waveguide

    Science.gov (United States)

    Barabanenkov, Yuri; Osokin, Sergey; Kalyabin, Dmitry; Nikitov, Sergey

    2016-11-01

    This paper presents the quantum mechanical type T -scattering operator approach to studying the forward volume magnetostatic spin-wave multiple scattering by a finite ensemble of cylindrical magnetic inclusions in a ferromagnetic thin film. The approach is applied to the problem of spin-wave excitation transfer along a linear chain of inclusions. The substantial results are deriving the optical theorem for the T -scattering operator and, as a consequence, deriving a formula for collective extinction cross section of inclusion ensemble, where only the first inclusion of the chain is irradiated by an incident narrow spin-wave beam. From this formula it can be shown that only irradiated inclusion makes a direct contribution in the collective extinction cross section of the total number of inclusions. In this case the direct summarized contribution of all the other inclusions from the chain into the spin-wave scattering is invisible; we call such phenomenon the dark mode. Applying a one-multipole and closest neighbor coupling approximation, we reveal a regime of distant resonant transfer for spin-wave excitation along the linear chain of an essentially big but finite number of particles with the dark mode. Because we also found a resonant mechanism of filtering this mode from radiation losses, the revealed regime shows that at resonant conditions the linear chain of magnetic inclusions can play the role of a spin-wave micro-waveguide, which transfers a signal over a big distance in a form of the dark mode, where the controllable level of radiation losses can tend to reach nearly zero values.

  9. Consideration of SH-wave fundamental modes in piezoelectromagnetic plate: electrically open and magnetically open boundary conditions

    Science.gov (United States)

    Zakharenko, A. A.

    2013-11-01

    This report studies the dispersive wave propagation in the transversely isotropic (6 mm) piezoelectromagnetic (PEM) plate when the mechanical, electrical, and magnetic boundary conditions for both the upper and lower free surfaces of the plate are as follows: the mechanically free, electrically open, and magnetically open surfaces. This study follows some original results obtained in book. The fundamental modes' dispersion relations are graphically shown for the following well-known PEM composite materials: BaTiO3-CoFe2O4 and PZT-5H-Terfenol-D. It is natural that for large values of the nondimensional parameter kd (k is the wave number and d is the plate half-thickness), the velocities of both the fundamental modes approach the surface shear-horizontal wave called the piezomagnetic exchange surface Melkumyan wave. It is well known that plate waves are usually utilized in the nondestructive testing and evaluation, for instance, in the airspace industry. Also, PEM materials are used as smart ones in various technical devices such as dispersive wave delay lines, (biochemi)sensors, lab-on-a-chip, etc.

  10. Fast dropouts of multi-MeV electrons due to combined effects of EMIC and whistler mode waves

    Science.gov (United States)

    Mourenas, D.; Artemyev, A. V.; Ma, Q.; Agapitov, O. V.; Li, W.

    2016-05-01

    We investigate how whole populations of 2-6 MeV electrons can be quickly lost from the Earth's outer radiation belt at L= 3-6 through precipitation into the atmosphere due to quasi-linear pitch angle scattering by combined electromagnetic ion cyclotron (EMIC) and whistler mode waves of realistic intensities occurring at the same or different local times. We provide analytical estimates of the corresponding relativistic electron lifetimes, emphasizing that the combined effects of both waves can lead to very fast (2-10 h) dropouts. Scaling laws for the loss timescales are derived, allowing us to determine the various plasma and wave parameter domains potentially leading to strong and fast dropouts. The analysis reveals that the fastest MeV electron dropouts occur at approximately the same rate over some high energy range and almost independently of EMIC wave amplitudes above a certain threshold. These results should help to better understand the dynamic variability of the radiation belts.

  11. Spin-wave mode profiles versus surface/interface conditions in ferromagnetic Fe/Ni layered composites

    CERN Document Server

    Krawczyk, M; Levy, J C S; Mercier, D

    2003-01-01

    Spin-wave excitations in ferromagnetic layered composite (AB centre dot centre dot centre dot BA; A and B being different homogeneous ferromagnetic materials) are analysed theoretically, by means of the transfer matrix approach. The properties of multilayer spin-wave mode profiles are discussed in relation to multilayer characteristics, such as the filling fraction and the exchange or magnetization contrast; also, surface spin pinning conditions and dipolar interactions are taken into account. The interface conditions are satisfied by introducing an effective exchange field expressed by interface gradients of the exchange constant and the magnetization. This approach provides an easy way to find frequencies and amplitudes of standing spin waves in the multilayer. The developed theory is applied to interpretation of spin wave resonance (SWR) spectra obtained experimentally by Chambers et al in two systems: a bilayer Fe/Ni and a trilayer Ni/Fe/Ni, in perpendicular (to the multilayer surface) configuration of th...

  12. Microwave pre-heating of natural rubber using a rectangular wave guide (MODE: TE10

    Directory of Open Access Journals (Sweden)

    Doo-ngam, N.

    2007-11-01

    Full Text Available This paper presents an application of microwave radiation for pre-heating of natural rubbercompounding with various sulphur contents. The natural rubber-compounding was pre-heated by microwave radiation using a rectangular wave guide system (MODE: TE10 operating at frequency of 2.45 GHz in which the power can vary from 0 to 1500 W. In the present work, the influence of power input, sample thickness, and sulphur content were examined after applying microwave radiation to the rubber samples. Results are discussed regarding the thermal properties, 3-D network, dielectric properties and chemical structures. From the result, firstly, it was found that microwave radiation can be applied to pre-heating natural rubber-compounding before the vulcanization process. Secondly, microwave radiation was very useful for pre-heating natural rubber-compounding that has a thickness greater than 5mm. Thirdly, crosslinking in natural rubber-compounding may occurs after pre-heating by microwave radiation though Fourier Transform Infrared Spectroscopy(FTIR. Finally, there a little effect of sulphur content on temperature profiles after applying microwave radiation to the natural rubber-compounding. Moreover, natural rubber-compounding without carbon black showed a lower heat absorption compared with natural rubbercompounding filled carbon black. This is due to the difference in dielectric loss factor. This preliminary result will be useful information in terms of microwave radiation for pre-heating natural rubber-compounding and rubber processing in industry.

  13. Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers.

    Science.gov (United States)

    Eigenwillig, Christoph M; Wieser, Wolfgang; Todor, Sebastian; Biedermann, Benjamin R; Klein, Thomas; Jirauschek, Christian; Huber, Robert

    2013-01-01

    Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60-70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.

  14. Linear and nonlinear MHD mode coupling of the fast magnetoacoustic wave about a 3D magnetic null point

    CERN Document Server

    Thurgood, J O; 10.1051/0004-6361/201219850

    2012-01-01

    Context: Coronal magnetic null points have been implicated as possible locations for localised heating events in 2D models. We investigate this possibility about fully 3D null points. Aims: We investigate the nature of the fast magnetoacoustic wave about a fully 3D magnetic null point, with a specific interest in its propagation, and we look for evidence of MHD mode coupling and/or conversion to the Alfv\\'en mode. Methods: A special fieldline and flux-based coordinate system was constructed to permit the introduction of a pure fast magnetoacoustic wave in the vicinity of proper and improper 3D null points. We considered the ideal, {\\beta} = 0, MHD equations, which are solved using the LARE3D numerical code. The constituent modes of the resulting wave were isolated and identified using the special coordinate system. Numerical results were supported by analytical work derived from perturbation theory and a linear implementation of the WKB method. Results: An initially pure fast wave is found to be permanently d...

  15. On the features of the Optical Rogue Waves observed in the Kerr lens mode locked Ti:Sapphire laser

    CERN Document Server

    Hnilo, Alejandro A; Tredicce, Jorge R

    2014-01-01

    Kerr lens-mode-locked Ti:Sapphire lasers are known to display three coexistent modes of operation, that can be described as: continuous wave (CW), transform limited pulses (P1) and positive chirped pulses (P2). Optical rogue waves, in the form of pulses of high energy appearing much often than expected in a Gaussian distribution, are observed in the chaotic regime of the mode P2, but not of P1. These high energy pulses appear in an unpredictable way, but it is observed that their separation (if measured in number of round trips) can take only some definite values, which received the name of "magic numbers". The existence of optical rogue waves in P2 and not in P1, and also of the magic numbers, are correctly reproduced by a numerical simulation based on a five-variables iterative map. But, a successful numerical simulation provides limited insight on the physical causes of the observed phenomena. We present evidence that optical rogue waves in this laser follow a modulational instability, and that an initial ...

  16. Full-wave Feasibility Study of Magnetic Diagnostic based on O-X Mode Conversion and Oblique Reflectometry Imaging

    Science.gov (United States)

    Volpe, F. A.; Choi, M.; Patel, Y.; Meneghini, O.

    2013-10-01

    We present initial two-dimensional full-wave modeling of an innovative diagnostic of the magnetic field vector as a function of the minor radius in the pedestal region. An angularly broad millimeter-wave beam of ordinary (O) polarization is obliquely injected in the magnetized plasma; part of it converts in the extraordinary (X) mode at the O-mode cutoff, the rest is reflected. The reflected beam pattern, measured with an array of receivers, contains information on the angular-dependent mode conversion, which contains information on the magnetic pitch angle at the cutoff. Measurements at various frequencies provide radially resolved measurements of pitch angle. The new technique proposed does not require the plasma to be an overdense emitter of Electron Bernstein Waves and is applicable whenever reflectometry is applicable. Simulations performed with the finite-element COMSOL Multiphysics code in ``DIII-D-like'' plasma slabs confirmed the presence of a minimum in reflectivity of an externally injected O-mode beam. The dependence of such reflectivity ``hole'' upon magnetic field is under study. Future inclusion of toroidal ripple, density and magnetic fluctuation effects, as well as possible extensions to a fully three-dimensional diagnostic of the magnetic field will be discussed. Current address: Imsol-X.

  17. Efficient Bistatic SAR Raw Signal Simulator of Extended Scenes

    OpenAIRE

    Liang Yang; Weidong Yu; Shichao Zheng; Lei Zhang

    2014-01-01

    Bistatic SAR system is a new mode that allocates the radar transmitter and receiver on different platforms and has more advantages compared to the monostatic case. However, the existing bistatic SAR raw data simulator in the frequency domain can only handle the case of translation invariant system. In this paper, an efficient 2D frequency-domain raw data simulator of extended scenes for bistatic SAR of translation variant system is proposed by a geometric transformation method for the first t...

  18. Analysis of Propagation and Radiation of A0-mode Lamb Wave in a Layered Waveguide Plate by FEM Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jin Ho; Joo, Young Sang; Ham, Ji Woong; Kim, Jong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    In-vessel structures of a sodium-cooled fast reactor (SFR) are submerged in opaque liquid sodium in the reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors have developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In previous studies, to improve the performance of the ultrasonic waveguide sensor module in the under-sodium application, the dispersion effect due to the 10 m long distance propagation of the A0-mode Lamb wave should be minimized and the longitudinal leaky wave in liquid sodium should be generated within the range of the effective radiation angle. A new concept of ultrasonic waveguide sensors with a layered-structured plate is suggested for the non-dispersive propagation of A0-mode Lamb wave in an ultrasonic waveguide sensor and the effective generation of a leaky wave in liquid sodium. In this work, the propagation and radiation of the leaky Lamb wave in the waveguide sensor coated with Beryllium has been performed by FEM simulations

  19. A Study on Love Mode Channel Wave Basic Characteristics%Love型槽波的基本特性研究

    Institute of Scientific and Technical Information of China (English)

    钱建伟; 李德春

    2013-01-01

    Taking the three-layered symmetrical strata model as example, to solve Love mode channel wave dispersion equation, based on the model parameters plotted Love mode channel wave dispersion curves and derived amplitude depth distribution equation. On these bases we have analyzed the wave energy distribution pattern in coal and coal filtering characteristics. The study has shown that the wave is provided with dispersion characteristics, propagation velocity changes along with frequency, and energy distribution in coal seam is uneven, strongest in the center;coal filtering on the wave is analogous to high-pass filter.%以三层对称地层模型为例,求解Love型槽波频散方程,并根据该模型参数绘制了Love型槽波频散曲线,以及振幅深度分布方程。在此基础上分析了Love型槽波在煤层中的能量分布规律与煤层对Love型槽波的滤波特性。研究表明:Love型槽波具有频散特性,传播速度随频率发生变化,且在煤层中能量分布不均匀,煤层中心能量最强;煤层对Love型槽波的滤波作用类似于高通滤波器。

  20. A study on the Antarctic circumpolar wave mode-A coexistence system of standing and traveling wave

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Antarctic circumpolar wave (ACW) has become a focus of the air-sea coupled Southern Ocean study since 1996, when it was discovered as an air-sea coupled interannual signal propagating eastward in the region of the Antarctic Circumpolar Current (ACC). In order to analyze the mechanism of discontinuity along the latitudinal propagation, a new idea that ACW is a system with a traveling wave in the Southern Pacific and Atlantic Ocean and with a concurrent standing wave in the southern Indian Ocean is proposed in this paper. Based on the ideal wave principle, the average wave parameters of ACW is achieved using a non-linear approximation method, by which we find that the standing part and the traveling part possess similar radius frequency, proving their belonging to an integral system. We also give the latitudinal distribution of wave speed with which we could tell the reason for steady propagation during the same period. The spatial distribution of the propagation reveals complex process with variant spatial and temporal scales-The ENSO scale oscillation greatly impacts on the traveling process, while the result at the south of Australia indicates little connection between the Indian Ocean and the Pacific, which may be blocked by the vibration at the west of the Pacific. The advective effect of ACC on the propagation process should be examined clearly through dynamical method.

  1. 基于分辨性能的 GEOSAR 凝视成像轨道优化设计%Orbit Design Based on Resolution Performance for Geosynchronous SAR Staring Mode

    Institute of Scientific and Technical Information of China (English)

    吴舟婷; 黄丽佳; 胡东辉; 丁赤飚

    2015-01-01

    Based on the wide swath and the short repeat period of geosynchronous(GEO)SAR combi-ning with the beam steering technique,a new mode called “staring mode”is proposed to meet the requirement of monitoring typical regions for a long time.Because of the high orbit of GEO SAR,the impacts of the earth rotation and the curvature of the earth surface become more notable.The resolution performance changes severely with the orbit parameters and even becomes quite poor.In this paper,the analytical expressions of the range and azimuth resolutions in ground plane are deduced based on the given viewing geometry.A orbit optimization strategy based on the length of the high-quality observation time is provided.Simulation re-sults verify the theoretical analysis.The strategy is beneficial to increasing the satellite efficiency.%利用地球同步轨道合成孔径雷达(SAR)卫星对地覆盖范围广、轨道周期短等特点,结合波束控制技术可以实现对热点地区的长时间持续观测,即地球同步轨道 SAR(GEOSAR)凝视成像。对于 GEO-SAR 凝视成像系统而言,由于轨道高度大大提高,地球自转效应和地表曲率的影响更加显著,在对目标的持续观测过程中,分辨性能变化较大,甚至存在无法二维分辨的观测位置。为了保证卫星资源的利用率,需要通过轨道参数的优化设计,获得更长的二维高分辨观测时间。通过引入俯仰角,对传统成像几何模型加以改进,并推导了适用于 GEOSAR 的二维分辨率表达式。利用该表达式,分析不同观测位置的二维分辨效果,计算不同轨道参数设计对应的有效观测时长,并结合二维联合搜索的方法完成轨道参数优化。仿真结果说明该轨道参数优化流程可以为 GEOSAR 凝视成像系统提供有效的轨道参数设计方案。

  2. Some Results from SAR and Optical Sensor Monitoring of China Seas

    Science.gov (United States)

    Yang, Jingsong; Lou, Xiulin; Chen, Peng; Wang, Juan; Ren, Lin; Chang, Junfang; Pan, Yufang

    2013-01-01

    As part of the final results of Dragon 2 Project Id. 5316 “Demonstrating SAR and optical sensor monitoring of Chinese Seas”, some results from SAR and optical sensor monitoring of China Seas including sea surface winds, ocean surface waves, typhoon and typhoon waves, ocean internal waves, red tides, and ships are given in this paper.

  3. Forest Height Inversion Using Dual-pol Polarimetric SAR Interferometry

    Science.gov (United States)

    Fu, W. X.; Guo, H. D.; Xie, C.; Lu, Y. C.; Li, X. W.

    2014-03-01

    Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) has been extensively applied for forest parameter inversion over different frequencies and polarimetric conditions. So far, most research was based on full-pol SAR images with relatively small coverage. A spaceborne SAR system will have the potential for PolInSAR applications used for global forest monitoring. Spaceborne dual-pol SAR images usually have higher resolution and larger swath than full-pol mode. In this paper, forest height retrieval was attempted by PolInSAR from a L-band spaceborne dual-pol SAR pairs using HH and HV channels. The random volume over ground (RVoG) model was used to retrieve the height and the coherence optimization method was extended to the dual-pol PolInSAR, which makes use of polarimetry to enhance the quality of SAR interferograms. The three-stage process is also used in the dual-pol PolInSAR technique. Finally, the experimental test was performed for forest height estimation on the dual-pol L-band SAR data of the Saihanba forest acquired by the ALOS PALSAR sensor in 2009.

  4. Signal Processing for High Resolution FMCW SAR and Moving Target

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.

    2005-01-01

    The combination of Frequency Modulated ContinuousWave (FMCW) technology and Synthetic Aperture Radar (SAR) leads to lightweight, cost-effective imaging sensors of high resolution. In FMCW SAR applications the conventional stop-and-go approximation used in pulse radar algorithms cannot be considered

  5. High-efficiency multipass Ti:sapphire amplifiers for a continuous-wave single-mode laser.

    Science.gov (United States)

    Georges, P; Estable, F; Salin, F; Poizat, J P; Grangier, P; Brun, A

    1991-02-01

    We present the amplification of a continuous-wave single-mode ring dye laser in Ti:sapphire. A peak gain of 2 x 10(6) has been obtained in a passive multipass amplifier, which yielded 20-nsec pulses of 0.7-mJ energy at 780 nm. We discuss the advantages of this passive multipass amplifier in comparison with a regenerative amplifier that we have also developed. By second-harmonic generation we obtained high-peak-power UV pulses from the amplified single-mode laser.

  6. TUNING IN TO FISH SWIMMING WAVES - BODY FORM, SWIMMING MODE AND MUSCLE FUNCTION

    NARCIS (Netherlands)

    WARDLE, CS; VIDELER, JJ; ALTRINGHAM, JD

    1995-01-01

    Most fish species swim with lateral body undulations running from head to tail, These waves run more slowly than the waves of muscle activation causing them, reflecting the effect of the interaction between the fish's body and the reactive forces from the water, The coupling between both waves depen

  7. TUNING IN TO FISH SWIMMING WAVES - BODY FORM, SWIMMING MODE AND MUSCLE FUNCTION

    NARCIS (Netherlands)

    WARDLE, CS; VIDELER, JJ; ALTRINGHAM, JD

    1995-01-01

    Most fish species swim with lateral body undulations running from head to tail, These waves run more slowly than the waves of muscle activation causing them, reflecting the effect of the interaction between the fish's body and the reactive forces from the water, The coupling between both waves depen

  8. TUNING IN TO FISH SWIMMING WAVES - BODY FORM, SWIMMING MODE AND MUSCLE FUNCTION

    NARCIS (Netherlands)

    WARDLE, CS; VIDELER, JJ; ALTRINGHAM, JD

    Most fish species swim with lateral body undulations running from head to tail, These waves run more slowly than the waves of muscle activation causing them, reflecting the effect of the interaction between the fish's body and the reactive forces from the water, The coupling between both waves

  9. Tunable rotary orbits of matter-wave nonlinear modes in attractive Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    He, Y J; Wang, H Z [State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou, 510275 (China); Malomed, Boris A [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Mihalache, Dumitru [Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), 407 Atomistilor, Magurele-Bucharest 077125 (Romania)], E-mail: stswhz@mail.sysu.edu.cn

    2008-03-14

    We demonstrate that by spatially modulating the Bessel optical lattice where a Bose-Einstein condensate is loaded, we get tunable rotary orbits of nonlinear lattice modes. We show that the radially expanding or shrinking Bessel lattice can drag the nonlinear localized modes to orbits of either larger or smaller radii and the rotary velocity of nonlinear modes can be changed accordingly. The localized modes can even be transferred to the Bessel lattice core when the localized modes' rotations are stopped. Effects beyond the quasi-particle approximation such as destruction of the nonlinear modes by nonadiabatic dragging are also explored.

  10. Quasi-periodic Fast-mode Magnetosonic Wave Trains Within Coronal Waveguides Associated with Flares and CMEs

    CERN Document Server

    Liu, Wei; Broder, Brittany; Karlicky, Marian; Downs, Cooper

    2015-01-01

    Quasi-periodic, fast-mode, propagating wave trains (QFPs) are a new observational phenomenon recently discovered in the solar corona by the Solar Dynamics Observatory with extreme ultraviolet (EUV) imaging observations. They originate from flares and propagate at speeds up to ~2000 km/s within funnel-shaped waveguides in the wakes of coronal mass ejections (CMEs). QFPs can carry sufficient energy fluxes required for coronal heating during their occurrences. They can provide new diagnostics for the solar corona and their associated flares. We present recent observations of QFPs focusing on their spatio-temporal properties, temperature dependence, and statistical correlation with flares and CMEs. Of particular interest is the 2010-Aug-01 C3.2 flare with correlated QFPs and drifting zebra and fiber radio bursts, which might be different manifestations of the same fast-mode wave trains. We also discuss the potential roles of QFPs in accelerating and/or modulating the solar wind.

  11. Fast color flow mode imaging using plane wave excitation and temporal encoding

    Science.gov (United States)

    Udesen, Jesper; Gran, Fredrik; Jensen, Jorgen A.

    2005-04-01

    In conventional ultrasound color flow mode imaging, a large number (~500) of pulses have to be emitted in order to form a complete velocity map. This lowers the frame-rate and temporal resolution. A method for color flow imaging in which a few (~10) pulses have to be emitted to form a complete velocity image is presented. The method is based on using a plane wave excitation with temporal encoding to compensate for the decreased SNR, resulting from the lack of focusing. The temporal encoding is done with a linear frequency modulated signal. To decrease lateral sidelobes, a Tukey window is used as apodization on the transmitting aperture. The data are beamformed along the direction of the flow, and the velocity is found by 1-D cross correlation of these data. First the method is evaluated in simulations using the Field II program. Secondly, the method is evaluated using the experimental scanner RASMUS and a 7 MHz linear array transducer, which scans a circulating flowrig. The velocity of the blood mimicking fluid in the flowrig is constant and parabolic, and the center of the scanned area is situated at a depth of 40 mm. A CFM image of the blood flow in the flowrig is estimated from two pulse emissions. At the axial center line of the CFM image, the velocity is estimated over the vessel with a mean relative standard deviation of 2.64% and a mean relative bias of 6.91%. At an axial line 5 mm to the right of the center of the CFM image, the velocity is estimated over the vessel with a relative standard deviation of 0.84% and a relative bias of 5.74%. Finally the method is tested on the common carotid artery of a healthy 33-year-old male.

  12. Whimsicality of multi-mode Hasegawa space-charge waves in a complex plasma containing collision-dominated electrons and streaming ions

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-09-01

    The influence of collision-dominated electrons on multi-mode Hasegawa space-charge waves are investigated in a complex plasma containing streaming ions. The dispersion relation for the multi-mode Hasegawa space-charge wave propagating in a cylindrical waveguide filled with dusty plasma containing collision-dominated electrons and streaming ions is derived by using the fluid equations and Poisson’s equation which lead to a Bessel equation. By the boundary condition, the roots of the Bessel function would characterize the property of space-charge wave propagation. It is found that two solutions exist for wave frequency, which are affected by the radius of waveguide and the roots of the Bessel function. The damping and growing modes are found to be enhanced by an increase of the radius. However, an increase of electron collision frequency would suppress the damping and the growing modes of the propagating space-charge wave in a cylindrical waveguide plasma.

  13. Improved Oceanographic Measurements with CryoSat SAR Altimetry

    Science.gov (United States)

    Cotton, David; Benveniste, Jérôme; Cipollini, Paolo; Andersen, Ole; Cancet, Mathilde; Ambrózio, Américo; Restano, Marco; Nilo Garcia, Pablo; Martin, Francisco

    2016-07-01

    The ESA CryoSat mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar "SAR" (or delay-Doppler) and interferometric SAR (SARin) modes. Studies on CryoSat data have analysed and confirmed the improved ocean measuring capability offered by SAR mode altimetry, through increased resolution and precision in sea surface height and wave height measurements, and have also added significantly to our understanding of the issues around the processing and interpretation of SAR altimeter echoes. We present work in four themes, building on work initiated in the CryoSat Plus for Oceans project (CP4O), each investigating different aspects of the opportunities offered by this new technology. The first two studies address the coastal zone, a critical region for providing a link between open-ocean and shelf sea measurements with those from coastal in-situ measurements, in particular tide gauges. Although much has been achieved in recent years through the Coastal Altimetry community, (http://www.coastalt.eu/community) there is a limit to the capabilities of pulse-limited altimetry, which often leaves an un-measured "white strip" right at the coastline. Firstly, a thorough analysis was made of the performance of "SAR" altimeter data (delay-Doppler processed) in the coastal zone. This quantified the performance, confirming the significant improvement over "conventional" pulse-limited altimetry. In the second study a processing scheme was developed with CryoSat SARin mode data to enable the retrieval of valid oceanographic measurements in coastal areas with complex topography. Thanks to further development of the algorithms, a new approach was achieved that can also be applied to SAR and conventional altimetry data (e.g., Sentinel-3, Jason series, Envisat). The third part of the project developed and evaluated improvements to the SAMOSA altimeter re-tracker that is implemented in the Sentinel-3 processing chain. The modifications to the

  14. Assessment of C-band compact polarimetry SAR for sea ice classification

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xi; ZHANG Jie; LIU Meijie; MENG Junmin

    2016-01-01

    0HH 0V V 0 HV The C-band synthetic aperture radar (SAR) data from the Bohai Sea of China, the Labrador Sea in the Arctic and the Weddell Sea in the Antarctic are used to analyze and discuss the sea ice full polarimetric information reconstruction ability under compact polarimetric modes. The type of compact polarimetric mode which has the highest reconstructed accuracy is analyzed, along with the performance impact of the reconstructed pseudo quad-pol SAR data on the sea ice detection and sea ice classification. According to the assessment and analysis, it is recommended to adopt the CTLR mode for reconstructing the polarimetric parameters , ,H andα, while for reconstructing the polarimetric parameters ,ρH-V,λ1 andλ2, it is recommended to use the π/4 mode. Moreover, it is recommended to use the π/4 mode in studying the action effects between the electromagnetic waves and sea ice, but it is recommended to use the CTLR mode for studying the sea ice classification.

  15. Progress in Circular SAR Imaging Technique

    Directory of Open Access Journals (Sweden)

    Hong Wen

    2012-06-01

    Full Text Available Circular SAR (CSAR is a newly developed all-directional high resolution 3D imaging mode in recent years, to satisfy the demand of finer observation. The National Key Laboratory of Science and Technology on Microwave Imaging, Institute of Electronics, Chinese Academy of Sciences (MITL, IECAS, had the first test flight experiment in Aug. 2011 with a P-band full polarization SAR system, and successfully obtained the all-directional high resolution circular SAR image. The initial results show that CSAR technique has the encouraging potential capability in the fields of high precision mapping, disaster evaluation, resource management and the other related applications. This paper firstly makes a detailed discussion on the progress of circular SAR imaging technique, which emphases on the several airborne experiments performed these years to show CSAR’s attractive features, then studies and illustrates the key techniques, and finally discusses the development trends.

  16. Optimal Control of a Surge-Mode WEC in Random Waves

    Energy Technology Data Exchange (ETDEWEB)

    Chertok, Allan [Resolute Marine Energy, Inc., Boston, MA (United States); Ceberio, Olivier [Resolute Marine Energy, Inc., Boston, MA (United States); Staby, Bill [Resolute Marine Energy, Inc., Boston, MA (United States); Previsic, Mirko [Re Vision Consulting, Sacramento, CA (United States); Scruggs, Jeffrey [Univ. of Michigan, Ann Arbor, MI (United States); Van de Ven, James [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-08-30

    The objective of this project was to develop one or more real-time feedback and feed-forward (MPC) control algorithms for an Oscillating Surge Wave Converter (OSWC) developed by RME called SurgeWEC™ that leverages recent innovations in wave energy converter (WEC) control theory to maximize power production in random wave environments. The control algorithms synthesized innovations in dynamic programming and nonlinear wave dynamics using anticipatory wave sensors and localized sensor measurements; e.g. position and velocity of the WEC Power Take Off (PTO), with predictive wave forecasting data. The result was an advanced control system that uses feedback or feed-forward data from an array of sensor channels comprised of both localized and deployed sensors fused into a single decision process that optimally compensates for uncertainties in the system dynamics, wave forecasts, and sensor measurement errors.

  17. Global normal mode planetary wave activity: a study using TIMED/SABER observations from the stratosphere to the mesosphere-lower thermosphere

    Science.gov (United States)

    John, Sherine Rachel; Kumar, Karanam Kishore

    2016-12-01

    A comprehensive study of three normal mode travelling planetary waves, namely the quasi-16, -10 and -5 day waves, is carried out globally using 5 years (2003-2007) of TIMED/SABER temperature measurements from the stratosphere to the mesosphere-lower thermosphere (MLT) by employing the two dimensional Fourier decomposition technique. From preliminary analysis, it is found that significant amplitudes of normal modes are confined to wave numbers-2 (westward propagating modes) to 2 (eastward propagating modes). The westward propagating quasi 16-day waves with zonal wave number 1 (W1; W1 refers to westward propagating wave with zonal wave number 1) peaks over winter-hemispheric high latitudes with northern hemisphere (NH) having higher amplitudes as compared to their southern hemispheric (SH) counterpart. The W1 quasi 16-day waves exhibit a double peak structure in altitude over winter hemispheric high latitudes. The eastward propagating quasi 16-day waves with wave number 1 (E1; E1 refers to eastward propagating wave with zonal wave number 1) exhibits similar features as that of W1 waves in the NH. In contrast, the E1 quasi 16-day waves in the SH show larger amplitudes as compared to the W1 waves and they do not exhibit double peak structure in altitude. Similar to the quasi 16-day waves, the quasi 10- and 5-day wave amplitudes with respect to their wavenumbers are delineated. Unlike quasi-16 and -10 day waves, quasi-5 day waves peak during vernal equinox both in the SH and NH. The peak activity of the W1 quasi-5 day wave is centered around 40°N and 40°S exhibiting symmetry with respect to the equator. A detailed discussion on the height-latitude structure, interannual variability and inter-hemispheric propagation of quasi 16-, 10- and 5-day waves are discussed. The significance of the present study lies in establishing the 5-year climatology of normal mode planetary waves from the stratosphere to the MLT region including their spatial-temporal evolution, which are

  18. Langmuir wave filamentation in the kinetic regime. I. Filamentation instability of Bernstein-Greene-Kruskal modes in multidimensional Vlasov simulations

    Science.gov (United States)

    Silantyev, Denis A.; Lushnikov, Pavel M.; Rose, Harvey A.

    2017-04-01

    A nonlinear Langmuir wave in the kinetic regime k λ D ≳ 0.2 may have a filamentation instability, where k is the wavenumber and λD is the Debye length. The nonlinear stage of that instability develops into the filamentation of Langmuir waves which in turn leads to the saturation of the stimulated Raman scattering in laser-plasma interaction experiments. Here, we study the linear stage of the filamentation instability of the particular family (H. A. Rose and D. A. Russell, Phys. Plasmas 8, 4784 (2001)) of Bernstein-Greene-Kruskal (BGK) modes (I. B. Bernstein et al., Phys. Rev. 108, 546 (1957)) that is a bifurcation of the linear Langmuir wave. Performing direct 2 + 2D Vlasov-Poisson simulations of collisionless plasma, we find the growth rates of oblique modes of the electric field as a function of BGK's amplitude, wavenumber, and the angle of the oblique mode's wavevector relative to the BGK's wavevector. Simulation results are compared to theoretical predictions.

  19. One-wave optical time-reversal mirror by actively coupling arbitrary light fields into a single-mode reflector

    CERN Document Server

    Lee, KyeoReh; Park, Jung-Hoon; Park, Ji-Ho; Park, YongKeun

    2015-01-01

    Rewinding the arrow of time via phase conjugation is an intriguing phenomena made possible by the wave property of light. To exploit this phenomenon, many diverse research fields have pursed the realization of an ideal phase conjugation mirror, but the ideal phase conjugation mirror - an optical system that requires a single-input and a single-output beam, like natural conventional mirrors - has never been demonstrated. Here, we demonstrate the realization of a one-wave optical time-reversal mirror using a spatial light modulator and a single-mode reflector. Our method is simple, alignment free, and fast while allowing unlimited power throughput in the time reversed wave, which have not been simultaneously demonstrated before. Using our method, we demonstrate high throughput time-reversal full-field light delivery through highly scattering biological tissue and multimode fibers, even for quantum dot fluorescence.

  20. Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer

    Science.gov (United States)

    Kegerise, Michael A.; Rufer, Shann J.

    2016-08-01

    In this paper, we report on the application of the atomic layer thermopile (ALTP) heat-flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat-plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors, and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are consistent with data previously reported in the literature. Heat flux time series, and the Morlet wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was used to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  1. Evidence of thermal conduction suppression in a solar flaring loop by coronal seismology of slow-mode waves

    CERN Document Server

    Wang, Tongjiang; Sun, Xudong; Provornikova, Elena; Davila, Joseph M

    2015-01-01

    Analysis of a longitudinal wave event observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) is presented. A time sequence of 131 A images reveals that a C-class flare occurred at one footpoint of a large loop and triggered an intensity disturbance (enhancement) propagating along it. The spatial features and temporal evolution suggest that a fundamental standing slow-mode wave could be set up quickly after meeting of two initial disturbances from the opposite footpoints. The oscillations have a period of ~12 min and a decay time of ~9 min. The measured phase speed of 500$\\pm$50 km/s matches the sound speed in the heated loop of ~10 MK, confirming that the observed waves are of slow mode. We derive the time-dependent temperature and electron density wave signals from six AIA extreme-ultraviolet (EUV) channels, and find that they are nearly in phase.The measured polytropic index from the temperature and density perturbations is 1.64$\\pm$0.08 close to the adiabatic index ...

  2. SAR Polarimetry

    Science.gov (United States)

    vanZyl, Jakob J.

    2012-01-01

    Radar Scattering includes: Surface Characteristics, Geometric Properties, Dielectric Properties, Rough Surface Scattering, Geometrical Optics and Small Perturbation Method Solutions, Integral Equation Method, Magellan Image of Pancake Domes on Venus, Dickinson Impact Crater on Venus (Magellan), Lakes on Titan (Cassini Radar, Longitudinal Dunes on Titan (Cassini Radar), Rough Surface Scattering: Effect of Dielectric Constant, Vegetation Scattering, Effect of Soil Moisture. Polarimetric Radar includes: Principles of Polarimetry: Field Descriptions, Wave Polarizations: Geometrical Representations, Definition of Ellipse Orientation Angles, Scatter as Polarization Transformer, Scattering Matrix, Coordinate Systems, Scattering Matrix, Covariance Matrix, Pauli Basis and Coherency Matrix, Polarization Synthesis, Polarimeter Implementation.

  3. SAR Polarimetry

    Science.gov (United States)

    vanZyl, Jakob J.

    2012-01-01

    Radar Scattering includes: Surface Characteristics, Geometric Properties, Dielectric Properties, Rough Surface Scattering, Geometrical Optics and Small Perturbation Method Solutions, Integral Equation Method, Magellan Image of Pancake Domes on Venus, Dickinson Impact Crater on Venus (Magellan), Lakes on Titan (Cassini Radar, Longitudinal Dunes on Titan (Cassini Radar), Rough Surface Scattering: Effect of Dielectric Constant, Vegetation Scattering, Effect of Soil Moisture. Polarimetric Radar includes: Principles of Polarimetry: Field Descriptions, Wave Polarizations: Geometrical Representations, Definition of Ellipse Orientation Angles, Scatter as Polarization Transformer, Scattering Matrix, Coordinate Systems, Scattering Matrix, Covariance Matrix, Pauli Basis and Coherency Matrix, Polarization Synthesis, Polarimeter Implementation.

  4. After the Great Floods: SAR-Driven Archaeology on Exposed Intertidal Flats

    Science.gov (United States)

    Gade, Martin; Kohlus, Jorn

    2016-08-01

    After major storm surges in the 14th and 17th centuries, vast areas on the German North Sea coast were lost to the sea. What was left of former settlements and historical land use was buried under sediments for centuries, but when the surface layer is driven away under the permanent action of wind, currents, and waves, they appear again at the Wadden Sea surface. However, the frequent flooding and, thereby, the strong erosion of the intertidal flats make any archaeological monitoring a difficult task, so that remote sensing techniques appear to be an efficient and cost-effective instrument for any archaeological surveillance of that area. We show that high-resolution space borne Synthetic Aperture Radar (SAR) imagery with pixel sizes well below 1 m2 can be used to complement archaeological surveys and that SAR images from the German TerraSAR/ TanDEM-X satellites clearly show remnants of farmhouse foundations and of formersystems of ditches, dating back to the 14th and to the 16th/17th centuries. In particular, the new high-resolution TerraSAR-X acquisition mode ('staring spotlight') allows for the detection of various kinds of residuals of historical land use, some of which have been unknown so far.

  5. EVIDENCE OF THERMAL CONDUCTION SUPPRESSION IN A SOLAR FLARING LOOP BY CORONAL SEISMOLOGY OF SLOW-MODE WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tongjiang; Ofman, Leon; Provornikova, Elena [Department of Physics, Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Sun, Xudong [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Davila, Joseph M., E-mail: tongjiang.wang@nasa.gov [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20770 (United States)

    2015-09-20

    Analysis of a longitudinal wave event observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory is presented. A time sequence of 131 Å images reveals that a C-class flare occurred at one footpoint of a large loop and triggered an intensity disturbance (enhancement) propagating along it. The spatial features and temporal evolution suggest that a fundamental standing slow-mode wave could be set up quickly after meeting of two initial disturbances from the opposite footpoints. The oscillations have a period of ∼12 minutes and a decay time of ∼9 minutes. The measured phase speed of 500 ± 50 km s{sup −1} matches the sound speed in the heated loop of ∼10 MK, confirming that the observed waves are of slow mode. We derive the time-dependent temperature and electron density wave signals from six AIA extreme-ultraviolet channels, and find that they are nearly in phase. The measured polytropic index from the temperature and density perturbations is 1.64 ± 0.08 close to the adiabatic index of 5/3 for an ideal monatomic gas. The interpretation based on a 1D linear MHD model suggests that the thermal conductivity is suppressed by at least a factor of 3 in the hot flare loop at 9 MK and above. The viscosity coefficient is determined by coronal seismology from the observed wave when only considering the compressive viscosity dissipation. We find that to interpret the rapid wave damping, the classical compressive viscosity coefficient needs to be enhanced by a factor of 15 as the upper limit.

  6. Reduction of the heat leak in superconducting system at half-wave-rectified current mode by peltier current lead

    CERN Document Server

    Yamaguchi, T; Nakamura, K; Yamaguchi, S; Hasegawa, Y

    2002-01-01

    Experiments of Peltier current lead (PCL) were performed by the way of half-wave-rectified current (HWRC) for an evaluation of the PCL system in the drive with the large-rippled current. The current ripple of the HWRC is large, and we discussed the cooling capability of the current ripple. The experimental results revealed that the temperature difference of the thermoelectric-element (TE) increased with the magnitude of the current in the PCL system, despite the large current ripple. Calorimetric measurements revealed that the PCL reduced the heat leak of 60% for the peak current 90A. We compared the PCL systems of the direct current (dc) mode and the HWRC mode. The results showed that the current dependence of the temperature difference in the HWRC mode did not match that of the dc mode, but those of the heat leak matched well. The performance of the Peltier cooling in the HWRC mode is reduced to be 2/pi time of the Seebeck coefficient for the dc mode by using the time-average method. (author)

  7. Reduction of the heat leak in superconducting system at half-wave-rectified current mode by peltier current lead

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Takayuki; Ohtaki, Naohiro; Nakamura, Keiji; Yamaguchi, Satarou [Chubu Univ., Kasugai, Aichi (Japan); Hasegawa, Yasuhiro [Saitama Univ., Saitama (Japan)

    2002-09-01

    Experiments of Peltier current lead (PCL) were performed by the way of half-wave-rectified current (HWRC) for an evaluation of the PCL system in the drive with the large-rippled current. The current ripple of the HWRC is large, and we discussed the cooling capability of the current ripple. The experimental results revealed that the temperature difference of the thermoelectric-element (TE) increased with the magnitude of the current in the PCL system, despite the large current ripple. Calorimetric measurements revealed that the PCL reduced the heat leak of 60% for the peak current 90A. We compared the PCL systems of the direct current (dc) mode and the HWRC mode. The results showed that the current dependence of the temperature difference in the HWRC mode did not match that of the dc mode, but those of the heat leak matched well. The performance of the Peltier cooling in the HWRC mode is reduced to be 2/{pi} time of the Seebeck coefficient for the dc mode by using the time-average method. (author)

  8. Gain analysis of higher-order-mode amplification in a dielectric-implanted multi-beam traveling wave structure

    Energy Technology Data Exchange (ETDEWEB)

    Gee, Anthony; Shin, Young-Min

    2013-01-01

    A multi-beam traveling wave amplifier designed with an overmoded staggered double grating array was examined by small signal analysis combined with simulation. Eigenmode and S-parameter analyses show that the 2cm long slow wave structure (SWS) has 1-5dB insertion loss over the passband (TM31 mode) with ~28% cold bandwidth. Analytic gain calculation indicates that in the SWS, TM31-mode is amplified with 15–20 dB/beam at 64–84GHz with three elliptical beams of 10kV and 150mA/beam, which was compared with particle-in-cell (PIC) simulations. PIC analysis on the analysis of instability with zero-input driving excitations demonstrated that background noises and non-operating lower order modes are noticeably suppressed by implanting equidistant dielectric absorbers; the overmoded structure only allowed the desired 3rd order mode to propagate in the structure. The designed circuit structure can be widely applied to multi-beam devices for high power RF generation.

  9. A Three-Dimensional Ray-Tracing Study of R-X Mode Waves during High Geomagnetic Activity

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-Liang; CHEN Lun-Jin; ZHENG Hui-Nan; WANG Shui; GUO Jun

    2008-01-01

    We further present a three-dimensional(3D)ray-tracing study on the propagation characteristic of the superluminous R-X mode waves during high geomagnetic activity following our recent two-dimensional results [J.Geophys.Res.112(2007)A10214].We perform numerical calculations for this mode which originates at specific altitude r=2.0RE in the souice cavity along a 70°night geomagnetic field line.We demonstrate that the ray path of the R-X mode is essentially governed by the azimuthal angle of the wave vector k.Ray paths starting with azimuthal angle 180°(or in the meridian plane)can reach the lowest latitude,but stay at relatively higher latitudes with the azimuthal anglas other than 180°(or off the meridian plane).The results further supports the previous finding that the R-X mode may be physically present in the radiation belts under appropriate conditions.

  10. When black holes collide: Probing the interior composition by the spectrum of ringdown modes and emitted gravitational waves

    Science.gov (United States)

    Brustein, Ram; Medved, A. J. M.; Yagi, K.

    2017-09-01

    The merger of colliding black holes (BHs) should lead to the production of ringdown or quasinormal modes (QNMs), which may very well be sensitive to the state of the interior. We put this idea to the test with a recent proposal that the interior of a BH consists of a bound state of highly excited, long, closed, interacting strings; figuratively, a collapsed polymer. We show, using scalar perturbations for simplicity, that such BHs do indeed have a distinct signature in their QNM spectrum: A new class of modes whose frequencies are parametrically lower than the lowest-frequency mode of a classical BH and whose damping times are parametrically longer. The reason for the appearance of the new modes is that our model contains another scale, the string length, which is parametrically larger than the Planck length. This distinction between the collapsed-polymer model and general-relativistic BHs could be made with gravitational-wave observations and offers a means for potentially measuring the strength of the coupling in string theory. For example, GW150914 already allows us to probe the strength of the string coupling near the regime which is predicted by the unification of the gravitational and gauge-theory couplings. We also derive bounds on the amplitude of the collapsed-polymer QNMs that can be placed by current and future gravitational-wave observations.

  11. Gravitational wave luminosity and net momentum flux in head-on mergers of black holes: Radiative patterns and mode mixing

    Science.gov (United States)

    Aranha, Rafael Fernandes; Soares, Ivano Damião; Tonini, Eduardo Valentino

    2016-09-01

    We show that gravitational wave radiative patterns from a point test particle falling radially into a Schwarzschild black hole, as derived by Davis, Ruffini, Press and Price [M. Davis et al., Phys. Rev. Lett. 27, 1466 (1971).], are present in the nonlinear regime of head-on mergers of black holes. We use the Bondi-Sachs characteristic formulation and express the gravitational wave luminosity and the net momentum flux in terms of the news functions. We then evaluate the (-2 )-spin-weighted ℓ-multipole decomposition of these quantities via exact expressions valid in the nonlinear regime and defined at future null infinity. Our treatment is made in the realm of Robinson-Trautman dynamics, with characteristic initial data corresponding to the head-on merger of two black holes. We consider mass ratios in the range 0.01 ≤α ≤1 . We obtain the exponential decay with ℓ of the total energy contributed by each multipole ℓ, with an accurate linear correlation in the log-linear plot of the points up to α ≃0.7 . Above this mass ratio the contribution of the odd modes to the energy decreases faster than that of the even modes, leading to the breaking of the linear correlation; for α =1 the energy in all odd modes is zero. The dominant contribution to the total radiated energy comes from the quadrupole mode ℓ=2 corresponding, for instance, to about ≃84 % for small mass ratios up to ≃99.8 % for the limit case α =1 . The total rescaled radiated energy EWtotal/m0α2 decreases linearly with decreasing α , yielding for the point particle limit α →0 the value ≃0.0484 , about 5 times larger than the result of Davis et al. [1]. The mode decomposition of the net momentum flux and of the associated gravitational wave impulses results in an adjacent-even-odd mode-mixing pattern. We obtain that the impulses contributed by each (ℓ,ℓ+1 ) mixed mode also accurately satisfy the exponential decay with ℓ, for the whole mass ratio domain considered, 0.01 ≤α 0

  12. High-Precision Multi-Wave Rectifier Circuit Operating in Low Voltage + 1.5 Volt Current Mode

    Directory of Open Access Journals (Sweden)

    Bancha Burapattanasiri

    2009-12-01

    Full Text Available This article is present high-precision multi-wave rectifier circuit operating in low voltage +/- 1.5 Volt current modes by CMOS technology 0.5 μm, receive input and give output in current mode, respond at high frequency period. The structure compound with high-speed current comparator circuit, current mirror circuit, and CMOS inverter circuit. PSpice program used for confirmation the performance of testing. The PSpice program shows operating of circuit is able to working at maximum input current 400 μAp-p, maximum frequency responding 200 MHz, high precision and low power losses, and non-precision zero crossing output signal.Keywords-component; rectifier circuit; high-precision; low voltage; current mode;

  13. Distributed feedback quantum cascade lasers operating in continuous-wave mode at λ ≈ 7.6 μm

    Science.gov (United States)

    Jinchuan, Zhang; Lijun, Wang; Wanfeng, Liu; Fengqi, Liu; Lihua, Zhao; Shenqiang, Zhai; Junqi, Liu; Zhanguo, Wang

    2012-02-01

    Distributed feedback (DFB) quantum cascade lasers (QCLs) in continuous-wave (CW) mode emitting at λ ≈ 7.6 μm are presented. Holographic lithography was used to fabricate the first-order distributed feedback grating. For a high-reflectivity-coated QCL with 14.5-μm-wide and 3-mm-long cavity, CW output powers of 300 mW at 85 K and still 10 mW at 270 K are obtained. Single-mode emission with a side-mode suppression ratio (SMSR) of about 30 dB and a wide tuning range of ~300 nm in the temperature range from 85 to 280 K is observed.

  14. Wave mode coupling due to plasma wakes in two-dimensional plasma crystals: In-depth view

    CERN Document Server

    Couëdel, L; Ivlev, A V; Nosenko, V; Thomas, H M; Morfill, G E

    2011-01-01

    Experiments with two-dimensional (2D) plasma crystals are usually carried out in rf plasma sheaths, where the interparticle interactions are modified due to the presence of plasma wakes. The wake-mediated interactions result in the coupling between wave modes in 2D crystals, which can trigger the mode-coupling instability and cause melting. The theory predicts a number of distinct fingerprints to be observed upon the instability onset, such as the emergence of a new hybrid mode, a critical angular dependence, a mixed polarization, and distinct thresholds. In this paper we summarize these key features and provide their detailed discussion, analyze the critical dependence on experimental parameters, and highlight the outstanding issues.

  15. Study on Geosynchronous Circular SAR

    Directory of Open Access Journals (Sweden)

    Hong Wen

    2015-06-01

    Full Text Available The concept of Geosynchronous Circular SAR (Geo-CSAR is introduced in this paper. With the design of the geosynchronous orbit parameters, a near-circular satellite sub-track could be formed to enable the staring imaging mode, which supports the advanced applications for wide-field and 3-D information acquisition under long-term consistent observation. This paper also analyzes Geo-CSAR's imaging formation capabilities, and concludes its attractive advantages over low-earth orbit spaceborne SAR in terms of instantaneous coverage, consistent observing area, 3-D positioning accuracy and etc.. Encouraging expectations for Geo-CSAR thus could be positively predicted in military investigation and disaster monitoring management applications.

  16. Modulation of whistler-mode chorus waves by ULF and the effects on auroral precipitation

    Science.gov (United States)

    Jaynes, A. N.; Usanova, M.; Lessard, M.; Takahashi, K.; Ali, A.; Malaspina, D.; Michell, R.; Spanswick, E.; Donovan, E.; Klitzing, C.; Samara, M.; Spence, H. E.; Wygant, J. R.

    2016-12-01

    In this study, we present simultaneous observations of structured chorus waves being modulated by ULF waves generated as a result of a substorm injection. The in-situ wave data, measured by Van Allen Probes, were observed simultaneously with ground-based observations of pulsating aurora. Theory and observations have linked equatorial VLF waves with pulsating aurora for decades, invoking the process of pitch-angle scattering of 10's keV electrons in the equatorial magnetosphere. Recent satellite studies have strengthened this argument. In this case study, we propose the scenario being one of substorm-driven ULF pulsations modulating chorus waves, and thus providing the driver for pulsating particle precipitation into the Earth's atmosphere. To investigate the modulation of VLF waves further, we use the WHAMP plasma wave dispersion code to simulate this feature through ULF-modulated density variations. The emerging picture shows that ULF and VLF waves can be intimately related, which has implications for wave-particle interactions throughout the inner magnetosphere.

  17. Acceleration of relativistic electrons due to resonant interaction with oblique monochromatic whistler-mode waves generated in the ionosphere.

    Science.gov (United States)

    Kuzichev, Ilya; Shklyar, David

    2016-04-01

    One of the most challenging problems of the radiation belt studies is the problem of particles energization. Being related to the process of particle precipitation and posing a threat to scientific instruments on satellites, the problem of highly energetic particles in the radiation belts turns out to be very important. A lot of progress has been made in this field, but still some aspects of the energization process remain open. The main mechanism of particle energization in the radiation belts is the resonant interaction with different waves, mainly, in whistler frequency range. The problem of special interest is the resonant wave-particle interaction of the electrons of relativistic energies. Relativistic resonance condition provides some important features such as the so-called relativistic turning acceleration discovered by Omura et al. [1, 2]. This process appears to be a very efficient mechanism of acceleration in the case of interaction with the whistler-mode waves propagating along geomagnetic field lines. But some whistler-mode waves propagate obliquely to the magnetic field lines, and the efficiency of relativistic turning acceleration in this case is to be studied. In this report, we present the Hamiltonian theory of the resonant interaction of relativistic electrons with oblique monochromatic whistler-mode waves. We have shown that the presence of turning point requires a special treatment when one aims to derive the resonant Hamiltonian, and we have obtained two different resonant Hamiltonians: one to be applied far enough from the turning point, while another is valid in the vicinity of the turning point. We have performed numerical simulation of relativistic electron interaction with whistler-mode waves generated in the ionosphere by a monochromatic source. It could be, for example, a low-frequency transmitter. The wave-field distribution along unperturbed particle trajectory is calculated by means of geometrical optics. We show that the obliquity of

  18. Nonlinear local parallel acceleration of electrons through Landau trapping by oblique whistler mode waves in the outer radiation belt

    Science.gov (United States)

    Agapitov, Oleksiy; Artemyev, Anton; Mourenas, Didier; Mozer, Forrest; Krasnoselskikh, Vladimir

    2016-04-01

    Simultaneous observations of electron velocity distributions and chorus waves by the Van Allen Probe B are analyzed to identify long-lasting (more than 6 h) signatures of electron Landau resonant interactions with oblique chorus waves in the outer radiation belt. Such Landau resonant interactions result in the trapping of ˜1-10 keV electrons and their acceleration up to 100-300 keV. This kind of process becomes important for oblique whistler mode waves having a significant electric field component along the background magnetic field. In the inhomogeneous geomagnetic field, such resonant interactions then lead to the formation of a plateau in the parallel (with respect to the geomagnetic field) velocity distribution due to trapping of electrons into the wave effective potential. We demonstrate that the electron energy corresponding to the observed plateau remains in very good agreement with the energy required for Landau resonant interaction with the simultaneously measured oblique chorus waves over 6 h and a wide range of L shells (from 4 to 6) in the outer belt. The efficient parallel acceleration modifies electron pitch angle distributions at energies ˜50-200 keV, allowing us to distinguish the energized population. The observed energy range and the density of accelerated electrons are in reasonable agreement with test particle numerical simulations.

  19. Imaging of a Defect in Thin Plates Using the Time Reversal of Single Mode Lamb Wave: Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jo; Lee, Jung Sik; Bae, Sung Min; Lee, Hyun Ki [Wonkwang University, Iksan (Korea, Republic of)

    2010-06-15

    This paper presents an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves. We first consider the flexural wave (A0 mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver. The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect. The time reversal of these waves recovers the original input signal, and produces two additional side bands that contain the time-of-flight information on the defect location. One of the side band signals is then extracted as a pure defect signal. A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors. The simulation results show that the proposed scheme enables the accurate, baseline-free detection of a defect, so that experimental studies are needed to verify the proposed method and to be applied to real structure

  20. Efficient Bistatic SAR Raw Signal Simulator of Extended Scenes

    Directory of Open Access Journals (Sweden)

    Liang Yang

    2014-01-01

    Full Text Available Bistatic SAR system is a new mode that allocates the radar transmitter and receiver on different platforms and has more advantages compared to the monostatic case. However, the existing bistatic SAR raw data simulator in the frequency domain can only handle the case of translation invariant system. In this paper, an efficient 2D frequency-domain raw data simulator of extended scenes for bistatic SAR of translation variant system is proposed by a geometric transformation method for the first time, where inverse STOLT interpolation is used to formulate the range migration terms. The presented simulator can accommodate the translation variant bistatic SAR system compared with existing bistatic SAR simulator. And it is more efficient than the time domain one by making use of Fast Fourier Transform (FFT. Simulation results for point targets and a real SAR image demonstrate its validity and effectiveness.