WorldWideScience

Sample records for sar interferometry technique

  1. Forest parameter estimation using polarimetric SAR interferometry techniques at low frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Kuk

    2013-05-01

    Polarimetric Synthetic Aperture Radar Interferometry (Pol-InSAR) is an active radar remote sensing technique based on the coherent combination of both polarimetric and interferometric observables. The Pol-InSAR technique provided a step forward in quantitative forest parameter estimation. In the last decade, airborne SAR experiments evaluated the potential of Pol-InSAR techniques to estimate forest parameters (e.g., the forest height and biomass) with high accuracy over various local forest test sites. This dissertation addresses the actual status, potentials and limitations of Pol-InSAR inversion techniques for 3-D forest parameter estimations on a global scale using lower frequencies such as L- and P-band. The multi-baseline Pol-InSAR inversion technique is applied to optimize the performance with respect to the actual level of the vertical wave number and to mitigate the impact of temporal decorrelation on the Pol-InSAR forest parameter inversion. Temporal decorrelation is a critical issue for successful Pol-InSAR inversion in the case of repeat-pass Pol-InSAR data, as provided by conventional satellites or airborne SAR systems. Despite the limiting impact of temporal decorrelation in Pol-InSAR inversion, it remains a poorly understood factor in forest height inversion. Therefore, the main goal of this dissertation is to provide a quantitative estimation of the temporal decorrelation effects by using multi-baseline Pol-InSAR data. A new approach to quantify the different temporal decorrelation components is proposed and discussed. Temporal decorrelation coefficients are estimated for temporal baselines ranging from 10 minutes to 54 days and are converted to height inversion errors. In addition, the potential of Pol-InSAR forest parameter estimation techniques is addressed and projected onto future spaceborne system configurations and mission scenarios (Tandem-L and BIOMASS satellite missions at L- and P-band). The impact of the system parameters (e.g., bandwidth

  2. Novel Polarimetric SAR Interferometry Algorithms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...

  3. Novel Polarimetric SAR Interferometry Algorithms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric SAR interferometry (PolInSAR) is a recently developed synthetic aperture radar (SAR) imaging mode that combines the capabilities of radar polarimetry...

  4. Updated progress in theories and applications of spaceborne SAR interferometry

    Science.gov (United States)

    Chen, Yan-Ling; Huang, Cheng; Ding, Xiao-Li; Li, Zhi-Wei

    2006-12-01

    InSAR (Interferometric Synthetic Aperture Radar) and D-InSAR (Differential InSAR) are rapidly developed new technologies of space geodesy during the late 20th century, and now obviously become hot research topics in the field of microwave remote sensing. Compared with the other sensors, InSAR possesses many incomparable advantages such as the capability to work at all-time and under all weather, very high spatial resolution and strong penetrability through the ground surface. This paper introduces general status of SAR, InSAR, D-InSAR technology, and the principles of InSAR and D-InSAR. New theories and the potential problems of (D-)InSAR technology are largely discussed, including multi-baseline interferometry, Pol-InSAR technique, the correction of atmospheric effects, permanent Scatterers method, the synthesization technique between InSAR and GPS, LIDAR etc., and the InSAR parallel algorithm. Then the new applications of InSAR and D-InSAR are described in detail including 3D topographic mapping, deformation monitoring (including surface subsidence, landside monitoring and ITRF's foundation and maintenance, etc.), thematic mapping (including agriculture and forestry, oceanic surveying and flood monitoring, etc.) and meteorology etc.. Finally, the prospect and future trends in InSAR development are summarized.

  5. Forest Height Inversion Using Dual-pol Polarimetric SAR Interferometry

    Science.gov (United States)

    Fu, W. X.; Guo, H. D.; Xie, C.; Lu, Y. C.; Li, X. W.

    2014-03-01

    Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) has been extensively applied for forest parameter inversion over different frequencies and polarimetric conditions. So far, most research was based on full-pol SAR images with relatively small coverage. A spaceborne SAR system will have the potential for PolInSAR applications used for global forest monitoring. Spaceborne dual-pol SAR images usually have higher resolution and larger swath than full-pol mode. In this paper, forest height retrieval was attempted by PolInSAR from a L-band spaceborne dual-pol SAR pairs using HH and HV channels. The random volume over ground (RVoG) model was used to retrieve the height and the coherence optimization method was extended to the dual-pol PolInSAR, which makes use of polarimetry to enhance the quality of SAR interferograms. The three-stage process is also used in the dual-pol PolInSAR technique. Finally, the experimental test was performed for forest height estimation on the dual-pol L-band SAR data of the Saihanba forest acquired by the ALOS PALSAR sensor in 2009.

  6. A system for airborne SAR interferometry

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang; Skou, Niels; Granholm, Johan

    1996-01-01

    Interferometric synthetic aperture radar (INSAR) systems have already demonstrated that elevation maps can be generated rapidly with single pass airborne across-track interferometry systems (XTT), and satellite repeat track interferometry (RTT) techniques have been used to map both elevation and ...

  7. MULTI-TEMPORAL SAR INTERFEROMETRY FOR LANDSLIDE MONITORING

    Directory of Open Access Journals (Sweden)

    R. Dwivedi

    2016-06-01

    Full Text Available In the past few years, SAR Interferometry specially InSAR and D-InSAR were extensively used for deformation monitoring related applications. Due to temporal and spatial decorrelation in dense vegetated areas, effectiveness of InSAR and D-InSAR observations were always under scrutiny. Multi-temporal InSAR methods are developed in recent times to retrieve the deformation signal from pixels with different scattering characteristics. Presently, two classes of multi-temporal InSAR algorithms are available- Persistent Scatterer (PS and Small Baseline (SB methods. This paper discusses the Stanford Method for Persistent Scatterer (StaMPS based PS-InSAR and the Small Baselines Subset (SBAS techniques to estimate the surface deformation in Tehri dam reservoir region in Uttarkhand, India. Both PS-InSAR and SBAS approaches used sixteen ENVISAT ASAR C-Band images for generating single master and multiple master interferograms stack respectively and their StaMPS processing resulted in time series 1D-Line of Sight (LOS mean velocity maps which are indicative of deformation in terms of movement towards and away from the satellites. From 1D LOS velocity maps, localization of landslide is evident along the reservoir rim area which was also investigated in the previous studies. Both PS-InSAR and SBAS effectively extract measurement pixels in the study region, and the general results provided by both approaches show a similar deformation pattern along the Tehri reservoir region. Further, we conclude that StaMPS based PS-InSAR method performs better in terms of extracting more number of measurement pixels and in the estimation of mean Line of Sight (LOS velocity as compared to SBAS method. It is also proposed to take up a few major landslides area in Uttarakhand for slope stability assessment.

  8. Multi-Temporal SAR Interferometry for Landslide Monitoring

    Science.gov (United States)

    Dwivedi, R.; Narayan, A. B.; Tiwari, A.; Dikshit, O.; Singh, A. K.

    2016-06-01

    In the past few years, SAR Interferometry specially InSAR and D-InSAR were extensively used for deformation monitoring related applications. Due to temporal and spatial decorrelation in dense vegetated areas, effectiveness of InSAR and D-InSAR observations were always under scrutiny. Multi-temporal InSAR methods are developed in recent times to retrieve the deformation signal from pixels with different scattering characteristics. Presently, two classes of multi-temporal InSAR algorithms are available- Persistent Scatterer (PS) and Small Baseline (SB) methods. This paper discusses the Stanford Method for Persistent Scatterer (StaMPS) based PS-InSAR and the Small Baselines Subset (SBAS) techniques to estimate the surface deformation in Tehri dam reservoir region in Uttarkhand, India. Both PS-InSAR and SBAS approaches used sixteen ENVISAT ASAR C-Band images for generating single master and multiple master interferograms stack respectively and their StaMPS processing resulted in time series 1D-Line of Sight (LOS) mean velocity maps which are indicative of deformation in terms of movement towards and away from the satellites. From 1D LOS velocity maps, localization of landslide is evident along the reservoir rim area which was also investigated in the previous studies. Both PS-InSAR and SBAS effectively extract measurement pixels in the study region, and the general results provided by both approaches show a similar deformation pattern along the Tehri reservoir region. Further, we conclude that StaMPS based PS-InSAR method performs better in terms of extracting more number of measurement pixels and in the estimation of mean Line of Sight (LOS) velocity as compared to SBAS method. It is also proposed to take up a few major landslides area in Uttarakhand for slope stability assessment.

  9. Polarimetric SAR interferometry applied to land ice: modeling

    DEFF Research Database (Denmark)

    Dall, Jørgen; Papathanassiou, Konstantinos; Skriver, Henning

    2004-01-01

    This paper introduces a few simple scattering models intended for the application of polarimetric SAR interfer-ometry to land ice. The principal aim is to eliminate the penetration bias hampering ice sheet elevation maps generated with single-channel SAR interferometry. The polarimetric coherent...

  10. Advances in space-borne SAR interferometry and its application to ground deformation monitoring

    Institute of Scientific and Technical Information of China (English)

    LIU Zhen-guo; BIAN Zheng-fu

    2011-01-01

    The development of Differential Synthetic Aperture Radar Interferometry (D-InSAR), in terms of its evolution from classic to advanced forms, such as Least-Squares approach, Permanent Scatterer Interferometry, Small Baseline Subset, and Coherent Pixel Technique, is reviewed, describing concisely the main principles of each method and highlighting the difference and relationship between them. Applications of InSAR technology in China were then introduced, together with the obstacles to overcome and feasible strategies, such as integrating MERIS/MODIS data to compensate for the atmospheric effect and GPS, and multi-platform SAR data to make InSAR technique practical and operational under various conditions. The latest developments were then analyzed along with high-quality SAR data, available thanks to the newly launched high-tech satellites, TerraSAR-X, and Cosmo Sky-med, and conclusions were drawn about the main limitations of the technique.

  11. Recent Advances in Radar Polarimetry and Polarimetric SAR Interferometry

    Science.gov (United States)

    Boerner, Wolfgang-Martin

    2005-01-01

    The development of Radar Polarimetry and Radar Interferometry is advancing rapidly, and these novel radar technologies are revamping Synthetic Aperture Radar Imaging decisively. In this exposition the successive advancements are sketched; beginning with the fundamental formulations and high-lighting the salient points of these diverse remote sensing techniques. Whereas with radar polarimetry the textural fine-structure, target-orientation and shape, symmetries and material constituents can be recovered with considerable improvements above that of standard amplitude-only Polarization Radar ; with radar interferometry the spatial (in depth) structure can be explored. In Polarimetric-Interferometric Synthetic Aperture Radar (POL-IN-SAR) Imaging it is possible to recover such co-registered textural plus spatial properties simultaneously. This includes the extraction of Digital Elevation Maps (DEM) from either fully Polarimetric (scattering matrix) or Interferometric (dual antenna) SAR image data takes with the additional benefit of obtaining co-registered three-dimensional POL-IN-DEM information. Extra-Wide-Band POL-IN-SAR Imaging - when applied to Repeat-Pass Image Overlay Interferometry - provides differential background validation and measurement, stress assessment, and environmental stress-change monitoring capabilities with hitherto unattained accuracy, which are essential tools for improved global biomass estimation. More recently, by applying multiple parallel repeat-pass EWB-POL-D(RP)-IN-SAR imaging along stacked (altitudinal) or displaced (horizontal) flight-lines will result in Tomographic (Multi- Interferometric) Polarimetric SAR Stereo-Imaging , including foliage and ground penetrating capabilities. It is shown that the accelerated advancement of these modern EWB-POL-D(RP)-IN-SAR imaging techniques is of direct relevance and of paramount priority to wide-area dynamic homeland security surveillance and local-to-global environmental ground-truth measurement

  12. Polarimetric SAR Interferometry Evaluation in Mangroves

    Science.gov (United States)

    Lee, Seung-Kuk; Fatoyinbo,Temilola; Osmanoglu, Batuhan; Sun, Guoqing

    2014-01-01

    TanDEM-X (TDX) enables to generate an interferometric coherence without temporal decorrelation effect that is the most critical factor for a successful Pol-InSAR inversion, as have recently been used for forest parameter retrieval. This paper presents mangrove forest height estimation only using single-pass/single-baseline/dual-polarization TDX data by means of new dual-Pol-InSAR inversion technique. To overcome a lack of one polarization in a conventional Pol- InSAR inversion (i.e. an underdetermined problem), the ground phase in the Pol-InSAR model is directly estimated from TDX interferograms assuming flat underlying topography in mangrove forest. The inversion result is validated against lidar measurement data (NASA's G-LiHT data).

  13. Joint Multi-baseline SAR Interferometry

    Directory of Open Access Journals (Sweden)

    S. Tebaldini

    2005-12-01

    Full Text Available We propose a technique to provide interferometry by combining multiple images of the same area. This technique differs from the multi-baseline approach in literature as (a it exploits all the images simultaneously, (b it performs a spectral shift preprocessing to remove most of the decorrelation, and (c it exploits distributed targets. The technique is mainly intended for DEM generation at centimetric accuracy, as well as for differential interferometry. The problem is framed in the contest of single-input multiple-output (SIMO channel estimation via the cross-relations (CR technique and the resulting algorithm provides significant improvements with respect to conventional approaches based either on independent analysis of single interferograms or multi-baselines phase analysis of single pixels of current literature, for those targets that are correlated in all the images, like for long-term coherent areas, or for acquisitions taken with a short revisit time (as those gathered with future satellite constellations.

  14. A system for airborne SAR interferometry

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang; Skou, Niels; Granholm, Johan

    1996-01-01

    Interferometric synthetic aperture radar (INSAR) systems have already demonstrated that elevation maps can be generated rapidly with single pass airborne across-track interferometry systems (XTT), and satellite repeat track interferometry (RTT) techniques have been used to map both elevation...... and perturbations of the surface of the Earth. The Danish Center for Remote Sensing (DCRS) has experimented with airborne INSAR since 1993. Multiple track data are collected in a special mode in which the radar directly steers the aircraft which allows for very precise control of the flight path. Such data sets...... have been acquired at both L- and C-band. During 1994/95 the system was further modified to add the capability to perform single pass interferometric data acquisitions at C-band. This paper will discuss: (1) the general principles of INSAR systems and their application to topographic mapping and (2...

  15. Land Subsidence Monitoring Using PS-InSAR Technique for L-Band SAR Data

    Science.gov (United States)

    Thapa, S.; Chatterjee, R. S.; Singh, K. B.; Kumar, D.

    2016-10-01

    Differential SAR-Interferometry (D-InSAR) is one of the potential source to measure land surface motion induced due to underground coal mining. However, this technique has many limitation such as atmospheric in homogeneities, spatial de-correlation, and temporal decorrelation. Persistent Scatterer Interferometry synthetic aperture radar (PS-InSAR) belongs to a family of time series InSAR technique, which utilizes the properties of some of the stable natural and anthropogenic targets which remain coherent over long time period. In this study PS-InSAR technique has been used to monitor land subsidence over selected location of Jharia Coal field which has been correlated with the ground levelling measurement. This time series deformation observed using PS InSAR helped us to understand the nature of the ground surface deformation due to underground mining activity.

  16. Techniques in Broadband Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D J

    2004-01-04

    This is a compilation of my patents issued from 1997 to 2002, generally describing interferometer techniques that modify the coherence properties of broad-bandwidth light and other waves, with applications to Doppler velocimetry, range finding, imaging and spectroscopy. Patents are tedious to read in their original form. In an effort to improve their readability I have embedded the Figures throughout the manuscript, put the Figure captions underneath the Figures, and added section headings. Otherwise I have resisted the temptation to modify the words, though I found many places which could use healthy editing. There may be minor differences with the official versions issued by the US Patent and Trademark Office, particularly in the claims sections. In my shock physics work I measured the velocities of targets impacted by flyer plates by illuminating them with laser light and analyzing the reflected light with an interferometer. Small wavelength changes caused by the target motion (Doppler effect) were converted into fringe shifts by the interferometer. Lasers having long coherence lengths were required for the illumination. While lasers are certainly bright sources, and their collimated beams are convenient to work with, they are expensive. Particularly if one needs to illuminate a wide surface area, then large amounts of power are needed. Orders of magnitude more power per dollar can be obtained from a simple flashlamp, or for that matter, a 50 cent light bulb. Yet these inexpensive sources cannot practically be used for Doppler velocimetry because their coherence length is extremely short, i.e. their bandwidth is much too wide. Hence the motivation for patents 1 & 2 is a method (White Light Velocimetry) for allowing use of these powerful but incoherent lamps for interferometry. The coherence of the illumination is modified by passing it through a preparatory interferometer.

  17. Concept of an Effective Sentinel-1 Satellite SAR Interferometry System

    OpenAIRE

    2016-01-01

    This brief study introduces a partially working concept being developed at IT4Innovations supercomputer (HPC) facility. This concept consists of several modules that form a whole body of an efficient system for observation of terrain or objects displacements using satellite SAR interferometry (InSAR). A metadata database helps to locate data stored in various storages and to perform basic analyzes. A special database has been designed to describe Sentinel-1 data, on its burst level. Custom Se...

  18. On the application of SAR interferometry to geomorphological studies: estimation of landform attributes and mass movements

    Science.gov (United States)

    Catani, Filippo; Farina, Paolo; Moretti, Sandro; Nico, Giovanni; Strozzi, Tazio

    2005-03-01

    This paper presents two examples of application of Synthetic Aperture Radar (SAR) interferometry (InSAR) to typical geomorphological problems. The principles of InSAR are introduced, taking care to clarify the limits and the potential of this technique for geomorphological studies. The application of InSAR to the quantification of landform attributes such as the slope and to the estimation of landform variations is investigated. Two case studies are presented. A first case study focuses on the problem of measuring landform attributes by interferometric SAR data. The interferometric result is compared with the corresponding one obtained by a Digital Elevation Model (DEM). In the second case study, the use of InSAR for the estimation of landform variations caused by a landslide is detailed.

  19. Spaceborne Polarimetric SAR Interferometry: Performance Analysis and Mission Concepts

    Directory of Open Access Journals (Sweden)

    Cloude Shane R

    2005-01-01

    Full Text Available We investigate multichannel imaging radar systems employing coherent combinations of polarimetry and interferometry (Pol-InSAR. Such systems are well suited for the extraction of bio- and geophysical parameters by evaluating the combined scattering from surfaces and volumes. This combination leads to several important differences between the design of Pol-InSAR sensors and conventional single polarisation SAR interferometers. We first highlight these differences and then investigate the Pol-InSAR performance of two proposed spaceborne SAR systems (ALOS/PalSAR and TerraSAR-L operating in repeat-pass mode. For this, we introduce the novel concept of a phase tube which enables (1 a quantitative assessment of the Pol-InSAR performance, (2 a comparison between different sensor configurations, and (3 an optimization of the instrument settings for different Pol-InSAR applications. The phase tube may hence serve as an interface between system engineers and application-oriented scientists. The performance analysis reveals major limitations for even moderate levels of temporal decorrelation. Such deteriorations may be avoided in single-pass sensor configurations and we demonstrate the potential benefits from the use of future bi- and multistatic SAR interferometers.

  20. Temporal decorrelation model for the bistatic SAR interferometry

    Institute of Scientific and Technical Information of China (English)

    Qilei Zhang; Wenge Chang

    2015-01-01

    This paper develops a temporal decorrelation model for the bistatic synthetic aperture radar (BSAR) interferometry. The temporal baseline is one of the important decorrelation sources for the repeat-pass synthetic aperture radar (SAR) interferometry. The study of temporal decorrelation is chal enging, especial y for the bistatic configuration, since temporal decorrelation is related to the data acquisition geometry. To develop an appropriate theoretical model for BSAR interferometry, the existing models for monostatic SAR cases are extended, and the general BSAR geometry con-figuration is involved in the derivation. Therefore, the developed temporal decorrelation model can be seen as a general model. The validity of the theoretical model is supported by Monte Carlo simulations. Furthermore, the impacts of the system parameters and BSAR geometry configurations on the temporal decorrelation model are discussed briefly.

  1. Ionospheric effects on repeat-pass SAR interferometry

    Science.gov (United States)

    Feng, Jian; Zhen, Weimin; Wu, Zhensen

    2017-10-01

    InSAR measurements can be significantly affected by the atmosphere when the radar signal propagates through the atmosphere since it varies with space and time. Great efforts have been made in recent years to better understand the properties of the tropospheric effects and to develop methods for mitigating these effects. By using the basic principles of InSAR, the quantitative analysis of ionospheric delay effects on topography and surface deformation have been introduced for the first time. The measurement errors can be related to the vertical ionospheric total electron content (vTEC). By using the ionospheric observations, the effects of temporal ionospheric variations on InSAR have been analyzed. The results indicate that the ionospheric variations with time, season, solar cycle and geomagnetic activities can compromise the effectiveness of InSAR for both the measurement of topography and surface determination. The repeat-pass SAR interferometry errors induced by ionosphere should be corrected by actual measurements.

  2. Delta-K Wideband SAR Interferometry for DEM Generation and Persistent Scatterers Using TeraSAR-X

    Science.gov (United States)

    Brcic, Ramon; Eineder, Michael; Bamler, Richard; Steinbrecher, Ulrich; Schulze, Daniel; Metzig, Robert; Papathanassiou, Konstantinos; Nagler, Thomas; Mueller, Florian; Suess, Martin

    2010-03-01

    Wideband SAR systems such as TerraSAR-X allow estimation of the absolute interferometric phase without resorting to error prone phase unwrapping. This is achieved through the delta-k technique that exploits frequency diversity within the range bandwidth to simulate a SAR system with a much longer carrier wavelength. This benefits all interferometric applications including DEM generation and land surface motion determination. Here we present the results of an ESA study (21318/07/NL/HE) into using delta-k absolute phase estimation for DEM generation and PSI (Persistent Scatterer Interferometry). Using TerraSAR- X data, examples from a delta-k DEM generation system are shown which avoid the errors induced by conventional phase unwrapping. For PSI, the possibilities of absolute phase estimation for a single PS are explored in theory and examples where wideband estimation is compared to conventional PSI processing for a stack of acquisitions over Paris.

  3. Research on Inversion Models for Forest Height Estimation Using Polarimetric SAR Interferometry

    Science.gov (United States)

    Zhang, L.; Duan, B.; Zou, B.

    2017-09-01

    The forest height is an important forest resource information parameter and usually used in biomass estimation. Forest height extraction with PolInSAR is a hot research field of imaging SAR remote sensing. SAR interferometry is a well-established SAR technique to estimate the vertical location of the effective scattering center in each resolution cell through the phase difference in images acquired from spatially separated antennas. The manipulation of PolInSAR has applications ranging from climate monitoring to disaster detection especially when used in forest area, is of particular interest because it is quite sensitive to the location and vertical distribution of vegetation structure components. However, some of the existing methods can't estimate forest height accurately. Here we introduce several available inversion models and compare the precision of some classical inversion approaches using simulated data. By comparing the advantages and disadvantages of these inversion methods, researchers can find better solutions conveniently based on these inversion methods.

  4. TomoSAR Platform: The New Irstea Service as Demand for SAR, Interferometry, Polarimetry and Tomography

    Science.gov (United States)

    Ho Tong Minh, Dinh; Ngo, Yen-Nhi; Baghdadi, Nicolas; Maurel, Pierre

    2016-08-01

    Developing and improving methods to monitor both natural and non-natural environments such as forest and urban in space and time is a timely challenge. To overcome this challenge, we created a software platform - TomoSAR. The kernel of this platform supports the entire processing from SAR, Interferometry, Polarimetry, to Tomography (so called TomoSAR). The objective of this paper is to introduce this platform about its design architecture and its capacity. We showed four examples to highlight the TomoSAR platform capacities. First, the useful of the interferometric coherence of TOPS Sentinel-1 for land cover classification was highlighted. Second, a TOPS Sentinel-1 differential interferogram in a complex scenario volcano was successfully produced. Third, a TOPS Persistent Scatterers Interferometry analysis for estimating subsidence in Ho Chi Minh City area was demonstrated. Finally, the capability of processing and modelling of 3D P-band tomography in volume forest scattering were reported.

  5. Ers and Envisat Differential Sar Interferometry for subsidence monitoring

    OpenAIRE

    Wegmüller, Urs; Strozzi, Tazio; Tosi, Luigi

    2000-01-01

    This paper reports on the potential of differential SAR interferometry to map land subsidence. After a presentation of the methodology, the focus will be on feasibility demonstration and accuracy assessment. The theoretical considerations are verified with the selected cases Ruhrgebiet, Mexico City, Bologna, and Euganean Geothermal Basin, representing fast (m/year) to slow (mm/year) deformation velocities. The accuracy of the generated deformation maps and the maturity of the required process...

  6. Ers and Envisat Differential Sar Interferometry for subsidence monitoring

    OpenAIRE

    2000-01-01

    This paper reports on the potential of differential SAR interferometry to map land subsidence. After a presentation of the methodology, the focus will be on feasibility demonstration and accuracy assessment. The theoretical considerations are verified with the selected cases Ruhrgebiet, Mexico City, Bologna, and Euganean Geothermal Basin, representing fast (m/year) to slow (mm/year) deformation velocities. The accuracy of the generated deformation maps and the maturity of the required process...

  7. Validation of burst overlapping for ALOS-2 PALSAR-2 ScanSAR-ScanSAR interferometry

    Science.gov (United States)

    Natsuaki, Ryo; Motohka, Takeshi; Ohki, Masato; Watanabe, Manabu; Suzuki, Shinichi

    2016-10-01

    The Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) aboard the Advanced Land Observing Satellite- 2 (ALOS-2, "DAICHI-2") is the latest L-band spaceborne synthetic aperture radar (SAR). PALSAR-2 observes the world mainly with 10 m resolution / 70 km swath Stripmap mode and 25 m resolution / 350 km swath ScanSAR mode. The 3-m resolution Stripmap mode is mainly used upon Japan. 350 km ScanSAR observation could detect large scale deformation e.g., the Mw 7.8 Gorkha, Nepal earthquake and its aftershocks in 2015. ALOS-2 ScanSAR is the first one that supports ScanSAR-ScanSAR interferometry in L-band spaceborne SAR. However, because of the parameter setting error for the orbit estimation, ALOS-2 PALSAR-2 ScanSAR could achieve little number of interferometric pair until the software modification on February 8, 2015. That is, the burst overlap timing required for the interferometric analysis was insufficient and it depends on the observation date. In this paper, we report the investigation results of this case and discuss the current status of the ALOS-2 ScanSAR InSAR. Some archives achieved before February 8, 2015 can be used for interferometric analysis with after Feb. 8. However, most of them have no interferometric pair. We also report that the archives acquired after February 8, have enough burst overlapping.

  8. Adaptive Filter in SAR Interferometry Derived DEM

    Institute of Scientific and Technical Information of China (English)

    XU Caijun; WANG Hua; WANG Jianglin; GE Linlin

    2005-01-01

    In this paper, the performance of median filter, elevation dependent adaptive sigma median filter, and directionally dependent adaptive sigma median filter are tested on both InSAR Tandem DEM and simulated high-level noisy DEM. Through the comparison, the directionally dependent adaptive sigma median filter is proved to be the most effective one not only in the noise removing but also in the boundary preserve.

  9. Radar interferometry persistent scatterer technique

    CERN Document Server

    Kampes, Bert M

    2006-01-01

    Only book on Permanent Scatterer technique of radar interferometryExplains the Permanent Scatterer technique in detail, possible pitfalls, and details a newly developed stochastic model and estimator algorithm to cope with possible problems for the application of the PS techniqueThe use of Permanent Scatterer allows very precise measurements of the displacement of hundreds of points per square kilometerDescribes the only technique currently able to perform displacement measurements in the past, utilizing the ERS satellite data archive using data acquired from 1992-prese

  10. Forest Structure Characterization Using Jpl's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    Science.gov (United States)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  11. Forest Structure Characterization Using Jpl's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    Science.gov (United States)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  12. Monitoring Land Subsidence over Mining Areas with Sentinel-1 Differential SAR Interferometry

    Science.gov (United States)

    Mirek, Katarzna

    2016-08-01

    This paper presents possibilities for monitoring man- made surface deformation on example of two areas (Fig. 1): Upper Silesian Coal Basin and Lubelskie Coal Basin (Poland). Synthetic Aperture Radar (SAR) images acquired by Sentinel-1A satellite are utilized in subsidence studies. Satellite radar interferometry technique (InSAR) was used to detecting and monitoring subsidence. There are clearly visible on obtained interferograms subsidence troughs as a distinctive concentric fringes. This study is a part of initiated the SSUMMO project (Surface Subsidence Multidisciplinary Monitoring). The project will provide multidisciplinary monitoring of mining areas and it will prepare the methodology and research software for continuous observation of the impact of exploitation on surface.

  13. Multi-temporal SAR Interferometry for Monitoring of Man-Made Sfructures.

    OpenAIRE

    Patrício, Glória; Guimarães, Pedro; Sousa, Joaquim S.; Ruiz, António M.; Bastos, Luísa

    2016-01-01

    Multi-temporal InSAR (MTI) methods are effective tools for monitoring and investigating surface displacement on Earth based on conventional radar interferometry. These techniques allow us to measure deformation with uncertainties up to one millimeter per year, interpreting time series of interferometric phases at coherent/stable point scatterers. Considering the regular revisit time and wide-area coverage of satellite radar sensors, and that stable points usually correspond to buildings and o...

  14. Advanced Differential Radar Interferometry (A-DInSAR) as integrative tool for a structural geological analysis

    Science.gov (United States)

    Crippa, B.; Calcagni, L.; Rossi, G.; Sternai, P.

    2009-04-01

    Advanced Differential SAR interferometry (A-DInSAR) is a technique monitoring large-coverage surface deformations using a stack of interferograms generated from several complex SLC SAR images, acquired over the same target area at different times. In this work are described the results of a procedure to calculate terrain motion velocity on highly correlated pixels (E. Biescas, M. Crosetto, M. Agudo, O. Monserrat e B. Crippa: Two Radar Interferometric Approaches to Monitor Slow and Fast Land Deformation, 2007) in two area Gemona - Friuli, Northern Italy, Pollino - Calabria, Southern Italy, and, furthermore, are presented some consideration, based on successful examples of the present analysis. The choice of these pixels whose displacement velocity is calculated depends on the dispersion index value (DA) or using coherence values along the stack interferograms. A-DInSAR technique allows to obtain highly reliable velocity values of the vertical displacement. These values concern the movement of minimum surfaces of about 80m2 at the maximum resolution and the minimum velocity that can be recognized is of the order of mm/y. Because of the high versatility of the technology, because of the large dimensions of the area that can be analyzed (of about 10000Km2) and because of the high precision and reliability of the results obtained, we think it is possible to exploit radar interferometry to obtain some important information about the structural context of the studied area, otherwise very difficult to recognize. Therefore we propose radar interferometry as a valid investigation tool whose results must be considered as an important integration of the data collected in fieldworks.

  15. Utilization of InSAR differential interferometry for surface deformation detection caused by mining

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F. [Liaoning Technical Univ., Fuxin (China). School of Geomatics; Shao, Y. [Liaoning Technical Univ., Fuxin (China). Dept. of Foreign Language; Guichen, M. [Gifu Univ., Yanagido, Gifu (Japan). Dept. of Civil Engineering

    2010-07-01

    In China, the surface deformation of ground has been a significant geotechnical problem as a result of cracks in the ground surface, collapsing of house, and subsidence of roads. A powerful technology for detecting surface deformation in the ground is differential interferometry using synthetic aperture radar (INSAR). The technology enables the analysis from different phase of micro-wave between two observed data by synthetic aperture radar (SAR) of surface deformation of ground such as ground subsidence, land slide, and slope failure. In January 2006, the advanced land observing satellite was launched by the Japan Aerospace Exploration Agency. This paper presented an analytical investigation to detect ground subsidence or change caused by mining, overuse of ground water, and disaster. Specifically, the paper discussed the INSAR monitoring technology of the mine slope, including INSAR data sources and processing software; the principle of synthetic aperture radar interferometry; principles of differential SAR interferometry; and INSAR technology to slope monitoring of the Haizhou open pit mine. The paper also discussed the Haizhou strip mine side slope INSAR monitoring results and tests. It was concluded that the use of synthetic aperture radar interferometer technique was the optimal technique to provide three-dimensional spatial information and minimal change from ground surface by spatial remote sensing device. 18 refs., 5 figs.

  16. Monitoring of Three Case Studies of Creeping Landslides in Ecuador using L-band SAR Interferometry (InSAR)

    Science.gov (United States)

    Mayorga Torres, T. M.; Mohseni Aref, M.

    2015-12-01

    Tannia Mayorga Torres1,21 Universidad Central del Ecuador. Faculty of Geology, Mining, Oil, and Environment 2 Hubert H. Humphrey Fellowship 2015-16 IntroductionLandslides lead to human and economic losses across the country, mainly in the winter season. On the other hand, satellite radar data has cost-effective benefits due to open-source software and free availability of data. With the purpose of establishing an early warning system of landslide-related surface deformation, three case studies were designed in the Coast, Sierra (Andean), and Oriente (jungle) regions. The objective of this work was to assess the capability of L-band InSAR to get phase information. For the calculation of the interferograms in Repeat Orbit Interferometry PACkage, the displacement was detected as the error and was corrected. The coherence images (Figure 1) determined that L-band is suitable for InSAR processing. Under this frame, as a first approach, the stacking DInSAR technique [1] was applied in the case studies [2]; however, due to lush vegetation and steep topography, it is necessary to apply advanced InSAR techniques [3]. The purpose of the research is to determine a pattern of data acquisition and successful results to understand the spatial and temporal ground movements associated with landslides. The further work consists of establishing landslide inventories to combine phases of SAR images to generate maps of surface deformation in Tumba-San Francisco and Guarumales to compare the results with ground-based measurements to determine the maps' accuracy. References[1] Sandwell D., Price E. (1998). Phase gradient approach to stacking interferograms. Journal of Geophysical Research, Vol. 103, N. B12, pp. 30,183-30,204. [2] Mayorga T., Platzeck G. (2014). Using DInSAR as a tool to detect unstable terrain areas in an Andes region in Ecuador. NH3.5-Blue Poster B298, Vol. 16, EGU2014-16203. Austria. [3] Wasowski J., Bovenga F. (2014). Investigating landslides and unstable slopes with

  17. RESEARCH ON INVERSION MODELS FOR FOREST HEIGHT ESTIMATION USING POLARIMETRIC SAR INTERFEROMETRY

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2017-09-01

    Full Text Available The forest height is an important forest resource information parameter and usually used in biomass estimation. Forest height extraction with PolInSAR is a hot research field of imaging SAR remote sensing. SAR interferometry is a well-established SAR technique to estimate the vertical location of the effective scattering center in each resolution cell through the phase difference in images acquired from spatially separated antennas. The manipulation of PolInSAR has applications ranging from climate monitoring to disaster detection especially when used in forest area, is of particular interest because it is quite sensitive to the location and vertical distribution of vegetation structure components. However, some of the existing methods can’t estimate forest height accurately. Here we introduce several available inversion models and compare the precision of some classical inversion approaches using simulated data. By comparing the advantages and disadvantages of these inversion methods, researchers can find better solutions conveniently based on these inversion methods.

  18. PSP SAR interferometry monitoring of ground and structure deformations in the archeological site of Pompeii

    Science.gov (United States)

    Costantini, Mario; Francioni, Elena; Paglia, Luca; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla; De Nigris, Bruno

    2016-04-01

    The "Major Project Pompeii" (MPP) is a great collective commitment of different institututions and people to set about solving the serious problem of conservation of the largest archeological sites in the world. The ancient city of Pompeii with its 66 hectares, 44 of which are excaveted, is divided into 9 regiones (district), subdivided in 118 insulae (blocks) and almost 1500 domus (houses), and is Unesco site since 1996. The Italian Ministry for Heritage and Cultural Activities and Tourism (MiBACT) and Finmeccanica Group have sealed an agreement whereby the Finmeccanica Group will donate innovative technologies and services for monitoring and protecting the archaeological site of Pompeii. Moreover, the Italian Institute for Environment Protection and Research (ISPRA) - Geological Survey of Italy, was also involved to support the ground based analysis and interpretation of the measurements provided by the industrial team, in order to promote an interdisciplinary approach. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on their interpretation. The satellite monitoring service is based on the processing of COSMO-SkyMed Himage data by the e-Geos proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry method characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artifacts (which are one of the main problems of SAR interferometry). Validations analyses showed that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. By means of the COSMO-SkyMed PSP SAR interferometry processing, a historical analysis of the ground and structure deformations occurred over the entire archaeological site of Pompeii in the

  19. High-contrast Nulling Interferometry Techniques Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "We are developing rotating-baseline nulling-interferometry techniques and algorithms on the single-aperture Hale and Keck telescopes at near-infrared wavelengths,...

  20. Gb-Sar Interferometry for Structure Monitoring during Infrastructure Projects

    Science.gov (United States)

    Serrano Juan, A.; Vázquez-Suñé, E.; Monserrat, O.; Crosetto, M.; Hoffman, C.; Ledesma, A.; Criollo, R.; Pujades, E.; Velasco, V.; García, A.

    2015-12-01

    Monitoring is a necessary task for infrastructure projects. Ground-based synthetic aperture radar (GB-SAR) has been used in a large variety of displacement measurements. However, it has not yet been applied as a monitoring tool during construction projects. This paper aims to demonstrate that GB-SAR can be very helpful for understanding the mechanisms that control structure deformations and for identifying unexpected events and sensitive areas during construction projects. This could be done in a cost-effective way, which complements the traditional displacement measurements. An experiment was performed in the future railway station of La Sagrera, Barcelona (Spain) to demonstrate the utility of GB-SAR on structure monitoring during construction projects. In this experiment, GB-SAR precisely quantified wall displacements induced by dewatering. Manual data and numerical models have been used to confirm the measurements with a correlation analysis and by comparing measurements and deformation patterns, which have produced similar results. These results validate the use of the GB-SAR technique as a monitoring tool during construction projects.

  1. PSP SAR interferometry monitoring of ground and structure deformations applied to archaeological sites

    Science.gov (United States)

    Costantini, Mario; Francioni, Elena; Trillo, Francesco; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla

    2017-04-01

    Archaeological sites and cultural heritage are considered as critical assets for the society, representing not only the history of region or a culture, but also contributing to create a common identity of people living in a certain region. In this view, it is becoming more and more urgent to preserve them from climate changes effect and in general from their degradation. These structures are usually just as precious as fragile: remote sensing technology can be useful to monitor these treasures. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on the methodology adopted and implemented in order to use the results operatively for conservation policies in a Italian archaeological site. The analysis is based on the processing of COSMO-SkyMed Himage data by the e-GEOS proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry technology characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artefacts (which are one of the main problems of SAR interferometry). Validations analyses [Costantini et al. 2015] settled that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. Considering the limitations of all the interferometric techniques, in particular the fact that the measurement are along the line of sight (LOS) and the geometric distortions, in order to obtain the maximum information from interferometric analysis, both ascending and descending geometry have been used. The ascending analysis allows selecting measurements points over the top and, approximately, South-West part of the structures, while the descending one over the top and the South-East part of the structures. The interferometric techniques needs

  2. Polarimetric differential SAR interferometry in an arid natural environment

    Science.gov (United States)

    Mullissa, Adugna G.; Tolpekin, Valentyn; Stein, Alfred; Perissin, Daniele

    2017-07-01

    Ground deformation measurements have contributed to a better understanding of the processes and mechanisms involved in natural hazards. Those include landslides, subsidence, earthquakes and volcanic eruptions. Spaceborne Differential Interferometric Synthetic Aperture RADAR (DInSAR) is a well studied technique for measuring ground deformation. Quality of deformation measurements, however, is often degraded by decorrelation. With the advent of fully polarimetric SAR satellite sensors, polarimetric optimization techniques exploiting polarimetric diversity improve the phase quality of interferograms. In this paper, we analyzed three polarimetric optimization methods to determine the optimal one for application in an arid natural environment. We considered coherence decomposition in single and double phase center scenarios. Coherence estimation bias associated with each optimization method has been analyzed. We compared the derived displacement values with terrestrial GPS measurements. The study shows that polarimetric optimization increases the number of coherent pixels by upto 6.89% as compared with a single polarization channel. The study concludes that polarimetric optimization coupled with DInSAR analysis yields more reliable deformation results in a low coherence region.

  3. TanDEM-X双站SAR干涉测量及研究进展%TanDEM-X bistatic SAR interferometry and its research progress

    Institute of Scientific and Technical Information of China (English)

    孙亚飞; 江利明; 柳林; 孙永玲; 汪汉胜

    2015-01-01

    This paper comprehensively describes the scientific research plan of the TanDEM -X/TerraSAR -X bistatic SAR mission, with emphasis placed on its scientific objectives, TanDEM-X satellite parameters, orbital configuration and data acquisition modes. Then, the advantages of the new InSAR techniques including bistatic SAR, Pol-InSAR and digital beam forming are briefly discussed and the progress of the techniques of TanDEM-X bistatic SAR interferometry is analyzed. These new SAR techniques will greatly promote the application potential of SAR interferometry in Earth sciences such as global topography mapping, glaciology, oceanography and geology.%较全面、系统地介绍了TanDEM-X/TerraSAR-X双站SAR科学计划,重点涉及其科学目标、TanDEM-X卫星参数、轨道结构以及干涉数据获取模式等相关内容,并讨论了双站SAR成像、极化InSAR和数字波束成形等干涉测量新技术及其研究进展。这些双站SAR新技术的实现将大大地推动SAR干涉测量在全球地形测绘、冰川学、海洋学及地质学等领域中的应用。

  4. Monitoring land subsidence process in the urban area of Ho Chi Minh city, Vietnam using multi-temporal SAR Interferometry

    Science.gov (United States)

    Nguyen, Xuan; Chang, Chung-Pai; Le, Tuan

    2016-04-01

    Land subsidence has become the most common hazard in urban area that could led to cracking buildings and infrastructures, extending the flooding area or even change the river path. Despite deriving precise information, conventional subsidence monitoring techniques are considered as costly, man-power consuming and lack of comprehensive information. Recently, SAR Interferometry (InSAR) has become a widely used geodetic technique for monitoring the deformation of the Earth's surface, especially methods based on the use of a multi-temporal dataset. In this study, we use a stack of 18 SAR images acquired from L-band PALSAR sensor onboard the ALOS satellite to derive the subsidence information of Ho Chi Minh city, Vietnam over the period of December 2006 to December 2010. The Stanford Method for Persistent Scatterers (StaMPS) Multi-Temporal Interferometry (MTI) approach is chosen to take advantages of both the persistent scatterers and the distributed scatterers, which could be used as monitoring points to measure the subsidence process. Assume the subsidence in this area mostly corresponds to vertical components, we found subsidence patterns along Saigon river and in the South of the city. Maximum subsidence rate reaches up to -66 mm/year in vertical direction. Finally, InSAR derived result and previous levelling data are taken into comparison to find the correlation between the two results.

  5. Long-term monitoring of geodynamic surface deformation using SAR interferometry

    Science.gov (United States)

    Gong, Wenyu

    Synthetic Aperture Radar Interferometry (InSAR) is a powerful tool to measure surface deformation and is well suited for surveying active volcanoes using historical and existing satellites. However, the value and applicability of InSAR for geodynamic monitoring problems is limited by the influence of temporal decorrelation and electromagnetic path delay variations in the atmosphere, both of which reduce the sensitivity and accuracy of the technique. The aim of this PhD thesis research is: how to optimize the quantity and quality of deformation signals extracted from InSAR stacks that contain only a low number of images in order to facilitate volcano monitoring and the study of their geophysical signatures. In particular, the focus is on methods of mitigating atmospheric artifacts in interferograms by combining time-series InSAR techniques and external atmospheric delay maps derived by Numerical Weather Prediction (NWP) models. In the first chapter of the thesis, the potential of the NWP Weather Research & Forecasting (WRF) model for InSAR data correction has been studied extensively. Forecasted atmospheric delays derived from operational High Resolution Rapid Refresh for the Alaska region (HRRR-AK) products have been compared to radiosonding measurements in the first chapter. The result suggests that the HRRR-AK operational products are a good data source for correcting atmospheric delays in spaceborne geodetic radar observations, if the geophysical signal to be observed is larger than 20 mm. In the second chapter, an advanced method for integrating NWP products into the time series InSAR workflow is developed. The efficiency of the algorithm is tested via simulated data experiments, which demonstrate the method outperforms other more conventional methods. In Chapter 3, a geophysical case study is performed by applying the developed algorithm to the active volcanoes of Unimak Island Alaska (Westdahl, Fisher and Shishaldin) for long term volcano deformation

  6. Polarimetric SAR Interferometry based modeling for tree height and aboveground biomass retrieval in a tropical deciduous forest

    Science.gov (United States)

    Kumar, Shashi; Khati, Unmesh G.; Chandola, Shreya; Agrawal, Shefali; Kushwaha, Satya P. S.

    2017-08-01

    The regulation of the carbon cycle is a critical ecosystem service provided by forests globally. It is, therefore, necessary to have robust techniques for speedy assessment of forest biophysical parameters at the landscape level. It is arduous and time taking to monitor the status of vast forest landscapes using traditional field methods. Remote sensing and GIS techniques are efficient tools that can monitor the health of forests regularly. Biomass estimation is a key parameter in the assessment of forest health. Polarimetric SAR (PolSAR) remote sensing has already shown its potential for forest biophysical parameter retrieval. The current research work focuses on the retrieval of forest biophysical parameters of tropical deciduous forest, using fully polarimetric spaceborne C-band data with Polarimetric SAR Interferometry (PolInSAR) techniques. PolSAR based Interferometric Water Cloud Model (IWCM) has been used to estimate aboveground biomass (AGB). Input parameters to the IWCM have been extracted from the decomposition modeling of SAR data as well as PolInSAR coherence estimation. The technique of forest tree height retrieval utilized PolInSAR coherence based modeling approach. Two techniques - Coherence Amplitude Inversion (CAI) and Three Stage Inversion (TSI) - for forest height estimation are discussed, compared and validated. These techniques allow estimation of forest stand height and true ground topography. The accuracy of the forest height estimated is assessed using ground-based measurements. PolInSAR based forest height models showed enervation in the identification of forest vegetation and as a result height values were obtained in river channels and plain areas. Overestimation in forest height was also noticed at several patches of the forest. To overcome this problem, coherence and backscatter based threshold technique is introduced for forest area identification and accurate height estimation in non-forested regions. IWCM based modeling for forest

  7. Dikes under Pressure - Monitoring the Vulnerability of Dikes by Means of SAR Interferometry

    Science.gov (United States)

    Marzahn, Philip; Seidel, Moritz; Ludwig, Ralf

    2016-04-01

    Dikes are the main man made structures in flood protection systems for the protection of humans and economic values. Usually dikes are built with a sandy core and clay or concrete layer covering the core. Thus, dikes are prone to a vertical shrinkage due to soil physical processes such as reduction of pore space and gravity increasing the risk of a crevasse during floods. In addition, this vulnerability is amplified by a sea level rise due to climate change. To guarantee the stability of dikes, a labourer intensive program is carried out by national authorities monitoring the dikes by visual inspection. In the presented study, a quantitative approach is presented using SAR Interferometry for the monitoring of the stability of dikes from space. In particular, the vertical movement of dikes due to shrinkage is monitored using persistent scatterer interferometry. Therefore three different types of dikes have been investigated: a sea coast dike with a concrete cover, a sea coast dike with short grass cover and a smaller river dike with grass cover. All dikes are located in Germany. Results show the potential of the monitoring technique as well as spatial differences in the stability of dikes with subsidence rates in parts of a dike up to 7 mm/a.

  8. Using Airborne SAR Interferometry to Measure the Elevation of a Greenland Ice Cap

    DEFF Research Database (Denmark)

    Dall, Jørgen; Keller, K.; Madsen, S.N.

    2000-01-01

    A digital elevation model (DEM) of an ice cap in Greenland has been generated from airborne SAR interferometry data, calibrated with a new algorithm, and compared with airborne laser altimetry profiles and carrier-phase differential GPS measurements of radar reflectors deployed on the ice cap...

  9. Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry

    Science.gov (United States)

    Castaldo, R.; Tizzani, P.; Lollino, P.; Calò, F.; Ardizzone, F.; Lanari, R.; Guzzetti, F.; Manunta, M.

    2015-11-01

    The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.

  10. A new DEM of the Austfonna ice cap by combining differential SAR interferometry with ICESat laser altimetry

    Directory of Open Access Journals (Sweden)

    Geir Moholdt

    2012-05-01

    Full Text Available We present a new digital elevation model (DEM of the Austfonna ice cap in the Svalbard Archipelago, Norwegian Arctic. Previous DEMs derived from synthetic aperture radar (SAR and optical shape-from-shading have been tied to airborne radio echo-sounding surface profiles from 1983 which contain an elevation-dependent bias of up to several tens of metres compared with recent elevation data. The new and freely available DEM is constructed purely from spaceborne remote sensing data using differential SAR interferometry (DInSAR in combination with ICESat laser altimetry. Interferograms were generated from pairs of SAR scenes from the one-day repeat tandem phase of the European Remote Sensing Satellites 1/2 (ERS-1/2 in 1996. ICESat elevations from winter 2006–08 were used as ground control points to refine the interferometric baseline. The resulting DEM is validated against the same ground control points and independent surface elevation profiles from Global Navigation Satellite Systems (GNSS and airborne laser altimetry, yielding root mean square (RMS errors of about 10 m in all cases. This quality is sufficient for most glaciological applications, and the new DEM will be a baseline data set for ongoing and future research at Austfonna. The technique of combining satellite DInSAR with high-resolution satellite altimetry for DEM generation might also be a good solution in other glacier regions with similar characteristics, especially when data from TanDEM-X and CryoSat-2 become available.

  11. Recent Advances In Radar Polarimetry And Polarimetric SAR Interferometry

    Science.gov (United States)

    2007-02-01

    spectral windows of the “Natural Electromagnetic Spectrum (NES)” pertinent to Remote Sensing; ( ii ) mitigating against common “Radio Frequency...122], the DLR E-SAR [223], the ONERA RAMSES SAR [70], and we refer to pertinent papers presented at recent expert meetings for additional details [66...amplitude and 1º in polarimetric phase; must possess a very high dynamic range; ( ii ) they must become extra-wide-band, covering the HF to EHF frequency

  12. Corner reflector deployment for X-band SAR interferometry to monitor the landslide of Carlantino, Daunia Region (Italy)

    Science.gov (United States)

    Bovenga, F.; Refice, A.; Pasquariello, G.

    2012-04-01

    Space-borne SAR Differential Interferometry (DInSAR) techniques are attractive for landslide investigations because of their capability to provide regional scale coverage and, under favourable conditions, spatially dense information on small ground surface deformations. In particular, advanced multi-temporal InSAR techniques such as Persistent Scatterer Interferometry (PSI) allow detecting and monitoring, with millimetre precision, displacements occurring on selected radar targets (PS) exhibiting coherent radar backscattering properties. PS targets correspond mainly to man-made structures or to rock outcrops, and their spatial density depends on the ground coverage, and it is maximum over urban areas. The application of multi-temporal InSAR analysis to slope instability monitoring poses challenges related to the complex kinematics of the phenomenon, as well as to the unfavourable settings of the area affected by landslides, often occurring on sites of limited extension, characterized by steep topography and variable vegetation cover. This is the case of the Daunia region, located in the Southern Italian Apennine Mountains, which is characterised by scarce urbanisation (mainly small hill-top towns) and dense vegetation cover. The SPINUA (Stable Point INterferometry over Un-urbanised Areas) PSI multi-temporal processing technique was used in the past years to detect and measure ground displacements over this region. Both C-band medium resolution SAR data from ERS-1/2 and ENVISAT ESA satellites, and X-band high resolution SAR data from the TerraSAR-X (TSX) satellite were used. Results indicate that PSI can be profitably used to investigate slope instability, mainly over the urban and peri-urban areas, and that, on these sites, TSX data result very promising for monitoring areas where ERS/ENVISAT PS density is too low. Nevertheless, the application of PSI for slope instability monitoring still remain problematic or impossible in rural and mountainous areas. This is the

  13. On the use of SAR interferometry to aid navigation of UAV

    Science.gov (United States)

    Nitti, Davide O.; Bovenga, Fabio; Morea, Alberto; Rana, Fabio M.; Guerriero, Luciano; Greco, Mario; Pinelli, Gianpaolo

    2012-09-01

    This study is aimed at exploring the potentials of SAR Interferometry (InSAR) to aid Unmanned Aerial Vehicles (UAV) navigation. The basic idea is to infer both position and attitude of an aerial platform by inspecting the InSAR phase derived by a real time SAR interferometer mounted onboard the platform. Thanks to the expected favorable conditions in terms of geometrical sensitivity as well as signal coherence, the InSAR phase field can be used to derive the terrain elevation. By using both approximated position and attitude values of the platform as well as a reference Digital Terrain Model (DTM) from a mission database available onboard, it is possible to generate a synthetic InSAR phase model to be compared w.r.t. that derived by SAR observations. The geometrical transformation needed to match these two terrain models depends on the difference between position and attitude values derived by the instruments available on board and their actual values. Hence, this matching provides a feedback to be used for adjusting position and attitude. In order to assess the reliability of the proposed approach, we evaluated the interferometric sensitivity to changes in position and attitude. This analysis defines the limits of applicability of the InSAR-based approach and provides indications and requirements on geometric and radiometric parameters.

  14. Corner reflector SAR interferometry as an element of a landslide early warning system

    Science.gov (United States)

    Singer, J.; Riedmann, M.; Lang, O.; Anderssohn, J.; Thuro, K.; Wunderlich, Th.; Heunecke, O.; Minet, Ch.

    2012-04-01

    The development of efficient and cost-effective landslide monitoring techniques is the central aim of the alpEWAS research project (www.alpewas.de). Within the scope of the project a terrestrial geosensor network on a landslide site in the Bavarian Alps has been set up, consisting of low cost GNSS with subcentimeter precision, time domain reflectometry (TDR) and video tacheometry (VTPS). To increase the spatial sampling, 16 low-cost Radar Corner Reflectors (CRs) were installed on the site in 2011. The CRs are to reflect radar signals back to the TerraSAR-X radar satellite, allowing for precise displacement measurements. The subject of this study is the application of the CR SAR Interferometry (CRInSAR) technique, and the integration of the derived motion field into an early warning system for landslide monitoring based on terrestrial measurements. An accurate validation data set is realized independently of the monitoring network using millimeter precision GNSS and tacheometer measurements. The 12 CRs from Astrium Geo-Information Services employed over the test site were specifically designed for TerraSAR-X satellite passes. They are made of concrete with integrated metal plates weighing about 80 to 100 kg. They are of triangular trihedral shape with minimal dimensions to obtain a Radar Cross Section 100 times stronger than that of the surrounding area. The concrete guarantees stability against harsh weather conditions, and robustness with respect to vandalism or theft. In addition, the Technical University of Munich (TUM) and the German Aerospace Center (DLR) installed another four CRs made entirely out of aluminum, with the TUM reflectors being of similar minimum size than the Astrium reflectors. Three CRs were placed on assumed stable ground outside the slope area and shall act as reference reflectors. Since the installation date of most CRs (25/08/2011), TerraSAR-X HighResolution SpotLight data have been repeatedly acquired from ascending orbit over the test

  15. Landslide monitoring by Terrestrial SAR Interferometry: critical analysis of different data processing approaches

    Science.gov (United States)

    Brunetti, Alessandro; Crosetto, Michele; Mazzanti, Paolo; Monserrat, Oriol

    2015-04-01

    In last years, Terrestrial Synthetic Aperture Radar Interferometry (TInSAR) became a key technology in the field of landslide and structures/infrastructures displacement monitoring. Thanks to undoubted advantages such as i) widespread information, ii) fully remote applicability over long ranges and iii) high accuracy, this technique promises to be a very effective solution for a lot of geological and engineering issues. Even if this technique was born for interferometric analyses (basing on the phase differences between SAR images collected at different time intervals), recent studies demonstrated its reliability also with non-interferometric processing approaches, based on the amplitude tracking of high-reflectivity objects (i.e. corner reflectors). Furthermore, both approaches can be used for both continuous and discontinuous monitoring, thus opening to a wide spectrum of applications for different purposes. The aim of this work is to provide information about the reliability and the accuracy of TInSAR technique in its different kind of applications. In the frame of this work, two case studies of landslides monitored with a continuous acquisition mode (about 5 minutes sampling rate) have been investigated. The first case study consists of superficial instability problems mainly related to huge rainfalls and works, leading to non-linear displacements up to 10 mm/day. In order to assess the impact of discontinuous acquisition mode, data subsampling of one data/day for an overall monitoring period of about 3 months has been performed. The comparison between discontinuous and continuous interferometric processing approach allowed the identification of some aliasing and ambiguity problems in the discontinuous approach, especially in periods when high displacement rates were affecting the slope. Nevertheless, in most of such cases, it was still possible to provide qualitative information about criticalities, even if a precise estimation of displacement entities was

  16. Progress in Circular SAR Imaging Technique

    Directory of Open Access Journals (Sweden)

    Hong Wen

    2012-06-01

    Full Text Available Circular SAR (CSAR is a newly developed all-directional high resolution 3D imaging mode in recent years, to satisfy the demand of finer observation. The National Key Laboratory of Science and Technology on Microwave Imaging, Institute of Electronics, Chinese Academy of Sciences (MITL, IECAS, had the first test flight experiment in Aug. 2011 with a P-band full polarization SAR system, and successfully obtained the all-directional high resolution circular SAR image. The initial results show that CSAR technique has the encouraging potential capability in the fields of high precision mapping, disaster evaluation, resource management and the other related applications. This paper firstly makes a detailed discussion on the progress of circular SAR imaging technique, which emphases on the several airborne experiments performed these years to show CSAR’s attractive features, then studies and illustrates the key techniques, and finally discusses the development trends.

  17. Subsidence Detected by Multi-Pass Differential SAR Interferometry in the Cassino Plain (Central Italy: Joint Effect of Geological and Anthropogenic Factors?

    Directory of Open Access Journals (Sweden)

    Marco Polcari

    2014-10-01

    Full Text Available In the present work, the Differential SAR Interferometry (DInSAR technique has been applied to study the surface movements affecting the sedimentary basin of Cassino municipality. Two datasets of SAR images, provided by ERS 1-2 and Envisat missions, have been acquired from 1992 to 2010. Such datasets have been processed independently each other and with different techniques nevertheless providing compatible results. DInSAR data show a subsidence rate mostly located in the northeast side of the city, with a subsidence rate decreasing from about 5–6 mm/yr in the period 1992–2000 to about 1–2 mm/yr between 2004 and 2010, highlighting a progressive reduction of the phenomenon. Based on interferometric results and geological/geotechnical observations, the explanation of the detected movements allows to confirm the anthropogenic (surface effect due to building construction and geological causes (thickness and characteristics of the compressible stratum.

  18. Short-Term Surface Deformation on the Northern Hayward Fault, CA, and Nearby Landslides Using Polarimetric SAR Interferometry (PolInSAR)

    Science.gov (United States)

    Alipour, Samira; Tiampo, Kristy F.; Samsonov, Sergey V.; González, Pablo J.

    2015-08-01

    In this study, we analyze 25 RADARSAT-2 images from ascending and descending geometries to study the creep rate on the Hayward fault and landslide motions near Berkeley, CA. We applied a coherence optimization technique from polarimetric synthetic aperture radar interferometry (PolInSAR) to increase the accuracy of the measurements. We resolve 3-5 mm/year of motion along the Hayward fault, in agreement with earlier creep estimates. We identify a potential motion on secondary fault, northeast and parallel to the Hayward fault, which is creeping at a lower rate of ~1.5 mm/year. In addition, we identify a number of landslides along the hills east of the fault that agree with earlier results from advanced interferometric synthetic aperture radar (SAR) analysis and field investigations. We investigate four particular slope instabilities, one of which was marked as moderately active, and three as highly active, by earlier field investigations. The resolved along-hill slope displacement is estimated at ~23 mm/year. Our results demonstrate that PolInSAR is an effective method to increase the interferometric coherence and provide improved resolution of deformation features associated with natural hazards.

  19. Compressed sensing imaging techniques for radio interferometry

    CERN Document Server

    Wiaux, Y; Puy, G; Scaife, A M M; Vandergheynst, P

    2009-01-01

    Radio interferometry probes astrophysical signals through incomplete and noisy Fourier measurements. The theory of compressed sensing demonstrates that such measurements may actually suffice for accurate reconstruction of sparse or compressible signals. We propose new generic imaging techniques based on convex optimization for global minimization problems defined in this context. The versatility of the framework notably allows introduction of specific prior information on the signals, which offers the possibility of significant improvements of reconstruction relative to the standard local matching pursuit algorithm CLEAN used in radio astronomy. We illustrate the potential of the approach by studying reconstruction performances on simulations of two different kinds of signals observed with very generic interferometric configurations. The first kind is an intensity field of compact astrophysical objects. The second kind is the imprint of cosmic strings in the temperature field of the cosmic microwave backgroun...

  20. Characteristics of Surface Deformation Detected by X-band SAR Interferometry over Sichuan-Tibet Grid Connection Project Area, China

    Directory of Open Access Journals (Sweden)

    Yunshan Meng

    2015-09-01

    Full Text Available The Sichuan-Tibet grid connection project is a national key project implemented in accordance with the developmental needs of Tibet and the living requirements of 700 thousand local residents. It is the first grid project with special high voltage that passes through eastern margin of the Tibetan Plateau. The ground deformation due to widely distributed landslides and debris flow in this area is the major concern to the safety of the project. The multi-temporal interferometry technique is applied to retrieve the surface deformation information using high resolution X-band SAR imagery. The time series of surface deformation is obtained through the sequential high spatial and temporal resolution TerraSAR images (20 scenes of X-band TerraSAR SLC images acquired from 5 January 2014 to 12 December 2014. The results have been correlated with the permafrost activities and intensive precipitation. They show that the study area is prone to slow to moderate ground motion with the range of −30 to +30 mm/year. Seasonal movement is observed due to the freeze-thaw cycle effect and intensive precipitation weather condition. Typical region analysis suggests that the deformation rate tends to increase dramatically during the late spring and late autumn while slightly during the winter time. The correlations of surface deformations with these two main trigger factors were further discussed. The deformation curves of persistent scatterers in the study area showing the distinct seasonal characteristics coincide well with the effect of freeze-thaw cycle and intensive precipitation. The movement occurring at late spring is dominated by the freeze-thaw cycle which is a common phenomenon in such a high-elevated area as the Tibetan Plateau. Intensive precipitation plays more important role in triggering landsides in the summer season. The combining effect of both factors results in fast slope movement in May. The results also suggest that the movement often occur at

  1. Sinking Chao Phraya delta plain, Thailand, derived from SAR interferometry time series analysis

    Science.gov (United States)

    Tanaka, A.; Mio, A.; Saito, Y.

    2013-12-01

    The Bangkok Metropolitan region and its surrounding provinces are located in a low-lying delta plain of the Chao Phraya River. Extensive groundwater use from the late 1950s has caused the decline of groundwater levels in the aquifers and Holocene clay compaction beneath the Bangkok Region, resulting in significant subsidence of the ground. This ground deformation has been monitored using leveling surveys since 1978, and differential InSAR (Interferometric Synthetic Aperture Radar) analysis. It shows that the Bangkok Metropolitan region is subsiding at a rate of about 20 mm/year during the recent years due to law-limited groundwater pumping, although the highest subsidence rate as high as 120 mm/year was recorded in 1981. The subsidence rate in the Bangkok area has significantly decreased since the late 1980s; however, the affected area has spread out to the surrounding areas. The maximum subsidence rate up to 30 mm/year occurred in the outlying southeast and southwest coastal zones in 2002. In this study, we apply a SAR interferometry time series analysis to monitor ground deformations in the lower Chao Phraya delta plain (Lower Central Plain), Thailand, using ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band SAR) data acquired between July 2007 and September 2010. We derive a single reference time series interferogram from the stacking of unwrapped phases under the assumptions that those phases are smoothly and continuously connected, and apply a smoothness-constrained inversion algorithm that optimizes the displacement from the phase unwrapping of multitemporal differential SAR interferograms. The SAR interferometry time series analysis succeeds to monitor the incremental line-of-sight (LOS)-change between SAR scene acquisitions. LOS displacements are converted to vertical displacements, based on the assumption that the ground displacement in this area occurs only in the vertical directions. This reveals an overall pattern of subsidence

  2. SAR interferometry monitoring along the ancient Rome City Walls -the PROTHEGO project case study

    Science.gov (United States)

    Carta, Cristina; Cimino, Maria gabriella; Leoni, Gabriele; Marcelli, Marina; Margottini, Claudio; Spizzichino, Daniele

    2017-04-01

    Led by the Italian Institute for Environmental Protection and Research, in collaboration with NERC British Geological Survey, Geological and Mining Institute of Spain, University of Milano-Bicocca and Cyprus University of Technology, the PROTHEGO project, co-funded in the framework of JPI on Cultural Heritage EU program (2015-2018), brings an innovative contribution towards the analysis of geo-hazards in areas of cultural heritage in Europe. The project apply InSAR techniques to monitor monuments and sites that are potentially unstable due to natural geo-hazard. After the remote sensing investigation, detailed geological interpretation, hazard analysis, local-scale monitoring, advanced modeling and field surveying for some case studies is implemented. The selected case studies are: the Alhambra in Granada (ES); the Choirokoitia village (CY); the Derwent Valley Mills (UK); the Pompei archaeological site and Historical centre of Rome (IT). In this work, in particular, we will focus on ground deformation measurements (obtained by satellite SAR Interferometry) and on their interpretation with respect to the ancient Rome City Walls. The research activities carried out jointly with the Superintendence's technicians, foresee the implementation of a dedicated web GIS platform as a final repository for data storage and spatial data elaboration. The entire circuit of the ancient city walls (both Mura Aureliane and Mura Gianicolensi), was digitalized and georeferenced. All the elements (towers, gates and wall segments) were drawn and collected in order to produce a map of elements at risk. A detailed historical analysis (during the last twenty years) of the ground and structural deformations were performed. A specific data sheet of ruptures was created and fulfilled in order to produce a geographic inventory of past damage. This data sheet contains the following attributes: triggering data; typology of damage; dimension, triggering mechanism; presence of restoration works

  3. Ten Years Of Subsidence Monitoring With SAR Interferometry And Its Contribution To Risk Management In Aguascalientes, Mexico

    Science.gov (United States)

    Esquivel, Ruben; Castaneda, Laura; Taud, Hind; Lira, Jorge

    2013-12-01

    A Study involving GPS and differential SAR interferometry (DInSAR) monitoring is developed to investigate a subsidence phenomenon in Aguascalientes valley and to obtain displacement models concerned with risk management applications and geodetic purposes. DInSAR study with archived Envisat data allows accumulated displacement mapping yearly, and recent TerraSAR-X data implementation provides a more accurate estimation of displacements, which is used for developing models to correct geodetic positions. The maximum subsidence rate calculated is 15 cm/year with a decreasing rate throughout time in some areas.

  4. Operational Monitoring of Mines by COSMO-SkyMed PSP SAR Interferometry

    Science.gov (United States)

    Costantini, Mario; Malvarosa, Fabio; Miniati, Federico; de Assis, Luciano Mozer

    2016-08-01

    Synthetic aperture radar (SAR) interferometry is a powerful technology for detection and monitoring of slow ground surface movements. Monitoring of ground deformations in mining structures is an important application, particularly difficult because the scene changes with time. The persistent scatterer pair (PSP) approach, recently proposed to overcome some limitations of standard persistent scatter interferometry, proved to be effective also for mine monitoring. In this work, after resuming the main ideas of the PSP method, we describe the PSP measurements obtained from high- resolution X-band COSMO-SkyMed data over a large mining area in Minas Gerais state, Brazil. The outcomes demonstrate that dense and accurate ground deformation measurements can be obtained on the mining area and its structures (such as open pits, waste dumps, conveyor belts, water and tailings dams, etc.), achieving a consistent global view including also areas where field instruments are not installed.

  5. Slow-Moving Landslide Monitoring with Multi-Temporal TerraSAR-X Data by Means of DInSAR Techniques in Crotone Province (Southern Italy)

    Science.gov (United States)

    Confuorto, P.; Plank, S.; Di Martire, D.; Ramondini, M.; Thuro, K.; Calcaterra, D.

    2015-05-01

    The Differential SAR Interferometry (DInSAR) is one of the most powerful devices for monitoring deformation processes on the Earth surface. Here, a dataset of TerraSAR-X StripMap imagery covering almost the whole Crotone province territory, located in the south of the Italian peninsula, has been selected and processed. The time span goes from April 2008 to June 2010. In this work, two different multitemporal interferometry (MTI) approaches and two different software packages have been used and compared in order to identify benefits/constraints of each MTI approach and each software. Such approaches are: the ‘permanent’ (or ‘persistent’, or ‘point-like’) scatterers [1] implemented on the SARscape® software [2], and the Temporal Sublook Spectral Coherence (TSSC), derived from Coherent Pixel Technique algorithm and works on SUBSOFT processor, developed by the Remote Sensing Laboratory (RSLab) group, from the Universitat Politècnica de Catalunya (UPC) [3-5].

  6. Railway infrastructure monitoring with COSMO/SkyMed imagery and multi-temporal SAR interferometry

    Science.gov (United States)

    Chiaradia, M.; Nutricato, R.; Nitti, D. O.; Bovenga, F.; Guerriero, L.

    2012-12-01

    For all the European Countries, the rail network represents a key critical infrastructure, deserving protection in view of its continuous structure spread over the whole territory, of the high number of European citizens using it for personal and professional reasons, and of the large volume of freight moving through it. Railway system traverses a wide variety of terrains and encounters a range of geo-technical conditions. The interaction of these factors together with climatic and seismic forcing, may produce ground instabilities that impact on the safety and efficiency of rail operations. In such context, a particular interest is directed to the development of technologies regarding both the prevention of mishaps of infrastructures and the fast recovery of their normal working conditions after the occurrence of accidents (disaster managing). Both these issues are of strategic interest for EU Countries, and in particular for Italy, since, more than other countries, it is characterized by a geo-morphological and hydro-geological structure complexity that increases the risk of natural catastrophes due to landslides, overflowings and floods. The present study has been carried out in the framework of a scientific project aimed at producing a diagnostic system, capable to foresee and monitor landslide events along railway networks by integrating in situ data, detected from on board sophisticated innovative measuring systems, with Earth Observation (EO) techniques. Particular importance is devoted to the use of advanced SAR interferometry, thanks to their all-weather, day-night capability to detect and measure with sub-centimeter accuracy ground surface displacements that, in such context, can occur before a landslide event or after that movements . Special attention is directed to the use of SAR images acquired by COSMO/SkyMed (ASI) constellation capable to achieve very high spatial resolution and very short revisit and response time. In this context, a stack of 57 CSK

  7. Detection of the Subsidence Affecting a Shopping Center in Marseilles (France) using Sar Interferometry

    Science.gov (United States)

    Feurer, D.; Le Mouelic, S.; Raucoules, D.; Carnec, C.; Nédellec, J.-L.

    2004-06-01

    Help of satellite radar interferometry for urban subsidence observation has been demonstrated for several years now. This monitoring tool is able to provide an assessment of the ground motion with a millimetric accuracy and a large spatial coverage. We present here a result of this technique applied to the monitoring of a small area : the shopping centre complex and cinema multiplex in Marseilles, France. This construction work was one of the most important construction site of this last few years in France. Inaugurated in October, 1997, the multiplex had to close 6 of its 15 cinemas five months later because of collapsing risks due to important ground movements. It has been totally closed in July, 1999. The multiplex building demolition is currently under way. Finally, this "flop" represents a cost of 30 millions euros. 14 ERS images acquired between 1992 and 2000 had been processed in order to produce a set of 105 differential interferograms. We performed a recursive correction of orbital and topographic fringes using a FFT computation and a Digital Elevation Model provided by the French National Institute (IGN). The analysis of the interferograms series has allowed to detect unambiguously a signature of few pixels corresponding to the ground movement. From this study, we observed a ground deformation during 1997 to 1998, an overall stability during late 1998 to 1999 and again a deformation during late 1999 to 2000. This study shows that, in specific cases, traditional InSAR is able to provide valuable information on very localised ground deformation. It also shows the interest of a comprehensive study of the full ERS archive of this site in order to assess the stability of the ground before, when no ground-based measurements were available, during, and after the construction works.

  8. Range Surveillance Using Radio Interferometry and TDOA Techniques Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation will utilize a small network of remote sensors to perform Radio Interferometry (RI) and Time Difference of Arrival (TDOA) techniques to...

  9. SAR Interferometry and Precise Leveling for the Determination of Vertical Displacements in the Upper Rhine Graben Area, Southwest Germany

    Science.gov (United States)

    Fuhrmann, T.; Schenk, A.; Westerhaus, M.; Zippelt, K.; Heck, B.

    2013-12-01

    The PS-InSAR (Persistent Scatterer SAR Interferometry) method and precise levelings provide a unique database to detect recent displacements of the Earth's surface. Data of both measurement techniques are analyzed at Geodetic Institute, Karlsruhe Institute of Technology, in order to gain detailed insight into the velocity field of the Upper Rhine Graben (URG). As central and most prominent segment of the European Cenozoic rift system, the seismically and tectonically active Rhine Graben is of steady geo-scientific interest. In the last decades, the URG is characterized by small tectonic movements (geothermal energy) inducing larger surface displacements. To assess the geohazards in the URG area, we aim to provide a map of the current 3D surface displacements with high precision and high spatial resolution. The InSAR and leveling data, and the location of permanent GNSS sites primarily analyzed for the horizontal velocity field, are displayed in Fig. 1. Precise levelings have been carried out by the surveying authorities of Germany, France and Switzerland over the last 100 years building a network of leveling lines. A kinematic network adjustment is applied on the leveling data, providing an accurate solution for vertical displacement rates with accuracies of 0.2 to 0.4 mm/a. The biggest disadvantage of the leveling database is the sparse spatial distribution of the measurement points. Therefore, PS-InSAR is used to significantly increase the number of points within the leveling loops. To obtain a high accuracy for line of sight displacement rates, ERS-1/2 and Envisat data from ascending and descending orbits covering a period from 1992 to 2000 and 2002 to 2010, resp., are processed using StaMPS (Stanford Method for Persistent Scatterers). As the tectonic displacements cover a large area, the separation of atmospheric effects and orbit errors plays an important role in the PS-InSAR processing chain. Besides the tectonic signal, man-induced surface displacements

  10. ScanSAR-Stripmap interferometry using Envisat ASAR data%Envisat ASAR ScanSAR-Stripmap干涉测量研究

    Institute of Scientific and Technical Information of China (English)

    梁存任; 曾琪明; 崔喜爱; 焦健

    2011-01-01

    This study analyzes the main phase contributions of ScanSAR-Stripmap interferometry and further points out the special component caused by unsynchronized echoes,which is then verified in the experiment.The whole process of ScanSARStripmap interferometry has been proposed and implemented with the help of relating modules of the Repeat Orbit Interferometry Package (ROI_PAC) developed by Jet Propulsion Laboratory (JPL).Coregistration and improvement of coherence are solved emphatically.Finally,ScanSAR-Stripmap interferometry is realized using Envisat ASAR data and the results are compared with those of traditional Stripmap-Stripmap interferometry for validation.%分析了ScanSAR-Stripmap干涉测量的相位组成,指出其因非同步数据引起的特有相位项,并通过实验验证了该相位项的存在.提出一整套ScanSAR-Stripmap干涉测量方法,借助JPL开发的开源干涉测量软件ROI_PAC的相应模块实现干涉处理过程,重点解决了ScanSAR-Stripmap两种模式数据间的配准以及相干性的提高等问题.用Envisat ASAR数据验证了该方法的可行性.最后将实验结果同常规条带式干涉测量结果做了对比与分析,验证了该方法的正确性.

  11. Monitoring subsidence rates along road network by persistent scatterer SAR interferometry with high-resolution TerraSAR-X imagery

    Institute of Scientific and Technical Information of China (English)

    Bing Yu; Guoxiang Liu; Rui Zhang; Hongguo Jia; Tao Li; Xiaowen Wang; Keren Dai; Deying Ma

    2013-01-01

    Ground subsidence is one of the key factors damaging transportation facilities, e.g., road networks consisting of highways and railways. In this paper, we propose to apply the persistent scatterer synthetic aperture radar interferometry (PS-InSAR) approach that uses high-resolution TerraSAR-X (TSX) imagery to extract the regional scale subsidence rates (i.e., average annual sub-sidence in mm/year) along road networks. The primary procedures involve interferometric pair selection, interfer-ogram generation, persistent scatterer (PS) detection, PS networking, phase parameterization, and subsidence rate estimation. The Xiqing District in southwest Tianjin (China) is selected as the study area. This district contains one railway line and several highway lines. A total of 15 TSX images covering this area between April 2009 and June 2010 are utilized to obtain the subsidence rates by using the PS-InSAR (PSI) approach. The subsidence rates derived from PSI range from -68.7 to -1.3 mm/year. These findings show a significantly uneven subsidence pattern along the road network. Comparison between the PSI-derived subsidence rates and the leveling data obtained along the highways shows that the mean and standard deviation (SD) of the discrepancies between the two types of subsidence rates are 0.1 and ±3.2 mm/year, respec-tively. The results indicate that the high-resolution TSX PSI is capable of providing comprehensive and detailed subsidence information regarding road networks with millimeter-level accuracy. Further inspections under geo-logical conditions and land-use categories in the study area indicate that the observed subsidence is highly related to aquifer compression due to groundwater pumping. There-fore, measures should be taken to mitigate groundwater extraction for the study area.

  12. The contribution of PSInSAR interferometry to landslide susceptibility assessment in weak rock-dominated areas

    Science.gov (United States)

    Oliveira, Sérgio C.; Zêzere, José L.; Catalão, João; Nico, Giovanni

    2015-04-01

    In the Grande da Pipa river basin (north of Lisbon, Portugal), 64% of the landslides inventoried occur on a particular weak rock lithological unit composed by clay and with sandstone intercalations, that is present in 58% of the study (Oliveira et al., 2014). Deep-seated slow moving rotational slides occur essentially on this lithological unit and are responsible for the major damages verified along roads and buildings in the study area. Within this context, landslide hazard assessment, is limited by two major constrains: (i) the slope instability signs may not be sufficiently clear and observable and consequently may not be correctly identifiable through traditional geomorphologic survey techniques and (ii) the non-timely recognition of precursor signs of instability both in landslides activated for the first time and in previously landslide-affected areas (landslide reactivation). To encompass these limitations, the Persistent Scatterer synthetic aperture radar interferometry technique is applied to a data set of 16 TerraSAR-X SAR images, from April of 2010 to March of 2011, available for a small test site of 12.5 square kilometers (Laje-Salema) located on south-central part of the study area. This work's specific objectives are the following: (i) to evaluate the capacity of the Persistent Scatterer displacement maps in assessing landslide susceptibility at the regional scale, and (ii) to assess the capacity of landslide susceptibility maps based on historical landslide inventories to predict the location of actual terrain displacement measured by the Persistent Scatterers technique. Landslide susceptibility was assessed for the test site using the Information Value bivariate statistical method and the susceptibility scores were exported to the Grande da Pipa river basin. The independent validation of the landslide susceptibility maps was made using the historical landslide inventory and the Persistent Scatterer displacement map. Results are compared by computing

  13. Temporal Decorrelation Effect in Carbon Stocks Estimation Using Polarimetric Interferometry Synthetic Aperture Radar (PolInSAR (Case Study: Southeast Sulawesi Tropical Forest

    Directory of Open Access Journals (Sweden)

    Laode M Golok Jaya

    2017-07-01

    Full Text Available This paper was aimed to analyse the effect of temporal decorrelation in carbon stocks estimation. Estimation of carbon stocks plays important roles particularly to understand the global carbon cycle in the atmosphere regarding with climate change mitigation effort. PolInSAR technique combines the advantages of Polarimetric Synthetic Aperture Radar (PolSAR and Interferometry Synthetic Aperture Radar (InSAR technique, which is evidenced to have significant contribution in radar mapping technology in the last few years. In carbon stocks estimation, PolInSAR provides information about vertical vegetation structure to estimate carbon stocks in the forest layers. Two coherence Synthetic Aperture Radar (SAR images of ALOS PALSAR full-polarimetric with 46 days temporal baseline were used in this research. The study was carried out in Southeast Sulawesi tropical forest. The research method was by comparing three interferometric phase coherence images affected by temporal decorrelation and their impacts on Random Volume over Ground (RvoG model. This research showed that 46 days temporal baseline has a significant impact to estimate tree heights of the forest cover where the accuracy decrease from R2=0.7525 (standard deviation of tree heights is 2.75 meters to R2=0.4435 (standard deviation 4.68 meters and R2=0.3772 (standard deviation 3.15 meters respectively. However, coherence optimisation can provide the best coherence image to produce a good accuracy of carbon stocks.

  14. Single-Network Wide-Area Persistent Scatterer Interferometry: Algorithms with Application to Sentinel-1 InSAR Data

    Science.gov (United States)

    Goel, K.; Shau, R.; Adam, N.

    2015-12-01

    Advanced InSAR techniques, for example, Persistent Scatterer Interferometry (PSI), allow long term deformation time series analysis with millimeter accuracy. ESA's Sentinel-1 SAR mission employs the TOPS mode as the standard mode for acquiring InSAR data. It provides a continuous and large coverage at conventional resolution. The idea is to have a wide-area PSI for mapping countries and continents. Although PSI has been successfully demonstrated and validated in the past for various applications, there are some limitations for processing a large-scale dataset. First, PSI is most effective in urban areas which have a large number of stable scatterers. For large-scale PSI, even non-urban areas need to be processed; and this requires robust algorithms for scatterer selection, network construction and inversion, and atmospheric phase removal. Second, the computational load can be very high, due to which, the processing is usually divided into overlapping blocks and merged later. This can however lead to spatial error propagation. This paper presents algorithms which have been developed for a robust PSI reference network estimation, while mitigating error propagation. Instead of dividing the scene into overlapping blocks, a single network (i.e. arcs connecting the scatterers) is created for the full scene. The relative deformation and residual DEM are estimated for the arcs using the LAMBDA estimator. The relative measurements of the network are finally integrated via least-squares inversion. Here, the sparsity of the system of linear equations is exploited to deal with big data (e.g. 10,000,000 arcs for 500,000 scatterers is a typical configuration for Sentinel-1). A QR or LU parallelizable solver is used for fast inversion. Also, variances of the estimates are calculated using a selected parallel inversion method based on LDL decomposition. Demonstration of the algorithms for large-scale deformation monitoring is provided using available Sentinel-1 data for Germany.

  15. Monitoring civil infrastructure using satellite radar interferometry

    NARCIS (Netherlands)

    Chang, L.

    2015-01-01

    Satellite radar interferometry (InSAR) is a precise and efficient technique to monitor deformation on Earth with millimeter precision. Most InSAR applications focus on geophysical phenomena, such as earthquakes, volcanoes, or subsidence. Monitoring civil infrastructure with InSAR is relatively new,

  16. Analysis of Spaceborne Tandem Configurations for Complementing COSMO with SAR Interferometry

    Directory of Open Access Journals (Sweden)

    G. Fasano

    2005-12-01

    Full Text Available This paper analyses the possibility of using a fifth passive satellite for endowing the Italian COSMO-SkyMed constellation with cross- and along-track SAR interferometric capabilities, by using simultaneously flying and operating antennas. Fundamentals of developed models are described and potential space configurations are investigated, by considering both formations operating on the same orbital plane and on separated planes. The study is mainly aimed at describing achievable baselines and their time histories along the selected orbits. The effects of tuning orbital parameters, such as eccentricity or ascending node phasing, are pointed out, and simulation results show the most favorable tandem configurations in terms of achieved baseline components, percentage of the orbit adequate for interferometry, and covered latitude intervals.

  17. A Review About SAR Technique for Shallow Water Bathymetry Surveys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Synthetic Aperture Radar (SAR) has become one of the important tools for shallow water bathymetry surveys. This has significant economic efficiency compared with the traditional bathymetry surveys. Numerical models have been developed to simulate shallow water bathymetry SAR images. Inversion of these models makes it possible to assess the water depths from SAR images. In this paper, these numerical models of SAR technique are reviewed, and examples are illustrated including in the coastal areas of China. Some issues about SAR technique available and the research orientation in future are also discussed.

  18. Calculation and Error Analysis of a Digital Elevation Model of Hofsjokull, Iceland from SAR Interferometry

    Science.gov (United States)

    Barton, Jonathan S.; Hall, Dorothy K.; Sigurosson, Oddur; Williams, Richard S., Jr.; Smith, Laurence C.; Garvin, James B.

    1999-01-01

    Two ascending European Space Agency (ESA) Earth Resources Satellites (ERS)-1/-2 tandem-mode, synthetic aperture radar (SAR) pairs are used to calculate the surface elevation of Hofsjokull, an ice cap in central Iceland. The motion component of the interferometric phase is calculated using the 30 arc-second resolution USGS GTOPO30 global digital elevation product and one of the ERS tandem pairs. The topography is then derived by subtracting the motion component from the other tandem pair. In order to assess the accuracy of the resultant digital elevation model (DEM), a geodetic airborne laser-altimetry swath is compared with the elevations derived from the interferometry. The DEM is also compared with elevations derived from a digitized topographic map of the ice cap from the University of Iceland Science Institute. Results show that low temporal correlation is a significant problem for the application of interferometry to small, low-elevation ice caps, even over a one-day repeat interval, and especially at the higher elevations. Results also show that an uncompensated error in the phase, ramping from northwest to southeast, present after tying the DEM to ground-control points, has resulted in a systematic error across the DEM.

  19. Numerical weather prediction models and SAR interferometry: synergic use for meteorological and INSAR applications

    Science.gov (United States)

    Pierdicca, Nazzareno; Rocca, Fabio; Perissin, Daniele; Ferretti, Rossella; Pichelli, Emanuela; Rommen, Bjorn; Cimini, Nico

    2011-11-01

    Spaceborne Interferometric Synthetic Aperture Radar (InSAR) is a well established technique useful in many land applications, such as landslide monitoring and digital elevation model extraction. One of its major limitation is the atmospheric effect, and in particular the high water vapour spatial and temporal variability which introduces an unknown delay in the signal propagation. However, the sensitivity of SAR interferometric phase to atmospheric conditions could in principle be exploited and InSAR could become in certain conditions a tool to monitor the atmosphere, as it happens with GPS receiver networks. This paper describes a novel attempt to assimilate InSAR derived information on the atmosphere, based on the Permanent Scatterer multipass technique, into a numerical weather forecast model. The methodology is summarised and the very preliminary results regarding the forecast of a precipitation event in Central Italy are analysed. The work was done in the framework of an ESA funded project devoted to the mapping of the water vapour with the aim to mitigate its effect for InSAR applications.

  20. Error Analysis for High Resolution Topography with Bi-Static Single-Pass SAR Interferometry

    Science.gov (United States)

    Muellerschoen, Ronald J.; Chen, Curtis W.; Hensley, Scott; Rodriguez, Ernesto

    2006-01-01

    We present a flow down error analysis from the radar system to topographic height errors for bi-static single pass SAR interferometry for a satellite tandem pair. Because of orbital dynamics the baseline length and baseline orientation evolve spatially and temporally, the height accuracy of the system is modeled as a function of the spacecraft position and ground location. Vector sensitivity equations of height and the planar error components due to metrology, media effects, and radar system errors are derived and evaluated globally for a baseline mission. Included in the model are terrain effects that contribute to layover and shadow and slope effects on height errors. The analysis also accounts for nonoverlapping spectra and the non-overlapping bandwidth due to differences between the two platforms' viewing geometries. The model is applied to a 514 km altitude 97.4 degree inclination tandem satellite mission with a 300 m baseline separation and X-band SAR. Results from our model indicate that global DTED level 3 can be achieved.

  1. Joint use of multi-orbit high-resolution SAR interferometry for DEM generation in mountainous area

    KAUST Repository

    Zhang, Lu

    2014-07-01

    SAR interferometry has long been regarded as an effective tool for wide-area topographic mapping in hilly and mountainous areas. However, quality of InSAR DEM product is usually affected by atmospheric disturbances and decorrelation-induced voids, especially for data acquired in repeat-pass mode. In this paper, we proposed an approach for improved topographic mapping by optimal fusion of multi-orbit InSAR DEMs with correction of atmospheric phase screen (APS). An experimental study with highresolution TerraSAR-X and COSMO-SkyMed datasets covering a mountainous area was carried out to demonstrate the effectiveness of the proposed approach. Validation with a reference DEM of scale 1:50,000 indicated that vertical accuracy of the fused DEM can be better than 5 m.

  2. Radio & Optical Interferometry: Basic Observing Techniques and Data Analysis

    CERN Document Server

    Monnier, John D

    2012-01-01

    Astronomers usually need the highest angular resolution possible, but the blurring effect of diffraction imposes a fundamental limit on the image quality from any single telescope. Interferometry allows light collected at widely-separated telescopes to be combined in order to synthesize an aperture much larger than an individual telescope thereby improving angular resolution by orders of magnitude. Radio and millimeter wave astronomers depend on interferometry to achieve image quality on par with conventional visible and infrared telescopes. Interferometers at visible and infrared wavelengths extend angular resolution below the milli-arcsecond level to open up unique research areas in imaging stellar surfaces and circumstellar environments. In this chapter the basic principles of interferometry are reviewed with an emphasis on the common features for radio and optical observing. While many techniques are common to interferometers of all wavelengths, crucial differences are identified that will help new practi...

  3. Land subsidence in the Yangtze River Delta, China revealed from multi-frequency SAR Interferometry

    Science.gov (United States)

    Li, Zhenhong; Motagh, Mahdi; Yu, Jun; Gong, Xulong; Wu, Jianqiang; Zhu, Yefei; Chen, Huogen; Zhang, Dengming; Xu, Yulin

    2014-05-01

    Land subsidence is a major worldwide hazard, and its principal causes are subsurface fluid withdrawal, drainage of organic soils, sinkholes, underground mining, hydrocompaction, thawing permafrost, and natural consolidation. Land subsidence causes many problems including: damage to public facilities such as bridges, roads, railroads, electric power lines, underground pipes; damage to private and public buildings; and in some cases of low-lying land, can increase the risk of coastal flooding from storm surges and rising sea-levels. In China, approximately 48600 km2 of land, an area roughly 30 times of the size of the Greater London, has subsided (nearly 50 cities across 16 provinces), and the annual direct economic loss is estimated to be more than RMB 100 million (~12 million). It is believed that the Suzhou-Wuxi-Changzhou region within the Yangtze River Delta is the most severely affected area for subsidence hazards in China. With its global coverage and all-weather imaging capability, Interferometric SAR (InSAR) is revolutionizing our ability to image the Earth's surface and the evolution of its shape over time. In this paper, an advanced InSAR time series technique, InSAR TS + AEM, has been employed to analysed ERS (C-band), Envisat (C-band) and TerraSAR-X (X-band) data collected over the Suzhou-Wuxi-Changzhou region during the period from 1992 to 2013. Validation with precise levelling and GPS data suggest: (1) the accuracy of the InSAR-derived mean velocity measurements is 1-3 mm/yr; (2) InSAR-derived displacements agreed with precise levelling with root mean square errors around 5 mm. It is evident that InSAR TS + AEM can be used to image the evolution of deformation patterns in the Suzhou-Wuxi-Changzhou region over time: the maximum mean velocity decreased from ~12 cm/yr during the period of 1992-1993 to ~2 cm/yr in 2003-2013. This is believed to be a result of the prohibition of groundwater use carried out by Jiangsu provincial government. The combination

  4. Inventory and state of activity of rockglaciers in the Ile and Kungöy Ranges of Northern Tien Shan from satellite SAR interferometry

    Science.gov (United States)

    Strozzi, Tazio; Caduff, Rafael; Kääb, Andreas; Bolch, Tobias

    2017-04-01

    The best visual expression of mountain permafrost are rockglaciers, which, in contrast to the permafrost itself, can be mapped and monitored directly using remotely sensed data. Studies carried out in various parts of the European Alps have shown surface acceleration of rockglaciers and even destabilization of several such landforms over the two last decades, potentially related to the changing permafrost creep conditions. Changes in rockglacier motion are therefore believed to be the most indicative short- to medium-term response of rockglaciers to environmental changes and thus an indicator of mountain permafrost conditions in general. The ESA DUE GlobPermafrost project develops, validates and implements EO products to support research communities and international organizations in their work on better understanding permafrost characteristics and dynamics. Within this project we are building up a worldwide long-term monitoring network of active rockglacier motion investigated using remote sensing techniques. All sites are analysed through a uniform set of data and methods, and results are thus comparable. In order to quantify the rate of movement and the relative changes over time we consider two remote sensing methods: (i) matching of repeat optical data and (ii) satellite radar interferometry. In this contribution, we focus on the potential of recent high spatial resolution SAR data for the analysis of periglacial processes in mountain environments with special attention to the Ile and Kungöy Ranges of Northern Tien Shan at the border between Kazakhstan and Kyrgyzstan, an area which contains a high number of large and comparably fast (> 1m/yr) rockglaciers and is of interest as dry-season water resource and source of natural hazards. As demonstrated in the past with investigations conducted in the Swiss Alps, the visual analysis of differential SAR interferograms can be employed for the rough estimation of the surface deformation rates of rockglaciers and

  5. Status of a UAV SAR Designed for Repeat Pass Interferometry for Deformation Measurements

    Science.gov (United States)

    Hensley, Scott; Wheeler, Kevin; Hoffman, Jim; Miller, Tim; Lou, Yunling; Muellerschoen, Ron; Zebker, Howard; Madsen, Soren; Rosen, Paul

    2004-01-01

    Under the NASA ESTO sponsored Instrument Incubator Program we have designed a lightweight, reconfigurable polarimetric L-band SAR designed for repeat pass deformation measurements of rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes. This radar will be installed on an unmanned airborne vehicle (UAV) or a lightweight, high-altitude, and long endurance platform such as the Proteus. After a study of suitable available platforms we selected the Proteus for initial development and testing of the system. We want to control the repeat track capability of the aircraft to be within a 10 m tube to support the repeat deformation capability. We conducted tests with the Proteus using real-time GPS with sub-meter accuracy to see if pilots could fly the aircraft within the desired tube. Our results show that pilots are unable to fly the aircraft with the desired accuracy and therefore an augmented autopilot will be required to meet these objectives. Based on the Proteus flying altitude of 13.7 km (45,000 ft), we are designing a fully polarimetric L-band radar with 80 MHz bandwidth and 16 km range swath. This radar will have an active electronic beam steering antenna to achieve Doppler centroid stability that is necessary for repeat-pass interferometry (RPI). This paper will present are design criteria, current design and expected science applications.

  6. Deformation of the Augustine Volcano, Alaska, 1992-2005, measured by ERS and ENVISAT SAR interferometry

    Science.gov (United States)

    Lee, Chang-Wook; Lu, Zhong; Kwoun, Oh-Ig; Won, Joong-Sun

    2008-01-01

    The Augustine Volcano is a conical-shaped, active stratovolcano located on an island of the same name in Cook Inlet, about 290 km southwest of Anchorage, Alaska. Augustine has experienced seven significant explosive eruptions - in 1812, 1883, 1908, 1935, 1963, 1976, 1986, and in January 2006. To measure the ground surface deformation of the Augustine Volcano before the 2006 eruption, we applied satellite radar interferometry using Synthetic Aperture Radar (SAR) images from three descending and three ascending satellite tracks acquired by European Remote Sensing Satellite (ERS) 1 and 2 and the Environment Satellite (ENVISAT). Multiple interferograms were stacked to reduce artifacts caused by atmospheric conditions, and we used a singular value decomposition method to retrieve the temporal deformation history from several points on the island. Interferograms during 1992 and 2005 show a subsidence of about 1-3 cm/year, caused by the contraction of pyroclastic flow deposits from the 1986 eruption. Subsidence has decreased exponentially with time. Multiple interferograms between 1992 and 2005 show no significant inflation around the volcano before the 2006 eruption. The lack of a pre-eruption deformation signal suggests that the deformation signal from 1992 to August 2005 must have been very small and may have been obscured by atmospheric delay artifacts. 

  7. Inversion of SAR data in active volcanic areas by optimization techniques

    Directory of Open Access Journals (Sweden)

    G. Nunnari

    2005-01-01

    Full Text Available The inversion problem concerns the identification of parameters of a volcanic source causing observable changes in ground deformation data recorded in volcanic areas. In particular, this paper deals with the inversion of ground deformation measured by using SAR (Synthetic Aperture Radar interferometry and an inversion approach formulated in terms of an optimization problem is proposed. Based on this inversion scheme, it is shown that the problem of inverting ground deformation data in terms of a single source, of Mogi or Okada type, is numerically well conditioned. In the paper, two case studies of inverting actual SAR data recorded on Mt. Etna during eruptions occurring in 1998 and 2001 are investigated, showing the suitability of the proposed technique.

  8. Surface deformation of active volcanic areas retrieved with the SBAS-DInSAR technique: an overview

    Directory of Open Access Journals (Sweden)

    G. Zeni

    2008-06-01

    Full Text Available This paper presents a comprehensive overview of the surface deformation retrieval capability of the Differential Synthetic Aperture Radar Interferometry (DInSAR algorithm, referred to as Small BAseline Subset (SBAS technique, in the context of active volcanic areas. In particular, after a brief description of the algorithm some experiments relevant to three selected case-study areas are presented. First, we concentrate on the application of the SBAS algorithm to a single-orbit scenario, thus considering a set of SAR data composed by images acquired on descending orbits by the European Remote Sensing (ERS radar sensors and relevant to the Long Valley caldera (eastern California area. Subsequently, we address the capability of the SBAS technique in a multipleorbit context by referring to Mt. Etna volcano (southern Italy test site, with respect to which two different ERS data set, composed by images acquired both on ascending and descending orbits, are available. Finally, we take advantage of the capability of the algorithm to work in a multi-platform scenario by jointly exploiting two different sets of SAR images collected by the ERS and the Environment Satellite (ENVISAT radar sensors in the Campi Flegrei caldera (southern Italy area. The presented results demonstrate the effectiveness of the algorithm to investigate the deformation field in active volcanic areas and the potential of the DInSAR methodologies within routine surveillance scenario.

  9. Thermomechanical Behaviour of a PWB by Speckle Interferometry Technique

    Directory of Open Access Journals (Sweden)

    Bartolomeo Trentadue

    2015-01-01

    Full Text Available The speckle interferometry technique has been used in this work in order to determine the thermomechanical behaviour of Printed Wiring Board (PWB (circuits of a radio integrated with tape player and speakers. A preliminary experiment of such technique has been carried out on a single electronic component (silicon transistor, during the thermal transient and at the steady state. The thermal deformation and stresses on PWB have been obtained through related experimental analyses on both cases. The results showed a very good applicability of speckle technique on the irregular object surface as PWB.

  10. Synthetic Aperture Radar (SAR Interferometry for Assessing Wenchuan Earthquake (2008 Deforestation in the Sichuan Giant Panda Site

    Directory of Open Access Journals (Sweden)

    Fulong Chen

    2014-07-01

    Full Text Available Synthetic aperture radar (SAR has been an unparalleled tool in cloudy and rainy regions as it allows observations throughout the year because of its all-weather, all-day operation capability. In this paper, the influence of Wenchuan Earthquake on the Sichuan Giant Panda habitats was evaluated for the first time using SAR interferometry and combining data from C-band Envisat ASAR and L-band ALOS PALSAR data. Coherence analysis based on the zero-point shifting indicated that the deforestation process was significant, particularly in habitats along the Min River approaching the epicenter after the natural disaster, and as interpreted by the vegetation deterioration from landslides, avalanches and debris flows. Experiments demonstrated that C-band Envisat ASAR data were sensitive to vegetation, resulting in an underestimation of deforestation; in contrast, L-band PALSAR data were capable of evaluating the deforestation process owing to a better penetration and the significant coherence gain on damaged forest areas. The percentage of damaged forest estimated by PALSAR decreased from 20.66% to 17.34% during 2009–2010, implying an approximate 3% recovery rate of forests in the earthquake impacted areas. This study proves that long-wavelength SAR interferometry is promising for rapid assessment of disaster-induced deforestation, particularly in regions where the optical acquisition is constrained.

  11. Detection and Monitoring of Surface Motions in Active Open Pit Iron Mine in the Amazon Region, Using Persistent Scatterer Interferometry with TerraSAR-X Satellite Data

    Directory of Open Access Journals (Sweden)

    Marcos E. Hartwig

    2013-09-01

    Full Text Available Persistent Scatterer interferometry (PSI represents a powerful tool for the detection and monitoring of tiny surface deformations in vast areas, allowing a better understanding of its triggering mechanisms, planning of mitigation measures, as well as to find better solutions for social and environmental issues. However, there is no record hitherto of its use in active open pit mine in tropical rainforest environment. In this paper we evaluate the use of the PSI technique for the detection and monitoring of mine slope deformations in the N4W iron mine and its surroundings, Pará State, Northern Brazil. The PSI processing was performed with 18 ascending SAR scenes of the TerraSAR-X satellite acquired in the dry season of 2012. The results showed a significant number of widely distributed persistent scatterers. It was observed that most of the study area was stable during the time span. Nevertheless, high deformation rates (312 mm/year were mapped over the mine waste piles, but do not offer any hazard, since they are expected displacements of meters in magnitude for these manmade land structures. Additionally, it was mapped tiny deformation rates in both the east and west flanks of pits 1 and 2. The main underlying reasons can be assigned to the accommodation phenomena of very poor rock masses, to the local geometric variations of the slope cuts, to the geological contact between ironstones and the country rocks, to the exploitation activities, as well as to the major geological structures. This study showed the applicability of the PSI technique using TerraSAR-X scenes in active open pit mines in tropical moist environment. However, the PSI technique is not capable in providing real-time warnings, and faces limitations due to SAR viewing geometry. In this sense, we strongly recommend the use of radar scenes acquired in both ascending and descending orbits, which would also provide a more complete understanding of the deformation patterns.

  12. Spatio-temporal evolution of aseismic ground deformation in the Mexicali Valley (Baja California, Mexico) from 1993 to 2010, using differential SAR interferometry

    Science.gov (United States)

    Sarychikhina, O.; Glowacka, E.

    2015-11-01

    Ground deformation in Mexicali Valley, Baja California, Mexico, the southern part of the Mexicali-Imperial valley, is influenced by active tectonics and human activity, mainly that of geothermal fluid extraction in the Cerro Prieto Geothermal Field. Significant ground deformation, mainly subsidence (~ 18 cm yr-1), and related ground fissures cause severe damage to local infrastructure. The technique of Differential Synthetic Aperture Radar Interferometry (DInSAR) has been demonstrated to be a very effective remote sensing tool for accurately measuring the spatial and temporal evolution of ground displacements over broad areas. In present study ERS-1/2 SAR and ENVISAT ASAR images acquired between 1993 and 2010 were used to perform a historical analysis of aseismic ground deformation in Mexicali Valley, in an attempt to evaluate its spatio-temporal evolution and improve the understanding of its dynamic. For this purpose, the conventional 2-pass DInSAR was used to generate interferograms which were used in stacking procedure to produce maps of annual aseismic ground deformation rates for different periods. Differential interferograms that included strong co-seismic deformation signals were not included in the stacking and analysis. The changes in the ground deformation pattern and rate were identified. The main changes occur between 2000 and 2005 and include increasing deformation rate in the recharge zone and decreasing deformation rate in the western part of the CPGF production zone. We suggested that these changes are mainly caused by production development in the Cerro Prieto Geothermal Field.

  13. Improving radar interferometry for monitoring fault-related surface deformation: Applications for the Roer Valley Graben and coal mine induced displacements in the southern Netherlands

    NARCIS (Netherlands)

    Caro Cuenca, M.

    2012-01-01

    Radar interferometry (InSAR) is a valuable tool to measure surface motion. Applying time series techniques such as Persistent Scatterer Interferometry (PSI), InSAR is able to provide surface displacements maps with mm-precision. However, InSAR can still be further optimized, e.g. by exploiting

  14. Improving radar interferometry for monitoring fault-related surface deformation: Applications for the Roer Valley Graben and coal mine induced displacements in the southern Netherlands

    NARCIS (Netherlands)

    Caro Cuenca, M.

    2012-01-01

    Radar interferometry (InSAR) is a valuable tool to measure surface motion. Applying time series techniques such as Persistent Scatterer Interferometry (PSI), InSAR is able to provide surface displacements maps with mm-precision. However, InSAR can still be further optimized, e.g. by exploiting spati

  15. Ambiguity resolution in SAR interferometry by use of three phase centers

    Energy Technology Data Exchange (ETDEWEB)

    Jakowatz, C.V. Jr.; Wahl, D.E.; Thompson, P.A.

    1996-03-01

    In a typical interferometric synthetic aperture radar (IFSAR) system employed for terrain elevation mapping, terrain height is estimated from phase difference data obtained from two phase centers separated spatially in the cross-track direction. In this paper we show how the judicious design of a three phase center IFSAR renders phase unwrapping, i.e., the process of estimating true continuous phases from principal values of phase (wrapped modulo 2{pi}), a much simpler process than that inherent in traditional algorithms. With three phase centers, one IFSAR baseline can be chosen to be relatively small (two of the phase centers close together) so that all of the scene`s terrain relief causes less than one cycle of phase difference. This allows computation of a coarse height map without use of any form of phase unwrapping. The cycle number ambiguities in the phase data derived from the other baseline, chosen to be relatively large (two of the phase centers far apart), can then be resolved by reference to the heights computed from the small baseline data. This basic concept of combining phase data from one small and one large baseline to accomplish phase unwrapping has been previously employed in other interferometric problems, e.g., laser interferometry and direction-of-arrival determination from multiple element arrays, The new algorithm is shown to possess a certain form of immunity to corrupted interferometric phase data that is not inherent in traditional two-dimensional path-following phase unwrappers. This is because path-following algorithms must estimate, either implicity or explicity, those portions of the IFSAR fringe data where discontinuities in phase occur. Such discontinuties typically arise from noisy phase measurements derived from low radar return areas of the SAR imagery, e.g., shadows, or from areas of steep terrain slope.

  16. On the use of SAR Interferometry for assessing tide gauge stability for long term sea-level estimation

    Science.gov (United States)

    Raucoules, Daniel; Cozannet, Gonéri; Woppelmann, Guy

    2015-04-01

    One of the important consequences of climate change is the global sea level rise of 20cm since the end of the 19th century. This process is very likely to continue and accelerate in the future. Future projections of global sea level rise range from about 30cm to 80cm by 2100 with significant regional variability). Local and regional vertical ground motions are one of the important sources of uncertainties to consider in sea level rise impact assessments. However, it is very difficult, if not impossible, to evaluate them without observations due to their complex causes and evolution in space and time. Consequently, a first motivation to accurately characterize vertical ground motions in large coastal cities is to reduce the uncertainties of sea level rise impact assessments. A second challenge motivating a precise characterization of vertical ground motions in coastal cities is to reconcile sea level estimates for the 20th century: over this period, there is a slight disagreement between (1) observations of sea level rise obtained from the available tide gauge data sets, and (2) the sum of contributions from each process causing sea level rise. Accurate knowledge about the ground motions affecting tide gauges is thus highly desirable, especially in regions poorly covered by tide gauges. Indeed, one of the possible explanations of the 20th century sea level budget imbalance is an inappropriate spatial sampling of historical tide gauges along the oceans' coastlines, most being located in Europe and in the United States. In addition, noteworthy is the fact that Tide Gauges with long Time Series are generally located in urbanized areas. Growing of urbanizations in development during the last century can result in local changes of ground surface level (in particular: groundwater extraction produces subsidence phenomena). In this perspective, we propose the use of Differential SAR interferometry techniques for characterizing the ground surface deformation in the

  17. On application of D-InSAR technique in ground deformation monitoring%D-InSAR 技术在地面变形监测中的应用

    Institute of Scientific and Technical Information of China (English)

    陈雷

    2016-01-01

    描述了 D-InSAR 技术的相关原理,分析了差分干涉测量的整个处理流程,并根据伊朗巴姆地区地震前后的地面形变情况,利用 ENVISAT 雷达数据,获取了 SAR 影像的干涉条纹,通过两轨差分干涉测量方法得到实验区域的地面沉降数据,验证了合成孔径雷达差分干涉测量技术在地表变形监测方面的可行性。%The article describes the relevant principles D-InSAR technique,and analyzes the entire process flow differential interferometry meas-urements. And according to surface deformation Bam earthquake in Iran before and after the use of ENVISAT radar data acquired SAR influence of the interference fringes and using two rail differential interferometry experiments obtained ground subsidence data area. Verify that the differen-tial synthetic aperture radar interferometry technique in measuring the feasibility of surface deformation monitoring applications.

  18. Deformation analysis through the SBAS-DInSAR technique and geotechnical methods for structural damage assessment

    Science.gov (United States)

    Bonano, M.; Arangio, S.; Calò, F.; Di Mauro, M.; Manunta, M.; Marsella, M.; Sansosti, E.; Sonnessa, A.; Tagliafierro, V.; Lanari, R.

    2012-04-01

    Monitoring of displacements affecting single buildings or human-made infrastructures is of key importance for their diagnostic and damage assessment. The evaluation of the structural damage in urban areas is a critical problem related to the complexity of soil-structure interaction. Indeed, the structural damage is influenced by several factors, such as the uniformity of the settlements, the variability on the soil property, the type of foundations, the rigidity and type of the considered structure, as well as the rate at which the settlements occur. Concerning this latter issue, settlements occurring very slowly over periods of decades or more may be tolerable by masonry or reinforced concrete structures; on the other hand, the same settlements related to a few months or a few years would result in severe structural damage. In this context, remote sensing techniques allow non-invasive and non-destructive deformation analyses over large areas by properly exploiting a large number of space-borne radar data. Within this framework, Differential SAR Interferometry (DInSAR) has emerged as a valuable microwave methodology to detect and monitor ground displacements, with centimeter to millimeter accuracy, by exploiting the phase difference (interferogram) between two SAR images relevant to the same area. Recent developments of advanced DInSAR techniques are aimed at investigating not only single event deformation phenomena, but also the temporal evolution of the detected displacements through the generation of deformation time-series. These approaches benefit of the availability of huge archives of SAR data, including the ones acquired over the last 20 years by the Synthetic Aperture Radar (SAR) sensors on-board the ERS-1/2 and ENVISAT satellites of the European Space Agency (ESA). Among these advanced DInSAR approaches, we focus on the Small BAseline Subset (SBAS) algorithm (Berardino et al., 2002) that implements an easy combination of DInSAR data pairs characterized by

  19. Secondary Fault Activity of the North Anatolian Fault near Avcilar, Southwest of Istanbul: Evidence from SAR Interferometry Observations

    Directory of Open Access Journals (Sweden)

    Faqi Diao

    2016-10-01

    Full Text Available Strike-slip faults may be traced along thousands of kilometers, e.g., the San Andreas Fault (USA or the North Anatolian Fault (Turkey. A closer look at such continental-scale strike faults reveals localized complexities in fault geometry, associated with fault segmentation, secondary faults and a change of related hazards. The North Anatolian Fault displays such complexities nearby the mega city Istanbul, which is a place where earthquake risks are high, but secondary processes are not well understood. In this paper, long-term persistent scatterer interferometry (PSI analysis of synthetic aperture radar (SAR data time series was used to precisely identify the surface deformation pattern associated with the faulting complexity at the prominent bend of the North Anatolian Fault near Istanbul city. We elaborate the relevance of local faulting activity and estimate the fault status (slip rate and locking depth for the first time using satellite SAR interferometry (InSAR technology. The studied NW-SE-oriented fault on land is subject to strike-slip movement at a mean slip rate of ~5.0 mm/year and a shallow locking depth of <1.0 km and thought to be directly interacting with the main fault branch, with important implications for tectonic coupling. Our results provide the first geodetic evidence on the segmentation of a major crustal fault with a structural complexity and associated multi-hazards near the inhabited regions of Istanbul, with similarities also to other major strike-slip faults that display changes in fault traces and mechanisms.

  20. InSAR Forensics: Tracing InSAR Scatterers in High Resolution Optical Image

    Science.gov (United States)

    Wang, Yuanyuan; Zhu, XiaoXiang

    2015-05-01

    This paper presents a step towards a better interpretation of the scattering mechanism of different objects and their deformation histories in SAR interferometry (InSAR). The proposed technique traces individual SAR scatterer in high resolution optical images where their geometries, materials, and other properties can be better analyzed and classified. And hence scatterers of a same object can be analyzed in group, which brings us to a new level of InSAR deformation monitoring.

  1. Verification of time-delay interferometry techniques using the University of Florida LISA interferometry simulator

    Energy Technology Data Exchange (ETDEWEB)

    Mitryk, Shawn J; Wand, Vinzenz; Mueller, Guido, E-mail: smitryk@phys.ufl.ed, E-mail: mueller@phys.ufl.ed [Department of Physics, University of Florida, PO Box 118440, Gainesville, FL 32611-8440 (United States)

    2010-04-21

    Laser Interferometer Space Antenna (LISA) is a cooperative NASA/ESA mission proposed to directly measure gravitational waves (GW) in the frequency range from 30 muHz to 1 Hz with an optimal strain sensitivity of 10{sup -21}/sq root(Hz) at 3 mHz. LISA will utilize a modified Michelson interferometer to measure length changes of 40 pm/sq root(Hz) between drag-free proof masses located on three separate spacecraft (SC) separated by a distance of 5 Gm. The University of Florida has developed a hardware-in-the-loop simulator of the LISA constellation to verify the laser noise cancellation technique known as time-delay interferometry (TDI). We replicate the frequency stabilization of the laser on the local SC and the phase-locking of the lasers on the far SC. The laser photodetector beatnotes are electronically delayed, Doppler shifted and applied with a mock GW signal to simulate the laser link between the SC. The beatnotes are also measured with a LISA-like phasemeter and the data are used to extract the laser phase and residual phase-lock loop noise in post-processing through TDI. This uncovers the GW modulation signal buried under the laser noise. The results are then compared to the requirements defined by the LISA science collaboration.

  2. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin

    Science.gov (United States)

    Zhang, L.; Lu, Zhiming; Ding, X.; Jung, H.-S.; Feng, G.; Lee, C.-W.

    2012-01-01

    Multi-temporal interferometric synthetic aperture radar (InSAR) is an effective tool to detect long-term seismotectonic motions by reducing the atmospheric artifacts, thereby providing more precise deformation signal. The commonly used approaches such as persistent scatterer InSAR (PSInSAR) and small baseline subset (SBAS) algorithms need to resolve the phase ambiguities in interferogram stacks either by searching a predefined solution space or by sparse phase unwrapping methods; however the efficiency and the success of phase unwrapping cannot be guaranteed. We present here an alternative approach - temporarily coherent point (TCP) InSAR (TCPInSAR) - to estimate the long term deformation rate without the need of phase unwrapping. The proposed approach has a series of innovations including TCP identification, TCP network and TCP least squares estimator. We apply the proposed method to the Los Angeles Basin in southern California where structurally active faults are believed capable of generating damaging earthquakes. The analysis is based on 55 interferograms from 32 ERS-1/2 images acquired during Oct. 1995 and Dec. 2000. To evaluate the performance of TCPInSAR on a small set of observations, a test with half of interferometric pairs is also performed. The retrieved TCPInSAR measurements have been validated by a comparison with GPS observations from Southern California Integrated GPS Network. Our result presents a similar deformation pattern as shown in past InSAR studies but with a smaller average standard deviation (4.6. mm) compared with GPS observations, indicating that TCPInSAR is a promising alternative for efficiently mapping ground deformation even from a relatively smaller set of interferograms. ?? 2011.

  3. Persistent Scatterer Interferometry (PSI Technique for Landslide Characterization and Monitoring

    Directory of Open Access Journals (Sweden)

    Nicola Casagli

    2013-03-01

    Full Text Available : The measurement of landslide superficial displacement often represents the most effective method for defining its behavior, allowing one to observe the relationship with triggering factors and to assess the effectiveness of the mitigation measures. Persistent Scatterer Interferometry (PSI represents a powerful tool to measure landslide displacement, as it offers a synoptic view that can be repeated at different time intervals and at various scales. In many cases, PSI data are integrated with in situ monitoring instrumentation, since the joint use of satellite and ground-based data facilitates the geological interpretation of a landslide and allows a better understanding of landslide geometry and kinematics. In this work, PSI interferometry and conventional ground-based monitoring techniques have been used to characterize and to monitor the Santo Stefano d’Aveto landslide located in the Northern Apennines, Italy. This landslide can be defined as an earth rotational slide. PSI analysis has contributed to a more in-depth investigation of the phenomenon. In particular, PSI measurements have allowed better redefining of the boundaries of the landslide and the state of activity, while the time series analysis has permitted better understanding of the deformation pattern and its relation with the causes of the landslide itself. The integration of ground-based monitoring data and PSI data have provided sound results for landslide characterization. The punctual information deriving from inclinometers can help in defining the actual location of the sliding surface and the involved volumes, while the measuring of pore water pressure conditions or water table level can suggest a correlation between the deformation patterns and the triggering factors.

  4. Effect of Medium Symmetries on Limiting the Number of Parameters Estimated with Polarimetric SAR Interferometry

    Science.gov (United States)

    Moghaddam, M.

    1999-01-01

    The addition of interferometric backscattering pairs to the conventional polarimetric synthetic aperture radar (SAR) data over forests and other vegetated areas increases the dimensionality of the data space, in principle enabling the estimation of a larger number of parameters.

  5. Integrated Data Processing Methodology for Airborne Repeat-pass Differential SAR Interferometry

    Science.gov (United States)

    Dou, C.; Guo, H.; Han, C.; Yue, X.; Zhao, Y.

    2014-11-01

    Short temporal baseline and multiple ground deformation information can be derived from the airborne differential synthetic aperture radar Interforemetry (D-InSAR). However, affected by the turbulence of the air, the aircraft would deviate from the designed flight path with high frequent vibrations and changes both in the flight trajectory and attitude. Restricted by the accuracy of the position and orientation system (POS), these high frequent deviations can not be accurately reported, which would pose great challenges in motion compensation and interferometric process. Thus, these challenges constrain its wider applications. The objective of this paper is to investigate the accurate estimation and compensation of the residual motion errors in the airborne SAR imagery and time-varying baseline errors between the diffirent data acquirations, furthermore, to explore the integration data processing theory for the airborne D-InSAR system, and thus help to accomplish the correct derivation of the ground deformation by using the airborne D-InSAR measurements.

  6. Effect of Medium Symmetries on Limiting the Number of Parameters Estimated with Polarimetric SAR Interferometry

    Science.gov (United States)

    Moghaddam, M.

    1999-01-01

    The addition of interferometric backscattering pairs to the conventional polarimetric synthetic aperture radar (SAR) data over forests and other vegetated areas increases the dimensionality of the data space, in principle enabling the estimation of a larger number of parameters.

  7. 机载双天线InSAR系统干涉条纹实时生成算法%A Real-time Interferometry Fringe Algorithm for Airborne Dual-antenna InSAR System

    Institute of Scientific and Technical Information of China (English)

    陈立福; 汪丙南; 向茂生

    2011-01-01

    This paper presents a new algorithm to generate the interferometry fringe with high quality in real-time. It utilizes the techniques of down-sampling and interferometry multi-look processing, the look-up table with linear interpolation, the ECS auto-registration imaging algorithm with non-linear approximation,the real-time interferometry motion compensation,and the improved fast algorithm of computing coherence and filtering the interferometry fringe. The feasibility of generating the interferometry fringe in real-time with hardware is 8nalyzed and the structure of hardware is given to realize the algorithm too. In the end,the interferometry fringe and coherence map are generated by the algorithm for the airborne X-band InSAR dato of Institute of Electronics, Chinese Academy of Sciences,and the results prove the validity of the algorithm.%为了能实时产生高质量的干涉条纹提出了一种新算法.算法采用了降采样与干涉多视处理相结合的技术、线性插值查表法、非线性近似的ECS自配准成像算法、实时干涉运补、相干系数快速计算以及快速干涉滤波方法,并对该算法实时产生干涉条纹的可行性进行了分析,给出了实现该算法的硬件结构.最后针对电子所X波段机载双天线InSAR数据,利用该算法产生了干步条纹和相干系数图,证明了算法的有效性.

  8. Measurement of slow-moving along-track displacement from an efficient multiple-aperture SAR interferometry (MAI) stacking

    Science.gov (United States)

    Jo, Min-Jeong; Jung, Hyung-Sup; Won, Joong-Sun; Poland, Michael; Miklius, Asta; Lu, Zhong

    2015-01-01

    Multiple-aperture SAR interferometry (MAI) has demonstrated outstanding measurement accuracy of along-track displacement when compared to pixel-offset-tracking methods; however, measuring slow-moving (cm/year) surface displacement remains a challenge. Stacking of multi-temporal observations is a potential approach to reducing noise and increasing measurement accuracy, but it is difficult to achieve a significant improvement by applying traditional stacking methods to multi-temporal MAI interferograms. This paper proposes an efficient MAI stacking method, where multi-temporal forward- and backward-looking residual interferograms are individually stacked before the MAI interferogram is generated. We tested the performance of this method using ENVISAT data from Kīlauea Volcano, Hawai‘i, where displacement on the order of several centimeters per year is common. By comparing results from the proposed stacking methods with displacements from GPS data, we documented measurement accuracies of about 1.03 and 1.07 cm/year for the descending and ascending tracks, respectively—an improvement of about a factor of two when compared with that from the conventional stacking approach. Three-dimensional surface-displacement maps can be constructed by combining stacked InSAR and MAI observations, which will contribute to a better understanding of a variety of geological phenomena.

  9. Use of SAR interferometry for monitoring illegal mining activities: A case study at Xishimen Iron Ore Mine

    Institute of Scientific and Technical Information of China (English)

    Ji Maowei; Li Xiaojing; Wu Shunchuan; Gao Yongtao; Ge Linlin

    2011-01-01

    The development and application of the “digital mine” concept in China depends heavily upon the use of remote sensing data as well as domestic expertise and awareness.Illegal mining of mineral resources has been a serious long term problem frustrating the Xishimen Iron Ore Mine management.This mine is located in Wu'an county in Hebei province,China.Illegal activities have led to enormous economic losses by interfering with the normal operation of the Xishimen mine and have ruined the surrounding environment and the stability of the Mahe riverbed the crosses the mined area.This paper is based on field reconnaissance taken over many years around the mine area.The ground survey data are integrated with Differential Synthetic Aperture Radar Interferometry (D-InSAR) results from ALOS/PALSAR data to pinpoint mining locations.By investigating the relationship between the resulting interferometric deformation pattern and the mining schedule,which is known a priori,areas affected by illegal mining activities are identified.To some extent these areas indicate the location of the illegal site.The results clearly demonstrate D-InSAR's ability to cost-effectively monitor illegal mining activities.

  10. Integrated GPS and SAR Interferometry to Measure Time-varying Surface Deformation Over a Giant Oilfield in California*

    Science.gov (United States)

    Fielding, E. J.; Patzek, T. W.; Patzek, T. W.; Silin, D. B.; Brink, J.

    2001-12-01

    We combine campaign GPS measurements with interferometry synthetic aperture radar (IntSAR) images to map the deformation around and above the Lost Hills oilfield, one of the biggest fields in the USA. GPS at several dozen benchmarks every six months provides a long time series of total vertical and horizontal position change for monuments in the rapidly subsidng ground surface above the oilfield. IntSAR maps using data from the ERS satellites measure relative changes at high spatial resolution with some moderate- to long-wavelength noise sources such as orbit error and atmospheric delays. The GPS data are used to model the moderate to long-wavelength surface deformation field so that the error contributions at those wavelengths in the IntSAR images can be estimated and removed. The rapid subsidence (rates greater than 1 mm/day in 1995) and small size (roughly 3 km wide by 10 km long) require the use of short time intervals for the IntSAR pairs (between 35 days and 8 months), and also processing with the smallest possible sample spacing of 20 by 20 meters to resolve the extreme strain rates. Previously published comparison of the tiltmeter measurements with well fluid extraction demonstrated both an immediate elastoplastic response to depletion and a time-dependent creep response. The high spatial and temporal resolution of the IntSAR measurements will be combined with well records on fluid extraction and injection to separate the delayed response from the immediate reponse to better understand the processes of compaction in the oil reservoir rocks, extremely high-porosity diatomite. This will have direct relevance to the oilfield operations as the compaction can damage the wells and should be minimized. Surprisingly, in some parts of the oilfield, injecting more water to replace the pressure of the oil and gas extracted causes the subsidence rates to increase. Because the fluid input and output at the oilfield is measured, it provides an excellent test bed for

  11. The seismic sequence of January-February 2014 at Cephalonia Island (Greece): constraints from SAR interferometry and GPS

    Science.gov (United States)

    Briole, P.; Elias, P.; Parcharidis, I.; Bignami, C.; Benekos, G.; Samsonov, S.; Kyriakopoulos, C.; Stramondo, S.; Chamot-Rooke, N.; Drakatou, M. L.; Drakatos, G.

    2015-12-01

    We analysed the ground deformation produced by the Mw = 6.1 2014 January 26 and Mw = 6.0 2014 February 3 Cephalonia earthquakes, western Greece. Campaign GPS measurements and RADARSAT-2 synthetic aperture radar (SAR) interferometry provide constraints on the overall deformation produced by the sequence. TerraSAR-X and COSMO-SkyMed SAR interferometry provide constraints on the second earthquake separately. Two permanent GPS stations captured the two coseismic offsets and show no pre- or post-seismic transients. Most of the deformation is concentrated in the Paliki peninsula which is consistent with the location of the seismicity and the damages. Both GPS and SAR interferometry indicate areas with large deformation gradients probably due to shallow effects. Given the limitations on the data and on the knowledge of the structure and rheology of the crust, we used a simple elastic model to fit the ground displacements. Although such model cannot fit all the detail of the deformation, it is expected to provide a robust estimate of the overall geometry and slip of the fault. The good data coverage in azimuth and distance contributes to the robustness of the model. The entire sequence is modelled with a strike slip fault dipping 70° east and cutting most of the brittle crust beneath Paliki, with an upper edge located at 2.5 km depth and a deeper edge at 8.5 km. This fault is oriented N14° which corresponds to the azimuth of the Cephalonia Transform Fault (CTF). The fit to the data is significantly improved by adding a secondary shallow strike-slip fault with low dip angle (30°) with a component of reverse faulting on that shallow fault. The modelling of the February 3 event indicates that the faulting is shallow in the north of Paliki, with a centroid depth of ˜3.2 km. The fit is improved when a single planar fault is replaced by a bent fault dipping ˜30° in the uppermost 2 km and ˜70° below. The fault of the January 26 earthquake, inferred from the difference

  12. Mapping Glacier Surface Elevation and its Changes of Puruogangri Ice Field with SAR Interferometry

    Science.gov (United States)

    Liu, Lin; Jiang, Liming; Sun, Yafei; Wang, Hansheng; Sun, Yongling

    2014-11-01

    Accurate DEMs are required for measuring glacier volume and mass change. The recently launched TanDEM-X (TDX) and TerraSAR-X (TSX) satellite system, which is the first bistatic spaceborne SAR mission, has the potential to acquire the accurate DEMs of most glaciers and ice caps. Here, we report on the application of TSX/TDX data sets for the measurement of mountain glacier DEMs over Tibetan Plateau. A DEM is generated with two pairs of TSX/TDX SAR images obtained in January 2012 over Puruogangri ice field (PIF). Moreover, we also estimate the elevation changes of the PIF by subtracting the SRTM-X DEM from the TSX/TDX DEM. Mean annual thinning rate of -0.0225±0.015 m yr-1 is observed between 2000 and 2012.

  13. Adaptive InSAR combined with surveying techniques for an improved characterisation of active landslides (El Portalet)

    Science.gov (United States)

    Duro, Javier; Albiol, David; Sánchez, Francisco; Herrera, Gerardo; García Davalillo, Juan Carlos; Fernandez Merodo, Jose Antonio; Allasia, Paolo; Lollino, Piernicola; Manconi, Andrea

    2014-05-01

    InSAR and the Persistent Scatterer Interferometry (PSI) are well established techniques for monitoring urban and rural areas. Besides the large number of available SAR data in the past, the current and forthcoming space-borne SAR sensors offer the possibility of selecting the optimal acquisition configuration (wavelength, resolution, incidence angle, etc.) for each application. However, optimal data takes are not always possible and/or the processing area is difficult to analyse under an InSAR point of view. In such situations, additional and adaptive InSAR developments combined with other surveying techniques provide consistent solutions that meet the requirements of different application cases This work presents an advanced InSAR processing adapted for an active slow deformation landslide in a mountainous area. The presentation will show the benefits of applying advanced and adaptive filtering strategies for improving the InSAR quality in highly decorrelated environments. The availability of Artificial Corner Reflectors over the area of interest enables to tune the filtering procedure and thus maximize the detection and exploitation of natural targets (bare soil, roads, rocks) as measurement points while preserving the phase characteristics over individual and punctual targets (building corners, poles). The new results will be evaluated in terms of final density and quality of measurement points that can be retrieved. The results will show that a very high density of measurements improves the detection of the deformation gradients and its perimeters resulting in a more accurate characterization of the landslide area. The area of study is El Portalet, an active slow deformation landslide area in Central Spanish Pyrenees. During many years the slope of interest has been monitored with several surveying techniques like DGPS, extensometers, inclinometers, GB-SAR and InSAR jointly with an extensive geological interpretation. Currently, in the frame of the FP7 Project

  14. A fast Fourier transform (FFT)-based along track interferometry (ATI) approach to SAR-based ground moving target indication (GMTI)

    Science.gov (United States)

    Thomas, Daniel D.; Zhang, Yuhong

    2014-06-01

    Along-track interferometry (ATI) is used to detect ground moving targets against a stationary background in synthetic aperture radar (SAR) imagery. In this paper, we present a novel approach to multi-channel ATI wherein clutter cancellation is applied to each pixel of the multiple SAR images, followed by a Fourier transform to estimate range rate (Doppler). Range rate estimates allow us to compensate for the cross-range offset of the target, thus geo-locating the targets. We then present a number of benefits to this approach.

  15. Range Surveillance Using Radio Interferometry and TDOA Techniques Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation will utilize a small network of remote sensors (Figure 2.1) to perform Radio Interferometry (RI) and Time Difference of Arrival (TDOA)...

  16. Observation of a Large Landslide on La Reunion Island Using Differential Sar Interferometry (JERS and Radarsat) and Correlation of Optical (Spot5 and Aerial) Images.

    Science.gov (United States)

    Delacourt, Christophe; Raucoules, Daniel; Le Mouélic, Stéphane; Carnec, Claudie; Feurer, Denis; Allemand, Pascal; Cruchet, Marc

    2009-01-01

    Slope instabilities are one of the most important geo-hazards in terms of socio-economic costs. The island of La Réunion (Indian Ocean) is affected by constant slope movements and huge landslides due to a combination of rough topography, wet tropical climate and its specific geological context. We show that remote sensing techniques (Differential SAR Interferometry and correlation of optical images) provide complementary means to characterize landslides on a regional scale. The vegetation cover generally hampers the analysis of C-band interferograms. We used JERS-1 images to show that the L-band can be used to overcome the loss of coherence observed in Radarsat C-band interferograms. Image correlation was applied to optical airborne and SPOT 5 sensors images. The two techniques were applied to a landslide near the town of Hellbourg in order to assess their performance for detecting and quantifying the ground motion associated to this landslide. They allowed the mapping of the unstable areas. Ground displacement of about 0.5 m yr(-1) was measured.

  17. Topography and Penetration of the Greenland Ice Sheet Measured with Airborne SAR Interferometry

    DEFF Research Database (Denmark)

    Dall, Jørgen; Madsen, Søren Nørvang; Keller, K.

    2001-01-01

    A digital elevation model (DEM) of the Geikie ice sap in East Greenland has been generated from interferometric C-band synthetic aperture radar (SAR) data acquired with the airborne EMISAR system. GPS surveyed radar reflectors and an airborne laser altimeter supplemented the experiment. The accur......A digital elevation model (DEM) of the Geikie ice sap in East Greenland has been generated from interferometric C-band synthetic aperture radar (SAR) data acquired with the airborne EMISAR system. GPS surveyed radar reflectors and an airborne laser altimeter supplemented the experiment....... The accuracy of the SAR DEM is about 1.5 m. The mean difference between the laser heights and the SAR heights changes from 0 m in the soaked zone to a maximum of 13 m in the percolation zone. This is explained by the fact that the snow in the soaked zone contains liquid water which attenuates the radar signals......, while the transparency of the firn in the percolation zone makes volume scattering dominate at the higher elevations. For the first time, the effective penetration has been measured directly as the difference between the interferometric heights and reference heights obtained with GPS and laser altimetry....

  18. Slope Superficial Displacement Monitoring by Small Baseline SAR Interferometry Using Data from L-band ALOS PALSAR and X-band TerraSAR: A Case Study of Hong Kong, China

    Directory of Open Access Journals (Sweden)

    Fulong Chen

    2014-02-01

    Full Text Available Owing to the development of spaceborne synthetic aperture radar (SAR platforms, and in particular the increase in the availability of multi-source (multi-band and multi-resolution data, it is now feasible to design a surface displacement monitoring application using multi-temporal SAR interferometry (MT-InSAR. Landslides have high socio-economic impacts in many countries because of potential geo-hazards and heavy casualties. In this study, taking into account the merits of ALOS PALSAR (L-band, good coherence preservation and TerraSAR (X-band, high resolution and short revisit times data, we applied an improved small baseline InSAR (SB-InSAR with 3-D phase unwrapping approach, to monitor slope superficial displacement in Hong Kong, China, a mountainous subtropical zone city influenced by over-urbanization and heavy monsoonal rains. Results revealed that the synergistic use of PALSAR and TerraSAR data produces different outcomes in relation to data reliability and spatial-temporal resolution, and hence could be of significant value for a comprehensive understanding and monitoring of unstable slopes.

  19. Land subsidence monitoring by D-InSAR technique

    Institute of Scientific and Technical Information of China (English)

    Fan Hongdong; Deng Kazhong; Ju Chengyu; Zhu Chuanguang; Xue Jiqun

    2011-01-01

    Nowadays,the researches of using Differential Interferometric Synthetic Aperture Radar (D-InSAR) technique to monitor the land subsidence are mainly on how to qualitatively analyze the subsidence areas and values,but the analysis of subsidence process and mechanism are insufficient.In order to resolve these problems,6 scenes of ERS1/2 images captured during 1995 and 2000 in a certain place of Jiangsu province were selected to obtain the subsidence and velocities in three time segments by “two-pass” DInSAR method.Then the relationships among distributions of pumping wells,exploitation quantity of groundwater,and confined water levels were studied and the subsidence mechanism was systematically analyzed.The results show that using D-InSAR technique to monitor the deformation of large area can obtain high accuracies,the disadvantages of classical observation methods can be remedied and there is a linear relationship among the velocities of land subsidence,the water level and the exploitation quantity.

  20. SAR IMAGE ENHANCEMENT BASED ON BEAM SHARPENING TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    LIYong; ZI-IANGKun-hui; ZHUDai-yin; ZHUZhao-da

    2004-01-01

    A major problem encountered in enhancing SAR image is the total loss of phase information and the unknown parameters of imaging system. The beam sharpening technique, combined with synthetic aperture radiation pattern estimation provides an approach to process this kind of data to achieve higher apparent resolution. Based on the criterion of minimizing the expected quadratic estimation error, an optimum FIR filter with a symmetrical structure is designed whose coefficients depend on the azimuth response of local isolated prominent points because this response can be approximately regarded as the synthetic aperture radiation pattern of the imaging system. The point target simulation shows that the angular resolution is improved by a ratio of almost two to one. The processing results of a live SAR image demonstrate the validity of the method.

  1. Using Radar Interferometry (DinSAR) to Evaluate Land Subsidence Caused by Excessive Groundwater Withdrawal in Morocco

    Science.gov (United States)

    Durham, M. C.; Milewski, A.; El Kadiri, R.

    2013-12-01

    The combination of natural, anthropogenic, and climate change impacts on the water resources of the Middle East and North Africa (MENA) region has devastated its water resources well beyond its current and projected populations. The increased exploitation of groundwater resources in the past half-century coupled with successive droughts has resulted in the acceleration of subsidence rates in the Souss and Massa basins in Morocco. We have completed a preliminary investigation of these impacts on the Souss and Massa basins (~27,000 km2) in the southwestern part of Morocco. This area is characterized by a semi-arid climate (annual precipitation 70-250 mm/year) with agriculture, tourism, and commercial fishing as the primary economic activities, all of which require availability of adequate freshwater resources. Additionally the primary groundwater aquifer (Plio-Quaternary Plain Aquifer), an unconfined aquifer formed mostly of sand and gravel, is being harvested by >20,000 wells at a rate of 650 MCM/yr., exceeding the rate of recharge by 260 MCM/year. Intense development over the past 50 years has exposed the aquifer to a serious risk of groundwater table drawdown (0.5m-2.5m/yr.), land subsidence, loss of artesian pressure, salinization, salt water intrusions along the coast, and deterioration of water quality across the watershed. Differential Interferometry Synthetique Aperture Radar (DInSAR) was utilized to measure ground subsidence induced by groundwater withdrawal. Land subsidence caused by excessive groundwater extraction was determined using a threefold methodology: (1) extraction of subsidence and land deformation patterns using radar interferometry, (2) correlation of the high subsidence areas within the basins to possible natural and anthropogenic factors (e.g. sea level rise, unconsolidated lithological formations distribution, urbanization, excessive groundwater extraction), and (3) forecasting the future of the Souss and Massa basins over the next century

  2. Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau, by means of differential X-band SAR interferometry

    Directory of Open Access Journals (Sweden)

    N. Neckel

    2013-10-01

    Full Text Available Due to their remoteness, altitude and harsh climatic conditions, little is known about the glaciological parameters of ice caps on the Tibetan Plateau. This study presents a geodetic mass balance estimate of the Purogangri Ice Cap, Tibet's largest ice field between 2000 and 2012. We utilized data from the actual TerraSAR-X mission and its add-on for digital elevation measurements and compared it with elevation data from the Shuttle Radar Topography Mission. The employed data sets are ideal for this approach as both data sets were acquired at X-band at nearly the same time of the year and are available at a fine grid spacing. In order to derive surface elevation changes we employed two different methods. The first method is based on differential synthetic radar interferometry while the second method uses common DEM differencing. Both approaches revealed a slightly negative mass budget of −44 ± 15 and −38 ± 23 mm w.eq. a−1 (millimeter water equivalent respectively. A slightly negative trend of −0.15 ± 0.01 km2 a−1 in glacier extent was found for the same time period employing a time series of Landsat data. Overall, our results show an almost balanced mass budget for the studied time period. Additionally, we detected one continuously advancing glacier tongue in the eastern part of the ice cap.

  3. A New Method of Coherence Optimization Based on the Phase and Coherence Magnitude in Polarimetric SAR Interferometry

    Directory of Open Access Journals (Sweden)

    LONG Jiangping

    2017-01-01

    Full Text Available The complex coherence of polarimetric synthetic aperture radar interferometry (PolInSAR includes the magnitude and phase. The magnitude of coherence is used to measure the quality of the interference phase, and phase center represents the position of the scattering. So, how to improve the accuracy of the coherence magnitude and phase is very important for the forest parameters inversion. Maximum difference of the coherence magnitude or maximum separation of the phase, based on the coherence region, is considered partial information of the complex coherence. In this paper, a new method of coherence optimization, combined with the coherence magnitude and phase information, is established with relational degree. Applied the new approach to estimate the optimal coherence, the optimal polarimetric state of the scattering can be obtained to estimate the optimization coherence. Experimental results show that the optimal coherence criterion, jointed coherence magnitude and phase, can effectively distinguish the phase center of surface scattering and the forest canopy, and improve the reliability of the forest height inversion.

  4. Quick and Heterogeneous Glacier Downwasting at Everest (Qomolangma) from 2000 to 2012 Based on Bistatic SAR Interferometry

    Science.gov (United States)

    Hui, Lin; Gang, Li; Jiang, Liming; Hopper, Andrew

    2016-08-01

    Himalayan and its surroundings distribute the world's largest part of low-latitude high-altitude glaciers and contributed about 10% of total glacier mass lost in recent decade. Remote sensing geodetic observation including satellite altimetry and topography are alternatives of mapping glacier height changes given the harsh environment of in-situ observations. In this research, we applied two pairs of X-band bistatic TerraSAR-X/TanDEM-X images obtained in 2011 and 2012 and formed TanDEM-X DEM with bistatic interferometry. By referring to C and X-band SRTM obtained in 2000. Glacier Mass balance for Everest and its surroundings was -0.446 ± 0.120 m w.e. a-1. Glacier lost at south slope was a bit more severe than north slope, which are -0.481 ± 0.129 m w.e. a-1 and -0.419 ± 0.119 m w.e. a-1. Basically debris-cover suppressed glacier mass lost at most elevations, however for long and large glacier such as Rongbuk, at high elevation debris-cover leaded to a higher lost rate. Comparing to previous study derived glaciers mass balance with stereo photogrammetry, glacier lost rate accelerated in last few decades for the whole Everest region. Two largest glaciers, Rongbuk Glacier at north slope and Khumbu Glacier at south slope both presented increasing mass lost rates.

  5. Progression of Stellar Intensity Interferometry techniques using 3 meter telescopes at StarBase-Utah

    Science.gov (United States)

    Matthews, Nolan; Kieda, Dave; Lebohec, Stephan

    2015-04-01

    The emergence of large air Cherenkov telescope arrays have opened up the potential for high-resolution imaging of stellar surfaces using Intensity Interferometry techniques. Stellar Intensity Interferometry (SII) allows coverage into the optical and ultraviolet frequency bands which are traditionally inaccessible to classical Michelson interferometry. The relative insensitivity to atmospheric turbulence allows for unprecedented angular resolution scales as the baselines between telescopes can be made very large (>100m) without the need for precise spatial resolution as required by Michelson interferometry. In this talk I will illustrate the science capabilities of the SII technique and describe the progress achieved in developing a modern Stellar Intensity Interferometry system with a pair of 3 meter diameter optical telescopes located at StarBase-Utah. In particular, I will discuss the current status of the StarBase-Utah observatory and present results from two telescope low frequency optical correlation observations of the optical Crab pulsar. These measurements provide a first step towards actual intensity interferometry observations and establish the working condition of the StarBase-Utah telescopes.

  6. High-Accuracy Elevation Data at Large Scales from Airborne Single-Pass SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Guy Jean-Pierre Schumann

    2016-01-01

    Full Text Available Digital elevation models (DEMs are essential data sets for disaster risk management and humanitarian relief services as well as many environmental process models. At present, on the hand, globally available DEMs only meet the basic requirements and for many services and modeling studies are not of high enough spatial resolution and lack accuracy in the vertical. On the other hand, LiDAR-DEMs are of very high spatial resolution and great vertical accuracy but acquisition operations can be very costly for spatial scales larger than a couple of hundred square km and also have severe limitations in wetland areas and under cloudy and rainy conditions. The ideal situation would thus be to have a DEM technology that allows larger spatial coverage than LiDAR but without compromising resolution and vertical accuracy and still performing under some adverse weather conditions and at a reasonable cost. In this paper, we present a novel single pass In-SAR technology for airborne vehicles that is cost-effective and can generate DEMs with a vertical error of around 0.3 m for an average spatial resolution of 3 m. To demonstrate this capability, we compare a sample single-pass In-SAR Ka-band DEM of the California Central Valley from the NASA/JPL airborne GLISTIN-A to a high-resolution LiDAR DEM. We also perform a simple sensitivity analysis to floodplain inundation. Based on the findings of our analysis, we argue that this type of technology can and should be used to replace large regions of globally available lower resolution DEMs, particularly in coastal, delta and floodplain areas where a high number of assets, habitats and lives are at risk from natural disasters. We conclude with a discussion on requirements, advantages and caveats in terms of instrument and data processing.

  7. High-Accuracy Elevation Data at Large Scales from Airborne Single-Pass SAR Interferometry

    Science.gov (United States)

    Schumann, Guy; Moller, Delwyn; Mentgen, Felix

    2015-12-01

    Digital elevation models (DEMs) are essential data sets for disaster risk management and humanitarian relief services as well as many environmental process models. At present, on the hand, globally available DEMs only meet the basic requirements and for many services and modeling studies are not of high enough spatial resolution and lack accuracy in the vertical. On the other hand, LiDAR-DEMs are of very high spatial resolution and great vertical accuracy but acquisition operations can be very costly for spatial scales larger than a couple of hundred square km and also have severe limitations in wetland areas and under cloudy and rainy conditions. The ideal situation would thus be to have a DEM technology that allows larger spatial coverage than LiDAR but without compromising resolution and vertical accuracy and still performing under some adverse weather conditions and at a reasonable cost. In this paper, we present a novel single pass In-SAR technology for airborne vehicles that is cost-effective and can generate DEMs with a vertical error of around 0.3 m for an average spatial resolution of 3 m. To demonstrate this capability, we compare a sample single-pass In-SAR Ka-band DEM of the California Central Valley from the NASA/JPL airborne GLISTIN-A to a high-resolution LiDAR DEM. We also perform a simple sensitivity analysis to floodplain inundation. Based on the findings of our analysis, we argue that this type of technology can and should be used to replace large regions of globally available lower resolution DEMs, particularly in coastal, delta and floodplain areas where a high number of assets, habitats and lives are at risk from natural disasters. We conclude with a discussion on requirements, advantages and caveats in terms of instrument and data processing.

  8. Inflation of Aira Caldera (Japan detected over Kokubu urban area using SAR interferometry ERS data

    Directory of Open Access Journals (Sweden)

    D. Remy

    2006-08-01

    Full Text Available Nine ERS-1 and ERS-2 descending orbit data acquired over the Aira Caldera between June 1995 and November 1998 were used to create 31 differential interferograms. Although the interferograms exhibit a relatively low level of coherence, even for couples sampling short time intervals (6 months, Differential Interferometric Synthetic Aperture Radar (DinSAR reveals a pattern of range change signal during the observation period in the urban area of Kokubu city. The analysis of the ground deformation time series relative to the earliest ERS images evidenced a maximum uplift of 23 mm between the north and the south of the city during the studied period. Taking the reduced surface of the coherent area into account, we performed a simple modelling of the deformation field assuming a spherical inflating source within an elastic half-space medium. This simple model predicts a source located beneath the centre of Aira Caldera with a maximum volume increase of 30 106 m3 between 1995 and 1997, which would produced an inflation of about 7 cm of the centre of Aira Caldera and 4 cm of the south of Kokubu city. These results are in good agreement with other geophysical observations carried out on Aira caldera during this unrest period. Despite the limited spatial extent of the coherent areas around Aira Caldera, this study shows that DinSAR method using ERS data can be successfully used to detect subtle ground displacement changes of the volcanic complex and thus provides complementary information to ground-based geodetic monitoring of dynamic processes at Aira Caldera and Sakurajima volcano.

  9. Focal mechanism analysisand parameter estimation of Zhangbei-Shangyi earthquake from differential SAR interferometry

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    On 10 January, 1998 an earthquake of Ms=6.2occurred in the Zhangbei-Shangyi region of North China.The surface seismic deformation was measured in the previous study using the 3 pass ERS-1/2 SAR differential interferometric technology (D-INSAR). In this note the focal mechanism of Zhangbei-Shangyi earthquake is estimated from the D-INSAR measurement of surface deformation based on a standard elastic dislocation model for seismic displacement. The inversion procedure is an iterative, linear least-squares algorithm. Through the relation between the focal parameters and displacement in the line of sight direction measured in the radar interferogram, the optimum focal parameter set is derived. The results show that the seismic fault of Zhangbei-Shangyi earthquake is a thrust fault dipping SW with a large right-lateral displacement component.The strike and dip are 95° and 30° respectively on a fault patch of 12 km long by 14 km wide. Its hypocenter is located at N40°58', E114°21', and 7.5 km in depth. The estimated slip vector is 0.728 m with a rake of 105.95°, the trend of slip is NW13.26°, and M0is 2.69×1018 N @ m.

  10. Combining L- and X-Band SAR Interferometry to Assess Ground Displacements in Heterogeneous Coastal Environments: The Po River Delta and Venice Lagoon, Italy

    Directory of Open Access Journals (Sweden)

    Luigi Tosi

    2016-04-01

    Full Text Available From leveling to SAR-based interferometry, the monitoring of land subsidence in coastal transitional environments significantly improved. However, the simultaneous assessment of the ground movements in these peculiar environments is still challenging. This is due to the presence of relatively small built-up zones and infrastructures, e.g., coastal infrastructures, bridges, and river embankments, within large natural or rural lands, e.g., river deltas, lagoons, and farmland. In this paper we present a multi-band SAR methodology to integrate COSMO-SkyMed and ALOS-PALSAR images. The method consists of a proper combination of the very high-resolution X-band Persistent Scatterer Interferometry (PSI, which achieves high-density and precise measurements on single structures and constructed areas, with L-band Short-Baseline SAR Interferometry (SBAS, properly implemented to raise its effectiveness in retrieving information in vegetated and wet zones. The combined methodology is applied on the Po River Delta and Venice coastland, Northern Italy, using 16 ALOS-PALSAR and 31 COSMO-SkyMed images covering the period between 2007 and 2011. After a proper calibration of the single PSI and SBAS solution using available GPS records, the datasets have been combined at both the regional and local scales. The measured displacements range from ~0 mm/yr down to −35 mm/yr. The results reveal the variable pattern of the subsidence characterizing the more natural and rural environments without losing the accuracy in quantifying the sinking of urban areas and infrastructures. Moreover, they allow improving the interpretation of the natural and anthropogenic processes responsible for the ongoing subsidence.

  11. The Space-Borne SBAS-DInSAR Technique as a Supporting Tool for Sustainable Urban Policies: The Case of Istanbul Megacity, Turkey

    Directory of Open Access Journals (Sweden)

    Fabiana Calò

    2015-12-01

    Full Text Available In today’s urbanizing world, home of 28 megacities, there is a growing need for tools to assess urban policies and support the design and implementation of effective development strategies. Unsustainable practices of urbanization bring major implications for land and environment, and cause a dramatic increase of urban vulnerability to natural hazards. In Istanbul megacity, disaster risk reduction represents a challenging issue for urban managers. In this paper, we show the relevance of the space-borne Differential SAR Interferometry (DInSAR technique as a tool for supporting risk management, and thus contributing to achieve the urban sustainability. To this aim, we use a dataset of high resolution SAR images collected by the TerraSAR-X satellite that have been processed through the advanced (multi-temporal Small BAseline Subset (SBAS—DInSAR technique, thus producing spatially-dense deformation velocity maps and associated time-series. Results allow to depict an up-to-date picture of surface deformations occurring in Istanbul, and thus to identify urban areas subject to potential risk. The joint analysis of remotely sensed measurements and ancillary data (geological and urban development information provides an opportunity for city planners and land professionals to discuss on the mutual relationship between urban development policies and natural/man-made hazards.

  12. SAR Image Segmentation using Vector Quantization Technique on Entropy Images

    CERN Document Server

    Kekre, H B; Sarode, Tanuja K

    2010-01-01

    The development and application of various remote sensing platforms result in the production of huge amounts of satellite image data. Therefore, there is an increasing need for effective querying and browsing in these image databases. In order to take advantage and make good use of satellite images data, we must be able to extract meaningful information from the imagery. Hence we proposed a new algorithm for SAR image segmentation. In this paper we propose segmentation using vector quantization technique on entropy image. Initially, we obtain entropy image and in second step we use Kekre's Fast Codebook Generation (KFCG) algorithm for segmentation of the entropy image. Thereafter, a codebook of size 128 was generated for the Entropy image. These code vectors were further clustered in 8 clusters using same KFCG algorithm and converted into 8 images. These 8 images were displayed as a result. This approach does not lead to over segmentation or under segmentation. We compared these results with well known Gray L...

  13. Investigation of subsidence in the Manfredonia Gulf (Southern Italy) through multitemporal DInSAR techniques

    Science.gov (United States)

    Triggiani, M.; Refice, A.; Capolongo, D.; Bovenga, F.; Caldara, M.

    2009-04-01

    tourist sea village "Ippocampo". Here, unpublished studies based on ground data indicate average subsidence rates of the order of 0.20 mm/y in the last 125 ka for the inland area next to the village. More recently, height maps issued by the Italian Military Geographic Institute (IGM) in the 1950s report heights a.s.l. of the order of a few m. Observing that today the area is practically at sea level, an average subsidence of the order of tens of mm/y can be inferred for the last 50 years. To gain insight into the recent evolution of these phenomena, we investigate vertical movements on the coastal Tavoliere area through multitemporal differential Interferometric synthetic aperture radar (DInSAR) techniques. We use a persistent scatterers interferometry (PSI) processing methodology [2] to estimate subsidence displacement rates from long temporal series of SAR acquisitions. PSI techniques, first developed at POLIMI [3], allow to retrieve phase information from stacks of co-registered SAR interferograms spanning many years and taken from different directions with large baselines, by restricting the analysis to selected image pixels containing single objects with strong radar backscatter returns. Exploiting the high temporal stability of radar returns from these targets, it is possible to correct the images from spurious phase contributions such as atmospheric phase artefacts and errors in the digital elevation models used to account for topographic InSAR phase. Such stable objects typically coincide with man-made features, so successful applications of PSI techniques are mainly reported over urban centers. We processed a total of 105 SAR images acquired from the ERS-1/2 and ENVISAT satellites, organized in 3 stacks related to both descending (50 ERS-1/2 scenes) and ascending (25 ERS-1/2 and 30 ENVISAT scenes) acquisition geometries. The acquisitions refer to the temporal periods from 1995 to 2000 (ERS) and 2003 to 2008 (ENVISAT), respectively, with a temporal repetition

  14. Mapping Ground Subsidence Phenomena in Ho Chi Minh City through the Radar Interferometry Technique Using ALOS PALSAR Data

    Directory of Open Access Journals (Sweden)

    Dinh Ho Tong Minh

    2015-07-01

    Full Text Available The rapidly developing urbanization since the last decade of the 20th century has led to extensive groundwater extraction, resulting in subsidence in Ho Chi Minh City, Vietnam. Recent advances in multi-temporal spaceborne SAR interferometry, especially with a persistent scatters interferometry (PSI approach, has made this a robust remote sensing technique for measuring large-scale ground subsidence with millimetric accuracy. This work has presented an advanced PSI analysis, to provide an unprecedented spatial extent and continuous temporal coverage of the subsidence in Ho Chi Minh City from 2006 to 2010. The study shows that subsidence is most severe in the Holocene silt loam areas along the Sai Gon River and in the southwest of the city. The groundwater extraction resulting from urbanization and urban growth is mainly responsible for the subsidence. Subsidence in turn leads to more flooding and water nuisance. The correlation between the reference leveling velocity and the estimated PSI result is R2 = 0.88, and the root mean square error is 4.3 (mm/year, confirming their good agreement. From 2006 to 2010, the estimation of the average subsidence rate is -8.0 mm/year, with the maximum value up to -70 mm/year. After four years, in regions along Sai Gon River and in the southwest of the city, the land has sunk up to -12 cm. If not addressed, subsidence leads to the increase of inundation, both in frequency and spatial extent. Finally, regarding climate change, the effects of subsidence should be considered as appreciably greater than those resulting from rising sea level. It is essential to consider these two factors, because the city is inhabited by more than 7.5 million people, where subsidence directly impacts urban structures and infrastructure.

  15. Comparison of Methods to Derive Forest Height from Polarimetric SAR Interferometry

    Science.gov (United States)

    Bauboin, Charles; de Marsily, Ghislain; Ledoux, Emmanuel; Li, Jiren; Xin, Jingfeng; Huang, Shifeng

    2008-04-01

    The Shiguanhe river basin is subjected to strong human pressure; it faces severe water management problems, concerning flooding and irrigation in particular. This basin is a complex hydraulic system, including many dams and irrigation channels. Here, an attempt at developing a complete water resources assessment is proposed. The tools for this assessment are described: they concern both hydrological modelling and remote sensing. A specific methodology has been adopted to represent the irrigation, in a three-step approach. Firstly the irrigation outside the basin, secondly the irrigation inside the basin, and lastly the rice farming techniques impacts on the basin's hydrological behaviour are taken into account. Finally, we obtained a good representation of the major hydrological processes taking place in such a complex human-modified system.

  16. Using radar interferometry and SBAS technique to detect surface subsidence relating to coal mining in Upper Silesia from 1993-2000 and 2003-2010

    Directory of Open Access Journals (Sweden)

    Nádudvari Ádám

    2016-03-01

    Full Text Available In the presented research ERS1-2 and Envisat ASAR archive data were used for the periods 1993 – 2000 and 2003 – 2010. The radar images were acquired over Upper Silesia in southern Poland. DinSAR (Differential InSAR and SBAS (Small Baseline Subset methods were applied for the detection of the most subsided areas. The DinSAR images were layer stacked for an image using 26 interferometry pairs of ERS1-2 SAR and 16 pairs from Envisat ASAR images in an ascending-descending orbit combination. The stacking of these images showed the most subsided parts of these cities even under low coherent areas, but the results are less precise. In the Upper Silesian Coal Basin, intensive underground coal exploitation has resulted in several surface deformations under Bytom (~8-17 km2, Piekary Śląskie (~9-15 km2, Ruda Śląska (~32-42 km2 and Katowice (~20-23 km2 with 25-40 cm of subsidence (in general in the studied time periods. The SBAS technique has also shown that coal mining caused subsidence in the cities of Bytom, Katowice, and Piekary Śląskie of 5-7 cm/yr. The presented SBAS method did not work for low coherent areas, e.g. dense forested areas. DInSAR data also pointed to several decreasingly less active mining areas, which relate to the mine closures in Bytom and Ruda Śląska, which is also verified by the time series analysis.

  17. Advanced interpretation of ground motion using Persistent Scatterer Interferometry technique: the Alto Guadalentín Basin (Spain) case of study

    Science.gov (United States)

    Bonì, Roberta; Herrera, Gerardo; Meisina, Claudia; Notti, Davide; Zucca, Francesco; Bejar, Marta; González, Pablo; Palano, Mimmo; Tomás, Roberto; Fernandez, José; Fernández-Merodo, José; Mulas, Joaquín; Aragón, Ramón; Mora, Oscar

    2014-05-01

    Subsidence related to fluid withdrawal has occurred in numerous regions of the world. The phenomena is an important hazard closely related to the development of urban areas. The analysis of the deformations requires an extensive and continuous spatial and temporal monitoring to prevent the negative effects of such risks on structures and infrastructures. Deformation measurements are fundamental in order to identify the affected area extension, to evaluate the temporal evolution of deformation velocities and to identify the main control mechanisms. Differential SAR interferometry represents an advanced remote sensing tool, which can map displacements at very high spatial resolution. The Persistent Scatterer Interferometry (PSI) technique is a class of SAR interferometry that uses point-wise radar targets (PS) on the ground whose phase is not interested by temporal and geometrical decorrelation. This technique generates starting from a set of images two main products: the displacement rate along line of sight (LOS) of single PS; and the LOS displacement time series of individual PS. In this work SAR data with different spatio-temporal resolution were used to study the displacements that occur from 1992 to 2012 in the Alto Guadalentin Basin (southern Spain), where is located the city of Lorca The area is affected by the highest rate of subsidence measured in Europe (>10 cm/yr-1) related to long-term exploitation of the aquifer (González et al. 2011). The objectives of the work were 1) to analyse land subsidence evolution over a 20-year period with PSI technique; 2) to compare the spatial and temporal resolution of SAR data acquired by different sensors, 3) to investigate the causes that could explain this land motion. The SAR data have been obtained with ERS-1/2 & ENVISAT (1992-2007), ALOS PALSAR (2007-2010) and COSMO-SkyMed (2011-2012) images, processed with the Stable Point Network (SPN) technique. The PSI data obtained from different satellite from 1992 to 2012

  18. Tide-corrected strain rate and crevasses of Campbell Glacier Tongue in East Antarctica measured by SAR interferometry

    Science.gov (United States)

    Han, H.; Lee, H.

    2016-12-01

    Measurement of flow velocity strain rate of a floating glacier is critical to the investigation of detailed flow regime and crevassing mechanism. We measured the surface deformation of Campbell Glacier Tongue (CGT) in East Antarctica from the 14 COSMO-SkyMed one-day tandem differential interferometric SAR (DInSAR) image pairs obtained in 2011. By removing the vertical tidal deflection obtained from the double-differential InSAR (DDInSAR) signals, we derived the tide-corrected ice-flow velocity and strain rate of CGT. The vertical tidal deflection of CGT was estimated by multiplying the tidal variations corresponding to the DInSAR images by the DDInSAR-derived tide deflection ratio, which was removed from the DInSAR signals to extract ice velocity only. The orientation of crevasses in CGT was nearly perpendicular to the direction of the most tensile strain rate calculated from the tide-corrected ice velocity. This demonstrates that the crevasses form by ice flow in respect of the DInSAR accuracy, not by tidal deflection. The tide correction of DInSAR signals over floating glaciers by using the DDInSAR-derived tide deflection ratio is useful for estimating accurate ice velocity and strain rate for analyzing crevasses. The tide-corrected ice velocity and strain rate will thus be of great value in a better understating of ice dynamics of floating glaciers. This research was funded by National Research Foundation of Korea (NRF-2016R1D1A1A09916630).

  19. PolinSAR coherence optimisation for deformation measurement in an agricultural region

    CSIR Research Space (South Africa)

    Engelbrecht, Jeanine

    2015-10-01

    Full Text Available aims to address the known limitations of traditional dInSAR in the presence of disturbances to reflected signals due to agricultural activities by testing the polarimetric interferometry (polInSAR) technique for its ability to increase interferometric...

  20. Monitoring of Non-Linear Ground Movement in an Open Pit Iron Mine Based on an Integration of Advanced DInSAR Techniques Using TerraSAR-X Data

    Directory of Open Access Journals (Sweden)

    José Claudio Mura

    2016-05-01

    Full Text Available This work presents an investigation to determine ground deformation based on an integration of DInSAR Time-Series (DTS and Persistent Scatterer Interferometry (PSI techniques aiming at detecting high rates of linear and non-linear ground movement. The combined techniques were applied in an open pit iron mine located in Carajás Mineral Province (Brazilian Amazon region, using a set of 33 TerraSAR-X-1 images acquired from March 2012 to April 2013 when, due to a different deformation behavior during the dry and wet seasons in the Amazon region, a non-linear deformation was detected. The DTS analysis was performed on a stack of multi-look unwrapped interferograms using an extension of the SVD (Singular Value Decomposition, where a set of additional weighted constraints on the acceleration of the displacement was incorporated to control the smoothness of the time-series solutions, whose objective was to correct the atmospheric phase artifacts. The height errors and the deformation history provided by the DTS technique were used as previous information to perform the PSI analysis. This procedure improved the capability of the PSI technique to detect non-linear movement as well as to increase the numbers of point density of the final results. The results of the combined techniques are presented and compared with total station/prisms and ground-based radar (GBR measurements.

  1. Tectonic, volcanic and human activity ground deformation signals detected by multitemporal InSAR techniques in the Colima Volcanic Complex (Mexico) rift

    Science.gov (United States)

    Brunori, C.; Norini, G.; Bignami, C.; Groppelli, G.; Zucca, F.; Stramondo, S.; Capra, L.; Cabral-Cano, E.

    2010-12-01

    The evolution of volcanoes is strictly related with their substratum and the regional tectonics. The link among morphology, geology and structure of volcanic edifices and the geological-structural characteristics of the basement is important to understand hazardous phenomena as flank eruptions and lateral collapses of volcanoes. The Colima Rift is an active regional structure, N-S oriented and more than 100 km long and 10 wide. This rift is filled by a ~1 km-thick sequence of quaternary lacustrine sediments, alluvium, and colluvium, mostly underling the about 3000 m thick volcanic pile of the Colima Volcanic Complex (CVC). In addition to the regional structures curved faults, roughly E-W oriented, are observed on the CVC edifice due to the spreading of the volcano moving southward on the weak basement. So in the CVC edifice and surrounding area we can observe the interaction of regional structures and volcanic ones due to the gravitational loading of the volcanic edifice on the weak substratum of the graben. To measure displacements due to magma movement at depth and interaction of regional structures and volcanic ones, SAR interferometry has proven to be a reliable method; however, andesitic stratovolcanoes like the CVC indeed,remain difficult to survey using this technique. The main causes are their specific geometry (steep topography), which induces strong tropospheric artefacts, environmental conditions (e.g., mainly vegetation, ash and/or snow cover), leading to a loss of coherency. In this work we try to detect deformations phenomena for the wide CVC using a robust multitemporal InSAR approach Differential Synthetic Aperture Radar Interferometry (DInSAR). We apply the Hooper (2008) DInSAR algorithm (StamPS/MTI) both to ENVISAT ASARr images acquired from 1993 to 2007 and to ALOS PALSAR (datasets from 2006 to 2010) in order to determine the deformation patterns in the CVC.

  2. Color fusion of SAR and FLIR images using a natural color transfer technique

    Institute of Scientific and Technical Information of China (English)

    Shaoyuan Sun; Zhongliang Jing; Zhenhua Li; Gang Liu

    2005-01-01

    Fusion of synthetic aperture radar (SAR) and forward looking infrared (FLIR) images is an important subject for aerospace and sensor surveillance. This paper presents a scheme to achieve a natural color image based on the contours feature of SAR and the target region feature of FLIR so that the overall scene recognition and situational awareness can be improved. The SAR and FLIR images are first decomposed into steerable pyramids, and the contour maps in the SAR image and the region maps in the FLIR image are calculated. The contour and region features are fused at each level of the steerable pyramids. A color image is then formed by transferring daytime color to the monochromic image by using the natural color transfer technique. Experimental results show that the proposed method is effective in providing a color fusion of SAR and FLIR images.

  3. Monitoring the slope movement of the Shuping landslide in the Three Gorges Reservoir of China, using X-band time series SAR interferometry

    Science.gov (United States)

    Liu, Guang; Guo, Huadong; Perski, Zbigniew; Fan, Jinghui; Bai, Shibiao; Yan, Shiyong; Song, Rui

    2016-06-01

    As the largest water conservation project in China, the Three Gorges Reservoir has attracted a lot of attention. However, the rise in water level due to the dam operation has caused many ecological problems. Since the impoundment of the Three Gorges Reservoir in the year 2003, many landslides have taken place. The Shuping landslide is a reactivated landslide and has been continuously moving since the impoundment. It has resulted in serious dangers to local residence and the role of the Yangtze River as an inland waterway. Spaceborne Synthetic Aperture Radar (SAR) sensors obtain images periodically and regionally, from which the characteristics of the slope movement could be obtained timely and cost effectively. In this study, an adapted time series InSAR technique considering SRTM bias is proposed and used to process TerraSAR-X strip map images with 3 meters resolution which collected in the first quarter of 2012. Compared with previous studies with low resolution SAR data, our results obtain much more stable points and reveal the movement pattern of the active slope of Shuping landslide in detail, and they show that there are two main landslide bodies obviously; one is located in the eastern part of the landslide, while the other is located in the western part of the landslide, the movement velocity is up to 40 mm month-1, and the results are well-consistent with the in situ results. Furthermore the active movement boundaries was identified through analysing the time series InSAR results, the shape of the landslide is chair-like, and the boundaries lie mostly along ditches. The results show that more details about the landslide could be revealed using the proposed time series InSAR method and high resolution TerraSAR-X SAR data, and this provide a more comprehensive way for landslide movement monitoring, which will be useful for landslide management.

  4. The contribute of DInSAR techniques to landslide hazard evaluation in mountain and hilly regions: a case study from Agno Valley (North-Eastern Italian Alps)

    Science.gov (United States)

    De Agostini, A.; Floris, M.; Pasquali, P.; Barbieri, M.; Cantone, A.; Riccardi, P.; Stevan, G.; Genevois, R.

    2012-04-01

    In the last twenty years, Differential Synthetic Aperture Radar Interferometry (DInSAR) techniques have been widely used to investigate geological processes, such as subsidence, earthquakes and landslides, through the evaluation of earth surface displacements caused by these processes. In the study of mass movements, contribution of interferometry can be limited due to the acquisition geometry of RADAR images and the rough morphology of mountain and hilly regions which represent typical landslide-prone areas. In this study, the advanced DInSAR techniques (i.e. Small Baseline Subset and Persistent Scatterers techniques), available in SARscape software, are used. These methods involve the use of multiple acquisitions stacks (large SAR temporal series) allowing improvements and refinements in landslide identification, characterization and hazard evaluation at the basin scale. Potential and limits of above mentioned techniques are outlined and discussed. The study area is the Agno Valley, located in the North-Eastern sector of Italian Alps and included in the Vicenza Province (Veneto Region, Italy). This area and the entire Vicenza Province were hit by an exceptional rainfall event on November 2010 that triggered more than 500 slope instabilities. The main aim of the work is to verify if spatial information available before the rainfall event, including ERS and ENVISAT RADAR data from 1992 to 2010, were able to predict the landslides occurred in the study area, in order to implement an effectiveness forecasting model. In the first step of the work a susceptibility analysis is carried out using landslide dataset from the IFFI project (Inventario Fenomeni Franosi in Italia, Landslide Italian Inventory) and related predisposing factors, which consist of morphometric (elevation, slope, aspect and curvature) and non-morphometric (land use, distance of roads and distance of river) factors available from the Veneto Region spatial database. Then, to test the prediction, the

  5. Development of High Speed Interferometry Imaging and Analysis Techniques for Compressible Dynamic Stall

    Science.gov (United States)

    Chandrasekhara, M. S.; Carr, L. W.; Wilder, M. C.

    1998-01-01

    The development of a high-speed, phase-locked, realtime, point diffraction interferometry system for quantitative imaging unsteady separated flows is described. The system enables recording of up to 224 interferograms of the dynamic stall flow over an oscillating airfoil using a drum camera at rates of up to 40 KHz controlled by custom designed electronic interlocking circuitry. Several thousand interferograms of the flow have been obtained using this system. A comprehensive image analysis package has been developed for automatic processing of this large number of images. The software has been specifically tuned to address the special characteristics of airfoil flow interferograms. Examples of images obtained using the standard and the high-speed interferometry techniques are presented along with a demonstration of the image processing routine's ability to resolve the fine details present in these images.

  6. Experiments of Tomography-Based SAR Techniques with P-Band Polarimetric Data

    Science.gov (United States)

    Lombardini, F.; Pardini, M.

    2009-04-01

    New opportunities are arising in the synthetic aperture radar (SAR) observation of forest scenarios, especially with decimetric and metric radio wavelengths, which possess the capability of penetrating into volumes. Given its capabilities in the three-dimensional imaging of the scattering properties of the observed scene, SAR Tomography (Tomo-SAR) constitutes a good candidate for the analysis of the vertical structure of the forest. In this work, the results are presented of the application of tomography-based SAR techniques to P-band airborne data over a boreal forest from the ESA BioSAR-1 project. Results of an adaptive tomographic analysis are presented, also with a low resolution dataset, which emulates a satellite acquisition. In order to mitigate the geometric perspective effects due to the poor range resolution, the principle is introduced of the application of a common band pre-filtering to tomography. Then, a coherent layer canceller is derived to possibly apply interferometric techniques conceived for single layer scenarios to two layer scenarios. Finally, a stabilized adaptive polarimetric Tomo-SAR (PolTomo-SAR) method is proposed for estimating the 3D polarimetric scattering mechanism of the scene with low distorsions.

  7. Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D J; Smith, R F; Bolme, C; Celliers, P; Collins, G

    2011-03-23

    We describe the data analysis procedures for an emerging interferometric technique for measuring motion across a two-dimensional image at a moment in time, i.e. a snapshot 2d-VISAR. Velocity interferometers (VISAR) measuring target motion to high precision have been an important diagnostic in shockwave physics for many years Until recently, this diagnostic has been limited to measuring motion at points or lines across a target. We introduce an emerging interferometric technique for measuring motion across a two-dimensional image, which could be called a snapshot 2d-VISAR. If a sufficiently fast movie camera technology existed, it could be placed behind a traditional VISAR optical system and record a 2d image vs time. But since that technology is not yet available, we use a CCD detector to record a single 2d image, with the pulsed nature of the illumination providing the time resolution. Consequently, since we are using pulsed illumination having a coherence length shorter than the VISAR interferometer delay ({approx}0.1 ns), we must use the white light velocimetry configuration to produce fringes with significant visibility. In this scheme, two interferometers (illuminating, detecting) having nearly identical delays are used in series, with one before the target and one after. This produces fringes with at most 50% visibility, but otherwise has the same fringe shift per target motion of a traditional VISAR. The 2d-VISAR observes a new world of information about shock behavior not readily accessible by traditional point or 1d-VISARS, simultaneously providing both a velocity map and an 'ordinary' snapshot photograph of the target. The 2d-VISAR has been used to observe nonuniformities in NIF related targets (polycrystalline diamond, Be), and in Si and Al.

  8. Physically-Based Interactive Flow Visualization Based on Schlieren and Interferometry Experimental Techniques

    KAUST Repository

    Brownlee, C.

    2011-11-01

    Understanding fluid flow is a difficult problem and of increasing importance as computational fluid dynamics (CFD) produces an abundance of simulation data. Experimental flow analysis has employed techniques such as shadowgraph, interferometry, and schlieren imaging for centuries, which allow empirical observation of inhomogeneous flows. Shadowgraphs provide an intuitive way of looking at small changes in flow dynamics through caustic effects while schlieren cutoffs introduce an intensity gradation for observing large scale directional changes in the flow. Interferometry tracks changes in phase-shift resulting in bands appearing. The combination of these shading effects provides an informative global analysis of overall fluid flow. Computational solutions for these methods have proven too complex until recently due to the fundamental physical interaction of light refracting through the flow field. In this paper, we introduce a novel method to simulate the refraction of light to generate synthetic shadowgraph, schlieren and interferometry images of time-varying scalar fields derived from computational fluid dynamics data. Our method computes physically accurate schlieren and shadowgraph images at interactive rates by utilizing a combination of GPGPU programming, acceleration methods, and data-dependent probabilistic schlieren cutoffs. Applications of our method to multifield data and custom application-dependent color filter creation are explored. Results comparing this method to previous schlieren approximations are finally presented. © 2011 IEEE.

  9. Three-dimensional coastal geomorphology deformation modelling using differential synthetic aperture interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Marghany, Maged [Universiti Teknologi Malaysia, Skudai, Johor Bahru (Malaysia). Inst. for Science and Technology Geospatial (INSTeG)

    2012-06-15

    This work presents a new approach for three-dimensional (3D) coastal deformation simulation using differential synthetic aperture interferometry (DInSAR). In doing so, conventional InSAR procedures are implemented to three repeat passes of RADARSAT-1 SAR fine mode data (F1). Further, the DInSAR method is implemented with the phase unwrapping technique. Consequently, DInSAR is used to eliminate the phase decorrelation impact from the interferograms. The study shows the accurate performance of DInSAR with a root mean square error of 0.02 {+-} 0.21 m and 90% confidence intervals. In conclusion, the DInSAR technique produces an accurate 3D coastal geomorphology reconstruction. (orig.)

  10. 极化干涉 SAR 相干最优理论及其验证分析%Basic Theory and Analysis of Polarimetric SAR Interferometry Optimization

    Institute of Scientific and Technical Information of China (English)

    尚玉双; 刘国林; 陶秋香

    2014-01-01

    极化干涉SAR树高反演是当前SAR研究领域的一个重要方向。相干最优化是在各种散射机制中寻求最优的散射机制,对于极化干涉SAR,它不仅可以改善不同极化通道之间的相干系数,还能改善地物分类和垂直结构参数估计。首先详细分析极化干涉SAR反演树高的相干最优化理论基础,然后利用仿真数据从不同极化通道对线极化、Pauli基极化和最优极化进行了试验,从定性和定量进行对比分析,研究结果进一步验证相干最优分解方法可以提高干涉相干系数,并获得更好的干涉图,从而有利于提高树高反演的精度。%Tree height inversion based on polarization interference SAR is an important direction in the current SAR research field .By searching for the optimal mechanism in various scattering mechanisms , for POL-InSAR system, it not only can be used to improve the coherence between different polarization channels , but also can help to improve classification and vertical structure parameters esti -mation process .The optimal mechanism of tree height inversion based on polarization interference SAR was elaborated and analyzed , and an experiment on the simulation data of line polarization , Pauli Base change and the optimal polarization was done .By making a contrastive analysis on aspects of qualitative and quantitative information , we confirmed that coherent optimal decomposition method can increase interference coherent coefficient and help us get better interferogram so as to improve tree height inversion ′s precision.

  11. A simplified holographic-interferometry technique for real-time flow visualization and analysis

    Science.gov (United States)

    Long, S. A.; Spencer, R. C.

    1974-01-01

    A holographic-interferometry technique for flow visualization and analysis that produces real-time moire fringes is described from both experimental and application considerations. It has three chief advantages: real-time data for continuous observation and photography, ease of optical adjustment, and capability of using ordinary-glass test-section windows without affecting the results. A theoretical discussion is presented describing the formation of the fringes in holographic terms and then comparing this result to that which is obtained from a conventional moire approach. A discussion on obtaining density information from the fringe pattern is also included.

  12. Monitoring of ground movement in open pit iron mines of Carajás Province (Amazon region) based on A-DInSAR techniques using TerraSAR-X data

    Science.gov (United States)

    Silva, Guilherme Gregório; Mura, José Claudio; Paradella, Waldir Renato; Gama, Fabio Furlan; Temporim, Filipe Altoé

    2017-04-01

    Persistent scatterer interferometry (PSI) analysis of a large area is always a challenging task regarding the removal of the atmospheric phase component. This work presents an investigation of ground movement measurements based on a combination of differential SAR interferometry time-series (DTS) and PSI techniques, applied on a large area of extent with open pit iron mines located in Carajás (Brazilian Amazon Region), aiming at detecting linear and nonlinear ground movement. These mines have presented a history of instability, and surface monitoring measurements over sectors of the mines (pit walls) have been carried out based on ground-based radar and total station (prisms). Using a priori information regarding the topographic phase error and a phase displacement model derived from DTS, temporal phase unwrapping in the PSI processing and the removal of the atmospheric phases can be performed more efficiently. A set of 33 TerraSAR-X (TSX-1) images, acquired during the period from March 2012 to April 2013, was used to perform this investigation. The DTS analysis was carried out on a stack of multilook unwrapped interferograms using an extension of SVD to obtain the least-square solution. The height errors and deformation rates provided by the DTS approach were subtracted from the stack of interferograms to perform the PSI analysis. This procedure improved the capability of the PSI analysis for detecting high rates of deformation, as well as increased the numbers of point density of the final results. The proposed methodology showed good results for monitoring surface displacement in a large mining area, which is located in a rain forest environment, providing very useful information about the ground movement for planning and risk control.

  13. Monitoring Ground Deformation Using Persistent Scatters Interferometry (PSI) and Small Baselines (SBAS) Techniques Integrated in the ESA RSS Service: The Case Study of Valencia, Rome and South Sardinia

    Science.gov (United States)

    Delgado, Manuel J.; Cuccu, Roberto; Rivolta, Giancarlo

    2015-05-01

    This work is focused on the infrastructure monitoring of areas which had experienced significant urbanization and therefore, also an increase of the exploitation of natural resources. Persistent Scatters Interferometry (PS-InSAR) and Small Baselines (SBAS) approaches are applied to three study areas for which large datasets of SAR images are available in ascending and descending modes to finally deploy deformation maps of different buildings and infrastructures. Valencia, Rome and South Sardinia areas have been selected for this study, having experienced an increase of the exploitation of natural resources in parallel with their urban expansion. Moreover, Rome is a very special case, where Cultural Heritage permeating the city and its surroundings would suggest the necessity of a tool for monitoring the stability of the different sites. This work wants to analyse the potential deformation that had occurred in these areas during the period 1992 to 2010, by applying Persistent Scatters Interferometry to ESA ERS SAR and Envisat ASAR data.

  14. Enhancement of SAR images using fuzzy shrinkage technique in curvelet domain

    Indian Academy of Sciences (India)

    SHIVAKUMARA SWAMY PURANIK MATH; VANI KALIYAPERUMAL

    2017-09-01

    The synthetic aperture radar (SAR) images are mainly affected by speckle noise. Speckle degrades the features in the image and reduces the ability of a human observer to resolve fine detail, hence despeckling is very much required for SAR images. This paper presents speckle noise reduction in SAR images using a combination of curvelet and fuzzy logic technique to restore speckle-affected images. This method overcomes the limitation of discontinuity in hard threshold and permanent deviation in soft threshold. First, it decomposes noise image into different frequency scales using curvelet transform, and then applies the fuzzy shrinking technique to high-frequency coefficients to restore noise-contaminated coefficients. The proposed method does not use threshold approach only by proper selection of shrinking parameter the speckle in SAR image is suppressed. The experiment is carried out on different resolutions of RISAT-1 SAR images, and results are compared with the existing filtering algorithms in terms of noise mean variance (NMV), mean square difference (MSD), equal number of looks (ENL), noise standard deviation (NSD) and speckle suppression index (SSI). A comparison of the results shows that the proposed technique suppresses noise significantly, preserves the details of the image and improves the visual quality of the image

  15. The Use of C-/X-Band Time-Gapped SAR Data and Geotechnical Models for the Study of Shanghai’s Ocean-Reclaimed Lands through the SBAS-DInSAR Technique

    Directory of Open Access Journals (Sweden)

    Antonio Pepe

    2016-11-01

    Full Text Available In this work, we investigate the temporal evolution of ground deformation affecting the ocean-reclaimed lands of the Shanghai (China megacity, from 2007 to 2016, by applying the Differential Synthetic Aperture Radar Interferometry (DInSAR technique known as the Small BAseline Subset (SBAS algorithm. For the analysis, we exploited two sets of non-time-overlapped synthetic aperture radar (SAR data, acquired from 2007 to 2010, by the ASAR/ENVISAT (C-band instrument, and from 2014 to 2016 by the X-band COSMO-SkyMed (CSK sensors. The long time gap (of about three years existing between the available C- and X-band datasets made the generation of unique displacement time-series more difficult. Nonetheless, this problem was successfully solved by benefiting from knowledge of time-dependent geotechnical models, which describe the temporal evolution of the expected deformation affecting Shanghai’s ocean-reclaimed platforms. The combined ENVISAT/CSK (vertical deformation time-series were analyzed to gain insight into the future evolution of displacement signals within the investigated area. As an outcome, we find that ocean-reclaimed lands in Shanghai experienced, between 2007 and 2016, average cumulative (vertical displacements extending down to 25 centimeters.

  16. Frequency-Shifted Interferometry — A Versatile Fiber-Optic Sensing Technique

    Directory of Open Access Journals (Sweden)

    Fei Ye

    2014-06-01

    Full Text Available Fiber-optic sensing is a field that is developing at a fast pace. Novel fiber-optic sensor designs and sensing principles constantly open doors for new opportunities. In this paper, we review a fiber-optic sensing technique developed in our research group called frequency-shifted interferometry (FSI. This technique uses a continuous-wave light source, an optical frequency shifter, and a slow detector. We discuss the operation principles of several FSI implementations and show their applications in fiber length and dispersion measurement, locating weak reflections along a fiber link, fiber-optic sensor multiplexing, and high-sensitivity cavity ring-down measurement. Detailed analysis of FSI system parameters is also presented.

  17. A low cost meteor observation system using radio forward scattering and the interferometry technique

    Science.gov (United States)

    Madkour, Waleed; Yamamoto, Masa-yuki; Kakinami, Yoshihiro; Mizumoto, Satoshi

    2016-02-01

    We present a low cost meteor observation system based on the radio forward scattering and interferometry technique at Kochi University of Technology (KUT). The system can be a suitable model for low budget educational institutes that target practical learning of astronomical objects and upper atmospheric characteristics. The system methodology for the automatic counting of meteor echoes, filtering noise and detecting meteor echo directions is described. Detection of the meteor echo directions, which is the basic element for determining the meteor trajectories and the orbital parameters of parent comets, is based on a software system developed for analysis of phase differences detected by interferometry. Randomly selected observation samples measured by the radio interferometer are compared to simultaneous optical observations by video cameras to verify the system accuracy. Preliminary error analysis revealed that the system accuracy is directly related to the duration of observed meteor echoes. Eighty percent of meteor echo samples with durations longer than 3 s showed agreement in azimuth and elevation angles measurements to within a 10° error range, while meteor echo samples with shorter durations showed lower agreement levels probably due to the low system sampling resolution of 0.1 s. The reasonable agreement level of meteor echoes with duration longer than 3 s demonstrated the applicability of the system methodology. Accurate observation of shorter duration meteor echoes could possibly be achieved by improving the system resolution.

  18. Application of the multiple PRF technique to resolve Doppler centroid estimation ambiguity for spaceborne SAR

    Science.gov (United States)

    Chang, C. Y.; Curlander, J. C.

    1992-01-01

    Estimation of the Doppler centroid ambiguity is a necessary element of the signal processing for SAR systems with large antenna pointing errors. Without proper resolution of the Doppler centroid estimation (DCE) ambiguity, the image quality will be degraded in the system impulse response function and the geometric fidelity. Two techniques for resolution of DCE ambiguity for the spaceborne SAR are presented; they include a brief review of the range cross-correlation technique and presentation of a new technique using multiple pulse repetition frequencies (PRFs). For SAR systems, where other performance factors control selection of the PRF's, an algorithm is devised to resolve the ambiguity that uses PRF's of arbitrary numerical values. The performance of this multiple PRF technique is analyzed based on a statistical error model. An example is presented that demonstrates for the Shuttle Imaging Radar-C (SIR-C) C-band SAR, the probability of correct ambiguity resolution is higher than 95 percent for antenna attitude errors as large as 3 deg.

  19. Comparison of Polarimetric SAR Techniques for the Measurement of Directional Ocean Wave Spectra

    Science.gov (United States)

    2005-07-25

    II . ORIENTATION ANGLE INTENSITY MODULATION The first polarimetric SAR technique has been investigated for improving the visibility of...Buoy, Bodega Bay). Modulations in the polarization orientation angle induced by azimuth traveling ocean waves in the study area were visible in the

  20. Ongoing Deformation of Sinkholes in Wink, Texas, Observed by Time-Series Sentinel-1A SAR Interferometry (Preliminary Results

    Directory of Open Access Journals (Sweden)

    Jin-Woo Kim

    2016-04-01

    Full Text Available Spatiotemporal deformation of existing sinkholes and the surrounding region in Wink, TX are probed using time-series interferometric synthetic aperture radar (InSAR methods with radar images acquired from the Sentinel-1A satellite launched in April 2014. The two-dimensional deformation maps, calculated using InSAR observations from ascending and descending tracks, reveal that much of the observed deformation is vertical. Our results indicate that the sinkholes are still influenced by ground depression, implying that the sinkholes continue to expand. Particularly, a region 1 km northeast of sinkhole #2 is sinking at a rate of up to 13 cm/year, and its aerial extent has been enlarged in the past eight years when compared with a previous survey. Furthermore, there is a high correlation between groundwater level and surficial subsidence during the summer months, representing the complicated characteristics of sinkhole deformation under the influence of successive roof failures in underlying cavities. We also modeled the sinkhole deformation in a homogenous elastic half-space with two dislocation sources, and the ground depression above cavities could be numerically analyzed. Measurements of ongoing deformation in sinkholes and assessments of the stability of the land surface at sinkhole-prone locations in near real-time, are essential for mitigating the threat posed to people and property by the materialization of sinkholes.

  1. TerraSAR-X time-series interferometry detects human-induce subsidence in the Historical Centre of Hanoi, Vietnam

    Science.gov (United States)

    Le, Tuan; Chang, Chung-Pai; Nguyen, Xuan

    2016-04-01

    Hanoi was the capital of 12 Vietnamese dynasties, where the most historical relics, archaeological ruins and ancient monuments are located over Vietnam. However, those heritage assets are threatened by the land subsidence process occurred in recent decades, which mainly triggered by massive groundwater exploitation and construction activities. In this work, we use a set of high resolution TerraSAR-X images to map small-scale land subsidence patterns in the Historical Centre of Hanoi from April 2012 to November 2013. Images oversampling is integrated into the Small Baseline InSAR processing chain in order to enlarge the monitoring coverage by increasing the point-wise measurements, maintaining the monitoring scale of single building and monument. We analyzed over 2.4 million radar targets on 13.9 km2 area of interest based on 2 main sites: The Citadel, the Old Quarter and French Quarter. The highest subsidence rate recorded is -14.2 mm/year. Most of the heritage assets are considered as stable except the Roman Catholic Archdiocese and the Ceramic Mosaic Mural with the subsidence rates are -14.2 and -13.7 mm/year, respectively. Eventually, optical image and soil properties map are used to determine the causes of subsidence patterns. The result shows the strong relationships between the existing construction sites, the component of sediments and land subsidence processes that occurred in the study site.

  2. Landslide monitoring by combining of CR-InSAR and GPS techniques

    Science.gov (United States)

    Zhu, Wu; Zhang, Qin; Ding, XiaoLi; Zhao, Chaoying; Yang, Chengsheng; Qu, Feifei; Qu, Wei

    2014-02-01

    Considering the limitations related to the landslide monitoring by Interferometric Synthetic Aperture Radar (InSAR) technique, the method of integration of Globe Positioning System (GPS) with Corner Reflector Interferometric SAR (CR-InSAR) techniques is proposed in this paper. Firstly, deformation in radar line-of-slight (LOS) direction is optimized by introducing the GPS-measured height and atmospheric delay products into the CR-InSAR model. Then, GPS-measured horizontal deformation and CR-InSAR measured LOS deformation are combined to produce the more accurate vertical deformation. Finally, high precision three-dimensional deformation (N, E, U) is projected to the along-slope direction to monitor the actual movement of landslide. In order to test this method, four X-band stripmap-mode TerraSAR images, eight Trihedral Corner Reflectors (TCR) data and eight GPS observed data are collected to monitor the deformation of three potential landslide fields located at the north of Shaanxi province, China. The detailed analysis demonstrates that the estimated precision of along-slope direction is about two times better for proposed method (±1.1 mm) versus GPS (±2.1 mm) in this case. Meanwhile, our result indicates that almost all of the monitoring points present the trends of sliding down along the slope at the different levels from April 9 2011 to August 30 2011, showing the certain instability. Further investigation of the relationship between the magnitudes of displacement at CR points and the implementation of early control reflects the rationality of our result. Our proposed method could provide of the strong support in the high precision landslide deformation monitoring.

  3. Fast correlation technique for glacier flow monitoring by digital camera and space-borne SAR images

    Directory of Open Access Journals (Sweden)

    Moreau Luc

    2011-01-01

    Full Text Available Abstract Most of the image processing techniques have been first proposed and developed on small size images and progressively applied to larger and larger data sets resulting from new sensors and application requirements. In geosciences, digital cameras and remote sensing images can be used to monitor glaciers and to measure their surface velocity by different techniques. However, the image size and the number of acquisitions to be processed to analyze time series become a critical issue to derive displacement fields by the conventional correlation technique. In this paper, a mathematical optimization of the classical normalized cross-correlation and its implementation are described to overcome the computation time and window size limitations. The proposed implementation is performed with a specific memory management to avoid most of the temporary result re-computations. The performances of the software resulting from this optimization are assessed by computing the correlation between optical images of a serac fall, and between Synthetic Aperture Radar (SAR images of Alpine glaciers. The optical images are acquired by a digital camera installed near the Argentière glacier (Chamonix, France and the SAR images are acquired by the high resolution TerraSAR-X satellite over the Mont-Blanc area. The results illustrate the potential of this implementation to derive dense displacement fields with a computational time compatible with the camera images acquired every 2 h and with the size of the TerraSAR-X scenes covering 30 × 50 km2.

  4. Surface height adjustments in pyroclastic-flow deposits observed at Unzen volcano by JERS-1 SAR interferometry

    Science.gov (United States)

    Matthews, J. P.; Kamata, H.; Okuyama, S.; Yusa, Y.; Shimizu, H.

    2003-07-01

    Pyroclastic flows from the 1990-1995 eruption of Unzen, a dacitic volcano in the southwest of Japan, descended the mountain along a variety of routes causing widespread damage and loss of life. Interferograms constructed from JERS-1 L-band Synthetic Aperture Radar (SAR) images show a number of features related to these pyroclastic flows and their secondary effects. The most useful interferogram in this respect is based on images acquired on 22 July 1993 and 1 December 1993 and shows the descent paths for pyroclastic flows occurring in four valley systems within this time window as zones of decorrelation caused by the repeated resurfacing. The 22 July 1993 SAR image was, through considerable good fortune, acquired only 2.6 days after a major pyroclastic flow had descended into the Mizunashi valley so that, in the absence of rainfall, the fresh 2-m-thick deposits were dry when first imaged. The largest differential surface height changes observed in the interferogram represent height decreases in the vertical of ˜12 cm and, significantly, lie within a small region of the Mizunashi valley which was resurfaced by the pyroclastic flow of 19 July 1993 but not subsequently. Within this small region, radar coherence is higher (maximum correlation value of ˜0.75) in a center-valley site where ash but relatively few large boulders are present. In a qualitative sense, the new ash surfaces exhibit higher levels of radar coherence than the older (pre-19 July) deposits. In other Unzen valleys visited by pyroclastic flows, smaller differential surface height decreases (˜4 cm) are observed where the surface deposits were emplaced by events taking place between 1-3 months before the acquisition date of the 22 July 1993 image. The 'extra' ˜8 cm of surface height decrease observed in the case of the freshly laid Mizunashi deposits must result from a deflationary mechanism (or mechanisms) operating in a spatially uniform manner in order for radar coherence to be maintained. A

  5. Small-displacement linear surface ruptures of the 2016 Kumamoto earthquake sequence detected by ALOS-2 SAR interferometry

    Science.gov (United States)

    Fujiwara, Satoshi; Yarai, Hiroshi; Kobayashi, Tomokazu; Morishita, Yu; Nakano, Takayuki; Miyahara, Basara; Nakai, Hiroyuki; Miura, Yuji; Ueshiba, Haruka; Kakiage, Yasuaki; Une, Hiroshi

    2016-09-01

    We constructed and analyzed the ground surface displacement associated with the 2016 Kumamoto earthquake sequence using satellite radar interferometry images of the Advanced Land Observing Satellite 2. The radar interferogram generally shows elastic deformation caused by the main earthquakes, but many other linear discontinuities showing displacement are also found. Approximately 230 lineaments are identified, some of which coincide with the positions of known active faults, such as the main earthquake faults belonging to the Futagawa and Hinagu fault zones and other minor faults; however, there are much fewer known active faults than lineaments. In each area, the lineaments have a similar direction and displacement to each other; therefore, they can be divided into several groups based on location and major features. Since the direction of the lineaments coincides with that of known active faults or their conjugate faults, the cause of the lineaments must be related to the tectonic stress field of this region. The lineaments are classified into the following two categories: (1) main earthquake faults and their branched subfaults and (2) secondary faults that are not directly related to the main earthquake but whose slip was probably triggered by the main earthquake or aftershocks.[Figure not available: see fulltext.

  6. Some Aspects on the Theories of SAR Interferometry%关于雷达影像干涉测量的若干理论问题

    Institute of Scientific and Technical Information of China (English)

    舒宁

    2001-01-01

    This paper discusses several aspects of theories on SAR interferometry. The differentmathematic models of interferometry have been discussed and analysed. The paper points out thatthe ground coordinate system should bechosen carefully in case of using the mathematic modelsuggested by C. Prati et al and the tangent plane coordinate system must be taken into account.The model proposed by Ph. Hartl et al can be used without considering the earth curveture, butthe calculations of base line and the incident angle for every point are the key factors and difficultto be done. The model by R. Gens et al is different in the conception of phase difference which isfor one point only, not the difference of phase difference of two neighboring points. The paper aslopoints out that the problems mentioned above should be taken into the consideration for applica-tions. A mathematic model for elevation calculation has been proposed based upon the phase differ-ence of two neighbor points to same antenna, and precise control point as the “seed”, without tak-ing into account the base-line assessment. The adjustments for the image coordinates of controlpoints and satellite position parameters according to the imaging equations have also been suggested in order to meet the needs of the precision of control points and satellite position for phase unwrapping and elevation calculation,as well as the method of base-line assessment.%就雷达影像干涉测量的若干理论问题进行了讨论,提出了一种高程解算数学模型,该模型基于相邻两点对于同一天线的相位差,以精确可靠的控制点为出发点,可以不必顾及基线估计;提出了将控制点影像坐标与卫星位置参量按成像方程进行平差,以保证相位解缠和高程解算对控制点和卫星位置精度的要求,指出了在此基础上的基线估计方法。

  7. Input of UAV, DTM photo-interpretation and SAR interferometry on active tectonics applied on the Southern Coastal Range (SE Taiwan)

    Science.gov (United States)

    Deffontaines, Benoit; Chang, Kuo-Jen; Champenois, Johann; Magalhaes, Samuel; Serries, Gregory

    2016-04-01

    Taiwan is an excellent geomorphic laboratory where both extreme climatic events and high active tectonics compete. Moreover many Earth Sciences and Environmental data bases exist nowadays that help to better constrain both structural geology and active deformations. The latter unfortunately is still poorly known in the Cosatal Range of E.Taiwan in terms of geology due to access difficulties, high relief, paucity of roads, tropical vegetation and high climatic events (typhoons and heavy rainfall) and so on. Indirect methods such as photogrammetric survey using UAV's helps a lot to get high resolution topographic DEM and DTM, better than 10cm in planimetry, that helps a lot to get through careful photo-interpretation, a bird's eye view of the geology. Therefore we were able to much update the famous pre-existing geological maps (Wang and Chen, 1993). Moreover, by combining our high resolution topographic results with those of SAR interferometry (database of Champenois et al, EPSL, 2012), we were able to identify, characterise and quantify the differential active features toward the LOS of the Coastal Range (eastern Taiwan). In order to synthetise and to model the deformation of that famous place, we herein constructed more than 500 parallel projected profiles in order to locate, characterize and quantify the active tectonic features and compare them to the topography and the updated photo-interpreted geology (this work). We then were able to reconstruct the structural geometry of the Coastal Range and the Longitudinal Valley in SE Taiwan. Among our results, we reveal and prove : 1. the whole 2cm differential surrection of the Coastal Range ; 2. the differential displacement between both Central and Coastal Ranges ; 3. we explain the location of the Pinantashi river situated within the Lichi melange that correspond to the maximum surrection of the Coastal Range ; 4. we reveal the different units and their relative displacement within the Coastal Range itself ; 5. we

  8. Integration of X-band SAR interferometry, continuous and periodic D-GPS and in-place inclinometers to characterize and monitor a deep-seated earthslide in the Dolomites (Italy)

    Science.gov (United States)

    Mulas, Marco; Corsini, Alessandro; Soldati, Mauro; Marcato, Gianluca; Pasuto, Alessandro; Crespi, Mattia; Mazzoni, Augusto; Benedetti, Elisa; Branzanti, Mara; Manunta, Michele; Ojha, Chandrakanta; Chinellato, Giulia; Cuozzo, Giovanni; Costa, Armin; Monsorno, Roberto; Thiebes, Benni; Piantelli, Elena; Magnani, Massimo; Meroni, Marco; Mair, Volkmar

    2015-04-01

    The Corvara landslide is an active, large-scale, deep-seated and slow moving earthslide of about 30 Mm3 located in the Dolomites (Italy). It is frequently damaging a national road and, occasionally, isolated buildings and recreational ski facilities. Since the mid '90s it has been mapped, dated and monitored thanks to field surveys, boreholes, radiocarbon dating, inclinometers, piezometers and periodic D-GPS measurements, carried out by the Geology and the Forestry Planning offices of the Autonomous Province of Bolzano, the Municipality of Corvara in Badia, the University of Modena and Reggio Emilia, the IRPI-CNR of Padua. In 2013, a new phase of characterization and monitoring has started which also involves the EURAC's Institute for Applied Remote Sensing, the geodesy group of University La Sapienza, the CNR-IREA of Naples and the Leica Geosystems office in Italy. This new phase of characterization and monitoring is meant to investigate the opportunities of innovative SAR interferometry, D-GPS and in-place inclinometers techniques to provide for a high frequency monitoring of the study site in support to the analysis of the investigation of forcing factors leading unsteady, nonuniform landslide motion through different seasons of the year. Monitoring results are also expected to provide a validation of innovative interferometric techniques so to fully evaluate their conformity to be used as a long-term monitoring system in land-use planning and risk management procedures. The monitoring infrastructure now integrates: 16 Corner Reflector for satellite X-Band SAR interferometric products, 13 benchmarks for D-GPS periodic surveys, three on-site GPS receivers for continuous positioning and remote ftp data pushing, two in-place inclinometers and a pressure transducer to record pore-pressure variations. The coupling of SAR-based products with GPS records is achieved using especially designed Corner Reflectors having an appendix dedicated to hold Dual-Frequency GPS

  9. Monitoring and modeling land subsidence at the Cerro Prieto Geothermal Field, Baja California, Mexico, using SAR interferometry

    Science.gov (United States)

    Carnec, Claudie; Fabriol, Hubert

    Images derived from repeat-pass spaceborne interferometric synthetic aperture radar (InSAR) systems offer the possibility of mapping surface deformation of small spatial extent and monitoring its spatio-temporal evolution. A slow local subsidence has been detected at the Cerro Prieto geothermal field from images acquired by the European Space Agency remote sensing satellites ERS-1/2 between 1993 and 1997. Although agricultural activity in the area limited the investigation, interferometric monitoring revealed that the ground deformation is associated with the withdrawal of geothermal fluid and agreed with the leveling data. Modeling of the subsidence was carried out assuming elastic deformation in a half-space from simple point sources, of which five were necessary to reproduce the fringe patterns observed on the interferograms. The depths and locations of three of the sources are compatible with the location of the known reservoir. The study improves prior knowledge of the displacement field and of the mecanisms involved in the subsidence phenomenon.

  10. Recent mass balance of Purogangri ice cap, central Tibetan Plateau, by means of differential X-band SAR interferometry

    Directory of Open Access Journals (Sweden)

    N. Neckel

    2013-03-01

    Full Text Available Due to their remoteness, altitude and harsh climatic conditions, little is known about the glaciological parameters of ice caps on the Tibetan Plateau (TP. This study presents an interferometrical approach aiming at surface elevation changes of Purogangri ice cap, located on the central TP. Purogangri ice cap covers an area of 397 ± 9.7 km2 and is the largest ice cap on the TP. Its behavior is determined by dry and cold continental climate suggesting a polar-type glacier regime. We employed data from the actual TerraSAR-X mission and its add-on for Digital Elevation Measurements (TanDEM-X and compare it with elevation data from the Shuttle Radar Topography Mission (SRTM. These datasets are ideal for this approach as both datasets feature the same wavelength of 3.1 cm and are available at a fine grid spacing. Similar snow conditions can be assumed since the data were acquired in early February 2000 and late January 2012. The trend in glacier extend was extracted using a time series of Landsat data. Our results show a balanced mass budget for the studied time period which is in agreement with previous studies. Additionally, we detected an exceptional fast advance of one glacier tongue in the eastern part of the ice cap between 1999 and 2011.

  11. Recent decadal glacier mass balances over the Western Nyainqentanglha Mountains and the increase in their melting contribution to Nam Co Lake measured by differential bistatic SAR interferometry

    Science.gov (United States)

    Li, Gang; Lin, Hui

    2017-02-01

    The Western Nyainqentanglha Mountains locates in the southeastern center of the Inner Tibetan Plateau (ITP). Glaciers in this region are influenced by both the continental climate of Central Asia and the Indian Monsoon system. Their melting on the western slopes feeds the Nam Co Lake, which is the second largest endorheic lake in the ITP. The elevation of Nam Co Lake increased at a rate of 0.25 ± 0.12 m year- 1 from 2003 to 2009. In this study, aimed at quantifying the decadal glacier mass balance in the Western Nyainqentanglha Mountains and their increasing melting contribution to Nam Co Lake; we applied the differential Bistatic SAR interferometry method to five pairs of TanDEM CoSSC datasets observed between 2013 and 2014 and SRTM acquired in 2000. The mean annual mass loss rate was - 0.235 ± 0.127 m w.e. year- 1 for the entire range. The mass loss rate for the northwestern slope (inside the Nam Co Lake drainage basin) and the southeastern slope (outside the Nam Co Lake drainage basin) were - 0.268 ± 0.129 m w.e. year- 1 and ¬ 0.219 ± 0.126 m w.e. year- 1, respectively. Our results agree well with previous fieldwork at the Zhadang and Gurenhekou glaciers located on the northwestern and southeastern slopes. Debris-cover suppressed glacier downwasting to some extent. By presuming that all of the melted ice flows into the lake, the glaciers' melting contribution to Nam Co Lake's increasing water volume was approximately 10.50 ± 9.00% during the period between 2003 and 2009.

  12. Airborne Repeat Pass Interferometry for Deformation Measurements

    NARCIS (Netherlands)

    Groot, J.; Otten, M.; Halsema, E. van

    2000-01-01

    In ground engineering the need for deformation measurements is urgent. SAR interferometry can be used to measure small (sub-wavelength) deformations. An experiment to investigate this for dike deformations was set up, using the C-band SAR system PHARUS (PHased ARray Universal SAR). This paper descri

  13. Applications of Polarimetric and Interferometric SAR to Environmental Remote Sensing and its Activities: Recent Advances in Extrawideband Polarimetry, Interferometry and Polarimetric Interferometry in Synthetic Aperture Remote Sensing and its Applications

    Science.gov (United States)

    2007-02-01

    ii ) mitigating against common “Radio Frequency Interference (RFI)” and intentional “Directive Jamming of Airborne & Space borne POL-IN-SAR Imaging...modal SAR Imaging platforms that support both systems – such as the NASA-JPL AIR/TOP-SAR [106, 121, 122], the DLR E-SAR [223], the ONERA RAMSES SAR...about 35 dB) with calibration sensitivity of 0.1 dB in amplitude and 1º in polarimetric phase; must possess a very high dynamic range; ( ii ) they must

  14. Characterization of Nb SRF cavity materials by white light interferometry and replica techniques

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); The Applied Science Department, The College of William and Mary, Williamsburg, VA 23185 (United States); Reece, Charles [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Kelley, Michael, E-mail: mkelley@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); The Applied Science Department, The College of William and Mary, Williamsburg, VA 23185 (United States)

    2013-06-01

    Much work has shown that the topography of the interior surface is an important contributor to the performance of Nb superconducting radiofrequency (SRF) accelerator cavities. Micron-scale topography is implicated in non-linear loss mechanisms that limit the useful accelerating gradient range and impact cryogenic cost. Aggressive final chemical treatments in cavity production seek to reliably obtain “smoothest” surfaces with superior performance. Process development suffers because the cavity interior surface cannot be viewed directly without cutting out pieces, rendering the cavities unavailable for further study. Here we explore replica techniques as an alternative, providing imprints of cavity internal surface that can be readily examined. A second matter is the topography measurement technique used. Atomic force microscopy (AFM) has proven successful, but too time intensive for routine use in this application. We therefore introduce white light interferometry (WLI) as an alternative approach. We examined real surfaces and their replicas, using AFM and WLI. We find that the replica/WLI is promising to provide the large majority of the desired information, recognizing that a trade-off is being made between best lateral resolution (AFM) and the opportunity to examine much more surface area (WLI).

  15. Combined acquisition technique (CAT for neuroimaging of multiple sclerosis at low specific absorption rates (SAR.

    Directory of Open Access Journals (Sweden)

    Armin Biller

    Full Text Available PURPOSE: To compare a novel combined acquisition technique (CAT of turbo-spin-echo (TSE and echo-planar-imaging (EPI with conventional TSE. CAT reduces the electromagnetic energy load transmitted for spin excitation. This radiofrequency (RF burden is limited by the specific absorption rate (SAR for patient safety. SAR limits restrict high-field MRI applications, in particular. MATERIAL AND METHODS: The study was approved by the local Medical Ethics Committee. Written informed consent was obtained from all participants. T2- and PD-weighted brain images of n = 40 Multiple Sclerosis (MS patients were acquired by CAT and TSE at 3 Tesla. Lesions were recorded by two blinded, board-certificated neuroradiologists. Diagnostic equivalence of CAT and TSE to detect MS lesions was evaluated along with their SAR, sound pressure level (SPL and sensations of acoustic noise, heating, vibration and peripheral nerve stimulation. RESULTS: Every MS lesion revealed on TSE was detected by CAT according to both raters (Cohen's kappa of within-rater/across-CAT/TSE lesion detection κCAT = 1.00, at an inter-rater lesion detection agreement of κLES = 0.82. CAT reduced the SAR burden significantly compared to TSE (p<0.001. Mean SAR differences between TSE and CAT were 29.0 (± 5.7 % for the T2-contrast and 32.7 (± 21.9 % for the PD-contrast (expressed as percentages of the effective SAR limit of 3.2 W/kg for head examinations. Average SPL of CAT was no louder than during TSE. Sensations of CAT- vs. TSE-induced heating, noise and scanning vibrations did not differ. CONCLUSION: T2-/PD-CAT is diagnostically equivalent to TSE for MS lesion detection yet substantially reduces the RF exposure. Such SAR reduction facilitates high-field MRI applications at 3 Tesla or above and corresponding protocol standardizations but CAT can also be used to scan faster, at higher resolution or with more slices. According to our data, CAT is no more uncomfortable than TSE scanning.

  16. 基于D-InSAR技术的矿区沉陷应用%Mining Collapse Observed from D-InSAR Technique

    Institute of Scientific and Technical Information of China (English)

    秦姗兰; 季灵运; 周琳

    2013-01-01

    雷达差分干涉测量(D-InSAR)技术一种新兴的地表形变监测技术,具有精度高、监测范围广等特点。本文以甘肃平凉华亭煤矿为例研究该技术在矿区的应用,首先采用两轨法D-InSAR技术获取了矿区在2007-2010年的地表形变场,然后分析了InSAR地表形变场的特点。结果表明D-InSAR技术监测到的沉陷信息可以较为准确的反映矿区实际沉陷状况,可以作为一种获取大范围煤矿区的地表沉陷的有效方法。%Differential Synthetic Aperture Radar interferometry (D-InSAR) is a newly developed technique for monitoring ground deformation with some prominent advantages such as high accuracy and wide range monitoring. This paper obtained the deformation of the Huating mining area in 2007-2010 by the two-pass D-InSAR technology, and then analyzed the deformation field. The results showed that D-InSAR technology for monitoring mining collapse can accurately reflect the actual conditions, and can be as an effective way to get wide range of mining collapse.

  17. Stabilization technique for real-time high-resolution vascular ultrasound using frequency domain interferometry.

    Science.gov (United States)

    Taki, Hirofumi; Taki, Kousuke; Yamakawa, Makoto; Shiina, Tsuyoshi; Kudo, Motoi; Sato, Toru

    2014-01-01

    We have proposed an ultrasound imaging method based on frequency domain interferometry (FDI) with an adaptive beamforming technique to depict real-time high-resolution images of human carotid artery. Our previous study has investigated the performance of the proposed imaging method under an ideal condition with a high signal-to-noise ratio (SNR). In the present study, we propose a technique that has the potential to improve accuracy in estimating echo intensity using the FDI imaging method. We investigated the performance of the proposed technique in a simulation study that two flat interfaces were located at depths of 15.0 and 15.2 mm and white noise was added. Because the -6 dB bandwidth of the signal used in this simulation study is 2.6 MHz, the conventional B-mode imaging method failed to depict the two interfaces. Both the conventional and proposed FDI imaging methods succeeded to depict the two interfaces when the SNR ranged from 15 to 30 dB. However, the average error of the estimated echo intensity at the interfaces using the conventional FDI imaging method ranged from 7.2 to 10.5 dB. In contrast, that using the FDI imaging method with the proposed technique ranged from 2.0 to 2.2 dB. The present study demonstrates the potential of the FDI imaging method in depicting robust and high-range-resolution ultrasound images of arterial wall, indicating the possibility to improve the diagnosis of atherosclerosis in early stages.

  18. Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique: A test case of the Mars Express Phobos fly-by

    Science.gov (United States)

    Duev, D. A.; Pogrebenko, S. V.; Cimò, G.; Molera Calvés, G.; Bocanegra Bahamón, T. M.; Gurvits, L. I.; Kettenis, M. M.; Kania, J.; Tudose, V.; Rosenblatt, P.; Marty, J.-C.; Lainey, V.; de Vicente, P.; Quick, J.; Nickola, M.; Neidhardt, A.; Kronschnabl, G.; Ploetz, C.; Haas, R.; Lindqvist, M.; Orlati, A.; Ipatov, A. V.; Kharinov, M. A.; Mikhailov, A. G.; Lovell, J. E. J.; McCallum, J. N.; Stevens, J.; Gulyaev, S. A.; Natush, T.; Weston, S.; Wang, W. H.; Xia, B.; Yang, W. J.; Hao, L.-F.; Kallunki, J.; Witasse, O.

    2016-09-01

    Context. The closest ever fly-by of the Martian moon Phobos, performed by the European Space Agency's Mars Express spacecraft, gives a unique opportunity to sharpen and test the Planetary Radio Interferometry and Doppler Experiments (PRIDE) technique in the interest of studying planet-satellite systems. Aims: The aim of this work is to demonstrate a technique of providing high precision positional and Doppler measurements of planetary spacecraft using the Mars Express spacecraft. The technique will be used in the framework of Planetary Radio Interferometry and Doppler Experiments in various planetary missions, in particular in fly-by mode. Methods: We advanced a novel approach to spacecraft data processing using the techniques of Doppler and phase-referenced very long baseline interferometry spacecraft tracking. Results: We achieved, on average, mHz precision (30 μm/s at a 10 s integration time) for radial three-way Doppler estimates and sub-nanoradian precision for lateral position measurements, which in a linear measure (at a distance of 1.4 AU) corresponds to ~50 m.

  19. Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique: A test case of the Mars Express Phobos fly-by

    CERN Document Server

    Duev, Dmitry A; Cimò, Giuseppe; Calvés, Guifré Molera; Bahamón, Tatiana M Bocanegra; Gurvits, Leonid I; Kettenis, Mark M; Kania, Joseph; Tudose, Valeriu; Rosenblatt, Pascal; Marty, Jean-Charles; Lainey, Valery; de Vicente, Pablo; Quick, Jonathan; Nickola, Marisa; Neidhardt, Alexander; Kronschnabl, Gerhard; Plötz, Christian; Haas, Rüdiger; Lindqvist, Michael; Orlati, Andrea; Ipatov, Alexander V; Kharinov, Mikhail A; Mikhailov, Andrey G; Lovell, Jim; McCallum, Jamie; Stevens, Jamie; Gulyaev, Sergei A; Natush, Tim; Weston, Stuart; Wang, Weihua; Xia, Bo; Yang, Wenjun; Hao, Long-Fei; Kallunki, Juha; Witasse, Olivier

    2016-01-01

    The closest ever fly-by of the Martian moon Phobos, performed by the European Space Agency's Mars Express spacecraft, gives a unique opportunity to sharpen and test the Planetary Radio Interferometry and Doppler Experiments (PRIDE) technique in the interest of studying planet - satellite systems. The aim of this work is to demonstrate a technique of providing high precision positional and Doppler measurements of planetary spacecraft using the Mars Express spacecraft. The technique will be used in the framework of Planetary Radio Interferometry and Doppler Experiments in various planetary missions, in particular in fly-by mode. We advanced a novel approach to spacecraft data processing using the techniques of Doppler and phase-referenced very long baseline interferometry spacecraft tracking. We achieved, on average, mHz precision (30 {\\mu}m/s at a 10 seconds integration time) for radial three-way Doppler estimates and sub-nanoradian precision for lateral position measurements, which in a linear measure (at a d...

  20. Advanced InSAR techniques for the management and characterization of geothermal resources

    Science.gov (United States)

    Bellotti, F.; Falorni, G.; Morgan, J.; Rucci, A.; Ferretti, A.

    2012-04-01

    InSAR is a remote sensing tool that has applications in both geothermal exploitation and in the management of producing fields. The technique has developed rapidly in recent years and the most evolved algorithms, now capable of providing precise ground movement measurements with unprecedented spatial density over large areas, allow the monitoring of the effects of fluid injection and extraction on surface deformation and the detection of active faults. Multi-interferogram approaches have been used at several geothermal sites in different stages of development. SqueeSAR™, which represents the latest breakthrough in InSAR technology, provides a significant increase in the spatial density of measurement points by exploiting signal returns from both point-like and distributed scatterers. Furthermore, recent satellite radar sensors have a higher spatial resolution (down to 1 m), as well as a higher temporal frequency of image acquisitions (down to a few days). The coupling of the new algorithm with this new generation of satellites provides a valuable tool for monitoring the different phases of geothermal production and in support of the decision making process. Some examples from the US are presented here: the first case study involves the use of InSAR within a suite of tools for exploration of the San Emidio geothermal field in Nevada. This project aimed to develop geophysical techniques to identify and map large aperture fractures for the placement of new production/exploration wells. The second and third examples examine two zones in California: the Salton Sea area, where multi-interferogram InSAR provided an overview of surface deformation at a producing geothermal reservoir. Surface deformation in this area was complex, and the added detail provided insight into the interplay of tectonics and production activities. Additional InSAR studies have also been carried out at the Geysers field in order to evaluate the behavior of an Enhanced Geothermal System (EGS) in

  1. Monitoring of surface movement in a large area of the open pit iron mines (Carajás, Brazil) based on A-DInSAR techniques using TerraSAR-X data

    Science.gov (United States)

    Mura, José C.; Paradella, Waldir R.; Gama, Fabio F.; Silva, Guilherme G.

    2016-10-01

    PSI (Persistent Scatterer Interferometry) analysis of large area is always a challenging task regarding the removal of the atmospheric phase component. This work presents an investigation of ground deformation measurements based on a combination of DInSAR Time-Series (DTS) and PSI techniques, applied in a large area of open pit iron mines located in Carajás (Brazilian Amazon Region), aiming at detect high rates of linear and nonlinear ground deformation. These mines have presented a historical of instability and surface monitoring measurements over sectors of the mines (pit walls) have been carried out based on ground based radar and total station (prisms). By using a priori information regarding the topographic phase error and phase displacement model derived from DTS, temporal phase unwrapping in the PSI processing and the removal of the atmospheric phases can be performed more efficiently. A set of 33 TerraSAR-X-1 images, acquired during the period from March 2012 to April 2013, was used to perform this investigation. The DTS analysis was carried out on a stack of multi-look unwrapped interferogram using an extension of SVD to obtain the Least-Square solution. The height errors and deformation rates provided by the DTS approach were subtracted from the stack of interferogram to perform the PSI analysis. This procedure improved the capability of the PSI analysis to detect high rates of deformation as well as increased the numbers of point density of the final results. The proposed methodology showed good results for monitoring surface displacement in a large mining area, which is located in a rain forest environment, providing very useful information about the ground movement for planning and risks control.

  2. Ground deformation detection of the greater area of Thessaloniki (Northern Greece using radar interferometry techniques

    Directory of Open Access Journals (Sweden)

    D. Raucoules

    2008-07-01

    Full Text Available In the present study SAR interferometric techniques (stacking of conventional interferograms and Permanent Scatterers, using images from satellites ERS-1 and 2, have been applied to the region of Thessaloniki (northern Greece. The period covered by the images is 1992–2000. Both techniques gave good quantitative and qualitative results. The interferometric products were used to study ground surface deformation phenomena that could be related to the local tectonic context, the exploitation of underground water and sediments compaction.

    The city of Thessaloniki shows relatively stable ground conditions. Subsidence in four locations, mainly in the area surrounding the city of Thessaloniki, has been detected and assessed. Two of the sites (Sindos-Kalochori and Langadhas were already known from previous studies as subsiding areas, using ground base measurements. On the contrary the other two sites in the northern suburbs of Thessaloniki (Oreokastro and in the south-east (airport area were unknown as areas of subsidence. A further investigation based on fieldwork is needed in these two areas. Finally, an attempt to interpret the observed deformation, according to the geological regime of the area and its anthropogenic activities, has been carried out.

  3. NOVEL APPROACH BASED ON DERAMPING TECHNIQUE FOR SQUINTED SLIDING SPOTLIGHT SAR IMAGING

    Institute of Scientific and Technical Information of China (English)

    Mo Yajun; Yan He; Zhao Bingji

    2013-01-01

    This paper investigates a novel approach based on the deramping technique for squinted sliding spotlight Synthetic Aperture Radar (SAR) imaging to resolve the azimuth spectrum aliasing problem.First of all,the properties of the azimuth spectrum and the squint angle impacts on the azimuth spectrum aliasing problem are analyzed.Based on the analysis result,an operation of filtering is added to the azimuth preprocessing step of traditional Two-Step Focusing Approach (TSPA) to resolve the azimuth folding problem and remove the influence of the squint angle on the azimuth spectrum aliasing problem.Then,a modified Range Migration Algorithm (RMA) is performed to obtain the precise focused image.Furthermore,the focused SAR image folding problem of traditional TSPA is illuminated in this paper.An azimuth post-processing step is proposed to unfold the aliased SAR image.Simulation experiment results prove that the proposed approach can solve the spectrum aliasing problem and process squinted sliding spotlight data efficiently.

  4. SAR Ice Image Classification Using Parallelepiped Classifier Based on Gram-Schmidt Spectral Technique

    Directory of Open Access Journals (Sweden)

    A.Vanitha

    2013-05-01

    Full Text Available Synthetic Aperture Radar (SAR is a special type of imaging radar that involves advanced technology and complex data processing to obtain de tailed images from the lake surface. Lake ice typically reflects more of the radar energy emi tted by the sensor than the surrounding area, which makes it easy to distinguish between the wate r and the ice surface. In this research work, SAR images are used for ice classification based on supervised and unsupervised classification algorithms. In the pre-processing stage, Hue satura tion value (HSV and Gram–Schmidt spectral sharpening techniques are applied for shar pening and resampling to attain high- resolution pixel size. Based on the performance eva luation metrics it is proved that Gram- Schmidt spectral sharpening performs better than sh arpening the HSV between the boundaries. In classification stage, Gram–Schmidt spectral tech nique based sharpened SAR images are used as the input for classifying using parallelepiped a nd ISO data classifier. The performances of the classifiers are evaluated with overall accuracy and kappa coefficient. From the experimental results, ice from water is classified more accurately in the parallelepiped supervised classification algorithm.

  5. Synthetic Aperture Radar Interferometry

    Science.gov (United States)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  6. Monitoring Building Deformation with InSAR: Experiments and Validation.

    Science.gov (United States)

    Yang, Kui; Yan, Li; Huang, Guoman; Chen, Chu; Wu, Zhengpeng

    2016-12-20

    Synthetic Aperture Radar Interferometry (InSAR) techniques are increasingly applied for monitoring land subsidence. The advantages of InSAR include high accuracy and the ability to cover large areas; nevertheless, research validating the use of InSAR on building deformation is limited. In this paper, we test the monitoring capability of the InSAR in experiments using two landmark buildings; the Bohai Building and the China Theater, located in Tianjin, China. They were selected as real examples to compare InSAR and leveling approaches for building deformation. Ten TerraSAR-X images spanning half a year were used in Permanent Scatterer InSAR processing. These extracted InSAR results were processed considering the diversity in both direction and spatial distribution, and were compared with true leveling values in both Ordinary Least Squares (OLS) regression and measurement of error analyses. The detailed experimental results for the Bohai Building and the China Theater showed a high correlation between InSAR results and the leveling values. At the same time, the two Root Mean Square Error (RMSE) indexes had values of approximately 1 mm. These analyses show that a millimeter level of accuracy can be achieved by means of InSAR technique when measuring building deformation. We discuss the differences in accuracy between OLS regression and measurement of error analyses, and compare the accuracy index of leveling in order to propose InSAR accuracy levels appropriate for monitoring buildings deformation. After assessing the advantages and limitations of InSAR techniques in monitoring buildings, further applications are evaluated.

  7. Cross-Sectional Residual Stresses in Thermal Spray Coatings Measured by Moiré Interferometry and Nanoindentation Technique

    Science.gov (United States)

    Zhu, Jianguo; Xie, Huimin; Hu, Zhenxing; Chen, Pengwan; Zhang, Qingming

    2012-09-01

    A plasma-sprayed thermal barrier coating (TBC) was deposited on a stainless steel substrate. The residual stresses were firstly measured by moiré interferometry combined with a cutting relaxation method. The fringe patterns in the cross-section of the specimen clearly demonstrate the deformation caused by the residual stress in thermal spray coatings. However, restricted by the sensitivity of moiré interferometry, there are few fringes in the top coat, and large errors may exist in evaluating the residual stress in the top coat. Then, the nanoindentation technique was used to estimate the residual stresses across the coating thickness. The stress/depth profile shows that the process-induced stresses after thermal spray are compressive in the top coat and a tendency to a more compressive state toward the interface. In addition, the stress gradient in the substrate is nonlinear, and tensile and compressive stresses appear simultaneously for self-equilibrium in the cross-section.

  8. Digital holographic interferometry: a novel optical calorimetry technique for radiation dosimetry.

    Science.gov (United States)

    Cavan, Alicia; Meyer, Juergen

    2014-02-01

    To develop and demonstrate the proof-of-principle of a novel optical calorimetry method to determine radiation absorbed dose in a transparent medium. The calorimetric property of water is measured during irradiation by means of an interferometer, which detects temperature-induced changes in the refractive index that can be mathematically related to absorbed dose. The proposed method uses a technique called digital holographic interferometry (DHI), which comprises an optical laser interferometer setup and consecutive physical reconstruction of the recorded wave fronts by means of the Fresnel transform. This paper describes the conceptual framework and provides the mathematical basis for DHI dosimetry. Dose distributions from a high dose rate Brachytherapy source were measured by a prototype optical setup to demonstrate the feasibility of the approach. The developed DHI dosimeter successfully determined absorbed dose distributions in water in the region adjacent to a high dose rate Brachytherapy source. A temperature change of 0.0381 K across a distance of 6.8 mm near the source was measured, corresponding to a dose of 159.3 Gy. The standard deviation in a typical measurement set was ± 3.45 Gy (corresponding to an uncertainty in the temperature value of ± 8.3 × 10(-4) K). The relative dose fall off was in agreement with treatment planning system modeled data. First results with a prototype optical setup and a Brachytherapy source demonstrate the proof-of-principle of the approach. The prototype achieves high spatial resolution of approximately 3 × 10(-4) m. The general approach is fundamentally independent of the radiation type and energy. The sensitivity range determined indicates that the method is predominantly suitable for high dose rate applications. Further work is required to determine absolute dose in all three dimensions.

  9. Digital holographic interferometry: A novel optical calorimetry technique for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cavan, Alicia, E-mail: alicia.cavan@cdhb.health.nz [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand and Christchurch Hospital, Private Bag 4710, Christchurch 8140 (New Zealand); Meyer, Juergen, E-mail: juergen@uw.edu [Department of Radiation Oncology, University of Washington, 1959 Northeast Pacific Street, Box 356043, Seattle, Washington 98195 (United States)

    2014-02-15

    Purpose: To develop and demonstrate the proof-of-principle of a novel optical calorimetry method to determine radiation absorbed dose in a transparent medium. Methods: The calorimetric property of water is measured during irradiation by means of an interferometer, which detects temperature-induced changes in the refractive index that can be mathematically related to absorbed dose. The proposed method uses a technique called digital holographic interferometry (DHI), which comprises an optical laser interferometer setup and consecutive physical reconstruction of the recorded wave fronts by means of the Fresnel transform. This paper describes the conceptual framework and provides the mathematical basis for DHI dosimetry. Dose distributions from a high dose rate Brachytherapy source were measured by a prototype optical setup to demonstrate the feasibility of the approach. Results: The developed DHI dosimeter successfully determined absorbed dose distributions in water in the region adjacent to a high dose rate Brachytherapy source. A temperature change of 0.0381 K across a distance of 6.8 mm near the source was measured, corresponding to a dose of 159.3 Gy. The standard deviation in a typical measurement set was ±3.45 Gy (corresponding to an uncertainty in the temperature value of ±8.3 × 10{sup −4} K). The relative dose fall off was in agreement with treatment planning system modeled data. Conclusions: First results with a prototype optical setup and a Brachytherapy source demonstrate the proof-of-principle of the approach. The prototype achieves high spatial resolution of approximately 3 × 10{sup −5} m. The general approach is fundamentally independent of the radiation type and energy. The sensitivity range determined indicates that the method is predominantly suitable for high dose rate applications. Further work is required to determine absolute dose in all three dimensions.

  10. DEM FROM SAR:PRINCIPLE AND APPLICATION

    Institute of Scientific and Technical Information of China (English)

    Li Deren; Yang Jie

    2003-01-01

    The paper gives an overview of the principle and application of generating DEM from SAR, including the principle and processing flow of generating DEM from single SAR and SAR interferometry. Afterwards, the application fields of InSAR for terrain surveying, volcanic terrain surveying and D-InSAR for monitoring ground subsiding are listed and described as well.The problem and prospect of application are also pointed out in the last part of this paper.

  11. Characterization of the multi-component driving land subsidence using Persistent Scatterer Interferometry technique: the Ravenna case of study (Italy)

    Science.gov (United States)

    Bonì, Roberta; Fiaschi, Simone; Calcaterra, Domenico; Di Martire, Diego; Ibrahim, Ahmed; Meisina, Claudia; Perini, Luisa; Ramondini, Massimo; Tessitore, Serena; Floris, Mario

    2015-04-01

    Land subsidence represents a kind of hazard, which affects an increasing number of worldwide regions, densely populated, causing damage to the environment and infrastructures. Settlements can be related to multiple processes both natural and anthropic (i.e. vadose zone processes, soil consolidation, aquifer compaction, solid and fluid extraction and load-induced compaction) which take place at different spatio-temporal scale. Over the last decades, advanced subsidence studies exploited Synthetic-Aperture Radar (SAR) data, a recent remote sensing tool, to investigate land subsidence phenomena around the world. In particular, Persistent Scatterer Interferometry (PSI) technique, allowing a quantitative estimation at high resolution of the surface deformations, has already been successfully applied to monitor the phenomenon evolution; PSI measurements represent the cumulative displacement, deriving from the contribution of natural and anthropic components, both superficial and deep. The overlapping of several causative factors makes more difficult to accurately interpret the resulting deformations; therefore, it is essential to implement a suitable methodology to distinguish the shallow and deep components of motion. The aim of our research is to introduce a PSI-based approach not only to monitoring but also to understand the land subsidence mechanism, in order to disentangle the natural and anthropic components of motion. The methodology consists of three main phases: 1) Post-processing elaborations (i.e. interpolation of the cumulated displacements and isokinetics map implementation); 2) Characterization of the subsidence areas (i.e. subsidence pattern recognition by means of automatic time series classification); 3) Mechanisms recognition (i.e. identification of the predisposing and triggering factors and comparison with lito-technical model of subsoil, and with earth measurements). In this work, the methodology has been applied to the Ravenna area, Italy, using

  12. Retrieval of urban slow deformation using the multi-baseline DInSAR technique

    Institute of Scientific and Technical Information of China (English)

    WU Tao; ZHANG Hong; WANG Chao; TANG YiXian; WU HongAn

    2008-01-01

    The investigation of slow displacement in urban areas using the multi-baseline DlnSAR technique has been a hot research topic in the field of DlnSAR. The basic flow of this technique includes several steps such as the combination of interferometric image pairs, generation of differential interferograms, selection of high coherent points, generation of the Delaunay triangular network, calculation and integration of increments in network, unwrapping and calibration of the residual phase, and the estimation of both atmospheric and nonlinear displacement phase. Among these steps, the calculation of increments is the key to retrieve linear displacement, while unwrapping and calibration of the residual phase are the keys to retrieve nonlinear displacement. In order to improve the performance of these two steps, this paper proposes a modified model coherence function for increments estimation, and a triangular "circle" algorithm to deal with phase unwrapping and calibration. Based on the above algorithms, the subsidence of Suzhou City is investigated using 24 ERS scenes from February 1993 to December 2000.The results show that the linear subsidence velocity of the most urban area is about -20 to -30 mm/a during the time, with a yearly decrease in velocity. The displacement seems to be stable after 2000. Leveling data validate our results and demonstrate the reliability of the algorithm.

  13. A Combination of Different Synthetic Aperture Radar (SAR) Techniques for Bottom-Fast Ice and Permafrost Monitoring in Canadian Polar Region (Mackenzie Delta)

    Science.gov (United States)

    Alasset, P.; Parsons, G.; Yue, B.; Chamberland, J.; Mulvie, J.

    2009-12-01

    The Mackenzie Delta is a unique region in the Canadian North which is rich in hydrocarbons and supports a fragile ecosystem. A need exists to define nominal remote coastal conditions prior to hydrocarbon extraction and to assist in monitoring conditions once the extraction will be underway. Near shore the formation of Bottom-Fast Ice (BFI) plays an important role in the region’s seasonal environmental changes and in the understanding of arctic coastal environmental and geophysical control processes. BFI is ice that has frozen to the seabed in shallow sea water and forms in areas where the sea water is shallow. These regions control permafrost distribution, spring overflow and potential strudel scours - holes in the frozen seafloor from flowing fresh water in rivers and streams during spring in the Beaufort Sea - and influence channel mouth constraints and early breakup season flood routing. BFI has been studied by generating D-InSAR (Differential SAR Interferometry) coherence maps during the winter of 2007-2008 and 2008-2009 using a combination of SAR image pairs from the TerraSAR-X space borne sensor. The results derived from these data were compared to results obtained from ALOS-PALSAR and RADARSAT-2 using advanced polarimetric techniques for BFI delineation. All coherence maps of the winter 2008-2009 data were assembled and compiled to demonstrate seasonal changes throughout the winter. The results of these analyses indicate that deriving coherence maps from repeat-pass data generates a product that is indicative of BFI regions; though relying on an entirely different land characteristic than polarimetric BFI delineation (e.g. ground stability vs. dielectric constants). Through the use of various polarimetric channels, a good discrimination between BFI regions and ice-covered land regions has been noted in the past. With specialised analysts, it is possible to reasonably outline BFI regions from these polarimetric datasets. Additional to these standard

  14. Monitoring of Landslide Activity in Slovakia Territory Using Multi-Temporal InSAR Techniques

    Science.gov (United States)

    Bakon, M.; Papco, J.; Perissin, D.; Lazecky, M.; Sousa, J. J.; Hlavacova, I.; Batorova, K.; Ondrejka, P.; Liscak, P.; Paudits, P.; Real, N.

    2015-05-01

    Slope deformations are the most important geohazards in Slovakia which annually cause an extensive economic damage of significant influence. About 22000 slope deformations have been registered so far, covering an area of almost 2600 km2 . Since 2010, 639 new slope failures have been witnessed and their activation was driven mainly by the climatic anomalies such as extraordinary rainfalls. Many of these landslides currently represent a direct threat to the lives, health and property of the residents in the affected areas. The landslide Nizna Mysla is considered to be the second most catastrophic landslide in the history of Slovakia. Damages to buildings and engineering networks had not been identified in the ‘90s of the last century when the first problems with the slope stability appeared. Up-to-now monitoring techniques has currently been reassessed to account for the results from satellite Synthetic Aperture Radar (SAR) techniques.

  15. TerraSAR-X interferometry reveals small-scale deformation associated with the summit eruption of Kilauea Volcano, Hawai‘i

    Science.gov (United States)

    Richter, Nichole; Poland, Michael P.; Lundgren, Paul R.

    2013-01-01

    On 19 March 2008, a small explosive eruption at the summit of Kīlauea Volcano, Hawai‘i, heralded the formation of a new vent along the east wall of Halema‘uma‘u Crater. In the ensuing years, the vent widened due to collapses of the unstable rim and conduit wall; some collapses impacted an actively circulating lava pond and resulted in small explosive events. We used synthetic aperture radar data collected by the TerraSAR-X satellite, a joint venture between the German Aerospace Center (DLR) and EADS Astrium, to identify and analyze small-scale surface deformation around the new vent during 2008-2012. Lidar data were used to construct a digital elevation model to correct for topographic phase, allowing us to generate differential interferograms with a spatial resolution of about 3 m in Kīlauea's summit area. These interferograms reveal subsidence within about 100 m of the rim of the vent. Small baseline subset time series analysis suggests that the subsidence rate is not constant and, over time, may provide an indication of vent stability and potential for rim and wall collapse -- information with obvious hazard implications. The deformation is not currently detectable by other space- or ground-based techniques.

  16. An offset cancellation technique in a switched-capacitor comparator for SAR ADCs

    Institute of Scientific and Technical Information of China (English)

    Tong Xingyuan; Zhu Zhangming; Yang Yintang

    2012-01-01

    An offset cancellation technique for a SAR (successive approximation register) ADC switched-capacitor comparator is described.The comparator is designed with a pre-amplifying and regenerative latching structure and realized in 0.18 μm CMOS.With the first stage preamplifier offset cancellation and low offset regenerative latching approach,the equivalent offset of the comparator is reduced to < 0.55 mV.By using the pre-amplifying and regenerative latching comparison mode the comparator exhibits low power dissipation.Under a 1.8 V power supply,with a 200 kS/s ADC sampling rate and 3 MHz clock frequency,a 13-bit comparison resolution is reached and less than 0.09 mW power dissipation is consumed.The superiority of this comparator is discussed and proved by the post-simulation and application to a 10 bit 200 kS/s touch screen SAR A/D converter.

  17. Surface Deformation Associated with Geothermal Fluids Extraction at the Cerro Prieto Geothermal Field, Baja California, Mexico Revealed by DInSAR Technique

    Science.gov (United States)

    Sarychikhina, O.; Glowacka, E.; Mojarro, J.

    2016-08-01

    The Differential Synthetic Aperture Radar Interferometry (DInSAR) is widely used for surface deformation detection and monitoring.In this paper, ERS-1/2, ENVISAT and RADARSAT-2 synthetic aperture radar (SAR) images acquired between 1993 and 2014 were processed to investigate the evolution of surface deformation at the Cerro Prieto geothermal field, Baja California, Mexico. The conventional DInSAR together with the interferogram stacking method was applied. Average LOS (line of sight) displacement velocity maps were generated for different periods: 1993 - 1997, 1998 - 2000, 2004, 2005, 2007, 2009, and 2012 - 2014, revealing that the area corresponding to Cerro Prieto basin presented the important surface deformation (mainly subsidence) during the entire time of investigation. The changes in the surface deformation pattern and rate were identified. These changes have a good correlation in time with the changes of production in the Cerro Prieto geothermal field.

  18. Synthetic Aperture Radar Interferometry for Digital Elevation Model of Kuwait Desert - Analysis of Errors

    Science.gov (United States)

    Jassar, H. K. Al; Rao, K. S.

    2012-07-01

    Using different combinations of 29 Advanced Synthetic Aperture Radar (ASAR) images, 43 Digital Elevations Models (DEM) were generated adopting SAR Interferometry (InSAR) technique. Due to sand movement in desert terrain, there is a poor phase correlation between different SAR images. Therefore, suitable methodology for generating DEMs of Kuwait desert terrain using InSAR technique were worked out. Time series analysis was adopted to derive the best DEM out of 43 DEMs. The problems related to phase de-correlation over desert terrain are discussed. Various errors associated with the DEM generation are discussed which include atmospheric effects, penetration into soil medium, sand movement. The DEM of Shuttle Radar Topography Mission (SRTM) is used as a reference. The noise levels of DEM of SRTM are presented.

  19. Monitoring of growth dynamics of plants under the influence of cadmium using a highly sensitive interferometry technique

    Science.gov (United States)

    Kanchana Muthumali De Silva, Kokge Thilini; Rajagopalan, Uma Maheswari; Kadono, Hirofumi

    2016-12-01

    Using statistical interferometry technique (SIT), a highly sensitive interferometry technique developed in our laboratory, we reported about the existence of nanometric intrinsic fluctuations (NIF) in a variety of plants. SIT permits noncontact, noninvasive, and fast detection of plant growth fluctuations in subnanometer scale. We propose the application of NIF to investigate the effect of heavy metal, cadmium, on growth dynamics of Chinese chive (Allium tuberosum). NIFs of leaves were observed for 3 days under four different concentrations of CdCl2: 0, 0.001, 0.01, and 0.1 mM. Results showed significant reduction of NIFs within 4 h for all Cd concentrations, and there was a further decrease with the exposure time of Cd under 0.1 and 0.01 mM. In addition, under 0.001 mM, a significant recovery could be observed after a rapid reduction in the first 4 h. As a comparison, measured antioxidative enzymes increased with increasing Cd concentration. However, no significant increase could be seen within the initial 4 h under a smaller concentration of 0.001 mM as seen for NIFs. The results imply that NIF can be used as an indicator for heavy metal stress on plants as well as it can be more sensitive to detect the influence of smaller Cd amounts on plants at an early stage.

  20. Application Of SAR Retracking Techniques To CryoSat-2 Data Over West Iberian Coast And Tyrrhenian Sea

    Science.gov (United States)

    Dinardo, Salvatore; Lucas, Bruno Manuel; Benveniste, Jerome

    2011-02-01

    In the context of the ESA-funded Research & Development project SAMOSA, a novel analytic model for mean return power of the radar altimeter echo in SAR mode has been developed. In parallel the ESA/ESRIN Research and Development Data Exploitation Team has developed an alternative and independent numerical solution for SAR waveform modelling. This was done essentially for the purposes of the SAMOSA model validation on ESA side for acceptance of the SAMOSA contract deliverables. Such altimeter echo waveform retracking techniques have been devised, mainly, with the purpose of its application in the Sentinel-3 (S-3) Ground Segment (PDGS), where the SAR oceanographic products are destined to become operational over the oceanic coastal zone. In the scope of quality assessment of CryoSat-2 SAR oceanographic products, the afore-mentioned SAR Retracking techniques have been applied over open ocean regions. The application region is twofold: an internal basin, as the Tyrrhenian Sea, where moderately calm sea conditions are expected and an open ocean stretch off the Western Iberian Coast where high ocean waves are encountered, in order to assess the techniques over the full sea-state spectrum. Particular attention has been dedicated to the validation process of the results. That shall be accomplished with a comparison of the sea state obtained from multi-mission grid maps in the analyzed regions at the observation time or with a novel and more original approach: using the SAR L1b products originate from the CryoSat-2 Full Bit Rate (FBR) data; these can be reduced to LRM- equivalent level (also known as pseudo-LRM in the SAMOSA jargon) and retracked by means of conventional altimetry retracking schemes; afterwards, such results will be compared with the results coming from L1b SAR data. The results from SAR L1b are expected to match or theoretically over-perform the pseudo-LRM outcomes. This shall allow even to quantify the benefits of the SAR altimetry with respect the

  1. Techniques and Tools for Estimating Ionospheric Effects in Interferometric and Polarimetric SAR Data

    Science.gov (United States)

    Rosen, P.; Lavalle, M.; Pi, X.; Buckley, S.; Szeliga, W.; Zebker, H.; Gurrola, E.

    2011-01-01

    The InSAR Scientific Computing Environment (ISCE) is a flexible, extensible software tool designed for the end-to-end processing and analysis of synthetic aperture radar data. ISCE inherits the core of the ROI_PAC interferometric tool, but contains improvements at all levels of the radar processing chain, including a modular and extensible architecture, new focusing approach, better geocoding of the data, handling of multi-polarization data, radiometric calibration, and estimation and correction of ionospheric effects. In this paper we describe the characteristics of ISCE with emphasis on the ionospheric modules. To detect ionospheric anomalies, ISCE implements the Faraday rotation method using quadpolarimetric images, and the split-spectrum technique using interferometric single-, dual- and quad-polarimetric images. The ability to generate co-registered time series of quad-polarimetric images makes ISCE also an ideal tool to be used for polarimetric-interferometric radar applications.

  2. Techniques and Tools for Estimating Ionospheric Effects in Interferometric and Polarimetric SAR Data

    Science.gov (United States)

    Rosen, P.; Lavalle, M.; Pi, X.; Buckley, S.; Szeliga, W.; Zebker, H.; Gurrola, E.

    2011-01-01

    The InSAR Scientific Computing Environment (ISCE) is a flexible, extensible software tool designed for the end-to-end processing and analysis of synthetic aperture radar data. ISCE inherits the core of the ROI_PAC interferometric tool, but contains improvements at all levels of the radar processing chain, including a modular and extensible architecture, new focusing approach, better geocoding of the data, handling of multi-polarization data, radiometric calibration, and estimation and correction of ionospheric effects. In this paper we describe the characteristics of ISCE with emphasis on the ionospheric modules. To detect ionospheric anomalies, ISCE implements the Faraday rotation method using quadpolarimetric images, and the split-spectrum technique using interferometric single-, dual- and quad-polarimetric images. The ability to generate co-registered time series of quad-polarimetric images makes ISCE also an ideal tool to be used for polarimetric-interferometric radar applications.

  3. Monitoring Landslides in Western Mountainous Areas of China Using Advanced Multi-Temporal InSAR Techniques

    Science.gov (United States)

    Dong, Jie; Liao, Mingsheng; Zhang, Lu; Gong, Jianya

    2016-08-01

    Disasters, caused by landslide, rock fall, debris flow, ground fissure, etc., are one of the significant natural catastrophes, threatening and influencing the socio-economic conditions around the world. China is one of the countries that suffer heavily from such geo-hazards. And most landslides take place in the mountainous valley areas of western China. With its wide coverage and sub-centimeter accuracy, radar remote sensing has already proven its potential for remotely measuring unstable slopes. Differential InSAR (D-InSAR) is used to recognize known landslides and find potential unstable slopes in a region scale. Then, for a specific landslide, advanced multi-temporal InSAR method is exploited to characterize its surface deformation by obtaining time-series displacement on coherent targets. Among them, the PSI technique exploits only PSs exhibiting high phase stability in a stack of interferograms, which generally exist in urban areas. But, in the case of rural environment characterized by vegetated or low reflectivity homogeneous regions, few PSs could be identified. As a complement of persistent scatterers, distributed scatterers widely existing in rural areas can be exploited. DSs decorrelate slowly and can be found from homogeneous ground, scattered outcrops, debris flows, non-cultivated lands and desert areas. In this poster, a distributed scatterers-based InSAR technique, making use of PSs and DSs, is proposed. At first, we will use D-InSAR technique to detect landslides. Then, both PSI and DS-InSAR will be implemented to monitor interested landslides. And a comparison study of these two methods are conducted.

  4. A novel multi-band SAR data technique for fully automatic oil spill detection in the ocean

    Science.gov (United States)

    Del Frate, Fabio; Latini, Daniele; Taravat, Alireza; Jones, Cathleen E.

    2013-10-01

    With the launch of the Italian constellation of small satellites for the Mediterranean basin observation COSMO-SkyMed and the German TerraSAR-X missions, the delivery of very high-resolution SAR data to observe the Earth day or night has remarkably increased. In particular, also taking into account other ongoing missions such as Radarsat or those no longer working such as ALOS PALSAR, ERS-SAR and ENVISAT the amount of information, at different bands, available for users interested in oil spill analysis has become highly massive. Moreover, future SAR missions such as Sentinel-1 are scheduled for launch in the very next years while additional support can be provided by Uninhabited Aerial Vehicle (UAV) SAR systems. Considering the opportunity represented by all these missions, the challenge is to find suitable and adequate image processing multi-band procedures able to fully exploit the huge amount of data available. In this paper we present a new fast, robust and effective automated approach for oil-spill monitoring starting from data collected at different bands, polarizations and spatial resolutions. A combination of Weibull Multiplicative Model (WMM), Pulse Coupled Neural Network (PCNN) and Multi-Layer Perceptron (MLP) techniques is proposed for achieving the aforementioned goals. One of the most innovative ideas is to separate the dark spot detection process into two main steps, WMM enhancement and PCNN segmentation. The complete processing chain has been applied to a data set containing C-band (ERS-SAR, ENVISAT ASAR), X-band images (Cosmo-SkyMed and TerraSAR-X) and L-band images (UAVSAR) for an overall number of more than 200 images considered.

  5. Two Decades of Multi-Sensor Subsidence Monitoring over Ebro Delta Using Coherence-Based DInSAR Techniques

    Science.gov (United States)

    Pipia, Luca; Perez, Fernando; Marturia, Jordi; Corbera, Jordi; Jornet, Lluis; Rovira, Albert

    2016-08-01

    This work presents the historical study of the subsidence phenomenon over the Ebro Delta plain carried out as WPB6 in the frame of Ebro-ADMICLIM LIFE project, using coherence-based differential interferometric SAR techniques (DInSAR). To this end, the whole SAR archive available at ESA over the area of interest (AOI) at C-Band and L-Band has been analyzed. The results provided by each stack term of absolute deformation and deformation-rate maps are first shown. Then, a space-time filtering method to take advantage of the redundant information provided by ERS and ENVISAT data is put forward. C-band and L-band retrievals are then compared, and future monitoring activity based on Sentinel-1 imaging is discussed.

  6. Forest canopy height estimation using double-frequency repeat pass interferometry

    Science.gov (United States)

    Karamvasis, Kleanthis; Karathanassi, Vassilia

    2015-06-01

    In recent years, many efforts have been made in order to assess forest stand parameters from remote sensing data, as a mean to estimate the above-ground carbon stock of forests in the context of the Kyoto protocol. Synthetic aperture radar interferometry (InSAR) techniques have gained traction in last decade as a viable technology for vegetation parameter estimation. Many works have shown that forest canopy height, which is a critical parameter for quantifying the terrestrial carbon cycle, can be estimated with InSAR. However, research is still needed to understand further the interaction of SAR signals with forest canopy and to develop an operational method for forestry applications. This work discusses the use of repeat pass interferometry with ALOS PALSAR (L band) HH polarized and COSMO Skymed (X band) HH polarized acquisitions over the Taxiarchis forest (Chalkidiki, Greece), in order to produce accurate digital elevation models (DEMs) and estimate canopy height with interferometric processing. The effect of wavelength-dependent penetration depth into the canopy is known to be strong, and could potentially lead to forest canopy height mapping using dual-wavelength SAR interferometry at X- and L-band. The method is based on scattering phase center separation at different wavelengths. It involves the generation of a terrain elevation model underneath the forest canopy from repeat-pass L-band InSAR data as well as the generation of a canopy surface elevation model from repeat pass X-band InSAR data. The terrain model is then used to remove the terrain component from the repeat pass interferometric X-band elevation model, so as to enable the forest canopy height estimation. The canopy height results were compared to a field survey with 6.9 m root mean square error (RMSE). The effects of vegetation characteristics, SAR incidence angle and view geometry, and terrain slope on the accuracy of the results have also been studied in this work.

  7. SARS Basics

    Science.gov (United States)

    ... and Resources Related Links Clinician Registry Travelers' Health SARS Basics Fact Sheet Language: English Español (Spanish) Format: ... 3 pages] SARS [3 pages] SARS [3 pages] SARS? Severe acute respiratory syndrome (SARS) is a viral ...

  8. Stochastic modeling for time series InSAR: with emphasis on atmospheric effects

    Science.gov (United States)

    Cao, Yunmeng; Li, Zhiwei; Wei, Jianchao; Hu, Jun; Duan, Meng; Feng, Guangcai

    2017-08-01

    Despite the many applications of time series interferometric synthetic aperture radar (TS-InSAR) techniques in geophysical problems, error analysis and assessment have been largely overlooked. Tropospheric propagation error is still the dominant error source of InSAR observations. However, the spatiotemporal variation of atmospheric effects is seldom considered in the present standard TS-InSAR techniques, such as persistent scatterer interferometry and small baseline subset interferometry. The failure to consider the stochastic properties of atmospheric effects not only affects the accuracy of the estimators, but also makes it difficult to assess the uncertainty of the final geophysical results. To address this issue, this paper proposes a network-based variance-covariance estimation method to model the spatiotemporal variation of tropospheric signals, and to estimate the temporal variance-covariance matrix of TS-InSAR observations. The constructed stochastic model is then incorporated into the TS-InSAR estimators both for parameters (e.g., deformation velocity, topography residual) estimation and uncertainty assessment. It is an incremental and positive improvement to the traditional weighted least squares methods to solve the multitemporal InSAR time series. The performance of the proposed method is validated by using both simulated and real datasets.

  9. Investigating the creeping section of the San Andreas Fault using ALOS PALSAR interferometry

    Science.gov (United States)

    Agram, P. S.; Wortham, C.; Zebker, H. A.

    2010-12-01

    In recent years, time-series InSAR techniques have been used to study the temporal characteristics of various geophysical phenomena that produce surface deformation including earthquakes and magma migration in volcanoes. Conventional InSAR and time-series InSAR techniques have also been successfully used to study aseismic creep across faults in urban areas like the Northern Hayward Fault in California [1-3]. However, application of these methods to studying the time-dependent creep across the Central San Andreas Fault using C-band ERS and Envisat radar satellites has resulted in limited success. While these techniques estimate the average long-term far-field deformation rates reliably, creep measurement close to the fault (Exploration Agency (JAXA) in 2006, to study the temporal characteristics of creep across the Central San Andreas Fault. The longer wavelength at L-band improves observed correlation over the entire scene which significantly increased the ground area coverage of estimated deformation in each interferogram but at the cost of decreased sensitivity of interferometric phase to surface deformation. However, noise levels in our deformation estimates can be decreased by combining information from multiple SAR acquisitions using time-series InSAR techniques. We analyze 13 SAR acquisitions spanning the time-period from March 2007 to Dec 2009 using the Short Baseline Subset Analysis (SBAS) time-series InSAR technique [3]. We present detailed comparisons of estimated time-series of fault creep as a function of position along the fault including the locked section around Parkfield, CA. We also present comparisons between the InSAR time-series and GPS network observations in the Parkfield region. During these three years of observation, the average fault creep is estimated to be 35 mm/yr. References [1] Bürgmann,R., E. Fielding and, J. Sukhatme, Slip along the Hayward fault, California, estimated from space-based synthetic aperture radar interferometry

  10. Coastal city subsidence in Shenzhen (China), monitored using multi-frequency radar interferometry time-series techniques

    Science.gov (United States)

    Liu, Peng; Li, Yongsheng; Singleton, Andrew; Li, Qingquan; Zhang, Jingfa; Li, Zhenhong

    2014-05-01

    In just 26 years, the coastal city of Shenzhen (Southern China) has been transformed from a small fishing village to a modern city with a population exceeding 8.5 million people. Following its designation as a Special Economic Zone in the 1980s, the city became a test bed for China's economic reforms and currently leads many new practices in urban planning. The rapid economic development was matched by a sharp increase in the demand for usable land and consequently, extensive coastal reclamation has been undertaken by piling rock fragments from nearby hills onto the seabed. However, it has recently been reported that new apartments, offices and transport networks built on the reclaimed land have become unusable due to ground subsidence. The additional threat of coastal inundation from sea-level rise also requires serious consideration. InSAR time-series techniques (such as Persistent Scatterer and Small Baseline InSAR) are capable of detecting sub-centimetre elevation changes of the Earth's surface over large areas and at a density far exceeding the capabilities of a GPS network - particularly for such an urban environment as Shenzhen. This study uses numerous independent tracks of SAR data (two ENVISAT C-band tracks and two ALOS L-band tracks) to determine the surface movements between 2004 and 2013. Quantitative comparative analyses are carried out in the overlapping area between two adjacent tracks, and thus no ground data is required to validate InSAR results. The results show greatest subsidence in coastal areas with the areas of reclaimed land also predominantly undergoing subsidence. The combination of different ascending and descending tracks allows 2D velocity fields to be estimated and it will be important to determine whether the subsidence from the recently reclaimed land is consolidation or part of a longer-term trend. This ability to provide accurate measurements of ground stability for the city of Shenzhen will help focus investigations into areas of

  11. Space interferometry beyond exoplanetology: Can interdisciplinary collaboration contribute to the future of this technique?

    Science.gov (United States)

    Gabor, Pavel

    2011-11-01

    Although a formation-flying space interferometer designed for exoplanet spectroscopy is feasible in principle, the novelty and cost of such an instrument is likely to remain daunting unless the scientific benefits of this technology are demonstrated by intermediary, precursor missions. Such instruments would represent intermediary steps in the real-life testing of the technology, and therefore, by the very reason of being intermediary, they may not have the resolving or collecting power needed for the study of the objects where biomarkers could be hoped to be detected, i.e., exo-Earths in the habitable zone of their stars. This paper examines the potential applications of such intermediary instruments. The direct line of thought focuses on exoplanetology (gas giants, protoplanetary discs, Neptunes, super-Earths, etc.); what we would like to stimulate is an exercise in lateral thinking, looking at what might an intermediary interferometric mission contribute to other fields of astrophysical research (galaxies, supernova precursors, planetary nebulae, molecular clouds, etc.). The paper raises the question of collaboration with astrophysicists studying areas other than exoplanets and its potential gains for the future of space interferometry.

  12. Working-point control technique for the homodyne interferometry in hydrophone calibration

    Science.gov (United States)

    Yang, Ping; Xing, Guangzhen

    2015-02-01

    The stabilization of a homodyne type Michelson interferometer for calibrating the high frequency hydrophone is presented in this article. For the detection of the ultrasonic field, a 5 um thickness pellicle was inserted in water moving in sympathy with the ultrasonic wave. To ensure high signal to noise ratio at high frequencies, a 5 MHz focusing transducer was driven by high voltage and harmonics of the shocked ultrasonic field could be activated. Nevertheless, the homodyne interferometer suffered from the drawback of signal fading caused by the low frequency noise in environment, including acoustic noise and water surface agitation. Direct Current Phase Tracking was utilized to maintain the quadrature working point for the interferometer. Most of environmental noises could be effectively compensated while stabilization was maintained. A piezoelectric actuator supporting the reference mirror was utilized as the stabilizing element whose output was frequency independent over the low frequency disturbances, usually below 200 Hz. The ultrasonic signal fading caused by environmental disturbances could be solved while the negative electric feedback loop was operating. The displacement and voltage output of the hydrophone under test were then processed by DFT to derive the fundamental and harmonic components. Under plane wave conditions, the ultrasonic pressure could be derived by the detected displacement with a stabilized homodyne interferometer, and the hydrophone could then be calibrated. Measurement results indicated that the hydrophone calibration system based on the active stabilization of homodyne interferometry was sound in theory and feasible in practice.

  13. STUDY ON THE TECHNIQUE TO DETECT TEXTURE FEATURES IN SAR IMAGES

    Institute of Scientific and Technical Information of China (English)

    Fu Yusheng; Ding Dongtao; Hou Yinming

    2004-01-01

    This letter studies on the detection of texture features in Synthetic Aperture Radar (SAR) images. Through analyzing the feature detection method proposed by Lopes, an improved texture detection method is proposed, which can not only detect the edge and lines but also avoid stretching edge and suppressing lines of the former algorithm. Experimental results with both simulated and real SAR images verify the advantage and practicability of the improved method.

  14. Two-step phase shifting interferometry technique for evaluation of fatigue process zone parameters in notched specimens

    Science.gov (United States)

    Muravsky, Leonid I.; Picart, Pascal; Kmet', Arkady B.; Voronyak, Taras I.; Ostash, Orest P.; Stasyshyn, Ihor V.

    2016-08-01

    A new two-step phase shifting interferometry technique for evaluation of a fatigue process zone (FPZ) in notched metal and alloy specimens is proposed. In comparison with well-known destructive and nondestructive methods evaluating FPZ, this technique possesses higher accuracy and performance and allows defining the FPZ size for notched specimens made of metals and alloys with low, moderate or high plasticity. The technique is fulfilled by retrieval of a total surface relief of a studied notched specimen, extraction of surface roughness and waviness phase maps from the retrieved surface relief, calculation of a surface roughness parameter Ra spatial distribution and definition of the FPZ size by using an extracted surface roughness phase map. Obtained experimental results have confirmed assumption that the surface roughness of notched specimens after cyclic loading reaches its maximum values at the FPZ boundary. This boundary is produced as the narrow strip containing pixels possessing the maximum values on the spatial distribution of the roughness parameter Ra near a notch root. The basic distances d* defining the FPZ sizes were measured for notched specimens made of a low-carbon steel and aluminum alloys 2024-T6 and 7075-T3. Results of the distances d* measurement are very close to respective results obtained with the help of other methods for the FPZ evaluation.

  15. A spatially variable power law tropospheric correction technique for InSAR data

    NARCIS (Netherlands)

    Bekaert, D.P.S.; Hooper, A.; Wright, T.J.

    2015-01-01

    Microwave signals traveling through the troposphere are subject to delays. These delays are mainly described by spatial and temporal variations in pressure, temperature, and relative humidity in the lower part of the troposphere, resulting in a spatially varying tropospheric signal in interferometri

  16. Monitoring of ground surface deformation in mining area with InSAR technique%利用InSAR技术监测矿区地表形变

    Institute of Scientific and Technical Information of China (English)

    朱建军; 邢学敏; 胡俊; 李志伟

    2011-01-01

    The application status and research progress of InSAR technique in the monitoring of the ground surface deformation in mining area were introduced. Firstly, the advantages of D-InSAR technique were analyzed by comparing to the traditional surveying methods. Then, the limitations of D-InSAR in the mining deformation detection were described. According to the limitations of the traditional D-InSAR method, the advanced InSAR technique, e.g., small baseline subset (SBAS), permanent scatterer (PS) and corner reflector (CR) techniques were discussed. Using real mining subsidence monitoring as example, the characteristics and application status of those advanced InSAR techniques were studied, and the key problems still existing in the current research were summarized. Finally, it is indicated that the development trend of InSAR monitoring surface deformation in mining area is the combination of advanced InSAR and high-resolution SAR images.%介绍了InSAR技术在矿区地表形变监测中的应用现状及进展,分析了D-InSAR技术相比于传统测量手段的优势,并指出其在矿区地表形变监测中的不足.针对传统D-InSAR技术的局限性,重点讨论了短基线(SBAS)、永久散射体(PS)和角反射器(CR)等高级差分干涉技术,并结合矿区沉降监测实例,分析了其特点与应用现状,讨论了现有研究中仍存在的问题.高级InSAR技术和高分辨率SAR影像的结合将是矿区地表形变监测的发展趋势.

  17. Measurements of Land Subsidence Rates on the North-western Portion of the Nile Delta Using Radar Interferometry Techniques

    Science.gov (United States)

    Fugate, Joseph M.

    The Nile Delta is home to around 75 million people and most of Egypt's farmland and agricultural production. This area is currently threatened by Mediterranean Sea waters due to factors such as sediment starvation, climate change, and sea level fluctuations as well as subsidence. The low elevation and relief of the Nile Delta exposes many coastal communities, including the city of Alexandria, to potential inundation. This situation has become a concern for the area's residents but a better understanding of the processes occurring there can aid in deciding a suitable response. Recent studies have documented Holocene subsidence rates in the northeast part of the Nile Delta that average up to 8mm/year. In this study, PS-InSAR techniques are used to measure modern land subsidence rates on the north-central and north-western Nile Delta. Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) techniques were applied to 23 ESA radar scenes from 2 orbital tracks spanning from 1992 to 2000 in the north-central and north-west portions of the Nile Delta. The area includes the cities of Alexandria, Greater Mahala, and Mansoura as well as the Rosetta promontory and lake Burullus, Idku Lagoon, and Maryut Lagoon. Results indicate that modern average-vertical ground motion velocities for the north-western and north-central Nile Delta range from emergent to subsidence of 8.5 mm/yr. The range of velocities measured are spatially varied in a complex way across the study area. Patterns of subsidence correlate closely to areas of most recent sediment deposition such as along coastlines and rivers, as well as in lagoons and lakes. Average subsidence velocities are also lower across the western sections of the Nile Delta than in the northeastern delta.

  18. New measurement technique for dispersion characterizing optical fibers using low-coherence spectral interferometry with a Michelson interferometer

    Science.gov (United States)

    Hlubina, Petr

    1999-08-01

    Low-coherence spectral interferometry with channelled spectrum detection, extensively used for dispersion characterizing optical fibers, utilizes the fact that the spectral interference between two modes of an optical fiber shows up at its output as a periodic modulation of the source spectrum with the period dependent on the group optical path difference (OPD) between modes. However, this measurement technique cannot be used to measure intermodal dispersion in the optical fiber for which the period of modulation is too small to be resolved by a spectrometer. We proposed and realized a new measurement technique utilizing a tandem configuration of a dispersive Michelson interferometer and the two-mode optical fiber in which the intermodal spectral interference can be resolved even if a low-resolution spectrometer is used. In the tandem configuration of the dispersive Michelson interferometer and the two-mode optical fiber, the OPD in the Michelson interferometer is adjusted close to the group OPD between modes of the optical fiber so that the low-frequency spectral modulation that can be processed is produced. Using the Fourier transform method in processing the measured spectral modulations and subtracting the effect of the dispersive Michelson interferometer, the intermodal dispersion of the two-mode optical fiber over a limited spectral region has been obtained.

  19. Forward-looking three dimensional imaging technique for InSAR mounted on ground vehicles%车载 InSAR 前视三维成像技术

    Institute of Scientific and Technical Information of China (English)

    王建; 李杨寰; 张汉华; 陆必应; 宋千; 周智敏

    2014-01-01

    It is a difficult task for an unmanned ground vehicle (UGV)to sense obstacles in out fields or unstructured environments.Because the height information is a vital feature to boost the performance of obstacle discrimination,the three-dimensional imaging technique for sensing obstacles ahead UGV of interferometric synthetic aperture radar (InSAR)was presented.The basic signal process flow of InSAR was reviewed. Special factors of the UGV platform that impact the digital elevation model (DEM)measurement precision were analyzed,such as the baseline length,platform motion errors.The DEMof a partial sight-blocked obstacle scene was obtained by processing the three-dimensional InSAR image, which proved the feasibility of applying InSAR to obstacle sensing of UGV.%野外和非结构化环境下的障碍探测是无人驾驶车(UGV)环境感知的难题之一。基于高度识别障碍是一种有效的解决途径,提出了干涉合成孔径雷达(InSAR)的三维障碍物成像策略,研究了 InSAR 信息处理流程,分析了干涉基线和运动误差对车载 InSAR 高程测量精度的影响,仿真了无人车前场景存在遮挡时的 InSAR 高程测量,证明了 InSAR 用于 UGV 前方环境感知的可行性。

  20. A Case Study of Using External DEM in InSAR DEM Generation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Chunxia; GE Linlin; E Dongchen; CHANG Hsingchung

    2005-01-01

    Synthetic aperture radar interferometry (InSAR) has been used as an innovative technique for digital elevation model (DEM) and topographic map generation. In this paper, external DEMs are used for InSAR DEM generation to reduce the errors in data processing. The DEMs generated from repeat-pass InSAR are compared. For steep slopes and severe changes in topography, phase unwrapping quality can be improved by subtracting the phase calculated from an external DEM. It is affirmative that the absolute height accuracy of the InSAR DEM is improved by using external DEM. The data processing was undertaken without the use of ground control points and other manual operation.

  1. Lava emplacements at Shiveluch volcano (Kamchatka) from June 2011 to September 2014 observed by TanDEM-X SAR-Interferometry

    Science.gov (United States)

    Heck, Alexandra; Kubanek, Julia; Westerhaus, Malte; Gottschämmer, Ellen; Heck, Bernhard; Wenzel, Friedemann

    2016-04-01

    As part of the Ring of Fire, Shiveluch volcano is one of the largest and most active volcanoes on Kamchatka Peninsula. During the Holocene, only the southern part of the Shiveluch massive was active. Since the last Plinian eruption in 1964, the activity of Shiveluch is characterized by periods of dome growth and explosive eruptions. The recent active phase began in 1999 and continues until today. Due to the special conditions at active volcanoes, such as smoke development, danger of explosions or lava flows, as well as poor weather conditions and inaccessible area, it is difficult to observe the interaction between dome growth, dome destruction, and explosive eruptions in regular intervals. Consequently, a reconstruction of the eruption processes is hardly possible, though important for a better understanding of the eruption mechanism as well as for hazard forecast and risk assessment. A new approach is provided by the bistatic radar data acquired by the TanDEM-X satellite mission. This mission is composed of two nearly identical satellites, TerraSAR-X and TanDEM-X, flying in a close helix formation. On one hand, the radar signals penetrate clouds and partially vegetation and snow considering the average wavelength of about 3.1 cm. On the other hand, in comparison with conventional InSAR methods, the bistatic radar mode has the advantage that there are no difficulties due to temporal decorrelation. By interferometric evaluation of the simultaneously recorded SAR images, it is possible to calculate high-resolution digital elevation models (DEMs) of Shiveluch volcano and its surroundings. Furthermore, the short recurrence interval of 11 days allows to generate time series of DEMs, with which finally volumetric changes of the dome and of lava flows can be determined, as well as lava effusion rates. Here, this method is used at Shiveluch volcano based on data acquired between June 2011 and September 2014. Although Shiveluch has a fissured topography with steep slopes

  2. Investigating a damaging buried sinkhole cluster in an urban area (Zaragoza city, NE Spain) integrating multiple techniques: Geomorphological surveys, DInSAR, DEMs, GPR, ERT, and trenching

    Science.gov (United States)

    Carbonel, Domingo; Rodríguez-Tribaldos, Verónica; Gutiérrez, Francisco; Galve, Jorge Pedro; Guerrero, Jesús; Zarroca, Mario; Roqué, Carles; Linares, Rogelio; McCalpin, James P.; Acosta, Enrique

    2015-01-01

    This contribution analyses a complex sinkhole cluster buried by urban elements in the mantled evaporite karst of Zaragoza city, NE Spain, where active subsidence has caused significant economic losses (~ 0.3 million Euro). The investigation, conducted after the development of the area, has involved the application of multiple surface and subsurface techniques. A detailed map of modern surface deformation indicates two active coalescing sinkholes, whereas the interpretation of old aerial photographs reveals the presence of two additional dormant sinkholes beneath human structures that might reactivate in the near future. DInSAR (Differential Interferometry Synthetic Aperture Radar) displacement data have limited spatial coverage mainly due to high subsidence rates and surface changes (re-pavement), and the Electrical Resistivity Tomography (ERT) and trenching investigations were severely restricted by the presence of urban elements. Nonetheless, the three techniques consistently indicate that the area affected by subsidence is larger than that defined by surface deformation features. The performance of the Ground Penetrating Radar (GPR) technique was adversely affected by the presence of highly conductive and massive anthropogenic deposits, but some profiles reveal that subsidence in the central sector of one of the sinkholes is mainly accommodated by sagging. The stratigraphic and structural relationships observed in a trench dug across the topographic margin of one of the sinkholes may be alternatively interpreted by three collapse events of around 0.6 m that occurred after 290 yr BP, or by progressive fault displacement combined with episodic anthropogenic excavation and fill. Average subsidence rates of > 6.6 mm/yr and 40 mm/yr have been calculated using stratigraphic markers dated by the radiocarbon method and historical information, respectively. This case study illustrates the need of conducting thorough investigations in sinkhole areas during the pre

  3. White Light Heterodyne Interferometry SNR

    Science.gov (United States)

    2015-04-09

    for Research and Engineering under Air Force Contract FA8721-05-C-0002. Approved for public release; distribution is unlimited. White Light ...White Light Heterodyne Interferometry SNR J.B. Ashcom Group 91...public release; distribution is unlimited. ii ABSTRACT White light heterodyne interferometry is a powerful technique for obtaining high-angular

  4. Antihydrogen Experiment Gravity Interferometry Spectroscopy

    CERN Multimedia

    Tietje, I C; Trezzi, D; Dassa, L; Rienacker, B; Khalidova, O; Ferrari, G; Krasnicky, D; Perini, D; Cerchiari, G; Belov, A; Boscolo, I; Sacerdoti, M G; Ferragut, R O; Nedelec, P; Testera, G; Hinterberger, A; Al-qaradawi, I; Malbrunot, C L S; Brusa, R S; Prelz, F; Manuzio, G; Riccardi, C; Fontana, A; Genova, P; Haider, S; Haug, F; Turbabin, A; Castelli, F; Lagomarsino, V E; Doser, M; Penasa, L; Gninenko, S; Cataneo, F; Zenoni, A; Cabaret, L; Comparat, D P; Zmeskal, J; Scampoli, P; Nesteruk, K P; Dudarev, A; Kellerbauer, A G; Mariazzi, S; Fesel, J V; Carraro, C; Zavatarelli, S M

    The AEGIS experiment (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) has the aim of carrying out the first measurement of the gravitational interaction of antimatter to a precision of 1%, by applying techniques from atomic physics, laser spectroscopy and interferometry to a beam of antihydrogen atoms. A further goal of the experiment is to carry out spectroscopy of the antihydrogen atoms in flight.

  5. "Phase-Enhanced" 3D Snapshot ISAR Imaging and Interferometric SAR

    Science.gov (United States)

    2009-12-28

    contained in the two nearly identical in amplitude data sets. References [5-7] provide a good discussion of the basic principles and associated radar ... Interferometrie SAR J.T. Mayhan Group 32 Technical Report ] 135 28 December 2()(W Approved for public release; distribution is unlimited. Lexington...inverse synthetie aperture radar (ISAR) images based on recent developments in high resolution spectral estimation theory. Because this technique requires

  6. Study on interferometric combination for multi-temporal InSAR optimization

    Science.gov (United States)

    Wang, Xu; Wang, Yanbing; Li, Xiaojuan; Chen, Yahui; Chen, Xin; Hong, Wei

    2014-11-01

    Differential synthetic aperture radar interferometry (InSAR) has already proven its potential for ground subsidence monitoring. In recent years Multi-Temporal InSAR technology has been rapid development. Coherence of interferogram is an important indicator to measure the interferometric phase in the Multi-Temporal InSAR system. This paper study the effect of the Spatial-Temporal baseline on coherence for SAR images in Multi-Temporal InSAR processing base on the aspect of statistics. on the basis of a large amount of data, a formula for calculating coherence for SAR images was deduced which it correspond to the relationship between Spatial-Temporal baseline and the coherence of interferogram. This formula can optimize the selection of interference image pairs during processing Multi-Temporal InSAR. To determine whether this formula is useful, two methods of interference image pairs selection was used, one is the formula to optimize the selection, another is the traditional fixed threshold method. The author compared the coherence of Interferogram to judge the merits of the two methods. The results indicate that the formula not only select more interferogram from interferogram stack, but also increase the number of highly coherent points. And use SBAS-InSAR technique to obtain the 2010-2013 Beijing urban land subsidence information, verification monitoring accuracy by comparing level monitoring result.

  7. Comparison between holographic interferometry and high-speed videography techniques in the study of the reflection of plane shock waves

    Science.gov (United States)

    Barbosa, Filipe J.; Skews, Beric W.

    1997-05-01

    Double exposure holographic interferometry and high speed laser shadowgraph photography and videography are used to investigate the mutual reflection of two plane shock waves. Normally research on the transition from regular to Mach reflection is undertaken by allowing a plane shock wave to impinge on a wedge. However due to the boundary layer growth on the wedge, regular reflection persists at wedge angles higher than that allowed for by inviscid shock wave theory. Several bifurcated shock tubes have been constructed, wherein an initially planar shock wave is split symmetrically into two and then recombined at the trailing edge of a wedge. The plane of symmetry acts as an ideal rigid wall eliminating thermal and viscous boundary layer effects. The flow visualization system used needs to provide high resolution information on the shockwave, slipstream, triple point and vortex positions and angles. Initially shadowgraph and schlieren methods, with a Xenon light source, were used. These results, while proving useful, are not of a sufficient resolution to measure the Mach stem and slipstream lengths accurately enough in order to determine the transition point between regular and Mach reflection. To obtain the required image resolution a 2 joule double pulse ruby laser, with a 30 ns pulse duration, was used to make holographic interferograms. The combined advantages of holographic interferometry and the 30 ns pulse laser allows one to obtain much sharper definition, and more qualitative as well as quantitative information on the flow field. The disadvantages of this system are: the long time taken to develop holograms, the difficulty of aligning the pulse laser and the fact that only one image per test is obtained. Direct contact shadowgraphs were also obtained using the pulse ruby laser to help determine triple point trajectory angles. In order to provide further information a one million frames per second CCD camera, which can take up to 10 superimposed images, was

  8. Evaluation of fatigue process zone dimensions in notched specimens by two-step phase shifting interferometry technique

    Science.gov (United States)

    Muravsky, Leonid I.; Picart, Pascal; Kmet', Arkady B.; Voronyak, Taras I.; Ostash, Orest P.; Stasyshyn, Ihor V.

    2016-10-01

    A method for evaluation of fatigue process zone (FPZ) dimensions near a notch root in metal and alloy specimens by using a two-step phase shifting interferometry (TS PSI) technique is proposed. In comparison with other destructive and nondestructive methods evaluating the FPZ dimensions, it possesses higher accuracy and performance. The method uses a criterion for the FPZ dimensions definition based on an assumption that the surface roughness of notched specimens after cyclic loading reaches its maximum values at the FPZ boundary. To realize this method, first, a phase map (PM) of a total surface relief near a notch root is retrieved; second, roughness and waviness PMs are extracted from the retrieved total surface relief PM by using the TS PSI; and finally, a surface roughness parameter Ra spatial distribution is calculated according to the offered criterion and the FPZ size d* is defined. The FPZ size was measured for specimens made of low-carbon steel and aluminum alloys 2024-T6 and 7075-T3. Obtained experimental results have shown that the proposed criterion allows defining the FPZ size for notched specimens made of metals and alloys possessing high, moderate, and low plasticity.

  9. The Technology of Interferometry SAR and its Significant for Urban Remote Sensing%合成孔径雷达干涉测量技术(InSAR)及其对城市遥感的意义

    Institute of Scientific and Technical Information of China (English)

    陈基炜

    2001-01-01

    该文详细论述与分析了合成孔径雷达干涉测量(InSAR)的干涉几何特征以及InSAR影像之间的相关性特征,着重阐述并分析了影响其地学监测方面的数据质量等相干技术问题.就InSAR开展上海城市地面沉降研究提出了基本思路,对InSAR城市遥感应用的潜在意义进行了分析和讨论.

  10. Detecting, mapping and monitoring of land subsidence in Jharia Coalfield, Jharkhand, India by spaceborne differential interferometric SAR, GPS and precision levelling techniques

    Indian Academy of Sciences (India)

    R S Chatterjee; Shailaja Thapa; K B Singh; G Varunakumar; E V R Raju

    2015-08-01

    The study aims at detection, mapping and monitoring of land subsidence in Jharia Coalfield, Jharkhand, India by spaceborne DInSAR, GPS and precision levelling techniques. Using multi-frequency C- and L-band DInSAR, both slowly and rapidly subsiding areas were identified and DInSAR-based subsidence maps were prepared. C-band DInSAR was found useful for detection of slowly subsiding areas whereas L-band DInSAR for rapidly subsiding and/or adverse land cover areas. Due to dynamic nature of mining and adverse land cover, temporal decorrelation poses a serious problem particularly in C-band DInSAR. Specially designed InSAR coherence guided adaptive filtering was found useful to highlight the deformation fringes. Collateral GPS and levelling observations were conducted in three test sites to validate DInSAR measurements and to determine the net displacement vectors. We observed an appreciable horizontal displacement component of land subsidence in all the test sites. For comparison of results, we calculated InSAR coherence weighted LOS displacement rates from the unwrapped differential interferograms of smaller spatial subsets and LOS projected ground-based displacement rates in three test sites. We found good agreement between DInSAR and ground-based measurements except for C-band observation in Dobari test site primarily due to large difference in observation periods and temporally inconsistent land subsidence. Collateral spaceborne and ground-based observations were also found useful for characterization of subsidence phenomena to determine net displacement vector and horizontal displacement component. In coal mining areas with spatially scattered and temporally irregular land subsidence phenomena, the adopted methodology can be used successfully for detection, mapping and monitoring of the subsiding areas vulnerable to future collapse. This will facilitate efficient planning and designing of surface infrastructures and other developmental structures in the mining

  11. Ground Displacement Measurement of the 2013 Balochistan Earthquake with interferometric TerraSAR-X ScanSAR data

    Science.gov (United States)

    Yague-Martinez, N.; Fielding, E. J.; Haghshenas-Haghighi, M.; Cong, X.; Motagh, M.

    2014-12-01

    This presentation will address the 24 September 2013 Mw 7.7 Balochistan Earthquake in western Pakistan from the point of view of interferometric processing algorithms of wide-swath TerraSAR-X ScanSAR images. The algorithms are also valid for TOPS acquisition mode, the operational mode of the Sentinel-1A ESA satellite that was successfully launched in April 2014. Spectral properties of burst-mode data and an overview of the interferometric processing steps of burst-mode acquisitions, emphasizing the importance of the co-registration stage, will be provided. A co-registration approach based on incoherent cross-correlation will be presented and applied to seismic scenarios. Moreover geodynamic corrections due to differential atmospheric path delay and differential solid Earth tides are considered to achieve accuracy in the order of several centimeters. We previously derived a 3D displacement map using cross-correlation techniques applied to optical images from Landsat-8 satellite and TerraSAR-X ScanSAR amplitude images. The Landsat-8 cross-correlation measurements cover two horizontal directions, and the TerraSAR-X displacements include both horizontal along-track and slant-range (radar line-of-sight) measurements that are sensitive to vertical and horizontal deformation. It will be justified that the co-seismic displacement map from TerraSAR-X ScanSAR data may be contaminated by postseismic deformation due to the fact that the post-seismic acquisition took place one month after the main shock, confirmed in part by a TerraSAR-X stripmap interferogram (processed with conventional InSAR) covering part of the area starting on 27 September 2013. We have arranged the acquisition of a burst-synchronized stack of TerraSAR-X ScanSAR images over the affected area after the earthquake. It will be possible to apply interferometry to these data to measure the lower magnitude of the expected postseismic displacements. The processing of single interferograms will be discussed. A

  12. Ultra Wide X-Band Microwave Imaging of Concealed Weapons and Explosives Using 3D-SAR Technique

    Directory of Open Access Journals (Sweden)

    P. Millot

    2015-01-01

    Full Text Available In order to detect and image concealed weapons and explosives, an electromagnetic imaging tool with its related signal processing is presented. The aim is to penetrate clothes and to find personal-born weapons and explosives under clothes. The chosen UWB frequency range covers the whole X-band. The frequency range is justified after transmission measurements of numerous clothes that are dry or slightly wet. The apparatus and the 3D near-field SAR processor are described. A strategy for contour identification is presented with results of some simulants of weapon and explosive. A conclusion is drawn on the possible future of this technique.

  13. The coseismic displacement field of the Zhangbei-Shangyi earthquake mapped by differential radar interferometry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The coseismic deformation produced by 1998 earthquake (Ms = 6.2) in Zhangbei-Shangyi of northern China is measured by the differential synthetic aperture radar interferometry (D-InSAR) technique using the European Remote Sensing satellite (ERS) SAR data. Interferograms are constructed from the ERS-1/2 SAR data by the three-pass method. The line-of-sight displacement map indicates that the deformation center of the earthquake is located at E114°20′,N40°57′,with the maximum uplift of 25 cm. The extent of the displacement is around 300 km2. The focal mechanism and earthquake-induced structures are analyzed based on the spatial distribution of the deformation. The results give new insights into the seismic mechanism study.

  14. The contribution of satellite SAR-derived displacement measurements in landslide risk management practices

    Science.gov (United States)

    Raspini, Federico; Bardi, Federica; Bianchini, Silvia; Ciampalini, Andrea; Del Ventisette, Chiara; Farina, Paolo; Ferrigno, Federica; Solari, Lorenzo; Casagli, Nicola

    2017-04-01

    Landslides are common phenomena that occur worldwide and are a main cause of loss of life and damage to property. The hazards associated with landslides are a challenging concern in many countries, including Italy. With 13% of the territory prone to landslides, Italy is one of the European countries with the highest landslide hazard, and on a worldwide scale, it is second only to Japan among the technologically advanced countries. Over the last 15 years, an increasing number of applications have aimed to demonstrate the applicability of images captured by space-borne Synthetic Aperture Radar (SAR) sensors in slope instability investigations. InSAR (SAR Interferometry) is currently one of the most exploited techniques for the assessment of ground displacements, and it is becoming a consolidated tool for Civil Protection institutions in addressing landslide risk. We present a subset of the results obtained in Italy within the framework of SAR-based programmes and applications intended to test the potential application of C- and X-band satellite interferometry during different Civil Protection activities (namely, prevention, prevision, emergency response and post-emergency phases) performed to manage landslide risk. In all phases, different benefits can be derived from the use of SAR-based measurements, which were demonstrated to be effective in the field of landslide analysis. Analysis of satellite-SAR data is demonstrated to play a major role in the investigation of landslide-related events at different stages, including detection, mapping, monitoring, characterization and prediction. Interferometric approaches are widely consolidated for analysis of slow-moving slope deformations in a variety of environments, and exploitation of the amplitude data in SAR images is a somewhat natural complement for rapid-moving landslides. In addition, we discuss the limitations that still exist and must be overcome in the coming years to manage the transition of satellite SAR

  15. Detecting Faults in Southern California using Computer-Vision Techniques and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Interferometry

    Science.gov (United States)

    Barba, M.; Rains, C.; von Dassow, W.; Parker, J. W.; Glasscoe, M. T.

    2013-12-01

    Knowing the location and behavior of active faults is essential for earthquake hazard assessment and disaster response. In Interferometric Synthetic Aperture Radar (InSAR) images, faults are revealed as linear discontinuities. Currently, interferograms are manually inspected to locate faults. During the summer of 2013, the NASA-JPL DEVELOP California Disasters team contributed to the development of a method to expedite fault detection in California using remote-sensing technology. The team utilized InSAR images created from polarimetric L-band data from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) project. A computer-vision technique known as 'edge-detection' was used to automate the fault-identification process. We tested and refined an edge-detection algorithm under development through NASA's Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) project. To optimize the algorithm we used both UAVSAR interferograms and synthetic interferograms generated through Disloc, a web-based modeling program available through NASA's QuakeSim project. The edge-detection algorithm detected seismic, aseismic, and co-seismic slip along faults that were identified and compared with databases of known fault systems. Our optimization process was the first step toward integration of the edge-detection code into E-DECIDER to provide decision support for earthquake preparation and disaster management. E-DECIDER partners that will use the edge-detection code include the California Earthquake Clearinghouse and the US Department of Homeland Security through delivery of products using the Unified Incident Command and Decision Support (UICDS) service. Through these partnerships, researchers, earthquake disaster response teams, and policy-makers will be able to use this new methodology to examine the details of ground and fault motions for moderate to large earthquakes. Following an earthquake, the newly discovered faults can

  16. Landslide Inventory and Monitoring Using Sentinel-1 SAR Imagery

    Science.gov (United States)

    Monserrat, Oriol; Crosetto, Michele; Devanthery, Nuria; Cuevas-Gonzalez, Maria; Barra, Anna; Crippa, Bruno

    2016-08-01

    An important application of differential SAR interferometry (DInSAR) and Persistent Scatterer Interferometry is landslide detection and monitoring. Several studies have been published, which make use of the entire spectrum of SAR data types available in the last 25 years. This paper describes a procedure to update landslide inventory maps using Sentinel-1 data. The paper briefly discusses the main advantages of the Sentinel-1 SAR data. Then it describes the data analysis procedure used to update landslide inventory maps using interferometric data and a number of additional information layers. The effectiveness of the procedure is illustrated by the results of a study area located in the Molise region, in Southern Italy.

  17. DInSAR Coseismic Deformations Measurements of the 11 May 2011 Lorca Earthquake; Medidas de deformaciones cosismicas con DInSAR para el terremoto de Lorca del 11 de mayo de 2011

    Energy Technology Data Exchange (ETDEWEB)

    Frontera Genovard, T.; Blanco Sanchez, P.; Concha Dimas, A.; Goula Surinach, X.; Perez Aragues, F.; Marturia Alavedra, J.

    2012-07-01

    The coseismic superficial deformation at the region of Lorca (Murcia, south-eastern Spain) due to the Mw 5.1 earthquake, on 11 May 2011, was characterized by a multidisciplinary team, integrating information from DInSAR (Synthetic Aperture Radar Differential Interferometry) and numerical modelling techniques. Despite the moderate magnitude of the event, quantitative information was obtained from the interferometric study of a pair of TerraSAR-X images. The DInSAR results defined the trace of the fault plane and evidenced uplift of some centimetres of the hanging wall block in agreement with the estimated deformation obtained through an elastic rupture dislocation numerical model. Meanwhile, for the footwall block, interferometric results showed that tectonic deformation is masked by an important subsidence related to groundwater extraction previously identified at the area of study. Keywords: Coseismic deformation, DInSAR, Numerical dislocation model. (Author) 29 refs.

  18. Monitoring and inversion on land subsidence over mining area with InSAR technique

    Science.gov (United States)

    Wang, Y.; Zhang, Q.; Zhao, C.; Lu, Zhiming; Ding, X.

    2011-01-01

    The Wulanmulun town, located in Inner Mongolia, is one of the main mining areas of Shendong Company such as Shangwan coal mine and Bulianta coal mine, which has been suffering serious mine collapse with the underground mine withdrawal. We use ALOS/PALSAR data to extract land deformation under these regions, in which Small Baseline Subsets (SBAS) method was applied. Then we compared InSAR results with the underground mining activities, and found high correlations between them. Lastly we applied Distributed Dislocation (Okada) model to invert the mine collapse mechanism. ?? 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

  19. The 2009 Magmatic Intrusion and Faulting in Harrat Al-Shaqah (Lunayyir), western Saudi Arabia, Observed by Satellite Radar Interferometry (InSAR) (Invited)

    Science.gov (United States)

    Jonsson, S.; Lu, Z.; El-Hadidy, S.; Zahran, H.

    2009-12-01

    One of the volcanic provinces in western Saudi Arabia, Harrat Al-Shaqah (also known as Harrat Lunayyir), suffered from numerous small to moderate-size earthquakes in May-July 2009. The most intensive activity occurred on 17-19 May when six magnitude 4.6-5.7 earthquakes occurred. Following the events the Saudi Civil Protection Agency evacuated the area and relocated over 20000 people to the neighboring cities of Yanbu and Medina. The activity continued throughout June with several magnitude 4-5 earthquakes but then quieted down in July. Following the activity in mid-May we sent a request for emergency satellite radar data acquisitions to the European Space Agency and later activated an International Charter to guarantee satellite data collection of the area. We have analyzed a number of satellite radar interferograms (InSAR) of the activity and the results are outstanding, owing to the stable surface conditions of this near vegetation-free region. Interferograms spanning the activity in mid-May exhibit strong deformation that extends across a large 40 km x 40 km area, showing over a meter of WSW-ENE extension. In addition, the data show clear signs of surface faulting and graben-like subsidence in the middle of the deformed area with the graben subsidence exceeding 50 cm. The deformation appears to be caused by a near-vertical dike intrusion with a WNW-ESE orientation, parallel to the Red Sea rift, and the intruded volume is of the order of 0.1 cubic km. The dike caused faulting on graben-forming normal faults. The shallowest part of the dike appears to have reached within only 2-3 km of the surface, right below where the graben is the narrowest and under an area with a number of cinder cones from previous volcanic events. The dike appears to have continued to grow after the initial strong phase of activity in mid-May, as a deformation interferogram spanning the time period from the end of may until early July shows similar deformation pattern, although with a much

  20. Estimation of the Above Ground Biomass of Tropical Forests using Polarimetric and Tomographic SAR Data Acquired at P Band and 3-D Imaging Techniques

    Science.gov (United States)

    Ferro-Famil, L.; El Hajj Chehade, B.; Ho Tong Minh, D.; Tebaldini, S.; LE Toan, T.

    2016-12-01

    Developing and improving methods to monitor forest biomass in space and time is a timely challenge, especially for tropical forests, for which SAR imaging at larger wavelength presents an interesting potential. Nevertheless, directly estimating tropical forest biomass from classical 2-D SAR images may reveal a very complex and ill-conditioned problem, since a SAR echo is composed of numerous contributions, whose features and importance depend on many geophysical parameters, such has ground humidity, roughness, topography… that are not related to biomass. Recent studies showed that SAR modes of diversity, i.e. polarimetric intensity ratios or interferometric phase centers, do not fully resolve this under-determined problem, whereas Pol-InSAR tree height estimates may be related to biomass through allometric relationships, with, in general over tropical forests, significant levels of uncertainty and lack of robustness. In this context, 3-D imaging using SAR tomography represents an appealing solution at larger wavelengths, for which wave penetration properties ensures a high quality mapping of a tropical forest reflectivity in the vertical direction. This paper presents a series of studies led, in the frame of the preparation of the next ESA mission BIOMASS, on the estimation of biomass over a tropical forest in French Guiana, using Polarimetric SAR Tomographic (Pol-TomSAR) data acquired at P band by ONERA. It is then shown that Pol-TomoSAR significantly improves the retrieval of forest above ground biomass (AGB) in a high biomass forest (200 up to 500 t/ha), with an error of only 10% at 1.5-ha resolution using a reflectivity estimates sampled at a predetermined elevation. The robustness of this technique is tested by applying the same approach over another site, and results show a similar relationship between AGB and tomographic reflectivity over both sites. The excellent ability of Pol-TomSAR to retrieve both canopy top heights and ground topography with an error

  1. Characterization of seepage surfaces from Space-borne radar interferometry stacking techniques, Southern Dead Sea area, Jordan

    Science.gov (United States)

    Tessari, Giulia; Closson, Damien; Abou Karaki, Najib; Atzori, Simone; Fiaschi, Simone; Floris, Mario; Pasquali, Paolo; Riccardi, Paolo

    2014-05-01

    The Dead Sea is a terminal lake located in a pull-apart basin of the Dead Sea Transform fault zone. It is the lowest emerged place on Earth at about -428 m bsl. Since the 1960s, the over-pumping of its tributaries leads to a decrease in the water level. Eventually, it became more pronounced decades after decades. In 2014, it is more than 1m/year. The overall drop is around 33 m. With salinity ten times greater than the ocean water one, the lake body and its underground lateral extensions act as a high density layer over which the fresh ground waters are in hydrostatic equilibrium. The slope of the interface between saline and fresh waters is ten times shallower than normally expected near the ocean. According to a number of wells along the Jordanian Dead Sea coast, the water table level does not drop at the same speed than the Dead Sea. An increasingly important gradient is constantly being created along the coastal zone. In many places, the fresh ground waters move very rapidly towards the base level to compensate for the imbalance. This statement is supported by a body of observations: a) appearance of vegetation (Tamarisk) in arid areas (precipitation: 50 to 70 mm/year) dominated by salt deposits such as the Lisan peninsula; b) presence of submarine circular collapses visible along the coast. Their diameters decreasing with distance from the shore line; c) appearances of springs and recurring landslides along the coast. With the exception of the submarine features, all these elements are located in the land strip that emerged progressively from the 1960s, 33 m in elevation, ranging from a few decameters up to several kilometers wide. In many places, the surface is characterized by superficial seepages causing subtle to very pronounced subsidence, and sinkholes. In this contribution, we show that advanced differential radar interferometry techniques applied to ERS, ENVISAT and COSMO-SkyMed images stacks are able to underscore the most affected places. The mapping

  2. Simulation of SAR backscatter for forest vegetation

    Science.gov (United States)

    Prajapati, Richa; Kumar, Shashi; Agrawal, Shefali

    2016-05-01

    Synthetic Aperture Radar (SAR) is one of the most recent imaging technology to study the forest parameters. The invincible characteristics of microwave acquisition in cloudy regions and night imaging makes it a powerful tool to study dense forest regions. A coherent combination of radar polarimetry and interferometry (PolInSAR) enhances the accuracy of retrieved biophysical parameters. This paper attempts to address the issue of estimation of forest structural information caused due to instability of radar platforms through simulation of SAR image. The Terai Central Forest region situated at Haldwani area in Uttarakhand state of India was chosen as the study area. The system characteristics of PolInSAR dataset of Radarsat-2 SAR sensor was used for simulation process. Geometric and system specifications like platform altitude, center frequency, mean incidence angle, azimuth and range resolution were taken from metadata. From the field data it was observed that average tree height and forest stand density were 25 m and 300 stems/ha respectively. The obtained simulated results were compared with the sensor acquired master and slave intensity images. It was analyzed that for co-polarized horizontal component (HH), the mean values of simulated and real master image had a difference of 0.3645 with standard deviation of 0.63. Cross-polarized (HV) channel showed better results with mean difference of 0.06 and standard deviation of 0.1 while co-polarized vertical component (VV) did not show similar values. In case of HV polarization, mean variation between simulated and real slave images was found to be the least. Since cross-polarized channel is more sensitive to vegetation feature therefore better simulated results were obtained for this channel. Further the simulated images were processed using PolInSAR inversion modelling approach using three different techniques DEM differencing, Coherence Amplitude Inversion and Random Volume over Ground Inversion. DEM differencing

  3. Assessment and Enhancement of {SAR} non-coherent Change Detection Techniques Following Oil Spills

    CERN Document Server

    Bayindir, Cihan; Barnes, Christopher F

    2016-01-01

    In this study the detection of the oil spill using synthetic aperture radar (SAR) imagery is considered. Detection of the oil spill is performed using change detection algorithms between imagery acquired at different times. The specific algorithms used are the correlation coefficient change statistic and the intensity ratio change statistic algorithms. Therefore these algorithms and the probabilistic selection of the threshold criteria is reviewed and discussed. A recently offered change detection method which depends on the idea of generating two different final change maps of two images in a sequence, is used. First final change map is obtained by cumulatively adding the sequences of change maps in such a manner that common change areas are excluded and uncommon change areas are included. The second final change map is obtained by comparing the first and the last images in the temporal sequence. This method requires at least three images to be employed and can be generalized to longer temporal image sequenc...

  4. UAVSAR and TerraSAR-X Based InSAR Detection of Localized Subsidence in the New Orleans Area

    Science.gov (United States)

    Blom, R. G.; An, K.; Jones, C. E.; Latini, D.

    2014-12-01

    Vulnerability of the US Gulf coast to inundation has received increased attention since hurricanes Katrina and Rita. Compounding effects of sea level rise, wetland loss, and regional and local subsidence makes flood protection a difficult challenge, and particularly for the New Orleans area. Key to flood protection is precise knowledge of elevations and elevation changes. Analysis of historical and continuing geodetic measurements show surprising complexity, including locations subsiding more rapidly than considered during planning of hurricane protection and coastal restoration projects. Combining traditional, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations can provide geographically dense constraints on surface deformation. The Gulf Coast environment is challenging for InSAR techniques, especially with systems not designed for interferometry. We use two InSAR capable systems, the L- band (24 cm wavelength) airborne JPL/NASA UAVSAR, and the DLR/EADS Astrium spaceborne TerraSAR X-band (3 cm wavelength), and compare results. First, we are applying pair-wise InSAR to the longer wavelength UAVSAR data to detect localized elevation changes potentially impacting flood protection infrastructure from 2009 - 2014. We focus on areas on and near flood protection infrastructure to identify changes indicative of subsidence, structural deformation, and/or seepage. The Spaceborne TerraSAR X-band SAR system has relatively frequent observations, and dense persistent scatterers in urban areas, enabling measurement of very small displacements. We compare L-band UAVSAR results with permanent scatterer (PS-InSAR) and Short Baseline Subsets (SBAS) interferometric analyses of a stack composed by 28 TerraSAR X-band images acquired over the same period. Thus we can evaluate results from the different radar frequencies and analyses techniques. Preliminary results indicate subsidence features potentially of a variety of causes, including ground water

  5. Radar interferometry from space for surface deformation investigation: 25 years of developments and observations (Christiaan Huygens Medal Lecture)

    Science.gov (United States)

    Lanari, Ricardo

    2017-04-01

    This contribution will provide an overview on the evolution of the space-borne Differential Synthetic Aperture Radar Interferometry (DInSAR) scenario in the last 25 years. The DInSAR techniques have continuously evolved during the past decades, becoming important "tools" for the investigation of Earth surface deformation. Indeed, they are widely exploited both for studying the deformation phenomena relevant to natural events (i.e., earthquakes, volcanic unrests, landslides) and for analyzing displacements due to anthropogenic actions, such as underground resources exploitation. Originally, the DInSAR methodology has been successfully applied to analyze single deformation episodes thanks to its capability to generate spatially dense deformation maps of large areas, with centimeter to millimeter accuracy. However, benefiting from the availability of large SAR data archives, the interest of the scientific community has progressively moved towards the study of the temporal evolution of the detected displacements. To do this, advanced DInSAR techniques have been developed, allowing the computation of deformation time series from multi-temporal sequences of SAR images relevant to the areas of interest. This contribution will start by briefly introducing the basic rationale of the DInSAR methods for the investigation of single surface deformation episodes and their temporal evolution. Subsequently, a series of results will be presented to analyze the DInSAR scenario evolution moving from the first generation SAR sensors, as for the case of ERS-1/2 systems of ESA, to the new Sentinel-1 satellites of the COPERNICUS Programme of the European Union, highlighting the achieved drastic improvements of the surface deformation mapping capabilities. In particular, interesting results will be shown with reference to the earthquakes which have recently affected Central Italy.

  6. Phase Referencing in Optical Interferometry

    OpenAIRE

    Mercedes E. Filho; Garcia, Paulo; Duvert, Gilles; Duchene, Gaspard; Thiebaut, Eric; Young, John; Absil, Olivier; Berger, Jean-Phillipe; Beckert, Thomas; Hoenig, Sebastian; Schertl, Dieter; Weigelt, Gerd; Testi, Leonardo; Tatuli, Eric; Borkowski, Virginie

    2008-01-01

    One of the aims of next generation optical interferometric instrumentation is to be able to make use of information contained in the visibility phase to construct high dynamic range images. Radio and optical interferometry are at the two extremes of phase corruption by the atmosphere. While in radio it is possible to obtain calibrated phases for the science objects, in the optical this is currently not possible. Instead, optical interferometry has relied on closure phase techniques to produce...

  7. Hybrid-SAR Technique: Joint Analysis Using Phase-Based and Amplitude-Based Methods for the Xishancun Giant Landslide Monitoring

    Directory of Open Access Journals (Sweden)

    Tengteng Qu

    2016-10-01

    Full Text Available Early detection and early warning are of great importance in giant landslide monitoring because of the unexpectedness and concealed nature of large-scale landslides. In China, the western mountainous areas are prone to landslides and feature many giant complex landslides, especially following the Wenchuan Earthquake in 2008. This work concentrates on a new technique, known as the “hybrid-SAR technique”, that combines both phase-based and amplitude-based methods to detect and monitor large-scale landslides in Li County, Sichuan Province, southwestern China. This work aims to develop a robust methodological approach to promptly identify diverse landslides with different deformation magnitudes, sliding modes and slope geometries, even when the available satellite data are limited. The phase-based and amplitude-based techniques are used to obtain the landslide displacements from six TerraSAR-X Stripmap descending scenes acquired from November 2014 to March 2015. Furthermore, the application circumstances and influence factors of hybrid-SAR are evaluated according to four aspects: (1 quality of terrain visibility to the radar sensor; (2 landslide deformation magnitude and different sliding mode; (3 impact of dense vegetation cover; and (4 sliding direction sensitivity. The results achieved from hybrid-SAR are consistent with in situ measurements. This new hybrid-SAR technique for complex giant landslide research successfully identified representative movement areas, e.g., an extremely slow earthflow and a creeping region with a displacement rate of 1 cm per month and a typical rotational slide with a displacement rate of 2–3 cm per month downwards and towards the riverbank. Hybrid-SAR allows for a comprehensive and preliminary identification of areas with significant movement and provides reliable data support for the forecasting and monitoring of landslides.

  8. D-InSAR 技术在矿区地表沉降监测中的应用%Application of D-InSAR Technique to the Land Subsidence Monitoring in Mining Area

    Institute of Scientific and Technical Information of China (English)

    马海涛; 李辉; 刘勇峰; 王云海

    2011-01-01

    利用欧空局ENVISAT ASAR雷达数据,获取了SAR影像的干涉条纹并结合SRTM DEM数据,分别采用了二路差分和三路差分对武安市下团城村铁矿区域地表沉降进行监测,获得了区域内的最大沉降值和沉降带分布情况,初步探索了无目标、无时域、大范围、高精度地对地表进行沉降监测的方法,得出了影响最终结果精度的主要因素.%The interference stripes of SAR image was obtained by using radar data of the European Space Agency ENVISAT ASAR. Through monitoring land subsidence in Xiatuancheng Iron Mine in Wu'an city by means of two-pass and three-pass differential interferometry, the maximum subsidence value and the distribution of subsidence zone were determined,with combination of the SRTM DEM data. And the technology of large scale and high accurate land snbsidence monitoring without target and time domain was preliminarily explored. Then the main factors of affecting the accuracy of final results were got.

  9. Source mechanism analysis of strong mining induced seismic event and its influence on ground deformation observed by InSAR technique.

    Science.gov (United States)

    Rudzinski, Lukasz; Mirek, Katarzyna; Mirek, Janusz

    2016-04-01

    On April 17th, 2015 a strong shallow seismic event M4.0 struck a mining panel in the Wujek-Slask coal mine, southern Poland. The event was widely felt, followed with rockburst and caused a strong damages inside mining corridors. Unfortunately two miners are trapped by tunnels collapse. Full Moment Tensor (MT) estimated with regional broad-band signals shows that the event was characterized with very high isotropic (implosive) part. Mining inspections verified the occurrence of a rockfall and floor uplift. Very shallow foci depth (less than 1000m) and collapse - like MT solution suggest that event could be responsible for surface deformation in the vicinity of epicenter. To verified this issue we used the Interferometric Synthetic Aperture Radar technique (InSAR). The InSAR relies on measuring phase differences between two SAR images (radarograms). The measured differences may be computed into a single interferometric image. i.e. an interferogram. Interferogram computed from two radarograms of the same terrain taken at different time allows detecting changes in elevation of the terrain. Two SAR scenes acquired by Sentinel-1 satellite (European Space Agency) were processed to obtain the interferogram covered study area (12.04.2015 and 24.04.2015). 12 days interval differential interferogram shows distinctive concentric feature which indicate subsidence trough. Subsidence pattern shows 1 cycle of deformation corresponding with about 2.5 cm subsidence. The InSAR solution support the reliability of very strong implosive MT part.

  10. Three-Dimensional Movements of Siachen Glacier Derived from ERS-1/2 Tandem Datasets with D-InSAR and MAI Techniques

    Science.gov (United States)

    Li, Daan; Jiang, Liming; Sun, Yongling; Wang, Hansheng

    2016-08-01

    Glacier surface velocity is one of the key para-meters of glacier dynamics and mass balance. Siachen glaciers are adversely affected due to global climate warming as reflected by these glaciers showing continuous retreat in the Karakoram. The InSAR method is a greatly valued technique to monitor the glacier flow velocity. Some previous study of Himalayan glacier velocity has been reported, but it's only the one dimensional (LOS) velocity and rare research has been made to derived the 3D velocity. The study fuse D-InSAR and MAI measurements to obtain three dimensional velocity of mountain glacier. It revealed the characteristic of glacier movement and provided reference for mass balance and climate changes. This preliminary results demonstrate the potential of integration of D-InSAR and MAI methods for estimating 3-D movements of mountain glaciers.

  11. Spaceborne SAR Imaging Algorithm for Coherence Optimized.

    Directory of Open Access Journals (Sweden)

    Zhiwei Qiu

    Full Text Available This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR research and application.

  12. Geometric Time Delay Interferometry

    OpenAIRE

    Vallisneri, Michele

    2005-01-01

    The space-based gravitational-wave observatory LISA, a NASA-ESA mission to be launched after 2012, will achieve its optimal sensitivity using Time Delay Interferometry (TDI), a LISA-specific technique needed to cancel the otherwise overwhelming laser noise in the inter-spacecraft phase measurements. The TDI observables of the Michelson and Sagnac types have been interpreted physically as the virtual measurements of a synthesized interferometer. In this paper, I present Geometric TDI, a new an...

  13. DInSAR and PSI methods for the recognition of landslides: an experience in the Romanian Subcarpathians

    Science.gov (United States)

    Floriane, Provost; Jean-Philippe, Malet; Cécile, Doubre; Anne, Puissant; Mihai, Micu

    2015-04-01

    Landslide is one of the common natural hazards in Romania, especially in the Curvature area of the Romanian Subcarpathians. In this region, landslides cause considerable damages to critical infrastructures, build-up environment and cultivated areas. Most of the slopes are affected by translational and rotational landslide types. The objective of this work is to locate and inventory landslides in the Buzau County, and possibly to characterize their dynamics. As the vegetation is abundant in the study area, series of L-band ALOS/PALSAR images are processed using advanced multi-temporal differential SAR interferometry (DInSAR & PSI). To analyze the DInSAR results, an object-oriented segmentation method is proposed to identify possible landslide candidates in the interferograms; to analyze the PSI results, a statistical method is used to identify PS characterized by the same evolution pattern in the time series. Both techniques have proved to be able to detect unrecognised active landslides in the area, and allowed to complete existing geomorphological inventories. Around 700 new areas of landslides were detected after the analysis of the DInSAR results by an expert. However it represents 30% the zones that were detected in total. The false results remained difficult to isolate without a manual assessment. That means that applying SAR interferometry is not a sufficient tool to build exhausting inventories, and depending on the characteristics of the images (frame/track, baseline), the characteristics of the terrain (landcover, slope gradient, geomorphology) and the characteristics of the landslide (size, displacement rate), only a certain percentage (roughly less than 50%) of the already known landslides are detected with InSAR. Moreover, because of the large variety of landcover (urban, forest, cultivated areas, bare soils) and slope morphology in the study area, DInSAR and PSI techniques provide different results depending on local conditions.

  14. Preliminary study of the human lumbar spine using speckle technique. Limits of compression, shear and torsion. Speckle photography--electronic speckle pattern interferometry.

    Science.gov (United States)

    Vanneuville, G; Kyndt, T; Massaux, M; Harmand, Y; Poumarat, G; Garcier, J M; Guillot, M; Filaire, M

    1995-01-01

    Optical techniques using single wavelength lasers allow precise study of the superficial displacements of deeper anatomical structures through direct mechanical pull. Two techniques have been used in this study: 1. Double exposure speckle photography. Since 1980 the relationship between the surface displacements and minimal traction applied to the transverse processes of the spine, either unilateral or bilateral, was studied in an attempt to simulate muscular action exerted at this level. 2. Computerised speckle interferometry. This allowed analysis of the deformations between the lumbar vertebrae under vertical compression, shear or torsion outside the usual anatomical planes. This preliminary study outlines the mechanical behaviour and the plasticity of the vertebral structures but has been performed on only a few anatomical specimens thus not allowing statistical analysis. This would require a larger series.

  15. Multi-temporal SAR data analysis for landcover, water-level changes, and subsidence studies in Southeastern Louisiana

    Science.gov (United States)

    Kwoun, O.; Lu, Z.

    2006-12-01

    We used multi-temporal European Remote Sensing Satellites 1 and 2 (ERS-1/2), Environment Satellite (ENVISAT), and Canadian RADARSAT-1 Synthetic Aperture Radar (SAR) images for ecological, hydrological, and geological studies of the Southeastern Louisiana coastal flood zone. First, we present a distinctive correlation among the seasonal changes in SAR backscatter, interferometric coherence, and land cover types with the associated normalized difference vegetation indices. Second, we demonstrate the use of C-band SAR images to measure changes in the water-level beneath moderately dense swamp forests, at a vertical accuracy and spatial resolution that is not possible with the current gauge-based measurements. Finally, we apply the conventional SAR interferometry (InSAR) and the Permanent Scatterer InSAR techniques to map land surface subsidence in New Orleans and the surrounding area; the comparison of measured subsidence patterns shows certain discrepancies that are probably due to atmospheric delays in this humid area. Our study demonstrates the importance of SAR data for understanding this coastal flood zone and the associated ecological, hydrological, and geological processes.

  16. A Novel Femtosecond-Gated, High-Resolution, Frequency-Shifted Shearing Interferometry Technique for Probing Pre-Plasma Expansion in Ultra-Intense Laser Experiments

    CERN Document Server

    Feister, S; Morrison, J T; Frische, K D; Orban, C; Chowdhury, E A; Roquemore, W M

    2014-01-01

    Ultra-intense laser-matter interaction experiments (>10$^{18}$ W/cm$^{2}$) with dense targets are highly sensitive to the effect of laser "noise" (in the form of pre-pulses) preceding the main ultra-intense pulse. These system-dependent pre-pulses in the nanosecond and/or picosecond regimes are often intense enough to modify the target significantly by ionizing and forming a plasma layer in front of the target. Time resolved interferometry offers a robust way to characterize the expanding plasma during this period. We have developed a novel pump-probe interferometry system for an ultra-intense laser experiment that uses two short-pulse amplifiers synchronized by one ultra-fast seed oscillator to achieve 40-femtosecond time resolution over hundreds of nanoseconds, using a variable delay line and other techniques. The first of these amplifiers acts as the pump and delivers maximal energy to the interaction region. The second amplifier is frequency shifted and then frequency doubled to generate the femtosecond p...

  17. An Optical Flow Method Applied to Co-Registration of Remote Sensing Images: Example for SAR/SAR, SAR/LIDAR, SAR/Optical Images of BIOSAR 2010 Campaign

    Science.gov (United States)

    Colin-Koeniguer, Elise

    2016-08-01

    This article proposes an optical flow type method for coregistration of forest remote sensing images. The principle of the algorithm called GeFolki is first explained. Results are shown on the images of the BioSAR 3 campaign, for the production of SAR interferograms, the coregistration a SAR and LIDAR image, and the coregistration an optical image and SAR image.The advantages of such an algorithm over conventional algorithms are explained. Finally, we propose various applications within the operating data for future BIOMASS mission: massive interferometry, ground truth production, upscaling by fusion of LIDAR and SAR data, and image mining.

  18. Polarimetric SAR Interferometry: Investigations using EC CV-580 SAR Data

    Science.gov (United States)

    2005-03-01

    couverture foresti~ro, los b~itimonts. et l’environnement urbain , los structures artificielles isoldes et l’estimation do la vitesse. La plupart des...new polarimetric classification approach evaluated for agricultural crops," POL-INSAR Workshop, httrj://earth.esa.intpolinsar, Frascati, Italy

  19. Monitoring of Land Subsidence in Coal Mining Area Based on D-InSAR Technology%基于 D-InSAR 技术的煤矿区地面沉降监测研究

    Institute of Scientific and Technical Information of China (English)

    宋继德; 邸志众

    2014-01-01

    概要叙述了差分合成孔径雷达(D-InSAR)的技术原理和数据处理方法,介绍了 D-InSAR 在地表形变监测中的应用技术和方法,针对研究区域的地表沉降特点选择常规 D-InSAR 和永久性散射体干涉测量(PSI)作为 InSAR 差分处理方式,分析并选取适合本项目研究的 InSAR 雷达数据,对兖州-济宁区域因煤矿开采产生的地表缓慢沉降和快速沉降进行数据分析并得出结论,达到了研究的目的。%This paper briefly described the principle and data processing methods of the Differential Interferometric SAR(D-InSAR)technology,and introduced the application techniques and methods of D-InSAR on monitoring of the ground surface deformation.According to the characteristics of the ground surface subsidence in study area,we choosed conventional D-InSAR and Permanent Scatterer Interferometry(PSI)as the InSAR differential treatment,and analyzed and selected the InSAR radar data that is suitable for the study.Finally,we have drawn some conclusions by analyzing data of both the slow and rapid ground surface subsidence caused by the coal mining in Yanzhou-Jining area,and have achieved the purpose of the research.

  20. Synthetic aperture radar and interferometry development at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-04-01

    Environmental monitoring, earth-resource mapping, and military systems require broad-area imaging at high resolutions. Many times the imagery must be acquired in inclement weather or during night as well as day. Synthetic aperture radar (SAR) provides such a capability. SAR systems take advantage of the long-range propagation characteristics of radar signals and the complex information processing capability of modern digital electronics to provide high resolution imagery. SAR complements photographic and other optical imaging capabilities because of the minimum constrains on time-of-day and atmospheric conditions and because of the unique responses of terrain and cultural targets to radar frequencies. Interferometry is a method for generating a three-dimensional image of terrain. The height projection is obtained by acquiring two SAR images from two slightly differing locations. It is different from the common method of stereoscopic imaging for topography. The latter relies on differing geometric projections for triangulation to define the surface geometry whereas interferometry relies on differences in radar propagation times between the two SAR locations. This paper presents the capabilities of SAR, explains how SAR works, describes a few SAR applications, provides an overview of SAR development at Sandia, and briefly describes the motion compensation subsystem.

  1. TerraSAR-X mission

    Science.gov (United States)

    Werninghaus, Rolf

    2004-01-01

    The TerraSAR-X is a German national SAR- satellite system for scientific and commercial applications. It is the continuation of the scientifically and technologically successful radar missions X-SAR (1994) and SRTM (2000) and will bring the national technology developments DESA and TOPAS into operational use. The space segment of TerraSAR-X is an advanced high-resolution X-Band radar satellite. The system design is based on a sound market analysis performed by Infoterra. The TerraSAR-X features an advanced high-resolution X-Band Synthetic Aperture Radar based on the active phased array technology which allows the operation in Spotlight-, Stripmap- and ScanSAR Mode with various polarizations. It combines the ability to acquire high resolution images for detailed analysis as well as wide swath images for overview applications. In addition, experimental modes like the Dual Receive Antenna Mode allow for full-polarimetric imaging as well as along track interferometry, i.e. moving target identification. The Ground Segment is optimized for flexible response to (scientific and commercial) User requests and fast image product turn-around times. The TerraSAR-X mission will serve two main goals. The first goal is to provide the strongly supportive scientific community with multi-mode X-Band SAR data. The broad spectrum of scientific application areas include Hydrology, Geology, Climatology, Oceanography, Environmental Monitoring and Disaster Monitoring as well as Cartography (DEM Generation) and Interferometry. The second goal is the establishment of a commercial EO-market in Europe which is driven by Infoterra. The commercial goal is the development of a sustainable EO-business so that the e.g. follow-on systems can be completely financed by industry from the profit. Due to its commercial potential, the TerraSAR-X project will be implemented based on a public-private partnership with the Astrium GmbH. This paper will describe first the mission objectives as well as the

  2. Extra Wideband Polarimetry, Interferometry and Polarimetric Interferometry in Synthetic Aperture Remote Sensing(Special Issue on Advances in Radar Systems)

    OpenAIRE

    Boerner, Wolfgang-Martin; Yamaguchi, Yoshio

    2000-01-01

    The development of Radar Polarimetry and Radar Interferometry is advancing rapidly. Whereas with radar polarimetry, the textural fine-structure, target orientation, symmetries and material constituents can be recovered with considerable improvement above that of standard amplitude-only radar; with radar interferometry the spatial(in depth)structure can be explored. In Polarimetric Interferometric Synthetic Aperture Radar(POL-IN-SAR)Imaging, it is possible to recover such co-registered textura...

  3. Phase Referencing in Optical Interferometry

    CERN Document Server

    Filho, Mercedes E; Duvert, Gilles; Duchene, Gaspard; Thiebaut, Eric; Young, John; Absil, Olivier; Berger, Jean-Phillipe; Beckert, Thomas; Hoenig, Sebastian; Schertl, Dieter; Weigelt, Gerd; Testi, Leonardo; Tatuli, Eric; Borkowski, Virginie; de Becker, Michael; Surdej, Jean; Aringer, Bernard; Hron, Joseph; Lebzelter, Thomas; Chiavassa, Andrea; Corradi, Romano; Harries, Tim

    2008-01-01

    One of the aims of next generation optical interferometric instrumentation is to be able to make use of information contained in the visibility phase to construct high dynamic range images. Radio and optical interferometry are at the two extremes of phase corruption by the atmosphere. While in radio it is possible to obtain calibrated phases for the science objects, in the optical this is currently not possible. Instead, optical interferometry has relied on closure phase techniques to produce images. Such techniques allow only to achieve modest dynamic ranges. However, with high contrast objects, for faint targets or when structure detail is needed, phase referencing techniques as used in radio interferometry, should theoretically achieve higher dynamic ranges for the same number of telescopes. Our approach is not to provide evidence either for or against the hypothesis that phase referenced imaging gives better dynamic range than closure phase imaging. Instead we wish to explore the potential of this techniq...

  4. DEM generated from InSAR in mountainous terrain and its accuracy analysis

    Science.gov (United States)

    Hu, Hongbing; Zhan, Yulan

    2011-02-01

    Digital Elevation Model (DEM) derived from survey data is accurate but it is very expensive and time-consuming. In recent years, remote sensing techniques including Synthetic Apenture Radar Interferometry (InSAR) had been developed as a powerful method to derive high precision DEM, especially in mountainous or deep forest areas. The purpose of this paper is to illustrate the principle of InSAR and show the result of a case study in Gejiu city, Yunnan province, China. The accuracy of DEM derived from InSAR (abbreviation as InSAR-DEM) is also evaluated by comparing it with DEM generated from topographic map at the scale of 1:50000 (abbreviation as TOP-DEM). The result shows that: (1)The general precision of the whole selected area acquired by subtracting InSAR-DEM from TOP-DEM is that the maximum, the minimum, the RMSE, and the mean of difference of the two DEMs are 203m, -188m, 26.9m and 5.7m respectively. (2)The topographic trend represented by the two DEMs is coincident, even though TOP-DEM is finer than InSAR-DEM, especial at the valley. (3) Contour maps with the interval of 100m and 50m converted from InSAR-DEM and TOP-DEM respectively show accordant relief trend. Contour from TOP-DEM is smoother than that of from InSAR-DEM, while Contour from InSAR-DEM has more islands than that of from TOP-DEM.(4) Coherence has great influence on the precision of InSAR-DEM, the precision of low-coherence area approaches 100 m while that of high-coherence area can up to m level. (5) The relief trend of 6 profiles represented by InSAR-DEM and TOP-DEM is accordant with tiny difference in partial minutiae. InSAR-DEM displays hypsographies at relative flat areas including surface of water, which reflects the influence of flat earth on InSAR to a certain extent.

  5. Overview of independent component analysis technique with an application to synthetic aperture radar (SAR) imagery processing.

    Science.gov (United States)

    Fiori, Simone

    2003-01-01

    We present an overview of independent component analysis, an emerging signal processing technique based on neural networks, with the aim to provide an up-to-date survey of the theoretical streams in this discipline and of the current applications in the engineering area. We also focus on a particular application, dealing with a remote sensing technique based on synthetic aperture radar imagery processing: we briefly review the features and main applications of synthetic aperture radar and show how blind signal processing by neural networks may be advantageously employed to enhance the quality of remote sensing data.

  6. Exploration of Advanced Bistatic SAR Experiments (in English

    Directory of Open Access Journals (Sweden)

    Deng Yun-kai

    2014-02-01

    Full Text Available This study concentrates on the results of several advanced hybrid bistatic SAR experiments. The hybrid bistatic configuration applies to the case in which the transmitter and receiver are mounted on different types of platforms, e.g., spaceborne/airborne, airborne/stationary, spaceborne/stationary, and so on. Several hybrid bistatic SAR experiments have been performed successfully, i.e., TerraSAR-X/PAMIR, PAMIR/stationary, and TerraSAR-X/stationary. Furthermore, Multiple Baseline Interferometry SAR (MB-InSAR and Digital Beam-Forming (DBF technologies are validated in the TerraSAR-X/stationary configuration. Note that the DBF experiment results based on the spaceborne illuminator are discussed for the first time in SAR community. In addition, this paper emphasizes imaging geometry, image analysis, and focusing results.

  7. The interferometry: a technique of analysis of the dynamical correlations and collision evolution; L`interferometrie: une technique d`analyse des correlations dynamiques et de l`evolution des collisions

    Energy Technology Data Exchange (ETDEWEB)

    Nouais, D.; Erazmus, B. [Laboratoire de Physique Subatomique et des Technologies Associees - SUBATECH, Centre National de la Recherche Scientifique, 44 - Nantes (France); Lednicky, R. [Institute of Physics, Na Slovance 2, 18040 Prague 8 (Czech Republic); Lyuboshitz, V.L. [JINR Dubna, PO Box 79, Moscow (Russian Federation); Martin, L. [Laboratoire de Physique Subatomique et des Technologies Associees - SUBATECH, Centre National de la Recherche Scientifique, 44 - Nantes (France)

    1997-10-01

    The study of the correlations of the light particles is usually performed to determine the size and lifetime of the hot sources produced in the nuclear reactions. For studies of this type such sources are described rather simply without taking into account either their time evolution or the correlations between the space-time coordinates of the particle emission points and their momenta. Simulations performed using the transport model QMD are used to take into account dynamical correlations in the interferometry analysis. The two proton correlation function calculated in this way was compared with the experimental data. The simulations were realized for the case of {sup 129} Xe + {sup 48} Ti at 45 MeV/u. To estimate the importance of different dynamical effects on the correlation function several computations were carried out. When these dynamical correlations were taken into account, the proton-proton correlation function showed a significant structure around 20 MeV/c due to the strong interactions 4 refs.

  8. Long term monitoring of urban subsidence by Permanent Scatterer DInSAR

    Institute of Scientific and Technical Information of China (English)

    TANG Yixian; ZHANG Hong; WANG Chao

    2007-01-01

    When using differential SAR interferometry (DInSAR) to monitor the surface deformation over a long time scale, it is often strongly affected by the spatial and temporal decorrelations and atmospheric dishomogeneities. The recently developed Permanent Scatterers (PS) technique proposed by Fertti et al. can overcome these difficulties by interpreting time-series of interferometric phase only at coherent point scatterers. In this study, we apply this PS technique using 25 ERS-1/2 scenes from 1992 to 2000 to monitor the subsidence in Suzhou. By using the linear deformation model, the deformation map in Suzhou urban area over the eight years is obtained. And the calculated results are in good agreement with the measurements of leveling.

  9. 合成孔径雷达干涉(InSAR)测量技术应用及展望%InSAR Measurement Technique Exploration and Prospects

    Institute of Scientific and Technical Information of China (English)

    张训虎; 章磊; 郝树宾; 裴玉

    2014-01-01

    合成孔径雷达干涉技术(InSAR)经过半个多世纪的发展,技术优势非常明显,得到了广泛的应用.本文从InSAR的发展历程开始,逐步介绍InSAR技术原理、InSAR数据处理流程、InSAR的应用领域.通过对InSAR数据处理的相关软件进行介绍、对比、分析;对制约InSAR发展的问题进行了分析;对北京市发展InSAR技术的有利条件进行分析,深入浅出的介绍了InSAR测量技术当前的应用范围、应用趋势和发展方向,对InSAR的发展提出自己的见解,为InSAR在测绘领域的深入发展提出了崭新的思路.

  10. On safe ground? Analysis of European urban geohazards using satellite radar interferometry

    Science.gov (United States)

    Capes, Renalt; Teeuw, Richard

    2017-06-01

    Urban geological hazards involving ground instability can be costly, dangerous, and affect many people, yet there is little information about the extent or distribution of geohazards within Europe's urban areas. A reason for this is the impracticality of measuring ground instability associated with the many geohazard processes that are often hidden beneath buildings and are imperceptible to conventional geological survey detection techniques. Satellite radar interferometry, or InSAR, offers a remote sensing technique to map mm-scale ground deformation over wide areas given an archive of suitable multi-temporal data. The EC FP7 Space project named PanGeo (2011-2014), used InSAR to map areas of unstable ground in 52 of Europe's cities, representing ∼15% of the EU population. In partnership with Europe's national geological surveys, the PanGeo project developed a standardised geohazard-mapping methodology and recorded 1286 instances of 19 types of geohazard covering 18,000 km2. Presented here is an analysis of the results of the PanGeo-project output data, which provides insights into the distribution of European urban geohazards, their frequency and probability of occurrence. Merging PanGeo data with Eurostat's GeoStat data provides a systematic estimate of population exposures. Satellite radar interferometry is shown to be as a valuable tool for the systematic detection and mapping of urban geohazard phenomena.

  11. An Analysis of Displacement Measurements for Lisbon, Portugal Using Combined InSAR and GNSS Data

    Science.gov (United States)

    Roque, D.; Simonetto, E.; Falcao, A. P.; Perissin, D.; Durand, F.; Morel, L.; Fonseca, A. M.; Polidori, L.

    2016-08-01

    Atmospheric effects are still a limitation to the application of InSAR techniques for displacement measurement. In this study, zenith total delay (ZTD) values derived from global navigation satellite system (GNSS) are used to correct interferograms from tropospheric effects. Displacement measurements are obtained from the corrected interferograms through a persistent scatterer interferometry approach. The influence of different interpolation methods on the construction of ZTD maps is tested through two different algorithms: cubic spline and ordinary kriging. Differences are observed between the cumulative displacement maps obtained with both interpolators, but atmospheric effects are still present, possibly due to the small number of available GNSS stations.

  12. Dyke Monitorin by the Means of Persistent Scattering Interferometry at the Coast of Northern Germany

    Science.gov (United States)

    Seidel, M.; Marzahn, P.; Ludwig, R.

    2016-06-01

    40 percent of the world's population are presently living in coastal areas or along the main rivers. Taking into account that the vulnerability of these areas is increasing due to sea-level rise and coastal hazards such as storm surges or extreme rainfall events accompanied with floods, the importance of safety structures such as dykes is increasing as well. Hence, a spatial distributed dyke monitoring should be part of a sustainable adaptation strategy. Due to increasing amount of SAR-data from various satellites with high spatial and temporal coverage, the means of SAR-interferometry could be an essential tool to ensure this kind of required monitoring. Given this prospect, Persistent Scattering Interferometry (PSI) will be a very suitable monitoring technique for dyke structures to identify dyke movement with the accuracy of few millimetres. This procedure focuses on pixels that show a stable scattering behaviour in a sequence of multiple SAR-scenes. In opposition to ground-measurements, the spatial coverage of this technique provides comparable results for different parts of the dyke; furthermore weak segments with particular high movements could be identified in advance. This could prevent future dyke crevasses and help to reduce risks in high-populated areas. This paper attempts to describe the potential of the PSI technique for a spatial distributed dyke monitoring at the coast in northern Germany. 21 ERS-2 scenes and 16 Envisat ASAR scenes were analysed. Those Scenes cover an area of a sea shore dyke including a flood regulation barrage and results point out the potential for this technique to monitor dyke structures. Even though the observed dyke doesn't show any significant deformation rates, the two datasets show the same signal for the whole dyke.

  13. Glaciological Applications of Terrestrial Radar Interferometry

    Science.gov (United States)

    Voytenko, D.; Dixon, T. H.

    2014-12-01

    Terrestrial Radar Interferometry (TRI) is a relatively new ground-based technique that combines the precision and spatial resolution of InSAR with the temporal resolution of GPS. Although TRI can be applied to a variety of fields including bridge and landslide monitoring, it is ideal for studies of the highly dynamic terminal zones of marine-terminating glaciers. Our TRI instrument is the Gamma Portable Radar Interferometer, which operates at 17.2 GHz (1.74 cm wavelength), has two receiving antennas for DEM generation, and generates amplitude and phase images at minute-scale sampling rates. Here we review preliminary results from Breiðamerkurjökull in Iceland and Helheim and Jakobshavn in Greenland. We show that the high sampling rate of the TRI can be used to observe velocity variations at the glacier terminus associated with calving, and the spatial distribution of tidal forcing. Velocity uncertainties, mainly due to atmospheric effects, are typically less than 0.05 m/d. Additionally, iceberg tracking using the amplitude imagery may provide insight into ocean currents near the terminus when fjord or lagoon conditions permit.

  14. Deployment and design of bi-directional corner reflectors for op-timal ground motion monitoring using InSAR

    NARCIS (Netherlands)

    Caro Cuenca, M.; Dheenathayalan, P.; Rossum, W.L. van; Hoogeboom, P.

    2014-01-01

    SAR interferometry (InSAR) requires coherent radar reflections to measure ground displacements. Howev-er, natural coherent reflectors are not always available due to changes in the scattering properties of the ground, e.g., growing vegetation. Furthermore, the opportunistic nature of InSAR measureme

  15. Basics of interferometry

    CERN Document Server

    Hariharan, P

    1992-01-01

    This book is for those who have some knowledge of optics, but little or no previous experience in interferometry. Accordingly, the carefully designed presentation helps readers easily find and assimilate the interferometric techniques they need for precision measurements. Mathematics is held to a minimum, and the topics covered are also summarized in capsule overviews at the beginning and end of each chapter. Each chapter also contains a set of worked problems that give a feel for numbers.The first five chapters present a clear tutorial review of fundamentals. Chapters six and seven discus

  16. Development of Very Long Baseline Interferometry (VLBI) techniques in New Zealand: Array simulation, image synthesis and analysis

    Science.gov (United States)

    Weston, S. D.

    2008-04-01

    This thesis presents the design and development of a process to model Very Long Base Line Interferometry (VLBI) aperture synthesis antenna arrays. In line with the Auckland University of Technology (AUT) Institute for Radiophysics and Space Research (IRSR) aims to develop the knowledge, skills and experience within New Zealand, extensive use of existing radio astronomical software has been incorporated into the process namely AIPS (Astronomical Imaging Processing System), MIRIAD (a radio interferometry data reduction package) and DIFMAP (a program for synthesis imaging of visibility data from interferometer arrays of radio telescopes). This process has been used to model various antenna array configurations for two proposed New Zealand sites for antenna in a VLBI array configuration with existing Australian facilities and a passable antenna at Scott Base in Antarctica; and the results are presented in an attempt to demonstrate the improvement to be gained by joint trans-Tasman VLBI observation. It is hoped these results and process will assist the planning and placement of proposed New Zealand radio telescopes for cooperation with groups such as the Australian Long Baseline Array (LBA), others in the Pacific Rim and possibly globally; also potential future involvement of New Zealand with the SKA. The developed process has also been used to model a phased building schedule for the SKA in Australia and the addition of two antennas in New Zealand. This has been presented to the wider astronomical community via the Royal Astronomical Society of New Zealand Journal, and is summarized in this thesis with some additional material. A new measure of quality ("figure of merit") for comparing the original model image and final CLEAN images by utilizing normalized 2-D cross correlation is evaluated as an alternative to the existing subjective visual operator image comparison undertaken to date by other groups. This new unit of measure is then used ! in the presentation of the

  17. New perspectives and advanced approaches on effectively processing Big InSAR data: from long term ERS archives to new Sentinel-1 massive data flow

    Science.gov (United States)

    Casu, Francesco; De Luca, Claudio; Elefante, Stefano; Lanari, Riccardo; Manunta, Michele; Zinno, Ivana

    2015-04-01

    Advanced differential Synthetic Aperture Radar (SAR) Interferometry (InSAR) usually identifies a set of algorithms, tools and methodologies for the generation of Earth's surface deformation maps and time series computed from a sequence of multi-temporal differential SAR interferograms. Such techniques found their success on the large availability of SAR data archives acquired over time by several satellite systems. Indeed, the current radar Earth Observation (EO) scenario takes advantage of the widely diffused long-term C-band ESA (e.g. ERS-1, ERS-2 and ENVISAT) and Canadian (RADARSAT-1/2) SAR data archives, which have been acquired during the last 20 years, as well as of data sequences provided by the X-band generation SAR sensors, such as the COSMO-SkyMed (CSK) and TerraSAR-X (TSX) constellations. Moreover, a massive and ever increasing data flow will be further supplied by the recently launched (April 2014) Copernicus (European Union) SENTINEL-1A SAR satellite, which will also be paired during 2016 with the SENTINEL-1B twin system that will allow halving the constellation revisit time (from 12 to 6 days). In this context, the massive exploitation of these Big InSAR Data archives for the generation of advanced products will open new research perspectives to understand Earth's surface deformation dynamics at global scale. However, to reach this ambitious goal, Big InSAR Data has to be effectively exploited to generate accurate advanced products in short time frames. Therefore the need of new InSAR processing approaches, efficient algorithms and high performance computing facilities represents the basis for fully benefiting from such a Big Data. In this work we first present the recently proposed Parallel Small BAseline Subset (P-SBAS) InSAR algorithm that has been designed to process big volumes of InSAR data in short times and unsupervised manner by exploiting High Performance Computing (HPC) facilities. Then, we show how the P-SBAS approach is well suitable for

  18. Application of small baseline subsets D-InSAR technique to estimate time series land deformation of Jinan area, China

    Science.gov (United States)

    Liu, Xiangtong; Cao, Qiuxiang; Xiong, Zhuguo; Yin, Haitao; Xiao, Genru

    2016-04-01

    Jinan, located in the South of the North China Plain, is an area where underground water has been exploited excessively. However, land deformation surveys only focus on the small district obtained by GPS and Leveling. Here, we use interferometric synthetic aperture radar (InSAR) time-series of ASAR data to resolve land subsidence in the entire Jinan region. In our research, we get 20 interferograms with a temporal threshold of 700 days and spatial-baseline threshold of 300 m from 14 ASAR satellite images on a descending orbit, and then get the surface displacement using Small Baseline InSAR (SBAS D-InSAR) retrained with a periodic model. Meanwhile, the accuracy of our work is proved by the results of GPS measurements. Finally, several settlement funnels are observed with extreme values of -20 cm, and their generation is related to massive groundwater extraction.

  19. Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations.

    Science.gov (United States)

    Castellazzi, Pascal; Martel, Richard; Galloway, Devin L; Longuevergne, Laurent; Rivera, Alfonso

    2016-11-01

    In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km(2) ). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.

  20. Assessing groundwater depletion and dynamics using GRACE and InSAR: Potential and limitations

    Science.gov (United States)

    Castellazzi, Pascal; Martel, Richard; Galloway, Devin L.; Longuevergne, Laurent; Rivera, Alfonso

    2016-01-01

    In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km2). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.

  1. Phase estimation in optical interferometry

    CERN Document Server

    Rastogi, Pramod

    2014-01-01

    Phase Estimation in Optical Interferometry covers the essentials of phase-stepping algorithms used in interferometry and pseudointerferometric techniques. It presents the basic concepts and mathematics needed for understanding the phase estimation methods in use today. The first four chapters focus on phase retrieval from image transforms using a single frame. The next several chapters examine the local environment of a fringe pattern, give a broad picture of the phase estimation approach based on local polynomial phase modeling, cover temporal high-resolution phase evaluation methods, and pre

  2. Monitoring Crustal Deformations with Radar Interferometry:A Review

    Institute of Scientific and Technical Information of China (English)

    刘国祥; 丁晓利; 黄丁发

    2004-01-01

    The crustal movements, probably motivating earthquakes, are considered as one of the main geodynamic sources. The quantitative measurements of ground surface deformations are vital for studying mechanisms of the buried faults or even estimating earthquake potential. A new space-geodetic technology, synthetic aperture radar interferometry (InSAR), can be applied to detect such large-area deformations, and has demonstrated some prominent advantages. This paper reviews the capacity and limitations of InSAR, and summarises the existing applications including some of our results in studying the earthquake-related crustal motions.Finally it gives the outlook for the future development of InSAR.

  3. Three-dimensional surface reconstruction from multistatic SAR images.

    Science.gov (United States)

    Rigling, Brian D; Moses, Randolph L

    2005-08-01

    This paper discusses reconstruction of three-dimensional surfaces from multiple bistatic synthetic aperture radar (SAR) images. Techniques for surface reconstruction from multiple monostatic SAR images already exist, including interferometric processing and stereo SAR. We generalize these methods to obtain algorithms for bistatic interferometric SAR and bistatic stereo SAR. We also propose a framework for predicting the performance of our multistatic stereo SAR algorithm, and, from this framework, we suggest a metric for use in planning strategic deployment of multistatic assets.

  4. Fundamental physics research and neutron interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Ioffe, A. [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1996-08-01

    The possibility of the use of an extremely sensitive neutron interferometry technique for the study of electromagnetic structure of the neutron and the parity non-conservative effects in neutron spin rotation is discussed. (author)

  5. Environmental Investigation and Evaluation of Land Subsidence in the Datong Coalfield Based on InSAR Technology

    Institute of Scientific and Technical Information of China (English)

    JIA Xiuming; MA Chao; ZHAO Anyuan

    2008-01-01

    Heavy mining of Jurassic and Carboniferous horizontal coal seams in the Datong coalfield has seriously affected the local geological environment, which is mainly manifested by such geohazards as soil avalanches, landslides, mudflows, surface subsidence, surface cracks, surface solid waste accumulation and surface deformation. More seriously, coal mining causes groundwater to leak.Overpumping of groundwater has resulted in substantial land subsidence of the urban area in Datong City. Based on the previous geo-environmental investigation in the work area, the authors used radar remote sensing techniques such as InSAR (synthetic aperture radar interferometry) and D-InSAR(differential synthetic aperture radar interferometry), supplemented by the optical remote sensing method, for geo-environmental investigation to ascertain the geo-environmentai background of the Datong Jurassic and Carboniferous-Permian coalfield and evaluate the effects of the geohazards, thus providing a basis for the geo-environmental protection, geohazard control and prevention, land improvement and optimization of the human environment. In this study 8 cog-nominal ERS-1/2 SAR data frames during 1992 to 2003 were used, but the following processing was made: (1) the multi-temporal SAR magnitude images were used to interpret the geological structure, vegetation, micro-geomorphology and drainage system; (2) the multi-temporal InSAR coherent images were used to make a classification of surface features and evaluate the coherence change due to coal mining; and (3) the multi-temporal cog-nominal SAR images were used to complete D-InSAR processing to remove the information of differential deformation areas (sites). In the end, a ten-year time series of differential interferograms were obtained using the multi-temporal cog-nominal SAR images. In the tests, 84 deformed areas (sites) were obtained, belonging to those in 1993-1996, 1996-1997, 1997-1998,1998-2001, 1998--2002 and 2001-2003 respectively. Of the

  6. 20 years of SAR measurements along the NAFS: interseismic deformation

    Science.gov (United States)

    Stramondo, S.; Walter, T. R.; Ergintav, S.; Diao, F.; Wang, R.; Polcari, M.; Serpelloni, E.; Devoti, R.

    2014-12-01

    A comprehensive analysis of the earthquake cycle is a key issue for the definition of the hazard in seismic areas. Advanced SAR Interferometry (A-InSAR) techniques have today a key role in Earth Sciences thanks to the capability to detect and measure slow surface movements along wide areas, and to follow the evolution of signal along a certain time periods. A-InSAR techniques have been applied to large datasets of SAR images spanning long time intervals and, together with in-situ surveys and ground measurements, can provide suitable information about the causes of post seismic (deformation rebound or residual strain release) and interseismic (seismic, creep) movements. In the framework of FP7 MARSITE (Marmara Supersite) project we have investigated the Western sector of North Anatolian Fault System (NAFS) from Istanbul toward Duzce area. From West toward the Marmara Sea region (Mudurnu/Akyaz) the NAFS begins to lose its single fault line character and splays into a complex fault system. The main Marmara Fault is argued to be a very young structure and exhibits typical characteristics of a major strike slip fault. In 1999 the August 17th Izmit earthquake was followed few months later by the Duzce mainshock. We compare the A-InSAR results to permanent GPS stations installed in the region after the Izmit/Duzce earthquakes. These observations allow studying the post-seismic deformation of the 1999 Izmit/Düzce earthquake. We investigate the response of the eastern Marmara Fault to the quasi-static loading caused by Izmit/Düzce earthquakes. Overlapped post-seismic processes of fault creep (or afterslip) and viscoelastic relaxation of the lower crust and the upper mantle were investigated. We firstly estimated the viscoelastic relaxation effect using well covered long-term GPS data. This relaxation effect was subtracted from the InSAR data and the remaining InSAR data was inverted to identify localized slip variation along the MMF. Our inversion results imply that part

  7. Bibliography of spatial interferometry in optical astronomy

    Science.gov (United States)

    Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude

    1990-01-01

    The Bibliography of Spatial Interferometry in Optical Astronomy is a guide to the published literature in applications of spatial interferometry techniques to astronomical observations, theory and instrumentation at visible and infrared wavelengths. The key words spatial and optical define the scope of this discipline, distinguishing it from spatial interferometry at radio wavelengths, interferometry in the frequency domain applied to spectroscopy, or more general electro-optics theoretical and laboratory research. The main bibliography is a listing of all technical articles published in the international scientific literature and presented at the major international meetings and workshops attended by the spatial interferometry community. Section B summarizes publications dealing with the basic theoretical concepts and algorithms proposed and applied to optical spatial interferometry and imaging through a turbulent atmosphere. The section on experimental techniques is divided into twelve categories, representing the most clearly identified major areas of experimental research work. Section D, Observations, identifies publications dealing specifically with observations of astronomical sources, in which optical spatial interferometry techniques have been applied.

  8. Enzymatic activity characterization of SARS coronavirus 3C-like protease by fluorescence resonance energy transfer technique

    Institute of Scientific and Technical Information of China (English)

    Shuai CHEN; Hua-liang JIANG; Li-li CHEN; Hai-bin LUO; Tao SUN; Jing CHEN; Fei YE; Jian-hua CAI; Jing-kang SHEN; Xu SHEN

    2005-01-01

    Aim: To characterize enzymatic activity of severe acute respiratory syndrome(SARS) coronavirus (CoV) 3C-like protease (3CLpro) and its four site-directed mutants. Methods: Based on the fluorescence resonance energy transfer (FRET)principle using 5-[(2'-aminoethyl)-amino] naphthelenesulfonic acid (EDANS) and 4-[[4-(dimethylamino) phenyl] azo] benzoic acid (Dabcyl) as the energy transfer pair, one fluorogenic substrate was designed for the evaluation of SARS-CoV 3CLpro proteolytic activity. Results: The kinetic parameters of the fluorogenic substrate have been determined as Km=404 μmol.L-1, kcat=1.08 min-1, and kcat/Km=2.7 gered activity switches, and site-directed mutagenesis analysis of SARS-CoV 3CLpro revealed that substitutions of His41, Cys145, and His163 resulted in complete loss of enzymatic activity, while replacement of Met162 with Ala caused strongly increased activity. Conclusion: This present work has provided valuable information for understanding the catalytic mechanism of SARS-CoV 3CLpro. This FRET-based assay might supply an ideal approach for the exploration SARSCoV 3CLpro putative inhibitors.

  9. Virtual Reference Interferometry: Theory & Experiment

    Science.gov (United States)

    Galle, Michael Anthony

    This thesis introduces the idea that a simulated interferogram can be used as a reference for an interferometer. This new concept represents a paradigm shift from the conventional thinking, where a reference is the phase of a wavefront that traverses a known path. The simulated interferogram used as a reference is called a virtual reference. This thesis develops the theory of virtual reference interferometry and uses it for the characterization of chromatic dispersion in short length (virtual reference combines the advantages of these techniques so that it is both accurate and easy to operate. Chromatic dispersion measurements based on virtual reference interferometry have similar accuracy as the best conventional measurement techniques due to the ability to measure first and second order dispersion directly from the interference pattern. Unique capabilities of virtual reference interferometry are demonstrated, followed by a derivation of the operational constraints and system parameters. The technique is also applied to the characterization of few-mode fibers, a hot topic in telecommunications research where mode division multiplexing promises to expand network bandwidth. Also introduced is the theory of dispersive virtual reference interferometry, which can be used to overcome the bandwidth limitations associated with the measurement of near-zero dispersion-length optical components via compression of the interference pattern. Additionally, a method for utilizing the virtual reference interferometer in a low-coherence setup is introduced, enabling characterization in new wavelength ranges and further reducing the cost of characterization.

  10. Tight formation flying for an along-track SAR interferometer

    Science.gov (United States)

    Gill, Eberhard; Runge, Hartmut

    2004-08-01

    While space-borne synthetic aperture radar (SAR) has evolved into a mature technology over the past two decades, there is a growing interest in interferometric SAR applications. Especially along-track interferometry with its capability to resolve the velocity of on-ground objects and ocean currents is of high interest for scientific applications. The accuracy of the resolved velocity on ground scales directly with the along-track separation between adjacent SAR antennas. Since space vehicles are quite limited in size, a formation flying approach with two SAR instruments distributed onto two spacecraft thus appears to be an innovative approach to along-track SAR interferometry. In the framework of an ESA study, this paper discusses the potential benefits, drawbacks and problems associated with a close formation flight for an along-track interferometry SAR mission. To this end, the absolute and relative orbit reconstruction requirements for the SAR processing chain are derived from basic interferometric principles as well as appropriate baselines of the satellite formation in L-Band and X-Band. A discussion of potential space-borne navigation sensors is presented along with the accuracy of state-of-the-art relative orbit reconstruction. Finally, appropriate thrusters for formation acquisition and control are discussed together with approaches to formation flying guidance and control as well as fuel consumption.

  11. Complementing geotechnical slope stability and land movement analysis using satellite DInSAR

    Science.gov (United States)

    Tripolitsiotis, Achilleas; Steiakakis, Chrysanthos; Papadaki, Eirini; Agioutantis, Zacharias; Mertikas, Stelios; Partsinevelos, Panagiotis

    2014-03-01

    This paper explores the potential of using satellite radar inteferometry to monitor time-varying land movement prior to any visible tension crack signs. The idea was developed during dedicated geotechnical studies at a large open-pit lignite mine, where large slope movements (10-20 mm/day) were monitored and large fissures were observed in the immediate area outside the current pit limits. In this work, differential interferometry (DInSAR), using Synthetic Aperture Radar (SAR) ALOS images, was applied to monitor the progression of land movement that could potentially thwart mine operations. Early signs of land movements were captured by this technique well before their visual observation. Moreover, a qualitative comparison of DInSAR and ground geodetic measurements indicates that the technique can be used for the identification of high risk areas and, subsequently, for the optimization of the spatial distribution of the available ground monitoring equipment. Finally, quantitative land movement results from DInSAR are shown to be in accordance with simultaneous measurements obtained by ground means.

  12. Permanent scatterer InSAR processing: Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Dehls, John F. [Geological Survey of Norway, Trondheim (Norway)

    2006-04-15

    It has been speculated that slow, aseismic movement may be occurring along some of the fracture zones crosscutting the Forsmark area. The purpose of this study is to determine if it is possible to measure such movement using dInSAR. Differential SAR Interferometry (DInSAR) is a technique that compares the phases of multiple radar images of an area to measure surface change. The method has the potential to detect millimetric surface deformation along the sensor - target line-of-sight. Differences in phase between two images are easily viewed by combining, or interfering, the two phase-images. In the resulting image, the waves will either reinforce or cancel one another, depending upon the relative phases. The resulting image is called an interferogram and contains concentric bands of colour, or fringes, that are related to topography and/or surface deformation. New algorithms use many images acquired over a long time period to determine the movement history of individual objects, referred to as permanent scatterers. In the current project, standard PSInSAR processing was performed on 40 ERS-1 and ERS-2 scenes. The total area processed is approximately 1,500 km{sup 2}. Slightly less than 20,000 permanent scatterers were identified.The highest densities were obtained along the coast and on the islands, where natural outcrops are more abundant. Two main classes of objects act as permanent scatterers in this area. The first are natural reflectors, such as rocks. The second are man-made reflectors, such as parts of buildings. Numerous local movements were found in the study area, relating to building subsidence, or compaction of anthropogenic fill. The dataset was divided into three groups for analysis, based upon the location of regional lineaments provided by SKB. Both statistical and geostatistical techniques were used. The median velocity of the three blocks did not differ by more than 0.2 mm/yr. This is not considered significant, given the possible magnitude of

  13. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    Science.gov (United States)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; hide

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  14. A novel femtosecond-gated, high-resolution, frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Feister, S., E-mail: feister.7@osu.edu; Orban, C. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Nees, J. A. [Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Center for Ultra-Fast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Morrison, J. T. [Fellow, National Research Council, Washington, D.C. 20001 (United States); Frische, K. D. [Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Chowdhury, E. A. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Intense Energy Solutions, LLC., Plain City, Ohio 43064 (United States); Roquemore, W. M. [Air Force Research Laboratory, Dayton, Ohio 45433 (United States)

    2014-11-15

    Ultra-intense laser-matter interaction experiments (>10{sup 18} W/cm{sup 2}) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the main ultra-intense pulse. These system-dependent pre-pulses in the nanosecond and/or picosecond regimes are often intense enough to modify the target significantly by ionizing and forming a plasma layer in front of the target before the arrival of the main pulse. Time resolved interferometry offers a robust way to characterize the expanding plasma during this period. We have developed a novel pump-probe interferometry system for an ultra-intense laser experiment that uses two short-pulse amplifiers synchronized by one ultra-fast seed oscillator to achieve 40-fs time resolution over hundreds of nanoseconds, using a variable delay line and other techniques. The first of these amplifiers acts as the pump and delivers maximal energy to the interaction region. The second amplifier is frequency shifted and then frequency doubled to generate the femtosecond probe pulse. After passing through the laser-target interaction region, the probe pulse is split and recombined in a laterally sheared Michelson interferometer. Importantly, the frequency shift in the probe allows strong plasma self-emission at the second harmonic of the pump to be filtered out, allowing plasma expansion near the critical surface and elsewhere to be clearly visible in the interferograms. To aid in the reconstruction of phase dependent imagery from fringe shifts, three separate 120° phase-shifted (temporally sheared) interferograms are acquired for each probe delay. Three-phase reconstructions of the electron densities are then inferred by Abel inversion. This interferometric system delivers precise measurements of pre-plasma expansion that can identify the condition of the target at the moment that the ultra-intense pulse arrives. Such measurements are indispensable for correlating laser pre-pulse measurements

  15. 地基SAR干涉测量原理及其形变监测应用研究%Ground-based SAR Interferometry Principles and Its Applications to Displacement Monitoring

    Institute of Scientific and Technical Information of China (English)

    王鹏; 周校

    2012-01-01

    详细介绍了地基SAR的基本理论,结合建筑物二维和一维的实测数据,分析了其在距离向和方位向的分辨率以及形变的监测精度,说明了地基SAR在形变监测中的有效性,并对地基SAR今后的应用与发展作了初步展望。%We describe the basic theoretical principles for ground-based SAR, including stepped- frequency continuous wave, synthetic aperture radar and interferometric measurement. The anal-ysis of the measured monitoring data of a building structure in two-dimension and one-dimension shows the validity of ground-based SAR in ground deformation monitoring. We also make some preliminary look in applications and developments of ground-based SAR in future.

  16. Application of Fractional Fourier Transform to Moving Target Indication via Along-Track Interferometry

    Directory of Open Access Journals (Sweden)

    Chiu Shen

    2005-01-01

    Full Text Available A relatively unknown yet powerful technique, the so-called fractional Fourier transform (FrFT, is applied to SAR along-track interferometry (SAR-ATI in order to estimate moving target parameters. By mapping a target's signal onto a fractional Fourier axis, the FrFT permits a constant-velocity target to be focused in the fractional Fourier domain thereby affording orders of magnitude improvement in SCR. Moving target velocity and position parameters are derived and expressed in terms of an optimum fractional angle and a measured fractional Fourier position , allowing a target to be accurately repositioned and its velocity components computed without actually forming an SAR image. The new estimation algorithm is compared with the matched filter bank approach, showing some of the advantages of the FrFT method. The proposed technique is applied to the data acquired by the two-aperture CV580 airborne radar system configured in its along-track mode. Results show that the method is effective in estimating target velocity and position parameters.

  17. Time-Delay Interferometry

    Directory of Open Access Journals (Sweden)

    Massimo Tinto

    2014-08-01

    Full Text Available Equal-arm detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers, the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called time-delay interferometry (TDI. This article provides an overview of the theory, mathematical foundations, and experimental aspects associated with the implementation of TDI. Although emphasis on the application of TDI to the Laser Interferometer Space Antenna (LISA mission appears throughout this article, TDI can be incorporated into the design of any future space-based mission aiming to search for gravitational waves via interferometric measurements. We have purposely left out all theoretical aspects that data analysts will need to account for when analyzing the TDI data combinations.

  18. A-Differential Synthetic Aperture Radar Interferometry analysis of a Deep Seated Gravitational Slope Deformation occurring at Bisaccia (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Di Martire, Diego, E-mail: diego.dimartire@unina.it [Department of Earth Sciences, Environment and Resources, Federico II University of Naples, Largo San Marcellino 10, 80138 Naples (Italy); Novellino, Alessandro, E-mail: alessandro.novellino@unina.it [Department of Earth Sciences, Environment and Resources, Federico II University of Naples, Largo San Marcellino 10, 80138 Naples (Italy); Ramondini, Massimo, E-mail: ramondin@unina.it [Department of Civil, Architectural and Environmental Engineering, Federico II University of Naples, via Claudio 21, 80125 Naples (Italy); Calcaterra, Domenico, E-mail: domenico.calcaterra@unina.it [Department of Earth Sciences, Environment and Resources, Federico II University of Naples, Largo San Marcellino 10, 80138 Naples (Italy)

    2016-04-15

    This paper presents the results of an investigation on a Deep Seated Gravitational Slope Deformation (DSGSD), previously only hypothesized by some authors, affecting Bisaccia, a small town located in Campania region, Italy. The study was conducted through the integration of conventional methods (geological-geomorphological field survey, air-photo interpretation) and an Advanced-Differential Interferometry Synthetic Aperture Radar (A-DInSAR) technique. The DSGSD involves a brittle lithotype (conglomerates of the Ariano Irpino Supersynthem) resting over a Structurally Complex Formation (Varycoloured Clays of Calaggio Formation). At Bisaccia, probably as a consequence of post-cyclic recompression phenomena triggered by reiterated seismic actions, the rigid plate made up of conglomeratic sediments resulted to be split in five portions, showing different rates of displacements, whose deformations are in the order of some centimeter/year, thus inducing severe damage to the urban settlement. A-DInSAR techniques confirmed to be a reliable tool in monitoring slow-moving landslides. In this case 96 ENVIronmental SATellite-Advanced Synthetic Aperture Radar (ENVISAT-ASAR) images, in ascending and descending orbits, have been processed using SUBSOFT software, developed by the Remote Sensing Laboratory (RSLab) group from the Universitat Politècnica de Catalunya (UPC). The DInSAR results, coupled with field survey, supported the analysis of the instability mechanism and confirmed the historical record of the movements already available for the town. - Highlights: • DInSAR confirmed to be a reliable tool in monitoring slow-moving landslides. • Integration with traditional monitoring systems is crucial for DInSAR application. • DInSAR data can be used for the natural risk mitigation related to landslides.

  19. Wetland InSAR

    Science.gov (United States)

    Wdowinski, S.; Kim, S.; Amelung, F.; Dixon, T.

    2006-12-01

    Wetlands are transition zones where the flow of water, the nutrient cycling, and the sun energy meet to produce a unique and very productive ecosystem. They provide critical habitat for a wide variety of plant and animal species, including the larval stages of many ocean fish. Wetlands also have a valuable economical importance, as they filter nutrients and pollutants from fresh water used by human and provide aquatic habitats for outdoor recreation, tourism, and fishing. Globally, many such regions are under severe environmental stress, mainly from urban development, pollution, and rising sea level. However, there is increasing recognition of the importance of these habitats, and mitigation and restoration activities have begun in a few regions. A key element in wetlands conservation, management, and restoration involves monitoring its hydrologic system, as the entire ecosystem depends on its water supply. Heretofore, hydrologic monitoring of wetlands are conducted by stage (water level) stations, which provide good temporal resolution, but suffer from poor spatial resolution, as stage station are typically distributed several, or even tens of kilometers, from one another. Wetland application of InSAR provides the needed high spatial resolution hydrological observations, complementing the high temporal resolution terrestrial observations. Although conventional wisdom suggests that interferometry does not work in vegetated areas, several studies have shown that both L- and C-band interferograms with short acquisition intervals (1-105 days) can maintain excellent coherence over wetlands. In this study we explore the usage of InSAR for detecting water level changes in various wetland environments around the world, including the Everglades (south Florida), Louisiana Coast (southern US), Chesapeake Bay (eastern US), Pantanal (Brazil), Okavango Delta (Botswana), and Lena Delta (Siberia). Our main study area is the Everglades wetland (south Florida), which is covered by

  20. Detecting Subsidence Along a High Speed Railway by Ultrashort Baseline TCP-InSAR with High Resolution Images

    Science.gov (United States)

    Dai, K. R.; Liu, G. X.; Yu, B.; Jia, H. G.; Ma, D. Y.; Wang, X. W.

    2013-10-01

    A High Speed Railway goes across Wuqing district of Tianjin, China. Historical studies showed that the land subsidence of this area was very serious, which would give rise to huge security risk to the high speed railway. For detecting the detailed subsidence related to the high speed railway, we use the multi-temporal InSAR (MT-InSAR) technique to extract regional scale subsidence of Wuqing district. Take it into consideration that Wuqing district is a suburban region with large area of low coherence farmland, we select the temporarily coherent point InSAR (TCP-InSAR) approach for MT-InSAR analysis. The TCP-InSAR is a potential approach for detecting land subsidence in low coherence areas as it can identify and analysis coherent points between just two images and can acquire a reliable solution without conventional phase unwrapping. This paper extended the TCP-InSAR with use of ultrashort spatial baseline (USB) interferograms. As thetopographic effects are negligible in the USB interferograms, an external digital elevation model (DEM) is no longer needed in interferometric processing, and the parameters needed to be estimated were simplified at the same time. With use of 17 TerraSAR-X (TSX) images acquired from 2009 to 2010 over Wuqing district, the annual subsidence rates along the high speed railway were derived by the USB-TCPInSAR approach. Two subsidence funnels were found at ShuangJie town and around Wuqing Station with subsidence rate of -17 ∼ -27 mm/year and -7 ∼ -17 mm/year, respectively. The subsidence rates derived by USB-TCPInSAR were compared with those derived by the conventional TCP-InSAR that uses an external DEM for differential interferometry. The mean and the standard deviation of the differences between two types of results at 370697 TCPs are -4.43 × 10-6 mm/year and ±1.4673 mm/year, respectively. Further comparison with the subsidence results mentioned in several other studies were made, which shows good consistencies. The results verify

  1. First Bistatic Spaceborne SAR Experiments with TanDEM-X

    OpenAIRE

    Rodriguez-Cassola, Marc; Prats, Pau; Schulze, Daniel; Tous-Ramon, Nuria; Steinbrecher, Ulrich; Marotti, Luca; Nanninni, Matteo; Younis, Marwan; Lopez-Dekker, Paco; Zink, Manfred; Reigber, Andreas; Krieger, Gerhard; Moreira, Alberto

    2011-01-01

    TanDEM-X is a high-resolution interferometric mission with the main goal of providing a global and unprecedentedly accurate digital elevation model (DEM) of the Earth surface by means of single-pass X-band SAR interferometry. Despite its usual quasi-monostatic configuration, TanDEM-X is the first genuinely bistatic SAR system in space. During its monostatic commissioning phase, the system has been mainly operated in pursuit monostatic mode. However, some pioneering bistat...

  2. Nanoscale optical interferometry with incoherent light

    OpenAIRE

    Dongfang Li,; Jing Feng; Domenico Pacifici

    2016-01-01

    Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of...

  3. Improved characterization of slow-moving landslides by means of adaptive NL-InSAR filtering

    Science.gov (United States)

    Albiol, David; Iglesias, Rubén.; Sánchez, Francisco; Duro, Javier

    2014-10-01

    Advanced remote sensing techniques based on space-borne Synthetic Aperture Radar (SAR) have been developed during the last decade showing their applicability for the monitoring of surface displacements in landslide areas. This paper presents an advanced Persistent Scatterer Interferometry (PSI) processing based on the Stable Point Network (SPN) technique, developed by the company Altamira-Information, for the monitoring of an active slowmoving landslide in the mountainous environment of El Portalet, Central Spanish Pyrenees. For this purpose, two TerraSAR-X data sets acquired in ascending mode corresponding to the period from April to November 2011, and from August to November 2013, respectively, are employed. The objective of this work is twofold. On the one hand, the benefits of employing Nonlocal Interferomtric SAR (NL-InSAR) adaptive filtering techniques over vegetated scenarios to maximize the chances of detecting natural distributed scatterers, such as bare or rocky areas, and deterministic point-like scatterers, such as man-made structures or poles, is put forward. In this context, the final PSI displacement maps retrieved with the proposed filtering technique are compared in terms of pixels' density and quality with classical PSI, showing a significant improvement. On the other hand, since SAR systems are only sensitive to detect displacements in the line-of-sight (LOS) direction, the importance of projecting the PSI displacement results retrieved along the steepest gradient of the terrain slope is discussed. The improvements presented in this paper are particularly interesting in these type of applications since they clearly allow to better determine the extension and dynamics of complex landslide phenomena.

  4. Speckle reference beam holographic and speckle photographic interferometry in non-destructive test systems

    Science.gov (United States)

    Liu, H. K.

    1976-01-01

    The techniques of speckle beam holographic interferometry and speckle photographic interferometry are described. In particular, their practical limitations and their applications to the existing holographic nondestructive test system are discussed.

  5. A single-ended 10-bit 200 kS/s 607 μW SAR ADC with an auto-zeroing offset cancellation technique

    Science.gov (United States)

    Weiru, Gu; Yimin, Wu; Fan, Ye; Junyan, Ren

    2015-10-01

    This paper presents a single-ended 8-channel 10-bit 200 kS/s 607 μW synchronous successive approximation register (SAR) analog-to-digital converter (ADC) using HLMC 55 nm low leakage (LL) CMOS technology with a 3.3 V/1.2 V supply voltage. In conventional binary-encoded SAR ADCs the total capacitance grows exponentially with resolution. In this paper a CR hybrid DAC is adopted to reduce both capacitance and core area. The capacitor array resolves 4 bits and the other 6 bits are resolved by the resistor array. The 10-bit data is acquired by thermometer encoding to reduce the probability of DNL errors which are typically present in binary weighted architectures. This paper uses an auto-zeroing offset cancellation technique that can reduce the offset to 0.286 mV. The prototype chip realized the 10-bit SAR ADC fabricated in HLMC 55 nm CMOS technology with a core area of 167 × 87 μm2. It shows a sampling rate of 200 kS/s and low power dissipation of 607 μW operates at a 3.3 V analog supply voltage and a 1.2 V digital supply voltage. At the input frequency of 10 kHz the signal-to-noise-and-distortion ratio (SNDR) is 60.1 dB and the spurious-free dynamic range (SFDR) is 68.1 dB. The measured DNL is +0.37/-0.06 LSB and INL is +0.58/-0.22 LSB. Project supported by the National Science and Technology Support Program of China (No. 2012BAI13B07) and the National Science and Technology Major Project of China (No.2012ZX03001020-003).

  6. SAR Altimetry Applications over Water

    CERN Document Server

    Martin-Puig, C; Ruffini, G; Raney, R K; Benveniste, J

    2008-01-01

    The application of Synthetic Aperture Radar (SAR) techniques to classical radar altimetry offers the potential for greatly improved Earth surface mapping. This paper provides an overview of the progress of SAMOSA, Development of SAR Altimetry Studies and Applications over Ocean, Coastal zones and Inland waters, an on-going ESA-funded project. The main objective of SAMOSA is to better quantify the improvement of SAR altimetry over conventional altimetry on water surfaces. More specifically, one of the tasks focuses on the reduction of SAR mode data to pulse-limited altimeter data, and a theoretical modelling to characterize the expected gain between high Pulse Repetition Frequency (PRF) reduced SAR mode data and low PRF classical Low-Resolution Mode (LRM) data. To this end, theoretical modelling using the Cramer-Rao bound (CRB) will be used and the results will be compared to previous theoretical estimates [7], using an analysis akin to that in [8].

  7. SAR Product Improvements and Enhancements - SARprises

    Science.gov (United States)

    2013-09-30

    paper on current fields at Orkney, Scotland, was accepted for publication in IEEE - TGARS and is currently in press (available on IEEE Xplore as Early...Sea surface velocity vector retrieval using dual-beam interferometry: First demonstration, IEEE TGARS, 43, 2494- 2502, 2005. [2] Chapron, B., F...Bight by airborne along-track interferometric SAR, Proc. IGARSS 2002, 1822-1824, IEEE , 2002. [4] Bjerklie, D.M., S.L. Dingman, C.J. Vorosmarty, C.H

  8. Polarimetric scattering and SAR information retrieval

    CERN Document Server

    Jin, Ya-Qiu

    2013-01-01

    Taking an innovative look at Synthetic Aperture Radar (SAR), this practical reference fully covers new developments in SAR and its various methodologies and enables readers to interpret SAR imagery An essential reference on polarimetric Synthetic Aperture Radar (SAR), this book uses scattering theory and radiative transfer theory as a basis for its treatment of topics. It is organized to include theoretical scattering models and SAR data analysis techniques, and presents cutting-edge research on theoretical modelling of terrain surface. The book includes quantitative app

  9. Investigation of the Qadimah Fault in Western Saudi Arabia using Satellite Radar Interferometry and Geomorphology Analysis Techniques

    KAUST Repository

    Smith, Robert

    2012-07-01

    The Qadimah Fault has been mapped as a normal fault running through the middle of a planned $50 billion city. For this reason, there is an urgent need to evaluate the seismic hazard that the fault poses to the new development. Although several geophysical studies have supported the existence of a fault, the driving mechanism remains unclear. While a fault controlled by gravity gliding of the overburden on a mobile salt layer is unlikely to be of concern to the city, one caused by the continued extension of a normal rotational fault due to Red Sea rifting could result in a major earthquake. A number of geomorphology and geodetic techniques were used to better understand the fault. An analysis of topographic data revealed a sharp discontinuity in slope aspect and hanging wall tilting which strongly supports the existence of a normal fault. A GPS survey of an emergent reef platform which revealed a tilted coral surface also indicates that deformation has occurred in the region. An interferometric synthetic aperture radar investigation has also been performed to establish whether active deformation is occurring on the fault. Ground movements that could be consistent with inter-seismic strain accumulation have been observed, although the analysis is restricted by the limited data available. However, a simple fault model suggests that the deformation is unlikely due to continued crustal stretching. This, in addition to the lack of footwall uplift in the topography data, suggests that the fault is more likely controlled by a shallow salt layer. However, more work will need to be done in the future to confirm these findings.

  10. Computerized ionospheric tomography based on geosynchronous SAR

    Science.gov (United States)

    Hu, Cheng; Tian, Ye; Dong, Xichao; Wang, Rui; Long, Teng

    2017-02-01

    Computerized ionospheric tomography (CIT) based on spaceborne synthetic aperture radar (SAR) is an emerging technique to construct the three-dimensional (3-D) image of ionosphere. The current studies are all based on the Low Earth Orbit synthetic aperture radar (LEO SAR) which is limited by long repeat period and small coverage. In this paper, a novel ionospheric 3-D CIT technique based on geosynchronous SAR (GEO SAR) is put forward. First, several influences of complex atmospheric environment on GEO SAR focusing are detailedly analyzed, including background ionosphere and multiple scattering effects (induced by turbulent ionosphere), tropospheric effects, and random noises. Then the corresponding GEO SAR signal model is constructed with consideration of the temporal-variant background ionosphere within the GEO SAR long integration time (typically 100 s to 1000 s level). Concurrently, an accurate total electron content (TEC) retrieval method based on GEO SAR data is put forward through subband division in range and subaperture division in azimuth, obtaining variant TEC value with respect to the azimuth time. The processing steps of GEO SAR CIT are given and discussed. Owing to the short repeat period and large coverage area, GEO SAR CIT has potentials of covering the specific space continuously and completely and resultantly has excellent real-time performance. Finally, the TEC retrieval and GEO SAR CIT construction are performed by employing a numerical study based on the meteorological data. The feasibility and correctness of the proposed methods are verified.

  11. Mapping three-dimensional surface deformation by combining multiple-aperture interferometry and conventional interferometry: Application to the June 2007 eruption of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Jung, H.-S.; Lu, Zhiming; Won, J.-S.; Poland, Michael P.; Miklius, Asta

    2011-01-01

    Surface deformation caused by an intrusion and small eruption during June 17-19, 2007, along the East Rift Zone of Kilauea Volcano, Hawaii, was three-dimensionally reconstructed from radar interferograms acquired by the Advanced Land Observing Satellite (ALOS) phased-array type L-band synthetic aperture radar (SAR) (PALSAR) instrument. To retrieve the 3-D surface deformation, a method that combines multiple-aperture interferometry (MAI) and conventional interferometric SAR (InSAR) techniques was applied to one ascending and one descending ALOS PALSAR interferometric pair. The maximum displacements as a result of the intrusion and eruption are about 0.8, 2, and 0.7 m in the east, north, and up components, respectively. The radar-measured 3-D surface deformation agrees with GPS data from 24 sites on the volcano, and the root-mean-square errors in the east, north, and up components of the displacement are 1.6, 3.6, and 2.1 cm, respectively. Since a horizontal deformation of more than 1 m was dominantly in the north-northwest-south-southeast direction, a significant improvement of the north-south component measurement was achieved by the inclusion of MAI measurements that can reach a standard deviation of 3.6 cm. A 3-D deformation reconstruction through the combination of conventional InSAR and MAI will allow for better modeling, and hence, a more comprehensive understanding, of the source geometry associated with volcanic, seismic, and other processes that are manifested by surface deformation.

  12. Time and Frequency Synchronization Technique in Bistatic SAR%双站SAR时频同步技术

    Institute of Scientific and Technical Information of China (English)

    闫飞飞; 常文革; 张启雷

    2013-01-01

    Time and frequency synchronization errors exist in the bistatic SAR based on spaceborne transmitters because the transmitters and receivers are mounted on separated platforms. Time and frequency synchronization error will affect the imaging, even lead to abnormal imaging. Therefore, Time and frequency synchronization is a key problem in this kind of system. Focused on the bistatic fixed-receiver SAR based on spaceborne transmitters, the time and frequency synchronization error model is analyzed firstly, and then, a time and frequency synchronization approach using direct-path echo is presented , in which we obtain the time and frequency error from the peak position and phase of direct-path. Finally, simulations are carried out to prove the validity of the proposed method, and its performance was also examined. Simulation results show that the approach achieves excellent performance, and can be applied effectively in the above-mentioned bistatic SAR systems.%基于星载SAR照射源的双站SAR系统,由于收、发系统分置,时间同步和频率同步误差会对成像结果造成影响,甚至不能成像,因此,时频同步问题是这类系统需要解决的关键问题之一.本文首先以基于星载辐射源、接收机固定在地面的双站SAR系统为例,详细分析了时频同步误差的模型,随后提出了一种利用直达波信号脉压峰值位置和相位信息提取时频同步误差,实现系统时频同步的方法,并对该方法的估计精度进行了分析.最后,通过仿真,对时频同步方法及其性能进行了验证.根据仿真结果分析,该方法取得了较好的性能,可以有效的应用于上述双站SAR系统.

  13. A novel flood detection mapping using multi-temporal RADARSAT-2 and TerraSAR-X images through an optimized Taguchi based classification technique

    Science.gov (United States)

    Pradhan, Biswajeet

    2016-07-01

    Floods are considered as one of the most common natural disasters in Malaysia. Preparation of an actuate flood inventory map is the basic step in flood risk management. Flood detection is yet significantly complex process due to the presence of cloud coverage in the tropical areas especially in Malaysia. Moreover, the most available techniques are expensive and time-consuming. Therefore, in the present study an efficient approach is presented to identify the flooded areas by means of multi-temporal RADARSAT-2 and single Terra-SAR-X images. The proposed framework was tested at two tropical areas in Malaysia: Kelantan (2014 flood); and Kuala Terengganu (2009 flood) to map the flooded areas. Multi-temporal RADARSAT-2 and single TerrSAR-X and Landsat images were classified based on a rule-based object-oriented technique. Then, different levels of image segmentation was performed to distinguish the boundaries of various dimensions and scales of objects. Finally, a novel Taguchi based method was employed to optimize the segmentation parameters. After the completion of segmentation, the rules were defined and the images were classified to produce an accurate flood inventory map for both 2014 Kelantan flood event as well as 2009 flood event in Kuala Terengganu. Finally, the results of classification were measured through the confusion matrix. In this research, the combination of techniques and the optimization approach were applied as a pioneering approach for flood detection. The flood inventory map which was obtained by using the proposed approach is showing the efficiency of the methodology which can be applied by other researchers and decision makers to construct the flood inventory maps. Keywords: Radarsat 2; Multispectral imagery; flood detection; Taguchi; rule-based classification

  14. Mapping inflation at Santorini volcano, Greece, using GPS and InSAR

    Science.gov (United States)

    Papoutsis, I.; Papanikolaou, X.; Floyd, M.; Ji, K. H.; Kontoes, C.; Paradissis, D.; Zacharis, V.

    2013-01-01

    Recent studies have indicated that for the first time since 1950, intense geophysical activity is occurring at the Santorini volcano. Here, we present and discuss the surface deformation associated with this activity, spanning from January 2011 to February 2012. Analysis of satellite interferometry data was performed using two well-established techniques, namely, Persistent Scatterer Interferometry (PSI) and Small Baseline Subset (SBAS), producing dense line-of-sight (LOS) ground deformation maps. The displacement field was compared with GPS observations from 10 continuous sites installed on Santorini. Results show a clear and large inflation signal, up to 150 mm/yr in the LOS direction, with a radial pattern outward from the center of the caldera. We model the deformation inferred from GPS and InSAR using a Mogi source located north of the Nea Kameni island, at a depth between 3.3 km and 6.3 km and with a volume change rate in the range of 12 million m3 to 24 million m3 per year. The latest InSAR and GPS data suggest that the intense geophysical activity has started to diminish since the end of February 2012.

  15. PSI Deformation Map Retrieval by Means of Temporal Sublook Coherence on Reduced Sets of SAR Images

    Directory of Open Access Journals (Sweden)

    Rubén Iglesias

    2015-01-01

    Full Text Available Prior to the application of any persistent scatterer interferometry (PSI technique for the monitoring of terrain displacement phenomena, an adequate pixel selection must be carried out in order to prevent the inclusion of noisy pixels in the processing. The rationale is to detect the so-called persistent scatterers, which are characterized by preserving their phase quality along the multi-temporal set of synthetic aperture radar (SAR images available. Two criteria are mainly available for the estimation of pixels’ phase quality, i.e., the coherence stability and the amplitude dispersion or permanent scatterers (PS approach. The coherence stability method allows an accurate estimation of the phase statistics, even when a reduced number of SAR acquisitions is available. Unfortunately, it requires the multi-looking of data during the coherence estimation, leading to a spatial resolution loss in the final results. In contrast, the PS approach works at full-resolution, but it demands a larger number of SAR images to be reliable, typically more than 20. There is hence a clear limitation when a full-resolution PSI processing is to be carried out and the number of acquisitions available is small. In this context, a novel pixel selection method based on exploiting the spectral properties of point-like scatterers, referred to as temporal sublook coherence (TSC, has been recently proposed. This paper seeks to demonstrate the advantages of employing PSI techniques by means of TSC on both orbital and ground-based SAR (GB-SAR data when the number of images available is small (10 images in the work presented. The displacement maps retrieved through the proposed technique are compared, in terms of pixel density and phase quality, with traditional criteria. Two X-band datasets composed of 10 sliding spotlight TerraSAR-X images and 10 GB-SAR images, respectively, over the landslide of El Forn de Canillo (Andorran Pyrenees, are employed for this study. For both

  16. A demonstrator for bolometric interferometry

    CERN Document Server

    Ghribi, Adnan; Galli, Silvia; Piat, Michel; Breelle, Eric; Hamilton, Jean-Christophe; Spinelli, Sebastiano; Gervasi, Massimo; Zannoni, Mario

    2009-01-01

    Bolometric Interferometry (BI) is one of the most promising techniques for precise measurements of the Cosmic Microwave Background polarization. In this paper, we present the results of DIBO (Demonstrateur d'Interferometrie Bolometrique), a single-baseline demonstrator operating at 90 GHz, built to proof the validity of the BI concept applied to a millimeter-wave interferometer. This instrument has been characterized in the laboratory with a detector at room temperature and with a 4 K bolometer. This allowed us to measure interference patterns in a clean way, both (1) rotating the source and (2) varying with time the phase shift among the two interferometer's arms. Detailed modelisation has also been performed and validated with measurements.

  17. Interferometric SAR Persistent Scatterer Analysis of Mayon volcano, Albay, Philippines

    Science.gov (United States)

    Bato, M. P.; Lagmay, A. A.; Paguican, E. R.

    2011-12-01

    Persistent Scatterer Interferometry (PSInSAR) is a new method of interferometric processing that overcomes the limitations of conventional Synthetic Aperture Radar differential interferometry (DInSAR) and is capable of detecting millimeter scale ground displacements. PSInSAR eliminate anomalies due to atmospheric delays and temporal and geometric decorrelation eminent in tropical regions by exploiting the temporal and spatial characteristics of radar interferometric signatures derived from time-coherent point-wise targets. In this study, PSInSAR conducted in Mayon Volcano, Albay Province, Bicol, Philippines, reveal tectonic deformation passing underneath the volcano. Using 47 combined ERS and ENVISAT ascending and descending imageries, differential movement between the northern horst and graben on which Mayon volcano lies, is as much as 2.5 cm/year in terms of the line-of-sight (LOS) change in the radar signal. The northern horst moves in the northwest direction whereas the graben moves mostly downward. PSInSAR results when coupled with morphological interpretation suggest left-lateral oblique-slip movement of the northern bounding fault of the Oas graben. The PSInSAR results are validated with dGPS measurements. This work presents the functionality of PSInSAR in a humid tropical environment and highlights the probable landslide hazards associated with an oversteepened volcano that may have been further deformed by tectonic activity.

  18. Experiments on diffusion in liquids using holographic interferometry

    Science.gov (United States)

    Fenichel, Henry; Frankena, Hans; Groen, Fokke

    1984-08-01

    An experiment is described which uses the technique of holographic interferometry to study diffusion in liquids. The diffusion process can be recorded on double exposed holograms or it can be observed and recorded in real time using video techniques.

  19. Digital speckle pattern shearing interferometry: Limitations and prospects

    DEFF Research Database (Denmark)

    Owner-Petersen, Mette

    1996-01-01

    requires optical processing of double exposed interferograms. Hence the technique is not in real time. This paper explores the possibilities and limitations for real time shearing fringe observation using the electronic speckle pattern interferometry technique. Prospects for quantitative determination...

  20. Ball bearing measurement based on white-light interferometry technique%白光干涉技术在球轴承测量中的应用

    Institute of Scientific and Technical Information of China (English)

    石炜; 李俊成; 韩军; 王建国; 王靖禹

    2014-01-01

    In order to achieve rapid and accurate measurement of sphere bearing ball during manufacturing process , a set of Michelson interferometer measurement system was proposed based on white light interferometer technology , image processing technology and signal processing technology .White light interferometry technique was analyzed theoretically . The precision and roughness measurement of the optical spherical radius of sphere ball bearing were made .The finish resolution image and the curvature radius image were obtained .The accurate calculation data was obtained after processing a large number of experimental data .The finish resolution can reach the nm level and the curvature can be calculated to theμm level.The processing quality and the detection speed are improved .%为了实现球轴承中球体在制造加工中快速准确的测量,采用白光干涉技术、图像处理技术和信号处理技术组建了一整套的基于迈克尔逊干涉仪的测量系统。对白光干涉技术进行了理论分析,对轴承球体进行了光学球面半径的高精度测量和粗糙度测量,取得了光洁度图像和曲率半径图像。在大量实验论证的基础上经过处理和计算得到了精确的计算数据,光洁度分辨率可达到纳米量级,曲率也可以计算到微米量级。结果表明,利用此技术可以对球面进行快速精确的测量,提高了加工质量和检测速度。

  1. InSAR techniques for reliable deformation estimation in volcanic areas and a first glance of Tandem-DEM accuracy - test site El Hierro Island

    Science.gov (United States)

    Cong, X.; Eineder, M.; Fritz, T.

    2013-12-01

    The accuracy and availability of deformation measurements using InSAR techniques is limited due to decorrelation effects, atmospheric disturbances and the SAR side-looking geometry (layover and shadowing). In this talk, we present our recent research and achievements on advanced InSAR techniques in order to retrieve reliable deformation signals from active volcanoes using high resolution TerraSAR-X (TSX) images. Another highlight of this talk is the evaluation of an experimental TanDEM-X (TDX) RawDEM with a resolution of approximately 6 m in order to compensate the topographic phase. A volcanic test site which is currently highly active -El Hierro- has been selected to demonstrate the developed techniques: 1) PSI processing in volcanic areas using high resolution TSX images; 2) Mitigation of atmospheric delay distortions; 3) Fusion of multi-geometrical PSI clouds. In order to measure the deformation from 2011 to 2013 at El Hierro [1], two stacks of stripmap TSX Mission data have been acquired, one in ascending orbit and one in descending. Each stack has more than 25 scenes. More than 1.5 million PSs have been detected (SCR>3.0 dB). The stratified atmospheric delay for each acquisition has been integrated for the PSI reference network and, afterwards, interpolated and compensated for all PSs. A linear deformation model has been assumed for PSI processing. For the descending orbit stack, a relative deformation from -21.7 to 131.8 mm/y from Sep. 2011 to Jan. 2013 with respect to a reference point located on the northeast coast has been measured. On the one hand, the spatial variation of the deformation has a good agreement with the seismicity distribution [1]. On the other hand, the deformation magnitude agrees with in-situ GPS measurements [2]. In ascending orbit, the linear deformation rate varies from -22.8 to 90.9 mm/y. This different range of value is due to a scene acquired on Feb. 2010, which has been included in order to obtain the pre-seismic deformation

  2. Coseismic deformation fields and a fault slip model for the Mw7.8 mainshock and Mw7.3 aftershock of the Gorkha-Nepal 2015 earthquake derived from Sentinel-1A SAR interferometry

    Science.gov (United States)

    Zuo, Ronghu; Qu, Chunyan; Shan, XinJian; Zhang, Guohong; Song, Xiaogang

    2016-08-01

    Coseismic deformation fields caused by the moment magnitude (Mw)7.8 mainshock and Mw7.3 aftershock of the 2015 Gorkha-Nepal earthquake are obtained by analyzing Sentinel-1A/IW ascending and descending interferometry data. Results show that the deformation field associated with the Mw7.8 mainshock roughly resembles a prolate ellipse, extending from the epicenter about 20° east by south. The main region of deformation is about 160 km by 110 km, comprising a large southern area of uplift, and a small northern area of subsidence. Assuming that rupture occurred in a homogeneous elastic half-space, the coseismic fault slip models of the mainshock and aftershock are inverted based on a shallow dip fault constrained by the three data sets, Sentinel-1A/IW descending data, ascending data, and ALOS-2 descending data, separately or in combination. Mainshock slip distributions generated from all three data sets are similar, and inversion constrained by all three in combination reveal a comprehensive fault slip model. Indeed, coseismic slip is mainly distributed within a narrow 40 km zone to the north of the Main Frontal Trust (MFT), and at 6-15 km subsurface depth. In addition, the maximum slip in this event was about 5.1 m, the Mw7.8 mainshock ruptured the deep part of the seismogenic zone, while the region between the southern boundary of the rupture area and the MFT remained locked. Therefore, a considerable earthquake risk remains to the south of Kathmandu. The inverted coseismic slip of the Mw7.3 aftershock was concentrated in a small area, close to, and southeast of the epicenter, with maximum displacement of about 3 m. Finally, because there is no overlap between the two slip areas of the mainshock and aftershock, the gap between them, about 15 km in length, has additional potential to generate future earthquakes.

  3. Forest Height and Ground Topography at L-Band from an Experimental Single-Pass Airborne Pol-InSAR System

    Science.gov (United States)

    Mercer, B.; Zhang, Q.; Schwaebisch, M.; Denbina, M.; Cloude, S.

    2009-04-01

    Many applications require bare-earth Digital Terrain Models (DTMs) in the presence of forest canopy. L-Band is an attractive candidate, but the derived interferometric phase represents a combination of ground and volume scattering contributions from the canopy above. The use of PolInSAR techniques, and the Random Volume Over Ground (RVOG) Model has had considerable success in model inversion studies where the objective has been to extract tree height. A major problem for the robust application of this technique is the presence of temporal decorrelation, caused by the use of repeat-pass interferometry. In this paper we will present the current results of canopy height and DTM estimation in forested areas using an experimental airborne, single-pass, L-Band PolInSAR system for which temporal decorrelation is not an issue.

  4. Earthquake Monitoring in Australia Using Satellite Radar Interferometry

    Institute of Scientific and Technical Information of China (English)

    Ge Lin-lin; E. Cheng; D. Polonska; C. Rizos; C. Collins; C. Smith

    2003-01-01

    Are there any earthquakes in Australia? Although most Australians are not as familiar with earthquakes as citizens in countries such as Japan, there are some quakes on the Australian continent every year. Differential Synthetic Aperture Radar Interferometry (DInSAR) has been widely used in recent years for monitoring crustal deformation due to earthquakes, volcanoes, underground mining, oil extraction,and so on. Hence the follow-on question is, can repeat-pass satellite DInSAR be used in Australian regions to monitor earthquakes? Nine ERS-1 and ERS-2 radar images of the Burakin region in Western Australia were used to form the InSAR pairs.Twenty-two InSAR pairs were formed and were used to study the temporal decorrelation characteristics in the Burakin area. It was found that good coherence could be maintained all over the full scene for a pair spanning 211 d. The repeat cycles of RADARSAT and ERS (all C-band SAR missions) are 24 and 35 drespectively, Furthermore it is easier to maintain good coherence in L-band SAR images (e.g. the JERS-1 mission has a 44 d repeat cycle). Therefore the authors are confident that repeat-pass differential InSAR can be used to monitor ground deformation due to earthquakes in the Burakin region.

  5. Tectonic evolution of the La González pull-apart basin in the Mérida Andes: combination of geological data and satellite radar interferometry (InSAR)

    Science.gov (United States)

    Javadi, Hamid Reza; Dehghani, Maryam; Foroutan, Mohammad; Naeimi, Amir; Roustaei, Mahasa; Saidi, Abdollah; Urbina, Josef Angel

    2016-07-01

    The 500-km-long Boconó strike-slip fault runs as a major active fault along the backbone of the Mérida Andes fold-and-thrust belt. The recent right-lateral motion on the fault led to formation of numerous structures such as pull-apart basins which have formed in releasing bends and/or right-step offsets along the fault strands. The La González pull-apart is the biggest basin generated as an extensional strike-slip duplex in the central part of the fault. This duplex is made up of two strands of the Boconó fault as master/first-order faults, while normal right-lateral faults which formed during evolution of the basin are second-order faults. The extension of the basin is associated with seismic activities and surface offsets along the Boconó fault. InSAR investigations over a 31-month period also support active deformation within the basin. These data indicate that the La González basin is continuously being extended as a result of motion along the Boconó fault and formation of subsequent normal faults. In addition, the basin is being transversely shortened in NW-SE direction due to regional shortening across the Mérida Andes range followed by convergence between the Maracaibo microplate and the Guyana shield.

  6. The 1996 Mw 6.6 Lijiang earthquake: Application of JERS-1 SAR interferometry on a typical normal-faulting event in the northwestern Yunnan rift zone, SW China

    Science.gov (United States)

    Ji, Lingyun; Wang, Qingliang; Xu, Jing; Feng, Jiangang

    2017-09-01

    The northwestern Yunnan rift zone in the Yunnan Province of China is a seismically active region located along the western boundary of the Sichuan-Yunnan Block on the eastern margin of the Qinghai-Tibetan Plateau. An earthquake with a magnitude of 6.6 (Mw) occurred in this region on February 3, 1996. The Lijiang earthquake was the largest normal-faulting event to occur along the western boundary of the Sichuan-Yunnan Block in the last 40 years. In this study, we used L-band JERS-1 (Japanese Earth Resources Satellite-1) SAR data sets from two descending orbits to detect surface deformation signals surrounding the epicentral region in order to estimate the source parameters through an inversion of the displacement fields. The results indicated that the earthquake can be explained by slip along two segments of the ∼N-S trending listric normal fault, named the Lijiang-Daju fault. Coseismic deformation patterns and slip distributions revealed that the earthquake consisted of two sub-events, which were also suggested by seismological results. Based on an analysis of the static Coulomb stress change, the second sub-event was likely triggered by the first sub-event. The central segment of the Lijiang-Daju fault, which has an eastward-convex geometry, did not rupture during the earthquake. This phenomenon was probably related to a geometrical discontinuity at the fault-bend area of the Lijiang-Daju fault.

  7. A-Differential Synthetic Aperture Radar Interferometry analysis of a Deep Seated Gravitational Slope Deformation occurring at Bisaccia (Italy).

    Science.gov (United States)

    Di Martire, Diego; Novellino, Alessandro; Ramondini, Massimo; Calcaterra, Domenico

    2016-04-15

    This paper presents the results of an investigation on a Deep Seated Gravitational Slope Deformation (DSGSD), previously only hypothesized by some authors, affecting Bisaccia, a small town located in Campania region, Italy. The study was conducted through the integration of conventional methods (geological-geomorphological field survey, air-photo interpretation) and an Advanced-Differential Interferometry Synthetic Aperture Radar (A-DInSAR) technique. The DSGSD involves a brittle lithotype (conglomerates of the Ariano Irpino Supersynthem) resting over a Structurally Complex Formation (Varycoloured Clays of Calaggio Formation). At Bisaccia, probably as a consequence of post-cyclic recompression phenomena triggered by reiterated seismic actions, the rigid plate made up of conglomeratic sediments resulted to be split in five portions, showing different rates of displacements, whose deformations are in the order of some centimeter/year, thus inducing severe damage to the urban settlement. A-DInSAR techniques confirmed to be a reliable tool in monitoring slow-moving landslides. In this case 96 ENVIronmental SATellite-Advanced Synthetic Aperture Radar (ENVISAT-ASAR) images, in ascending and descending orbits, have been processed using SUBSOFT software, developed by the Remote Sensing Laboratory (RSLab) group from the Universitat Politècnica de Catalunya (UPC). The DInSAR results, coupled with field survey, supported the analysis of the instability mechanism and confirmed the historical record of the movements already available for the town.

  8. The interferometry technics applied on residual subsidence analysis measurement of closure coal mines, example from Nord-Pas-de Calais coal mine, France

    OpenAIRE

    Gueguen, Yann; AL HEIB, Marwan; Deffontaines, Benoît; Fruneau, Bénédicte; De Michele, Marcello; Raucoules, Daniel; Guise, Yves

    2008-01-01

    International audience; This paper describes the residual movements associated with deep coalmines (France). The Nord-Pas-de Calais basin has been monitored since 10 years by traditional method. The interferometry technics are applied on Nord-Pas-de-Calais coal basin. In this study, both differential SAR Interferometry (DINSAR) and Persistent Scaterrers Interferometry (PSI) are used to estimate the induced deformations during 12 years (1992 to 2004) after the end of exploitation. 88 images of...

  9. Application of SAR Imagery in Submarine Topography Surveys

    Institute of Scientific and Technical Information of China (English)

    张宁川; 梁开龙; 桂力民

    2004-01-01

    An important research area in oceanographic surveying and mapping is to obtain submarine topography by remote sensing technique, especially by SAR imagery. In this article, problems related to SAR imagery are analyzed to provide references for the further research.

  10. Extracting DEM from airborne X-band data based on PolInSAR

    Science.gov (United States)

    Hou, X. X.; Huang, G. M.; Zhao, Z.

    2015-06-01

    Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) is a new trend of SAR remote sensing technology which combined polarized multichannel information and Interferometric information. It is of great significance for extracting DEM in some regions with low precision of DEM such as vegetation coverage area and building concentrated area. In this paper we describe our experiments with high-resolution X-band full Polarimetric SAR data acquired by a dual-baseline interferometric airborne SAR system over an area of Danling in southern China. Pauli algorithm is used to generate the double polarimetric interferometry data, Singular Value Decomposition (SVD), Numerical Radius (NR) and Phase diversity (PD) methods are used to generate the full polarimetric interferometry data. Then we can make use of the polarimetric interferometric information to extract DEM with processing of pre filtering , image registration, image resampling, coherence optimization, multilook processing, flat-earth removal, interferogram filtering, phase unwrapping, parameter calibration, height derivation and geo-coding. The processing system named SARPlore has been exploited based on VC++ led by Chinese Academy of Surveying and Mapping. Finally compared optimization results with the single polarimetric interferometry, it has been observed that optimization ways can reduce the interferometric noise and the phase unwrapping residuals, and improve the precision of DEM. The result of full polarimetric interferometry is better than double polarimetric interferometry. Meanwhile, in different terrain, the result of full polarimetric interferometry will have a different degree of increase.

  11. Holographic interferometry in construction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hartikainen, T.

    1995-12-31

    In this work techniques for visualizing phase and opaque objects by ruby laser interferometry are introduced. A leakage flow as a phase object is studied by holographic interferometry and the intensity distribution of the interferograms presenting the leakage flow are computer-simulated. A qualitative and quantitative analysis of the leakage flow is made. The analysis is based on the experimental and theoretical results presented in this work. The holographic setup and the double pass method for visualizing leakage flow are explained. A vibrating iron plate is the opaque object. Transient impact waves are generated by a pistol bullet on the iron plate and visualized by holographic interferometry. An apparatus with the capability of detecting and calculating the delays necessary for laser triggering is introduced. A time series of interferograms presenting elastic wave formation in an iron plate is shown. A computer-simulation of the intensity distributions of these interferograms is made. An analysis based on the computer-simulation and the experimental data of the transient elastic wave is carried out and the results are presented. (author)

  12. A Novel Technique Based on the Combination of Labeled Co-Occurrence Matrix and Variogram for the Detection of Built-up Areas in High-Resolution SAR Images

    Directory of Open Access Journals (Sweden)

    Na Li

    2014-04-01

    Full Text Available Interests in synthetic aperture radar (SAR data analysis is driven by the constantly increased spatial resolutions of the acquired images, where the geometries of scene objects can be better defined than in lower resolution data. This paper addresses the problem of the built-up areas extraction in high-resolution (HR SAR images, which can provide a wealth of information to characterize urban environments. Strong backscattering behavior is one of the distinct characteristics of built-up areas in a SAR image. However, in practical applications, only a small portion of pixels characterizing the built-up areas appears bright. Thus, specific texture measures should be considered for identifying these areas. This paper presents a novel texture measure by combining the proposed labeled co-occurrence matrix technique with the specific spatial variability structure of the considered land-cover type in the fuzzy set theory. The spatial variability is analyzed by means of variogram, which reflects the spatial correlation or non-similarity associated with a particular terrain surface. The derived parameters from the variograms are used to establish fuzzy functions to characterize the built-up class and non built-up class, separately. The proposed technique was tested on TerraSAR-X images acquired of Nanjing (China and Barcelona (Spain, and on a COSMO-SkyMed image acquired of Hangzhou (China. The obtained classification accuracies point out the effectiveness of the proposed technique in identifying and detecting built-up areas.

  13. Advanced interpretation of subsidence in Murcia (SE Spain using A-DInSAR data – modelling and validation

    Directory of Open Access Journals (Sweden)

    G. Herrera

    2009-05-01

    Full Text Available Subsidence is a natural hazard that affects wide areas in the world causing important economic costs annually. This phenomenon has occurred in the metropolitan area of Murcia City (SE Spain as a result of groundwater overexploitation. In this work aquifer system subsidence is investigated using an advanced differential SAR interferometry remote sensing technique (A-DInSAR called Stable Point Network (SPN. The SPN derived displacement results, mainly the velocity displacement maps and the time series of the displacement, reveal that in the period 2004–2008 the rate of subsidence in Murcia metropolitan area doubled with respect to the previous period from 1995 to 2005. The acceleration of the deformation phenomenon is explained by the drought period started in 2006. The comparison of the temporal evolution of the displacements measured with the extensometers and the SPN technique shows an average absolute error of 3.9±3.8 mm. Finally, results from a finite element model developed to simulate the recorded time history subsidence from known water table height changes compares well with the SPN displacement time series estimations. This result demonstrates the potential of A-DInSAR techniques to validate subsidence prediction models as an alternative to using instrumental ground based techniques for validation.

  14. Optical Intensity Interferometry through Atmospheric Turbulence

    CERN Document Server

    Tan, Peng Kian; Kurtsiefer, Christian

    2015-01-01

    Conventional ground-based astronomical observations suffer from image distortion due to atmospheric turbulence. This can be minimized by choosing suitable geographic locations or adaptive optical techniques, and avoided altogether by using orbital platforms outside the atmosphere. One of the promises of optical intensity interferometry is its independence from atmospherically induced phase fluctuations. By performing narrowband spectral filtering on sunlight and conducting temporal intensity interferometry using actively quenched avalanche photon detectors (APDs), the Solar $g^{(2)}(\\tau)$ signature was directly measured. We observe an averaged photon bunching signal of $g^{(2)}(\\tau) = 1.693 \\pm 0.003$ from the Sun, consistently throughout the day despite fluctuating weather conditions, cloud cover and elevation angle. This demonstrates the robustness of the intensity interferometry technique against atmospheric turbulence and opto-mechanical instabilities, and the feasibility to implement measurement scheme...

  15. Optical intensity interferometry through atmospheric turbulence

    Science.gov (United States)

    Tan, P. K.; Chan, A. H.; Kurtsiefer, C.

    2016-04-01

    Conventional ground-based astronomical observations suffer from image distortion due to atmospheric turbulence. This can be minimized by choosing suitable geographic locations or adaptive optical techniques, and avoided altogether by using orbital platforms outside the atmosphere. One of the promises of optical intensity interferometry is its independence from atmospherically induced phase fluctuations. By performing narrow-band spectral filtering on sunlight and conducting temporal intensity interferometry using actively quenched avalanche photodiodes, the Solar g(2)(τ) signature was directly measured. We observe an averaged photon bunching signal of g(2)(τ) = 1.693 ± 0.003 from the Sun, consistently throughout the day despite fluctuating weather conditions, cloud cover and elevation angle. This demonstrates the robustness of the intensity interferometry technique against atmospheric turbulence and opto-mechanical instabilities, and the feasibility to implement measurement schemes with both large baselines and long integration times.

  16. SAR Interferometric Analysis Of Ground Deformation At Santorini Volcano (Greece)

    Science.gov (United States)

    Papageorgiou, Elena; Foumelis, Michael; Parcharidis, Issaak

    2012-01-01

    The core of the present study builds on ground deformation monitoring by SAR Interferometry at Santorini Volcanic Complex (Greece). Dataset used for this case study, include the entire archive of ERS SAR and ENVISAT ASAR data for both ascending and descending orbits covering almost two decades of observations (1992-2010). Deformation signals of millimeter-level accuracy were retrieved from both SAR and ASAR datasets, by way of the Interferometric Stacking technique. The linear rate of differential phases and the corresponding errors were estimated by averaging the unwrapped differential interferograms. Subsequently, vertical deformation rates were calculated by the combination of LOS measurements in ascending and descending acquisition geometries. The observed ground deformation shows mainly subsidence in the central part of Santorini Caldera, at Nea Kammeni Island, equal to -5.1 ±0.7 mm/yr, and -6.3 ±1.2 mm/yr for the periods 1992-2000 and 2003-2010 respectively, while both signs of movements (uplift and subsidence) of lower scale magnitude were recognized elsewhere on the volcano. In fact, higher deformation rates for the period after 2003 (ranging between -4.6 mm/yr and 5.6 mm/yr), compared to the lower values of the period 1992-2000 (from -1.7 mm/yr to 2.7 mm/yr), indicate increase in the undergoing deformation of the volcanic complex. Finally, this work presents an attempt to obtain integrated interferometric results of ground deformation from both ERS and ENVISAT sensors in order to allow future investigations on the deformation sources of the volcanic complex, which could be further exploited in the volcanic hazard and risk assessment.

  17. Exploitation of amplitude and phase of satellite SAR images for landslide mapping: the case of Montescaglioso (South Italy)

    Science.gov (United States)

    Raspini, Federico; Ciampalini, Andrea; Lombardi, Luca; Nocentini, Massimiliano; Gigli, Giovanni; Casagli, Nicola; Del Conte, Sara; Ferretti, Alessandro

    2016-04-01

    Pre- event and event landslide deformations have been detected and measured for the landslide that occurred on 3 December 2013 on the south-western slope of the Montescaglioso village (Basilicata Region, southern Italy). The event, triggered by prolonged rainfalls, created significant damage to buildings and local infrastructures. Ground displacements have been mapped through an integrated analysis based on a series of high resolution SAR (Synthetic Aperture Radar) images acquired by the Italian constellation of satellites COSMO-SkyMed. Analysis has been performed by exploiting both phase (through multi-image SAR interferometry) and amplitude information (through speckle tracking techniques) of the satellite images. SAR Interferometry, applied to images taken before the event, revealed a general pre-event movement, in the order of a few mm/yr, in the south-western slope of the Montescaglioso village. Highest pre-event velocities, ranging between 8 and 12 mm/yr, have been recorded in the sector of the slope where the first movement of the landslide took place. Speckle tracking, applied to images acquired before and after the event, allowed the retrieval of the 3D deformation field produced by the landslide. It also showed that ground displacements produced by the landslide have a dominant SSW component, with values exceeding 10 m for large sectors of the landslide area, with local peaks of 20 m in its central and deposit areas. Two minor landslides with a dominant SSE direction, which were detected in the upper parts of the slope, likely also occurred as secondary phenomena as consequence of the SSW movement of the main Montescaglioso landslide. This work demonstrates that this complementary approach, based on the synergistic exploitation of phase and amplitude SAR data, can become a powerful tool for landslide investigation, allowing the detection of slow, precursory deformation patterns as well the retrieval of full 3D surface displacement fields caused by large

  18. A prototype of an automated high resolution InSAR volcano-monitoring system in the MED-SUV project

    Science.gov (United States)

    Chowdhury, Tanvir A.; Minet, Christian; Fritz, Thomas

    2016-04-01

    Volcanic processes which produce a variety of geological and hydrological hazards are difficult to predict and capable of triggering natural disasters on regional to global scales. Therefore it is important to monitor volcano continuously and with a high spatial and temporal sampling rate. The monitoring of active volcanoes requires the reliable measurement of surface deformation before, during and after volcanic activities and it helps for the better understanding and modelling of the involved geophysical processes. Space-borne synthetic aperture radar (SAR) interferometry (InSAR), persistent scatterer interferometry (PSI) and small baseline subset algorithm (SBAS) provide a powerful tool for observing the eruptive activities and measuring the surface changes of millimetre accuracy. All the mentioned techniques with deformation time series extraction address the challenges by exploiting medium to large SAR image stacks. The process of selecting, ordering, downloading, storing, logging, extracting and preparing the data for processing is very time consuming has to be done manually for every single data-stack. In many cases it is even an iterative process which has to be done regularly and continuously. Therefore, data processing becomes slow which causes significant delays in data delivery. The SAR Satellite based High Resolution Data Acquisition System, which will be developed at DLR, will automate this entire time consuming tasks and allows an operational volcano monitoring system. Every 24 hours the system runs for searching new acquired scene over the volcanoes and keeps track of the data orders, log the status and download the provided data via ftp-transfer including E-Mail alert. Furthermore, the system will deliver specified reports and maps to a database for review and use by specialists. The user interaction will be minimized and iterative processes will be totally avoided. In this presentation, a prototype of SAR Satellite based High Resolution Data

  19. Integrated SAR Technologies for Monitoring the Stability of Mine Sites: Application Using Terrasar-X and RADARSAT-2 Images

    Science.gov (United States)

    Rheault, M.; Bouroubi, Y.; Sarago, V.; Nguyen-Xuan, P. T.; Bugnet, P.; Gosselin, C.; Benoit, M.

    2015-04-01

    The last three decades have seen significant mining development in the northern regions of Canada, where the freeze and thaw cycle of permafrost and corresponding surface subsidence and heave represent a significant challenge at all mining stages, from the design of infrastructures to the monitoring of restored areas. Over the past ten years, SAR interferometry has been widely used to monitor ground surface deformation. With this technique, changes in phase between two SAR acquisitions are used to detect centimetre to millimetre surface displacements over a large area with high spatial resolution. This paper presents the results of a project that aims to develop a SAR solution to provide useful information for environmental monitoring and assessing the stability of mining sites. RADARSAT-2 and TerraSAR-X images acquired during the summer of 2014 were used to measure the displacements of ground surface, infrastructures and stockpiles caused by seasonal changes in permafrost extent. The study area is an open-pit mine located in Nunavut, northern Canada, in the continuous permafrost zone. Results shown that surface displacements calculated from RADARSAT-2 and TerraSAR-X are very similar and in agreement with scientific and terrain knowledge. Significant displacements were observed in loose soil areas while none was detected in bedrock and rock outcrop areas. The areas most affected by active layer changes showed surface subsidence during the thaw settlement period. Thus, InSAR can be used as a tool to guide the siting and design of new infrastructure as well as highlighting risks in areas of unstable terrain.

  20. Combination of Conventional and Advanced DInSAR to Monitor Very Fast Mining Subsidence with TerraSAR-X Data: Bytom City (Poland

    Directory of Open Access Journals (Sweden)

    Maria Przyłucka

    2015-04-01

    Full Text Available In this work, the analysis of TerraSAR-X satellite images combining both conventional and advanced Differential Synthetic Aperture Radar Interferometry (DInSAR approaches has proven to be effective to detect and monitor fast evolving mining subsidence on urban areas in the Upper Silesian Coal Basin (Poland. This region accounts for almost three million inhabitants where mining subsidence has produced severe damage to urban structures and infrastructures in recent years. Conventional DInSAR approach was used to generate 28 differential interferograms between 5 July 2011 and 21 June 2012 identifying 31 subsidence troughs that account up to 245 mm of displacement in 54 days (equivalent to 1660 mm/year. SqueeSARTM processing yielded a very dense measurement point distribution, failing to detect faster displacements than 330 mm/year, which occur within the subsidence troughs detected with conventional DInSAR. Despite this limitation, this approach was useful to delimit stable areas where mining activities are not conducted and areas affected by residual subsidence surrounding the detected subsidence troughs. These residual subsidence mining areas are located approximately 1 km away from the 31 detected subsidence troughs and account for a subsidence rate greater than 17 mm/year on average. The validation of this methodology has been performed over Bytom City were underground mining activity produced severe damages in August 2011. Conventional DInSAR permitted to successfully map subsidence troughs between July and August 2011 that coincide spatially and temporally with the evolution of underground mining excavations, as well as with the demolition of 28 buildings of Karb district. Additionally, SqueeSARTM displacement estimates were useful to delimit an area of 8.3 km2 of Bytom city that is affected by a residual mining subsidence greater than 5 mm/year and could potentially suffer damages in the midterm. The comparison between geodetic data and

  1. Enhanced SAR data processing for land instability forecast.

    Science.gov (United States)

    Argentiero, Ilenia; Pellicani, Roberta; Spilotro, Giuseppe; Parisi, Alessandro; Bovenga, Fabio; Pasquariello, Guido; Refice, Alberto; Nutricato, Raffaele; Nitti, Davide Oscar; Chiaradia, Maria Teresa

    2017-04-01

    Monitoring represents the main tool for carrying out evaluation procedures and criteria for spatial and temporal landslide forecast. The forecast of landslide behaviour depends on the possibility to identify either evidences of activity (displacement, velocity, volume of unstable mass, direction of displacement, and their temporal variation) or triggering parameters (rainfalls). Generally, traditional geotechnical landslide monitoring technologies permit to define, if correctly positioned and with adequate accuracy, the critical value of displacement and/or acceleration into landslide body. In most cases, they do not allow real time warning signs to be generated, due to environmental induced errors, and the information is related to few points on unstable area. Remote-sensing monitoring instruments are capable of inspecting an unstable slope with high spatial and temporal frequency, but allow solely measurements of superficial displacements and deformations. Among these latest technologies, the satellite Persistent Scatterer SAR Interferometry (PSInSAR) is very useful to investigate the unstable area both in terms of space and time. Indeed, this technique allows to analyse wide areas, individuate critical unstable areas, not identifiable by means detailed in situ surveys, and study the phenomenon evolution in a long time-scale. Although this technique usually adopts, as first approximation, a linear model to describe the displacement of the detected targets, also non-linear models can be used. However, the satellite revisit time, which defines the time sampling of the detected displacement signal, limits the maximum measurable velocity and acceleration. This makes it difficult to assess in the short time any acceleration indicating a loss of equilibrium and, therefore, a probable reactivation of the landslide. The recent Sentinel-1 mission from the European Space Agency (ESA), provides a spatial resolution comparable to the previous ESA missions, but a nominal

  2. Active Satellite Sensors for the needs of Cultural Heritage: Introducing SAR applications in Cyprus through ATHENA project

    Science.gov (United States)

    Kouhartsiouk, Demetris; Agapiou, Athos; Lynsadrou, Vasiliki; Themistocleous, Kyriacos; Nisantzi, Argyro; Hadjimitsis, Diofantos G.; Lasaponara, Rosa; Masini, Nicola; Brcic, Ramon; Eineder, Michael; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter

    2017-04-01

    Non-invasive landscape investigation for archaeological purposes includes a wide range of survey techniques, most of which include in-situ methods. In the recent years, a major advance in the non-invasive surveying techniques has been the introduction of active remote sensing technologies. One of such technologies is spaceborne radar, known as Synthetic Aperture Radar (SAR). SAR has proven to be a valuable tool in the analysis of potential archaeological marks and in the systematic cultural heritage site monitoring. With the use of SAR, it is possible to monitor slight variations in vegetation and soil often interpreted as archaeological signs, while radar sensors frequently having penetrating capabilities offering an insight into shallow underground remains. Radar remote sensing for immovable cultural heritage and archaeological applications has been recently introduced to Cyprus through the currently ongoing ATHENA project. ATHENA project, under the Horizon 2020 programme, aims at building a bridge between research institutions of the low performing Member States and internationally-leading counterparts at EU level, mainly through training workshops and a series of knowledge transfer activities, frequently taking place on the basis of capacity development. The project is formed as the consortium of the Remote Sensing and Geo-Environment Research Laboratory of the Cyprus University of Technology (CUT), the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR). As part of the project, a number of cultural heritage sites in Cyprus have been studied testing different methodologies involving SAR imagery such as Amplitude Change Detection, Coherence Calculation and fusion techniques. The ATHENA's prospective agenda includes the continuation of the capacity building programme with upcoming training workshops to take place while expanding the knowledge of radar applications on conservation and risk monitoring of cultural heritage sites through

  3. Extreme ultraviolet interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A. [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-12-01

    EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical dimension and smaller. In order to achieve diffraction-limited performance, all-reflective multilayer-coated lithographic imaging systems operating near 13-nm wavelength and 0.1 NA have system wavefront tolerances of 0.27 nm, or 0.02 waves RMS. Owing to the highly-sensitive resonant reflective properties of multilayer mirrors and extraordinarily tight tolerances set forth for their fabrication, EUV optical systems require at-wavelength EUV interferometry for final alignment and qualification. This dissertation discusses the development and successful implementation of high-accuracy EUV interferometric techniques. Proof-of-principle experiments with a prototype EUV point-diffraction interferometer for the measurement of Fresnel zoneplate lenses first demonstrated sub-wavelength EUV interferometric capability. These experiments spurred the development of the superior phase-shifting point-diffraction interferometer (PS/PDI), which has been implemented for the testing of an all-reflective lithographic-quality EUV optical system. Both systems rely on pinhole diffraction to produce spherical reference wavefronts in a common-path geometry. Extensive experiments demonstrate EUV wavefront-measuring precision beyond 0.02 waves RMS. EUV imaging experiments provide verification of the high-accuracy of the point-diffraction principle, and demonstrate the utility of the measurements in successfully predicting imaging performance. Complementary to the experimental research, several areas of theoretical investigation related to the novel PS/PDI system are presented. First-principles electromagnetic field simulations of pinhole diffraction are conducted to ascertain the upper limits of measurement accuracy and to guide selection of the pinhole diameter. Investigations of the relative merits of different PS/PDI configurations accompany a general study of the most significant sources

  4. InSAR imagery pattern matching validation for landslide assessment

    Science.gov (United States)

    Serbulea, Manole-Stelian; Gogu, Radu; Teleaga, Delia; Marcel Manoli, Daniel; Priceputu, Adrian; Gaitanaru, Dragos Stefan; Ungureanu, Constantin; Anghel, Alexandra; Andronic, Adrian; Niculescu, Alexandru; Liviu Bugea, Adrian

    2013-04-01

    The need for identifying over large areas ongoing instability phenomena and spotting the old ones pushed the boundaries of geotechnical engineering from numerical modeling and point-wise in-situ measurements towards geodesic and geographic sciences. Regardless of the ground-based monitoring techniques' precision and reliability, a larger scale monitoring is often useful to either better correlate the scattered results or to identify additional monitoring points. Using aerial ortho-photogrammetry and site visit recognition represent a good, yet costly method to obtain qualitative information about old inactive landslides. A more suitable approach is using ground-based or satellite radar interferometry (InSAR). The obvious disadvantage of the ground-based system is that the monitoring has to be carried out on a predetermined site while the space-borne system may be set to collect information from various sites in range by each successive passing. The quantitative results acquired through the means of InSAR provide a precise set of information regarding the soil surface displacement, with high accuracy and reliability. They provide a great means of identifying danger zones as well as a way of calibrating and augmenting the classical monitoring techniques. This work describes the possibility of integrating the InSAR measurements with the ground monitoring techniques to identify landslide occurrence hazard and reveal the whole of affected areas even when minute symptoms develop. One of the objectives is to propose InSAR monitoring as a fast and efficient mapping tool to help authorities minimize the damage produced by landslides. It can also provide engineers and scientists additional information to further study landslides dynamics phenomena (such as propagation). Interferometry on SAR data uses phase values from two radar images. When a point changes position, the distance between it and the sensor alters, modifying the phase of the signal. This change is used to

  5. Application of InSAR and GIS techniques to ground subsidence assessment in the Nobi Plain, Central Japan

    National Research Council Canada - National Science Library

    Zheng, Minxue; Fukuyama, Kaoru; Sanga-Ngoie, Kazadi

    Spatial variation and temporal changes in ground subsidence over the Nobi Plain, Central Japan, are assessed using GIS techniques and ground level measurements data taken over this area since the 1970s...

  6. Terrain Measurement with SAR/InSAR

    Science.gov (United States)

    Li, Deren; Liao, Mingsheng; Balz, Timo; Zhang, Lu; Yang, Tianliang

    2016-08-01

    Terrain measurement and surface motion estimation are the most important applications for commercial and scientific SAR missions. In Dragon-3, we worked on these applications, especially regarding DEM generation, surface motion estimation with SAR time- series for urban subsidence monitoring and landslide motion estimation, as well as developing tomographic SAR processing methods in urban areas.

  7. Monitoring dam structural health from space: Insights from novel InSAR techniques and multi-parametric modeling applied to the Pertusillo dam Basilicata, Italy

    Science.gov (United States)

    Milillo, Pietro; Perissin, Daniele; Salzer, Jacqueline T.; Lundgren, Paul; Lacava, Giusy; Milillo, Giovanni; Serio, Carmine

    2016-10-01

    The availability of new constellations of synthetic aperture radar (SAR) sensors is leading to important advances in infrastructure monitoring. These constellations offer the advantage of reduced revisit times, providing low-latency data that enable analysis that can identify infrastructure instability and dynamic deformation processes. In this paper we use COSMO-SkyMed (CSK) and TerraSAR-X (TSX) data to monitor seasonal induced deformation at the Pertusillo dam (Basilicata, Italy) using multi-temporal SAR data analysis. We analyzed 198 images spanning 2010-2015 using a coherent and incoherent PS approach to merge COSMO-SkyMed adjacent tracks and TerraSAR-X acquisitions, respectively. We used hydrostatic-seasonal-temporal (HST) and hydrostatic-temperature-temporal (HTT) models to interpret the non-linear deformation at the dam wall using ground measurements together with SAR time-series analysis. Different look geometries allowed us to characterize the horizontal deformation field typically observed at dams. Within the limits of our models and the SAR acquisition sampling we found that most of the deformation at the Pertusillo dam can be explained by taking into account only thermal seasonal dilation and hydrostatic pressure. The different models show slightly different results when interpreting the aging term at the dam wall. The results highlight how short-revisit SAR satellites in combination with models widely used in the literature for interpreting pendulum and GPS data can be used for supporting structural health monitoring and provide valuable information to ground users directly involved in field measurements.

  8. The Wide Field Imaging Interferometry Testbed

    CERN Document Server

    Zhang, X; Leisawitz, D T; Leviton, D B; Martino, A J; Mather, J C; Zhang, Xiaolei; Feinberg, Lee; Leisawitz, Dave; Leviton, Douglas B.; Martino, Anthony J.; Mather, John C.

    2001-01-01

    We are developing a Wide-Field Imaging Interferometry Testbed (WIIT) in support of design studies for NASA's future space interferometry missions, in particular the SPIRIT and SPECS far-infrared/submillimeter interferometers. WIIT operates at optical wavelengths and uses Michelson beam combination to achieve both wide-field imaging and high-resolution spectroscopy. It will be used chiefly to test the feasibility of using a large-format detector array at the image plane of the sky to obtain wide-field interferometry images through mosaicing techniques. In this setup each detector pixel records interferograms corresponding to averaging a particular pointing range on the sky as the optical path length is scanned and as the baseline separation and orientation is varied. The final image is constructed through spatial and spectral Fourier transforms of the recorded interferograms for each pixel, followed by a mosaic/joint-deconvolution procedure of all the pixels. In this manner the image within the pointing range ...

  9. Demonstration of X-ray talbot interferometry

    CERN Document Server

    Momose, A; Kawamoto, S; Hamaishi, Y; Takai, K; Suzuki, Y

    2003-01-01

    First Talbot interferometry in the hard X-ray region was demonstrated using a pair of transmission gratings made by forming gold stripes on glass plates. By aligning the gratings on the optical axis of X-rays with a separation that caused the Talbot effect by the first grating, moire fringes were produced inclining one grating slightly against the other around the optical axis. A phase object placed in front of the first grating was detected by moire-fringe bending. Using the technique of phase-shifting interferometry, the differential phase corresponding to the phase object could also be measured. This result suggests that X-ray Talbot interferometry is a novel and simple method for phase-sensitive X-ray radiography. (author)

  10. APPLICATION OF D-InSAR IN MINING SUBSIDENCE%D-InSAR技术在矿区开采沉陷监测中的应用

    Institute of Scientific and Technical Information of China (English)

    付春永; 苗小利; 冯西林

    2011-01-01

    As a new space geodetic technique, differential synthetic aperture radar interferometry (D-In-SAR) have more advantages than traditional geodetic technique such as all-weather, 24-hour continues surveying and ability to penetrate into substances on the earth. This article introduces the deformation monitoring of YAO QIAO with D-InSAR technology at the basic of explaining the principle of D-InSAR. The cause of few obvious interferometric fringes was analyzed. The precision of the observing data was then assessed compared with the ground-based leveling data, and the initial accuracy assessment is done.%合成孔径雷达差分干涉测量(D-InSAR)作为一种新型的空间测量技术,具有不受时间和空间的限制、对地物有一定的穿透性等传统测量所不可比拟的特点,作者在介绍其原理的基础上,利用差分干涉测量技术对姚桥矿区进行了变形监测,分析了不能产生明显干涉条纹的原因,并将实测水准数据和利用D-InsSAR技术得到的沉陷值相比较,进行了初步的精度评定.

  11. Post-Seismic Deformation from the 2009 Mw 6.3 Dachaidan Earthquake in the Northern Qaidam Basin Detected by Small Baseline Subset InSAR Technique

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-02-01

    Full Text Available On 28 August 2009, one thrust-faulting Mw 6.3 earthquake struck the northern Qaidam basin, China. Due to the lack of ground observations in this remote region, this study presents high-precision and high spatio-temporal resolution post-seismic deformation series with a small baseline subset InSAR technique. At the temporal scale, this changes from fast to slow with time, with a maximum uplift up to 7.4 cm along the line of sight 334 days after the event. At the spatial scale, this is more obvious at the hanging wall than that at the footwall, and decreases from the middle to both sides at the hanging wall. We then propose a method to calculate the correlation coefficient between co-seismic and post-seismic deformation by normalizing them. The correlation coefficient is found to be 0.73, indicating a similar subsurface process occurring during both phases. The results indicate that afterslip may dominate the post-seismic deformation during 19–334 days after the event, which mainly occurs with the fault geometry and depth similar to those of the c-seismic rupturing, and partly extends to the shallower and deeper depths.

  12. 数字式波束形成在星载双基和多基SAR中的优越性%Bistatic SAR and Multistatic SAR with Beamforming Technique

    Institute of Scientific and Technical Information of China (English)

    张直中

    2007-01-01

    在单一发收卫星SAR(合成孔径雷达)系统中,地面成像幅宽受天线长度限制,而载荷重量受发射条件的限制,发射大天线的SAR卫星是困难的.因此,将发和收分开成双基SAR,并在接收天线的高度上和/或方位上采用数字波束形成就有明显好处.若采用多接收卫星组合则单星SAR天线可做得很小,有利于降低成本.

  13. The InSAR Italy portal for open access to crustal deformation data

    Science.gov (United States)

    Salvi, Stefano; Tolomei, Cristiano; Pezzo, Giuseppe; Lanari, Riccardo; Pepe, Antonio; Marchetti, Pier Giorgio; Della Vecchia, Andrea; Mantovani, Simone

    2014-05-01

    InSAR Italy is a web portal devised to provide open access services to crustal deformation data measured using multitemporal SAR Interferometry techniques over the Italian territory. It is an evolution of the VELISAR initiative, promoted in 2006 by the Istituto Nazionale di Geofisica e Vulcanologia, and originally participated by IREA-CNR and TRE srl. InSAR Italy was developed tailoring the Multi-sensor Evolution Analysis (MEA) environment, an Earth Observation and geospatial data analysis tool empowered with OGC standard interfaces. The web interface allows an easy browsing of the ground deformation maps obtained for each satellite image dataset, leading to a clear picture and improved analysis of the displacement time series over single pixels or large areas. Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS) are used to access and process the maps, respectively. The crustal deformation data are provided by INGV and IREA-CNR as products of publicly-funded research projects, and are disseminated in compliance with the national legislation on the Open Data Access; metadata associated to the products are published according to the INSPIRE specifications. The information provided through InSAR Italy is mainly based on InSAR data maintained in the ESA archives, in particular from the ERS satellites for the 1992-2000 period, and ENVISAT for the period 2003-2010, however, ground velocity maps obtained from COSMO-SkyMed data will also be released in the near future. The InSAR Italy deformation maps consist of time series of ground displacement at resolution varying between 5 and 80 m, and the relative mean velocity values. The data sets can be queried and mean velocities can be recalculated over user-defined time periods, to account for possible non-linear displacement trends. The MEA spatiotemporal data analysis capability allows to investigate deformation phenomena occurring at very different spatial scales, from single buildings to entire regions

  14. CURIE: Cubesat Radio Interferometry Experiment

    Science.gov (United States)

    Sundkvist, D. J.; Saint-Hilaire, P.; Bain, H. M.; Bale, S. D.; Bonnell, J. W.; Hurford, G. J.; Maruca, B.; Martinez Oliveros, J. C.; Pulupa, M.

    2016-12-01

    The CUbesat Radio Interferometry Experiment (CURIE) is a proposed two-element radio interferometer, based on proven and developed digital radio receivers and designed to fit within a Cubesat platform. CURIE will launch as a 6U Cubesat and then separate into two 3U Cubesats once in orbit. CURIE measures radio waves from 0.1-19MHz, which must be measured from space, as those frequencies fall below the cutoff imposed by Earth's ionosphere. The principal science objective for CURIE is to use radio interferometry to study radio burst emissions from solar eruptive events such as flares and coronal mass ejections (CMEs) in the inner heliosphere, providing observations important for our understanding of the heliospheric space weather environment. The influence of space weather can be felt at Earth and other planets, as radiation levels increase and lead to auroral activity and geomagnetic effects. CURIE will be able to determine the location and size of radio burst source regions and then to track their movement outward from the Sun. In addition to the primary objective CURIE will measure the gradients of the local ionospheric density and electron temperature on the spatial scale of a few kilometers, as well as create an improved map of the radio sky at these unexplored frequencies. A space based radio interferometry observatory has long been envisioned, in orbit around the Earth or the Moon, or on the far side of the Moon. Beyond its important science objectives, CURIE will prove that the concept of a dedicated space-based interferometer can be realized by using relatively cheap Cubesats. CURIE will therefore not only provide new important science results but also serve as a pathfinder in the development of new space-based radio observation techniques for helio- and astro-physics.

  15. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    Science.gov (United States)

    Baker, John; Thorpe, Ira

    2012-01-01

    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  16. EPOSAR: an innovative service to provide EPOS community with advanced DInSAR products

    Science.gov (United States)

    Manunta, Michele; De Luca, Claudio; Elefante, Stefano; Lanari, Riccardo; Pepe, Antonio; Zinno, Ivana; Casu, Francesco

    2015-04-01

    The quantitative evaluation of ground deformation is traditionally based on in-situ surveying techniques that, through the intensive use of GPS stations, automatic total stations and levelling benchmarks, can measure up to sub-centimetre displacements. In the last decades, the extensive use of satellite remote sensing data, such as Synthetic Aperture Radar (SAR) images, has represented an important breakthrough in the context of non-invasive ground deformation analyses over large areas, thanks to their large spatial coverage and relatively short revisit time, as well as to their medium-high ground resolution. In such a context, the well-known Differential SAR Interferometry (DInSAR) technique allows us to map and measure deformation phenomena due to both natural and man-made causes with centimetre to millimetre accuracy. The Earth Science community has a wide interest in the use of DInSAR displacement maps both for crisis management and risk mitigation activities, and for surveillance, monitoring and analysis of geophysical phenomena. In areas characterized by high level of hazards the availability of routinely generated advanced DInSAR products would allow a fast analysis of their current status, providing a near real time monitoring. Similarly, an on-demand service would allow the customization of the products by selecting the area of interest, the SAR data to be processed, and other processing parameters to be set by the users to edit/correct/improve the final products. In this work we discuss the Satellite Data Thematic Core Service of EPOS and we present the EPOSAR service. In particular, the EPOSAR service, based on the well-known DInSAR approach referred to as Small Baseline Subset (SBAS), accomplishes a shared and synergic Earth Observation (EO) service aimed at designing, implementing and harmonizing efficient satellite data processing chains capable of ingesting the significantly increased data stream expected from the ESA Sentinel-1 satellites. EPOSAR

  17. L’interferometria SAR satellitare per la misura delle deformazioni superficiali

    Directory of Open Access Journals (Sweden)

    Marco Chini

    2012-04-01

    Full Text Available La tecnica interferometrica, basata  sull’elaborazione coerente della fase del ritorno del segnale radar dalla superficie terrestre, ha reso il telerilevamento radar uno strumento di analisi quantitativa in molteplici campi applicativi quali cartografia, geodesia, rischio sismico, idrogeologico e vulcanico. In particolare, l’InSAR consente di produrre mappe di spostamento co-sismico, ovvero di misurare  il campo di deformazione superficiale causato da un terremoto con accuratezze centimetriche.Satellite  SAR  interferometry  for the measurement of surface deformationThe SAR Interferometry (InSAR technique is mostly used to measure the characteristics of the topography and its  changes  during  time.  The  interferometric  technique,  based  on  the coherent elaboration of radar returns from the surface, has made the radar remote  sensing  a  valuable  tool  for a  quantitative  analysis  in  many  applicative  fields  such  as  cartography, geodesy, seismic, hydrogeologic and volcanic  hazards.  In  particular,  InSAR technique is able to measure the co-seismic  surface  deformation  caused by  an  earthquake  with  accuracies  at order of centimeters. This kind of data is extremely important for the estima-tion  of  the  geometric  parameters  of the seismic source  which is a relevant information  for  the  management  of event scenarios.In the last decade a new technique for the elaboration of the interferometric signal  arises,  the  multitemporal  SAR Interferometry. Thanks to the exploita-tion of a conspicuous number of SAR images,  it  is  possible  detecting  and monitoring the slow soil deformation with millimetric accuracies. Moreover, the recent very high resolution satellite  SAR  sensors  make  possible  to apply  this  technique  in  urban  areas in  order  to  monitor  single  structures such as bridges, buildings, roads and

  18. Study on Subsidence Monitoring Application in theH uainan Mining Area Based on D-InSAR Technique%D-InSAR技术在淮南矿区沉陷监测中的试验研究

    Institute of Scientific and Technical Information of China (English)

    张鲜妮; 王磊

    2014-01-01

    综合矿区开采沉陷特点和D-InSAR基本原理指出,当前D-InSAR矿区沉陷监测的难点为:1)不易采用同一传感器数据监测整个地表移动周期内的矿区沉陷;2)在低潜水位矿区,地表移动活跃期内最大变形梯度往往超过雷达临界探测梯度导致去相干;3)在高潜水位矿区,变形梯度大、沉陷积水区雷达回波信号弱,导致干涉测量结果不理想。因此,为了改善D-InSAR在矿区的沉陷监测中的应用效果,针对上述问题提出了相应的解决方案。最后,通过选择淮南矿区形变期内的两景数据,进行二轨差分干涉处理,获得了研究区域煤炭开采形成的地表沉降场,并分析了不可靠形变信息产生的原因。%Comprehensive characteristics of mining subsidence and the principle of D -InSAR, pointed out that the difficulty of D -InSAR subsidence monitoring in the mining area are for:1 ) it is hard to use the same sensor data for monitoring mining subsidence during the whole surface movement period;2) in the lower groundwater level , during the surface movement active period ,maximum deformation gradient often exceed radar critical detection gradient , that leads to loss of coherence;3) Mining area in high groundwater level, in addition to the deformation gradient is big problem , the situation in the subsidence water area without radar echo signal will induce the inefficiency of interferometry .In order to improve the application effect of D -InSAR in the mining area , aiming to the a-bove problem , put forward that corresponding solution .Finally by selecting two scene data covered the deformation period of in the Huainan mining area , carrying out two-track difference interference method , obtained surface subsidence field of the research area by coal mining , at the same time, analyzing the causes of the unreliable deformation information .

  19. Signal processing for FMCW SAR

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.; Ligthart, L.P.

    2007-01-01

    The combination of frequency-modulated continuous-wave (FMCW) technology and synthetic aperture radar (SAR) techniques leads to lightweight cost-effective imaging sensors of high resolution. One limiting factor to the use of FMCW sensors is the well-known presence of nonlinearities in the

  20. Comparison of Laser and Stereo Optical, SAR and InSAR Point Clouds from Air- and Space-Borne Sources in the Retrieval of Forest Inventory Attributes

    Directory of Open Access Journals (Sweden)

    Xiaowei Yu

    2015-11-01

    Full Text Available It is anticipated that many of the future forest mapping applications will be based on three-dimensional (3D point clouds. A comparison study was conducted to verify the explanatory power and information contents of several 3D remote sensing data sources on the retrieval of above ground biomass (AGB, stem volume (VOL, basal area (G, basal-area weighted mean diameter (Dg and Lorey’s mean height (Hg at the plot level, utilizing the following data: synthetic aperture radar (SAR Interferometry, SAR radargrammetry, satellite-imagery having stereo viewing capability, airborne laser scanning (ALS with various densities (0.8–6 pulses/m2 and aerial stereo imagery. Laser scanning is generally known as the primary source providing a 3D point cloud. However, photogrammetric, radargrammetric and interferometric techniques can be used to produce 3D point clouds from space- and air-borne stereo images. Such an image-based point cloud could be utilized in a similar manner as ALS providing that accurate digital terrain model is available. In this study, the performance of these data sources for providing point cloud data was evaluated with 91 sample plots that were established in Evo, southern Finland within a boreal forest zone and surveyed in 2014 for this comparison. The prediction models were built using random forests technique with features derived from each data sources as independent variables and field measurements of forest attributes as response variable. The relative root mean square errors (RMSEs varied in the ranges of 4.6% (0.97 m–13.4% (2.83 m for Hg, 11.7% (3.0 cm–20.6% (5.3 cm for Dg, 14.8% (4.0 m2/ha–25.8% (6.9 m2/ha for G, 15.9% (43.0 m3/ha–31.2% (84.2 m3/ha for VOL and 14.3% (19.2 Mg/ha–27.5% (37.0 Mg/ha for AGB, respectively, depending on the data used. Results indicate that ALS data achieved the most accurate estimates for all forest inventory attributes. For image-based 3D data, high-altitude aerial images and WorldView-2

  1. Cross-calibration of interferometric SAR data

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2003-01-01

    Generation of digital elevation models from interferometric synthetic aperture radar (SAR) data is a well established technique. Achieving a high geometric fidelity calls for a calibration accounting for inaccurate navigation data and system parameters as well as system imperfections. Fully...

  2. EMISAR: A Dual-frequency, Polarimetric Airborne SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Christensen, Erik Lintz

    2002-01-01

    EMISAR is a fully polarimetric, dual frequency (L- and C-band) SAR system designed for remote sensing applications. The data are usually processed to 2×2 m resolution. The system has the capability of C-band cross-track single-pass interferometry and fully polarimetric repeat-pass interferometry....... The SAR is operated at high altitudes on a Gulfstream G-3 jet aircraft. The system is very well calibrated and has low sidelobes and low cross-polar contamination. Digital technology has been utilized to realize a flexible and highly stable radar with variable resolution, swath width, and imaging geometry....... Thermal control and several calibration loops have been built into the system to ensure system stability and absolute calibration. Accurately measured antenna gains and radiation patterns are included in the calibration. The processing system is developed to support data calibration, which is the key...

  3. Mapping Two-Dimensional Deformation Field Time-Series of Large Slope by Coupling DInSAR-SBAS with MAI-SBAS

    Directory of Open Access Journals (Sweden)

    Liming He

    2015-09-01

    Full Text Available Mapping deformation field time-series, including vertical and horizontal motions, is vital for landslide monitoring and slope safety assessment. However, the conventional differential synthetic aperture radar interferometry (DInSAR technique can only detect the displacement component in the satellite-to-ground direction, i.e., line-of-sight (LOS direction displacement. To overcome this constraint, a new method was developed to obtain the displacement field time series of a slope by coupling DInSAR based small baseline subset approach (DInSAR-SBAS with multiple-aperture InSAR (MAI based small baseline subset approach (MAI-SBAS. This novel method has been applied to a set of 11 observations from the phased array type L-band synthetic aperture radar (PALSAR sensor onboard the advanced land observing satellite (ALOS, spanning from 2007 to 2011, of two large-scale north–south slopes of the largest Asian open-pit mine in the Northeast of China. The retrieved displacement time series showed that the proposed method can detect and measure the large displacements that occurred along the north–south direction, and the gradually changing two-dimensional displacement fields. Moreover, we verified this new method by comparing the displacement results to global positioning system (GPS measurements.

  4. Fully exploitation of SBAS-DInSAR deformation time series for assessing structural damage: the case study of Rome, Italy

    Science.gov (United States)

    Bonano, Manuela; Arangio, Stefania; Calò, Fabiana; Di Mauro, Maria; Marsella, Maria; Manunta, Michele

    2014-05-01

    Remote sensing techniques have demonstrated to be effective tools to support natural and man-made risk mitigation activities. Among these, the Differential Synthetic Aperture Radar (SAR) Interferometry (DInSAR) technology is largely exploited in geoscience, oil and gas extraction, and landslide fields. Recently, thanks to the large availability of high resolution SAR systems (10 m or less), as well as to the development of advanced data processing techniques, DInSAR products have also started to be effectively used for applications in urban areas to detect localized displacements affecting single buildings and infrastructures. The advanced DInSAR technique referred to as Small Baseline Subset (SBAS) (Lanari et al., 2004) allows us to generate very long deformation time series, by exploiting large SAR datasets spanning up to 20 years (Bonano et al., 2012). Thanks to its capability to investigate wide areas, the SBAS-DInSAR technique is particularly suitable to remotely analyse the structural conditions of buildings located in densely urbanized zones. In this work, we fully exploit the results achieved over the city of Rome, Italy, through the well-established SBAS-DInSAR approach, aimed at performing a quantitative assessment of structural damage in urban areas affected by ground deformation (Arangio et al., 2013). More in details, we present an innovative methodology that integrates the SBAS-DInSAR measurements within an existing model, in order to assess the damage, and possibly estimate the future structural conditions, of single buildings affected by significant foundation settlements. In particular, a semi-empirical approach, based on a laminated beam model (Finno et al., 2005), is applied to investigate the damage of buildings located in the southern part of the city. The obtained results are in substantial agreement with in situ surveys, proving that the presented approach is an effective tool for the preliminary evaluation of the structural conditions in

  5. HBT Interferometry: Historical Perspective

    CERN Document Server

    Padula, S S

    2004-01-01

    I review the history of HBT interferometry, since its discovery in the mid 50's, up to the recent developments and results from BNL/RHIC experiments. I focus the discussion on the contributions to the subject given by members of our Brazilian group.

  6. Composite SAR imaging using sequential joint sparsity

    Science.gov (United States)

    Sanders, Toby; Gelb, Anne; Platte, Rodrigo B.

    2017-06-01

    This paper investigates accurate and efficient ℓ1 regularization methods for generating synthetic aperture radar (SAR) images. Although ℓ1 regularization algorithms are already employed in SAR imaging, practical and efficient implementation in terms of real time imaging remain a challenge. Here we demonstrate that fast numerical operators can be used to robustly implement ℓ1 regularization methods that are as or more efficient than traditional approaches such as back projection, while providing superior image quality. In particular, we develop a sequential joint sparsity model for composite SAR imaging which naturally combines the joint sparsity methodology with composite SAR. Our technique, which can be implemented using standard, fractional, or higher order total variation regularization, is able to reduce the effects of speckle and other noisy artifacts with little additional computational cost. Finally we show that generalizing total variation regularization to non-integer and higher orders provides improved flexibility and robustness for SAR imaging.

  7. Three-dimensional imaging using differential synthetic aperture interferometry

    Science.gov (United States)

    Zhang, Ning; Zhou, Yu; Sun, Jianfeng; Zhi, Ya'nan; Lu, Zhiyong; Xu, Qian; Sun, Zhiwei; Liu, Liren

    2014-09-01

    Synthetic aperture radar interferometry (InSAR) can gain three-dimensional topography with high spatial resolution and height accuracy using across track interferometry[1]. Conventional InSAR produce three-dimensional images from SAR data. But when the working wavelength transit from microwave to optical wave, the transmission antenna and receive antenna become very sensitive to platform vibration and beam quality[2]. Through differential receive antenna formation, we can relax the requirement of platform and laser using synthetic aperture imaging ladar (SAIL) concept[3]. Line-of-sight motion constraints are reduced by several orders of magnitude. We introduce two distinctive forms of antenna formation according to the position of interferogram. The first architecture can simplify the interferogram processing and phase extraction algorithm under time-division multiplex operation. The second architecture can process the 2D coordinate and height coordinate at the same time. Using optical diffraction theory, a systematic theory of side-looking SAIL is mathematically formulated and the necessary conditions for assuring a correct phase history are established[4]. Based on optical transformation and regulation of wavefront, a side-looking SAIL of two distinctive architectures is invented and the basic principle, systematic theory, design equations and necessary conditions are presented. It is shown that high height accuracy can be reached and the influences from atmospheric turbulence and unmodeled line-of-sight motion can be automatically compensated.

  8. Interferometry by deconvolution of multicomponent multioffset GPR data

    OpenAIRE

    Slob, E.C.

    2009-01-01

    Interferometric techniques are now well known to retrieve data between two receivers by the cross correlation of the data recorded by these receivers. Cross-correlation methods for interferometry rely mostly on the assumption that the medium is loss free and that the sources are all around the receivers. A recently developed method introduced interferometry by deconvolution that is insensitive to loss mechanisms by principle and requires sources only on one side of the receivers. In this pape...

  9. Reliable estimation of orbit errors in spaceborne SAR interferometry

    NARCIS (Netherlands)

    Bähr, H.; Hanssen, R.F.

    2012-01-01

    An approach to improve orbital state vectors by orbit error estimates derived from residual phase patterns in synthetic aperture radar interferograms is presented. For individual interferograms, an error representation by two parameters is motivated: the baseline error in cross-range and the rate of

  10. Problems and Solutions for InSAR Digital Elevation Model Generation of Mountainous Terrain

    Science.gov (United States)

    Eineder, M.

    2004-06-01

    During the last decade, the techniques to generate digital elevation models (DEM) from SAR interferometry have been demonstrated and refined to a quasi-operational status using data from the ERS tandem mission. With this experience and an improved single-pass system concept, data from the Shuttle Radar Topography Mission (SRTM) acquired in 2000 have been used to produce a global DEM with unprecedented quality. However, under the extreme viewing conditions in mountainous terrain both ERS and SRTM suffer from or even fail due to the radar specific layover and shadow effect that leaves significant areas uncovered and poses severe problems to phase unwrapping. The paper quantifies the areas leading to layover and shadow, and shows innovative ways to overcome shadow and improve phase unwrapping in general. The paper is organized in three major sections. Firstly, the problem to map slopes is addressed in a simplified statistical way. Strategies to optimize the incidence angle for single and multiple observations are proposed. Secondly, a new algorithm is presented that makes the best from shadow by actively using it to help phase unwrapping. Thirdly, an outlook on the use of deltak interferometry for phase unwrapping is given. The paper aims to improve the understanding of the mapping geometry of radar systems and the data currently available and to improve the concepts of future systems and missions.

  11. Evaluation of remote-sensing techniques to measure decadal-scale changes of Hofsjokull ice cap, Iceland

    Science.gov (United States)

    Hall, D.K.; Williams, R.S.; Barton, J.S.; Sigurdsson, O.; Smith, L.C.; Garvin, J.B.

    2000-01-01

    Dynamic surficial changes and changes in the position of the firn line and the areal extent of Hofsjökull ice cap, Iceland, were studied through analysis of a time series (1973–98) of synthetic-aperture radar (SAR) and Landsat data. A digital elevation model of Hofsjökull, which was constructed using SAR interferometry, was used to plot the SAR backscatter coefficient (σ°) vs elevation and air temperature along transects across the ice cap. Seasonal and daily σ° patterns are caused by freezing or thawing of the ice-cap surface, and abrupt changes in σ° are noted when the air temperature ranges from ∼−5° to 0°C. Late-summer 1997 σ° (SAR) and reflectance (Landsat) boundaries agree and appear to be coincident with the firn line and a SAR σ° boundary that can be seen in the January 1998 SAR image. In January 1994 through 1998, the elevation of this σ° boundary on the ice capwas quite stable, ranging from 1000 to 1300 m, while the equilibrium-line altitude, as measured on the ground, varied considerably. Thus the equilibrium line may be obscured by firn from previous years. Techniques are established to measure long-term changes in the elevation of the firn line and changes in the position of the ice margin.

  12. Applications of interferometrically derived terrain slopes: Normalization of SAR backscatter and the interferometric correlation coefficient

    Science.gov (United States)

    Werner, Charles L.; Wegmueller, Urs; Small, David L.; Rosen, Paul A.

    1994-01-01

    Terrain slopes, which can be measured with Synthetic Aperture Radar (SAR) interferometry either from a height map or from the interferometric phase gradient, were used to calculate the local incidence angle and the correct pixel area. Both are required for correct thematic interpretation of SAR data. The interferometric correlation depends on the pixel area projected on a plane perpendicular to the look vector and requires correction for slope effects. Methods for normalization of the backscatter and interferometric correlation for ERS-1 SAR are presented.

  13. Iterative supervirtual refraction interferometry

    KAUST Repository

    Al-Hagan, Ola

    2014-05-02

    In refraction tomography, the low signal-to-noise ratio (S/N) can be a major obstacle in picking the first-break arrivals at the far-offset receivers. To increase the S/N, we evaluated iterative supervirtual refraction interferometry (ISVI), which is an extension of the supervirtual refraction interferometry method. In this method, supervirtual traces are computed and then iteratively reused to generate supervirtual traces with a higher S/N. Our empirical results with both synthetic and field data revealed that ISVI can significantly boost up the S/N of far-offset traces. The drawback is that using refraction events from more than one refractor can introduce unacceptable artifacts into the final traveltime versus offset curve. This problem can be avoided by careful windowing of refraction events.

  14. Measuring Close Binary Stars with Speckle Interferometry

    Science.gov (United States)

    2014-09-01

    telescope has access to an adaptive optics system, and those telescopes utilize a prior method developed in 1970 by Antoine Labeyrie [2]. This method...23019+4220. a) b) c) 3. SPECKLE INTERFEROMETRY In 1970, Antoine Labeyrie [2] developed a technique to detect double stars that are closer than the...resulting in a simple product of cosine squared with no additive constant . The effects of a non- zero additive constant will become apparent in section 5

  15. Geocoding of AIRSAR/TOPSAR SAR Data

    Science.gov (United States)

    Holecz, Francesco; Lou, Yun-Ling; vanZyl, Jakob

    1996-01-01

    It has been demonstrated and recognized that radar interferometry is a promising method for the determination of digital elevation information and terrain slope from Synthetic Aperture Radar (SAR) data. An important application of Interferometric SAR (InSAR) data in areas with topographic variations is that the derived elevation and slope can be directly used for the absolute radiometric calibration of the amplitude SAR data as well as for scattering mechanisms analysis. On the other hand polarimetric SAR data has long been recognized as permitting a more complete inference of natural surfaces than a single channel radar system. In fact, imaging polarimetry provides the measurement of the amplitude and relative phase of all transmit and receive polarizations. On board the NASA DC-8 aircraft, NASA/JPL operates the multifrequency (P, L and C bands) multipolarimetric radar AIRSAR. The TOPSAR, a special mode of the AIRSAR system, is able to collect single-pass interferometric C- and/or L-band VV polarized data. A possible configuration of the AIRSAR/TOPSAR system is to acquire single-pass interferometric data at C-band VV polarization and polarimetric radar data at the two other lower frequencies. The advantage of this system configuration is to get digital topography information at the same time the radar data is collected. The digital elevation information can therefore be used to correctly calibrate the SAR data. This step is directly included in the new AIRSAR Integrated Processor. This processor uses a modification of the full motion compensation algorithm described by Madsen et al. (1993). However, the Digital Elevation Model (DEM) with the additional products such as local incidence angle map, and the SAR data are in a geometry which is not convenient, since especially DEMs must be referred to a specific cartographic reference system. Furthermore, geocoding of SAR data is important for multisensor and/or multitemporal purposes. In this paper, a procedure to

  16. Spontaneous Triggered Aseismic Deformation Transient in the Southernmost Tip of Active Taiwan Mountain Belt Using Geodetic and PSInSAR Techniques, 2002 - 2013

    Science.gov (United States)

    Lee, C. H.; Ching, K. E.; Giletycz, S. J.; Chang, C. P.; Chen, K. H.; Liang, C. C.

    2014-12-01

    The seismic hazard of the Hengchun fault in the southernmost tip of Taiwan has been concerned for a long time due to the discrepancy between long-term and short-term vertical motion. The long-term uplift is inferred from the dating data of the oceanic terraces across of the Hengchun fault while the short-term subsidence is derived from the geodetic data from 2002 to 2006. In this study, we therefore first adopted the GPS observations and precise leveling measurements during 2002-2013 to comprehend the kinematics of the active fault in Hengchun peninsula and its seismic hazard. Three different deformation patterns are revealed in three stages separating by the 2006 ML 7.0 Pingtung offshore earthquake and April 2010. Before the 2006 earthquake (stage 1), subsidence rate of ~2.0 mm/yr are shown across the Hengchun fault. After the 2006 event (stage 2), the subsidence rate in the western region is ~3.2 mm/yr, while the eastern region has a 2.5 mm/yr uplift rate. After April 2010 (stage 3), the western region starts to show minor uplift at the rate of 0.1 mm/yr, and the eastern region displays a 2.3 mm/yr uplift rate. With the average vertical velocity of the southern leveling route decreased by 0.6 mm/yr and the northern leveling route increased by 3.2 mm/yr, we observed a northward propagating trend of the vertical component during the December 2006 - April 2013 period. For the horizontal velocity field, azimuths of the velocity change from 275° to 270° in southwestern region after the 2006 event. After April 2010, azimuths change again from 290° to 292° in eastern region. Based on our preliminary tests, the velocity changes in three stages are not significantly contributed by the postseismic deformation associated with the 2006 Pingtung earthquake. On the contrary, the increase Coulomb stress change triggers the aseismic creep on the high angle Hengchun reverse fault. To further analyze the kinematics of this fault, we will include the PSInSAR technique and

  17. GIAnT - Generic InSAR Analysis Toolbox

    Science.gov (United States)

    Agram, P.; Jolivet, R.; Riel, B. V.; Simons, M.; Doin, M.; Lasserre, C.; Hetland, E. A.

    2012-12-01

    We present a computing framework for studying the spatio-temporal evolution of ground deformation from interferometric synthetic aperture radar (InSAR) data. Several open-source tools including Repeat Orbit Interferometry PACkage (ROI-PAC) and InSAR Scientific Computing Environment (ISCE) from NASA-JPL, and Delft Object-oriented Repeat Interferometric Software (DORIS), have enabled scientists to generate individual interferograms from raw radar data with relative ease. Numerous computational techniques and algorithms that reduce phase information from multiple interferograms to a deformation time-series have been developed and verified over the past decade. However, the sharing and direct comparison of products from multiple processing approaches has been hindered by - 1) absence of simple standards for sharing of estimated time-series products, 2) use of proprietary software tools with license restrictions and 3) the closed source nature of the exact implementation of many of these algorithms. We have developed this computing framework to address all of the above issues. We attempt to take the first steps towards creating a community software repository for InSAR time-series analysis. To date, we have implemented the short baseline subset algorithm (SBAS), NSBAS and multi-scale interferometric time-series (MInTS) in this framework and the associated source code is included in the GIAnT distribution. A number of the associated routines have been optimized for performance and scalability with large data sets. Some of the new features in our processing framework are - 1) the use of daily solutions from continuous GPS stations to correct for orbit errors, 2) the use of meteorological data sets to estimate the tropospheric delay screen and 3) a data-driven bootstrapping approach to estimate the uncertainties associated with estimated time-series products. We are currently working on incorporating tidal load corrections for individual interferograms and propagation of

  18. Satellite SAR interferometric observations of displacements associated with urban subsidence in Suzhou, Eastern China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    SAR interferometry (InSAR) has a high potential for surface displacement mapping in the range from millimeter to meter. In this paper the potential of ERS-1/2 SAR interferometry for mapping subtle land subsidence has been investigated. A time series of ERS-1/2 SAR data from February 1993 to February 2000 is collected from measurements taken in Suzhou city, Jiangsu Province, China, eight ERS-1/2 SAR images are used to create seven interferograms, and three differential interferograms are produced using the three-pass method, which clearly show the spatial extent of land subsidence. The deformation maps are validated by leveling surveys, the correlation coefficient and standard deviation between them are 0.943 and 0.1706 respectively. Based on seven benchmarks, the subsidence rates are estimated, the overall trends are in close agreement with InSAR results. The results of study show that for the mapping of land subsidence in urban environments InSAR has a strong potential due to its cost-saving, high resolution and accuracy.

  19. The Parallel SBAS-DInSAR algorithm: an effective and scalable tool for Earth's surface displacement retrieval

    Science.gov (United States)

    Zinno, Ivana; De Luca, Claudio; Elefante, Stefano; Imperatore, Pasquale; Manunta, Michele; Casu, Francesco

    2014-05-01

    Differential Synthetic Aperture Radar Interferometry (DInSAR) is an effective technique to estimate and monitor ground displacements with centimetre accuracy [1]. In the last decade, advanced DInSAR algorithms, such as the Small Baseline Subset (SBAS) [2] one that is aimed at following the temporal evolution of the ground deformation, showed to be significantly useful remote sensing tools for the geoscience communities as well as for those related to hazard monitoring and risk mitigation. DInSAR scenario is currently characterized by the large and steady increasing availability of huge SAR data archives that have a broad range of diversified features according to the characteristics of the employed sensor. Indeed, besides the old generation sensors, that include ERS, ENVISAT and RADARSAT systems, the new X-band generation constellations, such as COSMO-SkyMed and TerraSAR-X, have permitted an overall study of ground deformations with an unprecedented detail thanks to their improved spatial resolution and reduced revisit time. Furthermore, the incoming ESA Sentinel-1 SAR satellite is characterized by a global coverage acquisition strategy and 12-day revisit time and, therefore, will further contribute to improve deformation analyses and monitoring capabilities. However, in this context, the capability to process such huge SAR data archives is strongly limited by the existing DInSAR algorithms, which are not specifically designed to exploit modern high performance computational infrastructures (e.g. cluster, grid and cloud computing platforms). The goal of this paper is to present a Parallel version of the SBAS algorithm (P-SBAS) which is based on a dual-level parallelization approach and embraces combined parallel strategies [3], [4]. A detailed description of the P-SBAS algorithm will be provided together with a scalability analysis focused on studying its performances. In particular, a P-SBAS scalability analysis with respect to the number of exploited CPUs has

  20. Building Detection in SAR Imagery

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, Ryan Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koch, Mark William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moya, Mary M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Goold, Jeremy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    Current techniques for building detection in Synthetic Aperture Radar (SAR) imagery can be computationally expensive and/or enforce stringent requirements for data acquisition. The desire is to present a technique that is effective and efficient at determining an approximate building location. This approximate location can be used to extract a portion of the SAR image to then perform a more robust detection. The proposed technique assumes that for the desired image, bright lines and shadows, SAR artifact effects, are approximately labeled. These labels are enhanced and utilized to locate buildings, only if the related bright lines and shadows can be grouped. In order to find which of the bright lines and shadows are related, all of the bright lines are connected to all of the shadows. This allows the problem to be solved from a connected graph viewpoint. Where the nodes are the bright lines and shadows and the arcs are the connections between bright lines and shadows. Constraints based on angle of depression and the relationship between connected bright lines and shadows are applied to remove unrelated arcs. Once the related bright lines and shadows are grouped, their locations are combined to provide an approximate building location. Experimental results are provided showing the outcome of the technique.

  1. Validation of DEMs Derived from High Resolution SAR Data: a Case Study on Barcelona

    Science.gov (United States)

    Sefercik, U. G.; Schunert, A.; Soergel, U.; Watanabe, K.

    2012-07-01

    In recent years, Synthetic Aperture Radar (SAR) data have been widely used for scientific applications and several SAR missions were realized. The active sensor principle and the signal wavelength in the order of centimeters provide all-day and all-weather capabilities, respectively. The modern German TerraSAR-X (TSX) satellite provides high spatial resolution down to one meter. Based on such data SAR Interferometry may yield high quality digital surface models (DSMs), which includes points located on 3d objects such as vegetation, forest, and elevated man-made structures. By removing these points, digital elevation model (DEM) representing the bare ground of Earth is obtained. The primary objective of this paper is the validation of DEMs obtained from TSX SAR data covering Barcelona area, Spain, in the framework of a scientific project conducted by ISPRS Working Group VII/2 "SAR Interferometry" that aims the evaluation of DEM derived from data of modern SAR satellite sensors. Towards this purpose, a DSM was generated with 10 m grid spacing using TSX StripMap mode SAR data and converted to a DEM by filtering. The accuracy results have been presented referring the comparison with a more accurate (10 cm-1 m) digital terrain model (DTM) derived from large scale photogrammetry. The results showed that the TSX DEM is quite coherent with the topography and the accuracy is in between ±8-10 m. As another application, the persistent scatterer interferometry (PSI) was conducted using TSX data and the outcomes were compared with a 3d city model available in Google Earth, which is known to be very precise because it is based on LIDAR data. The results showed that PSI outcomes are quite coherent with reference data and the RMSZ of differences is around 2.5 m.

  2. Denoising in electronic speckle pattern interferometry fringes by the filtering method based on partial differential equations

    Science.gov (United States)

    Tang, Chen; Zhang, Fang; Yan, Haiqing; Chen, Zhanqing

    2006-04-01

    Denoising in electronic speckle pattern interferometry fringes is the key problem in electronic speckle pattern interferometry. We present the new filtering method based on partial differential equations (called PDE filtering method) to electronic speckle pattern interferometry fringes. The PDE filtering method transforms the image processing to solving the partial differential equations. We test the proposed method on experimentally obtained electronic speckle pattern interferometry fringes, and compare with traditional mean filtering and low-pass Fourier filtering methods. The experimental results show that the technique is capable of effectively removing noise. The PDE filtering method is flexible and has fast computational speed and stable results.

  3. Geometric registration and rectification of spaceborne SAR imagery

    Science.gov (United States)

    Curlander, J. C.; Pang, S. N.

    1982-01-01

    This paper describes the development of automated location and geometric rectification techniques for digitally processed synthetic aperture radar (SAR) imagery. A software package has been developed that is capable of determining the absolute location of an image pixel to within 60 m using only the spacecraft ephemeris data and the characteristics of the SAR data collection and processing system. Based on this location capability algorithms have been developed that geometrically rectify the imagery, register it to a common coordinate system and mosaic multiple frames to form extended digital SAR maps. These algorithms have been optimized using parallel processing techniques to minimize the operating time. Test results are given using Seasat SAR data.

  4. Improved techniques to utilize remotely sensed data from multi-frequency imaging radar polarimeter; Tashuha tahenha SAR data no riyoho no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Okada, K. [Sumitomo Metal Mining Co. Ltd., Osaka (Japan); Maruyama, Y. [Earth Remote Sensing Data Analysis Center, Tokyo (Japan); Tapley, I.

    1997-05-27

    It was intended to serve for establishing specifications for a next generation SAR such as PALSAR through studying methods for evaluating and utilizing the multi-frequency, multi-polarized wave SAR data. Placing an emphasis on utilization of the NASA`s AIRSAR, identification was made on backscatter amount recorded on the SAR data, terrestrial constitutional substances, patterns of the ground surface, micro-topography and such terrestrial conditions as vegetation and land utilization. Their mutual relationships were also analyzed. A noise reduction method usable on multi-band data can be applied to the AIRSAR data, and can reduce noise effectively. Images with more volume of information can be acquired from multi-band images with the same polarization wave than from multi-polarization wave images with the same band. As a result of estimating terrestrial permitivity by using the method invented by Dubois and van Zyl, most of the subject area is judged to have terrestrial substances dried at the time of having acquired the images. A colluvium rich with exposed rock regions and gravels was identified as an area having higher permitivity than the former area. Images of terrestrial roughness were divided largely into smooth flat lands, sand and gravel distributed regions, exposed rock regions, and plant distributed regions along river basins. 3 refs., 2 figs., 1 tab.

  5. Nanoscale optical interferometry with incoherent light

    Science.gov (United States)

    Li, Dongfang; Feng, Jing; Pacifici, Domenico

    2016-01-01

    Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications. PMID:26880171

  6. Optical interferometry for biology and medicine

    CERN Document Server

    Nolte, David D

    2012-01-01

    This book presents the fundamental physics of optical interferometry as applied to biophysical, biological and medical research. Interference is at the core of many types of optical detection and is a powerful probe of cellular and tissue structure in interfererence microscopy and in optical coherence tomography. It is also the root cause of speckle and other imaging artefacts that limit range and resolution. For biosensor applications, the inherent sensitivity of interferometry enables ultrasensitive detection of molecules in biological samples for medical diagnostics. In this book, emphasis is placed on the physics of light scattering, beginning with the molecular origins of refraction as light propagates through matter, and then treating the stochastic nature of random fields that ultimately dominate optical imaging in cells and tissue. The physics of partial coherence plays a central role in the text, with a focus on coherence detection techniques that allow information to be selectively detected out of ...

  7. Optical metrology techniques for dimensional stability measurements

    NARCIS (Netherlands)

    Ellis, Jonathan David

    2010-01-01

    This thesis work is optical metrology techniques to determine material stability. In addition to displacement interferometry, topics such as periodic nonlinearity, Fabry-Perot interferometry, refractometry, and laser stabilization are covered.

  8. Optical metrology techniques for dimensional stability measurements

    NARCIS (Netherlands)

    Ellis, Jonathan David

    2010-01-01

    This thesis work is optical metrology techniques to determine material stability. In addition to displacement interferometry, topics such as periodic nonlinearity, Fabry-Perot interferometry, refractometry, and laser stabilization are covered.

  9. Michelson wide-field stellar interferometry: principles and experimental verification

    NARCIS (Netherlands)

    Montilla, I.; Pereira, S.F.; Braat, J.J.M.

    2005-01-01

    A new interferometric technique for Michelson wide-field interferometry is presented that consists of a Michelson pupil-plane combination scheme in which a wide field of view can be achieved in one shot. This technique uses a stair-shaped mirror in the intermediate image plane of each telescope in t

  10. Defect detection in metals using electronic speckle pattern interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Andres Zarate, Esteban; Custodio G, Eden [Universidad Juarez Autonoma de Tabasco, DACB, Cunduacan, Tabasco, 86680 (Mexico); Trevino-Palacios, Carlos G. [Instituto Nacional de Astrofisica, Optica y Electronica, Puebla 72000 (Mexico); Rodriguez-Vera, Ramon; Puga-Soberanes, Hector J. [Centro de Investigaciones en Optica, Loma del Bosque 115, Leon (Mexico)

    2005-07-15

    We use the out-of-plane electronic speckle pattern interferometry (ESPI) technique to observe cracks and fracture defects on 6061 aluminum plates under thermal stress. The geometrical shape of the ESPI pattern confirmed the existence of defects. We were able to differentiate between cracks and fracture defects using a non-contact and non-destructive technique.

  11. Measurement of Microscopic Deformations Using Double-Exposure Holographic Interferometry and the Fourier Transform Method

    Directory of Open Access Journals (Sweden)

    Percival Almoro

    1998-12-01

    Full Text Available Microscopic deformations on the surface of a circular diaphragm were measured using double exposure holographic interferometry and Fourier transform method (FTM. The three-dimensional surface deformations were successfully visualized by applying FTM to holographic interferogram analysis. The minimum surface displacement measured was 0.317 µm. This was calibrated via the Michelson interferometry technique.

  12. Development and testing of an automated High-resolution InSAR volcano-monitoring system in the MED-SUV project

    Science.gov (United States)

    Chowdhury, Tanvir Ahmed; Minet, Christian; Fritz, Thomas; Rodriguez Gonzalez, Fernando

    2015-04-01

    Volcanic unrest which produces a variety of geological and hydrological hazards is difficult to predict. Therefore it is important to monitor volcanoes continuously. The monitoring of active volcanoes requires the reliable measurement of surface deformation before, during and after volcanic activities. Besides the improvements of the understanding of geophysical processes underlying the volcanic systems of Vesuvius/ Campi Flegrei and Mt. Etna, one of the main goals of the MED-SUV (MEDiterranean SUpersite Volcanoes) project is to design a system for automatically monitoring ground deformations over active volcanoes. Space-borne synthetic aperture radar (SAR) interferometry (InSAR), persistent scatterer interferometry (PSI) and small baseline subset algorithm (SBAS) provide powerful tools for observing the surface changes with millimeter accuracy. All the mentioned techniques address the challenges by exploiting medium to large SAR image stacks. The generation of interferometric products constitutes a major effort in terms of processing and planning. It requires a high degree of automation, robustness and quality control of the overall process. As a consequence of these requirements and constrains, the Integrated Wide Area Processor (IWAP) developed at DLR is introduced in the framework of a remote sensing task of MED-SUV project. The IWAP has been conceived and designed to optimize the processing workflow in order to minimize the processing time. Moreover, a quality control concept has been developed and integrated in the workflow. The IWAP is structured into three parts: (i) firstly, preparation of an order file containing some configuration parameters and invokes the processor; (ii) secondly, upon request from the processor, the operator performs some manual interactions by means of visual interfaces; (iii) analysis of the final product supported by extensive product visualization. This visualization supports the interpretation of the results without the need of

  13. Holographic interferometry for security and forensic applications

    Science.gov (United States)

    Ambadiyil, Sajan; R. C., Sreelekshmi; Mahadevan Pillai, V. P.; Prabhu, Radhakrishna

    2016-10-01

    Security holograms having unique 3D images are one of the tools for enhancing the security for product and personnel authentication and anti-counterfeiting. Apart from the high technology that is required, the uniqueness of a 3D object presents a significant additional threshold for the counterfeiting of such security holograms. But, due to the development of 3D printing technology, the hurdles are disabled and allow the chances of counterfeiting. In order to overcome this, holographic interferometry is effectively utilized and the object is recorded twice before and after the state of random object change. At the time of reconstruction, two signal waves generated simultaneously interfere each other, resulting in a fringe modulation. This fringe modulation in 3D image hologram with respect to the random object change is exploited to generate a rigid and unique anticounterfeit feature. Though holographic interferometry techniques are being widely used for the non-destructive evaluation, the applicability of this technology for the security and forensic activity is less exploited. This paper describes our efforts to introduce holographic interferometry in 3D image holograms for security and forensic applications.

  14. Interferometry and synthesis in radio astronomy

    CERN Document Server

    Thompson, A Richard; Swenson Jr , George W

    2017-01-01

    This book is open access under a CC BY-NC 4.0 license. The third edition of this indispensable book in radio interferometry provides extensive updates to the second edition, including results and technical advances from the past decade; discussion of arrays that now span the full range of the radio part of the electromagnetic spectrum observable from the ground, 10 MHz to 1 THz; an analysis of factors that affect array speed; and an expanded discussion of digital signal-processing techniques and of scintillation phenomena and the effects of atmospheric water vapor on image distortion, among many other topics. With its comprehensiveness and detailed exposition of all aspects of the theory and practice of radio interferometry and synthesis imaging, this book has established itself as a standard reference in the field. It begins with an overview of the basic principles of radio astronomy, a short history of the development of radio interferometry, and an elementary discussion of the operation of an interferomete...

  15. 时序干涉测量中大气垂直分层延迟校正研究%CORRECTION OF STRATIFIED ATMOSPHERE DELAY INSAR INTERFEROMETRY

    Institute of Scientific and Technical Information of China (English)

    顾兆芹; 宫辉力; 张有全; 杜钊锋; 刘欢欢; 王洒; 卢学辉

    2014-01-01

    合成孔径雷达干涉测量(InSAR)技术在提取大区域、缓慢地表形变时一个主要限制因素是大气延迟误差.传统的干涉测量方法有时很难将大气垂直分层延迟与轨道误差、形变信号分离,在有些地区残余分层延迟甚至可以达到形变幅度,容易模糊形变相位.针对这一问题,选取美国Las Vegas地区为研究区,在大气模型识别大气延迟组分特征的基础上,采用多尺度分解方法评估大气垂直分层延迟,可以有效缓解时序干涉测量中的大气垂直分层延迟.%Atmospheric delay is one of the main limiting factors for extracting groundsurface deformation with small rate over a large area with Interferometric Synthetic Aperture Radar(InSAR) technology.The delay consists of two components:the stratified component and the turbulent component.Stratified atmosphere delay can be plagued by both orbital error and deformation signal.It is difficult to separate this component by traditional interference methods.The residual error of stratified atmosphere delay sometimes could reach the range of deformation in some regions,which seriously impacts the accuracy of SAR interferometry measurement.A multi-scale decomposition technique is proposed to evaluate stratified atmosphere delay,based on recognition of atmospheric components using North America NARR model.The results demonstrate that the method can effectively reduce the stratified components in InSAR interferometric phase.

  16. Land subsidence in the Cerro Prieto Geothermal Field, 1 Baja California, Mexico, from 1994 to 2005. An integrated analysis of DInSAR, levelingand geological data.

    Energy Technology Data Exchange (ETDEWEB)

    Sarychikhina, O; Glowacka, E; Mellors, R; Vidal, F S

    2011-03-03

    Cerro Prieto is the oldest and largest Mexican geothermal field in operation and has been producing electricity since 1973. The large amount of geothermal fluids extracted to supply steam to the power plants has resulted in considerable deformation in and around the field. The deformation includes land subsidence and related ground fissuring and faulting. These phenomena have produced severe damages to infrastructure such as roads, irrigation canals and other facilities. In this paper, the technique of Differential Synthetic Aperture Radar Interferometry (DInSAR) is applied using C-band ENVISAR ASAR data acquired between 2003 and 2006 to determine the extent and amount of land subsidence in the Mexicali Valley near Cerro Prieto Geothermal Field. The DInSAR results were compared with published data from precise leveling surveys (1994- 1997 and 1997-2006) and detailed geological information in order to improve the understanding of temporal and spatial distributions of anthropogenic subsidence in the Mexicali Valley. The leveling and DInSAR data were modeled to characterize the observed deformation in terms of fluid extraction. The results confirm that the tectonic faults control the spatial extent of the observed subsidence. These faults likely act as groundwater flow barriers for aquifers and reservoirs. The shape of the subsiding area coincides with the Cerro Prieto pull-apart basin. In addition, the spatial pattern of the subsidence as well as changes in rate are highly correlated with the development of the Cerro Prieto Geothermal Field.

  17. Land subsidence in the Cerro Prieto Geothermal Field, Baja California, Mexico, from 1994 to 2005: An integrated analysis of DInSAR, leveling and geological data

    Science.gov (United States)

    Sarychikhina, Olga; Glowacka, Ewa; Mellors, Robert; Vidal, Francisco Suárez

    2011-07-01

    Cerro Prieto is the oldest and largest Mexican geothermal field in operation and has been producing electricity since 1973. The large amount of geothermal fluids extracted to supply steam to the power plants has resulted in considerable deformation in and around the field. The deformation includes land subsidence and related ground fissuring and faulting. These phenomena have produced severe damages to the local infrastructure such as roads, irrigation canals and other facilities. In this paper, the technique of Differential Synthetic Aperture Radar Interferometry (DInSAR) is applied using C-band ENVISAR ASAR data acquired between 2003 and 2006 to determine the extent and amount of land subsidence in the Mexicali Valley near Cerro Prieto Geothermal Field. The DInSAR results were compared with published data from precise leveling surveys (1994-1997 and 1997-2006) and detailed geological information in order to improve understanding of the temporal and spatial distributions of anthropogenic subsidence in the Mexicali Valley. The leveling and DInSAR data were modeled to characterize the observed deformation in terms of fluid extraction. The results confirm that the tectonic faults control the spatial extent of the observed subsidence. These faults likely act as groundwater flow barriers for aquifers and reservoirs. The shape of the subsiding area coincides with the Cerro Prieto pull-apart basin. In addition, the changes in spatial pattern and rate of the subsidence are correlated with the development of the Cerro Prieto Geothermal Field.

  18. A Synergy Method to Improve Ensemble Weather Predictions and Differential SAR Interferograms

    Science.gov (United States)

    Ulmer, Franz-Georg; Adam, Nico

    2015-11-01

    A compensation of atmospheric effects is essential for mm-sensitivity in differential interferometric synthetic aperture radar (DInSAR) techniques. Numerical weather predictions are used to compensate these disturbances allowing a reduction in the number of required radar scenes. Practically, predictions are solutions of partial differential equations which never can be precise due to model or initialisation uncertainties. In order to deal with the chaotic nature of the solutions, ensembles of predictions are computed. From a stochastic point of view, the ensemble mean is the expected prediction, if all ensemble members are equally likely. This corresponds to the typical assumption that all ensemble members are physically correct solutions of the set of partial differential equations. DInSAR allows adding to this knowledge. Observations of refractivity can now be utilised to check the likelihood of a solution and to weight the respective ensemble member to estimate a better expected prediction. The objective of the paper is to show the synergy between ensemble weather predictions and differential interferometric atmospheric correction. We demonstrate a new method first to compensate better for the atmospheric effect in DInSAR and second to estimate an improved numerical weather prediction (NWP) ensemble mean. Practically, a least squares fit of predicted atmospheric effects with respect to a differential interferogram is computed. The coefficients of this fit are interpreted as likelihoods and used as weights for the weighted ensemble mean. Finally, the derived weighted prediction has minimal expected quadratic errors which is a better solution compared to the straightforward best-fitting ensemble member. Furthermore, we propose an extension of the algorithm which avoids the systematic bias caused by deformations. It makes this technique suitable for time series analysis, e.g. persistent scatterer interferometry (PSI). We validate the algorithm using the well known

  19. DInSAR time series generation within a cloud computing environment: from ERS to Sentinel-1 scenario

    Science.gov (United States)

    Casu, Francesco; Elefante, Stefano; Imperatore, Pasquale; Lanari, Riccardo; Manunta, Michele; Zinno, Ivana; Mathot, Emmanuel; Brito, Fabrice; Farres, Jordi; Lengert, Wolfgang

    2013-04-01

    One of the techniques that will strongly benefit from the advent of the Sentinel-1 system is Differential SAR Interferometry (DInSAR), which has successfully demonstrated to be an effective tool to detect and monitor ground displacements with centimetre accuracy. The geoscience communities (volcanology, seismicity, …), as well as those related to hazard monitoring and risk mitigation, make extensively use of the DInSAR technique and they will take advantage from the huge amount of SAR data acquired by Sentinel-1. Indeed, such an information will successfully permit the generation of Earth's surface displacement maps and time series both over large areas and long time span. However, the issue of managing, processing and analysing the large Sentinel data stream is envisaged by the scientific community to be a major bottleneck, particularly during crisis phases. The emerging need of creating a common ecosystem in which data, results and processing tools are shared, is envisaged to be a successful way to address such a problem and to contribute to the information and knowledge spreading. The Supersites initiative as well as the ESA SuperSites Exploitation Platform (SSEP) and the ESA Cloud Computing Operational Pilot (CIOP) projects provide effective answers to this need and they are pushing towards the development of such an ecosystem. It is clear that all the current and existent tools for querying, processing and analysing SAR data are required to be not only updated for managing the large data stream of Sentinel-1 satellite, but also reorganized for quickly replying to the simultaneous and highly demanding user requests, mainly during emergency situations. This translates into the automatic and unsupervised processing of large amount of data as well as the availability of scalable, widely accessible and high performance computing capabilities. The cloud computing environment permits to achieve all of these objectives, particularly in case of spike and peak

  20. Scanning White light interferometry: calibration and application to roughness assesment

    DEFF Research Database (Denmark)

    Bariani, Paolo

    This report refers to an experimental investigation recently completed. The aim was to gain some knowledge of the application of white light interferometry to surface metrology. The following issues were addressed by the present work: • How a white light interferometry microscope works, what...... similarities and differences compared to laser interferometry can be identified. • What the main error sources are, and how such an instrument should be calibrated. The possibility of using calibration standards developed for other techniques was evaluated. • The technique was then applied to assessment...... of polymer replicated EDM rough topographies. The present method resulted to be not suitable for the purpose. • Based on the matured experience, some conclusions regarding the applicability of the method to some typical surface metrology problems to be investigated at nanometer-scale were drawn This work...

  1. Practical optical interferometry imaging at visible and infrared wavelengths

    CERN Document Server

    Buscher, David F

    2015-01-01

    Optical interferometry is a powerful technique to make images on angular scales hundreds of times smaller than is possible with the largest telescopes. This concise guide provides an introduction to the technique for graduate students and researchers who want to make interferometric observations and acts as a reference for technologists building new instruments. Starting from the principles of interference, the author covers the core concepts of interferometry, showing how the effects of the Earth's atmosphere can be overcome using closure phase, and the complete process of making an observation, from planning to image reconstruction. This rigorous approach emphasizes the use of rules-of-thumb for important parameters such as the signal-to-noise ratios, requirements for sampling the Fourier plane and predicting image quality. The handbook is supported by web resources, including the Python source code used to make many of the graphs, as well as an interferometry simulation framework, available at www.cambridg...

  2. ON THE STUDY OF THE RELATIONSHIPS BETWEEN GUANGZHOU ATMOSPHERIC ENVIRONMENT FACTORS AND THE SARS EPIDEMIC

    Institute of Scientific and Technical Information of China (English)

    FENG Ye-rong; ZHU Ke-lun; JI Zhong-ping; DU Lin; WANG An-yu; JIN Shun-ying

    2005-01-01

    Based on SARS epidemic data and the corresponding atmospheric data, we used the timescale-partitioning technique, spectrum analysis and correlation analysis to investigate the impacts of the atmospheric environmental factors on the SARS epidemic. Results showed that there were close relations between environmental factors and SARS: The daily probable cases of SARS varied in 3-5 day cycles, much the same as the atmospheric elements did. The variations of the epidemics correlated remarkably with atmospheric elements. So conclusions can be drawn that weather changes have influences on the variations of daily SARS cases. In addition, statistical results showed that cold air activities aggravated the SARS epidemic.

  3. Large-Area Landslides Monitoring Using Advanced Multi-Temporal InSAR Technique over the Giant Panda Habitat, Sichuan, China

    Directory of Open Access Journals (Sweden)

    Panpan Tang

    2015-07-01

    Full Text Available The region near Dujiangyan City and Wenchuan County, Sichuan China, including significant giant panda habitats, was severely impacted by the Wenchuan earthquake. Large-area landslides occurred and seriously threatened the lives of people and giant pandas. In this paper, we report the development of an enhanced multi-temporal interferometric synthetic aperture radar (MTInSAR methodology to monitor potential post-seismic landslides by analyzing coherent scatterers (CS and distributed scatterers (DS points extracted from multi-temporal l-band ALOS/PALSAR data in an integrated manner. Through the integration of phase optimization and mitigation of the orbit and topography-related phase errors, surface deformations in the study area were derived: the rates in the line of sight (LOS direction ranged from −7 to 1.5 cm/a. Dozens of potential landslides, distributed mainly along the Minjiang River, Longmenshan Fault, and in other the high-altitude areas were detected. These findings matched the distribution of previous landslides. InSAR-derived results demonstrated that some previous landslides were still active; many unstable slopes have developed, and there are significant probabilities of future massive failures. The impact of landslides on the giant panda habitat, however ranged from low to moderate, would continue to be a concern for conservationists for some time in the future.

  4. Surface deformation adjacent to the Hukou fault in Northwestern Taiwan detected by ENVISAT ASAR interferometry

    Science.gov (United States)

    Chang, Y.; Chang, C.

    2007-12-01

    The Taiwan Island, which is young, as revealed by its dense seismic activities and rapid surface deformation, is located at the convergent zone between Eurasia plate and Philippine Sea plate. Because of the continued northwestward movement of the Philippine Sea plate and the active extension of the Okinawa Trough, the northern part of Taiwan is now under deformation. Since the northern Taiwan is the most populated area in Taiwan, the tectonic activity and the potential geological hazard of this area is an important issue for Taiwan. In order to realize the surface deformation behavior of this area, we apply DInSAR-technique to engage this study. The Hukou fault, main focus of this study, is one of the major and active structures in northwestern Taiwan, along which some industrial parks and communities are well developed. The SAR images used in this study are all acquired from 2003 to 2007 by ENVISAT satellite, which is launched by the European Space Agency in 2002. Our preliminary interferometric results reveal that the surface deformation in the urban areas are much clear than that in mountainous and rural areas. In some areas, juxtaposed against the fault zones, clear deformation patterns are obviously observed indicates that the deformation of this area is still active. After stacking all our interferometric results, we obtain that the average slant range displacement (SRD) reaches to around 0.5 cm/yr near the fault area. Radar Interferometry can efficiently be applied to observe the land surface deformation, and further help us to interpret and predict the underground tectonics and potential natural hazard.

  5. Health Communication during SARS

    Science.gov (United States)

    Navin, Ava W.; Steele, Stefanie F.; Weld, Leisa H.; Kozarsky, Phyllis E.

    2004-01-01

    During the severe acute respiratory syndrome (SARS) outbreak, electronic media made it possible to disseminate prevention messages rapidly. The Centers for Disease Control and Prevention’s Travelers’ Health Web site was frequently visited in the first half of 2003; more than 2.6 million visits were made to travel alerts, advisories, and other SARS-related documents. PMID:15030717

  6. SARS Pathogenesis: Host Factors

    NARCIS (Netherlands)

    A. de Lang (Anna)

    2012-01-01

    textabstractWhile it is hypothesized that Sever Acute Respiratory Syndrome (SARS) in humans is caused by a disproportional immune response illustrated by inappropriate induction of inflammatory cytokines, the exact nature of the host response to SARS coronavirus (CoV) infection causing severe

  7. Non-interferometric GB-SAR measurement: application to the Vallcebre landslide (eastern Pyrenees, Spain

    Directory of Open Access Journals (Sweden)

    O. Monserrat

    2013-07-01

    Full Text Available In the last decade, ground-based interferometry has proven to be a powerful technique for continuous deformation monitoring of landslides, glaciers, volcanoes, or manmade structures, among others. However, several limitations need to be addressed in order to improve the performances of the technique, especially for long-term monitoring. These limitations include the reduction of measurable points with an increase in the period of observation, the ambiguous nature of the phase measurements, and the influence of the atmospheric phase component. In this paper, a new procedure to process the amplitude component of ground-based synthetic aperture radar (GB-SAR data acquired in discontinuous mode is compared and validated. The use of geometric features of the amplitude images combined with a matching technique will allow the estimation of the displacements over specific targets. Experimental results obtained during 19 months, in eight different campaigns carried out in the active landslide of Vallcebre (eastern Pyrenees, Spain, were analysed. During the observed period, from February 2010 to September 2011, displacements up to 80 cm were measured. The comparison with other surveying technique shows that the precision of the method is below 1 cm.

  8. Low-SAR metamaterial-inspired printed monopole antenna

    Science.gov (United States)

    Hossain, M. I.; Faruque, M. R. I.; Islam, M. T.; Ali, M. T.

    2017-01-01

    In this paper, a low-SAR metamaterial-embedded planar monopole antenna is introduced for a wireless communication system. A printed monopole antenna is designed for modern mobile, which operates in GSM, UMTS, LTE, WLAN, and Bluetooth frequency bands. A metamaterial structure is designed to use in the mobile handset with a multi-band printed monopole antenna. The finite integration technique of the CST microwave studio is used in this study. The measurement of antenna performances is taken in an anechoic chamber, and the SAR values are measured using COMOSAR system. The results indicate that metamaterial structure leads to reduce SAR without affecting antenna performance significantly. According to the measured results, the metamaterial attachment leads to reduce 87.7% peak SAR, 68.2% 1-g SAR, and 46.78% 10-g SAR compared to antenna without metamaterial.

  9. Evaluation of intrusive mechanics of the type "segmented arch" on a macerated human skull using the laser reflection technique and holographic interferometry.

    Science.gov (United States)

    Dermaut, L R; Vanden Bulcke, M M

    1986-03-01

    Twelve different systems of intrusion, based on the principle of the "segmented arch," were evaluated on a macerated human skull. The number of teeth involved in the anterior unit and the location of the application points of intrusive force were considered to be variables. Initial displacements of the anterior teeth after loading were registered by means of the laser reflection technique and double exposure holographic recordings. An attempt was made to define "this" intrusive system, achieving the most genuine intrusion (for definition, see text) without flaring of the teeth. When two central incisors were incorporated in the sectional wire, strong torque forces appeared, especially when the intrusive forces seized more distally. When four or six anterior teeth were pinned in the sectional wire, tooth movement seemed to be under better control. When the six front teeth were incorporated in the sectional wire, the center of resistance (for definition, see text) was located more to the distal side of the canines. It seemed more difficult, however, to define the center of resistance of the four incisors; it was situated approximately distal to the lateral incisors. In some of the intrusive systems, the teeth underwent independent mesial or distal rotations. This was easily observed with the laser measuring techniques used.

  10. SAR: Stroke Authorship Recognition

    KAUST Repository

    Shaheen, Sara

    2015-10-15

    Are simple strokes unique to the artist or designer who renders them? If so, can this idea be used to identify authorship or to classify artistic drawings? Also, could training methods be devised to develop particular styles? To answer these questions, we propose the Stroke Authorship Recognition (SAR) approach, a novel method that distinguishes the authorship of 2D digitized drawings. SAR converts a drawing into a histogram of stroke attributes that is discriminative of authorship. We provide extensive classification experiments on a large variety of data sets, which validate SAR\\'s ability to distinguish unique authorship of artists and designers. We also demonstrate the usefulness of SAR in several applications including the detection of fraudulent sketches, the training and monitoring of artists in learning a particular new style and the first quantitative way to measure the quality of automatic sketch synthesis tools. © 2015 The Eurographics Association and John Wiley & Sons Ltd.

  11. Testing the potential of Sentinel-1 TOPS interferometry for the detection and monitoring of landslides at local scale

    Science.gov (United States)

    Fiaschi, Simone; Mantovani, Matteo; Frigerio, Simone; Marcato, Gianluca; Pasuto, Alessandro; Floris, Mario

    2016-04-01

    The recent Sentinel-1 mission, started by ESA in April 2014, provides to the scientific community new capabilities for the continuous monitoring of the Earth. In particular, the Terrain Observation by Progressive Scans (TOPS) imaging technique used in the Interferometric Wide swath (IW) acquisition mode, allow us to acquire data over very wide areas (250 km swath) at 20m spatial resolution, with 12 days revisit time, making it suitable for ground displacement monitoring applications. With more than one year of SAR images available, it is now possible to carry out monitoring activities of slow moving phenomena such as landslides at both regional and local scales. In this work, we test the potential of Sentinel-1 InSAR for the monitoring of shallow landslides occurring in a densely vegetated area in the North-Eastern Italian Pre-Alps. The test area of about 25km2, is located in the Province of Vicenza (Veneto Region, NE Italy) and is characterized by elevations up to 700m a.s.l., low slope angles, and the outcropping of volcanic deposits (lavas, pyroclastites and ignimbrites) overlaid by eluvial and colluvial deposits. The entire area is affected by a large number of different instabilities, such as shallow soil slips, flows and rotational/translational slides that mainly occur after heavy rain. The landslides are damaging the buildings and the infrastructure, in particular the road network, causing high economic loss for the Municipality. The landslides monitoring activity is performed exploiting the available Sentinel-1 SAR images using both Small Baseline Subset (SBAS) and Persistent Scatterer (PS) techniques. Furthermore, we use the same techniques to process another SAR dataset made of 22 COSMO-SkyMed (CSK) X-band images acquired over the study area in the period March 2011 - September 2012. A first comparison of the results is performed in order to assess the landslides detection capabilities of the Sentinel-1 C-band in respect to the CSK X-band. Finally, the

  12. Bandwidth in bolometric interferometry

    CERN Document Server

    Charlassier, R; Hamilton, J -Ch; Kaplan, J; Malu, S

    2009-01-01

    Bolometric Interferometry is a technology currently under development that will be first dedicated to the detection of B-mode polarization fluctuations in the Cosmic Microwave Background. A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers in order to be competitive with imaging experiments. A crucial concern is that interferometers are presumed to be importantly affected by a spoiling effect known as bandwidth smearing. In this paper, we investigate how the bandwidth modifies the work principle of a bolometric interferometer and how it affects its sensitivity to the CMB angular power spectra. We obtain analytical expressions for the broadband visibilities measured by broadband heterodyne and bolometric interferometers. We investigate how the visibilities must be reconstructed in a broadband bolometric interferometer and show that this critically depends on hardware properties of the modulation phase shifters. Using an angular power spectrum estimator ...

  13. Decoherence Free Neutron Interferometry

    CERN Document Server

    Pushin, Dmitry A; Cory, David G

    2016-01-01

    Perfect single-crystal neutron interferometers are adversely sensitive to environmental disturbances, particularly mechanical vibrations. The sensitivity to vibrations results from the slow velocity of thermal neutrons and the long measurement time that are encountered in a typical experiment. Consequently, to achieve a good interference solutions for reducing vibration other than those normally used in optical experiments must be explored. Here we introduce a geometry for a neutron interferometer that is less sensitive to low-frequency vibrations. This design may be compared with both dynamical decoupling methods and decoherence-free subspaces that are described in quantum information processing. By removing the need for bulky vibration isolation setups, this design will make it easier to adopt neutron interferometry to a wide range of applications and increase its sensitivity.

  14. Insights Into The Dynamics Of Aeolian Volcanic Islands From DInSAR COSMO-SkyMed Observations

    Science.gov (United States)

    Solaro, Giuseppe; Castaldo, Raffaele; Casu, Francesco; De Luca, Claudio; Marsella, Maria; Pepe, Antonio; Pepe, Susi; Ruch, Joel; Sansosti, Eugenio; Scifoni, Silvia; Tizzani, Pietro; Zeni, Giovanni

    2014-05-01

    Differential Synthetic Aperture Radar Interferometry (DInSAR) is a remote sensing technique that allows investigating earth surface deformation phenomena (with centimeter to millimeter accuracy) by exploiting the round-trip phase components of Synthetic Aperture Radar (SAR) images relative to an area of interest. In particular, we refer to the Small BAseline Subsets (SBAS) technique, which relies on the use of small baseline differential SAR interferograms and on the application of the singular value decomposition (SVD) method. This technique can generate deformation velocity maps and time-series of the area of interest; moreover, it has the peculiarity to be able to work at two-scale resolution in order to investigate both spatially large deformation phenomena and localized displacements. Here we focus on the Aeolian Islands, one of the most tectonically and magmatically active zone in the Mediterranean Sea area, hosting several active volcanoes. We present preliminary results on deformation field on Lipari, Vulcano and Stromboli islands by exploiting COSMO-SkyMed (CSK) data both from ascending and descending orbits, generating time series extending from 2008 to 2013. We further combined ascending and descending data (low resolution, 20 meters) in order to separate the vertical and horizontal components of the deformation velocity. First results show that all the three islands are deforming. Lipari is principally affected by non-volcanic deformation such as gravitational instability phenomena mainly located in correspondence of coastal cliffs. On Vulcano island, we observed subsidence of the volcano La Fossa of about 4-5 cm/yr and also gravitational instability phenomena. However, the most important deformation feature is found on Stromboli along 'La Sciara del Fuoco' feature, in correspondence of lava flows. In this case, we observed subsidence of few cm/yr. By comparing InSAR results with recent structural data collected on the field at Lipari and Vulcano, we

  15. Amplitude and Phase Statistics of Multi-look SAR Complex Interferogram

    Directory of Open Access Journals (Sweden)

    Yu Anxi

    2014-11-01

    Full Text Available Amplitude and phase statistics of SAR complex interferogram are significant in the study of interferometry and polarimetry. To reduce statistical variations, multi-look processing is adopted by averaging spatially the complex interferogram. In this study, we derive and validate three kinds of probability density functions (PDFs of multi-look interferogram for different surface feature scenes. For simple homogeneous areas with the gamma distribution intensity, a concise product-form interferometry phase PDF is derived, which is equivalent to a conventional Gauss hypergeometric PDF. For complicated areas with the K and G0 distributions intensity, two new interferometry amplitude PDFs named as Gamma-K and Gamma-G are proposed, and their phase PDFs are approximately preserved. Finally three typical areas including grass, mountain, and city are picked out from a pair of RADARSAT-2 SAR images and studied. Experimental results indicate good agreement between the computed histograms and the theoretical distributions. The results obtained can be applied to the feature classification of polarisation SAR data and the estimation of decorrelation effect of interferometric SAR.Science Journal, Vol. 64, No. 6, November 2014, pp.564-570, DOI:http://dx.doi.org/10.14429/dsj.64.4747

  16. Unsupervised DInSAR processing chain for multi-scale displacement analysis

    Science.gov (United States)

    Casu, Francesco; Manunta, Michele

    2016-04-01

    Earth Observation techniques can be very helpful for the estimation of several sources of ground deformation due to their characteristics of large spatial coverage, high resolution and cost effectiveness. In this scenario, Differential Synthetic Aperture Radar Interferometry (DInSAR) is one of the most effective methodologies for its capability to generate spatially dense deformation maps at both global and local spatial scale, with centimeter to millimeter accuracy. DInSAR exploits the phase difference (interferogram) between SAR image pairs relevant to acquisitions gathered at different times, but with the same illumination geometry and from sufficiently close flight tracks, whose separation is typically referred to as baseline. Among several, the SBAS algorithm is one of the most used DInSAR approaches and it is aimed at generating displacement time series at a multi-scale level by exploiting a set of small baseline interferograms. SBAS, and generally DInSAR, has taken benefit from the large availability of spaceborne SAR data collected along years by several satellite systems, with particular regard to the European ERS and ENVISAT sensors, which have acquired SAR images worldwide during approximately 20 years. Moreover, since 2014 the new generation of Copernicus Sentinel satellites has started to acquire data with a short revisit time (12 days) and a global coverage policy, thus flooding the scientific EO community with an unprecedent amount of data. To efficiently manage such amount of data, proper processing facilities (as those coming from the emerging Cloud Computing technologies) have to be used, as well as novel algorithms aimed at their efficient exploitation have to be developed. In this work we present a set of results achieved by exploiting a recently proposed implementation of the SBAS algorithm, namely Parallel-SBAS (P-SBAS), which allows us to effectively process, in an unsupervised way and in a limited time frame, a huge number of SAR images

  17. An Approach to Persistent Scatterer Interferometry

    Directory of Open Access Journals (Sweden)

    Núria Devanthéry

    2014-07-01

    Full Text Available This paper describes a new approach to Persistent Scatterer Interferometry (PSI data processing and analysis, which is implemented in the PSI chain of the Geomatics (PSIG Division of CTTC. This approach includes three main processing blocks. In the first one, a set of correctly unwrapped and temporally ordered phases are derived, which are computed on Persistent Scatterers (PSs that cover homogeneously the area of interest. The key element of this block is given by the so-called Cousin PSs (CPSs, which are PSs characterized by a moderate spatial phase variation that ensures a correct phase unwrapping. This block makes use of flexible tools to check the consistency of phase unwrapping and guarantee a uniform CPS coverage. In the second block, the above phases are used to estimate the atmospheric phase screen. The third block is used to derive the PS deformation velocity and time series. Its key tool is a new 2+1D phase unwrapping algorithm. The procedure offers different tools to globally control the quality of the processing steps. The PSIG procedure has been successfully tested over urban, rural and vegetated areas using X-band PSI data. Its performance is illustrated using 28 TerraSAR-X StripMap images over the metropolitan area of Barcelona.

  18. Observing hourly changes in a glacier's surface with Terrestrial Radar Interferometry

    Science.gov (United States)

    Voytenko, D.; Dixon, T. H.; Osmanoglu, B.; Werner, C. L.; Howat, I. M.

    2012-12-01

    Capturing rapid changes in the surface of a glacier requires frequent observations. Terrestrial Radar Interferometry (TRI) is a new technique that relies on a portable, ground-based radar to image the terminal zones of glaciers up to 10 km from the calving front. TRI offers denser spatial sampling than GPS and higher temporal sampling than satellite SAR, making it an excellent tool to monitor fast-moving glaciers. This study focuses on developing methods to generate robust topographic and deformation maps with TRI. Breidamerkurjokull is a fast-moving glacier in southeastern Iceland with summer velocities as high as 4 m/d at the calving front. The glacier terminates at, and continuously calves icebergs into, a tidally-influenced lagoon. To better understand its dynamics, we image the glacier with the GAMMA Portable Radar Interferometer (GPRI). The GPRI is a Ku-band real-aperture radar with one transmitting and two receiving antennas. The configuration of the receiving antennas allows estimates of glacier topography with each subsequent image acquisition along with a deformation map, since the baseline between the antennas is known and fixed. We will present results that show the temporal evolution of the glacier's surface over a period of approximately one week, including volumetric ice change estimates for the imaged area.

  19. Characteristics of spatio-temporal evolution in Beijing land subsidence, 2003-2009, using PS-InSAR technology

    Science.gov (United States)

    Gu, Z.; Gong, H.; Lu, X.; Zhang, Y.; Chen, B.; Liu, H.; Wang, S.

    2013-12-01

    Two thirds of water supply in Beijing city has come from groundwater, surveyed by Beijing Institute of Hydrogeology and Engineering Geology. During the past several years, Beijing city has suffers severe groundwater decline and land subsidence, induced by continuous over-exploitation of groundwater for nearly 60 years. The maximum of subsidence has reached up to 1096mm since 60 decades, and the rates in these subsidence bowls is between 10 mm/yr to 20 mm/yr, and The cumulative subsidence greater than 300mm is up to 1300km2, which pose a great challenge to public infrastructure and mitigate hazard in Beijing municipal. Permanent Scatterers Synthetic Aperture Radar Interferometry (PS-InSAR) can quickly obtain surface deformation details with high resolution, compared to traditional leveling and extensometer techniques. In this paper we use PS-InSAR technique and 29 acquisitions by Envisat between 2003 and 2009 to monitor recent land subsidence in Beijing plain area. we studied the characteristics of spatio-temporal evolution of Beijing subsidence. The results suggests subsidence bowls have been bounded together in Beijing plain area, which covers Chaoyang, Changping, Shunyi, Tongzhou area, and the range of subsidence has a eastward trend. With conventional of emergency water resource in Changping, Huairou, Pinggu, the rates have increased from more than 10-20mm/yr to about 20-30mm/yr, 50 percent increase in subsidence bowls. What's more, the spatial and temporal distribution of deformation is not only controlled by tectonic but influenced by stress-strain behavior (elastic - plastic - viscoelastic) of aquifer systems. Keywords: Land Subsidence; PS-InSAR; Beijing; Ground fissure; Stress-strain analysis

  20. Report on ''European Radio Interferometry School 2015''

    Science.gov (United States)

    Laing, R.; Richards, A.

    2016-03-01

    The sixth European Interferometry School (ERIS2015) was held at ESO for the first time. As usual the school was aimed at graduate students and early-career postdocs, but this year the emphasis was on enhanced wide-bandwidth interferometers covering metre to submillimetre wavebands. More than 100 participants attended ERIS2015. The topics of the school are briefly described here. They covered a wide range, from an introduction to radio interferometric techniques through packages for data reduction and analysis to hands-on workshop sessions and proposal writing.

  1. Moire interferometry for vibration analysis of plates

    Science.gov (United States)

    Asundi, A.; Cheung, M. T.

    1987-12-01

    Moire interferometry is used to locate nodal regions and measure vibration amplitudes of sinusoidally vibrating square plates. The high sensitivity afforded by this technique makes possible the study of plate vibrations at high frequencies and low amplitudes. The initial pattern is modulated by the zero-order Bessel function representing the vibratory motion. The fringe (or fringes) with best contrast indicate the nodal regions, while the higher order fringes, describing loci of points vibrating with the same amplitude, have decreasing contrast which is improved by spatial filtering.

  2. Performance evaluation of SAR/GMTI algorithms

    Science.gov (United States)

    Garber, Wendy; Pierson, William; Mcginnis, Ryan; Majumder, Uttam; Minardi, Michael; Sobota, David

    2016-05-01

    There is a history and understanding of exploiting moving targets within ground moving target indicator (GMTI) data, including methods for modeling performance. However, many assumptions valid for GMTI processing are invalid for synthetic aperture radar (SAR) data. For example, traditional GMTI processing assumes targets are exo-clutter and a system that uses a GMTI waveform, i.e. low bandwidth (BW) and low pulse repetition frequency (PRF). Conversely, SAR imagery is typically formed to focus data at zero Doppler and requires high BW and high PRF. Therefore, many of the techniques used in performance estimation of GMTI systems are not valid for SAR data. However, as demonstrated by papers in the recent literature,1-11 there is interest in exploiting moving targets within SAR data. The techniques employed vary widely, including filter banks to form images at multiple Dopplers, performing smear detection, and attempting to address the issue through waveform design. The above work validates the need for moving target exploitation in SAR data, but it does not represent a theory allowing for the prediction or bounding of performance. This work develops an approach to estimate and/or bound performance for moving target exploitation specific to SAR data. Synthetic SAR data is generated across a range of sensor, environment, and target parameters to test the exploitation algorithms under specific conditions. This provides a design tool allowing radar systems to be tuned for specific moving target exploitation applications. In summary, we derive a set of rules that bound the performance of specific moving target exploitation algorithms under variable operating conditions.

  3. Multi-static MIMO along track interferometry (ATI)

    Science.gov (United States)

    Knight, Chad; Deming, Ross; Gunther, Jake

    2016-05-01

    Along-track interferometry (ATI) has the ability to generate high-quality synthetic aperture radar (SAR) images and concurrently detect and estimate the positions of ground moving target indicators (GMTI) with moderate processing requirements. This paper focuses on several different ATI system configurations, with an emphasis on low-cost configurations employing no active electronic scanned array (AESA). The objective system has two transmit phase centers and four receive phase centers and supports agile adaptive radar behavior. The advantages of multistatic, multiple input multiple output (MIMO) ATI system configurations are explored. The two transmit phase centers can employ a ping-pong configuration to provide the multistatic behavior. For example, they can toggle between an up and down linear frequency modulated (LFM) waveform every other pulse. The four receive apertures are considered in simple linear spatial configurations. Simulated examples are examined to understand the trade space and verify the expected results. Finally, actual results are collected with the Space Dynamics Laboratorys (SDL) FlexSAR system in diverse configurations. The theory, as well as the simulated and actual SAR results, are presented and discussed.

  4. InSAR elevation bias caused by penetration into uniform volumes

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2007-01-01

    SAR) biased downward. For infinitely deep uniform volumes, the elevation bias is often equated with the penetration depth, but this paper, it is shown that the two quantities generally differ. The interferometric bias is approximately equal to the two-way power-penetration depth if the latter is small......Natural media like cold-land ice, vegetation, and dry sand are subject to a substantial penetration at microwave frequencies. For such media, the synthetic aperture radar (SAR) ase center is located below the surface, and consequently, the surface elevation determined with SAR interferometry (In...... compared to the ambiguity height, but for increasing penetration depth, the bias approaches one quarter of the ambiguity height. Consequently, phase wrapping results even if the penetration depth exceeds ambiguity height. The ratio of the InSAR elevation bias to ambiguity height depends only on the ratio...

  5. Study of monitoring mining subsidence in coal mining area by D-InSAR technology

    Institute of Scientific and Technical Information of China (English)

    PEI Liang; LI Wen-jie; TAN Yang

    2008-01-01

    Along with the increasing demand for coal and the great importance attached to mine safety, gaining the information of mine surface distortion timely has already become an urgent need to guarantee the safety of mine production. D-InSAR technology is a new measure which can provide the information of surface distortion in mining areas at centi-meter level through the processing of SAR image gained from radar satellite. In addition, this technology has the advantage of monitoring large areas with no weather limit. Intro-duced the basic principle and data processing steps of D-InSAR systematically and ac-quired the differential interferometry based on case study data. The advantages of D-InSAR and it's usability in monitoring mining subsidence in coal mining areas were proved.

  6. Study of monitoring mining subsidence in coal mining area by D-InSAR technology

    Institute of Scientific and Technical Information of China (English)

    PEI Liang; LI Wen-jie; TAN Yang

    2008-01-01

    Along with the increasing demand for coal and the great importance attached to mine safety,gaining the information of mine surface distortion timely has already become an urgent need to guarantee the safety of mine production.D-InSAR technology is a new measure which can provide the information of surface distortion in mining areas at centimeter level through the processing of SAR image gained from radar satellite.In addition,this technology has the advantage of monitoring large areas with no weather limit.Introduced the basic principle and data processing steps of D-InSAR systematically and acquired the differential interferometry based on case study data.The advantages of D-InSAR and it's usability in monitoring mining subsidence in coal mining areas were proved.

  7. Analysis on Vertical Scattering Signatures in Forestry with PolInSAR

    Science.gov (United States)

    Guo, Shenglong; Li, Yang; Zhang, Jingjing; Hong, Wen

    2014-11-01

    We apply accurate topographic phase to the Freeman-Durden decomposition for polarimetric SAR interferometry (PolInSAR) data. The cross correlation matrix obtained from PolInSAR observations can be decomposed into three scattering mechanisms matrices accounting for the odd-bounce, double-bounce and volume scattering. We estimate the phase based on the Random volume over Ground (RVoG) model, and as the initial input parameter of the numerical method which is used to solve the parameters of decomposition. In addition, the modified volume scattering model introduced by Y. Yamaguchi is applied to the PolInSAR target decomposition in forest areas rather than the pure random volume scattering as proposed by Freeman-Durden to make best fit to the actual measured data. This method can accurately retrieve the magnitude associated with each mechanism and their vertical location along the vertical dimension. We test the algorithms with L- and P- band simulated data.

  8. ONERA airborne SAR facilities

    Energy Technology Data Exchange (ETDEWEB)

    Boutry, J.M. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), Chatillon (France)

    1996-11-01

    ONERA has developed and operates the RAMSES experimental SAR on board a TRANSALL C160 aircraft. This system has been designed in order to analyze the effect of various parameters, such as frequency, polarization, incidence, resolution,... in the field of air-to-ground radar applications. These applications include SAR imaging for ground radar applications. These applications include SAR imaging for various purposes such as map-matching for navigation update, battlefield surveillance, reconnaissance, treaty applications... It consists of several radar sections operating over a wide range of frequency bands (L, S, C, X, Ku, Ka, W). 7 figs., 3 tabs.

  9. Waveguide Zeeman interferometry for thin-film chemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Grace, K.M.; Shrouf, K.; Johnston, R.G.; Yang, X.; Swanson, B. [Los Alamos National Lab., NM (United States); Honkanen, S.; Ayras, P.; Peyghambarian, N. [Optical Sciences Center, Univ. of Arizona, Tucson, AZ (United States); Katila, P.; Leppihalme, M. [VTT Electronics (Finland)

    1997-10-01

    A chemical sensor is demonstrated which is based on Si{sub 3}N{sub 4} optical waveguides coated with species-selective thin films and using Zeeman interferometry as the detection technique. Relative phase change between TE and TM modes is measured. Real time and reversible response to toluene is shown with ppm level sensitivity.

  10. Interferometry by deconvolution of multicomponent multioffset GPR data

    NARCIS (Netherlands)

    Slob, E.C.

    2009-01-01

    Interferometric techniques are now well known to retrieve data between two receivers by the cross correlation of the data recorded by these receivers. Cross-correlation methods for interferometry rely mostly on the assumption that the medium is loss free and that the sources are all around the recei

  11. A Technique of Deformed Specimen Grating Replication for In-Situ Measurement of Moiré Interferometry%云纹干涉法现场测量中的变形试件栅复制技术

    Institute of Scientific and Technical Information of China (English)

    邬柱; 戴福隆

    2002-01-01

    An in-situ measurement method of moiré interferometry is investigated in this paper. In the method, deformed specimen grating is replicated during an in-situ measurement.The replicated grating containing the load induced deformation. This deformation can be extracted easily by moiré interferometry. This practical method maintains all the advantages of moité interferometry but it make moiré interferometry extended to other application fields out of optical laboratories.%本文研究了云纹干涉法的现场测量技术.该方法在现场测量过程中复制变形的试件栅.试件栅上保留了载荷引起的变形信息,通过云纹干涉法可以得到这些变形信息.该方法不但具有云纹干涉法的所有优点,并且使云纹干涉法可以在光学实验室以外场合中应用.

  12. A publication database for optical long baseline interferometry

    CERN Document Server

    Malbet, Fabien; Lawson, Peter; Taillifet, Esther; Lafrasse, Sylvain

    2010-01-01

    Optical long baseline interferometry is a technique that has generated almost 850 refereed papers to date. The targets span a large variety of objects from planetary systems to extragalactic studies and all branches of stellar physics. We have created a database hosted by the JMMC and connected to the Optical Long Baseline Interferometry Newsletter (OLBIN) web site using MySQL and a collection of XML or PHP scripts in order to store and classify these publications. Each entry is defined by its ADS bibcode, includes basic ADS informations and metadata. The metadata are specified by tags sorted in categories: interferometric facilities, instrumentation, wavelength of operation, spectral resolution, type of measurement, target type, and paper category, for example. The whole OLBIN publication list has been processed and we present how the database is organized and can be accessed. We use this tool to generate statistical plots of interest for the community in optical long baseline interferometry.

  13. The application of interferometry to optical astronomical imaging.

    Science.gov (United States)

    Baldwin, John E; Haniff, Christopher A

    2002-05-15

    In the first part of this review we survey the role optical/infrared interferometry now plays in ground-based astronomy. We discuss in turn the origins of astronomical interferometry, the motivation for its development, the techniques of its implementation, examples of its astronomical significance, and the limitations of the current generation of interferometric arrays. The second part focuses on the prospects for ground-based astronomical imaging interferometry over the near to mid-term (i.e. 10 years) at optical and near-infrared wavelengths. An assessment is made of the astronomical and technical factors which determine the optimal designs for imaging arrays. An analysis based on scientific capability, technical feasibility and cost argues for an array of large numbers of moderate-sized (2 m class) telescopes rather than one comprising a small number of much larger collectors.

  14. Residual stress measurement in silicon sheet by shadow moire interferometry

    Science.gov (United States)

    Kwon, Y.; Danyluk, S.; Bucciarelli, L.; Kalejs, J. P.

    1987-01-01

    A shadow moire interferometry technique has been developed to measure residual strain in thin silicon sheet. The curvature of a segment of sheet undergoing four-point bending is analyzed to include the applied bending moments, the in-plane residual stresses, and the 'end effect' of the sheet since it is of finite length. The technique is applied to obtain residual stress distributions for silicon sheet grown by the edge-defined film-fed growth technique.

  15. Application of InSAR to detection of localized subsidence and its effects on flood protection infrastructure in the New Orleans area

    Science.gov (United States)

    Jones, Cathleen; Blom, Ronald; Latini, Daniele

    2014-05-01

    The vulnerability of the United States Gulf of Mexico coast to inundation has received increasing attention in the years since hurricanes Katrina and Rita. Flood protection is a challenge throughout the area, but the population density and cumulative effect of historic subsidence makes it particularly difficult in the New Orleans area. Analysis of historical and continuing geodetic measurements identifies a surprising degree of complexity in subsidence (Dokka 2011), including regions that are subsiding at rates faster than those considered during planning for hurricane protection and for coastal restoration projects. Improved measurements are possible through combining traditional single point, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations for to obtain geographically dense constraints on surface deformation. The Gulf Coast environment is very challenging for InSAR techniques, especially with systems not designed for interferometry. We are applying pair-wise InSAR to longer wavelength (L-band, 24 cm) synthetic aperture radar data acquired with the airborne UAVSAR instrument (http://uavsar.jpl.nasa.gov/) to detect localized change impacting flood protection infrastructure in the New Orleans area during the period from 2009 - 2013. Because aircraft motion creates large-scale image artifacts across the scene, we focus on localized areas on and near flood protection infrastructure to identify anomalous change relative to the surrounding area indicative of subsidence, structural deformation, and/or seepage (Jones et al., 2011) to identify areas where problems exist. C-band and particularly X-band radar returns decorrelate over short time periods in rural or less urbanized areas and are more sensitive to atmospheric affects, necessitating more elaborate analysis techniques or, at least, a strict limit on the temporal baseline. The new generation of spaceborne X-band SAR acquisitions ensure relatively high frequency of

  16. Ground settlement of Chek Lap Kok Airport, Hong Kong,detected by satellite synthetic aperture radar interferometry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Satellite synthetic aperture radar (SAR) interferometry is used to investigate the slowly accumulating ground settlement at the new Chek Lap Kok Airport in Hong Kong. Most of the land occupied by the airport was reclaimed from the sea and therefore certain ground settlement in the area has been expected. A pair of ERS-2 SAR images spanning nearly a year is used in the study. The high spatial resolution (20 m× 20 m) ground settlement map derived indicates that the settlement that occurred in the area over the time period is as large as 50 mm. The SAR measurement results agree with the levelling measurements at some benchmarks in the area to well within 1 cm(rms error),and the overall correlation between the two types of results is 0.89. The paper presents some brief background of interferometric SAR, and outlines the data processing methods and results.

  17. On InSAR Ambiguity Resolution For Deformation Monitoring

    Science.gov (United States)

    Teunissen, P.

    2006-01-01

    Integer carrier phase ambiguity resolution is the key to fast and highprecision satellite positioning and navigation. It applies to a great variety of current and future models of GPS, modernized GPS and Galileo. It also applies to stacked radar interferometry for deformation monitoring, see e.g. [Hanssen, et al, 2001]. In this contribution we apply the integer least-squares' principle to the rank defect model of stacked InSAR carrier phase data. We discuss two ways of dealing with the rank defect for ambiguity resolution. One is based on the use of a priori data, the other is based on the use of an interval constraint on the deformation rate.

  18. SAR investigations of glaciers in northwestern North America

    Science.gov (United States)

    Lingle, Craig S.; Harrison, William D.

    1995-01-01

    The objective of this project was to investigate the utility of satellite synthetic aperture radar (SAR) imagery for measurement of geophysical parameters on Alaskan glaciers relevant to their mass balance and dynamics, including: (1) the positions of firn lines (late-summer snow lines); (2) surface velocities on fast-flowing (surging) glaciers, and also on slower steady-flow glaciers; and (3) the positions and changes in the positions of glacier termini. Preliminary studies of topography and glacier surface velocity with SAR interferometry have also been carried out. This project was motivated by the relationships of multi-year to decadal changes in glacier geometry to changing climate, and the probable significant contribution of Alaskan glaciers to rising sea level.

  19. InSAR Scientific Computing Environment

    Science.gov (United States)

    Gurrola, E. M.; Rosen, P. A.; Sacco, G.; Zebker, H. A.; Simons, M.; Sandwell, D. T.

    2010-12-01

    The InSAR Scientific Computing Environment (ISCE) is a software development effort in its second year within the NASA Advanced Information Systems and Technology program. The ISCE will provide a new computing environment for geodetic image processing for InSAR sensors that will enable scientists to reduce measurements directly from radar satellites and aircraft to new geophysical products without first requiring them to develop detailed expertise in radar processing methods. The environment can serve as the core of a centralized processing center to bring Level-0 raw radar data up to Level-3 data products, but is adaptable to alternative processing approaches for science users interested in new and different ways to exploit mission data. The NRC Decadal Survey-recommended DESDynI mission will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystem. The InSAR Scientific Computing Environment is planned to become a key element in processing DESDynI data into higher level data products and it is expected to enable a new class of analyses that take greater advantage of the long time and large spatial scales of these new data, than current approaches. At the core of ISCE is both legacy processing software from the JPL/Caltech ROI_PAC repeat-pass interferometry package as well as a new InSAR processing package containing more efficient and more accurate processing algorithms being developed at Stanford for this project that is based on experience gained in developing processors for missions such as SRTM and UAVSAR. Around the core InSAR processing programs we are building object-oriented wrappers to enable their incorporation into a more modern, flexible, extensible software package that is informed by modern programming methods, including rigorous componentization of processing codes, abstraction and generalization of data models, and a robust, intuitive user interface with

  20. Analysis of building deformation in landslide area using multisensor PSInSAR™ technique.

    Science.gov (United States)

    Ciampalini, Andrea; Bardi, Federica; Bianchini, Silvia; Frodella, William; Del Ventisette, Chiara; Moretti, Sandro; Casagli, Nicola

    2014-12-01

    Buildings are sensitive to movements caused by ground deformation. The mapping both of spatial and temporal distribution, and of the degree of building damages represents a useful tool in order to understand the landslide evolution, magnitude and stress distribution. The high spatial resolution of space-borne SAR interferometry can be used to monitor displacements related to building deformations. In particular, PSInSAR technique is used to map and monitor ground deformation with millimeter accuracy. The usefulness of the above mentioned methods was evaluated in San Fratello municipality (Sicily, Italy), which was historically affected by landslides: the most recent one occurred on 14th February 2010. PSInSAR data collected by ERS 1/2, ENVISAT, RADARSAT-1 were used to study the building deformation velocities before the 2010 landslide. The X-band sensors COSMO-SkyMed and TerraSAR-X were used in order to monitor the building deformation after this event. During 2013, after accurate field inspection on buildings and structures, damage assessment map of San Fratello were created and then compared to the building deformation velocity maps. The most interesting results were obtained by the comparison between the building deformation velocity map obtained through COSMO-SkyMed and the damage assessment map. This approach can be profitably used by local and Civil Protection Authorities to manage the post-event phase and evaluate the residual risks.

  1. Landau-Zener-Stueckelberg interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, S.N., E-mail: sshevchenko@ilt.kharkov.u [B.Verkin Institute for Low Temperature Physics and Engineering, Kharkov (Ukraine); RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Ashhab, S.; Nori, Franco [RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Department of Physics, The University of Michigan, Ann Arbor, MI (United States)

    2010-07-15

    A transition between energy levels at an avoided crossing is known as a Landau-Zener transition. When a two-level system (TLS) is subject to periodic driving with sufficiently large amplitude, a sequence of transitions occurs. The phase accumulated between transitions (commonly known as the Stueckelberg phase) may result in constructive or destructive interference. Accordingly, the physical observables of the system exhibit periodic dependence on the various system parameters. This phenomenon is often referred to as Landau-Zener-Stueckelberg (LZS) interferometry. Phenomena related to LZS interferometry occur in a variety of physical systems. In particular, recent experiments on LZS interferometry in superconducting TLSs (qubits) have demonstrated the potential for using this kind of interferometry as an effective tool for obtaining the parameters characterizing the TLS as well as its interaction with the control fields and with the environment. Furthermore, strong driving could allow for fast and reliable control of the quantum system. Here we review recent experimental results on LZS interferometry, and we present related theory.

  2. Grouping of Persistent Scatterers in high-resolution SAR data of urban scenes

    Science.gov (United States)

    Schunert, Alexander; Soergel, Uwe

    2012-09-01

    Persistent Scatterer Interferometry (PSI) is a technique to simultaneously estimate surface deformation and 3D structure from stacks of SAR images. It was proposed first about one decade ago to monitor preferably urban areas, where in general the highest numbers of PS are found. At that time no high-resolution satellite SAR data were available. Instead, for example, stacks of ERS imagery were used providing ground range resolution of about 25 m. In data of such kind only the strongest PS can be detected, which are usually caused by corner reflectors built by orthogonal building and road planes of considerable size, whereas smaller structures causing weaker ones signal are averaged by clutter or mutually interfere with others in the same resolution cell. Thus, if any, only a few or even just one single PS are found per building. The advent of a new senor generation of systems like TerraSAR-X and COSMO-Skymed in 2007 led to a significant improvement of spatial resolution of about one order of magnitude. This comes along with a dramatic rise of PS density: In some cases tens to hundreds are detected at large buildings, which offers the possibility to monitor even individual urban objects. In addition, especially at building façades the distribution of those PS is often quite regular. A reason for that is the usually rectilinear arrangement of façade structures inducing PS like windows or balconies. Those patterns contain a lot of information about the objects under investigation, which is mostly ignored in current PSI processing schemes. For example, consider a regular structure of windows on a certain façade of a multi-story building. Assuming the same kind of structure generates one single PS at each window, the phase centers of all scatterers caused by windows of each floor share the same height. This means, we may benefit from such kind of redundancy, for instance, to improve the height estimate by averaging over PS having the same elevation. In this work, we

  3. Research on ground subsidence monitoring of Ge Ting coal mine based on D-InSAR and GIS techniques%基于D-InSAR技术的葛亭煤矿地面沉降监测研究

    Institute of Scientific and Technical Information of China (English)

    黄宝伟; 宋小刚; 王振杰; 单新建

    2012-01-01

    为了为矿区安全开采和塌陷区环境综合治理提供科学依据,利用精细的D-InSAR技术对7景ENVISAT ASAR影像进行处理,获得了2004~2005年和2008~2009年葛亭煤矿多期地面沉降分布图。然后将D-InSAR结果导入GIS中做后处理,叠加0.25m分辨率的数字正射影像图(DOM)和开采平面图等来分析地面沉降,并以剖面图、3D可视图等进行显示。通过多期结果的相互验证,并与水准资料进行了比较。结果表明,D-InSAR结果可以清楚可靠地给出矿区沉降区域分布和演化,并且获得的矿区沉降范围和位置与实际基本吻合,沉降幅度较小的区域在数量级上和水准资料一致,而最大沉降量出现偏差,这是由于高形变梯度引起了干涉图的完全失相关,超出了D-InSAR技术形变探测的能力范围。%In order to provide scientific basis for safety mining and environment comprehensive management of collapse region,in this paper,7 ENVISAT ASAR images are processed by D-InSAR technique to acquire multi-period ground subsidence distribution maps from 2004 to 2005 and from 2008 to 2009 in Ge Ting coal mine area.The D-InSAR results are then exported to the GIS for post-processing.Digital Orthophoto Map(DOM) with 0.25m resolution and mine plan etc.are used to analyze the ground subsidence which is displayed through profiles,contour lines and 3D views.Cross-validation of multi-period results and the comparison with leveling data show that D-InSAR results can give the distribution of mining subsidence area clearly and reliably,and the range and location of the ground subsidence are basically consistent with the actual range and location.The subsidence magnitude in the areas with small subsidence is consistent with the leveling data.However,the maximum amount of subsidence occurred bias,which is due to the interferograms decorrelation caused by high deformation gradient that is beyond the capabilities of deformation detection of D-InSAR

  4. GPS and TerraSAR-X time series measure temperate glacier flow in the Mont Blanc massif (France): the Argentière glacier test site.

    Science.gov (United States)

    Ponton, F.; Walpersdorf, A.; Gay, M.; Trouvé, E.; Mugnier, J. L.; Fallourd, R.; Cotte, N.; Ott, L.; Serafini, J.

    2012-04-01

    We present measurements of the surface velocity of the Argentière glacier in the Mont Blanc massif, France, obtained by SAR and GPS observations. We produce surface velocity fields from several couples of descending and ascending TerraSAR-X acquisitions repeated at 11 days intervals in spring 2009, using the offset power tracking technique. Moreover, we dispose of four years of GPS data acquired continuously on the Argentière glacier. Our local permanent GPS network is composed of two stations on the glacier at altitudes of 2441 m and 2770 m, and two stations in static places, one in the valley of Chamonix at an altitude of 1121 m and the other on a rock outcrop near the glacier at the altitude of 2835 m. The measurements yield average displacement rates of about 13 cm/day for the upper glacier station (2770 m) and 17 cm/day for the lower site (2441 m). These in situ GPS results have been used already to validate the displacement rates of a corner reflector on the glacier measured by SAR interferometry. Here, we will use the GPS observations to validate longitudinal profiles of the surface velocity field obtained by offset power tracking. The combination of continuous GPS time series and successive TerraSAR-X images yield new information on temperate glacier dynamics, constraining an annual variability of the displacement rates of up to 28 %, with fastest flow in late summer, and a spatial variability of the displacement rates of up to 50%, with fastest flow at the bottom of the glacier. The continuous monitoring (in space and time) of the Argentière glacier flow over several annual cycles can be used to examine the correlation with climatological parameters such as temperature and cumulated precipitations and provides an exceptional data set for improving models of temperate glacier flow mechanisms.

  5. Mining Land Subsidence Monitoring Using SENTINEL-1 SAR Data

    Science.gov (United States)

    Yuan, W.; Wang, Q.; Fan, J.; Li, H.

    2017-09-01

    In this paper, DInSAR technique was used to monitor land subsidence in mining area. The study area was selected in the coal mine area located in Yuanbaoshan District, Chifeng City, and Sentinel-1 data were used to carry out DInSAR techniqu. We analyzed the interferometric results by Sentinel-1 data from December 2015 to May 2016. Through the comparison of the results of DInSAR technique and the location of the mine on the optical images, it is shown that DInSAR technique can be used to effectively monitor the land subsidence caused by underground mining, and it is an effective tool for law enforcement of over-mining.

  6. Using high resolution satellite multi-temporal interferometry for landslide hazard detection in tropical environments: the case of Haiti

    Science.gov (United States)

    Wasowski, Janusz; Nutricato, Raffaele; Nitti, Davide Oscar; Bovenga, Fabio; Chiaradia, Maria Teresa; Piard, Boby Emmanuel; Mondesir, Philemon

    2015-04-01

    Synthetic aperture radar (SAR) multi-temporal interferometry (MTI) is one of the most promising satellite-based remote sensing techniques for fostering new opportunities in landslide hazard detection and assessment. MTI is attractive because it can provide very precise quantitative information on slow slope displacements of the ground surface over huge areas with limited vegetation cover. Although MTI is a mature technique, we are only beginning to realize the benefits of the high-resolution imagery that is currently acquired by the new generation radar satellites (e.g., COSMO-SkyMed, TerraSAR-X). In this work we demonstrate the potential of high resolution X-band MTI for wide-area detection of slope instability hazards even in tropical environments that are typically very harsh (eg. coherence loss) for differential interferometry applications. This is done by presenting an example from the island of Haiti, a tropical region characterized by dense and rapidly growing vegetation, as well as by significant climatic variability (two rainy seasons) with intense precipitation events. Despite the unfavorable setting, MTI processing of nearly 100 COSMO-SkyMed (CSK) mages (2011-2013) resulted in the identification of numerous radar targets even in some rural (inhabited) areas thanks to the high resolution (3 m) of CSK radar imagery, the adoption of a patch wise processing SPINUA approach and the presence of many man-made structures dispersed in heavily vegetated terrain. In particular, the density of the targets resulted suitable for the detection of some deep-seated and shallower landslides, as well as localized, very slow slope deformations. The interpretation and widespread exploitation of high resolution MTI data was facilitated by Google EarthTM tools with the associated high resolution optical imagery. Furthermore, our reconnaissance in situ checks confirmed that MTI results provided useful information on landslides and marginally stable slopes that can represent a

  7. Automated rectification and geocoding of SAR imagery

    Science.gov (United States)

    Kwok, R.; Curlander, J. C.

    1987-01-01

    An automated post-processing system has been developed for rectification and geocoding of SAR (Synthetic Aperture Radar) imagery. The system uses as input a raw uncorrected image from the operational SAR correlator, and produces as a standard output a rectified and geocoded product. The accurate geolocation of SAR image pixels is provided by a spatial transformation model which maps the slant range-azimuth SAR image pixels into their location on a prespecified map grid. This model predicts the geodetic location of each pixel by utilizing: the sensor platform position; a geoid model; the parameters of the data collection system and the processing parameters used in the SAR correlator. Based on their geodetic locations, the pixels are mapped by using the desired cartographic projection equations. This rectification and geocoding technique has been tested with Seasat and SIR-B images. The test results demonstrate absolute location uncertainty of less than 50 m and relative distortion (scale factor and skew) of less than 0.1 percent relative to local variations from the assumed geoid.

  8. Infrastructure monitoring with spaceborne SAR sensors

    CERN Document Server

    ANGHEL, ANDREI; CACOVEANU, REMUS

    2017-01-01

    This book presents a novel non-intrusive infrastructure monitoring technique based on the detection and tracking of scattering centers in spaceborne SAR images. The methodology essentially consists of refocusing each available SAR image on an imposed 3D point cloud associated to the envisaged infrastructure element and identifying the reliable scatterers to be monitored by means of four dimensional (4D) tomography. The methodology described in this book provides a new perspective on infrastructure monitoring with spaceborne SAR images, is based on a standalone processing chain, and brings innovative technical aspects relative to conventional approaches. The book is intended primarily for professionals and researchers working in the area of critical infrastructure monitoring by radar remote sensing.

  9. 100-Picometer Interferometry for EUVL

    Energy Technology Data Exchange (ETDEWEB)

    Sommargren, G E; Phillion, D W; Johnson, M A; Nguyen, N O; Barty, A; Snell, F J; Dillon, D R; Bradsher, L S

    2002-03-18

    Future extreme ultraviolet lithography (EWL) steppers will, in all likelihood, have six-mirror projection cameras. To operate at the diffraction limit over an acceptable depth of focus each aspheric mirror will have to be fabricated with an absolute figure accuracy approaching 100 pm rms. We are currently developing visible light interferometry to meet this need based on modifications of our present phase shifting diffraction interferometry (PSDI) methodology where we achieved an absolute accuracy of 250pm. The basic PSDI approach has been further simplified, using lensless imaging based on computational diffractive back-propagation, to eliminate auxiliary optics that typically limit measurement accuracy. Small remaining error sources, related to geometric positioning, CCD camera pixel spacing and laser wavelength, have been modeled and measured. Using these results we have estimated the total system error for measuring off-axis aspheric EUVL mirrors with this new approach to interferometry.

  10. Detection of Ground Moving Targets for Two-Channel Spaceborne SAR-ATI

    Directory of Open Access Journals (Sweden)

    Diannong Liang

    2010-01-01

    Full Text Available Many present spaceborne synthetic aperture radar (SAR systems are constrained to only two channels for ground moving target indication (GMTI. Along-track interferometry (ATI technique is currently exploited to detect slowly moving targets and measure their radial velocity and azimuth real position. In this paper, based on the joint probability density function (PDF of interferogram's phase and amplitude and the two hypotheses “clutter” and “clutter plus signal”, several constant false alarm rate (CFAR detection criteria are analyzed for their capabilities and limitations under low signal-to-clutter ratio (SCR and low clutter-to-noise ratio (CNR conditions. The CFAR detectors include one-step CFAR detector with interferometric phase, two-step CFAR detectors, and two-dimensional (2D CFAR detector. The likelihood ratio test (LRT based on the Neyman-Pearson (NP criterion is exploited as an upper bound for the performance of the other CFAR detectors. Performance analyses demonstrate the superiority of the 2D CFAR techniques to detect dim slowly moving targets for spaceborne system.

  11. Geological effects of the 2009 L’Aquila earthquake detected by COSMO-SkyMed high resolution interferometry

    Science.gov (United States)

    Chini, M.; Moro, M.; Saroli, M.; Stramondo, S.; Brunori, C.; Salvi, S.

    2009-12-01

    We investigated the surface effects of the April 6th, 2009, L’Aquila earthquake (Mw 6.3). The earthquake affected a large area in Central Italy causing strong damage to cities and villages in the epicentral region. The main goal of this work is the detection and characterization of the geological effects, such as Deep-seated Gravitational Slope Deformation (DGSD), which are gravity-driven ground movements occurring on large (1-5 km length, 100-500 m depth and width) rock volumes. To this aim we exploited the capabilities of the new High Resolution COSMO-SkyMed SAR2000 instrument, using the Differential SAR Interferometry (DInSAR) technique. We used a right ascending, Stripmap mode (35° incidence angle), coseimic image pair (April 4 - April 12) to measure the surface displacement. . We removed the topographic phase contribution using a detailed DEM at 5-m resolution . Local areas showing fringe complexities not directly attributed to the main tectonic pattern have been detected. By means of a geomorphological and geological analysis we interpreted such fringe patterns as due to ground displacement occurred along two different DGSD, one close to Roio Piano village, and the other North of the Barisciano village. The first DGSD is a sackung induced by the particular structural setting (down dip strata) and the high relief energy, whilst the second one appears to be a lateral spread of carbonatic bedrock. We unwrapped the interferogram to measure the local movements, and found 4-5 cm of LOS (Line Of Sight) displacement in both areas. The DGSD movement was triggered by the earthquake ground shaking, and, although in this case it did not result in a catastrophic collapse of the rock masses, it certainly indicates the presence of an increased ground shaking hazard in these areas. The L’Aquila earthquake is the second case study where the seismic triggering of DGSD has been recognized by DInSAR. It is worth noting that a step forward in terms of scale detail has been

  12. Bandwidth in bolometric interferometry

    Science.gov (United States)

    Charlassier, R.; Bunn, E. F.; Hamilton, J.-Ch.; Kaplan, J.; Malu, S.

    2010-05-01

    Context. Bolometric interferometry is a promising new technology with potential applications to the detection of B-mode polarization fluctuations of the cosmic microwave background (CMB). A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers to be competitive with imaging experiments. A crucial concern is that interferometers are assumed to be significantly affected by a spoiling effect known as bandwidth smearing. Aims: We investigate how the bandwidth modifies the work principle of a bolometric interferometer and affects its sensitivity to the CMB angular power spectra. Methods: We obtain analytical expressions for the broadband visibilities measured by broadband heterodyne and bolometric interferometers. We investigate how the visibilities must be reconstructed in a broadband bolometric interferometer and show that this critically depends on hardware properties of the modulation phase shifters. If the phase shifters produce shifts that are constant with respect to frequency, the instrument works like its monochromatic version (the modulation matrix is not modified), while if they vary (linearly or otherwise) with respect to frequency, one has to perform a special reconstruction scheme, which allows the visibilities to be reconstructed in frequency subbands. Using an angular power spectrum estimator that accounts for the bandwidth, we finally calculate the sensitivity of a broadband bolometric interferometer. A numerical simulation is performed that confirms the analytical results. Results: We conclude that (i) broadband bolometric interferometers allow broadband visibilities to be reconstructed regardless of the type of phase shifters used and (ii) for dedicated B-mode bolometric interferometers, the sensitivity loss caused by bandwidth smearing is quite acceptable, even for wideband instruments (a factor of 2 loss for a typical 20% bandwidth experiment).

  13. Effects of residual motion compensation errors on the performance of airborne along-track interferometric SAR

    Institute of Scientific and Technical Information of China (English)

    Hui ZHANG; Jun HONG; Xiao-lan QIU; Ji-chuan LI; Fang-fang LI; Feng MING

    2016-01-01

    Two approximations, center-beam approximation and reference digital elevation model (DEM) approximation, are used in synthetic aperture radar (SAR) motion compensation procedures. They usually introduce residual motion compensation errors for airborne single-antenna SAR imaging and SAR interferometry. In this paper, we investigate the effects of residual uncompensated motion errors, which are caused by the above two approximations, on the performance of airborne along-track interferometric SAR (ATI-SAR). The residual uncompensated errors caused by center-beam approximation in the absence and in the presence of elevation errors are derived, respectively. Airborne simulation parameters are used to verify the correctness of the analysis and to show the impacts of residual uncompensated errors on the interferometric phase errors for ATI-SAR. It is shown that the interferometric phase errors caused by the center-beam approximation with an accurate DEM could be neglected, while the interferometric phase errors caused by the center-beam approximation with an inaccurate DEM cannot be neglected when the elevation errors exceed a threshold. This research provides theoretical bases for the error source analysis and signal processing of airborne ATI-SAR.

  14. First Image Products from EcoSAR - Osa Peninsula, Costa Rica

    Science.gov (United States)

    Osmanoglu, Batuhan; Lee, SeungKuk; Rincon, Rafael; Fatuyinbo, Lola; Bollian, Tobias; Ranson, Jon

    2016-01-01

    Designed especially for forest ecosystem studies, EcoSAR employs state-of-the-art digital beamforming technology to generate wide-swath, high-resolution imagery. EcoSARs dual antenna single-pass imaging capability eliminates temporal decorrelation from polarimetric and interferometric analysis, increasing the signal strength and simplifying models used to invert forest structure parameters. Antennae are physically separated by 25 meters providing single pass interferometry. In this mode the radar is most sensitive to topography. With 32 active transmit and receive channels, EcoSARs digital beamforming is an order of magnitude more versatile than the digital beamforming employed on the upcoming NISAR mission. EcoSARs long wavelength (P-band, 435 MHz, 69 cm) measurements can be used to simulate data products for ESAs future BIOMASS mission, allowing scientists to develop algorithms before the launch of the satellite. EcoSAR can also be deployed to collect much needed data where BIOMASS satellite wont be allowed to collect data (North America, Europe and Arctic), filling in the gaps to keep a watchful eye on the global carbon cycle. EcoSAR can play a vital role in monitoring, reporting and verification schemes of internationals programs such as UN-REDD (United Nations Reducing Emissions from Deforestation and Degradation) benefiting global society. EcoSAR was developed and flown with support from NASA Earth Sciences Technology Offices Instrument Incubator Program.

  15. INVENTORY OF IRRIGATED RICE ECOSYSTEM USING POLARIMETRIC SAR DATA

    Directory of Open Access Journals (Sweden)

    P. Srikanth

    2012-08-01

    Full Text Available An attempt has been made in the current study to assess the potential of polarimetric SAR data for inventory of kharif rice and the major competing crop like cotton. In the process, physical process of the scattering mechanisms occurring in rice and cotton crops at different phonological stages was studied through the use of temporal Radarsat 2 Fine quadpol SAR data. The temporal dynamics of the volume, double and odd bounce, entropy, anisotropy, alpha parameters and polarimertic signatures, classification through isodata clustering and Wishart techniques were assessed. The Wishart (H-a classification showed higher overall as well as rice and cotton crop accuracies compared to the isodata clustering from Freeman 3-component decomposition. The classification of temporal SAR data sets independently showed that the rice crop forecasting can be advanced with the use of appropriate single date polarimetric SAR data rather than using temporal SAR amplitude data sets with the single polarization in irrigated rice ecosystems

  16. HIERARCHICAL CLASSIFICATION OF POLARIMETRIC SAR IMAGE BASED ON STATISTICAL REGION MERGING

    Directory of Open Access Journals (Sweden)

    F. Lang

    2012-07-01

    Full Text Available Segmentation and classification of polarimetric SAR (PolSAR imagery are very important for interpretation of PolSAR data. This paper presents a new object-oriented classification method which is based on Statistical Region Merging (SRM segmentation algorithm and a two-level hierarchical clustering technique. The proposed method takes full advantage of the polarimetric information contained in the PolSAR data, and takes both effectiveness and efficiency into account according to the characteristic of PolSAR. A modification of over-merging to over-segmentation technique and a post processing of segmentation for SRM is proposed according to the application of classification. And a revised symmetric Wishart distance is derived from the Wishart PDF. Segmentation and classification results of AirSAR L-band PolSAR data over the Flevoland test site is shown to demonstrate the validity of the proposed method.

  17. Bam earthquake: Surface deformation measurement using radar interferometry

    Institute of Scientific and Technical Information of China (English)

    XIA Ye

    2005-01-01

    On the 26th December 2003 an earthquake with Mw=6.5 shook a large area of the Kerman Province in Iran. The epicenter of the devastating earthquake was located near the city of Bam. This paper described the application of differential synthetic aperture radar interferometry (D-INSAR) and ENVISAT ASAR data to map the coseismic surface deformation caused by the Bam earthquake including the interferometric data processing and results in detail. Based on the difference in the coherence images before and after the event and edge search of the deformation field, a new fault ruptured on the surface was detected and used as a data source for parameter extraction of a theoretical seismic modeling. The simulated deformation field from the model perfectly coincides with the result derived from the SAR interferometric measurement.

  18. Slope instability mapping around L'Aquila (Abruzzo, Italy) with Persistent Scatterers Interferometry from ERS, ENVISAT and RADARSAT datasets

    Science.gov (United States)

    Righini, Gaia; Del Conte, Sara; Cigna, Francesca; Casagli, Nicola

    2010-05-01

    In the last decade Persistent Scatterers Interferometry (PSI) was used in natural hazards investigations with significant results and it is considered a helpful tool in ground deformations detection and mapping (Berardino et. al., 2003; Colesanti et al., 2003; Colesanti & Wasowski, 2006; Hilley et al., 2004). In this work results of PSI processing were interpreted after the main seismic shock that affected the Abruzzo region (Central Italy) on 6th of April 2009, in order to carry out a slope instability mapping according to the requirement of National Department of Civil Protection and in the framework of the Landslides thematic services of the EU FP7 project ‘SAFER' (Services and Applications For Emergency Response - Grant Agreement n° 218802). The area of interest was chosen in almost 460 km2 around L'Aquila according the highest probability of reactivations of landslides which depends on the local geological conditions, on the epicenter location and on other seismic parameters (Keefer, 1984). The radar images datasets were collected in order to provide estimates of the mean yearly velocity referred to two distinct time intervals: historic ERS (1992-2000) and recent ENVISAT (2002-2009), RADARSAT (2003-2009); the ERS and RADARSAT images were processed by Tele-Rilevamento Europa (TRE) using PS-InSAR(TM) technique, while the ENVISAT images were processed by e-GEOS using PSP-DIFSAR technique. A pre-existing landslide inventory map was updated through the integration of conventional photo interpretation and the radar-interpretation chain, as defined by Farina et al. (2008) and reported in literature (Farina et al. 2006, Meisina et al. 2007, Pancioli et al., 2008; Righini et al., 2008, Casagli et al., 2008, Herrera et al., 2009). The data were analyzed and interpreted in Geographic Information System (GIS) environment. Main updates of the pre-existing landslides are focusing on the identification of new landslides, modification of boundaries through the spatial

  19. ERS-ENVISAT InSAR deformation time-series: a powerful tool to investigate long term surface deformation of large areas

    Science.gov (United States)

    Lanari, Riccardo

    2010-05-01

    Satellite time series have already provided key measurements to retrieve information on the dynamic nature of Earth surface processes. We exploit in this work the availability of the large archives of spaceborne Synthetic Aperture Radar (SAR) data acquired by the ERS-1/2 and ENVISAT sensors of the European Space Agency (ESA) during the 1992-2009 time period, in order to investigate long term surface deformation of large areas. To achieve this result we take advantage of the Differential SAR Interferometry (InSAR) algorithm referred to as Small BAseline Subset (SBAS) technique (Berardino et al., 2002), which allows us to generate mean deformation velocity maps and corresponding time-series by exploiting temporally overlapping SAR dataset collected by the ERS and ENVISAT sensors (Pepe et al., 2005). In particular, we focus on the results obtained by retrieving ERS-ENVISAT deformation time-series from 1992 till today in selected case studies relevant to different scenarios. We start from the analysis of the Mt. Etna volcano (Italy) and the Napoli Bay area (Italy), the latter including three volcanic systems (the Campi Flegrei caldera, the Somma-Vesuvio volcanic complex and the Ischia island) and the city of Napoli. In addition, we present the results relevant to the cities of Istanbul (Turkey) and Roma (Italy). The overall analyses are carried out by using averaged (multilook) InSAR interferograms with a spatial resolution of about 100 x 100 m. Moreover, in selected zones we further investigate localized phenomena by zooming in the areas of interest and carrying out a InSAR analysis at full spatial resolution scale (Lanari et al., 2004). In these cases we also exploit the doppler centroid variations of the post-2000 acquisitions of the ERS-2 sensor and the carrier frequency difference between the ERS-1/2 and the ENVISAT systems in order to maximize the number of investigated SAR pixels and to improve their geocoding. The presented results demonstrate the unique

  20. Radio sources - Very, Very Long Baseline Interferometry

    Science.gov (United States)

    Roberts, D. H.

    1983-03-01

    With resolution of a thousandth of an arcsecond, the radio technique of Very Long Baseline Interferometry (VLBI) provides astronomers with their highest-resolution view of the universe. Data taken with widely-separated antennas are combined, with the help of atomic clocks, to form a Michelson interferometer whose size may be as great as the earth's diameter. Extraordinary phenomena, from the birth of stars as signaled by the brilliant flashes of powerful interstellar masers to the 'faster-than-light' expansion of the cores of distant quasars, are being explored with this technique. However, earth-bound VLBI suffers from several restrictions due to the location of the component antennas at fixed places on the earth's surface. The use of one or more antennas in space in concert with ground-based equipment will greatly expand the technical and scientific capabilities of VLBI, leading to a more complete and even higher resolution view of cosmic phenomena.

  1. Self-calibrating common-path interferometry.

    Science.gov (United States)

    Porras-Aguilar, Rosario; Falaggis, Konstantinos; Ramirez-San-Juan, Julio C; Ramos-Garcia, Ruben

    2015-02-09

    A quantitative phase measuring technique is presented that estimates the object phase from a series of phase shifted interferograms that are obtained in a common-path configuration with unknown phase shifts. The derived random phase shifting algorithm for common-path interferometers is based on the Generalized Phase Contrast theory [pl. Opt.40(2), 268 (2001)10.1063/1.1404846], which accounts for the particular image formation and includes effects that are not present in two-beam interferometry. It is shown experimentally that this technique can be used within common-path configurations employing nonlinear liquid crystal materials as self-induced phase filters for quantitative phase imaging without the need of phase shift calibrations. The advantages of such liquid crystal elements compared to spatial light modulator based solutions are given by the cost-effectiveness, self-alignment, and the generation of diminutive dimensions of the phase filter size, giving unique performance advantages.

  2. Chameleon Dark Energy and Atom Interferometry

    CERN Document Server

    Elder, Benjamin; Haslinger, Philipp; Jaffe, Matt; Müller, Holger; Hamilton, Paul

    2016-01-01

    Atom interferometry experiments are searching for evidence of chameleon scalar fields with ever-increasing precision. As experiments become more precise, so too must theoretical predictions. Previous work has made numerous approximations to simplify the calculation, which in general requires solving a 3-dimensional nonlinear partial differential equation (PDE). In this paper, we introduce a new technique for calculating the chameleonic force, using a numerical relaxation scheme on a uniform grid. This technique is more general than previous work, which assumed spherical symmetry to reduce the PDE to a 1-dimensional ordinary differential equation (ODE). We examine the effects of approximations made in previous efforts on this subject, and calculate the chameleonic force in a set-up that closely mimics the recent experiment of Hamilton et al. Specifically, we simulate the vacuum chamber as a cylinder with dimensions matching those of the experiment, taking into account the backreaction of the source mass, its o...

  3. Real-time color holographic interferometry

    Science.gov (United States)

    Desse, Jean-Michel; Albe, Felix; Tribillon, Jean-Louis

    2002-09-01

    A new optical technique based on real-time color holographic interferometry has been developed for analyzing unsteady aerodynamic wakes in fluid mechanics or for measuring displacements and deformations in solid mechanics. The technique's feasibility is demonstrated here. It uses three coherent wavelengths produced simultaneously by a cw laser (mixed argon and krypton). Holograms are recorded on single-layer panchromatic silver halide (Slavich PFG 03C) plates. Results show the optical setup can be adjusted to obtain a uniform background color. The interference fringe pattern visualized is large and colored and exhibits a single central white fringe, which makes the zero order of the interferogram easy to identify. An application in a subsonic wind tunnel is presented, in which the unsteady wake past a cylinder is recorded at high rate.

  4. Impacts of Temporal-Spatial Variant Background Ionosphere on Repeat-Track GEO D-InSAR System

    Directory of Open Access Journals (Sweden)

    Cheng Hu

    2016-11-01

    Full Text Available An L band geosynchronous synthetic aperture radar (GEO SAR differential interferometry system (D-InSAR will be obviously impacted by the background ionosphere, which will give rise to relative image shifts and decorrelations of the SAR interferometry (InSAR pair, and induce the interferometric phase screen errors in interferograms. However, the background ionosphere varies within the long integration time (hundreds to thousands of seconds and the extensive imaging scene (1000 km levels of GEO SAR. As a result, the conventional temporal-spatial invariant background ionosphere model (i.e., frozen model used in Low Earth Orbit (LEO SAR is no longer valid. To address the issue, we firstly construct a temporal-spatial background ionosphere variation model, and then theoretically analyze its impacts, including relative image shifts and the decorrelation of the GEO InSAR pair, and the interferometric phase screen errors, on the repeat-track GEO D-InSAR processing. The related impacts highly depend on the background ionosphere parameters (constant total electron content (TEC component, and the temporal first-order and the temporal second-order derivatives of TEC with respect to the azimuth time, signal bandwidth, and integration time. Finally, the background ionosphere data at Isla Guadalupe Island (29.02°N, 118.27°W on 7–8 October 2013 is employed for validating the aforementioned analysis. Under the selected background ionosphere dataset, the temporal-spatial background ionosphere variation can give rise to a relative azimuth shift of dozens of meters at most, and even the complete decorrelation in the InSAR pair. Moreover, the produced interferometric phase screen error corresponds to a deformation measurement error of more than 0.2 m at most, even in a not severely impacted area.

  5. RADAR INTERFEROMETRY APPLICATION FOR DIGITAL ELEVATION MODEL IN MOUNT BROMO, INDONESIA

    Directory of Open Access Journals (Sweden)

    Noorlaila Hayati

    2015-06-01

    Full Text Available This paper reviewed the result and processing of digital elevation model (DEM using L-Band ALOS PALSAR data and two-pass radar interferometry method in Bromo Mountain region. Synthetic Aperture Radar is an advanced technology that has been used to monitor deformation, land cover change, image detection and especially topographic information such as DEM.  We used two scenes of SAR imageries to generate DEM extraction which assumed there is no deformation effect between two acquisitions. We could derive topographic information using phase difference by combining two single looks complex (SLC images called focusing process. The next steps were doing interferogram generation, phase unwrapping and geocoding. DEM-InSAR was compared to SRTM 90m that there were significant elevation differences between two DEMs such as smoothing surface and detail topographic. Particularly for hilly areas, DEM-InSAR showed better quality than SRTM 90 m where the elevation could have 25.94 m maximum gap. Although the processing involved adaptive filter to amplify the phase signal, we concluded that InSAR DEM result still had error noise because of signal wavelength, incidence angle, SAR image relationship, and only using ascending orbit direction.

  6. New Methods in Moire Interferometry

    Science.gov (United States)

    Czarnek, Robert

    Experimental observations and measurements are the essential source of information necessary for correct development of mathematical models of real materials. Moire interferometry offers high sensitivity in full-field measurements of the in-plane displacements on the surface of the specimen. The (+OR-)45(DEGREES) method of moire interferometry increases the efficiency of a three-beam interferometer making its use outside of an optical laboratory more practical. Analysis of the (+OR-)45(DEGREES) method is provided. A concept of the vector representation of the fringe gradient is introduced and used in the analysis. Although existing systems require coherent light, the proposed system can use a relatively broad spectral bandwidth. Features that are related to the vibration sensitivity of such an instrument are investigated analytically. The basic concepts of an achromatic moire interferometry system are developed. Attachment of the critical elements of the system to the specimen solves the problem of relative rigid body motions, including vibrations, between the specimen and the virtual reference grating. Application of a laser diode light source reduces size, weight and cost of the interferometer making moire interferometry more practical for most materials testing laboratories. Laboratory tests confirmed the developed methods. This work enhances the probability of successful construction of a portable moire interferometer for measurements outside of the optical laboratory, in a mechanical testing or field environment.

  7. AIPY: Astronomical Interferometry in PYthon

    Science.gov (United States)

    Parsons, Aaron

    2016-09-01

    AIPY collects together tools for radio astronomical interferometry. In addition to pure-python phasing, calibration, imaging, and deconvolution code, this package includes interfaces to MIRIAD (ascl:1106.007) and HEALPix (ascl:1107.018), and math/fitting routines from SciPy.

  8. Electro-optic dual-comb interferometry over 40-nm bandwidth

    CERN Document Server

    Duran, Vicente; Torres-Company, Victor

    2016-01-01

    Dual-comb interferometry is a measurement technique that uses two laser frequency combs to retrieve complex spectra in a line-by-line basis. This technique can be implemented with electro-optic frequency combs, offering intrinsic mutual coherence, high acquisition speed and flexible repetition-rate operation. A challenge with the operation of this kind of frequency comb in dual-comb interferometry is its limited optical bandwidth. Here, we use coherent spectral broadening and demonstrate electro-optic dual-comb interferometry over the entire telecommunications C band (200 lines covering ~ 40 nm, measured within 10 microseconds at 100 signal-to-noise ratio per spectral line). These results offer new prospects for electro-optic dual-comb interferometry as a suitable technology for high-speed broadband metrology, for example in optical coherence tomography or coherent Raman microscopy.

  9. Study on the Application Technology of Ground-based InSAR%地基雷达干涉技术应用研究进展

    Institute of Scientific and Technical Information of China (English)

    邱志伟; 汪学琴; 岳顺; 郭献涛; 桑杰

    2015-01-01

    近年来,地基合成孔径雷达干涉技术的应用领域不断地扩展.本文详细地介绍了变形监测系统IBIS,并对其监测原理进行了简单概括.不仅对地基InSAR技术近期的应用及发展进行归纳总结,而且对该技术存在的问题从大气改正、断点校正及数据融合等方面进行深入的分析和讨论.通过对地基雷达干涉技术的应用研究分析,说明其在变形监测中将具有更为广泛的应用前景.%In recent years, the application field of ground-based synthetic aperture radar interferometry technique has been expanded. This paper introduces the deformation monitoring system IBIS and summarized the principle of monitoring briefly. Not only the application and development of InSAR technology are summarized in this paper, and the existing problems such as the atmospheric correction, breakpoint adjustment and the data fusion are analyzed and discussed in depth. Through the application research of ground radar interferometry analysis, this technology has broad application prospects in deformation monitoring.

  10. Crop Classification by Polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning; Svendsen, Morten Thougaard; Nielsen, Flemming;

    1999-01-01

    Polarimetric SAR-data of agricultural fields have been acquired by the Danish polarimetric L- and C-band SAR (EMISAR) during a number of missions at the Danish agricultural test site Foulum during 1995. The data are used to study the classification potential of polarimetric SAR data using...

  11. Using DInSAR as a tool to detect unstable terrain areas in an Andes region in Ecuador (South America)

    Science.gov (United States)

    Mayorga Torres, Tannia

    2014-05-01

    deeper into vegetation cover than C band (Raucoules et al., 2007). The study processed ERS with descending orbit and ALOS with ascending orbit, due to the availability of data. Ferretti et al. (2007) said that ERS looks to the right and a slope mainly oriented to the west could have foreshortening effect in ascending orbit. Wei & Sandwell (2010) mention that ALOS in ascending orbit identifies vertical mass movements along fault systems; however, descending data has better geometry to measure mass movements. The study has fewer scenes in descending orbit. For further work, ALOS 2 will let to have more data in descending orbit. 4. CENTRAL CONCLUSIONS For mass movement having high-resolution radar is the best option; however, this data is not useful on all due to cover vegetation. Characterizing mass movements in Ecuador in necessary to put monitoring systems to avoid economic and human lost. Processing ERS and ALOS data was very useful because penetration band results were clearly identified in coherence masks. The result of Stacking DInSAR did not show clearly fringes, indeed the amount of interferograms were no enough for this technique. Researching other DInSAR techniques is necessary due to the singular characteristics of Ecuador. 5. REFERENCES Ferretti Alessandro, Monti-Guarnieri Andrea, Prati Claudio, Rocca Fabio, Massonnet Didier (2007). InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation (TM-19, Febrero 2007). K. Fletcher, Agencia Espacial Europea Publicaciones. ESTEC. Postbus 2009. 2200 AG Noordwijk. The Netherlands. Raucoules Daniel, Colesanti Carlo, Carnec Claudie (2007). "Use of SAR interferometry for detecting and assessing ground subsidence." C. R. Geoscience 339(289-302): 14. Sandwell David T., Price Evelyn J. (1998). "Phase gradient approach to stacking interferograms." Journal of Geophysical Research 103(N. B12): 30, 183-30, 204. Wei Meng, Sandwell David T (2010). "Decorrelation of L-Band and C-Band Interferometry Over

  12. InSAR time-series constraints on inter-seismic strain accumulation and creep distribution along North Anatolian and Chaman Faults

    Science.gov (United States)

    Havazli, E.; Fattahi, H.; Amelung, F.

    2013-12-01

    In many aspects, the San Andreas and the North Anatolian fault zones show many similarities. They are similarly right-lateral, strike-slip faults, at the same time, are transforms. However, they vary in the maximum amount of lateral displacement and show different topographic features. The maximum offset is nearly 300 km along the San Andreas Fault whereas it is approximately 85-90 km along the North Anatolian Fault. In recent years, interseismic crustal velocities and strains have been determined for North Anatolian Fault Zone through repeated measurements using the Global Positioning System and satellite radar interferometry. The Chaman Fault in Pakistan and Afghanistan is the only major fault along the western India-Eurasia plate boundary zone and probably accommodates the entire relative plate motion of 30-35 mm/yr. Recent GPS and InSAR studies on the Chaman fault yield slip rates of 18 × 1 mm/yr. The inconsistency in geologic, geodetic and seismic slip rates along the Chaman Fault need investigations to better understand the geodynamic responses of the Indo-Asia collision along its western boundary. We use InSAR time-series analysis using archived and new SAR imagery to constrain strain accumulation across the North Anatolian Fault and Chaman Faults. We expect a relative accuracy of InSAR measurements better than 1 mm/yr over 100 km, made possible by recent advances in flattening residual, orbital error and atmospheric correction strategies [Fattahi & Amelung, 2013]. After validation of the technique in Southern San Andreas Fault, using GPS observations, we apply the same InSAR time-series approach to constrain strain accumulation across the North Anatolian and Chaman Faults. We will use the InSAR data to establish the first-order fault properties of the Chaman and North Anatolian Faults (creep distribution, locking depth) using analytical two-dimensional elastic strain accumulation models along different transects across the faults. Our preliminary results

  13. Coupling high resolution 3D point clouds from terrestrial LiDAR with high precision displacement time series from GB-InSAR to understand landslide kinematic: example of the La Perraire instability, Swiss Alps.

    Science.gov (United States)

    Michoud, Clément; Baillifard, François; Harald Blikra, Lars; Derron, Marc-Henri; Jaboyedoff, Michel; Kristensen, Lene; Leva, Davide; Metzger, Richard; Rivolta, Carlo

    2014-05-01

    Terrestrial Laser Scanning and Ground-Based Radar Interferometry have changed our perception and interpretation of slope activities for the last 20 years and are now routinely used for monitoring and even early warning purposes. Terrestrial LiDAR allows indeed to model topography with very high point density, even in steep slopes, and to extract 3D displacements of rock masses by comparing successive datasets. GB-InSAR techniques are able to detect mm displacements over large areas. Nevertheless, both techniques suffer of some limitations. The precision of LiDAR devices actually limits its ability to monitor very slow-moving landslides, as well as by the dam resolution and the particular geometry (in azimuth/range) of GB-InSAR data may complicate their interpretations. To overcome those limitations, tools were produced to truly combine strong advantages of both techniques, by coupling high resolution geometrical data from terrestrial LiDAR or photogrammetry with high precision displacement time series from GB-InSAR. We thus developed a new exportation module into the processing chain of LiSAmobile (GB-InSAR) devices in order to wrap radar results from their particular geometry on high resolution 3D point clouds with cm mean point spacing. Furthermore, we also added new importation and visualization functionalities into Coltop3D (software for geological interpretations of laser scanning data) to display those results in 3D and even analyzing displacement time series. This new method has also been optimized to create as few and small files as possible and for time processing. Advantages of coupling terrestrial LiDAR and GB-InSAR data will be illustrated on the La Perraire instability, an active large rockslide involving frequent rockfalls and threatening inhabitant within the Val de Bagnes in the Swiss Alps. This rock mass, monitored by LiDAR and GPS since 2006, is huge enough and long-term movements are big (up to 1.6 m in 6 years) and complex enough to make

  14. Exploration of Advanced Bistatic SAR Experiments%先进双基SAR技术研究

    Institute of Scientific and Technical Information of China (English)

    邓云凯; 王宇

    2014-01-01

    该文展示了世界上几个重要的先进混合双基SAR实验。混合双基模式是指发射端和接收端分别装载于不同类型的平台,例如星载/机载,机载/静止平台,星载/静止平台等。近年来相继有若干混合双基 SAR 实验成功完成,主要包括TerraSAR-X/PAMIR,PAMIR/静止平台,以及TerraSAR-X/静止平台。此外,在TerraSAR-X/静止平台的双基模式下还验证了多基线干涉 SAR (MB-InSAR)和数字波束形成(DBF)技术。值得强调的是,该文所展示的DBF实验结果属于世界上首次成功的基于在轨雷达卫星的DBF实验。%This study concentrates on the results of several advanced hybrid bistatic SAR experiments. The hybrid bistatic configuration applies to the case in which the transmitter and receiver are mounted on different types of platforms, e.g., spaceborne/airborne, airborne/stationary, spaceborne/stationary, and so on. Several hybrid bistatic SAR experiments have been performed successfully, i.e., TerraSAR-X/PAMIR, PAMIR/stationary, and TerraSAR-X/stationary. Furthermore, Multiple Baseline Interferometry SAR (MB-InSAR) and Digital Beam-Forming (DBF) technologies are validated in the TerraSAR-X/stationary configuration. Note that the DBF experiment results based on the spaceborne illuminator are discussed for the first time in SAR community. In addition, this paper emphasizes imaging geometry, image analysis, and focusing results.

  15. Future Gravitational Wave Detectors Based on Atom Interferometry

    CERN Document Server

    Geiger, Remi

    2016-01-01

    We present the perspective of using atom interferometry for gravitational wave (GW) detection in the mHz to about 10 Hz frequency band. We focus on light-pulse atom interferometers which have been subject to intense developments in the last 25 years. We calculate the effect of the GW on the atom interferometer and present in details the atomic gradiometer configuration which has retained more attention recently. The principle of such a detector is to use free falling atoms to measure the phase of a laser, which is modified by the GW. We highlight the potential benefits of using atom interferometry compared to optical interferometry as well as the challenges which remain for the realization of an atom interferometry based GW detector. We present some of the important noise sources which are expected in such detectors and strategies to cirucumvent them. Experimental techniques related to cold atom interferometers are briefly explained. We finally present the current progress and projects in this rapidly evolvin...

  16. CHANGE DETECTION BASED ON PERSISTENT SCATTERER INTERFEROMETRY – A NEW METHOD OF MONITORING BUILDING CHANGES

    Directory of Open Access Journals (Sweden)

    C. H. Yang

    2016-06-01

    Full Text Available Persistent Scatterer Interferometry (PSI is a technique to detect a network of extracted persistent scatterer (PS points which feature temporal phase stability and strong radar signal throughout time-series of SAR images. The small surface deformations on such PS points are estimated. PSI particularly works well in monitoring human settlements because regular substructures of man-made objects give rise to large number of PS points. If such structures and/or substructures substantially alter or even vanish due to big change like construction, their PS points are discarded without additional explorations during standard PSI procedure. Such rejected points are called big change (BC points. On the other hand, incoherent change detection (ICD relies on local comparison of multi-temporal images (e.g. image difference, image ratio to highlight scene modifications of larger size rather than detail level. However, image noise inevitably degrades ICD accuracy. We propose a change detection approach based on PSI to synergize benefits of PSI and ICD. PS points are extracted by PSI procedure. A local change index is introduced to quantify probability of a big change for each point. We propose an automatic thresholding method adopting change index to extract BC points along with a clue of the period they emerge. In the end, PS ad BC points are integrated into a change detection image. Our method is tested at a site located around north of Berlin main station where steady, demolished, and erected building substructures are successfully detected. The results are consistent with ground truth derived from time-series of aerial images provided by Google Earth. In addition, we apply our technique for traffic infrastructure, business district, and sports playground monitoring.

  17. Change Detection Based on Persistent Scatterer Interferometry - a New Method of Monitoring Building Changes

    Science.gov (United States)

    Yang, C. H.; Kenduiywo, B. K.; Soergel, U.

    2016-06-01

    Persistent Scatterer Interferometry (PSI) is a technique to detect a network of extracted persistent scatterer (PS) points which feature temporal phase stability and strong radar signal throughout time-series of SAR</