WorldWideScience

Sample records for sar automatic target

  1. SAR Automatic Target Recognition Based on Numerical Scattering Simulation and Model-based Matching

    Directory of Open Access Journals (Sweden)

    Zhou Yu

    2015-12-01

    Full Text Available This study proposes a model-based Synthetic Aperture Radar (SAR automatic target recognition algorithm. Scattering is computed offline using the laboratory-developed Bidirectional Analytic Ray Tracing software and the same system parameter settings as the Moving and Stationary Target Acquisition and Recognition (MSTAR datasets. SAR images are then created by simulated electromagnetic scattering data. Shape features are extracted from the measured and simulated images, and then, matches are searched. The algorithm is verified using three types of targets from MSTAR data and simulated SAR images, and it is shown that the proposed approach is fast and easy to implement with high accuracy.

  2. MAXIMUM A POSTERIORI-BASED AUTOMATIC TARGET DETECTION IN SAR IMAGES

    Institute of Scientific and Technical Information of China (English)

    Wang Yimin; An Jinwen

    2005-01-01

    The paper presents an algorithm of automatic target detection in Synthetic Aperture Radar(SAR) images based on Maximum A Posteriori(MAP). The algorithm is divided into three steps. First, it employs Gaussian mixture distribution to approximate and estimate multi-modal histogram of SAR image. Then, based on the principle of MAP, when a priori probability is both unknown and learned respectively, the sample pixels are classified into different classes c = {target,shadow, background}. Last, it compares the results of two different target detections. Simulation results preferably indicate that the presented algorithm is fast and robust, with the learned a priori probability, an approach to target detection is reliable and promising.

  3. The Role of Feature Enhanced Processing for Automatic Target Recognition using High Resolution Polarimetric SAR Data

    NARCIS (Netherlands)

    Broek, A.C. van den; Steeghs, T.P.H.; Dekker, R.J.

    2005-01-01

    We have studied the effect of feature enhanced processing on the discrimination of targets in highresolution polarimetric ISAR and SAR images. This is done by comparing feature-based classification results for original images and images which have been pre-processed to enhance target features. The d

  4. Robustness of features for automatic target discrimination in high resolution polarimetric SAR data.

    NARCIS (Netherlands)

    Broek, A.C. van den; Dekker, R.J.; Steeghs, P.

    2003-01-01

    We have studied the robustness of features against aspect variability for the purpose of target discrimination using polarimetric 35 Ghz ISAR data. Images at a resolution of 10 cm and 30 cm have been used for a complete aspect range of 360 degrees. The data covered four military targets: T72, ZSU23/

  5. 基于CS的SAR图像自动目标分割算法%Automatic Target Segmentation in SAR Images Using CS

    Institute of Scientific and Technical Information of China (English)

    杨萌; 张弓

    2011-01-01

    Object segmentation is an important step in SAR super-resolution processing and automatic target recognition. Considering image inherent sparse structures, an automatic target segmentation algorithm is proposed in this paper. First, a transformation matrix of dictionary is constructed to project the SAR image into a high dimensional space, and a sparse representation set of image local features is achieved. Second, a random sampling matrix is used to obtain its compression sampling and a mean-shift algorithm is applied to parallel process multiple sets of sample data. Finally, by using the sign test method, the SAR images data are classified as target pixels and background pixels classification. Experimental results demonstrate that the proposed algorithm has a good target segmentation results for hard target in synthetic aperture radar (SAR) images.%图像目标分割是SAR图像目标超分辨处理和自动目标识别的重要步骤.针对图像固有的稀疏结构,提出了一种SAR图像自动目标分割算法.通过构造变换字典将SAR图像数据投影到高维空间,实现了图像局部特征的稀疏表示,然后利用随机矩阵获得稀疏域局部特征的压缩采样,并对多组采样数据运用Mean-shift算法并行处理,最后通过符号检验法,实现了对目标像素与背景像素的分类.试验表明,该算法对硬目标具有较好的目标分割性能.

  6. Synthetic SAR Image Generation using Sensor, Terrain and Target Models

    DEFF Research Database (Denmark)

    Kusk, Anders; Abulaitijiang, Adili; Dall, Jørgen

    2016-01-01

    A tool to generate synthetic SAR images of objects set on a clutter background is described. The purpose is to generate images for training Automatic Target Recognition and Identification algorithms. The tool employs a commercial electromagnetic simulation program to calculate radar cross sections...... of the object using a CAD-model. The raw measurements are input to a SAR system and terrain model, which models thermal noise, terrain clutter, and SAR focusing to produce synthetic SAR images. Examples of SAR images at 0.3m and 0.1m resolution, and a comparison with real SAR imagery from the MSTAR dataset...

  7. Physics of Automatic Target Recognition

    CERN Document Server

    Sadjadi, Firooz

    2007-01-01

    Physics of Automatic Target Recognition addresses the fundamental physical bases of sensing, and information extraction in the state-of-the art automatic target recognition field. It explores both passive and active multispectral sensing, polarimetric diversity, complex signature exploitation, sensor and processing adaptation, transformation of electromagnetic and acoustic waves in their interactions with targets, background clutter, transmission media, and sensing elements. The general inverse scattering, and advanced signal processing techniques and scientific evaluation methodologies being used in this multi disciplinary field will be part of this exposition. The issues of modeling of target signatures in various spectral modalities, LADAR, IR, SAR, high resolution radar, acoustic, seismic, visible, hyperspectral, in diverse geometric aspects will be addressed. The methods for signal processing and classification will cover concepts such as sensor adaptive and artificial neural networks, time reversal filt...

  8. An Improved GLRT Method for Target Detection in SAR Imagery

    Directory of Open Access Journals (Sweden)

    Ju Yingyun

    2015-01-01

    Full Text Available Automatic ground vehicle detection based on SAR imagery is one of the important military applications of SAR. A region-based generalized likelihood ratio test (GLRT method is proposed in this paper, and this method combines the GLRT detection theory and image segmentation technology. First, the SAR imagery is roughly segmented as land clutter region and potential target region through the split and merge procedure often used for processing the original images. Then, based on the segmentation results, the reasonable statistical models for the data in the two regions are built respectively. Finally, with the knowledge of statistical characteristics of clutter and target, GLRT detection method is applied to the each pixel in the potential target region to obtain more accurate detection results. Experimental results based on real SAR data show that the proposed method can effectively detect the ground vehicle targets from the land clutter with excellent accuracy and speed.

  9. Refocusing vibrating targets in SAR images

    Science.gov (United States)

    Wang, Qi; Santhanam, Balu; Pepin, Matthew; Atwood, Tom; Hayat, Majeed M.

    2012-06-01

    In synthetic-aperture radar (SAR) returned signals, ground-target vibrations introduce a phase modulation that is linearly proportional to the vibration displacement. Such modulation, termed the micro-Doppler effect, introduces ghost targets along the azimuth direction in reconstructed SAR images that prevents SAR from forming focused images of the vibrating targets. Recently, a discrete fractional Fourier transform (DFrFT) based method was developed to estimate the vibration frequencies and instantaneous vibration accelerations of the vibrating targets from SAR returned signals. In this paper, a demodulation-based algorithm is proposed to reconstruct focused SAR images of vibrating targets by exploiting the estimation results of the DFrFT-based vibration estimation method. For a single-component harmonic vibration, the history of the vibration displacement is first estimated from the estimated vibration frequency and the instantaneous vibration accelerations. Then a reference signal whose phase is modulated by the estimated vibration displacement with a delay of 180 degree is constructed. After that, the SAR phase history from the vibration target is multiplied by the reference signal and the vibration-induced phase modulation is canceled. Finally, the SAR image containing the re-focused vibration target is obtained by applying the 2-D Fourier transform to the demodulated SAR phase history. This algorithm is applied to simulated SAR data and successfully reconstructs the SAR image containing the re-focused vibrating target.

  10. Synthetic SAR Image Generation using Sensor, Terrain and Target Models

    DEFF Research Database (Denmark)

    Kusk, Anders; Abulaitijiang, Adili; Dall, Jørgen

    2016-01-01

    A tool to generate synthetic SAR images of objects set on a clutter background is described. The purpose is to generate images for training Automatic Target Recognition and Identification algorithms. The tool employs a commercial electromagnetic simulation program to calculate radar cross section...

  11. An automatic coastline detector for use with SAR images

    Energy Technology Data Exchange (ETDEWEB)

    Erteza, Ireena A.

    1998-09-01

    SAR imagery for coastline detection has many potential advantages over conventional optical stereoscopic techniques. For example, SAR does not have restrictions on being collected during daylight or when there is no cloud cover. In addition, the techniques for coastline detection witth SAR images can be automated. In this paper, we present the algorithmic development of an automatic coastline detector for use with SAR imagery. Three main algorithms comprise the automatic coastline detection algorithm, The first algorithm considers the image pre-processing steps that must occur on the original image in order to accentuate the land/water boundary. The second algorithm automatically follows along the accentuated land/water boundary and produces a single-pixel-wide coastline. The third algorithm identifies islands and marks them. This report describes in detail the development of these three algorithms. Examples of imagery are used throughout the paper to illustrate the various steps in algorithms. Actual code is included in appendices. The algorithms presented are preliminary versions that can be applied to automatic coastline detection in SAR imagery. There are many variations and additions to the algorithms that can be made to improve robustness and automation, as required by a particular application.

  12. SAR Target Recognition via Supervised Discriminative Dictionary Learning and Sparse Representation of the SAR-HOG Feature

    Directory of Open Access Journals (Sweden)

    Shengli Song

    2016-08-01

    Full Text Available Automatic target recognition (ATR in synthetic aperture radar (SAR images plays an important role in both national defense and civil applications. Although many methods have been proposed, SAR ATR is still very challenging due to the complex application environment. Feature extraction and classification are key points in SAR ATR. In this paper, we first design a novel feature, which is a histogram of oriented gradients (HOG-like feature for SAR ATR (called SAR-HOG. Then, we propose a supervised discriminative dictionary learning (SDDL method to learn a discriminative dictionary for SAR ATR and propose a strategy to simplify the optimization problem. Finally, we propose a SAR ATR classifier based on SDDL and sparse representation (called SDDLSR, in which both the reconstruction error and the classification error are considered. Extensive experiments are performed on the MSTAR database under standard operating conditions and extended operating conditions. The experimental results show that SAR-HOG can reliably capture the structures of targets in SAR images, and SDDL can further capture subtle differences among the different classes. By virtue of the SAR-HOG feature and SDDLSR, the proposed method achieves the state-of-the-art performance on MSTAR database. Especially for the extended operating conditions (EOC scenario “Training 17 ∘ —Testing 45 ∘ ”, the proposed method improves remarkably with respect to the previous works.

  13. Maritime surveillance with synthetic aperture radar (SAR) and automatic identification system (AIS) onboard a microsatellite constellation

    Science.gov (United States)

    Peterson, E. H.; Zee, R. E.; Fotopoulos, G.

    2012-11-01

    New developments in small spacecraft capabilities will soon enable formation-flying constellations of small satellites, performing cooperative distributed remote sensing at a fraction of the cost of traditional large spacecraft missions. As part of ongoing research into applications of formation-flight technology, recent work has developed a mission concept based on combining synthetic aperture radar (SAR) with automatic identification system (AIS) data. Two or more microsatellites would trail a large SAR transmitter in orbit, each carrying a SAR receiver antenna and one carrying an AIS antenna. Spaceborne AIS can receive and decode AIS data from a large area, but accurate decoding is limited in high traffic areas, and the technology relies on voluntary vessel compliance. Furthermore, vessel detection amidst speckle in SAR imagery can be challenging. In this constellation, AIS broadcasts of position and velocity are received and decoded, and used in combination with SAR observations to form a more complete picture of maritime traffic and identify potentially non-cooperative vessels. Due to the limited transmit power and ground station downlink time of the microsatellite platform, data will be processed onboard the spacecraft. Herein we present the onboard data processing portion of the mission concept, including methods for automated SAR image registration, vessel detection, and fusion with AIS data. Georeferencing in combination with a spatial frequency domain method is used for image registration. Wavelet-based speckle reduction facilitates vessel detection using a standard CFAR algorithm, while leaving sufficient detail for registration of the filtered and compressed imagery. Moving targets appear displaced from their actual position in SAR imagery, depending on their velocity and the image acquisition geometry; multiple SAR images acquired from different locations are used to determine the actual positions of these targets. Finally, a probabilistic inference

  14. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection.

    Science.gov (United States)

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-07-19

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  15. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Directory of Open Access Journals (Sweden)

    Sungho Kim

    2016-07-01

    Full Text Available Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR images or infrared (IR images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter and an asymmetric morphological closing filter (AMCF, post-filter into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic

  16. Unification of automatic target tracking and automatic target recognition

    Science.gov (United States)

    Schachter, Bruce J.

    2014-06-01

    The subject being addressed is how an automatic target tracker (ATT) and an automatic target recognizer (ATR) can be fused together so tightly and so well that their distinctiveness becomes lost in the merger. This has historically not been the case outside of biology and a few academic papers. The biological model of ATT∪ATR arises from dynamic patterns of activity distributed across many neural circuits and structures (including retina). The information that the brain receives from the eyes is "old news" at the time that it receives it. The eyes and brain forecast a tracked object's future position, rather than relying on received retinal position. Anticipation of the next moment - building up a consistent perception - is accomplished under difficult conditions: motion (eyes, head, body, scene background, target) and processing limitations (neural noise, delays, eye jitter, distractions). Not only does the human vision system surmount these problems, but it has innate mechanisms to exploit motion in support of target detection and classification. Biological vision doesn't normally operate on snapshots. Feature extraction, detection and recognition are spatiotemporal. When vision is viewed as a spatiotemporal process, target detection, recognition, tracking, event detection and activity recognition, do not seem as distinct as they are in current ATT and ATR designs. They appear as similar mechanism taking place at varying time scales. A framework is provided for unifying ATT and ATR.

  17. The Automatic Measurement of Targets

    DEFF Research Database (Denmark)

    Höhle, Joachim

    1997-01-01

    The automatic measurement of targets is demonstrated by means of a theoretical example and by an interactive measuring program for real imagery from a réseau camera. The used strategy is a combination of two methods: the maximum correlation coefficient and the correlation in the subpixel range. F...... interactive software is also part of a computer-assisted learning program on digital photogrammetry....

  18. GRECO-SAR: An Orbital Polarimetric SAR Simulator of Deterministic Complex Targets for Vessel Classification Studies

    OpenAIRE

    Margarit Martín, Gerard; Mallorquí Franquet, Jordi Joan; Rius Casals, Juan Manuel; Sanz Marcos, Jesús

    2006-01-01

    This paper presents a synthetic aperture radar (SAR) simulator that is able to generate polarimetric SAR (POLSAR) and polarimetric inverse SAR data of complex targets. It solves the electromagnetic problem via high-frequency approximations, such as physical optics and the physical theory of diffraction, with notable computational efficiency. In principle, any orbital monostatic sensor working at any band, resolution, and operating mode can be modeled. To make simulations more realistic, the t...

  19. Automatic polar ice thickness estimation from SAR imagery

    Science.gov (United States)

    Rahnemoonfar, Maryam; Yari, Masoud; Fox, Geoffrey C.

    2016-05-01

    Global warming has caused serious damage to our environment in recent years. Accelerated loss of ice from Greenland and Antarctica has been observed in recent decades. The melting of polar ice sheets and mountain glaciers has a considerable influence on sea level rise and altering ocean currents, potentially leading to the flooding of the coastal regions and putting millions of people around the world at risk. Synthetic aperture radar (SAR) systems are able to provide relevant information about subsurface structure of polar ice sheets. Manual layer identification is prohibitively tedious and expensive and is not practical for regular, longterm ice-sheet monitoring. Automatic layer finding in noisy radar images is quite challenging due to huge amount of noise, limited resolution and variations in ice layers and bedrock. Here we propose an approach which automatically detects ice surface and bedrock boundaries using distance regularized level set evolution. In this approach the complex topology of ice and bedrock boundary layers can be detected simultaneously by evolving an initial curve in radar imagery. Using a distance regularized term, the regularity of the level set function is intrinsically maintained that solves the reinitialization issues arising from conventional level set approaches. The results are evaluated on a large dataset of airborne radar imagery collected during IceBridge mission over Antarctica and Greenland and show promising results in respect to hand-labeled ground truth.

  20. Classification of Targets in SAR Images Using ISAR Data

    NARCIS (Netherlands)

    Wit, J.J.M. de; Dekker, R.J.; Broek, A.C. van den

    2005-01-01

    Feature-based classification of targets in SAR images by using ISAR measurements was studied, based on polarimetric SAR and ISAR data acquired with the MEMPHIS radar system of FGAN-FHR. The data contained one T-72 battle tank, one BMP combat vehicle, and several confusers. The resolution was 75 cm.

  1. SAR Imaging of Moving Targets via Compressive Sensing

    CERN Document Server

    Wang, Jun; Zhang, Hao; Wang, Xiqin

    2011-01-01

    An algorithm based on compressive sensing (CS) is proposed for synthetic aperture radar (SAR) imaging of moving targets. The received SAR echo is decomposed into the sum of basis sub-signals, which are generated by discretizing the target spatial domain and velocity domain and synthesizing the SAR received data for every discretized spatial position and velocity candidate. In this way, the SAR imaging problem is converted into sub-signal selection problem. In the case that moving targets are sparsely distributed in the observed scene, their reflectivities, positions and velocities can be obtained by using the CS technique. It is shown that, compared with traditional algorithms, the target image obtained by the proposed algorithm has higher resolution and lower side-lobe while the required number of measurements can be an order of magnitude less than that by sampling at Nyquist sampling rate. Moreover, multiple targets with different speeds can be imaged simultaneously, so the proposed algorithm has higher eff...

  2. Compact polarimetric SAR product and calibration considerations for target analysis

    Science.gov (United States)

    Sabry, Ramin

    2016-10-01

    Compact polarimetric (CP) data exploitation is currently of growing interest considering the new generation of such Synthetic Aperture Radar (SAR) systems. These systems offer target detection and classification capabilities comparable to those of polarimetric SARs (PolSAR) with less stringent requirements. A good example is the RADARSAT Constellation Mission (RCM). In this paper, some characteristic CP products are described and effects of CP mode deviation from ideal circular polarization transmit on classifications are modeled. The latter is important for operation of typical CP modes (e.g., RCM). The developed model can be used to estimate the ellipticity variation from CP measured data, and hence, calibrate the classification products.

  3. THz-SAR Vibrating Target Imaging via the Bayesian Method

    Directory of Open Access Journals (Sweden)

    Bin Deng

    2017-01-01

    Full Text Available Target vibration bears important information for target recognition, and terahertz, due to significant micro-Doppler effects, has strong advantages for remotely sensing vibrations. In this paper, the imaging characteristics of vibrating targets with THz-SAR are at first analyzed. An improved algorithm based on an excellent Bayesian approach, that is, the expansion-compression variance-component (ExCoV method, has been proposed for reconstructing scattering coefficients of vibrating targets, which provides more robust and efficient initialization and overcomes the deficiencies of sidelobes as well as artifacts arising from the traditional correlation method. A real vibration measurement experiment of idle cars was performed to validate the range model. Simulated SAR data of vibrating targets and a tank model in a real background in 220 GHz show good performance at low SNR. Rapidly evolving high-power terahertz devices will offer viable THz-SAR application at a distance of several kilometers.

  4. Point association analysis of vessel target detection with SAR, HFSWR and AIS

    Institute of Scientific and Technical Information of China (English)

    JI Yonggang; ZHANG Jie; MENG Junmin; WANG Yiming

    2014-01-01

    A space-borne synthetic aperture radar (SAR), a high frequency surface wave radar (HFSWR), and a ship automatic identification system (AIS) are the main remote sensors for vessel monitoring in a wide range. These three sensors have their own advantages and weaknesses, and they can complement each other in some situations. So it would improve the capability of vessel target detection to use multiple sensors in-cluding SAR, HFSWR, and AIS to identify non-cooperative vessel targets from the fusion results. During the fusion process of multiple sensors’ detection results, point association is one of the key steps, and it can affect the accuracy of the data fusion and the efficiency of a non-cooperative target’s recognition. This study investigated the point association analyses of vessel target detection under different conditions: space-borne SAR paired with AIS, as well as HFSWR, paired with AIS , and the characteristics of the SAR and the HFSWR and their capability of vessel target detection. Then a point association method of multiple sensors was proposed. Finally, the thresholds selection of key parameters in the points association (including range threshold, radial velocity threshold, and azimuth threshold) were investigated, and their influences on final association results were analyzed.

  5. SAR target recognition based on improved joint sparse representation

    Science.gov (United States)

    Cheng, Jian; Li, Lan; Li, Hongsheng; Wang, Feng

    2014-12-01

    In this paper, a SAR target recognition method is proposed based on the improved joint sparse representation (IJSR) model. The IJSR model can effectively combine multiple-view SAR images from the same physical target to improve the recognition performance. The classification process contains two stages. Convex relaxation is used to obtain support sample candidates with the ℓ 1-norm minimization in the first stage. The low-rank matrix recovery strategy is introduced to explore the final support samples and its corresponding sparse representation coefficient matrix in the second stage. Finally, with the minimal reconstruction residual strategy, we can make the SAR target classification. The experimental results on the MSTAR database show the recognition performance outperforms state-of-the-art methods, such as the joint sparse representation classification (JSRC) method and the sparse representation classification (SRC) method.

  6. 3-D Target Location from Stereoscopic SAR Images

    Energy Technology Data Exchange (ETDEWEB)

    DOERRY,ARMIN W.

    1999-10-01

    SAR range-Doppler images are inherently 2-dimensional. Targets with a height offset lay over onto offset range and azimuth locations. Just which image locations are laid upon depends on the imaging geometry, including depression angle, squint angle, and target bearing. This is the well known layover phenomenon. Images formed with different aperture geometries will exhibit different layover characteristics. These differences can be exploited to ascertain target height information, in a stereoscopic manner. Depending on the imaging geometries, height accuracy can be on the order of horizontal position accuracies, thereby rivaling the best IFSAR capabilities in fine resolution SAR images. All that is required for this to work are two distinct passes with suitably different geometries from any plain old SAR.

  7. SAR Data Fusion Imaging Method Oriented to Target Feature Extraction

    Directory of Open Access Journals (Sweden)

    Yang Wei

    2015-02-01

    Full Text Available To deal with the difficulty for target outlines extracting precisely due to neglect of target scattering characteristic variation during the processing of high-resolution space-borne SAR data, a novel fusion imaging method is proposed oriented to target feature extraction. Firstly, several important aspects that affect target feature extraction and SAR image quality are analyzed, including curved orbit, stop-and-go approximation, atmospheric delay, and high-order residual phase error. Furthermore, the corresponding compensation methods are addressed as well. Based on the analysis, the mathematical model of SAR echo combined with target space-time spectrum is established for explaining the space-time-frequency change rule of target scattering characteristic. Moreover, a fusion imaging strategy and method under high-resolution and ultra-large observation angle range conditions are put forward to improve SAR quality by fusion processing in range-doppler and image domain. Finally, simulations based on typical military targets are used to verify the effectiveness of the fusion imaging method.

  8. Signature prediction for model-based automatic target recognition

    Science.gov (United States)

    Keydel, Eric R.; Lee, Shung W.

    1996-06-01

    The moving and stationary target recognition (MSTAR) model- based automatic target recognition (ATR) system utilizes a paradigm which matches features extracted form an unknown SAR target signature against predictions of those features generated from models of the sensing process and candidate target geometries. The candidate target geometry yielding the best match between predicted and extracted features defines the identify of the unknown target. MSTAR will extend the current model-based ATR state-of-the-art in a number of significant directions. These include: use of Bayesian techniques for evidence accrual, reasoning over target subparts, coarse-to-fine hypothesis search strategies, and explicit reasoning over target articulation, configuration, occlusion, and lay-over. These advances also imply significant technical challenges, particularly for the MSTAR feature prediction module (MPM). In addition to accurate electromagnetics, the MPM must provide traceback between input target geometry and output features, on-line target geometry manipulation, target subpart feature prediction, explicit models for local scene effects, and generation of sensitivity and uncertainty measures for the predicted features. This paper describes the MPM design which is being developed to satisfy these requirements. The overall module structure is presented, along with the specific deign elements focused on MSTAR requirements. Particular attention is paid to design elements that enable on-line prediction of features within the time constraints mandated by model-driven ATR. Finally, the current status, development schedule, and further extensions in the module design are described.

  9. FAST DETECTING TARGET GROUPS IN SAR IMAGES

    Institute of Scientific and Technical Information of China (English)

    Gao Gui; Kuang Gangyao; Jiang Yongmei; Wang Baosun; Gao Sheng

    2006-01-01

    A successful algorithm for detecting target groups is presented. Firstly, A global Constant False Alarm Rate (CFAR) detector is utilized to locate the potential target regions, and then the features are computed for target discrimination based on voting mechanism. Finally, Target groups are extracted. The results of experiments show the validity of this algorithm.

  10. Automatic Target Detection Using Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Ganesan L

    2004-01-01

    Full Text Available Automatic target recognition (ATR involves processing images for detecting, classifying, and tracking targets embedded in a background scene. This paper presents an algorithm for detecting a specified set of target objects embedded in visual images for an ATR application. The developed algorithm employs a novel technique for automatically detecting man-made and non-man-made single, two, and multitargets from nontarget objects, located within a cluttered environment by evaluating nonoverlapping image blocks, where block-by-block comparison of wavelet cooccurrence feature is done. The results of the proposed algorithm are found to be satisfactory.

  11. SAR image target segmentation based on entropy maximization and morphology

    Institute of Scientific and Technical Information of China (English)

    柏正尧; 刘洲峰; 何佩琨

    2004-01-01

    Entropy maximization thresholding is a simple, effective image segmentation method. The relation between the histogram entropy and the gray level of an image is analyzed. An approach, which speeds the computation of optimal threshold based on entropy maximization, is proposed. The suggested method has been applied to the synthetic aperture radar (SAR) image targets segmentation. Mathematical morphology works well in reducing the residual noise.

  12. Automatic SAR/optical cross-matching for GCP monograph generation

    Science.gov (United States)

    Nutricato, Raffaele; Morea, Alberto; Nitti, Davide Oscar; La Mantia, Claudio; Agrimano, Luigi; Samarelli, Sergio; Chiaradia, Maria Teresa

    2016-10-01

    Ground Control Points (GCP), automatically extracted from Synthetic Aperture Radar (SAR) images through 3D stereo analysis, can be effectively exploited for an automatic orthorectification of optical imagery if they can be robustly located in the basic optical images. The present study outlines a SAR/Optical cross-matching procedure that allows a robust alignment of radar and optical images, and consequently to derive automatically the corresponding sub-pixel position of the GCPs in the optical image in input, expressed as fractional pixel/line image coordinates. The cross-matching in performed in two subsequent steps, in order to gradually gather a better precision. The first step is based on the Mutual Information (MI) maximization between optical and SAR chips while the last one uses the Normalized Cross-Correlation as similarity metric. This work outlines the designed algorithmic solution and discusses the results derived over the urban area of Pisa (Italy), where more than ten COSMO-SkyMed Enhanced Spotlight stereo images with different beams and passes are available. The experimental analysis involves different satellite images, in order to evaluate the performances of the algorithm w.r.t. the optical spatial resolution. An assessment of the performances of the algorithm has been carried out, and errors are computed by measuring the distance between the GCP pixel/line position in the optical image, automatically estimated by the tool, and the "true" position of the GCP, visually identified by an expert user in the optical images.

  13. Missile-Borne SAR Raw Signal Simulation for Maneuvering Target

    Directory of Open Access Journals (Sweden)

    Weijie Xia

    2016-01-01

    Full Text Available SAR raw signal simulation under the case of maneuver and high-speed has been a challenging and urgent work recently. In this paper, a new method based on one-dimensional fast Fourier transform (1DFFT algorithm is presented for raw signal simulation of maneuvering target for missile-borne SAR. Firstly, SAR time-domain raw signal model is given and an effective Range Frequency Azimuth Time (RFAT algorithm based on 1DFFT is derived. In this algorithm, the “Stop and Go” (SaG model is adopted and the wide radar scattering characteristic of target is taken into account. Furthermore, the “Inner Pulse Motion” (IPM model is employed to deal with high-speed case. This new RFAT method can handle the maneuvering cases, high-speed cases, and bistatic radar cases, which are all possible in the missile-borne SAR. Besides, this raw signal simulation adopts the electromagnetic scattering calculation so that we do not need a scattering rate distribution map as the simulation input. Thus, the multiple electromagnetic reflections can be considered. Simulation examples prove the effectiveness of our method.

  14. Automatic Mexico Gulf Oil Spill Detection from Radarsat-2 SAR Satellite Data Using Genetic Algorithm

    Science.gov (United States)

    Marghany, Maged

    2016-10-01

    In this work, a genetic algorithm is exploited for automatic detection of oil spills of small and large size. The route is achieved using arrays of RADARSAT-2 SAR ScanSAR Narrow single beam data obtained in the Gulf of Mexico. The study shows that genetic algorithm has automatically segmented the dark spot patches related to small and large oil spill pixels. This conclusion is confirmed by the receiveroperating characteristic (ROC) curve and ground data which have been documented. The ROC curve indicates that the existence of oil slick footprints can be identified with the area under the curve between the ROC curve and the no-discrimination line of 90%, which is greater than that of other surrounding environmental features. The small oil spill sizes represented 30% of the discriminated oil spill pixels in ROC curve. In conclusion, the genetic algorithm can be used as a tool for the automatic detection of oil spills of either small or large size and the ScanSAR Narrow single beam mode serves as an excellent sensor for oil spill patterns detection and surveying in the Gulf of Mexico.

  15. Automatic Mexico Gulf Oil Spill Detection from Radarsat-2 SAR Satellite Data Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Marghany Maged

    2016-10-01

    Full Text Available In this work, a genetic algorithm is exploited for automatic detection of oil spills of small and large size. The route is achieved using arrays of RADARSAT-2 SAR ScanSAR Narrow single beam data obtained in the Gulf of Mexico. The study shows that genetic algorithm has automatically segmented the dark spot patches related to small and large oil spill pixels. This conclusion is confirmed by the receiver-operating characteristic (ROC curve and ground data which have been documented. The ROC curve indicates that the existence of oil slick footprints can be identified with the area under the curve between the ROC curve and the no-discrimination line of 90%, which is greater than that of other surrounding environmental features. The small oil spill sizes represented 30% of the discriminated oil spill pixels in ROC curve. In conclusion, the genetic algorithm can be used as a tool for the automatic detection of oil spills of either small or large size and the ScanSAR Narrow single beam mode serves as an excellent sensor for oil spill patterns detection and surveying in the Gulf of Mexico.

  16. New algorithm of target classification in polarimetric SAR

    Institute of Scientific and Technical Information of China (English)

    Wang Yang; Lu Jiaguo; Wu Xianliang

    2008-01-01

    The different approaches used for target decomposition (TD) theory in radar polarimetry are reviewed and three main types of theorems are introduced: those based on Mueller matrix, those using an eigenvector analysis of the coherency matrix, and those employing coherent decomposition of the scattering matrix. Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated success in many fields. A new algorithm of target classification, by combining target decomposition and the support vector machine, is proposed.To conduct the experiment, the polarimetric synthetic aperture radar (SAR) data are used. Experimental results show that it is feasible and efficient to target classification by applying target decomposition to extract scattering mechanisms, and the effects of kernel function and its parameters on the classification efficiency are significant.

  17. Automatic Detection of the Ice Edge in SAR Imagery Using Curvelet Transform and Active Contour

    Directory of Open Access Journals (Sweden)

    Jiange Liu

    2016-06-01

    Full Text Available A novel method based on the curvelet transform and active contour method to automatically detect the ice edge in Synthetic Aperture Radar (SAR imagery is proposed. The method utilizes the location of high curvelet coefficients to determine regions in the image likely to contain the ice edge. Using an ice edge from passive microwave sea ice concentration for initialization, these regions are then joined using the active contour method to obtain the final ice edge. The method is evaluated on four dual polarization SAR scenes of the Labrador sea. Through comparison of the ice edge with that from image analysis charts, it is demonstrated that the proposed method can detect the ice edge effectively in SAR images. This is particularly relevant when the marginal ice zone is diffuse or the ice is thin, and using the definition of ice edge from the passive microwave ice concentration would underestimate the ice edge location. It is expected that the method may be useful for operations in marginal ice zones, such as offshore drilling, where a high resolution estimate of the ice edge location is required. It could also be useful as a first guess for an ice analyst, or for the assimilation of SAR data.

  18. An efficient two-objective automatic SAR image segmentation framework using artificial immune system

    Science.gov (United States)

    Yang, Dongdong; Niu, Ruican; Fei, Rong; Jiang, Qiaoyong; Li, Hongye; Cao, Zijian

    2015-12-01

    Here, an efficient multi-objective automatic segmentation framework (MASF) is formulated and applied to synthetic aperture radar (SAR) image unsupervised classification. In the framework, three important issues are presented: 1) two reasonable image preprocessing techniques, including spatial filtering and watershed operator, are discussed at the initial stage of the framework; 2)then, an efficient immune multi-objective optimization algorithm with uniform clone, adaptive selection by online nondominated solutions, and dynamic deletion in diversity maintenance is proposed; 3 two very simple, but very efficient conflicting clustering validity indices are incorporated into the framework and simultaneously optimized. Two simulated SAR data and two complicated real images are used to quantitatively validate its effectiveness. In addition, four other state-of-the-art image segmentation methods are employed for comparison.

  19. Automatic decision support system based on SAR data for oil spill detection

    Science.gov (United States)

    Mera, David; Cotos, José M.; Varela-Pet, José; Rodríguez, Pablo G.; Caro, Andrés

    2014-11-01

    Global trade is mainly supported by maritime transport, which generates important pollution problems. Thus, effective surveillance and intervention means are necessary to ensure proper response to environmental emergencies. Synthetic Aperture Radar (SAR) has been established as a useful tool for detecting hydrocarbon spillages on the oceans surface. Several decision support systems have been based on this technology. This paper presents an automatic oil spill detection system based on SAR data which was developed on the basis of confirmed spillages and it was adapted to an important international shipping route off the Galician coast (northwest Iberian Peninsula). The system was supported by an adaptive segmentation process based on wind data as well as a shape oriented characterization algorithm. Moreover, two classifiers were developed and compared. Thus, image testing revealed up to 95.1% candidate labeling accuracy. Shared-memory parallel programming techniques were used to develop algorithms in order to improve above 25% of the system processing time.

  20. Knowledge-based detection method for SAR targets

    Institute of Scientific and Technical Information of China (English)

    Fei Gao; Achang Ru; Jun Wang; Shiyi Mao

    2014-01-01

    When the classical constant false-alarm rate (CFAR) combined with fuzzy C-means (FCM) algorithm is applied to target detection in synthetic aperture radar (SAR) images with com-plex background, CFAR requires block-by-block estimation of clut-ter models and FCM clustering converges to local optimum. To address these problems, this paper pro-poses a new detection algorithm: knowledge-based combined with improved genetic algorithm-fuzzy C-means (GA-FCM) algorithm. Firstly, the algo-rithm takes target region’s maximum and average intensity, area, length of long axis and long-to-short axis ratio of the external el ipse as factors which influence the target appearing probabil-ity. The knowledge-based detection algorithm can produce pre-process results without the need of estimation of clutter models as CFAR does. Afterward the GA-FCM algorithm is improved to clus-ter pre-process results. It has advantages of incorporating global optimizing ability of GA and local optimizing ability of FCM, which wil further eliminate false alarms and get better results. The ef-fectiveness of the proposed technique is experimental y validated with real SAR images.

  1. Development of chemical inhibitors of the SARS coronavirus: viral helicase as a potential target.

    Science.gov (United States)

    Keum, Young-Sam; Jeong, Yong-Joo

    2012-11-15

    Severe acute respiratory syndrome (SARS) was the first pandemic in the 21st century to claim more than 700 lives worldwide. However, effective anti-SARS vaccines or medications are currently unavailable despite being desperately needed to adequately prepare for a possible SARS outbreak. SARS is caused by a novel coronavirus, and one of its components, a viral helicase, is emerging as a promising target for the development of chemical SARS inhibitors. In the following review, we describe the characterization, family classification, and kinetic movement mechanisms of the SARS coronavirus (SCV) helicase-nsP13. We also discuss the recent progress in the identification of novel chemical inhibitors of nsP13 in the context of our recent discovery of the strong inhibition of the SARS helicase by natural flavonoids, myricetin and scutellarein. These compounds will serve as important resources for the future development of anti-SARS medications. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. A New SAR Image Segmentation Algorithm for the Detection of Target and Shadow Regions

    Science.gov (United States)

    Huang, Shiqi; Huang, Wenzhun; Zhang, Ting

    2016-12-01

    The most distinctive characteristic of synthetic aperture radar (SAR) is that it can acquire data under all weather conditions and at all times. However, its coherent imaging mechanism introduces a great deal of speckle noise into SAR images, which makes the segmentation of target and shadow regions in SAR images very difficult. This paper proposes a new SAR image segmentation method based on wavelet decomposition and a constant false alarm rate (WD-CFAR). The WD-CFAR algorithm not only is insensitive to the speckle noise in SAR images but also can segment target and shadow regions simultaneously, and it is also able to effectively segment SAR images with a low signal-to-clutter ratio (SCR). Experiments were performed to assess the performance of the new algorithm on various SAR images. The experimental results show that the proposed method is effective and feasible and possesses good characteristics for general application.

  3. AUTOMATIC MAPPING OF GLACIER BASED ON SAR IMAGERY BY BENEFITS OF FREELY OPTICAL AND THERMAL DATA

    Directory of Open Access Journals (Sweden)

    L. Fang

    2015-03-01

    Full Text Available For many research applications like water resources evaluation, determination of glacier specific changes, and for calculation of the past and future contribution of glaciers to sea-level change, parameters about the size and spatial distribution of glaciers is crucial. In this paper, an automatic method for determination of glacier surface area using single track high resolution TerraSAR-X imagery by benefits of low resolution optical and thermal data is presented. Based on the normalized difference snow index (NDSI and land surface temperature (LST map generated from optical and thermal data combined with a surface slope data, a low resolution binary mask was derived used for the supervised classification of glacier using SAR imagery. Then, a set of suitable features is derived from the SAR intensity image, such as the texture information generated based on the gray level co-occurrence matrix (GLCM, and the intensity values. With these features, the glacier surface is discriminated from the background by Random Forests (RF method.

  4. Automatic Mapping of Glacier Based on SAR Imagery by Benefits of Freely Optical and Thermal Data

    Science.gov (United States)

    Fang, L.; Hoegner, L.; Stilla, U.

    2015-03-01

    For many research applications like water resources evaluation, determination of glacier specific changes, and for calculation of the past and future contribution of glaciers to sea-level change, parameters about the size and spatial distribution of glaciers is crucial. In this paper, an automatic method for determination of glacier surface area using single track high resolution TerraSAR-X imagery by benefits of low resolution optical and thermal data is presented. Based on the normalized difference snow index (NDSI) and land surface temperature (LST) map generated from optical and thermal data combined with a surface slope data, a low resolution binary mask was derived used for the supervised classification of glacier using SAR imagery. Then, a set of suitable features is derived from the SAR intensity image, such as the texture information generated based on the gray level co-occurrence matrix (GLCM), and the intensity values. With these features, the glacier surface is discriminated from the background by Random Forests (RF) method.

  5. AUTOMATIC SHIP DETECTION IN SINGLE-POL SAR IMAGES USING TEXTURE FEATURES IN ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    E. Khesali

    2015-12-01

    Full Text Available This paper presents a novel method for detecting ships from high-resolution synthetic aperture radar (SAR images. This method categorizes ship targets from single-pol SAR images using texture features in artificial neural networks. As such, the method tries to overcome the lack of an operational solution that is able to reliably detect ships with one SAR channel. The method has the following three main stages: 1 feature extraction; 2 feature selection; and 3 ship detection. The first part extracts different texture features from SAR image. These textures include occurrence and co occurrence measures with different window sizes. Then, best features are selected. Finally, the artificial neural network is used to extract ship pixels from sea ones. In post processing stage some morphological filters are used to improve the result. The effectiveness of the proposed method is verified using Sentinel-1 data in VV polarization. Experimental results indicate that the proposed algorithm can be implemented with time-saving, high precision ship extraction, feature analysis, and detection. The results also show that using texture features the algorithm properly discriminates speckle noise from ships.

  6. Automatic target classification of man-made objects in synthetic aperture radar images using Gabor wavelet and neural network

    Science.gov (United States)

    Vasuki, Perumal; Roomi, S. Mohamed Mansoor

    2013-01-01

    Processing of synthetic aperture radar (SAR) images has led to the development of automatic target classification approaches. These approaches help to classify individual and mass military ground vehicles. This work aims to develop an automatic target classification technique to classify military targets like truck/tank/armored car/cannon/bulldozer. The proposed method consists of three stages via preprocessing, feature extraction, and neural network (NN). The first stage removes speckle noise in a SAR image by the identified frost filter and enhances the image by histogram equalization. The second stage uses a Gabor wavelet to extract the image features. The third stage classifies the target by an NN classifier using image features. The proposed work performs better than its counterparts, like K-nearest neighbor (KNN). The proposed work performs better on databases like moving and stationary target acquisition and recognition against the earlier methods by KNN.

  7. Biological models for automatic target detection

    Science.gov (United States)

    Schachter, Bruce

    2008-04-01

    Humans are better at detecting targets in literal imagery than any known algorithm. Recent advances in modeling visual processes have resulted from f-MRI brain imaging with humans and the use of more invasive techniques with monkeys. There are four startling new discoveries. 1) The visual cortex does not simply process an incoming image. It constructs a physics based model of the image. 2) Coarse category classification and range-to-target are estimated quickly - possibly through the dorsal pathway of the visual cortex, combining rapid coarse processing of image data with expectations and goals. This data is then fed back to lower levels to resize the target and enhance the recognition process feeding forward through the ventral pathway. 3) Giant photosensitive retinal ganglion cells provide data for maintaining circadian rhythm (time-of-day) and modeling the physics of the light source. 4) Five filter types implemented by the neurons of the primary visual cortex have been determined. A computer model for automatic target detection has been developed based upon these recent discoveries. It uses an artificial neural network architecture with multiple feed-forward and feedback paths. Our implementation's efficiency derives from the observation that any 2-D filter kernel can be approximated by a sum of 2-D box functions. And, a 2-D box function easily decomposes into two 1-D box functions. Further efficiency is obtained by decomposing the largest neural filter into a high pass filter and a more sparsely sampled low pass filter.

  8. A new automatic SAR-based flood mapping application hosted on the European Space Agency's grid processing on demand fast access to imagery environment

    Science.gov (United States)

    Hostache, Renaud; Chini, Marco; Matgen, Patrick; Giustarini, Laura

    2013-04-01

    There is a clear need for developing innovative processing chains based on earth observation (EO) data to generate products supporting emergency response and flood management at a global scale. Here an automatic flood mapping application is introduced. The latter is currently hosted on the Grid Processing on Demand (G-POD) Fast Access to Imagery (Faire) environment of the European Space Agency. The main objective of the online application is to deliver flooded areas using both recent and historical acquisitions of SAR data in an operational framework. It is worth mentioning that the method can be applied to both medium and high resolution SAR images. The flood mapping application consists of two main blocks: 1) A set of query tools for selecting the "crisis image" and the optimal corresponding pre-flood "reference image" from the G-POD archive. 2) An algorithm for extracting flooded areas using the previously selected "crisis image" and "reference image". The proposed method is a hybrid methodology, which combines histogram thresholding, region growing and change detection as an approach enabling the automatic, objective and reliable flood extent extraction from SAR images. The method is based on the calibration of a statistical distribution of "open water" backscatter values inferred from SAR images of floods. Change detection with respect to a pre-flood reference image helps reducing over-detection of inundated areas. The algorithms are computationally efficient and operate with minimum data requirements, considering as input data a flood image and a reference image. Stakeholders in flood management and service providers are able to log onto the flood mapping application to get support for the retrieval, from the rolling archive, of the most appropriate pre-flood reference image. Potential users will also be able to apply the implemented flood delineation algorithm. Case studies of several recent high magnitude flooding events (e.g. July 2007 Severn River flood

  9. A simulation-based approach towards automatic target recognition of high resolution space borne radar signatures

    Science.gov (United States)

    Anglberger, H.; Kempf, T.

    2016-10-01

    Specific imaging effects that are caused mainly by the range measurement principle of a radar device, its much lower frequency range as compared to the optical spectrum, the slanted imaging geometry and certainly the limited spatial resolution complicates the interpretation of radar signatures decisively. Especially the coherent image formation which causes unwanted speckle noise aggravates the problem of visually recognizing target objects. Fully automatic approaches with acceptable false alarm rates are therefore an even harder challenge. At the Microwaves and Radar Institute of the German Aerospace Center (DLR) the development of methods to implement a robust overall processing workflow for automatic target recognition (ATR) out of high resolution synthetic aperture radar (SAR) image data is under progress. The heart of the general approach is to use time series exploitation for the former detection step and simulation-based signature matching for the subsequent recognition. This paper will show the overall ATR chain as a proof of concept for the special case of airplane recognition on image data from the space borne SAR sensor TerraSAR-X.

  10. Utilization of a genetic algorithm for the automatic detection of oil spill from RADARSAT-2 SAR satellite data.

    Science.gov (United States)

    Marghany, Maged

    2014-12-15

    In this work, a genetic algorithm is applied for the automatic detection of oil spills. The procedure is implemented using sequences from RADARSAT-2 SAR ScanSAR Narrow single-beam data acquired in the Gulf of Mexico. The study demonstrates that the implementation of crossover allows for the generation of an accurate oil spill pattern. This conclusion is confirmed by the receiver-operating characteristic (ROC) curve. The ROC curve indicates that the existence of oil slick footprints can be identified using the area between the ROC curve and the no-discrimination line of 90%, which is greater than that of other surrounding environmental features. In conclusion, the genetic algorithm can be used as a tool for the automatic detection of oil spills, and the ScanSAR Narrow single-beam mode serves as an excellent sensor for oil spill detection and survey.

  11. Automatic Calculation of Oil Slick Area from Multiple SAR Acquisitions for Deepwater Horizon Oil Spill

    Science.gov (United States)

    Osmanoğlu, B.; Özkan, C.; Sunar, F.; Staples, G.

    2012-07-01

    The Deepwater Horizon oil spill occurred in the Gulf of Mexico in April 2010 and became the largest accidental marine oil spill in history. Oil leaked continuously between April 20th and July 15th of 2010, releasing about 780, 000m3 of crude oil into the Gulf of Mexico. The oil spill caused extensive economical and ecological damage to the areas it reached, affecting the marine and wildlife habitats along with fishing and tourism industries. For oil spill mitigation efforts, it is important to determine the areal extent, and most recent position of the contaminated area. Satellitebased oil pollution monitoring systems are being used for monitoring and in hazard response efforts. Due to their high accuracy, frequent acquisitions, large area coverage and day-and-night operation Synthetic Aperture Radar (SAR) satellites are a major contributer of monitoring marine environments for oil spill detection. We developed a new algorithm for determining the extent of the oil spill from multiple SAR images, that are acquired with short temporal intervals using different sensors. Combining the multi-polarization data from Radarsat-2 (C-band), Envisat ASAR (C-band) and Alos-PALSAR (L-band) sensors, we calculate the extent of the oil spill with higher accuracy than what is possible from only one image. Short temporal interval between acquisitions (hours to days) allow us to eliminate artifacts and increase accuracy. Our algorithm works automatically without any human intervention to deliver products in a timely manner in time critical operations. Acquisitions using different SAR sensors are radiometrically calibrated and processed individually to obtain oil spill area extent. Furthermore the algorithm provides probability maps of the areas that are classified as oil slick. This probability information is then combined with other acquisitions to estimate the combined probability map for the spill.

  12. Signal Processing for High Resolution FMCW SAR and Moving Target

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.

    2005-01-01

    The combination of Frequency Modulated ContinuousWave (FMCW) technology and Synthetic Aperture Radar (SAR) leads to lightweight, cost-effective imaging sensors of high resolution. In FMCW SAR applications the conventional stop-and-go approximation used in pulse radar algorithms cannot be considered

  13. Detection and Imaging of Moving Targets with LiMIT SAR Data

    Science.gov (United States)

    2017-03-03

    1 Detection and Imaging of Moving Targets with LiMIT SAR Data Michael Newey, Gerald Benitz, David Barrett MIT Lincoln Laboratory Lexington...sandeep.mishra@baesystems.com Abstract Detecting moving targets in SAR imagery has recently gained a lot of interest as a way to replace optical...moving target detection and classification in adverse (e.g. cloudy) weather conditions. This can be particularly important for small radar antennas

  14. Receptor-binding domain as a target for developing SARS vaccines.

    Science.gov (United States)

    Zhu, Xiaojie; Liu, Qi; Du, Lanying; Lu, Lu; Jiang, Shibo

    2013-08-01

    A decade ago, severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a global pandemic with a mortality rate of 10%. Reports of recent outbreaks of a SARS-like disease caused by Middle East respiratory syndrome coronavirus (MERS-CoV) have raised serious concerns of a possible reemergence of SARS-CoV, either by laboratory escape or the presence of a natural reservoir. Therefore, the development of effective and safe SARS vaccines is still needed. Based on our previous studies, we believe that the receptor-binding domain (RBD) in the S1 subunit of the SARS-CoV spike (S) protein is the most important target for developing a SARS vaccine. In particular, RBD of S protein contains the critical neutralizing domain (CND), which is able to induce highly potent neutralizing antibody response and cross-protection against divergent SARS-CoV strains. Furthermore, a RBD-based subunit vaccine is expected to be safer than other vaccines that may induce Th2-type immunopathology. This review will discuss key advances in the development of RBD-based SARS vaccines and the possibility of using a similar strategy to develop vaccines against MERS-CoV.

  15. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models.

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com .

  16. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com.

  17. Targeted Radiosensitization by the Chk1 Inhibitor SAR-020106

    Energy Technology Data Exchange (ETDEWEB)

    Borst, Gerben R., E-mail: g.borst@nki.nl [The Institute of Cancer Research, London (United Kingdom); Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); McLaughlin, Martin; Kyula, Joan N.; Neijenhuis, Sari; Khan, Aadil; Good, James; Zaidi, Shane [The Institute of Cancer Research, London (United Kingdom); Powell, Ned G. [HPV Research Group, School of Medicine, Cardiff University, Cardiff (United Kingdom); Meier, Pascal; Collins, Ian; Garrett, Michelle D. [The Institute of Cancer Research, London (United Kingdom); Verheij, Marcel [Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Harrington, Kevin J. [The Institute of Cancer Research, London (United Kingdom)

    2013-03-15

    Purpose: To explore the activity of a potent Chk1 inhibitor (SAR-020106) in combination with radiation. Methods and Materials: Colony and mechanistic in vitro assays and a xenograft in vivo model. Results: SAR-020106 suppressed-radiation-induced G{sub 2}/M arrest and reduced clonogenic survival only in p53-deficient tumor cells. SAR-020106 promoted mitotic entry following irradiation in all cell lines, but p53-deficient cells were likely to undergo apoptosis or become aneuploid, while p53 wild-type cells underwent a postmitotic G{sub 1} arrest followed by subsequent normal cell cycle re-entry. Following combined treatment with SAR-020106 and radiation, homologous-recombination-mediated DNA damage repair was inhibited in all cell lines. A significant increase in the number of pan-γH2AX-staining apoptotic cells was observed only in p53-deficient cell lines. Efficacy was confirmed in vivo in a clinically relevant human head-and-neck cell carcinoma xenograft model. Conclusion: The Chk1 inhibitor SAR-020106 is a potent radiosensitizer in tumor cell lines defective in p53 signaling.

  18. AN EVIDENT SIDELOBE CONTROL METHOD BASED ON NSCT FOR SHIP TARGET IN SAR IMAGES

    Institute of Scientific and Technical Information of China (English)

    Li Xueying; Yin Dong; Zhang Rong; Wang Kui

    2011-01-01

    Evident sidelobe on faint ship target seriously affects the accuracy of the target segmentation in Synthetic Aperture Radar (SAR) images.To avoid this problem,a novel sidelobe control method based on NonSubsampled Contourlet Transform (NSCT) for ship targets in SAR images is presented in this paper.This method enhances the SAR images in NSCT domain based on target azimuth estimation and then inhibits the sidelobe directionally in NSCT high-pass frequency subbands.Experimental results on RADARSAT-2 images demonstrate that the proposed method can not only reduce the strong sidelobes effectively,but also enhance the intensity of the objects successfully.Therefore,it gives a good segmentation result on the dark ship images with strong sidelobe,and enhances the detection rate on these targets.

  19. Refocusing of Moving Targets in SAR Images via Parametric Sparse Representation

    Directory of Open Access Journals (Sweden)

    Yichang Chen

    2017-08-01

    Full Text Available In this paper, a parametric sparse representation (PSR method is proposed for refocusing of moving targets in synthetic aperture radar (SAR images. In regular SAR images, moving targets are defocused due to unknown motion parameters. Refocusing of moving targets requires accurate phase compensation of echo data. In the proposed method, the region of interest (ROI data containing the moving targets are extracted from the complex SAR image and represented in a sparse fashion through a parametric transform, which is related to the phase compensation parameter. By updating the reflectivities of moving target scatterers and the parametric transform in an iterative fashion, the phase compensation parameter can be accurately estimated and the SAR images of moving targets can be refocused well. The proposed method directly operates on small-size defocused ROI data, which helps to reduce the computational burden and suppress the clutter. Compared to other existing ROI-based methods, the proposed method can suppress asymmetric side-lobes and improve the image quality. Both simulated data and real SAR data collected by GF-3 satellite are used to validate the effectiveness of the proposed method.

  20. Automatic Registration of SAR Images with the Integrated Complementary Invariant Feature

    Directory of Open Access Journals (Sweden)

    Xiao-hua Wang

    2014-01-01

    Full Text Available The accurate Synthetic Aperture Radar (SAR image registration is important for exact analyses of mine deformation and ecological environment change. Currently, many image registration algorithms have been proposed, but these registration algorithms cannot be directly applied to SAR image, so an integrated registration approach is presented in this paper. Firstly, it is the coarse matching with Canny edge dividing regions; secondly, it is the fine matching by SIFT algorithm with improved Canny edge features; finally, obtain accurate registration SAR image. This approach has fewer computations than that simply using SIFT feature matching. Experimental analyses with SAR images of Yanzhou Mine demonstrate the efficiency and the accuracy of this approach for mine SAR image registration, which provides a simple and effective tool in SAR monitoring of mining deformation and ecological changes

  1. Laser gated viewing : An enabler for Automatic Target Recognition?

    NARCIS (Netherlands)

    Bovenkamp, E.G.P.; Schutte, K.

    2010-01-01

    For many decades attempts to accomplish Automatic Target Recognition have been made using both visual and FLIR camera systems. A recurring problem in these approaches is the segmentation problem, which is the separation between the target and its background. This paper describes an approach to Autom

  2. Laser gated viewing : An enabler for Automatic Target Recognition?

    NARCIS (Netherlands)

    Bovenkamp, E.G.P.; Schutte, K.

    2010-01-01

    For many decades attempts to accomplish Automatic Target Recognition have been made using both visual and FLIR camera systems. A recurring problem in these approaches is the segmentation problem, which is the separation between the target and its background. This paper describes an approach to

  3. Laser gated viewing : An enabler for Automatic Target Recognition?

    NARCIS (Netherlands)

    Bovenkamp, E.G.P.; Schutte, K.

    2010-01-01

    For many decades attempts to accomplish Automatic Target Recognition have been made using both visual and FLIR camera systems. A recurring problem in these approaches is the segmentation problem, which is the separation between the target and its background. This paper describes an approach to Autom

  4. A Method of SAR Target Recognition Based on Gabor Filter and Local Texture Feature Extraction

    Directory of Open Access Journals (Sweden)

    Wang Lu

    2015-12-01

    Full Text Available This paper presents a novel texture feature extraction method based on a Gabor filter and Three-Patch Local Binary Patterns (TPLBP for Synthetic Aperture Rader (SAR target recognition. First, SAR images are processed by a Gabor filter in different directions to enhance the significant features of the targets and their shadows. Then, the effective local texture features based on the Gabor filtered images are extracted by TPLBP. This not only overcomes the shortcoming of Local Binary Patterns (LBP, which cannot describe texture features for large scale neighborhoods, but also maintains the rotation invariant characteristic which alleviates the impact of the direction variations of SAR targets on recognition performance. Finally, we use an Extreme Learning Machine (ELM classifier and extract the texture features. The experimental results of MSTAR database demonstrate the effectiveness of the proposed method.

  5. Time series modeling for automatic target recognition

    Science.gov (United States)

    Sokolnikov, Andre

    2012-05-01

    Time series modeling is proposed for identification of targets whose images are not clearly seen. The model building takes into account air turbulence, precipitation, fog, smoke and other factors obscuring and distorting the image. The complex of library data (of images, etc.) serving as a basis for identification provides the deterministic part of the identification process, while the partial image features, distorted parts, irrelevant pieces and absence of particular features comprise the stochastic part of the target identification. The missing data approach is elaborated that helps the prediction process for the image creation or reconstruction. The results are provided.

  6. Target Detection in SAR Images Based on a Level Set Approach

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Regis C.P.; Medeiros, Fatima N.S.; Ushizima, Daniela M.

    2008-09-01

    This paper introduces a new framework for point target detection in synthetic aperture radar (SAR) images. We focus on the task of locating reflective small regions using alevel set based algorithm. Unlike most of the approaches in image segmentation, we address an algorithm which incorporates speckle statistics instead of empirical parameters and also discards speckle filtering. The curve evolves according to speckle statistics, initially propagating with a maximum upward velocity in homogeneous areas. Our approach is validated by a series of tests on synthetic and real SAR images and compared with three other segmentation algorithms, demonstrating that it configures a novel and efficient method for target detection purpose.

  7. Automatic Target Detection by Optimal Morphological Filters

    Institute of Scientific and Technical Information of China (English)

    YU Nong(余农); WU Hao(吴昊); WU ChangYong(吴常泳); LI YuShu(李予蜀)

    2003-01-01

    It is widely accepted that the design of morphological filters, which are optimal in some sense, is a difficult task. In this paper a novel method for optimal learning of morphological filtering parameters (Genetic training algorithm for morphological filters, GTAMF) is presented.GTAMF adopts new crossover and mutation operators called the curved cylinder crossover and master-slave mutation to achieve optimal filtering parameters in a global searching. Experimental results show that this method is practical, easy to extend, and markedly improves the performances of morphological filters. The operation of a morphological filter can be divided into two basic problems including morphological operation and structuring element (SE) selection. The rules for morphological operations are predefined so that the filter's properties depend merely on the selection of SE. By means of adaptive optimization training, structuring elements possess the shape and structural characteristics of image targets, and give specific information to SE. Morphological filters formed in this way become certainly intelligent and can provide good filtering results and robust adaptability to image targets with clutter background.

  8. Automatic compensation of antenna beam roll-off in SAR images.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2006-04-01

    The effects of a non-uniform antenna beam are sometimes visible in Synthetic Aperture Radar (SAR) images. This might be due to near-range operation, wide scenes, or inadequate antenna pointing accuracy. The effects can be mitigated in the SAR image by fitting very a simple model to the illumination profile and compensating the pixel brightness accordingly, in an automated fashion. This is accomplished without a detailed antenna pattern calibration, and allows for drift in the antenna beam alignments.

  9. Moving Target Focusing with Normalized Relative Speed in Azimuth-Invarian Bistatic Sar

    OpenAIRE

    Vu, Viet Thuy; Sjögren, Thomas; Pettersson, Mats

    2013-01-01

    Focusing moving targets with Normalized Relative Speed (NRS) for bistatic synthetic aperture radar (SAR) is discussed in this paper. The discussion concentrates on azimuth invariant bistatic geometry. The focusing approach for azimuth-invariant bistatic geometry is derived analytically. The validity of the proposed approach for other bistatic geometry like azimuth-variant is also investigated.

  10. On the usage of GRECOSAR: an orbital polarimetric SAR simulator of complex targets for vessel classification studies

    OpenAIRE

    Margarit Martín, Gerard; Mallorquí Franquet, Jordi Joan; Rius Casals, Juan Manuel; Sanz Marcos, Jesús

    2006-01-01

    This paper presents a synthetic aperture radar (SAR) simulator that is able to generate polarimetric SAR (POLSAR) and polarimetric inverse SAR data of complex targets. It solves the electromagnetic problem via high-frequency approximations, such as physical optics and the physical theory of diffraction, with notable computational efficiency. In principle, any orbital monostatic sensor working at any band, resolution, and operating mode can be modeled. To make simulations ...

  11. Automatic target recognition based on cross-plot.

    Directory of Open Access Journals (Sweden)

    Kelvin Kian Loong Wong

    Full Text Available Automatic target recognition that relies on rapid feature extraction of real-time target from photo-realistic imaging will enable efficient identification of target patterns. To achieve this objective, Cross-plots of binary patterns are explored as potential signatures for the observed target by high-speed capture of the crucial spatial features using minimal computational resources. Target recognition was implemented based on the proposed pattern recognition concept and tested rigorously for its precision and recall performance. We conclude that Cross-plotting is able to produce a digital fingerprint of a target that correlates efficiently and effectively to signatures of patterns having its identity in a target repository.

  12. Rotating Parabolic-Reflector Antenna Target in SAR Data: Model, Characteristics, and Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Bin Deng

    2013-01-01

    Full Text Available Parabolic-reflector antennas (PRAs, usually possessing rotation, are a particular type of targets of potential interest to the synthetic aperture radar (SAR community. This paper is aimed to investigate PRA’s scattering characteristics and then to extract PRA’s parameters from SAR returns, for supporting image interpretation and target recognition. We at first obtain both closed-form and numeric solutions to PRA’s backscattering by geometrical optics (GO, physical optics, and graphical electromagnetic computation, respectively. Based on the GO solution, a migratory scattering center model is at first presented for representing the movement of the specular point with aspect angle, and then a hybrid model, named the migratory/micromotion scattering center (MMSC model, is proposed for characterizing a rotating PRA in the SAR geometry, which incorporates PRA’s rotation into its migratory scattering center model. Additionally, we in detail analyze PRA’s radar characteristics on radar cross-section, high-resolution range profiles, time-frequency distribution, and 2D images, which also confirm the models proposed. A maximal likelihood estimator is developed for jointly solving the MMSC model for PRA’s multiple parameters by optimization. By exploiting the aforementioned characteristics, the coarse parameter estimation guarantees convergency upon global minima. The signatures recovered can be favorably utilized for SAR image interpretation and target recognition.

  13. Radar automatic target recognition (ATR) and non-cooperative target recognition (NCTR)

    CERN Document Server

    Blacknell, David

    2013-01-01

    The ability to detect and locate targets by day or night, over wide areas, regardless of weather conditions has long made radar a key sensor in many military and civil applications. However, the ability to automatically and reliably distinguish different targets represents a difficult challenge. Radar Automatic Target Recognition (ATR) and Non-Cooperative Target Recognition (NCTR) captures material presented in the NATO SET-172 lecture series to provide an overview of the state-of-the-art and continuing challenges of radar target recognition. Topics covered include the problem as applied to th

  14. SAR moving target imaging using sparse and low-rank decomposition

    Science.gov (United States)

    Ni, Kang-Yu; Rao, Shankar

    2014-05-01

    We propose a method to image a complex scene with spotlight synthetic aperture radar (SAR) despite the presence of multiple moving targets. Many recent methods use sparsity-based reconstruction coupled with phase error corrections of moving targets to reconstruct stationary scenes. However, these methods rely on the assumption that the scene itself is sparse and thus unfortunately cannot handle realistic SAR scenarios with complex backgrounds consisting of more than just a few point targets. Our method makes use of sparse and low-rank (SLR) matrix decomposition, an efficient method for decomposing a low-rank matrix and sparse matrix from their sum. For detecting the moving targets and reconstructing the stationary background, SLR uses a convex optimization model that penalizes the nuclear norm of the low rank background structure and the L1 norm of the sparse moving targets. We propose an L1-norm regularization reconstruction method to form the input data matrix, which is grossly corrupted by the moving targets. Each column of the input matrix is a reconstructed SAR image with measurements from a small number of azimuth angles. The use of the L1-norm regularization and a sparse transform permits us to reconstruct the scene with significantly fewer measurements so that moving targets are approximately stationary. We demonstrate our SLR-based approach using simulations adapted from the GOTCHA Volumetric SAR data set. These simulations show that SLR can accurately image multiple moving targets with different individual motions in complex scenes where methods that assume a sparse scene would fail.

  15. ICA Based Speckle Filtering for Target Extraction in SAR Images Using Adaptive Space Separation

    Institute of Scientific and Technical Information of China (English)

    LI Yu-tong; ZHOU Yue; YANG Lei

    2008-01-01

    A novel approach based on independent component analysis (ICA) for speckle filtering and target extraction of synthetic aperture radar (SAR) images is proposed using adaptive space separation with weighted information entropy (WIE) incorporated. First the basis and the independent components are respectively obtained by ICA technique, and WIE of the image is computed; then based on the threshold computed from function T-WIE (threshold versus weighted-information-entropy), independent components are adaptively separated and the bases are classified accordingly. Thus, the image space is separated into two subspaces: "clean" and "noise". Then, a proposed nonlinear operator ABO is applied on each component of the 'clean' subspace for further optimization. Finally, recovery image is obtained reconstructing this subspace and target is easily extracted with binarisation. Note that here T-WIE is an interpolated function based on several representative target SAR images using proposed space separation algorithm.

  16. SAR 雷达目标回波模拟系统构建方法研究磁%Construction Method of SAR Radar Target Echo Simulation System

    Institute of Scientific and Technical Information of China (English)

    顾振杰; 刘宇

    2016-01-01

    论文针对 SAR 雷达测试需求,对 SAR 雷达回波模拟系统的构建方法进行了分析,并对关键技术进行了深入研究,以数字高程图(DEM )为基准源,并采用距离时域相干法进行目标回波的仿真;应用 DSP + FPGA 阵列实现目标回波系统函数的实时计算;对雷达发射信号和目标回波系统函数进行傅里叶变换后,进行卷积和数字正交混频,实现回波信号的相关性模拟。论文所提出的方法,可实现 SAR 成像雷达较大场景目标回波模拟,并可有效提高目标回波模拟的实时性。%Aimed to the requirement of the SAR radar testing ,the construction method of SAR Radar target echo simu‐lation system is analyzed ,and the key technology is researched deeply .The target echo is simulated by using the coherence method of distance time domain based on standard source .The target echo system functionrealizes real‐time calculating by u‐sing DSP + FPGA array .The echo signal correlation simulation is realized by convolved and digital quadrature down‐convert after radar transmit signal and target echo system function in Fourier transform .The simulation of the large scene of SAR imaging radar is realized ,and the real‐time performance of target echo simulation is improved effectively .

  17. Multichannel Along-Track Interferometric SAR Systems: Moving Targets Detection and Velocity Estimation

    Directory of Open Access Journals (Sweden)

    Alessandra Budillon

    2008-01-01

    Full Text Available Along-track interferometric synthetic aperture radar (AT-InSAR systems are used to estimate the radial velocity of targets moving on the ground, starting from the interferometric phases, obtained by the combinations of two complex SAR images acquired by two antennas spatially separated along the platform moving direction. Since the radial velocity estimation obtained from a single-phase interferogram (single-channel suffers from ambiguities, multichannel AT-InSAR systems using more than one interferogram can be used. In this paper, we first analyze the moving target detection problem, evaluating the systems performance in terms of probability of detection and probability of false alarm obtained with different values of target radial velocity, signal-to-clutter ratio, and clutter-to-thermal noise ratio. Then, we analyze the radial velocity estimation accuracy in terms of Cramer-Rao lower bounds and of mean square error values, obtained by using a maximum likelihood estimation technique. We consider the cases of single-baseline and dual-baseline satellite systems, and we evaluate the detection and estimation performance improvement obtained in the dual-baseline case with respect to the single-baseline one. Sensitivity of the presented method with respect to the involved target and system parameters is also discussed.

  18. Automatic target tracking on multi-resolution terrain

    Institute of Scientific and Technical Information of China (English)

    WAN Ming; ZHANG Wei; MURRAY Marie O.; KAUFMAN Arie

    2006-01-01

    We propose a high-performance path planning algorithm for automatic target tracking in the applications of real-time simulation and visualization of large-scale terrain datasets, with a large number of moving objects (such as vehicles) tracking multiple moving targets. By using a modified Dijkstra's algorithm, an optimal path between each vehicle-target pair over a weighted grid-presented terrain is computed and updated to eliminate the problem of local minima and losing of tracking. Then, a dynamic path re-planning strategy using multi-resolution representation of a dynamic updating region is proposed to achieve high-performance by trading-off precision for efficiency, while guaranteeing accuracy. Primary experimental results showed that our algorithm successfully achieved 10 to 96 frames per second interactive path-replanning rates during a terrain simulation scenario with 10 to 100 vehicles and multiple moving targets.

  19. Automatic geocoding of high-value targets using structural image analysis and GIS data

    Science.gov (United States)

    Soergel, Uwe; Thoennessen, Ulrich

    1999-12-01

    Geocoding based merely on navigation data and sensor model is often not possible or precise enough. In these cases an improvement of the preregistration through image-based approaches is a solution. Due to the large amount of data in remote sensing automatic geocoding methods are necessary. For geocoding purposes appropriate tie points, which are present in image and map, have to be detected and matched. The tie points are base of the transformation function. Assigning the tie points is combinatorial problem depending on the number of tie points. This number can be reduced using structural tie points like corners or crossings of prominent extended targets (e.g. harbors, airfields). Additionally the reliability of the tie points is improved. Our approach extracts structural tie points independently in the image and in the vector map by a model-based image analysis. The vector map is provided by a GIS using ATKIS data base. The model parameters are extracted from maps or collateral information of the scenario. The two sets of tie points are automatically matched with a Geometric Hashing algorithm. The algorithm was successfully applied to VIS, IR and SAR data.

  20. Targets detecting in the ocean using the cross-polarized channels of fully polarimetric SAR data

    Institute of Scientific and Technical Information of China (English)

    WANG Yunhua; LIU Xiaoyan; LI Huimin; ZHANG Yanmin

    2015-01-01

    Azimuth ambiguities (ghost targets) discrimination is of great interest with the development of a synthet-ic aperture radar (SAR). And the azimuth ambiguities are often mistaken as actual targets and cause false alarms. For actual targets, HV channel signals acquired by a fully polarimetric SAR are approximately equal to a VH channel in magnitude and phase, i.e., the reciprocity theorem applies, but shifted in phase about ±ʌ for the first-order azimuth ambiguities. Exploiting this physical behavior, the real part of the product of the two cross-polarized channels, i.e.()SHVSV H, hereafter calledA12r, is employed as a new parameter for a target detection at sea. Compared with other parameters, the contrast ofA12r image between a target and the surrounding sea surface will be obviously increased whenA12r image is processed by mean filtering algo-rithm. Here, in order to detect target with constant false-alarm rates (CFARs), an analytical expression for the probability density function (pdf) ofA12r is derived based on the complex Wishart-distribution. Because a value ofA12r is greater/less than 0 for real target/its azimuth ambiguities, the first-order azimuth ambiguities can be completely removed by thisA12r-based CFAR technology. Experiments accomplished over C-band RADARSAT-2 fully polarimetric imageries confirm the validity.

  1. SAR Ground Moving Target Indication Based on Relative Residue of DPCA Processing.

    Science.gov (United States)

    Xu, Jia; Huang, Zuzhen; Yan, Liang; Zhou, Xu; Zhang, Furu; Long, Teng

    2016-10-12

    For modern synthetic aperture radar (SAR), it has much more urgent demands on ground moving target indication (GMTI), which includes not only the point moving targets like cars, truck or tanks but also the distributed moving targets like river or ocean surfaces. Among the existing GMTI methods, displaced phase center antenna (DPCA) can effectively cancel the strong ground clutter and has been widely used. However, its detection performance is closely related to the target's signal-to-clutter ratio (SCR) as well as radial velocity, and it cannot effectively detect the weak large-sized river surfaces in strong ground clutter due to their low SCR caused by specular scattering. This paper proposes a novel method called relative residue of DPCA (RR-DPCA), which jointly utilizes the DPCA cancellation outputs and the multi-look images to improve the detection performance of weak river surfaces. Furthermore, based on the statistics analysis of the RR-DPCA outputs on the homogenous background, the cell average (CA) method can be well applied for subsequent constant false alarm rate (CFAR) detection. The proposed RR-DPCA method can well detect the point moving targets and distributed moving targets simultaneously. Finally, the results of both simulated and real data are provided to demonstrate the effectiveness of the proposed SAR/GMTI method.

  2. Automatic oil slick detection from SAR images: Results and improvements in the framework of the PRIMI pilot project

    Science.gov (United States)

    Trivero, Paolo; Adamo, Maria; Biamino, Walter; Borasi, Maria; Cavagnero, Marco; De Carolis, Giacomo; Di Matteo, Lorenza; Fontebasso, Fabio; Nirchio, Francesco; Tataranni, Francesco

    2016-11-01

    An automatic system capable of discriminating oil spills from other similar sea surface features in Synthetic Aperture Radar images has been developed and tested. This system, called Oil Spill Automatic Detector (OSAD), was originally conceived for C-band SAR images (mostly ERS PRI) and afterward adapted to ENVISAT data. In the framework of the Progetto pilota Rilevamento Inquinamento Marino da Idrocarburi (PRIMI) national project sponsored by the Italian Space Agency, the OSAD system has been greatly improved and is now able to process L- and X-band images from various satellites as well. OSAD performance, confirmed using a different dataset of verified slicks, shows an a priori overall correct classification of 80%. Moreover, new features have been added, such as an enhanced land masking algorithm, a built-in wind and wave extraction module, and oil spill characterization. OSAD has been integrated into a complex hardware and software architecture for operational sea monitoring, alarm generation, and oil slick drift forecasting. The system's detection capabilities have been validated during a measurement campaign in the Mediterranean Sea. The new improved system is described herein, with special attention to latest enhancements.

  3. Detection and Imaging of Slowly Moving Target of Airborne SAR Based on the GMCWD-Hough Transform

    Institute of Scientific and Technical Information of China (English)

    WANGLing; TAORar; ZHOUSiyong; WANGYue

    2004-01-01

    In this paper, the features of airborne SAR moving target echoes are analysed, the Generalizedmarginal Choi-Williams Distribution-Hough transform (GMCWD-HT) is also introduced. According to the echo model of airborne SAR, a new method based on the Generalized-marginal Choi-Williams Distribution-Hough transform for detecting and imaging the slowly moving targets of airborne SAR is proposed in the paper. This method can be used to perform the slowly moving target detection and imaging of airborne SAR in the low signal to clutter ratio, its detecting performance is better than the common method based on Wigner-Ville distribution. Computer simulation results have proven the validity of the approach.

  4. SAR Ground Moving Target Indication Based on Relative Residue of DPCA Processing

    Directory of Open Access Journals (Sweden)

    Jia Xu

    2016-10-01

    Full Text Available For modern synthetic aperture radar (SAR, it has much more urgent demands on ground moving target indication (GMTI, which includes not only the point moving targets like cars, truck or tanks but also the distributed moving targets like river or ocean surfaces. Among the existing GMTI methods, displaced phase center antenna (DPCA can effectively cancel the strong ground clutter and has been widely used. However, its detection performance is closely related to the target’s signal-to-clutter ratio (SCR as well as radial velocity, and it cannot effectively detect the weak large-sized river surfaces in strong ground clutter due to their low SCR caused by specular scattering. This paper proposes a novel method called relative residue of DPCA (RR-DPCA, which jointly utilizes the DPCA cancellation outputs and the multi-look images to improve the detection performance of weak river surfaces. Furthermore, based on the statistics analysis of the RR-DPCA outputs on the homogenous background, the cell average (CA method can be well applied for subsequent constant false alarm rate (CFAR detection. The proposed RR-DPCA method can well detect the point moving targets and distributed moving targets simultaneously. Finally, the results of both simulated and real data are provided to demonstrate the effectiveness of the proposed SAR/GMTI method.

  5. Automatic target validation based on neuroscientific literature mining for tractography

    Directory of Open Access Journals (Sweden)

    Xavier eVasques

    2015-05-01

    Full Text Available Target identification for tractography studies requires solid anatomical knowledge validated by an extensive literature review across species for each seed structure to be studied. Manual literature review to identify targets for a given seed region is tedious and potentially subjective. Therefore, complementary approaches would be useful. We propose to use text-mining models to automatically suggest potential targets from the neuroscientific literature, full-text articles and abstracts, so that they can be used for anatomical connection studies and more specifically for tractography. We applied text-mining models to three structures: two well studied structures, since validated deep brain stimulation targets, the internal globus pallidus and the subthalamic nucleus and, the nucleus accumbens, an exploratory target for treating psychiatric disorders. We performed a systematic review of the literature to document the projections of the three selected structures and compared it with the targets proposed by text-mining models, both in rat and primate (including human. We ran probabilistic tractography on the nucleus accumbens and compared the output with the results of the text-mining models and literature review. Overall, text-mining the literature could find three times as many targets as two man-weeks of curation could. The overall efficiency of the text-mining against literature review in our study was 98% recall (at 36% precision, meaning that over all the targets for the three selected seeds, only one target has been missed by text-mining. We demonstrate that connectivity for a structure of interest can be extracted from a very large amount of publications and abstracts. We believe this tool will be useful in helping the neuroscience community to facilitate connectivity studies of particular brain regions. The text mining tools used for the study are part of the HBP Neuroinformatics Platform, publicly available at http://connectivity-brainer.rhcloud.com/.

  6. Automatic target recognition using polarization-sensitive thermal imaging

    Science.gov (United States)

    Chun, Cornell S. L.; Sadjadi, Firooz A.; Ferris, David D., Jr.

    1995-07-01

    The performance of automatic target recognition (ATR) systems using thermal infrared images is limited by the low contrast in intensity for terrestrial scenes. We are developing a thermal imaging technique where, in each image pixel, a combination of intensity and polarization data is captured simultaneously. In this paper, we demonstrate, using synthetic polarization images, that a combination of intensity and polarization data will significantly improve the performance of detection and classification functions in an ATR system. The images were generated using a ray tracing computer program, modified to calculate the polarization characteristics of thermal radiation emitted from surfaces. We developed novel polarization- sensitive target edge detection, segmentation, and recognition algorithms. A set of performance metrics for the evaluation showed that, for large ranges of viewing elevation and aspect angles, using a combination of polarization and intensity data significantly improves the performance of the algorithms over using only the intensity data.

  7. Optimizing Kernel PCA Using Sparse Representation-Based Classifier for MSTAR SAR Image Target Recognition

    Directory of Open Access Journals (Sweden)

    Chuang Lin

    2013-01-01

    Full Text Available Different kernels cause various class discriminations owing to their different geometrical structures of the data in the feature space. In this paper, a method of kernel optimization by maximizing a measure of class separability in the empirical feature space with sparse representation-based classifier (SRC is proposed to solve the problem of automatically choosing kernel functions and their parameters in kernel learning. The proposed method first adopts a so-called data-dependent kernel to generate an efficient kernel optimization algorithm. Then, a constrained optimization function using general gradient descent method is created to find combination coefficients varied with the input data. After that, optimized kernel PCA (KOPCA is obtained via combination coefficients to extract features. Finally, the sparse representation-based classifier is used to perform pattern classification task. Experimental results on MSTAR SAR images show the effectiveness of the proposed method.

  8. Automatic analysis of change detection of multi-temporal ERS-2 SAR images by using two-threshold EM and MRF algorithms

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei; LUO Lin; JIN Yaqiu

    2004-01-01

    To automatically detect and analyze the surface change in the urban area from multi-temporal SAR images, an algorithm of two-threshold expectation maximum (EM) and Markov random field (MRF) is developed. Difference of the SAR images demonstrates variation of backscattering caused by the surface change all over the image pixels. Two thresholds are obtained by the EM iterative process and categorized to three classes: enhanced scattering, reduced scattering and unchanged regimes. Initializing from the EM result, the iterated conditional modes (ICM) algorithm of the MRF is then used to analyze the detection of contexture change in the urban area. As an example, two images of the ERS-2 SAR in 1996 and 2002 over the Shanghai City are studied.

  9. Automatic attraction of visual attention by supraletter features of former target strings

    DEFF Research Database (Denmark)

    Kyllingsbæk, Søren; Lommel, Sven Van; Bundesen, Claus

    2014-01-01

    , performance (d’) degraded on trials in which former targets were present, suggesting that the former targets automatically drew processing resources away from the current targets. Apparently, the two experiments showed automatic attraction of visual attention by supraletter features of former target strings....

  10. Ship Targets Discrimination Algorithm in SAR Images Based on Hu Moment Feature and Texture Feature

    Directory of Open Access Journals (Sweden)

    Liu Lei

    2016-01-01

    Full Text Available To discriminate the ship targets in SAR images, this paper proposed the method based on combination of Hu moment feature and texture feature. Firstly,7 Hu moment features should be extracted, while gray level co-occurrence matrix is then used to extract the features of mean, variance, uniformity, energy, entropy, inertia moment, correlation and differences. Finally the k-neighbour classifier was used to analysis the 15 dimensional feature vectors. The experimental results show that the method of this paper has a good effect.

  11. Deep transfer learning for automatic target classification: MWIR to LWIR

    Science.gov (United States)

    Ding, Zhengming; Nasrabadi, Nasser; Fu, Yun

    2016-05-01

    Publisher's Note: This paper, originally published on 5/12/2016, was replaced with a corrected/revised version on 5/18/2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. When dealing with sparse or no labeled data in the target domain, transfer learning shows its appealing performance by borrowing the supervised knowledge from external domains. Recently deep structure learning has been exploited in transfer learning due to its attractive power in extracting effective knowledge through multi-layer strategy, so that deep transfer learning is promising to address the cross-domain mismatch. In general, cross-domain disparity can be resulted from the difference between source and target distributions or different modalities, e.g., Midwave IR (MWIR) and Longwave IR (LWIR). In this paper, we propose a Weighted Deep Transfer Learning framework for automatic target classification through a task-driven fashion. Specifically, deep features and classifier parameters are obtained simultaneously for optimal classification performance. In this way, the proposed deep structures can extract more effective features with the guidance of the classifier performance; on the other hand, the classifier performance is further improved since it is optimized on more discriminative features. Furthermore, we build a weighted scheme to couple source and target output by assigning pseudo labels to target data, therefore we can transfer knowledge from source (i.e., MWIR) to target (i.e., LWIR). Experimental results on real databases demonstrate the superiority of the proposed algorithm by comparing with others.

  12. Analysis of Geosynchronous Satellite-air Bistatic SAR Clutter Characteristics from the Point of View of Ground Moving Target Indication

    Directory of Open Access Journals (Sweden)

    Zhang Dan-dan

    2013-09-01

    Full Text Available Under the geometry of geosynchronous satellite-air bistatic SAR where the geosynchronous satellite is the transmitter and aerostat is the receiver, in order to suppress clutter and detect slowly moving target using Space Time Adaptive Processing (STAP, it is necessary to analyze the clutter characteristics. From the point of view of ground moving target indication, the theory model of the clutter characteristics under the geometry of geosynchronous satellite-space bistatic SAR is analyzed and established in this paper; especially, the range-dependence characteristics of the angle-Doppler curve of the clutter is analyzed. Finally, the simulation verifies correctness of the analysis. The theory model and the conclusion in this paper indicates the clutter characteristics of the new geosynchronous satellite-air bistatic SAR mode, and provide theory basis for the selection and research of ground moving target indication method under this mode.

  13. Analysis of discriminants for experimental 3D SAR imagery of human targets

    Science.gov (United States)

    Chan, Brigitte; Sévigny, Pascale; DiFilippo, David D. J.

    2014-10-01

    Development of a prototype 3-D through-wall synthetic aperture radar (SAR) system is currently underway at Defence Research and Development Canada. The intent is to map out building wall layouts and to detect targets of interest and their location behind walls such as humans, arms caches, and furniture. This situational awareness capability can be invaluable to the military working in an urban environment. Tools and algorithms are being developed to exploit the resulting 3-D imagery. Current work involves analyzing signatures of targets behind a wall and understanding the clutter and multipath signals in a room of interest. In this paper, a comprehensive study of 3-D human target signature metrics in free space is presented. The aim is to identify features for discrimination of the human target from other targets. Targets used in this investigation include a human standing, a human standing with arms stretched out, a chair, a table, and a metallic plate. Several features were investigated as potential discriminants and five which were identified as good candidates are presented in this paper. Based on this study, no single feature could be used to fully discriminate the human targets from all others. A combination of at least two different features is required to achieve this.

  14. High Resolution Processing with an Active Phased Array SAR

    NARCIS (Netherlands)

    Nijenboer, F.J.; Otten, M.P.G.

    1999-01-01

    The Dutch PHARUS system is a polarimetric active phased array SAR capable of performing advanced SAR modes. Advanced SAR modes that are being investigated are: spotlight SAR, sliding spotlight SAR, stepped frequency SAR and interferometric SAR. The flight experiments and automatic beam steering

  15. The Effect of Topography on Target Decomposition of Polarimetric SAR Data

    Directory of Open Access Journals (Sweden)

    Sang-Eun Park

    2015-04-01

    Full Text Available Polarimetric target decomposition enables the interpretation of radar images more easily, mostly based on physical assumptions, i.e., fitting physically-based scattering models to the polarimetric SAR observations. However, the model-fitting result cannot be always successful. Particularly, the performance of model-fitting in sloping forests is still an open question. In this study, the effect of ground topography on the model-fitting-based polarimetric decomposition techniques is investigated. The estimation accuracy of each scattering component in the decomposition results are evaluated based on the simulated target matrix by using the incoherent vegetation scattering model that accounts for the tilted scattering surface beneath the forest canopy. Experimental results show that the surface and the double-bounce scattering components can be significantly misestimated due to the topographic slope, even when the volume scattering power is successfully estimated.

  16. An assessment of the Height Above Nearest Drainage terrain descriptor for the thematic enhancement of automatic SAR-based flood monitoring services

    Science.gov (United States)

    Chow, Candace; Twele, André; Martinis, Sandro

    2016-10-01

    Flood extent maps derived from Synthetic Aperture Radar (SAR) data can communicate spatially-explicit information in a timely and cost-effective manner to support disaster management. Automated processing chains for SAR-based flood mapping have the potential to substantially reduce the critical time delay between the delivery of post-event satellite data and the subsequent provision of satellite derived crisis information to emergency management authorities. However, the accuracy of SAR-based flood mapping can vary drastically due to the prevalent land cover and topography of a given scene. While expert-based image interpretation with the consideration of contextual information can effectively isolate flood surface features, a fully-automated feature differentiation algorithm mainly based on the grey levels of a given pixel is comparatively more limited for features with similar SAR-backscattering characteristics. The inclusion of ancillary data in the automatic classification procedure can effectively reduce instances of misclassification. In this work, a near-global `Height Above Nearest Drainage' (HAND) index [10] was calculated with digital elevation data and drainage directions from the HydroSHEDS mapping project [2]. The index can be used to separate flood-prone regions from areas with a low probability of flood occurrence. Based on the HAND-index, an exclusion mask was computed to reduce water look-alikes with respect to the hydrologictopographic setting. The applicability of this near-global ancillary data set for the thematic improvement of Sentinel-1 and TerraSAR-X based services for flood and surface water monitoring has been validated both qualitatively and quantitatively. Application of a HAND-based exclusion mask resulted in improvements to the classification accuracy of SAR scenes with high amounts of water look-alikes and considerable elevation differences.

  17. WEIBULL MULTIPLICATIVE MODEL AND MACHINE LEARNING MODELS FOR FULL-AUTOMATIC DARK-SPOT DETECTION FROM SAR IMAGES

    Directory of Open Access Journals (Sweden)

    A. Taravat

    2013-09-01

    Full Text Available As a major aspect of marine pollution, oil release into the sea has serious biological and environmental impacts. Among remote sensing systems (which is a tool that offers a non-destructive investigation method, synthetic aperture radar (SAR can provide valuable synoptic information about the position and size of the oil spill due to its wide area coverage and day/night, and all-weather capabilities. In this paper we present a new automated method for oil-spill monitoring. A new approach is based on the combination of Weibull Multiplicative Model and machine learning techniques to differentiate between dark spots and the background. First, the filter created based on Weibull Multiplicative Model is applied to each sub-image. Second, the sub-image is segmented by two different neural networks techniques (Pulsed Coupled Neural Networks and Multilayer Perceptron Neural Networks. As the last step, a very simple filtering process is used to eliminate the false targets. The proposed approaches were tested on 20 ENVISAT and ERS2 images which contained dark spots. The same parameters were used in all tests. For the overall dataset, the average accuracies of 94.05 % and 95.20 % were obtained for PCNN and MLP methods, respectively. The average computational time for dark-spot detection with a 256 × 256 image in about 4 s for PCNN segmentation using IDL software which is the fastest one in this field at present. Our experimental results demonstrate that the proposed approach is very fast, robust and effective. The proposed approach can be applied to the future spaceborne SAR images.

  18. An Automatic Mosaicking Algorithm for the Generation of a Large-Scale Forest Height Map Using Spaceborne Repeat-Pass InSAR Correlation Magnitude

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2015-05-01

    Full Text Available This paper describes an automatic mosaicking algorithm for creating large-scale mosaic maps of forest height. In contrast to existing mosaicking approaches through using SAR backscatter power and/or InSAR phase, this paper utilizes the forest height estimates that are inverted from spaceborne repeat-pass cross-pol InSAR correlation magnitude. By using repeat-pass InSAR correlation measurements that are dominated by temporal decorrelation, it has been shown that a simplified inversion approach can be utilized to create a height-sensitive measure over the whole interferometric scene, where two scene-wide fitting parameters are able to characterize the mean behavior of the random motion and dielectric changes of the volume scatterers within the scene. In order to combine these single-scene results into a mosaic, a matrix formulation is used with nonlinear least squares and observations in adjacent-scene overlap areas to create a self-consistent estimate of forest height over the larger region. This automated mosaicking method has the benefit of suppressing the global fitting error and, thus, mitigating the “wallpapering” problem in the manual mosaicking process. The algorithm is validated over the U.S. state of Maine by using InSAR correlation magnitude data from ALOS/PALSAR and comparing the inverted forest height with Laser Vegetation Imaging Sensor (LVIS height and National Biomass and Carbon Dataset (NBCD basal area weighted (BAW height. This paper serves as a companion work to previously demonstrated results, the combination of which is meant to be an observational prototype for NASA’s DESDynI-R (now called NISAR and JAXA’s ALOS-2 satellite missions.

  19. Detection of Ground Moving Targets for Two-Channel Spaceborne SAR-ATI

    Directory of Open Access Journals (Sweden)

    Diannong Liang

    2010-01-01

    Full Text Available Many present spaceborne synthetic aperture radar (SAR systems are constrained to only two channels for ground moving target indication (GMTI. Along-track interferometry (ATI technique is currently exploited to detect slowly moving targets and measure their radial velocity and azimuth real position. In this paper, based on the joint probability density function (PDF of interferogram's phase and amplitude and the two hypotheses “clutter” and “clutter plus signal”, several constant false alarm rate (CFAR detection criteria are analyzed for their capabilities and limitations under low signal-to-clutter ratio (SCR and low clutter-to-noise ratio (CNR conditions. The CFAR detectors include one-step CFAR detector with interferometric phase, two-step CFAR detectors, and two-dimensional (2D CFAR detector. The likelihood ratio test (LRT based on the Neyman-Pearson (NP criterion is exploited as an upper bound for the performance of the other CFAR detectors. Performance analyses demonstrate the superiority of the 2D CFAR techniques to detect dim slowly moving targets for spaceborne system.

  20. Human LINE1 endonuclease domain as a putative target of SARS-associated autoantibodies involved in the pathogenesis of severe acute respiratory syndrome

    Institute of Scientific and Technical Information of China (English)

    HE Wei-ping; SHU Cui-li; LI Bo-an; ZHAO Jun; CHENG Yun

    2008-01-01

    Background Severe acute respiratory syndrome(SARS)is a disease with a mortality of 9.56%.Although SARS is etiologically linked to a new coronavirus(SARS-CoV)and functional cell receptor has been identified,the pathogenesis of the virus infection is largely unclear.Methods The clinical specimens were processed and analyzed using an indirect enzyme-linked immunosorbent assay (ELISA) in-house.Further investigations of target antigen included reviews of phage display technique,rapid amplification of cDNA ends(RACE)technique,protein expression and purification,Western blotting validation,serological and immunohistochemical staining in postmortem tissue.Results A type of medium or low titer anti-lung tissue antibodies were found in the sera of SARS patients at the early stage of the disease.Human long interspersed nuclear element 1(LINE1)gene endonuclease(EN)domain protein was one of the target autoantigens and it was aberrantly expressed in the lung tissue of SARS patients.Anti-EN antibody was positive in the sera of 40.9% of SARS patients.Conclusions Human LINE1 endonuclease domain was identified as a putative target of SARS-associated autoantibodies,which were presented in the serum of SARS patients and may be involved in the pathogenesis of SARS.

  1. Evaluation of high resolution space borne SAR for man-made target characterisation

    NARCIS (Netherlands)

    Broek, A.C. van den; Dekker, R.J.

    2008-01-01

    Due to its all-weather feature SAR is a very suitable sensor for monitoring at regular time intervals and therefore for monitoring changes on the Earth’s surface. Radar satellites with resolutions down to 1 meter, such as TerraSAR- X are becoming operational implying that detailed changes can now be

  2. A novel multi-band SAR data technique for fully automatic oil spill detection in the ocean

    Science.gov (United States)

    Del Frate, Fabio; Latini, Daniele; Taravat, Alireza; Jones, Cathleen E.

    2013-10-01

    With the launch of the Italian constellation of small satellites for the Mediterranean basin observation COSMO-SkyMed and the German TerraSAR-X missions, the delivery of very high-resolution SAR data to observe the Earth day or night has remarkably increased. In particular, also taking into account other ongoing missions such as Radarsat or those no longer working such as ALOS PALSAR, ERS-SAR and ENVISAT the amount of information, at different bands, available for users interested in oil spill analysis has become highly massive. Moreover, future SAR missions such as Sentinel-1 are scheduled for launch in the very next years while additional support can be provided by Uninhabited Aerial Vehicle (UAV) SAR systems. Considering the opportunity represented by all these missions, the challenge is to find suitable and adequate image processing multi-band procedures able to fully exploit the huge amount of data available. In this paper we present a new fast, robust and effective automated approach for oil-spill monitoring starting from data collected at different bands, polarizations and spatial resolutions. A combination of Weibull Multiplicative Model (WMM), Pulse Coupled Neural Network (PCNN) and Multi-Layer Perceptron (MLP) techniques is proposed for achieving the aforementioned goals. One of the most innovative ideas is to separate the dark spot detection process into two main steps, WMM enhancement and PCNN segmentation. The complete processing chain has been applied to a data set containing C-band (ERS-SAR, ENVISAT ASAR), X-band images (Cosmo-SkyMed and TerraSAR-X) and L-band images (UAVSAR) for an overall number of more than 200 images considered.

  3. Salient Feature Identification and Analysis using Kernel-Based Classification Techniques for Synthetic Aperture Radar Automatic Target Recognition

    Science.gov (United States)

    2014-03-27

    SALIENT FEATURE IDENTIFICATION AND ANALYSIS USING KERNEL-BASED CLASSIFICATION TECHNIQUES FOR SYNTHETIC APERTURE RADAR AUTOMATIC TARGET RECOGNITION...FEATURE IDENTIFICATION AND ANALYSIS USING KERNEL-BASED CLASSIFICATION TECHNIQUES FOR SYNTHETIC APERTURE RADAR AUTOMATIC TARGET RECOGNITION THESIS Presented...SALIENT FEATURE IDENTIFICATION AND ANALYSIS USING KERNEL-BASED CLASSIFICATION TECHNIQUES FOR SYNTHETIC APERTURE RADAR AUTOMATIC TARGET RECOGNITION

  4. Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data

    Directory of Open Access Journals (Sweden)

    S. Martinis

    2009-03-01

    Full Text Available In this paper, an automatic near-real time (NRT flood detection approach is presented, which combines histogram thresholding and segmentation based classification, specifically oriented to the analysis of single-polarized very high resolution Synthetic Aperture Radar (SAR satellite data. The challenge of SAR-based flood detection is addressed in a completely unsupervised way, which assumes no training data and therefore no prior information about the class statistics to be available concerning the area of investigation. This is usually the case in NRT-disaster management, where the collection of ground truth information is not feasible due to time-constraints. A simple thresholding algorithm can be used in the most of the cases to distinguish between "flood" and "non-flood" pixels in a high resolution SAR image to detect the largest part of an inundation area. Due to the fact that local gray-level changes may not be distinguished by global thresholding techniques in large satellite scenes the thresholding algorithm is integrated into a split-based approach for the derivation of a global threshold by the analysis and combination of the split inherent information. The derived global threshold is then integrated into a multi-scale segmentation step combining the advantages of small-, medium- and large-scale per parcel segmentation. Experimental investigations performed on a TerraSAR-X Stripmap scene from southwest England during large scale flooding in the summer 2007 show high classification accuracies of the proposed split-based approach in combination with image segmentation and optional integration of digital elevation models.

  5. SARS Basics

    Science.gov (United States)

    ... and Resources Related Links Clinician Registry Travelers' Health SARS Basics Fact Sheet Language: English Español (Spanish) Format: ... 3 pages] SARS [3 pages] SARS [3 pages] SARS? Severe acute respiratory syndrome (SARS) is a viral ...

  6. A Multi-Scale Flood Monitoring System Based on Fully Automatic MODIS and TerraSAR-X Processing Chains

    Directory of Open Access Journals (Sweden)

    Enrico Stein

    2013-10-01

    Full Text Available A two-component fully automated flood monitoring system is described and evaluated. This is a result of combining two individual flood services that are currently under development at DLR’s (German Aerospace Center Center for Satellite based Crisis Information (ZKI to rapidly support disaster management activities. A first-phase monitoring component of the system systematically detects potential flood events on a continental scale using daily-acquired medium spatial resolution optical data from the Moderate Resolution Imaging Spectroradiometer (MODIS. A threshold set controls the activation of the second-phase crisis component of the system, which derives flood information at higher spatial detail using a Synthetic Aperture Radar (SAR based satellite mission (TerraSAR-X. The proposed activation procedure finds use in the identification of flood situations in different spatial resolutions and in the time-critical and on demand programming of SAR satellite acquisitions at an early stage of an evolving flood situation. The automated processing chains of the MODIS (MFS and the TerraSAR-X Flood Service (TFS include data pre-processing, the computation and adaptation of global auxiliary data, thematic classification, and the subsequent dissemination of flood maps using an interactive web-client. The system is operationally demonstrated and evaluated via the monitoring two recent flood events in Russia 2013 and Albania/Montenegro 2013.

  7. Bayesian Methods and Confidence Intervals for Automatic Target Recognition of SAR Canonical Shapes

    Science.gov (United States)

    2014-03-27

    k1=1 ck1 N∑ k2=1 ck2 ... N∑ kD=1 ckD p(y | θk1 , θk2 ...θkD)p(θk1 , θk2 ...θkD) ≈ N∑ k1=1 N∑ k2=1 ... N∑ kD=1 ( ck1ck2 ... ckD ) p(y | θk1 , θk2...object (which causes aliasing) may be different than the actual scene extent Dmax. 3.2.3 Pose Parameters. As noted above, there is coupling between...received data vector y. The vector y is stored in the GPU high-speed shared memory. A final CUDA function applies the weight coefficients ck1 ... ckD and the

  8. Amplitude and Phase Errors Correction for Array 3D SAR System Based on Single Prominent Point Like Target Echo Data

    Directory of Open Access Journals (Sweden)

    Yang Xiao-lin

    2014-08-01

    Full Text Available The Array 3D SAR has the ability of resolving imaging in three dimensions using the novel combination of linear array antennas and synthetic aperture. A practical array SAR system has the problem of multi-channel amplitude and phase errors, which can degrade the quality of the reconstruction image. The echo model with amplitude and phase errors is presented. The effect of each errors are analyzed and a calibration method based on Single Prominent Point Like Target Echo Data is proposed. For the application of 3D imaging, the range migration algorithm with calibration scheme is also proposed. Simulations and real data processing are performed to validate the proposed calibration scheme.

  9. Automatic Geocoding of SAR Image Using SRTM DEM and Landsat TM Image%基于SRTM DEM和Landsat TM数据的SAR图像自动地理编码

    Institute of Scientific and Technical Information of China (English)

    黄燕平; 凌飞龙; 吴波

    2013-01-01

    The special slant-range imaging mode of Radar image makes it difficult to use traditional correction method to geocode it.Commonly we simulate a radar image using DEM and SAR geometry information to geocode a real SAR image.In the application of regional cartographic imaging,when we encounter flat areas,the features of simulated SAR image are not so obvious,making its failure to match the real SAR image and failure of automatic correction of a wide range of SAR image.In this paper,we analyzed and discussed the principle and process of the image simulation and image matching.By achieving the automatic determination of the offset between radar image and simulated SAR image matching the signal-noise ratio requirements or not,we can automatically determine whether or not to use the TM image which contain thematic information of feature,instead of the simulated SAR image for matching with the real radar image.The method achieves automatic geocoding of mass SAR image as the same time.%合成孔径雷达(SAR)图像特殊的斜距成像方式使得利用传统的校正方法很难校正雷达图像.常用的方法是利用DEM和SAR成像几何信息模拟的SAR图像对真实SAR图像进行校正.在区域制图中,平坦地区由于没有地形起伏特征,使得模拟SAR图像特征不明显,无法建立与真实SAR图像的配准关系.本文在研究大范围SAR图像自动化地理编码的过程中,分析讨论了图像模拟和图像匹配的原理和过程,实现了自动判断模拟SAR图像与真实SAR图像的匹配偏移量是否达到信噪比要求,从而自动判断是否使用具有地物专题信息的TM图像代替模拟SAR图像和真实SAR图像进行匹配,实现了海量SAR图像地理编码的自动化.

  10. Automatic target recognition of moving target based on empirical mode decomposition and genetic algorithm support vector machine

    Institute of Scientific and Technical Information of China (English)

    张军; 欧建平; 占荣辉

    2015-01-01

    In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition (EMD) and support vector machine (SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions (IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm (GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28%for tank, vehicle and soldier, respectively.

  11. Automatic air-to-ground target recognition using LWIR FPAs

    Science.gov (United States)

    Amadieu, Jean-Louis; Fraysse, Vincent

    1996-06-01

    The theoretical potential of optical sensors in terms of geometrical resolution makes them the ideal solution for achieving the terminal precision guidance of today's missiles. This paper describes such a sensor, working in the 8 to 12 micrometer spectral domain by using a 64 by 64 IRCCD focal plane array, and whose main mission is to recognize various types of armored vehicles within complex scenes that possibly include other vehicles of similar nature. The target recognition process is based upon a Bayesian approach and can be briefly described as follows: after a classical processing stage that performs the filtering and the multi- thresholding, the target recognition algorithm evaluates a similarity level between the objects, including the target, seen in the IR scene and the 'theoretical' target whose some mean, generic features have been implemented in a database. The surroundings of the target and its orientation in the IR scene are 'a priori' unknown. The similarity level is based on calculation of the Mahalanobis distance between the object features vector and the mean features vector of the model; this calculation involves a covariance matrix which is significant of the errors affecting the measured features and that in particular stem form the limited spatial resolution of the sensor, the detector noise and the sensor- to-target range estimation error. With respect to the sensor hardware, its main opto-mechanical characteristics as well as some electro-optics data are indicates; some examples of target acquisition in complex scenes involving different kinds of IR counter measures are also presented.

  12. Automatic detection of inundation-related change areas in TerraSAR-X data using Markov image modeling on irregular graphs

    Science.gov (United States)

    Martinis, Sandro; Twele, André

    2010-05-01

    The worldwide increasing occurrence of flooding and the short-time monitoring capability of the new generation of high resolution synthetic aperture radar (SAR) sensors (TerraSAR-X, COSMO-SkyMed) require accurate and automatic methods for the detection of flood dynamics. This is especially important for operational rapid mapping purposes where the near-real time provision of precise information about the extent of a disaster and its spatio-temporal evolution is of key importance to support decision makers and humanitarian relief organizations. A split based parametric thresholding approach under the generalized Gaussian assumption is developed on normalized change index data to automatically solve the three-class change detection problem in large-size images with small class a priori probabilities. The thresholding result is used for the initialization of a hybrid Markov model which integrates both scale-dependent and spatial context into the classification process by combining hierarchical with noncausal Markov image modeling on irregular graphs. Hierarchical Markov modeling is accomplished by hierarchical maximum a posteriori (HMAP) estimation using Markov Chains in scale. Since this method requires only one bottom-up and one top-down pass on the graph, it offers high computational performance. To reduce the computational demand of the iterative optimization process related to noncausal Markov image models, we define a partial Markov Random Field (MRF) approach, which is applied on a restricted region of the lowest level of the graph. The selection of this region is based on a confidence map generated by combining the HMAP labeling result from the different graph levels. The proposed unsupervised change detection method is applied on a bi-temporal TerraSAR-X StripMap data set (3 m pixel spacing) of a real flood event. The effectiveness of the hybrid Markov image model in comparison to the sole application of the HMAP estimation is evaluated. Additionally, the

  13. Computer Aided Drug Design for Multi-Target Drug Design: SAR /QSAR, Molecular Docking and Pharmacophore Methods.

    Science.gov (United States)

    Abdolmaleki, Azizeh; Ghasemi, Jahan B; Ghasemi, Fatemeh

    2017-01-01

    Multi-target drugs against particular multiple targets get better protection, resistance profiles and curative influence by cooperative rules of a key beneficial target with resistance behavior and compensatory elements. Computational techniques can assist us in the efforts to design novel drugs (ligands) with a preferred bioactivity outline and alternative bioactive molecules at an early stage. A number of in silico methods have been explored extensively in order to facilitate the investigation of individual target agents and to propose a selective drug. A different, progressively more significant field which is used to predict the bioactivity of chemical compounds is the data mining method. Some of the previously mentioned methods have been investigated for multi-target drug design (MTDD) to find drug leads interact simultaneously with multiple targets. Several cheminformatics methods and structure-based approaches try to extract information from units working cooperatively in a biomolecular system to fulfill their task. To dominate the difficulties of the experimental specification of ligand-target structures, rational methods, namely molecular docking, SAR and QSAR are vital substitutes to obtain knowledge for each structure in atomic insight. These procedures are logically successful for the prediction of binding affinity and have shown promising potential in facilitating MTDD. Here, we review some of the important features of the multi-target therapeutics discoveries using the computational approach, highlighting the SAR, QSAR, docking and pharmacophore methods to discover interactions between drug-target that could be leveraged for curative benefits. A summary of each, followed by examples of its applications in drug design has been provided. Computational efficiency of each method has been represented according to its main strengths and limitations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. An Adaptive Moving Target Imaging Method for Bistatic Forward-Looking SAR Using Keystone Transform and Optimization NLCS.

    Science.gov (United States)

    Li, Zhongyu; Wu, Junjie; Huang, Yulin; Yang, Haiguang; Yang, Jianyu

    2017-01-23

    Bistatic forward-looking SAR (BFSAR) is a kind of bistatic synthetic aperture radar (SAR) system that can image forward-looking terrain in the flight direction of an aircraft. Until now, BFSAR imaging theories and methods for a stationary scene have been researched thoroughly. However, for moving-target imaging with BFSAR, the non-cooperative movement of the moving target induces some new issues: (I) large and unknown range cell migration (RCM) (including range walk and high-order RCM); (II) the spatial-variances of the Doppler parameters (including the Doppler centroid and high-order Doppler) are not only unknown, but also nonlinear for different point-scatterers. In this paper, we put forward an adaptive moving-target imaging method for BFSAR. First, the large and unknown range walk is corrected by applying keystone transform over the whole received echo, and then, the relationships among the unknown high-order RCM, the nonlinear spatial-variances of the Doppler parameters, and the speed of the mover, are established. After that, using an optimization nonlinear chirp scaling (NLCS) technique, not only can the unknown high-order RCM be accurately corrected, but also the nonlinear spatial-variances of the Doppler parameters can be balanced. At last, a high-order polynomial filter is applied to compress the whole azimuth data of the moving target. Numerical simulations verify the effectiveness of the proposed method.

  15. An Adaptive Moving Target Imaging Method for Bistatic Forward-Looking SAR Using Keystone Transform and Optimization NLCS

    Directory of Open Access Journals (Sweden)

    Zhongyu Li

    2017-01-01

    Full Text Available Bistatic forward-looking SAR (BFSAR is a kind of bistatic synthetic aperture radar (SAR system that can image forward-looking terrain in the flight direction of an aircraft. Until now, BFSAR imaging theories and methods for a stationary scene have been researched thoroughly. However, for moving-target imaging with BFSAR, the non-cooperative movement of the moving target induces some new issues: (I large and unknown range cell migration (RCM (including range walk and high-order RCM; (II the spatial-variances of the Doppler parameters (including the Doppler centroid and high-order Doppler are not only unknown, but also nonlinear for different point-scatterers. In this paper, we put forward an adaptive moving-target imaging method for BFSAR. First, the large and unknown range walk is corrected by applying keystone transform over the whole received echo, and then, the relationships among the unknown high-order RCM, the nonlinear spatial-variances of the Doppler parameters, and the speed of the mover, are established. After that, using an optimization nonlinear chirp scaling (NLCS technique, not only can the unknown high-order RCM be accurately corrected, but also the nonlinear spatial-variances of the Doppler parameters can be balanced. At last, a high-order polynomial filter is applied to compress the whole azimuth data of the moving target. Numerical simulations verify the effectiveness of the proposed method.

  16. Automatic Detection and Decoding of Photogrammetric Coded Targets

    OpenAIRE

    Wijenayake, Udaya; Choi, Sung-In; Park, Soon-Yong

    2016-01-01

    Close-range Photogrammetry is widely used in many industries because of the cost effectiveness and efficiency of the technique. In this research, we introduce an automated coded target detection method which can be used to enhance the efficiency of the Photogrammetry.

  17. Analysis of Discriminants for Experimental 3-D SAR Imagery of Human Targets

    Science.gov (United States)

    2014-12-10

    the human physique and the geometry of the squint angle. In this case, squint SAR has the same effect as pointing the radar 35 degrees from...for by considering the human physique and the geometry of the squint angle. In the images, the torso and the extended arms of the human are readily

  18. An ML-Based Radial Velocity Estimation Algorithm for Moving Targets in Spaceborne High-Resolution and Wide-Swath SAR Systems

    Directory of Open Access Journals (Sweden)

    Tingting Jin

    2017-04-01

    Full Text Available Multichannel synthetic aperture radar (SAR is a significant breakthrough to the inherent limitation between high-resolution and wide-swath (HRWS compared with conventional SAR. Moving target indication (MTI is an important application of spaceborne HRWS SAR systems. In contrast to previous studies of SAR MTI, the HRWS SAR mainly faces the problem of under-sampled data of each channel, causing single-channel imaging and processing to be infeasible. In this study, the estimation of velocity is equivalent to the estimation of the cone angle according to their relationship. The maximum likelihood (ML based algorithm is proposed to estimate the radial velocity in the existence of Doppler ambiguities. After that, the signal reconstruction and compensation for the phase offset caused by radial velocity are processed for a moving target. Finally, the traditional imaging algorithm is applied to obtain a focused moving target image. Experiments are conducted to evaluate the accuracy and effectiveness of the estimator under different signal-to-noise ratios (SNR. Furthermore, the performance is analyzed with respect to the motion ship that experiences interference due to different distributions of sea clutter. The results verify that the proposed algorithm is accurate and efficient with low computational complexity. This paper aims at providing a solution to the velocity estimation problem in the future HRWS SAR systems with multiple receive channels.

  19. Road Extraction from High-Resolution SAR Images via Automatic Local Detecting and Human-Guided Global Tracking

    Directory of Open Access Journals (Sweden)

    Jianghua Cheng

    2012-01-01

    Full Text Available Because of existence of various kinds of disturbances, layover effects, and shadowing, it is difficult to extract road from high-resolution SAR images. A new road center-point searching method is proposed by two alternant steps: local detection and global tracking. In local detection step, double window model is set, which consists of the outer fixed square window and the inner rotary rectangular one. The outer window is used to obtain the local road direction by using orientation histogram, based on the fact that the surrounding objects always range along with roads. The inner window rotates its orientation in accordance with the result of local road direction calculation and searches the center points of a road segment. In global tracking step, particle filter of variable-step is used to deal with the problem of tracking frequently broken by shelters along the roadside and obstacles on the road. Finally, the center-points are linked by quadratic curve fitting. In 1 m high-resolution airborne SAR image experiment, the results show that this method is effective.

  20. A fast Fourier transform (FFT)-based along track interferometry (ATI) approach to SAR-based ground moving target indication (GMTI)

    Science.gov (United States)

    Thomas, Daniel D.; Zhang, Yuhong

    2014-06-01

    Along-track interferometry (ATI) is used to detect ground moving targets against a stationary background in synthetic aperture radar (SAR) imagery. In this paper, we present a novel approach to multi-channel ATI wherein clutter cancellation is applied to each pixel of the multiple SAR images, followed by a Fourier transform to estimate range rate (Doppler). Range rate estimates allow us to compensate for the cross-range offset of the target, thus geo-locating the targets. We then present a number of benefits to this approach.

  1. Automatic target recognition in synthetic aperture sonar images for autonomous mine hunting

    NARCIS (Netherlands)

    Quesson, B.A.J.; Sabel, J.C.; Bouma, H.; Dekker, R.J.; Lengrand-Lambert, J.

    2010-01-01

    The future of Mine Countermeasures (MCM) operations lies with unmanned platforms where Automatic Target Recognition (ATR) is an essential step in making the mine hunting process autonomous. At TNO, a new ATR method is currently being developed for use on an Autonomous Underwater Vehicle (AUV), using

  2. Automatic target recognition in synthetic aperture sonar images for autonomous mine hunting

    NARCIS (Netherlands)

    Quesson, B.A.J.; Sabel, J.C.; Bouma, H.; Dekker, R.J.; Lengrand-Lambert, J.

    2010-01-01

    The future of Mine Countermeasures (MCM) operations lies with unmanned platforms where Automatic Target Recognition (ATR) is an essential step in making the mine hunting process autonomous. At TNO, a new ATR method is currently being developed for use on an Autonomous Underwater Vehicle (AUV), using

  3. Region descriptors for automatic classification of small sea targets in infrared video

    NARCIS (Netherlands)

    Mouthaan, M.M.; Broek, S.P. van den; Hendriks, E.A.; Schwering, P.B.W.

    2011-01-01

    We evaluate the performance of different key-point detectors and region descriptors when used for automatic classification of small sea targets in infrared video. In our earlier research performed on this subject as well as in other literature, many different region descriptors have been proposed. H

  4. Kernel sparse coding method for automatic target recognition in infrared imagery using covariance descriptor

    Science.gov (United States)

    Yang, Chunwei; Yao, Junping; Sun, Dawei; Wang, Shicheng; Liu, Huaping

    2016-05-01

    Automatic target recognition in infrared imagery is a challenging problem. In this paper, a kernel sparse coding method for infrared target recognition using covariance descriptor is proposed. First, covariance descriptor combining gray intensity and gradient information of the infrared target is extracted as a feature representation. Then, due to the reason that covariance descriptor lies in non-Euclidean manifold, kernel sparse coding theory is used to solve this problem. We verify the efficacy of the proposed algorithm in terms of the confusion matrices on the real images consisting of seven categories of infrared vehicle targets.

  5. A chest-shape target automatic detection method based on Deformable Part Models

    Science.gov (United States)

    Zhang, Mo; Jin, Weiqi; Li, Li

    2016-10-01

    Automatic weapon platform is one of the important research directions at domestic and overseas, it needs to accomplish fast searching for the object to be shot under complex background. Therefore, fast detection for given target is the foundation of further task. Considering that chest-shape target is common target of shoot practice, this paper treats chestshape target as the target and studies target automatic detection method based on Deformable Part Models. The algorithm computes Histograms of Oriented Gradient(HOG) features of the target and trains a model using Latent variable Support Vector Machine(SVM); In this model, target image is divided into several parts then we can obtain foot filter and part filters; Finally, the algorithm detects the target at the HOG features pyramid with method of sliding window. The running time of extracting HOG pyramid with lookup table can be shorten by 36%. The result indicates that this algorithm can detect the chest-shape target in natural environments indoors or outdoors. The true positive rate of detection reaches 76% with many hard samples, and the false positive rate approaches 0. Running on a PC (Intel(R)Core(TM) i5-4200H CPU) with C++ language, the detection time of images with the resolution of 640 × 480 is 2.093s. According to TI company run library about image pyramid and convolution for DM642 and other hardware, our detection algorithm is expected to be implemented on hardware platform, and it has application prospect in actual system.

  6. SAR: Stroke Authorship Recognition

    KAUST Repository

    Shaheen, Sara

    2015-10-15

    Are simple strokes unique to the artist or designer who renders them? If so, can this idea be used to identify authorship or to classify artistic drawings? Also, could training methods be devised to develop particular styles? To answer these questions, we propose the Stroke Authorship Recognition (SAR) approach, a novel method that distinguishes the authorship of 2D digitized drawings. SAR converts a drawing into a histogram of stroke attributes that is discriminative of authorship. We provide extensive classification experiments on a large variety of data sets, which validate SAR\\'s ability to distinguish unique authorship of artists and designers. We also demonstrate the usefulness of SAR in several applications including the detection of fraudulent sketches, the training and monitoring of artists in learning a particular new style and the first quantitative way to measure the quality of automatic sketch synthesis tools. © 2015 The Eurographics Association and John Wiley & Sons Ltd.

  7. Morphological self-organizing feature map neural network with applications to automatic target recognition

    Institute of Scientific and Technical Information of China (English)

    Shijun Zhang; Zhongliang Jing; Jianxun Li

    2005-01-01

    @@ The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and realworld infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.

  8. Training Convolutional Neural Networks for Translational Invariance on SAR ATR

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Engholm, Rasmus; Østergaard Pedersen, Morten

    2016-01-01

    In this paper we present a comparison of the robustness of Convolutional Neural Networks (CNN) to other classifiers in the presence of uncertainty of the objects localization in SAR image. We present a framework for simulating simple SAR images, translating the object of interest systematically...... and testing the classification performance. Our results show that where other classification methods are very sensitive to even small translations, CNN is quite robust to translational variance, making it much more useful in relation to Automatic Target Recognition (ATR) in a real life context....

  9. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1.

    Science.gov (United States)

    Ma-Lauer, Yue; Carbajo-Lozoya, Javier; Hein, Marco Y; Müller, Marcel A; Deng, Wen; Lei, Jian; Meyer, Benjamin; Kusov, Yuri; von Brunn, Brigitte; Bairad, Dev Raj; Hünten, Sabine; Drosten, Christian; Hermeking, Heiko; Leonhardt, Heinrich; Mann, Matthias; Hilgenfeld, Rolf; von Brunn, Albrecht

    2016-08-30

    Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PL(pro)), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95-144 of RCHY1 and 389-652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PL(pro)s from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD-PL(pro) fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PL(pro) alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes.

  10. Complete automatic target cuer/recognition system for tactical forward-looking infrared images

    Science.gov (United States)

    Ernisse, Brian E.; Rogers, Steven K.; DeSimio, Martin P.; Raines, Richard A.

    1997-09-01

    A complete forward-looking IR (FLIR) automatic target cuer/recognizer (ATC/R) is presented. The data used for development and testing of this ATC/R are first generation FLIR images collected using a F-15E. The database contains thousands of images with various mission profiles and target arrangements. The specific target of interest is a mobile missile launcher, the primary target. The goal is to locate all vehicles (secondary targets) within a scene and identify the primary targets. The system developed and tested includes an image segmenter, region cluster algorithm, feature extractor, and classifier. Conventional image processing algorithms in conjunction with neural network techniques are used to form a complete ATC/R system. The conventional techniques include hit/miss filtering, difference of Gaussian filtering, and region clustering. A neural network (multilayer perceptron) is used for classification. These algorithms are developed, tested and then combined into a functional ATC/R system. Overall primary target detection rate (cuer) is 84% with a 69% primary target identification (recognizer) rate at ranges relevant to munitions release. Furthermore, the false alarm rate (a nontarget cued as a target) in only 2.3 per scene. The research is being completed with a 10 flight test profile using third generation FLIR images.

  11. Substitution at Aspartic Acid 1128 in the SARS Coronavirus Spike Glycoprotein Mediates Escape from a S2 Domain-Targeting Neutralizing Monoclonal Antibody

    Science.gov (United States)

    Ng, Oi-Wing; Keng, Choong-Tat; Leung, Cynthia Sau-Wai; Peiris, J. S. Malik; Poon, Leo Lit Man; Tan, Yee-Joo

    2014-01-01

    The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is the etiological agent for the infectious disease, SARS, which first emerged 10 years ago. SARS-CoV is a zoonotic virus that has crossed the species barriers to infect humans. Bats, which harbour a diverse pool of SARS-like CoVs (SL-CoVs), are believed to be the natural reservoir. The SARS-CoV surface Spike (S) protein is a major antigenic determinant in eliciting neutralizing antibody production during SARS-CoV infection. In our previous work, we showed that a panel of murine monoclonal antibodies (mAbs) that target the S2 subunit of the S protein are capable of neutralizing SARS-CoV infection in vitro (Lip KM et al, J Virol. 2006 Jan; 80(2): 941–50). In this study, we report our findings on the characterization of one of these mAbs, known as 1A9, which binds to the S protein at a novel epitope within the S2 subunit at amino acids 1111–1130. MAb 1A9 is a broadly neutralizing mAb that prevents viral entry mediated by the S proteins of human and civet SARS-CoVs as well as bat SL-CoVs. By generating mutant SARS-CoV that escapes the neutralization by mAb 1A9, the residue D1128 in S was found to be crucial for its interaction with mAb 1A9. S protein containing the substitution of D1128 with alanine (D1128A) exhibited a significant decrease in binding capability to mAb 1A9 compared to wild-type S protein. By using a pseudotyped viral entry assay, it was shown that the D1128A substitution in the escape virus allows it to overcome the viral entry blockage by mAb 1A9. In addition, the D1128A mutation was found to exert no effects on the S protein cell surface expression and incorporation into virion particles, suggesting that the escape virus retains the same viral entry property as the wild-type virus. PMID:25019613

  12. Substitution at aspartic acid 1128 in the SARS coronavirus spike glycoprotein mediates escape from a S2 domain-targeting neutralizing monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Oi-Wing Ng

    Full Text Available The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV is the etiological agent for the infectious disease, SARS, which first emerged 10 years ago. SARS-CoV is a zoonotic virus that has crossed the species barriers to infect humans. Bats, which harbour a diverse pool of SARS-like CoVs (SL-CoVs, are believed to be the natural reservoir. The SARS-CoV surface Spike (S protein is a major antigenic determinant in eliciting neutralizing antibody production during SARS-CoV infection. In our previous work, we showed that a panel of murine monoclonal antibodies (mAbs that target the S2 subunit of the S protein are capable of neutralizing SARS-CoV infection in vitro (Lip KM et al, J Virol. 2006 Jan; 80(2: 941-50. In this study, we report our findings on the characterization of one of these mAbs, known as 1A9, which binds to the S protein at a novel epitope within the S2 subunit at amino acids 1111-1130. MAb 1A9 is a broadly neutralizing mAb that prevents viral entry mediated by the S proteins of human and civet SARS-CoVs as well as bat SL-CoVs. By generating mutant SARS-CoV that escapes the neutralization by mAb 1A9, the residue D1128 in S was found to be crucial for its interaction with mAb 1A9. S protein containing the substitution of D1128 with alanine (D1128A exhibited a significant decrease in binding capability to mAb 1A9 compared to wild-type S protein. By using a pseudotyped viral entry assay, it was shown that the D1128A substitution in the escape virus allows it to overcome the viral entry blockage by mAb 1A9. In addition, the D1128A mutation was found to exert no effects on the S protein cell surface expression and incorporation into virion particles, suggesting that the escape virus retains the same viral entry property as the wild-type virus.

  13. Substitution at aspartic acid 1128 in the SARS coronavirus spike glycoprotein mediates escape from a S2 domain-targeting neutralizing monoclonal antibody.

    Science.gov (United States)

    Ng, Oi-Wing; Keng, Choong-Tat; Leung, Cynthia Sau-Wai; Peiris, J S Malik; Poon, Leo Lit Man; Tan, Yee-Joo

    2014-01-01

    The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is the etiological agent for the infectious disease, SARS, which first emerged 10 years ago. SARS-CoV is a zoonotic virus that has crossed the species barriers to infect humans. Bats, which harbour a diverse pool of SARS-like CoVs (SL-CoVs), are believed to be the natural reservoir. The SARS-CoV surface Spike (S) protein is a major antigenic determinant in eliciting neutralizing antibody production during SARS-CoV infection. In our previous work, we showed that a panel of murine monoclonal antibodies (mAbs) that target the S2 subunit of the S protein are capable of neutralizing SARS-CoV infection in vitro (Lip KM et al, J Virol. 2006 Jan; 80(2): 941-50). In this study, we report our findings on the characterization of one of these mAbs, known as 1A9, which binds to the S protein at a novel epitope within the S2 subunit at amino acids 1111-1130. MAb 1A9 is a broadly neutralizing mAb that prevents viral entry mediated by the S proteins of human and civet SARS-CoVs as well as bat SL-CoVs. By generating mutant SARS-CoV that escapes the neutralization by mAb 1A9, the residue D1128 in S was found to be crucial for its interaction with mAb 1A9. S protein containing the substitution of D1128 with alanine (D1128A) exhibited a significant decrease in binding capability to mAb 1A9 compared to wild-type S protein. By using a pseudotyped viral entry assay, it was shown that the D1128A substitution in the escape virus allows it to overcome the viral entry blockage by mAb 1A9. In addition, the D1128A mutation was found to exert no effects on the S protein cell surface expression and incorporation into virion particles, suggesting that the escape virus retains the same viral entry property as the wild-type virus.

  14. Automatic detection of sea-sky horizon line and small targets in maritime infrared imagery

    Science.gov (United States)

    Kong, Xiangyu; Liu, Lei; Qian, Yunsheng; Cui, Minjie

    2016-05-01

    It is usually difficult but important to extract distant targets from sea clutters and clouds since the targets are small compared to the pixel field of view. In this paper, an algorithm based on wavelet transformation is proposed for automatic detection of small targets under the maritime background. We recognize that the distant small targets generally appear near the sea-sky horizon line and noises lie along the direction of sea-sky horizon line. So the sea-sky horizon is located firstly by examining the approximate image of a Haar wavelet decomposition of the original image. And the equation of the sea-sky horizon is set up, no matter whether the sea-sky horizon is horizontal or not. Since the sea-sky horizon is located, not only the potential area but also the strip direction of noise is got. Then the modified mutual wavelet energy combination algorithm is applied to extract targets with targets being marked by red windows. Computer simulations are shown to validate the great adaptability of the sea-sky horizon line detection and the accuracy of the small targets detection. The algorithm should be useful to engineers and scientists to design precise guidance or maritime monitoring system.

  15. Automatic geolocation of targets tracked by aerial imaging platforms using satellite imagery

    Science.gov (United States)

    Shukla, P. K.; Goel, S.; Singh, P.; Lohani, B.

    2014-11-01

    Tracking of targets from aerial platforms is an important activity in several applications, especially surveillance. Knowled ge of geolocation of these targets adds additional significant and useful information to the application. This paper determines the geolocation of a target being tracked from an aerial platform using the technique of image registration. Current approaches utilize a POS to determine the location of the aerial platform and then use the same for geolocation of the targets using the principle of photogrammetry. The constraints of cost and low-payload restrict the applicability of this approach using UAV platforms. This paper proposes a methodology for determining the geolocation of a target tracked from an aerial platform in a partially GPS devoid environment. The method utilises automatic feature based registration technique of a georeferenced satellite image with an ae rial image which is already stored in UAV's database to retrieve the geolocation of the target. Since it is easier to register subsequent aerial images due to similar viewing parameters, the subsequent overlapping images are registered together sequentially thus resulting in the registration of each of the images with georeferenced satellite image thus leading to geolocation of the target under interest. Using the proposed approach, the target can be tracked in all the frames in which it is visible. The proposed concept is verified experimentally and the results are found satisfactory. Using the proposed method, a user can obtain location of target of interest as well features on ground without requiring any POS on-board the aerial platform. The proposed approach has applications in surveillance for target tracking, target geolocation as well as in disaster management projects like search and rescue operations.

  16. Analytical SAR-GMTI principles

    Science.gov (United States)

    Soumekh, Mehrdad; Majumder, Uttam K.; Barnes, Christopher; Sobota, David; Minardi, Michael

    2016-05-01

    This paper provides analytical principles to relate the signature of a moving target to parameters in a SAR system. Our objective is to establish analytical tools that could predict the shift and smearing of a moving target in a subaperture SAR image. Hence, a user could identify the system parameters such as the coherent processing interval for a subaperture that is suitable to localize the signature of a moving target for detection, tracking and geolocating the moving target. The paper begins by outlining two well-known SAR data collection methods to detect moving targets. One uses a scanning beam in the azimuth domain with a relatively high PRF to separate the moving targets and the stationary background (clutter); this is also known as Doppler Beam Sharpening. The other scheme uses two receivers along the track to null the clutter and, thus, provide GMTI. We also present results on implementing our SAR-GMTI analytical principles for the anticipated shift and smearing of a moving target in a simulated code. The code would provide a tool for the user to change the SAR system and moving target parameters, and predict the properties of a moving target signature in a subaperture SAR image for a scene that is composed of both stationary and moving targets. Hence, the SAR simulation and imaging code could be used to demonstrate the validity and accuracy of the above analytical principles to predict the properties of a moving target signature in a subaperture SAR image.

  17. Bistatic SAR: Proof of Concept.

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, David A.; Doren, Neall E.; Bacon, Terry A.; Wahl, Daniel E.; Eichel, Paul H.; Jakowatz, Charles V,; Delaplain, Gilbert G.; Dubbert, Dale F.; Tise, Bertice L.; White, Kyle R.

    2014-10-01

    Typical synthetic aperture RADAR (SAR) imaging employs a co-located RADAR transmitter and receiver. Bistatic SAR imaging separates the transmitter and receiver locations. A bistatic SAR configuration allows for the transmitter and receiver(s) to be in a variety of geometric alignments. Sandia National Laboratories (SNL) / New Mexico proposed the deployment of a ground-based RADAR receiver. This RADAR receiver was coupled with the capability of digitizing and recording the signal collected. SNL proposed the possibility of creating an image of targets the illuminating SAR observes. This document describes the developed hardware, software, bistatic SAR configuration, and its deployment to test the concept of a ground-based bistatic SAR. In the proof-of-concept experiments herein, the RADAR transmitter will be a commercial SAR satellite and the RADAR receiver will be deployed at ground level, observing and capturing RADAR ground/targets illuminated by the satellite system.

  18. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome.

    Science.gov (United States)

    Shi, Chong-Shan; Qi, Hai-Yan; Boularan, Cedric; Huang, Ning-Na; Abu-Asab, Mones; Shelhamer, James H; Kehrl, John H

    2014-09-15

    Coronaviruses (CoV) have recently emerged as potentially serious pathogens that can cause significant human morbidity and death. The severe acute respiratory syndrome (SARS)-CoV was identified as the etiologic agent of the 2002-2003 international SARS outbreak. Yet, how SARS evades innate immune responses to cause human disease remains poorly understood. In this study, we show that a protein encoded by SARS-CoV designated as open reading frame-9b (ORF-9b) localizes to mitochondria and causes mitochondrial elongation by triggering ubiquitination and proteasomal degradation of dynamin-like protein 1, a host protein involved in mitochondrial fission. Also, acting on mitochondria, ORF-9b targets the mitochondrial-associated adaptor molecule MAVS signalosome by usurping PCBP2 and the HECT domain E3 ligase AIP4 to trigger the degradation of MAVS, TRAF3, and TRAF 6. This severely limits host cell IFN responses. Reducing either PCBP2 or AIP4 expression substantially reversed the ORF-9b-mediated reduction of MAVS and the suppression of antiviral transcriptional responses. Finally, transient ORF-9b expression led to a strong induction of autophagy in cells. The induction of autophagy depended upon ATG5, a critical autophagy regulator, but the inhibition of MAVS signaling did not. These results indicate that SARS-CoV ORF-9b manipulates host cell mitochondria and mitochondrial function to help evade host innate immunity. This study has uncovered an important clue to the pathogenesis of SARS-CoV infection and illustrates the havoc that a small ORF can cause in cells.

  19. Automatic assignment of protein backbone resonances by direct spectrum inspection in targeted acquisition of NMR data.

    Science.gov (United States)

    Wong, Leo E; Masse, James E; Jaravine, Victor; Orekhov, Vladislav; Pervushin, Konstantin

    2008-10-01

    The necessity to acquire large multidimensional datasets, a basis for assignment of NMR resonances, results in long data acquisition times during which substantial degradation of a protein sample might occur. Here we propose a method applicable for such a protein for automatic assignment of backbone resonances by direct inspection of multidimensional NMR spectra. In order to establish an optimal balance between completeness of resonance assignment and losses of cross-peaks due to dynamic processes/degradation of protein, assignment of backbone resonances is set as a stirring criterion for dynamically controlled targeted nonlinear NMR data acquisition. The result is demonstrated with the 12 kDa (13)C,(15) N-labeled apo-form of heme chaperone protein CcmE, where hydrolytic cleavage of 29 C-terminal amino acids is detected. For this protein, 90 and 98% of manually assignable resonances are automatically assigned within 10 and 40 h of nonlinear sampling of five 3D NMR spectra, respectively, instead of 600 h needed to complete the full time domain grid. In addition, resonances stemming from degradation products are identified. This study indicates that automatic resonance assignment might serve as a guiding criterion for optimal run-time allocation of NMR resources in applications to proteins prone to degradation.

  20. Automatic assignment of protein backbone resonances by direct spectrum inspection in targeted acquisition of NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Leo E. [Nanyang Technological University, School of Biological Sciences (Singapore); Masse, James E. [National Institutes of Health (United States); Jaravine, Victor [J. W. Goethe-University Frankfurt, Institute of Biophysical Chemistry (Germany); Orekhov, Vladislav [Gothenburg University, Swedish NMR Centre (Sweden); Pervushin, Konstantin [Nanyang Technological University, School of Biological Sciences (Singapore)], E-mail: kpervushin@ntu.edu.sg

    2008-10-15

    The necessity to acquire large multidimensional datasets, a basis for assignment of NMR resonances, results in long data acquisition times during which substantial degradation of a protein sample might occur. Here we propose a method applicable for such a protein for automatic assignment of backbone resonances by direct inspection of multidimensional NMR spectra. In order to establish an optimal balance between completeness of resonance assignment and losses of cross-peaks due to dynamic processes/degradation of protein, assignment of backbone resonances is set as a stirring criterion for dynamically controlled targeted nonlinear NMR data acquisition. The result is demonstrated with the 12 kDa {sup 13}C,{sup 15} N-labeled apo-form of heme chaperone protein CcmE, where hydrolytic cleavage of 29 C-terminal amino acids is detected. For this protein, 90 and 98% of manually assignable resonances are automatically assigned within 10 and 40 h of nonlinear sampling of five 3D NMR spectra, respectively, instead of 600 h needed to complete the full time domain grid. In addition, resonances stemming from degradation products are identified. This study indicates that automatic resonance assignment might serve as a guiding criterion for optimal run-time allocation of NMR resources in applications to proteins prone to degradation.

  1. Review of Current Aided/Automatic Target Acquisition Technology for Military Target Acquisition Tasks

    Science.gov (United States)

    2011-07-01

    new advancements in military-relevant performance. C©2011 Society of Photo -Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3601879] Subject...indication (MTI) become first- step candidate approaches. Change detection can be a major tool in improvised explosive detection (IED) detection. Dis- turbed...Wilson, “A time-critical targeting roadmap,” Air Command and Staff Collage , Maxwell AFB, AL, Source Code 405502 ADA420658 (April 2002). 8. J. R. Rufa

  2. Target detection in complex scene of SAR image based on existence probability

    Science.gov (United States)

    Liu, Shuo; Cao, Zongjie; Wu, Honggang; Pi, Yiming; Yang, Haiyi

    2016-12-01

    This study proposes a target detection approach based on the target existence probability in complex scenes of a synthetic aperture radar image. Superpixels are the basic unit throughout the approach and are labelled into each classified scene by a texture feature. The original and predicted saliency depth values for each scene are derived through self-information of all the labelled superpixels in each scene. Thereafter, the target existence probability is estimated based on the comparison of two saliency depth values. Lastly, an improved visual attention algorithm, in which the scenes of the saliency map are endowed with different weights related to the existence probabilities, derives the target detection result. This algorithm enhances the attention for the scene that contains the target. Hence, the proposed approach is self-adapting for complex scenes and the algorithm is substantially suitable for different detection missions as well (e.g. vehicle, ship or aircraft detection in the related scenes of road, harbour or airport, respectively). Experimental results on various data show the effectiveness of the proposed method.

  3. A Camera-Based Target Detection and Positioning UAV System for Search and Rescue (SAR) Purposes.

    Science.gov (United States)

    Sun, Jingxuan; Li, Boyang; Jiang, Yifan; Wen, Chih-Yung

    2016-10-25

    Wilderness search and rescue entails performing a wide-range of work in complex environments and large regions. Given the concerns inherent in large regions due to limited rescue distribution, unmanned aerial vehicle (UAV)-based frameworks are a promising platform for providing aerial imaging. In recent years, technological advances in areas such as micro-technology, sensors and navigation have influenced the various applications of UAVs. In this study, an all-in-one camera-based target detection and positioning system is developed and integrated into a fully autonomous fixed-wing UAV. The system presented in this paper is capable of on-board, real-time target identification, post-target identification and location and aerial image collection for further mapping applications. Its performance is examined using several simulated search and rescue missions, and the test results demonstrate its reliability and efficiency.

  4. Analgorithmic Framework for Automatic Detection and Tracking Moving Point Targets in IR Image Sequences

    Directory of Open Access Journals (Sweden)

    R. Anand Raji

    2015-05-01

    Full Text Available Imaging sensors operating in infrared (IR region of electromagnetic spectrum are gaining importance in airborne automatic target recognition (ATR applications due to their passive nature of operation. IR imaging sensors exploit the unintended IR radiation emitted by the targets of interest for detection. The ATR systems based on the passive IR imaging sensors employ a set of signal processing algorithms for processing the image information in real-time. The real-time execution of signal processing algorithms provides the sufficient reaction time to the platform carrying ATR system to react upon the target of interest. These set of algorithms include detection, tracking, and classification of low-contrast, small sized-targets. Paper explained a signal processing framework developed to detect and track moving point targets from the acquired IR image sequences in real-time.Defence Science Journal, Vol. 65, No. 3, May 2015, pp.208-213, DOI: http://dx.doi.org/10.14429/dsj.65.8164

  5. Effects of TEL Confusers on Operator Target Acquisition Performance with SAR Imagery

    Science.gov (United States)

    1998-12-01

    processing known as the theory of signal detection (TSD) (Gescheider, 1985; Green & Swets, 1966; Macmillan & Creelman , 1991; Wilson, 1992). A TSD...localizations (Hacker & Ratcliff, 1979; Macmillan & Creelman , 1991). The index of bias in a target localization task provides a measure of the operator’s...of correct localizations substituted for hits (Macmillan & Creelman , 1991). Receiver Operating Characteristic Curves. In addition to the calculation

  6. 一种基于局部窗口的SAR图像目标检测算法%Algorithm for SAR image target detection based on local window

    Institute of Scientific and Technical Information of China (English)

    梅磊

    2015-01-01

    In terms of the requirements of the target detection accuracy, real-time and robustness for synthetic aperture radar (SAR) , this paper designs an algorithm for SAR image target detection based on local window. On the basis of conducting the denoising and segmentation processing to the acquired SAR image, this algorithm implements the strategy of fast registration for sub-pixel accuracy, based on SIFT. Meanwhile, it also achieves the target detection by the feature description results of SIFT lowering the dimension, and based on the expectation maximization algorithm of local window. Experimental results show that this algorithm has a better adaptation to the complex background and illumination along with rotation change, achieving an ideal effect of target detection.%针对合成孔径雷达(SAR)目标检测精确性、实时性和鲁棒性的要求,设计了一种基于局部窗口的SAR图像目标检测算法。该算法在对获取的SAR图像进行去噪和分割处理的基础上,基于尺度不变特征变换(SIFT)实现了亚像素精度快速配准策略;同时,通过SIFT特征的描述结果降维和基于局部窗口的最大期望算法(EM)实现了目标检测。实验结果表明,该算法对复杂背景和光照、旋转变化有较强的自适应性,获得了理想的目标检测效果。

  7. SARS-CoV ORF1b-encoded nonstructural proteins 12-16: replicative enzymes as antiviral targets.

    Science.gov (United States)

    Subissi, Lorenzo; Imbert, Isabelle; Ferron, François; Collet, Axelle; Coutard, Bruno; Decroly, Etienne; Canard, Bruno

    2014-01-01

    The SARS (severe acute respiratory syndrome) pandemic caused ten years ago by the SARS-coronavirus (SARS-CoV) has stimulated a number of studies on the molecular biology of coronaviruses. This research has provided significant new insight into many mechanisms used by the coronavirus replication-transcription complex (RTC). The RTC directs and coordinates processes in order to replicate and transcribe the coronavirus genome, a single-stranded, positive-sense RNA of outstanding length (∼27-32kilobases). Here, we review the up-to-date knowledge on SARS-CoV replicative enzymes encoded in the ORF1b, i.e., the main RNA-dependent RNA polymerase (nsp12), the helicase/triphosphatase (nsp13), two unusual ribonucleases (nsp14, nsp15) and RNA-cap methyltransferases (nsp14, nsp16). We also review how these enzymes co-operate with other viral co-factors (nsp7, nsp8, and nsp10) to regulate their activity. These last ten years of research on SARS-CoV have considerably contributed to unravel structural and functional details of one of the most fascinating replication/transcription machineries of the RNA virus world. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses". Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Broad-area search for targets in SAR imagery with context-adaptive algorithms

    Science.gov (United States)

    Patterson, Tim J.; Fairchild, Scott R.

    1996-06-01

    This paper describes an ATR system based on gray scale morphology which has proven very effective in performing broad area search for targets of interest. Gray scale morphology is used to extract several distinctive sets of features which combine intensity and spatial information. Results of direct comparisons with other algorithms are presented. In a series of tests which were scored independently the morphological approach has shown superior results. An automated training systems based on a combination of genetic algorithms and classification and regression trees is described. Further performance gains are expected by allowing context sensitive selection of parameter sets for the morphological processing. Context is acquired from the image using texture measures to identify the local clutter environment. The system is designed to be able to build new classifiers on the fly to match specific image to image variations.

  9. Target and peripheral dose during patient repositioning with the Gamma Knife automatic positioning system (APS) device.

    Science.gov (United States)

    Tran, Tuan-Anh; Stanley, Thomas R; Malhotra, Harish K; De Boer, Steven F; Prasad, Dheerendra; Podgorsak, Matthew B

    2010-01-28

    The GammaPlan treatment planning system does not account for the leakage and scatter dose during APS repositioning. In this study, the dose delivered to the target site and its periphery from the defocus stage and intershot couch transit (couch motion from the focus to defocus position and back) associated with APS repositioning are measured for the Gamma Knife model 4C. A stereotactic head-frame was attached to a Leksell 16 cm diameter spherical phantom with a calibrated ion chamber at its center. Using a fiducial box, CT images of the phantom were acquired and registered in the GammaPlan treatment planning system to determine the coordinates of the target (center of the phantom). An absorbed dose of 10 Gy to the 50% isodose line was prescribed to the target site for all measurements. Plans were generated for the 8, 14 and 18 mm collimator helmets to determine the relationship of measured dose to the number of repositions of the APS system and to the helmet size. The target coordinate was identical throughout entire study and there was no movement of the APS between various shots. This allowed for measurement of intershot transit dose at the target site and its periphery. The couch was paused in the defocus position, allowing defocus dose measurements at the intracranial target and periphery. Measured dose increases with frequency of repositioning and with helmet collimator size. During couch transit, the target receives more dose than peripheral regions; however, in the defocus position, the greatest dose is superior to the target site. The automatic positioning system for the Leksell Gamma Knife model 4C results in an additional dose of up to 3.87 +/- 0.07%, 4.97 +/- 0.04%, and 5.71 +/- 0.07% to the target site; its periphery receives additional dose that varies depending on its position relative to the target. There is also dose contribution to the patient in the defocus position, where the APS repositions the patient from one treatment coordinate to another

  10. Dynamic Data Driven Applications Systems (DDDAS) modeling for automatic target recognition

    Science.gov (United States)

    Blasch, Erik; Seetharaman, Guna; Darema, Frederica

    2013-05-01

    The Dynamic Data Driven Applications System (DDDAS) concept uses applications modeling, mathematical algorithms, and measurement systems to work with dynamic systems. A dynamic systems such as Automatic Target Recognition (ATR) is subject to sensor, target, and the environment variations over space and time. We use the DDDAS concept to develop an ATR methodology for multiscale-multimodal analysis that seeks to integrated sensing, processing, and exploitation. In the analysis, we use computer vision techniques to explore the capabilities and analogies that DDDAS has with information fusion. The key attribute of coordination is the use of sensor management as a data driven techniques to improve performance. In addition, DDDAS supports the need for modeling from which uncertainty and variations are used within the dynamic models for advanced performance. As an example, we use a Wide-Area Motion Imagery (WAMI) application to draw parallels and contrasts between ATR and DDDAS systems that warrants an integrated perspective. This elementary work is aimed at triggering a sequence of deeper insightful research towards exploiting sparsely sampled piecewise dense WAMI measurements - an application where the challenges of big-data with regards to mathematical fusion relationships and high-performance computations remain significant and will persist. Dynamic data-driven adaptive computations are required to effectively handle the challenges with exponentially increasing data volume for advanced information fusion systems solutions such as simultaneous target tracking and ATR.

  11. Experimental evaluation of video preprocessing algorithms for automatic target hand-off

    Science.gov (United States)

    McIngvale, P. H.; Guyton, R. D.

    It is pointed out that the Automatic Target Hand-Off Correlator (ATHOC) hardware has been modified to permit operation in a nonreal-time mode as a programmable laboratory test unit using video recordings as inputs and allowing several preprocessing algorithms to be software programmable. In parallel with this hardware modification effort, an analysis and simulation effort has been underway to help determine which of the many available preprocessing algorithms should be implemented in the ATHOC software. It is noted that videotapes from a current technology airborne target acquisition system and an imaging infrared missile seeker were recorded and used in the laboratory experiments. These experiments are described and the results are presented. A set of standard parameters is found for each case. Consideration of the background in the target scene is found to be important. Analog filter cutoff frequencies of 2.5 MHz for low pass and 300 kHz for high pass are found to give best results. EPNC = 1 is found to be slightly better than EPNC = 0. It is also shown that trilevel gives better results than bilevel.

  12. A distributed automatic target recognition system using multiple low resolution sensors

    Science.gov (United States)

    Yue, Zhanfeng; Lakshmi Narasimha, Pramod; Topiwala, Pankaj

    2008-04-01

    In this paper, we propose a multi-agent system which uses swarming techniques to perform high accuracy Automatic Target Recognition (ATR) in a distributed manner. The proposed system can co-operatively share the information from low-resolution images of different looks and use this information to perform high accuracy ATR. An advanced, multiple-agent Unmanned Aerial Vehicle (UAV) systems-based approach is proposed which integrates the processing capabilities, combines detection reporting with live video exchange, and swarm behavior modalities that dramatically surpass individual sensor system performance levels. We employ real-time block-based motion analysis and compensation scheme for efficient estimation and correction of camera jitter, global motion of the camera/scene and the effects of atmospheric turbulence. Our optimized Partition Weighted Sum (PWS) approach requires only bitshifts and additions, yet achieves a stunning 16X pixel resolution enhancement, which is moreover parallizable. We develop advanced, adaptive particle-filtering based algorithms to robustly track multiple mobile targets by adaptively changing the appearance model of the selected targets. The collaborative ATR system utilizes the homographies between the sensors induced by the ground plane to overlap the local observation with the received images from other UAVs. The motion of the UAVs distorts estimated homography frame to frame. A robust dynamic homography estimation algorithm is proposed to address this, by using the homography decomposition and the ground plane surface estimation.

  13. Deformable mesh registration for the validation of automatic target localization algorithms

    Science.gov (United States)

    Robertson, Scott; Weiss, Elisabeth; Hugo, Geoffrey D.

    2013-01-01

    Purpose: To evaluate deformable mesh registration (DMR) as a tool for validating automatic target registration algorithms used during image-guided radiation therapy. Methods: DMR was implemented in a hierarchical model, with rigid, affine, and B-spline transforms optimized in succession to register a pair of surface meshes. The gross tumor volumes (primary tumor and involved lymph nodes) were contoured by a physician on weekly CT scans in a cohort of lung cancer patients and converted to surface meshes. The meshes from weekly CT images were registered to the mesh from the planning CT, and the resulting registered meshes were compared with the delineated surfaces. Known deformations were also applied to the meshes, followed by mesh registration to recover the known deformation. Mesh registration accuracy was assessed at the mesh surface by computing the symmetric surface distance (SSD) between vertices of each registered mesh pair. Mesh registration quality in regions within 5 mm of the mesh surface was evaluated with respect to a high quality deformable image registration. Results: For 18 patients presenting with a total of 19 primary lung tumors and 24 lymph node targets, the SSD averaged 1.3 ± 0.5 and 0.8 ± 0.2 mm, respectively. Vertex registration errors (VRE) relative to the applied known deformation were 0.8 ± 0.7 and 0.2 ± 0.3 mm for the primary tumor and lymph nodes, respectively. Inside the mesh surface, corresponding average VRE ranged from 0.6 to 0.9 and 0.2 to 0.9 mm, respectively. Outside the mesh surface, average VRE ranged from 0.7 to 1.8 and 0.2 to 1.4 mm. The magnitude of errors generally increased with increasing distance away from the mesh. Conclusions: Provided that delineated surfaces are available, deformable mesh registration is an accurate and reliable method for obtaining a reference registration to validate automatic target registration algorithms for image-guided radiation therapy, specifically in regions on or near the target surfaces

  14. Localization accuracy from automatic and semi-automatic rigid registration of locally-advanced lung cancer targets during image-guided radiation therapy

    Science.gov (United States)

    Robertson, Scott P.; Weiss, Elisabeth; Hugo, Geoffrey D.

    2012-01-01

    Purpose: To evaluate localization accuracy resulting from rigid registration of locally-advanced lung cancer targets using fully automatic and semi-automatic protocols for image-guided radiation therapy. Methods: Seventeen lung cancer patients, fourteen also presenting with involved lymph nodes, received computed tomography (CT) scans once per week throughout treatment under active breathing control. A physician contoured both lung and lymph node targets for all weekly scans. Various automatic and semi-automatic rigid registration techniques were then performed for both individual and simultaneous alignments of the primary gross tumor volume (GTVP) and involved lymph nodes (GTVLN) to simulate the localization process in image-guided radiation therapy. Techniques included “standard” (direct registration of weekly images to a planning CT), “seeded” (manual prealignment of targets to guide standard registration), “transitive-based” (alignment of pretreatment and planning CTs through one or more intermediate images), and “rereferenced” (designation of a new reference image for registration). Localization error (LE) was assessed as the residual centroid and border distances between targets from planning and weekly CTs after registration. Results: Initial bony alignment resulted in centroid LE of 7.3 ± 5.4 mm and 5.4 ± 3.4 mm for the GTVP and GTVLN, respectively. Compared to bony alignment, transitive-based and seeded registrations significantly reduced GTVP centroid LE to 4.7 ± 3.7 mm (p = 0.011) and 4.3 ± 2.5 mm (p < 1 × 10−3), respectively, but the smallest GTVP LE of 2.4 ± 2.1 mm was provided by rereferenced registration (p < 1 × 10−6). Standard registration significantly reduced GTVLN centroid LE to 3.2 ± 2.5 mm (p < 1 × 10−3) compared to bony alignment, with little additional gain offered by the other registration techniques. For simultaneous target alignment, centroid LE as low as 3

  15. Classification via Sparse Representation of Steerable Wavelet Frames on Grassmann Manifold: Application to Target Recognition in SAR Image.

    Science.gov (United States)

    Dong, Ganggang; Kuang, Gangyao; Wang, Na; Wang, Wei

    2017-04-07

    Automatic target recognition has been studied widely over the years, yet it is still an open problem. The main obstacle consists in extended operating conditions, e.g., depression angle change, configuration variation, articulation, occlusion. To deal with them, this paper proposes a new classification strategy. We develop a new representation model via the steerable wavelet frames. The proposed representation model is entirely viewed as an element on Grassmann manifolds. To achieve target classification, we embed Grassmann manifolds into an implicit Reproducing Kernel Hilbert Space (RKHS), where the kernel sparse learning can be applied. Specifically, the mappings of training sample in RKHS are concatenated to form an over-complete dictionary. It is then used to encode the counterpart of query as a linear combination of its atoms. By designed Grassmann kernel function, it is capable to obtain the sparse representation, from which the inference can be reached. The novelty of this paper comes from (i) the development of representation model by the set of directional components of Riesz transform; (ii) the quantitative measure of similarity for proposed representation model by Grassmann metric; (iii) the generation of global kernel function by Grassmann kernel. Extensive comparative studies are performed to demonstrate the advantage of proposed strategy.

  16. A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT.

    Science.gov (United States)

    Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa; Hu, Yanle

    2016-03-08

    On-board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real-time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image-guided radiotherapy (MR-IGRT) system. Manual con-tours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR-TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR-TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD-LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP-TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high-contrast images (i.e., kidney), the thresholding method provided the best speed (< 1 ms) with a satisfying accuracy (Dice = 0.95). When the image contrast was low, the VR-TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of

  17. Automatic identification of bird targets with radar via patterns produced by wing flapping.

    Science.gov (United States)

    Zaugg, Serge; Saporta, Gilbert; van Loon, Emiel; Schmaljohann, Heiko; Liechti, Felix

    2008-09-01

    Bird identification with radar is important for bird migration research, environmental impact assessments (e.g. wind farms), aircraft security and radar meteorology. In a study on bird migration, radar signals from birds, insects and ground clutter were recorded. Signals from birds show a typical pattern due to wing flapping. The data were labelled by experts into the four classes BIRD, INSECT, CLUTTER and UFO (unidentifiable signals). We present a classification algorithm aimed at automatic recognition of bird targets. Variables related to signal intensity and wing flapping pattern were extracted (via continuous wavelet transform). We used support vector classifiers to build predictive models. We estimated classification performance via cross validation on four datasets. When data from the same dataset were used for training and testing the classifier, the classification performance was extremely to moderately high. When data from one dataset were used for training and the three remaining datasets were used as test sets, the performance was lower but still extremely to moderately high. This shows that the method generalizes well across different locations or times. Our method provides a substantial gain of time when birds must be identified in large collections of radar signals and it represents the first substantial step in developing a real time bird identification radar system. We provide some guidelines and ideas for future research.

  18. Investigation of measureable parameters that correlate with automatic target recognition performance in synthetic aperture sonar

    Science.gov (United States)

    Gazagnaire, Julia; Cobb, J. T.; Isaacs, Jason

    2015-05-01

    There is a desire in the Mine Counter Measure community to develop a systematic method to predict and/or estimate the performance of Automatic Target Recognition (ATR) algorithms that are detecting and classifying mine-like objects within sonar data. Ideally, parameters exist that can be measured directly from the sonar data that correlate with ATR performance. In this effort, two metrics were analyzed for their predictive potential using high frequency synthetic aperture sonar (SAS) images. The first parameter is a measure of contrast. It is essentially the variance in pixel intensity over a fixed partition of relatively small size. An analysis was performed to determine the optimum block size for this contrast calculation. These blocks were then overlapped in the horizontal and vertical direction over the entire image. The second parameter is the one-dimensional K-shape parameter. The K-distribution is commonly used to describe sonar backscatter return from range cells that contain a finite number of scatterers. An Ada-Boosted Decision Tree classifier was used to calculate the probability of classification (Pc) and false alarm rate (FAR) for several types of targets in SAS images from three different data sets. ROC curves as a function of the measured parameters were generated and the correlation between the measured parameters in the vicinity of each of the contacts and the ATR performance was investigated. The contrast and K-shape parameters were considered separately. Additionally, the contrast and K-shape parameter were associated with background texture types using previously labeled high frequency SAS images.

  19. Comparative analysis of different implementations of a parallel algorithm for automatic target detection and classification of hyperspectral images

    Science.gov (United States)

    Paz, Abel; Plaza, Antonio; Plaza, Javier

    2009-08-01

    Automatic target detection in hyperspectral images is a task that has attracted a lot of attention recently. In the last few years, several algoritms have been developed for this purpose, including the well-known RX algorithm for anomaly detection, or the automatic target detection and classification algorithm (ATDCA), which uses an orthogonal subspace projection (OSP) approach to extract a set of spectrally distinct targets automatically from the input hyperspectral data. Depending on the complexity and dimensionality of the analyzed image scene, the target/anomaly detection process may be computationally very expensive, a fact that limits the possibility of utilizing this process in time-critical applications. In this paper, we develop computationally efficient parallel versions of both the RX and ATDCA algorithms for near real-time exploitation of these algorithms. In the case of ATGP, we use several distance metrics in addition to the OSP approach. The parallel versions are quantitatively compared in terms of target detection accuracy, using hyperspectral data collected by NASA's Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) over the World Trade Center in New York, five days after the terrorist attack of September 11th, 2001, and also in terms of parallel performance, using a massively Beowulf cluster available at NASA's Goddard Space Flight Center in Maryland.

  20. Landslide deformation monitoring using point-like target offset tracking with multi-mode high-resolution TerraSAR-X data

    Science.gov (United States)

    Shi, Xuguo; Zhang, Lu; Balz, Timo; Liao, Mingsheng

    2015-07-01

    Many landslides in the Three Georges area have shown active deformations associated with water level fluctuations since the full operation of the Three Georges Dam. Such active deformations of landslide bodies need to be closely monitored for disaster prevention and warning. One way to do this is to employ SAR pixel offset tracking, a powerful technique that can be used for measuring two-dimensional large displacements. As an improvement of the original pixel offset tracking technique, the point-like target (PT) offset tracking method focuses on stable point-like targets and thus can obtain more reliable measurements. In this paper, the PT offset tracking method is employed to investigate historical evolution of the Shuping landslide, using time series TerraSAR-X data acquired in both Stripmap (SM) and High-resolution Spotlight (HS) modes. Artificial corner reflectors (CR) installed at/near the landslide are identified as PTs and used to analyze the spatial-temporal pattern of landslide deformations. Results showed that the maximum accumulative deformation of the Shuping landslide reached more than 1.5 m over a time span of two years. A correlation analysis between the deformation trends and the fluctuation of reservoir water level indicated that most deformations of the landslide happened during the water level declining period.

  1. Focusing of bistatic SAR data

    Science.gov (United States)

    Bia, Pietro; Ricci, Nicola; Zonno, Mariantonietta; Nico, Giovanni; Catalao, Joao; Tesauro, Manlio

    2014-10-01

    The problems of simulation of bistatic SAR raw data and focusing are studied. A discrete target simulator is described. The simulator introduces the scene topography and compute the integration time of general bistatic configurations providing a means to derived maps of the range and azimuth spatial resolutions. The problem of focusing of bistatic SAR data acquired in a translational-invariant bistatic configuration is studied by deriving the bistatic Point Target Reference spectrum and presenting an analytical solution for its stationary points.

  2. Polarization Filtering of SAR Data

    Science.gov (United States)

    Dubois, Pascale C.; Van Zyl, Jakob J.

    1991-01-01

    Theoretical analysis of polarization filtering of synthetic-aperture-radar (SAR) returns provide hybrid method applied to either (1) maximize signal-to-noise ratio of return from given target or (2) enhance contrast between targets of two different types (that have different polarization properties). Method valid for both point and extended targets and for both monostatic and bistatic radars as well as SAR. Polarization information in return signals provides more complete description of radar-scattering properties of targets and used to obtain additional information about targets for use in classifying them, discriminating between them, or enhancing features of radar images.

  3. A New SAR Target and Shadow Image Segmentation Approach%一种新的SAR目标及其阴影图像分割方法

    Institute of Scientific and Technical Information of China (English)

    韩泽宇

    2012-01-01

    A new SAR target and shadow image segmentation approach is proposed in this paper. First, spatial Wiener filter is applied to suppress coherent speckle in SAR image. Second, two thresholds are determined by computing image statistical characteristics to perform target and shadow segmentation respectively. Last, post processing based on morphology is used to complete the final segmentation. Experimental results with MSTAR data set show the proposed algorithm can give a good segmentation quality for both target and shadow, especially, the effective speckle suppressing method used in this paper is beneficial to the segmentation. In addition, operation efficiency of proposed method is superior to that of common methods, it can improve the ATR system performance.%针对相干斑对SAR图像分割质量的影响,给出一种新的SAR目标及其阴影图像分割方法.首先应用空域Wiener滤波器抑制相干斑,然后根据滤波后图像统计特性确定分割阈值,对阈值分割结果进行形态学处理得到分割图像.利用MSTAR数据所作实验结果表明,采用有效的相干斑抑制方法可以更好地保持滤波图像中的目标,分割结果更为精细,并且算法速度快,有助提高ATR系统性能.

  4. An active contour-based atlas registration model applied to automatic subthalamic nucleus targeting on MRI: method and validation.

    Science.gov (United States)

    Duay, Valérie; Bresson, Xavier; Castro, Javier Sanchez; Pollo, Claudio; Cuadra, Meritxell Bach; Thiran, Jean-Philippe

    2008-01-01

    This paper presents a new non parametric atlas registration framework, derived from the optical flow model and the active contour theory, applied to automatic subthalamic nucleus (STN) targeting in deep brain stimulation (DBS) surgery. In a previous work, we demonstrated that the STN position can be predicted based on the position of surrounding visible structures, namely the lateral and third ventricles. A STN targeting process can thus be obtained by registering these structures of interest between a brain atlas and the patient image. Here we aim to improve the results of the state of the art targeting methods and at the same time to reduce the computational time. Our simultaneous segmentation and registration model shows mean STN localization errors statistically similar to the most performing registration algorithms tested so far and to the targeting expert's variability. Moreover, the computational time of our registration method is much lower, which is a worthwhile improvement from a clinical point of view.

  5. Automatic online adaptive radiation therapy techniques for targets with significant shape change: a feasibility study.

    Science.gov (United States)

    Court, Laurence E; Tishler, Roy B; Petit, Joshua; Cormack, Robert; Chin, Lee

    2006-05-21

    This work looks at the feasibility of an online adaptive radiation therapy concept that would detect the daily position and shape of the patient, and would then correct the daily treatment to account for any changes compared with planning position. In particular, it looks at the possibility of developing algorithms to correct for large complicated shape change. For co-planar beams, the dose in an axial plane is approximately associated with the positions of a single multi-leaf collimator (MLC) pair. We start with a primary plan, and automatically generate several secondary plans with gantry angles offset by regular increments. MLC sequences for each plan are calculated keeping monitor units (MUs) and number of segments constant for a given beam (fluences are different). Bulk registration (3D) of planning and daily CT images gives global shifts. Slice-by-slice (2D) registration gives local shifts and rotations about the longitudinal axis for each axial slice. The daily MLC sequence is then created for each axial slice/MLC leaf pair combination, by taking the MLC positions from the pre-calculated plan with the nearest rotation, and shifting using a beam's-eye-view calculation to account for local linear shifts. A planning study was carried out using two head and neck region MR images of a healthy volunteer which were contoured to simulate a base-of-tongue treatment: one with the head straight (used to simulate the planning image) and the other with the head tilted to the left (the daily image). Head and neck treatment was chosen to evaluate this technique because of its challenging nature, with varying internal and external contours, and multiple degrees of freedom. Shape change was significant: on a slice-by-slice basis, local rotations in the daily image varied from 2 to 31 degrees, and local shifts ranged from -0.2 to 0.5 cm and -0.4 to 0.0 cm in right-left and posterior-anterior directions, respectively. The adapted treatment gave reasonable target coverage (100

  6. Automatic localization of target vertebrae in spine surgery using fast CT-to-fluoroscopy (3D-2D) image registration

    Science.gov (United States)

    Otake, Y.; Schafer, S.; Stayman, J. W.; Zbijewski, W.; Kleinszig, G.; Graumann, R.; Khanna, A. J.; Siewerdsen, J. H.

    2012-02-01

    Localization of target vertebrae is an essential step in minimally invasive spine surgery, with conventional methods relying on "level counting" - i.e., manual counting of vertebrae under fluoroscopy starting from readily identifiable anatomy (e.g., the sacrum). The approach requires an undesirable level of radiation, time, and is prone to counting errors due to the similar appearance of vertebrae in projection images; wrong-level surgery occurs in 1 of every ~3000 cases. This paper proposes a method to automatically localize target vertebrae in x-ray projections using 3D-2D registration between preoperative CT (in which vertebrae are preoperatively labeled) and intraoperative fluoroscopy. The registration uses an intensity-based approach with a gradient-based similarity metric and the CMA-ES algorithm for optimization. Digitally reconstructed radiographs (DRRs) and a robust similarity metric are computed on GPU to accelerate the process. Evaluation in clinical CT data included 5,000 PA and LAT projections randomly perturbed to simulate human variability in setup of mobile intraoperative C-arm. The method demonstrated 100% success for PA view (projection error: 0.42mm) and 99.8% success for LAT view (projection error: 0.37mm). Initial implementation on GPU provided automatic target localization within about 3 sec, with further improvement underway via multi-GPU. The ability to automatically label vertebrae in fluoroscopy promises to streamline surgical workflow, improve patient safety, and reduce wrong-site surgeries, especially in large patients for whom manual methods are time consuming and error prone.

  7. Automatic Focusing for a 675 GHz Imaging Radar with Target Standoff Distances from 14 to 34 Meters

    Science.gov (United States)

    Tang, Adrian; Cooper, Ken B.; Dengler, Robert J.; Llombart, Nuria; Siegel, Peter H.

    2013-01-01

    This paper dicusses the issue of limited focal depth for high-resolution imaging radar operating over a wide range of standoff distances. We describe a technique for automatically focusing a THz imaging radar system using translational optics combined with range estimation based on a reduced chirp bandwidth setting. The demonstarted focusing algorithm estimates the correct focal depth for desired targets in the field of view at unknown standoffs and in the presence of clutter to provide good imagery at 14 to 30 meters of standoff.

  8. Automatic Shape-Based Target Extraction for Close-Range Photogrammetry

    Science.gov (United States)

    Guo, X.; Chen, Y.; Wang, C.; Cheng, M.; Wen, C.; Yu, J.

    2016-06-01

    In order to perform precise identification and location of artificial coded targets in natural scenes, a novel design of circle-based coded target and the corresponding coarse-fine extraction algorithm are presented. The designed target separates the target box and coding box totally and owns an advantage of rotation invariance. Based on the original target, templates are prepared by three geometric transformations and are used as the input of shape-based template matching. Finally, region growing and parity check methods are used to extract the coded targets as final results. No human involvement is required except for the preparation of templates and adjustment of thresholds in the beginning, which is conducive to the automation of close-range photogrammetry. The experimental results show that the proposed recognition method for the designed coded target is robust and accurate.

  9. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map

    Science.gov (United States)

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-01-01

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate. PMID:26378543

  10. Validation of experts versus atlas-based and automatic registration methods for subthalamic nucleus targeting on MRI

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Castro, F.J.; Cuisenaire, O.; Thiran, J.P. [Ecole Polytechnique Federale de Lausanne (EPFL) (Switzerland). Signal Processing Inst.; Pollo, C. [Ecole Polytechnique Federale de Lausanne (EPFL) (Switzerland). Signal Processing Inst.; Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne (Switzerland). Dept. of Neurosurgery; Villemure, J.G. [Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne (Switzerland). Dept. of Neurosurgery

    2006-03-15

    Objects: In functional stereotactic neurosurgery, one of the cornerstones upon which the success and the operating time depends is an accurate targeting. The subthalamic nucleus (STN) is the usual target involved when applying deep brain stimulation for Parkinson's disease (PD). Unfortunately, STN is usually not clearly visible in common medical imaging modalities, which justifies the use of atlas-based segmentation techniques to infer the STN location. Materials and methods: Eight bilaterally implanted PD patients were included in this study. A three-dimensional T1-weighted sequence and inversion recovery T2-weighted coronal slices were acquired pre-operatively. We propose a methodology for the construction of a ground truth of the STN location and a scheme that allows both, to perform a comparison between different non-rigid registration algorithms and to evaluate their usability to locate the STN automatically. Results: The intra-expert variability in identifying the STN location is 1.06{+-}0.61 mm while the best non-rigid registration method gives an error of 1.80{+-}0.62 mm. On the other hand, statistical tests show that an affine registration with only 12 degrees of freedom is not enough for this application. Conclusions: Using our validation-evaluation scheme, we demonstrate that automatic STN localization is possible and accurate with non-rigid registration algorithms. (orig.)

  11. Automatic geolocation of targets tracked by aerial imaging platforms using satellite imagery

    OpenAIRE

    Shukla, P. K.; Goel, S.; Singh, P.; B. Lohani

    2014-01-01

    Tracking of targets from aerial platforms is an important activity in several applications, especially surveillance. Knowled ge of geolocation of these targets adds additional significant and useful information to the application. This paper determines the geolocation of a target being tracked from an aerial platform using the technique of image registration. Current approaches utilize a POS to determine the location of the aerial platform and then use the same for geolocation of the...

  12. Automatic Target Recognition in Synthetic Aperture Sonar Images Based on Geometrical Feature Extraction

    Directory of Open Access Journals (Sweden)

    J. Del Rio Vera

    2009-01-01

    Full Text Available This paper presents a new supervised classification approach for automated target recognition (ATR in SAS images. The recognition procedure starts with a novel segmentation stage based on the Hilbert transform. A number of geometrical features are then extracted and used to classify observed objects against a previously compiled database of target and non-target features. The proposed approach has been tested on a set of 1528 simulated images created by the NURC SIGMAS sonar model, achieving up to 95% classification accuracy.

  13. Using Position Uncertainty in Recursive Automatic Target Classification of Radar Tracks

    DEFF Research Database (Denmark)

    Jochumsen, Lars Wurtz; Nielsen, Esben; Østergaard, Jan

    2015-01-01

    . The uncertainty is sensor dependent and will therefore need to be taken into account when classifying based on training data from multiple different sources. Including the uncertainty in the radar plot positions, leads to an improved estimate of the probability of a target belonging to any given class in a list......In this paper, we show how radar plot uncertainty can be included leading to a more robust classification of targets observed by a rotating 2D radar. Targets far from the radar will have a greater uncertainty in the position and therefore the estimated speed of the targets will be more uncertain...... of possible classes. We show results for two synthetically generated cases, where we include the uncertainty and from a real world radar scenario....

  14. Signal Processing for Digital Beamforming FMCW SAR

    Directory of Open Access Journals (Sweden)

    Qin Xin

    2014-01-01

    Full Text Available According to the limitations of single channel Frequency Modulation Continuous Wave (FMCW Synthetic Aperture Radar (SAR, Digital Beamforming (DBF technology is introduced to improve system performance. Combined with multiple receive apertures, DBF FMCW SAR can obtain high resolution in low pulse repetition frequency, which can increase the processing gain and decrease the sampling frequency. The received signal model of DBF FMCW SAR is derived. The continuous antenna motion which is the main characteristic of FMCW SAR received signal is taken into account in the whole signal processing. The detailed imaging diagram of DBF FMCW SAR is given. A reference system is also demonstrated in the paper by comparing with a single channel FMCW SAR. The validity of the presented diagram is demonstrated with a point target simulation results.

  15. Infrared variation reduction by simultaneous background suppression and target contrast enhancement for deep convolutional neural network-based automatic target recognition

    Science.gov (United States)

    Kim, Sungho

    2017-06-01

    Automatic target recognition (ATR) is a traditionally challenging problem in military applications because of the wide range of infrared (IR) image variations and the limited number of training images. IR variations are caused by various three-dimensional target poses, noncooperative weather conditions (fog and rain), and difficult target acquisition environments. Recently, deep convolutional neural network-based approaches for RGB images (RGB-CNN) showed breakthrough performance in computer vision problems, such as object detection and classification. The direct use of RGB-CNN to the IR ATR problem fails to work because of the IR database problems (limited database size and IR image variations). An IR variation-reduced deep CNN (IVR-CNN) to cope with the problems is presented. The problem of limited IR database size is solved by a commercial thermal simulator (OKTAL-SE). The second problem of IR variations is mitigated by the proposed shifted ramp function-based intensity transformation. This can suppress the background and enhance the target contrast simultaneously. The experimental results on the synthesized IR images generated by the thermal simulator (OKTAL-SE) validated the feasibility of IVR-CNN for military ATR applications.

  16. Real-time tumor tracking: Automatic compensation of target motion using the Siemens 160 MLC

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, Martin B.; Nill, Simeon; Krauss, Andreas; Oelfke, Uwe [Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany)

    2010-02-15

    Purpose: Advanced high quality radiation therapy techniques such as IMRT require an accurate delivery of precisely modulated radiation fields to the target volume. Interfractional and intrafractional motion of the patient's anatomy, however, may considerably deteriorate the accuracy of the delivered dose to the planned dose distributions. In order to compensate for these potential errors, a dynamic real-time capable MLC control system was designed. Methods: The newly developed adaptive MLC control system contains specialized algorithms which are capable of continuous optimization and correction of the aperture of the MLC according to the motion of the target volume during the dose delivery. The algorithms calculate the new leaf positions based on target information provided online to the system. The algorithms were implemented in a dynamic target tracking control system designed for a Siemens 160 MLC. To assess the quality of the new target tracking system in terms of dosimetric accuracy, experiments with various types of motion patterns using different phantom setups were performed. The phantoms were equipped with radiochromic films placed between solid water slabs. Dosimetric results of exemplary deliveries to moving targets with and without dynamic MLC tracking applied were compared in terms of the gamma criterion to the reference dose delivered to a static phantom. Results: Our measurements indicated that dose errors for clinically relevant two-dimensional target motion can be compensated by the new control system during the dose delivery of open fields. For a clinical IMRT dose distribution, the gamma success rate was increased from 19% to 77% using the new tracking system. Similar improvements were achieved for the delivery of a complete IMRT treatment fraction to a moving lung phantom. However, dosimetric accuracy was limited by the system's latency of 400 ms and the finite leaf width of 5 mm in the isocenter plane. Conclusions: Different

  17. Combining synthetic image generation and AI to aid automatic target recognizers

    Science.gov (United States)

    Keller, R.; Juarez, J.; Prater, M.; Balaban, T.

    1987-01-01

    The user-friendly, Band-Independent Signature Prediction (BISP) model has been developed for the recognition of real-world targets in complex backgrounds and under variable environmental conditions and operating states, through the use of a signature-prediction capability that can be used in conjunction with a natural language description of the recognition context to determine both the features and the feature strengths for the specified context. BISP's signature-prediction capability can be used to design a context-adaptive target recognizer that is based on either classical pattern recognition principles or on more advanced but less mature learning networks akin to those of emerging 'neurocomputers'.

  18. Preliminary Studies on the Detection of a NLOS Target in a 2D Urban Canyon Using PolInSAR Data

    Science.gov (United States)

    Colin-Koeniguer, Elise; Sar, Nicolas; Thirion-Lefevre, Laetitia; Mokadem, Azza

    2011-03-01

    The urban environment is very complex to interpret on a high resolution radar image, partly because of the presence of many geometric effects due to the radar lateral illumination: the double-bounce scattering, the very strong dynamic between the edges of buildings and horizontal surfaces, the presence of urban canyons, the artefacts due to the imaging process, and so on. It is then very difficult to interpret and distinguish all the effects observed, but also to predict them (for example, see [1]). In this paper, we are particularly interested in understanding the propagation occurring in a urban canyon on PolInSAR data. A urban canyon is an artefact of a urban environment similar to a natural canyon, and can be defined as the free space located between two vertical walls. It is a simple scene to describe but provides a difficult multipath environment to understand. Its interpretation on a PolInSAR image is already sufficiently complex to be the subject of this paper. Our ultimate goal is to determine for which configurations a non line of sight (NLOS) target located within a urban canyon can be detected using multipath, and to find the best method of detection associated. In this context, polarimetry and interferometry are expected to be valuable tools to analyse and differentiate the different electromagnetic returns obtained on a urban canyon. We propose in this paper to use results of simulation and in a first step, we analyse the range profiles, without taking into account the Doppler integration effects. Therefore, for this preliminary study, we have developed a simple simulation tool that does not take into account electromagnetic effects due to diffraction, roughness, and antenna scattering pattern. Using this simple simulation tool,we will try to see if we are able to predict the number of multipath and to determine how sensitive it is to the radar configuration, namely the antenna height. Finally we will study to what extent polarimetric interferometry

  19. TerraSAR-X mission

    Science.gov (United States)

    Werninghaus, Rolf

    2004-01-01

    The TerraSAR-X is a German national SAR- satellite system for scientific and commercial applications. It is the continuation of the scientifically and technologically successful radar missions X-SAR (1994) and SRTM (2000) and will bring the national technology developments DESA and TOPAS into operational use. The space segment of TerraSAR-X is an advanced high-resolution X-Band radar satellite. The system design is based on a sound market analysis performed by Infoterra. The TerraSAR-X features an advanced high-resolution X-Band Synthetic Aperture Radar based on the active phased array technology which allows the operation in Spotlight-, Stripmap- and ScanSAR Mode with various polarizations. It combines the ability to acquire high resolution images for detailed analysis as well as wide swath images for overview applications. In addition, experimental modes like the Dual Receive Antenna Mode allow for full-polarimetric imaging as well as along track interferometry, i.e. moving target identification. The Ground Segment is optimized for flexible response to (scientific and commercial) User requests and fast image product turn-around times. The TerraSAR-X mission will serve two main goals. The first goal is to provide the strongly supportive scientific community with multi-mode X-Band SAR data. The broad spectrum of scientific application areas include Hydrology, Geology, Climatology, Oceanography, Environmental Monitoring and Disaster Monitoring as well as Cartography (DEM Generation) and Interferometry. The second goal is the establishment of a commercial EO-market in Europe which is driven by Infoterra. The commercial goal is the development of a sustainable EO-business so that the e.g. follow-on systems can be completely financed by industry from the profit. Due to its commercial potential, the TerraSAR-X project will be implemented based on a public-private partnership with the Astrium GmbH. This paper will describe first the mission objectives as well as the

  20. Terrain Measurement with SAR/InSAR

    Science.gov (United States)

    Li, Deren; Liao, Mingsheng; Balz, Timo; Zhang, Lu; Yang, Tianliang

    2016-08-01

    Terrain measurement and surface motion estimation are the most important applications for commercial and scientific SAR missions. In Dragon-3, we worked on these applications, especially regarding DEM generation, surface motion estimation with SAR time- series for urban subsidence monitoring and landslide motion estimation, as well as developing tomographic SAR processing methods in urban areas.

  1. Optimization of Automatic Target Recognition with a Reject Option Using Fusion and Correlated Sensor Data

    Science.gov (United States)

    2005-04-25

    ROC curve in the evaluation of machine learning algorithms,” Pattern Recognition, Vol 30, No 7: 1145-1159 (1997). Brown, Gerald G. “Top Ten Secrets...Kuo C. and Karp , Sherman. “Polarimetric fusion for synthetic aperture radar target classification,” Pattern Recognition, Vol 30, No 5: 769-775

  2. Experimental new automatic tools for robotic stereotactic neurosurgery: towards "no hands" procedure of leads implantation into a brain target.

    Science.gov (United States)

    Mazzone, P; Arena, P; Cantelli, L; Spampinato, G; Sposato, S; Cozzolino, S; Demarinis, P; Muscato, G

    2016-07-01

    The use of robotics in neurosurgery and, particularly, in stereotactic neurosurgery, is becoming more and more adopted because of the great advantages that it offers. Robotic manipulators easily allow to achieve great precision, reliability, and rapidity in the positioning of surgical instruments or devices in the brain. The aim of this work was to experimentally verify a fully automatic "no hands" surgical procedure. The integration of neuroimaging to data for planning the surgery, followed by application of new specific surgical tools, permitted the realization of a fully automated robotic implantation of leads in brain targets. An anthropomorphic commercial manipulator was utilized. In a preliminary phase, a software to plan surgery was developed, and the surgical tools were tested first during a simulation and then on a skull mock-up. In such a way, several tools were developed and tested, and the basis for an innovative surgical procedure arose. The final experimentation was carried out on anesthetized "large white" pigs. The determination of stereotactic parameters for the correct planning to reach the intended target was performed with the same technique currently employed in human stereotactic neurosurgery, and the robotic system revealed to be reliable and precise in reaching the target. The results of this work strengthen the possibility that a neurosurgeon may be substituted by a machine, and may represent the beginning of a new approach in the current clinical practice. Moreover, this possibility may have a great impact not only on stereotactic functional procedures but also on the entire domain of neurosurgery.

  3. Automatic Target Cueing (ATC) Task 1 Report - Literature Survey on ATC

    Science.gov (United States)

    2013-10-30

    techniques such as contrast/edge enhancement to increase the detectability of targets in the urban terrain. [P-4] restores long-distance thermal...3 Effect of Image Enhancement on the Search and Detection Task in the Urban Terrain N. Devitt, S. Moyer, S. Young SPIE Vol. 6207 2006 P-4...document. [P-26] presents a system for real-time visual human tracking for mobile robots, to facilitate human-robot interaction for future planetary

  4. Portable automatic bioaerosol sampling system for rapid on-site detection of targeted airborne microorganisms.

    Science.gov (United States)

    Usachev, Evgeny V; Pankova, Anna V; Rafailova, Elina A; Pyankov, Oleg V; Agranovski, Igor E

    2012-10-26

    Bioaerosols could cause various severe human and animal diseases and their opportune and qualitative precise detection and control is becoming a significant scientific and technological topic for consideration. Over the last few decades bioaerosol detection has become an important bio-defense related issue. Many types of portable and stationary bioaerosol samplers have been developed and, in some cases, integrated into automated detection systems utilizing various microbiological techniques for analysis of collected microbes. This paper describes a personal sampler used in conjunction with a portable real-time PCR technique. It was found that a single fluorescent dye could be successfully used in multiplex format for qualitative detection of numerous targeted bioaerosols in one PCR tube making the suggested technology a reliable "first alert" device. This approach has been specifically developed and successfully verified for rapid detection of targeted microorganisms by portable PCR devices, which is especially important under field conditions, where the number of microorganisms of interest usually exceeds the number of available PCR reaction tubes. The approach allows detecting targeted microorganisms and triggering some corresponding sanitary and quarantine procedures to localize possible spread of dangerous infections. Following detailed analysis of the sample under controlled laboratory conditions could be used to exactly identify which particular microorganism out of a targeted group has been rapidly detected in the field. It was also found that the personal sampler has a collection efficiency higher than 90% even for small-sized viruses (>20 nm) and stable performance over extended operating periods. In addition, it was found that for microorganisms used in this project (bacteriophages MS2 and T4) elimination of nucleic acids isolation and purification steps during sample preparation does not lead to the system sensitivity reduction, which is extremely

  5. Optical implementation of a feature-based neural network with application to automatic target recognition

    Science.gov (United States)

    Chao, Tien-Hsin; Stoner, William W.

    1993-01-01

    An optical neural network based on the neocognitron paradigm is introduced. A novel aspect of the architecture design is shift-invariant multichannel Fourier optical correlation within each processing layer. Multilayer processing is achieved by feeding back the ouput of the feature correlator interatively to the input spatial light modulator and by updating the Fourier filters. By training the neural net with characteristic features extracted from the target images, successful pattern recognition with intraclass fault tolerance and interclass discrimination is achieved. A detailed system description is provided. Experimental demonstrations of a two-layer neural network for space-object discrimination is also presented.

  6. SAR ATR Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Tian Zhuangzhuang

    2016-06-01

    Full Text Available This study presents a new method of Synthetic Aperture Radar (SAR image target recognition based on a convolutional neural network. First, we introduce a class separability measure into the cost function to improve this network’s ability to distinguish between categories. Then, we extract SAR image features using the improved convolutional neural network and classify these features using a support vector machine. Experimental results using moving and stationary target acquisition and recognition SAR datasets prove the validity of this method.

  7. Sparse Representation Based SAR Vehicle Recognition along with Aspect Angle

    Directory of Open Access Journals (Sweden)

    Xiangwei Xing

    2014-01-01

    Full Text Available As a method of representing the test sample with few training samples from an overcomplete dictionary, sparse representation classification (SRC has attracted much attention in synthetic aperture radar (SAR automatic target recognition (ATR recently. In this paper, we develop a novel SAR vehicle recognition method based on sparse representation classification along with aspect information (SRCA, in which the correlation between the vehicle’s aspect angle and the sparse representation vector is exploited. The detailed procedure presented in this paper can be summarized as follows. Initially, the sparse representation vector of a test sample is solved by sparse representation algorithm with a principle component analysis (PCA feature-based dictionary. Then, the coefficient vector is projected onto a sparser one within a certain range of the vehicle’s aspect angle. Finally, the vehicle is classified into a certain category that minimizes the reconstruction error with the novel sparse representation vector. Extensive experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR dataset and the results demonstrate that the proposed method performs robustly under the variations of depression angle and target configurations, as well as incomplete observation.

  8. Land Subsidence Monitoring Using PS-InSAR Technique for L-Band SAR Data

    Science.gov (United States)

    Thapa, S.; Chatterjee, R. S.; Singh, K. B.; Kumar, D.

    2016-10-01

    Differential SAR-Interferometry (D-InSAR) is one of the potential source to measure land surface motion induced due to underground coal mining. However, this technique has many limitation such as atmospheric in homogeneities, spatial de-correlation, and temporal decorrelation. Persistent Scatterer Interferometry synthetic aperture radar (PS-InSAR) belongs to a family of time series InSAR technique, which utilizes the properties of some of the stable natural and anthropogenic targets which remain coherent over long time period. In this study PS-InSAR technique has been used to monitor land subsidence over selected location of Jharia Coal field which has been correlated with the ground levelling measurement. This time series deformation observed using PS InSAR helped us to understand the nature of the ground surface deformation due to underground mining activity.

  9. A multispectral automatic target recognition application for maritime surveillance, search, and rescue

    Science.gov (United States)

    Schoonmaker, Jon; Reed, Scott; Podobna, Yuliya; Vazquez, Jose; Boucher, Cynthia

    2010-04-01

    Due to increased security concerns, the commitment to monitor and maintain security in the maritime environment is increasingly a priority. A country's coast is the most vulnerable area for the incursion of illegal immigrants, terrorists and contraband. This work illustrates the ability of a low-cost, light-weight, multi-spectral, multi-channel imaging system to handle the environment and see under difficult marine conditions. The system and its implemented detecting and tracking technologies should be organic to the maritime homeland security community for search and rescue, fisheries, defense, and law enforcement. It is tailored for airborne and ship based platforms to detect, track and monitor suspected objects (such as semi-submerged targets like marine mammals, vessels in distress, and drug smugglers). In this system, automated detection and tracking technology is used to detect, classify and localize potential threats or objects of interest within the imagery provided by the multi-spectral system. These algorithms process the sensor data in real time, thereby providing immediate feedback when features of interest have been detected. A supervised detection system based on Haar features and Cascade Classifiers is presented and results are provided on real data. The system is shown to be extendable and reusable for a variety of different applications.

  10. Automatic Transfer of SAR Patterns for AUXSAR

    Science.gov (United States)

    2015-10-01

    s), and Concept of Operations (CONOP) documentation necessary for deployment/transition of the system. • Inform planned Enterprise Transmit...Project #: RDC POC: CG-926 Domain Lead: 8113 Project Start………………………………………………….… 12 Nov 14 Auxiliary Search and Rescue (AUXSAR) Test …….………. 10 Sep ...Jan 17 i 1Rotary W ng Test……………….……………………......... Jun 7 Rotary Wing Brief ……………….….………………….… Jul 17 Final Summary Report …………………………………… Sep 17 Project

  11. Reflectors for SAR performance testing.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2008-01-01

    Synthetic Aperture Radar (SAR) performance testing and estimation is facilitated by observing the system response to known target scene elements. Trihedral corner reflectors and other canonical targets play an important role because their Radar Cross Section (RCS) can be calculated analytically. However, reflector orientation and the proximity of the ground and mounting structures can significantly impact the accuracy and precision with which measurements can be made. These issues are examined in this report.

  12. Vascular targeted photodynamic therapy with TOOKAD® Soluble (WST11) in localized prostate cancer: efficiency of automatic pre-treatment planning.

    Science.gov (United States)

    Betrouni, N; Boukris, S; Benzaghou, F

    2017-08-01

    Vascular targeted photodynamic therapy (VTP) with WST11 is a novel non-thermal focal treatment for localized prostate cancer that has shown favorable and early efficacy results in previously published studies. In this work, we investigate the efficiency of automatic dosimetric treatment planning. An action model established in a previous study was used in an image-guided optimization scheme to define the personalized optimal light dose for each patient. The calculated light dose is expressed as the number of optical cylindrical fibers to be used, their positions according to an external insertion grid, and the lengths of their diffuser parts. Evaluation of the method was carried out on data collected from 17 patients enrolled in two multi-centric clinical trials. The protocol consisted of comparing the method-simulated necrosis to the result observed on day 7 MR enhanced images. The method performances showed that the final result can be estimated with an accuracy of 10%, corresponding to a margin of 3 mm. In addition, this process was compatible with clinical conditions in terms of calculation times. The overall process took less than 10 min. Different aspects of the VTP procedure were already defined and optimized. Personalized treatment planning definition remained as an issue needing further investigation. The method proposed herein completes the standardization of VTP and opens new pathways for the clinical development of the technique.

  13. A human factors engineering approach to biomedical decision making: A new role for automatic target recognizer technologies

    Energy Technology Data Exchange (ETDEWEB)

    Sobel, A.L.; Stalker, K.T.; Yee, A.

    1995-01-01

    This report identifies the key features noted as requirements in the diagnostic decision-making process of Single Photon Emission Computed Tomography (SPECT) cardiac imaging. The report discusses the critical issues that create the basic system framework for design of an automatic target recognizer (ATR) algorithm prototype to support diagnosis of coronary artery disease. Candidate feature discovery algorithms that may form the basis of future work include Adaptive Resonance Theory and Bayesian Decision Network. A framework for the practitioner-Human-System-Interface would include baseline patient history and demographic data; reference cardiac imagery history; and current overlay imagery to provide complementary information (i.e., coronary angiography, echocardiography, and SPECT images). The goal is to design a prototype that would represent a fused present and historical {open_quotes}whole{close_quotes} functional, structural, and physiologic cardiac patient model. This framework decision-assisting platform would be available to practitioner and student alike, with no {open_quotes}real-world{close_quotes} consequences.

  14. Performance portability study of an automatic target detection and classification algorithm for hyperspectral image analysis using OpenCL

    Science.gov (United States)

    Bernabe, Sergio; Igual, Francisco D.; Botella, Guillermo; Garcia, Carlos; Prieto-Matias, Manuel; Plaza, Antonio

    2015-10-01

    Recent advances in heterogeneous high performance computing (HPC) have opened new avenues for demanding remote sensing applications. Perhaps one of the most popular algorithm in target detection and identification is the automatic target detection and classification algorithm (ATDCA) widely used in the hyperspectral image analysis community. Previous research has already investigated the mapping of ATDCA on graphics processing units (GPUs) and field programmable gate arrays (FPGAs), showing impressive speedup factors that allow its exploitation in time-critical scenarios. Based on these studies, our work explores the performance portability of a tuned OpenCL implementation across a range of processing devices including multicore processors, GPUs and other accelerators. This approach differs from previous papers, which focused on achieving the optimal performance on each platform. Here, we are more interested in the following issues: (1) evaluating if a single code written in OpenCL allows us to achieve acceptable performance across all of them, and (2) assessing the gap between our portable OpenCL code and those hand-tuned versions previously investigated. Our study includes the analysis of different tuning techniques that expose data parallelism as well as enable an efficient exploitation of the complex memory hierarchies found in these new heterogeneous devices. Experiments have been conducted using hyperspectral data sets collected by NASA's Airborne Visible Infra- red Imaging Spectrometer (AVIRIS) and the Hyperspectral Digital Imagery Collection Experiment (HYDICE) sensors. To the best of our knowledge, this kind of analysis has not been previously conducted in the hyperspectral imaging processing literature, and in our opinion it is very important in order to really calibrate the possibility of using heterogeneous platforms for efficient hyperspectral imaging processing in real remote sensing missions.

  15. Performance evaluation of SAR/GMTI algorithms

    Science.gov (United States)

    Garber, Wendy; Pierson, William; Mcginnis, Ryan; Majumder, Uttam; Minardi, Michael; Sobota, David

    2016-05-01

    There is a history and understanding of exploiting moving targets within ground moving target indicator (GMTI) data, including methods for modeling performance. However, many assumptions valid for GMTI processing are invalid for synthetic aperture radar (SAR) data. For example, traditional GMTI processing assumes targets are exo-clutter and a system that uses a GMTI waveform, i.e. low bandwidth (BW) and low pulse repetition frequency (PRF). Conversely, SAR imagery is typically formed to focus data at zero Doppler and requires high BW and high PRF. Therefore, many of the techniques used in performance estimation of GMTI systems are not valid for SAR data. However, as demonstrated by papers in the recent literature,1-11 there is interest in exploiting moving targets within SAR data. The techniques employed vary widely, including filter banks to form images at multiple Dopplers, performing smear detection, and attempting to address the issue through waveform design. The above work validates the need for moving target exploitation in SAR data, but it does not represent a theory allowing for the prediction or bounding of performance. This work develops an approach to estimate and/or bound performance for moving target exploitation specific to SAR data. Synthetic SAR data is generated across a range of sensor, environment, and target parameters to test the exploitation algorithms under specific conditions. This provides a design tool allowing radar systems to be tuned for specific moving target exploitation applications. In summary, we derive a set of rules that bound the performance of specific moving target exploitation algorithms under variable operating conditions.

  16. Analysis of Resolution of Bistatic SAR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, the spatial resolutions at different directions of bistatic synthetic aperture radar (BiSAR) have been derived from the ambiguity function. Compared with monostatic signal to noise ratio, BiSAR's resolutions of a fixed point target are varying with slow time since BiSAR system is space-variant. Constraints for the assumption of space-invariant bistatic topology are proposed in the paper. Moreover, under the assumption of invariance, the change of resolutions at different point in the image scene is taken into account, and we have specified two key parameters that affect resolutions directly and analyzed the way how they influence on the resolutions.

  17. SAR Raw Data Generation for Complex Airport Scenes

    Directory of Open Access Journals (Sweden)

    Jia Li

    2014-10-01

    Full Text Available The method of generating the SAR raw data of complex airport scenes is studied in this paper. A formulation of the SAR raw signal model of airport scenes is given. Via generating the echoes from the background, aircrafts and buildings, respectively, the SAR raw data of the unified SAR imaging geometry is obtained from their vector additions. The multipath scattering and the shadowing between the background and different ground covers of standing airplanes and buildings are analyzed. Based on the scattering characteristics, coupling scattering models and SAR raw data models of different targets are given, respectively. A procedure is given to generate the SAR raw data of airport scenes. The SAR images from the simulated raw data demonstrate the validity of the proposed method.

  18. Modern approaches in deep learning for SAR ATR

    Science.gov (United States)

    Wilmanski, Michael; Kreucher, Chris; Lauer, Jim

    2016-05-01

    Recent breakthroughs in computational capabilities and optimization algorithms have enabled a new class of signal processing approaches based on deep neural networks (DNNs). These algorithms have been extremely successful in the classification of natural images, audio, and text data. In particular, a special type of DNNs, called convolutional neural networks (CNNs) have recently shown superior performance for object recognition in image processing applications. This paper discusses modern training approaches adopted from the image processing literature and shows how those approaches enable significantly improved performance for synthetic aperture radar (SAR) automatic target recognition (ATR). In particular, we show how a set of novel enhancements to the learning algorithm, based on new stochastic gradient descent approaches, generate significant classification improvement over previously published results on a standard dataset called MSTAR.

  19. Mitigating illumination gradients in a SAR image based on the image data and antenna beam pattern

    Science.gov (United States)

    Doerry, Armin W.

    2013-04-30

    Illumination gradients in a synthetic aperture radar (SAR) image of a target can be mitigated by determining a correction for pixel values associated with the SAR image. This correction is determined based on information indicative of a beam pattern used by a SAR antenna apparatus to illuminate the target, and also based on the pixel values associated with the SAR image. The correction is applied to the pixel values associated with the SAR image to produce corrected pixel values that define a corrected SAR image.

  20. Adaptive InSAR combined with surveying techniques for an improved characterisation of active landslides (El Portalet)

    Science.gov (United States)

    Duro, Javier; Albiol, David; Sánchez, Francisco; Herrera, Gerardo; García Davalillo, Juan Carlos; Fernandez Merodo, Jose Antonio; Allasia, Paolo; Lollino, Piernicola; Manconi, Andrea

    2014-05-01

    InSAR and the Persistent Scatterer Interferometry (PSI) are well established techniques for monitoring urban and rural areas. Besides the large number of available SAR data in the past, the current and forthcoming space-borne SAR sensors offer the possibility of selecting the optimal acquisition configuration (wavelength, resolution, incidence angle, etc.) for each application. However, optimal data takes are not always possible and/or the processing area is difficult to analyse under an InSAR point of view. In such situations, additional and adaptive InSAR developments combined with other surveying techniques provide consistent solutions that meet the requirements of different application cases This work presents an advanced InSAR processing adapted for an active slow deformation landslide in a mountainous area. The presentation will show the benefits of applying advanced and adaptive filtering strategies for improving the InSAR quality in highly decorrelated environments. The availability of Artificial Corner Reflectors over the area of interest enables to tune the filtering procedure and thus maximize the detection and exploitation of natural targets (bare soil, roads, rocks) as measurement points while preserving the phase characteristics over individual and punctual targets (building corners, poles). The new results will be evaluated in terms of final density and quality of measurement points that can be retrieved. The results will show that a very high density of measurements improves the detection of the deformation gradients and its perimeters resulting in a more accurate characterization of the landslide area. The area of study is El Portalet, an active slow deformation landslide area in Central Spanish Pyrenees. During many years the slope of interest has been monitored with several surveying techniques like DGPS, extensometers, inclinometers, GB-SAR and InSAR jointly with an extensive geological interpretation. Currently, in the frame of the FP7 Project

  1. EPOSAR: an innovative service to provide EPOS community with advanced DInSAR products

    Science.gov (United States)

    Manunta, Michele; De Luca, Claudio; Elefante, Stefano; Lanari, Riccardo; Pepe, Antonio; Zinno, Ivana; Casu, Francesco

    2015-04-01

    provides validated services and products targeted for institutional, scientific and educational uses, for advanced monitoring, analysis, and management. The key user of the EPOSAR service is the Earth Science Community represented by the EPOS infrastructure. EPOSAR service is developed to be accessible via web and permits user to select satellite data from on-line catalogues and process them on-demand via SBAS-DInSAR algorithm on dedicated computing facilities in unsupervised way. The results are made available to the user to be integrated in his own environment. Furthermore, the EPOSAR service can systematically generate displacement maps on areas of particular interest (i.e., supersites), immediately after the availability of new acquisitions. EPOSAR service is fully automatic, so that user intervention, usually required by conventional DInSAR software packages, is not needed. With EPOSAR, the user interaction should be reduced to the selection of the SAR dataset to be processed, the specification of some few initial parameters and the identification of the required products. A first release of EPOSAR service is already available through the ESA's G-POD environment, and allows remotely processing, via a web interface, the historical ESA SAR archives.

  2. SARS Patients-derived Human Recombinant Antibodies to S and M Proteins Efficiently Neutralize SARS-Coronavirus Infectivity

    Institute of Scientific and Technical Information of China (English)

    MI-FANG LIANG; KONG-XING WU; ZHAO-HUI XIONG; QI JIN; DE-XIN LI; RUN-LEI DU; JING-ZHI LIU; CHUAN LI; QUAN-FU ZHANG; LU-LU HAN; JIAN-SHI YU; SHU-MIN DUAN; XIAO-FANG WANG

    2005-01-01

    Objective To develop a specific SARS virus-targeted antibody preparation for emergent prophylaxis and treatment of SARS virus infection. Methods By using phage display technology, we constructed a naive antibody library from convalescent SARS patient lymphocytes. To obtain the neutralizing antibody to SARS virus surface proteins, the library panning procedure was performed on purified SARS virions and the specific Fab antibody clones were enriched by four rounds of repeated panning procedure and screened by highthroughput selection. The selected Fab antibodies expressed in the periplasma of E. Coli were soluble and further purified and tested for their binding properties and antiviral function to SARS virus. The functional Fab antibodies were converted to full human IgG antibodies with recombinant baculovirus/insect cell systems and their neutralizing activities were further determined. Results After four rounds of the panning, a number of SARS-CoV virus-targeted human recombinant Fab antibodies were isolated from the SARS patient antibody library. Most of these were identified to recognize both natural and recombinant SARS spike (S) proteins, two Fab antibodies were specific for the virus membrane (M) protein, only one bound to SARS-CoV nucleocapsid protein. The SARS-CoV S and M protein-targeted Fab or IgG antibodies showed significant neutralizing activities in cytopathic effect (CPE) inhibition neutralization test, these antibodies were able to completely neutralize the SARS virus and protect the Vero cells from CPE after virus infection. However, the N protein-targeted Fab or IgG antibodies failed to neutralize the virus. In addition, the SARS N protein-targeted human Fab antibody reacted with the denatured N proteins, whereas none of the S and M protein specific neutralizing antibodies did. These results suggested that the S and M protein-specific neutralizing antibodies could recognize conformational epitopes which might be involved in the binding of virions

  3. Contourlet domain hidden Markov tree based detection algorithm for DRDC through-wall SAR (TWSAR) system applications

    Science.gov (United States)

    Chan, Brigitte

    2010-04-01

    DRDC Ottawa is investigating high resolution synthetic aperture radar (SAR) techniques to perform 3-D imaging through walls in urban operations. Through-wall capabilities of interest include room mapping, imaging of in-wall structures, and detection of objects of interest. Such capabilities would greatly enhance situational awareness for military forces operating in the urban battle space. Current activities include hardware and software development and testing of an L-band through-wall SAR (TWSAR) system. Detection algorithms and automatic target recognition (ATR) systems are under investigation using experimental 2-D data. ATR may be more difficult in urban environments due to the high number of detectable objects and multi-path artifacts. Furthermore, penetrating through walls presents a formidable challenge as wall effects can greatly interfere with image quality inside buildings. By classifying wall material, wall compensation algorithms can be applied to enhance the image. In this paper, we present results from our preliminary investigation on detecting internal and external wall structures and their features (including doors and windows as well as internal wall construction) from scenes acquired with a single channel L-band TWSAR system. We evaluate the effectiveness of automatic detection based on the contourlet domain hidden Markov tree in the context of detecting wall edges and building features, while minimizing the amount of false edge detection. This work will form the basis of wall compensation algorithm development. The detection technique will also be used to detect objects of interests beyond walls once the SAR images have been wall compensated.

  4. Efficient Bistatic SAR Raw Signal Simulator of Extended Scenes

    Directory of Open Access Journals (Sweden)

    Liang Yang

    2014-01-01

    Full Text Available Bistatic SAR system is a new mode that allocates the radar transmitter and receiver on different platforms and has more advantages compared to the monostatic case. However, the existing bistatic SAR raw data simulator in the frequency domain can only handle the case of translation invariant system. In this paper, an efficient 2D frequency-domain raw data simulator of extended scenes for bistatic SAR of translation variant system is proposed by a geometric transformation method for the first time, where inverse STOLT interpolation is used to formulate the range migration terms. The presented simulator can accommodate the translation variant bistatic SAR system compared with existing bistatic SAR simulator. And it is more efficient than the time domain one by making use of Fast Fourier Transform (FFT. Simulation results for point targets and a real SAR image demonstrate its validity and effectiveness.

  5. Health Communication during SARS

    Science.gov (United States)

    Navin, Ava W.; Steele, Stefanie F.; Weld, Leisa H.; Kozarsky, Phyllis E.

    2004-01-01

    During the severe acute respiratory syndrome (SARS) outbreak, electronic media made it possible to disseminate prevention messages rapidly. The Centers for Disease Control and Prevention’s Travelers’ Health Web site was frequently visited in the first half of 2003; more than 2.6 million visits were made to travel alerts, advisories, and other SARS-related documents. PMID:15030717

  6. SARS Pathogenesis: Host Factors

    NARCIS (Netherlands)

    A. de Lang (Anna)

    2012-01-01

    textabstractWhile it is hypothesized that Sever Acute Respiratory Syndrome (SARS) in humans is caused by a disproportional immune response illustrated by inappropriate induction of inflammatory cytokines, the exact nature of the host response to SARS coronavirus (CoV) infection causing severe

  7. Automatic GCP extraction with high resolution COSMO-SkyMed products

    Science.gov (United States)

    Nitti, Davide Oscar; Morea, Alberto; Nutricato, Raffaele; Chiaradia, Maria Teresa; La Mantia, Claudio; Agrimano, Luigi; Samarelli, Sergio

    2016-10-01

    High-resolution Synthetic Aperture Radar (SAR) data represent an essential resource for the extraction of Ground Control Points (GCP) with sub-metric accuracy without in situ measurement campaigns. Conceptually, SAR-based GCP extraction consists of the following two steps: (i) identification of the same local feature on more SAR images and determination of their range/azimuth coordinates; (ii) spatial 3D positioning retrieval from the 2D radar coordinates, through spatial triangulation (stereo analysis) and inversion methods. In order to boost the geolocation accuracy, SAR images must be acquired from different line of sights, with intersection angles typically wider than 10 degrees, or even in opposite looking directions. In the present study, we present an algorithm specifically designed for ensuring robustness and accuracy in the fully automatic detection of bright isolated targets (steel light poles or towers) even when dealing with opposite looking data takes. In particular, the popular Harris algorithm has been selected as detector because it is the most stable and robust-to-noise algorithm for corners detection on SAR images. We outline the designed algorithmic solution and discusses the results derived over the urban area of Pisa (Italy), where more than ten COSMO-SkyMed Enhanced Spotlight (ES) stereo images are available, thus resulting an optimal test site for an assessment of the performances of the processing chain. The experimental analysis proofs that, assumed timing has been properly recalibrated, we are capable to automatically extract GCP from CSK ES data takes consisting in a very limited number of images.

  8. A beamforming algorithm for bistatic SAR image formation.

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, David Alan; Wahl, Daniel Eugene; Jakowatz, Charles V., Jr.

    2010-03-01

    Beamforming is a methodology for collection-mode-independent SAR image formation. It is essentially equivalent to backprojection. The authors have in previous papers developed this idea and discussed the advantages and disadvantages of the approach to monostatic SAR image formation vis--vis the more standard and time-tested polar formatting algorithm (PFA). In this paper we show that beamforming for bistatic SAR imaging leads again to a very simple image formation algorithm that requires a minimal number of lines of code and that allows the image to be directly formed onto a three-dimensional surface model, thus automatically creating an orthorectified image. The same disadvantage of beamforming applied to monostatic SAR imaging applies to the bistatic case, however, in that the execution time for the beamforming algorithm is quite long compared to that of PFA. Fast versions of beamforming do exist to help alleviate this issue. Results of image reconstructions from phase history data are presented.

  9. A beamforming algorithm for bistatic SAR image formation

    Science.gov (United States)

    Jakowatz, Charles V., Jr.; Wahl, Daniel E.; Yocky, David A.

    2010-04-01

    Beamforming is a methodology for collection-mode-independent SAR image formation. It is essentially equivalent to backprojection. The authors have in previous papers developed this idea and discussed the advantages and disadvantages of the approach to monostatic SAR image formation vis-à-vis the more standard and time-tested polar formatting algorithm (PFA). In this paper we show that beamforming for bistatic SAR imaging leads again to a very simple image formation algorithm that requires a minimal number of lines of code and that allows the image to be directly formed onto a three-dimensional surface model, thus automatically creating an orthorectified image. The same disadvantage of beamforming applied to monostatic SAR imaging applies to the bistatic case, however, in that the execution time for the beamforming algorithm is quite long compared to that of PFA. Fast versions of beamforming do exist to help alleviate this issue. Results of image reconstructions from phase history data are presented.

  10. Anti-SARS coronavirus agents: a patent review (2008 - present).

    Science.gov (United States)

    Kumar, Vathan; Jung, Young-Sik; Liang, Po-Huang

    2013-10-01

    A novel coronavirus (CoV), unlike previous typical human coronaviruses (HCoVs), was identified as causative agent for severe acute respiratory syndrome (SARS). SARS first surfaced as a pandemic in late 2002 and originated in southern China. SARS-CoV rapidly spread to > 30 countries by 2003, infecting nearly 8,000 people and causing around 800 fatalities. After 10 years of silence, a 2012 report alarmed researchers about the emergence of a new strain of CoV causing SARS-like disease. To combat SARS, scientists applied for patents on various therapeutic agents, including small-molecule inhibitors targeting the essential proteases, helicase and other proteins of the virus, natural products, approved drugs, molecules binding to the virus, neutralizing antibodies, vaccines, anti-sense RNA, siRNA and ribozyme against SARS-CoV. In this article, the patents published from 2008 to the present for the new therapeutics that could potentially be used in the prophylaxis and treatment of SARS are reviewed. The therapeutic interventions or prophylaxis discussed in this review seems to offer promising solutions to tackle SARS. Rather than being complacent about the results, we should envisage how to transform them into drug candidates that may be useful in combating SARS and related viral infections in the future.

  11. Review of Radar Automatic Target Recognition%雷达目标识别技术综述

    Institute of Scientific and Technical Information of China (English)

    马林

    2011-01-01

    Radar target recognition technology is a complicated system which combines the sensor, target and environment etc. It is one of the important development area of modern radar technology. Current research status of target characteristics is summarized.Existing target recognition algorithms of different recognition objects are analyzed and summarized from ballistic missiles, air targets, targets on the sea surface and ground target. The development perspective of radar target recognition technology is also analyzed.%雷达目标识别技术是集传感器、目标、环境为一体的一项复杂的系统工程,是现代雷达技术的重要发展方向之一.文中总结了目标特性的研究现状,针对不同的识别对象,如弹道导弹、空中目标、海上目标和地面等目标,对现有的识别方法进行了梳理,并分析了雷达目标识别技术的发展方向.

  12. ONERA airborne SAR facilities

    Energy Technology Data Exchange (ETDEWEB)

    Boutry, J.M. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), Chatillon (France)

    1996-11-01

    ONERA has developed and operates the RAMSES experimental SAR on board a TRANSALL C160 aircraft. This system has been designed in order to analyze the effect of various parameters, such as frequency, polarization, incidence, resolution,... in the field of air-to-ground radar applications. These applications include SAR imaging for ground radar applications. These applications include SAR imaging for various purposes such as map-matching for navigation update, battlefield surveillance, reconnaissance, treaty applications... It consists of several radar sections operating over a wide range of frequency bands (L, S, C, X, Ku, Ka, W). 7 figs., 3 tabs.

  13. A Global Optimal Coherence Method for Multi-baseline InSAR Elevation Inversion

    Directory of Open Access Journals (Sweden)

    HUA Fenfen

    2015-11-01

    Full Text Available A global optimal coherence method for elevation inversion from multi-baseline polarimetric InSAR data is proposed. The multi-baseline polarimetric InSAR data used in experiments were obtained by Chinese X-SAR system and Germany's E-SAR system. Through combining several full polarimetric InSAR images, the proposed method constructs the multi-baseline polarimetric InSAR coherency matrix, and solves the optimal interferograms under global optimal coherence criterion. The optimal interferograms generated by global optimal coherence method were used to calculate the elevation of target with multi-baseline InSAR elevation inversion method. The proposed method reduces the influence of different scattering centers effectively using multi-baseline InSAR, which improves the accuracy and reliability of the interferometric phase and eventually improves the accuracy of DEM. The results verify the validity of the proposed method.

  14. Method of airborne SAR image match integrating multi-information for block adjustment

    Science.gov (United States)

    Yang, S. C.; Huang, G. M.; Zhao, Z.; Lu, L. J.

    2015-06-01

    For the automation of SAR image Block Adjustment, this paper proposed a method of SAR image matching integrating multiinformation. It takes full advantage of SAR image geometric information, feature information, gray-related information and external auxiliary terrain information for SAR image matching. And then Image Tie Points (ITPs) of Block Adjustment can be achieved automatically. The main parts of extracting ITPs automatically include: First, SAR images were rectified geometrically based on the geometric information and external auxiliary terrain information (existed DEM) before match. Second, ground grid points with a certain interval can be get in the block area and approximate ITPs were acquired based on external auxiliary terrain information. Then match reference point was extracted for homologous image blocks with Harris feature detection operator and ITPs were obtained with pyramid matching based on gray-related information. At last, ITPs were transferred from rectified images to original SAR images and used in block adjustment. In the experiment, X band airborne SAR images acquired by Chinese airborne SAR system - CASMSAR system were used to make up the block. The result had showed that the method is effective for block adjustment of SAR data.

  15. A cross validation study of deep brain stimulation targeting: from experts to atlas-based, segmentation-based and automatic registration algorithms.

    Science.gov (United States)

    Castro, F Javier Sanchez; Pollo, Claudio; Meuli, Reto; Maeder, Philippe; Cuisenaire, Olivier; Cuadra, Meritxell Bach; Villemure, Jean-Guy; Thiran, Jean-Philippe

    2006-11-01

    Validation of image registration algorithms is a difficult task and open-ended problem, usually application-dependent. In this paper, we focus on deep brain stimulation (DBS) targeting for the treatment of movement disorders like Parkinson's disease and essential tremor. DBS involves implantation of an electrode deep inside the brain to electrically stimulate specific areas shutting down the disease's symptoms. The subthalamic nucleus (STN) has turned out to be the optimal target for this kind of surgery. Unfortunately, the STN is in general not clearly distinguishable in common medical imaging modalities. Usual techniques to infer its location are the use of anatomical atlases and visible surrounding landmarks. Surgeons have to adjust the electrode intraoperatively using electrophysiological recordings and macrostimulation tests. We constructed a ground truth derived from specific patients whose STNs are clearly visible on magnetic resonance (MR) T2-weighted images. A patient is chosen as atlas both for the right and left sides. Then, by registering each patient with the atlas using different methods, several estimations of the STN location are obtained. Two studies are driven using our proposed validation scheme. First, a comparison between different atlas-based and nonrigid registration algorithms with a evaluation of their performance and usability to locate the STN automatically. Second, a study of which visible surrounding structures influence the STN location. The two studies are cross validated between them and against expert's variability. Using this scheme, we evaluated the expert's ability against the estimation error provided by the tested algorithms and we demonstrated that automatic STN targeting is possible and as accurate as the expert-driven techniques currently used. We also show which structures have to be taken into account to accurately estimate the STN location.

  16. Pulse-based internal calibration of polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Christensen, Erik Lintz

    1994-01-01

    Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops and devel......Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops...

  17. A remotely controlled, semi-automatic target system for Rutherford backscattering spectrometry and elastic recoil detection analyses of polymeric membrane samples

    Energy Technology Data Exchange (ETDEWEB)

    Attayek, P.J. [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431 (United States); Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7575 (United States); Meyer, E.S.; Lin, L. [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431 (United States); Rich, G.C.; Clegg, T.B. [Triangle Universities Nuclear Laboratory (TUNL), Durham, NC 27708-0308 (United States); Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Coronell, O., E-mail: coronell@unc.edu [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431 (United States)

    2012-06-01

    A new target system for Rutherford backscattering spectrometry and elastic recoil detection analysis is described which enables remotely controlled, semi-automatic analysis of multiple organic polymer samples without exceeding damaging incident beam fluences. Control of fluence at a given beam current is achieved using two stepper motors to move a thin aluminum disk loaded with polymer samples both radially and azimuthally across the beam. Flexible beam spot locations and sample irradiation times are remotely controlled in two steps via two custom LabVIEW Trade-Mark-Sign programs. In the first step, a digital image of the target disk is converted into precise radial and azimuthal coordinates for each mounted polymer sample. In the second step, the motors implement the user-directed sample irradiation and fluence. Schematics of the target system hardware, a block diagram of interactions between the target system components, a description of routine procedures, and illustrative data taken with a 2 MeV {sup 4}He{sup 2+} analysis beam are provided.

  18. Verification of L-band SAR calibration

    Science.gov (United States)

    Larson, R. W.; Jackson, P. L.; Kasischke, E.

    1985-01-01

    Absolute calibration of a digital L-band SAR system to an accuracy of better than 3 dB has been verified. This was accomplished with a calibration signal generator that produces the phase history of a point target. This signal relates calibration values to various SAR data sets. Values of radar cross-section (RCS) of reference reflectors were obtained using a derived calibration relationship for the L-band channel on the ERIM/CCRS X-C-L SAR system. Calibrated RCS values were compared to known RCS values of each reference reflector for verification and to obtain an error estimate. The calibration was based on the radar response to 21 calibrated reference reflectors.

  19. Radiometric and geometric calibration of JERS-1 SAR

    Science.gov (United States)

    Shimada, M.

    Since the beginning of April '92, the calibration and validation has been being conducted to characterize the JERS-1's SAR and qualify the SAR image products using the calibration instruments and evaluation software tools, such as the 2.4 meter trihedral corner reflectors and the active radar calibrators whose radar cross sections are known as well as their locations. Analysis of SAR data using such instruments derived the conversion factor (CF), which relates the digital number (DN) of SAR image pixel and the normalized radar cross section (NRCS) of the target, as -68.51 dB with the accuracy of 1.86 dB(1 sigma) for the full swath of SAR image. The image quality was also recognized as well as designed.

  20. Convolutional neural network-based automatic classification of midsagittal tongue gestural targets using B-mode ultrasound images.

    Science.gov (United States)

    Xu, Kele; Roussel, Pierre; Csapó, Tamás Gábor; Denby, Bruce

    2017-06-01

    Tongue gestural target classification is of great interest to researchers in the speech production field. Recently, deep convolutional neural networks (CNN) have shown superiority to standard feature extraction techniques in a variety of domains. In this letter, both CNN-based speaker-dependent and speaker-independent tongue gestural target classification experiments are conducted to classify tongue gestures during natural speech production. The CNN-based method achieves state-of-the-art performance, even though no pre-training of the CNN (with the exception of a data augmentation preprocessing) was carried out.

  1. Real-time optical processor prototype for remote SAR applications

    Science.gov (United States)

    Marchese, Linda; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Bourqui, Pascal; Legros, Mathieu; Desnoyers, Nichola; Guillot, Ludovic; Mercier, Luc; Savard, Maxime; Martel, Anne; Châteauneuf, François; Bergeron, Alain

    2009-09-01

    A Compact Real-Time Optical SAR Processor has been successfully developed and tested. SAR, or Synthetic Aperture Radar, is a powerful tool providing enhanced day and night imaging capabilities. SAR systems typically generate large amounts of information generally in the form of complex data that are difficult to compress. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Indeed, the first SAR images have been optically processed. The optical processor architecture provides inherent parallel computing capabilities that can be used advantageously for the SAR data processing. Onboard SAR image generation would provide local access to processed information paving the way for real-time decision-making. This could eventually benefit navigation strategy and instrument orientation decisions. Moreover, for interplanetary missions, onboard analysis of images could provide important feature identification clues and could help select the appropriate images to be transmitted to Earth, consequently helping bandwidth management. This could ultimately reduce the data throughput requirements and related transmission bandwidth. This paper reviews the design of a compact optical SAR processor prototype that would reduce power, weight, and size requirements and reviews the analysis of SAR image generation using the table-top optical processor. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and size are reviewed. Results of image generation from simulated point targets as well as real satellite-acquired raw data are presented.

  2. Canonical framework for multi-channel SAR-GMTI

    Institute of Scientific and Technical Information of China (English)

    Liu Congfeng; Liao Guisheng

    2008-01-01

    Synthetic aperture radar (SAR) systems have become an important tool for fine-resolution mapping and other remote sensing operations.The multi-channel SAR ground moving-target indication (GMTI) must process its data to produce not only the image of surveillance area but also the information of the ground moving-targets.The topic of moving-target detection in clutter has been extensively studied,and there are many methods that are used to detect moving targets,such as displaced phase center antenna (DPCA) method,along-track interfero-metric (ATI) phase,space-time adaptive processing (STAP),or some other metrics.A canonical framework is proposed that encompasses all the multi-channel SAR-GMT methods,namely,DPCA and ATI.The statistical test metric for multi-channel SAR-GMTI is established in a simple form,via the definition of the complex central Wishart distribution,to deduce the statistics of the test metric,and the probability distribution of the test metric for multichannel SAR-GMTI has the complex central Wishart distribution of 1×1 case,namely the x2 distribution.The theory foundation offers the possibility to construct the united multi-channel SAR-GMTI detector,and derives the constant false alarm rate (CFAR) detector tests for separating moving targets from clutter.

  3. An Adaptive Ship Detection Scheme for Spaceborne SAR Imagery

    Directory of Open Access Journals (Sweden)

    Xiangguang Leng

    2016-08-01

    Full Text Available With the rapid development of spaceborne synthetic aperture radar (SAR and the increasing need of ship detection, research on adaptive ship detection in spaceborne SAR imagery is of great importance. Focusing on practical problems of ship detection, this paper presents a highly adaptive ship detection scheme for spaceborne SAR imagery. It is able to process a wide range of sensors, imaging modes and resolutions. Two main stages are identified in this paper, namely: ship candidate detection and ship discrimination. Firstly, this paper proposes an adaptive land masking method using ship size and pixel size. Secondly, taking into account the imaging mode, incidence angle, and polarization channel of SAR imagery, it implements adaptive ship candidate detection in spaceborne SAR imagery by applying different strategies to different resolution SAR images. Finally, aiming at different types of typical false alarms, this paper proposes a comprehensive ship discrimination method in spaceborne SAR imagery based on confidence level and complexity analysis. Experimental results based on RADARSAT-1, RADARSAT-2, TerraSAR-X, RS-1, and RS-3 images demonstrate that the adaptive scheme proposed in this paper is able to detect ship targets in a fast, efficient and robust way.

  4. Micro-Doppler Effect of Target with Rotating Part in Bistatic SAR%双站SAR雷达目标旋转部件的微多普勒效应

    Institute of Scientific and Technical Information of China (English)

    张伟; 童创明; 张群

    2011-01-01

    Based on the configuration of Bistatic side-looking SAR with parallel track, the signal model of radar target with rotating part was provided, and then the mathematical expressions of micro-Doppler and its chirp-rate induced by target rotation were derived. The analysis indicates that the micro-Doppler effect is not only related to the parameters of micm-motion and carrier wavelength, but also the aystem geometrical configuration. So the micro-motion target indication ability can be improved by changing the geometrical configuration, while preserving relatively high viability of the system on the war-field. Finally, the theoretical analysis is verified by the simulation results.%基于双站SAR收发系统分置的特点,建立了平飞正侧视模式下雷达目标旋转部件的回波信号模型,推导了由目标旋转引入的微多普勒频移和微多普勒调频率的参数化表达式.在该模式下,由目标转动激励的微多普勒调制不仅与其微动参数、载波波长有关,而且与收发系统的几何参数相关,从而有望在保持双站SAR较高战场生存能力等优势的情况下,通过改变系统几何配置来提高对微动目标的检测能力.最后,结合时频分析技术由数值仿真验证了理论分析的正确性.

  5. A Novel Dual-SAR CFAR Detecting Method Based on Joint Metrics of Interferogram's Magnitude and Phase for Slow Ground Moving Targets%基于干涉图幅度和相位联合的慢动目标CFAR检测方法

    Institute of Scientific and Technical Information of China (English)

    时公涛; 陈东; 陈涛; 桂琳; 庞怡杰; 王晶; 张小义

    2012-01-01

    The paper proposes a novel dual-SAR CFAR detector based on joint metrics of interferogram' s magnitude and phase for slow ground moving targets. Firstly, under the frame of multiplicative model, based on the complex Wishart-distribution, and bringing in the theory of clutter classification brought forward by Frery et al. ,the new IMP metric's statistical models are deduced according to utilizing the reciprocal of a square root of Gamma and the square root of generalized inverse Gaussian law.The group of new models can precisely model the IMP metric corresponding to different clutter areas with broad degrees of homogeneity . Secondly, the new models' estimators are acquired based on the Mellin transform, which can estimate the contained parameters quickly and accurately,guaranteeing the new distributions' fitting precision.Therefore,automatically detecting the slow ground moving targets by the IMP metric can be accomplished. According to the experiments performed on real SAR images, using the Kull-back-Leibler (KL) distance,mean square error (MSE) and Kolmogorov-Smimov (KS) test as similarity measurements,the experimental results not only show the effectiveness of the IMP metric's statistical models and estimators,but also prove the superior performance of the novel detector.%提出了一种新的基于干涉图幅度和相位联合的慢动目标CFAR检测方法,在理论层面上,基于复Wishart分布,推导出了均匀区域、不均匀区域和极度不均匀区域等不同环境下IMP检测量的统计分布族,并根据Mellin变换导出了各分布模型的参数估计器.在算法层面上,通过结合邻域平均这种等效的多视处理方式获得IMP检测量图像后,根据推导出的IMP检测量各分布模型对应的CFAR阈值求解方式,利用滑动窗口的形式实现慢动目标的自动检测.对双通道SAR实测数据进行实验,采用KL度量、MSE度量和K-S检验作为定量评估准则,结果证明了IMP检测量分布模型族及

  6. Automatic sequences

    CERN Document Server

    Haeseler, Friedrich

    2003-01-01

    Automatic sequences are sequences which are produced by a finite automaton. Although they are not random they may look as being random. They are complicated, in the sense of not being not ultimately periodic, they may look rather complicated, in the sense that it may not be easy to name the rule by which the sequence is generated, however there exists a rule which generates the sequence. The concept automatic sequences has special applications in algebra, number theory, finite automata and formal languages, combinatorics on words. The text deals with different aspects of automatic sequences, in particular:· a general introduction to automatic sequences· the basic (combinatorial) properties of automatic sequences· the algebraic approach to automatic sequences· geometric objects related to automatic sequences.

  7. SAR-based vibrometry using the fractional Fourier transform

    Science.gov (United States)

    Campbell, Justin B.; Wang, Qi; Ade-Bello, Jelili; Caudana, Humberto; Trujillo, Nicole B.; Bhatta, Ishwor; Dunkel, Ralf; Atwood, Thomas; Doerry, Armin; Gerstle, Walter H.; Santhanam, Balu; Hayat, Majeed M.

    2015-05-01

    A fundamental assumption when applying Synthetic Aperture Radar (SAR) to a ground scene is that all targets are motionless. If a target is not stationary, but instead vibrating in the scene, it will introduce a non-stationary phase modulation, termed the micro-Doppler effect, into the returned SAR signals. Previously, the authors proposed a pseudosubspace method, a modification to the Discrete Fractional Fourier Transform (DFRFT), which demonstrated success for estimating the instantaneous accelerations of vibrating objects. However, this method may not yield reliable results when clutter in the SAR image is strong. Simulations and experimental results have shown that the DFRFT method can yield reliable results when the signal-to-clutter ratio (SCR) > 8 dB. Here, we provide the capability to determine a target's frequency and amplitude in a low SCR environment by presenting two methods that can perform vibration estimations when SCR < 3 dB. The first method is a variation and continuation of the subspace approach proposed previously in conjunction with the DFRFT. In the second method, we employ the dual-beam SAR collection architecture combined with the extended Kalman filter (EKF) to extract information from the returned SAR signals about the vibrating target. We also show the potential for extending this SAR-based capability to remotely detect and classify objects housed inside buildings or other cover based on knowing the location of vibrations as well as the vibration histories of the vibrating structures that house the vibrating objects.

  8. Quad-Polarimetric SAR for Detection and Characterization of Icebergs

    Science.gov (United States)

    Akbari, V.; Brekke, C.; Doulgeris, A. P.; Storvold, R.; Silvertsen, A.

    2016-08-01

    This paper evaluates the performance of fully polarimetric SAR data in iceberg detection and characterization. The study aims to explore the potential of RADARSAT- 2 SAR data to detect icebergs and growlers in Svalbard that have broken off from the glaciers nearby. To be able to detect iceberg/growlers in a SAR image, a significant contrast between iceberg and background clutter is required. The sublook cross-correlation magnitude (SCM) is extracted from the complex cross-correlation between subapeture images and contrast between iceberg and sea clutter is measured. The results of target-to-clutter ratio from the SCM indicate that the sublook analysis has an impact on detection performance.

  9. Crop Classification by Polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning; Svendsen, Morten Thougaard; Nielsen, Flemming;

    1999-01-01

    Polarimetric SAR-data of agricultural fields have been acquired by the Danish polarimetric L- and C-band SAR (EMISAR) during a number of missions at the Danish agricultural test site Foulum during 1995. The data are used to study the classification potential of polarimetric SAR data using...

  10. A Localization Method for Multistatic SAR Based on Convex Optimization.

    Directory of Open Access Journals (Sweden)

    Xuqi Zhong

    Full Text Available In traditional localization methods for Synthetic Aperture Radar (SAR, the bistatic range sum (BRS estimation and Doppler centroid estimation (DCE are needed for the calculation of target localization. However, the DCE error greatly influences the localization accuracy. In this paper, a localization method for multistatic SAR based on convex optimization without DCE is investigated and the influence of BRS estimation error on localization accuracy is analysed. Firstly, by using the information of each transmitter and receiver (T/R pair and the target in SAR image, the model functions of T/R pairs are constructed. Each model function's maximum is on the circumference of the ellipse which is the iso-range for its model function's T/R pair. Secondly, the target function whose maximum is located at the position of the target is obtained by adding all model functions. Thirdly, the target function is optimized based on gradient descent method to obtain the position of the target. During the iteration process, principal component analysis is implemented to guarantee the accuracy of the method and improve the computational efficiency. The proposed method only utilizes BRSs of a target in several focused images from multistatic SAR. Therefore, compared with traditional localization methods for SAR, the proposed method greatly improves the localization accuracy. The effectivity of the localization approach is validated by simulation experiment.

  11. A Localization Method for Multistatic SAR Based on Convex Optimization.

    Science.gov (United States)

    Zhong, Xuqi; Wu, Junjie; Yang, Jianyu; Sun, Zhichao; Huang, Yuling; Li, Zhongyu

    2015-01-01

    In traditional localization methods for Synthetic Aperture Radar (SAR), the bistatic range sum (BRS) estimation and Doppler centroid estimation (DCE) are needed for the calculation of target localization. However, the DCE error greatly influences the localization accuracy. In this paper, a localization method for multistatic SAR based on convex optimization without DCE is investigated and the influence of BRS estimation error on localization accuracy is analysed. Firstly, by using the information of each transmitter and receiver (T/R) pair and the target in SAR image, the model functions of T/R pairs are constructed. Each model function's maximum is on the circumference of the ellipse which is the iso-range for its model function's T/R pair. Secondly, the target function whose maximum is located at the position of the target is obtained by adding all model functions. Thirdly, the target function is optimized based on gradient descent method to obtain the position of the target. During the iteration process, principal component analysis is implemented to guarantee the accuracy of the method and improve the computational efficiency. The proposed method only utilizes BRSs of a target in several focused images from multistatic SAR. Therefore, compared with traditional localization methods for SAR, the proposed method greatly improves the localization accuracy. The effectivity of the localization approach is validated by simulation experiment.

  12. The Accuratre Signal Model and Imaging Processing in Geosynchronous SAR

    Science.gov (United States)

    Hu, Cheng

    accurate slant range model and SAR operation principle, the accurate signal model which is the foundation of high accuracy imaging will be analytically achieved in GEO SAR. Because of long synthetic aperture time, the linear trajectory model is invalidated in GEO SAR. Therefore based on the accurate signal model, using the high order Taylor expansion technique, the novel series reversion method is proposed to obtain the accurate two dimensional (2-D) point target frequency spectrum (PTFS) expression. Using the accurate 2-D PTFS, we can implement the phase compensation and range migration correction as well as azimuth focusing, then the high quality 2-D imaging results will be obtained. Finally, the simulation will be carried out to verify the correctness of signal model derivation and imaging algorithm proposed.

  13. A effective immune multi-objective algorithm for SAR imagery segmentation

    Science.gov (United States)

    Yang, Dongdong; Jiao, Licheng; Gong, Maoguo; Si, Xiaoyun; Li, Jinji; Feng, Jie

    2009-10-01

    A novel and effective immune multi-objective clustering algorithm (IMCA) is presented in this study. Two conflicting and complementary objectives, called compactness and connectedness of clusters, are employed as optimization targets. Besides, adaptive ranks clone, variable length chromosome crossover operation and k-nearest neighboring list based diversity holding strategies are featured by the algorithm. IMCA could automatically discover the right number of clusters with large probability. Seven complicated artificial data sets and two widely used synthetic aperture radar (SAR) imageries are used for test IMCA. Compared with FCM and VGA, IMCA has obtained good and encouraging clustering results. We believe that IMCA is an effective algorithm for solving these nine problems, which should deserve further research.

  14. SARS: just another viral acronym?

    Science.gov (United States)

    Broxmeyer, L

    2003-08-01

    Recent observations and experimental evidence have purported that a virus causes SARS, but such viruses have been isolated in only less than half of SARS patients in some studies and virologist Vincent Plummer of Winnipeg's National Microbiology Laboratory found that indeed 1 in 5 perfectly healthy Canadians with a history of recent travel to Asia had the virus. Therefore SARS microbiologic origins remain unclear. Outbreaks of multi-drug resistant (MDR) tuberculosis and the atypical mycobacteria simulate SARS on clinical, radiologic, epidemiologic, and diagnostic laboratory grounds and it is only logical then to include them in the differential to find a definitive cause and cure for SARS.

  15. SAR Ice Classification Using Fuzzy Screening Method

    Science.gov (United States)

    Gill, R. S.

    2003-04-01

    A semi-automatic SAR sea ice classification algorithm is described. It is based on combining the information in the original SAR data with those in the three 'image' products derived from it, namely Power-to-Mean Ratio (PMR), the Gamma distribution and the second order texture parameter entropy, respectively. The latter products contain information which is often useful during the manual interpretation of the images. The technique used to fuse the information in these products is based on a method c lled Multi Experts Multi Criteria Decision Making fuzzy a screening. The Multiple Experts in this case are the above four 'image' products. The two criteria used currently for making decisions are the Kolmogorov-Smirnov distribution matching and the statistical mean of different surface classes. The algorithm classifies an image into any number of predefined classes of sea ice and open water. The representative classes of these surface types are manually identified by the user. Further, as SAR signals from sea ice covered regions and open water are ambiguous, it was found that a minimum of 4 pre-identified surface classes (calm and turbulent water and sea ice with low and high backscatter values) are required to accurately classify an image. Best results are obtained when a total of 8 surface classes (2 each of sea ice and open water in the near range and a similar number in the far range of the SAR image) are used. The main advantage of using this image classification scheme is that, like neural networks, no prior knowledge is required of the statistical distribution of the different surface types. Furthermore, unlike the methods based on neural networks, no prior data sets are required to train the algorithm. All the information needed for image classification by the method is contained in the individual SAR images and associated products. Initial results illustrating the potential of this ice classification algorithm using the RADARSAT ScanSAR Wide data are presented

  16. Bats and SARS

    Centers for Disease Control (CDC) Podcasts

    2006-11-08

    Bats are a natural reservoir for emerging viruses, among them henipaviruses and rabies virus variants. Dr. Nina Marano, Chief, Geographic Medicine and Health Promotion Branch, Division of Global Migration and Quarantine, CDC, explains connection between horseshoe bats and SARS coronavirus transmission.  Created: 11/8/2006 by Emerging Infectious Diseases.   Date Released: 11/17/2006.

  17. Multichannel FMCW SAR

    NARCIS (Netherlands)

    Rossum, W.L. van; Otten, M.P.G.; Dorp, Ph. van

    2012-01-01

    A light weight SAR, suitable for use on short range tactical UAV, has been designed and built. The system consists of a fully digital receive array, and a very compact active transmit antenna. The approximate weight of the complete system is 6 kg, with power consumption below 75 W, depending on the

  18. Estimation of supraglacial debris thickness using a novel target decomposition on L-band polarimetric SAR images in the Tianshan Mountains

    Science.gov (United States)

    Huang, L.; Li, Zh.; Tian, B. S.; Han, H. D.; Liu, Y. Q.; Zhou, J. M.; Chen, Q.

    2017-04-01

    Debris is widely distributed in the ablation zones of mountain glaciers in the Tianshan Mountains. Supraglacial debris can accelerate or hamper glacier ablation, depending on its thickness. Thus, it plays an important role in the mass balance of debris-covered glaciers. This paper proposes a novel method to estimate supraglacial debris thickness by using L-band polarimetric synthetic aperture radar. A new model-based target decomposition is used to extract the surface scattering, double bounce, and volume scattering components. The surface scatter model uses the extended Bragg scatter, which considers the depolarization effect for rough surfaces. The volume scatter model uses elliptical scatterers, which approximate the shape of the solids in the debris. The volume scattering power is related to the dielectric properties of the debris, the radar wavelength, the incidence angle, and the elliptical scatter shape. Once the target decomposition is performed, the debris thickness can be inverted from the volume scattering power and other known parameters. Through comparison with a large number of field measurements, the inversion is shown to be reasonable, and the accuracy is validated to be ±0.12 m. Based on the inversion map in the study area, the debris thicknesses of the Koxkar glacier and its neighboring glaciers are presented and analyzed.

  19. Understanding SARS with Wolfram Approach

    Institute of Scientific and Technical Information of China (English)

    Da-WeiLI; Yu-XiPAN; YunDUAN; Zhen-DeHUNG; Ming-QingXU; LinHE

    2004-01-01

    Stepping acquired immunodeficiency syndrome (AIDS), severe acute respiratory syndrome (SARS) as another type of disease has been threatening mankind since late last year. Many scientists worldwide are making great efforts to study the etiology of this disease with different approaches. 13 species of SARS virus have been sequenced. However, most people still largely rely on the traditional methods with some disadvantages. In this work, we used Wolfram approach to study the relationship among SARS viruses and between SARS viruses and other types of viruses, the effect of variations on the whole genome and the advantages in the analysis of SARS based on this novel approach. As a result, the similarities between SARS viruses and other coronaviruses are not really higher than those between SARS viruses and non-coronaviruses.

  20. Interferometric SAR Persistent Scatterer Analysis of Mayon volcano, Albay, Philippines

    Science.gov (United States)

    Bato, M. P.; Lagmay, A. A.; Paguican, E. R.

    2011-12-01

    Persistent Scatterer Interferometry (PSInSAR) is a new method of interferometric processing that overcomes the limitations of conventional Synthetic Aperture Radar differential interferometry (DInSAR) and is capable of detecting millimeter scale ground displacements. PSInSAR eliminate anomalies due to atmospheric delays and temporal and geometric decorrelation eminent in tropical regions by exploiting the temporal and spatial characteristics of radar interferometric signatures derived from time-coherent point-wise targets. In this study, PSInSAR conducted in Mayon Volcano, Albay Province, Bicol, Philippines, reveal tectonic deformation passing underneath the volcano. Using 47 combined ERS and ENVISAT ascending and descending imageries, differential movement between the northern horst and graben on which Mayon volcano lies, is as much as 2.5 cm/year in terms of the line-of-sight (LOS) change in the radar signal. The northern horst moves in the northwest direction whereas the graben moves mostly downward. PSInSAR results when coupled with morphological interpretation suggest left-lateral oblique-slip movement of the northern bounding fault of the Oas graben. The PSInSAR results are validated with dGPS measurements. This work presents the functionality of PSInSAR in a humid tropical environment and highlights the probable landslide hazards associated with an oversteepened volcano that may have been further deformed by tectonic activity.

  1. Fast SAR Imaging Algorithm for FLGPR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A fast SAR imaging algorithm for near- field subsurface forward-looking ground penetrating radar (FLGPR) is presented. By using nonstationary convolution filter, the refocused image spectrum can be reconstructed directly from the backscattered signal spectrum of target area. The experimental results show the proposed method can fast achieve image refocusing. Also it has higher computational efficiency than the phase-shift migration approach and the delay-and-sum (DAS) approach.

  2. Validation of automatic target volume definition as demonstrated for 11C-choline PET/CT of human prostate cancer using multi-modality fusion techniques.

    Science.gov (United States)

    Park, Hyunjin; Meyer, Charles R; Wood, David; Khan, Asra; Shah, Rajal; Hussain, Hero; Siddiqui, Javed; Seo, Jongbum; Chenevert, Thomas; Piert, Morand

    2010-05-01

    Positron emission tomography (PET) is actively investigated to aid in target volume definition for radiation therapy. The objectives of this study were to apply an automatic computer algorithm to compute target volumes and to validate the algorithm using histologic data from real human prostate cancer. Various modalities for prostate imaging were performed. In vivo imaging included T2 3-T magnetic resonance imaging and (11)C-choline PET. Ex vivo imaging included 3-T magnetic resonance imaging, histology, and block face photos of the prostate specimen. A novel registration method based on mutual information and thin-plate splines was applied to all modalities. Once PET is registered with histology, a voxel-by-voxel comparison between PET and histology is possible. A thresholding technique based on various fractions of the maximum standardized uptake value in the tumor was applied, and the respective computed threshold volume on PET was compared with histologic truth. Sixteen patients whose primary tumor volumes ranged from 1.2 to 12.6 cm(3) were tested. PET has low spatial resolution, so only tumors > 4 cm(3) were considered. Four cases met this criterion. A threshold value of 60% of the (11)C-choline maximum standardized uptake value resulted in the highest volume overlap between threshold volume on PET and histology. Medial axis distances between threshold volume on PET and histology showed a mean error of 7.7 +/- 5.2 mm. This is a proof-of-concept study demonstrating for the first time that histology-guided thresholding on PET can delineate tumor volumes in real human prostate cancer. Copyright 2010 AUR. Published by Elsevier Inc. All rights reserved.

  3. Bistatic sAR data processing algorithms

    CERN Document Server

    Qiu, Xiaolan; Hu, Donghui

    2013-01-01

    Synthetic Aperture Radar (SAR) is critical for remote sensing. It works day and night, in good weather or bad. Bistatic SAR is a new kind of SAR system, where the transmitter and receiver are placed on two separate platforms. Bistatic SAR is one of the most important trends in SAR development, as the technology renders SAR more flexible and safer when used in military environments. Imaging is one of the most difficult and important aspects of bistatic SAR data processing. Although traditional SAR signal processing is fully developed, bistatic SAR has a more complex system structure, so sign

  4. SAR++: A Multi-Channel Scalable and Reconfigurable SAR System

    DEFF Research Database (Denmark)

    Høeg, Flemming; Christensen, Erik Lintz

    2002-01-01

    SAR++ is a technology program aiming at developing know-how and technology needed to design the next generation civilian SAR systems. Technology has reached a state, which allows major parts of the digital subsystem to be built using custom-off-the-shelf (COTS) components. A design goal is to des......SAR++ is a technology program aiming at developing know-how and technology needed to design the next generation civilian SAR systems. Technology has reached a state, which allows major parts of the digital subsystem to be built using custom-off-the-shelf (COTS) components. A design goal...... is to design a modular, scalable and reconfigurable SAR system using such components, in order to ensure maximum flexibility for the users of the actual system and for future system updates. Having these aspects in mind the SAR++ system is presented with focus on the digital subsystem architecture...... and the analog to digital interface....

  5. Brief Analysis on the Development and Application of Spaceborne SAR

    Directory of Open Access Journals (Sweden)

    Deng Yun-kai

    2012-03-01

    Full Text Available Spaceborne SAR, which is a kind of initiatively microwave imaging sensor, plays an important role in gathering information with its capability of all-day and all-weather imaging, and has become an indispensable sensor for observing the earth. With the development of SAR techniques, Spaceborne SAR has been provided with the ability of High-Resolution Wide-Swath, miniaturization with low cost, bistatic and multi-mode imaging, and Ground Moving Target Indicating (GMTI, so more accurate information about the culture could be obtained with lower cost. In the meantime, more technique problems with muliti-mode, new work system and complex environment are arising and needed to be solved. The main work of this paper is discussing the current situation and the future development of Spaceborne SAR.

  6. Novel Polarimetric SAR Interferometry Algorithms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric SAR interferometry (PolInSAR) is a recently developed synthetic aperture radar (SAR) imaging mode that combines the capabilities of radar polarimetry...

  7. Wetland InSAR

    Science.gov (United States)

    Wdowinski, S.; Kim, S.; Amelung, F.; Dixon, T.

    2006-12-01

    Wetlands are transition zones where the flow of water, the nutrient cycling, and the sun energy meet to produce a unique and very productive ecosystem. They provide critical habitat for a wide variety of plant and animal species, including the larval stages of many ocean fish. Wetlands also have a valuable economical importance, as they filter nutrients and pollutants from fresh water used by human and provide aquatic habitats for outdoor recreation, tourism, and fishing. Globally, many such regions are under severe environmental stress, mainly from urban development, pollution, and rising sea level. However, there is increasing recognition of the importance of these habitats, and mitigation and restoration activities have begun in a few regions. A key element in wetlands conservation, management, and restoration involves monitoring its hydrologic system, as the entire ecosystem depends on its water supply. Heretofore, hydrologic monitoring of wetlands are conducted by stage (water level) stations, which provide good temporal resolution, but suffer from poor spatial resolution, as stage station are typically distributed several, or even tens of kilometers, from one another. Wetland application of InSAR provides the needed high spatial resolution hydrological observations, complementing the high temporal resolution terrestrial observations. Although conventional wisdom suggests that interferometry does not work in vegetated areas, several studies have shown that both L- and C-band interferograms with short acquisition intervals (1-105 days) can maintain excellent coherence over wetlands. In this study we explore the usage of InSAR for detecting water level changes in various wetland environments around the world, including the Everglades (south Florida), Louisiana Coast (southern US), Chesapeake Bay (eastern US), Pantanal (Brazil), Okavango Delta (Botswana), and Lena Delta (Siberia). Our main study area is the Everglades wetland (south Florida), which is covered by

  8. SAR impulse response with residual chirps.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2009-06-01

    A Linear Frequency-Modulated (LFM) chirp is a function with unit amplitude and quadratic phase characteristic. In a focused Synthetic Aperture Radar (SAR) image, a residual chirp is undesired for targets of interest, as it coarsens the manifested resolution. However, for undesired spurious signals, a residual chirp is often advantageous because it spreads the energy and thereby diminishes its peak value. In either case, a good understanding of the effects of a residual LFM chirp on a SAR Impulse Response (IPR) is required to facilitate system analysis and design. This report presents an analysis of the effects of a residual chirp on the IPR. As reference, there is a rich body of publications on various aspects of LFM chirps. A quick search reveals a plethora of articles, going back to the early 1950s. We mention here purely as trivia one of the earlier analysis papers on this waveform by Klauder, et al.

  9. Estimating the Doppler centroid of SAR data

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang

    1989-01-01

    After reviewing frequency-domain techniques for estimating the Doppler centroid of synthetic-aperture radar (SAR) data, the author describes a time-domain method and highlights its advantages. In particular, a nonlinear time-domain algorithm called the sign-Doppler estimator (SDE) is shown to have...... attractive properties. An evaluation based on an existing SEASAT processor is reported. The time-domain algorithms are shown to be extremely efficient with respect to requirements on calculations and memory, and hence they are well suited to real-time systems where the Doppler estimation is based on raw SAR...... data. For offline processors where the Doppler estimation is performed on processed data, which removes the problem of partial coverage of bright targets, the ΔE estimator and the CDE (correlation Doppler estimator) algorithm give similar performance. However, for nonhomogeneous scenes it is found...

  10. Differential stepwise evolution of SARS coronavirus functional proteins in different host species

    Directory of Open Access Journals (Sweden)

    Tang Xianchun

    2009-03-01

    Full Text Available Abstract Background SARS coronavirus (SARS-CoV was identified as the etiological agent of SARS, and extensive investigations indicated that it originated from an animal source (probably bats and was recently introduced into the human population via wildlife animals from wet markets in southern China. Previous studies revealed that the spike (S protein of SARS had experienced adaptive evolution, but whether other functional proteins of SARS have undergone adaptive evolution is not known. Results We employed several methods to investigate selective pressure among different SARS-CoV groups representing different epidemic periods and hosts. Our results suggest that most functional proteins of SARS-CoV have experienced a stepwise adaptive evolutionary pathway. Similar to previous studies, the spike protein underwent strong positive selection in the early and middle phases, and became stabilized in the late phase. In addition, the replicase experienced positive selection only in human patients, whereas assembly proteins experienced positive selection mainly in the middle and late phases. No positive selection was found in any proteins of bat SARS-like-CoV. Furthermore, specific amino acid sites that may be the targets of positive selection in each group are identified. Conclusion This extensive evolutionary analysis revealed the stepwise evolution of different functional proteins of SARS-CoVs at different epidemic stages and different hosts. These results support the hypothesis that SARS-CoV originated from bats and that the spill over into civets and humans were more recent events.

  11. SARS疫苗研究进展%The progress in research of SARS vaccine

    Institute of Scientific and Technical Information of China (English)

    张增峰

    2011-01-01

    Severe acute respiratory syndrome (SARS) is a serious infectious disease caused by SARSassociated coronavirus (SARS-CoV). There are no approved antiviral drugs that effectively target SARS-CoV,and vaccination is the most effective mode for preventing SARS in people. At present, SARS vaccines,including inactivated vaccines, attenuated vaccines, subunit vaccines and DNA vaccines, etc., are being developed. Progress has been made in animal models, and some of the vaccines have entered clinical trials. In this article, the current state of SARS vaccine development is reviewed.%严重急性呼吸综合征(severe acute respiratory syndrome,SARS)是由SARS相关冠状病毒(SARS-associated coronavirus,SARS-CoV)引起的一类严重的急性呼吸系统传染病.目前尚未研制出治疗SARS的有效药物,防范SARS-CoV感染最有效的方法是使用疫苗.正在研制的SARS疫苗有灭活疫苗、减毒活疫苗、亚单位疫苗和DNA疫苗等,这些疫苗在动物模型中取得一些进展,有的已进入人体试验.此文就近几年有关SARS疫苗的研发现状做一综述.

  12. Indoor experimental facility for airborne synthetic aperture radar (SAR) configurations - rail-SAR

    Science.gov (United States)

    Kirose, Getachew; Phelan, Brian R.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Koenig, Francois; Narayanan, Ram M.

    2014-05-01

    The Army Research Laboratory (ARL) is developing an indoor experimental facility to evaluate and assess airborne synthetic-aperture-radar-(SAR)-based detection capabilities. The rail-SAR is located in a multi-use facility that also provides a base for research and development in the area of autonomous robotic navigation. Radar explosive hazard detection is one key sensordevelopment area to be investigated at this indoor facility. In particular, the mostly wooden, multi-story building houses a two (2) story housing structure and an open area built over a large sandbox. The housing structure includes reconfigurable indoor walls which enable the realization of multiple See-Through-The-Wall (STTW) scenarios. The open sandbox, on the other hand, allows for surface and buried explosive hazard scenarios. The indoor facility is not rated for true explosive hazard materials so all targets will need to be inert and contain surrogate explosive fills. In this paper we discuss the current system status and describe data collection exercises conducted using canonical targets and frequencies that may be of interest to designers of ultra-wideband (UWB) airborne, ground penetrating SAR systems. A bi-static antenna configuration will be used to investigate the effects of varying airborne SAR parameters such as depression angle, bandwidth, and integration angle, for various target types and deployment scenarios. Canonical targets data were used to evaluate overall facility capabilities and limitations. These data is analyzed and summarized for future evaluations. Finally, processing techniques for dealing with RF multi-path and RFI due to operating inside the indoor facility are described in detail. Discussion of this facility and its capabilities and limitations will provide the explosive hazard community with a great airborne platform asset for sensor to target assessment.

  13. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins.

    Science.gov (United States)

    Wang, Sheng-Fan; Tseng, Sung-Pin; Yen, Chia-Hung; Yang, Jyh-Yuan; Tsao, Ching-Han; Shen, Chun-Wei; Chen, Kuan-Hsuan; Liu, Fu-Tong; Liu, Wu-Tse; Chen, Yi-Ming Arthur; Huang, Jason C

    2014-08-22

    The severe acute respiratory syndrome coronavirus (SARS-CoV) still carries the potential for reemergence, therefore efforts are being made to create a vaccine as a prophylactic strategy for control and prevention. Antibody-dependent enhancement (ADE) is a mechanism through which dengue viruses, feline coronaviruses, and HIV viruses take advantage of anti-viral humoral immune responses to infect host target cells. Here we describe our observations of SARS-CoV using ADE to enhance the infectivity of a HL-CZ human promonocyte cell line. Quantitative-PCR and immunofluorescence staining results indicate that SARS-CoV is capable of replication in HL-CZ cells, and of displaying virus-induced cytopathic effects and increased levels of TNF-α, IL-4 and IL-6 two days post-infection. According to flow cytometry data, the HL-CZ cells also expressed angiotensin converting enzyme 2 (ACE2, a SARS-CoV receptor) and higher levels of the FcγRII receptor. We found that higher concentrations of anti-sera against SARS-CoV neutralized SARS-CoV infection, while highly diluted anti-sera significantly increased SARS-CoV infection and induced higher levels of apoptosis. Results from infectivity assays indicate that SARS-CoV ADE is primarily mediated by diluted antibodies against envelope spike proteins rather than nucleocapsid proteins. We also generated monoclonal antibodies against SARS-CoV spike proteins and observed that most of them promoted SARS-CoV infection. Combined, our results suggest that antibodies against SARS-CoV spike proteins may trigger ADE effects. The data raise new questions regarding a potential SARS-CoV vaccine, while shedding light on mechanisms involved in SARS pathogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Improved SAR Image Coregistration Using Pixel-Offset Series

    KAUST Repository

    Wang, Teng

    2014-03-14

    Synthetic aperture radar (SAR) image coregistration is a key procedure before interferometric SAR (InSAR) time-series analysis can be started. However, many geophysical data sets suffer from severe decorrelation problems due to a variety of reasons, making precise coregistration a nontrivial task. Here, we present a new strategy that uses a pixel-offset series of detected subimage patches dominated by point-like targets (PTs) to improve SAR image coregistrations. First, all potentially coherent image pairs are coregistered in a conventional way. In this step, we propose a coregistration quality index for each image to rank its relative “significance” within the data set and to select a reference image for the SAR data set. Then, a pixel-offset series of detected PTs is made from amplitude maps to improve the geometrical mapping functions. Finally, all images are resampled depending on the pixel offsets calculated from the updated geometrical mapping functions. We used images from a rural region near the North Anatolian Fault in eastern Turkey to test the proposed method, and clear coregistration improvements were found based on amplitude stability. This enhanced the fact that the coregistration strategy should therefore lead to improved InSAR time-series analysis results.

  15. Recovering Seasat SAR Data

    Science.gov (United States)

    Logan, T. A.; Arko, S. A.; Rosen, P. A.

    2013-12-01

    To demonstrate the feasibility of orbital remote sensing for global ocean observations, NASA launched Seasat on June 27th, 1978. Being the first space borne SAR mission, Seasat produced the most detailed SAR images of Earth from space ever seen to that point in time. While much of the data collected in the USA was processed optically, a mere 150 scenes had been digitally processed by March 1980. In fact, only an estimated 3% of Seasat data was ever digitally processed. Thus, for over three decades, the majority of the SAR data from this historic mission has been dormant, virtually unavailable to scientists in the 21st century. Over the last year, researchers at the Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC) have processed the Seasat SAR archives into imagery products. A telemetry decoding system was created and the data were filtered into readily processable signal files. Due to nearly 35 years of bit rot, the bit error rate (BER) for the ASF DAAC Seasat archives was on the order of 1 out of 100 to 1 out of 100,000. This extremely high BER initially seemed to make much of the data undecodable - because the minor frame numbers are just 7 bits and no range line numbers exist in the telemetry even the 'simple' tasks of tracking the minor frame number or locating the start of each range line proved difficult. Eventually, using 5 frame numbers in sequence and a handful of heuristics, the data were successfully decoded into full range lines. Concurrently, all metadata were stored into external files. Recovery of this metadata was also problematic, the BER making the information highly suspect and, initially at least, unusable in any sort of automated fashion. Because of the BER, all of the single bit metadata fields proved unreliable. Even fields that should be constant for a data take (e.g. receiving station, day of the year) showed high variability, each requiring a median filter to be usable. The most challenging, however, were the

  16. Potent and specific inhibition of SARS-CoV antigen expression by RNA interference

    Institute of Scientific and Technical Information of China (English)

    TAO Peng; ZHANG Jun; TANG Ni; ZHANG Bing-qiang; HE Tong-chuan; HUANG Ai-long

    2005-01-01

    Background Severe acute respiratory syndrome (SARS) is an infectious disease caused by SARS-CoV. There are no effective antiviral drugs for SARS although the epidemic of SARS was controlled. The aim of this study was to develop an RNAi (RNA interference) approach that specifically targeted the N gene sequence of severe acute respiratory syndrome associated coronavirus (SARS-CoV) by synthesizing short hairpin RNA (shRNA) in vivo, and to assess the inhibitory effect of this shRNA on SARS-CoV N antigen expression. Methods The eukaryotic expression plasmid pEGFP-C1-N, containing SARS-CoV N gene, was co-transfected into 293 cells with either the RNAi plasmid pshRNA-N or unrelated control plasmid pshRNA-HBV-C4. At 24, 48 and 72 hours post transfection, the green fluorescence was observed through a fluorescence microscope. The RNA levels of SARS-CoV N were determined by reverse transcription polymerase chain reaction (RT-PCR). The expression of Green Fluorescent Protein (GFP) and protein N were detected using Western blot.Results The vector, pshRNA-N expressing shRNA which targeted the N gene of SARS-CoV, was successfully constructed. The introduction of RNAi plasmid efficiently and specifically inhibited the synthesis of protein N. RT-PCR showed that RNAs of N gene were clearly reduced when the pEGFP-C1-N was cotransfected with pshRNA-N, whereas the control vector did not exhibit inhibitory effect on N gene transcription.Conclusions Our results demonstrate that RNAi mediated silencing of SARS-CoV gene could effectively inhibit expression of SARS-CoV antigen, hence RNAi based strategy should be further explored as a more efficacious antiviral therapy of SARS-CoV infection.

  17. Bistatic SAR: Imagery & Image Products.

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, David A.; Wahl, Daniel E.; Jakowatz, Charles V,

    2014-10-01

    While typical SAR imaging employs a co-located (monostatic) RADAR transmitter and receiver, bistatic SAR imaging separates the transmitter and receiver locations. The transmitter and receiver geometry determines if the scattered signal is back scatter, forward scatter, or side scatter. The monostatic SAR image is backscatter. Therefore, depending on the transmitter/receiver collection geometry, the captured imagery may be quite different that that sensed at the monostatic SAR. This document presents imagery and image products formed from captured signals during the validation stage of the bistatic SAR research. Image quality and image characteristics are discussed first. Then image products such as two-color multi-view (2CMV) and coherent change detection (CCD) are presented.

  18. Reovirus, isolated from SARS patients

    Institute of Scientific and Technical Information of China (English)

    DUAN Qing; SONG Lihua; GAN Yonghua; TAN Hua; JIN Baofeng; LI Huiyan; ZUO Tingting; CHEN Dehui; ZHANG Xuemin; ZHU Hong; YANG Yi; LI Weihua; ZHOU Yusen; HE Jun; HE Kun; ZHANG Haojie; ZHOU Tao

    2003-01-01

    Beijing has been severely affected by SARS, and SARS-associated coronavirus has been confirmed as its cause. However, clinical and experimental evidence implicates the possibility of co-infection. In this report, reovirus was isolated from throat swabs of SARS patients, including the first case in Beijing andher mother. Identification with the electron microscopy revealed the characteristic features of reovirus. 24 of 38 samples from other SARS cases were found to have serologic responses to the reovirus. Primers designed for reovirus have amplified several fragments of DNA, one of which was sequenced (S2 gene fragment), which indicates it as a unique reovirus (orthoreovirus). Preliminary animal experiment showed that inoculation of the reovirus in mice caused death with atypical pneumonia. Nevertheless, the association of reovirus with SARS outbreak requires to be further investigated.

  19. SAR Altimetry Applications over Water

    CERN Document Server

    Martin-Puig, C; Ruffini, G; Raney, R K; Benveniste, J

    2008-01-01

    The application of Synthetic Aperture Radar (SAR) techniques to classical radar altimetry offers the potential for greatly improved Earth surface mapping. This paper provides an overview of the progress of SAMOSA, Development of SAR Altimetry Studies and Applications over Ocean, Coastal zones and Inland waters, an on-going ESA-funded project. The main objective of SAMOSA is to better quantify the improvement of SAR altimetry over conventional altimetry on water surfaces. More specifically, one of the tasks focuses on the reduction of SAR mode data to pulse-limited altimeter data, and a theoretical modelling to characterize the expected gain between high Pulse Repetition Frequency (PRF) reduced SAR mode data and low PRF classical Low-Resolution Mode (LRM) data. To this end, theoretical modelling using the Cramer-Rao bound (CRB) will be used and the results will be compared to previous theoretical estimates [7], using an analysis akin to that in [8].

  20. MAPSAR Image Simulation Based on L-band Polarimetric Data from the SAR-R99B Airborne Sensor (SIVAM System

    Directory of Open Access Journals (Sweden)

    Wagner Fernando da Silva

    2009-01-01

    Full Text Available This paper describes the methodology applied to generate simulated multipolarized L-band SAR images of the MAPSAR (Multi-Application Purpose SAR satellite from the airborne SAR R99B sensor (SIVAM System. MAPSAR is a feasibility study conducted by INPE (National Institute for Space Research and DLR (German Aerospace Center targeting a satellite L-band SAR innovative mission for assessment, management and monitoring of natural resources. Examples of simulated products and their applications are briefly discussed.

  1. Capability of geometric features to classify ships in SAR imagery

    Science.gov (United States)

    Lang, Haitao; Wu, Siwen; Lai, Quan; Ma, Li

    2016-10-01

    Ship classification in synthetic aperture radar (SAR) imagery has become a new hotspot in remote sensing community for its valuable potential in many maritime applications. Several kinds of ship features, such as geometric features, polarimetric features, and scattering features have been widely applied on ship classification tasks. Compared with polarimetric features and scattering features, which are subject to SAR parameters (e.g., sensor type, incidence angle, polarization, etc.) and environment factors (e.g., sea state, wind, wave, current, etc.), geometric features are relatively independent of SAR and environment factors, and easy to be extracted stably from SAR imagery. In this paper, the capability of geometric features to classify ships in SAR imagery with various resolution has been investigated. Firstly, the relationship between the geometric feature extraction accuracy and the SAR imagery resolution is analyzed. It shows that the minimum bounding rectangle (MBR) of ship can be extracted exactly in terms of absolute precision by the proposed automatic ship-sea segmentation method. Next, six simple but effective geometric features are extracted to build a ship representation for the subsequent classification task. These six geometric features are composed of length (f1), width (f2), area (f3), perimeter (f4), elongatedness (f5) and compactness (f6). Among them, two basic features, length (f1) and width (f2), are directly extracted based on the MBR of ship, the other four are derived from those two basic features. The capability of the utilized geometric features to classify ships are validated on two data set with different image resolutions. The results show that the performance of ship classification solely by geometric features is close to that obtained by the state-of-the-art methods, which obtained by a combination of multiple kinds of features, including scattering features and geometric features after a complex feature selection process.

  2. Synthetic Aperture Radar Target Recognition with Feature Fusion Based on a Stacked Autoencoder.

    Science.gov (United States)

    Kang, Miao; Ji, Kefeng; Leng, Xiangguang; Xing, Xiangwei; Zou, Huanxin

    2017-01-20

    Feature extraction is a crucial step for any automatic target recognition process, especially in the interpretation of synthetic aperture radar (SAR) imagery. In order to obtain distinctive features, this paper proposes a feature fusion algorithm for SAR target recognition based on a stacked autoencoder (SAE). The detailed procedure presented in this paper can be summarized as follows: firstly, 23 baseline features and Three-Patch Local Binary Pattern (TPLBP) features are extracted. These features can describe the global and local aspects of the image with less redundancy and more complementarity, providing richer information for feature fusion. Secondly, an effective feature fusion network is designed. Baseline and TPLBP features are cascaded and fed into a SAE. Then, with an unsupervised learning algorithm, the SAE is pre-trained by greedy layer-wise training method. Capable of feature expression, SAE makes the fused features more distinguishable. Finally, the model is fine-tuned by a softmax classifier and applied to the classification of targets. 10-class SAR targets based on Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset got a classification accuracy up to 95.43%, which verifies the effectiveness of the presented algorithm.

  3. Synthetic Aperture Radar Target Recognition with Feature Fusion Based on a Stacked Autoencoder

    Directory of Open Access Journals (Sweden)

    Miao Kang

    2017-01-01

    Full Text Available Feature extraction is a crucial step for any automatic target recognition process, especially in the interpretation of synthetic aperture radar (SAR imagery. In order to obtain distinctive features, this paper proposes a feature fusion algorithm for SAR target recognition based on a stacked autoencoder (SAE. The detailed procedure presented in this paper can be summarized as follows: firstly, 23 baseline features and Three-Patch Local Binary Pattern (TPLBP features are extracted. These features can describe the global and local aspects of the image with less redundancy and more complementarity, providing richer information for feature fusion. Secondly, an effective feature fusion network is designed. Baseline and TPLBP features are cascaded and fed into a SAE. Then, with an unsupervised learning algorithm, the SAE is pre-trained by greedy layer-wise training method. Capable of feature expression, SAE makes the fused features more distinguishable. Finally, the model is fine-tuned by a softmax classifier and applied to the classification of targets. 10-class SAR targets based on Moving and Stationary Target Acquisition and Recognition (MSTAR dataset got a classification accuracy up to 95.43%, which verifies the effectiveness of the presented algorithm.

  4. 基于DIVA模型的语音-映射单元自动获取%Automatic acquisition of speech sound-target cells based on DIVA model

    Institute of Scientific and Technical Information of China (English)

    张少白; 刘欣

    2013-01-01

    针对DIVA模型中存在的“感知能力与语音生成技巧发育不平衡”问题,提出了一种自动获取语音-映射单元的方法。该方法将人耳模拟为一个具有不同带宽的并联带通滤波器组,分别与模型中21维度的听觉存储空间相关联,对不同听觉的不同反应,分别考虑其频带的屏蔽效应、听觉响度与频率的关系。在读取语音输入信号的过程中,模型能较好地获得初始听觉表示,其方式与婴儿咿呀学语的过程基本一致。仿真实验表明,通过边界定义、相似性比较以及搜索更新等步骤,此方法能很好地进行初始输入模式的自组织匹配,并最终使DIVA模型更具语音获取的自然特性。%Contraposing the shortage of Directions Into Velocities of Articulators ( DIVA) model about“infants per-ceptual abilities do develop faster at first than their speech production skills”, the paper presents an automatic ac-quisition method of speech sound-target cells. The method simulates the human ear as a parallel band-pass filter group with different bandwidth and associates respectively;the filter with the 21-dimensional storage space of audi-tory sense in DIVA model. This method was done in order for different auditory reactions, the shielding effect of fre-quency band, sound loudness, and frequency relation could be considered respectively for this study. In the process of reading the input signal of speech, the model can acquire good initial hearing and the process is consistent with baby's babble. The simulation results show that through boundary definition, similarity comparison, searching and updates and so on, the method has nicer self-organized pattern matching effect for initial input, which makes the DIVA model a more natural characteristic regarding speech acquisition.

  5. TARGET:?

    National Research Council Canada - National Science Library

    James M Acton

    2014-01-01

      By 2003. as military planners had become worried that the country's long-range conventional weapons, such as cruise missiles, might be too slow to reach hypothetical distant targets that needed to be struck urgently...

  6. Cloaked similarity between HIV-1 and SARS-CoV suggests an anti-SARS strategy

    Directory of Open Access Journals (Sweden)

    Kliger Yossef

    2003-09-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS is a febrile respiratory illness. The disease has been etiologically linked to a novel coronavirus that has been named the SARS-associated coronavirus (SARS-CoV, whose genome was recently sequenced. Since it is a member of the Coronaviridae, its spike protein (S2 is believed to play a central role in viral entry by facilitating fusion between the viral and host cell membranes. The protein responsible for viral-induced membrane fusion of HIV-1 (gp41 differs in length, and has no sequence homology with S2. Results Sequence analysis reveals that the two viral proteins share the sequence motifs that construct their active conformation. These include (1 an N-terminal leucine/isoleucine zipper-like sequence, and (2 a C-terminal heptad repeat located upstream of (3 an aromatic residue-rich region juxtaposed to the (4 transmembrane segment. Conclusions This study points to a similar mode of action for the two viral proteins, suggesting that anti-viral strategy that targets the viral-induced membrane fusion step can be adopted from HIV-1 to SARS-CoV. Recently the FDA approved Enfuvirtide, a synthetic peptide corresponding to the C-terminal heptad repeat of HIV-1 gp41, as an anti-AIDS agent. Enfuvirtide and C34, another anti HIV-1 peptide, exert their inhibitory activity by binding to a leucine/isoleucine zipper-like sequence in gp41, thus inhibiting a conformational change of gp41 required for its activation. We suggest that peptides corresponding to the C-terminal heptad repeat of the S2 protein may serve as inhibitors for SARS-CoV entry.

  7. Anatomy of a SAR impulse response.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2007-08-01

    A principal measure of Synthetic Aperture Radar (SAR) image quality is the manifestation in the SAR image of a spatial impulse, that is, the SAR's Impulse Response (IPR). IPR requirements direct certain design decisions in a SAR. Anomalies in the IPR can point to specific anomalous behavior in the radar's hardware and/or software.

  8. Aoutomatic Oil Spill Detection Using TerraSAR-X Data

    Science.gov (United States)

    Zulipiye, Kaiyoumu; Balik Sanli, Fusun

    2016-07-01

    Oil release into the ocean may affect marine ecosystems and cause environmental pollution. Thus, oil spill detection and identification becomes critical important. Characterized by synoptic view over large regions, remote sensing has been proved to be a reliable tool for oil spill detection. Synthetic Aperture Radar (SAR) imagery shows returned signal that clearly distinguish oil from oil-free surface under optimal wind conditions, which makes it the most frequent used remote sensing technique in oil spill detection. Algorithms of automatic oil spill detection has already been developed for different SAR sensors, including RADARSAT and ENVISAT. In this study, we want to apply automatic oil spill detection algorithms on TerraSAR-X data which is previously developed for ASAR data. The applied methodology includes two steps as segmentation and classification. First segmentation algorithms compiled by C# have been applied under a Bayesian framework adopting a multi-level logistic. After segmentation different classification methods such as feature selection, filter, and embedded selection have been applied. As a result the used classifiers for oil spill detection will be compared, and the complete processing chain will be evaluated.

  9. SAR Images Unsupervised Change Detection Based on Combination of Texture Feature Vector with Maximum Entropy Principle

    Directory of Open Access Journals (Sweden)

    ZHUANG Huifu

    2016-03-01

    Full Text Available Generally, spatial-contextual information would be used in change detection because there is significant speckle noise in synthetic aperture radar(SAR images. In this paper, using the rich texture information of SAR images, an unsupervised change detection approach to high-resolution SAR images based on texture feature vector and maximum entropy principle is proposed. The difference image is generated by using the 32-dimensional texture feature vector of gray-level co-occurrence matrix(GLCM. And the automatic threshold is obtained by maximum entropy principle. In this method, the appropriate window size to change detection is 11×11 according to the regression analysis of window size and precision index. The experimental results show that the proposed approach is better could both reduce the influence of speckle noise and improve the detection accuracy of high-resolution SAR image effectively; and it is better than Markov random field.

  10. A fully automated TerraSAR-X based flood service

    Science.gov (United States)

    Martinis, Sandro; Kersten, Jens; Twele, André

    2015-06-01

    In this paper, a fully automated processing chain for near real-time flood detection using high resolution TerraSAR-X Synthetic Aperture Radar (SAR) data is presented. The processing chain including SAR data pre-processing, computation and adaption of global auxiliary data, unsupervised initialization of the classification as well as post-classification refinement by using a fuzzy logic-based approach is automatically triggered after satellite data delivery. The dissemination of flood maps resulting from this service is performed through an online service which can be activated on-demand for emergency response purposes (i.e., when a flood situation evolves). The classification methodology is based on previous work of the authors but was substantially refined and extended for robustness and transferability to guarantee high classification accuracy under different environmental conditions and sensor configurations. With respect to accuracy and computational effort, experiments performed on a data set of 175 different TerraSAR-X scenes acquired during flooding all over the world with different sensor configurations confirm the robustness and effectiveness of the proposed flood mapping service. These promising results have been further confirmed by means of an in-depth validation performed for three study sites in Germany, Thailand, and Albania/Montenegro.

  11. State-of-art of Geosynchronous SAR

    Institute of Scientific and Technical Information of China (English)

    MAO Er-ke; LONG Teng; ZENG Tao; HU Cheng; TIAN Ye

    2012-01-01

    Geosynchronous Earth Orbit Synthetic Aperture Radar (GEO SAR) runs in the height of 360000Km geosynchronous earth orbit,compared with traditional Low Earth Orbit (LEO) SAR (orbit height under 1000Km),GEO SAR has advantages of shorter repeat period,wider swath and so on.Firstly,the basic principle and state-of-art of GEO SAR in domestic and overseas are introduced.Secondly,coverage characteristic of GEO SAR is analyzed.Thirdly,the key problems of yaw steering and imaging on curved trajectory in GEO SAR are discussed in detail,and the corresponding primary solutions are presented in order to promote future research on GEO SAR.

  12. Using an active contour method to detect bilge dumps from SAR imagery

    CSIR Research Space (South Africa)

    Mdakane, Lizwe W

    2016-07-01

    Full Text Available An automatic approach to detect bilge dumping in synthetic aperture radar (SAR) images over Southern African oceans is proposed. The approach uses a threshold-based algorithm and a region-based active contour model (ACM) algorithm to achieve...

  13. 基于运动目标检测的同步轨道星-空双站SAR杂波特性分析%Analysis of Geosynchronous Satellite-Air Bistatic SAR Clutter Characteristics from the Viewpoint of Ground Moving Target Indication

    Institute of Scientific and Technical Information of China (English)

    张丹丹; 仇晓兰; 胡东辉; 丁赤飚

    2013-01-01

    同步轨道星-空双站SAR构型下(卫星作为发射端、浮空器作为接收端),为了应用空时自适应处理(Space Time Adaptive Processing, STAP)方法更好地抑制杂波,进行地面慢速运动目标检测,有必要分析杂波特性。该文从地面运动目标检测角度出发,建立了同步轨道星-空双站 SAR 杂波特性的理论模型,分析了杂波的角度-多普勒轨迹的距离依赖性特点,仿真实验证明了模型建立和理论分析的正确性。该文的理论模型和分析结论揭示了同步轨道星-空双SAR这一新模式下的杂波特性,为该模式下地面运动目标检测方法的选择和研究奠定了理论基础。%Considering the geometry of geosynchronous satellite-air bistatic Synthetic Aperture Radar (SAR) where the geosynchronous satellite is the transmitter and the aerostat is the receiver, to suppress clutter and detect a slow-moving target using Space-Time Adaptive Processing (STAP), it is necessary to analyze the clutter characteristics. From the viewpoint of a ground moving target indication, a theoretical model of the clutter characteristics considering the geometry of geosynchronous satellite-space bistatic SAR is analyzed and established in this study; in particular, the range-dependence characteristics of the angle-Doppler curve of the clutter is analyzed. Finally, the simulation verifies the correctness of the analysis. The theoretical model described and the conclusion presented in this paper indicate the clutter characteristics of the new geosynchronous satellite-air bistatic SAR mode and provide a theoretical basis for the selection and research of a ground moving target indication method for use in this mode.

  14. Cross-calibration of interferometric SAR data

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2003-01-01

    Generation of digital elevation models from interferometric synthetic aperture radar (SAR) data is a well established technique. Achieving a high geometric fidelity calls for a calibration accounting for inaccurate navigation data and system parameters as well as system imperfections. Fully......, but not necessarily from map to map. It is based on natural distributed targets for which no a priori knowledge is needed. In particular, no DEM is required as in calibration techniques based on dedicated calibration scenes. To achieve absolute calibration, i.e. elimination of a constant elevation offset, a single...

  15. Research on the method of extracting DEM based on GBInSAR

    Science.gov (United States)

    Yue, Jianping; Yue, Shun; Qiu, Zhiwei; Wang, Xueqin; Guo, Leping

    2016-05-01

    Precise topographical information has a very important role in geology, hydrology, natural resources survey and deformation monitoring. The extracting DEM technology based on synthetic aperture radar interferometry (InSAR) obtains the three-dimensional elevation of the target area through the phase information of the radar image data. The technology has large-scale, high-precision, all-weather features. By changing track in the location of the ground radar system up and down, it can form spatial baseline. Then we can achieve the DEM of the target area by acquiring image data from different angles. Three-dimensional laser scanning technology can quickly, efficiently and accurately obtain DEM of target area, which can verify the accuracy of DEM extracted by GBInSAR. But research on GBInSAR in extracting DEM of the target area is a little. For lack of theory and lower accuracy problems in extracting DEM based on GBInSAR now, this article conducted research and analysis on its principle deeply. The article extracted the DEM of the target area, combined with GBInSAR data. Then it compared the DEM obtained by GBInSAR with the DEM obtained by three-dimensional laser scan data and made statistical analysis and normal distribution test. The results showed the DEM obtained by GBInSAR was broadly consistent with the DEM obtained by three-dimensional laser scanning. And its accuracy is high. The difference of both DEM approximately obeys normal distribution. It indicated that extracting the DEM of target area based on GBInSAR is feasible and provided the foundation for the promotion and application of GBInSAR.

  16. DEM FROM SAR:PRINCIPLE AND APPLICATION

    Institute of Scientific and Technical Information of China (English)

    Li Deren; Yang Jie

    2003-01-01

    The paper gives an overview of the principle and application of generating DEM from SAR, including the principle and processing flow of generating DEM from single SAR and SAR interferometry. Afterwards, the application fields of InSAR for terrain surveying, volcanic terrain surveying and D-InSAR for monitoring ground subsiding are listed and described as well.The problem and prospect of application are also pointed out in the last part of this paper.

  17. sar Ades

    Directory of Open Access Journals (Sweden)

    Aparecida Angélica Zoqui Paulovic Sabadini

    Full Text Available Este artigo é uma homenagem ao ilustre professor César Ades (1943-2012. Etólogo, Especialista em comportamento animal, Ades foi professor titular do Instituto de Psicologia da Universidade de São Paulo (IPUSP, atuando como docente do Departamento de Psicologia Experimental. O artigo descreve parte de sua rica vida acadêmica e profissional e apresenta, de forma resumida, sua trajetória na Universidade de São Paulo, como aluno, professor, pesquisador e orientador e sua atuação como administrador no Instituto de Psicologia e no Instituto de Estudos Avançados, além de sua atuação na Academia Paulista de Psicologia e em sociedades científicas. São destacados a importância de suas contribuições para a área de Psicologia e seu respeito pela vida, pelas pessoas e pelos animais.

  18. Exploiting azimuthal variance of scatterers for multiple-look SAR recognition

    Science.gov (United States)

    Bhanu, Bir; Jones, Grinnell, III

    2002-08-01

    The focus of this paper is optimizing the recognition of vehicles in Synthetic Aperture Radar (SAR) imagery using multiple SAR recognizers at different look angles. The variance of SAR scattering center locations with target azimuth leads to recognition system results at different azimuths that are independent, even for small azimuth deltas. Extensive experimental recognition results are presented in terms of receiver operating characteristic (ROC) curves to show the effects of multiple look angles on recognition performance for MSTAR vehicle targets with configuration variants, articulation, and occlusion.

  19. Spatio-temporal evolution of Beijing 2003 SARS epidemic

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Studying spatio-temporal evolution of epidemics can uncover important aspects of interaction among people, infectious diseases, and the environment, providing useful insights and modeling support to facilitate public health response and possibly prevention measures. This paper presents an empirical spatio-temporal analysis of epidemiological data concerning 2321 SARS-infected patients in Beijing in 2003. We mapped the SARS morbidity data with the spatial data resolution at the level of street and township. Two smoothing methods, Bayesian adjustment and spatial smoothing, were applied to identify the spatial risks and spatial transmission trends. Furthermore, we explored various spatial patterns and spatio-temporal evolution of Beijing 2003 SARS epidemic using spatial statistics such as Moran’s I and LISA. Part of this study is targeted at evaluating the effectiveness of public health control measures implemented during the SARS epidemic. The main findings are as follows. (1) The diffusion speed of SARS in the northwest-southeast direction is weaker than that in northeast-southwest direction. (2) SARS’s spread risk is positively spatially associated and the strength of this spatial association has experienced changes from weak to strong and then back to weak during the lifetime of the Beijing SARS epidemic. (3) Two spatial clusters of disease cases are identified: one in the city center and the other in the eastern suburban area. These two clusters followed different evolutionary paths but interacted with each other as well. (4) Although the government missed the opportunity to contain the early outbreak of SARS in March 2003, the response strategies implemented after the mid of April were effective. These response measures not only controlled the growth of the disease cases, but also mitigated the spatial diffusion.

  20. Adaptive noise radar for simultaneous bistatic SAR and GMTI

    Science.gov (United States)

    Rigling, Brian D.

    2005-05-01

    The adaptive noise radar algorithm allows computation of compressed pseudo-pulses from a received noise radar signal at the receiver ADC rate. This is accomplished through use of LMS channel identification algorithms commonly exploited in wireless communications. This paper shows how having access to compressed pseudo-pulses at the ADC rate may be exploited to simultaneously implement SAR and GMTI modes in two parallel Doppler-processing chains. Simultaneous SAR and GMTI will aid in tracking of alternately moving and stationary targets.

  1. Beyond PSInSAR: the SQUEESAR Approach

    Science.gov (United States)

    Ferretti, A.; Novali, F.; Fumagalli, A.; Prati, C.; Rocca, F.; Rucci, A.

    2009-12-01

    After a decade since the first results on ERS data, Permanent Scatterer (PS) InSAR has become an operational technology for detecting and monitoring slow surface deformation phenomena such as subsidence and uplift, landslides, seismic fault creeping, volcanic inflation, etc. Processing procedures have been continuously updated, but the core of the algorithm has not been changed significantly. As well known, in PSInSAR, the main target is the identification of individual pixels that exhibit a “PS behavior”, i.e. they are only slightly affected by both temporal and geometrical decorrelation. Typically, these scatterers correspond to man-made objects, but PS have been identified also in non-urban areas, where exposed rocks or outcrops can indeed create good radar benchmarks and enable high-quality displacement measurements. Contrary to interferogram stacking techniques, PS analyses are carried out on a pixel-by-pixel basis, with no filtering of the interferograms, in order to preserve phase values from possible incoherent clutter surrounding good radar targets. In fact, any filtering process implies a spatial smoothing of the data that could compromise - rather than improve - phase coherence, at least for isolated PS. Although the PS approach usually allows one to retrieve high quality deformation measurements on a sparse grid of good radar targets, in some datasets it is quite evident how the number of pixels where some information can be extracted could be significantly increased by relaxing the hypothesis on target coherence and searching for pixels where the coherence level is high enough at least in some interferograms of the data-stack, not necessarily all. The idea of computing a “coherence matrix” for each pixel of the area of interest have been already proposed in previous papers, together with a statistical estimation of some physical parameters of interest (e.g. the average displacement rate) based on the covariance matrix. In past publications

  2. Severe acute respiratory syndrome (SARS)

    Science.gov (United States)

    ... include: Arterial blood tests Blood clotting tests Blood chemistry tests Chest x-ray or chest CT scan ... The death rate from SARS was 9 to 12% of those diagnosed. In people over age 65, the death ...

  3. Localized landslide risk assessment with multi pass L band DInSAR analysis

    Science.gov (United States)

    Yun, HyeWon; Rack Kim, Jung; Lin, Shih-Yuan; Choi, YunSoo

    2014-05-01

    In terms of data availability and error correction, landslide forecasting by Differential Interferometric SAR (DInSAR) analysis is not easy task. Especially, the landslides by the anthropogenic construction activities frequently occurred in the localized cutting side of mountainous area. In such circumstances, it is difficult to attain sufficient enough accuracy because of the external factors inducing the error component in electromagnetic wave propagation. For instance, the local climate characteristics such as orographic effect and the proximity to water source can produce the significant anomalies in the water vapor distribution and consequently result in the error components of InSAR phase angle measurements. Moreover the high altitude parts of target area cause the stratified tropospheric delay error in DInSAR measurement. The other obstacle in DInSAR observation over the potential landside site is the vegetation canopy which causes the decorrelation of InSAR phase. Thus rather than C band sensor such as ENVISAT, ERS and RADARSAT, DInSAR analysis with L band ALOS PLASAR is more recommendable. Together with the introduction of L band DInSAR analysis, the improved DInSAR technique to cope all above obstacles is necessary. Thus we employed two approaches i.e. StaMPS/MTI (Stanford Method for Persistent Scatterers/Multi-Temporal InSAR, Hopper et al., 2007) which was newly developed for extracting the reliable deformation values through time series analysis and two pass DInSAR with the error term compensation based on the external weather information in this study. Since the water vapor observation from spaceborne radiometer is not feasible by the temporal gap in this case, the quantities from weather Research Forecasting (WRF) with 1 km spatial resolution was used to address the atmospheric phase error in two pass DInSAR analysis. Also it was observed that base DEM offset with time dependent perpendicular baselines of InSAR time series produce a significant error

  4. Automatic Reading

    Institute of Scientific and Technical Information of China (English)

    胡迪

    2007-01-01

    <正>Reading is the key to school success and,like any skill,it takes practice.A child learns to walk by practising until he no longer has to think about how to put one foot in front of the other.The great athlete practises until he can play quickly,accurately and without thinking.Ed- ucators call it automaticity.

  5. SAR Imagery Segmentation by Statistical Region Growing and Hierarchical Merging

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela Mayumi; Carvalho, E.A.; Medeiros, F.N.S.; Martins, C.I.O.; Marques, R.C.P.; Oliveira, I.N.S.

    2010-05-22

    This paper presents an approach to accomplish synthetic aperture radar (SAR) image segmentation, which are corrupted by speckle noise. Some ordinary segmentation techniques may require speckle filtering previously. Our approach performs radar image segmentation using the original noisy pixels as input data, eliminating preprocessing steps, an advantage over most of the current methods. The algorithm comprises a statistical region growing procedure combined with hierarchical region merging to extract regions of interest from SAR images. The region growing step over-segments the input image to enable region aggregation by employing a combination of the Kolmogorov-Smirnov (KS) test with a hierarchical stepwise optimization (HSWO) algorithm for the process coordination. We have tested and assessed the proposed technique on artificially speckled image and real SAR data containing different types of targets.

  6. An Improved Shape Contexts Based Ship Classification in SAR Images

    Directory of Open Access Journals (Sweden)

    Ji-Wei Zhu

    2017-02-01

    Full Text Available In synthetic aperture radar (SAR imagery, relating to maritime surveillance studies, the ship has always been the main focus of study. In this letter, a method of ship classification in SAR images is proposed to enhance classification accuracy. In the proposed method, to fully exploit the distinguishing characters of the ship targets, both topology and intensity of the scattering points of the ship are considered. The results of testing the proposed method on a data set of three types of ships, collected via a space-borne SAR sensor designed by the Institute of Electronics, Chinese Academy of Sciences (IECAS, establish that the proposed method is superior to several existing methods, including the original shape contexts method, traditional invariant moments and the recent approach.

  7. Noise Removal in SAR Images using Orthonormal Ridgelet Transform

    Directory of Open Access Journals (Sweden)

    A. Ravi,

    2015-05-01

    Full Text Available Development in the field of image processing for reducing speckle noise from digital images/satellite images is a challenging task for image processing applications. Previously many algorithms were proposed to de-speckle the noise in digital images. Here in this article we are presenting experimental results on de-speckling of Synthetic Aperture RADAR (SAR images. SAR images have wide applications in remote sensing and mapping the surfaces of all planets. SAR can also be implemented as "inverse SAR" by observing a moving target over a substantial time with a stationary antenna. Hence denoising of SAR images is an essential task for viewing the information. Here we introduce a transformation technique called ―Ridgelet‖, which is an extension level of wavelet. Ridgelet analysis can be done in the similar way how wavelet analysis was done in the Radon domain as it translates singularities along lines into point singularities under different frequencies. Simulation results were show cased for proving that proposed work is more reliable than compared to other despeckling processes, and the quality of de-speckled image is measured in terms of Peak Signal to Noise Ratio and Mean Square Error.

  8. Targeting Cognitive-Affective Risk Mechanisms in Stress-Precipitated Alcohol Dependence: An Integrated, Biopsychosocial Model of Automaticity, Allostasis, and Addiction

    Science.gov (United States)

    Garland, Eric L.; Boettiger, Charlotte A.; Howard, Matthew O.

    2011-01-01

    This paper proposes a novel hypothetical model integrating formerly discrete theories of stress appraisal, neurobiological allostasis, automatic cognitive processing, and addictive behavior to elucidate how alcohol misuse and dependence are maintained and re-activated by stress. We outline a risk chain in which psychosocial stress initiates physiological arousal, perseverative cognition, and negative affect that, in turn, triggers automatized schema to compel alcohol consumption. This implicit cognitive process then leads to attentional biases toward alcohol, subjective experiences of craving, paradoxical increases in arousal and alcohol-related cognitions due to urge suppression, and palliative coping through drinking. When palliative coping relieves distress, it results in negative reinforcement conditioning that perpetuates the cycle by further sensitizing the system to future stressful encounters. This model has implications for development and implementation of innovative behavioral interventions (such as mindfulness training) that disrupt cognitive-affective mechanisms underpinning stress-precipitated dependence on alcohol. PMID:21354711

  9. Simulation of emission molecular spectra by a semi-automatic programme package: the case of C2 and CN diatomic molecules emitting during laser ablation of a graphite target in nitrogen environment.

    Science.gov (United States)

    Acquaviva, S

    2004-07-01

    Some emission spectra of diatomic molecules were calculated by a semi-automatic programme package in order to infer the rotational and vibrational temperatures in Boltzmann distribution by comparing them with the corresponding experimental ones. The calculation procedure was applied in the case of CN radical and C2 molecule whose optical emission spectra were recorded during pulsed excimer laser ablation of a graphite target in low-pressure nitrogen environment. Computed similar or dissimilar values of rotational and vibrational temperatures let to verify the existence or not of local thermodynamic equilibrium and to hypothesise the temporal range necessary to establish it in such experiments.

  10. Color fusion of SAR and FLIR images using a natural color transfer technique

    Institute of Scientific and Technical Information of China (English)

    Shaoyuan Sun; Zhongliang Jing; Zhenhua Li; Gang Liu

    2005-01-01

    Fusion of synthetic aperture radar (SAR) and forward looking infrared (FLIR) images is an important subject for aerospace and sensor surveillance. This paper presents a scheme to achieve a natural color image based on the contours feature of SAR and the target region feature of FLIR so that the overall scene recognition and situational awareness can be improved. The SAR and FLIR images are first decomposed into steerable pyramids, and the contour maps in the SAR image and the region maps in the FLIR image are calculated. The contour and region features are fused at each level of the steerable pyramids. A color image is then formed by transferring daytime color to the monochromic image by using the natural color transfer technique. Experimental results show that the proposed method is effective in providing a color fusion of SAR and FLIR images.

  11. Reflectors for SAR performance testing-second edition

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    Synthetic Aperture Radar (SAR) performance testing and estimation is facilitated by observing the system response to known target scene elements. Trihedral corner reflectors and other canonical targets play an important role because their Radar Cross Section (RCS) can be calculated analytically. However, reflector orientation and the proximity of the ground and mounting structures can significantly impact the accuracy and precision with which measurements can be made. These issues are examined in this report.

  12. Surface vimentin is critical for the cell entry of SARS-CoV.

    Science.gov (United States)

    Yu, Yvonne Ting-Chun; Chien, Ssu-Chia; Chen, I-Yin; Lai, Chia-Tsen; Tsay, Yeou-Guang; Chang, Shin C; Chang, Ming-Fu

    2016-01-22

    Severe acute respiratory syndrome coronavirus (SARS-CoV) caused a global panic due to its high morbidity and mortality during 2002 and 2003. Soon after the deadly disease outbreak, the angiotensin-converting enzyme 2 (ACE2) was identified as a functional cellular receptor in vitro and in vivo for SARS-CoV spike protein. However, ACE2 solely is not sufficient to allow host cells to become susceptible to SARS-CoV infection, and other host factors may be involved in SARS-CoV spike protein-ACE2 complex. A host intracellular filamentous cytoskeletal protein vimentin was identified by immunoprecipitation and LC-MS/MS analysis following chemical cross-linking on Vero E6 cells that were pre-incubated with the SARS-CoV spike protein. Moreover, flow cytometry data demonstrated an increase of the cell surface vimentin level by 16.5 % after SARS-CoV permissive Vero E6 cells were treated with SARS-CoV virus-like particles (VLPs). A direct interaction between SARS-CoV spike protein and host surface vimentin was further confirmed by far-Western blotting. In addition, antibody neutralization assay and shRNA knockdown experiments indicated a vital role of vimentin in cell binding and uptake of SARS-CoV VLPs and the viral spike protein. A direct interaction between vimentin and SARS-CoV spike protein during viral entry was observed. Vimentin is a putative anti-viral drug target for preventing/reducing the susceptibility to SARS-CoV infection.

  13. Geodetic imaging of tectonic deformation with InSAR

    Science.gov (United States)

    Fattahi, Heresh

    Precise measurements of ground deformation across the plate boundaries are crucial observations to evaluate the location of strain localization and to understand the pattern of strain accumulation at depth. Such information can be used to evaluate the possible location and magnitude of future earthquakes. Interferometric Synthetic Aperture Radar (InSAR) potentially can deliver small-scale (few mm/yr) ground displacement over long distances (hundreds of kilometers) across the plate boundaries and over continents. However, Given the ground displacement as our signal of interest, the InSAR observations of ground deformation are usually affected by several sources of systematic and random noises. In this dissertation I identify several sources of systematic and random noise, develop new methods to model and mitigate the systematic noise and to evaluate the uncertainty of the ground displacement measured with InSAR. I use the developed approach to characterize the tectonic deformation and evaluate the rate of strain accumulation along the Chaman fault system, the western boundary of the India with Eurasia tectonic plates. I evaluate the bias due to the topographic residuals in the InSAR range-change time-series and develope a new method to estimate the topographic residuals and mitigate the effect from the InSAR range-change time-series (Chapter 2). I develop a new method to evaluate the uncertainty of the InSAR velocity field due to the uncertainty of the satellite orbits (Chapter 3) and a new algorithm to automatically detect and correct the phase unwrapping errors in a dense network of interferograms (Chapter 4). I develop a new approach to evaluate the impact of systematic and stochastic components of the tropospheric delay on the InSAR displacement time-series and its uncertainty (Chapter 5). Using the new InSAR time-series approach developed in the previous chapters, I study the tectonic deformation across the western boundary of the India plate with Eurasia and

  14. Semantic Priming from Letter-Searched Primes Occurs for Low- but Not High-Frequency Targets: Automatic Semantic Access May Not Be a Myth

    Science.gov (United States)

    Tse, Chi-Shing; Neely, James H.

    2007-01-01

    Letter-search (LS) within a prime often eliminates semantic priming. In 2 lexical decision experiments, the authors found that priming from LS primes occurred for low-frequency (LF) but not high-frequency (HF) targets whether the target's word frequency was manipulated between or within participants and whether the prime-target pairs were…

  15. 海空目标多尺度波峰最佳阈值自动搜索策略%Automatic search strategy for sea-sky target by multi-scale peak optimal threshold algorithm

    Institute of Scientific and Technical Information of China (English)

    景文博; 徐皓; 王晓曼; 姜会林

    2012-01-01

    针对海上低对比度低信噪比的条件下,能够精确快速搜索空域目标,提出了一种快速精确的海空目标多尺度波峰最佳阈值自动搜索策略:采用金字塔波门搜索和多尺度波峰阈值法,逐级减小搜索区域并对搜索域内图像进行分割,然后根据目标特征进行概率统计分析,确定最优目标,实现海空目标的自动搜索.实验结果表明,该算法在序列图像中的搜索定位平均误差为0.413像素并全部识别成功,较OTSU算法的2.61像素和最大熵阈值算法的3.1像素的误差,精确度大大提升.整幅图像搜索时间优于21.34 ms,满足海空目标自动搜索的精度和实时性的要求.%To search spatial domain target precisely and quickly in the condition of low contrast and low SNR, a new fast and accurate automatic search strategy for sea-sky target by multi-scale peak optimal threshold algorithm was proposed. Using the method of pyramid wave gate search and multi-scale peak threshold, the search area was gradually reduced and image segmentation was accomplished in this search area. Then, the probability and statistics according to the characteristics of the target was analysed to determine the optimum target and achieve automatic search for sea梥ky target. Experimental results show that the average error of searching and locating is 0.413 pixel and all identified with this algorithm in the image sequences, compared with 2.61 pixel of OTSU algorithm and 3.1 pixel of the maximum entropy threshold algorithm, the accuracy rises obviously. The whole image search time is less than 21.34 ms, which meets the requirements of the precision and real-time for automatically search of the sea-sky target.

  16. Late summer sea ice segmentation with multi-polarisation SAR features in C- and X-band

    Directory of Open Access Journals (Sweden)

    A. S. Fors

    2015-09-01

    Full Text Available In this study we investigate the potential of sea ice segmentation by C- and X-band multi-polarisation synthetic aperture radar (SAR features during late summer. Five high-resolution satellite SAR scenes were recorded in the Fram Strait covering iceberg-fast first-year and old sea ice during a week with air temperatures varying around zero degrees Celsius. In situ data consisting of sea ice thickness, surface roughness and aerial photographs were collected during a helicopter flight at the site. Six polarimetric SAR features were extracted for each of the scenes. The ability of the individual SAR features to discriminate between sea ice types and their temporally consistency were examined. All SAR features were found to add value to sea ice type discrimination. Relative kurtosis, geometric brightness, cross-polarisation ratio and co-polarisation correlation angle were found to be temporally consistent in the investigated period, while co-polarisation ratio and co-polarisation correlation magnitude were found to be temporally inconsistent. An automatic feature-based segmentation algorithm was tested both for a full SAR feature set, and for a reduced SAR feature set limited to temporally consistent features. In general, the algorithm produces a good late summer sea ice segmentation. Excluding temporally inconsistent SAR features improved the segmentation at air temperatures above zero degrees Celcius.

  17. SEGMENTATION OF POLARIMETRIC SAR IMAGES USIG WAVELET TRANSFORMATION AND TEXTURE FEATURES

    Directory of Open Access Journals (Sweden)

    A. Rezaeian

    2015-12-01

    Full Text Available Polarimetric Synthetic Aperture Radar (PolSAR sensors can collect useful observations from earth’s surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT. Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  18. Airborne SAR on circular trajectories to reduce layover and shadow effects of urban scenes

    Science.gov (United States)

    Palm, Stephan; Sommer, Rainer; Pohl, Nils; Stilla, Uwe

    2016-10-01

    Circular synthetic aperture radar (CSAR) can provide a full aspect coverage on interesting scenes in one run. Over the city of Karlsruhe a Ka-band dataset was generated in CSAR mode. The data was focused using subapertures in a step of 1.5°, each SAR image representing the scene from a slightly different aspect. The potential of non-coherent fusion of full aspect coverage to reveal small targets was demonstrated. By a manual selection of the viewing angle, parking cars next to high buildings could be revealed and a full view on selected targets with reduced shadow and overlay effects was shown. We studied the effect of varying aspects on the focused image pixels and developed a first metric to automatically select the best viewing angle to a local scene. Areas containing ground information like grass or asphalt and which are not hidden between high objects could be identified and used to deliver a good aspect view on neighboring areas which suffer from shadowing effects.

  19. 低空运动目标的多传感器自动识别和实时跟踪%Automatic identification and real-time tracking based on multiple sensors for low-altitude moving targets

    Institute of Scientific and Technical Information of China (English)

    张作楠; 刘国栋; 娄建

    2011-01-01

    This paper discussed a method for low altitude moving target detection and tracking in TV tracking system. In order to increase the ability of automatic tracking and anti-interferene, based on a variety of sensors and electronic measuring devices, such as acoustic sensors, image sensors and laser range finder,proposed a multi-sensor integrated automatic identification and real-time servo algorithm. Firstly located the target initially by the positive acoustic localization technology, secondly used the dynamic and static image features as well as the sound source characteristics of the target in target classification and recognition. According to video tracking and trajectory prediction algorithm, the desired target error signal control servo for precise tracking was used to control the servo mechanism to track precisely. Experiments show thattthe algorithm is simple and effective to achieve enough precision and reliability, and also validate the feasibility for multiple sensors being used in full-automatic intelligent tracking system.%讨论了一种用于低空运动目标检测和跟踪的电视跟踪系统.为了提高系统自动跟踪和抗干扰能力,基于声—光—电多种传感器和测量装置如声波传感器、图像传感器和激光测距仪等,提出一种多传感器综合的自动目标识别和实时跟踪算法.该方法将被动声定位技术用于目标初定位,结合目标图像动静态特征和目标声源特征用于目标的特征提取和自动识别,根据视频跟踪和轨迹预测算法,得出期望的目标误差信号控制伺服机构进行精确跟踪.实验结果表明该算法简捷有效、精度和可靠性达到要求,验证了多传感器应用于全自动智能跟踪系统的可行性.

  20. Severe acute respiratory syndrome: 'SARS' or 'not SARS'.

    Science.gov (United States)

    Li, A M; Hon, K L E; Cheng, W T; Ng, P C; Chan, F Y; Li, C K; Leung, T F; Fok, T F

    2004-01-01

    Accurate clinical diagnosis of severe acute respiratory syndrome (SARS) based on the current World Health Organization definition is difficult and at times impossible at the early stage of the disease. Both false positive and false negative cases are commonly encountered and this could have far-reaching detrimental effects on the patients, their family and the clinicians alike. Contact history is particularly important in diagnosing SARS in children as their presenting features are often non-specific. The difficulty in making a correct diagnosis is further compounded by the lack of a sensitive rapid diagnostic test. Serology is not particularly helpful in the initial triaging of patients as it takes at least 3 weeks to become positive. Co-infection and other treatable conditions should not be missed and conventional antibiotics should remain as part of the first-line treatment regimen. We report five cases to illustrate the difficulties and dilemmas faced by clinicians in diagnosing SARS in children.

  1. The SARS-unique domain (SUD of SARS coronavirus contains two macrodomains that bind G-quadruplexes.

    Directory of Open Access Journals (Sweden)

    Jinzhi Tan

    2009-05-01

    Full Text Available Since the outbreak of severe acute respiratory syndrome (SARS in 2003, the three-dimensional structures of several of the replicase/transcriptase components of SARS coronavirus (SARS-CoV, the non-structural proteins (Nsps, have been determined. However, within the large Nsp3 (1922 amino-acid residues, the structure and function of the so-called SARS-unique domain (SUD have remained elusive. SUD occurs only in SARS-CoV and the highly related viruses found in certain bats, but is absent from all other coronaviruses. Therefore, it has been speculated that it may be involved in the extreme pathogenicity of SARS-CoV, compared to other coronaviruses, most of which cause only mild infections in humans. In order to help elucidate the function of the SUD, we have determined crystal structures of fragment 389-652 ("SUD(core" of Nsp3, which comprises 264 of the 338 residues of the domain. Both the monoclinic and triclinic crystal forms (2.2 and 2.8 A resolution, respectively revealed that SUD(core forms a homodimer. Each monomer consists of two subdomains, SUD-N and SUD-M, with a macrodomain fold similar to the SARS-CoV X-domain. However, in contrast to the latter, SUD fails to bind ADP-ribose, as determined by zone-interference gel electrophoresis. Instead, the entire SUD(core as well as its individual subdomains interact with oligonucleotides known to form G-quadruplexes. This includes oligodeoxy- as well as oligoribonucleotides. Mutations of selected lysine residues on the surface of the SUD-N subdomain lead to reduction of G-quadruplex binding, whereas mutations in the SUD-M subdomain abolish it. As there is no evidence for Nsp3 entering the nucleus of the host cell, the SARS-CoV genomic RNA or host-cell mRNA containing long G-stretches may be targets of SUD. The SARS-CoV genome is devoid of G-stretches longer than 5-6 nucleotides, but more extended G-stretches are found in the 3'-nontranslated regions of mRNAs coding for certain host-cell proteins

  2. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion

    Science.gov (United States)

    Simmons, Graham; Bertram, Stephanie; Glowacka, Ilona; Steffen, Imke; Chaipan, Chawaree; Agudelo, Juliet; Lu, Kai; Rennekamp, Andrew J.; Hofmann, Heike; Bates, Paul; Pöhlmann, Stefan

    2011-01-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S-activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a protease essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation. PMID:21435673

  3. The Performance Analysis Based on SAR Sample Covariance Matrix

    Directory of Open Access Journals (Sweden)

    Esra Erten

    2012-03-01

    Full Text Available Multi-channel systems appear in several fields of application in science. In the Synthetic Aperture Radar (SAR context, multi-channel systems may refer to different domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a combination of them. Due to the inherent speckle phenomenon present in SAR images, the statistical description of the data is almost mandatory for its utilization. The complex images acquired over natural media present in general zero-mean circular Gaussian characteristics. In this case, second order statistics as the multi-channel covariance matrix fully describe the data. For practical situations however, the covariance matrix has to be estimated using a limited number of samples, and this sample covariance matrix follow the complex Wishart distribution. In this context, the eigendecomposition of the multi-channel covariance matrix has been shown in different areas of high relevance regarding the physical properties of the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has been frequently used in different applications as target or change detection, estimation of the dominant scattering mechanism in polarimetric data, moving target indication, etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel SAR images is simplified for SAR community. Validation is performed against simulated data and examples of estimation and detection problems using the analytical expressions are as well given.

  4. SAR image segmentation with entropy ranking based adaptive semi-supervised spectral clustering

    Science.gov (United States)

    Zhang, Xiangrong; Yang, Jie; Hou, Biao; Jiao, Licheng

    2010-10-01

    Spectral clustering has become one of the most popular modern clustering algorithms in recent years. In this paper, a new algorithm named entropy ranking based adaptive semi-supervised spectral clustering for SAR image segmentation is proposed. We focus not only on finding a suitable scaling parameter but also determining automatically the cluster number with the entropy ranking theory. Also, two kinds of constrains must-link and cannot-link based semi-supervised spectral clustering is applied to gain better segmentation results. Experimental results on SAR images show that the proposed method outperforms other spectral clustering algorithms.

  5. Wave directional spectrum from SAR imagery

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.; Vethamony, P.

    Gaussian smoothed SAR image spectra have been evaluated from 512 x 512 pixel sub- scenes of image mode ERS-1 SAR scenes off Goa, Visakhapatnam, Paradeep and Portugal. The two recently acquired scenes off Portugal showed the signature of swell...

  6. SAR Image Enhancement using Particle Filters

    Data.gov (United States)

    National Aeronautics and Space Administration — In this paper, we propose a novel approach to reduce the noise in Synthetic Aperture Radar (SAR) images using particle filters. Interpretation of SAR images is a...

  7. Novel Polarimetric SAR Interferometry Algorithms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...

  8. SARS Patients and Their Close Contacts

    Science.gov (United States)

    ... Links Clinician Registry Travelers' Health Fact Sheet for SARS Patients and Their Close Contacts Format: Select one ... of the World Health Organization (WHO) . Symptoms of SARS The illness usually begins with a fever (measured ...

  9. Wave directional spectrum from SAR imagery

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.; Vethamony, P.

    Gaussian smoothed SAR image spectra have been evaluated from 512 x 512 pixel subscenes of image mode ERS-1 SAR scenes off Goa, Visakhapatnam, Paradeep and Portugal. The two recently acquired scenes off Portugal showed the signature of swell...

  10. Accelerated Scientific InSAR Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Neva Ridge Technologies proposes to develop a suite of software tools for the analysis of SAR and InSAR data, focused on having a robust and adopted capability well...

  11. Precision Rectification of Airborne SAR Image

    DEFF Research Database (Denmark)

    Dall, Jørgen; Liao, M.; Zhang, Zhe

    1997-01-01

    A simple and direct procedure for the rectification of a certain class of airborne SAR data is presented. The relief displacements of SAR data are effectively removed by means of a digital elevation model and the image is transformed to the ground coordinate system. SAR data from the Danish EMISAR...... for the application of SAR data in the difficult process of map revision and updating....

  12. SARS Vaccine: Progress and Challenge

    Institute of Scientific and Technical Information of China (English)

    Yan Zhi; James M. Wilson; Hao Shen

    2005-01-01

    Severe acute respiratory syndrome (SARS) emerged in 2002 as a severe and highly contagious infectious disease that rapidly spread to a number of different countries. The collaborative efforts of the global scientific community have provided, within a short period of time, substantial insights into the molecular biology and immunology of SARS-CoV. Although the outbreak has been contained, there is continuous concern that the virus may resurface into the human population through seasonal changes, animal reservoirs or laboratory accidents. The severe morbidity and mortality associated with SARS make it imperative that an effective vaccine be developed to prevent reemergence and epidemics in the future. Cellular & Molecular Immunology. 2005;2(2):101-105.

  13. Effect of wind turbine micro-Doppler on SAR and GMTI signatures

    Science.gov (United States)

    Bhalla, Rajan; Ling, Hao

    2014-05-01

    In this paper, we present the results of a modeling study to examine the interference effect of microDopplers caused by offshore wind farms on airborne sensors operating in the synthetic aperture radar (SAR) and ground moving target indicator (GMTI) modes. The modeling is carried out by generating CAD instantiations of the dynamic wind turbine and using the high-frequency electromagnetic code Xpatch to perform the scattering calculations. Artifacts in the resulting SAR and GMTI signatures are evaluated for interference with tracking of boats in coastal waters. Results of signal filtering algorithms to reduce the dynamic turbine clutter in both SAR images and GMTI displays are presented.

  14. Permanent scatterer InSAR processing: Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Dehls, John F. [Geological Survey of Norway, Trondheim (Norway)

    2006-04-15

    It has been speculated that slow, aseismic movement may be occurring along some of the fracture zones crosscutting the Forsmark area. The purpose of this study is to determine if it is possible to measure such movement using dInSAR. Differential SAR Interferometry (DInSAR) is a technique that compares the phases of multiple radar images of an area to measure surface change. The method has the potential to detect millimetric surface deformation along the sensor - target line-of-sight. Differences in phase between two images are easily viewed by combining, or interfering, the two phase-images. In the resulting image, the waves will either reinforce or cancel one another, depending upon the relative phases. The resulting image is called an interferogram and contains concentric bands of colour, or fringes, that are related to topography and/or surface deformation. New algorithms use many images acquired over a long time period to determine the movement history of individual objects, referred to as permanent scatterers. In the current project, standard PSInSAR processing was performed on 40 ERS-1 and ERS-2 scenes. The total area processed is approximately 1,500 km{sup 2}. Slightly less than 20,000 permanent scatterers were identified.The highest densities were obtained along the coast and on the islands, where natural outcrops are more abundant. Two main classes of objects act as permanent scatterers in this area. The first are natural reflectors, such as rocks. The second are man-made reflectors, such as parts of buildings. Numerous local movements were found in the study area, relating to building subsidence, or compaction of anthropogenic fill. The dataset was divided into three groups for analysis, based upon the location of regional lineaments provided by SKB. Both statistical and geostatistical techniques were used. The median velocity of the three blocks did not differ by more than 0.2 mm/yr. This is not considered significant, given the possible magnitude of

  15. SIMULATION STUDY ON AIRBORNE SAR ECHO SIGNAL

    Institute of Scientific and Technical Information of China (English)

    Bao Houbing; Liu Zhao

    2004-01-01

    Through analyzing the influence on echo signal by factors of kinematical parameters of airborne SAR platform and radar antenna direction, this letter, on the basis of classical SAR echo signal analogue algorithm, puts forward certain airborne SAR echo signal analogue algorithm of distance directional frequency domain pulse coherent accumulation, and goes through simulation. The simulation results have proved the effectiveness of this algorithm.

  16. Convolutional Neural Networks for SAR Image Segmentation

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Nobel-Jørgensen, Morten

    2015-01-01

    Segmentation of Synthetic Aperture Radar (SAR) images has several uses, but it is a difficult task due to a number of properties related to SAR images. In this article we show how Convolutional Neural Networks (CNNs) can easily be trained for SAR image segmentation with good results. Besides...

  17. SAR Systems and Related Signal Processing

    NARCIS (Netherlands)

    Hoogeboom, P.; Dekker, R.J.; Otten, M.P.G.

    1996-01-01

    Synthetic Aperture Radar (SAR) is today a valuable source of remote sensing information. SAR is a side-looking imaging radar and operates from airborne and spacebome platforms. Coverage, resolution and image quality are strongly influenced by the platform. SAR processing can be performed on standard

  18. SAR Systems and Related Signal Processing

    NARCIS (Netherlands)

    Hoogeboom, P.; Dekker, R.J.; Otten, M.P.G.

    1996-01-01

    Synthetic Aperture Radar (SAR) is today a valuable source of remote sensing information. SAR is a side-looking imaging radar and operates from airborne and spacebome platforms. Coverage, resolution and image quality are strongly influenced by the platform. SAR processing can be performed on standard

  19. The aetiology of SARS: Koch's postulates fulfilled

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron); T. Kuiken (Thijs)

    2004-01-01

    textabstractProof that a newly identified coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV) is the primary cause of severe acute respiratory syndrome (SARS) came from a series of studies on experimentally infected cynomolgus macaques (Macaca, fascicularis). SARS-CoV-infected

  20. CLONING SEGMENT SPIKE PROTEIN GENE OF SARS-COV AND ITS EXPRESSION IN ESCHERICHIA COLI

    Institute of Scientific and Technical Information of China (English)

    刘中华; 许文波; 毛乃颖; 张燕; 朱贞; 崔爱利; 杨建国; 胡海涛

    2004-01-01

    Objective Expressing and purifying the segment of SARS-CoV spike protein in E.Coli. Methods The target gene was obtained by RT-PCR. The PCR product was cloned into pEGM- T Easy Vector, sequencing and double restriction digestion ( BamHⅠ,PstⅠ) were performed. The target gene was subcloned into PQE30 expression vector. The gene was expressed in the E.coli strain M15 cells induced by IPTG. The protein was purified with a nickel HiTrap chelating metal affinity column. Results The recombinant expression plasmid was successfully constructed and the protein was well expressed in E. coli strain M15 cells. The ideal pure protein was obtained by purification. Western blotting analysis suggested the protein could act with the convalescent sera of lab confirmed SARS patients. Conclusion The segment of SARS-CoV spike protein was well expressed and purified, and can be applied in diagnosis and immunological research of SARS.

  1. Computer Aided Detection of SARS Based on Radiographs Data Mining.

    Science.gov (United States)

    Xuanyang, Xie; Yuchang, Gong; Shouhong, Wan; Xi, Li

    2005-01-01

    This paper introduces our work on how to use image mining techniques to detect SARS, the severe acute respiratory syndrome, automatically as the prototype of computer aided detection/diagnosis (CAD) system. Data used in this paper are digitalized PA(posterior anterior) X-ray images stored in the real-life picture archiving and communication system (PACS) of the 2nd Affiliation Hospital of Guangzhou Medical College. Association rule mining was applied first but results showed there was no significant difference between the locations of the lesions or infiltrate. Classification based on image textures was performed. A sample set contains both the pneumonia and SARS X-ray images was built in the first place. After modeling each sample by a feature vector, the sample set was partitioned to match the detection purpose: classification. Three methods were used: C4.5, neural network (NN) and CART. Final result shows that 70.94% SARS cases can be detected by CART. Data preparation, segmentation, feature extraction and data mining steps, with corresponding techniques are included in this paper. ROC charts and confusion matrix by all three methods are given and analyzed.

  2. Sample Extraction Bsaed on Helix Scattering for Polarimetric SAR Calibratio

    Science.gov (United States)

    Chang, Y.; Yang, J.; Li, P.; Zhao, L.; Shi, L.

    2017-09-01

    Polarimetric calibration (PolCAL) of Synthetic Aperture Radar (SAR) images is a significant preprocessing for further applications. Since the reflection symmetry property of distributed objects can provide stable constraints for PolCAL. It is reasonable to extract these reference samples before calibration. The helix scattering generally appears in complex urban area and disappears for a natural scatterer, making it a good measure to extract distributed objects. In this paper, a novel technique that extracts reflecting symmetry samples is proposed by using helix scattering. The helix scattering information is calculated by Yamaguchi four-component decomposition algorithm. An adaptive threshold selection algorithm based on generalized Gaussian distribution is also utilized to scale the helix scattering components automatically, getting rid of the problem of various numerical range. The extracting results will be taken as PolCAL reference samples and the Quegan method are utilized to calibrate these PolSAR images. A C-band airborne PolSAR data was taken as examples to evaluate its ability in improving calibration precision. Traditional method i.e. extracting samples with span power was also evaluated as contrast experiment. The results showed that the samples extracting method based on helix scattering can improve the Polcal precision preferably.

  3. SAR by MS

    Institute of Scientific and Technical Information of China (English)

    HOFSTADLER; Steven

    2001-01-01

    RNAs have recently emerged as an exciting new target for small molecule therapeutics. Conventional HTS discovery strategies measuring disruption of RNAprotein interactions have proven unsuccessful. We describe a ligand-based drug discovery strategy that addresses the inherent difficulties RNA targets. The strategy is based on: 1) using a MS spectrometry (MS)-based assay to measure the affinity of compounds for a target; 2) performing competitive binding experiments and molecular modeling with the motifs to determine the binding site(s) of the ligands; 3) design and synthesis of derivatives of interesting binders to establish the linking sites; 4) identifying the appropriate linker group using MS; 5) fusing motifs into a more complex structure to afford higher affinity compounds. Example of applying this strategy to identify new classes of lead molecules with affinity and specificity for ribosomal RNA targets will be presented.  ……

  4. SAR by MS

    Institute of Scientific and Technical Information of China (English)

    HOFSTADLER Steven; LOWERY Kristin; DRADER Jared; DING Yili; JEFFERSON Elizabeth; SWAYZE Eric; GRIFFEY Rich; HE Yun

    2001-01-01

    @@ RNAs have recently emerged as an exciting new target for small molecule therapeutics. Conventional HTS discovery strategies measuring disruption of RNAprotein interactions have proven unsuccessful. We describe a ligand-based drug discovery strategy that addresses the inherent difficulties RNA targets. The strategy is based on: 1) using a MS spectrometry (MS)-based assay to measure the affinity of compounds for a target; 2) performing competitive binding experiments and molecular modeling with the motifs to determine the binding site(s) of the ligands; 3) design and synthesis of derivatives of interesting binders to establish the linking sites; 4) identifying the appropriate linker group using MS; 5) fusing motifs into a more complex structure to afford higher affinity compounds. Example of applying this strategy to identify new classes of lead molecules with affinity and specificity for ribosomal RNA targets will be presented.

  5. Automatic identification and real-time tracking based on multiple sensors for low-altitude moving targets%一种多传感器反直升机智能雷伺服跟踪系统

    Institute of Scientific and Technical Information of China (English)

    张作楠; 刘国栋; 王婷婷

    2011-01-01

    讨论一种基于多传感器的反直升机智能雷AHM(Anti-Helicopter Mine)系统.为了提高智能雷的全自动智能跟踪能力和打击精度,在传统的被动声探测技术的基础上,结合图像传感器的视觉信息和激光测距仪的深度信息,提出一种基于声-光-电多传感器联合的自动目标探测、识别、跟踪算法.首先将五元十字声源定位技术用于低空目标探测和初始定位,然后对目标进行图像处理与特征提取,最后基于图像特征的视觉伺服跟踪算法得出伺服机构的旋转角以实现精确跟踪.%Discussed a tracking system for anti-helicopter mine (AHM) tracking system based on multi-sensors, in order to increase the ability of automatic tracking and the higher firing accuracy. Based on the traditional passive acoustic localization technology, a multi-sensor integrated automatic detection and real-time tracking algorithm is proposed with a variety of sensors and electronic measuring devices, such as acoustic sensors, image sensors and laser range finder. Firstly the target is initially located by the positive acoustic localization technology, then attract the target image feature by image processing, According to based-on-image visual servoing algorithm, the desired target error signal for precise tracking is used to control the servo mechanism to track precisely.

  6. Fast simulation performance evaluation of spaceborne SAR-GMTI missions for maritime applications

    OpenAIRE

    Makhoul Varona, Eduardo; Zhan, Yu; Ceba Vega, Francisco; Broquetas Ibars, Antoni; Beaton, Alasdhair; Letterio, Federico; Tonetti, Stefania; Barbarossa, Sergio; Di Lorenzo, Paolo; Maffei, Marco

    2014-01-01

    This paper presents a flexible simulator for Ground Moving Target Indication (GMTI) in the frame of spaceborne Synthetic Aperture Radar (SAR) over maritime scenarios. The simulation tool provides GMTI performance metric in terms of probability of detection, extracted from an off-line database generated through intensive Monte Carlo (MC) simulations, overlaid on top of synthetic SAR-GMTI processed images. Different system configurations have been evaluated considering Along-Track I...

  7. InSAR Scientific Computing Environment - The Home Stretch

    Science.gov (United States)

    Rosen, P. A.; Gurrola, E. M.; Sacco, G.; Zebker, H. A.

    2011-12-01

    . ISCE is now a complete, functional package, under configuration management, and with extensive documentation and tested use cases appropriate to geodetic imaging applications. The software has been tested with canonical simulated radar data ("point targets") as well as with a variety of existing satellite data, cross-compared with other software packages. Its extensibility has already been proven by the straightforward addition of polarimetric processing and calibration, and derived filtering and estimation routines associated with polarimetry that supplement the original InSAR geodetic functionality. As of October 2011, the software is available for non-commercial use through UNAVCO's WinSAR consortium.

  8. Polarimetric scattering and SAR information retrieval

    CERN Document Server

    Jin, Ya-Qiu

    2013-01-01

    Taking an innovative look at Synthetic Aperture Radar (SAR), this practical reference fully covers new developments in SAR and its various methodologies and enables readers to interpret SAR imagery An essential reference on polarimetric Synthetic Aperture Radar (SAR), this book uses scattering theory and radiative transfer theory as a basis for its treatment of topics. It is organized to include theoretical scattering models and SAR data analysis techniques, and presents cutting-edge research on theoretical modelling of terrain surface. The book includes quantitative app

  9. Signal processing for FMCW SAR

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.; Ligthart, L.P.

    2007-01-01

    The combination of frequency-modulated continuous-wave (FMCW) technology and synthetic aperture radar (SAR) techniques leads to lightweight cost-effective imaging sensors of high resolution. One limiting factor to the use of FMCW sensors is the well-known presence of nonlinearities in the

  10. Canopy reconstruction from interferometric SAR

    NARCIS (Netherlands)

    Varekamp, C.

    2001-01-01

    Interferometric Synthetic Aperture Radar (InSAR) is investigated as a method for 3D tree mapping. When operational, the method may be important for monitoring forests with a persistent cloud cover such as tropical rain forests. The problem of crown displacement due to lay-over in a vegetation with a

  11. Stalking SARS: CDC at Work

    Centers for Disease Control (CDC) Podcasts

    2014-05-22

    In this podcast for kids, the Kidtastics talk about the SARS outbreak and how CDC worked to solve the mystery.  Created: 5/22/2014 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 5/22/2014.

  12. Light weight digital array SAR

    NARCIS (Netherlands)

    Otten, M.; Maas, N.; Bolt, R.; Anitori, L.

    2010-01-01

    A light weight SAR has been designed, suitable for short range tactical UAVs, consisting of a fully digital receive array, and a very compact active transmit antenna. The weight of the complete RF front is expected to be below 3 kg, with a power consumption below 30 W. This X-band system can provide

  13. Bird flu: lessons from SARS.

    Science.gov (United States)

    Wong, Gary W K; Leung, Ting F

    2007-06-01

    Severe acute respiratory syndrome (SARS) and avian influenza are two important newly emerged infections with pandemic potential. Both infections have crossed the species barrier to infect humans. SARS originated from southern China and spread to many countries in early 2003. The close collaboration of scientists around the world resulted in a rapid identification of the causative agent, and the early isolation of infected cases and meticulous infection control measures were the key to successfully controlling the outbreak of SARS. The first outbreak of human cases of avian influenza was reported in 1997 in Hong Kong. Since 2003, there have been many small outbreaks of human cases around the world, and the reported mortality is greater than 50%. Current evidence suggests that the human-to-human transmission of avian influenza is rather inefficient, but mutation might occur in the future resulting in improved transmission and possibly a pandemic in humans. As with the outbreak of SARS, the development of sensitive and accurate early diagnostic tests is extremely important for successful control of the outbreak at source. The availability of isolation facilities, the stockpiling of antiviral agents and effective and safe vaccination will be extremely important in minimising the damage of a new influenza pandemic.

  14. AN UNSUPERVISED CHANGE DETECTION BASED ON TEST STATISTIC AND KI FROM MULTI-TEMPORAL AND FULL POLARIMETRIC SAR IMAGES

    Directory of Open Access Journals (Sweden)

    J. Q. Zhao

    2016-06-01

    Full Text Available Accurate and timely change detection of Earth’s surface features is extremely important for understanding relationships and interactions between people and natural phenomena. Many traditional methods of change detection only use a part of polarization information and the supervised threshold selection. Those methods are insufficiency and time-costing. In this paper, we present a novel unsupervised change-detection method based on quad-polarimetric SAR data and automatic threshold selection to solve the problem of change detection. First, speckle noise is removed for the two registered SAR images. Second, the similarity measure is calculated by the test statistic, and automatic threshold selection of KI is introduced to obtain the change map. The efficiency of the proposed method is demonstrated by the quad-pol SAR images acquired by Radarsat-2 over Wuhan of China.

  15. Computerized ionospheric tomography based on geosynchronous SAR

    Science.gov (United States)

    Hu, Cheng; Tian, Ye; Dong, Xichao; Wang, Rui; Long, Teng

    2017-02-01

    Computerized ionospheric tomography (CIT) based on spaceborne synthetic aperture radar (SAR) is an emerging technique to construct the three-dimensional (3-D) image of ionosphere. The current studies are all based on the Low Earth Orbit synthetic aperture radar (LEO SAR) which is limited by long repeat period and small coverage. In this paper, a novel ionospheric 3-D CIT technique based on geosynchronous SAR (GEO SAR) is put forward. First, several influences of complex atmospheric environment on GEO SAR focusing are detailedly analyzed, including background ionosphere and multiple scattering effects (induced by turbulent ionosphere), tropospheric effects, and random noises. Then the corresponding GEO SAR signal model is constructed with consideration of the temporal-variant background ionosphere within the GEO SAR long integration time (typically 100 s to 1000 s level). Concurrently, an accurate total electron content (TEC) retrieval method based on GEO SAR data is put forward through subband division in range and subaperture division in azimuth, obtaining variant TEC value with respect to the azimuth time. The processing steps of GEO SAR CIT are given and discussed. Owing to the short repeat period and large coverage area, GEO SAR CIT has potentials of covering the specific space continuously and completely and resultantly has excellent real-time performance. Finally, the TEC retrieval and GEO SAR CIT construction are performed by employing a numerical study based on the meteorological data. The feasibility and correctness of the proposed methods are verified.

  16. Polarimetric SAR Image Object Segmentation via Level Set with Stationary Global Minimum

    Directory of Open Access Journals (Sweden)

    Wen Yang

    2010-01-01

    Full Text Available We present a level set-based method for object segmentation in polarimetric synthetic aperture radar (PolSAR images. In our method, a modified energy functional via active contour model is proposed based on complex Gaussian/Wishart distribution model for both single-look and multilook PolSAR images. The modified functional has two interesting properties: (1 the curve evolution does not enter into local minimum; (2 the level set function has a unique stationary convergence state. With these properties, the desired object can be segmented more accurately. Besides, the modified functional allows us to set an effective automatic termination criterion and makes the algorithm more practical. The experimental results on synthetic and real PolSAR images demonstrate the effectiveness of our method.

  17. [Medical history from SARS to pneumonia].

    Science.gov (United States)

    Zhen, Cheng

    2003-05-31

    SARS is a new kind of pneumonia. From the end of 2002 to the beginning of 2003, SARS broke in Guangdong province, Hong Kong and Beijing, and then gradually spread to the world. SARS is extremely contagious. The symptoms of SARS progress very quickly. SARS smashes the people's tranquil life and many people live in horror, worry and anxiety. But if we review the medical history of pneumonia, we would have a better understanding of SARS. This article focuses the history of people's understanding of pneumonia on the historical documents, diagnosis, etiology and treatment. Through the epidemic of SARS, the author hopes to express that contagion will live with us for a long time, but it is not a deadly disease. It is preventable and good care is essential for contagious patients. As Chinese people, we should have the best use of TCM in our combat with contagion.

  18. Restoration of polarimetric SAR images using simulated annealing

    DEFF Research Database (Denmark)

    Schou, Jesper; Skriver, Henning

    2001-01-01

    approach favoring one of the objectives. An algorithm for estimating the radar cross-section (RCS) for intensity SAR images has previously been proposed in the literature based on Markov random fields and the stochastic optimization method simulated annealing. A new version of the algorithm is presented...... are obtained while at the same time preserving most of the structures in the image. The algorithm is evaluated using multilook polarimetric L-band data from the Danish airborne EMISAR system, and the impact of the algorithm on the unsupervised H-α classification is demonstrated......Filtering synthetic aperture radar (SAR) images ideally results in better estimates of the parameters characterizing the distributed targets in the images while preserving the structures of the nondistributed targets. However, these objectives are normally conflicting, often leading to a filtering...

  19. SAR image autofocus by sharpness optimization: a theoretical study.

    Science.gov (United States)

    Morrison, Robert L; Do, Minh N; Munson, David C

    2007-09-01

    Synthetic aperture radar (SAR) autofocus techniques that optimize sharpness metrics can produce excellent restorations in comparison with conventional autofocus approaches. To help formalize the understanding of metric-based SAR autofocus methods, and to gain more insight into their performance, we present a theoretical analysis of these techniques using simple image models. Specifically, we consider the intensity-squared metric, and a dominant point-targets image model, and derive expressions for the resulting objective function. We examine the conditions under which the perfectly focused image models correspond to stationary points of the objective function. A key contribution is that we demonstrate formally, for the specific case of intensity-squared minimization autofocus, the mechanism by which metric-based methods utilize the multichannel defocusing model of SAR autofocus to enforce the stationary point property for multiple image columns. Furthermore, our analysis shows that the objective function has a special separble property through which it can be well approximated locally by a sum of 1-D functions of each phase error component. This allows fast performance through solving a sequence of 1-D optimization problems for each phase component simultaneously. Simulation results using the proposed models and actual SAR imagery confirm that the analysis extends well to realistic situations.

  20. Development and experiment of automatic target spray control system used in orchard sprayer%果园喷雾机自动对靶喷雾控制系统研制与试验

    Institute of Scientific and Technical Information of China (English)

    许林云; 张昊天; 张海锋; 徐业勇; 徐铭铭; 蒋雪松; 张慧春; 贾志成

    2014-01-01

    In order to improve the utilization rate of pesticides and reduce the pesticide pollution to the environment, the control system of the automatic target spray was designed to focus on a Chinese low level of mechanization about the orchard sprayer and the invalid spray existed in the gap of fruit trees when the orchard sprayer sprayed with a continuous spray method. Whether the automatic target spray system sprayed to the fruit trees, depended on the detection distance between the orchard sprayer and the fruit trees by the application of distance measuring sensors and control program, which was installed on the GY8 caterpillar self-propelled orchard sprayer manufactured by Nantong Guangyi Mechanical & Electrical Co, Ltd. This paper compared the properties of three kinds of sensors which were MB7060 ultrasonic sensor, GP2Y0A710K0F infrared sensor and DT35-B15251 laser sensor, and tested the discernible spacing for the ultrasonic sensor and the laser sensor. The laser sensor was chosen as a detection device of the orchard sprayer for its high stability, fast response and good direction, while the other two sensors were abandoned for the following reasons that the infrared sensor was seriously affected by the sunshine, and the discernible spacing of ultrasonic sensor was too wide to satisfy the working conditions of the orchard sprayer. The parameters of the target range for spray trees could be adjusted in the system of the automatic target spray, based on different planted size (spacing in the rows and spacing between rows) of an orchard and the different travel speed of the orchard sprayer. The automatic target spray system could distinguish whether the fruit tree, or the gap between fruit trees and the gap in the canopies, so as to effectively control pests with the minimum dose of pesticide and the least environmental pollution. To ensure that the droplet could cover the whole canopy, the orchard sprayer must start to spray before the nozzle assembly reached the

  1. Bioinformatics analysis of SARS-Cov M protein provides information for vaccine development

    Institute of Scientific and Technical Information of China (English)

    LIU Wanli; LU Yun; CHEN Yinghua

    2003-01-01

    The pathogen causing severe acute respiratory syndrome (SARS) is identified to be SARS-Cov. It is urgent to know more about SARS-Cov for developing an efficient SARS vaccine to prevent this epidemic disease. In this report, the homology of SARS-Cov M protein to other members of coronavirus is illustrated, and all amino acid changes in both S and M proteins among all available SARS-Cov isolates in GenBank are described. Furthermore, one topological trans-membrane secondary structure model of M protein is proposed, which is corresponded well with the accepted topology model of M proteins of other members of coronavirus. Hydrophilic profile analysis indicated that one region (aa150~210) on the cytoplasmic domain is fairly hydrophilic, suggesting its property of antigenicity. Based on the fact that cytoplasmic domain of the M protein of some other coronavirus could induce protective activities against virus infection, this region might be one potential target for SARS vaccine development.

  2. Analysis of the Effect of Radio Frequency Interference on Repeat Track Airborne InSAR System

    Directory of Open Access Journals (Sweden)

    Ding Bin

    2012-03-01

    Full Text Available The SAR system operating at low frequency is susceptible to Radio Frequency Interference (RFI from television station, radio station, and some other civil electronic facilities. The presence of RFI degrades the SAR image quality, and obscures the targets in the scene. Furthermore, RFI can cause interferometric phase error in repeat track InSAR system. In order to analyze the effect of RFI on interferometric phase of InSAR, real measured RFI signal are added on cone simulated SAR echoes. The imaging and interferometric processing results of both the RFI-contaminated and raw data are given. The effect of real measured RFI signal on repeat track InSAR system is analyzed. Finally, the imaging and interferometric processing results of both with and without RFI suppressed of the P band airborne repeat track InSAR real data are presented, which demonstrates the efficiency of the RFI suppression method in terms of decreasing the interferometric phase errors caused by RFI.

  3. Phase History Decomposition for efficient Scatterer Classification in SAR Imagery

    Science.gov (United States)

    2011-09-15

    Force Research Laboratory, Wright-Patterson AFB , OH, 2009. [125] Rau, R., JH McClellan , L. Technol, and G. Nuremberg. “Analytic models and...Institute of Technology, Wright-Patterson AFB , OH, 2009. [5] Bajcsy, P. and A.R. Chaudhuri. “Benefits of high resolution SAR for ATR of targets in...AFRL strategic tech- nology development. Technical report, Air Force Research Laboratory, Wright- Patterson AFB , OH, 2008. [20] Cameron, W.L. and L.K

  4. A Hierarchical Multi-Temporal InSAR Method for Increasing the Spatial Density of Deformation Measurements

    Directory of Open Access Journals (Sweden)

    Tao Li

    2014-04-01

    Full Text Available Point-like targets are useful in providing surface deformation with the time series of synthetic aperture radar (SAR images using the multi-temporal interferometric synthetic aperture radar (MTInSAR methodology. However, the spatial density of point-like targets is low, especially in non-urban areas. In this paper, a hierarchical MTInSAR method is proposed to increase the spatial density of deformation measurements by tracking both the point-like targets and the distributed targets with the temporal steadiness of radar backscattering. To efficiently reduce error propagation, the deformation rates on point-like targets with lower amplitude dispersion index values are first estimated using a least squared estimator and a region growing method. Afterwards, the distributed targets are identified using the amplitude dispersion index and a Pearson correlation coefficient through a multi-level processing strategy. Meanwhile, the deformation rates on distributed targets are estimated during the multi-level processing. The proposed MTInSAR method has been tested for subsidence detection over a suburban area located in Tianjin, China using 40 high-resolution TerraSAR-X images acquired between 2009 and 2010, and validated using the ground-based leveling measurements. The experiment results indicate that the spatial density of deformation measurements can be increased by about 250% and that subsidence accuracy can reach to the millimeter level by using the hierarchical MTInSAR method.

  5. Controlling Data Collection to Support SAR Image Rotation

    Science.gov (United States)

    Doerry, Armin W.; Cordaro, J. Thomas; Burns, Bryan L.

    2008-10-14

    A desired rotation of a synthetic aperture radar (SAR) image can be facilitated by adjusting a SAR data collection operation based on the desired rotation. The SAR data collected by the adjusted SAR data collection operation can be efficiently exploited to form therefrom a SAR image having the desired rotational orientation.

  6. Ship Detection in SAR Image Based on the Alpha-stable Distribution

    Directory of Open Access Journals (Sweden)

    Xiaofeng Li

    2008-08-01

    Full Text Available This paper describes an improved Constant False Alarm Rate (CFAR ship detection algorithm in spaceborne synthetic aperture radar (SAR image based on Alphastable distribution model. Typically, the CFAR algorithm uses the Gaussian distribution model to describe statistical characteristics of a SAR image background clutter. However, the Gaussian distribution is only valid for multilook SAR images when several radar looks are averaged. As sea clutter in SAR images shows spiky or heavy-tailed characteristics, the Gaussian distribution often fails to describe background sea clutter. In this study, we replace the Gaussian distribution with the Alpha-stable distribution, which is widely used in impulsive or spiky signal processing, to describe the background sea clutter in SAR images. In our proposed algorithm, an initial step for detecting possible ship targets is employed. Then, similar to the typical two-parameter CFAR algorithm, a local process is applied to the pixel identified as possible target. A RADARSAT-1 image is used to validate this Alpha-stable distribution based algorithm. Meanwhile, known ship location data during the time of RADARSAT-1 SAR image acquisition is used to validate ship detection results. Validation results show improvements of the new CFAR algorithm based on the Alpha-stable distribution over the CFAR algorithm based on the Gaussian distribution.

  7. Efficient simulation for fixed-receiver bistatic SAR with time and frequency synchronization errors

    Science.gov (United States)

    Yan, Feifei; Chang, Wenge; Li, Xiangyang

    2015-12-01

    Raw signal simulation is a useful tool for synthetic aperture radar (SAR) system design, mission planning, processing algorithm testing, and inversion algorithm design. Time and frequency synchronization is the key technique of bistatic SAR (BiSAR) system, and raw data simulation is an effective tool for verifying the time and frequency synchronization techniques. According to the two-dimensional (2-D) frequency spectrum of fixed-receiver BiSAR, a rapid raw data simulation approach with time and frequency synchronization errors is proposed in this paper. Through 2-D inverse Stolt transform in 2-D frequency domain and phase compensation in range-Doppler frequency domain, this method can significantly improve the efficiency of scene raw data simulation. Simulation results of point targets and extended scene are presented to validate the feasibility and efficiency of the proposed simulation approach.

  8. Analysis on Vertical Scattering Signatures in Forestry with PolInSAR

    Science.gov (United States)

    Guo, Shenglong; Li, Yang; Zhang, Jingjing; Hong, Wen

    2014-11-01

    We apply accurate topographic phase to the Freeman-Durden decomposition for polarimetric SAR interferometry (PolInSAR) data. The cross correlation matrix obtained from PolInSAR observations can be decomposed into three scattering mechanisms matrices accounting for the odd-bounce, double-bounce and volume scattering. We estimate the phase based on the Random volume over Ground (RVoG) model, and as the initial input parameter of the numerical method which is used to solve the parameters of decomposition. In addition, the modified volume scattering model introduced by Y. Yamaguchi is applied to the PolInSAR target decomposition in forest areas rather than the pure random volume scattering as proposed by Freeman-Durden to make best fit to the actual measured data. This method can accurately retrieve the magnitude associated with each mechanism and their vertical location along the vertical dimension. We test the algorithms with L- and P- band simulated data.

  9. SAR processing based on the exact two-dimensional transfer function

    Science.gov (United States)

    Chang, C. Y.; Jin, M. Y.; Curlander, J. C.

    1992-01-01

    The two-dimensional transfer functions of several synthetic aperture radar (SAR) focusing algorithms are derived considering the spaceborne SAR environments. The formulation includes the factors of the earth rotation and the antenna squint angles. The resultant transfer functions are explicitly expressed in terms of Doppler centroid frequency and Doppler frequency rate, which can be accurately estimated from the SAR data. Point target simulation results show that the algorithm based on the two-dimensional Fourier transformation outperforms the one-dimensional one for processing data acquired from high squint angles. The two-dimensional Fourier transformation approach appears to be a viable and simple solution for the processor design of future spaceborne SAR systems.

  10. Building detection and building parameter retrieval in InSAR phase images

    Science.gov (United States)

    Dubois, Clémence; Thiele, Antje; Hinz, Stefan

    2016-04-01

    The high resolution provided by the current satellite SAR missions makes them an attractive solution for the detailed analysis of urban areas. Especially due to their weather and daylight independency, they can be employed when optical sensors come to their limits. Due to the specific oblique side-looking configuration of such SAR sensors, phenomena such as layover, double bounce and shadow appear at building location, which can be better understood with very high resolution (VHR) SAR data. The detection of those areas, as well as the retrieval of building parameters through a detailed analysis of the extracted structures, is a challenging task. Indeed, depending on the acquisition configuration, on building material and surroundings, those patterns are not always consistent in amplitude SAR images. They can be difficult to recognize and distinguish automatically. Considering InSAR phase images instead of amplitude images is very helpful for this task, as InSAR is more depending on the geometry. Therefore, in this paper, we focus on the detection and extraction of building layover in InSAR phase images. Two complementing detectors are proposed, and their results are combined, in order to provide reliable building hypotheses. Based on the extracted segments, further analysis is conducted. Especially, the number of connected facades is analyzed. Characteristically geometrical shapes are finally fitted for each facade to permit the determination of the final building parameters as length, width, and height. Results of this approach are shown for three different datasets, first in terms of correctness and completeness of the extraction, and second in terms of accuracy of the extracted building parameters. For the considered datasets, the completeness and correctness are of about 70% and 90%, respectively. Eliminating clear outliers, the determined parameters present an accuracy up to 4 m (length), 2 m (height) and 3 ° (orientation). In this article isolated, middle to

  11. Automatic TLI recognition system, user`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Lassahn, G.D.

    1997-02-01

    This report describes how to use an automatic target recognition system (version 14). In separate volumes are a general description of the ATR system, Automatic TLI Recognition System, General Description, and a programmer`s manual, Automatic TLI Recognition System, Programmer`s Guide.

  12. Recent Advances in Radar Polarimetry and Polarimetric SAR Interferometry

    Science.gov (United States)

    Boerner, Wolfgang-Martin

    2005-01-01

    The development of Radar Polarimetry and Radar Interferometry is advancing rapidly, and these novel radar technologies are revamping Synthetic Aperture Radar Imaging decisively. In this exposition the successive advancements are sketched; beginning with the fundamental formulations and high-lighting the salient points of these diverse remote sensing techniques. Whereas with radar polarimetry the textural fine-structure, target-orientation and shape, symmetries and material constituents can be recovered with considerable improvements above that of standard amplitude-only Polarization Radar ; with radar interferometry the spatial (in depth) structure can be explored. In Polarimetric-Interferometric Synthetic Aperture Radar (POL-IN-SAR) Imaging it is possible to recover such co-registered textural plus spatial properties simultaneously. This includes the extraction of Digital Elevation Maps (DEM) from either fully Polarimetric (scattering matrix) or Interferometric (dual antenna) SAR image data takes with the additional benefit of obtaining co-registered three-dimensional POL-IN-DEM information. Extra-Wide-Band POL-IN-SAR Imaging - when applied to Repeat-Pass Image Overlay Interferometry - provides differential background validation and measurement, stress assessment, and environmental stress-change monitoring capabilities with hitherto unattained accuracy, which are essential tools for improved global biomass estimation. More recently, by applying multiple parallel repeat-pass EWB-POL-D(RP)-IN-SAR imaging along stacked (altitudinal) or displaced (horizontal) flight-lines will result in Tomographic (Multi- Interferometric) Polarimetric SAR Stereo-Imaging , including foliage and ground penetrating capabilities. It is shown that the accelerated advancement of these modern EWB-POL-D(RP)-IN-SAR imaging techniques is of direct relevance and of paramount priority to wide-area dynamic homeland security surveillance and local-to-global environmental ground-truth measurement

  13. Study on Geosynchronous Circular SAR

    Directory of Open Access Journals (Sweden)

    Hong Wen

    2015-06-01

    Full Text Available The concept of Geosynchronous Circular SAR (Geo-CSAR is introduced in this paper. With the design of the geosynchronous orbit parameters, a near-circular satellite sub-track could be formed to enable the staring imaging mode, which supports the advanced applications for wide-field and 3-D information acquisition under long-term consistent observation. This paper also analyzes Geo-CSAR's imaging formation capabilities, and concludes its attractive advantages over low-earth orbit spaceborne SAR in terms of instantaneous coverage, consistent observing area, 3-D positioning accuracy and etc.. Encouraging expectations for Geo-CSAR thus could be positively predicted in military investigation and disaster monitoring management applications.

  14. Automatic signal extraction, prioritizing and filtering approaches in detecting post-marketing cardiovascular events associated with targeted cancer drugs from the FDA Adverse Event Reporting System (FAERS).

    Science.gov (United States)

    Xu, Rong; Wang, Quanqiu

    2014-02-01

    Targeted drugs dramatically improve the treatment outcomes in cancer patients; however, these innovative drugs are often associated with unexpectedly high cardiovascular toxicity. Currently, cardiovascular safety represents both a challenging issue for drug developers, regulators, researchers, and clinicians and a concern for patients. While FDA drug labels have captured many of these events, spontaneous reporting systems are a main source for post-marketing drug safety surveillance in 'real-world' (outside of clinical trials) cancer patients. In this study, we present approaches to extracting, prioritizing, filtering, and confirming cardiovascular events associated with targeted cancer drugs from the FDA Adverse Event Reporting System (FAERS). The dataset includes records of 4,285,097 patients from FAERS. We first extracted drug-cardiovascular event (drug-CV) pairs from FAERS through named entity recognition and mapping processes. We then compared six ranking algorithms in prioritizing true positive signals among extracted pairs using known drug-CV pairs derived from FDA drug labels. We also developed three filtering algorithms to further improve precision. Finally, we manually validated extracted drug-CV pairs using 21 million published MEDLINE records. We extracted a total of 11,173 drug-CV pairs from FAERS. We showed that ranking by frequency is significantly more effective than by the five standard signal detection methods (246% improvement in precision for top-ranked pairs). The filtering algorithm we developed further improved overall precision by 91.3%. By manual curation using literature evidence, we show that about 51.9% of the 617 drug-CV pairs that appeared in both FAERS and MEDLINE sentences are true positives. In addition, 80.6% of these positive pairs have not been captured by FDA drug labeling. The unique drug-CV association dataset that we created based on FAERS could facilitate our understanding and prediction of cardiotoxic events associated with

  15. Automatic definition of targeted biological volumes for the radiotherapy applications; Definition automatique des volumes biologiques cibles pour les applications de radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Hatt, M.; Visvikis, D. [LaTIM, U650 Inserm, 29 - Brest (France); Cheze-Le-Rest, C. [Service de medecine nucleaire, 29 - Brest (France); Pradier, O. [Service de radiotherapie, 29 - Brest (France)

    2009-10-15

    The proposed method: Fuzzy locally adaptive Bayesian (F.L.A.B.) showed its reliability and its precision on very complete collection of realistic simulated and real data. Its use in the context of radiotherapy allows to consider easily the studies implementation and scenari of dose painting or dose escalation, including in complex cases of heterogenous fixations. It is conceivable to apply F.L.A.B. on PET images with F.M.I.S.O. ({sup 18}F fluoro misonidazole) or F.L.T. (fluoro-L-thymidine) to complete the definition of the biological target volume. (N.C.)

  16. SAR Image Complex Pixel Representations

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Complex pixel values for Synthetic Aperture Radar (SAR) images of uniform distributed clutter can be represented as either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values. Generally, these component values are integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  17. Spaceborne SAR Imaging Algorithm for Coherence Optimized.

    Directory of Open Access Journals (Sweden)

    Zhiwei Qiu

    Full Text Available This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR research and application.

  18. Building Detection in SAR Imagery

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, Ryan Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koch, Mark William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moya, Mary M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Goold, Jeremy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    Current techniques for building detection in Synthetic Aperture Radar (SAR) imagery can be computationally expensive and/or enforce stringent requirements for data acquisition. The desire is to present a technique that is effective and efficient at determining an approximate building location. This approximate location can be used to extract a portion of the SAR image to then perform a more robust detection. The proposed technique assumes that for the desired image, bright lines and shadows, SAR artifact effects, are approximately labeled. These labels are enhanced and utilized to locate buildings, only if the related bright lines and shadows can be grouped. In order to find which of the bright lines and shadows are related, all of the bright lines are connected to all of the shadows. This allows the problem to be solved from a connected graph viewpoint. Where the nodes are the bright lines and shadows and the arcs are the connections between bright lines and shadows. Constraints based on angle of depression and the relationship between connected bright lines and shadows are applied to remove unrelated arcs. Once the related bright lines and shadows are grouped, their locations are combined to provide an approximate building location. Experimental results are provided showing the outcome of the technique.

  19. InSAR Forensics: Tracing InSAR Scatterers in High Resolution Optical Image

    Science.gov (United States)

    Wang, Yuanyuan; Zhu, XiaoXiang

    2015-05-01

    This paper presents a step towards a better interpretation of the scattering mechanism of different objects and their deformation histories in SAR interferometry (InSAR). The proposed technique traces individual SAR scatterer in high resolution optical images where their geometries, materials, and other properties can be better analyzed and classified. And hence scatterers of a same object can be analyzed in group, which brings us to a new level of InSAR deformation monitoring.

  20. Satellite SAR geocoding with refined RPC model

    Science.gov (United States)

    Zhang, Lu; Balz, Timo; Liao, Mingsheng

    2012-04-01

    Recent studies have proved that the Rational Polynomial Camera (RPC) model is able to act as a reliable replacement of the rigorous Range-Doppler (RD) model for the geometric processing of satellite SAR datasets. But its capability in absolute geolocation of SAR images has not been evaluated quantitatively. Therefore, in this article the problems of error analysis and refinement of SAR RPC model are primarily investigated to improve the absolute accuracy of SAR geolocation. Range propagation delay and azimuth timing error are identified as two major error sources for SAR geolocation. An approach based on SAR image simulation and real-to-simulated image matching is developed to estimate and correct these two errors. Afterwards a refined RPC model can be built from the error-corrected RD model and then used in satellite SAR geocoding. Three experiments with different settings are designed and conducted to comprehensively evaluate the accuracies of SAR geolocation with both ordinary and refined RPC models. All the experimental results demonstrate that with RPC model refinement the absolute location accuracies of geocoded SAR images can be improved significantly, particularly in Easting direction. In another experiment the computation efficiencies of SAR geocoding with both RD and RPC models are compared quantitatively. The results show that by using the RPC model such efficiency can be remarkably improved by at least 16 times. In addition the problem of DEM data selection for SAR image simulation in RPC model refinement is studied by a comparative experiment. The results reveal that the best choice should be using the proper DEM datasets of spatial resolution comparable to that of the SAR images.

  1. Multifrequency OFDM SAR in Presence of Deception Jamming

    Directory of Open Access Journals (Sweden)

    Schuerger Jonathan

    2010-01-01

    Full Text Available Orthogonal frequency division multiplexing (OFDM is considered in this paper from the perspective of usage in imaging radar scenarios with deception jamming. OFDM radar signals are inherently multifrequency waveforms, composed of a number of subbands which are orthogonal to each other. While being employed extensively in communications, OFDM has not found comparatively wide use in radar, and, particularly, in synthetic aperture radar (SAR applications. In this paper, we aim to show the advantages of OFDM-coded radar signals with random subband composition when used in deception jamming scenarios. Two approaches to create a radar signal by the jammer are considered: instantaneous frequency (IF estimator and digital-RF-memory- (DRFM- based reproducer. In both cases, the jammer aims to create a copy of a valid target image via resending the radar signal at prescribed time intervals. Jammer signals are derived and used in SAR simulations with three types of signal models: OFDM, linear frequency modulated (LFM, and frequency-hopped (FH. Presented results include simulated peak side lobe (PSL and peak cross-correlation values for random OFDM signals, as well as simulated SAR imagery with IF and DRFM jammers'-induced false targets.

  2. MiniSAR: a miniature, lightweight, low cost, scalable SAR system

    NARCIS (Netherlands)

    Steeghs, T.P.H.; Halsema, D. van; Hoogeboom, P.

    2001-01-01

    TNO-FEL is developing a miniature, lightweight, low cost, and scalable SAR/MTI system called 'MiniSAR'. The MiniSAR system will be unique in its size and architecture. Initially the demonstrator system will be integrated in a two-seater motorglider platform. Wherever possible,

  3. New perspectives and advanced approaches on effectively processing Big InSAR data: from long term ERS archives to new Sentinel-1 massive data flow

    Science.gov (United States)

    Casu, Francesco; De Luca, Claudio; Elefante, Stefano; Lanari, Riccardo; Manunta, Michele; Zinno, Ivana

    2015-04-01

    being applied in HPC on public Cloud contexts, providing extensive tests on the Amazon Web Services (AWS), thus demonstrating its portability and scalability on a large number of processing nodes. Moreover, the P-SBAS characteristic to be fully unsupervised permitted us to release its open on-line version available through the ESA's G-POD environment, that allows remotely processing the historical ESA SAR archives via web interface. Finally, we show the extension of the P-SBAS approach to generate Sentinel-1 InSAR products in automatic manner, thus opening the way to systematically process InSAR data for Earth's surface displacement monitoring at global scale.

  4. A Research on Airborne Squint Hybrid SAR

    Institute of Scientific and Technical Information of China (English)

    BIANYong; ZHOUYinqing; LIChunsheng

    2004-01-01

    In this paper, we establish the squint mode hybrid SAR (Synthetic aperture radar) geometry. Based on the squint mode SAR geometry, the hybrid SAR signal model in squint case is derived. Based on this signal model, the hybrid SAR imaging process parameter is discussed. Aimed at the squint case, we analyze not only the relationship between the resolution and SAR system parameters, but also the relation between the time extension of the maximum azimuth signal and SAR system parameters. This research establishes the theoretical foundation for the design of squint hybrid SAR and serves as a good guide for the future work of improving the resolution of squint hybrid SAR. Based on the two-step algorithm, by considering the squint angle and cubic phase term, we are going to use the deramp SC-Chirp Scaling algorithm for squint hybrid SAR imaging. This algorithm uses the deramp method for the first step processing, and the SC-Chirp Scaling algorithm for the second step processing. The process procedure of this algorithm includes the squint angle, has the explicit physical meaning, therefore is convenient for analysis. The computer simulation result proves the validity of the analysis.

  5. Bistatic SAR: Signal Processing and Image Formation.

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Daniel E.; Yocky, David A.

    2014-10-01

    This report describes the significant processing steps that were used to take the raw recorded digitized signals from the bistatic synthetic aperture RADAR (SAR) hardware built for the NCNS Bistatic SAR project to a final bistatic SAR image. In general, the process steps herein are applicable to bistatic SAR signals that include the direct-path signal and the reflected signal. The steps include preprocessing steps, data extraction to for a phase history, and finally, image format. Various plots and values will be shown at most steps to illustrate the processing for a bistatic COSMO SkyMed collection gathered on June 10, 2013 on Kirtland Air Force Base, New Mexico.

  6. TanDEM-X Bistatic SAR Processing

    OpenAIRE

    Balss, Ulrich; Niedermeier, Andreas; Breit, Helko

    2010-01-01

    In June, 2010 the German SAR satellite TanDEM-X (TerraSAR-X-Add-on for Digital Elevation Measurements) will be launched. Together with TerraSAR-X, launched June 15, 2007, it will form the first spaceborne bistatic SAR platform. Usually one of the satellite is transmitting (active satellite), while both are receiving. As both satellites fly in a helix orbit constellation, during a recording a satellite has to be passive, if the other one is close to the line of sight to the observation targ...

  7. DETEKCIJA SPREMEMB V RADARSKIH SLIKAH SAR

    OpenAIRE

    Izak, Rok

    2016-01-01

    V magistrskem delu je opisan princip detekcije sprememb površja Zemlje s pomočjo radarskih slik SAR, ki so bile zajete s satelitom TanDEM-X. Opisani so tudi principi delovanja radarja z umetno odprtino, načini zajema podatkov ter osnove interferometrije V prvem sklopu magistrskega dela, je bil cilj predlagati metodo za zaznavo gozdne površine v slikah SAR. V drugem delu so bile s pomočjo SAR interferometrije zaznane spremembe na kroni gozdov v okolici Postojne. Slike SAR, so bile zajete v raz...

  8. High resolution SAR applications and instrument design

    Science.gov (United States)

    Dionisio, C.; Torre, A.

    1993-01-01

    The Synthetic Aperture Radar (SAR) has viewed, in the last two years, a huge increment of interest from many preset and potential users. The good spatial resolution associated to the all weather capability lead to considering SAR not only a scientific instrument but a tool for verifying and controlling the daily human relationships with the Earth Environment. New missions were identified for SAR as spatial resolution became lower than three meters: disasters, pollution, ships traffic, volcanic eruptions, earthquake effect are only a few of the possible objects which can be effectively detected, controlled and monitored by SAR mounted on satellites. High resolution radar design constraints and dimensioning are discussed.

  9. Modified Frequency Scaling Algorithm for FMCW SAR Data Processing

    Institute of Scientific and Technical Information of China (English)

    Jiang Zhihong; Huang Fukan; Wan Jianwei; Cheng Zhu

    2007-01-01

    This paper presents a modified frequency scaling algorithm for frequency modulated continuous wave synthetic aperture radar(FMCW SAR) data processing. The relative motion between radar and target in FMCW SAR during reception and between transmission and reception will introduce serious dilation in the received signal. The dilation can cause serious distortions in the reconstructed images using conventional signal processing methods. The received signal is derived and the received signal in range-Doppler domain is given.The relation between the phase resulting from antenna motion and the azimuth frequency is analyzed. The modified frequency scaling algorithm is proposed to process the received signal with serious dilation. The algorithm can effectively eliminate the impact of the dilation. The algorithm performances are shown by the simulation results.

  10. SAR IMAGE ENHANCEMENT BASED ON BEAM SHARPENING TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    LIYong; ZI-IANGKun-hui; ZHUDai-yin; ZHUZhao-da

    2004-01-01

    A major problem encountered in enhancing SAR image is the total loss of phase information and the unknown parameters of imaging system. The beam sharpening technique, combined with synthetic aperture radiation pattern estimation provides an approach to process this kind of data to achieve higher apparent resolution. Based on the criterion of minimizing the expected quadratic estimation error, an optimum FIR filter with a symmetrical structure is designed whose coefficients depend on the azimuth response of local isolated prominent points because this response can be approximately regarded as the synthetic aperture radiation pattern of the imaging system. The point target simulation shows that the angular resolution is improved by a ratio of almost two to one. The processing results of a live SAR image demonstrate the validity of the method.

  11. Initial assessment of an airborne Ku-band polarimetric SAR.

    Energy Technology Data Exchange (ETDEWEB)

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940s. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analysts understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.

  12. Three-dimensional surface reconstruction from multistatic SAR images.

    Science.gov (United States)

    Rigling, Brian D; Moses, Randolph L

    2005-08-01

    This paper discusses reconstruction of three-dimensional surfaces from multiple bistatic synthetic aperture radar (SAR) images. Techniques for surface reconstruction from multiple monostatic SAR images already exist, including interferometric processing and stereo SAR. We generalize these methods to obtain algorithms for bistatic interferometric SAR and bistatic stereo SAR. We also propose a framework for predicting the performance of our multistatic stereo SAR algorithm, and, from this framework, we suggest a metric for use in planning strategic deployment of multistatic assets.

  13. Around the laboratories: Rutherford: Successful tests on bubble chamber target technique; Stanford (SLAC): New storage rings proposal; Berkeley: The HAPPE project to examine cosmic rays with superconducting magnets; The 60th birthday of Professor N.N. Bogolyubov; Argonne: Performance of the automatic film measuring system POLLY II

    CERN Multimedia

    1969-01-01

    Around the laboratories: Rutherford: Successful tests on bubble chamber target technique; Stanford (SLAC): New storage rings proposal; Berkeley: The HAPPE project to examine cosmic rays with superconducting magnets; The 60th birthday of Professor N.N. Bogolyubov; Argonne: Performance of the automatic film measuring system POLLY II

  14. 手持显控终端的目标标牌自动布局算法%An automatic placement algorithm of label plates of targets for handheld display and control terminal

    Institute of Scientific and Technical Information of China (English)

    沈静波; 刘扬; 牛洁

    2012-01-01

    针对雷达手持显控终端显示屏幕小、目标标牌和点航迹相互重叠影像用户识别的问题,本文提出了一种目标标牌自动布局算法,通过旋转布局的方式可以快速实时地计算标牌位置,在保证标牌靠近目标航迹的基础上,充分避免标牌之间以及标牌和航迹点之间的重叠发生。该算法可以适应雷达不同显示模式的需求,支持雷达常用干预操作。%The screen of the display and control terminal is small, and the label plates, plots and tracks of the targets are overlapped so that the users can hardly identify them. Therefore, an automatic placement algorithm of the label plates of the targets is proposed to solve the problem above. The positions of the label plates can be calculated rapidly and real-timely through the rotating placement. Make sure that the label plates are close to the target tracks, on the basis of which the overlap among the label plates and between the label plates and the tracks is avoided to the full. The algorithm can adapt to the needs of different radar display modes, supporting the common intervention operations.

  15. InfoTerra/TerraSAR initiative

    Science.gov (United States)

    Wahl, Manfred W.

    2004-01-01

    The overarching goal of the InfoTerra/TerraSAR Initiative is to establish a self-sustaining operational/commercial business built on Europe"s know-how and experience in space-borne Synthetic Aperture Radar (SAR) technology, in SAR data processing as well as in SAR applications. InfoTerra stands for a new business concept based on supplying innovative geo-information products and services. TerraSAR is a space and ground system conceived to consist of an initial deployment and operation of 2 Radar satellites (one in X- and one in L-band) flying in a tandem configuration in the same orbit. The design of TerraSAR is driven by the market and is user-oriented. TerraSAR is key to capturing a significant proportion of the existing market and to opening new market opportunities, when it becomes operational. The InfoTerra/TerraSAR Initiative has evolved gradually. It started in 1997 as a joint venture between German (DSS) and British (MMS-UK) space industry, strongly supported by both space agencies, DLR and BNSC. In early 2001, DLR and BNSC submitted to ESA the Formal Programme Proposal for InfoTerra/TerraSAR to become an essential element of ESA"s Earth Watch Programme. In summer 2001, when it became evident that there was not yet sufficient support from the ESA Member States to allow immediate start entering into TerraSAR Phase C/D, it has been decided to implement first a TerraSAR consolidation phase. In early 2002, in order to avoid further delays, a contract was signed between DLR and Astrium GmbH on the development of one component of TerraSAR, the TerraSAR-X, in the frame of a national programme, governed by a Public Private Partnership Agreement. Even if now the different launch dates for TerraSAR-X and TerraSAR-L are narrowing down the window of common data acquisition, it is a reasonable starting point, but it should always be kept in mind that the utmost goal for the longterm is to achieve self sustainability by supplying geo-information products and services

  16. Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2.

    Science.gov (United States)

    Reinke, Lennart Michel; Spiegel, Martin; Plegge, Teresa; Hartleib, Anika; Nehlmeier, Inga; Gierer, Stefanie; Hoffmann, Markus; Hofmann-Winkler, Heike; Winkler, Michael; Pöhlmann, Stefan

    2017-01-01

    The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates viral entry into target cells. Cleavage and activation of SARS S by a host cell protease is essential for infectious viral entry and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease TMPRSS2 cleaves and activates SARS S in cell culture and potentially also in the infected host. Here, we investigated which determinants in SARS S control cleavage and activation by TMPRSS2. We found that SARS S residue R667, a previously identified trypsin cleavage site, is also required for S protein cleavage by TMPRSS2. The cleavage fragments produced by trypsin and TMPRSS2 differed in their decoration with N-glycans, suggesting that these proteases cleave different SARS S glycoforms. Although R667 was required for SARS S cleavage by TMPRSS2, this residue was dispensable for TMPRSS2-mediated S protein activation. Conversely, residue R797, previously reported to be required for SARS S activation by trypsin, was dispensable for S protein cleavage but required for S protein activation by TMPRSS2. Collectively, these results show that different residues in SARS S control cleavage and activation by TMPRSS2, suggesting that these processes are more complex than initially appreciated.

  17. Bounding SAR ATR performance based on model similarity

    Science.gov (United States)

    Boshra, Michael; Bhanu, Bir

    1999-08-01

    Similarity between model targets plays a fundamental role in determining the performance of target recognition. We analyze the effect of model similarity on the performance of a vote- based approach for target recognition from SAR images. In such an approach, each model target is represented by a set of SAR views sampled at a variety of azimuth angles and a specific depression angle. Both model and data views are represented by locations of scattering centers, which are peak features. The model hypothesis (view of a specific target and associated location) corresponding to a given data view is chosen to be the one with the highest number of data-supported model features (votes). We address three issues in this paper. Firstly, we present a quantitative measure of the similarity between a pair of model views. Such a measure depends on the degree of structural overlap between the two views, and the amount of uncertainty. Secondly, we describe a similarity- based framework for predicting an upper bound on recognition performance in the presence of uncertainty, occlusion and clutter. Thirdly, we validate the proposed framework using MSTAR public data, which are obtained under different depression angles, configurations and articulations.

  18. An Algorithm for Ship Wake Detection from the SAR Images Using the Radon Transform and Morphological Image Processing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using the Rador transform and morphological image processing, an algorithm for ship's wake detection in the SAR (synthetic aperture radar) image is developed. Being manipulated in the Radon space to invert the gray-level and binary images, the linesr texture of ship wake in oceanic clutter can be well detected. It has been applied to the automatic detection of a moving ship from the SEASAT SAR image. The results show that this algorithm is well robust in a strong noisy background and is not very sensitive to the threshold parameter and the working window size.

  19. Identification of Surface Manifestation at Geothermal Field Using SAR Dual Orbit Data

    Science.gov (United States)

    Akbari, Dinul; Saepuloh, Asep

    2016-09-01

    The Wayang -Windu Geothermal Field located in West Java, Indonesia is a geothermal field under tropical zone which is identified by high precipitation, dense vegetation, and extensive weathering/alteration. The clouds due to high precipitation and vegetation conditions on the tropical zone inhibit the identification of surface manifestation using optical remote sensing techniques. In this paper, we reduced these inhibiting factors using microwave remote sensing techniques termed as Synthetic Aperture Radar (SAR). The SAR dual orbits were used to observe the targets on the surface by minimizing the effects from the clouds and dense vegetation cover. This study is aimed to identify surface manifestation based on Geo morphologic and Structural Features (GSF) of the SAR in Ascending and Descending orbits. The Linear Features Density of SAR (lifedSAR) method was applied to quantify the linear features of the ground surface and served as basis of surface manifestation identification. Based on the lifedSAR and field observations, the surface manifestations could be detected succesfully at Wayang and Cibolang craters with density about 45%. The soil measurements were used validate the result and to interpret the correlation between LFD and surface manifestations.

  20. SAR imaging method based on coprime sampling and nested sparse sampling

    Institute of Scientific and Technical Information of China (English)

    Hongyin Shi; Baojing Jia

    2015-01-01

    As the signal bandwidth and the number of channels increase, the synthetic aperture radar (SAR) imaging system pro-duces huge amount of data according to the Shannon-Nyquist theorem, causing a huge burden for data transmission. This pa-per concerns the coprime sampling and nested sparse sampling, which are proposed recently but have never been applied to real world for target detection, and proposes a novel way which uti-lizes these new sub-Nyquist sampling structures for SAR sam-pling in azimuth and reconstructs the data of SAR sampling by compressive sensing (CS). Both the simulated and real data are processed to test the algorithm, and the results indicate the way which combines these new undersampling structures and CS is able to achieve the SAR imaging effectively with much less data than regularly ways required. Final y, the influence of a little sam-pling jitter to SAR imaging is analyzed by theoretical analysis and experimental analysis, and then it concludes a little sampling jitter have no effect on image quality of SAR.

  1. PHARUS: Airborne SAR Development in the Netherlands

    NARCIS (Netherlands)

    Hoogeboom, P.; Koomen, P.J.; Snoeij, P.; Pouwels, H.

    1992-01-01

    The PHARUS project (PHARUS stands for Phased Array Universal SAR) aims for a polarimetric C-band aircraft SAR that will be finalized in 1994. The system will make use of a phased array antenna with solid state amplifiers. The project consists of two phases, a definition phase and a realization

  2. PHARUS: Airborne SAR Development in the Netherlands

    NARCIS (Netherlands)

    Hoogeboom, P.; Koomen, P.J.; Snoeij, P.; Pouwels, H.

    1992-01-01

    The PHARUS project (PHARUS stands for Phased Array Universal SAR) aims for a polarimetric C-band aircraft SAR that will be finalized in 1994. The system will make use of a phased array antenna with solid state amplifiers. The project consists of two phases, a definition phase and a realization phase

  3. Advanced antennas for SAR spacecraft

    Science.gov (United States)

    Gail, William B.

    1993-01-01

    Single and multi-frequency antenna concepts were developed to evaluate the feasibility of building large aperture polarimetric synthetic aperture radar (SAR) systems to be launched in low cost vehicles such as the Delta 2. The antennas are 18.9 m long by 2.6 m wide (L-band) and achieve single polarization imaging to an incidence angle of 55 degrees and dual/quad imaging to 42 degrees. When combined with strawman spacecraft designs, both concepts meet the mass and volume constraints imposed by a Delta 2 launch.

  4. SAR image regularization with fast approximate discrete minimization.

    Science.gov (United States)

    Denis, Loïc; Tupin, Florence; Darbon, Jérôme; Sigelle, Marc

    2009-07-01

    Synthetic aperture radar (SAR) images, like other coherent imaging modalities, suffer from speckle noise. The presence of this noise makes the automatic interpretation of images a challenging task and noise reduction is often a prerequisite for successful use of classical image processing algorithms. Numerous approaches have been proposed to filter speckle noise. Markov random field (MRF) modelization provides a convenient way to express both data fidelity constraints and desirable properties of the filtered image. In this context, total variation minimization has been extensively used to constrain the oscillations in the regularized image while preserving its edges. Speckle noise follows heavy-tailed distributions, and the MRF formulation leads to a minimization problem involving nonconvex log-likelihood terms. Such a minimization can be performed efficiently by computing minimum cuts on weighted graphs. Due to memory constraints, exact minimization, although theoretically possible, is not achievable on large images required by remote sensing applications. The computational burden of the state-of-the-art algorithm for approximate minimization (namely the alpha -expansion) is too heavy specially when considering joint regularization of several images. We show that a satisfying solution can be reached, in few iterations, by performing a graph-cut-based combinatorial exploration of large trial moves. This algorithm is applied to joint regularization of the amplitude and interferometric phase in urban area SAR images.

  5. SAR processing using SHARC signal processing systems

    Science.gov (United States)

    Huxtable, Barton D.; Jackson, Christopher R.; Skaron, Steve A.

    1998-09-01

    Synthetic aperture radar (SAR) is uniquely suited to help solve the Search and Rescue problem since it can be utilized either day or night and through both dense fog or thick cloud cover. Other papers in this session, and in this session in 1997, describe the various SAR image processing algorithms that are being developed and evaluated within the Search and Rescue Program. All of these approaches to using SAR data require substantial amounts of digital signal processing: for the SAR image formation, and possibly for the subsequent image processing. In recognition of the demanding processing that will be required for an operational Search and Rescue Data Processing System (SARDPS), NASA/Goddard Space Flight Center and NASA/Stennis Space Center are conducting a technology demonstration utilizing SHARC multi-chip modules from Boeing to perform SAR image formation processing.

  6. Composite SAR imaging using sequential joint sparsity

    Science.gov (United States)

    Sanders, Toby; Gelb, Anne; Platte, Rodrigo B.

    2017-06-01

    This paper investigates accurate and efficient ℓ1 regularization methods for generating synthetic aperture radar (SAR) images. Although ℓ1 regularization algorithms are already employed in SAR imaging, practical and efficient implementation in terms of real time imaging remain a challenge. Here we demonstrate that fast numerical operators can be used to robustly implement ℓ1 regularization methods that are as or more efficient than traditional approaches such as back projection, while providing superior image quality. In particular, we develop a sequential joint sparsity model for composite SAR imaging which naturally combines the joint sparsity methodology with composite SAR. Our technique, which can be implemented using standard, fractional, or higher order total variation regularization, is able to reduce the effects of speckle and other noisy artifacts with little additional computational cost. Finally we show that generalizing total variation regularization to non-integer and higher orders provides improved flexibility and robustness for SAR imaging.

  7. SARS: systematic review of treatment effects.

    Directory of Open Access Journals (Sweden)

    Lauren J Stockman

    2006-09-01

    Full Text Available BACKGROUND: The SARS outbreak of 2002-2003 presented clinicians with a new, life-threatening disease for which they had no experience in treating and no research on the effectiveness of treatment options. The World Health Organization (WHO expert panel on SARS treatment requested a systematic review and comprehensive summary of treatments used for SARS-infected patients in order to guide future treatment and identify priorities for research. METHODS AND FINDINGS: In response to the WHO request we conducted a systematic review of the published literature on ribavirin, corticosteroids, lopinavir and ritonavir (LPV/r, type I interferon (IFN, intravenous immunoglobulin (IVIG, and SARS convalescent plasma from both in vitro studies and in SARS patients. We also searched for clinical trial evidence of treatment for acute respiratory distress syndrome. Sources of data were the literature databases MEDLINE, EMBASE, BIOSIS, and the Cochrane Central Register of Controlled Trials (CENTRAL up to February 2005. Data from publications were extracted and evidence within studies was classified using predefined criteria. In total, 54 SARS treatment studies, 15 in vitro studies, and three acute respiratory distress syndrome studies met our inclusion criteria. Within in vitro studies, ribavirin, lopinavir, and type I IFN showed inhibition of SARS-CoV in tissue culture. In SARS-infected patient reports on ribavirin, 26 studies were classified as inconclusive, and four showed possible harm. Seven studies of convalescent plasma or IVIG, three of IFN type I, and two of LPV/r were inconclusive. In 29 studies of steroid use, 25 were inconclusive and four were classified as causing possible harm. CONCLUSIONS: Despite an extensive literature reporting on SARS treatments, it was not possible to determine whether treatments benefited patients during the SARS outbreak. Some may have been harmful. Clinical trials should be designed to validate a standard protocol for dosage

  8. Dissection of SARS Coronavirus Spike Protein into Discrete Folded Fragments

    Institute of Scientific and Technical Information of China (English)

    LI Shuang; CAI Zhen; CHEN Yong; LIN Zhanglin

    2006-01-01

    The spike protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) mediates cell fusion by binding to target cell surface receptors. This paper reports a simple method for dissecting the viral protein and for searching for foldable fragments in a random but systematic manner. The method involves digestion by DNase I to generate a pool of short DNA segments, followed by an additional step of reassembly of these segments to produce a library of DNA fragments with random ends but controllable lengths. To rapidly screen for discrete folded polypeptide fragments, the reassembled gene fragments were further cloned into a vector as N-terminal fusions to a folding reporter gene which was a variant of green fluorescent protein. Two foldable fragments were identified for the SARS-CoV spike protein, which coincide with various anti-SARS peptides derived from the hepated repeat (HR) region 2 of the spike protein. The method should be applicable to other viral proteins to isolate antigen or vaccine candidates, thus providing an alternative to the full-length proteins (subunits) or linear short peptides.

  9. Yeast based small molecule screen for inhibitors of SARS-CoV.

    Directory of Open Access Journals (Sweden)

    Matthew Frieman

    Full Text Available Severe acute respiratory coronavirus (SARS-CoV emerged in 2002, resulting in roughly 8000 cases worldwide and 10% mortality. The animal reservoirs for SARS-CoV precursors still exist and the likelihood of future outbreaks in the human population is high. The SARS-CoV papain-like protease (PLP is an attractive target for pharmaceutical development because it is essential for virus replication and is conserved among human coronaviruses. A yeast-based assay was established for PLP activity that relies on the ability of PLP to induce a pronounced slow-growth phenotype when expressed in S. cerevisiae. Induction of the slow-growth phenotype was shown to take place over a 60-hour time course, providing the basis for conducting a screen for small molecules that restore growth by inhibiting the function of PLP. Five chemical suppressors of the slow-growth phenotype were identified from the 2000 member NIH Diversity Set library. One of these, NSC158362, potently inhibited SARS-CoV replication in cell culture without toxic effects on cells, and it specifically inhibited SARS-CoV replication but not influenza virus replication. The effect of NSC158362 on PLP protease, deubiquitinase and anti-interferon activities was investigated but the compound did not alter these activities. Another suppressor, NSC158011, demonstrated the ability to inhibit PLP protease activity in a cell-based assay. The identification of these inhibitors demonstrated a strong functional connection between the PLP-based yeast assay, the inhibitory compounds, and SARS-CoV biology. Furthermore the data with NSC158362 suggest a novel mechanism for inhibition of SARS-CoV replication that may involve an unknown activity of PLP, or alternatively a direct effect on a cellular target that modifies or bypasses PLP function in yeast and mammalian cells.

  10. Weighted LBF for spaceborne general bistatic SAR processing

    Institute of Scientific and Technical Information of China (English)

    Jinshan Ding; Otmar Loffeld; Robert Wang; Holger Nies; U1-Ann Qurat; Zheng Bao

    2008-01-01

    Loffeld's bistatic formula (LBF) is the first two-dimensional analytic point target reference spectrum derived for general bistatic SAR frequency domain focusing.The phase history is expanded in Taylor series around the individual points of stationary phase of the transmitter-target and target-receiver phase histories,respectively,and thus the common bistatic stationary phase point can be obtained using the method of stationary phase.Unfortunately,it shows limitations for extreme bistatic configurations,namely the highly squinted mode and space-surface application.The weighted LBF (WLBF) is proposed in this paper based on the different contributions of total phase modulation from the transmitter and receiver.The formulae we derived are compared with that of the original literature.The extreme bistatic stripmap SAR data can be focused using WLBF,which accommodates the spaceborne squint geometry using the modified effective velocity solution.A point target simulation example is presented to verify the accuracy of the new WLBF spectrum.

  11. Artifacts in Radar Imaging of Moving Targets

    Science.gov (United States)

    2012-09-01

    leads to the wrong object localization and defocusing on the image. For SAR , a moving target’s physical location varies throughout the imaging...Imaging, Synthetic Aperture Radar, Bistatic Radar, Multistatic Radar, Moving Targets, Backprojection 15. NUMBER OF PAGES 133 16. PRICE CODE 17...broadening and range errors were introduced by target motion. This leads to incorrect object localization and defocusing on the image. For SAR , a

  12. On the Design of Radar Corner Reflectors for Deformation Monitoring in Multi-Frequency InSAR

    OpenAIRE

    Garthwaite, Matthew C.

    2017-01-01

    Trihedral corner reflectors are being increasingly used as point targets in deformation monitoring studies using interferometric synthetic aperture radar (InSAR) techniques. The frequency and size dependence of the corner reflector Radar Cross Section (RCS) means that no single design can perform equally in all the possible imaging modes and radar frequencies available on the currently orbiting Synthetic Aperture Radar (SAR) satellites. Therefore, either a corner reflector design tailored to ...

  13. Validation of burst overlapping for ALOS-2 PALSAR-2 ScanSAR-ScanSAR interferometry

    Science.gov (United States)

    Natsuaki, Ryo; Motohka, Takeshi; Ohki, Masato; Watanabe, Manabu; Suzuki, Shinichi

    2016-10-01

    The Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) aboard the Advanced Land Observing Satellite- 2 (ALOS-2, "DAICHI-2") is the latest L-band spaceborne synthetic aperture radar (SAR). PALSAR-2 observes the world mainly with 10 m resolution / 70 km swath Stripmap mode and 25 m resolution / 350 km swath ScanSAR mode. The 3-m resolution Stripmap mode is mainly used upon Japan. 350 km ScanSAR observation could detect large scale deformation e.g., the Mw 7.8 Gorkha, Nepal earthquake and its aftershocks in 2015. ALOS-2 ScanSAR is the first one that supports ScanSAR-ScanSAR interferometry in L-band spaceborne SAR. However, because of the parameter setting error for the orbit estimation, ALOS-2 PALSAR-2 ScanSAR could achieve little number of interferometric pair until the software modification on February 8, 2015. That is, the burst overlap timing required for the interferometric analysis was insufficient and it depends on the observation date. In this paper, we report the investigation results of this case and discuss the current status of the ALOS-2 ScanSAR InSAR. Some archives achieved before February 8, 2015 can be used for interferometric analysis with after Feb. 8. However, most of them have no interferometric pair. We also report that the archives acquired after February 8, have enough burst overlapping.

  14. RADI's Airborne X-SAR with High Resolution: Performance, Characterization and Verification

    Science.gov (United States)

    Shen, T.; Li, J.; Wang, Z. R.; Huang, L.

    2016-11-01

    X-SAR is an airborne multi-mode synthetic aperture radar (SAR) system with high- resolution, interferometer and full-polarization, developed by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), funded by the CAS Large Research Infrastructures. Since 2009, the first developed stage of X-SAR system was successfully implemented to an operational SAR with high resolution (up to 0.5 meter). In May 2013, the imaging verification on flights test was carried out. The data calibration on the laboratory measurements were completed at the end of 2015. Many valuable results of imaging verification and data calibration have emphasized the quantitative microwave measurement capabilities. This paper presents the results of X-SAR system performance, characterization, optimization, and verification as carried out during the flight trials and laboratory measurement. The system performance and calibration parameters are presented such as transmitter amplitude accuracy, phase noise, system gain change with temperature variation, long-term radiometric stability. The imaging verification of the key performance parameters is discussed, including target-response function, target pairs discrimination, image noise and radiometric resolution. The example imagery of radiometric enhanced products for intensity change detection is also described.

  15. Updated progress in theories and applications of spaceborne SAR interferometry

    Science.gov (United States)

    Chen, Yan-Ling; Huang, Cheng; Ding, Xiao-Li; Li, Zhi-Wei

    2006-12-01

    InSAR (Interferometric Synthetic Aperture Radar) and D-InSAR (Differential InSAR) are rapidly developed new technologies of space geodesy during the late 20th century, and now obviously become hot research topics in the field of microwave remote sensing. Compared with the other sensors, InSAR possesses many incomparable advantages such as the capability to work at all-time and under all weather, very high spatial resolution and strong penetrability through the ground surface. This paper introduces general status of SAR, InSAR, D-InSAR technology, and the principles of InSAR and D-InSAR. New theories and the potential problems of (D-)InSAR technology are largely discussed, including multi-baseline interferometry, Pol-InSAR technique, the correction of atmospheric effects, permanent Scatterers method, the synthesization technique between InSAR and GPS, LIDAR etc., and the InSAR parallel algorithm. Then the new applications of InSAR and D-InSAR are described in detail including 3D topographic mapping, deformation monitoring (including surface subsidence, landside monitoring and ITRF's foundation and maintenance, etc.), thematic mapping (including agriculture and forestry, oceanic surveying and flood monitoring, etc.) and meteorology etc.. Finally, the prospect and future trends in InSAR development are summarized.

  16. SAR Image Segmentation with Unknown Number of Classes Combined Voronoi Tessellation and Rjmcmc Algorithm

    Science.gov (United States)

    Zhao, Q. H.; Li, Y.; Wang, Y.

    2016-06-01

    This paper presents a novel segmentation method for automatically determining the number of classes in Synthetic Aperture Radar (SAR) images by combining Voronoi tessellation and Reversible Jump Markov Chain Monte Carlo (RJMCMC) strategy. Instead of giving the number of classes a priori, it is considered as a random variable and subject to a Poisson distribution. Based on Voronoi tessellation, the image is divided into homogeneous polygons. By Bayesian paradigm, a posterior distribution which characterizes the segmentation and model parameters conditional on a given SAR image can be obtained up to a normalizing constant; Then, a Revisable Jump Markov Chain Monte Carlo(RJMCMC) algorithm involving six move types is designed to simulate the posterior distribution, the move types including: splitting or merging real classes, updating parameter vector, updating label field, moving positions of generating points, birth or death of generating points and birth or death of an empty class. Experimental results with real and simulated SAR images demonstrate that the proposed method can determine the number of classes automatically and segment homogeneous regions well.

  17. ERS-1 SAR geocoding system as link between spaceborne and earth reference data

    Science.gov (United States)

    Schreier, Gunter; Roth, Achim; Knöpfle, Walter

    1993-08-01

    The operational European ground segment of the European Remote Sensing Satellite ERS-1 supports geocoded SAR image data generated by the German Processing and Archiving Facility (D-PAF) of DLR in Oberpfaffenhofen near Munich. Geocoding of spaceborne satellite data means to establish an easy and user friendly link between the satellite measurements and Geo-Information Systems (GIS) as well as the possibility to intercompare SAR data with other geocoded satellite based information. Although the near to fully automatic geocoding system is based on precisely known satellite house-keeping data, it strongly depends on georeference information at least for the validation of the data and the verification of its results. Such reference information are large scale topographic maps, which are still the unique global source for earth based information and Digital Elevation Models. The later are necessary to correct SAR data for disturbing height induced geometric and radiometric defects. Additionally automatically generated Image Ground Control Chips aid the precision of the system. To accomplish the task of operational geocoding, several consistent data bases have been generated at DLR to store these types of reference data. Both, relational data base techniques as well as spatial binary reference systems are in use for the data storage. The article will present the architecture of these operational systems and will give a first review of the experience with these systems during the ERS-1 commissioning and early operations phase.

  18. Fusion of Spaceborne Optical and SAR Images for Building Height Quick Extraction in Big Urban Areas

    Directory of Open Access Journals (Sweden)

    TIAN Feng

    2017-07-01

    Full Text Available The spaceborne high-resolution optical images and synthetic aperture radar (SAR images are applied to extract building height in urban areas widely. But the lack of optical satellite parameters along with the SAR images' incomplete scattering characteristics and inefficient extraction make the application flawed. To cure the above problems, we investigated the joint use of the spaceborne high-resolution optical images and SAR images to extract building height information quickly in big urban areas. The chain is decomposed into the main following steps: First, the building shadows are extracted by integrating support vector machines (SVM with morphological shadow index (MSI and their lengths are measured automatically. Then, the height extraction from SAR images based on a model matching technique for some appropriate samples. Finally, obtain the other heights based on the simple linear regression analysis. This approach which combines the data and feature from different satellite systems to make up the flaws for each other is not only efficient and low-cost, but also satisfy the basic accuracy requirement.

  19. Extracting hurricane eye morphology from spaceborne SAR images using morphological analysis

    Science.gov (United States)

    Lee, Isabella K.; Shamsoddini, Ali; Li, Xiaofeng; Trinder, John C.; Li, Zeyu

    2016-07-01

    Hurricanes are among the most destructive global natural disasters. Thus recognizing and extracting their morphology is important for understanding their dynamics. Conventional optical sensors, due to cloud cover associated with hurricanes, cannot reveal the intense air-sea interaction occurring at the sea surface. In contrast, the unique capabilities of spaceborne synthetic aperture radar (SAR) data for cloud penetration, and its backscattering signal characteristics enable the extraction of the sea surface roughness. Therefore, SAR images enable the measurement of the size and shape of hurricane eyes, which reveal their evolution and strength. In this study, using six SAR hurricane images, we have developed a mathematical morphology method for automatically extracting the hurricane eyes from C-band SAR data. Skeleton pruning based on discrete skeleton evolution (DSE) was used to ensure global and local preservation of the hurricane eye shape. This distance weighted algorithm applied in a hierarchical structure for extraction of the edges of the hurricane eyes, can effectively avoid segmentation errors by reducing redundant skeletons attributed to speckle noise along the edges of the hurricane eye. As a consequence, the skeleton pruning has been accomplished without deficiencies in the key hurricane eye skeletons. A morphology-based analyses of the subsequent reconstructions of the hurricane eyes shows a high degree of agreement with the hurricane eye areas derived from reference data based on NOAA manual work.

  20. Antenna motion errors in bistatic SAR imagery

    Science.gov (United States)

    Wang, Ling; Yazıcı, Birsen; Cagri Yanik, H.

    2015-06-01

    Antenna trajectory or motion errors are pervasive in synthetic aperture radar (SAR) imaging. Motion errors typically result in smearing and positioning errors in SAR images. Understanding the relationship between the trajectory errors and position errors in reconstructed images is essential in forming focused SAR images. Existing studies on the effect of antenna motion errors are limited to certain geometries, trajectory error models or monostatic SAR configuration. In this paper, we present an analysis of position errors in bistatic SAR imagery due to antenna motion errors. Bistatic SAR imagery is becoming increasingly important in the context of passive imaging and multi-sensor imaging. Our analysis provides an explicit quantitative relationship between the trajectory errors and the positioning errors in bistatic SAR images. The analysis is applicable to arbitrary trajectory errors and arbitrary imaging geometries including wide apertures and large scenes. We present extensive numerical simulations to validate the analysis and to illustrate the results in commonly used bistatic configurations and certain trajectory error models.

  1. SARS - infectious disease of 21st century

    Directory of Open Access Journals (Sweden)

    Tjandra Y. Aditama

    2005-03-01

    Full Text Available Severe acute respiratory syndrome (SARS is an emerging viral infectious disease. According to the World Health Organization, a suspected case of SARS is defined as documented fever (temperature >38°C, lower respiratory tract symptoms, and contact with a person believed to have had SARS or history of travel to an area of documented transmission. A probable case is a suspected case with chest radiographic findings of pneumonia, acute respiratory distress syndrome (ARDS, or an unexplained respiratory illness resulting in death, with autopsy findings of ARDS without identifiable cause. In this article some SARS epidemiological data in Indonesia will also presented. There are 7 SARS suspected cases and 2 probable cases were registered in Indonesia on the period of 1 March to 9 July 2003, and no more cases were reported after that time. How will be SARS progression in the future will be a subject of discussion among scientist, and we will have to wait and be prepared for any development might occur. (Med J Indones 2005; 14: 59-63Keywords: SARS, Case Definition, Etiology, Indonesia

  2. The inhibitory effect of Chinese herb on SARS virus infection

    Institute of Scientific and Technical Information of China (English)

    Rika; Furuta; Jyunichi; Fujisawa; Toshio; Hattori

    2005-01-01

    [Subject]Severe acute respiratory syndrome(SARS)is a contagious atypical pneumonia with a high mortality rate.SARS coronavirus(SARS-CoV)is the pathogenof SARS.We established SARS-CoVS/HIVpseudotyped(SHP)virussystemandthe cell fusion assay systemto screeninhibitors for entry of SARS-CoV.[Materials and methods]SHPor VSV-Gpseudotype(VHP)virus was made bytransfecting pCMVΔR8·2,pHR’CMV-Luc and pCMV/R-SARS-S or pMDGplasmids into293Tcells.5ng p24of SHPor VHPvirus was addedfor eachinfec-tion.Twelve Chinese herbs,wh...

  3. Hierarchical Feature Extraction and Selection Method and the Applications in Automatic Target Recognition System%分级特征提取与选择及在自动目标识别系统中的应用

    Institute of Scientific and Technical Information of China (English)

    梅雪; 张继法; 许松松; 巩建鸣

    2012-01-01

    应用于遥感图像、武器制导等的自动目标识别系统中,经常遇到形状相似目标的鉴别问题。为提高其识别的快速性和识别率,提出一种分级的基于形状的目标识别方法。借鉴人类视觉感知方式提取多尺度特征,大尺度下采用全局特征快速粗分类,小尺度下采用局部特征鉴别形状相似目标。然后运用模糊规则对提取的特征进行选择,降低特征维数,加快目标匹配过程。实验结果表明:该方法能快速有效地识别形状相似的目标,特征选择后平均识别率较选择之前提高了6.99/6。%Similar shape object recognition is widely used in automatic target recognition system of remote sensing and weapon guidance. A hierarchical method of shape feature extraction and selection is proposed to increase the recognition efficiency and rate. I.earning from human visual perception, multi-scale features are extracted. C-lobal features are used to make a quick classification,and local features are used to distinguish targets with similar shape. To achieve the feature selection, fuzzy criterion is introduced which improves the matching processing and increases the recognition rate. Experimental results show this method is an effective and general way in recognizing targets with similar shape,and the feature selection improves the recognition rate by 6.9%than before.

  4. Automatic Target Recognition for Hyperspectral Imagery

    Science.gov (United States)

    2012-03-01

    geological exploration, and surveillance (Stein, Beaven, Hoff, Winter, Schaum , & Stocker, 2002). With decreases in manning levels and the ever increasing...another region (Stein, Beaven, Hoff, Winter, Schaum , & Stocker, 2002). “Generally, this [high false-alarm rate] happens due to the well known...Chang, 2004), (Riley, Newsome, & Andrews, 2004), (Kwon & Nasrabadi, 2005), (Gaucel, Guillaume, & Bourennane, 2005), ( Schaum , 2004), (West, Messinger

  5. The impact of curved satellite tracks on SAR focusing

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    2000-01-01

    This paper addresses the geometric effect of processing single look complex synthetic aperture radar (SAR) data to a reference squint angle different from that given by the center of the real antenna beam. For data acquired on a straight flight line, the required transformation of radar coordinates...... from one Doppler reference to another is independent of the target elevation but for data acquired from a satellite orbit over a rotating Earth that is not true. Also the effect of ignoring Earth rotation is addressed....

  6. Offshore wind mapping Mediterranean area using SAR

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete;

    2013-01-01

    Satellite observations of the ocean surface, for example from Synthetic Aperture Radars (SAR), provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean Sea, where spatial wind information is only provided by sparse buoys, often...... with long periods of missing data. Here, we focus on evaluating the use of SAR for offshore wind mapping. Preliminary results from the analysis of SAR-based ocean winds in Mediterranean areas show interesting large scale wind flow features consistent with results from previous studies using numerical models...

  7. Geologic mapping in Greenland with polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Madsen, Søren Nørvang; Brooks, C. K.

    1995-01-01

    The application of synthetic aperture radar (SAR) for geologic mapping in Greenland is investigated by the Danish Center for Remote Sensing (DCRS) in co-operation with the Danish Lithosphere Centre (DLC). In 1994 a pilot project was conducted in East Greenland. The Danish airborne SAR, EMISAR......, acquired fully polarimetric C-band data which, upon processing and calibration, was interpreted jointly by DCRS and DLC. Several geologic phenomena are readily identified in the SAR imagery, while different lithologies seem to be indistinguishable because they have similar geomorphologies. The geologic...

  8. Geometric calibration of ERS satellite SAR images

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    2001-01-01

    Geometric calibration of the European Remote Sensing (ERS) Satellite synthetic aperture radar (SAR) slant range images is important in relation to mapping areas without ground reference points and also in relation to automated processing. The relevant SAR system parameters are discussed...... on a seven-year ERS-1 and a four-year ERS-2 time series, the long term stability is found to be sufficient to allow a single calibration covering the entire mission period. A descending and an ascending orbit tandem pair of the ESA calibration site on Flevoland, suitable for calibration of ERS SAR processors...

  9. SAR observations of coastal zone conditions

    Science.gov (United States)

    Meadows, G. A.; Kasischke, E. S.; Shuchman, R. A.

    1980-01-01

    Applications of Synthetic Aperture Radar (SAR) technology to the observation of coastal zones phenomena are detailed. The conditions observed include gravity wave detection, surf zone location, surface currents, and long-period 'surf beats'. Algorithms have been developed and successfully tested that determine significant wave and current parameters from the sea surface backscatter of microwave energy. Doppler information from the SAR optical correlator allows a rough estimation of near shore surface flow velocities that has been found in agreement with both theory and in situ observations as well. Seasat SAR data of the Scotland and North Carolina coasts are considered, as well as the results of bathymetric updating of coastal area charts.

  10. Geodetic network design for InSAR: Application to ground deformation monitoring

    NARCIS (Netherlands)

    Mahapatra, P.S.

    2015-01-01

    For the past two decades, interferometric synthetic aperture radar (InSAR) has been used to monitor ground deformation with subcentimetric precision from space. But the applicability of this technique is limited in regions with a low density of naturally-occurring phase-coherent radar targets, e.g.

  11. Bistatic Polarimetric SAR Decomposition in Terms of Roll-Invariant Parameters

    Science.gov (United States)

    Bombrun, Lionel

    2011-03-01

    This paper introduces a new bistatic Polarimetric SAR decomposition in terms of roll-invariant parameters. The proposed decomposition is an extension of the Target Scattering Vector Model to the bistatic case, where the cross-polarization terms of the scattering matrix are not necessary equal.

  12. Bistatic Polarimetric SAR Decomposition in Terms of Roll-Invariant Parameters

    OpenAIRE

    Bombrun, Lionel

    2011-01-01

    International audience; This paper introduces a new bistatic Polarimetric SAR decomposition in terms of roll-invariant parameters. The proposed decomposition is an extension of the Target Scattering Vector Model to the bistatic case, where the cross-polarization terms of the scattering matrix are not necessary equal.

  13. Ship detection in South African oceans using SAR, CFAR and a Haar-like feature classifier

    CSIR Research Space (South Africa)

    Schwegmann, CP

    2014-07-01

    Full Text Available Synthetic Aperture Radar images is a proven technology that can be used to detect ships at sea which have no active transponders (commonly referred to as dark targets). Various methods have been proposed that process SAR images to monitor...

  14. Bistatic Experiment Using TerraSAR-X and DLR’s new F-SAR System

    OpenAIRE

    Baumgartner, Stefan; Rodriguez-Cassolà, Marc; Nottensteiner, Anton; Horn, Ralf; Scheiber, Rolf; Steinbrecher, Ulrich; Metzig, Robert; Limbach, Markus; Mittermayer, Josef; Krieger, Gerhard; Moreira, Alberto; Schwerdt, Marco

    2008-01-01

    A bistatic X-band experiment was successfully performed early November 2007. TerraSAR-X was used as transmitter and DLR’s new airborne radar system F-SAR, which was programmed to acquire data in a quasi-continuous mode to avoid echo window synchronization issues, was used as bistatic receiver. Precise phase and time referencing between both systems, which is essential for obtaining high resolution SAR images, was derived during the bistatic processing. Hardware setup and performance analyses ...

  15. SAR-SIFT: A SIFT-LIKE ALGORITHM FOR SAR IMAGES

    OpenAIRE

    Dellinger, Flora; Delon, Julie; Gousseau, Yann; Michel, Julien; Tupin, Florence

    2015-01-01

    International audience; The Scale Invariant Feature Transform (SIFT) algorithm is widely used in computer vision to match features between images or to localize and recognize objets. However, mostly because of speckle noise, it does not perform well on synthetic aperture radar (SAR) images. We present here an improvement of this algorithm for SAR images, named SAR-SIFT. A new gradient computation, yielding an orientation and a magnitude robust to speckle noise, is first introduced. It is then...

  16. Association of acute adverse effects with high local SAR induced in the brain from prolonged RF head and neck hyperthermia

    Science.gov (United States)

    Adibzadeh, F.; Verhaart, R. F.; Verduijn, G. M.; Fortunati, V.; Rijnen, Z.; Franckena, M.; van Rhoon, G. C.; Paulides, M. M.

    2015-02-01

    To provide an adequate level of protection for humans from exposure to radio-frequency (RF) electromagnetic fields (EMF) and to assure that any adverse health effects are avoided. The basic restrictions in terms of the specific energy absorption rate (SAR) were prescribed by IEEE and ICNIRP. An example of a therapeutic application of non-ionizing EMF is hyperthermia (HT), in which intense RF energy is focused at a target region. Deep HT in the head and neck (H&N) region involves inducing energy at 434 MHz for 60 min on target. Still, stray exposure of the brain is considerable, but to date only very limited side-effects were observed. The objective of this study is to investigate the stringency of the current basic restrictions by relating the induced EM dose in the brain of patients treated with deep head and neck (H&N) HT to the scored acute health effects. We performed a simulation study to calculate the induced peak 10 g spatial-averaged SAR (psSAR10g) in the brains of 16 selected H&N patients who received the highest SAR exposure in the brain, i.e. who had the minimum brain-target distance and received high forwarded power during treatment. The results show that the maximum induced SAR in the brain of the patients can exceed the current basic restrictions (IEEE and ICNIRP) on psSAR10g for occupational environments by 14 times. Even considering the high local SAR in the brain, evaluation of acute effects by the common toxicity criteria (CTC) scores revealed no indication of a serious acute neurological effect. In addition, this study provides pioneering quantitative human data on the association between maximum brain SAR level and acute adverse effects when brains are exposed to prolonged RF EMF.

  17. SARS-A Worldwide Threat

    Institute of Scientific and Technical Information of China (English)

    姜保华

    2003-01-01

    所谓SARS,即严重急性呼吸道综合症,是一种传染力很强的呼吸道疾病。这种新的疾病最先由世界卫生组织医生Carlo Urbani博士确诊,患者是一位48岁的商人,后来因该病而死亡。Urbani医生本人也因感染该病而于2003年3月29日去世,死时年仅46岁。在此期间,SARS开始蔓延。自SARS发现后的一个半月里,全球已有数千人被感染。

  18. Atmosphere Observations by Geosynchronous SARs

    Science.gov (United States)

    Monti guarnieri, Andrea; Rocca, Fabio; Wadge, Geoff; Schulz, Detlef

    2014-05-01

    We analyze different geosynchronous Synthetic Aperture RADAR concepts aimed to get both tropospheric and ionospheric delay maps with a revisit time of minutes and sub-continental coverage. Such products could be used either to compensate the delay in LEO-SAR missions and GNSS, or to generate integrated water-vapor maps to be used for Numerical Weather Forecast. The system exploits the principle of RADAR location, by transmitting a pulse with a suitable bandwidth, and the residual non-zero eccentricity of COMmunication SATellites. Different concepts are proposed as payload in COMSAT, or constellations of small satellites, that is monostatic or bistatic/multistatic RADARS. The selection of the best frequency, from L to Ku, and the analysis of performances is presented.

  19. CART III: improved camouflage assessment using moving target indication

    Science.gov (United States)

    Müller, Thomas; Honke, Thomas; Müller, Markus

    2009-05-01

    In order to facilitate systematic, computer aided improvements of camouflage and concealment assessment methods, the software system CART (Camouflage Assessment in Real-Time) was built up for the camouflage assessment of objects in image sequences (see contributions to SPIE 2007 and SPIE 2008 [1], [2]). It works with visual-optical, infrared and SAR image sequences. The system comprises a semi-automatic annotation functionality for marking target objects (ground truth generation) including a propagation of those markings over the image sequence for static as well as moving scene objects, where the recording camera may be static or moving. The marked image regions are evaluated by applying user-defined feature extractors, which can easily be defined and integrated into the system via a generic software interface. This article presents further systematic enhancements made in the recent year and addresses particularly the task of the detection of moving vehicles by latest image exploitation methods for objective camouflage assessment in these cases. As a main topic, the loop was closed between the two natural opposites of reconnaissance and camouflage, which was realized by incorporating ATD (Automatic Target Detection) algorithms into the computer aided camouflage assessment. Since object (and sensor) movement is an important feature for many applications, different image-based MTI (Moving Target Indication) algorithms were included in the CART system, which rely on changes in the image plane from an image to the successive one (after camera movements are automatically compensated). Additionally, the MTI outputs over time are combined in a certain way which we call "snail track" algorithm. The results show that their output provides a valuable measurement for the conspicuity of moving objects and therefore is an ideal component in the camouflage assessment. It is shown that image-based MTI improvements lead to improvements in the camouflage assessment process.

  20. A Fast Polar Format Algorithm Based on Variable PRF for Bistatic SAR%一种变 PRF 双基 SAR 快速极坐标格式算法

    Institute of Scientific and Technical Information of China (English)

    丁晶; 李盘虎; 毛新华

    2016-01-01

    极坐标格式算法(PFA)是双基聚束模式合成孔径雷达(SAR)成像中一种经典的成像算法,在聚束 SAR 系统中有着重要的意义。从信号二维解耦合的角度出发,进一步分析极坐标格式算法中距离向插值和方位向插值对目标距离徙动(RCM)的校正过程,给出了对双基 SAR 极坐标格式算法的一种新解释,并提出一种基于变脉冲重复频率(PRF)的双基 SAR 快速极坐标格式算法。该方法可以提高双基 SAR 极坐标格式算法的计算效率,扩大其应用范围。点目标仿真验证了该方法的有效性。%Polar format algorithm (PFA)is a classic algorithm for bistatic synthetic aperture radar (SAR)imaging and has important significance in spotlight bistatic SAR system.In this paper,we analyze the range and azimuth resampling procedures for their roles in range cell migration(RCM)correction from the viewpoint of two-dimensional decoupling and provide a new formulation of PFA for bistatic spotlight SAR.A fast polar format algorithm is proposed,which is based on variable pulse repetition frequency (PRF).This algorithm can improve the computation efficiency and expand the application range of PFA for bistatic SAR imaging.Point target simulation validates the algorithm.

  1. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses.

    Science.gov (United States)

    Hilgenfeld, Rolf; Peiris, Malik

    2013-10-01

    This article introduces a series of invited papers in Antiviral Research marking the 10th anniversary of the outbreak of severe acute respiratory syndrome (SARS), caused by a novel coronavirus that emerged in southern China in late 2002. Until that time, coronaviruses had not been recognized as agents causing severe disease in humans, hence, the emergence of the SARS-CoV came as a complete surprise. Research during the past ten years has revealed the existence of a diverse pool of coronaviruses circulating among various bat species and other animals, suggesting that further introductions of highly pathogenic coronaviruses into the human population are not merely probable, but inevitable. The recent emergence of another coronavirus causing severe disease, Middle East respiratory syndrome (MERS), in humans, has made it clear that coronaviruses pose a major threat to human health, and that more research is urgently needed to elucidate their replication mechanisms, identify potential drug targets, and develop effective countermeasures. In this series, experts in many different aspects of coronavirus replication and disease will provide authoritative, up-to-date reviews of the following topics: - clinical management and infection control of SARS; - reservoir hosts of coronaviruses; - receptor recognition and cross-species transmission of SARS-CoV; - SARS-CoV evasion of innate immune responses; - structures and functions of individual coronaviral proteins; - anti-coronavirus drug discovery and development; and - the public health legacy of the SARS outbreak. Each article will be identified in the last line of its abstract as belonging to the series "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses." Copyright © 2013 Elsevier B.V. All rights reserved.

  2. MicroRNome analysis unravels the molecular basis of SARS infection in bronchoalveolar stem cells.

    Directory of Open Access Journals (Sweden)

    Bibekanand Mallick

    Full Text Available Severe acute respiratory syndrome (SARS, caused by the coronavirus SARS-CoV, is an acute infectious disease with significant mortality. A typical clinical feature associated with SARS is pulmonary fibrosis and associated lung failure. In the aftermath of the SARS epidemic, although significant progress towards understanding the underlying molecular mechanism of the infection has been made, a large gap still remains in our knowledge regarding how SARS-CoV interacts with the host cell at the onset of infection. The rapidly changing viral genome adds another variable to this equation. We have focused on a novel concept of microRNA (miRNA-mediated host-virus interactions in bronchoalveolar stem cells (BASCs at the onset of infection by correlating the "BASC-microRNome" with their targets within BASCs and viral genome. This work encompasses miRNA array data analysis, target prediction, and miRNA-mRNA enrichment analysis and develops a complex interaction map among disease-related factors, miRNAs, and BASCs in SARS pathway, which will provide some clues for diagnostic markers to view an overall interplay leading to disease progression. Our observation reveals the BASCs (Sca-1+ CD34+ CD45- Pecam-, a subset of Oct-4+ ACE2+ epithelial colony cells at the broncho-alveolar duct junction, to be the prime target cells of SARS-CoV infection. Upregulated BASC miRNAs-17*, -574-5p, and -214 are co-opted by SARS-CoV to suppress its own replication and evade immune elimination until successful transmission takes place. Viral Nucleocapsid and Spike protein targets seem to co-opt downregulated miR-223 and miR-98 respectively within BASCs to control the various stages of BASC differentiation, activation of inflammatory chemokines, and downregulation of ACE2. All these effectively accounts for a successful viral transmission and replication within BASCs causing continued deterioration of lung tissues and apparent loss of capacity for lung repair. Overall, this

  3. The 'SAR Matrix' method and its extensions for applications in medicinal chemistry and chemogenomics.

    Science.gov (United States)

    Gupta-Ostermann, Disha; Bajorath, Jürgen

    2014-01-01

    We describe the 'Structure-Activity Relationship (SAR) Matrix' (SARM) methodology that is based upon a special two-step application of the matched molecular pair (MMP) formalism. The SARM method has originally been designed for the extraction, organization, and visualization of compound series and associated SAR information from compound data sets. It has been further developed and adapted for other applications including compound design, activity prediction, library extension, and the navigation of multi-target activity spaces. The SARM approach and its extensions are presented here in context to introduce different types of applications and provide an example for the evolution of a computational methodology in pharmaceutical research.

  4. The ‘SAR Matrix’ method and its extensions for applications in medicinal chemistry and chemogenomics

    Science.gov (United States)

    Gupta-Ostermann, Disha; Bajorath, Jürgen

    2014-01-01

    We describe the ‘Structure-Activity Relationship (SAR) Matrix’ (SARM) methodology that is based upon a special two-step application of the matched molecular pair (MMP) formalism. The SARM method has originally been designed for the extraction, organization, and visualization of compound series and associated SAR information from compound data sets. It has been further developed and adapted for other applications including compound design, activity prediction, library extension, and the navigation of multi-target activity spaces. The SARM approach and its extensions are presented here in context to introduce different types of applications and provide an example for the evolution of a computational methodology in pharmaceutical research. PMID:25383183

  5. The development of advanced spread spectrum LFM waveforms for enhanced SAR and GMTI

    Science.gov (United States)

    Kirk, John C.; Darden, Scott; Majumder, Uttam K.; Minardi, Michael J.; Bell, Mark R.

    2016-05-01

    Advanced spread spectrum linear frequency modulated (LFM) waveforms are being developed for advanced capability synthetic aperture radar (SAR) and ground moving target indication (GMTI) applications. We have demonstrated by analysis and simulation the feasibility of these new type waveforms and are now in the process of implementing them in hardware. The basic approach is to combine a traditional LFM radar waveform with a direct sequence spread spectrum (DSSS) waveform, and then on receive to de-spread the return and capture the resultant LFM return for traditional matched filter processing and enhanced SAR and GMTI. We show the analysis, simulation and some preliminary hardware results.

  6. Automatic Fiscal Stabilizers

    Directory of Open Access Journals (Sweden)

    Narcis Eduard Mitu

    2013-11-01

    Full Text Available Policies or institutions (built into an economic system that automatically tend to dampen economic cycle fluctuations in income, employment, etc., without direct government intervention. For example, in boom times, progressive income tax automatically reduces money supply as incomes and spendings rise. Similarly, in recessionary times, payment of unemployment benefits injects more money in the system and stimulates demand. Also called automatic stabilizers or built-in stabilizers.

  7. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds.

    Science.gov (United States)

    Báez-Santos, Yahira M; St John, Sarah E; Mesecar, Andrew D

    2015-03-01

    Over 10 years have passed since the deadly human coronavirus that causes severe acute respiratory syndrome (SARS-CoV) emerged from the Guangdong Province of China. Despite the fact that the SARS-CoV pandemic infected over 8500 individuals, claimed over 800 lives and cost billions of dollars in economic loss worldwide, there still are no clinically approved antiviral drugs, vaccines or monoclonal antibody therapies to treat SARS-CoV infections. The recent emergence of the deadly human coronavirus that causes Middle East respiratory syndrome (MERS-CoV) is a sobering reminder that new and deadly coronaviruses can emerge at any time with the potential to become pandemics. Therefore, the continued development of therapeutic and prophylactic countermeasures to potentially deadly coronaviruses is warranted. The coronaviral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), are attractive antiviral drug targets because they are essential for coronaviral replication. Although the primary function of PLpro and 3CLpro are to process the viral polyprotein in a coordinated manner, PLpro has the additional function of stripping ubiquitin and ISG15 from host-cell proteins to aid coronaviruses in their evasion of the host innate immune responses. Therefore, targeting PLpro with antiviral drugs may have an advantage in not only inhibiting viral replication but also inhibiting the dysregulation of signaling cascades in infected cells that may lead to cell death in surrounding, uninfected cells. This review provides an up-to-date discussion on the SARS-CoV papain-like protease including a brief overview of the SARS-CoV genome and replication followed by a more in-depth discussion on the structure and catalytic mechanism of SARS-CoV PLpro, the multiple cellular functions of SARS-CoV PLpro, the inhibition of SARS-CoV PLpro by small molecule inhibitors, and the prospect of inhibiting papain-like protease from other coronaviruses. This paper forms part of a series of

  8. A Study on Classification of Polarimetric SAR Image by Target Decomposition and Support Vector Machines%基于目标分解与支持向量机的极化SAR图像分类研究

    Institute of Scientific and Technical Information of China (English)

    江勇; 张晓玲; 师君

    2008-01-01

    Abstract This paper presents a new method for unsupervised classification of terrain types using polarlmetrlc synthetic aperture radar data.This unsupervised classification combines the target decomposition theory and the support vector machines.The initial cluster centers are firsdy determined by target decomposition advanced by Cloude and Pottier.Then the pixels near to the cluster centers are selected to train the support vector machines using Wishart distribution.The classified results are then used tO define training sets for the next iteration if necessary.Finally,by the optimal separating hyperplanes and the kernel method this method obtains extraordinary classification results and neednot much iteration.And the effects of feature vectors consisted of several polarimetric parameters are discussed in detail.%为了有效地对极化SAR图像进行分类,基于目标分解和支持向量机,提出了一种极化SAR图像非监督分类法.该方法首先利用目标分解理论获得极化熵和平均散射角,并在熵-平均散射角平面对图像进行初分类,以确定类中心;然后利用Wishart分布定义的距离函数寻找训练样本,同时选择一定的极化参数组成特征矢量,并利用训练样本和特征矢量训练支持向量机;最后用训练好的分类器对极化SAR图像进行分类.通过对ESAR图像进行分类,比较了多种参数组合的分类结果,并与Wishart方法进行了比较,结果表明,该方法特征选择非常灵活,不仅结果类内离散度更小,且不需要太多的迭代次数.

  9. On the Design of Radar Corner Reflectors for Deformation Monitoring in Multi-Frequency InSAR

    Directory of Open Access Journals (Sweden)

    Matthew C. Garthwaite

    2017-06-01

    Full Text Available Trihedral corner reflectors are being increasingly used as point targets in deformation monitoring studies using interferometric synthetic aperture radar (InSAR techniques. The frequency and size dependence of the corner reflector Radar Cross Section (RCS means that no single design can perform equally in all the possible imaging modes and radar frequencies available on the currently orbiting Synthetic Aperture Radar (SAR satellites. Therefore, either a corner reflector design tailored to a specific data type or a compromise design for multiple data types is required. In this paper, I outline the practical and theoretical considerations that need to be made when designing appropriate radar targets, with a focus on supporting multi-frequency SAR data. These considerations are tested by performing field experiments on targets of different size using SAR images from TerraSAR-X, COSMO-SkyMed and RADARSAT-2. Phase noise behaviour in SAR images can be estimated by measuring the Signal-to-Clutter ratio (SCR in individual SAR images. The measured SCR of a point target is dependent on its RCS performance and the influence of clutter near to the deployed target. The SCR is used as a metric to estimate the expected InSAR displacement error incurred by the design of each target and to validate these observations against theoretical expectations. I find that triangular trihedral corner reflectors as small as 1 m in dimension can achieve a displacement error magnitude of a tenth of a millimetre or less in medium-resolution X-band data. Much larger corner reflectors (2.5 m or greater are required to achieve the same displacement error magnitude in medium-resolution C-band data. Compromise designs should aim to satisfy the requirements of the lowest SAR frequency to be used, providing that these targets will not saturate the sensor of the highest frequency to be used. Finally, accurate boresight alignment of the corner reflector can be critical to the overall

  10. Advanced Antenna for Digital Beamforming SAR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a wideband (500 MHz) L-band phased-array antenna for airborne Synthetic Aperture Radar (SAR) applications based on a novel approach that will make possible...

  11. Introduction to Synthetic Aperture Radar (SAR)

    Science.gov (United States)

    2006-09-01

    18 m L RADARSAT 1995 10 m × 9 m C ENVISAT 2002 25 m × 25 m C TerraSAR-X 2006 < 1 m × 1 m X Radarsat II 2005 3 m × 3 m C SAR-Lupe 2005 < 1 m...1 m X IGS-2b 2008 30 cm × 30 cm X Airborne SAR DOSAR 1989 < 1 m × 1 m S,C,X,Ka CARABAS- II 1997 3 m × 3 m VHF PAMIR 2003 10 cm × 10 cm X...Lynx 1999 10 cm × 10 cm Ku MISAR 2003 0.5 m × 0.5 m Ka RAMSES 1994 10 cm × 10 cm P,L,S,C,X,Ku,Ka,W MEMPHIS 1997 20 cm × 20 cm Ka,W E-SAR 1994 1.5

  12. Ionosphere correction algorithm for spaceborne SAR imaging

    Institute of Scientific and Technical Information of China (English)

    Lin Yang; Mengdao Xing; Guangcai Sun

    2016-01-01

    For spaceborne synthetic aperture radar (SAR) ima-ging, the dispersive ionosphere has significant effects on the pro-pagation of the low frequency (especial y P-band) radar signal. The ionospheric effects can be a significant source of the phase error in the radar signal, which causes a degeneration of the image quality in spaceborne SAR imaging system. The background ionospheric effects on spaceborne SAR through modeling and simulation are analyzed, and the qualitative and quantitative analysis based on the spatio-temporal variability of the ionosphere is given. A novel ionosphere correction algorithm (ICA) is proposed to deal with the ionospheric effects on the low frequency spaceborne SAR radar signal. With the proposed algorithm, the degradation of the image quality caused by the ionosphere is corrected. The simulation re-sults show the effectiveness of the proposed algorithm.

  13. Polarimetric SAR Interferometry Evaluation in Mangroves

    Science.gov (United States)

    Lee, Seung-Kuk; Fatoyinbo,Temilola; Osmanoglu, Batuhan; Sun, Guoqing

    2014-01-01

    TanDEM-X (TDX) enables to generate an interferometric coherence without temporal decorrelation effect that is the most critical factor for a successful Pol-InSAR inversion, as have recently been used for forest parameter retrieval. This paper presents mangrove forest height estimation only using single-pass/single-baseline/dual-polarization TDX data by means of new dual-Pol-InSAR inversion technique. To overcome a lack of one polarization in a conventional Pol- InSAR inversion (i.e. an underdetermined problem), the ground phase in the Pol-InSAR model is directly estimated from TDX interferograms assuming flat underlying topography in mangrove forest. The inversion result is validated against lidar measurement data (NASA's G-LiHT data).

  14. Progress in Circular SAR Imaging Technique

    Directory of Open Access Journals (Sweden)

    Hong Wen

    2012-06-01

    Full Text Available Circular SAR (CSAR is a newly developed all-directional high resolution 3D imaging mode in recent years, to satisfy the demand of finer observation. The National Key Laboratory of Science and Technology on Microwave Imaging, Institute of Electronics, Chinese Academy of Sciences (MITL, IECAS, had the first test flight experiment in Aug. 2011 with a P-band full polarization SAR system, and successfully obtained the all-directional high resolution circular SAR image. The initial results show that CSAR technique has the encouraging potential capability in the fields of high precision mapping, disaster evaluation, resource management and the other related applications. This paper firstly makes a detailed discussion on the progress of circular SAR imaging technique, which emphases on the several airborne experiments performed these years to show CSAR’s attractive features, then studies and illustrates the key techniques, and finally discusses the development trends.

  15. Cross-calibration of interferometric SAR data

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2003-01-01

    Generation of digital elevation models from interferometric synthetic aperture radar (SAR) data is a well established technique. Achieving a high geometric fidelity calls for a calibration accounting for inaccurate navigation data and system parameters as well as system imperfections. Fully...

  16. Optimal Approach to SAR Image Despeckling

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Speckle filtering of synthetic aperture radar (SAR) images while preserving the spatial signal variability (texture and fine structures) still remains a challenge. Many algorithms have been proposed for the SAR imagery despeckling. However,simulated annealing (SA) method is one of excellent choices currently. A critical problem in the study on SA is to provide appropriate cooling schedules that ensure fast convergence to near-optimal solutions. This paper gives a new necessary and sufficient condition for the cooling schedule so that the algorithm state converges in all probability to the set of globally minimum cost states.Moreover, it constructs an appropriate objective function for SAR image despeckling. An experimental result of the actual SAR image processing is obtained.

  17. Satellite sar detection of hurricane helene (2006)

    DEFF Research Database (Denmark)

    Ju, Lian; Cheng, Yongcun; Xu, Qing

    2013-01-01

    In this paper, the wind structure of hurricane Helene (2006) over the Atlantic Ocean is investigated from a C-band RADARSAT-1 synthetic aperture radar (SAR) image acquired on 20 September 2006. First, the characteristics, e.g., the center, scale and area of the hurricane eye (HE) are determined....... There is a good agreement between the SAR-estimated HE center location and the best track data from the National Hurricane Center. The wind speeds at 10 m above the ocean surface are also retrieved from the SAR data using the geophysical model function (GMF), CMOD5, and compared with in situ wind speed...... observations from the stepped frequency microwave radiometer (SFMR) on NOAA P3 aircraft. All the results show the capability of hurricane monitoring by satellite SAR. Copyright © 2013 by the International Society of Offshore and Polar Engineers (ISOPE)....

  18. Effect of polarization orientation angle shift on X-band TDM SAR COSSC product of TerraSAR-X and TanDEM-X

    Science.gov (United States)

    Gupta, Asmita; Kumar, Shashi; Pandey, Uttara

    2016-05-01

    Polarization orientation angle (POA) shift in the backscattered SAR wave induced, due to irregularity of the target surface. Polarimetric signatures of the backscatter SAR wave gets affected by the POA shift, causes error in the decomposition modelling as shift in POA makes coherency matrix asymmetric. POA shift compensation is very necessary to avoid misinterpretation of decomposition modelling results. POA shift effect has been observed using coherency matrix and decomposition model results. This study is conducted over Dudhwa National Park in the state of Uttar Pradesh, using high resolution, TDM SAR COSSC Product of TerraSAR-X and TanDEM-X in Bistatic mode. Present study mainly focused on the comparative analysis of resultant scattering component of decomposition model before and after POA shift compensation. Shift in POA is investigated using circular polarization technique. Yamaguchi four component decomposition model is used to express total backscatter information in terms of volume, double bounce, surface and helix scattering. Volume scattering is overestimated however double bounce and surface scattering is under estimated in decomposition model due to POA shift present in the backscatter SAR wave. Different scattering mechanisms resulted after POA compensation were analyzed using 100 random points taken from forest structure. The results obtained by TerraSAR-X and TanDEM-X shows an overall increase in double bounce scattering and decrease in volume scattering component after POA shift compensation. It is observed that there is negligible effect of POA shift on surface scattering. POA shift compensation necessarily required to improve the accuracy of decomposition models used in the forest parameter retrieval applications.

  19. Automatic differentiation bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, G.F. (comp.)

    1992-07-01

    This is a bibliography of work related to automatic differentiation. Automatic differentiation is a technique for the fast, accurate propagation of derivative values using the chain rule. It is neither symbolic nor numeric. Automatic differentiation is a fundamental tool for scientific computation, with applications in optimization, nonlinear equations, nonlinear least squares approximation, stiff ordinary differential equation, partial differential equations, continuation methods, and sensitivity analysis. This report is an updated version of the bibliography which originally appeared in Automatic Differentiation of Algorithms: Theory, Implementation, and Application.

  20. 面向纸质胸环靶的自动识别报靶系统研究%Automatic Recognization Target-reading System for Chest Silhouette of Paper

    Institute of Scientific and Technical Information of China (English)

    刘瑞香; 刘天时; 王洪伟

    2015-01-01

    为了克服在靶场射击训练中人工报靶消耗大量的人力和时间的同时还存在诸多隐患,如误报和谎报等,本文设计了一套硬件配置相对简单、性能稳定可靠、判靶精准快速的面向纸质胸环靶的自动识别报靶系统。该系统结合嵌入式技术、图像处理技术、有线以及无线网络传输技术,实现快速检测靶面信息以及弹孔坐标。在图像处理的基础上,对图像使用区域特征消除法对干扰背景进行了消除,同时采用灰度双向肖波投影确定靶心位置,提取出靶面图像的所有有效特征信息。通过嵌入式终端、wifi通信以及网络传输等完成了整个系统的搭建。本系统具有高效、快速和判靶精准等特点。%This paper proposes an automatic recognition target-scoring system for chest bitmap with simple hardware requirement, stable and reliable performance, precise and fast scoring in order to overcome the problems that the artificial counting consumes a lot of manpower, time and also there are many dangers in shooting training, such as the misinformation and the misrepresentation. Combining with the embedded technology, image processing technology, wired and wireless network transmission technology, the system implements the detecting of target surface information rapidly and the coordinates of bullet holes. The regional feature re⁃moving method is employed to eliminate background interference, and the grey two-direction clipping projection is also taken to de⁃termine bull's eye position based on the original picture processing. Finally, all characteristic information of the image is extracted effectively. The system is built through the embedded terminal, WiFi communication and network transmission. It has the charac⁃teristics of efficient, fast and good scoring precision.

  1. A 3D model of SARS_CoV 3CL proteinase and its inhibitors design by virtual screening

    Institute of Scientific and Technical Information of China (English)

    LUOCheng; CHENJing; LUOHai-Bin; CHENLi-Li; LIGuo-Wei; SUNTao; YUChang-Ying; YUELi-Duo; SHENJian-Hua; JIANGHua-Liang; XIONGBin; GUIChun-Shan; XUXiao-Ying; DUANWen-Hu; SHENJing-Kang; QINLei; SHITi-Liu; LIYi-Xue; CHENKai-Xian; LUOXiao-Min; SHENXu

    2003-01-01

    AIM:To constructed a three-dimensional (3D) model for the 3C like (3CL) proteinase of SARS coronavirus (SARS_CoV), and to design inhibitors of the 3CL proteinase based on the 3D model. METHODS: Bioinformatics analyses were performed to search the homologous proteins of the SARS_CoV 3CL proteinase from the GenBank and PDB database. A 3D model of the proteinase was constructed by using homology modeling technique. Targeting to the 3D model and its X-ray crystal structure of the main proteinase (Mpro) of transmissible gastroenteritis virus(TGEV), virtual screening was performed employing molecular docking method to identify possible 3CL proteinase inhibitors from small molecular databases. RESULTS:Sequence alignment indicated that the SARS_CoV 3CL proteinase was extremely homologous to TGEV Mpro, especially the substrate-binding pocket (active site). Accordingly, a 3D model for the SARS_CoV 3CL proteinase was constructed based on the crystal structure of TGEV Mpro. The 3D model adopts a similar fold of the TGEV mpro, its structure and binding pocket feature are almost as same as that of TGEV Mpro. The tested virtual screening indicated that 73 available proteinase inhibitors in the MDDR database might dock into both the binding pockets of the TGEV Mpro and the SARS_CoV 3CL proteinase. CONCLUSIONS:Either the 3D model of the SARS_CoV 3CL proteinase or the X-ray crystal stucture of the TGEV Mpro may be used as a starting point for design anti-SARS drugs. Screening the known proteinase inhibitors may be an appreciated shortcut to discover anti-SARS drugs.

  2. On Bistatic Forward-looking SAR Imaging

    OpenAIRE

    Vu, Viet Thuy; Pettersson, Mats

    2014-01-01

    Left/right ambiguity and low angular (azimuth) resolution are severe problems for monostatic forward-looking SAR imaging. It is strongly believed that these technical issues can definitely be solved with bistatic forward-looking SAR. The analysis presented in this paper points out that the left/right ambiguity problem still exits. However, an appropriate selection of the position of bistatic base line and antenna beamwidth allows us to conceal it. The paper also gives some recommendations whi...

  3. Modelling strategies for controlling SARS outbreaks.

    Science.gov (United States)

    Gumel, Abba B.; Ruan, Shigui; Day, Troy; Watmough, James; Brauer, Fred; van den Driessche, P.; Gabrielson, Dave; Bowman, Chris; Alexander, Murray E.; Ardal, Sten; Wu, Jianhong; Sahai, Beni M.

    2004-01-01

    Severe acute respiratory syndrome (SARS), a new, highly contagious, viral disease, emerged in China late in 2002 and quickly spread to 32 countries and regions causing in excess of 774 deaths and 8098 infections worldwide. In the absence of a rapid diagnostic test, therapy or vaccine, isolation of individuals diagnosed with SARS and quarantine of individuals feared exposed to SARS virus were used to control the spread of infection. We examine mathematically the impact of isolation and quarantine on the control of SARS during the outbreaks in Toronto, Hong Kong, Singapore and Beijing using a deterministic model that closely mimics the data for cumulative infected cases and SARS-related deaths in the first three regions but not in Beijing until mid-April, when China started to report data more accurately. The results reveal that achieving a reduction in the contact rate between susceptible and diseased individuals by isolating the latter is a critically important strategy that can control SARS outbreaks with or without quarantine. An optimal isolation programme entails timely implementation under stringent hygienic precautions defined by a critical threshold value. Values below this threshold lead to control, but those above are associated with the incidence of new community outbreaks or nosocomial infections, a known cause for the spread of SARS in each region. Allocation of resources to implement optimal isolation is more effective than to implement sub-optimal isolation and quarantine together. A community-wide eradication of SARS is feasible if optimal isolation is combined with a highly effective screening programme at the points of entry. PMID:15539347

  4. Tracking lava flow emplacement on the east rift zone of Kilauea, Hawai’i with synthetic aperture radar (SAR) coherence

    Science.gov (United States)

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-01-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  5. Using a LIDAR Vegetation Model to Predict UHF SAR Attenuation in Coniferous Forests.

    Science.gov (United States)

    Swanson, Alan; Huang, Shengli; Crabtree, Robert

    2009-01-01

    Attenuation of radar signals by vegetation can be a problem for target detection and GPS reception, and is an important parameter in models describing vegetation backscatter. Here we first present a model describing the 3D distribution of stem and foliage structure based on small footprint scanning LIDAR data. Secondly we present a model that uses ray-tracing methodology to record detailed interactions between simulated radar beams and vegetation components. These interactions are combined over the SAR aperture and used to predict two-way attenuation of the SAR signal. Accuracy of the model is demonstrated using UHF SAR observations of large trihedral corner reflectors in coniferous forest stands. Our study showed that the model explains between 66% and 81% of the variability in observed attenuation.

  6. Efficient Simulation for Fixed-Receiver Bistatic SAR with Time and Frequency Synchronization Errors

    Directory of Open Access Journals (Sweden)

    Feifei Yan

    2015-12-01

    Full Text Available Time and frequency synchronization is the key technique of bistatic synthetic aperture radar (BiSAR system, and raw data simulation is an effective tool for verifying the time and frequency synchronization techniques. According to the two-dimensional (2-D frequency spectrum of fixed-receiver BiSAR with time and frequency synchronization errors, a rapid raw data simulation method is proposed in this paper. Through 2-D inverse Stolt transform in 2-D frequency domain and phase compensation in Range-Doppler frequency domain, this method can realize two-dimensional spatial variation simulation for fixed-receiver BiSAR with time and frequency synchronization errors in a reasonable time consumption. Then the simulation efficiency of scene raw data can be significantly improved. Simulation results of point targets and extended scene are presented to validate the feasibility and efficiency of the proposed simulation method.

  7. Semi-supervised Learning for Classification of Polarimetric SAR Images Based on SVM-Wishart

    Directory of Open Access Journals (Sweden)

    Hua Wen-qiang

    2015-02-01

    Full Text Available In this study, we propose a new semi-supervised classification method for Polarimetric SAR (PolSAR images, aiming at handling the issue that the number of train set is small. First, considering the scattering characters of PolSAR data, this method extracts multiple scattering features using target decomposition approach. Then, a semi-supervised learning model is established based on a co-training framework and Support Vector Machine (SVM. Both labeled and unlabeled data are utilized in this model to obtain high classification accuracy. Third, a recovery scheme based on the Wishart classifier is proposed to improve the classification performance. From the experiments conducted in this study, it is evident that the proposed method performs more effectively compared with other traditional methods when the number of train set is small.

  8. APES-based procedure for super-resolution SAR imagery with GPU parallel computing

    Science.gov (United States)

    Jia, Weiwei; Xu, Xiaojian; Xu, Guangyao

    2015-10-01

    The amplitude and phase estimation (APES) algorithm is widely used in modern spectral analysis. Compared with conventional Fourier transform (FFT), APES results in lower sidelobes and narrower spectral peaks. However, in synthetic aperture radar (SAR) imaging with large scene, without parallel computation, it is difficult to apply APES directly to super-resolution radar image processing due to its great amount of calculation. In this paper, a procedure is proposed to achieve target extraction and parallel computing of APES for super-resolution SAR imaging. Numerical experimental are carried out on Tesla K40C with 745 MHz GPU clock rate and 2880 CUDA cores. Results of SAR image with GPU parallel computing show that the parallel APES is remarkably more efficient than that of CPU-based with the same super-resolution.

  9. Indoor Operations by FMCW Millimeter Wave SAR Onboard Small UAS: A Simulation Approach

    Directory of Open Access Journals (Sweden)

    Antonio Fulvio Scannapieco

    2016-01-01

    Full Text Available A dedicated system simulator is presented in this paper for indoor operations onboard small Unmanned Aerial Systems (UAS by a novel millimeter wave radar sensor. The sensor relies on the principle of Synthetic Aperture Radar (SAR applied to a Frequency Modulated Continuous Wave (FMCW radar system. Input to the simulator are both design parameters for Synthetic Aperture Radar (SAR, which should be able to cope with the stringent requirements set by indoor operations, and information about platform navigation and observed scene. The scene generation task is described in detail. This is based on models for point target response on either a completely absorbing background or fluctuating background and ray tracing (RT techniques. Results obtained from scene processing are finally discussed, giving further insights on expected results from high-resolution observation of an assigned control volume by this novel SAR sensor.

  10. Classification of agricultural fields using time series of dual polarimetry TerraSAR-X images

    Directory of Open Access Journals (Sweden)

    S. Mirzaee

    2014-10-01

    Full Text Available Due to its special imaging characteristics, Synthetic Aperture Radar (SAR has become an important source of information for a variety of remote sensing applications dealing with environmental changes. SAR images contain information about both phase and intensity in different polarization modes, making them sensitive to geometrical structure and physical properties of the targets such as dielectric and plant water content. In this study we investigate multi temporal changes occurring to different crop types due to phenological changes using high-resolution TerraSAR-X imagers. The dataset includes 17 dual-polarimetry TSX data acquired from June 2012 to August 2013 in Lorestan province, Iran. Several features are extracted from polarized data and classified using support vector machine (SVM classifier. Training samples and different features employed in classification are also assessed in the study. Results show a satisfactory accuracy for classification which is about 0.91 in kappa coefficient.

  11. SARS: Key factors in crisis management.

    Science.gov (United States)

    Tseng, Hsin-Chao; Chen, Thai-Form; Chou, Shieu-Ming

    2005-03-01

    This study was conducted at a single hospital selected in Taipei during the SARS (Severe Acute Respiratory Syndrome) outbreak from March to July, 2003 in Taiwan. During this period of time, 104 SARS patients were admitted to the hospital. There were no negative reports related to the selected hospital despite its being located right in the center of an area struck by the epidemic. The purpose of this study was to identify the key factors enabling the hospital to survive SARS unscathed. Data were collected from in-depth interviews with the nursing directors and nursing managers of the SARS units, along with a review of relevant hospital documents. The five key elements identified as survival factors during this SARS crisis are as follows: 1. good control of timing for crisis management, 2. careful decision-making, 3. thorough implementation, 4. effective communication, and 5. trust between management and employees. The results of this study reconfirmed the selected hospital as a model for good crisis management during the SARS epidemic.

  12. The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Jason E.; Mitchell, Hugh D.; Gralinski, Lisa E.; Eisfeld, Amie J.; Josset, Laurence; Bankhead, Armand; Neumann, Gabriele; Tilton, Susan C.; Schäfer, Alexandra; Li, Chengjun; Fan, Shufang; McWeeney, Shannon; Baric, Ralph S.; Katze, Michael G.; Waters, Katrina M.

    2016-09-23

    The complex interplay between viral replication and host immune response during infection remains poorly understood. While many viruses are known to employ antiimmune strategies to facilitate their replication, highly pathogenic virus infections can also cause an excessive immune response that exacerbates, rather than reduces pathogenicity. To investigate this dichotomy in severe acute respiratory syndrome coronavirus (SARS-CoV), we developed a transcriptional network model of SARS-CoV infection in mice and used the model to prioritize candidate regulatory targets for further investigation. We validated our predictions in 18 different knockout (KO) mouse strains, showing that network topology provides significant predictive power to identify genes that are important for viral infection. We identified a novel player in the immune response to virus infection, Kepi, an inhibitory subunit of the protein phosphatase 1 (PP1) complex, which protects against SARS-CoV pathogenesis. We also found that receptors for the proinflammatory cytokine, tumor necrosis factor alpha (TNFα), promote pathogenesis through a parallel feed-forward circuit that promotes inflammation. These results are consistent with previous studies showing the role of over-stimulation of the inflammatory response to SARS-CoV in pathogenesis. We conclude that the critical balance between immune response and inflammation can be manipulated to improve the outcome of the infection. Further, our study provides two potential therapeutic strategies for mitigating the effects of SARS-CoV infection, and may provide insight into treatment strategies for Middle East Respiratory Syndrome Coronavirus (MERS-CoV).

  13. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV.

    Science.gov (United States)

    Park, Ji-Young; Ko, Jin-A; Kim, Dae Wook; Kim, Young Min; Kwon, Hyung-Jun; Jeong, Hyung Jae; Kim, Cha Young; Park, Ki Hun; Lee, Woo Song; Ryu, Young Bae

    2016-01-01

    Two viral proteases of severe acute respiratory syndrome coronavirus (SARS-CoV), a chymotrypsin-like protease (3CL(pro)) and a papain-like protease (PL(pro)) are attractive targets for the development of anti-SARS drugs. In this study, nine alkylated chalcones (1-9) and four coumarins (10-13) were isolated from Angelica keiskei, and the inhibitory activities of these constituents against SARS-CoV proteases (3CL(pro) and PL(pro)) were determined (cell-free/based). Of the isolated alkylated chalcones, chalcone 6, containing the perhydroxyl group, exhibited the most potent 3CL(pro) and PL(pro) inhibitory activity with IC50 values of 11.4 and 1.2 µM. Our detailed protein-inhibitor mechanistic analysis of these species indicated that the chalcones exhibited competitive inhibition characteristics to the SARS-CoV 3CL(pro), whereas noncompetitive inhibition was observed with the SARS-CoV PL(pro).

  14. A NUFFT Based Step-frequency Chirp Signal High Resolution Imaging Algorithm and Target Recognition Algorithm

    Directory of Open Access Journals (Sweden)

    Xiang Yin

    2015-12-01

    Full Text Available Radar Automatic Target Recognition (RATR is the key technique to be breaked through in the fuure development of intelligent weapon system. Compared to the 2-D SAR image target recognition, High Resolution Range Profile (HRRP target recognition has the advantage of low data dimension, low requirement of radar system's calculation and storage ability, and the imaging algorithm is also not complicated. HRRP imaging is the first and the key process in target recognition, its speed and imaging quality can directly influence the real-time capability and accuracy of target recognition. In this paper a new HRRP imaging algorithm — NUFFT algorithm is proposed, the derivation of mathematical expression is given, both for the echo simulation process and the imaging process. In the meantime, by analyzing each step's calculation complexity, we compared the calculation complexity of four different imaging algorithms, we also simulate two target's imaging and target recognition processing. Theoretical analysis and simulation both prove that the proposed algorithm's calculation complexity is improved in various degree compared with the others, thus can be effectively used in target recognition.

  15. IMAGING AND MTI PROCESSING BASED ON DUAL-FREQUENCIES DUAL-APERTURES SPACEBORNE SAR

    Institute of Scientific and Technical Information of China (English)

    Yin Jianfeng; Li Daojing; Wu Yirong

    2009-01-01

    Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper. SAR imaging and Moving Target Indication (MTI) are studied in this system. High resolution imaging with wide swath is implemented by the Mode I, and MTI is completed by the Mode II. High azimuth resolution is achieved by the Displaced Phase Center (DPC) multibeam technique. And the Coherent Accumulation (CA) method, which combines dual channels data of different carrier frequency, is used to enhance the range resolution. For the data of different carrier frequency, the two aperture interferometric processing is executed to implement clutter cancellation, respectively. And the couple of clutter suppressed data are employed to implement Dual Carrier Frequency Conjugate Processing (DCFCP), then both slow and fast moving targets detection can be completed, followed by moving target imaging. The simulation results show the validity of the signal processing method of this new SAR system.

  16. Contextual descriptors and neural networks for scene analysis in VHR SAR images

    Science.gov (United States)

    Del Frate, Fabio; Picchiani, Matteo; Falasco, Alessia; Schiavon, Giovanni

    2016-10-01

    The development of SAR technology during the last decade has made it possible to collect a huge amount of data over many regions of the world. In particular, the availability of SAR images from different sensors, with metric or sub-metric spatial resolution, offers novel opportunities in different fields as land cover, urban monitoring, soil consumption etc. On the other hand, automatic approaches become crucial for the exploitation of such a huge amount of information. In such a scenario, especially if single polarization images are considered, the main issue is to select appropriate contextual descriptors, since the backscattering coefficient of a single pixel may not be sufficient to classify an object on the scene. In this paper a comparison among three different approaches for contextual features definition is presented so as to design optimum procedures for VHR SAR scene understanding. The first approach is based on Gray Level Co- Occurrence Matrix since it is widely accepted and several studies have used it for land cover classification with SAR data. The second approach is based on the Fourier spectra and it has been already proposed with positive results for this kind of problems, the third one is based on Auto-associative Neural Networks which have been already proven effective for features extraction from polarimetric SAR images. The three methods are evaluated in terms of the accuracy of the classified scene when the features extracted using each method are considered as input to a neural network classificator and applied on different Cosmo-SkyMed spotlight products.

  17. Detecting sparse earthquake damages in high density urban settlements by VHR SAR data

    Science.gov (United States)

    Anniballe, R.; Bignami, C.; Chini, M.; Pierdicca, N.; Stramondo, S.

    2014-10-01

    Nowadays, space-borne Synthetic Aperture Radar (SAR) sensors, can achieve spatial resolutions in the order of 1 m. However, the exploitation of SAR at very high resolution (VHR) for detecting sparse and isolated damages in urban areas, caused by earthquakes, is still a challenging task. Within urban settlements, the scattering mechanisms are extremely complex and simple change detection analyses or classification procedures can hardly be performed. In this work the 2009, L'Aquila (Italy), earthquake has been considered as case study. Despite about 300 people were killed by the earthquake, few buildings were completely collapsed, and many others were heavily/partially damaged, resulting in a quite sparse damage distribution. We have visually analyzed pairs of VHR SAR data acquired by COSMO-SkyMed satellites, in SPOTLIGHT mode, before and after the earthquake. Such analyses were performed to understand the SAR response of damaged structures surrounded by unaffected buildings, with the aim to identify possible strategies to map the damaged buildings by using an automatic classification procedure. The preliminary analyses based on RGB images, generated by combining pre- and post-event backscattering images, allowed us to figure out how the completely collapsed and the partially damaged buildings are characterized in the SAR response. These outcomes have been taken into account to set up a decision tree algorithm (DTA). Decision rules and related thresholds were identified by statistically analyzing the values of backscattering and derived features. This study point out that many pieces of information and discrimination rules must be exploited to obtain reliable results when dealing with non-extensive and sparse damage within a dense urban settlement.

  18. Anti-SARS virus antibody responses against human SARS-associated coronavirus and animal SARS-associated coronavirus-like virus

    Institute of Scientific and Technical Information of China (English)

    王鸣; 徐慧芳; 莫自耀; 郑伯健; 高阳; 顾菁; 秦鹏哲; 张周斌; 邹晓忠; 梁彩云; 赵宇腾; 高凯

    2004-01-01

    @@ Severe acute respiratory syndrome (SARS) is an infectious disease first recognized in November 2002 in Guangdong province, China. It was spread to many countries all over the world within a few months.1,2 By April 2003, SARS-associated coronavirus (SARS-CoV) was found to be the etiological agent.

  19. A novel method for multi-angle SAR image matching

    Institute of Scientific and Technical Information of China (English)

    Li Dapeng

    2015-01-01

    Multi-angle synthetic aperture radar (SAR) image matching is very challenging, because the same object may cause different backscattering patterns, heavily depending on the radar incident angle. A technique based on the relations between the invariant positions of ground targets among the reference and sensed images is proposed to accommodate the nonmatching patterns. It involves a target extraction using wavelet coefficient fusion, as well as a geometric voting matching routine for searching the matched control points (CPs) in the reference and sensed images, respec-tively. To accelerate the speed of the search, a robust, rapidly corresponding CPs determination strategy is exploited by utilizing the global spatial transformation model, as well as a procedure of outlier removal to ensure the desired accuracy. Meanwhile, the positions of the matched point pairs are relocated using mutual information. The final warping of the images according to the CPs is performed by using a polynomial function. The results show the possibility of matching multi-angle SAR images in general cases.

  20. Recognizing articulated objects and object articulation in SAR images

    Science.gov (United States)

    Bhanu, Bir; Jones, Grinnell, III; Ahn, Joon S.

    1998-09-01

    The focus of this paper is recognizing articulated objects and the pose of the articulated parts in SAR images. Using SAR scattering center locations as features, the invariance with articulation (i.e. turret rotation for the T72, T80 and M1a tanks, missile erect vs. down for the SCUD launcher) is shown as a function of object azimuth. Similar data is shown for configuration differences in the MSTAR (Public) Targets. The UCR model-based recognition engine (which uses non- articulated models to recognize articulated, occluded and non-standard configuration objects) is described and target identification performance results are given as confusion matrices and ROC curves for six inch and one foot resolution XPATCH images and the one foot resolution MSTAR data. Separate body and turret models are developed that are independent of the relative positions between the body and the turret. These models are used with a subsequent matching technique to refine the pose of the body and determine the pose of the turret. An expression of the probability that a random match will occur is derived and this function is used to set thresholds to minimize the probability of a random match for the recognition system. Results for identification, body pose and turret pose are presented as a function of percent occlusion for articulated XPATCH data and results are given for identification and body pose for articulated MSTAR data.

  1. Mediation and Automatization.

    Science.gov (United States)

    Hutchins, Edwin

    This paper discusses the relationship between the mediation of task performance by some structure that is not inherent in the task domain itself and the phenomenon of automatization, in which skilled performance becomes effortless or phenomenologically "automatic" after extensive practice. The use of a common simple explicit mediating…

  2. Automatic Differentiation Package

    Energy Technology Data Exchange (ETDEWEB)

    2007-03-01

    Sacado is an automatic differentiation package for C++ codes using operator overloading and C++ templating. Sacado provide forward, reverse, and Taylor polynomial automatic differentiation classes and utilities for incorporating these classes into C++ codes. Users can compute derivatives of computations arising in engineering and scientific applications, including nonlinear equation solving, time integration, sensitivity analysis, stability analysis, optimization and uncertainity quantification.

  3. Digital automatic gain control

    Science.gov (United States)

    Uzdy, Z.

    1980-01-01

    Performance analysis, used to evaluated fitness of several circuits to digital automatic gain control (AGC), indicates that digital integrator employing coherent amplitude detector (CAD) is best device suited for application. Circuit reduces gain error to half that of conventional analog AGC while making it possible to automatically modify response of receiver to match incoming signal conditions.

  4. Focusing Automatic Code Inspections

    NARCIS (Netherlands)

    Boogerd, C.J.

    2010-01-01

    Automatic Code Inspection tools help developers in early detection of defects in software. A well-known drawback of many automatic inspection approaches is that they yield too many warnings and require a clearer focus. In this thesis, we provide such focus by proposing two methods to prioritize

  5. Straight Line Extraction by Heuristic Search for SAR Image%SAR 图像启发式搜索直线提取

    Institute of Scientific and Technical Information of China (English)

    曾阳帆; 刘伟; 陈建宏; 赵拥军

    2015-01-01

    Straight line feature is the basis of linear target recognition.The existing heuristic search algorithms are suit-able for straight line feature extraction in optical image while performing poor in SAR image.For this problem,a straight line extraction method for SAR image based on heuristic search is presented.Firstly,SAR image is filtered by Frost filter. Then,edges are detected by ratio of exponential weighted average (ROEWA)operator and non-maxima suppression location algorithm is adopted to obtain the binary edge map.Finally,considering the local information sufficiently,the strategy of search twice and the principle of “go straight”is utilized and the cost function and rules of heuristic search are designed. Then the straight line extraction is completed.The experiment results show good anti-noise performance and fracture resist-ance of the proposed method which can effectively describe the straight line feature of SAR images.%直线特征是识别线状目标的基础,现有启发式搜索算法仅适用于光学图像的直线特征提取,对 SAR 图像效果并不理想。针对该问题,提出一种 SAR 图像直线特征提取的启发式搜索算法。首先对 SAR 图像进行 Frost滤波,然后利用指数加权均值比(ROEWA)算子进行边缘检测,再利用非极值抑制得到边缘二值图,最后采用二次搜索策略及“直线走原则”,充分考虑局部信息,设计启发式搜索的代价函数及搜索规则,实现直线特征提取。实验结果表明,该方法具有较好的抗噪性和抗断裂能力,能够有效地提取出 SAR 图像中的直线特征。

  6. SAR-PC: Edge Detection in SAR Images via an Advanced Phase Congruency Model

    Directory of Open Access Journals (Sweden)

    Yuming Xiang

    2017-02-01

    Full Text Available Edge detection in Synthetic Aperture Radar (SAR images has been a challenging task due to the speckle noise. Ratio-based edge detectors are robust operators for SAR images that provide constant false alarm rates, but they are only optimal for step edges. Edge detectors developed by the phase congruency model provide the identification of different types of edge features, but they suffer from speckle noise. By combining the advantages of the two edge detectors, we propose a SAR phase congruency detector (SAR-PC. Firstly, an improved local energy model for SAR images is obtained by replacing the convolution of raw image and the quadrature filters by the ratio responses. Secondly, a new noise level is estimated for the multiplicative noise. Substituting the SAR local energy and the new noise level into the phase congruency model, SAR-PC is derived. Edge response corresponds to the max moment of SAR-PC. We compare the proposed detector with the ratio-based edge detectors and the phase congruency edge detectors. Receiver Operating Characteristic (ROC curves and visual effects are used to evaluate the performance. Experimental results of simulated images and real-world images show that the proposed edge detector is robust to speckle noise and it provides a consecutive edge response.

  7. Online Health Education on SARS to University Students during the SARS Outbreak

    Science.gov (United States)

    Wong, Mee Lian; Koh, David; Iyer, Prasad; Seow, Adeline; Goh, Lee Gan; Chia, Sin Eng; Lim, Meng Kin; Ng, Daniel; Ong, Choon Nam; Phua, Kai Hong; Tambyah, Paul; Chow, Vincent T K; Chew, Suok Kai; Chandran, Ravi; Lee, Hin Peng

    2005-01-01

    Little is known about how online learning may be used to disseminate health information rapidly and widely to large university populations if there is an infectious disease outbreak. During the SARS outbreak in Singapore in 2003, a six-lesson elearning module on SARS was developed for a large university population of 32,000 students. The module…

  8. Annual review in automatic programming

    CERN Document Server

    Goodman, Richard

    2014-01-01

    Annual Review in Automatic Programming, Volume 2 is a collection of papers that discusses the controversy about the suitability of COBOL as a common business oriented language, and the development of different common languages for scientific computation. A couple of papers describes the use of the Genie system in numerical calculation and analyzes Mercury autocode in terms of a phrase structure language, such as in the source language, target language, the order structure of ATLAS, and the meta-syntactical language of the assembly program. Other papers explain interference or an ""intermediate

  9. Automated two- and three-dimensional, fine-resolution radar imaging of rigid targets with arbitrary unknown motion

    Science.gov (United States)

    Stuff, Mark A.; Sullivan, Richard C., Jr.; Thelen, Brian J.; Werness, Susan A.

    1994-06-01

    An automated system for the SAR/ISAR imaging of rigid bodies which are undergoing arbitrarily complicated unknown motions is being developed. This system determines, from only the radar data, all observable parameters of motion, on a pulse by pulse basis. The approach makes it possible to: (1) exploit any type of relative motion: translational, rotational, two dimensional, three dimensional, deterministic, or stochastic; no prior parametric assumptions on the functional form of the motion are required; (2) require only the radar data; no ancillary motion measurement system on either the radar platform or on the target is required; (3) automatically provide all the motion information needed to form correctly scaled images, without cross range scale ambiguities; (4) make full use of all the radar data; no signals returning from a target are discarded; and (5) require a known computation time, which is not signal dependent, as all iterative processes used have known, guaranteed convergence rates.

  10. Multiresolution analysis of SAR data

    Science.gov (United States)

    Hummel, Robert

    1993-01-01

    The 'Multiresolution Analysis of SAR Data' program supported research work in five areas. Geometric hashing theory can now be viewed as a Bayesian approach to object recognition. False alarm rates can be greatly reduced by using certain enhancements and modifications developed under this project. Geometric hashing algorithms now exist for the Connection Machine. Recognition of synthetically-produced dot arrays was demonstrated using a model base of 1024 objects. The work represents a substantial advance over existing model-based vision capabilities. Algorithms were developed for determining the translation and rotation of a sensor given only the image flow field data. These are new algorithms, and are much more stable than existing computer vision algorithms for this task. The algorithms might provide independent verification of gyroscopic data, or might be used to compute relative motion with respect to a moving scene object, or may be useful for motion-based segmentation. Our theories explaining the Dempster/Shafer calculus and developing new uncertainty reasoning calculi were extended, and presented at a conference and were incorporated into the Bayesian interpretation of geometric hashing. 'Wavelet Slice Theorem' was developed in several different versions, any of which yields an alternate approach to image formation. The result may well provide a more stable approach to image formation than the standard Fourier-based projection slide theorem, since interpolation of unknown spectra values is better-founded.

  11. Utility of Characterizing and Monitoring Suspected Underground Nuclear Sites with VideoSAR

    Science.gov (United States)

    Dauphin, S. M.; Yocky, D. A.; Riley, R.; Calloway, T. M.; Wahl, D. E.

    2016-12-01

    Sandia National Laboratories proposed using airborne synthetic aperture RADAR (SAR) collected in VideoSAR mode to characterize the Underground Nuclear Explosion Signature Experiment (UNESE) test bed site at the Nevada National Security Site (NNSS). The SNL SAR collected airborne, Ku-band (16.8 GHz center frequency), 0.2032 meter ground resolution over NNSS in August 2014 and X-band (9.6 GHz), 0.1016 meter ground resolution fully-polarimetric SAR in April 2015. This paper reports the findings of processing and exploiting VideoSAR for creating digital elevation maps, detecting cultural artifacts and exploiting full-circle polarimetric signatures. VideoSAR collects a continuous circle of phase history data, therefore, imagery can be formed over the 360-degrees of the site. Since the Ku-band VideoSAR had two antennas suitable for interferometric digital elevation mapping (DEM), DEMs could be generated over numerous aspect angles, filling in holes created by targets with height by imaging from all sides. Also, since the X-band VideoSAR was fully-polarimetric, scattering signatures could be gleaned from all angles also. Both of these collections can be used to find man-made objects and changes in elevation that might indicate testing activities. VideoSAR provides a unique, coherent measure of ground objects allowing one to create accurate DEMS, locate man-made objects, and identify scattering signatures via polarimetric exploitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to thank the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, for sponsoring this work. We would also like to thank the Underground Nuclear Explosion Signatures Experiment team, a multi

  12. Hydrodynamics of the groundwater-fed Sian Ka'an Wetlands, Mexico, From InSAR and SAR Data

    DEFF Research Database (Denmark)

    Gondwe, Bibi Ruth Neuman; Hong, S.; Wdowinski, S.

    2008-01-01

    to understand, quantify and predict the wetland dynamics. Remotely sensed Interferometric Synthetic Aperture Radar (InSAR) and Synthetic Aperture Radar (SAR) data offer new opportunities to get hydrodynamic information, which is useful for wetland management. InSAR data produces temporal phase......-changes of the backscattered radar signal, which can be related to the water level changes in vegetated wetlands. SAR data reveals information of surface properties such as the degree of flooding through the amplitude of the backscattered signal. We used RADARSAT-1 InSAR and SAR data to form 36 interferograms and 13 flooding...

  13. Recognizing occluded MSTAR targets

    Science.gov (United States)

    Bhanu, Bir; Jones, Grinnell, III

    2000-08-01

    This paper presents an approach for recognizing occluded vehicle targets in Synthetic Aperture Radar (SAR) images. Using quasi-invariant local features, SAR scattering center locations and magnitudes, a recognition algorithm is presented that successfully recognizes highly occluded versions of actual vehicles from the MSTAR public data. Extensive experimental results are presented to show the effect of occlusion on recognition performance in terms of Probability of Correct Identification, Receiver Operating Characteristic (ROC) curves and confusion matrices. The effect of occlusion on performance of this recognition algorithm is accurately predicted. Combined effects such as occlusion and measured positional noise, as well as occlusion and other observed extended operating conditions (e.g., articulation) are also addressed. Although excellent forced recognition results can be achieved at very high (70%) occlusion, practical limitations are found due to the similarity of unoccluded confuser vehicles to highly occluded targets.

  14. The impact of SARS on hospital performance

    Directory of Open Access Journals (Sweden)

    Chen Ran-Chou

    2008-11-01

    Full Text Available Abstract Background During the SARS epidemic, healthcare utilization and medical services decreased significantly. However, the long-term impact of SARS on hospital performance needs to be further discussed. Methods A municipal hospital in Taipei City was shut down for a month due to SARS and then became the designated SARS and infectious disease hospital for the city. This study collected the outpatient, inpatient and emergency service volumes for every year from April to March over four years. Average monthly service amount ± standard deviation were used to compare patient volume for the whole hospital, as well as the outpatient numbers accessing different departments. The ARIMA model of outpatient volume in the pre-SARS year was developed. Results The average monthly service volume of outpatient visits for the base year 2002 was 52317 ± 4204 visits per month, and number for 2003 and the following two years were 55%, 82% and 84% of the base year respectively. The average emergency service volume was 4382 ± 356 visits per month at the base year and this became 45%, 77% and 87% of the base year for the following three years respectively. Average inpatient service volume was 8520 ± 909 inpatient days per month at the base year becoming 43%, 81% and 87% of the base year for the following three years respectively. Only the emergency service volume had recovered to the level of a non-significant difference at the second year after SARS. In addition, the departments of family medicine, metabolism and nephrology reached the 2002 patient number in 2003. The ARIMA (2,1,0 model was the most suitable for outpatient volume in pre-SARS year. The MAPE of the ARIMA (2,1,0 model for the pre-SARS year was 6.9%, and 43.2%, 10.6%, 6.2% for following 3 years. Conclusion This study demonstrates that if a hospital is completely shut down due to SARS or a similar disease, the impact is longer than previous reported and different departments may experience

  15. Advanced SAR simulator with multi-beam interferometric capabilities

    Science.gov (United States)

    Reppucci, Antonio; Márquez, José; Cazcarra, Victor; Ruffini, Giulio

    2014-10-01

    State of the art simulations are of great interest when designing a new instrument, studying the imaging mechanisms due to a given scenario or for inversion algorithm design as they allow to analyze and understand the effects of different instrument configurations and targets compositions. In the framework of the studies about a new instruments devoted to the estimation of the ocean surface movements using Synthetic Aperture Radar along-track interferometry (SAR-ATI) an End-to-End simulator has been developed. The simulator, built in a high modular way to allow easy integration of different processing-features, deals with all the basic operations involved in an end to end scenario. This includes the computation of the position and velocity of the platform (airborne/spaceborne) and the geometric parameters defining the SAR scene, the surface definition, the backscattering computation, the atmospheric attenuation, the instrument configuration, and the simulation of the transmission/reception chains and the raw data. In addition, the simulator provides a inSAR processing suit and a sea surface movement retrieval module. Up to four beams (each one composed by a monostatic and a bistatic channel) can be activated. Each channel provides raw data and SLC images with the possibility of choosing between Strip-map and Scansar modes. Moreover, the software offers the possibility of radiometric sensitivity analysis and error analysis due atmospheric disturbances, instrument-noise, interferogram phase-noise, platform velocity and attitude variations. In this paper, the architecture and the capabilities of this simulator will be presented. Meaningful simulation examples will be shown.

  16. Possible SARS coronavirus transmission during cardiopulmonary resuscitation.

    Science.gov (United States)

    Christian, Michael D; Loutfy, Mona; McDonald, L Clifford; Martinez, Kennth F; Ofner, Mariana; Wong, Tom; Wallington, Tamara; Gold, Wayne L; Mederski, Barbara; Green, Karen; Low, Donald E

    2004-02-01

    Infection of healthcare workers with the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is thought to occur primarily by either contact or large respiratory droplet transmission. However, infrequent healthcare worker infections occurred despite the use of contact and droplet precautions, particularly during certain aerosol-generating medical procedures. We investigated a possible cluster of SARS-CoV infections in healthcare workers who used contact and droplet precautions during attempted cardiopulmonary resuscitation of a SARS patient. Unlike previously reported instances of transmission during aerosol-generating procedures, the index case-patient was unresponsive, and the intubation procedure was performed quickly and without difficulty. However, before intubation, the patient was ventilated with a bag-valve-mask that may have contributed to aerosolization of SARS-CoV. On the basis of the results of this investigation and previous reports of SARS transmission during aerosol-generating procedures, a systematic approach to the problem is outlined, including the use of the following: 1) administrative controls, 2) environmental engineering controls, 3) personal protective equipment, and 4) quality control.

  17. Representations of SARS in the British newspapers.

    Science.gov (United States)

    Washer, Peter

    2004-12-01

    In the Spring of 2003, there was a huge interest in the global news media following the emergence of a new infectious disease: severe acute respiratory syndrome (SARS). This study examines how this novel disease threat was depicted in the UK newspapers, using social representations theory and in particular existing work on social representations of HIV/AIDS and Ebola to analyse the meanings of the epidemic. It investigates the way that SARS was presented as a dangerous threat to the UK public, whilst almost immediately the threat was said to be 'contained' using the mechanism of 'othering': SARS was said to be unlikely to personally affect the UK reader because the Chinese were so different to 'us'; so 'other'. In this sense, the SARS scare, despite the remarkable speed with which it was played out in the modern global news media, resonates with the meanings attributed to other epidemics of infectious diseases throughout history. Yet this study also highlights a number of differences in the social representations of SARS compared with earlier epidemics. In particular, this study examines the phenomena of 'emerging and re-emerging infectious diseases' over the past 30 or so years and suggests that these have impacted on the faith once widely held that Western biomedicine could 'conquer' infectious disease.

  18. A modified algorithm for SAR parallel imaging

    Institute of Scientific and Technical Information of China (English)

    HU Ju-rong; WANG Fei; CAO Ning; LU Hao

    2009-01-01

    Synthetic aperture radar can provide two dimension images by converting the acquired echoed SAR signal to targets coordinate and reflectivity. With the advancement of sophisticated SAR signal processing, more and more SAR imaging methods have been proposed for synthetic aperture radar which works at near field and the Fresnel approximation is not appropriate. Time domain correlation is a kind of digital reconstruction method based on processing the synthetic aperture radar data in the two-dimensional frequency domain via Fourier transform. It reconstructs SAR image via simply correlation without any need for approximation or interpolation. But its high computational cost for correlation makes it unsuitable for real time imaging. In order to reduce the computational burden a modified algorithm about time domain correlation was given in this paper. It also can take full advantage of parallel computations of the imaging processor. Its practical implementation was proposed and the preliminary simulation results were presented. Simulation results show that the proposed algorithm is a computationally efficient way of implementing the reconstruction in real time SAR image processing.

  19. Automated rectification and geocoding of SAR imagery

    Science.gov (United States)

    Kwok, R.; Curlander, J. C.

    1987-01-01

    An automated post-processing system has been developed for rectification and geocoding of SAR (Synthetic Aperture Radar) imagery. The system uses as input a raw uncorrected image from the operational SAR correlator, and produces as a standard output a rectified and geocoded product. The accurate geolocation of SAR image pixels is provided by a spatial transformation model which maps the slant range-azimuth SAR image pixels into their location on a prespecified map grid. This model predicts the geodetic location of each pixel by utilizing: the sensor platform position; a geoid model; the parameters of the data collection system and the processing parameters used in the SAR correlator. Based on their geodetic locations, the pixels are mapped by using the desired cartographic projection equations. This rectification and geocoding technique has been tested with Seasat and SIR-B images. The test results demonstrate absolute location uncertainty of less than 50 m and relative distortion (scale factor and skew) of less than 0.1 percent relative to local variations from the assumed geoid.

  20. Low complexity efficient raw SAR data compression

    Science.gov (United States)

    Rane, Shantanu; Boufounos, Petros; Vetro, Anthony; Okada, Yu

    2011-06-01

    We present a low-complexity method for compression of raw Synthetic Aperture Radar (SAR) data. Raw SAR data is typically acquired using a satellite or airborne platform without sufficient computational capabilities to process the data and generate a SAR image on-board. Hence, the raw data needs to be compressed and transmitted to the ground station, where SAR image formation can be carried out. To perform low-complexity compression, our method uses 1-dimensional transforms, followed by quantization and entropy coding. In contrast to previous approaches, which send uncompressed or Huffman-coded bits, we achieve more efficient entropy coding using an arithmetic coder that responds to a continuously updated probability distribution. We present experimental results on compression of raw Ku-SAR data. In those we evaluate the effect of the length of the transform on compression performance and demonstrate the advantages of the proposed framework over a state-of-the-art low complexity scheme called Block Adaptive Quantization (BAQ).

  1. ICAO's anti-SARS airport activities.

    Science.gov (United States)

    Finkelstein, Silvio; Curdt-Christiansen, Claus M

    2003-11-01

    To prevent SARS from spreading through air travel and in order to rebuild the confidence of the traveling public in the safety of air travel, ICAO has set up an "Anti-SARS Airport Evaluation Project." The first phase of this project was to develop a set of protective measures for international airports in affected areas to adopt and implement and then to send out, on the request of Contracting States, a team of inspectors to evaluate and assess airports and issue a "statement of evaluation" that the airport inspected complies with the ICAO anti-SARS protective measures. In cooperation with the World Health Organization (WHO), the first part of phase 1 was completed in early June this year, and the second part of phase 1 followed soon after. By mid-July, five international airports in Southeast Asia had been inspected and found to be in full compliance with the ICAO anti-SARS protective measures. The success of this ICAO project is believed to have contributed significantly to the recovery of international air travel and related industries now taking place. Phase 2 of the project is now being developed. It is aimed at preventing a resurgence of SARS, but it also contains elements to make the methodology developed applicable to future outbreaks of any other communicable disease in which the mode of transmission could involve aviation and/or the need to prevent the spread of the disease by air travel.

  2. Identification of residues of SARS-CoV nsp1 that differentially affect inhibition of gene expression and antiviral signaling.

    Science.gov (United States)

    Jauregui, Andrew R; Savalia, Dhruti; Lowry, Virginia K; Farrell, Cara M; Wathelet, Marc G

    2013-01-01

    An epidemic of Severe Acute Respiratory Syndrome (SARS) led to the identification of an associated coronavirus, SARS-CoV. This virus evades the host innate immune response in part through the expression of its non-structural protein (nsp) 1, which inhibits both host gene expression and virus- and interferon (IFN)-dependent signaling. Thus, nsp1 is a promising target for drugs, as inhibition of nsp1 would make SARS-CoV more susceptible to the host antiviral defenses. To gain a better understanding of nsp1 mode of action, we generated and analyzed 38 mutants of the SARS-CoV nsp1, targeting 62 solvent exposed residues out of the 180 amino acid protein. From this work, we identified six classes of mutants that abolished, attenuated or increased nsp1 inhibition of host gene expression and/or antiviral signaling. Each class of mutants clustered on SARS-CoV nsp1 surface and suggested nsp1 interacts with distinct host factors to exert its inhibitory activities. Identification of the nsp1 residues critical for its activities and the pathways involved in these activities should help in the design of drugs targeting nsp1. Significantly, several point mutants increased the inhibitory activity of nsp1, suggesting that coronaviruses could evolve a greater ability to evade the host response through mutations of such residues.

  3. Exploration of Advanced Bistatic SAR Experiments (in English

    Directory of Open Access Journals (Sweden)

    Deng Yun-kai

    2014-02-01

    Full Text Available This study concentrates on the results of several advanced hybrid bistatic SAR experiments. The hybrid bistatic configuration applies to the case in which the transmitter and receiver are mounted on different types of platforms, e.g., spaceborne/airborne, airborne/stationary, spaceborne/stationary, and so on. Several hybrid bistatic SAR experiments have been performed successfully, i.e., TerraSAR-X/PAMIR, PAMIR/stationary, and TerraSAR-X/stationary. Furthermore, Multiple Baseline Interferometry SAR (MB-InSAR and Digital Beam-Forming (DBF technologies are validated in the TerraSAR-X/stationary configuration. Note that the DBF experiment results based on the spaceborne illuminator are discussed for the first time in SAR community. In addition, this paper emphasizes imaging geometry, image analysis, and focusing results.

  4. Application of SAR Imagery in Submarine Topography Surveys

    Institute of Scientific and Technical Information of China (English)

    张宁川; 梁开龙; 桂力民

    2004-01-01

    An important research area in oceanographic surveying and mapping is to obtain submarine topography by remote sensing technique, especially by SAR imagery. In this article, problems related to SAR imagery are analyzed to provide references for the further research.

  5. A new implementation of full resolution SBAS-DInSAR processing chain for the effective monitoring of structures and infrastructures

    Science.gov (United States)

    Bonano, Manuela; Buonanno, Sabatino; Ojha, Chandrakanta; Berardino, Paolo; Lanari, Riccardo; Zeni, Giovanni; Manunta, Michele

    2017-04-01

    The advanced DInSAR technique referred to as Small BAseline Subset (SBAS) algorithm has already largely demonstrated its effectiveness to carry out multi-scale and multi-platform surface deformation analyses relevant to both natural and man-made hazards. Thanks to its capability to generate displacement maps and long-term deformation time series at both regional (low resolution analysis) and local (full resolution analysis) spatial scales, it allows to get more insights on the spatial and temporal patterns of localized displacements relevant to single buildings and infrastructures over extended urban areas, with a key role in supporting risk mitigation and preservation activities. The extensive application of the multi-scale SBAS-DInSAR approach in many scientific contexts has gone hand in hand with new SAR satellite mission development, characterized by different frequency bands, spatial resolution, revisit times and ground coverage. This brought to the generation of huge DInSAR data stacks to be efficiently handled, processed and archived, with a strong impact on both the data storage and the computational requirements needed for generating the full resolution SBAS-DInSAR results. Accordingly, innovative and effective solutions for the automatic processing of massive SAR data archives and for the operational management of the derived SBAS-DInSAR products need to be designed and implemented, by exploiting the high efficiency (in terms of portability, scalability and computing performances) of the new ICT methodologies. In this work, we present a novel parallel implementation of the full resolution SBAS-DInSAR processing chain, aimed at investigating localized displacements affecting single buildings and infrastructures relevant to very large urban areas, relying on different granularity level parallelization strategies. The image granularity level is applied in most steps of the SBAS-DInSAR processing chain and exploits the multiprocessor systems with distributed

  6. Use of Sub-Aperture Decomposition for Supervised PolSAR Classification in Urban Area

    Directory of Open Access Journals (Sweden)

    Lei Deng

    2015-01-01

    Full Text Available A novel approach is proposed for classifying the polarimetric SAR (PolSAR data by integrating polarimetric decomposition, sub-aperture decomposition and decision tree algorithm. It is composed of three key steps: sub-aperture decomposition, feature extraction and combination, and decision tree classification. Feature extraction and combination is the main contribution to the innovation of the proposed method. Firstly, the full-resolution PolSAR image and its two sub-aperture images are decomposed to obtain the scattering entropy, average scattering angle and anisotropy, respectively. Then, the difference information between the two sub-aperture images are extracted, and combined with the target decomposition features from full-resolution images to form the classification feature set. Finally, C5.0 decision tree algorithm is used to classify the PolSAR image. A comparison between the proposed method and commonly-used Wishart supervised classification was made to verify the improvement of the proposed method on the classification. The overall accuracy using the proposed method was 88.39%, much higher than that using the Wishart supervised classification, which exhibited an overall accuracy of 69.82%. The Kappa Coefficient was 0.83, whereas that using the Wishart supervised classification was 0.56. The results indicate that the proposed method performed better than Wishart supervised classification for landscape classification in urban area using PolSAR data. Further investigation was carried out on the contribution of difference information to PolSAR classification. It was found that the sub-aperture decomposition improved the classification accuracy of forest, buildings and grassland effectively in high-density urban area. Compared with support vector machine (SVM and QUEST classifier, C5.0 decision tree classifier performs more efficient in time consumption, feature selection and construction of decision rule.

  7. SARS Transmission among Hospital Workers in Hong Kong

    OpenAIRE

    Lau, Joseph T F; Fung, Kitty S.; Wong, Tze Wai; Kim, Jean H; Wong, Eric; Chung, Sydney; Ho, Deborah; Chan, Louis Y; Lui, S F; Cheng, Augustine

    2004-01-01

    Despite infection control measures, breakthrough transmission of severe acute respiratory syndrome (SARS) occurred for many hospital workers in Hong Kong. We conducted a case-control study of 72 hospital workers with SARS and 144 matched controls. Inconsistent use of goggles, gowns, gloves, and caps was associated with a higher risk for SARS infection (unadjusted odds ratio 2.42 to 20.54, p < 0.05). The likelihood of SARS infection was strongly associated with the amount of personal protectio...

  8. PRF Ambiguity Detrmination for Radarsat ScanSAR System

    Science.gov (United States)

    Jin, Michael Y.

    1998-01-01

    PRF ambiguity is a potential problem for a spaceborne SAR operated at high frequencies. For a strip mode SAR, there were several approaches to solve this problem. This paper, however, addresses PRF ambiguity determination algorithms suitable for a burst mode SAR system such as the Radarsat ScanSAR. The candidate algorithms include the wavelength diversity algorithm, range look cross correlation algorithm, and multi-PRF algorithm.

  9. Exploration of Advanced Bistatic SAR Experiments (in English)

    OpenAIRE

    Deng Yun-kai; Robert Wang

    2014-01-01

    This study concentrates on the results of several advanced hybrid bistatic SAR experiments. The hybrid bistatic configuration applies to the case in which the transmitter and receiver are mounted on different types of platforms, e.g., spaceborne/airborne, airborne/stationary, spaceborne/stationary, and so on. Several hybrid bistatic SAR experiments have been performed successfully, i.e., TerraSAR-X/PAMIR, PAMIR/stationary, and TerraSAR-X/stationary. Furthermore, Multiple Baseline Interferomet...

  10. Integration of Canopy Height Information Derived from Stereo Imagery with SAR Backscatter Data to Improve Biomass Mapping

    Science.gov (United States)

    Sun, G.; Ranson, J.; Montesano, P. M.; Ni, W.

    2015-12-01

    Accurate forest biomass estimation over large areas is important for studies of global climate change and the carbon cycle. Synthetic Aperture Radar (SAR) is known to be effective for assessing forest biomass. SAR penetrates farther into forest canopies than optical sensors, so SAR data from forested areas can be related to standing woody biomass, especially at longer L and P bands wavelength. The effect of forest structure on radar signature reduces its sensitivity to biomass when the biomass reaches a threshold level (e.g. ~100Mg/ha at L-band). Therefore the ability for forest biomass mapping using only backscattering coefficients is limited. However, including height data in forest biomass mapping using SAR data will improve the sensitivity beyond saturation levels. There are many ways to get information related to forest canopy height including: 1) Lidar, a direct measurement of canopy height; 2) Height of scattering phase center (HSPC) from InSAR; 3) HSPC difference from two bands of InSAR, and 4) Polarimetric Interferometric SAR, which employs the polarization-dependent coherences. Photogrammetry (or stereo imagery) is another technique for quantifying forest vertical structure and is a traditional technique for the extraction of a digital surface model. The launch of spaceborne sensors, the application of digital cameras, the maturation of photogrammetry theory and the development of fully digital and automatic image processing make the application of photogrammetric methods feasible. Our previous studies using ALOS PRISM data have shown that the canopy height derived from PRISM stereo data were highly correlated with LVIS RH50 data. In this study we have integrated this canopy height with L-band SAR imagery data to map forest biomass in our test site in Howland, Maine. The point cloud data from multi-pair stereo imageries of five PRISM scenes were co-registered and used along with the USGS NED data to calculate the mean canopy height at 30m pixels. Multi

  11. Infrastructure monitoring with spaceborne SAR sensors

    CERN Document Server

    ANGHEL, ANDREI; CACOVEANU, REMUS

    2017-01-01

    This book presents a novel non-intrusive infrastructure monitoring technique based on the detection and tracking of scattering centers in spaceborne SAR images. The methodology essentially consists of refocusing each available SAR image on an imposed 3D point cloud associated to the envisaged infrastructure element and identifying the reliable scatterers to be monitored by means of four dimensional (4D) tomography. The methodology described in this book provides a new perspective on infrastructure monitoring with spaceborne SAR images, is based on a standalone processing chain, and brings innovative technical aspects relative to conventional approaches. The book is intended primarily for professionals and researchers working in the area of critical infrastructure monitoring by radar remote sensing.

  12. Efficacy of various disinfectants against SARS coronavirus.

    Science.gov (United States)

    Rabenau, H F; Kampf, G; Cinatl, J; Doerr, H W

    2005-10-01

    The recent severe acute respiratory syndrome (SARS) epidemic in Asia and Northern America led to broad use of various types of disinfectant in order to control the public spread of the highly contagious virus. However, only limited data were available to demonstrate their efficacy against SARS coronavirus (SARS-CoV). We therefore investigated eight disinfectants for their activity against SARS-CoV according to prEN 14476. Four hand rubs were tested at 30s (Sterillium, based on 45% iso-propanol, 30% n-propanol and 0.2% mecetronium etilsulphate; Sterillium Rub, based on 80% ethanol; Sterillium Gel, based on 85% ethanol; Sterillium Virugard, based on 95% ethanol). Three surface disinfectants were investigated at 0.5% for 30 min and 60 min (Mikrobac forte, based on benzalkonium chloride and laurylamine; Kohrsolin FF, based on benzalkonium chloride, glutaraldehyde and didecyldimonium chloride; Dismozon pur, based on magnesium monoperphthalate), and one instrument disinfectant was investigated at 4% for 15 min, 3% for 30 min and 2% for 60 min [Korsolex basic, based on glutaraldehyde and (ethylenedioxy)dimethanol]. Three types of organic load were used: 0.3% albumin, 10% fetal calf serum, and 0.3% albumin with 0.3% sheep erythrocytes. Virus titres were determined by a quantitative test (endpoint titration) in 96-well microtitre plates. With all tested preparations, SARS-CoV was inactivated to below the limit of detection (reduction factor mostly > or =4), regardless of the type of organic load. In summary, SARS-CoV can be inactivated quite easily with many commonly used disinfectants.

  13. Enhanced SAR data processing for land instability forecast.

    Science.gov (United States)

    Argentiero, Ilenia; Pellicani, Roberta; Spilotro, Giuseppe; Parisi, Alessandro; Bovenga, Fabio; Pasquariello, Guido; Refice, Alberto; Nutricato, Raffaele; Nitti, Davide Oscar; Chiaradia, Maria Teresa

    2017-04-01

    Monitoring represents the main tool for carrying out evaluation procedures and criteria for spatial and temporal landslide forecast. The forecast of landslide behaviour depends on the possibility to identify either evidences of activity (displacement, velocity, volume of unstable mass, direction of displacement, and their temporal variation) or triggering parameters (rainfalls). Generally, traditional geotechnical landslide monitoring technologies permit to define, if correctly positioned and with adequate accuracy, the critical value of displacement and/or acceleration into landslide body. In most cases, they do not allow real time warning signs to be generated, due to environmental induced errors, and the information is related to few points on unstable area. Remote-sensing monitoring instruments are capable of inspecting an unstable slope with high spatial and temporal frequency, but allow solely measurements of superficial displacements and deformations. Among these latest technologies, the satellite Persistent Scatterer SAR Interferometry (PSInSAR) is very useful to investigate the unstable area both in terms of space and time. Indeed, this technique allows to analyse wide areas, individuate critical unstable areas, not identifiable by means detailed in situ surveys, and study the phenomenon evolution in a long time-scale. Although this technique usually adopts, as first approximation, a linear model to describe the displacement of the detected targets, also non-linear models can be used. However, the satellite revisit time, which defines the time sampling of the detected displacement signal, limits the maximum measurable velocity and acceleration. This makes it difficult to assess in the short time any acceleration indicating a loss of equilibrium and, therefore, a probable reactivation of the landslide. The recent Sentinel-1 mission from the European Space Agency (ESA), provides a spatial resolution comparable to the previous ESA missions, but a nominal

  14. Severe Acute Respiratory Syndrome (SARS) Prevention in Taiwan

    Science.gov (United States)

    Liu, Hsueh-Erh

    2004-01-01

    Severe Acute Respiratory Syndrome (SARS) is a newly identified respiratory disease that threatened Taiwan between April 14 and July 5, 2003. Chang Gung University experienced various SARS-related episodes, such as the postponement of classes for 7 days, the reporting of probable SARS cases, and the isolation of students under Level A and B…

  15. Progress Toward Demonstrating SAR Monitoring of Chinese Seas

    Science.gov (United States)

    Huang, Weigen; Johannessen, Johnny; Alpers, Werner; Yang, Jingsong

    2010-12-01

    "Demonstrating SAR monitoring of Chinese seas" is a project of the ESA-MOST Dragon 2 program. This paper presents the progress of the project. Retrieval algorithms for SAR monitoring of sea surface currents, oceanic internal waves, sea surface winds, oil spills and ships have been advanced. SAR monitoring of Chinese seas in near-real-time is now in demonstration phase.

  16. (Q)SARs for human toxicological endpoints: a literature search

    NARCIS (Netherlands)

    Hulzebos E; Schielen P; Masilankiewicz L; CSR; NVIC

    1999-01-01

    Het doel van dit rapport is het beschrijven van humaan toxicologische SARs (structuur-activiteitsrelaties) die beschikbaar zijn in de literatuur alsmede de SARs die gebruikt worden door de US EPA (Environmental Protection Agency). De implementatie van het gebruik van SARs voor de effect assessment

  17. (Q)SARs for human toxicological endpoints: a literature search

    NARCIS (Netherlands)

    Hulzebos E; Schielen P; Masilankiewicz L; CSR; NVIC

    1999-01-01

    The goal here was to describe human toxicological SARs (structure-activity relationships) available in the literature and used by the US EPA (Environmental Protection Agency). The CSR laboratory investigated implementation of SARs for the effect assessment. SARs correlate the molecular structure

  18. Word Automaticity of Tree Automatic Scattered Linear Orderings Is Decidable

    CERN Document Server

    Huschenbett, Martin

    2012-01-01

    A tree automatic structure is a structure whose domain can be encoded by a regular tree language such that each relation is recognisable by a finite automaton processing tuples of trees synchronously. Words can be regarded as specific simple trees and a structure is word automatic if it is encodable using only these trees. The question naturally arises whether a given tree automatic structure is already word automatic. We prove that this problem is decidable for tree automatic scattered linear orderings. Moreover, we show that in case of a positive answer a word automatic presentation is computable from the tree automatic presentation.

  19. Illicit vessel identification in inland waters using SAR image

    Science.gov (United States)

    Zhang, Fengli; Wu, Bingfang; Zhang, Lei; Huang, Huiping; Tian, Yichen

    2006-10-01

    Synthetic Aperture Radar remote sensing has been effectively used in water compliance and enforcement, especially in ship detection, but it is still very difficult to classify or identify vessels in inland water only using existing SAR image. Nevertheless some experience knowledge can help, for example waterway channel is of great significance for water traffic management and illegal activity monitoring. It can be used for judging a vessel complying with traffic rules or not, and also can be used to indicate illicit fishing vessels which are usually far away from navigable waterway channel. For illicit vessel identification speed and efficiency are very important, so it will be significant if we can extract waterway channel directly from SAR images and use it to identify illicit vessels. The paper first introduces the modified two-parameter CFAR algorithm used to detect ship targets in inland waters, and then uses principal curves and neural networks to extract waterway channel. Through comparing the detection results and the extracted waterway channel those vessels not complying with water traffic rules or potential illicit fishing vessels can be easily identified.

  20. Estimating IMU heading error from SAR images.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2009-03-01

    Angular orientation errors of the real antenna for Synthetic Aperture Radar (SAR) will manifest as undesired illumination gradients in SAR images. These gradients can be measured, and the pointing error can be calculated. This can be done for single images, but done more robustly using multi-image methods. Several methods are provided in this report. The pointing error can then be fed back to the navigation Kalman filter to correct for problematic heading (yaw) error drift. This can mitigate the need for uncomfortable and undesired IMU alignment maneuvers such as S-turns.