WorldWideScience

Sample records for sar image registration

  1. An Advanced Rotation Invariant Descriptor for SAR Image Registration

    Directory of Open Access Journals (Sweden)

    Yuming Xiang

    2017-07-01

    Full Text Available The Scale-Invariant Feature Transform (SIFT algorithm and its many variants have been widely used in Synthetic Aperture Radar (SAR image registration. The SIFT-like algorithms maintain rotation invariance by assigning a dominant orientation for each keypoint, while the calculation of dominant orientation is not robust due to the effect of speckle noise in SAR imagery. In this paper, we propose an advanced local descriptor for SAR image registration to achieve rotation invariance without assigning a dominant orientation. Based on the improved intensity orders, we first divide a circular neighborhood into several sub-regions. Second, rotation-invariant ratio orientation histograms of each sub-region are proposed by accumulating the ratio values of different directions in a rotation-invariant coordinate system. The proposed descriptor is composed of the concatenation of the histograms of each sub-region. In order to increase the distinctiveness of the proposed descriptor, multiple image neighborhoods are aggregated. Experimental results on several satellite SAR images have shown an improvement in the matching performance over other state-of-the-art algorithms.

  2. A SAR IMAGE REGISTRATION METHOD BASED ON SIFT ALGORITHM

    Directory of Open Access Journals (Sweden)

    W. Lu

    2017-09-01

    Full Text Available In order to improve the stability and rapidity of synthetic aperture radar (SAR images matching, an effective method was presented. Firstly, the adaptive smoothing filtering was employed for image denoising in image processing based on Wallis filtering to avoid the follow-up noise is amplified. Secondly, feature points were extracted by a simplified SIFT algorithm. Finally, the exact matching of the images was achieved with these points. Compared with the existing methods, it not only maintains the richness of features, but a-lso reduces the noise of the image. The simulation results show that the proposed algorithm can achieve better matching effect.

  3. Neural network-based feature point descriptors for registration of optical and SAR images

    Science.gov (United States)

    Abulkhanov, Dmitry; Konovalenko, Ivan; Nikolaev, Dmitry; Savchik, Alexey; Shvets, Evgeny; Sidorchuk, Dmitry

    2018-04-01

    Registration of images of different nature is an important technique used in image fusion, change detection, efficient information representation and other problems of computer vision. Solving this task using feature-based approaches is usually more complex than registration of several optical images because traditional feature descriptors (SIFT, SURF, etc.) perform poorly when images have different nature. In this paper we consider the problem of registration of SAR and optical images. We train neural network to build feature point descriptors and use RANSAC algorithm to align found matches. Experimental results are presented that confirm the method's effectiveness.

  4. MREG V1.1 : a multi-scale image registration algorithm for SAR applications.

    Energy Technology Data Exchange (ETDEWEB)

    Eichel, Paul H.

    2013-08-01

    MREG V1.1 is the sixth generation SAR image registration algorithm developed by the Signal Processing&Technology Department for Synthetic Aperture Radar applications. Like its predecessor algorithm REGI, it employs a powerful iterative multi-scale paradigm to achieve the competing goals of sub-pixel registration accuracy and the ability to handle large initial offsets. Since it is not model based, it allows for high fidelity tracking of spatially varying terrain-induced misregistration. Since it does not rely on image domain phase, it is equally adept at coherent and noncoherent image registration. This document provides a brief history of the registration processors developed by Dept. 5962 leading up to MREG V1.1, a full description of the signal processing steps involved in the algorithm, and a user's manual with application specific recommendations for CCD, TwoColor MultiView, and SAR stereoscopy.

  5. AN AUTOMATIC OPTICAL AND SAR IMAGE REGISTRATION METHOD USING ITERATIVE MULTI-LEVEL AND REFINEMENT MODEL

    Directory of Open Access Journals (Sweden)

    C. Xu

    2016-06-01

    Full Text Available Automatic image registration is a vital yet challenging task, particularly for multi-sensor remote sensing images. Given the diversity of the data, it is unlikely that a single registration algorithm or a single image feature will work satisfactorily for all applications. Focusing on this issue, the mainly contribution of this paper is to propose an automatic optical-to-SAR image registration method using –level and refinement model: Firstly, a multi-level strategy of coarse-to-fine registration is presented, the visual saliency features is used to acquire coarse registration, and then specific area and line features are used to refine the registration result, after that, sub-pixel matching is applied using KNN Graph. Secondly, an iterative strategy that involves adaptive parameter adjustment for re-extracting and re-matching features is presented. Considering the fact that almost all feature-based registration methods rely on feature extraction results, the iterative strategy improve the robustness of feature matching. And all parameters can be automatically and adaptively adjusted in the iterative procedure. Thirdly, a uniform level set segmentation model for optical and SAR images is presented to segment conjugate features, and Voronoi diagram is introduced into Spectral Point Matching (VSPM to further enhance the matching accuracy between two sets of matching points. Experimental results show that the proposed method can effectively and robustly generate sufficient, reliable point pairs and provide accurate registration.

  6. Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points – A Review

    Directory of Open Access Journals (Sweden)

    Xiaoli Ding

    2009-02-01

    Full Text Available Interferometric Synthetic Aperture Radar (InSAR is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram.

  7. An Improved InSAR Image Co-Registration Method for Pairs with Relatively Big Distortions or Large Incoherent Areas

    Directory of Open Access Journals (Sweden)

    Zhenwei Chen

    2016-09-01

    Full Text Available Co-registration is one of the most important steps in interferometric synthetic aperture radar (InSAR data processing. The standard offset-measurement method based on cross-correlating uniformly distributed patches takes no account of specific geometric transformation between images or characteristics of ground scatterers. Hence, it is inefficient and difficult to obtain satisfying co-registration results for image pairs with relatively big distortion or large incoherent areas. Given this, an improved co-registration strategy is proposed in this paper which takes both the geometric features and image content into consideration. Firstly, some geometric transformations including scale, flip, rotation, and shear between images were eliminated based on the geometrical information, and the initial co-registration polynomial was obtained. Then the registration points were automatically detected by integrating the signal-to-clutter-ratio (SCR thresholds and the amplitude information, and a further co-registration process was performed to refine the polynomial. Several comparison experiments were carried out using 2 TerraSAR-X data from the Hong Kong airport and 21 PALSAR data from the Donghai Bridge. Experiment results demonstrate that the proposed method brings accuracy and efficiency improvements for co-registration and processing abilities in the cases of big distortion between images or large incoherent areas in the images. For most co-registrations, the proposed method can enhance the reliability and applicability of co-registration and thus promote the automation to a higher level.

  8. An Improved InSAR Image Co-Registration Method for Pairs with Relatively Big Distortions or Large Incoherent Areas.

    Science.gov (United States)

    Chen, Zhenwei; Zhang, Lei; Zhang, Guo

    2016-09-17

    Co-registration is one of the most important steps in interferometric synthetic aperture radar (InSAR) data processing. The standard offset-measurement method based on cross-correlating uniformly distributed patches takes no account of specific geometric transformation between images or characteristics of ground scatterers. Hence, it is inefficient and difficult to obtain satisfying co-registration results for image pairs with relatively big distortion or large incoherent areas. Given this, an improved co-registration strategy is proposed in this paper which takes both the geometric features and image content into consideration. Firstly, some geometric transformations including scale, flip, rotation, and shear between images were eliminated based on the geometrical information, and the initial co-registration polynomial was obtained. Then the registration points were automatically detected by integrating the signal-to-clutter-ratio (SCR) thresholds and the amplitude information, and a further co-registration process was performed to refine the polynomial. Several comparison experiments were carried out using 2 TerraSAR-X data from the Hong Kong airport and 21 PALSAR data from the Donghai Bridge. Experiment results demonstrate that the proposed method brings accuracy and efficiency improvements for co-registration and processing abilities in the cases of big distortion between images or large incoherent areas in the images. For most co-registrations, the proposed method can enhance the reliability and applicability of co-registration and thus promote the automation to a higher level.

  9. Mass preserving image registration

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Sporring, Jon; Lo, Pechin Chien Pau

    2010-01-01

    The paper presents results the mass preserving image registration method in the Evaluation of Methods for Pulmonary Image Registration 2010 (EMPIRE10) Challenge. The mass preserving image registration algorithm was applied to the 20 image pairs. Registration was evaluated using four different...

  10. Bistatic SAR: Imagery & Image Products.

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, David A.; Wahl, Daniel E.; Jakowatz, Charles V,

    2014-10-01

    While typical SAR imaging employs a co-located (monostatic) RADAR transmitter and receiver, bistatic SAR imaging separates the transmitter and receiver locations. The transmitter and receiver geometry determines if the scattered signal is back scatter, forward scatter, or side scatter. The monostatic SAR image is backscatter. Therefore, depending on the transmitter/receiver collection geometry, the captured imagery may be quite different that that sensed at the monostatic SAR. This document presents imagery and image products formed from captured signals during the validation stage of the bistatic SAR research. Image quality and image characteristics are discussed first. Then image products such as two-color multi-view (2CMV) and coherent change detection (CCD) are presented.

  11. Image Registration Methode in Radar Interferometry

    Directory of Open Access Journals (Sweden)

    S. Chelbi

    2015-08-01

    Full Text Available This article presents a methodology for the determination of the registration of an Interferometric Synthetic radar (InSAR pair images with half pixel precision. Using the two superposed radar images Single Look complexes (SLC [1-4], we developed an iterative process to superpose these two images according to their correlation coefficient with a high coherence area. This work concerns the exploitation of ERS Tandem pair of radar images SLC of the Algiers area acquired on 03 January and 04 January 1994. The former is taken as a master image and the latter as a slave image.

  12. Biomedical Image Registration

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the 8th International Workshop on Biomedical Image Registration, WBIR 2018, held in Leiden, The Netherlands, in June 2018. The 11 full and poster papers included in this volume were carefully reviewed and selected from 17 submitted papers. The pap...

  13. Convolutional Neural Networks for SAR Image Segmentation

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Nobel-Jørgensen, Morten

    2015-01-01

    Segmentation of Synthetic Aperture Radar (SAR) images has several uses, but it is a difficult task due to a number of properties related to SAR images. In this article we show how Convolutional Neural Networks (CNNs) can easily be trained for SAR image segmentation with good results. Besides...

  14. Image registration with uncertainty analysis

    Science.gov (United States)

    Simonson, Katherine M [Cedar Crest, NM

    2011-03-22

    In an image registration method, edges are detected in a first image and a second image. A percentage of edge pixels in a subset of the second image that are also edges in the first image shifted by a translation is calculated. A best registration point is calculated based on a maximum percentage of edges matched. In a predefined search region, all registration points other than the best registration point are identified that are not significantly worse than the best registration point according to a predetermined statistical criterion.

  15. Imaging in severe acute respiratory syndrome (SARS)

    International Nuclear Information System (INIS)

    Antonio, G.E.; Wong, K.T.; Chu, W.C.W.; Hui, D.S.C.; Cheng, F.W.T.; Yuen, E.H.Y.; Chung, S.S.C.; Fok, T.F.; Sung, J.J.Y.; Ahuja, A.T.

    2003-01-01

    Severe acute respiratory syndrome (SARS) is a highly infectious disease caused by a novel coronavirus, and has become pandemic within a short period of time. Imaging plays an important role in the diagnosis, management and follow-up of patients with SARS. The current status of imaging in SARS is presented in this review

  16. AUTOMATIC COREGISTRATION FOR MULTIVIEW SAR IMAGES IN URBAN AREAS

    Directory of Open Access Journals (Sweden)

    Y. Xiang

    2017-09-01

    Full Text Available Due to the high resolution property and the side-looking mechanism of SAR sensors, complex buildings structures make the registration of SAR images in urban areas becomes very hard. In order to solve the problem, an automatic and robust coregistration approach for multiview high resolution SAR images is proposed in the paper, which consists of three main modules. First, both the reference image and the sensed image are segmented into two parts, urban areas and nonurban areas. Urban areas caused by double or multiple scattering in a SAR image have a tendency to show higher local mean and local variance values compared with general homogeneous regions due to the complex structural information. Based on this criterion, building areas are extracted. After obtaining the target regions, L-shape structures are detected using the SAR phase congruency model and Hough transform. The double bounce scatterings formed by wall and ground are shown as strong L- or T-shapes, which are usually taken as the most reliable indicator for building detection. According to the assumption that buildings are rectangular and flat models, planimetric buildings are delineated using the L-shapes, then the reconstructed target areas are obtained. For the orignal areas and the reconstructed target areas, the SAR-SIFT matching algorithm is implemented. Finally, correct corresponding points are extracted by the fast sample consensus (FSC and the transformation model is also derived. The experimental results on a pair of multiview TerraSAR images with 1-m resolution show that the proposed approach gives a robust and precise registration performance, compared with the orignal SAR-SIFT method.

  17. Automatic Coregistration for Multiview SAR Images in Urban Areas

    Science.gov (United States)

    Xiang, Y.; Kang, W.; Wang, F.; You, H.

    2017-09-01

    Due to the high resolution property and the side-looking mechanism of SAR sensors, complex buildings structures make the registration of SAR images in urban areas becomes very hard. In order to solve the problem, an automatic and robust coregistration approach for multiview high resolution SAR images is proposed in the paper, which consists of three main modules. First, both the reference image and the sensed image are segmented into two parts, urban areas and nonurban areas. Urban areas caused by double or multiple scattering in a SAR image have a tendency to show higher local mean and local variance values compared with general homogeneous regions due to the complex structural information. Based on this criterion, building areas are extracted. After obtaining the target regions, L-shape structures are detected using the SAR phase congruency model and Hough transform. The double bounce scatterings formed by wall and ground are shown as strong L- or T-shapes, which are usually taken as the most reliable indicator for building detection. According to the assumption that buildings are rectangular and flat models, planimetric buildings are delineated using the L-shapes, then the reconstructed target areas are obtained. For the orignal areas and the reconstructed target areas, the SAR-SIFT matching algorithm is implemented. Finally, correct corresponding points are extracted by the fast sample consensus (FSC) and the transformation model is also derived. The experimental results on a pair of multiview TerraSAR images with 1-m resolution show that the proposed approach gives a robust and precise registration performance, compared with the orignal SAR-SIFT method.

  18. Precision Rectification of Airborne SAR Image

    DEFF Research Database (Denmark)

    Dall, Jørgen; Liao, M.; Zhang, Zhe

    1997-01-01

    A simple and direct procedure for the rectification of a certain class of airborne SAR data is presented. The relief displacements of SAR data are effectively removed by means of a digital elevation model and the image is transformed to the ground coordinate system. SAR data from the Danish EMISAR...

  19. Image Registration: A Necessary Evil

    Science.gov (United States)

    Bell, James; McLachlan, Blair; Hermstad, Dexter; Trosin, Jeff; George, Michael W. (Technical Monitor)

    1995-01-01

    Registration of test and reference images is a key component of nearly all PSP data reduction techniques. This is done to ensure that a test image pixel viewing a particular point on the model is ratioed by the reference image pixel which views the same point. Typically registration is needed to account for model motion due to differing airloads when the wind-off and wind-on images are taken. Registration is also necessary when two cameras are used for simultaneous acquisition of data from a dual-frequency paint. This presentation will discuss the advantages and disadvantages of several different image registration techniques. In order to do so, it is necessary to propose both an accuracy requirement for image registration and a means for measuring the accuracy of a particular technique. High contrast regions in the unregistered images are most sensitive to registration errors, and it is proposed that these regions be used to establish the error limits for registration. Once this is done, the actual registration error can be determined by locating corresponding points on the test and reference images, and determining how well a particular registration technique matches them. An example of this procedure is shown for three transforms used to register images of a semispan model. Thirty control points were located on the model. A subset of the points were used to determine the coefficients of each registration transform, and the error with which each transform aligned the remaining points was determined. The results indicate the general superiority of a third-order polynomial over other candidate transforms, as well as showing how registration accuracy varies with number of control points. Finally, it is proposed that image registration may eventually be done away with completely. As more accurate image resection techniques and more detailed model surface grids become available, it will be possible to map raw image data onto the model surface accurately. Intensity

  20. Medical image registration for analysis

    International Nuclear Information System (INIS)

    Petrovic, V.

    2006-01-01

    Full text: Image registration techniques represent a rich family of image processing and analysis tools that aim to provide spatial correspondences across sets of medical images of similar and disparate anatomies and modalities. Image registration is a fundamental and usually the first step in medical image analysis and this paper presents a number of advanced techniques as well as demonstrates some of the advanced medical image analysis techniques they make possible. A number of both rigid and non-rigid medical image alignment algorithms of equivalent and merely consistent anatomical structures respectively are presented. The algorithms are compared in terms of their practical aims, inputs, computational complexity and level of operator (e.g. diagnostician) interaction. In particular, the focus of the methods discussion is placed on the applications and practical benefits of medical image registration. Results of medical image registration on a number of different imaging modalities and anatomies are presented demonstrating the accuracy and robustness of their application. Medical image registration is quickly becoming ubiquitous in medical imaging departments with the results of such algorithms increasingly used in complex medical image analysis and diagnostics. This paper aims to demonstrate at least part of the reason why

  1. Image based SAR product simulation for analysis

    Science.gov (United States)

    Domik, G.; Leberl, F.

    1987-01-01

    SAR product simulation serves to predict SAR image gray values for various flight paths. Input typically consists of a digital elevation model and backscatter curves. A new method is described of product simulation that employs also a real SAR input image for image simulation. This can be denoted as 'image-based simulation'. Different methods to perform this SAR prediction are presented and advantages and disadvantages discussed. Ascending and descending orbit images from NASA's SIR-B experiment were used for verification of the concept: input images from ascending orbits were converted into images from a descending orbit; the results are compared to the available real imagery to verify that the prediction technique produces meaningful image data.

  2. Deep learning for SAR image formation

    Science.gov (United States)

    Mason, Eric; Yonel, Bariscan; Yazici, Birsen

    2017-04-01

    The recent success of deep learning has lead to growing interest in applying these methods to signal processing problems. This paper explores the applications of deep learning to synthetic aperture radar (SAR) image formation. We review deep learning from a perspective relevant to SAR image formation. Our objective is to address SAR image formation in the presence of uncertainties in the SAR forward model. We present a recurrent auto-encoder network architecture based on the iterative shrinkage thresholding algorithm (ISTA) that incorporates SAR modeling. We then present an off-line training method using stochastic gradient descent and discuss the challenges and key steps of learning. Lastly, we show experimentally that our method can be used to form focused images in the presence of phase uncertainties. We demonstrate that the resulting algorithm has faster convergence and decreased reconstruction error than that of ISTA.

  3. Geometric calibration of ERS satellite SAR images

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    2001-01-01

    Geometric calibration of the European Remote Sensing (ERS) Satellite synthetic aperture radar (SAR) slant range images is important in relation to mapping areas without ground reference points and also in relation to automated processing. The relevant SAR system parameters are discussed...

  4. Numerical methods for image registration

    CERN Document Server

    Modersitzki, Jan

    2003-01-01

    Based on the author's lecture notes and research, this well-illustrated and comprehensive text is one of the first to provide an introduction to image registration with particular emphasis on numerical methods in medical imaging. Ideal for researchers in industry and academia, it is also a suitable study guide for graduate mathematicians, computer scientists, engineers, medical physicists, and radiologists.Image registration is utilised whenever information obtained from different viewpoints needs to be combined or compared and unwanted distortion needs to be eliminated. For example, CCTV imag

  5. ACIR: automatic cochlea image registration

    Science.gov (United States)

    Al-Dhamari, Ibraheem; Bauer, Sabine; Paulus, Dietrich; Lissek, Friedrich; Jacob, Roland

    2017-02-01

    Efficient Cochlear Implant (CI) surgery requires prior knowledge of the cochlea's size and its characteristics. This information helps to select suitable implants for different patients. To get these measurements, a segmentation method of cochlea medical images is needed. An important pre-processing step for good cochlea segmentation involves efficient image registration. The cochlea's small size and complex structure, in addition to the different resolutions and head positions during imaging, reveals a big challenge for the automated registration of the different image modalities. In this paper, an Automatic Cochlea Image Registration (ACIR) method for multi- modal human cochlea images is proposed. This method is based on using small areas that have clear structures from both input images instead of registering the complete image. It uses the Adaptive Stochastic Gradient Descent Optimizer (ASGD) and Mattes's Mutual Information metric (MMI) to estimate 3D rigid transform parameters. The use of state of the art medical image registration optimizers published over the last two years are studied and compared quantitatively using the standard Dice Similarity Coefficient (DSC). ACIR requires only 4.86 seconds on average to align cochlea images automatically and to put all the modalities in the same spatial locations without human interference. The source code is based on the tool elastix and is provided for free as a 3D Slicer plugin. Another contribution of this work is a proposed public cochlea standard dataset which can be downloaded for free from a public XNAT server.

  6. Attribute Learning for SAR Image Classification

    Directory of Open Access Journals (Sweden)

    Chu He

    2017-04-01

    Full Text Available This paper presents a classification approach based on attribute learning for high spatial resolution Synthetic Aperture Radar (SAR images. To explore the representative and discriminative attributes of SAR images, first, an iterative unsupervised algorithm is designed to cluster in the low-level feature space, where the maximum edge response and the ratio of mean-to-variance are included; a cross-validation step is applied to prevent overfitting. Second, the most discriminative clustering centers are sorted out to construct an attribute dictionary. By resorting to the attribute dictionary, a representation vector describing certain categories in the SAR image can be generated, which in turn is used to perform the classifying task. The experiments conducted on TerraSAR-X images indicate that those learned attributes have strong visual semantics, which are characterized by bright and dark spots, stripes, or their combinations. The classification method based on these learned attributes achieves better results.

  7. AUTOMATIC INTERPRETATION OF HIGH RESOLUTION SAR IMAGES: FIRST RESULTS OF SAR IMAGE SIMULATION FOR SINGLE BUILDINGS

    Directory of Open Access Journals (Sweden)

    J. Tao

    2012-09-01

    Full Text Available Due to the all-weather data acquisition capabilities, high resolution space borne Synthetic Aperture Radar (SAR plays an important role in remote sensing applications like change detection. However, because of the complex geometric mapping of buildings in urban areas, SAR images are often hard to interpret. SAR simulation techniques ease the visual interpretation of SAR images, while fully automatic interpretation is still a challenge. This paper presents a method for supporting the interpretation of high resolution SAR images with simulated radar images using a LiDAR digital surface model (DSM. Line features are extracted from the simulated and real SAR images and used for matching. A single building model is generated from the DSM and used for building recognition in the SAR image. An application for the concept is presented for the city centre of Munich where the comparison of the simulation to the TerraSAR-X data shows a good similarity. Based on the result of simulation and matching, special features (e.g. like double bounce lines, shadow areas etc. can be automatically indicated in SAR image.

  8. CFAR Edge Detector for Polarimetric SAR Images

    DEFF Research Database (Denmark)

    Schou, Jesper; Skriver, Henning; Nielsen, Allan Aasbjerg

    2003-01-01

    Finding the edges between different regions in an image is one of the fundamental steps of image analysis, and several edge detectors suitable for the special statistics of synthetic aperture radar (SAR) intensity images have previously been developed. In this paper, a new edge detector for polar...

  9. Relevant Scatterers Characterization in SAR Images

    Science.gov (United States)

    Chaabouni, Houda; Datcu, Mihai

    2006-11-01

    Recognizing scenes in a single look meter resolution Synthetic Aperture Radar (SAR) images, requires the capability to identify relevant signal signatures in condition of variable image acquisition geometry, arbitrary objects poses and configurations. Among the methods to detect relevant scatterers in SAR images, we can mention the internal coherence. The SAR spectrum splitted in azimuth generates a series of images which preserve high coherence only for particular object scattering. The detection of relevant scatterers can be done by correlation study or Independent Component Analysis (ICA) methods. The present article deals with the state of the art for SAR internal correlation analysis and proposes further extensions using elements of inference based on information theory applied to complex valued signals. The set of azimuth looks images is analyzed using mutual information measures and an equivalent channel capacity is derived. The localization of the "target" requires analysis in a small image window, thus resulting in imprecise estimation of the second order statistics of the signal. For a better precision, a Hausdorff measure is introduced. The method is applied to detect and characterize relevant objects in urban areas.

  10. Image registration method for medical image sequences

    Science.gov (United States)

    Gee, Timothy F.; Goddard, James S.

    2013-03-26

    Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.

  11. Semiautomated Multimodal Breast Image Registration

    Directory of Open Access Journals (Sweden)

    Charlotte Curtis

    2012-01-01

    However, due to the highly deformable nature of breast tissues, comparison of 3D and 2D modalities is a challenge. To enable this comparison, a registration technique was developed to map features from 2D mammograms to locations in the 3D image space. This technique was developed and tested using magnetic resonance (MR images as a reference 3D modality, as MR breast imaging is an established technique in clinical practice. The algorithm was validated using a numerical phantom then successfully tested on twenty-four image pairs. Dice's coefficient was used to measure the external goodness of fit, resulting in an excellent overall average of 0.94. Internal agreement was evaluated by examining internal features in consultation with a radiologist, and subjective assessment concludes that reasonable alignment was achieved.

  12. ANALYSIS OF MULTIPATH PIXELS IN SAR IMAGES

    Directory of Open Access Journals (Sweden)

    J. W. Zhao

    2016-06-01

    Full Text Available As the received radar signal is the sum of signal contributions overlaid in one single pixel regardless of the travel path, the multipath effect should be seriously tackled as the multiple bounce returns are added to direct scatter echoes which leads to ghost scatters. Most of the existing solution towards the multipath is to recover the signal propagation path. To facilitate the signal propagation simulation process, plenty of aspects such as sensor parameters, the geometry of the objects (shape, location, orientation, mutual position between adjacent buildings and the physical parameters of the surface (roughness, correlation length, permittivitywhich determine the strength of radar signal backscattered to the SAR sensor should be given in previous. However, it's not practical to obtain the highly detailed object model in unfamiliar area by field survey as it's a laborious work and time-consuming. In this paper, SAR imaging simulation based on RaySAR is conducted at first aiming at basic understanding of multipath effects and for further comparison. Besides of the pre-imaging simulation, the product of the after-imaging, which refers to radar images is also taken into consideration. Both Cosmo-SkyMed ascending and descending SAR images of Lupu Bridge in Shanghai are used for the experiment. As a result, the reflectivity map and signal distribution map of different bounce level are simulated and validated by 3D real model. The statistic indexes such as the phase stability, mean amplitude, amplitude dispersion, coherence and mean-sigma ratio in case of layover are analyzed with combination of the RaySAR output.

  13. SAR Image Classification Based on Its Texture Features

    Institute of Scientific and Technical Information of China (English)

    LI Pingxiang; FANG Shenghui

    2003-01-01

    SAR images not only have the characteristics of all-ay, all-eather, but also provide object information which is different from visible and infrared sensors. However, SAR images have some faults, such as more speckles and fewer bands. The authors conducted the experiments of texture statistics analysis on SAR image features in order to improve the accuracy of SAR image interpretation.It is found that the texture analysis is an effective method for improving the accuracy of the SAR image interpretation.

  14. The Radiometric Measurement Quantity for SAR Images

    OpenAIRE

    Döring, Björn J.; Schwerdt, Marco

    2013-01-01

    A Synthetic Aperture Radar (SAR) system measures among other quantities the terrain radar reflectivity. After image calibration, the pixel intensities are commonly expressed in terms of radar cross sections (for point targets) or as backscatter coefficients (for distributed targets), which are directly related. This paper argues that pixel intensities are not generally proportional to radar cross section or derived physical quantities. The paper further proposes to replace the inaccurate term...

  15. Performance evaluation of 2D image registration algorithms with the numeric image registration and comparison platform

    International Nuclear Information System (INIS)

    Gerganov, G.; Kuvandjiev, V.; Dimitrova, I.; Mitev, K.; Kawrakow, I.

    2012-01-01

    The objective of this work is to present the capabilities of the NUMERICS web platform for evaluation of the performance of image registration algorithms. The NUMERICS platform is a web accessible tool which provides access to dedicated numerical algorithms for registration and comparison of medical images (http://numerics.phys.uni-sofia.bg). The platform allows comparison of noisy medical images by means of different types of image comparison algorithms, which are based on statistical tests for outliers. The platform also allows 2D image registration with different techniques like Elastic Thin-Plate Spline registration, registration based on rigid transformations, affine transformations, as well as non-rigid image registration based on Mobius transformations. In this work we demonstrate how the platform can be used as a tool for evaluation of the quality of the image registration process. We demonstrate performance evaluation of a deformable image registration technique based on Mobius transformations. The transformations are applied with appropriate cost functions like: Mutual information, Correlation coefficient, Sum of Squared Differences. The accent is on the results provided by the platform to the user and their interpretation in the context of the performance evaluation of 2D image registration. The NUMERICS image registration and image comparison platform provides detailed statistical information about submitted image registration jobs and can be used to perform quantitative evaluation of the performance of different image registration techniques. (authors)

  16. Three dimensional image alignment, registration and fusion

    International Nuclear Information System (INIS)

    Treves, S.T.; Mitchell, K.D.; Habboush, I.H.

    1998-01-01

    Combined assessment of three dimensional anatomical and functional images (SPECT, PET, MRI, CT) is useful to determine the nature and extent of lesions in many parts of the body. Physicians principally rely on their spatial sense of mentally re-orient and overlap images obtained with different imaging modalities. Objective methods that enable easy and intuitive image registration can help the physician arrive at more optimal diagnoses and better treatment decisions. This review describes a simple, intuitive and robust image registration approach developed in our laboratory. It differs from most other registration techniques in that it allows the user to incorporate all of the available information within the images in the registration process. This method takes full advantage of the ability of knowledgeable operators to achieve image registration and fusion using an intuitive interactive visual approach. It can register images accurately and quickly without the use of elaborate mathematical modeling or optimization techniques. The method provides the operator with tools to manipulate images in three dimensions, including visual feedback techniques to assess the accuracy of registration (grids, overlays, masks, and fusion of images in different colors). Its application is not limited to brain imaging and can be applied to images from any region in the body. The overall effect is a registration algorithm that is easy to implement and can achieve accuracy on the order of one pixel

  17. Registration of deformed multimodality medical images

    International Nuclear Information System (INIS)

    Moshfeghi, M.; Naidich, D.

    1989-01-01

    The registration and combination of images from different modalities have several potential applications, such as functional and anatomic studies, 3D radiation treatment planning, surgical planning, and retrospective studies. Image registration algorithms should correct for any local deformations caused by respiration, heart beat, imaging device distortions, and so forth. This paper reports on an elastic matching technique for registering deformed multimodality images. Correspondences between contours in the two images are used to stretch the deformed image toward its goal image. This process is repeated a number of times, with decreasing image stiffness. As the iterations continue, the stretched image better approximates its goal image

  18. Two dimensional estimates from ocean SAR images

    Directory of Open Access Journals (Sweden)

    J. M. Le Caillec

    1996-01-01

    Full Text Available Synthetic Aperture Radar (SAR images of the ocean yield a lot of information on the sea-state surface providing that the mapping process between the surface and the image is clearly defined. However it is well known that SAR images exhibit non-gaussian statistics and that the motion of the scatterers on the surface, while the image is being formed, may yield to nonlinearities. The detection and quantification of these nonlinearities are made possible by using Higher Order Spectra (HOS methods and more specifically, bispectrum estimation. The development of the latter method allowed us to find phase relations between different parts of the image and to recognise their level of coupling, i.e. if and how waves of different wavelengths interacted nonlinearly. This information is quite important as the usual models assume strong nonlinearities when the waves are propagating in the azimuthal direction (i.e. along the satellite track and almost no nonlinearities when propagating in the range direction. In this paper, the mapping of the ocean surface to the SAR image is reinterpreted and a specific model (i.e. a Second Order Volterra Model is introduced. The nonlinearities are thus explained as either produced by a nonlinear system or due to waves propagating into selected directions (azimuth or range and interacting during image formation. It is shown that quadratic nonlinearities occur for waves propagating near the range direction while for those travelling in the azimuthal direction the nonlinearities, when present, are mostly due to wave interactions but are almost completely removed by the filtering effect coming from the surface motion itself (azimuth cut-off. An inherent quadratic interaction filtering (azimuth high pass filter is also present. But some other effects, apparently nonlinear, are not detected with the methods described here, meaning that either the usual relation developed for the Ocean-to-SAR transform is somewhat incomplete

  19. Prototype Theory Based Feature Representation for PolSAR Images

    OpenAIRE

    Huang Xiaojing; Yang Xiangli; Huang Pingping; Yang Wen

    2016-01-01

    This study presents a new feature representation approach for Polarimetric Synthetic Aperture Radar (PolSAR) image based on prototype theory. First, multiple prototype sets are generated using prototype theory. Then, regularized logistic regression is used to predict similarities between a test sample and each prototype set. Finally, the PolSAR image feature representation is obtained by ensemble projection. Experimental results of an unsupervised classification of PolSAR images show that our...

  20. An Image Registration Method for Colposcopic Images

    Directory of Open Access Journals (Sweden)

    Efrén Mezura-Montes

    2013-01-01

    sequence and a division of such image into small windows. A search process is then carried out to find the window with the highest affinity in each image of the sequence and replace it with the window in the reference image. The affinity value is based on polynomial approximation of the time series computed and the search is bounded by a search radius which defines the neighborhood of each window. The proposed approach is tested in ten 310-frame real cases in two experiments: the first one to determine the best values for the window size and the search radius and the second one to compare the best obtained results with respect to four registration methods found in the specialized literature. The obtained results show a robust and competitive performance of the proposed approach with a significant lower time with respect to the compared methods.

  1. Edge-based correlation image registration for multispectral imaging

    Science.gov (United States)

    Nandy, Prabal [Albuquerque, NM

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  2. Medical Image Registration and Surgery Simulation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1996-01-01

    This thesis explores the application of physical models in medical image registration and surgery simulation. The continuum models of elasticity and viscous fluids are described in detail, and this knowledge is used as a basis for most of the methods described here. Real-time deformable models......, and the use of selective matrix vector multiplication. Fluid medical image registration A new and faster algorithm for non-rigid registration using viscous fluid models is presented. This algorithm replaces the core part of the original algorithm with multi-resolution convolution using a new filter, which...... growth is also presented. Using medical knowledge about the growth processes of the mandibular bone, a registration algorithm for time sequence images of the mandible is developed. Since this registration algorithm models the actual development of the mandible, it is possible to simulate the development...

  3. Deformable image registration using convolutional neural networks

    NARCIS (Netherlands)

    Eppenhof, Koen A.J.; Lafarge, Maxime W.; Moeskops, Pim; Veta, Mitko; Pluim, Josien P.W.

    2018-01-01

    Deformable image registration can be time-consuming and often needs extensive parameterization to perform well on a specific application. We present a step towards a registration framework based on a three-dimensional convolutional neural network. The network directly learns transformations between

  4. Fast fluid registration of medical images

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Gramkow, Claus

    1996-01-01

    This paper offers a new fast algorithm for non-rigid viscous fluid registration of medical images that is at least an order of magnitude faster than the previous method by (Christensen et al., 1994). The core algorithm in the fluid registration method is based on a linear elastic deformation...

  5. On combining algorithms for deformable image registration

    NARCIS (Netherlands)

    Muenzing, S.E.A.; Ginneken, van B.; Pluim, J.P.W.; Dawant, B.M.

    2012-01-01

    We propose a meta-algorithm for registration improvement by combining deformable image registrations (MetaReg). It is inspired by a well-established method from machine learning, the combination of classifiers. MetaReg consists of two main components: (1) A strategy for composing an improved

  6. Polarimetric SAR image classification based on discriminative dictionary learning model

    Science.gov (United States)

    Sang, Cheng Wei; Sun, Hong

    2018-03-01

    Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.

  7. Automated Registration Of Images From Multiple Sensors

    Science.gov (United States)

    Rignot, Eric J. M.; Kwok, Ronald; Curlander, John C.; Pang, Shirley S. N.

    1994-01-01

    Images of terrain scanned in common by multiple Earth-orbiting remote sensors registered automatically with each other and, where possible, on geographic coordinate grid. Simulated image of terrain viewed by sensor computed from ancillary data, viewing geometry, and mathematical model of physics of imaging. In proposed registration algorithm, simulated and actual sensor images matched by area-correlation technique.

  8. Synthetic aperture design for increased SAR image rate

    Science.gov (United States)

    Bielek, Timothy P [Albuquerque, NM; Thompson, Douglas G [Albuqerque, NM; Walker, Bruce C [Albuquerque, NM

    2009-03-03

    High resolution SAR images of a target scene at near video rates can be produced by using overlapped, but nevertheless, full-size synthetic apertures. The SAR images, which respectively correspond to the apertures, can be analyzed in sequence to permit detection of movement in the target scene.

  9. Multi-look polarimetric SAR image filtering using simulated annealing

    DEFF Research Database (Denmark)

    Schou, Jesper

    2000-01-01

    Based on a previously published algorithm capable of estimating the radar cross-section in synthetic aperture radar (SAR) intensity images, a new filter is presented utilizing multi-look polarimetric SAR images. The underlying mean covariance matrix is estimated from the observed sample covariance...

  10. Deformable image registration using convolutional neural networks

    Science.gov (United States)

    Eppenhof, Koen A. J.; Lafarge, Maxime W.; Moeskops, Pim; Veta, Mitko; Pluim, Josien P. W.

    2018-03-01

    Deformable image registration can be time-consuming and often needs extensive parameterization to perform well on a specific application. We present a step towards a registration framework based on a three-dimensional convolutional neural network. The network directly learns transformations between pairs of three-dimensional images. The outputs of the network are three maps for the x, y, and z components of a thin plate spline transformation grid. The network is trained on synthetic random transformations, which are applied to a small set of representative images for the desired application. Training therefore does not require manually annotated ground truth deformation information. The methodology is demonstrated on public data sets of inspiration-expiration lung CT image pairs, which come with annotated corresponding landmarks for evaluation of the registration accuracy. Advantages of this methodology are its fast registration times and its minimal parameterization.

  11. 3D Tomographic SAR Imaging in Densely Vegetated Mountainous Rural Areas in China and Sweden

    Science.gov (United States)

    Feng, L.; Muller, J. P., , Prof

    2017-12-01

    3D SAR Tomography (TomoSAR) and 4D SAR Differential Tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to create an important new innovation of SAR Interferometry, to unscramble complex scenes with multiple scatterers mapped into the same SAR cell. In addition to this 3-D shape reconstruction and deformation solution in complex urban/infrastructure areas, and recent cryospheric ice investigations, emerging tomographic remote sensing applications include forest applications, e.g. tree height and biomass estimation, sub-canopy topographic mapping, and even search, rescue and surveillance. However, these scenes are characterized by temporal decorrelation of scatterers, orbital, tropospheric and ionospheric phase distortion and an open issue regarding possible height blurring and accuracy losses for TomoSAR applications particularly in densely vegetated mountainous rural areas. Thus, it is important to develop solutions for temporal decorrelation, orbital, tropospheric and ionospheric phase distortion.We report here on 3D imaging (especially in vertical layers) over densely vegetated mountainous rural areas using 3-D SAR imaging (SAR tomography) derived from data stacks of X-band COSMO-SkyMed Spotlight and L band ALOS-1 PALSAR data stacks over Dujiangyan Dam, Sichuan, China and L and P band airborne SAR data (BioSAR 2008 - ESA) in the Krycklan river catchment, Northern Sweden. The new TanDEM-X 12m DEM is used to assist co - registration of all the data stacks over China first. Then, atmospheric correction is being assessed using weather model data such as ERA-I, MERRA, MERRA-2, WRF; linear phase-topography correction and MODIS spectrometer correction will be compared and ionospheric correction methods are discussed to remove tropospheric and ionospheric delay. Then the new TomoSAR method with the TanDEM-X 12m DEM is described to obtain the number of scatterers inside each pixel, the scattering amplitude and phase of each scatterer and finally extract

  12. Autofocus algorithm for curvilinear SAR imaging

    Science.gov (United States)

    Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T.

    2012-05-01

    We describe an approach to autofocusing for large apertures on curved SAR trajectories. It is a phase-gradient type method in which phase corrections compensating trajectory perturbations are estimated not directly from the image itself, but rather on the basis of partial" SAR data { functions of the slow and fast times { recon- structed (by an appropriate forward-projection procedure) from windowed scene patches, of sizes comparable to distances between distinct targets or localized features of the scene. The resulting partial data" can be shown to contain the same information on the phase perturbations as that in the original data, provided the frequencies of the perturbations do not exceed a quantity proportional to the patch size. The algorithm uses as input a sequence of conventional scene images based on moderate-size subapertures constituting the full aperture for which the phase corrections are to be determined. The subaperture images are formed with pixel sizes comparable to the range resolution which, for the optimal subaperture size, should be also approximately equal the cross-range resolution. The method does not restrict the size or shape of the synthetic aperture and can be incorporated in the data collection process in persistent sensing scenarios. The algorithm has been tested on the publicly available set of GOTCHA data, intentionally corrupted by random-walk-type trajectory uctuations (a possible model of errors caused by imprecise inertial navigation system readings) of maximum frequencies compatible with the selected patch size. It was able to eciently remove image corruption for apertures of sizes up to 360 degrees.

  13. Potential of TCPInSAR in Monitoring Linear Infrastructure with a Small Dataset of SAR Images: Application of the Donghai Bridge, China

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-03-01

    Full Text Available Reliably monitoring deformation associated with linear infrastructures, such as long-span bridges, is vitally important to assess their structural health. In this paper, we attempt to employ satellite interferometric synthetic aperture radar (InSAR to map the deformation of Donghai Bridge over a half of an annual cycle. The bridge, as the fourth longest cross-sea bridge in the world, located in the north of Hangzhou Bay, East China Sea where the featureless sea surface largely occupied the radar image raises challenges to accurately co-register the coherent points along the bridge. To tackle the issues due to co-registration and the limited number of synthetic aperture radar (SAR images, we adopt the termed temporarily-coherent point (TCP InSAR (TCPInSAR technique to process the radar images. TCPs that are not necessarily coherent during the whole observation period can be identified within every two SAR acquisitions during the co-registration procedure based on the statistics of azimuth and range offsets. In the process, co-registration is performed only using the offsets of these TCPs, leading to improved interferometric phases and the local Delaunay triangulation is used to construct point pairs to reduce the atmospheric artifacts along the bridge. With the TCPInSAR method the deformation rate along the bridge is estimated with no need of phase unwrapping. The achieved result reveals that the Donghai Bridge suffered a line-of-sight (LOS deformation rate up to −2.3 cm/year from January 2009 to July 2009 at the cable-stayed part, which is likely due to the thermal expansion of cables.

  14. Guided SAR image despeckling with probabilistic non local weights

    Science.gov (United States)

    Gokul, Jithin; Nair, Madhu S.; Rajan, Jeny

    2017-12-01

    SAR images are generally corrupted by granular disturbances called speckle, which makes visual analysis and detail extraction a difficult task. Non Local despeckling techniques with probabilistic similarity has been a recent trend in SAR despeckling. To achieve effective speckle suppression without compromising detail preservation, we propose an improvement for the existing Generalized Guided Filter with Bayesian Non-Local Means (GGF-BNLM) method. The proposed method (Guided SAR Image Despeckling with Probabilistic Non Local Weights) replaces parametric constants based on heuristics in GGF-BNLM method with dynamically derived values based on the image statistics for weight computation. Proposed changes make GGF-BNLM method adaptive and as a result, significant improvement is achieved in terms of performance. Experimental analysis on SAR images shows excellent speckle reduction without compromising feature preservation when compared to GGF-BNLM method. Results are also compared with other state-of-the-art and classic SAR depseckling techniques to demonstrate the effectiveness of the proposed method.

  15. Azimuth Ambiguities Removal in Littoral Zones Based on Multi-Temporal SAR Images

    Directory of Open Access Journals (Sweden)

    Xiangguang Leng

    2017-08-01

    Full Text Available Synthetic aperture radar (SAR is one of the most important techniques for ocean monitoring. Azimuth ambiguities are a real problem in SAR images today, which can cause performance degradation in SAR ocean applications. In particular, littoral zones can be strongly affected by land-based sources, whereas they are usually regions of interest (ROI. Given the presence of complexity and diversity in littoral zones, azimuth ambiguities removal is a tough problem. As SAR sensors can have a repeat cycle, multi-temporal SAR images provide new insight into this problem. A method for azimuth ambiguities removal in littoral zones based on multi-temporal SAR images is proposed in this paper. The proposed processing chain includes co-registration, local correlation, binarization, masking, and restoration steps. It is designed to remove azimuth ambiguities caused by fixed land-based sources. The idea underlying the proposed method is that sea surface is dynamic, whereas azimuth ambiguities caused by land-based sources are constant. Thus, the temporal consistence of azimuth ambiguities is higher than sea clutter. It opens up the possibilities to use multi-temporal SAR data to remove azimuth ambiguities. The design of the method and the experimental procedure are based on images from the Sentinel data hub of Europe Space Agency (ESA. Both Interferometric Wide Swath (IW and Stripmap (SM mode images are taken into account to validate the proposed method. This paper also presents two RGB composition methods for better azimuth ambiguities visualization. Experimental results show that the proposed method can remove azimuth ambiguities in littoral zones effectively.

  16. TU-B-19A-01: Image Registration II: TG132-Quality Assurance for Image Registration

    International Nuclear Information System (INIS)

    Brock, K; Mutic, S

    2014-01-01

    AAPM Task Group 132 was charged with a review of the current approaches and solutions for image registration in radiotherapy and to provide recommendations for quality assurance and quality control of these clinical processes. As the results of image registration are always used as the input of another process for planning or delivery, it is important for the user to understand and document the uncertainty associate with the algorithm in general and the Result of a specific registration. The recommendations of this task group, which at the time of abstract submission are currently being reviewed by the AAPM, include the following components. The user should understand the basic image registration techniques and methods of visualizing image fusion. The disclosure of basic components of the image registration by commercial vendors is critical in this respect. The physicists should perform end-to-end tests of imaging, registration, and planning/treatment systems if image registration is performed on a stand-alone system. A comprehensive commissioning process should be performed and documented by the physicist prior to clinical use of the system. As documentation is important to the safe implementation of this process, a request and report system should be integrated into the clinical workflow. Finally, a patient specific QA practice should be established for efficient evaluation of image registration results. The implementation of these recommendations will be described and illustrated during this educational session. Learning Objectives: Highlight the importance of understanding the image registration techniques used in their clinic. Describe the end-to-end tests needed for stand-alone registration systems. Illustrate a comprehensive commissioning program using both phantom data and clinical images. Describe a request and report system to ensure communication and documentation. Demonstrate an clinically-efficient patient QA practice for efficient evaluation of image

  17. Image registration in gastric emptying studies

    International Nuclear Information System (INIS)

    Shuter, B.; Cooper, R.G.

    1998-01-01

    Full text: We have previously shown that image registration, based upon a two-dimensional cross-correlation (CC) of logarithmic Laplacian images (LLI), corrected motion in biliary studies in up to 90% of cases with minimal artifact. We have now applied the same technique to gastric emptying studies (GES). GES were acquired on an LFOV gamma camera over a two-hour period as 20-26 pairs of anterior-posterior frames (30 second duration and 64 x 64 matrix) for both solid and liquid components. All images were manually registered so that the solid contents of the stomach lay within an operator-drawn ROI. The anterior images of the solid component for 30 randomly selected patients were subjected to further image registration using CC of LLI, CC of raw images (Rl) (a common approach to image registration) and CC of Laplacian images (Ll). All images were aligned to the third image of the study, on which an ROI was drawn to outline the stomach. The number of images in which stomach counts appeared outside this ROI were tallied, in the original and all re-registered studies. Maximum displacements in X/Y position between images of studies registered by the LLI and Rl methods were also computed to directly compare positional accuracy. Stomachs partially exceeded the limits of the ROI in 27, 9, 53 and 54 frames (total of 710) in the original, LLI, Rl and Ll studies respectively. There were 4, 1, 6 and 7 studies with misregistered stomachs on more than 2 frames. Frames in seven Rl studies differed from the LLI studies in ) X/Y position by 3 pixels or more. Cross-correlation using LLI was the only method which improved upon the original manual registration. The Rl and Ll methods increased the number of misregistered frames. We conclude that in gastric emptying studies, as in biliary studies, object tracking by CC of LLI is the method of choice for image registration

  18. Exploiting Deep Matching and SAR Data for the Geo-Localization Accuracy Improvement of Optical Satellite Images

    Directory of Open Access Journals (Sweden)

    Nina Merkle

    2017-06-01

    Full Text Available Improving the geo-localization of optical satellite images is an important pre-processing step for many remote sensing tasks like monitoring by image time series or scene analysis after sudden events. These tasks require geo-referenced and precisely co-registered multi-sensor data. Images captured by the high resolution synthetic aperture radar (SAR satellite TerraSAR-X exhibit an absolute geo-location accuracy within a few decimeters. These images represent therefore a reliable source to improve the geo-location accuracy of optical images, which is in the order of tens of meters. In this paper, a deep learning-based approach for the geo-localization accuracy improvement of optical satellite images through SAR reference data is investigated. Image registration between SAR and optical images requires few, but accurate and reliable matching points. These are derived from a Siamese neural network. The network is trained using TerraSAR-X and PRISM image pairs covering greater urban areas spread over Europe, in order to learn the two-dimensional spatial shifts between optical and SAR image patches. Results confirm that accurate and reliable matching points can be generated with higher matching accuracy and precision with respect to state-of-the-art approaches.

  19. Mid-space-independent deformable image registration.

    Science.gov (United States)

    Aganj, Iman; Iglesias, Juan Eugenio; Reuter, Martin; Sabuncu, Mert Rory; Fischl, Bruce

    2017-05-15

    Aligning images in a mid-space is a common approach to ensuring that deformable image registration is symmetric - that it does not depend on the arbitrary ordering of the input images. The results are, however, generally dependent on the mathematical definition of the mid-space. In particular, the set of possible solutions is typically restricted by the constraints that are enforced on the transformations to prevent the mid-space from drifting too far from the native image spaces. The use of an implicit atlas has been proposed as an approach to mid-space image registration. In this work, we show that when the atlas is aligned to each image in the native image space, the data term of implicit-atlas-based deformable registration is inherently independent of the mid-space. In addition, we show that the regularization term can be reformulated independently of the mid-space as well. We derive a new symmetric cost function that only depends on the transformation morphing the images to each other, rather than to the atlas. This eliminates the need for anti-drift constraints, thereby expanding the space of allowable deformations. We provide an implementation scheme for the proposed framework, and validate it through diffeomorphic registration experiments on brain magnetic resonance images. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A multicore based parallel image registration method.

    Science.gov (United States)

    Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L; Foran, David J

    2009-01-01

    Image registration is a crucial step for many image-assisted clinical applications such as surgery planning and treatment evaluation. In this paper we proposed a landmark based nonlinear image registration algorithm for matching 2D image pairs. The algorithm was shown to be effective and robust under conditions of large deformations. In landmark based registration, the most important step is establishing the correspondence among the selected landmark points. This usually requires an extensive search which is often computationally expensive. We introduced a nonregular data partition algorithm using the K-means clustering algorithm to group the landmarks based on the number of available processing cores. The step optimizes the memory usage and data transfer. We have tested our method using IBM Cell Broadband Engine (Cell/B.E.) platform.

  1. RESEARCH ON AIRBORNE SAR IMAGING BASED ON ESC ALGORITHM

    Directory of Open Access Journals (Sweden)

    X. T. Dong

    2017-09-01

    Full Text Available Due to the ability of flexible, accurate, and fast obtaining abundant information, airborne SAR is significant in the field of Earth Observation and many other applications. Optimally the flight paths are straight lines, but in reality it is not the case since some portion of deviation from the ideal path is impossible to avoid. A small disturbance from the ideal line will have a major effect on the signal phase, dramatically deteriorating the quality of SAR images and data. Therefore, to get accurate echo information and radar images, it is essential to measure and compensate for nonlinear motion of antenna trajectories. By means of compensating each flying trajectory to its reference track, MOCO method corrects linear phase error and quadratic phase error caused by nonlinear antenna trajectories. Position and Orientation System (POS data is applied to acquiring accuracy motion attitudes and spatial positions of antenna phase centre (APC. In this paper, extend chirp scaling algorithm (ECS is used to deal with echo data of airborne SAR. An experiment is done using VV-Polarization raw data of C-band airborne SAR. The quality evaluations of compensated SAR images and uncompensated SAR images are done in the experiment. The former always performs better than the latter. After MOCO processing, azimuth ambiguity is declined, peak side lobe ratio (PSLR effectively improves and the resolution of images is improved obviously. The result shows the validity and operability of the imaging process for airborne SAR.

  2. Research on Airborne SAR Imaging Based on Esc Algorithm

    Science.gov (United States)

    Dong, X. T.; Yue, X. J.; Zhao, Y. H.; Han, C. M.

    2017-09-01

    Due to the ability of flexible, accurate, and fast obtaining abundant information, airborne SAR is significant in the field of Earth Observation and many other applications. Optimally the flight paths are straight lines, but in reality it is not the case since some portion of deviation from the ideal path is impossible to avoid. A small disturbance from the ideal line will have a major effect on the signal phase, dramatically deteriorating the quality of SAR images and data. Therefore, to get accurate echo information and radar images, it is essential to measure and compensate for nonlinear motion of antenna trajectories. By means of compensating each flying trajectory to its reference track, MOCO method corrects linear phase error and quadratic phase error caused by nonlinear antenna trajectories. Position and Orientation System (POS) data is applied to acquiring accuracy motion attitudes and spatial positions of antenna phase centre (APC). In this paper, extend chirp scaling algorithm (ECS) is used to deal with echo data of airborne SAR. An experiment is done using VV-Polarization raw data of C-band airborne SAR. The quality evaluations of compensated SAR images and uncompensated SAR images are done in the experiment. The former always performs better than the latter. After MOCO processing, azimuth ambiguity is declined, peak side lobe ratio (PSLR) effectively improves and the resolution of images is improved obviously. The result shows the validity and operability of the imaging process for airborne SAR.

  3. SAR image effects on coherence and coherence estimation.

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, Douglas Lloyd

    2014-01-01

    Radar coherence is an important concept for imaging radar systems such as synthetic aperture radar (SAR). This document quantifies some of the effects in SAR which modify the coherence. Although these effects can disrupt the coherence within a single SAR image, this report will focus on the coherence between separate images, such as for coherent change detection (CCD) processing. There have been other presentations on aspects of this material in the past. The intent of this report is to bring various issues that affect the coherence together in a single report to support radar engineers in making decisions about these matters.

  4. Feature Matching for SAR and Optical Images Based on Gaussian-Gamma-shaped Edge Strength Map

    Directory of Open Access Journals (Sweden)

    CHEN Min

    2016-03-01

    Full Text Available A matching method for SAR and optical images, robust to pixel noise and nonlinear grayscale differences, is presented. Firstly, a rough correction to eliminate rotation and scale change between images is performed. Secondly, features robust to speckle noise of SAR image are detected by improving the original phase congruency based method. Then, feature descriptors are constructed on the Gaussian-Gamma-shaped edge strength map according to the histogram of oriented gradient pattern. Finally, descriptor similarity and geometrical relationship are combined to constrain the matching processing.The experimental results demonstrate that the proposed method provides significant improvement in correct matches number and image registration accuracy compared with other traditional methods.

  5. CT image registration in sinogram space.

    Science.gov (United States)

    Mao, Weihua; Li, Tianfang; Wink, Nicole; Xing, Lei

    2007-09-01

    Object displacement in a CT scan is generally reflected in CT projection data or sinogram. In this work, the direct relationship between object motion and the change of CT projection data (sinogram) is investigated and this knowledge is applied to create a novel algorithm for sinogram registration. Calculated and experimental results demonstrate that the registration technique works well for registering rigid 2D or 3D motion in parallel and fan beam samplings. Problem and solution for 3D sinogram-based registration of metallic fiducials are also addressed. Since the motion is registered before image reconstruction, the presented algorithm is particularly useful when registering images with metal or truncation artifacts. In addition, this algorithm is valuable for dealing with situations where only limited projection data are available, making it appealing for various applications in image guided radiation therapy.

  6. CT image registration in sinogram space

    International Nuclear Information System (INIS)

    Mao Weihua; Li Tianfang; Wink, Nicole; Xing Lei

    2007-01-01

    Object displacement in a CT scan is generally reflected in CT projection data or sinogram. In this work, the direct relationship between object motion and the change of CT projection data (sinogram) is investigated and this knowledge is applied to create a novel algorithm for sinogram registration. Calculated and experimental results demonstrate that the registration technique works well for registering rigid 2D or 3D motion in parallel and fan beam samplings. Problem and solution for 3D sinogram-based registration of metallic fiducials are also addressed. Since the motion is registered before image reconstruction, the presented algorithm is particularly useful when registering images with metal or truncation artifacts. In addition, this algorithm is valuable for dealing with situations where only limited projection data are available, making it appealing for various applications in image guided radiation therapy

  7. Fractional Regularization Term for Variational Image Registration

    Directory of Open Access Journals (Sweden)

    Rafael Verdú-Monedero

    2009-01-01

    Full Text Available Image registration is a widely used task of image analysis with applications in many fields. Its classical formulation and current improvements are given in the spatial domain. In this paper a regularization term based on fractional order derivatives is formulated. This term is defined and implemented in the frequency domain by translating the energy functional into the frequency domain and obtaining the Euler-Lagrange equations which minimize it. The new regularization term leads to a simple formulation and design, being applicable to higher dimensions by using the corresponding multidimensional Fourier transform. The proposed regularization term allows for a real gradual transition from a diffusion registration to a curvature registration which is best suited to some applications and it is not possible in the spatial domain. Results with 3D actual images show the validity of this approach.

  8. Automated image registration for FDOPA PET studies

    International Nuclear Information System (INIS)

    Kang-Ping Lin; Sung-Cheng Huang, Dan-Chu Yu; Melega, W.; Barrio, J.R.; Phelps, M.E.

    1996-01-01

    In this study, various image registration methods are investigated for their suitability for registration of L-6-[18F]-fluoro-DOPA (FDOPA) PET images. Five different optimization criteria including sum of absolute difference (SAD), mean square difference (MSD), cross-correlation coefficient (CC), standard deviation of pixel ratio (SDPR), and stochastic sign change (SSC) were implemented and Powell's algorithm was used to optimize the criteria. The optimization criteria were calculated either unidirectionally (i.e. only evaluating the criteria for comparing the resliced image 1 with the original image 2) or bidirectionally (i.e. averaging the criteria for comparing the resliced image 1 with the original image 2 and those for the sliced image 2 with the original image 1). Monkey FDOPA images taken at various known orientations were used to evaluate the accuracy of different methods. A set of human FDOPA dynamic images was used to investigate the ability of the methods for correcting subject movement. It was found that a large improvement in performance resulted when bidirectional rather than unidirectional criteria were used. Overall, the SAD, MSD and SDPR methods were found to be comparable in performance and were suitable for registering FDOPA images. The MSD method gave more adequate results for frame-to-frame image registration for correcting subject movement during a dynamic FDOPA study. The utility of the registration method is further demonstrated by registering FDOPA images in monkeys before and after amphetamine injection to reveal more clearly the changes in spatial distribution of FDOPA due to the drug intervention. (author)

  9. Improved SAR Image Coregistration Using Pixel-Offset Series

    KAUST Repository

    Wang, Teng

    2014-03-14

    Synthetic aperture radar (SAR) image coregistration is a key procedure before interferometric SAR (InSAR) time-series analysis can be started. However, many geophysical data sets suffer from severe decorrelation problems due to a variety of reasons, making precise coregistration a nontrivial task. Here, we present a new strategy that uses a pixel-offset series of detected subimage patches dominated by point-like targets (PTs) to improve SAR image coregistrations. First, all potentially coherent image pairs are coregistered in a conventional way. In this step, we propose a coregistration quality index for each image to rank its relative “significance” within the data set and to select a reference image for the SAR data set. Then, a pixel-offset series of detected PTs is made from amplitude maps to improve the geometrical mapping functions. Finally, all images are resampled depending on the pixel offsets calculated from the updated geometrical mapping functions. We used images from a rural region near the North Anatolian Fault in eastern Turkey to test the proposed method, and clear coregistration improvements were found based on amplitude stability. This enhanced the fact that the coregistration strategy should therefore lead to improved InSAR time-series analysis results.

  10. Improved SAR Image Coregistration Using Pixel-Offset Series

    KAUST Repository

    Wang, Teng; Jonsson, Sigurjon; Hanssen, Ramon F.

    2014-01-01

    Synthetic aperture radar (SAR) image coregistration is a key procedure before interferometric SAR (InSAR) time-series analysis can be started. However, many geophysical data sets suffer from severe decorrelation problems due to a variety of reasons, making precise coregistration a nontrivial task. Here, we present a new strategy that uses a pixel-offset series of detected subimage patches dominated by point-like targets (PTs) to improve SAR image coregistrations. First, all potentially coherent image pairs are coregistered in a conventional way. In this step, we propose a coregistration quality index for each image to rank its relative “significance” within the data set and to select a reference image for the SAR data set. Then, a pixel-offset series of detected PTs is made from amplitude maps to improve the geometrical mapping functions. Finally, all images are resampled depending on the pixel offsets calculated from the updated geometrical mapping functions. We used images from a rural region near the North Anatolian Fault in eastern Turkey to test the proposed method, and clear coregistration improvements were found based on amplitude stability. This enhanced the fact that the coregistration strategy should therefore lead to improved InSAR time-series analysis results.

  11. Retinal image registration for eye movement estimation.

    Science.gov (United States)

    Kolar, Radim; Tornow, Ralf P; Odstrcilik, Jan

    2015-01-01

    This paper describes a novel methodology for eye fixation measurement using a unique videoophthalmoscope setup and advanced image registration approach. The representation of the eye movements via Poincare plot is also introduced. The properties, limitations and perspective of this methodology are finally discussed.

  12. Image registration for remote sensing

    National Research Council Canada - National Science Library

    Le Moigne, Jacqueline; Netanyahu, Nathan S; Eastman, Roger D

    2011-01-01

    ... for environmental, political and basic science studies. The book brings together invited contributions by 36 distinguished researchers in the field to present a coherent and detailed overview of current research and practice in the application of image...

  13. Image Segmentation, Registration, Compression, and Matching

    Science.gov (United States)

    Yadegar, Jacob; Wei, Hai; Yadegar, Joseph; Ray, Nilanjan; Zabuawala, Sakina

    2011-01-01

    A novel computational framework was developed of a 2D affine invariant matching exploiting a parameter space. Named as affine invariant parameter space (AIPS), the technique can be applied to many image-processing and computer-vision problems, including image registration, template matching, and object tracking from image sequence. The AIPS is formed by the parameters in an affine combination of a set of feature points in the image plane. In cases where the entire image can be assumed to have undergone a single affine transformation, the new AIPS match metric and matching framework becomes very effective (compared with the state-of-the-art methods at the time of this reporting). No knowledge about scaling or any other transformation parameters need to be known a priori to apply the AIPS framework. An automated suite of software tools has been created to provide accurate image segmentation (for data cleaning) and high-quality 2D image and 3D surface registration (for fusing multi-resolution terrain, image, and map data). These tools are capable of supporting existing GIS toolkits already in the marketplace, and will also be usable in a stand-alone fashion. The toolkit applies novel algorithmic approaches for image segmentation, feature extraction, and registration of 2D imagery and 3D surface data, which supports first-pass, batched, fully automatic feature extraction (for segmentation), and registration. A hierarchical and adaptive approach is taken for achieving automatic feature extraction, segmentation, and registration. Surface registration is the process of aligning two (or more) data sets to a common coordinate system, during which the transformation between their different coordinate systems is determined. Also developed here are a novel, volumetric surface modeling and compression technique that provide both quality-guaranteed mesh surface approximations and compaction of the model sizes by efficiently coding the geometry and connectivity

  14. Wavelet Filter Banks for Super-Resolution SAR Imaging

    Science.gov (United States)

    Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess

    2011-01-01

    This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.

  15. Enhancement of SAR images using fuzzy shrinkage technique

    Indian Academy of Sciences (India)

    This paper presents speckle noise reduction in SAR images using a combination of curvelet and fuzzy logic technique to restore speckle-affected images. This method overcomes the limitation of discontinuity in hard threshold and permanent deviation in soft threshold. First, it decomposes noise image into different ...

  16. SAR image formation with azimuth interpolation after azimuth transform

    Science.gov (United States)

    Doerry,; Armin W. , Martin; Grant D. , Holzrichter; Michael, W [Albuquerque, NM

    2008-07-08

    Two-dimensional SAR data can be processed into a rectangular grid format by subjecting the SAR data to a Fourier transform operation, and thereafter to a corresponding interpolation operation. Because the interpolation operation follows the Fourier transform operation, the interpolation operation can be simplified, and the effect of interpolation errors can be diminished. This provides for the possibility of both reducing the re-grid processing time, and improving the image quality.

  17. Fast Superpixel Segmentation Algorithm for PolSAR Images

    Directory of Open Access Journals (Sweden)

    Zhang Yue

    2017-10-01

    Full Text Available As a pre-processing technique, superpixel segmentation algorithms should be of high computational efficiency, accurate boundary adherence and regular shape in homogeneous regions. A fast superpixel segmentation algorithm based on Iterative Edge Refinement (IER has shown to be applicable on optical images. However, it is difficult to obtain the ideal results when IER is applied directly to PolSAR images due to the speckle noise and small or slim regions in PolSAR images. To address these problems, in this study, the unstable pixel set is initialized as all the pixels in the PolSAR image instead of the initial grid edge pixels. In the local relabeling of the unstable pixels, the fast revised Wishart distance is utilized instead of the Euclidean distance in CIELAB color space. Then, a post-processing procedure based on dissimilarity measure is empolyed to remove isolated small superpixels as well as to retain the strong point targets. Finally, extensive experiments based on a simulated image and a real-world PolSAR image from Airborne Synthetic Aperture Radar (AirSAR are conducted, showing that the proposed algorithm, compared with three state-of-the-art methods, performs better in terms of several commonly used evaluation criteria with high computational efficiency, accurate boundary adherence, and homogeneous regularity.

  18. Deformable image registration in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seung Jong; Kim, Si Yong [Dept. of Radiation Oncology, Virginia Commonwealth University, Richmond (United States)

    2017-06-15

    The number of imaging data sets has significantly increased during radiation treatment after introducing a diverse range of advanced techniques into the field of radiation oncology. As a consequence, there have been many studies proposing meaningful applications of imaging data set use. These applications commonly require a method to align the data sets at a reference. Deformable image registration (DIR) is a process which satisfies this requirement by locally registering image data sets into a reference image set. DIR identifies the spatial correspondence in order to minimize the differences between two or among multiple sets of images. This article describes clinical applications, validation, and algorithms of DIR techniques. Applications of DIR in radiation treatment include dose accumulation, mathematical modeling, automatic segmentation, and functional imaging. Validation methods discussed are based on anatomical landmarks, physical phantoms, digital phantoms, and per application purpose. DIR algorithms are also briefly reviewed with respect to two algorithmic components: similarity index and deformation models.

  19. Canny edge-based deformable image registration.

    Science.gov (United States)

    Kearney, Vasant; Huang, Yihui; Mao, Weihua; Yuan, Baohong; Tang, Liping

    2017-02-07

    This work focuses on developing a 2D Canny edge-based deformable image registration (Canny DIR) algorithm to register in vivo white light images taken at various time points. This method uses a sparse interpolation deformation algorithm to sparsely register regions of the image with strong edge information. A stability criterion is enforced which removes regions of edges that do not deform in a smooth uniform manner. Using a synthetic mouse surface ground truth model, the accuracy of the Canny DIR algorithm was evaluated under axial rotation in the presence of deformation. The accuracy was also tested using fluorescent dye injections, which were then used for gamma analysis to establish a second ground truth. The results indicate that the Canny DIR algorithm performs better than rigid registration, intensity corrected Demons, and distinctive features for all evaluation matrices and ground truth scenarios. In conclusion Canny DIR performs well in the presence of the unique lighting and shading variations associated with white-light-based image registration.

  20. Optimized imaging using non-rigid registration

    International Nuclear Information System (INIS)

    Berkels, Benjamin; Binev, Peter; Blom, Douglas A.; Dahmen, Wolfgang; Sharpley, Robert C.; Vogt, Thomas

    2014-01-01

    The extraordinary improvements of modern imaging devices offer access to data with unprecedented information content. However, widely used image processing methodologies fall far short of exploiting the full breadth of information offered by numerous types of scanning probe, optical, and electron microscopies. In many applications, it is necessary to keep measurement intensities below a desired threshold. We propose a methodology for extracting an increased level of information by processing a series of data sets suffering, in particular, from high degree of spatial uncertainty caused by complex multiscale motion during the acquisition process. An important role is played by a non-rigid pixel-wise registration method that can cope with low signal-to-noise ratios. This is accompanied by formulating objective quality measures which replace human intervention and visual inspection in the processing chain. Scanning transmission electron microscopy of siliceous zeolite material exhibits the above-mentioned obstructions and therefore serves as orientation and a test of our procedures. - Highlights: • Developed a new process for extracting more information from a series of STEM images. • An objective non-rigid registration process copes with distortions. • Images of zeolite Y show retrieval of all information available from the data set. • Quantitative measures of registration quality were implemented. • Applicable to any serially acquired data, e.g. STM, AFM, STXM, etc

  1. Mass preserving image registration for lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Sporring, Jon; Lo, Pechin Chien Pau

    2012-01-01

    This paper presents a mass preserving image registration algorithm for lung CT images. To account for the local change in lung tissue intensity during the breathing cycle, a tissue appearance model based on the principle of preservation of total lung mass is proposed. This model is incorporated...... on four groups of data: 44 pairs of longitudinal inspiratory chest CT scans with small difference in lung volume; 44 pairs of longitudinal inspiratory chest CT scans with large difference in lung volume; 16 pairs of expiratory and inspiratory CT scans; and 5 pairs of images extracted at end exhale and end...

  2. Multi-image Matching of Airborne SAR Imagery by SANCC

    Directory of Open Access Journals (Sweden)

    DING Hao

    2015-03-01

    Full Text Available In order to improve accuracy of SAR matching, a multi-image matching method based on sum of adaptive normalized cross-correlation (SANCC is proposed. It utilizes geometrical and radiometric information of multi-baselinesynthetic aperture radar (SARimages effectively. Firstly, imaging parameters, platform parameters and approximate digital surface model (DSM are used to predict matching line. Secondly, similarity and proximity in Gestalt theory are introduced to SANCC, and SANCC measures of potential matching points along the matching line are calculated. Thirdly, multi-image matching results and object coordinates of matching points are obtained by winner-take-all (WTA optimization strategy. The approach has been demonstrated with airborne SAR images acquired by a Chinese airborne SAR system (CASMSAR system. The experimental results indicate that the proposed algorithm is effective for providing dense and accuracy matching points, reducing the number of mismatches caused by repeated textures, and offering a better solution to match in poor textured areas.

  3. Restoration of polarimetric SAR images using simulated annealing

    DEFF Research Database (Denmark)

    Schou, Jesper; Skriver, Henning

    2001-01-01

    approach favoring one of the objectives. An algorithm for estimating the radar cross-section (RCS) for intensity SAR images has previously been proposed in the literature based on Markov random fields and the stochastic optimization method simulated annealing. A new version of the algorithm is presented......Filtering synthetic aperture radar (SAR) images ideally results in better estimates of the parameters characterizing the distributed targets in the images while preserving the structures of the nondistributed targets. However, these objectives are normally conflicting, often leading to a filtering...

  4. Registration of Large Motion Blurred CMOS Images

    Science.gov (United States)

    2017-08-28

    raju@ee.iitm.ac.in - Institution : Indian Institute of Technology (IIT) Madras, India - Mailing Address : Room ESB 307c, Dept. of Electrical ...AFRL-AFOSR-JP-TR-2017-0066 Registration of Large Motion Blurred CMOS Images Ambasamudram Rajagopalan INDIAN INSTITUTE OF TECHNOLOGY MADRAS Final...NUMBER 5f.  WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) INDIAN INSTITUTE OF TECHNOLOGY MADRAS SARDAR PATEL ROAD Chennai, 600036

  5. Automated landmark-guided deformable image registration.

    Science.gov (United States)

    Kearney, Vasant; Chen, Susie; Gu, Xuejun; Chiu, Tsuicheng; Liu, Honghuan; Jiang, Lan; Wang, Jing; Yordy, John; Nedzi, Lucien; Mao, Weihua

    2015-01-07

    The purpose of this work is to develop an automated landmark-guided deformable image registration (LDIR) algorithm between the planning CT and daily cone-beam CT (CBCT) with low image quality. This method uses an automated landmark generation algorithm in conjunction with a local small volume gradient matching search engine to map corresponding landmarks between the CBCT and the planning CT. The landmarks act as stabilizing control points in the following Demons deformable image registration. LDIR is implemented on graphics processing units (GPUs) for parallel computation to achieve ultra fast calculation. The accuracy of the LDIR algorithm has been evaluated on a synthetic case in the presence of different noise levels and data of six head and neck cancer patients. The results indicate that LDIR performed better than rigid registration, Demons, and intensity corrected Demons for all similarity metrics used. In conclusion, LDIR achieves high accuracy in the presence of multimodality intensity mismatch and CBCT noise contamination, while simultaneously preserving high computational efficiency.

  6. Automated landmark-guided deformable image registration

    International Nuclear Information System (INIS)

    Kearney, Vasant; Chen, Susie; Gu, Xuejun; Chiu, Tsuicheng; Liu, Honghuan; Jiang, Lan; Wang, Jing; Yordy, John; Nedzi, Lucien; Mao, Weihua

    2015-01-01

    The purpose of this work is to develop an automated landmark-guided deformable image registration (LDIR) algorithm between the planning CT and daily cone-beam CT (CBCT) with low image quality. This method uses an automated landmark generation algorithm in conjunction with a local small volume gradient matching search engine to map corresponding landmarks between the CBCT and the planning CT. The landmarks act as stabilizing control points in the following Demons deformable image registration. LDIR is implemented on graphics processing units (GPUs) for parallel computation to achieve ultra fast calculation. The accuracy of the LDIR algorithm has been evaluated on a synthetic case in the presence of different noise levels and data of six head and neck cancer patients. The results indicate that LDIR performed better than rigid registration, Demons, and intensity corrected Demons for all similarity metrics used. In conclusion, LDIR achieves high accuracy in the presence of multimodality intensity mismatch and CBCT noise contamination, while simultaneously preserving high computational efficiency. (paper)

  7. Synthetic SAR Image Generation using Sensor, Terrain and Target Models

    DEFF Research Database (Denmark)

    Kusk, Anders; Abulaitijiang, Adili; Dall, Jørgen

    2016-01-01

    A tool to generate synthetic SAR images of objects set on a clutter background is described. The purpose is to generate images for training Automatic Target Recognition and Identification algorithms. The tool employs a commercial electromagnetic simulation program to calculate radar cross section...

  8. Enhancement of SAR images using fuzzy shrinkage technique in ...

    Indian Academy of Sciences (India)

    Shivakumara Swamy Puranik Math

    2017-08-03

    Aug 3, 2017 ... not use threshold approach only by proper selection of shrinking parameter the speckle in SAR image is ... but cost estimation of hyper-parameters will be high. The ..... To find the effectiveness of the proposed image in a.

  9. G0-WISHART Distribution Based Classification from Polarimetric SAR Images

    Science.gov (United States)

    Hu, G. C.; Zhao, Q. H.

    2017-09-01

    Enormous scientific and technical developments have been carried out to further improve the remote sensing for decades, particularly Polarimetric Synthetic Aperture Radar(PolSAR) technique, so classification method based on PolSAR images has getted much more attention from scholars and related department around the world. The multilook polarmetric G0-Wishart model is a more flexible model which describe homogeneous, heterogeneous and extremely heterogeneous regions in the image. Moreover, the polarmetric G0-Wishart distribution dose not include the modified Bessel function of the second kind. It is a kind of simple statistical distribution model with less parameter. To prove its feasibility, a process of classification has been tested with the full-polarized Synthetic Aperture Radar (SAR) image by the method. First, apply multilook polarimetric SAR data process and speckle filter to reduce speckle influence for classification result. Initially classify the image into sixteen classes by H/A/α decomposition. Using the ICM algorithm to classify feature based on the G0-Wshart distance. Qualitative and quantitative results show that the proposed method can classify polaimetric SAR data effectively and efficiently.

  10. Spacial Variation in SAR Images of Different Resolution for Agricultural Fields

    DEFF Research Database (Denmark)

    Sandholt, Inge; Skriver, Henning

    1999-01-01

    The spatial variation in two types of Synthetic Aperture Radar (SAR) images covering agricultural fields is analysed. C-band polarimetric SAR data from the Danish airborne SAR, EMISAR, have been compared to space based ERS-1 C-band SAR with respect to scale and effect of polarization. The general...

  11. Deformable image registration for image guided prostate radiotherapy

    International Nuclear Information System (INIS)

    Cassetta, Roberto; Riboldi, Marco; Baroni, Guido; Leandro, Kleber; Novaes, Paulo Eduardo; Goncalves, Vinicius; Sakuraba, Roberto; Fattori, Giovanni

    2016-01-01

    In this study, we present a CT to CBCT deformable registration method based on the ITK library. An algorithm was developed in order to explore the soft tissue information of the CT-CBCT images to perform deformable image registration (DIR), making efforts to overcome the poor signal-to-noise ratio and HU calibration issues that limits CBCT use for treatment planning purposes. Warped CT images and contours were generated and their impact in adaptive radiotherapy was evaluated by DVH analysis for photon and proton treatments. Considerable discrepancies, related to the treatment planning dose distribution, might be found due to changes in patient’s anatomy. (author)

  12. High performance deformable image registration algorithms for manycore processors

    CERN Document Server

    Shackleford, James; Sharp, Gregory

    2013-01-01

    High Performance Deformable Image Registration Algorithms for Manycore Processors develops highly data-parallel image registration algorithms suitable for use on modern multi-core architectures, including graphics processing units (GPUs). Focusing on deformable registration, we show how to develop data-parallel versions of the registration algorithm suitable for execution on the GPU. Image registration is the process of aligning two or more images into a common coordinate frame and is a fundamental step to be able to compare or fuse data obtained from different sensor measurements. E

  13. Image registration of naval IR images

    Science.gov (United States)

    Rodland, Arne J.

    1996-06-01

    In a real world application an image from a stabilized sensor on a moving platform will not be 100 percent stabilized. There will always be a small unknown error in the stabilization due to factors such as dynamic deformations in the structure between sensor and reference Inertial Navigation Unit, servo inaccuracies, etc. For a high resolution imaging sensor this stabilization error causes the image to move several pixels in unknown direction between frames. TO be able to detect and track small moving objects from such a sensor, this unknown movement of the sensor image must be estimated. An algorithm that searches for land contours in the image has been evaluated. The algorithm searches for high contrast points distributed over the whole image. As long as moving objects in the scene only cover a small area of the scene, most of the points are located on solid ground. By matching the list of points from frame to frame, the movement of the image due to stabilization errors can be estimated and compensated. The point list is searched for points with diverging movement from the estimated stabilization error. These points are then assumed to be located on moving objects. Points assumed to be located on moving objects are gradually exchanged with new points located in the same area. Most of the processing is performed on the list of points and not on the complete image. The algorithm is therefore very fast and well suited for real time implementation. The algorithm has been tested on images from an experimental IR scanner. Stabilization errors were added artificially to the image such that the output from the algorithm could be compared with the artificially added stabilization errors.

  14. Space Radar Image of West Texas - SAR scan

    Science.gov (United States)

    1999-01-01

    This radar image of the Midland/Odessa region of West Texas, demonstrates an experimental technique, called ScanSAR, that allows scientists to rapidly image large areas of the Earth's surface. The large image covers an area 245 kilometers by 225 kilometers (152 miles by 139 miles). It was obtained by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavour on October 5, 1994. The smaller inset image is a standard SIR-C image showing a portion of the same area, 100 kilometers by 57 kilometers (62 miles by 35 miles) and was taken during the first flight of SIR-C on April 14, 1994. The bright spots on the right side of the image are the cities of Odessa (left) and Midland (right), Texas. The Pecos River runs from the top center to the bottom center of the image. Along the left side of the image are, from top to bottom, parts of the Guadalupe, Davis and Santiago Mountains. North is toward the upper right. Unlike conventional radar imaging, in which a radar continuously illuminates a single ground swath as the space shuttle passes over the terrain, a Scansar radar illuminates several adjacent ground swaths almost simultaneously, by 'scanning' the radar beam across a large area in a rapid sequence. The adjacent swaths, typically about 50 km (31 miles) wide, are then merged during ground processing to produce a single large scene. Illumination for this L-band scene is from the top of the image. The beams were scanned from the top of the scene to the bottom, as the shuttle flew from left to right. This scene was acquired in about 30 seconds. A normal SIR-C image is acquired in about 13 seconds. The ScanSAR mode will likely be used on future radar sensors to construct regional and possibly global radar images and topographic maps. The ScanSAR processor is being designed for 1996 implementation at NASA's Alaska SAR Facility, located at the University of Alaska Fairbanks, and will produce digital images from the

  15. SAR Data Fusion Imaging Method Oriented to Target Feature Extraction

    Directory of Open Access Journals (Sweden)

    Yang Wei

    2015-02-01

    Full Text Available To deal with the difficulty for target outlines extracting precisely due to neglect of target scattering characteristic variation during the processing of high-resolution space-borne SAR data, a novel fusion imaging method is proposed oriented to target feature extraction. Firstly, several important aspects that affect target feature extraction and SAR image quality are analyzed, including curved orbit, stop-and-go approximation, atmospheric delay, and high-order residual phase error. Furthermore, the corresponding compensation methods are addressed as well. Based on the analysis, the mathematical model of SAR echo combined with target space-time spectrum is established for explaining the space-time-frequency change rule of target scattering characteristic. Moreover, a fusion imaging strategy and method under high-resolution and ultra-large observation angle range conditions are put forward to improve SAR quality by fusion processing in range-doppler and image domain. Finally, simulations based on typical military targets are used to verify the effectiveness of the fusion imaging method.

  16. Information theoretic bounds for compressed sensing in SAR imaging

    International Nuclear Information System (INIS)

    Jingxiong, Zhang; Ke, Yang; Jianzhong, Guo

    2014-01-01

    Compressed sensing (CS) is a new framework for sampling and reconstructing sparse signals from measurements significantly fewer than those prescribed by Nyquist rate in the Shannon sampling theorem. This new strategy, applied in various application areas including synthetic aperture radar (SAR), relies on two principles: sparsity, which is related to the signals of interest, and incoherence, which refers to the sensing modality. An important question in CS-based SAR system design concerns sampling rate necessary and sufficient for exact or approximate recovery of sparse signals. In the literature, bounds of measurements (or sampling rate) in CS have been proposed from the perspective of information theory. However, these information-theoretic bounds need to be reviewed and, if necessary, validated for CS-based SAR imaging, as there are various assumptions made in the derivations of lower and upper bounds on sub-Nyquist sampling rates, which may not hold true in CS-based SAR imaging. In this paper, information-theoretic bounds of sampling rate will be analyzed. For this, the SAR measurement system is modeled as an information channel, with channel capacity and rate-distortion characteristics evaluated to enable the determination of sampling rates required for recovery of sparse scenes. Experiments based on simulated data will be undertaken to test the theoretic bounds against empirical results about sampling rates required to achieve certain detection error probabilities

  17. THz-SAR Vibrating Target Imaging via the Bayesian Method

    Directory of Open Access Journals (Sweden)

    Bin Deng

    2017-01-01

    Full Text Available Target vibration bears important information for target recognition, and terahertz, due to significant micro-Doppler effects, has strong advantages for remotely sensing vibrations. In this paper, the imaging characteristics of vibrating targets with THz-SAR are at first analyzed. An improved algorithm based on an excellent Bayesian approach, that is, the expansion-compression variance-component (ExCoV method, has been proposed for reconstructing scattering coefficients of vibrating targets, which provides more robust and efficient initialization and overcomes the deficiencies of sidelobes as well as artifacts arising from the traditional correlation method. A real vibration measurement experiment of idle cars was performed to validate the range model. Simulated SAR data of vibrating targets and a tank model in a real background in 220 GHz show good performance at low SNR. Rapidly evolving high-power terahertz devices will offer viable THz-SAR application at a distance of several kilometers.

  18. A NEW IMAGE REGISTRATION METHOD FOR GREY IMAGES

    Institute of Scientific and Technical Information of China (English)

    Nie Xuan; Zhao Rongchun; Jiang Zetao

    2004-01-01

    The proposed algorithm relies on a group of new formulas for calculating tangent slope so as to address angle feature of edge curves of image. It can utilize tangent angle features to estimate automatically and fully the rotation parameters of geometric transform and enable rough matching of images with huge rotation difference. After angle compensation, it can search for matching point sets by correlation criterion, then calculate parameters of affine transform, enable higher-precision emendation of rotation and transferring. Finally, it fulfills precise matching for images with relax-tense iteration method. Compared with the registration approach based on wavelet direction-angle features, the matching algorithm with tangent feature of image edge is more robust and realizes precise registration of various images. Furthermore, it is also helpful in graphics matching.

  19. Automatic registration of terrestrial point cloud using panoramic reflectance images

    NARCIS (Netherlands)

    Kang, Z.

    2008-01-01

    Much attention is paid to registration of terrestrial point clouds nowadays. Research is carried out towards improved efficiency and automation of the registration process. This paper reports a new approach for point clouds registration utilizing reflectance panoramic images. The approach follows a

  20. DOCUMENT IMAGE REGISTRATION FOR IMPOSED LAYER EXTRACTION

    Directory of Open Access Journals (Sweden)

    Surabhi Narayan

    2017-02-01

    Full Text Available Extraction of filled-in information from document images in the presence of template poses challenges due to geometrical distortion. Filled-in document image consists of null background, general information foreground and vital information imposed layer. Template document image consists of null background and general information foreground layer. In this paper a novel document image registration technique has been proposed to extract imposed layer from input document image. A convex polygon is constructed around the content of the input and the template image using convex hull. The vertices of the convex polygons of input and template are paired based on minimum Euclidean distance. Each vertex of the input convex polygon is subjected to transformation for the permutable combinations of rotation and scaling. Translation is handled by tight crop. For every transformation of the input vertices, Minimum Hausdorff distance (MHD is computed. Minimum Hausdorff distance identifies the rotation and scaling values by which the input image should be transformed to align it to the template. Since transformation is an estimation process, the components in the input image do not overlay exactly on the components in the template, therefore connected component technique is applied to extract contour boxes at word level to identify partially overlapping components. Geometrical features such as density, area and degree of overlapping are extracted and compared between partially overlapping components to identify and eliminate components common to input image and template image. The residue constitutes imposed layer. Experimental results indicate the efficacy of the proposed model with computational complexity. Experiment has been conducted on variety of filled-in forms, applications and bank cheques. Data sets have been generated as test sets for comparative analysis.

  1. SAR Imaging through the Earth’s Ionosphere

    Science.gov (United States)

    2013-11-06

    Xiaoqing Pi, Anthony Freeman, Bruce Chapman, Paul Rosen, and Zhenhong Li . Imaging ionospheric inhomogeneities using spaceborne synthetic aperture radar. J...resolution SAR phase correction. IEEE Trans. Aerosp. Electron. Syst., 30(3):827–835, 1994. [30] Lianlin Li and Fang Li . Ionosphere tomography based on...Manduchi and G. A. Mian . Accuracy analysis for correlation-based image registartion algorithms. In Proceedings of the 1993 IEEE International

  2. Tie Points Extraction for SAR Images Based on Differential Constraints

    Science.gov (United States)

    Xiong, X.; Jin, G.; Xu, Q.; Zhang, H.

    2018-04-01

    Automatically extracting tie points (TPs) on large-size synthetic aperture radar (SAR) images is still challenging because the efficiency and correct ratio of the image matching need to be improved. This paper proposes an automatic TPs extraction method based on differential constraints for large-size SAR images obtained from approximately parallel tracks, between which the relative geometric distortions are small in azimuth direction and large in range direction. Image pyramids are built firstly, and then corresponding layers of pyramids are matched from the top to the bottom. In the process, the similarity is measured by the normalized cross correlation (NCC) algorithm, which is calculated from a rectangular window with the long side parallel to the azimuth direction. False matches are removed by the differential constrained random sample consensus (DC-RANSAC) algorithm, which appends strong constraints in azimuth direction and weak constraints in range direction. Matching points in the lower pyramid images are predicted with the local bilinear transformation model in range direction. Experiments performed on ENVISAT ASAR and Chinese airborne SAR images validated the efficiency, correct ratio and accuracy of the proposed method.

  3. TIE POINTS EXTRACTION FOR SAR IMAGES BASED ON DIFFERENTIAL CONSTRAINTS

    Directory of Open Access Journals (Sweden)

    X. Xiong

    2018-04-01

    Full Text Available Automatically extracting tie points (TPs on large-size synthetic aperture radar (SAR images is still challenging because the efficiency and correct ratio of the image matching need to be improved. This paper proposes an automatic TPs extraction method based on differential constraints for large-size SAR images obtained from approximately parallel tracks, between which the relative geometric distortions are small in azimuth direction and large in range direction. Image pyramids are built firstly, and then corresponding layers of pyramids are matched from the top to the bottom. In the process, the similarity is measured by the normalized cross correlation (NCC algorithm, which is calculated from a rectangular window with the long side parallel to the azimuth direction. False matches are removed by the differential constrained random sample consensus (DC-RANSAC algorithm, which appends strong constraints in azimuth direction and weak constraints in range direction. Matching points in the lower pyramid images are predicted with the local bilinear transformation model in range direction. Experiments performed on ENVISAT ASAR and Chinese airborne SAR images validated the efficiency, correct ratio and accuracy of the proposed method.

  4. Object Georeferencing in UAV-Based SAR Terrain Images

    Directory of Open Access Journals (Sweden)

    Łabowski Michał

    2016-12-01

    Full Text Available Synthetic aperture radars (SAR allow to obtain high resolution terrain images comparable with the resolution of optical methods. Radar imaging is independent on the weather conditions and the daylight. The process of analysis of the SAR images consists primarily of identifying of interesting objects. The ability to determine their geographical coordinates can increase usability of the solution from a user point of view. The paper presents a georeferencing method of the radar terrain images. The presented images were obtained from the SAR system installed on board an Unmanned Aerial Vehicle (UAV. The system was developed within a project under acronym WATSAR realized by the Military University of Technology and WB Electronics S.A. The source of the navigation data was an INS/GNSS system integrated by the Kalman filter with a feed-backward correction loop. The paper presents the terrain images obtained during flight tests and results of selected objects georeferencing with an assessment of the accuracy of the method.

  5. An efficient similarity measure technique for medical image registration

    Indian Academy of Sciences (India)

    In this paper, an efficient similarity measure technique is proposed for medical image registration. The proposed approach is based on the Gerschgorin circles theorem. In this approach, image registration is carried out by considering Gerschgorin bounds of a covariance matrix of two compared images with normalized ...

  6. Remote Sensing Image Registration Using Multiple Image Features

    Directory of Open Access Journals (Sweden)

    Kun Yang

    2017-06-01

    Full Text Available Remote sensing image registration plays an important role in military and civilian fields, such as natural disaster damage assessment, military damage assessment and ground targets identification, etc. However, due to the ground relief variations and imaging viewpoint changes, non-rigid geometric distortion occurs between remote sensing images with different viewpoint, which further increases the difficulty of remote sensing image registration. To address the problem, we propose a multi-viewpoint remote sensing image registration method which contains the following contributions. (i A multiple features based finite mixture model is constructed for dealing with different types of image features. (ii Three features are combined and substituted into the mixture model to form a feature complementation, i.e., the Euclidean distance and shape context are used to measure the similarity of geometric structure, and the SIFT (scale-invariant feature transform distance which is endowed with the intensity information is used to measure the scale space extrema. (iii To prevent the ill-posed problem, a geometric constraint term is introduced into the L2E-based energy function for better behaving the non-rigid transformation. We evaluated the performances of the proposed method by three series of remote sensing images obtained from the unmanned aerial vehicle (UAV and Google Earth, and compared with five state-of-the-art methods where our method shows the best alignments in most cases.

  7. [Multimodal medical image registration using cubic spline interpolation method].

    Science.gov (United States)

    He, Yuanlie; Tian, Lianfang; Chen, Ping; Wang, Lifei; Ye, Guangchun; Mao, Zongyuan

    2007-12-01

    Based on the characteristic of the PET-CT multimodal image series, a novel image registration and fusion method is proposed, in which the cubic spline interpolation method is applied to realize the interpolation of PET-CT image series, then registration is carried out by using mutual information algorithm and finally the improved principal component analysis method is used for the fusion of PET-CT multimodal images to enhance the visual effect of PET image, thus satisfied registration and fusion results are obtained. The cubic spline interpolation method is used for reconstruction to restore the missed information between image slices, which can compensate for the shortage of previous registration methods, improve the accuracy of the registration, and make the fused multimodal images more similar to the real image. Finally, the cubic spline interpolation method has been successfully applied in developing 3D-CRT (3D Conformal Radiation Therapy) system.

  8. Efficient Variational Approaches for Deformable Registration of Images

    Directory of Open Access Journals (Sweden)

    Mehmet Ali Akinlar

    2012-01-01

    Full Text Available Dirichlet, anisotropic, and Huber regularization terms are presented for efficient registration of deformable images. Image registration, an ill-posed optimization problem, is solved using a gradient-descent-based method and some fundamental theorems in calculus of variations. Euler-Lagrange equations with homogeneous Neumann boundary conditions are obtained. These equations are discretized by multigrid and finite difference numerical techniques. The method is applied to the registration of brain MR images of size 65×65. Computational results indicate that the presented method is quite fast and efficient in the registration of deformable medical images.

  9. Groupwise registration of MR brain images with tumors

    Science.gov (United States)

    Tang, Zhenyu; Wu, Yihong; Fan, Yong

    2017-09-01

    A novel groupwise image registration framework is developed for registering MR brain images with tumors. Our method iteratively estimates a normal-appearance counterpart for each tumor image to be registered and constructs a directed graph (digraph) of normal-appearance images to guide the groupwise image registration. Particularly, our method maps each tumor image to its normal appearance counterpart by identifying and inpainting brain tumor regions with intensity information estimated using a low-rank plus sparse matrix decomposition based image representation technique. The estimated normal-appearance images are groupwisely registered to a group center image guided by a digraph of images so that the total length of ‘image registration paths’ to be the minimum, and then the original tumor images are warped to the group center image using the resulting deformation fields. We have evaluated our method based on both simulated and real MR brain tumor images. The registration results were evaluated with overlap measures of corresponding brain regions and average entropy of image intensity information, and Wilcoxon signed rank tests were adopted to compare different methods with respect to their regional overlap measures. Compared with a groupwise image registration method that is applied to normal-appearance images estimated using the traditional low-rank plus sparse matrix decomposition based image inpainting, our method achieved higher image registration accuracy with statistical significance (p  =  7.02  ×  10-9).

  10. A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Nasreddine Taleb

    2010-09-01

    Full Text Available Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT. An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.

  11. A rigid image registration based on the nonsubsampled contourlet transform and genetic algorithms.

    Science.gov (United States)

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.

  12. Image registration with auto-mapped control volumes

    International Nuclear Information System (INIS)

    Schreibmann, Eduard; Xing Lei

    2006-01-01

    Many image registration algorithms rely on the use of homologous control points on the two input image sets to be registered. In reality, the interactive identification of the control points on both images is tedious, difficult, and often a source of error. We propose a two-step algorithm to automatically identify homologous regions that are used as a priori information during the image registration procedure. First, a number of small control volumes having distinct anatomical features are identified on the model image in a somewhat arbitrary fashion. Instead of attempting to find their correspondences in the reference image through user interaction, in the proposed method, each of the control regions is mapped to the corresponding part of the reference image by using an automated image registration algorithm. A normalized cross-correlation (NCC) function or mutual information was used as the auto-mapping metric and a limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) was employed to optimize the function to find the optimal mapping. For rigid registration, the transformation parameters of the system are obtained by averaging that derived from the individual control volumes. In our deformable calculation, the mapped control volumes are treated as the nodes or control points with known positions on the two images. If the number of control volumes is not enough to cover the whole image to be registered, additional nodes are placed on the model image and then located on the reference image in a manner similar to the conventional BSpline deformable calculation. For deformable registration, the established correspondence by the auto-mapped control volumes provides valuable guidance for the registration calculation and greatly reduces the dimensionality of the problem. The performance of the two-step registrations was applied to three rigid registration cases (two PET-CT registrations and a brain MRI-CT registration) and one deformable registration of

  13. STUDY ON LANDSLIDE DISASTER EXTRACTION METHOD BASED ON SPACEBORNE SAR REMOTE SENSING IMAGES – TAKE ALOS PALSAR FOR AN EXAMPLE

    Directory of Open Access Journals (Sweden)

    D. Xue

    2018-04-01

    Full Text Available In this paper, sequence ALOS PALSAR data and airborne SAR data of L-band from June 5, 2008 to September 8, 2015 are used. Based on the research of SAR data preprocessing and core algorithms, such as geocode, registration, filtering, unwrapping and baseline estimation, the improved Goldstein filtering algorithm and the branch-cut path tracking algorithm are used to unwrap the phase. The DEM and surface deformation information of the experimental area were extracted. Combining SAR-specific geometry and differential interferometry, on the basis of composite analysis of multi-source images, a method of detecting landslide disaster combining coherence of SAR image is developed, which makes up for the deficiency of single SAR and optical remote sensing acquisition ability. Especially in bad weather and abnormal climate areas, the speed of disaster emergency and the accuracy of extraction are improved. It is found that the deformation in this area is greatly affected by faults, and there is a tendency of uplift in the southeast plain and western mountainous area, while in the southwest part of the mountain area there is a tendency to sink. This research result provides a basis for decision-making for local disaster prevention and control.

  14. Imaging manifestations of the cavitation in pulmonary parenchyma of SARS

    International Nuclear Information System (INIS)

    Yuan Chunwang; Zhao Dawei; Wang Wei; Jia Cuiyu; Bai Chunsheng

    2004-01-01

    Objective: To investigate the imaging appearances of cavitation in pulmonary parenchyma and the clinical features of the cases of SARS. Methods: Chest imaging films and clinical data of 180 patients with clinically confirmed SARS were analyzed retrospectively. The imaging manifestations of cavitation and the clinical features of the patients were observed and evaluated. Results: Of 180 patients, cavitations were showed in 5 (2.8%), which were all found through X-ray or CT scanning. Most of them were round or irregular, and had thick wall. The 5 patients all had been in hospital and treated with more dosage antibiotics, antivirus medicines and glucocorticoid for long time, the glucocorticoid was used for 25-65 d, and in the first 10-15 days the dosage was 160-240 mg per day. In hospitalization, one of them had been diagnosed diabetes mellitus, four had increased fasting blood sugar, the counts of white blood cells [(14.1-20.4) x 10 9 /L] increased significantly, the percent of neutrophils might increased also. Meanwhile, there was a continue increase of lactate dehydrogenase (228.00-475.00 U/L), glutamic dehydrogenase (10.08-60.00 U/L) and hydroxybutyrate dehydrogenase (190.00-444.00 U/L) in lab examination. Conclusion: SARS can cause cavitation in pulmonary parenchyma in posterior process of the disease. CT scanning can find the cavitation earlier and accurately, catching the imaging features of them is helpful in differential diagnosis, guiding therapy and estimating prognosis

  15. Constrained non-rigid registration for whole body image registration: method and validation

    Science.gov (United States)

    Li, Xia; Yankeelov, Thomas E.; Peterson, Todd E.; Gore, John C.; Dawant, Benoit M.

    2007-03-01

    3D intra- and inter-subject registration of image volumes is important for tasks that include measurements and quantification of temporal/longitudinal changes, atlas-based segmentation, deriving population averages, or voxel and tensor-based morphometry. A number of methods have been proposed to tackle this problem but few of them have focused on the problem of registering whole body image volumes acquired either from humans or small animals. These image volumes typically contain a large number of articulated structures, which makes registration more difficult than the registration of head images, to which the vast majority of registration algorithms have been applied. To solve this problem, we have previously proposed an approach, which initializes an intensity-based non-rigid registration algorithm with a point based registration technique [1, 2]. In this paper, we introduce new constraints into our non-rigid registration algorithm to prevent the bones from being deformed inaccurately. Results we have obtained show that the new constrained algorithm leads to better registration results than the previous one.

  16. SAR image regularization with fast approximate discrete minimization.

    Science.gov (United States)

    Denis, Loïc; Tupin, Florence; Darbon, Jérôme; Sigelle, Marc

    2009-07-01

    Synthetic aperture radar (SAR) images, like other coherent imaging modalities, suffer from speckle noise. The presence of this noise makes the automatic interpretation of images a challenging task and noise reduction is often a prerequisite for successful use of classical image processing algorithms. Numerous approaches have been proposed to filter speckle noise. Markov random field (MRF) modelization provides a convenient way to express both data fidelity constraints and desirable properties of the filtered image. In this context, total variation minimization has been extensively used to constrain the oscillations in the regularized image while preserving its edges. Speckle noise follows heavy-tailed distributions, and the MRF formulation leads to a minimization problem involving nonconvex log-likelihood terms. Such a minimization can be performed efficiently by computing minimum cuts on weighted graphs. Due to memory constraints, exact minimization, although theoretically possible, is not achievable on large images required by remote sensing applications. The computational burden of the state-of-the-art algorithm for approximate minimization (namely the alpha -expansion) is too heavy specially when considering joint regularization of several images. We show that a satisfying solution can be reached, in few iterations, by performing a graph-cut-based combinatorial exploration of large trial moves. This algorithm is applied to joint regularization of the amplitude and interferometric phase in urban area SAR images.

  17. AN EVOLUTIONARY ALGORITHM FOR FAST INTENSITY BASED IMAGE MATCHING BETWEEN OPTICAL AND SAR SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    P. Fischer

    2018-04-01

    Full Text Available This paper presents a hybrid evolutionary algorithm for fast intensity based matching between satellite imagery from SAR and very high-resolution (VHR optical sensor systems. The precise and accurate co-registration of image time series and images of different sensors is a key task in multi-sensor image processing scenarios. The necessary preprocessing step of image matching and tie-point detection is divided into a search problem and a similarity measurement. Within this paper we evaluate the use of an evolutionary search strategy for establishing the spatial correspondence between satellite imagery of optical and radar sensors. The aim of the proposed algorithm is to decrease the computational costs during the search process by formulating the search as an optimization problem. Based upon the canonical evolutionary algorithm, the proposed algorithm is adapted for SAR/optical imagery intensity based matching. Extensions are drawn using techniques like hybridization (e.g. local search and others to lower the number of objective function calls and refine the result. The algorithm significantely decreases the computational costs whilst finding the optimal solution in a reliable way.

  18. Advanced InSAR imaging for dune mapping

    Science.gov (United States)

    Havivi, Shiran; August, Yitzhak; Blumberg, Dan G.; Rotman, Stanley R.

    2015-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970's, remote sensing imagery both optical and radar, are used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of Aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two images or more. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This research aims to demonstrate how interferometric decorrelation, or, coherence change detection, can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the Nitzanim coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of varying levels of stability and vegetation cover and have been monitored meteorologically, geomorphologically and

  19. Learning-Based Approaches to Deformable Image Registration

    NARCIS (Netherlands)

    Münzing, SEA

    2014-01-01

    Accurate registration of images is an important and often crucial step in many areas of image processing and analysis, yet it is only used in a small percentage of possible applications. Automated registration methods are not considered to be sufficiently robust to handle complex deformations and

  20. Circular SAR Optimization Imaging Method of Buildings

    Directory of Open Access Journals (Sweden)

    Wang Jian-feng

    2015-12-01

    Full Text Available The Circular Synthetic Aperture Radar (CSAR can obtain the entire scattering properties of targets because of its great ability of 360° observation. In this study, an optimal orientation of the CSAR imaging algorithm of buildings is proposed by applying a combination of coherent and incoherent processing techniques. FEKO software is used to construct the electromagnetic scattering modes and simulate the radar echo. The FEKO imaging results are compared with the isotropic scattering results. On comparison, the optimal azimuth coherent accumulation angle of CSAR imaging of buildings is obtained. Practically, the scattering directions of buildings are unknown; therefore, we divide the 360° echo of CSAR into many overlapped and few angle echoes corresponding to the sub-aperture and then perform an imaging procedure on each sub-aperture. Sub-aperture imaging results are applied to obtain the all-around image using incoherent fusion techniques. The polarimetry decomposition method is used to decompose the all-around image and further retrieve the edge information of buildings successfully. The proposed method is validated with P-band airborne CSAR data from Sichuan, China.

  1. Elastic models application for thorax image registration

    International Nuclear Information System (INIS)

    Correa Prado, Lorena S; Diaz, E Andres Valdez; Romo, Raul

    2007-01-01

    This work consist of the implementation and evaluation of elastic alignment algorithms of biomedical images, which were taken at thorax level and simulated with the 4D NCAT digital phantom. Radial Basis Functions spatial transformations (RBF), a kind of spline, which allows carrying out not only global rigid deformations but also local elastic ones were applied, using a point-matching method. The applied functions were: Thin Plate Spline (TPS), Multiquadric (MQ) Gaussian and B-Spline, which were evaluated and compared by means of calculating the Target Registration Error and similarity measures between the registered images (the squared sum of intensity differences (SSD) and correlation coefficient (CC)). In order to value the user incurred error in the point-matching and segmentation tasks, two algorithms were also designed that calculate the Fiduciary Localization Error. TPS and MQ were demonstrated to have better performance than the others. It was proved RBF represent an adequate model for approximating the thorax deformable behaviour. Validation algorithms showed the user error was not significant

  2. Research on a dem Coregistration Method Based on the SAR Imaging Geometry

    Science.gov (United States)

    Niu, Y.; Zhao, C.; Zhang, J.; Wang, L.; Li, B.; Fan, L.

    2018-04-01

    Due to the systematic error, especially the horizontal deviation that exists in the multi-source, multi-temporal DEMs (Digital Elevation Models), a method for high precision coregistration is needed. This paper presents a new fast DEM coregistration method based on a given SAR (Synthetic Aperture Radar) imaging geometry to overcome the divergence and time-consuming problem of the conventional DEM coregistration method. First, intensity images are simulated for two DEMs under the given SAR imaging geometry. 2D (Two-dimensional) offsets are estimated in the frequency domain using the intensity cross-correlation operation in the FFT (Fast Fourier Transform) tool, which can greatly accelerate the calculation process. Next, the transformation function between two DEMs is achieved via the robust least-square fitting of 2D polynomial operation. Accordingly, two DEMs can be precisely coregistered. Last, two DEMs, i.e., one high-resolution LiDAR (Light Detection and Ranging) DEM and one low-resolution SRTM (Shutter Radar Topography Mission) DEM, covering the Yangjiao landslide region of Chongqing are taken as an example to test the new method. The results indicate that, in most cases, this new method can achieve not only a result as much as 80 times faster than the minimum elevation difference (Least Z-difference, LZD) DEM registration method, but also more accurate and more reliable results.

  3. Multi-band Image Registration Method Based on Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    庹红娅; 刘允才

    2004-01-01

    This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features,they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.

  4. Road detection in SAR images using a tensor voting algorithm

    Science.gov (United States)

    Shen, Dajiang; Hu, Chun; Yang, Bing; Tian, Jinwen; Liu, Jian

    2007-11-01

    In this paper, the problem of the detection of road networks in Synthetic Aperture Radar (SAR) images is addressed. Most of the previous methods extract the road by detecting lines and network reconstruction. Traditional algorithms such as MRFs, GA, Level Set, used in the progress of reconstruction are iterative. The tensor voting methodology we proposed is non-iterative, and non-sensitive to initialization. Furthermore, the only free parameter is the size of the neighborhood, related to the scale. The algorithm we present is verified to be effective when it's applied to the road extraction using the real Radarsat Image.

  5. Scalable Track Detection in SAR CCD Images

    Energy Technology Data Exchange (ETDEWEB)

    Chow, James G [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Quach, Tu-Thach [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    Existing methods to detect vehicle tracks in coherent change detection images, a product of combining two synthetic aperture radar images ta ken at different times of the same scene, rely on simple, fast models to label track pixels. These models, however, are often too simple to capture natural track features such as continuity and parallelism. We present a simple convolutional network architecture consisting of a series of 3-by-3 convolutions to detect tracks. The network is trained end-to-end to learn natural track features entirely from data. The network is computationally efficient and improves the F-score on a standard dataset to 0.988, up fr om 0.907 obtained by the current state-of-the-art method.

  6. Multimodality image registration with software: state-of-the-art

    Energy Technology Data Exchange (ETDEWEB)

    Slomka, Piotr J. [Cedars-Sinai Medical Center, AIM Program/Department of Imaging, Los Angeles, CA (United States); University of California, David Geffen School of Medicine, Los Angeles, CA (United States); Baum, Richard P. [Center for PET, Department of Nuclear Medicine, Bad Berka (Germany)

    2009-03-15

    Multimodality image integration of functional and anatomical data can be performed by means of dedicated hybrid imaging systems or by software image co-registration techniques. Hybrid positron emission tomography (PET)/computed tomography (CT) systems have found wide acceptance in oncological imaging, while software registration techniques have a significant role in patient-specific, cost-effective, and radiation dose-effective application of integrated imaging. Software techniques allow accurate (2-3 mm) rigid image registration of brain PET with CT and MRI. Nonlinear techniques are used in whole-body image registration, and recent developments allow for significantly accelerated computing times. Nonlinear software registration of PET with CT or MRI is required for multimodality radiation planning. Difficulties remain in the validation of nonlinear registration of soft tissue organs. The utilization of software-based multimodality image integration in a clinical environment is sometimes hindered by the lack of appropriate picture archiving and communication systems (PACS) infrastructure needed to efficiently and automatically integrate all available images into one common database. In cardiology applications, multimodality PET/single photon emission computed tomography and coronary CT angiography imaging is typically not required unless the results of one of the tests are equivocal. Software image registration is likely to be used in a complementary fashion with hybrid PET/CT or PET/magnetic resonance imaging systems. Software registration of stand-alone scans ''paved the way'' for the clinical application of hybrid scanners, demonstrating practical benefits of image integration before the hybrid dual-modality devices were available. (orig.)

  7. Multimodality image registration with software: state-of-the-art

    International Nuclear Information System (INIS)

    Slomka, Piotr J.; Baum, Richard P.

    2009-01-01

    Multimodality image integration of functional and anatomical data can be performed by means of dedicated hybrid imaging systems or by software image co-registration techniques. Hybrid positron emission tomography (PET)/computed tomography (CT) systems have found wide acceptance in oncological imaging, while software registration techniques have a significant role in patient-specific, cost-effective, and radiation dose-effective application of integrated imaging. Software techniques allow accurate (2-3 mm) rigid image registration of brain PET with CT and MRI. Nonlinear techniques are used in whole-body image registration, and recent developments allow for significantly accelerated computing times. Nonlinear software registration of PET with CT or MRI is required for multimodality radiation planning. Difficulties remain in the validation of nonlinear registration of soft tissue organs. The utilization of software-based multimodality image integration in a clinical environment is sometimes hindered by the lack of appropriate picture archiving and communication systems (PACS) infrastructure needed to efficiently and automatically integrate all available images into one common database. In cardiology applications, multimodality PET/single photon emission computed tomography and coronary CT angiography imaging is typically not required unless the results of one of the tests are equivocal. Software image registration is likely to be used in a complementary fashion with hybrid PET/CT or PET/magnetic resonance imaging systems. Software registration of stand-alone scans ''paved the way'' for the clinical application of hybrid scanners, demonstrating practical benefits of image integration before the hybrid dual-modality devices were available. (orig.)

  8. Gaussian Process Interpolation for Uncertainty Estimation in Image Registration

    Science.gov (United States)

    Wachinger, Christian; Golland, Polina; Reuter, Martin; Wells, William

    2014-01-01

    Intensity-based image registration requires resampling images on a common grid to evaluate the similarity function. The uncertainty of interpolation varies across the image, depending on the location of resampled points relative to the base grid. We propose to perform Bayesian inference with Gaussian processes, where the covariance matrix of the Gaussian process posterior distribution estimates the uncertainty in interpolation. The Gaussian process replaces a single image with a distribution over images that we integrate into a generative model for registration. Marginalization over resampled images leads to a new similarity measure that includes the uncertainty of the interpolation. We demonstrate that our approach increases the registration accuracy and propose an efficient approximation scheme that enables seamless integration with existing registration methods. PMID:25333127

  9. Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis

    Science.gov (United States)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-01-01

    To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.

  10. Registration accuracy and quality of real-life images.

    Directory of Open Access Journals (Sweden)

    Wei-Yen Hsu

    Full Text Available BACKGROUND: A common registration problem for the application of consumer device is to align all the acquired image sequences into a complete scene. Image alignment requires a registration algorithm that will compensate as much as possible for geometric variability among images. However, images captured views from a real scene usually produce different distortions. Some are derived from the optic characteristics of image sensors, and others are caused by the specific scenes and objects. METHODOLOGY/PRINCIPAL FINDINGS: An image registration algorithm considering the perspective projection is proposed for the application of consumer devices in this study. It exploits a multiresolution wavelet-based method to extract significant features. An analytic differential approach is then proposed to achieve fast convergence of point matching. Finally, the registration accuracy is further refined to obtain subpixel precision by a feature-based modified Levenberg-Marquardt method. Due to its feature-based and nonlinear characteristic, it converges considerably faster than most other methods. In addition, vignette compensation and color difference adjustment are also performed to further improve the quality of registration results. CONCLUSIONS/SIGNIFICANCE: The performance of the proposed method is evaluated by testing the synthetic and real images acquired by a hand-held digital still camera and in comparison with two registration techniques in terms of the squared sum of intensity differences (SSD and correlation coefficient (CC. The results indicate that the proposed method is promising in registration accuracy and quality, which are statistically significantly better than other two approaches.

  11. The role of image registration in brain mapping

    Science.gov (United States)

    Toga, A.W.; Thompson, P.M.

    2008-01-01

    Image registration is a key step in a great variety of biomedical imaging applications. It provides the ability to geometrically align one dataset with another, and is a prerequisite for all imaging applications that compare datasets across subjects, imaging modalities, or across time. Registration algorithms also enable the pooling and comparison of experimental findings across laboratories, the construction of population-based brain atlases, and the creation of systems to detect group patterns in structural and functional imaging data. We review the major types of registration approaches used in brain imaging today. We focus on their conceptual basis, the underlying mathematics, and their strengths and weaknesses in different contexts. We describe the major goals of registration, including data fusion, quantification of change, automated image segmentation and labeling, shape measurement, and pathology detection. We indicate that registration algorithms have great potential when used in conjunction with a digital brain atlas, which acts as a reference system in which brain images can be compared for statistical analysis. The resulting armory of registration approaches is fundamental to medical image analysis, and in a brain mapping context provides a means to elucidate clinical, demographic, or functional trends in the anatomy or physiology of the brain. PMID:19890483

  12. A Novel Technique for Prealignment in Multimodality Medical Image Registration

    Directory of Open Access Journals (Sweden)

    Wu Zhou

    2014-01-01

    Full Text Available Image pair is often aligned initially based on a rigid or affine transformation before a deformable registration method is applied in medical image registration. Inappropriate initial registration may compromise the registration speed or impede the convergence of the optimization algorithm. In this work, a novel technique was proposed for prealignment in both monomodality and multimodality image registration based on statistical correlation of gradient information. A simple and robust algorithm was proposed to determine the rotational differences between two images based on orientation histogram matching accumulated from local orientation of each pixel without any feature extraction. Experimental results showed that it was effective to acquire the orientation angle between two unregistered images with advantages over the existed method based on edge-map in multimodalities. Applying the orientation detection into the registration of CT/MR, T1/T2 MRI, and monomadality images with respect to rigid and nonrigid deformation improved the chances of finding the global optimization of the registration and reduced the search space of optimization.

  13. A novel 3D volumetric voxel registration technique for volume-view-guided image registration of multiple imaging modalities

    International Nuclear Information System (INIS)

    Li Guang; Xie Huchen; Ning, Holly; Capala, Jacek; Arora, Barbara C.; Coleman, C. Norman; Camphausen, Kevin; Miller, Robert W.

    2005-01-01

    Purpose: To provide more clinically useful image registration with improved accuracy and reduced time, a novel technique of three-dimensional (3D) volumetric voxel registration of multimodality images is developed. Methods and Materials: This technique can register up to four concurrent images from multimodalities with volume view guidance. Various visualization effects can be applied, facilitating global and internal voxel registration. Fourteen computed tomography/magnetic resonance (CT/MR) image sets and two computed tomography/positron emission tomography (CT/PET) image sets are used. For comparison, an automatic registration technique using maximization of mutual information (MMI) and a three-orthogonal-planar (3P) registration technique are used. Results: Visually sensitive registration criteria for CT/MR and CT/PET have been established, including the homogeneity of color distribution. Based on the registration results of 14 CT/MR images, the 3D voxel technique is in excellent agreement with the automatic MMI technique and is indicatory of a global positioning error (defined as the means and standard deviations of the error distribution) using the 3P pixel technique: 1.8 deg ± 1.2 deg in rotation and 2.0 ± 1.3 (voxel unit) in translation. To the best of our knowledge, this is the first time that such positioning error has been addressed. Conclusion: This novel 3D voxel technique establishes volume-view-guided image registration of up to four modalities. It improves registration accuracy with reduced time, compared with the 3P pixel technique. This article suggests that any interactive and automatic registration should be safeguarded using the 3D voxel technique

  14. Image Registration Using Redundant Wavelet Transforms

    National Research Council Canada - National Science Library

    Brown, Richard

    2001-01-01

    .... In our research, we present a fundamentally new wavelet-based registration algorithm utilizing redundant transforms and a masking process to suppress the adverse effects of noise and improve processing efficiency...

  15. Robust image registration for multiple exposure high dynamic range image synthesis

    Science.gov (United States)

    Yao, Susu

    2011-03-01

    Image registration is an important preprocessing technique in high dynamic range (HDR) image synthesis. This paper proposed a robust image registration method for aligning a group of low dynamic range images (LDR) that are captured with different exposure times. Illumination change and photometric distortion between two images would result in inaccurate registration. We propose to transform intensity image data into phase congruency to eliminate the effect of the changes in image brightness and use phase cross correlation in the Fourier transform domain to perform image registration. Considering the presence of non-overlapped regions due to photometric distortion, evolutionary programming is applied to search for the accurate translation parameters so that the accuracy of registration is able to be achieved at a hundredth of a pixel level. The proposed algorithm works well for under and over-exposed image registration. It has been applied to align LDR images for synthesizing high quality HDR images..

  16. elastix: a toolbox for intensity-based medical image registration.

    Science.gov (United States)

    Klein, Stefan; Staring, Marius; Murphy, Keelin; Viergever, Max A; Pluim, Josien P W

    2010-01-01

    Medical image registration is an important task in medical image processing. It refers to the process of aligning data sets, possibly from different modalities (e.g., magnetic resonance and computed tomography), different time points (e.g., follow-up scans), and/or different subjects (in case of population studies). A large number of methods for image registration are described in the literature. Unfortunately, there is not one method that works for all applications. We have therefore developed elastix, a publicly available computer program for intensity-based medical image registration. The software consists of a collection of algorithms that are commonly used to solve medical image registration problems. The modular design of elastix allows the user to quickly configure, test, and compare different registration methods for a specific application. The command-line interface enables automated processing of large numbers of data sets, by means of scripting. The usage of elastix for comparing different registration methods is illustrated with three example experiments, in which individual components of the registration method are varied.

  17. Automatic intra-modality brain image registration method

    International Nuclear Information System (INIS)

    Whitaker, J.M.; Ardekani, B.A.; Braun, M.

    1996-01-01

    Full text: Registration of 3D images of brain of the same or different subjects has potential importance in clinical diagnosis, treatment planning and neurological research. The broad aim of our work is to produce an automatic and robust intra-modality, brain image registration algorithm for intra-subject and inter-subject studies. Our algorithm is composed of two stages. Initial alignment is achieved by finding the values of nine transformation parameters (representing translation, rotation and scale) that minimise the nonoverlapping regions of the head. This is achieved by minimisation of the sum of the exclusive OR of two binary head images, produced using the head extraction procedure described by Ardekani et al. (J Comput Assist Tomogr, 19:613-623, 1995). The initial alignment successfully determines the scale parameters and gross translation and rotation parameters. Fine alignment uses an objective function described for inter-modality registration in Ardekani et al. (ibid.). The algorithm segments one of the images to be aligned into a set of connected components using K-means clustering. Registration is achieved by minimising the K-means variance of the segmentation induced in the other image. Similarity of images of the same modality makes the method attractive for intra-modality registration. A 3D MR image, with voxel dimensions, 2x2x6 mm, was misaligned. The registered image shows visually accurate registration. The average displacement of a pixel from its correct location was measured to be 3.3 mm. The algorithm was tested on intra-subject MR images and was found to produce good qualitative results. Using the data available, the algorithm produced promising qualitative results in intra-subject registration. Further work is necessary in its application to intersubject registration, due to large variability in brain structure between subjects. Clinical evaluation of the algorithm for selected applications is required

  18. Supervised Quality Assessment Of Medical Image Registration: Application to intra-patient CT lung registration

    NARCIS (Netherlands)

    Muenzing, S.E.; Ginneken, B. van; Murphy, K.; Pluim, J.P.

    2012-01-01

    A novel method for automatic quality assessment of medical image registration is presented. The method is based on supervised learning of local alignment patterns, which are captured by statistical image features at distinctive landmark points. A two-stage classifier cascade, employing an optimal

  19. Supervised quality assessment of medical image registration : application to intra-patient CT lung registration

    NARCIS (Netherlands)

    Muenzing, S.E.A.; Ginneken, van B.; Murphy, K.; Pluim, J.P.W.

    2012-01-01

    A novel method for automatic quality assessment of medical image registration is presented. The method is based on supervised learning of local alignment patterns, which are captured by statistical image features at distinctive landmark points. A two-stage classifier cascade, employing an optimal

  20. Multimodal image registration based on binary gradient angle descriptor.

    Science.gov (United States)

    Jiang, Dongsheng; Shi, Yonghong; Yao, Demin; Fan, Yifeng; Wang, Manning; Song, Zhijian

    2017-12-01

    Multimodal image registration plays an important role in image-guided interventions/therapy and atlas building, and it is still a challenging task due to the complex intensity variations in different modalities. The paper addresses the problem and proposes a simple, compact, fast and generally applicable modality-independent binary gradient angle descriptor (BGA) based on the rationale of gradient orientation alignment. The BGA can be easily calculated at each voxel by coding the quadrant in which a local gradient vector falls, and it has an extremely low computational complexity, requiring only three convolutions, two multiplication operations and two comparison operations. Meanwhile, the binarized encoding of the gradient orientation makes the BGA more resistant to image degradations compared with conventional gradient orientation methods. The BGA can extract similar feature descriptors for different modalities and enable the use of simple similarity measures, which makes it applicable within a wide range of optimization frameworks. The results for pairwise multimodal and monomodal registrations between various images (T1, T2, PD, T1c, Flair) consistently show that the BGA significantly outperforms localized mutual information. The experimental results also confirm that the BGA can be a reliable alternative to the sum of absolute difference in monomodal image registration. The BGA can also achieve an accuracy of [Formula: see text], similar to that of the SSC, for the deformable registration of inhale and exhale CT scans. Specifically, for the highly challenging deformable registration of preoperative MRI and 3D intraoperative ultrasound images, the BGA achieves a similar registration accuracy of [Formula: see text] compared with state-of-the-art approaches, with a computation time of 18.3 s per case. The BGA improves the registration performance in terms of both accuracy and time efficiency. With further acceleration, the framework has the potential for

  1. System and method for image registration of multiple video streams

    Science.gov (United States)

    Dillavou, Marcus W.; Shum, Phillip Corey; Guthrie, Baron L.; Shenai, Mahesh B.; Deaton, Drew Steven; May, Matthew Benton

    2018-02-06

    Provided herein are methods and systems for image registration from multiple sources. A method for image registration includes rendering a common field of interest that reflects a presence of a plurality of elements, wherein at least one of the elements is a remote element located remotely from another of the elements and updating the common field of interest such that the presence of the at least one of the elements is registered relative to another of the elements.

  2. Avoiding Stair-Step Artifacts in Image Registration for GOES-R Navigation and Registration Assessment

    Science.gov (United States)

    Grycewicz, Thomas J.; Tan, Bin; Isaacson, Peter J.; De Luccia, Frank J.; Dellomo, John

    2016-01-01

    In developing software for independent verification and validation (IVV) of the Image Navigation and Registration (INR) capability for the Geostationary Operational Environmental Satellite R Series (GOES-R) Advanced Baseline Imager (ABI), we have encountered an image registration artifact which limits the accuracy of image offset estimation at the subpixel scale using image correlation. Where the two images to be registered have the same pixel size, subpixel image registration preferentially selects registration values where the image pixel boundaries are close to lined up. Because of the shape of a curve plotting input displacement to estimated offset, we call this a stair-step artifact. When one image is at a higher resolution than the other, the stair-step artifact is minimized by correlating at the higher resolution. For validating ABI image navigation, GOES-R images are correlated with Landsat-based ground truth maps. To create the ground truth map, the Landsat image is first transformed to the perspective seen from the GOES-R satellite, and then is scaled to an appropriate pixel size. Minimizing processing time motivates choosing the map pixels to be the same size as the GOES-R pixels. At this pixel size image processing of the shift estimate is efficient, but the stair-step artifact is present. If the map pixel is very small, stair-step is not a problem, but image correlation is computation-intensive. This paper describes simulation-based selection of the scale for truth maps for registering GOES-R ABI images.

  3. Assessment of rigid multi-modality image registration consistency using the multiple sub-volume registration (MSR) method

    International Nuclear Information System (INIS)

    Ceylan, C; Heide, U A van der; Bol, G H; Lagendijk, J J W; Kotte, A N T J

    2005-01-01

    Registration of different imaging modalities such as CT, MRI, functional MRI (fMRI), positron (PET) and single photon (SPECT) emission tomography is used in many clinical applications. Determining the quality of any automatic registration procedure has been a challenging part because no gold standard is available to evaluate the registration. In this note we present a method, called the 'multiple sub-volume registration' (MSR) method, for assessing the consistency of a rigid registration. This is done by registering sub-images of one data set on the other data set, performing a crude non-rigid registration. By analysing the deviations (local deformations) of the sub-volume registrations from the full registration we get a measure of the consistency of the rigid registration. Registration of 15 data sets which include CT, MR and PET images for brain, head and neck, cervix, prostate and lung was performed utilizing a rigid body registration with normalized mutual information as the similarity measure. The resulting registrations were classified as good or bad by visual inspection. The resulting registrations were also classified using our MSR method. The results of our MSR method agree with the classification obtained from visual inspection for all cases (p < 0.02 based on ANOVA of the good and bad groups). The proposed method is independent of the registration algorithm and similarity measure. It can be used for multi-modality image data sets and different anatomic sites of the patient. (note)

  4. Robust linear registration of CT images using random regression forests

    Science.gov (United States)

    Konukoglu, Ender; Criminisi, Antonio; Pathak, Sayan; Robertson, Duncan; White, Steve; Haynor, David; Siddiqui, Khan

    2011-03-01

    Global linear registration is a necessary first step for many different tasks in medical image analysis. Comparing longitudinal studies1, cross-modality fusion2, and many other applications depend heavily on the success of the automatic registration. The robustness and efficiency of this step is crucial as it affects all subsequent operations. Most common techniques cast the linear registration problem as the minimization of a global energy function based on the image intensities. Although these algorithms have proved useful, their robustness in fully automated scenarios is still an open question. In fact, the optimization step often gets caught in local minima yielding unsatisfactory results. Recent algorithms constrain the space of registration parameters by exploiting implicit or explicit organ segmentations, thus increasing robustness4,5. In this work we propose a novel robust algorithm for automatic global linear image registration. Our method uses random regression forests to estimate posterior probability distributions for the locations of anatomical structures - represented as axis aligned bounding boxes6. These posterior distributions are later integrated in a global linear registration algorithm. The biggest advantage of our algorithm is that it does not require pre-defined segmentations or regions. Yet it yields robust registration results. We compare the robustness of our algorithm with that of the state of the art Elastix toolbox7. Validation is performed via 1464 pair-wise registrations in a database of very diverse 3D CT images. We show that our method decreases the "failure" rate of the global linear registration from 12.5% (Elastix) to only 1.9%.

  5. Quicksilver: Fast predictive image registration - A deep learning approach.

    Science.gov (United States)

    Yang, Xiao; Kwitt, Roland; Styner, Martin; Niethammer, Marc

    2017-09-01

    This paper introduces Quicksilver, a fast deformable image registration method. Quicksilver registration for image-pairs works by patch-wise prediction of a deformation model based directly on image appearance. A deep encoder-decoder network is used as the prediction model. While the prediction strategy is general, we focus on predictions for the Large Deformation Diffeomorphic Metric Mapping (LDDMM) model. Specifically, we predict the momentum-parameterization of LDDMM, which facilitates a patch-wise prediction strategy while maintaining the theoretical properties of LDDMM, such as guaranteed diffeomorphic mappings for sufficiently strong regularization. We also provide a probabilistic version of our prediction network which can be sampled during the testing time to calculate uncertainties in the predicted deformations. Finally, we introduce a new correction network which greatly increases the prediction accuracy of an already existing prediction network. We show experimental results for uni-modal atlas-to-image as well as uni-/multi-modal image-to-image registrations. These experiments demonstrate that our method accurately predicts registrations obtained by numerical optimization, is very fast, achieves state-of-the-art registration results on four standard validation datasets, and can jointly learn an image similarity measure. Quicksilver is freely available as an open-source software. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Fusion method of SAR and optical images for urban object extraction

    Science.gov (United States)

    Jia, Yonghong; Blum, Rick S.; Li, Fangfang

    2007-11-01

    A new image fusion method of SAR, Panchromatic (Pan) and multispectral (MS) data is proposed. First of all, SAR texture is extracted by ratioing the despeckled SAR image to its low pass approximation, and is used to modulate high pass details extracted from the available Pan image by means of the á trous wavelet decomposition. Then, high pass details modulated with the texture is applied to obtain the fusion product by HPFM (High pass Filter-based Modulation) fusion method. A set of image data including co-registered Landsat TM, ENVISAT SAR and SPOT Pan is used for the experiment. The results demonstrate accurate spectral preservation on vegetated regions, bare soil, and also on textured areas (buildings and road network) where SAR texture information enhances the fusion product, and the proposed approach is effective for image interpret and classification.

  7. SIMULATION OF SHIP GENERATED TURBULENT AND VORTICAL WAKE IMAGING BY SAR

    Institute of Scientific and Technical Information of China (English)

    Wang Aiming; Zhu Minhui

    2004-01-01

    Synthetic Aperture Radar (SAR) imaging of ocean surface features is studied. The simulation of the turbulent and vortical features generated by a moving ship and SAR imaging of these wakes is carried out. The turbulent wake damping the ocean surface capillary waves may be partially responsible for the suppression of surface waves near the ship track. The vortex pair generating a change in the lateral flow field behind the ship may be partially responsible for an enhancement of the waves near the edges of the smooth area. These hydrodynamic phenomena as well as the changes of radar backscatter generated by turbulence and vortex are simulated.An SAR imaging model is then used on such ocean surface features to provide SAR images.Comparison of two ships' simulated SAR images shows that the wake features are different for various ship parameters.

  8. Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features

    Science.gov (United States)

    Rezaeian, A.; Homayouni, S.; Safari, A.

    2015-12-01

    Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  9. SEGMENTATION OF POLARIMETRIC SAR IMAGES USIG WAVELET TRANSFORMATION AND TEXTURE FEATURES

    Directory of Open Access Journals (Sweden)

    A. Rezaeian

    2015-12-01

    Full Text Available Polarimetric Synthetic Aperture Radar (PolSAR sensors can collect useful observations from earth’s surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT. Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  10. Behaviors study of image registration algorithms in image guided radiation therapy

    International Nuclear Information System (INIS)

    Zou Lian; Hou Qing

    2008-01-01

    Objective: Study the behaviors of image registration algorithms, and analyze the elements which influence the performance of image registrations. Methods: Pre-known corresponding coordinates were appointed for reference image and moving image, and then the influence of region of interest (ROI) selection, transformation function initial parameters and coupled parameter spaces on registration results were studied with a software platform developed in home. Results: Region of interest selection had a manifest influence on registration performance. An improperly chosen ROI resulted in a bad registration. Transformation function initial parameters selection based on pre-known information could improve the accuracy of image registration. Coupled parameter spaces would enhance the dependence of image registration algorithm on ROI selection. Conclusions: It is necessary for clinic IGRT to obtain a ROI selection strategy (depending on specific commercial software) correlated to tumor sites. Three suggestions for image registration technique developers are automatic selection of the initial parameters of transformation function based on pre-known information, developing specific image registration algorithm for specific image feature, and assembling real-time image registration algorithms according to tumor sites selected by software user. (authors)

  11. On removing interpolation and resampling artifacts in rigid image registration.

    Science.gov (United States)

    Aganj, Iman; Yeo, Boon Thye Thomas; Sabuncu, Mert R; Fischl, Bruce

    2013-02-01

    We show that image registration using conventional interpolation and summation approximations of continuous integrals can generally fail because of resampling artifacts. These artifacts negatively affect the accuracy of registration by producing local optima, altering the gradient, shifting the global optimum, and making rigid registration asymmetric. In this paper, after an extensive literature review, we demonstrate the causes of the artifacts by comparing inclusion and avoidance of resampling analytically. We show the sum-of-squared-differences cost function formulated as an integral to be more accurate compared with its traditional sum form in a simple case of image registration. We then discuss aliasing that occurs in rotation, which is due to the fact that an image represented in the Cartesian grid is sampled with different rates in different directions, and propose the use of oscillatory isotropic interpolation kernels, which allow better recovery of true global optima by overcoming this type of aliasing. Through our experiments on brain, fingerprint, and white noise images, we illustrate the superior performance of the integral registration cost function in both the Cartesian and spherical coordinates, and also validate the introduced radial interpolation kernel by demonstrating the improvement in registration.

  12. Non-rigid image registration using bone growth model

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Gramkow, Claus; Kreiborg, Sven

    1997-01-01

    Non-rigid registration has traditionally used physical models like elasticity and fluids. These models are very seldom valid models of the difference between the registered images. This paper presents a non-rigid registration algorithm, which uses a model of bone growth as a model of the change...... between time sequence images of the human mandible. By being able to register the images, this paper at the same time contributes to the validation of the growth model, which is based on the currently available medical theories and knowledge...

  13. Improved image registration by sparse patch-based deformation estimation.

    Science.gov (United States)

    Kim, Minjeong; Wu, Guorong; Wang, Qian; Lee, Seong-Whan; Shen, Dinggang

    2015-01-15

    Despite intensive efforts for decades, deformable image registration is still a challenging problem due to the potential large anatomical differences across individual images, which limits the registration performance. Fortunately, this issue could be alleviated if a good initial deformation can be provided for the two images under registration, which are often termed as the moving subject and the fixed template, respectively. In this work, we present a novel patch-based initial deformation prediction framework for improving the performance of existing registration algorithms. Our main idea is to estimate the initial deformation between subject and template in a patch-wise fashion by using the sparse representation technique. We argue that two image patches should follow the same deformation toward the template image if their patch-wise appearance patterns are similar. To this end, our framework consists of two stages, i.e., the training stage and the application stage. In the training stage, we register all training images to the pre-selected template, such that the deformation of each training image with respect to the template is known. In the application stage, we apply the following four steps to efficiently calculate the initial deformation field for the new test subject: (1) We pick a small number of key points in the distinctive regions of the test subject; (2) for each key point, we extract a local patch and form a coupled appearance-deformation dictionary from training images where each dictionary atom consists of the image intensity patch as well as their respective local deformations; (3) a small set of training image patches in the coupled dictionary are selected to represent the image patch of each subject key point by sparse representation. Then, we can predict the initial deformation for each subject key point by propagating the pre-estimated deformations on the selected training patches with the same sparse representation coefficients; and (4) we

  14. Remote Sensing Image Registration with Line Segments and Their Intersections

    Directory of Open Access Journals (Sweden)

    Chengjin Lyu

    2017-05-01

    Full Text Available Image registration is a basic but essential step for remote sensing image processing, and finding stable features in multitemporal images is one of the most considerable challenges in the field. The main shape contours of artificial objects (e.g., roads, buildings, farmlands, and airports can be generally described as a group of line segments, which are stable features, even in images with evident background changes (e.g., images taken before and after a disaster. In this study, a registration method that uses line segments and their intersections is proposed for multitemporal remote sensing images. First, line segments are extracted in image pyramids to unify the scales of the reference image and the test image. Then, a line descriptor based on the gradient distribution of local areas is constructed, and the segments are matched in image pyramids. Lastly, triplets of intersections of matching lines are selected to estimate affine transformation between two images. Additional corresponding intersections are provided based on the estimated transformation, and an iterative process is adopted to remove outliers. The performance of the proposed method is tested on a variety of optical remote sensing image pairs, including synthetic and real data. Compared with existing methods, our method can provide more accurate registration results, even in images with significant background changes.

  15. 3-D brain image registration using optimal morphological processing

    International Nuclear Information System (INIS)

    Loncaric, S.; Dhawan, A.P.

    1994-01-01

    The three-dimensional (3-D) registration of Magnetic Resonance (MR) and Positron Emission Tomographic (PET) images of the brain is important for analysis of the human brain and its diseases. A procedure for optimization of (3-D) morphological structuring elements, based on a genetic algorithm, is presented in the paper. The registration of the MR and PET images is done by means of a registration procedure in two major phases. In the first phase, the Iterative Principal Axis Transform (IPAR) is used for initial registration. In the second phase, the optimal shape description method based on the Morphological Signature Transform (MST) is used for final registration. The morphological processing is used to improve the accuracy of the basic IPAR method. The brain ventricle is used as a landmark for MST registration. A near-optimal structuring element obtained by means of a genetic algorithm is used in MST to describe the shape of the ventricle. The method has been tested on the set of brain images demonstrating the feasibility of approach. (author). 11 refs., 3 figs

  16. On Signal Modeling of Moon-Based Synthetic Aperture Radar (SAR Imaging of Earth

    Directory of Open Access Journals (Sweden)

    Zhen Xu

    2018-03-01

    Full Text Available The Moon-based Synthetic Aperture Radar (Moon-Based SAR, using the Moon as a platform, has a great potential to offer global-scale coverage of the earth’s surface with a high revisit cycle and is able to meet the scientific requirements for climate change study. However, operating in the lunar orbit, Moon-Based SAR imaging is confined within a complex geometry of the Moon-Based SAR, Moon, and Earth, where both rotation and revolution have effects. The extremely long exposure time of Moon-Based SAR presents a curved moving trajectory and the protracted time-delay in propagation makes the “stop-and-go” assumption no longer valid. Consequently, the conventional SAR imaging technique is no longer valid for Moon-Based SAR. This paper develops a Moon-Based SAR theory in which a signal model is derived. The Doppler parameters in the context of lunar revolution with the removal of ‘stop-and-go’ assumption are first estimated, and then characteristics of Moon-Based SAR imaging’s azimuthal resolution are analyzed. In addition, a signal model of Moon-Based SAR and its two-dimensional (2-D spectrum are further derived. Numerical simulation using point targets validates the signal model and enables Doppler parameter estimation for image focusing.

  17. Elastix : a toolbox for intensity-based medical image registration

    NARCIS (Netherlands)

    Klein, S.; Staring, M.; Murphy, K.; Viergever, M.A.; Pluim, J.P.W.

    2010-01-01

    Medical image registration is an important task in medical image processing. It refers to the process of aligning data sets, possibly from different modalities (e.g., magnetic resonance and computed tomography), different time points (e.g., follow-up scans), and/or different subjects (in case of

  18. Multi-Pixel Simultaneous Classification of PolSAR Image Using Convolutional Neural Networks

    Science.gov (United States)

    Xu, Xin; Gui, Rong; Pu, Fangling

    2018-01-01

    Convolutional neural networks (CNN) have achieved great success in the optical image processing field. Because of the excellent performance of CNN, more and more methods based on CNN are applied to polarimetric synthetic aperture radar (PolSAR) image classification. Most CNN-based PolSAR image classification methods can only classify one pixel each time. Because all the pixels of a PolSAR image are classified independently, the inherent interrelation of different land covers is ignored. We use a fixed-feature-size CNN (FFS-CNN) to classify all pixels in a patch simultaneously. The proposed method has several advantages. First, FFS-CNN can classify all the pixels in a small patch simultaneously. When classifying a whole PolSAR image, it is faster than common CNNs. Second, FFS-CNN is trained to learn the interrelation of different land covers in a patch, so it can use the interrelation of land covers to improve the classification results. The experiments of FFS-CNN are evaluated on a Chinese Gaofen-3 PolSAR image and other two real PolSAR images. Experiment results show that FFS-CNN is comparable with the state-of-the-art PolSAR image classification methods. PMID:29510499

  19. Supervised local error estimation for nonlinear image registration using convolutional neural networks

    NARCIS (Netherlands)

    Eppenhof, Koen A.J.; Pluim, Josien P.W.; Styner, M.A.; Angelini, E.D.

    2017-01-01

    Error estimation in medical image registration is valuable when validating, comparing, or combining registration methods. To validate a nonlinear image registration method, ideally the registration error should be known for the entire image domain. We propose a supervised method for the estimation

  20. Markerless registration for image guided surgery. Preoperative image, intraoperative video image, and patient

    International Nuclear Information System (INIS)

    Kihara, Tomohiko; Tanaka, Yuko

    1998-01-01

    Real-time and volumetric acquisition of X-ray CT, MR, and SPECT is the latest trend of the medical imaging devices. A clinical challenge is to use these multi-modality volumetric information complementary on patient in the entire diagnostic and surgical processes. The intraoperative image and patient integration intents to establish a common reference frame by image in diagnostic and surgical processes. This provides a quantitative measure during surgery, for which we have been relied mostly on doctors' skills and experiences. The intraoperative image and patient integration involves various technologies, however, we think one of the most important elements is the development of markerless registration, which should be efficient and applicable to the preoperative multi-modality data sets, intraoperative image, and patient. We developed a registration system which integrates preoperative multi-modality images, intraoperative video image, and patient. It consists of a real-time registration of video camera for intraoperative use, a markerless surface sampling matching of patient and image, our previous works of markerless multi-modality image registration of X-ray CT, MR, and SPECT, and an image synthesis on video image. We think these techniques can be used in many applications which involve video camera like devices such as video camera, microscope, and image Intensifier. (author)

  1. Robust tie points selection for InSAR image coregistration

    Science.gov (United States)

    Skanderi, Takieddine; Chabira, Boulerbah; Afifa, Belkacem; Belhadj Aissa, Aichouche

    2013-10-01

    Image coregistration is an important step in SAR interferometry which is a well known method for DEM generation and surface displacement monitoring. A practical and widely used automatic coregistration algorithm is based on selecting a number of tie points in the master image and looking for the correspondence of each point in the slave image using correlation technique. The characteristics of these points, their number and their distribution have a great impact on the reliability of the estimated transformation. In this work, we present a method for automatic selection of suitable tie points that are well distributed over the common area without decreasing the desired tie points' number. First we select candidate points using Harris operator. Then from these points we select tie points depending on their cornerness measure (the highest first). Once a tie point is selected, its correspondence is searched for in the slave image, if the similarity measure maximum is less than a given threshold or it is at the border of the search window, this point is discarded and we proceed to the next Harris point, else, the cornerness of the remaining candidates Harris points are multiplied by a spatially radially increasing function centered at the selected point to disadvantage the points in a neighborhood of a radius determined from the size of the common area and the desired number of points. This is repeated until the desired number of points is selected. Results of an ERS1/2 tandem pair are presented and discussed.

  2. Development of the image registration program for portal and DRR images in radiation therapy

    International Nuclear Information System (INIS)

    Watanabe, Hiroyuki; Ito, Takeshi; Nakazeko, Kazuma; Tachibana, Atsuhi; Hashimoto, Takeyuki; Shinohara, Hiroyuki

    2012-01-01

    In this article, the authors propose an image registration program of portal images and digitally reconstructed radiography (DRR) images used as simulation images for external beam radiation therapy planning. First, the center of the radiation field in a portal image taken using a computed radiograhy cassette is matched to the center of the portal image. Then scale points projected on a DRR image and the portal image are deleted, and the portal image with the radiation field is extracted. Registration of the DRR and portal images is performed using mutual information as the registration criterion. It was found that the absolute displacement misregistrations in two directions (x, y) were 1.2±0.7 mm and 0.5±0.3 mm, respectively, and rotation disagreement about the z axis 0.3±0.3deg. It was concluded the proposed method was applicable to image registration of portal and DRR images in radiation therapy. (author)

  3. Estimation of regional lung expansion via 3D image registration

    Science.gov (United States)

    Pan, Yan; Kumar, Dinesh; Hoffman, Eric A.; Christensen, Gary E.; McLennan, Geoffrey; Song, Joo Hyun; Ross, Alan; Simon, Brett A.; Reinhardt, Joseph M.

    2005-04-01

    A method is described to estimate regional lung expansion and related biomechanical parameters using multiple CT images of the lungs, acquired at different inflation levels. In this study, the lungs of two sheep were imaged utilizing a multi-detector row CT at different lung inflations in the prone and supine positions. Using the lung surfaces and the airway branch points for guidance, a 3D inverse consistent image registration procedure was used to match different lung volumes at each orientation. The registration was validated using a set of implanted metal markers. After registration, the Jacobian of the deformation field was computed to express regional expansion or contraction. The regional lung expansion at different pressures and different orientations are compared.

  4. Detectability Analysis of Road Vehicles in Radarsat-2 Fully Polarimetric SAR Images for Traffic Monitoring

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-02-01

    Full Text Available By acquiring information over a wide area regardless of weather conditions and solar illumination, space-borne Synthetic Aperture Radar (SAR has the potential to be a promising application for traffic monitoring. However, the backscatter character of a vehicle in a SAR image is unstable and varies with image parameters, such as aspect and incidence angle. To investigate vehicle detectability in SAR images for traffic monitoring applications, images of four common types of vehicles in China were acquired using the fully polarimetric (FP SAR of Radarsat-2 in our experiments. Methods for measuring a vehicle’s aspect angle and backscatter intensity are introduced. The experimental FP SAR images are used to analyze the detectability, which is affected by factors such as vehicle size, vehicle shape, and aspect angle. Moreover, a new metric to improve vehicle detectability in FP SAR images is proposed and compared with the well-known intensity metric. The experimental results show that shape is a crucial factor in affecting the backscatter intensity of vehicles, which also oscillates with varying aspect angle. If the size of a vehicle is smaller than the SAR image resolution, using the intensity metric would result in low detectability. However, it could be improved in an FP SAR image by using the proposed metric. Compared with the intensity metric, the overall detectability is improved from 72% to 90% in our experiments. Therefore, this study indicates that FP SAR images have the ability to detect stationary vehicles on the road and are meaningful for traffic monitoring.

  5. Entropy-Based Block Processing for Satellite Image Registration

    Directory of Open Access Journals (Sweden)

    Ikhyun Lee

    2012-11-01

    Full Text Available Image registration is an important task in many computer vision applications such as fusion systems, 3D shape recovery and earth observation. Particularly, registering satellite images is challenging and time-consuming due to limited resources and large image size. In such scenario, state-of-the-art image registration methods such as scale-invariant feature transform (SIFT may not be suitable due to high processing time. In this paper, we propose an algorithm based on block processing via entropy to register satellite images. The performance of the proposed method is evaluated using different real images. The comparative analysis shows that it not only reduces the processing time but also enhances the accuracy.

  6. Cross Correlation versus Normalized Mutual Information on Image Registration

    Science.gov (United States)

    Tan, Bin; Tilton, James C.; Lin, Guoqing

    2016-01-01

    This is the first study to quantitatively assess and compare cross correlation and normalized mutual information methods used to register images in subpixel scale. The study shows that the normalized mutual information method is less sensitive to unaligned edges due to the spectral response differences than is cross correlation. This characteristic makes the normalized image resolution a better candidate for band to band registration. Improved band-to-band registration in the data from satellite-borne instruments will result in improved retrievals of key science measurements such as cloud properties, vegetation, snow and fire.

  7. Effect of Antenna Pointing Errors on SAR Imaging Considering the Change of the Point Target Location

    Science.gov (United States)

    Zhang, Xin; Liu, Shijie; Yu, Haifeng; Tong, Xiaohua; Huang, Guoman

    2018-04-01

    Towards spaceborne spotlight SAR, the antenna is regulated by the SAR system with specific regularity, so the shaking of the internal mechanism is inevitable. Moreover, external environment also has an effect on the stability of SAR platform. Both of them will cause the jitter of the SAR platform attitude. The platform attitude instability will introduce antenna pointing error on both the azimuth and range directions, and influence the acquisition of SAR original data and ultimate imaging quality. In this paper, the relations between the antenna pointing errors and the three-axis attitude errors are deduced, then the relations between spaceborne spotlight SAR imaging of the point target and antenna pointing errors are analysed based on the paired echo theory, meanwhile, the change of the azimuth antenna gain is considered as the spotlight SAR platform moves ahead. The simulation experiments manifest the effects on spotlight SAR imaging caused by antenna pointing errors are related to the target location, that is, the pointing errors of the antenna beam will severely influence the area far away from the scene centre of azimuth direction in the illuminated scene.

  8. Hybrid Geometric Calibration Method for Multi-Platform Spaceborne SAR Image with Sparse Gcps

    Science.gov (United States)

    Lv, G.; Tang, X.; Ai, B.; Li, T.; Chen, Q.

    2018-04-01

    Geometric calibration is able to provide high-accuracy geometric coordinates of spaceborne SAR image through accurate geometric parameters in the Range-Doppler model by ground control points (GCPs). However, it is very difficult to obtain GCPs that covering large-scale areas, especially in the mountainous regions. In addition, the traditional calibration method is only used for single platform SAR images and can't support the hybrid geometric calibration for multi-platform images. To solve the above problems, a hybrid geometric calibration method for multi-platform spaceborne SAR images with sparse GCPs is proposed in this paper. First, we calibrate the master image that contains GCPs. Secondly, the point tracking algorithm is used to obtain the tie points (TPs) between the master and slave images. Finally, we calibrate the slave images using TPs as the GCPs. We take the Beijing-Tianjin- Hebei region as an example to study SAR image hybrid geometric calibration method using 3 TerraSAR-X images, 3 TanDEM-X images and 5 GF-3 images covering more than 235 kilometers in the north-south direction. Geometric calibration of all images is completed using only 5 GCPs. The GPS data extracted from GNSS receiver are used to assess the plane accuracy after calibration. The results after geometric calibration with sparse GCPs show that the geometric positioning accuracy is 3 m for TSX/TDX images and 7.5 m for GF-3 images.

  9. The Establishment of the SAR images database System Based on Oracle and ArcSDE

    International Nuclear Information System (INIS)

    Zhou, Jijin; Li, Zhen; Chen, Quan; Tian, Bangsen

    2014-01-01

    Synthetic aperture radar is a kind of microwave imaging system, and has the advantages of multi-band, multi-polarization and multi-angle. At present, there is no SAR images database system based on typical features. For solving problems in interpretation and identification, a new SAR images database system of the typical features is urgent in the current development need. In this article, a SAR images database system based on Oracle and ArcSDE was constructed. The main works involving are as follows: (1) SAR image data was calibrated and corrected geometrically and geometrically. Besides, the fully polarimetric image was processed as the coherency matrix[T] to preserve the polarimetric information. (2) After analyzing multiple space borne SAR images, the metadata table was defined as: IMAGEID; Name of features; Latitude and Longitude; Sensor name; Range and Azimuth resolution etc. (3) Through the comparison between GeoRaster and ArcSDE, result showed ArcSDE is a more appropriate technology to store images in a central database. The System stores and manages multisource SAR image data well, reflects scattering, geometry, polarization, band and angle characteristics, and combines with analysis of the managed objects and service objects of the database as well as focuses on constructing SAR image system in the aspects of data browse and data retrieval. According the analysis of characteristics of SAR images such as scattering, polarization, incident angle and wave band information, different weights can be given to these characteristics. Then an interpreted tool is formed to provide an efficient platform for interpretation

  10. Diffusion tensor image registration using hybrid connectivity and tensor features.

    Science.gov (United States)

    Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang

    2014-07-01

    Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone. Copyright © 2013 Wiley Periodicals, Inc.

  11. Non-rigid registration of tomographic images with Fourier transforms

    International Nuclear Information System (INIS)

    Osorio, Ar; Isoardi, Ra; Mato, G

    2007-01-01

    Spatial image registration of deformable body parts such as thorax and abdomen has important medical applications, but at the same time, it represents an important computational challenge. In this work we propose an automatic algorithm to perform non-rigid registration of tomographic images using a non-rigid model based on Fourier transforms. As a measure of similarity, we use the correlation coefficient, finding that the optimal order of the transformation is n = 3 (36 parameters). We apply this method to a digital phantom and to 7 pairs of patient images corresponding to clinical CT scans. The preliminary results indicate a fairly good agreement according to medical experts, with an average registration error of 2 mm for the case of clinical images. For 2D images (dimensions 512x512), the average running time for the algorithm is 15 seconds using a standard personal computer. Summarizing, we find that intra-modality registration of the abdomen can be achieved with acceptable accuracy for slight deformations and can be extended to 3D with a reasonable execution time

  12. Reducing uncertainties in volumetric image based deformable organ registration

    International Nuclear Information System (INIS)

    Liang, J.; Yan, D.

    2003-01-01

    Applying volumetric image feedback in radiotherapy requires image based deformable organ registration. The foundation of this registration is the ability of tracking subvolume displacement in organs of interest. Subvolume displacement can be calculated by applying biomechanics model and the finite element method to human organs manifested on the multiple volumetric images. The calculation accuracy, however, is highly dependent on the determination of the corresponding organ boundary points. Lacking sufficient information for such determination, uncertainties are inevitable--thus diminishing the registration accuracy. In this paper, a method of consuming energy minimization was developed to reduce these uncertainties. Starting from an initial selection of organ boundary point correspondence on volumetric image sets, the subvolume displacement and stress distribution of the whole organ are calculated and the consumed energy due to the subvolume displacements is computed accordingly. The corresponding positions of the initially selected boundary points are then iteratively optimized to minimize the consuming energy under geometry and stress constraints. In this study, a rectal wall delineated from patient CT image was artificially deformed using a computer simulation and utilized to test the optimization. Subvolume displacements calculated based on the optimized boundary point correspondence were compared to the true displacements, and the calculation accuracy was thereby evaluated. Results demonstrate that a significant improvement on the accuracy of the deformable organ registration can be achieved by applying the consuming energy minimization in the organ deformation calculation

  13. Image registration based on virtual frame sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Ng, W.S. [Nanyang Technological University, Computer Integrated Medical Intervention Laboratory, School of Mechanical and Aerospace Engineering, Singapore (Singapore); Shi, D. (Nanyang Technological University, School of Computer Engineering, Singapore, Singpore); Wee, S.B. [Tan Tock Seng Hospital, Department of General Surgery, Singapore (Singapore)

    2007-08-15

    This paper is to propose a new framework for medical image registration with large nonrigid deformations, which still remains one of the biggest challenges for image fusion and further analysis in many medical applications. Registration problem is formulated as to recover a deformation process with the known initial state and final state. To deal with large nonlinear deformations, virtual frames are proposed to be inserted to model the deformation process. A time parameter is introduced and the deformation between consecutive frames is described with a linear affine transformation. Experiments are conducted with simple geometric deformation as well as complex deformations presented in MRI and ultrasound images. All the deformations are characterized with nonlinearity. The positive results demonstrated the effectiveness of this algorithm. The framework proposed in this paper is feasible to register medical images with large nonlinear deformations and is especially useful for sequential images. (orig.)

  14. SAR image dataset of military ground targets with multiple poses for ATR

    Science.gov (United States)

    Belloni, Carole; Balleri, Alessio; Aouf, Nabil; Merlet, Thomas; Le Caillec, Jean-Marc

    2017-10-01

    Automatic Target Recognition (ATR) is the task of automatically detecting and classifying targets. Recognition using Synthetic Aperture Radar (SAR) images is interesting because SAR images can be acquired at night and under any weather conditions, whereas optical sensors operating in the visible band do not have this capability. Existing SAR ATR algorithms have mostly been evaluated using the MSTAR dataset.1 The problem with the MSTAR is that some of the proposed ATR methods have shown good classification performance even when targets were hidden,2 suggesting the presence of a bias in the dataset. Evaluations of SAR ATR techniques are currently challenging due to the lack of publicly available data in the SAR domain. In this paper, we present a high resolution SAR dataset consisting of images of a set of ground military target models taken at various aspect angles, The dataset can be used for a fair evaluation and comparison of SAR ATR algorithms. We applied the Inverse Synthetic Aperture Radar (ISAR) technique to echoes from targets rotating on a turntable and illuminated with a stepped frequency waveform. The targets in the database consist of four variants of two 1.7m-long models of T-64 and T-72 tanks. The gun, the turret position and the depression angle are varied to form 26 different sequences of images. The emitted signal spanned the frequency range from 13 GHz to 18 GHz to achieve a bandwidth of 5 GHz sampled with 4001 frequency points. The resolution obtained with respect to the size of the model targets is comparable to typical values obtained using SAR airborne systems. Single polarized images (Horizontal-Horizontal) are generated using the backprojection algorithm.3 A total of 1480 images are produced using a 20° integration angle. The images in the dataset are organized in a suggested training and testing set to facilitate a standard evaluation of SAR ATR algorithms.

  15. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2016-04-01

    Full Text Available With the development of synthetic aperture radar (SAR technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO. However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate.

  16. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing.

    Science.gov (United States)

    Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin

    2016-04-07

    With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate.

  17. Automated dental implantation using image-guided robotics: registration results.

    Science.gov (United States)

    Sun, Xiaoyan; McKenzie, Frederic D; Bawab, Sebastian; Li, Jiang; Yoon, Yongki; Huang, Jen-K

    2011-09-01

    One of the most important factors affecting the outcome of dental implantation is the accurate insertion of the implant into the patient's jaw bone, which requires a high degree of anatomical accuracy. With the accuracy and stability of robots, image-guided robotics is expected to provide more reliable and successful outcomes for dental implantation. Here, we proposed the use of a robot for drilling the implant site in preparation for the insertion of the implant. An image-guided robotic system for automated dental implantation is described in this paper. Patient-specific 3D models are reconstructed from preoperative Cone-beam CT images, and implantation planning is performed with these virtual models. A two-step registration procedure is applied to transform the preoperative plan of the implant insertion into intra-operative operations of the robot with the help of a Coordinate Measurement Machine (CMM). Experiments are carried out with a phantom that is generated from the patient-specific 3D model. Fiducial Registration Error (FRE) and Target Registration Error (TRE) values are calculated to evaluate the accuracy of the registration procedure. FRE values are less than 0.30 mm. Final TRE values after the two-step registration are 1.42 ± 0.70 mm (N = 5). The registration results of an automated dental implantation system using image-guided robotics are reported in this paper. Phantom experiments show that the practice of robot in the dental implantation is feasible and the system accuracy is comparable to other similar systems for dental implantation.

  18. Error estimation of deformable image registration of pulmonary CT scans using convolutional neural networks

    NARCIS (Netherlands)

    Eppenhof, K.A.J.; Pluim, J.P.W.

    2018-01-01

    Error estimation in nonlinear medical image registration is a nontrivial problem that is important for validation of registration methods. We propose a supervised method for estimation of registration errors in nonlinear registration of three-dimensional (3-D) images. The method is based on a 3-D

  19. SAR image classification based on CNN in real and simulation datasets

    Science.gov (United States)

    Peng, Lijiang; Liu, Ming; Liu, Xiaohua; Dong, Liquan; Hui, Mei; Zhao, Yuejin

    2018-04-01

    Convolution neural network (CNN) has made great success in image classification tasks. Even in the field of synthetic aperture radar automatic target recognition (SAR-ATR), state-of-art results has been obtained by learning deep representation of features on the MSTAR benchmark. However, the raw data of MSTAR have shortcomings in training a SAR-ATR model because of high similarity in background among the SAR images of each kind. This indicates that the CNN would learn the hierarchies of features of backgrounds as well as the targets. To validate the influence of the background, some other SAR images datasets have been made which contains the simulation SAR images of 10 manufactured targets such as tank and fighter aircraft, and the backgrounds of simulation SAR images are sampled from the whole original MSTAR data. The simulation datasets contain the dataset that the backgrounds of each kind images correspond to the one kind of backgrounds of MSTAR targets or clutters and the dataset that each image shares the random background of whole MSTAR targets or clutters. In addition, mixed datasets of MSTAR and simulation datasets had been made to use in the experiments. The CNN architecture proposed in this paper are trained on all datasets mentioned above. The experimental results shows that the architecture can get high performances on all datasets even the backgrounds of the images are miscellaneous, which indicates the architecture can learn a good representation of the targets even though the drastic changes on background.

  20. Collocation for diffeomorphic deformations in medical image registration

    DEFF Research Database (Denmark)

    Darkner, Sune; Pai, Akshay Sadananda Uppinakudru; Liptrot, Matthew George

    2018-01-01

    Diffeomorphic deformation is a popular choice in medical image registration. A fundamental property of diffeomorphisms is in vertibility, implying that once the relation between two points A to B is found, then the relation B to A is given per definition. Consistency is a measure of a numerical a...

  1. The Insight ToolKit Image Registration Framework

    Directory of Open Access Journals (Sweden)

    Brian eAvants

    2014-04-01

    Full Text Available Publicly available scientific resources help establish evaluation standards, provide a platform for teaching and improve reproducibility. Version 4 of the Insight ToolKit ( ITK4 seeks to es- tablish new standards in publicly available image registration methodology. ITK4 makes severaladvances in comparison to previous versions of ITK. ITK4 supports both multivariate images and objective functions; it also unifies high-dimensional (deformation field and low-dimensional (affine transformations with metrics that are reusable across transform types and with com- posite transforms that allow arbitrary series of geometric mappings to be chained together seamlessly. Metrics and optimizers take advantage of multi-core resources, when available.Furthermore, ITK4 reduces the parameter optimization burden via principled heuristics that automatically set scaling across disparate parameter types (rotations versus translations. A related approach also constrains steps sizes for gradient-based optimizers. The result is that tuning for different metrics and/or image pairs is rarely necessary allowing the researcher tomore easily focus on design/comparison of registration strategies. In total, the ITK4 contribu- tion is intended as a structure to support reproducible research practices, will provide a more extensive foundation against which to evaluate new work in image registration and also enable application level programmers a broad suite of tools on which to build. Finally, we contextu- alize this work with a reference registration evaluation study with application to pediatric brainlabeling.

  2. Preconditioned stochastic gradient descent optimisation for monomodal image registration

    NARCIS (Netherlands)

    Klein, S.; Staring, M.; Andersson, J.P.; Pluim, J.P.W.; Fichtinger, G.; Martel, A.; Peters, T.

    2011-01-01

    We present a stochastic optimisation method for intensity-based monomodal image registration. The method is based on a Robbins-Monro stochastic gradient descent method with adaptive step size estimation, and adds a preconditioning matrix. The derivation of the pre-conditioner is based on the

  3. Diffeomorphic image registration with automatic time-step adjustment

    DEFF Research Database (Denmark)

    Pai, Akshay Sadananda Uppinakudru; Klein, S.; Sommer, Stefan Horst

    2015-01-01

    In this paper, we propose an automated Euler's time-step adjustment scheme for diffeomorphic image registration using stationary velocity fields (SVFs). The proposed variational problem aims at bounding the inverse consistency error by adaptively adjusting the number of Euler's step required to r...... accuracy as a fixed time-step scheme however at a much less computational cost....

  4. High Resolution SAR Imaging Employing Geometric Features for Extracting Seismic Damage of Buildings

    Science.gov (United States)

    Cui, L. P.; Wang, X. P.; Dou, A. X.; Ding, X.

    2018-04-01

    Synthetic Aperture Radar (SAR) image is relatively easy to acquire but difficult for interpretation. This paper probes how to identify seismic damage of building using geometric features of SAR. The SAR imaging geometric features of buildings, such as the high intensity layover, bright line induced by double bounce backscattering and dark shadow is analysed, and show obvious differences texture features of homogeneity, similarity and entropy in combinatorial imaging geometric regions between the un-collapsed and collapsed buildings in airborne SAR images acquired in Yushu city damaged by 2010 Ms7.1 Yushu, Qinghai, China earthquake, which implicates a potential capability to discriminate collapsed and un-collapsed buildings from SAR image. Study also shows that the proportion of highlight (layover & bright line) area (HA) is related to the seismic damage degree, thus a SAR image damage index (SARDI), which related to the ratio of HA to the building occupation are of building in a street block (SA), is proposed. While HA is identified through feature extraction with high-pass and low-pass filtering of SAR image in frequency domain. A partial region with 58 natural street blocks in the Yushu City are selected as study area. Then according to the above method, HA is extracted, SARDI is then calculated and further classified into 3 classes. The results show effective through validation check with seismic damage classes interpreted artificially from post-earthquake airborne high resolution optical image, which shows total classification accuracy 89.3 %, Kappa coefficient 0.79 and identical to the practical seismic damage distribution. The results are also compared and discussed with the building damage identified from SAR image available by other authors.

  5. a Statistical Texture Feature for Building Collapse Information Extraction of SAR Image

    Science.gov (United States)

    Li, L.; Yang, H.; Chen, Q.; Liu, X.

    2018-04-01

    Synthetic Aperture Radar (SAR) has become one of the most important ways to extract post-disaster collapsed building information, due to its extreme versatility and almost all-weather, day-and-night working capability, etc. In view of the fact that the inherent statistical distribution of speckle in SAR images is not used to extract collapsed building information, this paper proposed a novel texture feature of statistical models of SAR images to extract the collapsed buildings. In the proposed feature, the texture parameter of G0 distribution from SAR images is used to reflect the uniformity of the target to extract the collapsed building. This feature not only considers the statistical distribution of SAR images, providing more accurate description of the object texture, but also is applied to extract collapsed building information of single-, dual- or full-polarization SAR data. The RADARSAT-2 data of Yushu earthquake which acquired on April 21, 2010 is used to present and analyze the performance of the proposed method. In addition, the applicability of this feature to SAR data with different polarizations is also analysed, which provides decision support for the data selection of collapsed building information extraction.

  6. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease

    NARCIS (Netherlands)

    Shamonin, D.P.; Bron, E.E.; Lelieveldt, B.P.F.; Smits, M.; Klein, S.; Staring, M.

    2014-01-01

    Nonrigid image registration is an important, but time-consuming task in medical image analysis. In typical neuroimaging studies, multiple image registrations are performed, i.e., for atlas-based segmentation or template construction. Faster image registration routines would therefore be beneficial.

  7. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease

    NARCIS (Netherlands)

    D.P. Shamonin (Denis); E.E. Bron (Esther); B.P.F. Lelieveldt (Boudewijn); M. Smits (Marion); S. Klein (Stefan); M. Staring (Marius)

    2014-01-01

    textabstractNonrigid image registration is an important, but time-consuming task in medical image analysis. In typical neuroimaging studies, multiple image registrations are performed, i.e., for atlas-based segmentation or template construction. Faster image registration routines would therefore be

  8. Discrimination of Oil Slicks and Lookalikes in Polarimetric SAR Images Using CNN

    OpenAIRE

    Guo, Hao; Wu, Danni; An, Jubai

    2017-01-01

    Oil slicks and lookalikes (e.g., plant oil and oil emulsion) all appear as dark areas in polarimetric Synthetic Aperture Radar (SAR) images and are highly heterogeneous, so it is very difficult to use a single feature that can allow classification of dark objects in polarimetric SAR images as oil slicks or lookalikes. We established multi-feature fusion to support the discrimination of oil slicks and lookalikes. In the paper, simple discrimination analysis is used to rationalize a preferred f...

  9. Registration of Images with N-fold Dihedral Blur

    Czech Academy of Sciences Publication Activity Database

    Pedone, M.; Flusser, Jan; Heikkila, J.

    2015-01-01

    Roč. 24, č. 3 (2015), s. 1036-1045 ISSN 1057-7149 R&D Projects: GA ČR GA13-29225S; GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Image registration * blurred images * N-fold rotational symmetry * dihedral symmetry * phase correlation Subject RIV: JD - Computer Applications, Robotics Impact factor: 3.735, year: 2015 http://library.utia.cas.cz/separaty/2015/ZOI/flusser-0441247.pdf

  10. An accelerated image matching technique for UAV orthoimage registration

    Science.gov (United States)

    Tsai, Chung-Hsien; Lin, Yu-Ching

    2017-06-01

    Using an Unmanned Aerial Vehicle (UAV) drone with an attached non-metric camera has become a popular low-cost approach for collecting geospatial data. A well-georeferenced orthoimage is a fundamental product for geomatics professionals. To achieve high positioning accuracy of orthoimages, precise sensor position and orientation data, or a number of ground control points (GCPs), are often required. Alternatively, image registration is a solution for improving the accuracy of a UAV orthoimage, as long as a historical reference image is available. This study proposes a registration scheme, including an Accelerated Binary Robust Invariant Scalable Keypoints (ABRISK) algorithm and spatial analysis of corresponding control points for image registration. To determine a match between two input images, feature descriptors from one image are compared with those from another image. A "Sorting Ring" is used to filter out uncorrected feature pairs as early as possible in the stage of matching feature points, to speed up the matching process. The results demonstrate that the proposed ABRISK approach outperforms the vector-based Scale Invariant Feature Transform (SIFT) approach where radiometric variations exist. ABRISK is 19.2 times and 312 times faster than SIFT for image sizes of 1000 × 1000 pixels and 4000 × 4000 pixels, respectively. ABRISK is 4.7 times faster than Binary Robust Invariant Scalable Keypoints (BRISK). Furthermore, the positional accuracy of the UAV orthoimage after applying the proposed image registration scheme is improved by an average of root mean square error (RMSE) of 2.58 m for six test orthoimages whose spatial resolutions vary from 6.7 cm to 10.7 cm.

  11. Advanced methods for image registration applied to JET videos

    Energy Technology Data Exchange (ETDEWEB)

    Craciunescu, Teddy, E-mail: teddy.craciunescu@jet.uk [EURATOM-MEdC Association, NILPRP, Bucharest (Romania); Murari, Andrea [Consorzio RFX, Associazione EURATOM-ENEA per la Fusione, Padova (Italy); Gelfusa, Michela [Associazione EURATOM-ENEA – University of Rome “Tor Vergata”, Roma (Italy); Tiseanu, Ion; Zoita, Vasile [EURATOM-MEdC Association, NILPRP, Bucharest (Romania); Arnoux, Gilles [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon (United Kingdom)

    2015-10-15

    Graphical abstract: - Highlights: • Development of an image registration method for JET IR and fast visible cameras. • Method based on SIFT descriptors and coherent point drift points set registration technique. • Method able to deal with extremely noisy images and very low luminosity images. • Computation time compatible with the inter-shot analysis. - Abstract: The last years have witnessed a significant increase in the use of digital cameras on JET. They are routinely applied for imaging in the IR and visible spectral regions. One of the main technical difficulties in interpreting the data of camera based diagnostics is the presence of movements of the field of view. Small movements occur due to machine shaking during normal pulses while large ones may arise during disruptions. Some cameras show a correlation of image movement with change of magnetic field strength. For deriving unaltered information from the videos and for allowing correct interpretation an image registration method, based on highly distinctive scale invariant feature transform (SIFT) descriptors and on the coherent point drift (CPD) points set registration technique, has been developed. The algorithm incorporates a complex procedure for rejecting outliers. The method has been applied for vibrations correction to videos collected by the JET wide angle infrared camera and for the correction of spurious rotations in the case of the JET fast visible camera (which is equipped with an image intensifier). The method has proved to be able to deal with the images provided by this camera frequently characterized by low contrast and a high level of blurring and noise.

  12. Pixel Classification of SAR ice images using ANFIS-PSO Classifier

    Directory of Open Access Journals (Sweden)

    G. Vasumathi

    2016-12-01

    Full Text Available Synthetic Aperture Radar (SAR is playing a vital role in taking extremely high resolution radar images. It is greatly used to monitor the ice covered ocean regions. Sea monitoring is important for various purposes which includes global climate systems and ship navigation. Classification on the ice infested area gives important features which will be further useful for various monitoring process around the ice regions. Main objective of this paper is to classify the SAR ice image that helps in identifying the regions around the ice infested areas. In this paper three stages are considered in classification of SAR ice images. It starts with preprocessing in which the speckled SAR ice images are denoised using various speckle removal filters; comparison is made on all these filters to find the best filter in speckle removal. Second stage includes segmentation in which different regions are segmented using K-means and watershed segmentation algorithms; comparison is made between these two algorithms to find the best in segmenting SAR ice images. The last stage includes pixel based classification which identifies and classifies the segmented regions using various supervised learning classifiers. The algorithms includes Back propagation neural networks (BPN, Fuzzy Classifier, Adaptive Neuro Fuzzy Inference Classifier (ANFIS classifier and proposed ANFIS with Particle Swarm Optimization (PSO classifier; comparison is made on all these classifiers to propose which classifier is best suitable for classifying the SAR ice image. Various evaluation metrics are performed separately at all these three stages.

  13. Wind mapping offshore in coastal Mediterranean area using SAR images

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete

    Satellite observations of the ocean surface from Synthetic Aperture Radars (SAR) provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean, where spatial wind information is only provided by sparse buoys, often with long periods...... of missing data. Here, we focus on evaluating the use of SAR for offshore wind mapping. Preliminary results from the analysis of SAR-based ocean winds in Mediterranean areas show interesting large scale wind flow features consistent with results from previous studies using numerical models and space borne...

  14. Verification and Validation of a Fingerprint Image Registration Software

    Directory of Open Access Journals (Sweden)

    Liu Yan

    2006-01-01

    Full Text Available The need for reliable identification and authentication is driving the increased use of biometric devices and systems. Verification and validation techniques applicable to these systems are rather immature and ad hoc, yet the consequences of the wide deployment of biometric systems could be significant. In this paper we discuss an approach towards validation and reliability estimation of a fingerprint registration software. Our validation approach includes the following three steps: (a the validation of the source code with respect to the system requirements specification; (b the validation of the optimization algorithm, which is in the core of the registration system; and (c the automation of testing. Since the optimization algorithm is heuristic in nature, mathematical analysis and test results are used to estimate the reliability and perform failure analysis of the image registration module.

  15. Image registration in the brain: a test of clinical accuracy

    International Nuclear Information System (INIS)

    Rosenman, Julian; Miller, Elizabeth P.; Rinker, Lillian; Mukherji, Suresh; Tracton, Gregg; Cullip, Tim J.; Muller, Keith E.; DeLuca, Marla C.; Major, Stacey A.; Sailer, Scott; Varia, Mahesh

    1997-01-01

    Purpose/Objective: Accurate localization of tumor and normal structures is a critical step in the radiation treatment planning processes and has direct implications for tumor control success as well as normal tissue morbidity. We conducted a study to determine the accuracy of transferring tumor information from diagnostic images to the simulation films and planning CT with conventional methods using the best clinical judgment and compared that to tumor localization using 3D registration software. Materials and Methods: We measured the accuracy with which experienced clinicians could localize tumor volume from diagnostic images to either simulation films or a planning CT, with and without 3D registration software. To obtain absolute registration truth we used the method of identical pairs wherein a CT data set was duplicated and one copy resliced along a different plane than the original while maintaining the exact mathematical transformation between them. A tumor was then added to the resliced CT which became the surrogate diagnostic image. Because we were concerned that a CT/CT pair might be too easy to register, a simulated MR made by re-colorizing the resliced CT (to become a facsimile MR or fMR) was also used as a surrogate diagnostic image. Finally we studied the registration accuracy when a CT/(real)MR pair was used. The registration in this case could not be guaranteed to be exact, but the studies were obtained under carefully controlled conditions and were registered from bony landmarks using commercial radiosurgery software. A team of experts then placed the tumor from the resliced CT, fMR, or real MR to an AP and lateral 'isocenter simulation film' (a digitally reconstructed radiograph made from the unmarked CT) and to the 'planning CT' - also the unmarked CT. A registration of the data sets (CT/CT, CT/fMR and CT/MR) was also done using our 3D registration software. A total of thirty-six tasks on four subjects were performed. Four analyses (each with

  16. Image registration assessment in radiotherapy image guidance based on control chart monitoring.

    Science.gov (United States)

    Xia, Wenyao; Breen, Stephen L

    2018-04-01

    Image guidance with cone beam computed tomography in radiotherapy can guarantee the precision and accuracy of patient positioning prior to treatment delivery. During the image guidance process, operators need to take great effort to evaluate the image guidance quality before correcting a patient's position. This work proposes an image registration assessment method based on control chart monitoring to reduce the effort taken by the operator. According to the control chart plotted by daily registration scores of each patient, the proposed method can quickly detect both alignment errors and image quality inconsistency. Therefore, the proposed method can provide a clear guideline for the operators to identify unacceptable image quality and unacceptable image registration with minimal effort. Experimental results demonstrate that by using control charts from a clinical database of 10 patients undergoing prostate radiotherapy, the proposed method can quickly identify out-of-control signals and find special cause of out-of-control registration events.

  17. The ANACONDA algorithm for deformable image registration in radiotherapy

    International Nuclear Information System (INIS)

    Weistrand, Ola; Svensson, Stina

    2015-01-01

    Purpose: The purpose of this work was to describe a versatile algorithm for deformable image registration with applications in radiotherapy and to validate it on thoracic 4DCT data as well as CT/cone beam CT (CBCT) data. Methods: ANAtomically CONstrained Deformation Algorithm (ANACONDA) combines image information (i.e., intensities) with anatomical information as provided by contoured image sets. The registration problem is formulated as a nonlinear optimization problem and solved with an in-house developed solver, tailored to this problem. The objective function, which is minimized during optimization, is a linear combination of four nonlinear terms: 1. image similarity term; 2. grid regularization term, which aims at keeping the deformed image grid smooth and invertible; 3. a shape based regularization term which works to keep the deformation anatomically reasonable when regions of interest are present in the reference image; and 4. a penalty term which is added to the optimization problem when controlling structures are used, aimed at deforming the selected structure in the reference image to the corresponding structure in the target image. Results: To validate ANACONDA, the authors have used 16 publically available thoracic 4DCT data sets for which target registration errors from several algorithms have been reported in the literature. On average for the 16 data sets, the target registration error is 1.17 ± 0.87 mm, Dice similarity coefficient is 0.98 for the two lungs, and image similarity, measured by the correlation coefficient, is 0.95. The authors have also validated ANACONDA using two pelvic cases and one head and neck case with planning CT and daily acquired CBCT. Each image has been contoured by a physician (radiation oncologist) or experienced radiation therapist. The results are an improvement with respect to rigid registration. However, for the head and neck case, the sample set is too small to show statistical significance. Conclusions: ANACONDA

  18. RAMP AMM-1 SAR Image Mosaic of Antarctica

    Data.gov (United States)

    National Aeronautics and Space Administration — In 1997, the Canadian RADARSAT-1 satellite was rotated in orbit so that its Synthetic Aperture Radar (SAR) antenna looked south towards Antarctica. This permitted...

  19. An efficient direct method for image registration of flat objects

    Science.gov (United States)

    Nikolaev, Dmitry; Tihonkih, Dmitrii; Makovetskii, Artyom; Voronin, Sergei

    2017-09-01

    Image alignment of rigid surfaces is a rapidly developing area of research and has many practical applications. Alignment methods can be roughly divided into two types: feature-based methods and direct methods. Known SURF and SIFT algorithms are examples of the feature-based methods. Direct methods refer to those that exploit the pixel intensities without resorting to image features and image-based deformations are general direct method to align images of deformable objects in 3D space. Nevertheless, it is not good for the registration of images of 3D rigid objects since the underlying structure cannot be directly evaluated. In the article, we propose a model that is suitable for image alignment of rigid flat objects under various illumination models. The brightness consistency assumptions used for reconstruction of optimal geometrical transformation. Computer simulation results are provided to illustrate the performance of the proposed algorithm for computing of an accordance between pixels of two images.

  20. APPLICATION OF FUSION WITH SAR AND OPTICAL IMAGES IN LAND USE CLASSIFICATION BASED ON SVM

    Directory of Open Access Journals (Sweden)

    C. Bao

    2012-07-01

    Full Text Available As the increment of remote sensing data with multi-space resolution, multi-spectral resolution and multi-source, data fusion technologies have been widely used in geological fields. Synthetic Aperture Radar (SAR and optical camera are two most common sensors presently. The multi-spectral optical images express spectral features of ground objects, while SAR images express backscatter information. Accuracy of the image classification could be effectively improved fusing the two kinds of images. In this paper, Terra SAR-X images and ALOS multi-spectral images were fused for land use classification. After preprocess such as geometric rectification, radiometric rectification noise suppression and so on, the two kind images were fused, and then SVM model identification method was used for land use classification. Two different fusion methods were used, one is joining SAR image into multi-spectral images as one band, and the other is direct fusing the two kind images. The former one can raise the resolution and reserve the texture information, and the latter can reserve spectral feature information and improve capability of identifying different features. The experiment results showed that accuracy of classification using fused images is better than only using multi-spectral images. Accuracy of classification about roads, habitation and water bodies was significantly improved. Compared to traditional classification method, the method of this paper for fused images with SVM classifier could achieve better results in identifying complicated land use classes, especially for small pieces ground features.

  1. Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling

    Science.gov (United States)

    Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng

    2016-01-01

    Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath. PMID:27428974

  2. Registration and recognition in images and videos

    CERN Document Server

    Battiato, Sebastiano; Farinella, Giovanni

    2014-01-01

    Computer vision is the science and technology of making machines that see. It is concerned with the theory, design and implementation of algorithms that can automatically process visual data to recognize objects, track and recover their shape and spatial layout. The International Computer Vision Summer School - ICVSS was established in 2007 to provide both an objective and clear overview and an in-depth analysis of the state-of-the-art  research in Computer Vision. The courses are delivered by world renowned experts in the field, from both academia and industry, and cover both theoretical and practical aspects of real Computer Vision problems.  The school is organized every year by University of Cambridge (Computer Vision and Robotics Group) and University of Catania (Image Processing Lab). Different topics are covered each year.This edited volume contains a selection of articles covering some of the talks and tutorials held during the last editions of the school. The chapters provide an in-depth overview o...

  3. Image registration via optimization over disjoint image regions

    Science.gov (United States)

    Pitts, Todd; Hathaway, Simon; Karelitz, David B.; Sandusky, John; Laine, Mark Richard

    2018-02-06

    Technologies pertaining to registering a target image with a base image are described. In a general embodiment, the base image is selected from a set of images, and the target image is an image in the set of images that is to be registered to the base image. A set of disjoint regions of the target image is selected, and a transform to be applied to the target image is computed based on the optimization of a metric over the selected set of disjoint regions. The transform is applied to the target image so as to register the target image with the base image.

  4. Multi-Modality Registration And Fusion Of Medical Image Data

    International Nuclear Information System (INIS)

    Kassak, P.; Vencko, D.; Cerovsky, I.

    2008-01-01

    Digitalisation of health care providing facilities allows US to maximize the usage of digital data from one patient obtained by various modalities. Complex view on to the problem can be achieved from the site of morphology as well as functionality. Multi-modal registration and fusion of medical image data is one of the examples that provides improved insight and allows more precise approach and treatment. (author)

  5. Feature Fusion Based Road Extraction for HJ-1-C SAR Image

    Directory of Open Access Journals (Sweden)

    Lu Ping-ping

    2014-06-01

    Full Text Available Road network extraction in SAR images is one of the key tasks of military and civilian technologies. To solve the issues of road extraction of HJ-1-C SAR images, a road extraction algorithm is proposed based on the integration of ratio and directional information. Due to the characteristic narrow dynamic range and low signal to noise ratio of HJ-1-C SAR images, a nonlinear quantization and an image filtering method based on a multi-scale autoregressive model are proposed here. A road extraction algorithm based on information fusion, which considers ratio and direction information, is also proposed. By processing Radon transformation, main road directions can be extracted. Cross interferences can be suppressed, and the road continuity can then be improved by the main direction alignment and secondary road extraction. The HJ-1-C SAR image acquired in Wuhan, China was used to evaluate the proposed method. The experimental results show good performance with correctness (80.5% and quality (70.1% when applied to a SAR image with complex content.

  6. First Image Products from EcoSAR - Osa Peninsula, Costa Rica

    Science.gov (United States)

    Osmanoglu, Batuhan; Lee, SeungKuk; Rincon, Rafael; Fatuyinbo, Lola; Bollian, Tobias; Ranson, Jon

    2016-01-01

    Designed especially for forest ecosystem studies, EcoSAR employs state-of-the-art digital beamforming technology to generate wide-swath, high-resolution imagery. EcoSARs dual antenna single-pass imaging capability eliminates temporal decorrelation from polarimetric and interferometric analysis, increasing the signal strength and simplifying models used to invert forest structure parameters. Antennae are physically separated by 25 meters providing single pass interferometry. In this mode the radar is most sensitive to topography. With 32 active transmit and receive channels, EcoSARs digital beamforming is an order of magnitude more versatile than the digital beamforming employed on the upcoming NISAR mission. EcoSARs long wavelength (P-band, 435 MHz, 69 cm) measurements can be used to simulate data products for ESAs future BIOMASS mission, allowing scientists to develop algorithms before the launch of the satellite. EcoSAR can also be deployed to collect much needed data where BIOMASS satellite wont be allowed to collect data (North America, Europe and Arctic), filling in the gaps to keep a watchful eye on the global carbon cycle. EcoSAR can play a vital role in monitoring, reporting and verification schemes of internationals programs such as UN-REDD (United Nations Reducing Emissions from Deforestation and Degradation) benefiting global society. EcoSAR was developed and flown with support from NASA Earth Sciences Technology Offices Instrument Incubator Program.

  7. Learning-based deformable image registration for infant MR images in the first year of life.

    Science.gov (United States)

    Hu, Shunbo; Wei, Lifang; Gao, Yaozong; Guo, Yanrong; Wu, Guorong; Shen, Dinggang

    2017-01-01

    Many brain development studies have been devoted to investigate dynamic structural and functional changes in the first year of life. To quantitatively measure brain development in such a dynamic period, accurate image registration for different infant subjects with possible large age gap is of high demand. Although many state-of-the-art image registration methods have been proposed for young and elderly brain images, very few registration methods work for infant brain images acquired in the first year of life, because of (a) large anatomical changes due to fast brain development and (b) dynamic appearance changes due to white-matter myelination. To address these two difficulties, we propose a learning-based registration method to not only align the anatomical structures but also alleviate the appearance differences between two arbitrary infant MR images (with large age gap) by leveraging the regression forest to predict both the initial displacement vector and appearance changes. Specifically, in the training stage, two regression models are trained separately, with (a) one model learning the relationship between local image appearance (of one development phase) and its displacement toward the template (of another development phase) and (b) another model learning the local appearance changes between the two brain development phases. Then, in the testing stage, to register a new infant image to the template, we first predict both its voxel-wise displacement and appearance changes by the two learned regression models. Since such initializations can alleviate significant appearance and shape differences between new infant image and the template, it is easy to just use a conventional registration method to refine the remaining registration. We apply our proposed registration method to align 24 infant subjects at five different time points (i.e., 2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old), and achieve more accurate and robust registration

  8. Polyaffine parametrization of image registration based on geodesic flows

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Thorup, Signe Strann; Warfield, Simon K.

    2012-01-01

    Image registration based on geodesic flows has gained much popularity in recent years. We describe a novel parametrization of the velocity field in a stationary flow equation. We show that the method offers both precision, flexibility, and simplicity of evaluation. With our representation, which ...... of geodesic shooting for computational anatomy. We avoid to do warp field convolution by interpolation in a dense field, we can easily calculate warp derivatives in a reference frame of choice, and we can consequently avoid interpolation in the image space altogether....

  9. Image registration: An essential part of radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Rosenman, Julian G.; Miller, Elizabeth P.; Tracton, Gregg; Cullip, Tim J.

    1998-01-01

    Purpose: We believe that a three-dimensional (3D) registration of nonplanning (diagnostic) imaging data with the planning computed tomography (CT) offers a substantial improvement in tumor target identification for many radiation therapy patients. The purpose of this article is to review and discuss our experience to date. Methods and Materials: We reviewed the charts and treatment planning records of all patients that underwent 3D radiation treatment planning in our department from June 1994 to December 1995, to learn which patients had image registration performed and why it was thought they would benefit from this approach. We also measured how much error would have been introduced into the target definition if the nonplanning imaging data had not been available and only the planning CT had been used. Results: Between June 1994 and December 1995, 106 of 246 (43%) of patients undergoing 3D treatment planning had image registration. Four reasons for performing registration were identified. First, some tumor volumes have better definition on magnetic resonance imaging (MRI) than on CT. Second, a properly contrasted diagnostic CT sometimes can show the tumor target better than can the planning CT. Third, the diagnostic CT or MR may have been preoperative, with the postoperative planning CT no longer showing the tumor. Fourth, the patient may have undergone cytoreductive chemotherapy so that the postchemotherapy planning CT no longer showed the original tumor volume. In patients in whom the planning CT did not show the tumor volume well an analysis was done to determine how the treatment plan was changed with the addition of a better tumor-defining nonplanning CT or MR. We have found that the use of this additional imaging modality changed the tumor location in the treatment plan at least 1.5 cm for half of the patients, and up to 3.0 cm for ((1)/(4)) of the patients. Conclusions: Multimodality and/or sequential imaging can substantially aid in better tumor

  10. TU-A-19A-01: Image Registration I: Deformable Image Registration, Contour Propagation and Dose Mapping: 101 and 201

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, M [The University of Michigan, Ann Arbor, MI (United States)

    2014-06-15

    Deformable image registration, contour propagation and dose mapping have become common, possibly essential tools for modern image-guided radiation therapy. Historically, these tools have been largely developed at academic medical centers and used in a rather limited and well controlled fashion. Today these tools are now available to the radiotherapy community at large, both as stand-alone applications and as integrated components of both treatment planning and treatment delivery systems. Unfortunately, the details of how these tools work and their limitations are not generally documented or described by the vendors that provide them. Although “it looks right”, determining that unphysical deformations may have occurred is crucial. Because of this, understanding how and when to use, and not use these tools to support everyday clinical decisions is far from straight forward. The goal of this session will be to present both the theory (basic and advanced) and practical clinical use of deformable image registration, contour propagation and dose mapping. To the extent possible, the “secret sauce” that different vendor use to produce reasonable/acceptable results will be described. A detailed explanation of the possible sources of errors and actual examples of these will be presented. Knowing the underlying principles of the process and understanding the confounding factors will help the practicing medical physicist be better able to make decisions (about making decisions) using these tools available. Learning Objectives: Understand the basic (101) and advanced (201) principles of deformable image registration, contour propagation and dose mapping data mapping. Understand the sources and impact of errors in registration and data mapping and the methods for evaluating the performance of these tools. Understand the clinical use and value of these tools, especially when used as a “black box”.

  11. Spatially weighted mutual information image registration for image guided radiation therapy

    International Nuclear Information System (INIS)

    Park, Samuel B.; Rhee, Frank C.; Monroe, James I.; Sohn, Jason W.

    2010-01-01

    Purpose: To develop a new metric for image registration that incorporates the (sub)pixelwise differential importance along spatial location and to demonstrate its application for image guided radiation therapy (IGRT). Methods: It is well known that rigid-body image registration with mutual information is dependent on the size and location of the image subset on which the alignment analysis is based [the designated region of interest (ROI)]. Therefore, careful review and manual adjustments of the resulting registration are frequently necessary. Although there were some investigations of weighted mutual information (WMI), these efforts could not apply the differential importance to a particular spatial location since WMI only applies the weight to the joint histogram space. The authors developed the spatially weighted mutual information (SWMI) metric by incorporating an adaptable weight function with spatial localization into mutual information. SWMI enables the user to apply the selected transform to medically ''important'' areas such as tumors and critical structures, so SWMI is neither dominated by, nor neglects the neighboring structures. Since SWMI can be utilized with any weight function form, the authors presented two examples of weight functions for IGRT application: A Gaussian-shaped weight function (GW) applied to a user-defined location and a structures-of-interest (SOI) based weight function. An image registration example using a synthesized 2D image is presented to illustrate the efficacy of SWMI. The convergence and feasibility of the registration method as applied to clinical imaging is illustrated by fusing a prostate treatment planning CT with a clinical cone beam CT (CBCT) image set acquired for patient alignment. Forty-one trials are run to test the speed of convergence. The authors also applied SWMI registration using two types of weight functions to two head and neck cases and a prostate case with clinically acquired CBCT/MVCT image sets. The

  12. Spatially weighted mutual information image registration for image guided radiation therapy.

    Science.gov (United States)

    Park, Samuel B; Rhee, Frank C; Monroe, James I; Sohn, Jason W

    2010-09-01

    To develop a new metric for image registration that incorporates the (sub)pixelwise differential importance along spatial location and to demonstrate its application for image guided radiation therapy (IGRT). It is well known that rigid-body image registration with mutual information is dependent on the size and location of the image subset on which the alignment analysis is based [the designated region of interest (ROI)]. Therefore, careful review and manual adjustments of the resulting registration are frequently necessary. Although there were some investigations of weighted mutual information (WMI), these efforts could not apply the differential importance to a particular spatial location since WMI only applies the weight to the joint histogram space. The authors developed the spatially weighted mutual information (SWMI) metric by incorporating an adaptable weight function with spatial localization into mutual information. SWMI enables the user to apply the selected transform to medically "important" areas such as tumors and critical structures, so SWMI is neither dominated by, nor neglects the neighboring structures. Since SWMI can be utilized with any weight function form, the authors presented two examples of weight functions for IGRT application: A Gaussian-shaped weight function (GW) applied to a user-defined location and a structures-of-interest (SOI) based weight function. An image registration example using a synthesized 2D image is presented to illustrate the efficacy of SWMI. The convergence and feasibility of the registration method as applied to clinical imaging is illustrated by fusing a prostate treatment planning CT with a clinical cone beam CT (CBCT) image set acquired for patient alignment. Forty-one trials are run to test the speed of convergence. The authors also applied SWMI registration using two types of weight functions to two head and neck cases and a prostate case with clinically acquired CBCT/ MVCT image sets. The SWMI registration with

  13. An atlas-based multimodal registration method for 2D images with discrepancy structures.

    Science.gov (United States)

    Lv, Wenchao; Chen, Houjin; Peng, Yahui; Li, Yanfeng; Li, Jupeng

    2018-06-04

    An atlas-based multimodal registration method for 2-dimension images with discrepancy structures was proposed in this paper. Atlas was utilized for complementing the discrepancy structure information in multimodal medical images. The scheme includes three steps: floating image to atlas registration, atlas to reference image registration, and field-based deformation. To evaluate the performance, a frame model, a brain model, and clinical images were employed in registration experiments. We measured the registration performance by the squared sum of intensity differences. Results indicate that this method is robust and performs better than the direct registration for multimodal images with discrepancy structures. We conclude that the proposed method is suitable for multimodal images with discrepancy structures. Graphical Abstract An Atlas-based multimodal registration method schematic diagram.

  14. A review of biomechanically informed breast image registration

    International Nuclear Information System (INIS)

    Hipwell, John H; Vavourakis, Vasileios; Mertzanidou, Thomy; Eiben, Björn; Hawkes, David J; Han, Lianghao

    2016-01-01

    Breast radiology encompasses the full range of imaging modalities from routine imaging via x-ray mammography, magnetic resonance imaging and ultrasound (both two- and three-dimensional), to more recent technologies such as digital breast tomosynthesis, and dedicated breast imaging systems for positron emission mammography and ultrasound tomography. In addition new and experimental modalities, such as Photoacoustics, Near Infrared Spectroscopy and Electrical Impedance Tomography etc, are emerging. The breast is a highly deformable structure however, and this greatly complicates visual comparison of imaging modalities for the purposes of breast screening, cancer diagnosis (including image guided biopsy), tumour staging, treatment monitoring, surgical planning and simulation of the effects of surgery and wound healing etc. Due primarily to the challenges posed by these gross, non-rigid deformations, development of automated methods which enable registration, and hence fusion, of information within and across breast imaging modalities, and between the images and the physical space of the breast during interventions, remains an active research field which has yet to translate suitable methods into clinical practice. This review describes current research in the field of breast biomechanical modelling and identifies relevant publications where the resulting models have been incorporated into breast image registration and simulation algorithms. Despite these developments there remain a number of issues that limit clinical application of biomechanical modelling. These include the accuracy of constitutive modelling, implementation of representative boundary conditions, failure to meet clinically acceptable levels of computational cost, challenges associated with automating patient-specific model generation (i.e. robust image segmentation and mesh generation) and the complexity of applying biomechanical modelling methods in routine clinical practice. (topical review)

  15. Accuracy of deformable image registration on magnetic resonance images in digital and physical phantoms.

    Science.gov (United States)

    Ger, Rachel B; Yang, Jinzhong; Ding, Yao; Jacobsen, Megan C; Fuller, Clifton D; Howell, Rebecca M; Li, Heng; Jason Stafford, R; Zhou, Shouhao; Court, Laurence E

    2017-10-01

    Accurate deformable image registration is necessary for longitudinal studies. The error associated with commercial systems has been evaluated using computed tomography (CT). Several in-house algorithms have been evaluated for use with magnetic resonance imaging (MRI), but there is still relatively little information about MRI deformable image registration. This work presents an evaluation of two deformable image registration systems, one commercial (Velocity) and one in-house (demons-based algorithm), with MRI using two different metrics to quantify the registration error. The registration error was analyzed with synthetic MR images. These images were generated from interpatient and intrapatient variation models trained on 28 patients. Four synthetic post-treatment images were generated for each of four synthetic pretreatment images, resulting in 16 image registrations for both the T1- and T2-weighted images. The synthetic post-treatment images were registered to their corresponding synthetic pretreatment image. The registration error was calculated between the known deformation vector field and the generated deformation vector field from the image registration system. The registration error was also analyzed using a porcine phantom with ten implanted 0.35-mm diameter gold markers. The markers were visible on CT but not MRI. CT, T1-weighted MR, and T2-weighted MR images were taken in four different positions. The markers were contoured on the CT images and rigidly registered to their corresponding MR images. The MR images were deformably registered and the distance between the projected marker location and true marker location was measured as the registration error. The synthetic images were evaluated only on Velocity. Root mean square errors (RMSEs) of 0.76 mm in the left-right (LR) direction, 0.76 mm in the anteroposterior (AP) direction, and 0.69 mm in the superior-inferior (SI) direction were observed for the T1-weighted MR images. RMSEs of 1.1 mm in the LR

  16. STUDY ON THE CLASSIFICATION OF GAOFEN-3 POLARIMETRIC SAR IMAGES USING DEEP NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2018-04-01

    Full Text Available Polarimetric Synthetic Aperture Radar(POLSAR) imaging principle determines that the image quality will be affected by speckle noise. So the recognition accuracy of traditional image classification methods will be reduced by the effect of this interference. Since the date of submission, Deep Convolutional Neural Network impacts on the traditional image processing methods and brings the field of computer vision to a new stage with the advantages of a strong ability to learn deep features and excellent ability to fit large datasets. Based on the basic characteristics of polarimetric SAR images, the paper studied the types of the surface cover by using the method of Deep Learning. We used the fully polarimetric SAR features of different scales to fuse RGB images to the GoogLeNet model based on convolution neural network Iterative training, and then use the trained model to test the classification of data validation.First of all, referring to the optical image, we mark the surface coverage type of GF-3 POLSAR image with 8m resolution, and then collect the samples according to different categories. To meet the GoogLeNet model requirements of 256 × 256 pixel image input and taking into account the lack of full-resolution SAR resolution, the original image should be pre-processed in the process of resampling. In this paper, POLSAR image slice samples of different scales with sampling intervals of 2 m and 1 m to be trained separately and validated by the verification dataset. Among them, the training accuracy of GoogLeNet model trained with resampled 2-m polarimetric SAR image is 94.89 %, and that of the trained SAR image with resampled 1 m is 92.65 %.

  17. Study on the Classification of GAOFEN-3 Polarimetric SAR Images Using Deep Neural Network

    Science.gov (United States)

    Zhang, J.; Zhang, J.; Zhao, Z.

    2018-04-01

    Polarimetric Synthetic Aperture Radar (POLSAR) imaging principle determines that the image quality will be affected by speckle noise. So the recognition accuracy of traditional image classification methods will be reduced by the effect of this interference. Since the date of submission, Deep Convolutional Neural Network impacts on the traditional image processing methods and brings the field of computer vision to a new stage with the advantages of a strong ability to learn deep features and excellent ability to fit large datasets. Based on the basic characteristics of polarimetric SAR images, the paper studied the types of the surface cover by using the method of Deep Learning. We used the fully polarimetric SAR features of different scales to fuse RGB images to the GoogLeNet model based on convolution neural network Iterative training, and then use the trained model to test the classification of data validation.First of all, referring to the optical image, we mark the surface coverage type of GF-3 POLSAR image with 8m resolution, and then collect the samples according to different categories. To meet the GoogLeNet model requirements of 256 × 256 pixel image input and taking into account the lack of full-resolution SAR resolution, the original image should be pre-processed in the process of resampling. In this paper, POLSAR image slice samples of different scales with sampling intervals of 2 m and 1 m to be trained separately and validated by the verification dataset. Among them, the training accuracy of GoogLeNet model trained with resampled 2-m polarimetric SAR image is 94.89 %, and that of the trained SAR image with resampled 1 m is 92.65 %.

  18. Evaluation of whole-body MR to CT deformable image registration

    NARCIS (Netherlands)

    Akbarzadeh, A.; Gutierrez, D.; Baskin, A.; Ay, M. R.; Ahmadian, A.; Alam, N. Riahi; Loevblad, K. O.; Zaidi, H.

    2013-01-01

    Multimodality image registration plays a crucial role in various clinical and research applications. The aim of this study is to present an optimized MR to CT whole-body deformable image registration algorithm and its validation using clinical studies. A 3D intermodality registration technique based

  19. Individual Building Extraction from TerraSAR-X Images Based on Ontological Semantic Analysis

    Directory of Open Access Journals (Sweden)

    Rong Gui

    2016-08-01

    Full Text Available Accurate building information plays a crucial role for urban planning, human settlements and environmental management. Synthetic aperture radar (SAR images, which deliver images with metric resolution, allow for analyzing and extracting detailed information on urban areas. In this paper, we consider the problem of extracting individual buildings from SAR images based on domain ontology. By analyzing a building scattering model with different orientations and structures, the building ontology model is set up to express multiple characteristics of individual buildings. Under this semantic expression framework, an object-based SAR image segmentation method is adopted to provide homogeneous image objects, and three categories of image object features are extracted. Semantic rules are implemented by organizing image object features, and the individual building objects expression based on an ontological semantic description is formed. Finally, the building primitives are used to detect buildings among the available image objects. Experiments on TerraSAR-X images of Foshan city, China, with a spatial resolution of 1.25 m × 1.25 m, have shown the total extraction rates are above 84%. The results indicate the ontological semantic method can exactly extract flat-roof and gable-roof buildings larger than 250 pixels with different orientations.

  20. Multi-modal image registration: matching MRI with histology

    Science.gov (United States)

    Alic, Lejla; Haeck, Joost C.; Klein, Stefan; Bol, Karin; van Tiel, Sandra T.; Wielopolski, Piotr A.; Bijster, Magda; Niessen, Wiro J.; Bernsen, Monique; Veenland, Jifke F.; de Jong, Marion

    2010-03-01

    Spatial correspondence between histology and multi sequence MRI can provide information about the capabilities of non-invasive imaging to characterize cancerous tissue. However, shrinkage and deformation occurring during the excision of the tumor and the histological processing complicate the co registration of MR images with histological sections. This work proposes a methodology to establish a detailed 3D relation between histology sections and in vivo MRI tumor data. The key features of the methodology are a very dense histological sampling (up to 100 histology slices per tumor), mutual information based non-rigid B-spline registration, the utilization of the whole 3D data sets, and the exploitation of an intermediate ex vivo MRI. In this proof of concept paper, the methodology was applied to one tumor. We found that, after registration, the visual alignment of tumor borders and internal structures was fairly accurate. Utilizing the intermediate ex vivo MRI, it was possible to account for changes caused by the excision of the tumor: we observed a tumor expansion of 20%. Also the effects of fixation, dehydration and histological sectioning could be determined: 26% shrinkage of the tumor was found. The annotation of viable tissue, performed in histology and transformed to the in vivo MRI, matched clearly with high intensity regions in MRI. With this methodology, histological annotation can be directly related to the corresponding in vivo MRI. This is a vital step for the evaluation of the feasibility of multi-spectral MRI to depict histological groundtruth.

  1. Automatic UAV Image Geo-Registration by Matching UAV Images to Georeferenced Image Data

    Directory of Open Access Journals (Sweden)

    Xiangyu Zhuo

    2017-04-01

    Full Text Available Recent years have witnessed the fast development of UAVs (unmanned aerial vehicles. As an alternative to traditional image acquisition methods, UAVs bridge the gap between terrestrial and airborne photogrammetry and enable flexible acquisition of high resolution images. However, the georeferencing accuracy of UAVs is still limited by the low-performance on-board GNSS and INS. This paper investigates automatic geo-registration of an individual UAV image or UAV image blocks by matching the UAV image(s with a previously taken georeferenced image, such as an individual aerial or satellite image with a height map attached or an aerial orthophoto with a DSM (digital surface model attached. As the biggest challenge for matching UAV and aerial images is in the large differences in scale and rotation, we propose a novel feature matching method for nadir or slightly tilted images. The method is comprised of a dense feature detection scheme, a one-to-many matching strategy and a global geometric verification scheme. The proposed method is able to find thousands of valid matches in cases where SIFT and ASIFT fail. Those matches can be used to geo-register the whole UAV image block towards the reference image data. When the reference images offer high georeferencing accuracy, the UAV images can also be geolocalized in a global coordinate system. A series of experiments involving different scenarios was conducted to validate the proposed method. The results demonstrate that our approach achieves not only decimeter-level registration accuracy, but also comparable global accuracy as the reference images.

  2. Offshore Wind Resource Estimation in Mediterranean Area Using SAR Images

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete

    Satellite observations of the ocean surface from Synthetic Aperture Radars (SAR) provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean, where spatial wind information is only provided by sparse buoys, often with long periods of m...

  3. Deformable Image Registration with Inclusion of Autodetected Homologous Tissue Features

    Directory of Open Access Journals (Sweden)

    Qingsong Zhu

    2012-01-01

    Full Text Available A novel deformable registration algorithm is proposed in the application of radiation therapy. The algorithm starts with autodetection of a number of points with distinct tissue features. The feature points are then matched by using the scale invariance features transform (SIFT method. The associated feature point pairs are served as landmarks for the subsequent thin plate spline (TPS interpolation. Several registration experiments using both digital phantom and clinical data demonstrate the accuracy and efficiency of the method. For the 3D phantom case, markers with error less than 2 mm are over 85% of total test markers, and it takes only 2-3 minutes for 3D feature points association. The proposed method provides a clinically practical solution and should be valuable for various image-guided radiation therapy (IGRT applications.

  4. Mechanisms of SAR Imaging of Shallow Water Topography of the Subei Bank

    Directory of Open Access Journals (Sweden)

    Shuangshang Zhang

    2017-11-01

    Full Text Available In this study, the C-band radar backscatter features of the shallow water topography of Subei Bank in the Southern Yellow Sea are statistically investigated using 25 ENVISAT (Environmental Satellite ASAR (advanced synthetic aperture radar and ERS-2 (European Remote-Sensing Satellite-2 SAR images acquired between 2006 and 2010. Different bathymetric features are found on SAR imagery under different sea states. Under low to moderate wind speeds (3.1~6.3 m/s, the wide bright patterns with an average width of 6 km are shown and correspond to sea surface imprints of tidal channels formed by two adjacent sand ridges, while the sand ridges appear as narrower (only 1 km wide, fingerlike, quasi-linear features on SAR imagery in high winds (5.4~13.9 m/s. Two possible SAR imaging mechanisms of coastal bathymetry are proposed in the case where the flow is parallel to the major axes of tidal channels or sand ridges. When the surface Ekman current is opposite to the mean tidal flow, two vortexes will converge at the central line of the tidal channel in the upper layer and form a convergent zone over the sea surface. Thus, the tidal channels are shown as wide and bright stripes on SAR imagery. For the SAR imaging of sand ridges, all the SAR images were acquired at low tidal levels. In this case, the ocean surface waves are possibly broken up under strong winds when propagating from deep water to the shallower water, which leads to an increase of surface roughness over the sand ridges.

  5. IMAGE ENHANCEMENT AND SPECKLE REDUCTION OF FULL POLARIMETRIC SAR DATA BY GAUSSIAN MARKOV RANDOM FIELD

    Directory of Open Access Journals (Sweden)

    M. Mahdian

    2013-09-01

    Full Text Available In recent years, the use of Polarimetric Synthetic Aperture Radar (PolSAR data in different applications dramatically has been increased. In SAR imagery an interference phenomenon with random behavior exists which is called speckle noise. The interpretation of data encounters some troubles due to the presence of speckle which can be considered as a multiplicative noise affecting all coherent imaging systems. Indeed, speckle degrade radiometric resolution of PolSAR images, therefore it is needful to perform speckle filtering on the SAR data type. Markov Random Field (MRF has proven to be a powerful method for drawing out eliciting contextual information from remotely sensed images. In the present paper, a probability density function (PDF, which is fitted well with the PolSAR data based on the goodness-of-fit test, is first obtained for the pixel-wise analysis. Then the contextual smoothing is achieved with the MRF method. This novel speckle reduction method combines an advanced statistical distribution with spatial contextual information for PolSAR data. These two parts of information are combined based on weighted summation of pixel-wise and contextual models. This approach not only preserves edge information in the images, but also improves signal-to-noise ratio of the results. The method maintains the mean value of original signal in the homogenous areas and preserves the edges of features in the heterogeneous regions. Experiments on real medium resolution ALOS data from Tehran, and also high resolution full polarimetric SAR data over the Oberpfaffenhofen test-site in Germany, demonstrate the effectiveness of the algorithm compared with well-known despeckling methods.

  6. The Generalized Gamma-DBN for High-Resolution SAR Image Classification

    Directory of Open Access Journals (Sweden)

    Zhiqiang Zhao

    2018-06-01

    Full Text Available With the increase of resolution, effective characterization of synthetic aperture radar (SAR image becomes one of the most critical problems in many earth observation applications. Inspired by deep learning and probability mixture models, a generalized Gamma deep belief network (g Γ-DBN is proposed for SAR image statistical modeling and land-cover classification in this work. Specifically, a generalized Gamma-Bernoulli restricted Boltzmann machine (gΓB-RBM is proposed to capture high-order statistical characterizes from SAR images after introducing the generalized Gamma distribution. After stacking the g Γ B-RBM and several standard binary RBMs in a hierarchical manner, a gΓ-DBN is constructed to learn high-level representation of different SAR land-covers. Finally, a discriminative neural network is constructed by adding an additional predict layer for different land-covers over the constructed deep structure. Performance of the proposed approach is evaluated via several experiments on some high-resolution SAR image patch sets and two large-scale scenes which are captured by ALOS PALSAR-2 and COSMO-SkyMed satellites respectively.

  7. Reducing Interpolation Artifacts for Mutual Information Based Image Registration

    Science.gov (United States)

    Soleimani, H.; Khosravifard, M.A.

    2011-01-01

    Medical image registration methods which use mutual information as similarity measure have been improved in recent decades. Mutual Information is a basic concept of Information theory which indicates the dependency of two random variables (or two images). In order to evaluate the mutual information of two images their joint probability distribution is required. Several interpolation methods, such as Partial Volume (PV) and bilinear, are used to estimate joint probability distribution. Both of these two methods yield some artifacts on mutual information function. Partial Volume-Hanning window (PVH) and Generalized Partial Volume (GPV) methods are introduced to remove such artifacts. In this paper we show that the acceptable performance of these methods is not due to their kernel function. It's because of the number of pixels which incorporate in interpolation. Since using more pixels requires more complex and time consuming interpolation process, we propose a new interpolation method which uses only four pixels (the same as PV and bilinear interpolations) and removes most of the artifacts. Experimental results of the registration of Computed Tomography (CT) images show superiority of the proposed scheme. PMID:22606673

  8. LINE-BASED REGISTRATION OF DSM AND HYPERSPECTRAL IMAGES

    Directory of Open Access Journals (Sweden)

    J. Avbelj

    2013-04-01

    Full Text Available Data fusion techniques require a good registration of all the used datasets. In remote sensing, images are usually geo-referenced using the GPS and IMU data. However, if more precise registration is required, image processing techniques can be employed. We propose a method for multi-modal image coregistration between hyperspectral images (HSI and digital surface models (DSM. The method is divided in three parts: object and line detection of the same object in HSI and DSM, line matching and determination of transformation parameters. Homogeneous coordinates are used to implement matching and adjustment of transformation parameters. The common object in HSI and DSM are building boundaries. They have apparent change in height and material, that can be detected in DSM and HSI, respectively. Thus, before the matching and transformation parameter computation, building outlines are detected and adjusted in HSI and DSM. We test the method on a HSI and two DSM, using extracted building outbounds and for comparison also extracted lines with a line detector. The results show that estimated building boundaries provide more line assignments, than using line detector.

  9. Classification of agricultural fields using time series of dual polarimetry TerraSAR-X images

    Directory of Open Access Journals (Sweden)

    S. Mirzaee

    2014-10-01

    Full Text Available Due to its special imaging characteristics, Synthetic Aperture Radar (SAR has become an important source of information for a variety of remote sensing applications dealing with environmental changes. SAR images contain information about both phase and intensity in different polarization modes, making them sensitive to geometrical structure and physical properties of the targets such as dielectric and plant water content. In this study we investigate multi temporal changes occurring to different crop types due to phenological changes using high-resolution TerraSAR-X imagers. The dataset includes 17 dual-polarimetry TSX data acquired from June 2012 to August 2013 in Lorestan province, Iran. Several features are extracted from polarized data and classified using support vector machine (SVM classifier. Training samples and different features employed in classification are also assessed in the study. Results show a satisfactory accuracy for classification which is about 0.91 in kappa coefficient.

  10. A Novel Sidelobe Reduction Algorithm Based on Two-Dimensional Sidelobe Correction Using D-SVA for Squint SAR Images

    Directory of Open Access Journals (Sweden)

    Min Liu

    2018-03-01

    Full Text Available Sidelobe reduction is a very primary task for synthetic aperture radar (SAR images. Various methods have been proposed for broadside SAR, which can suppress the sidelobes effectively while maintaining high image resolution at the same time. Alternatively, squint SAR, especially highly squint SAR, has emerged as an important tool that provides more mobility and flexibility and has become a focus of recent research studies. One of the research challenges for squint SAR is how to resolve the severe range-azimuth coupling of echo signals. Unlike broadside SAR images, the range and azimuth sidelobes of the squint SAR images no longer locate on the principal axes with high probability. Thus the spatially variant apodization (SVA filters could hardly get all the sidelobe information, and hence the sidelobe reduction process is not optimal. In this paper, we present an improved algorithm called double spatially variant apodization (D-SVA for better sidelobe suppression. Satisfactory sidelobe reduction results are achieved with the proposed algorithm by comparing the squint SAR images to the broadside SAR images. Simulation results also demonstrate the reliability and efficiency of the proposed method.

  11. Time domain SAR raw data simulation using CST and image focusing of 3D objects

    Science.gov (United States)

    Saeed, Adnan; Hellwich, Olaf

    2017-10-01

    This paper presents the use of a general purpose electromagnetic simulator, CST, to simulate realistic synthetic aperture radar (SAR) raw data of three-dimensional objects. Raw data is later focused in MATLAB using range-doppler algorithm. Within CST Microwave Studio a replica of TerraSAR-X chirp signal is incident upon a modeled Corner Reflector (CR) whose design and material properties are identical to that of the real one. Defining mesh and other appropriate settings reflected wave is measured at several distant points within a line parallel to the viewing direction. This is analogous to an array antenna and is synthesized to create a long aperture for SAR processing. The time domain solver in CST is based on the solution of differential form of Maxwells equations. Exported data from CST is arranged into a 2-d matrix of axis range and azimuth. Hilbert transform is applied to convert the real signal to complex data with phase information. Range compression, range cell migration correction (RCMC), and azimuth compression are applied in time domain to obtain the final SAR image. This simulation can provide valuable information to clarify which real world objects cause images suitable for high accuracy identification in the SAR images.

  12. Image navigation and registration for the geostationary lightning mapper (GLM)

    Science.gov (United States)

    van Bezooijen, Roel W. H.; Demroff, Howard; Burton, Gregory; Chu, Donald; Yang, Shu S.

    2016-10-01

    The Geostationary Lightning Mappers (GLM) for the Geostationary Operational Environmental Satellite (GOES) GOES-R series will, for the first time, provide hemispherical lightning information 24 hours a day from longitudes of 75 and 137 degrees west. The first GLM of a series of four is planned for launch in November, 2016. Observation of lightning patterns by GLM holds promise to improve tornado warning lead times to greater than 20 minutes while halving the present false alarm rates. In addition, GLM will improve airline traffic flow management, and provide climatology data allowing us to understand the Earth's evolving climate. The paper describes the method used for translating the pixel position of a lightning event to its corresponding geodetic longitude and latitude, using the J2000 attitude of the GLM mount frame reported by the spacecraft, the position of the spacecraft, and the alignment of the GLM coordinate frame relative to its mount frame. Because the latter alignment will experience seasonal variation, this alignment is determined daily using GLM background images collected over the previous 7 days. The process involves identification of coastlines in the background images and determination of the alignment change necessary to match the detected coastline with the coastline predicted using the GSHHS database. Registration is achieved using a variation of the Lucas-Kanade algorithm where we added a dither and average technique to improve performance significantly. An innovative water mask technique was conceived to enable self-contained detection of clear coastline sections usable for registration. Extensive simulations using accurate visible images from GOES13 and GOES15 have been used to demonstrate the performance of the coastline registration method, the results of which are presented in the paper.

  13. Registration and monitoring of radiation exposure from radiological imaging

    International Nuclear Information System (INIS)

    Jungmann, F.; Pinto dos Santos, D.; Hempel, J.; Dueber, C.; Mildenberger, P.

    2013-01-01

    Strategies for reducing radiation exposure are an important part of optimizing medical imaging and therefore a relevant quality factor in radiology. Regarding the medical radiation exposure, computed tomography has a special relevance. The use of the integrating the healthcare enterprise (IHE) radiation exposure monitoring (REM) profile is the upcoming standard for organizing and collecting exposure data in radiology. Currently most installed base devices do not support this profile generating the required digital imaging and communication in medicine (DICOM) dose structured reporting (SR). For this reason different solutions had been developed to register dose exposure measurements without having the dose SR object. Registration and analysis of dose-related parameters is required for constantly optimizing examination protocols, especially computed tomography (CT) examinations based on the latest research results in order to minimize the individual radiation dose exposure from medical imaging according to the principle as low as reasonably achievable (ALARA). (orig.) [de

  14. Higher-order Spatial Accuracy in Diffeomorphic Image Registration

    DEFF Research Database (Denmark)

    Jacobs, Henry O.; Sommer, Stefan

    -jets. We show that the solutions convergence to optimal solutions of the original cost functional as the number of particles increases with a convergence rate of O(hd+k) where h is a resolution parameter. The effect of this approach over traditional particle methods is illustrated on synthetic examples......We discretize a cost functional for image registration problems by deriving Taylor expansions for the matching term. Minima of the discretized cost functionals can be computed with no spatial discretization error, and the optimal solutions are equivalent to minimal energy curves in the space of kk...

  15. The artificial object detection and current velocity measurement using SAR ocean surface images

    Science.gov (United States)

    Alpatov, Boris; Strotov, Valery; Ershov, Maksim; Muraviev, Vadim; Feldman, Alexander; Smirnov, Sergey

    2017-10-01

    Due to the fact that water surface covers wide areas, remote sensing is the most appropriate way of getting information about ocean environment for vessel tracking, security purposes, ecological studies and others. Processing of synthetic aperture radar (SAR) images is extensively used for control and monitoring of the ocean surface. Image data can be acquired from Earth observation satellites, such as TerraSAR-X, ERS, and COSMO-SkyMed. Thus, SAR image processing can be used to solve many problems arising in this field of research. This paper discusses some of them including ship detection, oil pollution control and ocean currents mapping. Due to complexity of the problem several specialized algorithm are necessary to develop. The oil spill detection algorithm consists of the following main steps: image preprocessing, detection of dark areas, parameter extraction and classification. The ship detection algorithm consists of the following main steps: prescreening, land masking, image segmentation combined with parameter measurement, ship orientation estimation and object discrimination. The proposed approach to ocean currents mapping is based on Doppler's law. The results of computer modeling on real SAR images are presented. Based on these results it is concluded that the proposed approaches can be used in maritime applications.

  16. Preparing diagnostic 3D images for image registration with planning CT images

    International Nuclear Information System (INIS)

    Tracton, Gregg S.; Miller, Elizabeth P.; Rosenman, Julian; Chang, Sha X.; Sailer, Scott; Boxwala, Azaz; Chaney, Edward L.

    1997-01-01

    Purpose: Pre-radiotherapy (pre-RT) tomographic images acquired for diagnostic purposes often contain important tumor and/or normal tissue information which is poorly defined or absent in planning CT images. Our two years of clinical experience has shown that computer-assisted 3D registration of pre-RT images with planning CT images often plays an indispensable role in accurate treatment volume definition. Often the only available format of the diagnostic images is film from which the original 3D digital data must be reconstructed. In addition, any digital data, whether reconstructed or not, must be put into a form suitable for incorporation into the treatment planning system. The purpose of this investigation was to identify all problems that must be overcome before this data is suitable for clinical use. Materials and Methods: In the past two years we have 3D-reconstructed 300 diagnostic images from film and digital sources. As a problem was discovered we built a software tool to correct it. In time we collected a large set of such tools and found that they must be applied in a specific order to achieve the correct reconstruction. Finally, a toolkit (ediScan) was built that made all these tools available in the proper manner via a pleasant yet efficient mouse-based user interface. Results: Problems we discovered included different magnifications, shifted display centers, non-parallel image planes, image planes not perpendicular to the long axis of the table-top (shearing), irregularly spaced scans, non contiguous scan volumes, multiple slices per film, different orientations for slice axes (e.g. left-right reversal), slices printed at window settings corresponding to tissues of interest for diagnostic purposes, and printing artifacts. We have learned that the specific steps to correct these problems, in order of application, are: Also, we found that fast feedback and large image capacity (at least 2000 x 2000 12-bit pixels) are essential for practical application

  17. Error estimation of deformable image registration of pulmonary CT scans using convolutional neural networks.

    Science.gov (United States)

    Eppenhof, Koen A J; Pluim, Josien P W

    2018-04-01

    Error estimation in nonlinear medical image registration is a nontrivial problem that is important for validation of registration methods. We propose a supervised method for estimation of registration errors in nonlinear registration of three-dimensional (3-D) images. The method is based on a 3-D convolutional neural network that learns to estimate registration errors from a pair of image patches. By applying the network to patches centered around every voxel, we construct registration error maps. The network is trained using a set of representative images that have been synthetically transformed to construct a set of image pairs with known deformations. The method is evaluated on deformable registrations of inhale-exhale pairs of thoracic CT scans. Using ground truth target registration errors on manually annotated landmarks, we evaluate the method's ability to estimate local registration errors. Estimation of full domain error maps is evaluated using a gold standard approach. The two evaluation approaches show that we can train the network to robustly estimate registration errors in a predetermined range, with subvoxel accuracy. We achieved a root-mean-square deviation of 0.51 mm from gold standard registration errors and of 0.66 mm from ground truth landmark registration errors.

  18. A comparative study on methods of improving SCR for ship detection in SAR image

    Science.gov (United States)

    Lang, Haitao; Shi, Hongji; Tao, Yunhong; Ma, Li

    2017-10-01

    Knowledge about ship positions plays a critical role in a wide range of maritime applications. To improve the performance of ship detector in SAR image, an effective strategy is improving the signal-to-clutter ratio (SCR) before conducting detection. In this paper, we present a comparative study on methods of improving SCR, including power-law scaling (PLS), max-mean and max-median filter (MMF1 and MMF2), method of wavelet transform (TWT), traditional SPAN detector, reflection symmetric metric (RSM), scattering mechanism metric (SMM). The ability of SCR improvement to SAR image and ship detection performance associated with cell- averaging CFAR (CA-CFAR) of different methods are evaluated on two real SAR data.

  19. Ka-band InSAR Imaging and Analysis Based on IMU Data

    Directory of Open Access Journals (Sweden)

    Shi Jun

    2014-02-01

    Full Text Available Compared with other bands, the millimeter wave Interferometric Synthetic Aperture Radar (InSAR has high accuracy and small size, which is a hot topic in InSAR research. On the other hand, shorter wavelength causes difficulties in 2D imaging and interferometric phase extraction. In this study, the imaging and phase performance of the streaming Back Projection (BP method combined with IMU data are analyzed and discussed on the basis of actual Ka-band InSAR data. It is found that because the wavelength of the Ka-band is short, it is more sensitive to the antenna phase-center history. To ensure the phase-preserving capacity, the IMU data must be used with accurate motion error compensation. Furthermore, during data processing, we verify the flat-earth-removing capacity of the BP algorithm that calculates and compensates the master and slave antenna phase centers individually.

  20. Multiresolution image registration for multimodal brain images and fusion for better neurosurgical planning

    Directory of Open Access Journals (Sweden)

    Siddeshappa Nandish

    2017-12-01

    Conclusion: The end resultant fused images are validated by the radiologists and mutual information measure is used to validate registration results. It is found that CT and MRI sequence with more number of slices gave promising results. Few cases with deformation during misregistrations recorded with low mutual information of about 0.3 and which is not acceptable and few recorded with 0.6 and above mutual information during registration gives promising results.

  1. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2018-01-01

    Full Text Available Synthetic aperture radar (SAR equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.

  2. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory.

    Science.gov (United States)

    Zhou, Rui; Sun, Jinping; Hu, Yuxin; Qi, Yaolong

    2018-01-31

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.

  3. Discrimination of Oil Slicks and Lookalikes in Polarimetric SAR Images Using CNN.

    Science.gov (United States)

    Guo, Hao; Wu, Danni; An, Jubai

    2017-08-09

    Oil slicks and lookalikes (e.g., plant oil and oil emulsion) all appear as dark areas in polarimetric Synthetic Aperture Radar (SAR) images and are highly heterogeneous, so it is very difficult to use a single feature that can allow classification of dark objects in polarimetric SAR images as oil slicks or lookalikes. We established multi-feature fusion to support the discrimination of oil slicks and lookalikes. In the paper, simple discrimination analysis is used to rationalize a preferred features subset. The features analyzed include entropy, alpha, and Single-bounce Eigenvalue Relative Difference (SERD) in the C-band polarimetric mode. We also propose a novel SAR image discrimination method for oil slicks and lookalikes based on Convolutional Neural Network (CNN). The regions of interest are selected as the training and testing samples for CNN on the three kinds of polarimetric feature images. The proposed method is applied to a training data set of 5400 samples, including 1800 crude oil, 1800 plant oil, and 1800 oil emulsion samples. In the end, the effectiveness of the method is demonstrated through the analysis of some experimental results. The classification accuracy obtained using 900 samples of test data is 91.33%. It is here observed that the proposed method not only can accurately identify the dark spots on SAR images but also verify the ability of the proposed algorithm to classify unstructured features.

  4. Combining TerraSAR-X and Landsat Images for Emergency Response in Urban Environments

    Directory of Open Access Journals (Sweden)

    Shiran Havivi

    2018-05-01

    Full Text Available Rapid damage mapping following a disaster event, especially in an urban environment, is critical to ensure that the emergency response in the affected area is rapid and efficient. This work presents a new method for mapping damage assessment in urban environments. Based on combining SAR and optical data, the method is applicable as support during initial emergency planning and rescue operations. The study focuses on the urban areas affected by the Tohoku earthquake and subsequent tsunami event in Japan that occurred on 11 March 2011. High-resolution TerraSAR-X (TSX images of before and after the event, and a Landsat 5 image before the event were acquired. The affected areas were analyzed with the SAR data using only one interferometric SAR (InSAR coherence map. To increase the damage mapping accuracy, the normalized difference vegetation index (NDVI was applied. The generated map, with a grid size of 50 m, provides a quantitative assessment of the nature and distribution of the damage. The damage mapping shows detailed information about the affected area, with high overall accuracy (89%, and high Kappa coefficient (82% and, as expected, it shows total destruction along the coastline compared to the inland region.

  5. Image Registration-Based Bolt Loosening Detection of Steel Joints

    Science.gov (United States)

    2018-01-01

    Self-loosening of bolts caused by repetitive loads and vibrations is one of the common defects that can weaken the structural integrity of bolted steel joints in civil structures. Many existing approaches for detecting loosening bolts are based on physical sensors and, hence, require extensive sensor deployment, which limit their abilities to cost-effectively detect loosened bolts in a large number of steel joints. Recently, computer vision-based structural health monitoring (SHM) technologies have demonstrated great potential for damage detection due to the benefits of being low cost, easy to deploy, and contactless. In this study, we propose a vision-based non-contact bolt loosening detection method that uses a consumer-grade digital camera. Two images of the monitored steel joint are first collected during different inspection periods and then aligned through two image registration processes. If the bolt experiences rotation between inspections, it will introduce differential features in the registration errors, serving as a good indicator for bolt loosening detection. The performance and robustness of this approach have been validated through a series of experimental investigations using three laboratory setups including a gusset plate on a cross frame, a column flange, and a girder web. The bolt loosening detection results are presented for easy interpretation such that informed decisions can be made about the detected loosened bolts. PMID:29597264

  6. Image Registration-Based Bolt Loosening Detection of Steel Joints.

    Science.gov (United States)

    Kong, Xiangxiong; Li, Jian

    2018-03-28

    Self-loosening of bolts caused by repetitive loads and vibrations is one of the common defects that can weaken the structural integrity of bolted steel joints in civil structures. Many existing approaches for detecting loosening bolts are based on physical sensors and, hence, require extensive sensor deployment, which limit their abilities to cost-effectively detect loosened bolts in a large number of steel joints. Recently, computer vision-based structural health monitoring (SHM) technologies have demonstrated great potential for damage detection due to the benefits of being low cost, easy to deploy, and contactless. In this study, we propose a vision-based non-contact bolt loosening detection method that uses a consumer-grade digital camera. Two images of the monitored steel joint are first collected during different inspection periods and then aligned through two image registration processes. If the bolt experiences rotation between inspections, it will introduce differential features in the registration errors, serving as a good indicator for bolt loosening detection. The performance and robustness of this approach have been validated through a series of experimental investigations using three laboratory setups including a gusset plate on a cross frame, a column flange, and a girder web. The bolt loosening detection results are presented for easy interpretation such that informed decisions can be made about the detected loosened bolts.

  7. A new robust markerless method for automatic image-to-patient registration in image-guided neurosurgery system.

    Science.gov (United States)

    Liu, Yinlong; Song, Zhijian; Wang, Manning

    2017-12-01

    Compared with the traditional point-based registration in the image-guided neurosurgery system, surface-based registration is preferable because it does not use fiducial markers before image scanning and does not require image acquisition dedicated for navigation purposes. However, most existing surface-based registration methods must include a manual step for coarse registration, which increases the registration time and elicits some inconvenience and uncertainty. A new automatic surface-based registration method is proposed, which applies 3D surface feature description and matching algorithm to obtain point correspondences for coarse registration and uses the iterative closest point (ICP) algorithm in the last step to obtain an image-to-patient registration. Both phantom and clinical data were used to execute automatic registrations and target registration error (TRE) calculated to verify the practicality and robustness of the proposed method. In phantom experiments, the registration accuracy was stable across different downsampling resolutions (18-26 mm) and different support radii (2-6 mm). In clinical experiments, the mean TREs of two patients by registering full head surfaces were 1.30 mm and 1.85 mm. This study introduced a new robust automatic surface-based registration method based on 3D feature matching. The method achieved sufficient registration accuracy with different real-world surface regions in phantom and clinical experiments.

  8. Patient-Specific Biomechanical Model as Whole-Body CT Image Registration Tool

    OpenAIRE

    Li, Mao; Miller, Karol; Joldes, Grand Roman; Doyle, Barry; Garlapati, Revanth Reddy; Kikinis, Ron; Wittek, Adam

    2015-01-01

    Whole-body computed tomography (CT) image registration is important for cancer diagnosis, therapy planning and treatment. Such registration requires accounting for large differences between source and target images caused by deformations of soft organs/tissues and articulated motion of skeletal structures. The registration algorithms relying solely on image processing methods exhibit deficiencies in accounting for such deformations and motion. We propose to predict the deformations and moveme...

  9. Robust surface registration using salient anatomical features for image-guided liver surgery: Algorithm and validation

    OpenAIRE

    Clements, Logan W.; Chapman, William C.; Dawant, Benoit M.; Galloway, Robert L.; Miga, Michael I.

    2008-01-01

    A successful surface-based image-to-physical space registration in image-guided liver surgery (IGLS) is critical to provide reliable guidance information to surgeons and pertinent surface displacement data for use in deformation correction algorithms. The current protocol used to perform the image-to-physical space registration involves an initial pose estimation provided by a point based registration of anatomical landmarks identifiable in both the preoperative tomograms and the intraoperati...

  10. Image Registration for PET/CT and CT Images with Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Lee, Hak Jae; Kim, Yong Kwon; Lee, Ki Sung; Choi, Jong Hak; Kim, Chang Kyun; Moon, Guk Hyun; Joo, Sung Kwan; Kim, Kyeong Min; Cheon, Gi Jeong

    2009-01-01

    Image registration is a fundamental task in image processing used to match two or more images. It gives new information to the radiologists by matching images from different modalities. The objective of this study is to develop 2D image registration algorithm for PET/CT and CT images acquired by different systems at different times. We matched two CT images first (one from standalone CT and the other from PET/CT) that contain affluent anatomical information. Then, we geometrically transformed PET image according to the results of transformation parameters calculated by the previous step. We have used Affine transform to match the target and reference images. For the similarity measure, mutual information was explored. Use of particle swarm algorithm optimized the performance by finding the best matched parameter set within a reasonable amount of time. The results show good agreements of the images between PET/CT and CT. We expect the proposed algorithm can be used not only for PET/CT and CT image registration but also for different multi-modality imaging systems such as SPECT/CT, MRI/PET and so on.

  11. Random Forests as a tool for estimating uncertainty at pixel-level in SAR image classification

    DEFF Research Database (Denmark)

    Loosvelt, Lien; Peters, Jan; Skriver, Henning

    2012-01-01

    , we introduce Random Forests for the probabilistic mapping of vegetation from high-dimensional remote sensing data and present a comprehensive methodology to assess and analyze classification uncertainty based on the local probabilities of class membership. We apply this method to SAR image data...

  12. SAR Image Simulation of Ship Targets Based on Multi-Path Scattering

    Science.gov (United States)

    Guo, Y.; Wang, H.; Ma, H.; Li, K.; Xia, Z.; Hao, Y.; Guo, H.; Shi, H.; Liao, X.; Yue, H.

    2018-04-01

    Synthetic Aperture Radar (SAR) plays an important role in the classification and recognition of ship targets because of its all-weather working ability and fine resolution. In SAR images, besides the sea clutter, the influence of the sea surface on the radar echo is also known as the so-called multipath effect. These multipath effects will generate some extra "pseudo images", which may cause the distortion of the target image and affect the estimation of the characteristic parameters. In this paper,the multipath effect of rough sea surface and its influence on the estimation of ship characteristic parameters are studied. The imaging of the first and the secondary reflection of sea surface is presented . The artifacts not only overlap with the image of the target itself, but may also appear in the sea near the target area. It is difficult to distinguish them, and this artifact has an effect on the length and width of the ship.

  13. Image/patient registration from (partial) projection data by the Fourier phase matching method

    International Nuclear Information System (INIS)

    Weiguo Lu; You, J.

    1999-01-01

    A technique for 2D or 3D image/patient registration, PFPM (projection based Fourier phase matching method), is proposed. This technique provides image/patient registration directly from sequential tomographic projection data. The method can also deal with image files by generating 2D Radon transforms slice by slice. The registration in projection space is done by calculating a Fourier invariant (FI) descriptor for each one-dimensional projection datum, and then registering the FI descriptor by the Fourier phase matching (FPM) method. The algorithm has been tested on both synthetic and experimental data. When dealing with translated, rotated and uniformly scaled 2D image registration, the performance of the PFPM method is comparable to that of the IFPM (image based Fourier phase matching) method in robustness, efficiency, insensitivity to the offset between images, and registration time. The advantages of the former are that subpixel resolution is feasible, and it is more insensitive to image noise due to the averaging effect of the projection acquisition. Furthermore, the PFPM method offers the ability to generalize to 3D image/patient registration and to register partial projection data. By applying patient registration directly from tomographic projection data, image reconstruction is not needed in the therapy set-up verification, thus reducing computational time and artefacts. In addition, real time registration is feasible. Registration from partial projection data meets the geometry and dose requirements in many application cases and makes dynamic set-up verification possible in tomotherapy. (author)

  14. Geometry planning and image registration in magnetic particle imaging using bimodal fiducial markers

    International Nuclear Information System (INIS)

    Werner, F.; Hofmann, M.; Them, K.; Knopp, T.; Jung, C.; Salamon, J.; Kaul, M. G.; Mummert, T.; Adam, G.; Ittrich, H.; Werner, R.; Säring, D.; Weber, O. M.

    2016-01-01

    Purpose: Magnetic particle imaging (MPI) is a quantitative imaging modality that allows the distribution of superparamagnetic nanoparticles to be visualized. Compared to other imaging techniques like x-ray radiography, computed tomography (CT), and magnetic resonance imaging (MRI), MPI only provides a signal from the administered tracer, but no additional morphological information, which complicates geometry planning and the interpretation of MP images. The purpose of the authors’ study was to develop bimodal fiducial markers that can be visualized by MPI and MRI in order to create MP–MR fusion images. Methods: A certain arrangement of three bimodal fiducial markers was developed and used in a combined MRI/MPI phantom and also during in vivo experiments in order to investigate its suitability for geometry planning and image fusion. An algorithm for automated marker extraction in both MR and MP images and rigid registration was established. Results: The developed bimodal fiducial markers can be visualized by MRI and MPI and allow for geometry planning as well as automated registration and fusion of MR–MP images. Conclusions: To date, exact positioning of the object to be imaged within the field of view (FOV) and the assignment of reconstructed MPI signals to corresponding morphological regions has been difficult. The developed bimodal fiducial markers and the automated image registration algorithm help to overcome these difficulties.

  15. Geometry planning and image registration in magnetic particle imaging using bimodal fiducial markers

    Energy Technology Data Exchange (ETDEWEB)

    Werner, F., E-mail: f.werner@uke.de; Hofmann, M.; Them, K.; Knopp, T. [Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany and Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg 21073 (Germany); Jung, C.; Salamon, J.; Kaul, M. G.; Mummert, T.; Adam, G.; Ittrich, H. [Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246 (Germany); Werner, R.; Säring, D. [Institute for Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg 20246 (Germany); Weber, O. M. [Philips Medical Systems DMC GmbH, Hamburg 22335 (Germany)

    2016-06-15

    Purpose: Magnetic particle imaging (MPI) is a quantitative imaging modality that allows the distribution of superparamagnetic nanoparticles to be visualized. Compared to other imaging techniques like x-ray radiography, computed tomography (CT), and magnetic resonance imaging (MRI), MPI only provides a signal from the administered tracer, but no additional morphological information, which complicates geometry planning and the interpretation of MP images. The purpose of the authors’ study was to develop bimodal fiducial markers that can be visualized by MPI and MRI in order to create MP–MR fusion images. Methods: A certain arrangement of three bimodal fiducial markers was developed and used in a combined MRI/MPI phantom and also during in vivo experiments in order to investigate its suitability for geometry planning and image fusion. An algorithm for automated marker extraction in both MR and MP images and rigid registration was established. Results: The developed bimodal fiducial markers can be visualized by MRI and MPI and allow for geometry planning as well as automated registration and fusion of MR–MP images. Conclusions: To date, exact positioning of the object to be imaged within the field of view (FOV) and the assignment of reconstructed MPI signals to corresponding morphological regions has been difficult. The developed bimodal fiducial markers and the automated image registration algorithm help to overcome these difficulties.

  16. SAR and Infrared Image Fusion in Complex Contourlet Domain Based on Joint Sparse Representation

    Directory of Open Access Journals (Sweden)

    Wu Yiquan

    2017-08-01

    Full Text Available To investigate the problems of the large grayscale difference between infrared and Synthetic Aperture Radar (SAR images and their fusion image not being fit for human visual perception, we propose a fusion method for SAR and infrared images in the complex contourlet domain based on joint sparse representation. First, we perform complex contourlet decomposition of the infrared and SAR images. Then, we employ the KSingular Value Decomposition (K-SVD method to obtain an over-complete dictionary of the low-frequency components of the two source images. Using a joint sparse representation model, we then generate a joint dictionary. We obtain the sparse representation coefficients of the low-frequency components of the source images in the joint dictionary by the Orthogonal Matching Pursuit (OMP method and select them using the selection maximization strategy. We then reconstruct these components to obtain the fused low-frequency components and fuse the high-frequency components using two criteria——the coefficient of visual sensitivity and the degree of energy matching. Finally, we obtain the fusion image by the inverse complex contourlet transform. Compared with the three classical fusion methods and recently presented fusion methods, e.g., that based on the Non-Subsampled Contourlet Transform (NSCT and another based on sparse representation, the method we propose in this paper can effectively highlight the salient features of the two source images and inherit their information to the greatest extent.

  17. Time Series Analysis OF SAR Image Fractal Maps: The Somma-Vesuvio Volcanic Complex Case Study

    Science.gov (United States)

    Pepe, Antonio; De Luca, Claudio; Di Martino, Gerardo; Iodice, Antonio; Manzo, Mariarosaria; Pepe, Susi; Riccio, Daniele; Ruello, Giuseppe; Sansosti, Eugenio; Zinno, Ivana

    2016-04-01

    The fractal dimension is a significant geophysical parameter describing natural surfaces representing the distribution of the roughness over different spatial scale; in case of volcanic structures, it has been related to the specific nature of materials and to the effects of active geodynamic processes. In this work, we present the analysis of the temporal behavior of the fractal dimension estimates generated from multi-pass SAR images relevant to the Somma-Vesuvio volcanic complex (South Italy). To this aim, we consider a Cosmo-SkyMed data-set of 42 stripmap images acquired from ascending orbits between October 2009 and December 2012. Starting from these images, we generate a three-dimensional stack composed by the corresponding fractal maps (ordered according to the acquisition dates), after a proper co-registration. The time-series of the pixel-by-pixel estimated fractal dimension values show that, over invariant natural areas, the fractal dimension values do not reveal significant changes; on the contrary, over urban areas, it correctly assumes values outside the natural surfaces fractality range and show strong fluctuations. As a final result of our analysis, we generate a fractal map that includes only the areas where the fractal dimension is considered reliable and stable (i.e., whose standard deviation computed over the time series is reasonably small). The so-obtained fractal dimension map is then used to identify areas that are homogeneous from a fractal viewpoint. Indeed, the analysis of this map reveals the presence of two distinctive landscape units corresponding to the Mt. Vesuvio and Gran Cono. The comparison with the (simplified) geological map clearly shows the presence in these two areas of volcanic products of different age. The presented fractal dimension map analysis demonstrates the ability to get a figure about the evolution degree of the monitored volcanic edifice and can be profitably extended in the future to other volcanic systems with

  18. Urban-area extraction from polarimetric SAR image using combination of target decomposition and orientation angle

    Science.gov (United States)

    Zou, Bin; Lu, Da; Wu, Zhilu; Qiao, Zhijun G.

    2016-05-01

    The results of model-based target decomposition are the main features used to discriminate urban and non-urban area in polarimetric synthetic aperture radar (PolSAR) application. Traditional urban-area extraction methods based on modelbased target decomposition usually misclassified ground-trunk structure as urban-area or misclassified rotated urbanarea as forest. This paper introduces another feature named orientation angle to improve urban-area extraction scheme for the accurate mapping in urban by PolSAR image. The proposed method takes randomness of orientation angle into account for restriction of urban area first and, subsequently, implements rotation angle to improve results that oriented urban areas are recognized as double-bounce objects from volume scattering. ESAR L-band PolSAR data of the Oberpfaffenhofen Test Site Area was used to validate the proposed algorithm.

  19. Target discrimination method for SAR images based on semisupervised co-training

    Science.gov (United States)

    Wang, Yan; Du, Lan; Dai, Hui

    2018-01-01

    Synthetic aperture radar (SAR) target discrimination is usually performed in a supervised manner. However, supervised methods for SAR target discrimination may need lots of labeled training samples, whose acquirement is costly, time consuming, and sometimes impossible. This paper proposes an SAR target discrimination method based on semisupervised co-training, which utilizes a limited number of labeled samples and an abundant number of unlabeled samples. First, Lincoln features, widely used in SAR target discrimination, are extracted from the training samples and partitioned into two sets according to their physical meanings. Second, two support vector machine classifiers are iteratively co-trained with the extracted two feature sets based on the co-training algorithm. Finally, the trained classifiers are exploited to classify the test data. The experimental results on real SAR images data not only validate the effectiveness of the proposed method compared with the traditional supervised methods, but also demonstrate the superiority of co-training over self-training, which only uses one feature set.

  20. RESEARCH OF REGISTRATION APPROACHES OF THERMAL INFRARED IMAGES AND INTENSITY IMAGES OF POINT CLOUD

    Directory of Open Access Journals (Sweden)

    L. Liu

    2017-09-01

    Full Text Available In order to realize the analysis of thermal energy of the objects in 3D vision, the registration approach of thermal infrared images and TLS (Terrestrial Laser Scanner point cloud was studied. The original data was pre-processed. For the sake of making the scale and brightness contrast of the two kinds of data meet the needs of basic matching, the intensity image of point cloud was produced and projected to spherical coordinate system, histogram equalization processing was done for thermal infrared image.This paper focused on the research of registration approaches of thermal infrared images and intensity images of point cloud based on SIFT,EOH-SIFT and PIIFD operators. The latter of which is usually used for medical image matching with different spectral character. The comparison results of the experiments showed that PIIFD operator got much more accurate feature point correspondences compared to SIFT and EOH-SIFT operators. The thermal infrared image and intensity image also have ideal overlap results by quadratic polynomial transformation. Therefore, PIIFD can be used as the basic operator for the registration of thermal infrared images and intensity images, and the operator can also be further improved by incorporating the iteration method.

  1. Registration of angiographic image on real-time fluoroscopic image for image-guided percutaneous coronary intervention.

    Science.gov (United States)

    Kim, Dongkue; Park, Sangsoo; Jeong, Myung Ho; Ryu, Jeha

    2018-02-01

    In percutaneous coronary intervention (PCI), cardiologists must study two different X-ray image sources: a fluoroscopic image and an angiogram. Manipulating a guidewire while alternately monitoring the two separate images on separate screens requires a deep understanding of the anatomy of coronary vessels and substantial training. We propose 2D/2D spatiotemporal image registration of the two images in a single image in order to provide cardiologists with enhanced visual guidance in PCI. The proposed 2D/2D spatiotemporal registration method uses a cross-correlation of two ECG series in each image to temporally synchronize two separate images and register an angiographic image onto the fluoroscopic image. A guidewire centerline is then extracted from the fluoroscopic image in real time, and the alignment of the centerline with vessel outlines of the chosen angiographic image is optimized using the iterative closest point algorithm for spatial registration. A proof-of-concept evaluation with a phantom coronary vessel model with engineering students showed an error reduction rate greater than 74% on wrong insertion to nontarget branches compared to the non-registration method and more than 47% reduction in the task completion time in performing guidewire manipulation for very difficult tasks. Evaluation with a small number of experienced doctors shows a potentially significant reduction in both task completion time and error rate for difficult tasks. The total registration time with real procedure X-ray (angiographic and fluoroscopic) images takes [Formula: see text] 60 ms, which is within the fluoroscopic image acquisition rate of 15 Hz. By providing cardiologists with better visual guidance in PCI, the proposed spatiotemporal image registration method is shown to be useful in advancing the guidewire to the coronary vessel branches, especially those difficult to insert into.

  2. Discernibility of Burial Mounds in High-Resolution X-Band SAR Images for Archaeological Prospections in the Altai Mountains

    Directory of Open Access Journals (Sweden)

    Timo Balz

    2016-09-01

    Full Text Available The Altai Mountains are a heritage-rich archaeological landscape with monuments in almost every valley. Modern nation state borders dissect the region and limit archaeological landscape analysis to intra-national areas of interest. Remote sensing can help to overcome these limitations. Due to its high precision, Synthetic Aperture Radar (SAR data can be a very useful tool for supporting archaeological prospections, but compared to optical imagery, the detectability of sites of archaeological interest is limited. We analyzed the limitations of SAR using TerraSAR-X images in different modes. Based on ground truth, the discernibility of burial mounds was analyzed in different SAR acquisition modes. We show that very-high-resolution TerraSAR-X staring spotlight images are very well suited for the task, with >75% of the larger mounds being discernible, while in images with a lower spatial resolution only a few large sites can be detected, at rates below 50%.

  3. Fast iterative censoring CFAR algorithm for ship detection from SAR images

    Science.gov (United States)

    Gu, Dandan; Yue, Hui; Zhang, Yuan; Gao, Pengcheng

    2017-11-01

    Ship detection is one of the essential techniques for ship recognition from synthetic aperture radar (SAR) images. This paper presents a fast iterative detection procedure to eliminate the influence of target returns on the estimation of local sea clutter distributions for constant false alarm rate (CFAR) detectors. A fast block detector is first employed to extract potential target sub-images; and then, an iterative censoring CFAR algorithm is used to detect ship candidates from each target blocks adaptively and efficiently, where parallel detection is available, and statistical parameters of G0 distribution fitting local sea clutter well can be quickly estimated based on an integral image operator. Experimental results of TerraSAR-X images demonstrate the effectiveness of the proposed technique.

  4. Extraction of lead and ridge characteristics from SAR images of sea ice

    Science.gov (United States)

    Vesecky, John F.; Smith, Martha P.; Samadani, Ramin

    1990-01-01

    Image-processing techniques for extracting the characteristics of lead and pressure ridge features in SAR images of sea ice are reported. The methods are applied to a SAR image of the Beaufort Sea collected from the Seasat satellite on October 3, 1978. Estimates of lead and ridge statistics are made, e.g., lead and ridge density (number of lead or ridge pixels per unit area of image) and the distribution of lead area and orientation as well as ridge length and orientation. The information derived is useful in both ice science and polar operations for such applications as albedo and heat and momentum transfer estimates, as well as ship routing and offshore engineering.

  5. Change detection in a time series of polarimetric SAR images

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Allan Aasbjerg; Conradsen, Knut

    A test statistic for the equality of two or several variance-covariance matrices following the real (as opposed to the complex) Wishart distribution with an associated probability of finding a smaller value of the test statistic is described in the literature [1]. In 2003 we introduced a test...... statistic for the equality of two variance-covariance matrices following the complex Wishart distribution with an associated probability measure [2]. In that paper we also demonstrated the use of the test statistic to change detection over time in both fully polarimetric and azimuthal symmetric SAR data...... positives (postulating a change when there actually is none) and/or false negatives (missing an actual change). Therefore we need to test for equality for all time points simultaneously. In this paper we demonstrate a new test statistic for the equality of several variance-covariance matrices from the real...

  6. Probability Density Components Analysis: A New Approach to Treatment and Classification of SAR Images

    Directory of Open Access Journals (Sweden)

    Osmar Abílio de Carvalho Júnior

    2014-04-01

    Full Text Available Speckle noise (salt and pepper is inherent to synthetic aperture radar (SAR, which causes a usual noise-like granular aspect and complicates the image classification. In SAR image analysis, the spatial information might be a particular benefit for denoising and mapping classes characterized by a statistical distribution of the pixel intensities from a complex and heterogeneous spectral response. This paper proposes the Probability Density Components Analysis (PDCA, a new alternative that combines filtering and frequency histogram to improve the classification procedure for the single-channel synthetic aperture radar (SAR images. This method was tested on L-band SAR data from the Advanced Land Observation System (ALOS Phased-Array Synthetic-Aperture Radar (PALSAR sensor. The study area is localized in the Brazilian Amazon rainforest, northern Rondônia State (municipality of Candeias do Jamari, containing forest and land use patterns. The proposed algorithm uses a moving window over the image, estimating the probability density curve in different image components. Therefore, a single input image generates an output with multi-components. Initially the multi-components should be treated by noise-reduction methods, such as maximum noise fraction (MNF or noise-adjusted principal components (NAPCs. Both methods enable reducing noise as well as the ordering of multi-component data in terms of the image quality. In this paper, the NAPC applied to multi-components provided large reductions in the noise levels, and the color composites considering the first NAPC enhance the classification of different surface features. In the spectral classification, the Spectral Correlation Mapper and Minimum Distance were used. The results obtained presented as similar to the visual interpretation of optical images from TM-Landsat and Google Maps.

  7. Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration.

    Science.gov (United States)

    de Groot, Marius; Vernooij, Meike W; Klein, Stefan; Ikram, M Arfan; Vos, Frans M; Smith, Stephen M; Niessen, Wiro J; Andersson, Jesper L R

    2013-08-01

    Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS establishes spatial correspondence using a combination of nonlinear registration and a "skeleton projection" that may break topological consistency of the transformed brain images. We therefore investigated feasibility of replacing the two-stage registration-projection procedure in TBSS with a single, regularized, high-dimensional registration. To optimize registration parameters and to evaluate registration performance in diffusion MRI, we designed an evaluation framework that uses native space probabilistic tractography for 23 white matter tracts, and quantifies tract similarity across subjects in standard space. We optimized parameters for two registration algorithms on two diffusion datasets of different quality. We investigated reproducibility of the evaluation framework, and of the optimized registration algorithms. Next, we compared registration performance of the regularized registration methods and TBSS. Finally, feasibility and effect of incorporating the improved registration in TBSS were evaluated in an example study. The evaluation framework was highly reproducible for both algorithms (R(2) 0.993; 0.931). The optimal registration parameters depended on the quality of the dataset in a graded and predictable manner. At optimal parameters, both algorithms outperformed the registration of TBSS, showing feasibility of adopting such approaches in TBSS. This was further confirmed in the example experiment. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Knee osteoarthritis image registration: data from the Osteoarthritis Initiative

    Science.gov (United States)

    Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Treviño, Victor; Tamez-Peña, José G.

    2015-03-01

    Knee osteoarthritis is a very common disease, in early stages, changes in joint structures are shown, some of the most common symptoms are; formation of osteophytes, cartilage degradation and joint space reduction, among others. Based on a joint space reduction measurement, Kellgren-Lawrence grading scale, is a very extensive used tool to asses radiological OA knee x-ray images, based on information obtained from these assessments, the objective of this work is to correlate the Kellgren-Lawrence score to the bilateral asymmetry between knees. Using public data from the Osteoarthritis initiative (OAI), a set of images with different Kellgren-Lawrencescores were used to determine a relationship of Kellgren-Lawrence score and the bilateral asymmetry, in order to measure the asymmetry between the knees, the right knee was registered to match the left knee, then a series of similarity metrics, mutual information, correlation, and mean squared error where computed to correlate the deformation (mismatch) of the knees to the Kellgren-Lawrence score. Radiological information was evaluated and scored by OAI radiologist groups. The results of the study suggest an association between Radiological Kellgren-Lawrence score and image registration metrics, mutual information and correlation is higher in the early stages, and mean squared error is higher in advanced stages. This association can be helpful to develop a computer aided grading tool.

  9. A neural network detection model of spilled oil based on the texture analysis of SAR image

    Science.gov (United States)

    An, Jubai; Zhu, Lisong

    2006-01-01

    A Radial Basis Function Neural Network (RBFNN) Model is investigated for the detection of spilled oil based on the texture analysis of SAR imagery. In this paper, to take the advantage of the abundant texture information of SAR imagery, the texture features are extracted by both wavelet transform and the Gray Level Co-occurrence matrix. The RBFNN Model is fed with a vector of these texture features. The RBFNN Model is trained and tested by the sample data set of the feature vectors. Finally, a SAR image is classified by this model. The classification results of a spilled oil SAR image show that the classification accuracy for oil spill is 86.2 by the RBFNN Model using both wavelet texture and gray texture, while the classification accuracy for oil spill is 78.0 by same RBFNN Model using only wavelet texture as the input of this RBFNN model. The model using both wavelet transform and the Gray Level Co-occurrence matrix is more effective than that only using wavelet texture. Furthermore, it keeps the complicated proximity and has a good performance of classification.

  10. Synthetic aperture integration (SAI) algorithm for SAR imaging

    Science.gov (United States)

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W; Beer, N. Reginald

    2013-07-09

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  11. THE IMAGE REGISTRATION OF FOURIER-MELLIN BASED ON THE COMBINATION OF PROJECTION AND GRADIENT PREPROCESSING

    Directory of Open Access Journals (Sweden)

    D. Gao

    2017-09-01

    Full Text Available Image registration is one of the most important applications in the field of image processing. The method of Fourier Merlin transform, which has the advantages of high precision and good robustness to change in light and shade, partial blocking, noise influence and so on, is widely used. However, not only this method can’t obtain the unique mutual power pulse function for non-parallel image pairs, even part of image pairs also can’t get the mutual power function pulse. In this paper, an image registration method based on Fourier-Mellin transformation in the view of projection-gradient preprocessing is proposed. According to the projection conformational equation, the method calculates the matrix of image projection transformation to correct the tilt image; then, gradient preprocessing and Fourier-Mellin transformation are performed on the corrected image to obtain the registration parameters. Eventually, the experiment results show that the method makes the image registration of Fourier-Mellin transformation not only applicable to the registration of the parallel image pairs, but also to the registration of non-parallel image pairs. What’s more, the better registration effect can be obtained

  12. Change detection in polarimetric SAR images using complex Wishart distributed matrices

    DEFF Research Database (Denmark)

    Conradsen, Knut; Nielsen, Allan Aasbjerg; Skriver, Henning

    In surveillance it is important to be able to detect natural or man-made changes e.g. based on sequences of satellite or air borne images of the same area taken at different times. The mapping capability of synthetic aperture radar (SAR) is independent of e.g. cloud cover, and thus this technology...... scattering matrix, and after suitable preprocessing the outcome at each picture element (pixel) may be represented as a 3 by 3 Hermitian matrix following a complex Wishart distribution. One approach to solving the change detection problem based on SAR images is therefore to apply suitable statistical tests...... in the complex Wishart distribution. We propose a set-up for a systematic solution to the (practical) problems using the likelihood ratio test statistics. We show some examples based on a time series of images with 1024 by 1024 pixels....

  13. Complexity and accuracy of image registration methods in SPECT-guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yin, L S; Duzenli, C; Moiseenko, V [Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1 (Canada); Tang, L; Hamarneh, G [Computing Science, Simon Fraser University, 9400 TASC1, Burnaby, BC, V5A 1S6 (Canada); Gill, B [Medical Physics, Vancouver Cancer Centre, BC Cancer Agency, 600 West 10th Ave, Vancouver, BC, V5Z 4E6 (Canada); Celler, A; Shcherbinin, S [Department of Radiology, University of British Columbia, 828 West 10th Ave, Vancouver, BC, V5Z 1L8 (Canada); Fua, T F; Thompson, A; Sheehan, F [Radiation Oncology, Vancouver Cancer Centre, BC Cancer Agency, 600 West 10th Ave, Vancouver, BC, V5Z 4E6 (Canada); Liu, M [Radiation Oncology, Fraser Valley Cancer Centre, BC Cancer Agency, 13750 9th Ave, Surrey, BC, V3V 1Z2 (Canada)], E-mail: lyin@bccancer.bc.ca

    2010-01-07

    The use of functional imaging in radiotherapy treatment (RT) planning requires accurate co-registration of functional imaging scans to CT scans. We evaluated six methods of image registration for use in SPECT-guided radiotherapy treatment planning. Methods varied in complexity from 3D affine transform based on control points to diffeomorphic demons and level set non-rigid registration. Ten lung cancer patients underwent perfusion SPECT-scans prior to their radiotherapy. CT images from a hybrid SPECT/CT scanner were registered to a planning CT, and then the same transformation was applied to the SPECT images. According to registration evaluation measures computed based on the intensity difference between the registered CT images or based on target registration error, non-rigid registrations provided a higher degree of accuracy than rigid methods. However, due to the irregularities in some of the obtained deformation fields, warping the SPECT using these fields may result in unacceptable changes to the SPECT intensity distribution that would preclude use in RT planning. Moreover, the differences between intensity histograms in the original and registered SPECT image sets were the largest for diffeomorphic demons and level set methods. In conclusion, the use of intensity-based validation measures alone is not sufficient for SPECT/CT registration for RTTP. It was also found that the proper evaluation of image registration requires the use of several accuracy metrics.

  14. Multi-linear sparse reconstruction for SAR imaging based on higher-order SVD

    Science.gov (United States)

    Gao, Yu-Fei; Gui, Guan; Cong, Xun-Chao; Yang, Yue; Zou, Yan-Bin; Wan, Qun

    2017-12-01

    This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the conventional methods. The computational resources requirement is further investigated in this paper. As a consequence of the algorithm complexity analysis, the present method possesses the superiority on resource consumption compared with the classic matching pursuit method. The imaging implementations for practical measured data also demonstrate the effectiveness of the algorithm developed in this paper.

  15. Doppler Spectrum-Based NRCS Estimation Method for Low-Scattering Areas in Ocean SAR Images

    Directory of Open Access Journals (Sweden)

    Hui Meng

    2017-02-01

    Full Text Available The image intensities of low-backscattering areas in synthetic aperture radar (SAR images are often seriously contaminated by the system noise floor and azimuthal ambiguity signal from adjacent high-backscattering areas. Hence, the image intensity of low-backscattering areas does not correctly reflect the backscattering intensity, which causes confusion in subsequent image processing or interpretation. In this paper, a method is proposed to estimate the normalized radar cross-section (NRCS of low-backscattering area by utilizing the differences between noise, azimuthal ambiguity, and signal in the Doppler frequency domain of single-look SAR images; the aim is to eliminate the effect of system noise and azimuthal ambiguity. Analysis shows that, for a spaceborne SAR with a noise equivalent sigma zero (NESZ of −25 dB and a single-look pixel of 8 m × 5 m, the NRCS-estimation precision of this method can reach −38 dB at a resolution of 96 m × 100 m. Three examples are given to validate the advantages of this method in estimating the low NRCS and the filtering of the azimuthal ambiguity.

  16. Regional SAR Image Segmentation Based on Fuzzy Clustering with Gamma Mixture Model

    Science.gov (United States)

    Li, X. L.; Zhao, Q. H.; Li, Y.

    2017-09-01

    Most of stochastic based fuzzy clustering algorithms are pixel-based, which can not effectively overcome the inherent speckle noise in SAR images. In order to deal with the problem, a regional SAR image segmentation algorithm based on fuzzy clustering with Gamma mixture model is proposed in this paper. First, initialize some generating points randomly on the image, the image domain is divided into many sub-regions using Voronoi tessellation technique. Each sub-region is regarded as a homogeneous area in which the pixels share the same cluster label. Then, assume the probability of the pixel to be a Gamma mixture model with the parameters respecting to the cluster which the pixel belongs to. The negative logarithm of the probability represents the dissimilarity measure between the pixel and the cluster. The regional dissimilarity measure of one sub-region is defined as the sum of the measures of pixels in the region. Furthermore, the Markov Random Field (MRF) model is extended from pixels level to Voronoi sub-regions, and then the regional objective function is established under the framework of fuzzy clustering. The optimal segmentation results can be obtained by the solution of model parameters and generating points. Finally, the effectiveness of the proposed algorithm can be proved by the qualitative and quantitative analysis from the segmentation results of the simulated and real SAR images.

  17. Quality Assurance of Serial 3D Image Registration, Fusion, and Segmentation

    International Nuclear Information System (INIS)

    Sharpe, Michael; Brock, Kristy K.

    2008-01-01

    Radiotherapy relies on images to plan, guide, and assess treatment. Image registration, fusion, and segmentation are integral to these processes; specifically for aiding anatomic delineation, assessing organ motion, and aligning targets with treatment beams in image-guided radiation therapy (IGRT). Future developments in image registration will also improve estimations of the actual dose delivered and quantitative assessment in patient follow-up exams. This article summarizes common and emerging technologies and reviews the role of image registration, fusion, and segmentation in radiotherapy processes. The current quality assurance practices are summarized, and implications for clinical procedures are discussed

  18. PCANet-Based Structural Representation for Nonrigid Multimodal Medical Image Registration

    Directory of Open Access Journals (Sweden)

    Xingxing Zhu

    2018-05-01

    Full Text Available Nonrigid multimodal image registration remains a challenging task in medical image processing and analysis. The structural representation (SR-based registration methods have attracted much attention recently. However, the existing SR methods cannot provide satisfactory registration accuracy due to the utilization of hand-designed features for structural representation. To address this problem, the structural representation method based on the improved version of the simple deep learning network named PCANet is proposed for medical image registration. In the proposed method, PCANet is firstly trained on numerous medical images to learn convolution kernels for this network. Then, a pair of input medical images to be registered is processed by the learned PCANet. The features extracted by various layers in the PCANet are fused to produce multilevel features. The structural representation images are constructed for two input images based on nonlinear transformation of these multilevel features. The Euclidean distance between structural representation images is calculated and used as the similarity metrics. The objective function defined by the similarity metrics is optimized by L-BFGS method to obtain parameters of the free-form deformation (FFD model. Extensive experiments on simulated and real multimodal image datasets show that compared with the state-of-the-art registration methods, such as modality-independent neighborhood descriptor (MIND, normalized mutual information (NMI, Weber local descriptor (WLD, and the sum of squared differences on entropy images (ESSD, the proposed method provides better registration performance in terms of target registration error (TRE and subjective human vision.

  19. Efficient nonlinear registration of 3D images using high order co-ordinate transfer functions.

    Science.gov (United States)

    Barber, D C

    1999-01-01

    There is an increasing interest in image registration for a variety of medical imaging applications. Image registration is achieved through the use of a co-ordinate transfer function (CTF) which maps voxels in one image to voxels in the other image, including in the general case changes in mapped voxel intensity. If images of the same subject are to be registered the co-ordinate transfer function needs to implement a spatial transformation consisting of a displacement and a rigid rotation. In order to achieve registration a common approach is to choose a suitable quality-of-registration measure and devise a method for the efficient generation of the parameters of the CTF which minimize this measure. For registration of images from different subjects more complex transforms are required. In general function minimization is too slow to allow the use of CTFs with more than a small number of parameters. However, provided the images are from the same modality and the CTF can be expanded in terms of an appropriate set of basis functions this paper will show how relatively complex CTFs can be used for registration. The use of increasingly complex CTFs to minimize the within group standard deviation of a set of normal single photon emission tomography brain images is used to demonstrate the improved registration of images from different subjects using CTFs of increasing complexity.

  20. Subspace-Based Holistic Registration for Low-Resolution Facial Images

    Directory of Open Access Journals (Sweden)

    Boom BJ

    2010-01-01

    Full Text Available Subspace-based holistic registration is introduced as an alternative to landmark-based face registration, which has a poor performance on low-resolution images, as obtained in camera surveillance applications. The proposed registration method finds the alignment by maximizing the similarity score between a probe and a gallery image. We use a novel probabilistic framework for both user-independent as well as user-specific face registration. The similarity is calculated using the probability that the face image is correctly aligned in a face subspace, but additionally we take the probability into account that the face is misaligned based on the residual error in the dimensions perpendicular to the face subspace. We perform extensive experiments on the FRGCv2 database to evaluate the impact that the face registration methods have on face recognition. Subspace-based holistic registration on low-resolution images can improve face recognition in comparison with landmark-based registration on high-resolution images. The performance of the tested face recognition methods after subspace-based holistic registration on a low-resolution version of the FRGC database is similar to that after manual registration.

  1. RESEARCH ON COORDINATE TRANSFORMATION METHOD OF GB-SAR IMAGE SUPPORTED BY 3D LASER SCANNING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    P. Wang

    2018-04-01

    Full Text Available In the image plane of GB-SAR, identification of deformation distribution is usually carried out by artificial interpretation. This method requires analysts to have adequate experience of radar imaging and target recognition, otherwise it can easily cause false recognition of deformation target or region. Therefore, it is very meaningful to connect two-dimensional (2D plane coordinate system with the common three-dimensional (3D terrain coordinate system. To improve the global accuracy and reliability of the transformation from 2D coordinates of GB-SAR images to local 3D coordinates, and overcome the limitation of traditional similarity transformation parameter estimation method, 3D laser scanning data is used to assist the transformation of GB-SAR image coordinates. A straight line fitting method for calculating horizontal angle was proposed in this paper. After projection into a consistent imaging plane, we can calculate horizontal rotation angle by using the linear characteristics of the structure in radar image and the 3D coordinate system. Aided by external elevation information by 3D laser scanning technology, we completed the matching of point clouds and pixels on the projection plane according to the geometric projection principle of GB-SAR imaging realizing the transformation calculation of GB-SAR image coordinates to local 3D coordinates. Finally, the effectiveness of the method is verified by the GB-SAR deformation monitoring experiment on the high slope of Geheyan dam.

  2. Research on Coordinate Transformation Method of Gb-Sar Image Supported by 3d Laser Scanning Technology

    Science.gov (United States)

    Wang, P.; Xing, C.

    2018-04-01

    In the image plane of GB-SAR, identification of deformation distribution is usually carried out by artificial interpretation. This method requires analysts to have adequate experience of radar imaging and target recognition, otherwise it can easily cause false recognition of deformation target or region. Therefore, it is very meaningful to connect two-dimensional (2D) plane coordinate system with the common three-dimensional (3D) terrain coordinate system. To improve the global accuracy and reliability of the transformation from 2D coordinates of GB-SAR images to local 3D coordinates, and overcome the limitation of traditional similarity transformation parameter estimation method, 3D laser scanning data is used to assist the transformation of GB-SAR image coordinates. A straight line fitting method for calculating horizontal angle was proposed in this paper. After projection into a consistent imaging plane, we can calculate horizontal rotation angle by using the linear characteristics of the structure in radar image and the 3D coordinate system. Aided by external elevation information by 3D laser scanning technology, we completed the matching of point clouds and pixels on the projection plane according to the geometric projection principle of GB-SAR imaging realizing the transformation calculation of GB-SAR image coordinates to local 3D coordinates. Finally, the effectiveness of the method is verified by the GB-SAR deformation monitoring experiment on the high slope of Geheyan dam.

  3. CO-REGISTRATION AIRBORNE LIDAR POINT CLOUD DATA AND SYNCHRONOUS DIGITAL IMAGE REGISTRATION BASED ON COMBINED ADJUSTMENT

    Directory of Open Access Journals (Sweden)

    Z. H. Yang

    2016-06-01

    Full Text Available Aim at the problem of co-registration airborne laser point cloud data with the synchronous digital image, this paper proposed a registration method based on combined adjustment. By integrating tie point, point cloud data with elevation constraint pseudo observations, using the principle of least-squares adjustment to solve the corrections of exterior orientation elements of each image, high-precision registration results can be obtained. In order to ensure the reliability of the tie point, and the effectiveness of pseudo observations, this paper proposed a point cloud data constrain SIFT matching and optimizing method, can ensure that the tie points are located on flat terrain area. Experiments with the airborne laser point cloud data and its synchronous digital image, there are about 43 pixels error in image space using the original POS data. If only considering the bore-sight of POS system, there are still 1.3 pixels error in image space. The proposed method regards the corrections of the exterior orientation elements of each image as unknowns and the errors are reduced to 0.15 pixels.

  4. FPGA Accelerator for Wavelet-Based Automated Global Image Registration

    Directory of Open Access Journals (Sweden)

    Baofeng Li

    2009-01-01

    Full Text Available Wavelet-based automated global image registration (WAGIR is fundamental for most remote sensing image processing algorithms and extremely computation-intensive. With more and more algorithms migrating from ground computing to onboard computing, an efficient dedicated architecture of WAGIR is desired. In this paper, a BWAGIR architecture is proposed based on a block resampling scheme. BWAGIR achieves a significant performance by pipelining computational logics, parallelizing the resampling process and the calculation of correlation coefficient and parallel memory access. A proof-of-concept implementation with 1 BWAGIR processing unit of the architecture performs at least 7.4X faster than the CL cluster system with 1 node, and at least 3.4X than the MPM massively parallel machine with 1 node. Further speedup can be achieved by parallelizing multiple BWAGIR units. The architecture with 5 units achieves a speedup of about 3X against the CL with 16 nodes and a comparative speed with the MPM with 30 nodes. More importantly, the BWAGIR architecture can be deployed onboard economically.

  5. FPGA Accelerator for Wavelet-Based Automated Global Image Registration

    Directory of Open Access Journals (Sweden)

    Li Baofeng

    2009-01-01

    Full Text Available Abstract Wavelet-based automated global image registration (WAGIR is fundamental for most remote sensing image processing algorithms and extremely computation-intensive. With more and more algorithms migrating from ground computing to onboard computing, an efficient dedicated architecture of WAGIR is desired. In this paper, a BWAGIR architecture is proposed based on a block resampling scheme. BWAGIR achieves a significant performance by pipelining computational logics, parallelizing the resampling process and the calculation of correlation coefficient and parallel memory access. A proof-of-concept implementation with 1 BWAGIR processing unit of the architecture performs at least 7.4X faster than the CL cluster system with 1 node, and at least 3.4X than the MPM massively parallel machine with 1 node. Further speedup can be achieved by parallelizing multiple BWAGIR units. The architecture with 5 units achieves a speedup of about 3X against the CL with 16 nodes and a comparative speed with the MPM with 30 nodes. More importantly, the BWAGIR architecture can be deployed onboard economically.

  6. Modulation of Tidal Channel Signatures on SAR Images Over Gyeonggi Bay in Relation to Environmental Factors

    Directory of Open Access Journals (Sweden)

    Tae-Sung Kim

    2018-04-01

    Full Text Available In this study, variations of radar backscatter features of the tidal channel in Gyeonggi Bay in the Eastern Yellow Sea were investigated using spaceborne synthetic aperture radar (SAR images. Consistent quasi-linear bright features appeared on the SAR images. Examining the detailed local bathymetry chart, we found that the features were co-located with the major axis of the tidal channel in the region. It was also shown that modulation of the radar backscatter features changed according to the environmental conditions at the time of imaging. For the statistical analysis, the bathymetric features over the tidal channel were extracted by an objective method. In terms of shape, the extracted features had higher variability in width than in length. The analysis of the variation in intensity with the coinciding bathymetric distribution confirmed that the quasi-linear bright features on the SAR images are fundamentally imprinted due to the surface current convergence and divergence caused by the bathymetry-induced tidal current variation. Furthermore, the contribution of environmental factors to the intensity modulation was quantitatively analyzed. A comparison of the variation in normalized radar cross section (NRCS with tidal current showed a positive correlation only with the perpendicular component of tidal current (r= 0.47. This implies that the modulation in intensity of the tidal channel signatures is mainly affected by the interaction with cross-current flow. On the other hand, the modulation of the NRCS over the tidal channel tended to be degraded as wind speed increased (r= −0.65. Considering the environmental circumstances in the study area, it can be inferred that the imaging capability of SAR for the detection of tidal channel signatures mainly relies on wind speed.

  7. [Medical image elastic registration smoothed by unconstrained optimized thin-plate spline].

    Science.gov (United States)

    Zhang, Yu; Li, Shuxiang; Chen, Wufan; Liu, Zhexing

    2003-12-01

    Elastic registration of medical image is an important subject in medical image processing. Previous work has concentrated on selecting the corresponding landmarks manually and then using thin-plate spline interpolating to gain the elastic transformation. However, the landmarks extraction is always prone to error, which will influence the registration results. Localizing the landmarks manually is also difficult and time-consuming. We the optimization theory to improve the thin-plate spline interpolation, and based on it, used an automatic method to extract the landmarks. Combining these two steps, we have proposed an automatic, exact and robust registration method and have gained satisfactory registration results.

  8. Integrated Shoreline Extraction Approach with Use of Rasat MS and SENTINEL-1A SAR Images

    Science.gov (United States)

    Demir, N.; Oy, S.; Erdem, F.; Şeker, D. Z.; Bayram, B.

    2017-09-01

    Shorelines are complex ecosystems and highly important socio-economic environments. They may change rapidly due to both natural and human-induced effects. Determination of movements along the shoreline and monitoring of the changes are essential for coastline management, modeling of sediment transportation and decision support systems. Remote sensing provides an opportunity to obtain rapid, up-to-date and reliable information for monitoring of shoreline. In this study, approximately 120 km of Antalya-Kemer shoreline which is under the threat of erosion, deposition, increasing of inhabitants and urbanization and touristic hotels, has been selected as the study area. In the study, RASAT pansharpened and SENTINEL-1A SAR images have been used to implement proposed shoreline extraction methods. The main motivation of this study is to combine the land/water body segmentation results of both RASAT MS and SENTINEL-1A SAR images to improve the quality of the results. The initial land/water body segmentation has been obtained using RASAT image by means of Random Forest classification method. This result has been used as training data set to define fuzzy parameters for shoreline extraction from SENTINEL-1A SAR image. Obtained results have been compared with the manually digitized shoreline. The accuracy assessment has been performed by calculating perpendicular distances between reference data and extracted shoreline by proposed method. As a result, the mean difference has been calculated around 1 pixel.

  9. INVITED REVIEW--IMAGE REGISTRATION IN VETERINARY RADIATION ONCOLOGY: INDICATIONS, IMPLICATIONS, AND FUTURE ADVANCES.

    Science.gov (United States)

    Feng, Yang; Lawrence, Jessica; Cheng, Kun; Montgomery, Dean; Forrest, Lisa; Mclaren, Duncan B; McLaughlin, Stephen; Argyle, David J; Nailon, William H

    2016-01-01

    The field of veterinary radiation therapy (RT) has gained substantial momentum in recent decades with significant advances in conformal treatment planning, image-guided radiation therapy (IGRT), and intensity-modulated (IMRT) techniques. At the root of these advancements lie improvements in tumor imaging, image alignment (registration), target volume delineation, and identification of critical structures. Image registration has been widely used to combine information from multimodality images such as computerized tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) to improve the accuracy of radiation delivery and reliably identify tumor-bearing areas. Many different techniques have been applied in image registration. This review provides an overview of medical image registration in RT and its applications in veterinary oncology. A summary of the most commonly used approaches in human and veterinary medicine is presented along with their current use in IGRT and adaptive radiation therapy (ART). It is important to realize that registration does not guarantee that target volumes, such as the gross tumor volume (GTV), are correctly identified on the image being registered, as limitations unique to registration algorithms exist. Research involving novel registration frameworks for automatic segmentation of tumor volumes is ongoing and comparative oncology programs offer a unique opportunity to test the efficacy of proposed algorithms. © 2016 American College of Veterinary Radiology.

  10. Registration of Vibro-acoustography Images and X-ray Mammography.

    Science.gov (United States)

    Gholam Hosseini, H; Fatemi, M; Alizad, A

    2005-01-01

    Image registration has been widely used for generating more diagnostic and clinical values in medical imaging. On the other hand, inaccurate image registration and incorrect localization of region of interest risks a potential impact on patients. Vibro-acoustography (VA) is a new imaging modality that has been applied to both medical and industrial imaging. Combining unique diagnostic information of VA with other medical imaging is one of our research interests. In this work, we studied the VA and x-ray image pairs and adopted a flexible control-point selection technique for image registration. A modified second-order polynomial, which leads to a scale/rotation/translation invariant registration, was used. The results of registration were used to spatially transform the breast VA images to map with the x-ray mammography with a registration error of less than 1.65 mm. These two completely different modalities were combined to generate an image including a ratio of each image pixel value. Therefore, the proposed technique allows clinicians to maximize their insight by combining the information from x-ray mammogram and VA modalities into a single image.

  11. S-HAMMER: hierarchical attribute-guided, symmetric diffeomorphic registration for MR brain images.

    Science.gov (United States)

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Shen, Dinggang

    2014-03-01

    Deformable registration has been widely used in neuroscience studies for spatial normalization of brain images onto the standard space. Because of possible large anatomical differences across different individual brains, registration performance could be limited when trying to estimate a single directed deformation pathway, i.e., either from template to subject or from subject to template. Symmetric image registration, however, offers an effective way to simultaneously deform template and subject images toward each other until they meet at the middle point. Although some intensity-based registration algorithms have nicely incorporated this concept of symmetric deformation, the pointwise intensity matching between two images may not necessarily imply the matching of correct anatomical correspondences. Based on HAMMER registration algorithm (Shen and Davatzikos, [2002]: IEEE Trans Med Imaging 21:1421-1439), we integrate the strategies of hierarchical attribute matching and symmetric diffeomorphic deformation to build a new symmetric-diffeomorphic HAMMER registration algorithm, called as S-HAMMER. The performance of S-HAMMER has been extensively compared with 14 state-of-the-art nonrigid registration algorithms evaluated in (Klein et al., [2009]: NeuroImage 46:786-802) by using real brain images in LPBA40, IBSR18, CUMC12, and MGH10 datasets. In addition, the registration performance of S-HAMMER, by comparison with other methods, is also demonstrated on both elderly MR brain images (>70 years old) and the simulated brain images with ground-truth deformation fields. In all experiments, our proposed method achieves the best registration performance over all other registration methods, indicating the high applicability of our method in future neuroscience and clinical applications. Copyright © 2013 Wiley Periodicals, Inc.

  12. [Non-rigid medical image registration based on mutual information and thin-plate spline].

    Science.gov (United States)

    Cao, Guo-gang; Luo, Li-min

    2009-01-01

    To get precise and complete details, the contrast in different images is needed in medical diagnosis and computer assisted treatment. The image registration is the basis of contrast, but the regular rigid registration does not satisfy the clinic requirements. A non-rigid medical image registration method based on mutual information and thin-plate spline was present. Firstly, registering two images globally based on mutual information; secondly, dividing reference image and global-registered image into blocks and registering them; then getting the thin-plate spline transformation according to the shift of blocks' center; finally, applying the transformation to the global-registered image. The results show that the method is more precise than the global rigid registration based on mutual information and it reduces the complexity of getting control points and satisfy the clinic requirements better by getting control points of the thin-plate transformation automatically.

  13. Two-dimensional Fast ESPRIT Algorithm for Linear Array SAR Imaging

    Directory of Open Access Journals (Sweden)

    Zhao Yi-chao

    2015-10-01

    Full Text Available The linear array Synthetic Aperture Radar (SAR system is a popular research tool, because it can realize three-dimensional imaging. However, owning to limitations of the aircraft platform and actual conditions, resolution improvement is difficult in cross-track and along-track directions. In this study, a twodimensional fast Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT algorithm for linear array SAR imaging is proposed to overcome these limitations. This approach combines the Gerschgorin disks method and the ESPRIT algorithm to estimate the positions of scatterers in cross and along-rack directions. Moreover, the reflectivity of scatterers is obtained by a modified pairing method based on “region growing”, replacing the least-squares method. The simulation results demonstrate the applicability of the algorithm with high resolution, quick calculation, and good real-time response.

  14. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case.

    Science.gov (United States)

    Ao, Dongyang; Li, Yuanhao; Hu, Cheng; Tian, Weiming

    2017-12-22

    The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures.

  15. SAR Imaging of Ground Moving Targets with Non-ideal Motion Error Compensation(in English

    Directory of Open Access Journals (Sweden)

    Zhou Hui

    2015-06-01

    Full Text Available Conventional ground moving target imaging algorithms mainly focus on the range cell migration correction and the motion parameter estimation of the moving target. However, in real Synthetic Aperture Radar (SAR data processing, non-ideal motion error compensation is also a critical process, which focuses and has serious impacts on the imaging quality of moving targets. Non-ideal motion error can not be compensated by either the stationary SAR motion error compensation algorithms or the autofocus techniques. In this paper, two sorts of non-ideal motion errors that affect the Doppler centroid of the moving target is analyzed, and a novel non-ideal motion error compensation algorithm is proposed based on the Inertial Navigation System (INS data and the range walk trajectory. Simulated and real data processing results are provided to demonstrate the effectiveness of the proposed algorithm.

  16. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning

    Directory of Open Access Journals (Sweden)

    Sun Xun

    2016-12-01

    Full Text Available In this paper, we propose a supervised classification algorithm for Polarimetric Synthetic Aperture Radar (PolSAR images using multiple-feature fusion and ensemble learning. First, we extract different polarimetric features, including extended polarimetric feature space, Hoekman, Huynen, H/alpha/A, and fourcomponent scattering features of PolSAR images. Next, we randomly select two types of features each time from all feature sets to guarantee the reliability and diversity of later ensembles and use a support vector machine as the basic classifier for predicting classification results. Finally, we concatenate all prediction probabilities of basic classifiers as the final feature representation and employ the random forest method to obtain final classification results. Experimental results at the pixel and region levels show the effectiveness of the proposed algorithm.

  17. Automatic registration of fused lidar/digital imagery (texel images) for three-dimensional image creation

    Science.gov (United States)

    Budge, Scott E.; Badamikar, Neeraj S.; Xie, Xuan

    2015-03-01

    Several photogrammetry-based methods have been proposed that the derive three-dimensional (3-D) information from digital images from different perspectives, and lidar-based methods have been proposed that merge lidar point clouds and texture the merged point clouds with digital imagery. Image registration alone has difficulty with smooth regions with low contrast, whereas point cloud merging alone has difficulty with outliers and a lack of proper convergence in the merging process. This paper presents a method to create 3-D images that uses the unique properties of texel images (pixel-fused lidar and digital imagery) to improve the quality and robustness of fused 3-D images. The proposed method uses both image processing and point-cloud merging to combine texel images in an iterative technique. Since the digital image pixels and the lidar 3-D points are fused at the sensor level, more accurate 3-D images are generated because registration of image data automatically improves the merging of the point clouds, and vice versa. Examples illustrate the value of this method over other methods. The proposed method also includes modifications for the situation where an estimate of position and attitude of the sensor is known, when obtained from low-cost global positioning systems and inertial measurement units sensors.

  18. Technical Note: Deformable image registration on partially matched images for radiotherapy applications

    International Nuclear Information System (INIS)

    Yang Deshan; Goddu, S. Murty; Lu Wei; Pechenaya, Olga L.; Wu Yu; Deasy, Joseph O.; El Naqa, Issam; Low, Daniel A.

    2010-01-01

    In radiation therapy applications, deformable image registrations (DIRs) are often carried out between two images that only partially match. Image mismatching could present as superior-inferior coverage differences, field-of-view (FOV) cutoffs, or motion crossing the image boundaries. In this study, the authors propose a method to improve the existing DIR algorithms so that DIR can be carried out in such situations. The basic idea is to extend the image volumes and define the extension voxels (outside the FOV or outside the original image volume) as NaN (not-a-number) values that are transparent to all floating-point computations in the DIR algorithms. Registrations are then carried out with one additional rule that NaN voxels can match any voxels. In this way, the matched sections of the images are registered properly, and the mismatched sections of the images are registered to NaN voxels. This method makes it possible to perform DIR on partially matched images that otherwise are difficult to register. It may also improve DIR accuracy, especially near or in the mismatched image regions.

  19. Discrimination of Different Water Layers with TerraSAR X Images in "La Albufera de Valencia"

    Science.gov (United States)

    García Fernández, M. A.; Miguelsanz Muñoz, P.

    2009-04-01

    To analyze the capabilities of TerraSAR X Strip Map images in order to discriminate different water layers in the "Parque de la Albufera de Valencia", Spain, a test project was carried out. This place is a rice crop area under European and National Agro environmental regulation which obliges to preserve the habitat and to keep the rice plots flooded out of crop season, from October to January

  20. Registration of eye reflection and scene images using an aspherical eye model.

    Science.gov (United States)

    Nakazawa, Atsushi; Nitschke, Christian; Nishida, Toyoaki

    2016-11-01

    This paper introduces an image registration algorithm between an eye reflection and a scene image. Although there are currently a large number of image registration algorithms, this task remains difficult due to nonlinear distortions at the eye surface and large amounts of noise, such as iris texture, eyelids, eyelashes, and their shadows. To overcome this issue, we developed an image registration method combining an aspherical eye model that simulates nonlinear distortions considering eye geometry and a two-step iterative registration strategy that obtains dense correspondence of the feature points to achieve accurate image registrations for the entire image region. We obtained a database of eye reflection and scene images featuring four subjects in indoor and outdoor scenes and compared the registration performance with different asphericity conditions. Results showed that the proposed approach can perform accurate registration with an average accuracy of 1.05 deg by using the aspherical cornea model. This work is relevant for eye image analysis in general, enabling novel applications and scenarios.

  1. Feature and Intensity Based Medical Image Registration Using Particle Swarm Optimization.

    Science.gov (United States)

    Abdel-Basset, Mohamed; Fakhry, Ahmed E; El-Henawy, Ibrahim; Qiu, Tie; Sangaiah, Arun Kumar

    2017-11-03

    Image registration is an important aspect in medical image analysis, and kinds use in a variety of medical applications. Examples include diagnosis, pre/post surgery guidance, comparing/merging/integrating images from multi-modal like Magnetic Resonance Imaging (MRI), and Computed Tomography (CT). Whether registering images across modalities for a single patient or registering across patients for a single modality, registration is an effective way to combine information from different images into a normalized frame for reference. Registered datasets can be used for providing information relating to the structure, function, and pathology of the organ or individual being imaged. In this paper a hybrid approach for medical images registration has been developed. It employs a modified Mutual Information (MI) as a similarity metric and Particle Swarm Optimization (PSO) method. Computation of mutual information is modified using a weighted linear combination of image intensity and image gradient vector flow (GVF) intensity. In this manner, statistical as well as spatial image information is included into the image registration process. Maximization of the modified mutual information is effected using the versatile Particle Swarm Optimization which is developed easily with adjusted less parameter. The developed approach has been tested and verified successfully on a number of medical image data sets that include images with missing parts, noise contamination, and/or of different modalities (CT, MRI). The registration results indicate the proposed model as accurate and effective, and show the posture contribution in inclusion of both statistical and spatial image data to the developed approach.

  2. Frameless image registration of X-ray CT and SPECT by volume matching

    International Nuclear Information System (INIS)

    Tanaka, Yuko; Kihara, Tomohiko; Yui, Nobuharu; Kinoshita, Fujimi; Kamimura, Yoshitsugu; Yamada, Yoshifumi.

    1998-01-01

    Image registration of functional (SPECT) and morphological (X-ray CT/MRI) images is studied in order to improve the accuracy and the quantity of the image diagnosis. We have developed a new frameless registration method of X-ray CT and SPECT image using transmission CT image acquired for absorption correction of SPECT images. This is the automated registration method and calculates the transformation matrix between the two coordinate systems of image data by the optimization method. This registration method is based on the similar physical property of X-ray CT and transmission CT image. The three-dimensional overlap of the bone region is used for image matching. We verified by a phantom test that it can provide a good result of within two millimeters error. We also evaluated visually the accuracy of the registration method by the application study of SPECT, X-ray CT, and transmission CT head images. This method can be carried out accurately without any frames. We expect this registration method becomes an efficient tool to improve image diagnosis and medical treatment. (author)

  3. A coarse-to-fine scheme for groupwise registration of multisensor images

    Directory of Open Access Journals (Sweden)

    Yinghao Li

    2016-11-01

    Full Text Available Ensemble registration is concerned with a group of images that need to be registered simultaneously. It is challenging but important for many image analysis tasks such as vehicle detection and medical image fusion. To solve this problem effectively, a novel coarse-to-fine scheme for groupwise image registration is proposed. First, in the coarse registration step, unregistered images are divided into reference image set and float image set. The images of the two sets are registered based on segmented region matching. The coarse registration results are used as an initial solution for the next step. Then, in the fine registration step, a Gaussian mixture model with a local template is used to model the joint intensity of coarse-registered images. Meanwhile, a minimum message length criterion-based method is employed to determine the unknown number of mixing components. Based on this mixture model, a maximum likelihood framework is used to register a group of images. To evaluate the performance of the proposed approach, some representative groupwise registration approaches are compared on different image data sets. The experimental results show that the proposed approach has improved performance compared to conventional approaches.

  4. Validation of deformable image registration algorithms on CT images of ex vivo porcine bladders with fiducial markers

    NARCIS (Netherlands)

    Wognum, S.; Heethuis, S. E.; Rosario, T.; Hoogeman, M. S.; Bel, A.

    2014-01-01

    The spatial accuracy of deformable image registration (DIR) is important in the implementation of image guided adaptive radiotherapy techniques for cancer in the pelvic region. Validation of algorithms is best performed on phantoms with fiducial markers undergoing controlled large deformations.

  5. Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region.

    Science.gov (United States)

    Zhou, Tao; Pan, Jianjun; Zhang, Peiyu; Wei, Shanbao; Han, Tao

    2017-05-25

    Winter wheat is the second largest food crop in China. It is important to obtain reliable winter wheat acreage to guarantee the food security for the most populous country in the world. This paper focuses on assessing the feasibility of in-season winter wheat mapping and investigating potential classification improvement by using SAR (Synthetic Aperture Radar) images, optical images, and the integration of both types of data in urban agricultural regions with complex planting structures in Southern China. Both SAR (Sentinel-1A) and optical (Landsat-8) data were acquired, and classification using different combinations of Sentinel-1A-derived information and optical images was performed using a support vector machine (SVM) and a random forest (RF) method. The interference coherence and texture images were obtained and used to assess the effect of adding them to the backscatter intensity images on the classification accuracy. The results showed that the use of four Sentinel-1A images acquired before the jointing period of winter wheat can provide satisfactory winter wheat classification accuracy, with an F1 measure of 87.89%. The combination of SAR and optical images for winter wheat mapping achieved the best F1 measure-up to 98.06%. The SVM was superior to RF in terms of the overall accuracy and the kappa coefficient, and was faster than RF, while the RF classifier was slightly better than SVM in terms of the F1 measure. In addition, the classification accuracy can be effectively improved by adding the texture and coherence images to the backscatter intensity data.

  6. Co-registration of the BNCT treatment planning images for clinical practice

    International Nuclear Information System (INIS)

    Salli, Eero; Seppaelae, Tiina; Kankaanranta, Leena; Asikainen, Sami; Savolainen, Sauli; Koivunoro, Hanna

    2006-01-01

    We have co-registered MRI, CT and FBPA-PET images for BNCT in clinical practice. Co-registration improves the spatial accuracy of the treatment planning by enabling use of information from all the co-registered modalities. The multimodal co-registration has been implemented as a service product provided by the Imaging Center of Helsinki University Central Hospital to other departments. To increase the accuracy of co-registration and patient positioning in the head area BNCT, a patient-specific fixation mask suitable for PET, MRI and CT was developed. The goal of the fixation mask is to normalize the orientation of the patient's head and neck. Co-registration is performed at the image processing unit by using a rigid body model, mutual-information based algorithms and partly in-house developed software tools. The accuracy of co-registration is verified by comparing the locations of the external skin markers and anatomical landmarks in different modalities. After co-registration, the images are transformed and covered into a format required by the BNCT dose-planning software and set to the dose-planning unit of the hospital. So far co-registration has been done for 22 patients. The co-registration protocol has proved to be reliable and efficient. Some registration errors are seen on some patients in the neck area because the rigid-body model used in co-registration is not fully valid for the brain-neck entity. The registration accuracy in this area could likely be improved by implementing a co-registration procedure utilizing a partly non-rigid body model. (author)

  7. Comparison of manual vs. automated multimodality (CT-MRI) image registration for brain tumors

    International Nuclear Information System (INIS)

    Sarkar, Abhirup; Santiago, Roberto J.; Smith, Ryan; Kassaee, Alireza

    2005-01-01

    Computed tomgoraphy-magnetic resonance imaging (CT-MRI) registrations are routinely used for target-volume delineation of brain tumors. We clinically use 2 software packages based on manual operation and 1 automated package with 2 different algorithms: chamfer matching using bony structures, and mutual information using intensity patterns. In all registration algorithms, a minimum of 3 pairs of identical anatomical and preferably noncoplanar landmarks is used on each of the 2 image sets. In manual registration, the program registers these points and links the image sets using a 3-dimensional (3D) transformation. In automated registration, the 3 landmarks are used as an initial starting point and further processing is done to complete the registration. Using our registration packages, registration of CT and MRI was performed on 10 patients. We scored the results of each registration set based on the amount of time spent, the accuracy reported by the software, and a final evaluation. We evaluated each software program by measuring the residual error between 'matched' points on the right and left globes and the posterior fossa for fused image slices. In general, manual registration showed higher misalignment between corresponding points compared to automated registration using intensity matching. This error had no directional dependence and was, most of the time, larger for a larger structure in both registration techniques. Automated algorithm based on intensity matching also gave the best results in terms of registration accuracy, irrespective of whether or not the initial landmarks were chosen carefully, when compared to that done using bone matching algorithm. Intensity-matching algorithm required the least amount of user-time and provided better accuracy

  8. A prospective comparison between auto-registration and manual registration of real-time ultrasound with MR images for percutaneous ablation or biopsy of hepatic lesions.

    Science.gov (United States)

    Cha, Dong Ik; Lee, Min Woo; Song, Kyoung Doo; Oh, Young-Taek; Jeong, Ja-Yeon; Chang, Jung-Woo; Ryu, Jiwon; Lee, Kyong Joon; Kim, Jaeil; Bang, Won-Chul; Shin, Dong Kuk; Choi, Sung Jin; Koh, Dalkwon; Seo, Bong Koo; Kim, Kyunga

    2017-06-01

    To compare the accuracy and required time for image fusion of real-time ultrasound (US) with pre-procedural magnetic resonance (MR) images between positioning auto-registration and manual registration for percutaneous radiofrequency ablation or biopsy of hepatic lesions. This prospective study was approved by the institutional review board, and all patients gave written informed consent. Twenty-two patients (male/female, n = 18/n = 4; age, 61.0 ± 7.7 years) who were referred for planning US to assess the feasibility of radiofrequency ablation (n = 21) or biopsy (n = 1) for focal hepatic lesions were included. One experienced radiologist performed the two types of image fusion methods in each patient. The performance of auto-registration and manual registration was evaluated. The accuracy of the two methods, based on measuring registration error, and the time required for image fusion for both methods were recorded using in-house software and respectively compared using the Wilcoxon signed rank test. Image fusion was successful in all patients. The registration error was not significantly different between the two methods (auto-registration: median, 3.75 mm; range, 1.0-15.8 mm vs. manual registration: median, 2.95 mm; range, 1.2-12.5 mm, p = 0.242). The time required for image fusion was significantly shorter with auto-registration than with manual registration (median, 28.5 s; range, 18-47 s, vs. median, 36.5 s; range, 14-105 s, p = 0.026). Positioning auto-registration showed promising results compared with manual registration, with similar accuracy and even shorter registration time.

  9. Saharasar: An Interactive SAR Image Database for Desert Mapping

    Science.gov (United States)

    Lopez, S.; Paillou, Ph.

    2017-06-01

    We present a dedicated tool for accessing radar images acquired by the ALOS/PALSAR mission over Sahara and Arabia. We developed a dedicated web site, using the Mapserver web mapping server and the Cesium javascript library.

  10. Increased Sensitivity to Pathological Brain Changes Using Co-registration of Magnetic Resonance Imaging Scans

    Energy Technology Data Exchange (ETDEWEB)

    Burdett, J.; Stevens, J.; Flugel, D.; Williams, E.; Duncan, J.S.; Lemieux, L. [National Society for Epilepsy, Chalfont St Peter (United Kingdom). The MRI Unit

    2006-12-15

    Purpose: To compare automatic software-based co-registration of serial magnetic resonance imaging (MRI) scans with conventional visual comparison, by expert neuroradiologists.Material and Methods: Sixty-four patients who were referred to our epilepsy MRI unit for cerebral imaging were identified as having potentially, non- or slow-growing lesions or cerebral atrophy and followed with sequential scans over a period of up to 8 years, resulting in a total of 92 pairs of scans. Scans were categorized as showing either lesions or atrophy. Each pair of scans was reviewed twice for the presence of change, with and without co-registration, performed using automated software. Results: Co-registration and visual reporting without co-registration were discordant in the lesions group in nine out of 69 datasets (13%), and in 16 out of 23 pairs of scans in the atrophy group (69%). The most common cause of discordance was visual reporting not detecting changes apparent by co-registration. In three cases, changes detected visually were not detected following co-registration. Conclusion: In the group of patients studied, co-registration was more sensitive for detecting changes than visual comparison, particularly with respect to atrophic changes of the brain. With the increasing availability of sophisticated independent consoles attached to MRI scanners that may be used for image co-registration, we propose that serial T1-weighted volumetric MRI brain co-registration should be considered for integration into routine clinical practice to assess patients with suspected progressive disease.

  11. Increased Sensitivity to Pathological Brain Changes Using Co-registration of Magnetic Resonance Imaging Scans

    International Nuclear Information System (INIS)

    Burdett, J.; Stevens, J.; Flugel, D.; Williams, E.; Duncan, J.S.; Lemieux, L.

    2006-01-01

    Purpose: To compare automatic software-based co-registration of serial magnetic resonance imaging (MRI) scans with conventional visual comparison, by expert neuroradiologists.Material and Methods: Sixty-four patients who were referred to our epilepsy MRI unit for cerebral imaging were identified as having potentially, non- or slow-growing lesions or cerebral atrophy and followed with sequential scans over a period of up to 8 years, resulting in a total of 92 pairs of scans. Scans were categorized as showing either lesions or atrophy. Each pair of scans was reviewed twice for the presence of change, with and without co-registration, performed using automated software. Results: Co-registration and visual reporting without co-registration were discordant in the lesions group in nine out of 69 datasets (13%), and in 16 out of 23 pairs of scans in the atrophy group (69%). The most common cause of discordance was visual reporting not detecting changes apparent by co-registration. In three cases, changes detected visually were not detected following co-registration. Conclusion: In the group of patients studied, co-registration was more sensitive for detecting changes than visual comparison, particularly with respect to atrophic changes of the brain. With the increasing availability of sophisticated independent consoles attached to MRI scanners that may be used for image co-registration, we propose that serial T1-weighted volumetric MRI brain co-registration should be considered for integration into routine clinical practice to assess patients with suspected progressive disease

  12. LARGE OIL SPILL CLASSIFICATION USING SAR IMAGES BASED ON SPATIAL HISTOGRAM

    Directory of Open Access Journals (Sweden)

    I. Schvartzman

    2016-06-01

    Full Text Available Among the different types of marine pollution, oil spill is a major threat to the sea ecosystems. Remote sensing is used in oil spill response. Synthetic Aperture Radar (SAR is an active microwave sensor that operates under all weather conditions and provides information about the surface roughness and covers large areas at a high spatial resolution. SAR is widely used to identify and track pollutants in the sea, which may be due to a secondary effect of a large natural disaster or by a man-made one . The detection of oil spill in SAR imagery relies on the decrease of the backscattering from the sea surface, due to the increased viscosity, resulting in a dark formation that contrasts with the brightness of the surrounding area. Most of the use of SAR images for oil spill detection is done by visual interpretation. Trained interpreters scan the image, and mark areas of low backscatter and where shape is a-symmetrical. It is very difficult to apply this method for a wide area. In contrast to visual interpretation, automatic detection algorithms were suggested and are mainly based on scanning dark formations, extracting features, and applying big data analysis. We propose a new algorithm that applies a nonlinear spatial filter that detects dark formations and is not susceptible to noises, such as internal or speckle. The advantages of this algorithm are both in run time and the results retrieved. The algorithm was tested in genesimulations as well as on COSMO-SkyMed images, detecting the Deep Horizon oil spill in the Gulf of Mexico (occurred on 20/4/2010. The simulation results show that even in a noisy environment, oil spill is detected. Applying the algorithm to the Deep Horizon oil spill, the algorithm classified the oil spill better than focusing on dark formation algorithm. Furthermore, the results were validated by the National Oceanic and Atmospheric Administration (NOAA data.

  13. Large Oil Spill Classification Using SAR Images Based on Spatial Histogram

    Science.gov (United States)

    Schvartzman, I.; Havivi, S.; Maman, S.; Rotman, S. R.; Blumberg, D. G.

    2016-06-01

    Among the different types of marine pollution, oil spill is a major threat to the sea ecosystems. Remote sensing is used in oil spill response. Synthetic Aperture Radar (SAR) is an active microwave sensor that operates under all weather conditions and provides information about the surface roughness and covers large areas at a high spatial resolution. SAR is widely used to identify and track pollutants in the sea, which may be due to a secondary effect of a large natural disaster or by a man-made one . The detection of oil spill in SAR imagery relies on the decrease of the backscattering from the sea surface, due to the increased viscosity, resulting in a dark formation that contrasts with the brightness of the surrounding area. Most of the use of SAR images for oil spill detection is done by visual interpretation. Trained interpreters scan the image, and mark areas of low backscatter and where shape is a-symmetrical. It is very difficult to apply this method for a wide area. In contrast to visual interpretation, automatic detection algorithms were suggested and are mainly based on scanning dark formations, extracting features, and applying big data analysis. We propose a new algorithm that applies a nonlinear spatial filter that detects dark formations and is not susceptible to noises, such as internal or speckle. The advantages of this algorithm are both in run time and the results retrieved. The algorithm was tested in genesimulations as well as on COSMO-SkyMed images, detecting the Deep Horizon oil spill in the Gulf of Mexico (occurred on 20/4/2010). The simulation results show that even in a noisy environment, oil spill is detected. Applying the algorithm to the Deep Horizon oil spill, the algorithm classified the oil spill better than focusing on dark formation algorithm. Furthermore, the results were validated by the National Oceanic and Atmospheric Administration (NOAA) data.

  14. Investigation of Joint Visibility Between SAR and Optical Images of Urban Environments

    Science.gov (United States)

    Hughes, L. H.; Auer, S.; Schmitt, M.

    2018-05-01

    In this paper, we present a work-flow to investigate the joint visibility between very-high-resolution SAR and optical images of urban scenes. For this task, we extend the simulation framework SimGeoI to enable a simulation of individual pixels rather than complete images. Using the extended SimGeoI simulator, we carry out a case study using a TerraSAR-X staring spotlight image and a Worldview-2 panchromatic image acquired over the city of Munich, Germany. The results of this study indicate that about 55 % of the scene are visible in both images and are thus suitable for matching and data fusion endeavours, while about 25 % of the scene are affected by either radar shadow or optical occlusion. Taking the image acquisition parameters into account, our findings can provide support regarding the definition of upper bounds for image fusion tasks, as well as help to improve acquisition planning with respect to different application goals.

  15. Deep kernel learning method for SAR image target recognition

    Science.gov (United States)

    Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao

    2017-10-01

    With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.

  16. Semi-automatic construction of reference standards for evaluation of image registration

    NARCIS (Netherlands)

    Murphy, K.; Ginneken, van B.; Klein, S.; Staring, M.; Hoop, de B.J.; Viergever, M.A.; Pluim, J.P.W.

    2011-01-01

    Quantitative evaluation of image registration algorithms is a difficult and under-addressed issue due to the lack of a reference standard in most registration problems. In this work a method is presented whereby detailed reference standard data may be constructed in an efficient semi-automatic

  17. Feasibility analysis of high resolution tissue image registration using 3-D synthetic data

    Directory of Open Access Journals (Sweden)

    Yachna Sharma

    2011-01-01

    Full Text Available Background: Registration of high-resolution tissue images is a critical step in the 3D analysis of protein expression. Because the distance between images (~4-5μm thickness of a tissue section is nearly the size of the objects of interest (~10-20μm cancer cell nucleus, a given object is often not present in both of two adjacent images. Without consistent correspondence of objects between images, registration becomes a difficult task. This work assesses the feasibility of current registration techniques for such images. Methods: We generated high resolution synthetic 3-D image data sets emulating the constraints in real data. We applied multiple registration methods to the synthetic image data sets and assessed the registration performance of three techniques (i.e., mutual information (MI, kernel density estimate (KDE method [1], and principal component analysis (PCA at various slice thicknesses (with increments of 1μm in order to quantify the limitations of each method. Results: Our analysis shows that PCA, when combined with the KDE method based on nuclei centers, aligns images corresponding to 5μm thick sections with acceptable accuracy. We also note that registration error increases rapidly with increasing distance between images, and that the choice of feature points which are conserved between slices improves performance. Conclusions: We used simulation to help select appropriate features and methods for image registration by estimating best-case-scenario errors for given data constraints in histological images. The results of this study suggest that much of the difficulty of stained tissue registration can be reduced to the problem of accurately identifying feature points, such as the center of nuclei.

  18. Feature-Based Retinal Image Registration Using D-Saddle Feature

    Directory of Open Access Journals (Sweden)

    Roziana Ramli

    2017-01-01

    Full Text Available Retinal image registration is important to assist diagnosis and monitor retinal diseases, such as diabetic retinopathy and glaucoma. However, registering retinal images for various registration applications requires the detection and distribution of feature points on the low-quality region that consists of vessels of varying contrast and sizes. A recent feature detector known as Saddle detects feature points on vessels that are poorly distributed and densely positioned on strong contrast vessels. Therefore, we propose a multiresolution difference of Gaussian pyramid with Saddle detector (D-Saddle to detect feature points on the low-quality region that consists of vessels with varying contrast and sizes. D-Saddle is tested on Fundus Image Registration (FIRE Dataset that consists of 134 retinal image pairs. Experimental results show that D-Saddle successfully registered 43% of retinal image pairs with average registration accuracy of 2.329 pixels while a lower success rate is observed in other four state-of-the-art retinal image registration methods GDB-ICP (28%, Harris-PIIFD (4%, H-M (16%, and Saddle (16%. Furthermore, the registration accuracy of D-Saddle has the weakest correlation (Spearman with the intensity uniformity metric among all methods. Finally, the paired t-test shows that D-Saddle significantly improved the overall registration accuracy of the original Saddle.

  19. Aircraft Segmentation in SAR Images Based on Improved Active Shape Model

    Science.gov (United States)

    Zhang, X.; Xiong, B.; Kuang, G.

    2018-04-01

    In SAR image interpretation, aircrafts are the important targets arousing much attention. However, it is far from easy to segment an aircraft from the background completely and precisely in SAR images. Because of the complex structure, different kinds of electromagnetic scattering take place on the aircraft surfaces. As a result, aircraft targets usually appear to be inhomogeneous and disconnected. It is a good idea to extract an aircraft target by the active shape model (ASM), since combination of the geometric information controls variations of the shape during the contour evolution. However, linear dimensionality reduction, used in classic ACM, makes the model rigid. It brings much trouble to segment different types of aircrafts. Aiming at this problem, an improved ACM based on ISOMAP is proposed in this paper. ISOMAP algorithm is used to extract the shape information of the training set and make the model flexible enough to deal with different aircrafts. The experiments based on real SAR data shows that the proposed method achieves obvious improvement in accuracy.

  20. Parallel Processing and Bio-inspired Computing for Biomedical Image Registration

    Directory of Open Access Journals (Sweden)

    Silviu Ioan Bejinariu

    2014-07-01

    Full Text Available Image Registration (IR is an optimization problem computing optimal parameters of a geometric transform used to overlay one or more source images to a given model by maximizing a similarity measure. In this paper the use of bio-inspired optimization algorithms in image registration is analyzed. Results obtained by means of three different algorithms are compared: Bacterial Foraging Optimization Algorithm (BFOA, Genetic Algorithm (GA and Clonal Selection Algorithm (CSA. Depending on the images type, the registration may be: area based, which is slow but more precise, and features based, which is faster. In this paper a feature based approach based on the Scale Invariant Feature Transform (SIFT is proposed. Finally, results obtained using sequential and parallel implementations on multi-core systems for area based and features based image registration are compared.

  1. Advanced Interferometric Synthetic Aperture Imaging Radar (InSAR) for Dune Mapping

    Science.gov (United States)

    Havivi, Shiran; Amir, Doron; Schvartzman, Ilan; August, Yitzhak; Mamman, Shimrit; Rotman, Stanely R.; Blumberg, Dan G.

    2016-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available lose particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970s, remote sensing imagery, both optical and radar, have been used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two or more images. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR methods. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This work aims to demonstrate how interferometric decorrelation can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the coherence change detection method was used, in order to identify dune stability or instability and the dune activity level. The Nitzanim-Ashdod coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of

  2. Multi-institutional Validation Study of Commercially Available Deformable Image Registration Software for Thoracic Images

    International Nuclear Information System (INIS)

    Kadoya, Noriyuki; Nakajima, Yujiro; Saito, Masahide; Miyabe, Yuki; Kurooka, Masahiko; Kito, Satoshi; Fujita, Yukio; Sasaki, Motoharu; Arai, Kazuhiro; Tani, Kensuke; Yagi, Masashi; Wakita, Akihisa; Tohyama, Naoki; Jingu, Keiichi

    2016-01-01

    Purpose: To assess the accuracy of the commercially available deformable image registration (DIR) software for thoracic images at multiple institutions. Methods and Materials: Thoracic 4-dimensional (4D) CT images of 10 patients with esophageal or lung cancer were used. Datasets for these patients were provided by DIR-lab ( (dir-lab.com)) and included a coordinate list of anatomic landmarks (300 bronchial bifurcations) that had been manually identified. Deformable image registration was performed between the peak-inhale and -exhale images. Deformable image registration error was determined by calculating the difference at each landmark point between the displacement calculated by DIR software and that calculated by the landmark. Results: Eleven institutions participated in this study: 4 used RayStation (RaySearch Laboratories, Stockholm, Sweden), 5 used MIM Software (Cleveland, OH), and 3 used Velocity (Varian Medical Systems, Palo Alto, CA). The ranges of the average absolute registration errors over all cases were as follows: 0.48 to 1.51 mm (right-left), 0.53 to 2.86 mm (anterior-posterior), 0.85 to 4.46 mm (superior-inferior), and 1.26 to 6.20 mm (3-dimensional). For each DIR software package, the average 3-dimensional registration error (range) was as follows: RayStation, 3.28 mm (1.26-3.91 mm); MIM Software, 3.29 mm (2.17-3.61 mm); and Velocity, 5.01 mm (4.02-6.20 mm). These results demonstrate that there was moderate variation among institutions, although the DIR software was the same. Conclusions: We evaluated the commercially available DIR software using thoracic 4D-CT images from multiple centers. Our results demonstrated that DIR accuracy differed among institutions because it was dependent on both the DIR software and procedure. Our results could be helpful for establishing prospective clinical trials and for the widespread use of DIR software. In addition, for clinical care, we should try to find the optimal DIR procedure using thoracic 4D

  3. Improved SAR Amplitude Image Offset Measurements for Deriving Three-Dimensional Coseismic Displacements

    KAUST Repository

    Wang, Teng; Jonsson, Sigurjon

    2015-01-01

    Offsets of synthetic aperture radar (SAR) images have played an important role in deriving complete three-dimensional (3-D) surface displacement fields in geoscientific applications. However, offset maps often suffer from multiple outliers and patch-like artifacts, because the standard offset-measurement method is a regular moving-window operation that does not consider the scattering characteristics of the ground. Here, we show that by focusing the offset measurements on predetected strong reflectors, the reliability and accuracy of SAR offsets can be significantly improved. Application to the 2011 Van (Turkey) earthquake reveals a clear deformation signal from an otherwise decorrelated interferogram, making derivation of the 3-D coseismic displacement field possible. Our proposed method can improve mapping of coseismic deformation and other ground displacements, such as glacier flow and landslide movement when strong reflectors exist.

  4. Improved SAR Amplitude Image Offset Measurements for Deriving Three-Dimensional Coseismic Displacements

    KAUST Repository

    Wang, Teng

    2015-02-03

    Offsets of synthetic aperture radar (SAR) images have played an important role in deriving complete three-dimensional (3-D) surface displacement fields in geoscientific applications. However, offset maps often suffer from multiple outliers and patch-like artifacts, because the standard offset-measurement method is a regular moving-window operation that does not consider the scattering characteristics of the ground. Here, we show that by focusing the offset measurements on predetected strong reflectors, the reliability and accuracy of SAR offsets can be significantly improved. Application to the 2011 Van (Turkey) earthquake reveals a clear deformation signal from an otherwise decorrelated interferogram, making derivation of the 3-D coseismic displacement field possible. Our proposed method can improve mapping of coseismic deformation and other ground displacements, such as glacier flow and landslide movement when strong reflectors exist.

  5. Performance Analysis of Ship Wake Detection on Sentinel-1 SAR Images

    Directory of Open Access Journals (Sweden)

    Maria Daniela Graziano

    2017-10-01

    Full Text Available A novel technique for ship wake detection has been recently proposed and applied on X-band Synthetic Aperture Radar images provided by COSMO/SkyMed and TerraSAR-X. The approach shows that the vast majority of wake features are correctly detected and validated in critical situations. In this paper, the algorithm was applied to 28 wakes imaged by Sentinel-1 mission with different polarizations and incidence angles with the aim of testing the method’s robustness with reference to radar frequency and resolution. The detection process is properly modified. The results show that the features were correctly classified in 78.5% of cases, whereas false confirmations occur mainly on Kelvin cusps. Finally, the results were compared with the algorithm performance on X-band images, showing that no significant difference arises. In fact, the total false confirmations rate was 15.8% on X-band images and 18.5% on C-band images. Moreover, since the main criticality concerns again the false confirmation of Kelvin cusps, the same empirical criterion suggested for the X-band SAR images yielded a negligible 1.5% of false detection rate.

  6. Overcoming Registration Uncertainty in Image Super-Resolution: Maximize or Marginalize?

    Directory of Open Access Journals (Sweden)

    Andrew Zisserman

    2007-01-01

    Full Text Available In multiple-image super-resolution, a high-resolution image is estimated from a number of lower-resolution images. This usually involves computing the parameters of a generative imaging model (such as geometric and photometric registration, and blur and obtaining a MAP estimate by minimizing a cost function including an appropriate prior. Two alternative approaches are examined. First, both registrations and the super-resolution image are found simultaneously using a joint MAP optimization. Second, we perform Bayesian integration over the unknown image registration parameters, deriving a cost function whose only variables of interest are the pixel values of the super-resolution image. We also introduce a scheme to learn the parameters of the image prior as part of the super-resolution algorithm. We show examples on a number of real sequences including multiple stills, digital video, and DVDs of movies.

  7. Historical Image Registration and Land-Use Land-Cover Change Analysis

    Directory of Open Access Journals (Sweden)

    Fang-Ju Jao

    2014-12-01

    Full Text Available Historical aerial images are important to retain past ground surface information. The land-use land-cover change in the past can be identified using historical aerial images. Automatic historical image registration and stitching is essential because the historical image pose information was usually lost. In this study, the Scale Invariant Feature Transform (SIFT algorithm was used for feature extraction. Subsequently, the present study used the automatic affine transformation algorithm for historical image registration, based on SIFT features and control points. This study automatically determined image affine parameters and simultaneously transformed from an image coordinate system to a ground coordinate system. After historical aerial image registration, the land-use land-cover change was analyzed between two different years (1947 and 1975 at the Tseng Wen River estuary. Results show that sandbars and water zones were transformed into a large number of fish ponds between 1947 and 1975.

  8. Nonrigid Image Registration for Head and Neck Cancer Radiotherapy Treatment Planning With PET/CT

    International Nuclear Information System (INIS)

    Ireland, Rob H.; Dyker, Karen E.; Barber, David C.; Wood, Steven M.; Hanney, Michael B.; Tindale, Wendy B.; Woodhouse, Neil; Hoggard, Nigel; Conway, John; Robinson, Martin H.

    2007-01-01

    Purpose: Head and neck radiotherapy planning with positron emission tomography/computed tomography (PET/CT) requires the images to be reliably registered with treatment planning CT. Acquiring PET/CT in treatment position is problematic, and in practice for some patients it may be beneficial to use diagnostic PET/CT for radiotherapy planning. Therefore, the aim of this study was first to quantify the image registration accuracy of PET/CT to radiotherapy CT and, second, to assess whether PET/CT acquired in diagnostic position can be registered to planning CT. Methods and Materials: Positron emission tomography/CT acquired in diagnostic and treatment position for five patients with head and neck cancer was registered to radiotherapy planning CT using both rigid and nonrigid image registration. The root mean squared error for each method was calculated from a set of anatomic landmarks marked by four independent observers. Results: Nonrigid and rigid registration errors for treatment position PET/CT to planning CT were 2.77 ± 0.80 mm and 4.96 ± 2.38 mm, respectively, p = 0.001. Applying the nonrigid registration to diagnostic position PET/CT produced a more accurate match to the planning CT than rigid registration of treatment position PET/CT (3.20 ± 1.22 mm and 4.96 ± 2.38 mm, respectively, p = 0.012). Conclusions: Nonrigid registration provides a more accurate registration of head and neck PET/CT to treatment planning CT than rigid registration. In addition, nonrigid registration of PET/CT acquired with patients in a standardized, diagnostic position can provide images registered to planning CT with greater accuracy than a rigid registration of PET/CT images acquired in treatment position. This may allow greater flexibility in the timing of PET/CT for head and neck cancer patients due to undergo radiotherapy

  9. SU-E-J-248: Comparative Study of Two Image Registration for Image-Guided Radiation Therapy in Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shang, K; Wang, J; Liu, D; Li, R; Cao, Y; Chi, Z [The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, CN, Shijiazhuang, Hebei (China)

    2014-06-01

    Purpose: Image-guided radiation therapy (IGRT) is one of the major treatment of esophageal cancer. Gray value registration and bone registration are two kinds of image registration, the purpose of this work is to compare which one is more suitable for esophageal cancer patients. Methods: Twenty three esophageal patients were treated by Elekta Synergy, CBCT images were acquired and automatically registered to planning kilovoltage CT scans according to gray value or bone registration. The setup errors were measured in the X, Y and Z axis, respectively. Two kinds of setup errors were analysed by matching T test statistical method. Results: Four hundred and five groups of CBCT images were available and the systematic and random setup errors (cm) in X, Y, Z directions were 0.35, 0.63, 0.29 and 0.31, 0.53, 0.21 with gray value registration, while 0.37, 0.64, 0.26 and 0.32, 0.55, 0.20 with bone registration, respectively. Compared with bone registration and gray value registration, the setup errors in X and Z axis have significant differences. In Y axis, both measurement comparison results of T value is 0.256 (P value > 0.05); In X axis, the T value is 5.287(P value < 0.05); In Z axis, the T value is −5.138 (P value < 0.05). Conclusion: Gray value registration is recommended in image-guided radiotherapy for esophageal cancer and the other thoracic tumors. Manual registration could be applied when it is necessary. Bone registration is more suitable for the head tumor and pelvic tumor department where composed of redundant interconnected and immobile bone tissue.

  10. Automated robust registration of grossly misregistered whole-slide images with varying stains

    Science.gov (United States)

    Litjens, G.; Safferling, K.; Grabe, N.

    2016-03-01

    Cancer diagnosis and pharmaceutical research increasingly depend on the accurate quantification of cancer biomarkers. Identification of biomarkers is usually performed through immunohistochemical staining of cancer sections on glass slides. However, combination of multiple biomarkers from a wide variety of immunohistochemically stained slides is a tedious process in traditional histopathology due to the switching of glass slides and re-identification of regions of interest by pathologists. Digital pathology now allows us to apply image registration algorithms to digitized whole-slides to align the differing immunohistochemical stains automatically. However, registration algorithms need to be robust to changes in color due to differing stains and severe changes in tissue content between slides. In this work we developed a robust registration methodology to allow for fast coarse alignment of multiple immunohistochemical stains to the base hematyoxylin and eosin stained image. We applied HSD color model conversion to obtain a less stain color dependent representation of the whole-slide images. Subsequently, optical density thresholding and connected component analysis were used to identify the relevant regions for registration. Template matching using normalized mutual information was applied to provide initial translation and rotation parameters, after which a cost function-driven affine registration was performed. The algorithm was validated using 40 slides from 10 prostate cancer patients, with landmark registration error as a metric. Median landmark registration error was around 180 microns, which indicates performance is adequate for practical application. None of the registrations failed, indicating the robustness of the algorithm.

  11. Preliminary study of lateral cerebral angiography with reverse rotation in the digital image registration and subtraction

    International Nuclear Information System (INIS)

    Shen Zhenglin; Liu Dongyang; Shen Zhenghai; Li Shuping; Zhang Ziyan; Wu Yongjuan; Liu Peijun

    2012-01-01

    Objective: Investigate the value and feasibility of image registration with reverse rotation in lateral cerebral DSA. Methods: (1) Experimental study: the target images were subtracted directly, and subtracted again after reverse rotation. Software of registration and subtraction with reverse rotation edited by the author utilizing Visual Basic. The function of the automatic angle detection by the software were evaluated to see whether it detected the angle of line. The subtraction function of DSA by the software was evaluated. (2) Clinical retrospective study: the untreated mask and target images of 15 patients with motion along vertical axis during lateral cerebral DSA were uploaded to the software. The target images were processed with and without the software to get two sets of images. (3) Evaluation: four experienced radiologists read and compared the two sets of the images,and graded their findings. Results: (1) The automatic detection by the software suggested that the target images should be rotated counterclockwise 1.3°. The subtraction result of the software was satisfactory. (2) In the 15 sets of images, there were only three sets of images deemed optimal after traditional subtraction. After reverse rotation, artifacts were significantly reduced and the image sharper. There were ten cases with significant artifacts after traditional subtraction, and those images were sharper and showed more peripheral vessels after reverse rotation. The traditional subtraction images of two sets could not be interpreted,the reverse rotation registration images reached the diagnostic quality. (3) Subjective evaluation: there were more information and less noise and distortion in the registration images with reverse rotation than in the traditional subtraction. But the image resolution decreased slightly after reverse rotation registration. Conclusion: The registration of digital angiography with reverse rotation can improve the image quality in lateral cerebral DSA

  12. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease.

    Science.gov (United States)

    Shamonin, Denis P; Bron, Esther E; Lelieveldt, Boudewijn P F; Smits, Marion; Klein, Stefan; Staring, Marius

    2013-01-01

    Nonrigid image registration is an important, but time-consuming task in medical image analysis. In typical neuroimaging studies, multiple image registrations are performed, i.e., for atlas-based segmentation or template construction. Faster image registration routines would therefore be beneficial. In this paper we explore acceleration of the image registration package elastix by a combination of several techniques: (i) parallelization on the CPU, to speed up the cost function derivative calculation; (ii) parallelization on the GPU building on and extending the OpenCL framework from ITKv4, to speed up the Gaussian pyramid computation and the image resampling step; (iii) exploitation of certain properties of the B-spline transformation model; (iv) further software optimizations. The accelerated registration tool is employed in a study on diagnostic classification of Alzheimer's disease and cognitively normal controls based on T1-weighted MRI. We selected 299 participants from the publicly available Alzheimer's Disease Neuroimaging Initiative database. Classification is performed with a support vector machine based on gray matter volumes as a marker for atrophy. We evaluated two types of strategies (voxel-wise and region-wise) that heavily rely on nonrigid image registration. Parallelization and optimization resulted in an acceleration factor of 4-5x on an 8-core machine. Using OpenCL a speedup factor of 2 was realized for computation of the Gaussian pyramids, and 15-60 for the resampling step, for larger images. The voxel-wise and the region-wise classification methods had an area under the receiver operator characteristic curve of 88 and 90%, respectively, both for standard and accelerated registration. We conclude that the image registration package elastix was substantially accelerated, with nearly identical results to the non-optimized version. The new functionality will become available in the next release of elastix as open source under the BSD license.

  13. Sensitivity study of voxel-based PET image comparison to image registration algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Stephen, E-mail: syip@lroc.harvard.edu; Chen, Aileen B.; Berbeco, Ross [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Aerts, Hugo J. W. L. [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 and Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2014-11-01

    Purpose: Accurate deformable registration is essential for voxel-based comparison of sequential positron emission tomography (PET) images for proper adaptation of treatment plan and treatment response assessment. The comparison may be sensitive to the method of deformable registration as the optimal algorithm is unknown. This study investigated the impact of registration algorithm choice on therapy response evaluation. Methods: Sixteen patients with 20 lung tumors underwent a pre- and post-treatment computed tomography (CT) and 4D FDG-PET scans before and after chemoradiotherapy. All CT images were coregistered using a rigid and ten deformable registration algorithms. The resulting transformations were then applied to the respective PET images. Moreover, the tumor region defined by a physician on the registered PET images was classified into progressor, stable-disease, and responder subvolumes. Particularly, voxels with standardized uptake value (SUV) decreases >30% were classified as responder, while voxels with SUV increases >30% were progressor. All other voxels were considered stable-disease. The agreement of the subvolumes resulting from difference registration algorithms was assessed by Dice similarity index (DSI). Coefficient of variation (CV) was computed to assess variability of DSI between individual tumors. Root mean square difference (RMS{sub rigid}) of the rigidly registered CT images was used to measure the degree of tumor deformation. RMS{sub rigid} and DSI were correlated by Spearman correlation coefficient (R) to investigate the effect of tumor deformation on DSI. Results: Median DSI{sub rigid} was found to be 72%, 66%, and 80%, for progressor, stable-disease, and responder, respectively. Median DSI{sub deformable} was 63%–84%, 65%–81%, and 82%–89%. Variability of DSI was substantial and similar for both rigid and deformable algorithms with CV > 10% for all subvolumes. Tumor deformation had moderate to significant impact on DSI for progressor

  14. A first step toward uncovering the truth about weight tuning in deformable image registration

    Science.gov (United States)

    Pirpinia, Kleopatra; Bosman, Peter A. N.; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja

    2016-03-01

    Deformable image registration is currently predominantly solved by optimizing a weighted linear combination of objectives. Successfully tuning the weights associated with these objectives is not trivial, leading to trial-and-error approaches. Such an approach assumes an intuitive interplay between weights, optimization objectives, and target registration errors. However, it is not known whether this always holds for existing registration methods. To investigate the interplay between weights, optimization objectives, and registration errors, we employ multi-objective optimization. Here, objectives of interest are optimized simultaneously, causing a set of multiple optimal solutions to exist, called the optimal Pareto front. Our medical application is in breast cancer and includes the challenging prone-supine registration problem. In total, we studied the interplay in three different ways. First, we ran many random linear combinations of objectives using the well-known registration software elastix. Second, since the optimization algorithms used in registration are typically of a local-search nature, final solutions may not always form a Pareto front. We therefore employed a multi-objective evolutionary algorithm that finds weights that correspond to registration outcomes that do form a Pareto front. Third, we examined how the interplay differs if a true multi-objective (i.e., weight-free) image registration method is used. Results indicate that a trial-and-error weight-adaptation approach can be successful for the easy prone to prone breast image registration case, due to the absence of many local optima. With increasing problem difficulty the use of more advanced approaches can be of value in finding and selecting the optimal registration outcomes.

  15. The Research on Denoising of SAR Image Based on Improved K-SVD Algorithm

    Science.gov (United States)

    Tan, Linglong; Li, Changkai; Wang, Yueqin

    2018-04-01

    SAR images often receive noise interference in the process of acquisition and transmission, which can greatly reduce the quality of images and cause great difficulties for image processing. The existing complete DCT dictionary algorithm is fast in processing speed, but its denoising effect is poor. In this paper, the problem of poor denoising, proposed K-SVD (K-means and singular value decomposition) algorithm is applied to the image noise suppression. Firstly, the sparse dictionary structure is introduced in detail. The dictionary has a compact representation and can effectively train the image signal. Then, the sparse dictionary is trained by K-SVD algorithm according to the sparse representation of the dictionary. The algorithm has more advantages in high dimensional data processing. Experimental results show that the proposed algorithm can remove the speckle noise more effectively than the complete DCT dictionary and retain the edge details better.

  16. Simultaneous 3D–2D image registration and C-arm calibration: Application to endovascular image-guided interventions

    Energy Technology Data Exchange (ETDEWEB)

    Mitrović, Uroš [Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana 1000, Slovenia and Cosylab, Control System Laboratory, Teslova ulica 30, Ljubljana 1000 (Slovenia); Pernuš, Franjo [Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana 1000 (Slovenia); Likar, Boštjan; Špiclin, Žiga, E-mail: ziga.spiclin@fe.uni-lj.si [Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana 1000, Slovenia and Sensum, Computer Vision Systems, Tehnološki Park 21, Ljubljana 1000 (Slovenia)

    2015-11-15

    Purpose: Three-dimensional to two-dimensional (3D–2D) image registration is a key to fusion and simultaneous visualization of valuable information contained in 3D pre-interventional and 2D intra-interventional images with the final goal of image guidance of a procedure. In this paper, the authors focus on 3D–2D image registration within the context of intracranial endovascular image-guided interventions (EIGIs), where the 3D and 2D images are generally acquired with the same C-arm system. The accuracy and robustness of any 3D–2D registration method, to be used in a clinical setting, is influenced by (1) the method itself, (2) uncertainty of initial pose of the 3D image from which registration starts, (3) uncertainty of C-arm’s geometry and pose, and (4) the number of 2D intra-interventional images used for registration, which is generally one and at most two. The study of these influences requires rigorous and objective validation of any 3D–2D registration method against a highly accurate reference or “gold standard” registration, performed on clinical image datasets acquired in the context of the intervention. Methods: The registration process is split into two sequential, i.e., initial and final, registration stages. The initial stage is either machine-based or template matching. The latter aims to reduce possibly large in-plane translation errors by matching a projection of the 3D vessel model and 2D image. In the final registration stage, four state-of-the-art intrinsic image-based 3D–2D registration methods, which involve simultaneous refinement of rigid-body and C-arm parameters, are evaluated. For objective validation, the authors acquired an image database of 15 patients undergoing cerebral EIGI, for which accurate gold standard registrations were established by fiducial marker coregistration. Results: Based on target registration error, the obtained success rates of 3D to a single 2D image registration after initial machine-based and

  17. Automatic 3D MR image registration and its evaluation for precise monitoring of knee joint disease

    International Nuclear Information System (INIS)

    Cheng Yuanzhi; Jin Quan; Guo Changyong; Ding Xiaohua; Tanaka, Hisashi; Tamura, Shinichi

    2011-01-01

    We describe a technique for the registration of three dimensional (3D) knee femur surface points from MR image data sets; it is a technique that can track local cartilage thickness changes over time. In the first coarse registration step, we use the direction vectors of the volume given by the cloud of points of the MR image to correct for different knee joint positions and orientations in the MR scanner. In the second fine registration step, we propose a global search algorithm that simultaneously determines the optimal transformation parameters and point correspondences through searching a six dimensional space of Euclidean motion vectors (translation and rotation). The present algorithm is grounded on a mathematical theory- Lipschitz optimization. Compared with the other three registration approaches (iterative closest point (ICP), EM-ICP, and genetic algorithms), the proposed method achieved the highest registration accuracy on both animal and clinical data. (author)

  18. Fast and accurate registration of cranial CT images with A-mode ultrasound.

    Science.gov (United States)

    Fieten, Lorenz; Schmieder, Kirsten; Engelhardt, Martin; Pasalic, Lamija; Radermacher, Klaus; Heger, Stefan

    2009-05-01

    Within the CRANIO project, a navigation module based on preoperative computed tomography (CT) data was developed for Computer and Robot Assisted Neurosurgery. The approach followed for non-invasive user-interactive registration of cranial CT images with the physical operating space consists of surface-based registration following pre-registration based on anatomical landmarks. Surface-based registration relies on bone surface points digitized transcutaneously by means of an optically tracked A-mode ultrasound (US) probe. As probe alignment and thus bone surface point digitization may be time-consuming, we investigated how to obtain high registration accuracy despite inaccurate pre-registration and a limited number of digitized bone surface points. Furthermore, we aimed at efficient man-machine-interaction during the probe alignment process. Finally, we addressed the problem of registration plausibility estimation in our approach. We modified the Iterative Closest Point (ICP) algorithm, presented by Besl and McKay and frequently used for surface-based registration, such that it can escape from local minima of the cost function to be iteratively minimized. The random-based ICP (R-ICP) we developed is less influenced by the quality of the pre-registration as it can escape from local minima close to the starting point for iterative optimization in the 6D domain of rigid transformations. The R-ICP is also better suited to approximate the global minimum as it can escape from local minima in the vicinity of the global minimum, too. Furthermore, we developed both CT-less and CT-based probe alignment tools along with appropriate man-machine strategies for a more time-efficient palpation process. To improve registration reliability, we developed a simple plausibility test based on data readily available after registration. In a cadaver study, where we evaluated the R-ICP algorithm, the probe alignment tools, and the plausibility test, the R-ICP algorithm consistently

  19. Bone scintigraphy in post-SARS patients and compared with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wang Qian; Huang Lili; Qin Shuling

    2004-01-01

    Objective: To study the characteristics of bone scintigraphy in post-SARS patients and evaluate the usefulness of bone scintigraphy in the prediction of avascular osteonecrosis (AVN) comparing with the MR imaging.. Methods: Our study included 66 patients who were diagnosed as SARS based on the diagnostic criteria issued by the Ministry of Health of China (MHC), including 46 women and 20 men. Their ages ranged from 19 to 63 years (mean, 31.6±0.1 years). All of the patients were treated with methyprednisonlone, rabavirin, broad spectrum antimicrobials and supportive therapy. Dosage of methyprednisonlone was 80∼800 mg/d for 4-72 days. Of them, varied seat of joint pain occurred in 47 patients 3 to 18 weeks after the onset of SARS. Since multiple joints were involved in many patients, bone scintigraphy was performed for screening AVN. The other 19 patients without of evident joint pain were also examined as their demand. Informed consents were obtained in all of the examined patients. No previously joint pain or trauma history was found in this group of patients. Of the 66 patients, planer X-ray was performed in 34 of the symptomatic patients previous to the scintigraphy, but it was negative in all. MR examination was performed in 54 patients before or after the scintigraphy, and the interval between two the tests was average of 8 days (range, 0 to 30 days). In addition, 27 consecutive cases aged lower than 45 years (mean, 40.4±0.8 years) with breast cancer who underwent bone scintigraphy for screening metastastic disease and had negative results were also involved as a control group. Whole body skeletal scintigraphy was performed 3 hours after intravenous administration of technetium-99m methylene-diphosphonate 740 MBq. Increased uptake lesion seen in the limb joints was defined as positive, but 'hot patella' sign was considered to be non diagnostic value. When a lesion was found in the whole body imaging, corresponding regional image was further taken. Two

  20. Decomposition of Polarimetric SAR Images Based on Second- and Third-order Statics Analysis

    Science.gov (United States)

    Kojima, S.; Hensley, S.

    2012-12-01

    There are many papers concerning the research of the decomposition of polerimetric SAR imagery. Most of them are based on second-order statics analysis that Freeman and Durden [1] suggested for the reflection symmetry condition that implies that the co-polarization and cross-polarization correlations are close to zero. Since then a number of improvements and enhancements have been proposed to better understand the underlying backscattering mechanisms present in polarimetric SAR images. For example, Yamaguchi et al. [2] added the helix component into Freeman's model and developed a 4 component scattering model for the non-reflection symmetry condition. In addition, Arii et al. [3] developed an adaptive model-based decomposition method that could estimate both the mean orientation angle and a degree of randomness for the canopy scattering for each pixel in a SAR image without the reflection symmetry condition. This purpose of this research is to develop a new decomposition method based on second- and third-order statics analysis to estimate the surface, dihedral, volume and helix scattering components from polarimetric SAR images without the specific assumptions concerning the model for the volume scattering. In addition, we evaluate this method by using both simulation and real UAVSAR data and compare this method with other methods. We express the volume scattering component using the wire formula and formulate the relationship equation between backscattering echo and each component such as the surface, dihedral, volume and helix via linearization based on second- and third-order statics. In third-order statics, we calculate the correlation of the correlation coefficients for each polerimetric data and get one new relationship equation to estimate each polarization component such as HH, VV and VH for the volume. As a result, the equation for the helix component in this method is the same formula as one in Yamaguchi's method. However, the equation for the volume

  1. Comparison of time-series registration methods in breast dynamic infrared imaging

    Science.gov (United States)

    Riyahi-Alam, S.; Agostini, V.; Molinari, F.; Knaflitz, M.

    2015-03-01

    Automated motion reduction in dynamic infrared imaging is on demand in clinical applications, since movement disarranges time-temperature series of each pixel, thus originating thermal artifacts that might bias the clinical decision. All previously proposed registration methods are feature based algorithms requiring manual intervention. The aim of this work is to optimize the registration strategy specifically for Breast Dynamic Infrared Imaging and to make it user-independent. We implemented and evaluated 3 different 3D time-series registration methods: 1. Linear affine, 2. Non-linear Bspline, 3. Demons applied to 12 datasets of healthy breast thermal images. The results are evaluated through normalized mutual information with average values of 0.70 ±0.03, 0.74 ±0.03 and 0.81 ±0.09 (out of 1) for Affine, Bspline and Demons registration, respectively, as well as breast boundary overlap and Jacobian determinant of the deformation field. The statistical analysis of the results showed that symmetric diffeomorphic Demons' registration method outperforms also with the best breast alignment and non-negative Jacobian values which guarantee image similarity and anatomical consistency of the transformation, due to homologous forces enforcing the pixel geometric disparities to be shortened on all the frames. We propose Demons' registration as an effective technique for time-series dynamic infrared registration, to stabilize the local temperature oscillation.

  2. Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration.

    Science.gov (United States)

    de Bruin, P W; Kaptein, B L; Stoel, B C; Reiber, J H C; Rozing, P M; Valstar, E R

    2008-01-01

    Image-based Roentgen stereophotogrammetric analysis (IBRSA) integrates 2D-3D image registration and conventional RSA. Instead of radiopaque RSA bone markers, IBRSA uses 3D CT data, from which digitally reconstructed radiographs (DRRs) are generated. Using 2D-3D image registration, the 3D pose of the CT is iteratively adjusted such that the generated DRRs resemble the 2D RSA images as closely as possible, according to an image matching metric. Effectively, by registering all 2D follow-up moments to the same 3D CT, the CT volume functions as common ground. In two experiments, using RSA and using a micromanipulator as gold standard, IBRSA has been validated on cadaveric and sawbone scapula radiographs, and good matching results have been achieved. The accuracy was: |mu |RSA but higher than in vivo standard RSA. Because IBRSA does not require radiopaque markers, it adds functionality to the RSA method by opening new directions and possibilities for research, such as dynamic analyses using fluoroscopy on subjects without markers and computer navigation applications.

  3. A combined use of multispectral and SAR images for ship detection and characterization through object based image analysis

    Science.gov (United States)

    Aiello, Martina; Gianinetto, Marco

    2017-10-01

    Marine routes represent a huge portion of commercial and human trades, therefore surveillance, security and environmental protection themes are gaining increasing importance. Being able to overcome the limits imposed by terrestrial means of monitoring, ship detection from satellite has recently prompted a renewed interest for a continuous monitoring of illegal activities. This paper describes an automatic Object Based Image Analysis (OBIA) approach to detect vessels made of different materials in various sea environments. The combined use of multispectral and SAR images allows for a regular observation unrestricted by lighting and atmospheric conditions and complementarity in terms of geographic coverage and geometric detail. The method developed adopts a region growing algorithm to segment the image in homogeneous objects, which are then classified through a decision tree algorithm based on spectral and geometrical properties. Then, a spatial analysis retrieves the vessels' position, length and heading parameters and a speed range is associated. Optimization of the image processing chain is performed by selecting image tiles through a statistical index. Vessel candidates are detected over amplitude SAR images using an adaptive threshold Constant False Alarm Rate (CFAR) algorithm prior the object based analysis. Validation is carried out by comparing the retrieved parameters with the information provided by the Automatic Identification System (AIS), when available, or with manual measurement when AIS data are not available. The estimation of length shows R2=0.85 and estimation of heading R2=0.92, computed as the average of R2 values obtained for both optical and radar images.

  4. A Joint Land Cover Mapping and Image Registration Algorithm Based on a Markov Random Field Model

    Directory of Open Access Journals (Sweden)

    Apisit Eiumnoh

    2013-10-01

    Full Text Available Traditionally, image registration of multi-modal and multi-temporal images is performed satisfactorily before land cover mapping. However, since multi-modal and multi-temporal images are likely to be obtained from different satellite platforms and/or acquired at different times, perfect alignment is very difficult to achieve. As a result, a proper land cover mapping algorithm must be able to correct registration errors as well as perform an accurate classification. In this paper, we propose a joint classification and registration technique based on a Markov random field (MRF model to simultaneously align two or more images and obtain a land cover map (LCM of the scene. The expectation maximization (EM algorithm is employed to solve the joint image classification and registration problem by iteratively estimating the map parameters and approximate posterior probabilities. Then, the maximum a posteriori (MAP criterion is used to produce an optimum land cover map. We conducted experiments on a set of four simulated images and one pair of remotely sensed images to investigate the effectiveness and robustness of the proposed algorithm. Our results show that, with proper selection of a critical MRF parameter, the resulting LCMs derived from an unregistered image pair can achieve an accuracy that is as high as when images are perfectly aligned. Furthermore, the registration error can be greatly reduced.

  5. Transmission imaging for registration of ictal and interictal single-photon emission tomography, magnetic resonance imaging and electroencephalography

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, O. [Epilepsy Unit, Neurology, Hospital for Children and Adolescents, Helsinki University Central Hospital (Finland); Laboratory of Biomedical Engineering, Helsinki University of Technology, P.O. Box 2200, FIN-02015 HUT (Finland); Nikkinen, P.; Liewendahl, K. [Division of Nuclear Medicine, Laboratory Department, Helsinki University Central Hospital (Finland); Savolainen, S. [Division of Nuclear Medicine, Laboratory Department, Helsinki University Central Hospital (Finland); Department of Radiology, Helsinki University Central Hospital (Finland); Granstroem, M.-L.; Gaily, E. [Epilepsy Unit, Neurology, Hospital for Children and Adolescents, Helsinki University Central Hospital (Finland); Poutanen, V.-P. [Department of Radiology, Helsinki University Central Hospital (Finland); Pohjonen, H. [Technology Development Centre, P.O. Box 69, 00101 Helsinki (Finland)

    2000-02-01

    A method developed for registration of ictal and interictal single-photon emission tomography (SPET), magnetic resonance imaging (MRI) and electroencephalography (EEG) is described. For SPET studies, technetium-99m ethyl cysteinate dimer (ECD) was injected intravenously while the patient was monitored on video-EEG to document the ictal or interictal state. Imaging was performed using a triple-head gamma camera equipped with a transmission imaging device using a gadolinium-153 source. The images (128 x 128 pixels, voxel size 3.7 x 3.7 x 3.6 mm{sup 3}) were reconstructed using an iterative algorithm and postfiltered with a Wiener filter. The gold-plated silver electrodes on the patient's scalp were utilized as markers for registration of the ictal and interictal SPET images, as these metallic markers were clearly seen on the transmission images. Fitting of the marker sets was based on a non-iterative least squares method. The interictal SPET image was subtracted from the ictal image after scaling. The T1-weighted MPRAGE MR images with voxel size of 1.0 x 1.0 x 1.0 mm{sup 3} were obtained with a 1.5-T scanner. For registration of MR and subtraction SPET images, the external marker set of the ictal SPET study was fitted to the surface of the head segmented from MR images. The SPET registration was tested with a phantom experiment. Registration of ictal and interictal SPET in five patient studies resulted in a 2-mm RMS residual of the marker sets. The estimated RMS error of registration in the final result combining locations of the electrodes, subtraction SPET and MR images was 3-5 mm. In conclusion, transmission imaging can be utilized for an accurate and easily implemented registration procedure for ictal and interictal SPET, MRI and EEG. (orig.)

  6. The plant virus microscope image registration method based on mismatches removing.

    Science.gov (United States)

    Wei, Lifang; Zhou, Shucheng; Dong, Heng; Mao, Qianzhuo; Lin, Jiaxiang; Chen, Riqing

    2016-01-01

    The electron microscopy is one of the major means to observe the virus. The view of virus microscope images is limited by making specimen and the size of the camera's view field. To solve this problem, the virus sample is produced into multi-slice for information fusion and image registration techniques are applied to obtain large field and whole sections. Image registration techniques have been developed in the past decades for increasing the camera's field of view. Nevertheless, these approaches typically work in batch mode and rely on motorized microscopes. Alternatively, the methods are conceived just to provide visually pleasant registration for high overlap ratio image sequence. This work presents a method for virus microscope image registration acquired with detailed visual information and subpixel accuracy, even when overlap ratio of image sequence is 10% or less. The method proposed focus on the correspondence set and interimage transformation. A mismatch removal strategy is proposed by the spatial consistency and the components of keypoint to enrich the correspondence set. And the translation model parameter as well as tonal inhomogeneities is corrected by the hierarchical estimation and model select. In the experiments performed, we tested different registration approaches and virus images, confirming that the translation model is not always stationary, despite the fact that the images of the sample come from the same sequence. The mismatch removal strategy makes building registration of virus microscope images at subpixel accuracy easier and optional parameters for building registration according to the hierarchical estimation and model select strategies make the proposed method high precision and reliable for low overlap ratio image sequence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Inverse consistent non-rigid image registration based on robust point set matching

    Science.gov (United States)

    2014-01-01

    Background Robust point matching (RPM) has been extensively used in non-rigid registration of images to robustly register two sets of image points. However, except for the location at control points, RPM cannot estimate the consistent correspondence between two images because RPM is a unidirectional image matching approach. Therefore, it is an important issue to make an improvement in image registration based on RPM. Methods In our work, a consistent image registration approach based on the point sets matching is proposed to incorporate the property of inverse consistency and improve registration accuracy. Instead of only estimating the forward transformation between the source point sets and the target point sets in state-of-the-art RPM algorithms, the forward and backward transformations between two point sets are estimated concurrently in our algorithm. The inverse consistency constraints are introduced to the cost function of RPM and the fuzzy correspondences between two point sets are estimated based on both the forward and backward transformations simultaneously. A modified consistent landmark thin-plate spline registration is discussed in detail to find the forward and backward transformations during the optimization of RPM. The similarity of image content is also incorporated into point matching in order to improve image matching. Results Synthetic data sets, medical images are employed to demonstrate and validate the performance of our approach. The inverse consistent errors of our algorithm are smaller than RPM. Especially, the topology of transformations is preserved well for our algorithm for the large deformation between point sets. Moreover, the distance errors of our algorithm are similar to that of RPM, and they maintain a downward trend as whole, which demonstrates the convergence of our algorithm. The registration errors for image registrations are evaluated also. Again, our algorithm achieves the lower registration errors in same iteration number

  8. A High-precision Motion Compensation Method for SAR Based on Image Intensity Optimization

    Directory of Open Access Journals (Sweden)

    Hu Ke-bin

    2015-02-01

    Full Text Available Owing to the platform instability and precision limitations of motion sensors, motion errors negatively affect the quality of synthetic aperture radar (SAR images. The autofocus Back Projection (BP algorithm based on the optimization of image sharpness compensates for motion errors through phase error estimation. This method can attain relatively good performance, while assuming the same phase error for all pixels, i.e., it ignores the spatial variance of motion errors. To overcome this drawback, a high-precision motion error compensation method is presented in this study. In the proposed method, the Antenna Phase Centers (APC are estimated via optimization using the criterion of maximum image intensity. Then, the estimated APCs are applied for BP imaging. Because the APC estimation equals the range history estimation for each pixel, high-precision phase compensation for every pixel can be achieved. Point-target simulations and processing of experimental data validate the effectiveness of the proposed method.

  9. Carrier for registration of optical images and holographic information

    International Nuclear Information System (INIS)

    Andries, A.; Bivol, V.; Iovu, M.

    2000-01-01

    The invention relates to the field of registration of optical information including the holographic one and may be used in the holography, cinematography, micro- and optical electronics, computer engineering. Summary of the invention consists in, that in the carrier containing a dielectric substrate on which there are placed in sequence the first electrode, photoinjection substrate, registration substrate of the chalcogenide vitreous semiconductor and the second electrode, the photoinjection substrate is fabricated of the monocrystalline germanium of the n-type conductivity and the relation of the registration substrate conductivity, during illumination to the photoinjection substrate conductivity in darkness is 0,001. The technical result consists in increasing the carrier photosensibility and in diffraction effectiveness of the information registered on the carrier

  10. Registration of vehicle based panoramic image and LiDAR point cloud

    Science.gov (United States)

    Chen, Changjun; Cao, Liang; Xie, Hong; Zhuo, Xiangyu

    2013-10-01

    Higher quality surface information would be got when data from optical images and LiDAR were integrated, owing to the fact that optical images and LiDAR point cloud have unique characteristics that make them preferable in many applications. While most previous works focus on registration of pinhole perspective cameras to 2D or 3D LiDAR data. In this paper, a method for the registration of vehicle based panoramic image and LiDAR point cloud is proposed. Using the translation among panoramic image, single CCD image, laser scanner and Position and Orientation System (POS) along with the GPS/IMU data, precise co-registration between the panoramic image and the LiDAR point cloud in the world system is achieved. Results are presented under a real world data set collected by a new developed Mobile Mapping System (MMS) integrated with a high resolution panoramic camera, two laser scanners and a POS.

  11. Monitoring of Building Construction by 4D Change Detection Using Multi-temporal SAR Images

    Science.gov (United States)

    Yang, C. H.; Pang, Y.; Soergel, U.

    2017-05-01

    Monitoring urban changes is important for city management, urban planning, updating of cadastral map, etc. In contrast to conventional field surveys, which are usually expensive and slow, remote sensing techniques are fast and cost-effective alternatives. Spaceborne synthetic aperture radar (SAR) sensors provide radar images captured rapidly over vast areas at fine spatiotemporal resolution. In addition, the active microwave sensors are capable of day-and-night vision and independent of weather conditions. These advantages make multi-temporal SAR images suitable for scene monitoring. Persistent scatterer interferometry (PSI) detects and analyses PS points, which are characterized by strong, stable, and coherent radar signals throughout a SAR image sequence and can be regarded as substructures of buildings in built-up cities. Attributes of PS points, for example, deformation velocities, are derived and used for further analysis. Based on PSI, a 4D change detection technique has been developed to detect disappearance and emergence of PS points (3D) at specific times (1D). In this paper, we apply this 4D technique to the centre of Berlin, Germany, to investigate its feasibility and application for construction monitoring. The aims of the three case studies are to monitor construction progress, business districts, and single buildings, respectively. The disappearing and emerging substructures of the buildings are successfully recognized along with their occurrence times. The changed substructures are then clustered into single construction segments based on DBSCAN clustering and α-shape outlining for object-based analysis. Compared with the ground truth, these spatiotemporal results have proven able to provide more detailed information for construction monitoring.

  12. Registration methods for pulmonary image analysis integration of morphological and physiological knowledge

    CERN Document Server

    Schmidt-Richberg, Alexander

    2014-01-01

    Various applications in the field of pulmonary image analysis require a registration of CT images of the lung. For example, a registration-based estimation of the breathing motion is employed to increase the accuracy of dose distribution in radiotherapy. Alexander Schmidt-Richberg develops methods to explicitly model morphological and physiological knowledge about respiration in algorithms for the registration of thoracic CT images. The author focusses on two lung-specific issues: on the one hand, the alignment of the interlobular fissures and on the other hand, the estimation of sliding motion at the lung boundaries. He shows that by explicitly considering these aspects based on a segmentation of the respective structure, registration accuracy can be significantly improved.

  13. Landmark Optimization Using Local Curvature for Point-Based Nonlinear Rodent Brain Image Registration

    Directory of Open Access Journals (Sweden)

    Yutong Liu

    2012-01-01

    Full Text Available Purpose. To develop a technique to automate landmark selection for point-based interpolating transformations for nonlinear medical image registration. Materials and Methods. Interpolating transformations were calculated from homologous point landmarks on the source (image to be transformed and target (reference image. Point landmarks are placed at regular intervals on contours of anatomical features, and their positions are optimized along the contour surface by a function composed of curvature similarity and displacements of the homologous landmarks. The method was evaluated in two cases (=5 each. In one, MRI was registered to histological sections; in the second, geometric distortions in EPI MRI were corrected. Normalized mutual information and target registration error were calculated to compare the registration accuracy of the automatically and manually generated landmarks. Results. Statistical analyses demonstrated significant improvement (<0.05 in registration accuracy by landmark optimization in most data sets and trends towards improvement (<0.1 in others as compared to manual landmark selection.

  14. Medical image registration by combining global and local information: a chain-type diffeomorphic demons algorithm

    International Nuclear Information System (INIS)

    Liu, Xiaozheng; Yuan, Zhenming; Zhu, Junming; Xu, Dongrong

    2013-01-01

    The demons algorithm is a popular algorithm for non-rigid image registration because of its computational efficiency and simple implementation. The deformation forces of the classic demons algorithm were derived from image gradients by considering the deformation to decrease the intensity dissimilarity between images. However, the methods using the difference of image intensity for medical image registration are easily affected by image artifacts, such as image noise, non-uniform imaging and partial volume effects. The gradient magnitude image is constructed from the local information of an image, so the difference in a gradient magnitude image can be regarded as more reliable and robust for these artifacts. Then, registering medical images by considering the differences in both image intensity and gradient magnitude is a straightforward selection. In this paper, based on a diffeomorphic demons algorithm, we propose a chain-type diffeomorphic demons algorithm by combining the differences in both image intensity and gradient magnitude for medical image registration. Previous work had shown that the classic demons algorithm can be considered as an approximation of a second order gradient descent on the sum of the squared intensity differences. By optimizing the new dissimilarity criteria, we also present a set of new demons forces which were derived from the gradients of the image and gradient magnitude image. We show that, in controlled experiments, this advantage is confirmed, and yields a fast convergence. (paper)

  15. Automatic localization of landmark sets in head CT images with regression forests for image registration initialization

    Science.gov (United States)

    Zhang, Dongqing; Liu, Yuan; Noble, Jack H.; Dawant, Benoit M.

    2016-03-01

    Cochlear Implants (CIs) are electrode arrays that are surgically inserted into the cochlea. Individual contacts stimulate frequency-mapped nerve endings thus replacing the natural electro-mechanical transduction mechanism. CIs are programmed post-operatively by audiologists but this is currently done using behavioral tests without imaging information that permits relating electrode position to inner ear anatomy. We have recently developed a series of image processing steps that permit the segmentation of the inner ear anatomy and the localization of individual contacts. We have proposed a new programming strategy that uses this information and we have shown in a study with 68 participants that 78% of long term recipients preferred the programming parameters determined with this new strategy. A limiting factor to the large scale evaluation and deployment of our technique is the amount of user interaction still required in some of the steps used in our sequence of image processing algorithms. One such step is the rough registration of an atlas to target volumes prior to the use of automated intensity-based algorithms when the target volumes have very different fields of view and orientations. In this paper we propose a solution to this problem. It relies on a random forest-based approach to automatically localize a series of landmarks. Our results obtained from 83 images with 132 registration tasks show that automatic initialization of an intensity-based algorithm proves to be a reliable technique to replace the manual step.

  16. Deep Adaptive Log-Demons: Diffeomorphic Image Registration with Very Large Deformations

    Directory of Open Access Journals (Sweden)

    Liya Zhao

    2015-01-01

    Full Text Available This paper proposes a new framework for capturing large and complex deformation in image registration. Traditionally, this challenging problem relies firstly on a preregistration, usually an affine matrix containing rotation, scale, and translation and afterwards on a nonrigid transformation. According to preregistration, the directly calculated affine matrix, which is obtained by limited pixel information, may misregistrate when large biases exist, thus misleading following registration subversively. To address this problem, for two-dimensional (2D images, the two-layer deep adaptive registration framework proposed in this paper firstly accurately classifies the rotation parameter through multilayer convolutional neural networks (CNNs and then identifies scale and translation parameters separately. For three-dimensional (3D images, affine matrix is located through feature correspondences by a triplanar 2D CNNs. Then deformation removal is done iteratively through preregistration and demons registration. By comparison with the state-of-the-art registration framework, our method gains more accurate registration results on both synthetic and real datasets. Besides, principal component analysis (PCA is combined with correlation like Pearson and Spearman to form new similarity standards in 2D and 3D registration. Experiment results also show faster convergence speed.

  17. SU-E-J-91: Biomechanical Deformable Image Registration of Longitudinal Lung CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Cazoulat, G; Owen, D; Matuszak, M; Balter, J; Brock, K [University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Purpose: Spatial correlation of lung tissue across longitudinal images, as the patient responds to treatment, is a critical step in adaptive radiotherapy. The goal of this work is to expand a biomechanical model-based deformable registration algorithm (Morfeus) to achieve accurate registration in the presence of significant anatomical changes. Methods: Four lung cancer patients previously treated with conventionally fractionated radiotherapy that exhibited notable tumor shrinkage during treatment were retrospectively evaluated. Exhale breathhold CT scans were obtained at treatment planning (PCT) and following three weeks (W3CT) of treatment. For each patient, the PCT was registered to the W3CT using Morfeus, a biomechanical model-based deformable registration algorithm, consisting of boundary conditions on the lungs and incorporating a sliding interface between the lung and chest wall. To model the complex response of the lung, an extension to Morfeus has been developed: (i) The vessel tree was segmented by thresholding a vesselness image based on the Hessian matrix’s eigenvalues and the centerline was extracted; (ii) A 3D shape context method was used to find correspondences between the trees of the two images; (ii) Correspondences were used as additional boundary conditions (Morfeus+vBC). An expert independently identified corresponding landmarks well distributed in the lung to compute Target Registration Errors (TRE). Results: The TRE within 15mm of the tumor boundaries (on average 11 landmarks) is: 6.1±1.8, 4.6±1.1 and 3.8±2.3 mm after rigid registration, Morfeus and Morfeus+vBC, respectively. The TRE in the rest of the lung (on average 13 landmarks) is: 6.4±3.9, 4.7±2.2 and 3.6±1.9 mm, which is on the order of the 2mm isotropic dose grid vector (3.5mm). Conclusion: The addition of boundary conditions on the vessels improved the accuracy in modeling the response of the lung and tumor over the course of radiotherapy. Minimizing and modeling these

  18. Deformable registration of the planning image (kVCT) and the daily images (MVCT) for adaptive radiation therapy

    International Nuclear Information System (INIS)

    Lu Weiguo; Olivera, Gustavo H; Chen, Quan; Ruchala, Kenneth J; Haimerl, Jason; Meeks, Sanford L; Langen, Katja M; Kupelian, Patrick A

    2006-01-01

    The incorporation of daily images into the radiotherapy process leads to adaptive radiation therapy (ART), in which the treatment is evaluated periodically and the plan is adaptively modified for the remaining course of radiotherapy. Deformable registration between the planning image and the daily images is a key component of ART. In this paper, we report our researches on deformable registration between the planning kVCT and the daily MVCT image sets. The method is based on a fast intensity-based free-form deformable registration technique. Considering the noise and contrast resolution differences between the kVCT and the MVCT, an 'edge-preserving smoothing' is applied to the MVCT image prior to the deformable registration process. We retrospectively studied daily MVCT images from commercial TomoTherapy machines from different clinical centers. The data set includes five head-neck cases, one pelvis case, two lung cases and one prostate case. Each case has one kVCT image and 20-40 MVCT images. We registered the MVCT images with their corresponding kVCT image. The similarity measures and visual inspections of contour matches by physicians validated this technique. The applications of deformable registration in ART, including 'deformable dose accumulation', 'automatic re-contouring' and 'tumour growth/regression evaluation' throughout the course of radiotherapy are also studied

  19. Do Tumors in the Lung Deform During Normal Respiration? An Image Registration Investigation

    International Nuclear Information System (INIS)

    Wu Jianzhou; Lei Peng; Shekhar, Raj; Li Huiling; Suntharalingam, Mohan; D'Souza, Warren D.

    2009-01-01

    Purpose: The purpose of this study was to investigate whether lung tumors may be described adequately using a rigid body assumption or whether they deform during normal respiration. Methods and Materials: Thirty patients with early stage non-small-cell lung cancer underwent four-dimensional (4D) computed tomography (CT) simulation. The gross tumor volume (GTV) was delineated on the 4D CT images. Image registration was performed in the vicinity of the GTV. The volume of interest for registration was the GTV and minimal volume of surrounding non-GTV tissue. Three types of registration were performed: translation only, translation + rotation, and deformable. The GTV contour from end-inhale was mapped to end-exhale using the registration-derived transformation field. The results were evaluated using three metrics: overlap index (OI), root-mean-squared distance (RMS), and Hausdorff distance (HD). Results: After translation only image registration, on average OI increased by 21.3%, RMS and HD reduced by 1.2 mm and 2.0 mm, respectively. The succeeding increases in OI after translation + rotation and deformable registration were 1.1% and 1.4% respectively. The succeeding reductions in RMS were 0.1 mm and 0.2 mm respectively. No reduction in HD was observed after translation + rotation and deformable image registration compared with translation only registration. The difference in the results from the three registration scenarios was independent of GTV size and motion amplitude. Conclusions: The primary effect of normal respiration on lung tumors was the translation of tumors. Rotation and deformation of lung tumors was determined to be minimal.

  20. GOTCHA experience report: three-dimensional SAR imaging with complete circular apertures

    Science.gov (United States)

    Ertin, Emre; Austin, Christian D.; Sharma, Samir; Moses, Randolph L.; Potter, Lee C.

    2007-04-01

    We study circular synthetic aperture radar (CSAR) systems collecting radar backscatter measurements over a complete circular aperture of 360 degrees. This study is motivated by the GOTCHA CSAR data collection experiment conducted by the Air Force Research Laboratory (AFRL). Circular SAR provides wide-angle information about the anisotropic reflectivity of the scattering centers in the scene, and also provides three dimensional information about the location of the scattering centers due to a non planar collection geometry. Three dimensional imaging results with single pass circular SAR data reveals that the 3D resolution of the system is poor due to the limited persistence of the reflectors in the scene. We present results on polarimetric processing of CSAR data and illustrate reasoning of three dimensional shape from multi-view layover using prior information about target scattering mechanisms. Next, we discuss processing of multipass (CSAR) data and present volumetric imaging results with IFSAR and three dimensional backprojection techniques on the GOTCHA data set. We observe that the volumetric imaging with GOTCHA data is degraded by aliasing and high sidelobes due to nonlinear flightpaths and sparse and unequal sampling in elevation. We conclude with a model based technique that resolves target features and enhances the volumetric imagery by extrapolating the phase history data using the estimated model.

  1. Image registration for a UV-Visible dual-band imaging system

    Science.gov (United States)

    Chen, Tao; Yuan, Shuang; Li, Jianping; Xing, Sheng; Zhang, Honglong; Dong, Yuming; Chen, Liangpei; Liu, Peng; Jiao, Guohua

    2018-06-01

    The detection of corona discharge is an effective way for early fault diagnosis of power equipment. UV-Visible dual-band imaging can detect and locate corona discharge spot at all-weather condition. In this study, we introduce an image registration protocol for this dual-band imaging system. The protocol consists of UV image denoising and affine transformation model establishment. We report the algorithm details of UV image preprocessing, affine transformation model establishment and relevant experiments for verification of their feasibility. The denoising algorithm was based on a correlation operation between raw UV images, a continuous mask and the transformation model was established by using corner feature and a statistical method. Finally, an image fusion test was carried out to verify the accuracy of affine transformation model. It has proved the average position displacement error between corona discharge and equipment fault at different distances in a 2.5m-20 m range are 1.34 mm and 1.92 mm in the horizontal and vertical directions, respectively, which are precise enough for most industrial applications. The resultant protocol is not only expected to improve the efficiency and accuracy of such imaging system for locating corona discharge spot, but also supposed to provide a more generalized reference for the calibration of various dual-band imaging systems in practice.

  2. Microscopic validation of whole mouse micro-metastatic tumor imaging agents using cryo-imaging and sliding organ image registration

    Science.gov (United States)

    Liu, Yiqiao; Zhou, Bo; Qutaish, Mohammed; Wilson, David L.

    2016-03-01

    We created a metastasis imaging, analysis platform consisting of software and multi-spectral cryo-imaging system suitable for evaluating emerging imaging agents targeting micro-metastatic tumor. We analyzed CREKA-Gd in MRI, followed by cryo-imaging which repeatedly sectioned and tiled microscope images of the tissue block face, providing anatomical bright field and molecular fluorescence, enabling 3D microscopic imaging of the entire mouse with single metastatic cell sensitivity. To register MRI volumes to the cryo bright field reference, we used our standard mutual information, non-rigid registration which proceeded: preprocess --> affine --> B-spline non-rigid 3D registration. In this report, we created two modified approaches: mask where we registered locally over a smaller rectangular solid, and sliding organ. Briefly, in sliding organ, we segmented the organ, registered the organ and body volumes separately and combined results. Though sliding organ required manual annotation, it provided the best result as a standard to measure other registration methods. Regularization parameters for standard and mask methods were optimized in a grid search. Evaluations consisted of DICE, and visual scoring of a checkerboard display. Standard had accuracy of 2 voxels in all regions except near the kidney, where there were 5 voxels sliding. After mask and sliding organ correction, kidneys sliding were within 2 voxels, and Dice overlap increased 4%-10% in mask compared to standard. Mask generated comparable results with sliding organ and allowed a semi-automatic process.

  3. An embedded system for image segmentation and multimodal registration in noninvasive skin cancer screening.

    Science.gov (United States)

    Diaz, Silvana; Soto, Javier E; Inostroza, Fabian; Godoy, Sebastian E; Figueroa, Miguel

    2017-07-01

    We present a heterogeneous architecture for image registration and multimodal segmentation on an embedded system for noninvasive skin cancer screening. The architecture combines Otsu thresholding and the random walker algorithm to perform image segmentation, and features a hardware implementation of the Harris corner detection algorithm to perform region-of-interest detection and image registration. Running on a Xilinx XC7Z020 reconfigurable system-on-a-chip, our prototype computes the initial segmentation of a 400×400-pixel region of interest in the visible spectrum in 12.1 seconds, and registers infrared images against this region at 540 frames per second, while consuming 1.9W.

  4. An object-oriented framework for medical image registration, fusion, and visualization.

    Science.gov (United States)

    Zhu, Yang-Ming; Cochoff, Steven M

    2006-06-01

    An object-oriented framework for image registration, fusion, and visualization was developed based on the classic model-view-controller paradigm. The framework employs many design patterns to facilitate legacy code reuse, manage software complexity, and enhance the maintainability and portability of the framework. Three sample applications built a-top of this framework are illustrated to show the effectiveness of this framework: the first one is for volume image grouping and re-sampling, the second one is for 2D registration and fusion, and the last one is for visualization of single images as well as registered volume images.

  5. Observation of pressure ridges in SAR images of sea ice: Scattering theory and comparison with observations

    Science.gov (United States)

    Vesecky, J. F.; Daida, J. M.; Shuchman, R. A.; Onstott, R. H.; Camiso, J. C.

    1993-01-01

    Ridges and keels (hummocks and bummocks) in sea ice flows are important in sea ice research for both scientific and practical reasons. Sea ice movement and deformation is driven by internal and external stresses on the ice. Ridges and keels play important roles in both cases because they determine the external wind and current stresses via drag coefficients. For example, the drag coefficient over sea ice can vary by a factor of several depending on the fluid mechanical roughness length of the surface. This roughness length is thought to be strongly dependent on the ridge structures present. Thus, variations in ridge and keel structure can cause gradients in external stresses which must be balanced by internal stresses and possibly fracture of the ice. Ridging in sea ice is also a sign of fracture. In a practical sense, large ridges form the biggest impediment to surface travel over the ice or penetration through sea ice by ice-strengthened ships. Ridges also play an important role in the damage caused by sea ice to off-shore structures. Hence, observation and measurement of sea ice ridges is an important component of sea ice remote sensing. The research reported here builds on previous work, estimating the characteristics of ridges and leads in sea ice from SAR images. Our objective is to develop methods for quantitative measurement of sea ice ridges from SAR images. To make further progress, in particular, to estimate ridge height, a scattering model for ridges is needed. Our research approach for a ridge scattering model begins with a survey of the geometrical properties of ridges and a comparison with the characteristics of the surrounding ice. For this purpose we have used airborne optical laser (AOL) data collected during the 1987 Greenland Sea Experiment. These data were used to generate a spatial wavenumber spectrum for height variance for a typical ridge - the typical ridge is the average over 10 large ridges. Our first-order model radar scattering includes

  6. A combined alignment and registration scheme of psoriasis lesion |images

    DEFF Research Database (Denmark)

    Maletti, Gabriela Mariel; Ersbøll, Bjarne Kjær

    2003-01-01

    A two-stage registration scheme of psoriasis lesion patterns is proposed. In the first stage, global rotation and translation effects of assumed equally scaled psoriasis lesion patterns are removed. In the second stage, only local translation effects are removed. In both stages a novel algorithm...

  7. Adaptive mesh generation for image registration and segmentation

    DEFF Research Database (Denmark)

    Fogtmann, Mads; Larsen, Rasmus

    2013-01-01

    measure. The method was tested on a T1 weighted MR volume of an adult brain and showed a 66% reduction in the number of mesh vertices compared to a red-subdivision strategy. The deformation capability of the mesh was tested by registration to five additional T1-weighted MR volumes....

  8. Fast Parallel Image Registration on CPU and GPU for Diagnostic Classification of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Denis P Shamonin

    2014-01-01

    Full Text Available Nonrigid image registration is an important, but time-consuming taskin medical image analysis. In typical neuroimaging studies, multipleimage registrations are performed, i.e. for atlas-based segmentationor template construction. Faster image registration routines wouldtherefore be beneficial.In this paper we explore acceleration of the image registrationpackage elastix by a combination of several techniques: iparallelization on the CPU, to speed up the cost function derivativecalculation; ii parallelization on the GPU building on andextending the OpenCL framework from ITKv4, to speed up the Gaussianpyramid computation and the image resampling step; iii exploitationof certain properties of the B-spline transformation model; ivfurther software optimizations.The accelerated registration tool is employed in a study ondiagnostic classification of Alzheimer's disease and cognitivelynormal controls based on T1-weighted MRI. We selected 299participants from the publicly available Alzheimer's DiseaseNeuroimaging Initiative database. Classification is performed with asupport vector machine based on gray matter volumes as a marker foratrophy. We evaluated two types of strategies (voxel-wise andregion-wise that heavily rely on nonrigid image registration.Parallelization and optimization resulted in an acceleration factorof 4-5x on an 8-core machine. Using OpenCL a speedup factor of ~2was realized for computation of the Gaussian pyramids, and 15-60 forthe resampling step, for larger images. The voxel-wise and theregion-wise classification methods had an area under thereceiver operator characteristic curve of 88% and 90%,respectively, both for standard and accelerated registration.We conclude that the image registration package elastix wassubstantially accelerated, with nearly identical results to thenon-optimized version. The new functionality will become availablein the next release of elastix as open source under the BSD license.

  9. Hierarchical and successive approximate registration of the non-rigid medical image based on thin-plate splines

    Science.gov (United States)

    Hu, Jinyan; Li, Li; Yang, Yunfeng

    2017-06-01

    The hierarchical and successive approximate registration method of non-rigid medical image based on the thin-plate splines is proposed in the paper. There are two major novelties in the proposed method. First, the hierarchical registration based on Wavelet transform is used. The approximate image of Wavelet transform is selected as the registered object. Second, the successive approximation registration method is used to accomplish the non-rigid medical images registration, i.e. the local regions of the couple images are registered roughly based on the thin-plate splines, then, the current rough registration result is selected as the object to be registered in the following registration procedure. Experiments show that the proposed method is effective in the registration process of the non-rigid medical images.

  10. REGISTRATION OF LASER SCANNING POINT CLOUDS AND AERIAL IMAGES USING EITHER ARTIFICIAL OR NATURAL TIE FEATURES

    Directory of Open Access Journals (Sweden)

    P. Rönnholm

    2012-07-01

    Full Text Available Integration of laser scanning data and photographs is an excellent combination regarding both redundancy and complementary. Applications of integration vary from sensor and data calibration to advanced classification and scene understanding. In this research, only airborne laser scanning and aerial images are considered. Currently, the initial registration is solved using direct orientation sensors GPS and inertial measurements. However, the accuracy is not usually sufficient for reliable integration of data sets, and thus the initial registration needs to be improved. A registration of data from different sources requires searching and measuring of accurate tie features. Usually, points, lines or planes are preferred as tie features. Therefore, the majority of resent methods rely highly on artificial objects, such as buildings, targets or road paintings. However, in many areas no such objects are available. For example in forestry areas, it would be advantageous to be able to improve registration between laser data and images without making additional ground measurements. Therefore, there is a need to solve registration using only natural features, such as vegetation and ground surfaces. Using vegetation as tie features is challenging, because the shape and even location of vegetation can change because of wind, for example. The aim of this article was to compare registration accuracies derived by using either artificial or natural tie features. The test area included urban objects as well as trees and other vegetation. In this area, two registrations were performed, firstly, using mainly built objects and, secondly, using only vegetation and ground surface. The registrations were solved applying the interactive orientation method. As a result, using artificial tie features leaded to a successful registration in all directions of the coordinate system axes. In the case of using natural tie features, however, the detection of correct heights was

  11. The Intercomparison of X-Band SAR Images from COSMO‑SkyMed and TerraSAR-X Satellites: Case Studies

    Directory of Open Access Journals (Sweden)

    Simone Pettinato

    2013-06-01

    Full Text Available The analysis of experimental data collected by X-band SAR of COSMO-SkyMed (CSK® and TerraSAR-X (TSX images on the same surface types has shown significant differences in the signal level of the two sensors. In order to investigate the possibility of combining data from the two instruments, a study was carried out by comparing images collected with similar orbital and sensor parameters (e.g., incidence angle, polarization, look angle at approximately the same date on two Italian agricultural test sites. Several homogenous agricultural fields within the observed area common to the two sensors were selected. Some forest plots have also been considered and used as a reference target. Direct comparisons were then performed between CSK and TSX images in different acquisition modes. The analysis carried out on the agricultural fields showed that, in general, the backscattering coefficient is higher in TSX Stripmap images with respect to CSK-Himage (about 3 dB, while CSK-Ping Pong data showed values lower than TSX of about 4.8 dB. Finally, a difference in backscattering of about 2.5 dB was pointed out between CSK-Himage and Ping-Pong images on agricultural fields. These results, achieved on bare soils, have also been compared with simulations performed by using the Advanced Integral Equation Model (AIEM.

  12. Toward efficient biomechanical-based deformable image registration of lungs for image-guided radiotherapy

    Science.gov (United States)

    Al-Mayah, Adil; Moseley, Joanne; Velec, Mike; Brock, Kristy

    2011-08-01

    Both accuracy and efficiency are critical for the implementation of biomechanical model-based deformable registration in clinical practice. The focus of this investigation is to evaluate the potential of improving the efficiency of the deformable image registration of the human lungs without loss of accuracy. Three-dimensional finite element models have been developed using image data of 14 lung cancer patients. Each model consists of two lungs, tumor and external body. Sliding of the lungs inside the chest cavity is modeled using a frictionless surface-based contact model. The effect of the type of element, finite deformation and elasticity on the accuracy and computing time is investigated. Linear and quadrilateral tetrahedral elements are used with linear and nonlinear geometric analysis. Two types of material properties are applied namely: elastic and hyperelastic. The accuracy of each of the four models is examined using a number of anatomical landmarks representing the vessels bifurcation points distributed across the lungs. The registration error is not significantly affected by the element type or linearity of analysis, with an average vector error of around 2.8 mm. The displacement differences between linear and nonlinear analysis methods are calculated for all lungs nodes and a maximum value of 3.6 mm is found in one of the nodes near the entrance of the bronchial tree into the lungs. The 95 percentile of displacement difference ranges between 0.4 and 0.8 mm. However, the time required for the analysis is reduced from 95 min in the quadratic elements nonlinear geometry model to 3.4 min in the linear element linear geometry model. Therefore using linear tetrahedral elements with linear elastic materials and linear geometry is preferable for modeling the breathing motion of lungs for image-guided radiotherapy applications.

  13. Quality assurance of CT-PET alignment and image registration for radiation treatment planning

    International Nuclear Information System (INIS)

    Gong, S.J.; O'Keefe, G.J.; Gunawardana, D.H.

    2005-01-01

    A multi-layer point source phantom was first used to calibrate and verify the CT-PET system alignment. A partial whole-body Aldcrson RANDO Man Phantom (head through mid-femur) was externally and internally marked with small metal cannulas filled with 18F-FDG and then scanned with both modalities. Six series of phantom studies with different acquisition settings and scan positions were performed to reveal possible system bias and evaluate the accuracy and reliabilities of Philips Syntegra program in image alignment, coregistration and fusion. The registration error was assessed quantitatively by measuring the root-mean-square distance between the iso-centers of corresponding fiducial marker geometries in reference CT volumes and transformed CT or PET volumes. Results: Experimental data confirms the accuracy of manual, parameter, point and image-based registration using Syntegra is better than 2 mm. Comparisons between blind and cross definition of iso-centers of fiducial marks indicate that the fused CT and PET is superior to visual correlation of CT and PET side-by-side. Conclusion: In this work we demonstrate the QA procedures of Gemini image alignment and registration. Syntegra produces intrinsic and robust multi-modality image registration and fusion with careful user interaction. The registration accuracy is generally better than the spatial resolution of the PET scanner used and this appears to be sufficient for most RTP CT-PET registration procedures

  14. Development of a hardware-based registration system for the multimodal medical images by USB cameras

    International Nuclear Information System (INIS)

    Iwata, Michiaki; Minato, Kotaro; Watabe, Hiroshi; Koshino, Kazuhiro; Yamamoto, Akihide; Iida, Hidehiro

    2009-01-01

    There are several medical imaging scanners and each modality has different aspect for visualizing inside of human body. By combining these images, diagnostic accuracy could be improved, and therefore, several attempts for multimodal image registration have been implemented. One popular approach is to use hybrid image scanners such as positron emission tomography (PET)/CT and single photon emission computed tomography (SPECT)/CT. However, these hybrid scanners are expensive and not fully available. We developed multimodal image registration system with universal serial bus (USB) cameras, which is inexpensive and applicable to any combinations of existed conventional imaging scanners. The multiple USB cameras will determine the three dimensional positions of a patient while scanning. Using information of these positions and rigid body transformation, the acquired image is registered to the common coordinate which is shared with another scanner. For each scanner, reference marker is attached on gantry of the scanner. For observing the reference marker's position by the USB cameras, the location of the USB cameras can be arbitrary. In order to validate the system, we scanned a cardiac phantom with different positions by PET and MRI scanners. Using this system, images from PET and MRI were visually aligned, and good correlations between PET and MRI images were obtained after the registration. The results suggest this system can be inexpensively used for multimodal image registrations. (author)

  15. Registration of SPECT, PET and/or X-ray CT images in patients with lung cancer

    International Nuclear Information System (INIS)

    Uemura, K.; Toyama, H.; Miyamoto, T.; Yoshikawa, K.; Mori, Y.

    2002-01-01

    Aim: In order to evaluate the therapeutic gain of heavy ion therapy performed on patients with lung cancer, the regional pulmonary functions and the amount of radio tracer accumulation to the tumor, we are investigated by using the region of interest based on anatomical information obtained from X-ray CT. There are many registration techniques for brain images, but not so much for the other organ images that we have studied registration of chest SPECT, PET and/or X-ray CT images. Materials and Methods: Perfusion, ventilation and blood pool images with Tc 99m labeled radiopharmaceuticals and SPECT, tumor images with 11 C-methionine and PET and X-ray CT scans were performed on several patients with lung cancer before and after heavy ion therapy. The registrations of SPECT-CT, PET-CT and CT-CT were performed by using AMIR (Automatic Multimodality Image Registration), which was developed by Babak et al. for registration of brain images. In a case of SPECT-CT registration, each of the three functional images was registered to the X-ray CT image, and the accuracy of each registration was compared. In the studies of PET-CT registration, the transmission images and X-ray CT images were registered at first, because the 11 C-methionine PET images bear little resemblance to the underlying anatomical images. Next, the emission images were realigned by using the same registration parameters. The X-ray CT images obtained from a single subject at the different time were registered to the first X-ray CT images, respectively. Results: In the SPECT-CT registration, the blood pool-CT registration is the best among three SPECT images in visual inspection by radiologists. In the PET-CT registration, the Transmission-CT registrations got good results. Therefore, Emission-CT registrations also got good results. In the CT-CT registration, the X-ray CT images obtained from a single subject at the different time were superimposed well each other except for lower lobe. As the results, it was

  16. Prostate multimodality image registration based on B-splines and quadrature local energy.

    Science.gov (United States)

    Mitra, Jhimli; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Ghose, Soumya; Vilanova, Joan C; Meriaudeau, Fabrice

    2012-05-01

    Needle biopsy of the prostate is guided by Transrectal Ultrasound (TRUS) imaging. The TRUS images do not provide proper spatial localization of malignant tissues due to the poor sensitivity of TRUS to visualize early malignancy. Magnetic Resonance Imaging (MRI) has been shown to be sensitive for the detection of early stage malignancy, and therefore, a novel 2D deformable registration method that overlays pre-biopsy MRI onto TRUS images has been proposed. The registration method involves B-spline deformations with Normalized Mutual Information (NMI) as the similarity measure computed from the texture images obtained from the amplitude responses of the directional quadrature filter pairs. Registration accuracy of the proposed method is evaluated by computing the Dice Similarity coefficient (DSC) and 95% Hausdorff Distance (HD) values for 20 patients prostate mid-gland slices and Target Registration Error (TRE) for 18 patients only where homologous structures are visible in both the TRUS and transformed MR images. The proposed method and B-splines using NMI computed from intensities provide average TRE values of 2.64 ± 1.37 and 4.43 ± 2.77 mm respectively. Our method shows statistically significant improvement in TRE when compared with B-spline using NMI computed from intensities with Student's t test p = 0.02. The proposed method shows 1.18 times improvement over thin-plate splines registration with average TRE of 3.11 ± 2.18 mm. The mean DSC and the mean 95% HD values obtained with the proposed method of B-spline with NMI computed from texture are 0.943 ± 0.039 and 4.75 ± 2.40 mm respectively. The texture energy computed from the quadrature filter pairs provides better registration accuracy for multimodal images than raw intensities. Low TRE values of the proposed registration method add to the feasibility of it being used during TRUS-guided biopsy.

  17. Image to physical space registration of supine breast MRI for image guided breast surgery

    Science.gov (United States)

    Conley, Rebekah H.; Meszoely, Ingrid M.; Pheiffer, Thomas S.; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    Breast conservation therapy (BCT) is a desirable option for many women diagnosed with early stage breast cancer and involves a lumpectomy followed by radiotherapy. However, approximately 50% of eligible women will elect for mastectomy over BCT despite equal survival benefit (provided margins of excised tissue are cancer free) due to uncertainty in outcome with regards to complete excision of cancerous cells, risk of local recurrence, and cosmesis. Determining surgical margins intraoperatively is difficult and achieving negative margins is not as robust as it needs to be, resulting in high re-operation rates and often mastectomy. Magnetic resonance images (MRI) can provide detailed information about tumor margin extents, however diagnostic images are acquired in a fundamentally different patient presentation than that used in surgery. Therefore, the high quality diagnostic MRIs taken in the prone position with pendant breast are not optimal for use in surgical planning/guidance due to the drastic shape change between preoperative images and the common supine surgical position. This work proposes to investigate the value of supine MRI in an effort to localize tumors intraoperatively using image-guidance. Mock intraoperative setups (realistic patient positioning in non-sterile environment) and preoperative imaging data were collected from a patient scheduled for a lumpectomy. The mock intraoperative data included a tracked laser range scan of the patient's breast surface, tracked center points of MR visible fiducials on the patient's breast, and tracked B-mode ultrasound and strain images. The preoperative data included a supine MRI with visible fiducial markers. Fiducial markers localized in the MRI were rigidly registered to their mock intraoperative counterparts using an optically tracked stylus. The root mean square (RMS) fiducial registration error using the tracked markers was 3.4mm. Following registration, the average closest point distance between the MR

  18. Objective and expert-independent validation of retinal image registration algorithms by a projective imaging distortion model.

    Science.gov (United States)

    Lee, Sangyeol; Reinhardt, Joseph M; Cattin, Philippe C; Abràmoff, Michael D

    2010-08-01

    Fundus camera imaging of the retina is widely used to diagnose and manage ophthalmologic disorders including diabetic retinopathy, glaucoma, and age-related macular degeneration. Retinal images typically have a limited field of view, and multiple images can be joined together using an image registration technique to form a montage with a larger field of view. A variety of methods for retinal image registration have been proposed, but evaluating such methods objectively is difficult due to the lack of a reference standard for the true alignment of the individual images that make up the montage. A method of generating simulated retinal images by modeling the geometric distortions due to the eye geometry and the image acquisition process is described in this paper. We also present a validation process that can be used for any retinal image registration method by tracing through the distortion path and assessing the geometric misalignment in the coordinate system of the reference standard. The proposed method can be used to perform an accuracy evaluation over the whole image, so that distortion in the non-overlapping regions of the montage components can be easily assessed. We demonstrate the technique by generating test image sets with a variety of overlap conditions and compare the accuracy of several retinal image registration models. Copyright 2010 Elsevier B.V. All rights reserved.

  19. AUTOMATIC GLOBAL REGISTRATION BETWEEN AIRBORNE LIDAR DATA AND REMOTE SENSING IMAGE BASED ON STRAIGHT LINE FEATURES

    Directory of Open Access Journals (Sweden)

    Z. Q. Liu

    2018-04-01

    Full Text Available An automatic global registration approach for point clouds and remote sensing image based on straight line features is proposed which is insensitive to rotational and scale transformation. First, the building ridge lines and contour lines in point clouds are automatically detected as registration primitives by integrating region growth and topology identification. Second, the collinear condition equation is selected as registration transformation function which is based on rotation matrix described by unit quaternion. The similarity measure is established according to the distance between the corresponding straight line features from point clouds and the image in the same reference coordinate system. Finally, an iterative Hough transform is adopted to simultaneously estimate the parameters and obtain correspondence between registration primitives. Experimental results prove the proposed method is valid and the spectral information is useful for the following classification processing.

  20. MRI and CBCT image registration of temporomandibular joint: a systematic review.

    Science.gov (United States)

    Al-Saleh, Mohammed A Q; Alsufyani, Noura A; Saltaji, Humam; Jaremko, Jacob L; Major, Paul W

    2016-05-10

    The purpose of the present review is to systematically and critically analyze the available literature regarding the importance, applicability, and practicality of (MRI), computerized tomography (CT) or cone-beam CT (CBCT) image registration for TMJ anatomy and assessment. A systematic search of 4 databases; MEDLINE, EMBASE, EBM reviews and Scopus, was conducted by 2 reviewers. An additional manual search of the bibliography was performed. All articles discussing the magnetic resonance imaging MRI and CT or CBCT image registration for temporomandibular joint (TMJ) visualization or assessment were included. Only 3 articles satisfied the inclusion criteria. All included articles were published within the last 7 years. Two articles described MRI to CT multimodality image registration as a complementary tool to visualize TMJ. Both articles used images of one patient only to introduce the complementary concept of MRI-CT fused image. One article assessed the reliability of using MRI-CBCT registration to evaluate the TMJ disc position and osseous pathology for 10 temporomandibular disorder (TMD) patients. There are very limited studies of MRI-CT/CBCT registration to reach a conclusion regarding its accuracy or clinical use in the temporomandibular joints.

  1. 3D nonrigid medical image registration using a new information theoretic measure

    Science.gov (United States)

    Li, Bicao; Yang, Guanyu; Coatrieux, Jean Louis; Li, Baosheng; Shu, Huazhong

    2015-11-01

    This work presents a novel method for the nonrigid registration of medical images based on the Arimoto entropy, a generalization of the Shannon entropy. The proposed method employed the Jensen-Arimoto divergence measure as a similarity metric to measure the statistical dependence between medical images. Free-form deformations were adopted as the transformation model and the Parzen window estimation was applied to compute the probability distributions. A penalty term is incorporated into the objective function to smooth the nonrigid transformation. The goal of registration is to optimize an objective function consisting of a dissimilarity term and a penalty term, which would be minimal when two deformed images are perfectly aligned using the limited memory BFGS optimization method, and thus to get the optimal geometric transformation. To validate the performance of the proposed method, experiments on both simulated 3D brain MR images and real 3D thoracic CT data sets were designed and performed on the open source elastix package. For the simulated experiments, the registration errors of 3D brain MR images with various magnitudes of known deformations and different levels of noise were measured. For the real data tests, four data sets of 4D thoracic CT from four patients were selected to assess the registration performance of the method, including ten 3D CT images for each 4D CT data covering an entire respiration cycle. These results were compared with the normalized cross correlation and the mutual information methods and show a slight but true improvement in registration accuracy.

  2. 3D nonrigid medical image registration using a new information theoretic measure

    International Nuclear Information System (INIS)

    Li, Bicao; Yang, Guanyu; Coatrieux, Jean Louis; Li, Baosheng; Shu, Huazhong

    2015-01-01

    This work presents a novel method for the nonrigid registration of medical images based on the Arimoto entropy, a generalization of the Shannon entropy. The proposed method employed the Jensen–Arimoto divergence measure as a similarity metric to measure the statistical dependence between medical images. Free-form deformations were adopted as the transformation model and the Parzen window estimation was applied to compute the probability distributions. A penalty term is incorporated into the objective function to smooth the nonrigid transformation. The goal of registration is to optimize an objective function consisting of a dissimilarity term and a penalty term, which would be minimal when two deformed images are perfectly aligned using the limited memory BFGS optimization method, and thus to get the optimal geometric transformation. To validate the performance of the proposed method, experiments on both simulated 3D brain MR images and real 3D thoracic CT data sets were designed and performed on the open source elastix package. For the simulated experiments, the registration errors of 3D brain MR images with various magnitudes of known deformations and different levels of noise were measured. For the real data tests, four data sets of 4D thoracic CT from four patients were selected to assess the registration performance of the method, including ten 3D CT images for each 4D CT data covering an entire respiration cycle. These results were compared with the normalized cross correlation and the mutual information methods and show a slight but true improvement in registration accuracy. (paper)

  3. Skipping the real world: Classification of PolSAR images without explicit feature extraction

    Science.gov (United States)

    Hänsch, Ronny; Hellwich, Olaf

    2018-06-01

    The typical processing chain for pixel-wise classification from PolSAR images starts with an optional preprocessing step (e.g. speckle reduction), continues with extracting features projecting the complex-valued data into the real domain (e.g. by polarimetric decompositions) which are then used as input for a machine-learning based classifier, and ends in an optional postprocessing (e.g. label smoothing). The extracted features are usually hand-crafted as well as preselected and represent (a somewhat arbitrary) projection from the complex to the real domain in order to fit the requirements of standard machine-learning approaches such as Support Vector Machines or Artificial Neural Networks. This paper proposes to adapt the internal node tests of Random Forests to work directly on the complex-valued PolSAR data, which makes any explicit feature extraction obsolete. This approach leads to a classification framework with a significantly decreased computation time and memory footprint since no image features have to be computed and stored beforehand. The experimental results on one fully-polarimetric and one dual-polarimetric dataset show that, despite the simpler approach, accuracy can be maintained (decreased by only less than 2 % for the fully-polarimetric dataset) or even improved (increased by roughly 9 % for the dual-polarimetric dataset).

  4. Wake Component Detection in X-Band SAR Images for Ship Heading and Velocity Estimation

    Directory of Open Access Journals (Sweden)

    Maria Daniela Graziano

    2016-06-01

    Full Text Available A new algorithm for ship wake detection is developed with the aim of ship heading and velocity estimation. It exploits the Radon transform and utilizes merit indexes in the intensity domain to validate the detected linear features as real components of the ship wake. Finally, ship velocity is estimated by state-of-the-art techniques of azimuth shift and Kelvin arm wavelength. The algorithm is applied to 13 X-band SAR images from the TerraSAR-X and COSMO/SkyMed missions with different polarization and incidence angles. Results show that the vast majority of wake features are correctly detected and validated also in critical situations, i.e., when multiple wake appearances or dark areas not related to wake features are imaged. The ship route estimations are validated with truth-at-sea in seven cases. Finally, it is also verified that the algorithm does not detect wakes in the surroundings of 10 ships without wake appearances.

  5. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case

    Directory of Open Access Journals (Sweden)

    Dongyang Ao

    2017-12-01

    Full Text Available The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS in the synthetic aperture radar (SAR images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures.

  6. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case

    Science.gov (United States)

    Ao, Dongyang; Hu, Cheng; Tian, Weiming

    2017-01-01

    The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures. PMID:29271917

  7. Two-Step Single Slope/SAR ADC with Error Correction for CMOS Image Sensor

    Directory of Open Access Journals (Sweden)

    Fang Tang

    2014-01-01

    Full Text Available Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μm CMOS technology. The chip area of the proposed ADC is 7 μm × 500 μm. The measurement results show that the energy efficiency figure-of-merit (FOM of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k μm2·cycles/sample.

  8. Two-step single slope/SAR ADC with error correction for CMOS image sensor.

    Science.gov (United States)

    Tang, Fang; Bermak, Amine; Amira, Abbes; Amor Benammar, Mohieddine; He, Debiao; Zhao, Xiaojin

    2014-01-01

    Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR) ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μ m CMOS technology. The chip area of the proposed ADC is 7 μ m × 500 μ m. The measurement results show that the energy efficiency figure-of-merit (FOM) of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k  μ m(2) · cycles/sample.

  9. 3D/2D model-to-image registration by imitation learning for cardiac procedures.

    Science.gov (United States)

    Toth, Daniel; Miao, Shun; Kurzendorfer, Tanja; Rinaldi, Christopher A; Liao, Rui; Mansi, Tommaso; Rhode, Kawal; Mountney, Peter

    2018-05-12

    In cardiac interventions, such as cardiac resynchronization therapy (CRT), image guidance can be enhanced by involving preoperative models. Multimodality 3D/2D registration for image guidance, however, remains a significant research challenge for fundamentally different image data, i.e., MR to X-ray. Registration methods must account for differences in intensity, contrast levels, resolution, dimensionality, field of view. Furthermore, same anatomical structures may not be visible in both modalities. Current approaches have focused on developing modality-specific solutions for individual clinical use cases, by introducing constraints, or identifying cross-modality information manually. Machine learning approaches have the potential to create more general registration platforms. However, training image to image methods would require large multimodal datasets and ground truth for each target application. This paper proposes a model-to-image registration approach instead, because it is common in image-guided interventions to create anatomical models for diagnosis, planning or guidance prior to procedures. An imitation learning-based method, trained on 702 datasets, is used to register preoperative models to intraoperative X-ray images. Accuracy is demonstrated on cardiac models and artificial X-rays generated from CTs. The registration error was [Formula: see text] on 1000 test cases, superior to that of manual ([Formula: see text]) and gradient-based ([Formula: see text]) registration. High robustness is shown in 19 clinical CRT cases. Besides the proposed methods feasibility in a clinical environment, evaluation has shown good accuracy and high robustness indicating that it could be applied in image-guided interventions.

  10. Improving oncoplastic breast tumor bed localization for radiotherapy planning using image registration algorithms

    Science.gov (United States)

    Wodzinski, Marek; Skalski, Andrzej; Ciepiela, Izabela; Kuszewski, Tomasz; Kedzierawski, Piotr; Gajda, Janusz

    2018-02-01

    Knowledge about tumor bed localization and its shape analysis is a crucial factor for preventing irradiation of healthy tissues during supportive radiotherapy and as a result, cancer recurrence. The localization process is especially hard for tumors placed nearby soft tissues, which undergo complex, nonrigid deformations. Among them, breast cancer can be considered as the most representative example. A natural approach to improving tumor bed localization is the use of image registration algorithms. However, this involves two unusual aspects which are not common in typical medical image registration: the real deformation field is discontinuous, and there is no direct correspondence between the cancer and its bed in the source and the target 3D images respectively. The tumor no longer exists during radiotherapy planning. Therefore, a traditional evaluation approach based on known, smooth deformations and target registration error are not directly applicable. In this work, we propose alternative artificial deformations which model the tumor bed creation process. We perform a comprehensive evaluation of the most commonly used deformable registration algorithms: B-Splines free form deformations (B-Splines FFD), different variants of the Demons and TV-L1 optical flow. The evaluation procedure includes quantitative assessment of the dedicated artificial deformations, target registration error calculation, 3D contour propagation and medical experts visual judgment. The results demonstrate that the currently, practically applied image registration (rigid registration and B-Splines FFD) are not able to correctly reconstruct discontinuous deformation fields. We show that the symmetric Demons provide the most accurate soft tissues alignment in terms of the ability to reconstruct the deformation field, target registration error and relative tumor volume change, while B-Splines FFD and TV-L1 optical flow are not an appropriate choice for the breast tumor bed localization problem

  11. Wavelet Compressed PCA Models for Real-Time Image Registration in Augmented Reality Applications

    OpenAIRE

    Christopher Cooper; Kent Wise; John Cooper; Makarand Deo

    2015-01-01

    The use of augmented reality (AR) has shown great promise in enhancing medical training and diagnostics via interactive simulations. This paper presents a novel method to perform accurate and inexpensive image registration (IR) utilizing a pre-constructed database of reference objects in conjunction with a principal component analysis (PCA) model. In addition, a wavelet compression algorithm is utilized to enhance the speed of the registration process. The proposed method is used to perform r...

  12. Removal of Optically Thick Clouds from Multi-Spectral Satellite Images Using Multi-Frequency SAR Data

    Directory of Open Access Journals (Sweden)

    Robert Eckardt

    2013-06-01

    Full Text Available This study presents a method for the reconstruction of pixels contaminated by optical thick clouds in multi-spectral Landsat images using multi-frequency SAR data. A number of reconstruction techniques have already been proposed in the scientific literature. However, all of the existing techniques have certain limitations. In order to overcome these limitations, we expose the Closest Spectral Fit (CSF method proposed by Meng et al. to a new, synergistic approach using optical and SAR data. Therefore, the term Closest Feature Vector (CFV is introduced. The technique facilitates an elegant way to avoid radiometric distortions in the course of image reconstruction. Furthermore the cloud cover removal is independent from underlying land cover types and assumptions on seasonality, etc. The methodology is applied to mono-temporal, multi-frequency SAR data from TerraSAR-X (X-Band, ERS (C-Band and ALOS Palsar (L-Band. This represents a way of thinking about Radar data not as foreign, but as additional data source in multi-spectral remote sensing. For the assessment of the image restoration performance, an experimental framework is established and a statistical evaluation protocol is designed. The results show the potential of a synergistic usage of multi-spectral and SAR data to overcome the loss of data due to cloud cover.

  13. Phi-s correlation and dynamic time warping - Two methods for tracking ice floes in SAR images

    Science.gov (United States)

    Mcconnell, Ross; Kober, Wolfgang; Kwok, Ronald; Curlander, John C.; Pang, Shirley S.

    1991-01-01

    The authors present two algorithms for performing shape matching on ice floe boundaries in SAR (synthetic aperture radar) images. These algorithms quickly produce a set of ice motion and rotation vectors that can be used to guide a pixel value correlator. The algorithms match a shape descriptor known as the Phi-s curve. The first algorithm uses normalized correlation to match the Phi-s curves, while the second uses dynamic programming to compute an elastic match that better accommodates ice floe deformation. Some empirical data on the performance of the algorithms on Seasat SAR images are presented.

  14. WE-H-202-04: Advanced Medical Image Registration Techniques

    International Nuclear Information System (INIS)

    Christensen, G.

    2016-01-01

    Deformable image registration has now been commercially available for several years, with solid performance in a number of sites and for several applications including contour and dose mapping. However, more complex applications have arisen, such as assessing response to radiation therapy over time, registering images pre- and post-surgery, and auto-segmentation from atlases. These applications require innovative registration algorithms to achieve accurate alignment. The goal of this session is to highlight emerging registration technology and these new applications. The state of the art in image registration will be presented from an engineering perspective. Translational clinical applications will also be discussed to tie these new registration approaches together with imaging and radiation therapy applications in specific diseases such as cervical and lung cancers. Learning Objectives: To understand developing techniques and algorithms in deformable image registration that are likely to translate into clinical tools in the near future. To understand emerging imaging and radiation therapy clinical applications that require such new registration algorithms. Research supported in part by the National Institutes of Health under award numbers P01CA059827, R01CA166119, and R01CA166703. Disclosures: Phillips Medical systems (Hugo), Roger Koch (Christensen) support, Varian Medical Systems (Brock), licensing agreements from Raysearch (Brock) and Varian (Hugo).; K. Brock, Licensing Agreement - RaySearch Laboratories. Research Funding - Varian Medical Systems; G. Hugo, Research grant from National Institutes of Health, award number R01CA166119.; G. Christensen, Research support from NIH grants CA166119 and CA166703 and a gift from Roger Koch. There are no conflicts of interest.

  15. WE-H-202-04: Advanced Medical Image Registration Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, G. [University of Iowa (United States)

    2016-06-15

    Deformable image registration has now been commercially available for several years, with solid performance in a number of sites and for several applications including contour and dose mapping. However, more complex applications have arisen, such as assessing response to radiation therapy over time, registering images pre- and post-surgery, and auto-segmentation from atlases. These applications require innovative registration algorithms to achieve accurate alignment. The goal of this session is to highlight emerging registration technology and these new applications. The state of the art in image registration will be presented from an engineering perspective. Translational clinical applications will also be discussed to tie these new registration approaches together with imaging and radiation therapy applications in specific diseases such as cervical and lung cancers. Learning Objectives: To understand developing techniques and algorithms in deformable image registration that are likely to translate into clinical tools in the near future. To understand emerging imaging and radiation therapy clinical applications that require such new registration algorithms. Research supported in part by the National Institutes of Health under award numbers P01CA059827, R01CA166119, and R01CA166703. Disclosures: Phillips Medical systems (Hugo), Roger Koch (Christensen) support, Varian Medical Systems (Brock), licensing agreements from Raysearch (Brock) and Varian (Hugo).; K. Brock, Licensing Agreement - RaySearch Laboratories. Research Funding - Varian Medical Systems; G. Hugo, Research grant from National Institutes of Health, award number R01CA166119.; G. Christensen, Research support from NIH grants CA166119 and CA166703 and a gift from Roger Koch. There are no conflicts of interest.

  16. An Integrated Processing Strategy for Mountain Glacier Motion Monitoring Based on SAR Images

    Science.gov (United States)

    Ruan, Z.; Yan, S.; Liu, G.; LV, M.

    2017-12-01

    Mountain glacier dynamic variables are important parameters in studies of environment and climate change in High Mountain Asia. Due to the increasing events of abnormal glacier-related hazards, research of monitoring glacier movements has attracted more interest during these years. Glacier velocities are sensitive and changing fast under complex conditions of high mountain regions, which implies that analysis of glacier dynamic changes requires comprehensive and frequent observations with relatively high accuracy. Synthetic aperture radar (SAR) has been successfully exploited to detect glacier motion in a number of previous studies, usually with pixel-tracking and interferometry methods. However, the traditional algorithms applied to mountain glacier regions are constrained by the complex terrain and diverse glacial motion types. Interferometry techniques are prone to fail in mountain glaciers because of their narrow size and the steep terrain, while pixel-tracking algorithm, which is more robust in high mountain areas, is subject to accuracy loss. In order to derive glacier velocities continually and efficiently, we propose a modified strategy to exploit SAR data information for mountain glaciers. In our approach, we integrate a set of algorithms for compensating non-glacial-motion-related signals which exist in the offset values retrieved by sub-pixel cross-correlation of SAR image pairs. We exploit modified elastic deformation model to remove the offsets associated with orbit and sensor attitude, and for the topographic residual offset we utilize a set of operations including DEM-assisted compensation algorithm and wavelet-based algorithm. At the last step of the flow, an integrated algorithm combining phase and intensity information of SAR images will be used to improve regional motion results failed in cross-correlation related processing. The proposed strategy is applied to the West Kunlun Mountain and Muztagh Ata region in western China using ALOS

  17. Image fusion between whole body FDG PET images and whole body MRI images using a full-automatic mutual information-based multimodality image registration software

    International Nuclear Information System (INIS)

    Uchida, Yoshitaka; Nakano, Yoshitada; Fujibuchi, Toshiou; Isobe, Tomoko; Kazama, Toshiki; Ito, Hisao

    2006-01-01

    We attempted image fusion between whole body PET and whole body MRI of thirty patients using a full-automatic mutual information (MI) -based multimodality image registration software and evaluated accuracy of this method and impact of the coregistrated imaging on diagnostic accuracy. For 25 of 30 fused images in body area, translating gaps were within 6 mm in all axes and rotating gaps were within 2 degrees around all axes. In head and neck area, considerably much gaps caused by difference of head inclination at imaging occurred in 16 patients, however these gaps were able to decrease by fused separately. In 6 patients, diagnostic accuracy using PET/MRI fused images was superior compared by PET image alone. This work shows that whole body FDG PET images and whole body MRI images can be automatically fused using MI-based multimodality image registration software accurately and this technique can add useful information when evaluating FDG PET images. (author)

  18. Weight preserving image registration for monitoring disease progression in lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Lo, Pechin Chien Pau; Haseem, Ashraf

    2008-01-01

    We present a new image registration based method for monitoring regional disease progression in longitudinal image studies of lung disease. A free-form image registration technique is used to match a baseline 3D CT lung scan onto a following scan. Areas with lower intensity in the following scan...... the density of lung tissue with respect to local expansion or compression such that the total weight of the lungs is preserved during deformation. Our method provides a good estimation of regional destruction of lung tissue for subjects with a significant difference in inspiration level between CT scans...

  19. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    International Nuclear Information System (INIS)

    Morrow, Natalya V.; Lawton, Colleen A.; Qi, X. Sharon; Li, X. Allen

    2012-01-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  20. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Natalya V.; Lawton, Colleen A. [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Qi, X. Sharon [Department of Radiation Oncology, University of Colorado Denver, Denver, Colorado (United States); Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States)

    2012-04-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  1. Progressive attenuation fields: Fast 2D-3D image registration without precomputation

    International Nuclear Information System (INIS)

    Rohlfing, Torsten; Russakoff, Daniel B.; Denzler, Joachim; Mori, Kensaku; Maurer, Calvin R. Jr.

    2005-01-01

    Computation of digitally reconstructed radiograph (DRR) images is the rate-limiting step in most current intensity-based algorithms for the registration of three-dimensional (3D) images to two-dimensional (2D) projection images. This paper introduces and evaluates the progressive attenuation field (PAF), which is a new method to speed up DRR computation. A PAF is closely related to an attenuation field (AF). A major difference is that a PAF is constructed on the fly as the registration proceeds; it does not require any precomputation time, nor does it make any prior assumptions of the patient pose or limit the permissible range of patient motion. A PAF effectively acts as a cache memory for projection values once they are computed, rather than as a lookup table for precomputed projections like standard AFs. We use a cylindrical attenuation field parametrization, which is better suited for many medical applications of 2D-3D registration than the usual two-plane parametrization. The computed attenuation values are stored in a hash table for time-efficient storage and access. Using clinical gold-standard spine image data sets from five patients, we demonstrate consistent speedups of intensity-based 2D-3D image registration using PAF DRRs by a factor of 10 over conventional ray casting DRRs with no decrease of registration accuracy or robustness

  2. Biomechanical modeling constrained surface-based image registration for prostate MR guided TRUS biopsy

    NARCIS (Netherlands)

    Ven, W.J.M. van de; Hu, Y.; Barentsz, J.O.; Karssemeijer, N.; Barratt, D.; Huisman, H.J.

    2015-01-01

    Adding magnetic resonance (MR)-derived information to standard transrectal ultrasound (TRUS) images for guiding prostate biopsy is of substantial clinical interest. A tumor visible on MR images can be projected on ultrasound (US) by using MR-US registration. A common approach is to use surface-based

  3. End-to-end unsupervised deformable image registration with a convolutional neural network

    NARCIS (Netherlands)

    de Vos, Bob D.; Berendsen, Floris; Viergever, Max A.; Staring, Marius; Išgum, Ivana

    2017-01-01

    In this work we propose a deep learning network for deformable image registration (DIRNet). The DIRNet consists of a convolutional neural network (ConvNet) regressor, a spatial transformer, and a resampler. The ConvNet analyzes a pair of fixed and moving images and outputs parameters for the spatial

  4. Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines

    NARCIS (Netherlands)

    Klein, S.; Staring, M.; Pluim, J.P.W.

    2007-01-01

    A popular technique for nonrigid registration of medical images is based on the maximization of their mutual information, in combination with a deformation field parameterized by cubic B-splines. The coordinate mapping that relates the two images is found using an iterative optimization procedure.

  5. Data Based Parameter Estimation Method for Circular-scanning SAR Imaging

    Directory of Open Access Journals (Sweden)

    Chen Gong-bo

    2013-06-01

    Full Text Available The circular-scanning Synthetic Aperture Radar (SAR is a novel working mode and its image quality is closely related to the accuracy of the imaging parameters, especially considering the inaccuracy of the real speed of the motion. According to the characteristics of the circular-scanning mode, a new data based method for estimating the velocities of the radar platform and the scanning-angle of the radar antenna is proposed in this paper. By referring to the basic conception of the Doppler navigation technique, the mathematic model and formulations for the parameter estimation are firstly improved. The optimal parameter approximation based on the least square criterion is then realized in solving those equations derived from the data processing. The simulation results verified the validity of the proposed scheme.

  6. Testing non-rigid registration of nuclear medicine data using synthetic derived SPECT images

    International Nuclear Information System (INIS)

    Todd-Pokropek, A.

    2002-01-01

    Aim: Non-rigid registration is needed to build atlas data to make statistical tests of significance of uptake in nuclear medicine (NM). Non-rigid registration is much more difficult than rigid registration to validate since some kind of matching function must be defined throughout the volume being registered, and no suitable gold standards exist. The aim here has been to assess non-rigid methods of registration and deformation for NM to NM and NM to MRI data. An additional aim has been to derive good synthetic SPECT images from other NM and MRI data to be used after as reference standards. Material and Methods: Phantom and patient test images have been acquired for both NM and MRI, which are then used to generate projections, where the characteristics of the images are modified to change both signal and noise properties. These derived images are different in character but perfectly registered with the original data, and can then be deformed in a known manner. The registration algorithm is then run backwards to re-register the modified deformed data with the original images. A technique has been developed to assess the vector fields of the original deformation to the reverse non-rigid registration field. Results: The main purpose of this paper is to describe a methodology for optimising algorithms, not to develop the algorithms themselves. Two different algorithms based on optic flow and thin plate spline interpolation have been intercompared and in particular the constraints imposed tested. Considerable differences in matching can be observed in different regions for example edge and centre of brain. Conclusions: Quadratic distance between known makers is a bad estimate to use to assess non-rigid registration. A robust statistic has been developed which can be used to optimise non-rigid algorithms based on the use of synthetic SPECT reference datasets. While the task being tested is simpler than the real clinical task, it is the first essential step in the

  7. AN UNSUPERVISED CHANGE DETECTION BASED ON TEST STATISTIC AND KI FROM MULTI-TEMPORAL AND FULL POLARIMETRIC SAR IMAGES

    Directory of Open Access Journals (Sweden)

    J. Q. Zhao

    2016-06-01

    Full Text Available Accurate and timely change detection of Earth’s surface features is extremely important for understanding relationships and interactions between people and natural phenomena. Many traditional methods of change detection only use a part of polarization information and the supervised threshold selection. Those methods are insufficiency and time-costing. In this paper, we present a novel unsupervised change-detection method based on quad-polarimetric SAR data and automatic threshold selection to solve the problem of change detection. First, speckle noise is removed for the two registered SAR images. Second, the similarity measure is calculated by the test statistic, and automatic threshold selection of KI is introduced to obtain the change map. The efficiency of the proposed method is demonstrated by the quad-pol SAR images acquired by Radarsat-2 over Wuhan of China.

  8. Visual analytics for semantic queries of TerraSAR-X image content

    Science.gov (United States)

    Espinoza-Molina, Daniela; Alonso, Kevin; Datcu, Mihai

    2015-10-01

    With the continuous image product acquisition of satellite missions, the size of the image archives is considerably increasing every day as well as the variety and complexity of their content, surpassing the end-user capacity to analyse and exploit them. Advances in the image retrieval field have contributed to the development of tools for interactive exploration and extraction of the images from huge archives using different parameters like metadata, key-words, and basic image descriptors. Even though we count on more powerful tools for automated image retrieval and data analysis, we still face the problem of understanding and analyzing the results. Thus, a systematic computational analysis of these results is required in order to provide to the end-user a summary of the archive content in comprehensible terms. In this context, visual analytics combines automated analysis with interactive visualizations analysis techniques for an effective understanding, reasoning and decision making on the basis of very large and complex datasets. Moreover, currently several researches are focused on associating the content of the images with semantic definitions for describing the data in a format to be easily understood by the end-user. In this paper, we present our approach for computing visual analytics and semantically querying the TerraSAR-X archive. Our approach is mainly composed of four steps: 1) the generation of a data model that explains the information contained in a TerraSAR-X product. The model is formed by primitive descriptors and metadata entries, 2) the storage of this model in a database system, 3) the semantic definition of the image content based on machine learning algorithms and relevance feedback, and 4) querying the image archive using semantic descriptors as query parameters and computing the statistical analysis of the query results. The experimental results shows that with the help of visual analytics and semantic definitions we are able to explain

  9. (Non-) homomorphic approaches to denoise intensity SAR images with non-local means and stochastic distances

    Science.gov (United States)

    Penna, Pedro A. A.; Mascarenhas, Nelson D. A.

    2018-02-01

    The development of new methods to denoise images still attract researchers, who seek to combat the noise with the minimal loss of resolution and details, like edges and fine structures. Many algorithms have the goal to remove additive white Gaussian noise (AWGN). However, it is not the only type of noise which interferes in the analysis and interpretation of images. Therefore, it is extremely important to expand the filters capacity to different noise models present in li-terature, for example the multiplicative noise called speckle that is present in synthetic aperture radar (SAR) images. The state-of-the-art algorithms in remote sensing area work with similarity between patches. This paper aims to develop two approaches using the non local means (NLM), developed for AWGN. In our research, we expanded its capacity for intensity SAR ima-ges speckle. The first approach is grounded on the use of stochastic distances based on the G0 distribution without transforming the data to the logarithm domain, like homomorphic transformation. It takes into account the speckle and backscatter to estimate the parameters necessary to compute the stochastic distances on NLM. The second method uses a priori NLM denoising with a homomorphic transformation and applies the inverse Gamma distribution to estimate the parameters that were used into NLM with stochastic distances. The latter method also presents a new alternative to compute the parameters for the G0 distribution. Finally, this work compares and analyzes the synthetic and real results of the proposed methods with some recent filters of the literature.

  10. Robust methods for automatic image-to-world registration in cone-beam CT interventional guidance

    International Nuclear Information System (INIS)

    Dang, H.; Otake, Y.; Schafer, S.; Stayman, J. W.; Kleinszig, G.; Siewerdsen, J. H.

    2012-01-01

    Purpose: Real-time surgical navigation relies on accurate image-to-world registration to align the coordinate systems of the image and patient. Conventional manual registration can present a workflow bottleneck and is prone to manual error and intraoperator variability. This work reports alternative means of automatic image-to-world registration, each method involving an automatic registration marker (ARM) used in conjunction with C-arm cone-beam CT (CBCT). The first involves a Known-Model registration method in which the ARM is a predefined tool, and the second is a Free-Form method in which the ARM is freely configurable. Methods: Studies were performed using a prototype C-arm for CBCT and a surgical tracking system. A simple ARM was designed with markers comprising a tungsten sphere within infrared reflectors to permit detection of markers in both x-ray projections and by an infrared tracker. The Known-Model method exercised a predefined specification of the ARM in combination with 3D-2D registration to estimate the transformation that yields the optimal match between forward projection of the ARM and the measured projection images. The Free-Form method localizes markers individually in projection data by a robust Hough transform approach extended from previous work, backprojected to 3D image coordinates based on C-arm geometric calibration. Image-domain point sets were transformed to world coordinates by rigid-body point-based registration. The robustness and registration accuracy of each method was tested in comparison to manual registration across a range of body sites (head, thorax, and abdomen) of interest in CBCT-guided surgery, including cases with interventional tools in the radiographic scene. Results: The automatic methods exhibited similar target registration error (TRE) and were comparable or superior to manual registration for placement of the ARM within ∼200 mm of C-arm isocenter. Marker localization in projection data was robust across all

  11. Multiscale registration of medical images based on edge preserving scale space with application in image-guided radiation therapy

    Science.gov (United States)

    Li, Dengwang; Li, Hongsheng; Wan, Honglin; Chen, Jinhu; Gong, Guanzhong; Wang, Hongjun; Wang, Liming; Yin, Yong

    2012-08-01

    Mutual information (MI) is a well-accepted similarity measure for image registration in medical systems. However, MI-based registration faces the challenges of high computational complexity and a high likelihood of being trapped into local optima due to an absence of spatial information. In order to solve these problems, multi-scale frameworks can be used to accelerate registration and improve robustness. Traditional Gaussian pyramid representation is one such technique but it suffers from contour diffusion at coarse levels which may lead to unsatisfactory registration results. In this work, a new multi-scale registration framework called edge preserving multiscale registration (EPMR) was proposed based upon an edge preserving total variation L1 norm (TV-L1) scale space representation. TV-L1 scale space is constructed by selecting edges and contours of images according to their size rather than the intensity values of the image features. This ensures more meaningful spatial information with an EPMR framework for MI-based registration. Furthermore, we design an optimal estimation of the TV-L1 parameter in the EPMR framework by training and minimizing the transformation offset between the registered pairs for automated registration in medical systems. We validated our EPMR method on both simulated mono- and multi-modal medical datasets with ground truth and clinical studies from a combined positron emission tomography/computed tomography (PET/CT) scanner. We compared our registration framework with other traditional registration approaches. Our experimental results demonstrated that our method outperformed other methods in terms of the accuracy and robustness for medical images. EPMR can always achieve a small offset value, which is closer to the ground truth both for mono-modality and multi-modality, and the speed can be increased 5-8% for mono-modality and 10-14% for multi-modality registration under the same condition. Furthermore, clinical application by adaptive

  12. Multiscale registration of medical images based on edge preserving scale space with application in image-guided radiation therapy

    International Nuclear Information System (INIS)

    Li Dengwang; Wan Honglin; Li Hongsheng; Chen Jinhu; Gong Guanzhong; Yin Yong; Wang Hongjun; Wang Liming

    2012-01-01

    Mutual information (MI) is a well-accepted similarity measure for image registration in medical systems. However, MI-based registration faces the challenges of high computational complexity and a high likelihood of being trapped into local optima due to an absence of spatial information. In order to solve these problems, multi-scale frameworks can be used to accelerate registration and improve robustness. Traditional Gaussian pyramid representation is one such technique but it suffers from contour diffusion at coarse levels which may lead to unsatisfactory registration results. In this work, a new multi-scale registration framework called edge preserving multiscale registration (EPMR) was proposed based upon an edge preserving total variation L1 norm (TV-L1) scale space representation. TV-L1 scale space is constructed by selecting edges and contours of images according to their size rather than the intensity values of the image features. This ensures more meaningful spatial information with an EPMR framework for MI-based registration. Furthermore, we design an optimal estimation of the TV-L1 parameter in the EPMR framework by training and minimizing the transformation offset between the registered pairs for automated registration in medical systems. We validated our EPMR method on both simulated mono- and multi-modal medical datasets with ground truth and clinical studies from a combined positron emission tomography/computed tomography (PET/CT) scanner. We compared our registration framework with other traditional registration approaches. Our experimental results demonstrated that our method outperformed other methods in terms of the accuracy and robustness for medical images. EPMR can always achieve a small offset value, which is closer to the ground truth both for mono-modality and multi-modality, and the speed can be increased 5–8% for mono-modality and 10–14% for multi-modality registration under the same condition. Furthermore, clinical application by

  13. Balancing dose and image registration accuracy for cone beam tomosynthesis (CBTS) for breast patient setup

    International Nuclear Information System (INIS)

    Winey, B. A.; Zygmanski, P.; Cormack, R. A.; Lyatskaya, Y.

    2010-01-01

    Purpose: To balance dose reduction and image registration accuracy in breast setup imaging. In particular, the authors demonstrate the relationship between scan angle and dose delivery for cone beam tomosynthesis (CBTS) when employed for setup verification of breast cancer patients with surgical clips. Methods: The dose measurements were performed in a female torso phantom for varying scan angles of CBTS. Setup accuracy was measured using three registration methods: Clip centroid localization accuracy and the accuracy of two semiautomatic registration algorithms. The dose to the organs outside of the ipsilateral breast and registration accuracy information were compared to determine the optimal scan angle for CBTS for breast patient setup verification. Isocenter positions at the center of the patient and at the breast-chest wall interface were considered. Results: Image registration accuracy was within 1 mm for the CBTS scan angles θ above 20 deg. for some scenarios and as large as 80 deg. for the worst case, depending on the imaged breast and registration algorithm. Registration accuracy was highest based on clip centroid localization. For left and right breast imaging with the isocenter at the chest wall, the dose to the contralateral side of the patient was very low (<0.5 cGy) for all scan angles considered. For central isocenter location, the optimal scan angles were 30 deg. - 50 deg. for the left breast imaging and 40 deg. - 50 deg. for the right breast imaging, with the difference due to the geometric asymmetry of the current clinical imaging system. Conclusions: The optimal scan angles for CBTS imaging were found to be between 10 deg. and 50 deg., depending on the isocenter location and ipsilateral breast. Use of the isocenter at the breast-chest wall locations always resulted in greater accuracy of image registration (<1 mm) at smaller angles (10 deg. - 20 deg.) and at lower doses (<0.1 cGy) to the contralateral organs. For chest wall isocenters, doses

  14. An Adaptive Ship Detection Algorithm for Hrws SAR Images Under Complex Background: Application to SENTINEL1A Data

    Science.gov (United States)

    He, G.; Xia, Z.; Chen, H.; Li, K.; Zhao, Z.; Guo, Y.; Feng, P.

    2018-04-01

    Real-time ship detection using synthetic aperture radar (SAR) plays a vital role in disaster emergency and marine security. Especially the high resolution and wide swath (HRWS) SAR images, provides the advantages of high resolution and wide swath synchronously, significantly promotes the wide area ocean surveillance performance. In this study, a novel method is developed for ship target detection by using the HRWS SAR images. Firstly, an adaptive sliding window is developed to propose the suspected ship target areas, based upon the analysis of SAR backscattering intensity images. Then, backscattering intensity and texture features extracted from the training samples of manually selected ship and non-ship slice images, are used to train a support vector machine (SVM) to classify the proposed ship slice images. The approach is verified by using the Sentinl1A data working in interferometric wide swath mode. The results demonstrate the improvement performance of the proposed method over the constant false alarm rate (CFAR) method, where the classification accuracy improved from 88.5 % to 96.4 % and the false alarm rate mitigated from 11.5 % to 3.6 % compared with CFAR respectively.

  15. An Efficient SAR Image Segmentation Framework Using Transformed Nonlocal Mean and Multi-Objective Clustering in Kernel Space

    Directory of Open Access Journals (Sweden)

    Dongdong Yang

    2015-02-01

    Full Text Available Synthetic aperture radar (SAR image segmentation usually involves two crucial issues: suitable speckle noise removing technique and effective image segmentation methodology. Here, an efficient SAR image segmentation method considering both of the two aspects is presented. As for the first issue, the famous nonlocal mean (NLM filter is introduced in this study to suppress the multiplicative speckle noise in SAR image. Furthermore, to achieve a higher denoising accuracy, the local neighboring pixels in the searching window are projected into a lower dimensional subspace by principal component analysis (PCA. Thus, the nonlocal mean filter is implemented in the subspace. Afterwards, a multi-objective clustering algorithm is proposed using the principals of artificial immune system (AIS and kernel-induced distance measures. The multi-objective clustering has been shown to discover the data distribution with different characteristics and the kernel methods can improve its robustness to noise and outliers. Experiments demonstrate that the proposed method is able to partition the SAR image robustly and accurately than the conventional approaches.

  16. Free-Form Deformation Approach for Registration of Visible and Infrared Facial Images in Fever Screening

    Directory of Open Access Journals (Sweden)

    Yedukondala Narendra Dwith Chenna

    2018-01-01

    Full Text Available Fever screening based on infrared (IR thermographs (IRTs is an approach that has been implemented during infectious disease pandemics, such as Ebola and Severe Acute Respiratory Syndrome. A recently published international standard indicates that regions medially adjacent to the inner canthi provide accurate estimates of core body temperature and are preferred sites for fever screening. Therefore, rapid, automated identification of the canthi regions within facial IR images may greatly facilitate rapid fever screening of asymptomatic travelers. However, it is more difficult to accurately identify the canthi regions from IR images than from visible images that are rich with exploitable features. In this study, we developed and evaluated techniques for multi-modality image registration (MMIR of simultaneously captured visible and IR facial images for fever screening. We used free form deformation (FFD models based on edge maps to improve registration accuracy after an affine transformation. Two widely used FFD models in medical image registration based on the Demons and cubic B-spline algorithms were qualitatively compared. The results showed that the Demons algorithm outperformed the cubic B-spline algorithm, likely due to overfitting of outliers by the latter method. The quantitative measure of registration accuracy, obtained through selected control point correspondence, was within 2.8 ± 1.2 mm, which enables accurate and automatic localization of canthi regions in the IR images for temperature measurement.

  17. Geocoding of SAR Image Using the Orbit and Attitude Determination of RADARSAT

    Directory of Open Access Journals (Sweden)

    Jin Wook So

    1998-06-01

    Full Text Available The Synthetic Aperture Radar (SAR image and the Digital Elevation Model (DEM of an target area are put into use to generate three dimensional image map. An method of image map generation is explained. The orbit and attitude determination of satellite makes it possible to model signal acquisition configuration precisely, which is a key to mapping image coordinates to geographic coordinates of concerned area. An application is made to RADARSAT in the purpose of testing its validity. To determine the orbit, zero Doppler range is used. And to determine the attitude, Doppler centroid frequency, which is the frequency observed when target is in the center of antenna's view, is used. Conventional geocoding has been performed on the basis of direct method(mapping image coordinates to geographic coordinates, but in this research the inverse method (mapping from geographic coordinates to image coordinates is taken. This paper shows that precise signal acquisition modeling based on the orbit and attitude determination of satellite as a platform leads to a satellite-centered accurate geocoding process. It also shows how to model relative motion between spaceborne radar and target. And the relative motion is described in ECIC (earth-centered initial coordinates using Doppler equation and signal acquisition geometry.

  18. Expressway deformation mapping using high-resolution TerraSAR-X images

    KAUST Repository

    Shi, Xuguo

    2014-01-27

    Monitoring deformation of linear infrastructures such as expressway and railway caused by natural processes or anthropogenic activities is a vital task to ensure the safety of human lives and properties. Interferometric Synthetic Aperture Radar (InSAR) has been widely recognized as an effective technology to carry out large-area surface deformation mapping. However, its application in linear infrastructure deformation monitoring has not been intensively studied till now. In this article, a modified Small BAseline Subset (SBAS) method is proposed to retrieve the deformation patterns of the expressway. In our method, only the point-like targets identified on the expressway were kept in our analysis, and two complementary subsets of interferograms were formed to better separate the signals of height error and deformation from inteferometric phase observations. We successfully applied this method with multitemporal high-resolution TerraSAR-X images to retrieve the spatialoral pattern of surface deformation along the Beian-Heihe expressway that is located in island-permafrost areas and threatened by geohazards. © 2014 Taylor & Francis.

  19. MAXIMUM LIKELIHOOD CLASSIFICATION OF HIGH-RESOLUTION SAR IMAGES IN URBAN AREA

    Directory of Open Access Journals (Sweden)

    M. Soheili Majd

    2012-09-01

    Full Text Available In this work, we propose a state-of-the-art on statistical analysis of polarimetric synthetic aperture radar (SAR data, through the modeling of several indices. We concentrate on eight ground classes which have been carried out from amplitudes, co-polarisation ratio, depolarization ratios, and other polarimetric descriptors. To study their different statistical behaviours, we consider Gauss, log- normal, Beta I, Weibull, Gamma, and Fisher statistical models and estimate their parameters using three methods: method of moments (MoM, maximum-likelihood (ML methodology, and log-cumulants method (MoML. Then, we study the opportunity of introducing this information in an adapted supervised classification scheme based on Maximum–Likelihood and Fisher pdf. Our work relies on an image of a suburban area, acquired by the airborne RAMSES SAR sensor of ONERA. The results prove the potential of such data to discriminate urban surfaces and show the usefulness of adapting any classical classification algorithm however classification maps present a persistant class confusion between flat gravelled or concrete roofs and trees.

  20. Expressway deformation mapping using high-resolution TerraSAR-X images

    KAUST Repository

    Shi, Xuguo; Liao, Mingsheng; Wang, Teng; Zhang, Lu; Shan, Wei; Wang, Chunjiao

    2014-01-01

    Monitoring deformation of linear infrastructures such as expressway and railway caused by natural processes or anthropogenic activities is a vital task to ensure the safety of human lives and properties. Interferometric Synthetic Aperture Radar (InSAR) has been widely recognized as an effective technology to carry out large-area surface deformation mapping. However, its application in linear infrastructure deformation monitoring has not been intensively studied till now. In this article, a modified Small BAseline Subset (SBAS) method is proposed to retrieve the deformation patterns of the expressway. In our method, only the point-like targets identified on the expressway were kept in our analysis, and two complementary subsets of interferograms were formed to better separate the signals of height error and deformation from inteferometric phase observations. We successfully applied this method with multitemporal high-resolution TerraSAR-X images to retrieve the spatialoral pattern of surface deformation along the Beian-Heihe expressway that is located in island-permafrost areas and threatened by geohazards. © 2014 Taylor & Francis.

  1. Pre-processing, registration and selection of adaptive optics corrected retinal images.

    Science.gov (United States)

    Ramaswamy, Gomathy; Devaney, Nicholas

    2013-07-01

    In this paper, the aim is to demonstrate enhanced processing of sequences of fundus images obtained using a commercial AO flood illumination system. The purpose of the work is to (1) correct for uneven illumination at the retina (2) automatically select the best quality images and (3) precisely register the best images. Adaptive optics corrected retinal images are pre-processed to correct uneven illumination using different methods; subtracting or dividing by the average filtered image, homomorphic filtering and a wavelet based approach. These images are evaluated to measure the image quality using various parameters, including sharpness, variance, power spectrum kurtosis and contrast. We have carried out the registration in two stages; a coarse stage using cross-correlation followed by fine registration using two approaches; parabolic interpolation on the peak of the cross-correlation and maximum-likelihood estimation. The angle of rotation of the images is measured using a combination of peak tracking and Procrustes transformation. We have found that a wavelet approach (Daubechies 4 wavelet at 6th level decomposition) provides good illumination correction with clear improvement in image sharpness and contrast. The assessment of image quality using a 'Designer metric' works well when compared to visual evaluation, although it is highly correlated with other metrics. In image registration, sub-pixel translation measured using parabolic interpolation on the peak of the cross-correlation function and maximum-likelihood estimation are found to give very similar results (RMS difference 0.047 pixels). We have confirmed that correcting rotation of the images provides a significant improvement, especially at the edges of the image. We observed that selecting the better quality frames (e.g. best 75% images) for image registration gives improved resolution, at the expense of poorer signal-to-noise. The sharpness map of the registered and de-rotated images shows increased

  2. Discontinuity Preserving Image Registration through Motion Segmentation: A Primal-Dual Approach

    Directory of Open Access Journals (Sweden)

    Silja Kiriyanthan

    2016-01-01

    Full Text Available Image registration is a powerful tool in medical image analysis and facilitates the clinical routine in several aspects. There are many well established elastic registration methods, but none of them can so far preserve discontinuities in the displacement field. These discontinuities appear in particular at organ boundaries during the breathing induced organ motion. In this paper, we exploit the fact that motion segmentation could play a guiding role during discontinuity preserving registration. The motion segmentation is embedded in a continuous cut framework guaranteeing convexity for motion segmentation. Furthermore we show that a primal-dual method can be used to estimate a solution to this challenging variational problem. Experimental results are presented for MR images with apparent breathing induced sliding motion of the liver along the abdominal wall.

  3. Medical image registration algorithms assesment Bronze Standard application enactment on grids using the MOTEUR workflow engine

    CERN Document Server

    Glatard, T; Pennec, X

    2006-01-01

    Medical image registration is pre-processing needed for many medical image analysis procedures. A very large number of registration algorithms are available today, but their performance is often not known and very difficult to assess due to the lack of gold standard. The Bronze Standard algorithm is a very data and compute intensive statistical approach for quantifying registration algorithms accuracy. In this paper, we describe the Bronze Standard application and we discuss the need for grids to tackle such computations on medical image databases. We demonstrate MOTEUR, a service-based workflow engine optimized for dealing with data intensive applications. MOTEUR eases the enactment of the Bronze Standard and similar applications on the EGEE production grid infrastructure. It is a generic workflow engine, based on current standards and freely available, that can be used to instrument legacy application code at low cost.

  4. SU-E-J-237: Image Feature Based DRR and Portal Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X; Chang, J [NY Weill Cornell Medical Ctr, NY (United States)

    2014-06-01

    Purpose: Two-dimensional (2D) matching of the kV X-ray and digitally reconstructed radiography (DRR) images is an important setup technique for image-guided radiotherapy (IGRT). In our clinics, mutual information based methods are used for this purpose on commercial linear accelerators, but with often needs for manual corrections. This work proved the feasibility that feature based image transform can be used to register kV and DRR images. Methods: The scale invariant feature transform (SIFT) method was implemented to detect the matching image details (or key points) between the kV and DRR images. These key points represent high image intensity gradients, and thus the scale invariant features. Due to the poor image contrast from our kV image, direct application of the SIFT method yielded many detection errors. To assist the finding of key points, the center coordinates of the kV and DRR images were read from the DICOM header, and the two groups of key points with similar relative positions to their corresponding centers were paired up. Using these points, a rigid transform (with scaling, horizontal and vertical shifts) was estimated. We also artificially introduced vertical and horizontal shifts to test the accuracy of our registration method on anterior-posterior (AP) and lateral pelvic images. Results: The results provided a satisfactory overlay of the transformed kV onto the DRR image. The introduced vs. detected shifts were fit into a linear regression. In the AP image experiments, linear regression analysis showed a slope of 1.15 and 0.98 with an R2 of 0.89 and 0.99 for the horizontal and vertical shifts, respectively. The results are 1.2 and 1.3 with R2 of 0.72 and 0.82 for the lateral image shifts. Conclusion: This work provided an alternative technique for kV to DRR alignment. Further improvements in the estimation accuracy and image contrast tolerance are underway.

  5. 3D registration of surfaces for change detection in medical images

    Science.gov (United States)

    Fisher, Elizabeth; van der Stelt, Paul F.; Dunn, Stanley M.

    1997-04-01

    Spatial registration of data sets is essential for quantifying changes that take place over time in cases where the position of a patient with respect to the sensor has been altered. Changes within the region of interest can be problematic for automatic methods of registration. This research addresses the problem of automatic 3D registration of surfaces derived from serial, single-modality images for the purpose of quantifying changes over time. The registration algorithm utilizes motion-invariant, curvature- based geometric properties to derive an approximation to an initial rigid transformation to align two image sets. Following the initial registration, changed portions of the surface are detected and excluded before refining the transformation parameters. The performance of the algorithm was tested using simulation experiments. To quantitatively assess the registration, random noise at various levels, known rigid motion transformations, and analytically-defined volume changes were applied to the initial surface data acquired from models of teeth. These simulation experiments demonstrated that the calculated transformation parameters were accurate to within 1.2 percent of the total applied rotation and 2.9 percent of the total applied translation, even at the highest applied noise levels and simulated wear values.

  6. Analysis of Point Based Image Registration Errors With Applications in Single Molecule Microscopy.

    Science.gov (United States)

    Cohen, E A K; Ober, R J

    2013-12-15

    We present an asymptotic treatment of errors involved in point-based image registration where control point (CP) localization is subject to heteroscedastic noise; a suitable model for image registration in fluorescence microscopy. Assuming an affine transform, CPs are used to solve a multivariate regression problem. With measurement errors existing for both sets of CPs this is an errors-in-variable problem and linear least squares is inappropriate; the correct method being generalized least squares. To allow for point dependent errors the equivalence of a generalized maximum likelihood and heteroscedastic generalized least squares model is achieved allowing previously published asymptotic results to be extended to image registration. For a particularly useful model of heteroscedastic noise where covariance matrices are scalar multiples of a known matrix (including the case where covariance matrices are multiples of the identity) we provide closed form solutions to estimators and derive their distribution. We consider the target registration error (TRE) and define a new measure called the localization registration error (LRE) believed to be useful, especially in microscopy registration experiments. Assuming Gaussianity of the CP localization errors, it is shown that the asymptotic distribution for the TRE and LRE are themselves Gaussian and the parameterized distributions are derived. Results are successfully applied to registration in single molecule microscopy to derive the key dependence of the TRE and LRE variance on the number of CPs and their associated photon counts. Simulations show asymptotic results are robust for low CP numbers and non-Gaussianity. The method presented here is shown to outperform GLS on real imaging data.

  7. A study on applying image dictionary to inner organ registration

    International Nuclear Information System (INIS)

    Matsuno, Takamichi; Asai, Takeshi; Iwata, Takuya; Hontani, Hidekata

    2010-01-01

    In this article, we report on selecting image features that are useful for registering organ surface in medical image based on image dictionary constructed for the organ. Here, the image dictionary denotes a basis set, which is non-orthogonal and over-complete one and is designed to represent images of the target organ. We propose a method that refers to a combination of the basis obtained for reconstructing a given image in order to estimate the location of the target organ. (author)

  8. Design of an Image Motion Compenstaion (IMC Algorithm for Image Registration of the Communication, Ocean, Meteorolotical Satellite (COMS-1

    Directory of Open Access Journals (Sweden)

    Taek Seo Jung

    2006-03-01

    Full Text Available This paper presents an Image Motion Compensation (IMC algorithm for the Korea's Communication, Ocean, and Meteorological Satellite (COMS-1. An IMC algorithm is a priority component of image registration in Image Navigation and Registration (INR system to locate and register radiometric image data. Due to various perturbations, a satellite has orbit and attitude errors with respect to a reference motion. These errors cause depointing of the imager aiming direction, and in consequence cause image distortions. To correct the depointing of the imager aiming direction, a compensation algorithm is designed by adapting different equations from those used for the GOES satellites. The capability of the algorithm is compared with that of existing algorithm applied to the GOES's INR system. The algorithm developed in this paper improves pointing accuracy by 40%, and efficiently compensates the depointings of the imager aiming direction.

  9. Multimodal image registration of the scoliotic torso for surgical planning

    International Nuclear Information System (INIS)

    Harmouche, Rola; Cheriet, Farida; Labelle, Hubert; Dansereau, Jean

    2013-01-01

    This paper presents a method that registers MRIs acquired in prone position, with surface topography (TP) and X-ray reconstructions acquired in standing position, in order to obtain a 3D representation of a human torso incorporating the external surface, bone structures, and soft tissues. TP and X-ray data are registered using landmarks. Bone structures are used to register each MRI slice using an articulated model, and the soft tissue is confined to the volume delimited by the trunk and bone surfaces using a constrained thin-plate spline. The method is tested on 3 pre-surgical patients with scoliosis and shows a significant improvement, qualitatively and using the Dice similarity coefficient, in fitting the MRI into the standing patient model when compared to rigid and articulated model registration. The determinant of the Jacobian of the registration deformation shows higher variations in the deformation in areas closer to the surface of the torso. The novel, resulting 3D full torso model can provide a more complete representation of patient geometry to be incorporated in surgical simulators under development that aim at predicting the effect of scoliosis surgery on the external appearance of the patient’s torso

  10. Multimodal image registration of the scoliotic torso for surgical planning

    Science.gov (United States)

    2013-01-01

    Background This paper presents a method that registers MRIs acquired in prone position, with surface topography (TP) and X-ray reconstructions acquired in standing position, in order to obtain a 3D representation of a human torso incorporating the external surface, bone structures, and soft tissues. Methods TP and X-ray data are registered using landmarks. Bone structures are used to register each MRI slice using an articulated model, and the soft tissue is confined to the volume delimited by the trunk and bone surfaces using a constrained thin-plate spline. Results The method is tested on 3 pre-surgical patients with scoliosis and shows a significant improvement, qualitatively and using the Dice similarity coefficient, in fitting the MRI into the standing patient model when compared to rigid and articulated model registration. The determinant of the Jacobian of the registration deformation shows higher variations in the deformation in areas closer to the surface of the torso. Conclusions The novel, resulting 3D full torso model can provide a more complete representation of patient geometry to be incorporated in surgical simulators under development that aim at predicting the effect of scoliosis surgery on the external appearance of the patient’s torso. PMID:23289431

  11. Contrast-enhanced magnetic resonance angiography in carotid artery disease: does automated image registration improve image quality?

    International Nuclear Information System (INIS)

    Menke, Jan; Larsen, Joerg

    2009-01-01

    Contrast-enhanced magnetic resonance angiography (MRA) is a noninvasive imaging alternative to digital subtraction angiography (DSA) for patients with carotid artery disease. In DSA, image quality can be improved by shifting the mask image if the patient has moved during angiography. This study investigated whether such image registration may also help to improve the image quality of carotid MRA. Data from 370 carotid MRA examinations of patients likely to have carotid artery disease were prospectively collected. The standard nonregistered MRAs were compared to automatically linear, affine and warp registered MRA by using three image quality parameters: the vessel detection probability (VDP) in maximum intensity projection (MIP) images, contrast-to-noise ratio (CNR) in MIP images, and contrast-to-noise ratio in three-dimensional image volumes. A body shift of less than 1 mm occurred in 96.2% of cases. Analysis of variance revealed no significant influence of image registration and body shift on image quality (p > 0.05). In conclusion, standard contrast-enhanced carotid MRA usually requires no image registration to improve image quality and is generally robust against any naturally occurring body shift. (orig.)

  12. FZUImageReg: A toolbox for medical image registration and dose fusion in cervical cancer radiotherapy.

    Directory of Open Access Journals (Sweden)

    Qinquan Gao

    Full Text Available The combination external-beam radiotherapy and high-dose-rate brachytherapy is a standard form of treatment for patients with locally advanced uterine cervical cancer. Personalized radiotherapy in cervical cancer requires efficient and accurate dose planning and assessment across these types of treatment. To achieve radiation dose assessment, accurate mapping of the dose distribution from HDR-BT onto EBRT is extremely important. However, few systems can achieve robust dose fusion and determine the accumulated dose distribution during the entire course of treatment. We have therefore developed a toolbox (FZUImageReg, which is a user-friendly dose fusion system based on hybrid image registration for radiation dose assessment in cervical cancer radiotherapy. The main part of the software consists of a collection of medical image registration algorithms and a modular design with a user-friendly interface, which allows users to quickly configure, test, monitor, and compare different registration methods for a specific application. Owing to the large deformation, the direct application of conventional state-of-the-art image registration methods is not sufficient for the accurate alignment of EBRT and HDR-BT images. To solve this problem, a multi-phase non-rigid registration method using local landmark-based free-form deformation is proposed for locally large deformation between EBRT and HDR-BT images, followed by intensity-based free-form deformation. With the transformation, the software also provides a dose mapping function according to the deformation field. The total dose distribution during the entire course of treatment can then be presented. Experimental results clearly show that the proposed system can achieve accurate registration between EBRT and HDR-BT images and provide radiation dose warping and fusion results for dose assessment in cervical cancer radiotherapy in terms of high accuracy and efficiency.

  13. The One to Multiple Automatic High Accuracy Registration of Terrestrial LIDAR and Optical Images

    Science.gov (United States)

    Wang, Y.; Hu, C.; Xia, G.; Xue, H.

    2018-04-01

    The registration of ground laser point cloud and close-range image is the key content of high-precision 3D reconstruction of cultural relic object. In view of the requirement of high texture resolution in the field of cultural relic at present, The registration of point cloud and image data in object reconstruction will result in the problem of point cloud to multiple images. In the current commercial software, the two pairs of registration of the two kinds of data are realized by manually dividing point cloud data, manual matching point cloud and image data, manually selecting a two - dimensional point of the same name of the image and the point cloud, and the process not only greatly reduces the working efficiency, but also affects the precision of the registration of the two, and causes the problem of the color point cloud texture joint. In order to solve the above problems, this paper takes the whole object image as the intermediate data, and uses the matching technology to realize the automatic one-to-one correspondence between the point cloud and multiple images. The matching of point cloud center projection reflection intensity image and optical image is applied to realize the automatic matching of the same name feature points, and the Rodrigo matrix spatial similarity transformation model and weight selection iteration are used to realize the automatic registration of the two kinds of data with high accuracy. This method is expected to serve for the high precision and high efficiency automatic 3D reconstruction of cultural relic objects, which has certain scientific research value and practical significance.

  14. Automated Registration of Multimodal Optic Disc Images: Clinical Assessment of Alignment Accuracy.

    Science.gov (United States)

    Ng, Wai Siene; Legg, Phil; Avadhanam, Venkat; Aye, Kyaw; Evans, Steffan H P; North, Rachel V; Marshall, Andrew D; Rosin, Paul; Morgan, James E

    2016-04-01

    To determine the accuracy of automated alignment algorithms for the registration of optic disc images obtained by 2 different modalities: fundus photography and scanning laser tomography. Images obtained with the Heidelberg Retina Tomograph II and paired photographic optic disc images of 135 eyes were analyzed. Three state-of-the-art automated registration techniques Regional Mutual Information, rigid Feature Neighbourhood Mutual Information (FNMI), and nonrigid FNMI (NRFNMI) were used to align these image pairs. Alignment of each composite picture was assessed on a 5-point grading scale: "Fail" (no alignment of vessels with no vessel contact), "Weak" (vessels have slight contact), "Good" (vessels with 50% contact), and "Excellent" (complete alignment). Custom software generated an image mosaic in which the modalities were interleaved as a series of alternate 5×5-pixel blocks. These were graded independently by 3 clinically experienced observers. A total of 810 image pairs were assessed. All 3 registration techniques achieved a score of "Good" or better in >95% of the image sets. NRFNMI had the highest percentage of "Excellent" (mean: 99.6%; range, 95.2% to 99.6%), followed by Regional Mutual Information (mean: 81.6%; range, 86.3% to 78.5%) and FNMI (mean: 73.1%; range, 85.2% to 54.4%). Automated registration of optic disc images by different modalities is a feasible option for clinical application. All 3 methods provided useful levels of alignment, but the NRFNMI technique consistently outperformed the others and is recommended as a practical approach to the automated registration of multimodal disc images.

  15. Improving supervised classification accuracy using non-rigid multimodal image registration: detecting prostate cancer

    Science.gov (United States)

    Chappelow, Jonathan; Viswanath, Satish; Monaco, James; Rosen, Mark; Tomaszewski, John; Feldman, Michael; Madabhushi, Anant

    2008-03-01

    Computer-aided diagnosis (CAD) systems for the detection of cancer in medical images require precise labeling of training data. For magnetic resonance (MR) imaging (MRI) of the prostate, training labels define the spatial extent of prostate cancer (CaP); the most common source for these labels is expert segmentations. When ancillary data such as whole mount histology (WMH) sections, which provide the gold standard for cancer ground truth, are available, the manual labeling of CaP can be improved by referencing WMH. However, manual segmentation is error prone, time consuming and not reproducible. Therefore, we present the use of multimodal image registration to automatically and accurately transcribe CaP from histology onto MRI following alignment of the two modalities, in order to improve the quality of training data and hence classifier performance. We quantitatively demonstrate the superiority of this registration-based methodology by comparing its results to the manual CaP annotation of expert radiologists. Five supervised CAD classifiers were trained using the labels for CaP extent on MRI obtained by the expert and 4 different registration techniques. Two of the registration methods were affi;ne schemes; one based on maximization of mutual information (MI) and the other method that we previously developed, Combined Feature Ensemble Mutual Information (COFEMI), which incorporates high-order statistical features for robust multimodal registration. Two non-rigid schemes were obtained by succeeding the two affine registration methods with an elastic deformation step using thin-plate splines (TPS). In the absence of definitive ground truth for CaP extent on MRI, classifier accuracy was evaluated against 7 ground truth surrogates obtained by different combinations of the expert and registration segmentations. For 26 multimodal MRI-WMH image pairs, all four registration methods produced a higher area under the receiver operating characteristic curve compared to that

  16. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery

    International Nuclear Information System (INIS)

    Reaungamornrat, S; Liu, W P; Otake, Y; Uneri, A; Siewerdsen, J H; Taylor, R H; Wang, A S; Nithiananthan, S; Schafer, S; Tryggestad, E; Richmon, J; Sorger, J M

    2013-01-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to

  17. A strategy for multimodal deformable image registration to integrate PET/MR into radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Leibfarth, Sara; Moennich, David; Thorwarth, Daniela; Welz, Stefan; Siegel, Christine; Zips, Daniel; Schwenzer, Nina; Holger Schmidt, Holger

    2013-01-01

    Background: Combined positron emission tomography (PET)/magnetic resonance imaging (MRI) is highly promising for biologically individualized radiotherapy (RT). Hence, the purpose of this work was to develop an accurate and robust registration strategy to integrate combined PET/MR data into RT treatment planning. Material and methods: Eight patient datasets consisting of an FDG PET/computed tomography (CT) and a subsequently acquired PET/MR of the head and neck (HN) region were available. Registration strategies were developed based on CT and MR data only, whereas the PET components were fused with the resulting deformation field. Following a rigid registration, deformable registration was performed with a transform parametrized by B-splines. Three different optimization metrics were investigated: global mutual information (GMI), GMI combined with a bending energy penalty (BEP) for regularization (GMI + BEP) and localized mutual information with BEP (LMI + BEP). Different quantitative registration quality measures were developed, including volumetric overlap and mean distance measures for structures segmented on CT and MR as well as anatomical landmark distances. Moreover, the local registration quality in the tumor region was assessed by the normalized cross correlation (NCC) of the two PET datasets. Results: LMI + BEP yielded the most robust and accurate registration results. For GMI, GMI + BEP and LMI + BEP, mean landmark distances (standard deviations) were 23.9 mm (15.5 mm), 4.8 mm (4.0 mm) and 3.0 mm (1.0 mm), and mean NCC values (standard deviations) were 0.29 (0.29), 0.84 (0.14) and 0.88 (0.06), respectively. Conclusion: Accurate and robust multimodal deformable image registration of CT and MR in the HN region can be performed using a B-spline parametrized transform and LMI + BEP as optimization metric. With this strategy, biologically individualized RT based on combined PET/MRI in terms of dose painting is possible

  18. Anisotropic multi-scale fluid registration: evaluation in magnetic resonance breast imaging

    International Nuclear Information System (INIS)

    Crum, W R; Tanner, C; Hawkes, D J

    2005-01-01

    Registration using models of compressible viscous fluids has not found the general application of some other techniques (e.g., free-form-deformation (FFD)) despite its ability to model large diffeomorphic deformations. We report on a multi-resolution fluid registration algorithm which improves on previous work by (a) directly solving the Navier-Stokes equation at the resolution of the images (b) accommodating image sampling anisotropy using semi-coarsening and implicit smoothing in a full multi-grid (FMG) solver and (c) exploiting the inherent multi-resolution nature of FMG to implement a multi-scale approach. Evaluation is on five magnetic resonance (MR) breast images subject to six biomechanical deformation fields over 11 multi-resolution schemes. Quantitative assessment is by tissue overlaps and target registration errors and by registering using the known correspondences rather than image features to validate the fluid model. Context is given by comparison with a validated FFD algorithm and by application to images of volunteers subjected to large applied deformation. The results show that fluid registration of 3D breast MR images to sub-voxel accuracy is possible in minutes on a 1.6 GHz Linux-based Athlon processor with coarse solutions obtainable in a few tens of seconds. Accuracy and computation time are comparable to FFD techniques validated for this application

  19. Intrasubject registration for change analysis in medical imaging

    NARCIS (Netherlands)

    Staring, M.

    2008-01-01

    Image matching is important for the comparison of medical images. Comparison is of clinical relevance for the analysis of differences due to changes in the health of a patient. For example, when a disease is imaged at two time points, then one wants to know if it is stable, has regressed, or

  20. Improved GO/PO method and its application to wideband SAR image of conducting objects over rough surface

    Science.gov (United States)

    Jiang, Wang-Qiang; Zhang, Min; Nie, Ding; Jiao, Yong-Chang

    2018-04-01

    To simulate the multiple scattering effect of target in synthetic aperture radar (SAR) image, the hybrid method GO/PO method, which combines the geometrical optics (GO) and physical optics (PO), is employed to simulate the scattering field of target. For ray tracing is time-consuming, the Open Graphics Library (OpenGL) is usually employed to accelerate the process of ray tracing. Furthermore, the GO/PO method is improved for the simulation in low pixel situation. For the improved GO/PO method, the pixels are arranged corresponding to the rectangular wave beams one by one, and the GO/PO result is the sum of the contribution values of all the rectangular wave beams. To get high-resolution SAR image, the wideband echo signal is simulated which includes information of many electromagnetic (EM) waves with different frequencies. Finally, the improved GO/PO method is used to simulate the SAR image of targets above rough surface. And the effects of reflected rays and the size of pixel matrix on the SAR image are also discussed.

  1. A New Method Based on Two-Stage Detection Mechanism for Detecting Ships in High-Resolution SAR Images

    Directory of Open Access Journals (Sweden)

    Xu Yongli

    2017-01-01

    Full Text Available Ship detection in synthetic aperture radar (SAR remote sensing images, being a fundamental but challenging problem in the field of satellite image analysis, plays an important role for a wide range of applications and is receiving significant attention in recent years. Aiming at the requirements of ship detection in high-resolution SAR images, the accuracy, the intelligent level, a better real-time operation and processing efficiency, The characteristics of ocean background and ship target in high-resolution SAR images were analyzed, we put forward a ship detection algorithm in high-resolution SAR images. The algorithm consists of two detection stages: The first step designs a pre-training classifier based on improved spectral residual visual model to obtain the visual salient regions containing ship targets quickly, then achieve the purpose of probably detection of ships. In the second stage, considering the Bayesian theory of binary hypothesis detection, a local maximum posterior probability (MAP classifier is designed for the classification of pixels. After the parameter estimation and judgment criterion, the classification of pixels are carried out in the target areas to achieve the classification of two types of pixels in the salient regions. In the paper, several types of satellite image data, such as TerraSAR-X (TS-X, Radarsat-2, are used to evaluate the performance of detection methods. Comparing with classical CFAR detection algorithms, experimental results show that the algorithm can achieve a better effect of suppressing false alarms, which caused by the speckle noise and ocean clutter background inhomogeneity. At the same time, the detection speed is increased by 25% to 45%.

  2. An automated, quantitative, and case-specific evaluation of deformable image registration in computed tomography images

    Science.gov (United States)

    Kierkels, R. G. J.; den Otter, L. A.; Korevaar, E. W.; Langendijk, J. A.; van der Schaaf, A.; Knopf, A. C.; Sijtsema, N. M.

    2018-02-01

    A prerequisite for adaptive dose-tracking in radiotherapy is the assessment of the deformable image registration (DIR) quality. In this work, various metrics that quantify DIR uncertainties are investigated using realistic deformation fields of 26 head and neck and 12 lung cancer patients. Metrics related to the physiologically feasibility (the Jacobian determinant, harmonic energy (HE), and octahedral shear strain (OSS)) and numerically robustness of the deformation (the inverse consistency error (ICE), transitivity error (TE), and distance discordance metric (DDM)) were investigated. The deformable registrations were performed using a B-spline transformation model. The DIR error metrics were log-transformed and correlated (Pearson) against the log-transformed ground-truth error on a voxel level. Correlations of r  ⩾  0.5 were found for the DDM and HE. Given a DIR tolerance threshold of 2.0 mm and a negative predictive value of 0.90, the DDM and HE thresholds were 0.49 mm and 0.014, respectively. In conclusion, the log-transformed DDM and HE can be used to identify voxels at risk for large DIR errors with a large negative predictive value. The HE and/or DDM can therefore be used to perform automated quality assurance of each CT-based DIR for head and neck and lung cancer patients.

  3. MatchGUI: A Graphical MATLAB-Based Tool for Automatic Image Co-Registration

    Science.gov (United States)

    Ansar, Adnan I.

    2011-01-01

    MatchGUI software, based on MATLAB, automatically matches two images and displays the match result by superimposing one image on the other. A slider bar allows focus to shift between the two images. There are tools for zoom, auto-crop to overlap region, and basic image markup. Given a pair of ortho-rectified images (focused primarily on Mars orbital imagery for now), this software automatically co-registers the imagery so that corresponding image pixels are aligned. MatchGUI requires minimal user input, and performs a registration over scale and inplane rotation fully automatically

  4. Slice-to-Volume Nonrigid Registration of Histological Sections to MR Images of the Human Brain

    Science.gov (United States)

    Osechinskiy, Sergey; Kruggel, Frithjof

    2011-01-01

    Registration of histological images to three-dimensional imaging modalities is an important step in quantitative analysis of brain structure, in architectonic mapping of the brain, and in investigation of the pathology of a brain disease. Reconstruction of histology volume from serial sections is a well-established procedure, but it does not address registration of individual slices from sparse sections, which is the aim of the slice-to-volume approach. This study presents a flexible framework for intensity-based slice-to-volume nonrigid registration algorithms with a geometric transformation deformation field parametrized by various classes of spline functions: thin-plate splines (TPS), Gaussian elastic body splines (GEBS), or cubic B-splines. Algorithms are applied to cross-modality registration of histological and magnetic resonance images of the human brain. Registration performance is evaluated across a range of optimization algorithms and intensity-based cost functions. For a particular case of histological data, best results are obtained with a TPS three-dimensional (3D) warp, a new unconstrained optimization algorithm (NEWUOA), and a correlation-coefficient-based cost function. PMID:22567290

  5. FEM-based evaluation of deformable image registration for radiation therapy

    International Nuclear Information System (INIS)

    Zhong Hualiang; Peters, Terry; Siebers, Jeffrey V

    2007-01-01

    This paper presents a new concept to automatically detect the neighborhood in an image where deformable registration is mis-performing. Specifically, the displacement vector field (DVF) from a deformable image registration is substituted into a finite-element-based elastic framework to calculate unbalanced energy in each element. The value of the derived energy indicates the quality of the DVF in its neighborhood. The new voxel-based evaluation approach is compared with three other validation criteria: landmark measurement, a finite element approach and visual comparison, for deformable registrations performed with the optical-flow-based 'demons' algorithm as well as thin-plate spline interpolation. This analysis was performed on three pairs of prostate CT images. The results of the analysis show that the four criteria give mutually comparable quantitative assessments on the six registration instances. As an objective concept, the unbalanced energy presents no requirement on boundary constraints in its calculation, different from traditional mechanical modeling. This method is automatic, and at voxel level suitable to evaluate deformable registration in a clinical setting

  6. Slice-to-Volume Nonrigid Registration of Histological Sections to MR Images of the Human Brain

    Directory of Open Access Journals (Sweden)

    Sergey Osechinskiy

    2011-01-01

    Full Text Available Registration of histological images to three-dimensional imaging modalities is an important step in quantitative analysis of brain structure, in architectonic mapping of the brain, and in investigation of the pathology of a brain disease. Reconstruction of histology volume from serial sections is a well-established procedure, but it does not address registration of individual slices from sparse sections, which is the aim of the slice-to-volume approach. This study presents a flexible framework for intensity-based slice-to-volume nonrigid registration algorithms with a geometric transformation deformation field parametrized by various classes of spline functions: thin-plate splines (TPS, Gaussian elastic body splines (GEBS, or cubic B-splines. Algorithms are applied to cross-modality registration of histological and magnetic resonance images of the human brain. Registration performance is evaluated across a range of optimization algorithms and intensity-based cost functions. For a particular case of histological data, best results are obtained with a TPS three-dimensional (3D warp, a new unconstrained optimization algorithm (NEWUOA, and a correlation-coefficient-based cost function.

  7. Automated registration of multispectral MR vessel wall images of the carotid artery

    Energy Technology Data Exchange (ETDEWEB)

    Klooster, R. van ' t; Staring, M.; Reiber, J. H. C.; Lelieveldt, B. P. F.; Geest, R. J. van der, E-mail: rvdgeest@lumc.nl [Department of Radiology, Division of Image Processing, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Klein, S. [Department of Radiology and Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus MC, Rotterdam 3015 GE (Netherlands); Kwee, R. M.; Kooi, M. E. [Department of Radiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht 6202 AZ (Netherlands)

    2013-12-15

    Purpose: Atherosclerosis is the primary cause of heart disease and stroke. The detailed assessment of atherosclerosis of the carotid artery requires high resolution imaging of the vessel wall using multiple MR sequences with different contrast weightings. These images allow manual or automated classification of plaque components inside the vessel wall. Automated classification requires all sequences to be in alignment, which is hampered by patient motion. In clinical practice, correction of this motion is performed manually. Previous studies applied automated image registration to correct for motion using only nondeformable transformation models and did not perform a detailed quantitative validation. The purpose of this study is to develop an automated accurate 3D registration method, and to extensively validate this method on a large set of patient data. In addition, the authors quantified patient motion during scanning to investigate the need for correction. Methods: MR imaging studies (1.5T, dedicated carotid surface coil, Philips) from 55 TIA/stroke patients with ipsilateral <70% carotid artery stenosis were randomly selected from a larger cohort. Five MR pulse sequences were acquired around the carotid bifurcation, each containing nine transverse slices: T1-weighted turbo field echo, time of flight, T2-weighted turbo spin-echo, and pre- and postcontrast T1-weighted turbo spin-echo images (T1W TSE). The images were manually segmented by delineating the lumen contour in each vessel wall sequence and were manually aligned by applying throughplane and inplane translations to the images. To find the optimal automatic image registration method, different masks, choice of the fixed image, different types of the mutual information image similarity metric, and transformation models including 3D deformable transformation models, were evaluated. Evaluation of the automatic registration results was performed by comparing the lumen segmentations of the fixed image and

  8. Automated registration of multispectral MR vessel wall images of the carotid artery

    International Nuclear Information System (INIS)

    Klooster, R. van 't; Staring, M.; Reiber, J. H. C.; Lelieveldt, B. P. F.; Geest, R. J. van der; Klein, S.; Kwee, R. M.; Kooi, M. E.

    2013-01-01

    Purpose: Atherosclerosis is the primary cause of heart disease and stroke. The detailed assessment of atherosclerosis of the carotid artery requires high resolution imaging of the vessel wall using multiple MR sequences with different contrast weightings. These images allow manual or automated classification of plaque components inside the vessel wall. Automated classification requires all sequences to be in alignment, which is hampered by patient motion. In clinical practice, correction of this motion is performed manually. Previous studies applied automated image registration to correct for motion using only nondeformable transformation models and did not perform a detailed quantitative validation. The purpose of this study is to develop an automated accurate 3D registration method, and to extensively validate this method on a large set of patient data. In addition, the authors quantified patient motion during scanning to investigate the need for correction. Methods: MR imaging studies (1.5T, dedicated carotid surface coil, Philips) from 55 TIA/stroke patients with ipsilateral <70% carotid artery stenosis were randomly selected from a larger cohort. Five MR pulse sequences were acquired around the carotid bifurcation, each containing nine transverse slices: T1-weighted turbo field echo, time of flight, T2-weighted turbo spin-echo, and pre- and postcontrast T1-weighted turbo spin-echo images (T1W TSE). The images were manually segmented by delineating the lumen contour in each vessel wall sequence and were manually aligned by applying throughplane and inplane translations to the images. To find the optimal automatic image registration method, different masks, choice of the fixed image, different types of the mutual information image similarity metric, and transformation models including 3D deformable transformation models, were evaluated. Evaluation of the automatic registration results was performed by comparing the lumen segmentations of the fixed image and

  9. Image Navigation and Registration Performance Assessment Tool Set for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    Science.gov (United States)

    De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24-hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24-hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  10. Measurement of pressure ridges in SAR images of sea ice - Preliminary results on scattering theory

    Science.gov (United States)

    Vesecky, J. F.; Smith, M. P.; Daida, J. M.; Samadani, R.; Camiso, J. C.

    1992-01-01

    Sea ice ridges and keels (hummocks and bummocks) are important in sea ice research for both scientific and practical reasons. A long-term objective is to make quantitative measurements of sea ice ridges using synthetic aperture radar (SAR) images. The preliminary results of a scattering model for sea ice ridge are reported. The approach is through the ridge height variance spectrum Psi(K), where K is the spatial wavenumber, and the two-scale scattering model. The height spectrum model is constructed to mimic height statistics observed with an airborne optical laser. The spectrum model is used to drive a two-scale scattering model. Model results for ridges observed at C- and X-band yield normalized radar cross sections that are 10 to 15 dB larger than the observed cross sections of multiyear ice over the range of angles of incidence from 10 to 70 deg.

  11. A Novel Fusion-Based Ship Detection Method from Pol-SAR Images

    Directory of Open Access Journals (Sweden)

    Wenguang Wang

    2015-09-01

    Full Text Available A novel fusion-based ship detection method from polarimetric Synthetic Aperture Radar (Pol-SAR images is proposed in this paper. After feature extraction and constant false alarm rate (CFAR detection, the detection results of HH channel, diplane scattering by Pauli decomposition and helical factor by Barnes decomposition are fused together. The confirmed targets and potential target pixels can be obtained after the fusion process. Using the difference degree of the target, potential target pixels can be classified. The fusion-based ship detection method works accurately by utilizing three different features comprehensively. The result of applying the technique to measured Airborne Synthetic Radar (AIRSAR data shows that the novel detection method can achieve better performance in both ship’s detection and ship’s shape preservation compared to the result of K-means clustering method and the Notch Filter method.

  12. Classification of PolSAR Images Using Multilayer Autoencoders and a Self-Paced Learning Approach

    Directory of Open Access Journals (Sweden)

    Wenshuai Chen

    2018-01-01

    Full Text Available In this paper, a novel polarimetric synthetic aperture radar (PolSAR image classification method based on multilayer autoencoders and self-paced learning (SPL is proposed. The multilayer autoencoders network is used to learn the features, which convert raw data into more abstract expressions. Then, softmax regression is applied to produce the predicted probability distributions over all the classes of each pixel. When we optimize the multilayer autoencoders network, self-paced learning is used to accelerate the learning convergence and achieve a stronger generalization capability. Under this learning paradigm, the network learns the easier samples first and gradually involves more difficult samples in the training process. The proposed method achieves the overall classification accuracies of 94.73%, 94.82% and 78.12% on the Flevoland dataset from AIRSAR, Flevoland dataset from RADARSAT-2 and Yellow River delta dataset, respectively. Such results are comparable with other state-of-the-art methods.

  13. A novel scheme for automatic nonrigid image registration using deformation invariant feature and geometric constraint

    Science.gov (United States)

    Deng, Zhipeng; Lei, Lin; Zhou, Shilin

    2015-10-01

    Automatic image registration is a vital yet challenging task, particularly for non-rigid deformation images which are more complicated and common in remote sensing images, such as distorted UAV (unmanned aerial vehicle) images or scanning imaging images caused by flutter. Traditional non-rigid image registration methods are based on the correctly matched corresponding landmarks, which usually needs artificial markers. It is a rather challenging task to locate the accurate position of the points and get accurate homonymy point sets. In this paper, we proposed an automatic non-rigid image registration algorithm which mainly consists of three steps: To begin with, we introduce an automatic feature point extraction method based on non-linear scale space and uniform distribution strategy to extract the points which are uniform distributed along the edge of the image. Next, we propose a hybrid point matching algorithm using DaLI (Deformation and Light Invariant) descriptor and local affine invariant geometric constraint based on triangulation which is constructed by K-nearest neighbor algorithm. Based on the accurate homonymy point sets, the two images are registrated by the model of TPS (Thin Plate Spline). Our method is demonstrated by three deliberately designed experiments. The first two experiments are designed to evaluate the distribution of point set and the correctly matching rate on synthetic data and real data respectively. The last experiment is designed on the non-rigid deformation remote sensing images and the three experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm compared with other traditional methods.

  14. Near Surface Soil Moisture Estimation Using SAR Images: A Case Study in the Mediterranean Area of Catalonia

    Science.gov (United States)

    Reppucci, Antonio; Moreno, Laura

    2010-12-01

    Information on Soil moisture spatial and temporal evolution is of great importance for managing the utilization of soils and vegetation, in particular in environments where the water resources are scarce. In-situ measurement of soil moisture are costly and not able to sample the spatial behaviour of a whole region. Thanks to their all weather capability and wide coverage, Synthetic Aperture Radar (SAR) images offer the opportunity to monitor large area with high resolution. This study presents the results of a project, partially founded by the Catalan government, to improve the monitoring of soil moisture using Earth Observation data. In particular the project is focused on the calibration of existing semi-empirical algorithm in the area of study. This will be done using co-located SAR and in-situ measurements acquired during several field campaigns. Observed deviations between SAR measurements and in-situ measurement are discussed.

  15. Automatic registration of panoramic image sequence and mobile laser scanning data using semantic features

    Science.gov (United States)

    Li, Jianping; Yang, Bisheng; Chen, Chi; Huang, Ronggang; Dong, Zhen; Xiao, Wen

    2018-02-01

    Inaccurate exterior orientation parameters (EoPs) between sensors obtained by pre-calibration leads to failure of registration between panoramic image sequence and mobile laser scanning data. To address this challenge, this paper proposes an automatic registration method based on semantic features extracted from panoramic images and point clouds. Firstly, accurate rotation parameters between the panoramic camera and the laser scanner are estimated using GPS and IMU aided structure from motion (SfM). The initial EoPs of panoramic images are obtained at the same time. Secondly, vehicles in panoramic images are extracted by the Faster-RCNN as candidate primitives to be matched with potential corresponding primitives in point clouds according to the initial EoPs. Finally, translation between the panoramic camera and the laser scanner is refined by maximizing the overlapping area of corresponding primitive pairs based on the Particle Swarm Optimization (PSO), resulting in a finer registration between panoramic image sequences and point clouds. Two challenging urban scenes were experimented to assess the proposed method, and the final registration errors of these two scenes were both less than three pixels, which demonstrates a high level of automation, robustness and accuracy.

  16. Segmentation and registration duality from echographic images by use of physiological and morphological knowledge

    International Nuclear Information System (INIS)

    Ionescu, G.

    1998-01-01

    Echographic imaging could potentially play a major role in the field of Computer Assisted Surgery (CAS). For doctors and surgeons to make full use of tool in planning and executing surgical operations, they also need user-friendly automatic software based on fast, precise and reliable algorithms. The main goal of this thesis is to take advantage of the segmentation/registration duality to extract the relevant information from echo graphical images. This information will allow the precise and automatic registration both of anatomical structures contained in the pre-operative model and of per-operative data contained in echographic images. The result of registration will be further to guide a computer-assisted tool. In the first part we propose different methods for filtering, segmentation and calibration of echographic images. The development of fast, precise and reliable algorithms is emphasized. The second part concerns the segmentation-registration duality and the corrections of elastic deformations of soft tissues. High-level segmentation algorithms for echographic images were developed. They are based on results of low -level segmentation, a priori anatomical knowledge as well as on information provided by the pre-operative model. The third part deals with detailed descriptions of applications and interpretation of results. The cases studied include: screwing inside the vertebral pedicles, ilio-sacral screwing, prostatic radiotherapy and puncture of pericardial effusion. Future developments for this approach are discussed. (author)

  17. Non-rigid ultrasound image registration using generalized relaxation labeling process

    Science.gov (United States)

    Lee, Jong-Ha; Seong, Yeong Kyeong; Park, MoonHo; Woo, Kyoung-Gu; Ku, Jeonghun; Park, Hee-Jun

    2013-03-01

    This research proposes a novel non-rigid registration method for ultrasound images. The most predominant anatomical features in medical images are tissue boundaries, which appear as edges. In ultrasound images, however, other features can be identified as well due to the specular reflections that appear as bright lines superimposed on the ideal edge location. In this work, an image's local phase information (via the frequency domain) is used to find the ideal edge location. The generalized relaxation labeling process is then formulated to align the feature points extracted from the ideal edge location. In this work, the original relaxation labeling method was generalized by taking n compatibility coefficient values to improve non-rigid registration performance. This contextual information combined with a relaxation labeling process is used to search for a correspondence. Then the transformation is calculated by the thin plate spline (TPS) model. These two processes are iterated until the optimal correspondence and transformation are found. We have tested our proposed method and the state-of-the-art algorithms with synthetic data and bladder ultrasound images of in vivo human subjects. Experiments show that the proposed method improves registration performance significantly, as compared to other state-of-the-art non-rigid registration algorithms.

  18. Mesh-to-raster region-of-interest-based nonrigid registration of multimodal images.

    Science.gov (United States)

    Tatano, Rosalia; Berkels, Benjamin; Deserno, Thomas M

    2017-10-01

    Region of interest (RoI) alignment in medical images plays a crucial role in diagnostics, procedure planning, treatment, and follow-up. Frequently, a model is represented as triangulated mesh while the patient data is provided from computed axial tomography scanners as pixel or voxel data. Previously, we presented a 2-D method for curve-to-pixel registration. This paper contributes (i) a general mesh-to-raster framework to register RoIs in multimodal images; (ii) a 3-D surface-to-voxel application, and (iii) a comprehensive quantitative evaluation in 2-D using ground truth (GT) provided by the simultaneous truth and performance level estimation (STAPLE) method. The registration is formulated as a minimization problem, where the objective consists of a data term, which involves the signed distance function of the RoI from the reference image and a higher order elastic regularizer for the deformation. The evaluation is based on quantitative light-induced fluoroscopy (QLF) and digital photography (DP) of decalcified teeth. STAPLE is computed on 150 image pairs from 32 subjects, each showing one corresponding tooth in both modalities. The RoI in each image is manually marked by three experts (900 curves in total). In the QLF-DP setting, our approach significantly outperforms the mutual information-based registration algorithm implemented with the Insight Segmentation and Registration Toolkit and Elastix.

  19. Investigation of Slow-Moving Landslides from ALOS/PALSAR Images with TCPInSAR: A Case Study of Oso, USA

    Directory of Open Access Journals (Sweden)

    Qian Sun

    2014-12-01

    Full Text Available Monitoring slope instability is of great significance for understanding landslide kinematics and, therefore, reducing the related geological hazards. In recent years, interferometric synthetic aperture radar (InSAR has been widely applied to this end, especially thanks to the prompt evolution of multi-temporal InSAR (MTInSAR algorithms. In this paper, temporarily-coherent point InSAR (TCPInSAR, a recently-developed MTInSAR technique, is employed to investigate the slow-moving landslides in Oso, U.S., with 13 ALOS/PALSAR images. Compared to other MTInSAR techniques, TCPInSAR can work well with a small amount of data and is immune to unwrapping errors. Furthermore, the severe orbital ramps emanated from the inaccurate determination of the ALOS satellite’s state vector can be jointly estimated by TCPInSAR, resulting in an exhaustive separation between the orbital errors and displacement signals. The TCPInSAR-derived deformation map indicates that the riverside slopes adjacent to the North Fork of the Stillaguamish River, where the 2014 mudslide occurred, were active during 2007 and 2011. Besides, Coal Mountain has been found to be experiencing slow-moving landslides with clear boundaries and considerable magnitudes. The Deer Creek River is also threatened by a potential landslide dam due to the creeps detected in a nearby slope. The slope instability information revealed in this study is helpful to deal with the landslide hazards in Oso.

  20. A general technique for interstudy registration of multifunction and multimodality images

    International Nuclear Information System (INIS)

    Lin, K.P.; Huang, S.C.; Bacter, L.R.; Phelps, M.E.

    1994-01-01

    A technique that can register anatomic/structural brain images (e.g., MRI) with various functional images (e.g., PET-FDG and PET-FDOPA) of the same subject has been developed. The procedure of this technique includes the following steps: (1) segmentation of MRI brain images into gray matter (GM), white matter (WM), cerebral spinal fluid (CSF), and, muscle (MS) components, (2) assignment of appropriate radio-tracer concentrations to various components depending on the kind of functional image that is being registered, (3) generation of simulated functional images to have a spatial resolution that is comparable to that of the measured ones, (4) alignment of the measured functional images to the simulated ones that are based on MRI images. A self-organization clustering method is used to segment the MRI images. The image alignment is based on the criterion of least squares of the pixel-by-pixel differences between the two sets of images that are being matched and on the Powell's algorithm for minimization. The technique was applied successfully for registering the MRI, PE